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Preface

The primary purpose of this book is to provide a rigorous and succinct de-
scription of the mathematical methods and tools about the foundations of
representing fuzzy information and reasoning with it within Semantic Web
Languages. As such it may also be seen as a compendium on the matter.

The development covers the three main streams of Semantic Web lan-
guages: namely, triple languages RDF & RDFS, conceptual languages OWL,
OWL 2 and their profiles (OWL EL, OWL QL and OWL RL), and rule-based
languages such as RIF.

No previous knowledge of fuzzy set theory or fuzzy logic is required for an
understanding of the material in this text, although I assume that the reader is
familiar with the basic notions of classical (non fuzzy) set theory and classical
(two-valued) logic.

All the theoretical and logical aspects of classical (two-valued) Semantic
Web Languages are covered in the first six chapters, which are designated with
Part I. Part II is then devoted to generalizing these languages to cope with
fuzzy set theory and fuzzy logic and covers the remaining five chapters.

The two parts together may help both the non-fuzzy set theory and fuzzy
logic expert to get an insight into Fuzzy Semantic Web Languages, while on the
other hand may help the non Semantic Web Languages expert to get a better
understanding of the theoretical fundamentals of Semantic Web Languages.

The book also contains an extensive bibliography, which covers virtually
all relevant books and papers published by 2012, which may help the younger
readers in keeping track of previous work.

Umberto Straccia
February 16th, 2013

Pisa, Italy
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Chapter 1

The Quest for Fuzzy Logic in
Semantic Web Languages

Semantic Web Languages (SWLs), such as triple languages RDF & RDFS [77]
(Resource Description Framework), conceptual languages of the OWL 2 family
(Ontology Web Language) [340] and rule languages of the RIF (Rule Inter-
change Format) family [365], are languages to provide a formal description of
concepts, terms, and relationships within a given knowledge domain and to
be used as well to write the metadata that typically annotates any kind of
web-data.

A large body of work has been carried out addressing various aspects, such
as computational complexity, reasoning algorithms, and scalability. Moreover,
the standardization of languages such as RDFS and OWL 2, together with
the emergence of various implemented tools, allows us to access in a computer
processable and uniform way, large bodies of general purpose and/or domain
depended knowledge spread over the Web, that can be used, e.g., to infer new
knowledge (which may be injected back on the Web).

However, the restriction of SWLs to classical, two-valued/bivalent logic
has limitations related to its inability to semantically cope with the inherent
“imperfection” of web-data. That is, the inability to deal with e.g.,

Inconsistency: One may easily find, e.g., different Gross Domestic Product
(GDP) values for a specific country such as illustrated by Wikipedia1,
in which e.g., the GDP according to the United Nations2 and the Inter-
national Monetary Fund3 differ.

Trust: Software agents may gather pieces of data from various information
sources on the Web to collect them together and/or infer new knowledge.
As we filter information that we think wasn’t derived in a scientifically
viable way and we have the ability to trust and distrust sources, so
should software agents as well. The missing indication of the degree of
trustworthiness of the sources and the inferred knowledge may lead to
the propagation of “unreliable” information.

Non-monotonicity: The major problem that monotonic knowledge bases

1http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
2http://www.un.org
3http://www.imf.org/external/index.htm

1

http://en.wikipedia.org
http://www.un.org
http://www.imf.org


2 Foundations of Fuzzy Logic and Semantic Web Languages

face is that of inconsistency. Here it is assumed that if a true statement
s can be derived from a set K of statements, then s can also be derived
from every larger set K′ that contains K. This seems an appealing as-
sumption to make, because it allows reasoning to be local and to only
take into account the rules and facts that are immediately necessary to
infer a new statement. But it is also an unrealistic assumption to make,
because the world, even the formalized one, is full of contradictions and,
typically, the increase of information at hand and assumptions made
previously may become invalid. For instance, from the statement “usu-
ally I’m in office during office time” one may infer that “I will be at
the office Monday morning.” However, if later on I become aware of the
fact that Monday I will be travelling, the inferred statement becomes
invalid.

Uncertainty: A severe issue related to SWLs is the inability to deal with the
inherent uncertainty in the gathered data. With uncertainty we mean
the scenario in which any statement is true or false, but due to the
limited knowledge we have access to, we are unable to exactly establish
whether the statement is either true or false.

For instance, the GDP is the market value of all officially recognized
final goods and services produced within a country in a given period
and the GDP per capita is often considered an indicator of a country’s
standard of living. Now, one method to determine the GDP is the sum
of private consumption, gross investment, government spending, and the
difference among exports and imports, i.e.,

GDP = C + I +G+ (X −M) .

Now, very likely the values of C, I,G,X and M cannot be gathered
(by humans and/or software agents) exactly and, thus, can only be
approximated. We may also provide an estimation of the probability
of e.g., being the value of C the approximated value vC . That is, we
may further provide the measure Pr(C = vC). Therefore, the exact
value of the GDP is approximated with vGDP as well and accompanied
with the probability of the statement s “the GDP is vGDP ” being true,
i.e., p = Pr(GDP = vGDP ). The point now is that the correct anno-
tation of the statement “the GDP is vGDP ” with the probability p of
being this statement true cannot be semantically done properly in cur-
rent SWLs. This may cause a loss of information once these values are
put back on the Web and further processed automatically by a software
agent to determine, e.g., an indicator of a country’s standard of living.
In fact, we may become unaware again of the degree of reliability on the
inferred information.

Fuzziness: Natural language in general, and web-data specifically, are per-
vaded with concepts that are vague, specifically fuzzy, in the sense that
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statements, such as “the indicator of a country’s standard of living is
low”, cannot always to be determined to be either true or false because
it is unclear how to define exactly the involved term “low GDP”. In a
similar fashion, we face difficulties to figure out the answers to a request
such as “find me the countries with a low GDP” (as an exercise, try
to give an answer to the query for countries with low GDP listed in
Wikipedia, say, according to the UN ranking). Concepts such as, low,
high, warm, cold, dry, humid, etc., are called fuzzy concepts and rely
on fuzzy set theory. That is, while in classical set theory a set has crisp
boundaries, i.e., an object is either a member of a set S or it is not,
in fuzzy set theory instead, an object may be member of a set to some
more fine grained degree; usually a degree taken from the unit interval
[0, 1]. Therefore, statements and answers are graded.

Incorporating all the above dimensions has not yet been worked out, even
though there has been extensive research on each of them.

In this book, we will focus on fuzziness only, which may address
some interesting application scenarios as succinctly illustrated be-
low.

Ontology-based Information Retrieval. In Ontology-based Information
Retrieval (OBIR), one may determine the degree to which a web site, a Web
page, a text passage, an image region, a video segment, database records,
etc., is relevant to an information need expressed using a domain specific on-
tology. In a fuzzy setting the notion of “relevance” or “aboutness” is indeed
context dependent and subjective. That is, the notions of relevance and about-
ness are fuzzy concepts and specific similarity functions are defined to imple-
ment such notions. Here the top-k retrieval problem, i.e., the retrieval of the
top-k ranked answers, where each answer is ranked according to the degree to
which it satisfies the query, becomes an important one (see also e.g., [65, 126,
320, 344, 386, 392, 404, 409, 410, 414, 417, 420, 421, 434, 435]). An illustrative
example query may be: “find top-k cheapest hotels close to the train station”.

A more general case consists of the so-called Distributed Ontology-based
Information Retrieval (DOBIR) scenario, as depicted in Figure 1.1 (see [433]).

In DIR, a software agent has to perform automatically the following steps:

1. The agent has to select a subset of relevant resources S ′ ⊆ S, as it is
not reasonable to access and to query all resources (using techniques of
resource selection/resource discovery);

2. For every selected source Si ∈ S ′ the agent has to reformulate its infor-
mation need QA into the query language Li provided by the resource
(using techniques of schema mapping/ontology alignment);

3. The relevant results from the selected resources have to be merged to-
gether (using techniques of data fusion/rank aggregation).



4 Foundations of Fuzzy Logic and Semantic Web Languages
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FIGURE 1.1: Distributed information retrieval scenario.

Concerning point 1, both the determination of the relevant source involves
fuzziness as well the representation of the score of the degree of relevance of
each source associated to a query. For point 2, a schema mapping can roughly
be seen as a graded relation about the relatedness among the terms of the
query and the ones of the sources’ vocabulary, while in point 3 one needs to
represented the score of the individual items that have been retrieved.

Ontology-based Matchmaking. In Ontology-based Matchmaking typically
a buyer specifies his graded preferences over the product he wants to buy, while
on the other hand sellers specifies theirs. The objective of the software agent
here is to find the best possible agreement (called Pareto optimal solution
or Nash equilibrium) between a buyer and the sellers (see e.g., [48, 355, 356,
357, 358, 359, 360, 99, 430, 431, 432]). An excerpt may be the following (see
also Figure 1.2). A car seller sells the car Audi TT for e 31500, as from the
catalogue price. A buyer is looking for a sports car, but wants to pay no
more than around e 30000. In classical set theory the problem relies on the
crisp conditions on price. A more fine grained approach consists of considering
prices as vague constraints, i.e., fuzzy sets, as usual in negotiation (moreover,
the notion of a sports car is vague as well);

1. The seller may sell above e 31500, but can go down to e 30500;

2. The buyer prefers to spend less than e 30000, but can go up to e 32000;

So the highest degree of matching is 0.75 and the car may be sold at e 31250.

Ontology-based Multi-Criteria Decision Making. Multi-Criteria De-
cision Making (MCDM) is among one of the most well known branches of
decision-making. Roughly, MCDM is the study of identifying and choosing
alternatives based on the values and preferences of the decision maker. Mak-
ing a decision implies that there are alternative choices to be considered and
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FIGURE 1.2: Matchmaking.

to choose the one that best fits our goals, objectives, desires, values, and so
on [445] (see also [418]).

Usually, alternatives represent different choices of action available to the
decision maker and is assumed to be finite in our case. The decision criteria
represent the different dimensions from which the alternatives can be viewed
(decision criteria are also referred to as goals or attributes). Most of the MCDM
methods require the criteria to be assigned decision weights of importance.
Usually, these weights are normalized to add up to one.

A standard feature of MCDM methods is that a MCDM problem can be
expressed by means of a decision matrix, as shown below

Criteria

w1 w2 · · wm
Alternatives C1 C2 · · Cm
s1 A1 a11 a12 · · a1m

s2 A2 a21 a22 · · a2m

· · · · · · ·
· · · · · · ·
sn An an1 an2 · · anm

(1.1)

In the matrix each column belongs to a criterion Cj and each row describes
the performance of an alternative Ai. The value aij describes the performance
of alternative Ai against criterion Cj . Weight wj reflects the relative impor-
tance of criteria Cj to the decision. The weights of the criteria are usually
determined on a subjective basis and may also be seen as a kind of profit
of the criteria. They may represent the opinion of a single decision maker or
synthesize the opinions of a group of experts. Eventually, si is the overall score
of alternative Ai computed using some aggregation method using the weights
wij and performance values aij (1 ≤ j ≤ m).
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FIGURE 1.3: Fuzzy numbers.

Here, fuzziness arises naturally in the description of the criteria, offers, the
relative importance of the criteria and the performance of each alternative
against each criteria (see, e.g., the area of fuzzy MCDM [225, 443]).

For instance, assume that we have to decide which offer to choose for the
development of a public school (see matrix representation below):

Offer Cost DeliveryTime Quality
Fair Low High

A1 VeryPoor Fair Good
A2 Good VeryGood Poor
A3 Fair Fair Poor

• There are three offers Ai (alternatives), described using the terms of
an ontology, which have been evaluated manually or semi-automatically
by one or more experts, or fully automatically by one or more software
agents, according to three criteria

– Cost, DeliveryTime, Quality

• The performance values of the alternatives w.r.t. a criteria are also
vague, i.e., are expressed in terms of qualitative degrees (e.g., fuzzy
numbers [242], see also Figure 1.3) such as

– Very Poor, Poor, Fair, Good, Very Good

• The relative importance of each criteria is also expressed using fuzzy
numbers such as

– Very Low, Low, Fair, High, Very High

Then a key aspect concerns the problem of determining the score of each
alternative and computing the top-k ranked alternatives.

Ontology-based Data Mining. In Ontology-based Data Mining (OBDM),
the goal is to discover structured knowledge from an ontology-based and
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FIGURE 1.4: Excerpt of an ontology about interesting sites in a city.

usually large data set, where the ontology represents the background infor-
mation on the domain. Here, fuzzy approaches play an important role, be-
cause they may provide human comprehensible, i.e., better interpretable, re-
sults [246, 260, 261].

For instance, consider the case of hotel finding in a possible tourism ap-
plication, where an ontology is used to describe the meaningful entities of the
domain4 (see also Figure 1.4).

Now, one may fix a city, say Pisa, extract the characteristic of the hotels
from web sites and the graded hotel judgements of the users e.g., from Trip
Advisor5 and ask about what characterizes good hotels. Then one may learn
that, e.g., that “a hotel having a high price is a good hotel [260, 261]”. In
this case, the notion of high price has been determined automatically form
the data (see Figure 1.5).

4http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html
5http://www.tripadvisor.com

http://donghee.info
http://www.tripadvisor.com
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FIGURE 1.5: Very low, low, fair, high, and very high hotel prices.

We refer the interested reader to the FOIL-DL system6, for further
insights.

Ontology-based Geographic Information System. Geographic Informa-
tion Systems (GISS) are widely used nowadays. It is quite obvious, how-
ever, that many spatial features often do not have clearly defined boundaries,
and concepts like moderate slope, strong elevation, close to a lake, near to
a major road, located in a dry region, etc., can better be expressed with
degrees of membership to a fuzzy set than with a binary yes/no classifica-
tion [226, 419, 438].

The above mentioned areas, besides many more, may hopefully convince
the reader that fuzzy set theory and fuzzy logic may contribute positively to
make knowledge, expressed via SWLs, besides being mechanically processable,
more suitable for human reading and information interchange.

6http://nmis.isti.cnr.it/~straccia/software/FOIL-DL/index.html

http://nmis.isti.cnr.it
http://nmis.isti.cnr.it
straccia/software/FOIL-DL/index.html
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Chapter 2

Introduction

The Semantic Web is a “web of data” whose goal is to enable machines to
understand the semantics, or meaning, of information on the World Wide Web.
In rough terms, it should extend the network of hyperlinked human-readable
Web pages by inserting machine-readable metadata1 about pages and how
they are related to each other, enabling automated agents to access the Web
more intelligently and perform tasks on behalf of users.

Semantic Web Languages (SWLs) are the languages used to provide a for-
mal description of concepts, terms, and relationships within a given knowledge
domain to be used to write the metadata. There are essentially three family
of languages: namely,

• Triple languages RDF & RDFS [77] (Resource Description Framework);

• Conceptual languages of the OWL 2 family (Ontology Web Lan-
guage) [340]; and

• Rule languages of the RIF family (Rule Interchange Format) [365].

While their syntactic specification is based on XML [463], their semantics is
based on logical formalisms (see Fig. 2.1): briefly,

• RDFS is a logic having intensional semantics and the logical counterpart
is ρdf [325];

• OWL 2 is a family of languages that relate to Description Logics
(DLs) [19];

• RIF relates to the Logic Programming (LP) paradigm [263].

Both OWL 2 and RIF have an extensional semantics.
Of course, having standard languages to represent and reason about do-

main knowledge is of little use if we cannot appropriately query it. To this
purpose, the query language SPARQL has been defined [380, 381], and con-
sidered as one of the key technologies of the Semantic Web.

1Obtained manually, semi-automatically, or automatically.

11
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FIGURE 2.1: SWLs from a logical perspective.

2.1 RDF & RDFS

The basic ingredients of RDF are triples of the form (s, p, o), such as
(umberto, likes, tomato), stating that subject s has property p with value o.
In RDF Schema (RDFS), which is an extension of RDF, additionally some
special keywords may be used as properties to further improve the expressivity
of the language. For instance we may also express that the class of tomatoes
are a subclass of the class of vegetables (tomato, sc, vegetable), while Zurich
is an instance of the class of cities (zurich, type, city).

From a computational point of view, one computes the so-called closure
(denoted cl(K)) of a set of triples K. That is, one infers all possible triples
using inference rules [307, 325, 362], such as

(A, sc, B), (X, type, A)

(X, type, B)

“if A subclass of B and X instance of A then infer that X is
instance of B”,

and then store all inferred triples into a relational database to be used then for
querying. We recall also that there are several ways to store the closure cl(K)
in a database (see [1, 211]). Essentially, either we may store all the triples
in table with three columns subject, predicate, object, or we use a table for
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each predicate, where each table has two columns subject, object. The latter
approach seems to be better for query answering purposes. Note that making
all implicit knowledge explicit is viable due to the low complexity of the closure
computation, which is O(|K|2) in the worst case.

2.2 The OWL Family

The Web Ontology Language OWL [338] and its successor OWL 2 [101,
340] are “object-oriented” languages for defining and instantiating Web on-
tologies. Ontology (see, e.g., [174]) is a term borrowed from philosophy that
refers to the science of describing the kinds of entities in the world and how
they are related. An OWL ontology may include descriptions of classes, prop-
erties, and their instances, such as

class Person partial Human

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)

“The class Person is a subclass of class Human and has two at-
tributes: hasName having a string as value, and hasBirthPlace
whose value is an instance of the class Geoplace”.

Given such an ontology, the OWL formal semantics specifies how to derive its
logical consequences. For example, if an individual Peter is an instance of the
class Student, and Student is a subclass of Person, then one can derive that
Peter is also an instance of Person in a similar way as it happens for RDFS.
However, OWL is much more expressive than RDFS, as the decision problems
for OWL are in higher complexity classes [345] than for RDFS. In Fig. 2.2
we report the various OWL languages and as subscript the DL they relate
to [19, 125].

OWL 2 [101, 340] is an update of OWL 1 adding several new features,
including an increased expressive power. OWL 2 also defines several OWL 2
profiles, i.e., OWL 2 language subsets that may better meet certain computa-
tional complexity requirements or may be easier to implement. The choice of
which profile to use in practice will depend on the structure of the ontologies
and the reasoning tasks at hand. The OWL 2 profiles are:

OWL 2 EL is particularly useful in applications employing ontologies that
contain very large numbers of properties and/or classes (basic reasoning
problems can be performed in time that is polynomial with respect to
the size of the ontology [13, 18]). The EL acronym reflects the profile’s
basis in the EL family of description logics [13, 18].

OWL 2 QL is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task.
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FIGURE 2.2: OWL family.

In OWL 2 QL, conjunctive query answering can be implemented us-
ing conventional relational database systems. Using a suitable reason-
ing technique, sound and complete conjunctive query answering can
be performed in LogSpace with respect to the size of the data (asser-
tions) [12, 87]. The QL acronym reflects the fact that query answering
in this profile can be implemented by rewriting queries into a standard
relational query language such as SQL [449].

OWL 2 RL is aimed at applications that require scalable reasoning without
sacrificing too much expressive power. OWL 2 RL reasoning systems
can be implemented using rule-based reasoning engines, as a mapping
to Logic Programming [263], specifically Datalog [449], exists. The RL
acronym reflects the fact that reasoning in this profile can be imple-
mented using a standard rule language [173]. The computational com-
plexity is the same as for Datalog [113] (polynomial in the size of the
data, ExpTime w.r.t. the size of the knowledge base).

2.3 The RIF Family

The Rule Interchange Format (RIF) aims at becoming a standard for ex-
changing rules, such as

Forall ?Buyer ?Item ?Seller
buy(?Buyer ?Item ?Seller) :- sell(?Seller ?Item ?Buyer)
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“Someone buys an item from a seller if the seller sells that item to
the buyer”

among rule systems, in particular among Web rule engines. RIF is in fact a
family of languages, called dialects, among which the most significant are:

RIF-BLD The Basic Logic Dialect is the main logic-based dialect. Techni-
cally, this dialect corresponds to Horn logic with various syntactic and
semantic extensions. The main syntactic extensions include the frame
syntax and predicates with named arguments. The main semantic ex-
tensions include datatypes and externally defined predicates.

RIF-PRD The Production Rule Dialect aims at capturing the main aspects
of various production rule systems. Production rules, as they are cur-
rently practiced in mainstream systems like Jess2 or JRules3, are defined
using ad hoc computational mechanisms, which are not based on a logic.
For this reason, RIF-PRD is not part of the suite of logical RIF dialects
and stands apart from them. However, significant effort has been ex-
tended to ensure as much sharing with the other dialects as possible.
This sharing was the main reason for the development of the RIF Core
dialect.

RIF-Core The Core Dialect is a subset of both RIF-BLD and RIF-PRD, thus
enabling limited rule exchange between logic rule dialects and produc-
tion rules. RIF-Core corresponds to Horn logic without function symbols
(i.e., Datalog [2, 449]) with a number of extensions to support features
such as objects and frames as in F-logic [238].

RIF-FLD The Framework for Logic Dialects is not a dialect in its own right,
but rather a general logical extensibility framework. It was introduced
in order to drastically lower the amount of effort needed to define and
verify new logic dialects that extend the capabilities of RIF-BLD.

2.4 The Query Language SPARQL

Strictly speaking, SPARQL [381, 380] is a query language for data that
is stored natively as RDF or viewed as RDF via middleware. From a logical
point of view, its logical counterpart is the well-known notion of conjunc-
tive/disjunctive query. As such, we may see SPARQL essentially as a query
language for databases and, indeed, has much in common with SQL.

While SPARQL was originally proposed to query RDFS graphs only, in
the meanwhile, by relying on the representation of OWL and RIF in RDFS,

2http://www.jessrules.com/
3http://www.ilog.com/products/jrules/

http://www.jessrules.com
http://www.ilog.com
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SPARQL was used to query OWL 2 and RIF ontologies as well, via the def-
inition of the so-called entailment regimes. In fact, what correct answers to
a SPARQL query are depends on the used entailment regime [379] and the
vocabulary from which the resulting answers can be taken.

As an illustrative example, the following is a SPARQL query

SELECT ?p ?c

WHERE { (?p, type, ebayEmp)

OPTIONAL {(?p, hasCar, ?c) }

}

whose answers are Ebay employees that optionally owned a car. Note that the
basic ingredients of the query are triples.



Chapter 3

Resource Description Language RDF
& RDF Schema

3.1 Introduction

The Resource Description Framework (RDF) is a language for representing
information about resources in the World Wide Web [304, 361] and has become
a quite popular Semantic Web representation formalism. It is particularly
intended for representing metadata about Web resources, such as the title
and author of a Web page. However, by generalizing the concept of a “Web
resource,” RDF can also be used to represent information about things that
can be identified on the Web, even when they cannot be directly retrieved on
the Web. For our purposes we can think of it as anything we can identify.

RDF is based on the idea of identifying things using identifiers (called
Uniform Resource Identifiers, or URIs) and describing resources in terms of
simple properties and property values. RDF properties may be thought of as
attributes of resources and in this sense correspond to traditional attribute-
value pairs. This enables RDF to represent a simple statement about resources
as a triple (s, p, o), such as (umberto, likes, tomato), stating that subject s
has property p with value o. Triples may also be represented as graphs, where
nodes represent resources or values and arcs represent properties, as shown in
Figure 3.1. In RDF Schema (RDFS) [77], which is an extension of RDF, addi-
tionally some special keywords may be used as properties to further improve
the expressivity of the language. For instance (see Figure 3.1) we may also
express that the class of “tomatoes are a subclass of the class of vegetables”,
while Zurich is an instance of the class of cities.

In what follows, we will describe the essential features of RDFS from a
syntax, semantics, and a reasoning point of view that are necessary for our
discussions later in Chapter 9 when we introduce fuzzy RDFS. Our exposition
is along the line followed by [177, 307, 325] to describe syntax, semantics, and
inference system for the “core” part of RDFS, called ρdf [325].

We refer the reader to Appendix A for a complete formal definition of the
semantics of RDFS using the notion of interpretation defined here.

17
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FIGURE 3.1: Triples as graph.

3.2 RDF and RDFS

Syntax. Consider pairwise disjoint alphabets U, B, and L denoting, respec-
tively, URI references, blank nodes, and literals. We assume U,B, and L fixed,
and for ease we will denote unions of these sets simply concatenating their
names. We call the elements in UBL (B) terms (variables, denoted x, y, z).

An RDF triple is a triple τ of the form

(s, p, o) ∈ UBL×U×UBL .

We call s the subject, p the predicate, and o the object. Note that as in [325]
we allow literals for s. A graph G is a set of triples, a subgraph is a subset of
a graph, the universe of G, universe(G), is the set of elements in UBL that
occur in the triples of G, the vocabulary of G, voc(G), is universe(G) ∩UL.

For our purposes, we rely on a fragment of RDFS, called ρdf [325], that
covers essential features of RDFS (read rho-df, the ρ from restricted RDF).
ρdf is defined as the following subset of the RDFS vocabulary:

ρdf = {sp, sc, type, dom, range} ,

where the keywords in ρdf may be used in triples as properties. Informally,

• (p, sp, q) means that property p is a sub-property of property q;

• (c, sc, d) means that class c is a subclass of class d;

• (a, type, b) means that a is of type b;

• (p, dom, c) means that the domain of property p is c; and

• (p, range, c) means that the range of property p is c.
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Remark 1. In a First-Order Logic (FOL) setting, we may interpret classes
as unary predicates, and (RDF) predicates as binary predicates. Then

1. a subclass relation between class c and d may be encoded as the formula

∀x.c(x)→ d(x)

2. a subproperty relation between property p and q may be encoded as

∀x∀y.p(x, y)→ q(x, y)

3. domain and range properties may be represented as:

∀x∀y.p(x, y)→ c(x) and ∀x∀y.p(x, y)→ c(y)

4. the transitivity of a property can be represented as

∀x∀y∃z.(p(x, z) ∧ p(z, y))→ p(x, y) .

Although this remark is trivial, we will see that it will play an important role
in the formalization of fuzzy RDFS.

In what follows we define a map or (variable assignment) as a function µ :
UBL → UBL preserving URIs and literals, i.e., µ(t) = t, for all t ∈ UL.
Given a graph G, we define µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. We
speak of a map µ from G1 to G2, and write µ : G1 → G2, if µ is such that
µ(G1) ⊆ G2.

A grounding G′ of graph G is obtained, as usual, by replacing variables in
G with terms in UL. A graph G without variables is called ground.

Example 1. The following is a graph (partially represented in Figure 3.1)

G = { (umberto, likes, tomato), (umberto, born, zurich),
(tomato, type, edibleFruit), (edibleFruit, sc, fruit),
(born, dom, person), (born, range, city) } .

Note that G is ground.

Semantics. An interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 ,

where ∆R,∆P , ∆C ,∆L are the interpretation domains of I, which are finite
non-empty sets, and P [[·]], C[[·]], ·I are the interpretation functions of I. They
have to satisfy:

1. ∆R are the resources (the domain or universe of I);
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TABLE 3.1: Semantic conditions for classical ρdf interpretations.

Simple: 1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P [[pI ]];

Subproperty: 1. P [[spI ]] is transitive over ∆P ;
2. if (p, q) ∈ P [[spI ]] then p, q ∈ ∆P and P [[p]] ⊆ P [[q]];

Subclass: 1. P [[scI ]] is transitive over ∆C ;
2. if (c, d) ∈ P [[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing I: 1. x ∈ C[[c]] if and only if (x, c) ∈ P [[typeI ]];

2. if (p, c) ∈ P [[domI ]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P [[rangeI ]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

Typing II: 1. for each e ∈ ρdf, eI ∈ ∆P

2. if (p, c) ∈ P [[domI ]] then p ∈ ∆P and c ∈ ∆C

3. if (p, c) ∈ P [[rangeI ]] then p ∈ ∆P and c ∈ ∆C

4. if (x, c) ∈ P [[typeI ]] then c ∈ ∆C

2. ∆P are property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R are the classes;

4. ∆L ⊆ ∆R are the literal values and contains L ∩ V ;

5. P [[·]] is a function P [[·]] : ∆P → 2∆R×∆R ;

6. C[[·]] is a function C[[·]] : ∆C → 2∆R ;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , and such that ·I
is the identity for plain literals and assigns an element in ∆R to each
element in L.

An interpretation I is a model of a ground graph G, denoted I |= G, if
and only if I is an interpretation over the vocabulary ρdf ∪ universe(G) that
satisfies the conditions in Table 3.1.

Entailment, denoted G |= H, among ground graphs G and H is as usual:
a ground graph G entails a ground graph H if and only if any model of G is
also a model of H. The generalization to non-necessarily ground graphs is as
follows: a graph G entails a graph H, denoted G |= H, if and only if for any
grounding G′ of G there is a grounding H ′ of H such that G′ |= H ′.

Remark 2 (Reflexivity issue). In [325], the authors define two vari-
ants of the semantics: the default one includes reflexivity of P [[spI ]]
(resp. C[[scI ]]) over ∆P (resp. ∆C). Here we are only considering the
alternative semantics presented in [325, Definition 4] which omits this
requirement. Thus, we do not support entailment of triples such as
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(a, sc, a), (sp, sp, sp), (sc, sp, sc), (type, sp, type), (dom, sp, dom), and (range, sp,
range), that depend on the reflexivity and are of marginal interest anyway.
See [325] (cf. p. 59) for a more in depth discussion on this issue.

Let us denote with |=rx the entailment relation |= of ρdf in which we include
also the reflexivity of P [[spI ]] and C[[scI ]]. Then it can be shown that

Proposition 1 ([325]). Let G and H be ρdf graphs. Assume that H does not
contain triples of the form (a, sp, a) nor (a, sc, a) for a ∈ UL, nor triples of
the form (x, sp, y) nor (x, sc, y) for x ∈ B or y ∈ B. Then,

G |= H if and only if G |=rx H .

Essentially the above theorem states that the only use of reflexive restrictions
in RDFS models is the entailment of triples of the form (a, sp, b), (a, sc, b), or
their existential versions replacing the subject or object by variables (blank
nodes).

The next proposition shows that |=rx retains the original semantics of
RDFS. Let |=RDFS be the RDFS entailment relation defined in [307, 362] (see
Appendix A).

Proposition 2 ([325]). Let G and H be graphs that do not mention RDFS
vocabulary outside ρdf. Then

G |=RDFS H if and only if G |=rx H .

Combining Propositions 1 and 2 we may characterize our entailment relation
|= in ρdf with respect to full RDFS semantics as follows.

Corollary 1. Let G and H be graphs that do not mention RDFS vocabulary
outside ρdf. Assume that H does not contain triples of the form (a, sp, a) nor
(a, sc, a) for a ∈ UL, nor triples of the form (x, sp, y) nor (x, sc, y) for x ∈ B
or y ∈ B. Then,

G |=RDFS H if and only if G |= H .

Remark 3 (Axiomatic triples). Note that in ρdf models we do not impose the
a priori satisfaction of any axiomatic triple. Indeed, ρdf models do not satisfy
any of the RDFS axiomatic triples in [307, 362] (see Appendix A, Table A.2),
because all of them mention RDFS vocabulary outside ρdf. This is also the rea-
son for the inclusion of the “Typing II” conditions in ρdf models that capture
the semantics restrictions imposed syntactically by the RDFS axiomatic triples
(dom, dom, prop), (dom, range, class), (range, dom, prop), (range, range, class), and
(type, range, class), and the fact that every element in ρdf must be interpreted
as a property.

Another property of |= is that it does not entail axiomatic triples:

Proposition 3 ([325]). There is no ρdf triple τ such that |= τ .



22 Foundations of Fuzzy Logic and Semantic Web Languages

As we will see, Corollary 1 and Proposition 3 simplify the reasoning machinery
for ρdf significantly.

We conclude this section with an example.

Example 2. Consider the graph G in Example 1. Then the following entail-
ment relations hold:

G |= (tomato, type, fruit)
G |= (umberto, type, person)
G |= (zurich, type, city) .

For instance, concerning G |= (tomato, type, fruit), informally the argument
is as follows. A tomato is an edible fruit, edible fruits are fruits and, thus, a
tomato is a fruit. Concerning G |= (zurich, type, city), we have that umberto
is born in Zurich, if someone is born somewhere then this latter is a city and,
thus, Zurich is a city. The case G |= (umberto, type, person) is similar.

3.3 Conjunctive Queries

Concerning query answering, we are inspired by [177] and the logic pro-
gramming setting [263] and we assume that a RDFS graph G is ground. That
is, blank nodes have been skolemized, i.e., replaced with terms in UL.

A conjunctive query is of the rule-like form

q(x)← ∃y.ϕ(x,y) (3.1)

where q(x) is the head and ∃y.ϕ(x,y) is the body of the query, which is a
conjunction (we use the symbol “,” to denote conjunction in the rule body)
of triples τi (1 ≤ i ≤ n). x is a vector of variables occurring in the body,
called the distinguished variables, y are so-called non-distinguished variables
and are distinct from the variables in x, each variable occurring in τi is either
a distinguished or a non-distinguished variable. If clear from the context, we
may omit the existential quantification ∃y.

A query example is:

q(x, y)← (y, created, x), (y, type, Italian), (x, exhibitedAt, Uffizi)

having intended meaning to retrieve all the artifacts x created by Italian artists
y, being exhibited at Uffizi Gallery.

In order to define an answer to a conjunctive query we introduce the fol-
lowing definitions. Given a vector x = 〈x1, . . . , xk〉 of variables, a substitution
over x is a vector of terms t replacing variables in x with terms of UBL.
Then, given a query q(x) ← ∃y.ϕ(x,y), and two substitutions t, t′ over x
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and y, respectively, the query instantiation ϕ(t, t′) is derived from ϕ(x,y) by
replacing x and y with t and t′, respectively.

Note that a query instantiation ϕ(t, t′) is an RDF graph.
Given a ground graph G, a query q(x) ← ∃y.ϕ(x,y), and a vector t of

terms in universe(G), we say that q(t) is entailed by G, denoted G |= q(t), if
and only if there is a vector t′ of terms in universe(G) such that in any model
I of G, I is a model of the query instantiation ϕ(t, t′).

If G |= q(t) then t is called an answer to q. The answer set of q w.r.t. G
is defined as ans(G, q) = {t | G |= q(t)}.

3.4 Reasoning

In what follows, we provide a sound and complete deductive system (for the
graph entailment problem) for our language derived from [325]. The complete
RDFS inference rules are presented in Appendix A.

The system is arranged in groups of rules that capture the semantic con-
ditions of models. In every rule, A,B,C,X, and Y are meta-variables repre-
senting elements in UBL and D,E represent elements in UL. The rules are
described in Table 3.2.

Remark 4 (On rules (5a) and (5b)). As noted in [307, 440], the set of rules
presented in [362] is not complete for RDFS entailment. The problem is pro-
duced when a blank node X is implicitly used as standing for a property in
triples like (a, sp, X), (X, dom, b), or (X, range, c). Here we solve the problem
following the elegant solution proposed by [307] adding just two new rules of
implicit typing (rules 5 above).

Remark 5 (Rules for reflexivity). A reader familiar with [325] will notice
that these rules are as rules 1-5 of [325] (which has 7 rules). We excluded the
rules handling reflexivity (rules 6-7) that are not needed in our setting.

Furthermore, as noted in [325], the “Implicit Typing” rules are a neces-
sary addition to the rules presented in [362] for complete RDFS entailment.
These represent the case when variable A in (D, sp, A) and (A, dom, B) or
(A, range, B), is a property implicitly represented by a blank node.

For completeness, we recap the missing rules 6-7 of [325] below:

6. Subproperty Reflexivity:
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TABLE 3.2: Inference rules for ρdf.

1. Simple:

(a) G
G′ for a map µ : G′ → G

(b) G
G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (D,sp,E),(X,D,Y )
(X,E,Y )

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X,type,A)
(X,type,B)

4. Typing:

(a) (D,dom,B),(X,D,Y )
(X,type,B)

(b) (D,range,B),(X,D,Y )
(Y,type,B)

5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X,D,Y )
(X,type,B)

(b) (A,range,B),(D,sp,A),(X,D,Y )
(Y,type,B)

(a) (X,A,Y )
(A,sp,A)

(b) (A,sp,B)
(A,sp,A),(B,sp,B)

(c)
(p,sp,p)

for p ∈ ρdf

(d) (A,p,X)
(A,sp,A)

for p ∈ {dom, range}

7. Subclass Reflexivity:

(a) (A,sc,B)
(A,sc,A)

(b) (A,sc,B)
(B,sc,B)

(c) (X,p,A)
(A,sc,A)

for p ∈ {dom, range, type}

An instantiation of a rule is a uniform replacement of the metavariables oc-
curring in the triples of the rule by elements of UBL, such that all the triples
obtained after the replacement are well-formed RDF triples.
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A proof is defined in the usual way. Let G and H be graphs. Then G ` H
iff there is a sequence of graphs P1, . . . , Pk with P1 = G and Pk = H, and for
each j (2 ≤ j ≤ k) one of the following holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));

2. Pj ⊆ Pj−1 (rule (1b));

3. there is an instantiation R
R′ of one of the rules (2)(5), such that R ⊆ Pj−1

and Pj = Pj−1 ∪R′.
The sequence of rules used at each step (plus its instantiation or map), is
called a proof of H from G.

Example 3. Consider Example 1. The following is a proof of G `
(tomato, type, fruit):

(1) (tomato, type, edibleFruit) Rule (1b)
(2) (edibleFruit, sc, fruit) Rule (1b)
(3) (tomato, type, fruit) Rule (3b) applied to (1) and (2) .

The following proposition shows that our proof mechanism is sound and com-
plete w.r.t. the ρdf semantics:

Proposition 4 (Soundness and Completeness [325]). Inference ` based on
rules 1-5 is sound and complete for |=, that is,

G ` H if and only if G |= H .

Proposition 5 ([325]). Assume G ` G′ then there is a proof of G′ from G
where the rule (1a) is used at most once and at the end.

Corollary 2 ([325]). Define the proof system `rx as for ρdf by adding also
the rules of reflexivity (rules (6) and (7)). Then for graphs G and H,

G |=rx H if and only if G `rx H .

Corollary 3 ([325]). Assume G `rx H then there is a proof of H from G
where the rule (1a) is used at most once and at the end.

For notational convenience, we denote with {τ1, . . . , τn} `RDFS τ that the
consequence τ is obtained from the premise τ1, . . . , τn by applying one of the
inference rules with the exclusion of rules (1a) and (1b).

The closure of a graph G is defined as cl(G) = {τ | G `∗ τ}, where `∗ is
as ` except that rule (1a) is excluded. Note that the size of the closure of G
is polynomial in the size of G and that the closure is unique.

Example 4. Consider the graph G in Example 1. Then the closure of G is:

cl(G) = G ∪ { (tomato, type, fruit),

(umberto, type, person),

(zurich, type, city) } .
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Using the closure, we may immediately prove that

Proposition 6. Any graph G has a model.

More importantly, from a practical point of view, it can be proven that:

Proposition 7 ([325]). G ` H if and only if H ⊆ cl(G) or H is obtained
from cl(G) by applying rule (1a).

Finally, note that a simple method to determine G |= τ , where both G and
τ are ground, consists in computing cl(G), where the size of the closure of G
is O(|G|2), and check whether τ is included in cl(G) [325]. [325] provides also
an alternative method to test G |= τ that runs in time O(|G| log |G|).

There also several ways to store the closure cl(G) in a database (see [1,
211]). Essentially, either we may store all the triples in a table with three
columns subject, predicate, object, or we use a table for each predicate, where
each table has two columns subject, object. The latter approach seems to be
better for query answering purposes.

Example 5. Consider Example 2. Then the one table variant to store cl(G)
is:

closure
subject predicate object
umberto likes tomato

umberto born zurich

tomato type edibleFruit

edibleFruit sc fruit

born dom person

born range city

tomato type fruit

umberto type person

zurich type city

On the other hand, in case we use one table for each predicate we have the
tables:

likes
subject object
umberto tomato

born
subject object
umberto zurich

type
subject object
tomato edibleFruit

tomato fruit

umberto person

zurich city

sc
edibleFruit fruit

dom
born person

range
born city

We have also the following complexity result:
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Proposition 8 ([440]). Entailment for RDFS is decidable, NP-complete, and
in P if the target graph does not contain blank nodes.

We conclude the chapter by showing how to compute the answer set of a
conjunctive query (see Section 3.3). The following can be shown:

Proposition 9. Given a ground graph G, t is an answer to q if and only if
there exists an instantiation ϕ(t, t′) that is true in the closure of G (i.e., all
triples in ϕ(t, t′) are in cl(G)).

Therefore, we have a simple method to determine ans(G, q). Namely, compute
the closure cl(G) of G and store it into a database, e.g., using the method [210].
It is easily verified that any query can be mapped into an SQL query over the
underlying database schema. Hence, ans(G, q) can be determined by issuing
such an SQL query to the database.
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Chapter 4

Web Ontology Language OWL

4.1 Introduction

The Web Ontology Language OWL [338] and its successor OWL 2 [101,
340] are languages for defining and instantiating Web ontologies. Ontology
(see, e.g., [174]) is a term borrowed from philosophy that refers to the science
of describing the kinds of entities in the world and how they are related.

An OWL ontology may include descriptions of classes, properties, and their
instances. Given such an ontology, the OWL formal semantics specifies how to
derive its logical consequences, i.e., facts not literally present in the ontology,
but entailed by the semantics. An OWL ontology is a formal conceptualization
of a domain of interest and consists of the following three different syntactic
categories:

• Entities, such as classes, properties, and individuals, are identified by
URIs and can be thought of as primitive terms or names. Entities repre-
sent basic elements of the domain being modelled. For example, a class
Person can be used to model the set of all people. Similarly, the object
property parentOf can be used to model the parent-child relationship.
Finally, the individual Peter can be used to represent a particular person
called “Peter”.

• Expressions represent complex notions in the domain being modelled.
For example, a class expression describes a set of individuals in terms
of the restrictions on the individuals’ features.

• Axioms are statements that are asserted to be true in the domain being
modelled. For example, using a subclass axiom, one can state that the
class Student is a subclass of the class Person.

These three syntactic categories are used to express the logical part of OWL
ontologies – that is, they are interpreted under a precisely defined semantics
that allows useful inferences to be drawn. For example, if an individual Peter is
an instance of the class Student, and Student is a subclass of Person, then from
the OWL semantics one can derive that Peter is also an instance of Person in a
similar way as it happens for RDFS. However, OWL is much more expressive

29
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than RDFS, as we will see later on, as the decision problems for OWL are in
higher complexity classes [345] than for RDFS.

We recall that the OWL language provides three increasingly expressive
sublanguages designed for use by specific communities of implementers and
users.

• OWL Lite supports those users primarily needing a classification hi-
erarchy and simple constraint features. For example, while OWL Lite
supports cardinality constraints, it only permits cardinality values of 0
or 1. It should be simpler to provide tool support for OWL Lite than
its more expressive relatives, and provide a quick migration path for
thesauri and other taxonomies. Deciding entailment in OWL Lite is
ExpTime-complete.

• OWL DL supports those users who want the maximum expressiveness
without losing computational completeness (all entailments are guaran-
teed to be computed) and decidability (all computations will finish in
finite time) of reasoning systems. More precisely, deciding entailment in
OWL DL is NExpTime-complete. OWL DL includes all OWL language
constructs with restrictions such as type separation (a class cannot also
be an individual or property, a property cannot also be an individual or
class). OWL DL is so named due to its correspondence with Description
Logics (DLs) [19, 125], a family of FOL fragments.

• OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For exam-
ple, in OWL Full a class can be treated simultaneously as a collection
of individuals and as an individual in its own right. Deciding entailment
in OWL full is undecidable.

Each of these sublanguages is an extension of its simpler predecessor, both
in what can be legally expressed and in what can be validly concluded. The
following set of relations hold. Their inverses do not.

1. Every OWL Lite ontology is an OWL DL ontology.

2. Every OWL DL ontology is an OWL Full ontology.

3. Every OWL Lite conclusion is an OWL DL conclusion.

4. Every OWL DL conclusion is an OWL Full conclusion.

OWL 2 [101, 340] is an update of OWL adding several new features, including
an increased expressive power—mainly w.r.t. properties, extended support for
datatypes, simple meta modelling capabilities, extended annotation capabili-
ties, database style keys. OWL 2 also defines several OWL 2 profiles, i.e., OWL
2 language subsets that may better meet certain computational complexity
requirements or may be easier to implement. The choice of which profile to use
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in practice will depend on the structure of the ontologies and the reasoning
tasks at hand. The OWL 2 profiles are:

• OWL 2 EL is particularly useful in applications employing ontologies
that contain very large numbers of properties and/or classes. This pro-
file captures the expressive power used by many such ontologies and
is a subset of OWL 2 for which the basic reasoning problems can be
performed in time that is polynomial with respect to the size of the
ontology [13, 178]. Dedicated reasoning algorithms for this profile are
available and have been demonstrated to be implementable in a highly
scalable way. The EL acronym reflects the profile’s basis in the EL family
of description logics [13], logics that provide only existential quantifica-
tion (see later on).

• OWL 2 QL is aimed at applications that use very large volumes of in-
stance data, and where query answering is the most important reasoning
task. In OWL 2 QL, conjunctive query answering can be implemented
using conventional relational database systems. Using a suitable rea-
soning technique, sound and complete conjunctive query answering can
be performed in LogSpace with respect to the size of the data (asser-
tions) [12, 87]. As in OWL 2 EL, polynomial time algorithms can be used
to implement the ontology consistency and class expression subsumption
reasoning problems. The expressive power of the profile is necessarily
quite limited, although it does include most of the main features of con-
ceptual models such as UML class diagrams and ER diagrams. The QL
acronym reflects the fact that query answering in this profile can be im-
plemented by rewriting queries into a standard relational query language
such as SQL [449].

• OWL 2 RL is aimed at applications that require scalable reasoning with-
out sacrificing too much expressive power. It is designed to accommo-
date OWL 2 applications that can trade the full expressivity of the lan-
guage for efficiency, as well as RDFS applications that need some added
expressivity. OWL 2 RL reasoning systems can be implemented using
rule-based reasoning engines, as a mapping to Logic Programming [263],
specifically Datalog [449], exists. The ontology consistency, class ex-
pression satisfiability, class expression subsumption, instance checking,
and conjunctive query answering problems can be solved in time that is
polynomial with respect to the size of the set of facts. The RL acronym
reflects the fact that reasoning in this profile can be implemented using
a standard rule language. The design of OWL 2 RL was inspired by the
Horn-DL family, also called Description Logic Programs (DLPs) in [173]
and pD∗ [440].
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4.2 Description Logics Basics

Description Logics (DLs) [19, 125] play a fundamental role for the OWL
family of languages as they are the theoretical/logical counterpart of them. In
fact, as OWL languages can be mapped into DLs, algorithms and computa-
tional complexity results found for DLs are then applied to the OWL family.
For the sake of clarifying the concept, in Figure 2.2 we resume the OWL family
of languages, the related computational complexity of reasoning within them1

and the DL that they refer to: specifically,

• OWL 2 refers to the DL SROIQ [101, 203]

• OWL 1 DL refers to the DL SHOIN [201, 204, 205, 207, 208]

• OWL 1 Lite refers to the DL SHIF [204, 205]

• OWL 2 QL refers to the DL-Lite family, specifically DL-LiteR [12, 87]

• OWL 2 EL refers to the DL EL family, specifically EL++ [13, 18, 178].

• OWL 2 RL refers to the Horn-DL family [173, 440].

We recall that each DL is usually identified with a string of calligraphic letters,
each of which indicates that the basic DL, AL has been extended with a
specific constructor [19].

DLs are a logical reconstruction of the so-called frame-based knowledge
representation languages, with the aim of providing a simple well-established
Tarski-style declarative semantics to capture the meaning of the most pop-
ular features of structured representation of knowledge. The basic syntactic
building blocks are atomic concepts (unary predicates), atomic roles (binary
predicates), and individuals (constants). The expressive power of the language
is restricted in that it uses a rather small set of constructors for building com-
plex concepts and roles. Specifically, a DL assumes three alphabets of sym-
bols, for concepts, roles, and individuals. A concept may be understood as a
unary predicate (a class), while a role may be seen as a binary predicate (prop-
erty/attribute of a class). In each DL, complex concepts and roles can be built
using different concept, and role constructors and classes may be organized
into a hierarchy.

4.2.1 The Basic Description Language AL
Elementary descriptions are atomic concepts, also called concept names

(denoted A) and atomic roles (denoted R). Complex concepts (denoted C)
can be built from them inductively with concept constructors.

1See http://www.cs.man.ac.uk/~ezolin/dl/

http://www.cs.man.ac.uk
http://www.cs.man.ac.uk
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The basic DL is called AL (Attributive Language) [371]. Concepts in AL
are formed according to the following syntax rule:

C,D → A | (atomic concept)
> | (universal concept)
⊥ | (bottom concept)
¬A | (atomic negation)

C uD | (concept conjunction)
∀R.C | (universal restriction)
∃R.> (unqualified existential restriction)

Note that, in AL, negation can only be applied to atomic concepts, and only
the top concept is allowed in the scope of an existential quantification over a
role. Also, the sublanguage of AL obtained by disallowing atomic negation is
called FL (Frame Description Language) and the sublanguage of FL obtained
by disallowing limited existential quantification is called FL0 [76].

The table below provides an informal First-Order Logic (FOL) reading of
concepts and relative concept expression examples.

Syntax FOL translation Example

C,D → A | A(x) Person
> | >(x)
⊥ | ⊥(x)
¬A | ¬A(x) ¬Femal

C uD | C(x) ∧D(x) Person u Femal
∀R.C | ∀y.R(x, y)→ C(x) Person u ∀hasChild.Femal
∃R.> ∃y.R(x, y) Person u ∃hasChild.>

For instance, Person u ∀hasChild.Femal will denote those persons all of whose
children are female. Using the bottom concept, we can also describe those
persons without a child by the concept Person u ∀hasChild. ⊥.

We will often use the abbreviation ∃R in place of the unqualified existential
restriction ∃R.>.

A TBox T , or Ontology, consists of a finite set of General Concept Inclusion
axioms (GCIs) C v D, where C and D are concepts (read it as “all instances
of C are instances of D”). The FOL view of a GCI C v D is informally
∀x.C(x)→ D(x). For ease, we use C = D ∈ T in place of C v D,D v C ∈ T .
Given an atomic concept A and concept C, we call a GCI of the form A v C
primitive and call a GCI of the form A = C definitional. An example of GCI
is Male v ¬Female.

An ABox A consists of a finite set of concept and role assertion axioms a:C
and (a, b):R, respectively, where a and b are individuals. Examples of assertion
axioms are tim:Person (“tim is a person”) and (tim, pat):hasChild. (“tim has
pat as child”).

A knowledge base K = 〈T ,A〉 consists of a TBox T and an ABox A. For
ease, sometimes we write K as well as K = T ∪ A.



34 Foundations of Fuzzy Logic and Semantic Web Languages

Example 6. A simple AL KB is

K = { tim:Person, (tim, pat):hasChild, pat:¬Male,

Male = ¬Female,Person v ∀hasChild.Person,

MalePerson = Person uMale,FemalPerson = Person u Femal } .
From a semantics point of view, an interpretation I is a pair I = (∆I , ·I)
consisting of a non-empty set ∆I (called the domain) and of an interpretation
function ·I that assigns to each atomic concept a subset of ∆I , to each role
a subset of ∆I × ∆I and to each individual a an element in ∆I such that
aI 6= bI if a 6= b (this assumption is called Unique Name Assumption - UNA).

The mapping ·I is extended to concepts as follows:

>I = ∆I

⊥I = ∅
(C uD)

I
= CI ∩DI

(¬A)
I

= ∆I \AI
(∀R.C)

I
= {x ∈ ∆I | RI(x) ⊆ CI}

(∃R.>)
I

= {x ∈ ∆I | RI(x) 6= ∅}

where RI(x) = {y : 〈x, y〉 ∈ RI}.
The satisfiability of an axiom E in an interpretation I = (∆I , ·I), denoted

I |= E, is defined as follows: I |= C v D iff CI ⊆ DI , I |= a:C iff aI ∈ CI ,
and I |= (a, b):R iff 〈aI , bI〉 ∈ RI .

For a finite set of axioms E , we say that I satisfies E iff I satisfies each
element in E . If I |= E (resp. I |= E) we say that I is a model of E (resp.
E). I satisfies (is a model of) a knowledge base K = 〈T ,A〉, denoted I |= K,
iff I is a model of each component T and A, respectively. An axiom E is a
logical consequence of a knowledge base K, denoted K |= E, iff every model of
K satisfies E. Determining whether K |= a:C is called the instance checking
problem, while determining whether K |= C v D is called the subsumption
problem.

Given K, we say that two concepts C and D are equivalent, denoted C ≡K
D iff in any model I of K, CI = DI . We say that C is coherent iff there is
a model I of K such that CI 6= ∅. If the knowledge base is empty, we simply
omit K as subscript.

Example 7. Consider the KB in Example 6. It can be verified that the KB
is satisfiable and that

K |= MalePerson v ¬FemalPerson

K |= pat:FemalPerson .

Informally, e.g., K |= pat:FemalPerson holds because Pat is not male and, thus,
is female. Tim is a person, a person has a person as child, and, thus, Pat,
which is a child of Tim, is a person, too. Therefore, Pat is a female person.
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4.2.2 The DL Family

We next provide an overview of the major logics belonging to the DL
family.

4.2.2.1 DLs Naming Convention

DLs are a family of logics that can be identified by the constructs they
use. Typically, most constructs have a letter to identify them and their use
will be denoted by adding the letter to the basic description language AL. For
instance, the DL ALC, is obtained from AL by adding the construct identified
by C (concept complement) to AL. Below, a list of major DL constructors,
where C,D are concepts and I is an interpretation.

C: Concept negation, denoted ¬C, and semantics

(¬C)
I

= ∆I \ CI .

Note that ¬¬C ≡ C.

U : Concept disjunction, denoted C tD, and semantics

(C tD)
I

= CI ∪DI .

Note that C t D ≡ ¬(¬C u ¬D). Also, a GCI C v D is the same as
> v ¬C tD.

E: Qualified existential restriction, ∃R.C, and semantics

(∃R.C)
I

= {x ∈ ∆I | RI(x) ∩ CI 6= ∅} .

Note that ∃R.C ≡ ¬∀R.C.

O: Nominals (singleton class), denoted {a}, and semantics

{a}I = {aI} .

Note that a:C can be expressed as {a} v C, while (a, b):R can be ex-
pressed as {a} v ∃R.{b}.

N : Number restrictions, denoted (≥ n R) and (≤ n R), and semantics

(≥ n R)
I

= {x ∈ ∆I | ]RI(x) ≥ n}
(≤ n R)

I
= {x ∈ ∆I | ]RI(x) ≤ n} ,

where ]S is the cardinality of a set S. Note that (≤ n R) ≡ ¬(≥ n+1 R).
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Q: Qualified number restrictions, denoted (≥ n R.C) and (≤ n R.C), and
semantics

(≥ n R.C)
I

= {x ∈ ∆I | ](RI(x) ∩ CI) ≥ n}
(≤ n R.C)

I
= {x ∈ ∆I | ](RI(x) ∩ CI) ≤ n} .

Note that (≤ n R.C) ≡ ¬(≥ n+ 1 R.C).

I: Inverse role, denote R−, and semantics

(R−)
I

= {〈y, x〉 | 〈x, y〉 ∈ RI} .

Note that (R−)− is the same as R. Sometimes we write R− with the
intended meaning that R− = P− if R = P , and R− = P , if R = P−.

F : Local functional role, denoted (≤ 1 R), and semantics

(≤ 1 R)
I

= {x ∈ ∆I | ]RI(x) ≤ 1} .

Fg: Global functional role axiom, denoted fun(S), and semantics

I |= fun(S) iff for all x ∈ ∆I . ]SI(x) ≤ 1 .

H: Role inclusion axiom, denoted R1 v R2, and semantics

I |= R1 v R2 iff R1
I ⊆ R2

I .

R: Complex role inclusion axiom, denoted R ◦ S v R and R ◦ S v S, and
semantics

I |= R ◦ S v R iff RI ◦ SI ⊆ RI
I |= R ◦ S v S iff RI ◦ SI ⊆ SI .

Note that R ◦ S v R (R ◦ S v S) is also denoted as RS v R (RS v S).

R+: Transitive role axiom, denoted trans(R), and semantics

trans(R)
I

iff RI transitive .

Note that trans(R) can be expressed as R ◦R v R.

S: Used for ALC with transitive roles, i.e., the DL ALCR+.

We will also use the following shorthands:

• C1 → C2 for ¬C1 t C2;
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• C1 ↔ C2 for (C1 → C2) u (C2 → C1);

• dom(R,C), called domain restriction axiom, for ∃R.> v C;

• ran(R,C), called range restriction axiom, for > v ∀R.C;

• disj(C,D), called disjointness axiom, for C uD v⊥;

• (= n R.C) for (≥ n R.C) u (≤ n R.C);

• (= n R) for (= n R.>).

4.2.2.2 Concrete Domains

Concrete domains [21, 294, 295] are used to extend DL languages to deal
with datatypes, such as strings and integers. The elementary ingredients are
as follows. We assume a set of data values, a set of elementary datatypes, and a
set of datatype predicates, where each datatype predicate has a predefined ar-
ity n≥ 1. A datatype is an elementary datatype or a finite set of data values. A
datatype theory D = 〈∆D, ·D〉 consists of a datatype domain ∆D and a map-
ping ·D that assigns to each data value an element of ∆D, to each elementary
datatype a subset of ∆D, and to each datatype predicate p of arity n a relation
over ∆D of arity n. We extend ·D to all datatypes by {v1, . . .}D = {vD1 , . . .}.
For example, over the integers, ≥20 may be a unary predicate denoting the set
of integers greater or equal to 20. Concerning roles, a role R is either an object
property or a datatype property. An interpretation maps an object property
into a subset of ∆I × ∆I , while maps a datatype property into a subset of
∆I ×∆D. A datatype property does not have an inverse. For instance,

Person u ∃age.≥20 (4.1)

is a concept denoting the set of people whose age is at least 20.
We also use an alphabet for concrete individuals, denoted v, and extend

an interpretation to concrete individuals by mapping them into ∆D. As for
individuals, we adopt the UNA, i.e., v1

I 6= v2
I if v1 6= v2.

Example 8. Consider K with

AdultPerson = Person u ∃age.≥20

fun(age)
tom:Person
(tom, 34):age

Then
K |= tom:AdultPerson .

Informally, Tom is a person whose age is 34. Since an adult people is identified
as a person having an age no less than 20, Tom is an adult person, too.
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To indicate that a DL language L has been extended with concrete domains,
the convention is to append the label (D) to L. For instance, ALC(D) denotes
the DL language ALC extended with the concrete domain D.

Eventually, for an n-ary concrete predicate p, for functional datatype prop-
erties f1, . . . fn, we will use the expression

p(f1, . . . , fn)

as concept expression with semantics

p(f1, . . . , fn)
I

= {x ∈ ∆I | ∃yi ∈ ∆D, fi(x) = yi, 〈y1, . . . , yn〉 ∈ p
D

, i = 1 . . . n} .

For instance, the concept expression 4.1 can also be written as

Person u ≥20(age) .

4.2.2.3 The AL Family and SROIQ(D)

In the AL family we have essentially all languages obtained from AL by
adding the construct identified by some letter described above. Prominent
representatives are

ALC. The DL ALC [371] is the reference DL language and is typically used
whenever new ideas and extensions are explored. ALC is also closely
related to Hybrid Logics [11], which are roughly modal logics allowing to
talk about the worlds. This is not surprising due to the close relationship
between ALC and Propositional Multimodal Logic K [370] (intuitively,
∀R.C 7→ �RC and ∃R.C 7→ ♦RC and a:C 7→ @aC and > v C 7→ �UC,
where U is an universal accessibility relation2). From a computational
complexity point of view, e.g., the knowledge base satisfiability problem
is ExpTime-complete [131].

SHIF . The importance of the DL SHIF is due to the fact that it is the
logical counterpart of the OWL 1 Lite [204, 205]. With that we mean
that OWL 1 Lite constructs can be mapped into the DL SHIF(D).
Note that in number restrictions, only so-called simple roles (i.e., which
are neither transitive nor have a transitive subrole) are allowed. From a
computational complexity point of view, e.g., the knowledge base satis-
fiability problem is ExpTime-complete [193, 442].

SHOIN . The importance of the DL SHOIN is due to the fact that it is
the logical counterpart of the OWL 1 DL [201, 204, 205, 207, 208],
i.e., OWL 1 DL constructs can be mapped into the DL SHOIN (D).
As for SHIF , in number restrictions, only simple roles are allowed.
From a computational complexity point of view, e.g., the knowledge
base satisfiability problem is NExpTime-complete [171, 441, 442].

2For all worlds w,w′, U(w,w′) holds.
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SROIQ. The importance of the DL SROIQ is due to the fact that it is the
logical counterpart of the OWL 2 [101, 203], i.e., OWL 2 constructs can
be mapped into the DL SROIQ(D). In number restrictions, only simple
roles are allowed, the set of complex role inclusions (and ordinary role
inclusions) is supposed to be acyclic (in a non-standard way), and there
are some other features, such as disjoint roles, reflexive and irreflexive
roles, asymmetric roles, etc. From a computational complexity point
of view, e.g., the knowledge base satisfiability problem is 2NExpTime-
complete [228].

For the sake of completeness, we recap here SROIQ(D) [203]. The constructs
are illustrated in Table 4.1, where we use the following notation:

• C,D are concepts

• A is an atomic concept

• R is an object property

• S is a simple object property (also, called simple role, defined below)

• T is a datatype property

• a, b are individuals, v is a concrete individual

• d is a concrete predicate

• m is a natural number

Note that trans(R) is the same as RR v R, and sym(R) is the same as R− v R.
The notion of simple role is defined as follows. We start with the definition

of a (regular) role hierarchy whose definition involves a certain ordering on
object properties, called regular. A strict partial order ≺ on a set A is an
irreflexive and transitive relation on A. A strict partial order on the set of an
object properties R and their inverse R− is called a regular order if satisfies,
additionally, S ≺ R iff S− ≺ R−, for all object properties R and S. Note,
in particular, that the irreflexivity ensures that neither S ≺ S− nor S− ≺ S
hold. Now, let ≺ be a regular order. A role inclusion axiom (RIA for short) is
an expression of the form w v R, where w is a finite string of object properties
not including the universal role U , and R 6= U is an object property. A RIA
w v R, is ≺-regular if

1. w = RR, or

2. w = R−, or

3. w = S1 . . . Sn and Si ≺ R, for all i, or

4. w = RS1 . . . Sn and Si ≺ R, for all i, or

5. w = S1 . . . SnR and Si ≺ R, for all i.
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TABLE 4.1: Syntax and semantics of the DL SROIQ(D).

Concepts Syntax (C) FOL Reading of C(x)
(C1) A A(x)
(C2) > 1
(C3) ⊥ 0
(C4) C uD C(x) ∧D(x)
(C5) C tD C(x) ∨D(x)
(C6) ¬C ¬C(x)
(C7) ∀R.C ∀y.R(x, y)→ C(y)
(C8) ∃R.C ∃y.R(x, y) ∧ C(y)
(C9) ∀T.d ∀v.T (x, v)→ d(v)
(C10) ∃T.d ∃v.T (x, v) ∧ d(v)
(C11) {a} x = a
(C12) (≥ m S.C) ∃y1 . . . ∃ym.

∧m
i=1(S(x, yi) ∧ C(yi)) ∧

∧
1≤j<k≤m yj 6= yk

(C13) (≤ m S.C) ∀y1 . . . ∀ym+1.
∧m
i=1(S(x, yi) ∧ C(yi))→

∨
1≤j<k≤m yj = yk

(C14) (≥ m T.d) ∃v1 . . . ∃vm.
∧m
i=1(T (x, vi) ∧ d(vi)) ∧

∧
1≤j<k≤m vj 6= vk

(C15) (≤ m T.d) ∀v1 . . . ∀vm+1.
∧m
i=1(T (x, vi) ∧ d(vi))→

∨
1≤j<k≤m vj = vk

(C16) ∃S.Self S(x, x)
Roles Syntax (R) Semantics of R(x, y)
(R1) R R(x, y)
(R2) R− R(y, x)
(R3) U 1
Axiom Syntax (E) Semantics (I satisfies E if . . . )
(A1) a:C C(a)
(A2) (a, b):R R(a, b)
(A3) (a, b):¬R ¬R(a, b)
(A4) (a, v):T T (a, v)
(A5) (a, v):¬T ¬T (a, v)
(A6) C v D ∀x.C(x)→ D(x)
(A7) R1 . . . Rn v R ∀x1∀xn+1∃x2 . . .

∃xn.(R1(x1, x2) ∧ . . . ∧ Rn(xn, xn+1))→ R(x1, xn+1)
(A8) T1 v T2 ∀x∀v.T1(x, v)→ T2(x, v)
(A9) trans(R) ∀x∀y∀z.R(x, z) ∧ R(z, y)→ R(x, y)
(A10) disj(S1, S2) ∀x∀y.S1(x, y) ∧ S2(x, y) = 0
(A11) disj(T1, T2) ∀x∀v.T1(x, v) ∧ T2(x, v) = 0
(A12) ref(R) ∀x.R(x, x)
(A13) irr(S) ∀x.¬S(x, x)
(A14) sym(R) ∀x∀y.R(x, y) = R(y, x)
(A15) asy(S) ∀x∀y, S(x, y)→ ¬S(y, x)

An RBox, denotedR, consists of a finite set of axioms of the form (A7)−(A15)
in Table 4.1 and a SROIQ(D) knowledge base is now a triple K = 〈T ,A,R〉,
where R is regular and simple. R is regular if there is a regular order ≺
such that all RIAs in R are ≺-regular. Essentially, regularity prevents a role
hierarchy from containing cyclic dependencies. Eventually, simple roles are
defined inductively as follows:

• a role is simple if it does not occur on the right-hand side of a RIA in R

• an inverse role R− is simple if R is, and

• if R occurs on the right hand side of an RIA in R, then R is simple if,
for each w v R ∈ R, w = S for a simple role S.

Then R is simple if all roles occurring in role axioms of the form (A9)− (A15)
are simple.
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With sub(K) we denote the set of (sub)concept expressions occurring in
K.

4.2.2.4 The EL Family

The importance of the EL DL family [13, 18, 178] is due to the fact that
it is the logical counterpart of the OWL 2 EL profile [341], i.e., OWL 2 EL
constructs can be mapped into the DL EL++(D). We recall that it enables
polynomial time algorithms for all the standard reasoning tasks, i.e., the ontol-
ogy satisfiability problem, the subsumption problem, and the instance check-
ing problem and, thus, it is particularly suitable for applications where very
large ontologies are needed, and where expressive power can be traded for
performance guarantees.

We next recap succinctly the DL EL [17] and then extend it to
EL++(D) [13, 18]. Specifically, in EL [17] concept expressions are restricted
to be of the form

C,D → A | (atomic concept)
> | (universal concept)

C uD | (concept conjunction)
∃R.C (qualified existential restriction)

and a TBox consists of definitional GCIs of the form A = C only.
EL++(D), which extends EL, has been presented in [13] and then further

extend in [18]. EL++(D) as from [13], extends EL by allowing (i) the bot-
tom concept ⊥, nominal {a}, and concrete concept expressions of the form
p(f1, . . . , fn); (ii) GCIs of the general form C v D; and (iii) RIAs. Eventu-
ally, [18] allows further domain and range restrictions axioms and reflexive role
axioms. Note that transitive role axioms, trans(R), are supported via RR v R.
Note also that disjointness axioms, disj(C,D), are supported via C uD v⊥.

For the sake of ease of presentation, we summarize here EL++(D) as
from [18] in Table 4.2.

Eventually, the DL EL+ [15, 25] is as EL, except that inclusion axioms
have a more general form than in EL: namely, general inclusion axioms are of
the form C v D, where C,D are EL concepts, while role inclusion axioms are
of the form R1 · · ·Rn v R, where Ri and R are role names.

4.2.2.5 The DL-Lite Family

The importance of the DL-Lite DL family [12, 82, 83, 87] is due to the fact
that it is the logical counterpart of the OWL 2 QL profile [341], i.e., OWL
2 QL constructs can be mapped into the DL DL-LiteR(D), which, we recall,
was designed so that sound and complete query answering is in LogSpace
(more precisely, in AC0) with respect to the size of the data (assertions),
while providing many of the main features necessary to express conceptual
models such as UML class diagrams and ER diagrams.
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TABLE 4.2: Syntax of EL++(D).

Concept expressions: >
⊥
{a}
C uD
∃R.C
p(f1, . . . , fn)

Axioms: C v D
R1 · · ·Rn v R
dom(R) v C
ran(R) v C
ref(R)
a:C
(a, b):R

We next recap succinctly the DL DL-Lite DL family [87]. We start with the
language DL-Litecore that is the core language for the whole family. Concepts
and roles are formed according to the following syntax (A is an atomic concept,
P is an atomic role, and P− is its inverse):

B −→ A | ∃R
C −→ B | ¬B
R −→ P | P−
E −→ R | ¬R .

B denotes a basic concept, that is, a concept that can be either an atomic
concept or a concept of the form ∃R, where R denotes a basic role, that is, a
role that is either an atomic role or the inverse of an atomic role. Finally, C
denotes a concept, which can be a basic concept or its negation, whereas E
denotes a role, which can be a basic role or its negation. Sometimes we write
¬C (resp., ¬E) with the intended meaning that ¬C = ¬A if C = A (resp.,
¬E = ¬R if E = R), and ¬C = A, if C = ¬A (resp., ¬E = R, if E = ¬R)3.

Inclusion axioms are of the form

B v C

We might include B1 tB2 in the constructs for the left-hand side of inclusion
axioms and C1 u C2 in the constructs for the right-hand side. In this way,
however, we would not extend the expressive capabilities of the language,
since these constructs can be simulated by considering that B1 t B2 v C is
equivalent to the pair of assertions B1 v C and B2 v C, and that B v C1uC2

is equivalent to B1 u C1 and B v C2. Similarly, we might add ⊥ to the
constructs for the left-hand side and > to those for the right-hand side.

3Of course, for any interpretation I, (¬R)I = ∆I ×∆I \RI .
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FIGURE 4.1: Excerpt of the DL-Lite family.

Assertion axioms are, as usual of the form a:A and (a, b):P . Note that an
assertion a:C can be simulated in DL-Litecore by adding A v C to the TBox,
and a:A to the ABox, where A is a new atomic concept. Similarly, assertion
axioms of the form (a, b):E can be simulated, with the same mechanisms, in
those extensions of DL-Litecore that allow for inclusion axioms on roles (see
below).

DL-LiteR is now obtained by extending DL-Litecore with the ability of
specifying inclusion axioms between roles of the form

R v E .

where R and E are defined as above, DL-Liteu is obtained by extending
DL-Litecore allowing the conjunction of basic concepts on the left-hand side
of concept inclusions, and DL-LiteF is obtained by extending DL-Litecore
with global functional roles. Worth mentioning is also DLR [19, Chapter 16]
and the DLR-Lite family [83, 84, 85, 86, 89], which is the extension of DL-
Lite family to the case in which the predicates are no more unary (concepts)
or binary (roles), but n-ary in general (see Figure 4.1 for an excerpt of the
DL-Lite family). For a more detailed description of the DL-Lite family we
refer the reader to [12].

We refer to assertions of the form B1 v B2 (resp. R1 v R2) as positive
inclusion assertions (PIs), and to assertions of the form B1 v ¬B2 (resp.
R1 v ¬R2) as negative inclusion assertions (NIs).

Note also that in fact, DL-LiteR might be enhanced with the capability
of managing qualified existential quantification on the right-hand side of in-
clusion assertions on concepts [83]. This construct, however, can be simulated
by suitably making use of inclusions between roles and unqualified existential
quantification of concepts in inclusions between concepts (see Appendix B).
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4.2.2.6 The Horn-DL Family

The importance of the Horn-DL family [173, 440] is due to the fact that it
is related to the logical counterpart of the OWL 2 RL profile [341]. Specifically,
OWL 2 RL constructs can be mapped into a Horn-DL. This is achieved by
defining a syntactic subset of OWL 2, which is amenable to implementation
using rule-based technologies. Essentially, the restrictions are designed so as
to avoid the need to infer the existence of individuals not explicitly present
in the knowledge base, and to avoid the need for nondeterministic reasoning.
Here we report the DL specification of OWL 2 RL. Specifically, concepts are
formed according to the following syntax (A is an atomic concept, m ∈ {0, 1},
l is a value of the concrete domain, R is an object property, a individual, T is
a datatype property):

B −→ A | {a} | B1 uB2 | B1 tB2 | ∃R.B | ∃T.d
C −→ A | C1 u C2 | ¬B | ∀R.C | ∃R.{a} | ∀T.d |

(≤ m S.B) | (≤ m S) | (≤ m T.d)
D −→ ∃R.{a} | ∃T. =l| D1 uD2

R −→ P | P−

Axioms have the form
B v C
A = D
R1 v R2

R1 = R2

and

disj(B1, B2)
dom(R,C)
ran(R,C)
dom(T,C)
fun(R)
irr(R)
sym(R)
asy(R)
trans(R)
disj(R1, R2)

Assertion axioms are as for SROIQ(D), except that for in concept assertions
the concept has to be of the form C above: i.e.,

a:C, (a, b):R, (a, b):¬R, (a, v):T , (a, v):¬T .

For completeness, Appendix B describes OWL 2 and its profiles and the map-
ping to the appropriate DL.
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4.3 Conjunctive Queries

As for RDFS, we introduce the notion of conjunctive query (see Sec-
tion 3.3).

A conjunctive query is, similarly to RDFS (see Equation (3.1)) a rule-like
expression of the form

q(x)← ∃y.ϕ(x,y) (4.2)

where now the rule body ϕ(x,y) is a conjunction4 of unary or binary predi-
cates Pi(zi) (1 ≤ i ≤ n), where Pi is either an atomic concept A or an atomic
role R, and zi is a vector of distinguished or non-distinguished variables. If Pi
is an atomic concept (resp., a role) then zi is unary (resp., binary) tuple.

For instance, by referring to Example 8,

q(x, y)← AdultPerson(x), age(x, y)

is a conjunctive query, whose intended meaning is to retrieve all adult people
and their age.

Given a vector x = 〈x1, . . . , xk〉 of variables, a substitution over x is a
vector of individuals t replacing variables in x with individuals. Then, given a
query q(x)← ∃y.ϕ(x,y), and two substitutions t, t′ over x and y, respectively,
the query instantiation ϕ(t, t′) is derived from ϕ(x,y) by replacing x and y
with t and t′, respectively. Note that a query instantiation ϕ(t, t′) is an ABox.

We adopt here the following notion of entailment. Given a knowledge base
K, a query q(x) ← ∃y.ϕ(x,y), and a vector t of individuals occurring in K,
we say that q(t) is entailed by K, denoted K |= q(t), if and only if there is a
vector t′ of individuals occurring in K such that in any model I of K, I is a
model of any atom in the query instantiation ϕ(t, t′).

If K |= q(t) then t is called a answer to q. We call these kinds of answers
also certain answers. The answer set of q w.r.t. K is defined as

ans(K, q) = {t | K |= q(t)} .

Remark 6. Note that there is a subtle difference with the usual definition of
answer, stated as follows:

Given a knowledge base K, a query q(x) ← ∃y.ϕ(x,y), and a
vector t of individuals occurring in K, we say that q(t) is entailed
by K, denoted K |= q(t), if and only if for any model I of K, I is
a model of the FOL formula ∃y.ϕ(t,y), according to the standard
definitions of first-order logic. We denote the answer set according
to this definition as ansFOL(K, q).

4Again we use the symbol “,′′ to denote conjunction in the rule body.
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The following example shows the difference among our definition of answer set
and the usual one according to Remark 6. So, consider the simple knowledge
base

K = {(a, c):R, b:∃R}

and the conjunctive query

q(x)← R(x, y) .

Then it is easily verified that

ans(K, q) = {a}
ansFOL(K, q) = {a, b} .

The difference is due to the fact that in our case the instantiation of the non-
distinguished variables has to be known independently from any model of K,
while according to Remark 6, for any model I of K, the non-distinguished
variables y may be substituted with domain elements depending on I. Of
course,

ans(K, q) ⊆ ansFOL(K, q)
holds.

In general, our definition is amenable to a more efficient implementation
and typically the former has lower computational complexity than the latter.
In fact, while determining whether a ∈ ans(K, q) inherits the computational
complexity of the complexity of entailment in the underlying DL (assuming
the size of q bounded by the size of K), this may not be the case under Re-
mark 6, e.g., determining whether a ∈ ansFOL(K, q) for ALCI is 2ExpTime-
complete [296] (see, e.g., [88, 145, 334, 335, 337, 336] for other results), while
entailment can be decided in ExpTime [442].

Specifically, note that a simple procedure to determine the answer set
ans(K, q) consists in computing off-line the instances of all atomics concepts
and roles occurring in K, store them into a relational database DBK, convert
q into and SQL query qSQL and submit qSQL. As qSQL can be determined
in LogSpace, determining whether a ∈ ans(K, q) is in LogSpaceC , where C is
the complexity of checking entailment in the underlying DL.

We conclude by defining a disjunctive query q as usual as a finite set of
conjunctive queries in which all the rules have the same head. Intuitively, the
answers to a disjunctive query are the union of the answers of the conjunctive
queries. That is, for a disjunctive query q = {q1, . . . , qm}, K entails q (denoted
K |= q) iff K |= qi for some qi ∈ q.



Web Ontology Language OWL 47

4.4 Reasoning

There are various reasoning problems to be addressed within DLs. The
typical ones are resumed here (see, e.g., [19]).

Consistency problem:

• Is K satisfiable? 7→ Is there some model I of K?

• Is C coherent? 7→ CI 6= ∅ for some model I of K?

Subsumption problem:

• K |= C v D ? 7→ Is it true that CI ⊆ DI for all models I of K?

Equivalence problem:

• K |= C = D ? 7→ Is it true that CI = DI for all models I of K?

Instance checking problem:

• K |= a:C ? 7→ Is it true that aI ∈ CI for all models I of K?

Instance retrieval problem:

• Compute the set {a | K |= a:C}

Typically, all the above problems can be reduced to the knowledge base sat-
isfiability problem as long as the below presented reductions are supported
by the underlying DL language (if not, then specific algorithms have been
developed). Indeed, we have

• C is coherent w.r.t. K iff K ∪ {a:C} is satisfiable, where a is a new
individual;

• K |= C v D iff K ∪ {a:C u ¬D} is not satisfiable, where a is a new
individual;

• K |= C = D iff K |= C v D and K |= D v C;

• K |= a:C iff K ∪ {a:¬C} is not satisfiable.

On the other hand, in order to determine whether

K |= (a, b):R ,

we may reduce it to the instance problem, as

K |= (a, b):R iff K ∪ {b:B} |= a:∃R.B ,

where B is a new concept.
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4.4.1 The Case of the AL Family

We succinctly describe here the major reasoning frameworks within the
AL family, namely tableau algorithms. To do so, we describe a tableau al-
gorithm deciding the knowledge base satisfiability problem for the DL ALC
(see [19, 209, 206] and the paper [371] that originally has introduced this
method), which is sufficiently expressive to illustrate the main characteristic
of the tableau method.

Let K = 〈T ,A〉 be an ALC knowledge base. At first, we transform any
concept in K into negation normal form (NNF), i.e., negation occurs only
in front of atomic concepts. To do so, we push all negation signs as far as
possible into the description, using de Morgan’s rules and the usual rules for
quantifiers: that is, we iteratively apply the following transformation rules

¬¬C 7→ C
¬(C uD) 7→ ¬C t ¬D
¬(C tD) 7→ ¬C u ¬D
¬∃R.C 7→ ∀R.¬C
¬∀R.C 7→ ∃R.¬C .

(4.3)

With nnf(C) we denote the negation normal form of C, obtained by applying
the rules above.

Then, we try to construct a (finite) model I of K via a tableau algorithm.
Essentially, the tableau algorithm is a terminating algorithm that, starting
from an ABox, tries to build a clash-free forest of trees (called completion-
forest). If it succeeds then K is satisfiable and from the forest a model can be
build. Otherwise, K is not satisfiable.

4.4.1.1 The Case with Empty TBox

Let K be a KB in NNF with empty TBox. A completion-forest F for K
is a collection of trees whose distinguished roots are arbitrarily connected by
edges. Each node v is labelled with a set L(v) of concepts C ∈ sub(K). The
intuition here is that v is an instance of C. Each edge 〈v, w〉 is labelled with
a set L(〈v, w〉) of roles R occurring in K indicating that 〈v, w〉 and instance
of R.

If nodes v and w are connected by an edge 〈v, w〉 with R ∈ L(〈v, w〉) then
w is called an R-successor of v and v is called an R-predecessor of w. As usual,
ancestor is the transitive closure of predecessor.

For a node v, L(v) is said to contain a clash iff {A,¬A} ⊆ L(v). A
completion-forest is called clash-free iff none of its nodes contain a clash;
it is called complete iff none of the expansion rules in Table 4.3 is applicable.

Now, the algorithm initializes a forest F as follows:

• F contains a root node vi0, for each individual ai occurring in A;

• F contains an edge 〈vi0, vj0〉, for each assertion axiom (ai, aj):R ∈ A;
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TABLE 4.3: The tableau rules for ALC with empty TBox.

(u). If (i) C1 u C2 ∈ L(v) and (ii) {C1, C2} 6⊆ L(v), then add C1 and C2 to
L(v).

(t). If (i) C1 t C2 ∈ L(v) and (ii) {C1, C2} ∩ L(v) = ∅, then add some
C ∈ {C1, C2} to L(v).

(∀). If (i) ∀R.C ∈ L(v) and R ∈ L(〈v, w〉) with C 6∈ L(w), then add C to
L(w).

(∃). If (i) ∃R.C ∈ L(v) and (ii) there is no R ∈ L(〈v, w〉) with C ∈ L(w),
then create a new node w, add R to L(〈v, w〉) and add C to L(w).

• for each assertion ai:C ∈ A, we add C to L(vi0);

• for each (ai, aj):R ∈ A, we add R to L(〈vi0, vj0〉).

Then the completion-forest F is then expanded by repeatedly applying the
completion rules described in Table 4.3 and answers “K is satisfiable” iff the
completion rules can be applied in such a way that they yield a complete and
clash-free completion-forest. Note that the only non-deterministic rule is (t).

We point out that it is relatively easy to build a model I from a complete
and clash-free completion-forest. Informally,

• the domain of I are the nodes of the forest;

• the interpretation of individual ai is vi0;

• if R ∈ L(〈v, w〉), then 〈v, w〉 ∈ RI ;

• if A ∈ L(v), then v ∈ AI .

Now, termination, soundness, and completeness of the algorithm have been
shown.

Proposition 10. For each knowledge base K = 〈∅,A〉,

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K;

4. the KB satisfiability problem is PSpace-complete [24, 16].
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FIGURE 4.2: Clash-free complete completion-forest from ABox.

Example 9. Consider

K = {a:∀R.A u ∃R.B, (a, b):R, (a, c):P} .

K is satisfiable as there is a clash-free completion-forest (see Figure 4.2).
The model build from the forest is:

• ∆I = {a, b, c, x};
• the interpretation of individuals is the identity function;

• RI = {〈a, b〉, 〈a, x〉}, P I = {〈a, c〉};
• AI = {b, x}, BI = {x}.

4.4.1.2 The Case of Acyclic TBox

In this section, we show how to extend the tableau calculus if we restrict the
form of a TBox to so-called acyclic TBoxes. Specifically, let T be a Tbox in
which the GCIs have one of the following forms

A v C

A = C

where A is a concept name, C is a concept. That is, the TBox consists only
of primitive and definitional GCIs.

We say that A is the head of these axioms and C is the body. Furthermore,
we also assume that no concept name A is in the head of more than one axiom.
This further restriction allows to avoid that a GCI C v D may be introduced
indirectly, e.g., via

A = C

B = D

A v B .
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Now, we say that

• concept name A directly uses concept name B w.r.t. T , denoted A→T
B, if A is the head of some axiom E ∈ T such that B occurs in the body
of E;

• concept name A uses concept name B w.r.t. T , denoted A  T B, if
there exist concept names A1, . . . , An, such that A1 = A, An = B and,
for every 1 ≤ i < n, it holds that Ai →T Ai+1.

Eventually, we say that a TBox T is cyclic (acyclic) if there is (no) A such
that A T A.

An interesting feature of an acyclic KBs is that an acyclic TBox is elimi-
nated by systematically replacing any defined atom by means of its definition
(this procedure is called unfolding) and, then we may apply the reasoning
method for a KB with empty TBox (see Section 4.4.1). Note, however, that
the unfolding method is inherently intractable as the unfolded KB may be-
come of exponential size [326].

We also present here an alternative method, called lazy unfolding [20, 19,
202], which it has been shown to be more efficient and that does not require
the unfolding step. To do so, we first replace any axiom A v C ∈ T with
A = C u A′, where A′ is a new concept name. Then, we extend out calculus
in Table 4.3 with the rules in Table 4.4.

TABLE 4.4: The tableau rules to deal with acyclic TBox.

(=1). If (i) A = C ∈ T , (ii) A ∈ L(v), and (iii) C 6∈ L(v) then add C to L(v).

(=2). If (i) A = C ∈ T , (ii) ¬A ∈ L(v), and (iii) nnf(¬C) 6∈ L(v) then add
nnf(¬C) to L(v).

The construction of a model I from a complete and clash-free completion-
forest is as for the empty TBox case.

As before, it can be shown that

Proposition 11. For each knowledge base K = 〈T ,A〉 with acyclic T ,

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K.

4. the KB satisfiability problem is PSpace-complete [24, 16].
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FIGURE 4.3: Clash-free complete completion-forest for acyclic KB.

Example 10. Consider the KB as in Example 10 augmented with the GCI

B = C .

K is satisfiable as there is a clash-free complete completion-forest (see Fig-
ure 4.3).

The model build from the forest is:

• ∆I = {a, b, c, x};

• the interpretation of individuals is the identity function;

• RI = {〈a, b〉, 〈a, x〉}, P I = {〈a, c〉};

• AI = {b, x}, BI = {x}, CI = {x}.

4.4.1.3 The Case with General TBox

Eventually, we show here how we may deal with the case in which the
GCIs in the TBox are of the general form C v D. At first, note that we
may assume, without loss of generality (w.l.o.g.), that any GCI is of the form
> v D as C v D is equivalent to > v ¬C tD. Now, let us consider the rules
in Table 4.3 extended with the rule for GCIs in Table 4.5.

(v). If (i) > v D ∈ T and (ii) D 6∈ L(v), then add D to L(v).

While the calculus is still sound and complete, termination is not guaranteed
as shown by the following example.

Example 11. Consider the KB

K = {a:A,A v ∃R.A}

It can readily be shown that there are infinitely many applications of the (∃)
and (v) rules, building an infinite completion-forest (tree).
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FIGURE 4.4: Blocking in ALC.

To cope with the non-termination problem, the notion of blocking has been
introduced.

Specifically, a node v is directly blocked iff none of its ancestors are blocked
and there exists an ancestor w such that5

L(v) = L(w) .

In this case we say that w directly blocks v. A node v is indirectly blocked iff
one of its ancestors are blocked. Finally a node v is blocked iff it is not a root
node and it is either directly or indirectly blocked (see Figure 4.4).

Now, the calculus is as described above except that the rules are not applied
to blocked nodes. Specifically, the rules are described in Table 4.5.

Note that a model I from a complete and clash-free completion-forest is
built informally as follows

• the domain of I are the nodes of the forest that are not blocked;

• the interpretation of individual ai is vi0;

• if A ∈ L(v), then v ∈ AI ;

• if R ∈ L(〈v, w〉) and v, w not blocked, then 〈v, w〉 ∈ RI ;

• if R ∈ L(〈v, w〉) and w blocked by w′, then 〈v, w′〉 ∈ RI .

It can be shown that using the rules in Table 4.5

Proposition 12. For each knowledge base K = 〈T ,A〉
5To be more precise, for ALC, the condition L(v) ⊆ L(w) suffices.
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TABLE 4.5: The tableau rules for ALC KBs with GCIs.

(u). If (i) C1 u C2 ∈ L(v), (ii) {C1, C2} 6⊆ L(v), and (iii) node v is not
indirectly blocked, then add C1 and C2 to L(v).

(t). If (i) C1 t C2 ∈ L(v), (ii) {C1, C2} ∩ L(v) = ∅, and (iii) node v is not
indirectly blocked, then add some C ∈ {C1, C2} to L(v).

(∀). If (i) ∀R.C ∈ L(v), (ii) R ∈ L(〈v, w〉) with C 6∈ L(w), and (iii) node v
is not indirectly blocked, then add C to L(w).

(∃). If (i) ∃R.C ∈ L(v), (ii) there is no R ∈ L(〈v, w〉) with C ∈ L(w), and
(iii) node v is not blocked, then create a new node w, add R to L(〈v, w〉)
and add C to L(w).

(v). If (i) > v D ∈ T , (ii) D 6∈ L(v), and (iii) node v is not indirectly
blocked, then add D to L(v).

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K;

4. the KB satisfiability problem is ExpT ime-complete [131, 442].

Example 12. Consider Example 11. K is satisfiable as there is a clash-free
completion-forest (see Figure 4.5). Note that node y is blocked by x.

The model build from the forest is:

• ∆I = {a, x};

• the interpretation of individuals is the identity function;

• RI = {〈a, x〉, 〈x, x〉};

• AI = {a, x}.

It is not our purpose to present here the tableau rules for more expressive
languages of the AL family, e.g., for SHOIN ,SROIQ. We refer the reader
to e.g., [203, 206, 207]. However, let us note that besides adding a rule for each
construct, the blocking condition is extended as well to a more sophisticated
definition, as e.g., SHIF does not employ the finite model property anymore.

Nevertheless, as an illustrative example, in Appendix C we recall the
tableau calculus for SHIFg.
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FIGURE 4.5: Clash-free completion-forest from ALC KB.

4.4.1.4 A Classification Algorithm

For completeness, we provide here also the typical ontology classification al-
gorithm for the AL-family. The algorithm is as from [20, 22, 23]. For a more
recent account on it, see [170].

We first introduce some definitions. For some pre-order ≤ (reflexive, tran-
sitive relation) on some set P , let ≺ be the precedence relation of ≤, i.e., ≺
is the smallest relation such that its reflexive, transitive closure is ≤, except
for pairs of “equivalent” objects, i.e., where a ≤ b and b ≤ a holds. Obviously,
x ≺ y iff x ≤ y and there is no z different from x and y such that x ≤ z ≤ y.
The intuition here is that x ≤ y means y subsumes x, while x ≺ y means that
y subsumes x and there is no other z subsumed by y and subsuming x. ≤ is
intended to represent the subsumption relation and ≺ is intended to represent
the hierarchy of concept names in T , which we want to compute. If x ≤ y
then x is a successor of y and y is a predecessor of x. Similarly, if x ≺ y then
x is an immediate successor of y and y is an immediate predecessor of x.

Note that as ≤ (subsumption) is a pre-order, there may be two distinct
concepts c, c′, such that c ≤ c′ and c′ ≤ c holds, i.e., c and c′ are logically
equivalent. As it cannot be c ≺ c′ ≺ c, we will assume that for any two
equivalent concept names c, c′, only one is considered to occur in ≺.

A concept name hierarchy ≺ is represented as a directed acyclic graph
where a node is labelled with a set of logically equivalent concept names and
an edge corresponds to the immediate predecessor relation, i.e., there is a link
from node v2 to node v1 if x ≺ y and x and y are in the label of v1 and v2,
respectively.

A simple classification algorithm. The algorithm is incremental. Suppose
we want to classify the concept names in X. Assume we have determined the
precedence relation ≺i for a set Xi ⊆ X of concept names. Initially, X0 =
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{⊥,>} and ⊥ ≺0 >. Consider a concept name c ∈ X \ Xi. We determine a
method to compute the precedence relation≺i+1 for setXi+1 = Xi∪{c}. To do
so, we compute c’s immediate predecessors (procedure topSearch), PXc

i , and
immediate successors (procedure bottomSearch), SXc

i , w.r.t. concept names
in Xi. Let

PXc
i = {x ∈ Xi | c ≺ x}

SXc
i = {x ∈ Xi | x ≺ c} .

Given the set PXc
i and SXc

i , and ≺i, it is possible to compute ≺i+1 on
Xi+1 = Xi ∪ {c} in linear time. In fact, one just needs to add c ≺ x for
x ∈ PXc

i , x ≺ c for x ∈ SXc
i , and eventually remove x ≺ y, for x ∈ SXc

i and
y ∈ PXc

i , i.e.,

≺i+1 = (≺i ∪{c ≺ x | x ∈ PXc
i } ∪ {x ≺ c | x ∈ SXc

i })
\{x ≺i y | x ∈ SXc

i , y ∈ PXc
i } .

Specifically, we compute

TXc
i = {x ∈ Xi | c ≤ x and c 6≤ y for all y ≺i x} (4.4)

BXc
i = {x ∈ Xi | x ≤ c and y 6≤ c for all x ≺i y} . (4.5)

TXc
i and BXc

i are almost PXc
i and SXc

i , respectively. There is only a special
case if c is equivalent to some x ∈ Xi, i.e., c ≤ x and x ≤ c. In that case, PXc

i

is empty and TXc
i = {x} contains the concept x with c ≤ x. In this case, we

test x ≤ c. If the test is positive, c is equivalent to x and it suffices to add c
to the node label containing x.

The procedure SimpleClassify(K) is as follows [20, 22, 23]:

SimpleClassify(K)

1. Let

(a) X be the set of concept names in T
(b) X0 := {⊥,>} and ⊥ ≺0 >

2. If (X \Xi) = ∅ return 〈Xi,≺i〉 and exit

3. Select c ∈ X \Xi

4. Compute TXc
i

5. If TXc
i = {x} and x ≤ c then add c to the node label containing

x, and go to step 2.

6. Compute BXc
i

7. Set

Xi+1 := Xi ∪ {c}
≺i+1 := (≺i ∪{c ≺ x | x ∈ TXc

i } ∪ {x ≺ c | x ∈ BXc
i })

\ {x ≺i y | x ∈ BXc
i , y ∈ TXc

i } .
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8. Increment i and go to step 2.

We next show how to compute TXc
i and BXc

i . We first address TXc
i . The

other case is dual.
To start with, we assume that the elements in Xi are represented as a

concept hierarchy, as explained previously. To determine TXc
i , our procedure,

called topSearch, starts with > ∈ Xi and visits the concept hierarchy Xi in a
top-down breadth-first fashion. That is,

TXc
i := topSearch(c,>) .

For each concept name x ∈ Xi under consideration, it determines whether x
has an immediate successor y satisfying c ≤ y. If there are such successors,
they are considered as well. Otherwise, x is added to the result list of the
topSearch algorithm.

To avoid multiple visits of elements of Xi and multiple comparisons of
the same element c, topSearch employs the label “visited” and another label
“positive” if the subsumption test has been made. The procedure topSearch
gets two concepts as input, the concept c, which have to be inserted and the
element x ∈ Xi currently under consideration. For x, we already know that
c ≤ x and we look at direct successors of x w.r.t. ≺i. For each direct successor
y of x, we have to check whether y subsumes c. This is done with the procedure
enhancedTopSubs. The direct successors for which the test was positive are
collected in a list PosSucc. If the list remains empty, x is added to the result
list; otherwise topSearch is called for each positive successor, if not already
visited.

The topSearch(c, x) algorithm is as follows:

topSearch(c,x)

1. Visited(c, x):= true

2. For all y with y ≺i x do: if enhancedTopSubs(y, c) then
PosSucc := PosSucc ∪ {y}

3. If PosSucc = ∅ then Result := {x} and go to step 5.

4. For all y ∈ PosSucc do: if not Visited(c, y) then Result := Result∪
topSearch(c, y)

5. Return Result.

The enhancedTopSubs(y, c) algorithm is as follows:

enhancedTopSubs(y,c)

1. if SubsFlag(y, c) = “positive” then Result := true and go to step
5.

2. If SubsFlag(y, c) = “negative” then Result := false and go to step
5.
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3. If for all z with y ≺i z it holds that enhancedTopSubs(z, c) and
c ≤ y then SubsFlag(y, c) := “positive” , Result := true and go to
step 5.

4. SubsFlag(y, c) := “negative”, Result := false

5. Return Result.

Note that in step 3, before testing the subsumption c ≤ y we apply the
following heuristics using negative information [20, 22, 23]:

If for some predecessor z of y the test c ≤ z has failed, we can
conclude that c 6≤ y without performing the expensive test c ≤ y.
To gain maximum advantage, all predecessors of y should have
been tested before the test is performed on y, which is obtained
by recursive calls.

[20, 22, 23] address also the use of positive information: before checking c ≤ y,
check if there is some successor z of y that has passed the test c ≤ z and in
this case c ≤ y holds without performing the expensive test c ≤ y. However,
[20, 22, 23] show that the use of negative information is much better than the
use of positive information.

We next show how to compute BXc
i , which is dual to the topSearch pro-

cedure and is performed by the bottomSearch algorithm. We have that

BXc
i := bottomSearch(c,⊥)

bottomSearch(c,x)

1. Visited(c, x):= true

2. For all y with x ≺i y do: if enhancedBottomSubs(c, y) then
PosPrec := PosPrec ∪ {y}

3. If PosPrec = ∅ then Result := {x} and go to step 5.

4. For all y ∈ PosPrec do: if not Visited(c, x) then Result := Result∪
bottomSearch(c, y)

5. Return Result.

The enhancedBottomSubs(c, y) algorithm is as follows:

enhancedBottomSubs(c,y)

1. if SubsFlag(c, y) = “positive” then Result := true and go to step
5.

2. If SubsFlag(c, y) = “negative” then Result := false and go to step
5.

3. If for all z with z ≺i y it holds that enhancedBottomSubs(c, z)
and y ≤ c then SubsFlag(c, y) := “positive” , Result := true and
go to step 5.
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FIGURE 4.6: A DL classification run.

4. SubsFlag(c, y) := “negative”, Result := false

5. Return Result.

Note that in step 3, before testing the subsumption y ≤ c we apply the
following heuristics using negative information [20, 22, 23]:

If for some successor z of y the test z ≤ c has failed, we can
conclude that y 6≤ c without performing the expensive test y ≤ c.
To gain maximum advantage, all successors of y should have been
tested before the test was performed on y, which is obtained by
recursive calls.

Example 13 ([170]). Consider the KB

K = {C v ∃R.D,∃R v E} .

Figure 4.6 illustrates a classification run.

Optimizing classical classification via told subsumers. Consider a KB
K = 〈T ,A〉. We introduce the notion of told subsumer [19].

1. If T contains A v C or A = C then C is called a told subsumer of A,
denoted A→ts C.

2. If D v C1 u . . . u Cn ∈ T then for all i, D →ts Ci.

3. If A = C1 u . . . u Cn ∈ T then for all i, A→ts Ci.

4. If C1 t . . . t Cn v D ∈ T then for all i, Ci →ts D.

5. If A = C1 t . . . t Cn ∈ T then for all i, Ci →ts A.

6. →ts is transitive
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Now, we may exploit the notion of told subsumers by applying the following
heuristics:

Remark 7. Before classifying concept A, all of its told subsumers which have
already been classified, and all their subsumers, can be marked as subsumers
of A. Subsumption test for these atoms are, thus, unnecessary. That is, in the
procedure SimpleClassify, we have another initialization step:

if A→ts B then set SubsF lag(B,A) = ‘positive′.

To maximize the effect of told subsumer optimization, atoms should be classi-
fied in definitional order. This means that a concept A is not to classify until
all of its told subsumer have been classified. Specifically:

Remark 8. In procedure SimpleClassify, in step 3, select concept c ∈ X\Xi

only if all of its told subsumer have been classified. That is,

if A→ts B then classify B before A.

Therefore, we get a preference order on the atoms in X.

The acyclic KBs case. Consider an acyclic KB K = 〈T ,A〉. For acyclic
KBs we may take advantage of the heuristics developed previously, concerning
told subsumers. Specifically, apply the SimpleClassify procedure with the
two heuristics described in Remark 7 and 8. Then the ordering induced by
Remark 8 can be exploited by omitting the bottom search phase for primitive
concept names and assuming that they only subsume (concepts equivalent)
to ⊥. This is possible because, with an acyclic KB, a primitive concept can
only subsume concepts for which it is a told subsumer. Therefore, as concepts
are classified in definition order, a primitive concept will always be classified
before any of the concepts it subsumes (and, thus, the bottom search phase
is redundant).

Note that this additional optimization cannot be used with a general KB
because, in the presence of general GCIs, it can no longer be guaranteed that a
primitive concept will only subsume concepts for which it is a told subsumer.
E.g., for

T = {A v ∃R.C,∃R.C v B} ,
B is not a told subsumer of A, but B subsumes A.

4.4.2 The Case of the EL Family

For the sake of ease of presentation, we provide here the calculus for
EL++ (we refer the reader to [13, 18] for EL++(D) and its extensions). Essen-
tially, we drop from EL++(D) the concrete concept expressions of the form
p(f1, . . . , fn).
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We have seen that for the AL-family the classification algorithm is built
on top of the subsumption test algorithm. The main feature of the reasoning
algorithm of EL++ is instead the fact that it is a polynomial-time subsumption
algorithm that actually directly classifies a given TBox T , i.e., simultaneously
computes all subsumption relationships between the concept names occurring
in T , which makes it particularly useful for large size ontologies.

Note also that the other decision problems can be reduced to the subsump-
tion problem as well [14]. Let K = 〈A, T 〉 be an EL++ KB. Then

• C is coherent iff K |= a:C, for a new individual a;

• K is satisfiable iff K 6|= a:⊥;

• Concerning the instance problem, we convert an ABox A into a concept
CA as follows

CA :=
l

a:A∈A

∃U.({a} u C) u
l

(a, b):R∈A

∃U.({a} u ∃R.b)

where U is a new role not occurring in A. Then

K |= a:C iff T |= {a} u CA v C .

So, in the following we consider the subsumption problem only w.r.t. a TBox
T .

The algorithm proceeds in four steps:

1. Normalise the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normalized graph.

Remark 9. Please, note that [243, 244] has shown that the TBox classifica-
tion calculus for EL++, as illustrated in [13, 18], is incomplete in the presence
of nominals in the TBox, e.g., given the TBox [229], (but see also [244] for
other examples)

T = { A v ∃R.(B u {o})
A v ∃S.{o}
∃S.B v B} ,

this TBox entails A v B, because if A is not empty then o is an instance of
B, but the algorithm in [13, 18] is not able to infer it (the problem is in the
(CR6) illustrated later on).

For further insights we refer the reader to [229, 230, 243, 244, 245, 297],
and specifically to [230, 229] for a complete and similar to [13, 18] calculus.

However, even if incomplete, it is still illustrative to present the work as
from [13, 18].
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TABLE 4.6: NNF transformation rules for EL++ TBoxes.

NF1 R1 ◦ · · · ◦Rn v S 7→ {R1 ◦ · · · ◦Rn−1 v U,U ◦Rn v S}

NF2 C u D̃ v E 7→ {D̃ v A,C uA v E}

NF3 ∃R.C̃ v D 7→ {C̃ v A,∃R.A v D}

NF4 ⊥v D 7→ ∅

NF5 C̃ v D̃ 7→ {C̃ v A,A v D̃}

NF6 B v ∃R.C̃ 7→ {B v ∃R.A,A v C̃}

NF7 B v C uD 7→ {B v C,B v D}

where C̃, D̃ 6∈ BT , U new role name, and A new concept name.

So, let BT to denote the smallest set of concept descriptions that contains
the top concept >, all concept names used in T , and all concept descriptions
of the form {a}.

We say that a T is normalized if

1. it only contains GCIs of the following form:

A v B, A1 uA2 v B, A v ∃R.B, ∃R.A v B ,

where A,Ai ∈ BT and B ∈ BT ∪ {⊥};

2. all role inclusions are of the form R v S or R1 ◦R2 v S.

By introducing new concept and role names, any TBox T can be turned into
a normalized TBox T ′ that is a conservative extension of T , i.e., every model
of T ′ is also a model of T , and every model of T can be extended to a model of
T ′ by appropriately choosing the interpretations of the additional concept and
role names and it is shown that this transformation can actually be done in
linear time [14]. The conversion into normal form is done using the translation
rules shown in Table 4.6 in two phases:

1. exhaustively apply rules (NF1)− (NF4);6

2. exhaustively apply rules (NF5)− (NF7).

So, let us now assume that T is normalized. When developing the subsumption
algorithm for normalized EL++ TBoxes, we can restrict our attention to sub-
sumption between concept names. In fact, T |= C v D iff T ′ |= A v B, where

6Note that in phase 1, the rule (NF2) is applied modulo commutativity of conjunction.
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T ′ = T ∪ {A v C,D v B}, with A,B new concept names. The subsumption
algorithm not only computes subsumption between two given concept names
w.r.t. the normalized input TBox T ; it rather classifies T , i.e., it simultane-
ously computes the subsumption relationships between all pairs of concept
names occurring in T .

So, let RT to denote the set of all role names used in T . The algorithm
computes a mapping S from BT to a subset of BT ∪ {>,⊥}, and a mapping
R from RT to a binary relation on BT . The intuition is that these mappings
make implicit subsumption relationships explicit in the following sense:

• D ∈ S(C) implies that T |= C v D;

• (C,D) ∈ R(P ) implies T |= C v ∃P.D.

These mapping are initialized as follows:

• S(C) := {C,>} for each C ∈ BT ;

• R(P ) := ∅ for each P ∈ RT .

Then the sets S(C) and R(P ) are extended by applying the completion rules
shown in Table 4.7 until no more rule applies. Some of the rules use ab-
breviations that still need to be introduced. Indeed, (CR6) uses the rela-
tion  R⊆ BT × BT , which is defined as follows: C  R D iff there are
C1, . . . , Ck ∈ BT such that

• C1 = C or C1 = {b} for some b;

• (Cj , Cj+1) ∈ R(Rj) for some Rj ∈ RT (1 ≤ j < k);

• Ck = D.

The following can be shown [13].

Proposition 13. For a normalized TBox T ,

1. the rules of Table 4.7 can only be applied a polynomial number of times,
and each rule application is polynomial;

2. Let S be the mapping obtained after the application of the rules of Ta-
ble 4.7 to T has terminated, and let A,B be concept names occurring in
T , then T |= A v B if 7 one of the following two conditions holds:

• S(A) ∩ {B,⊥} 6= ∅;
• there is {a} ∈ BT such that ⊥∈ S({a}).

We refer the reader to [293] for a conjunctive query answering procedure for
EL.

7The other direction does not hold as from Remark 9, but holds if nominals are missing
in the TBox.
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TABLE 4.7: Completion rules for EL++.

(CR1) If C ′ ∈ S(C), C ′ v D ∈ T , and D 6∈ S(C) then add D to S(C);

(CR2) If C1, C2 ∈ S(C), C1 u C2 v D ∈ T , and D 6∈ S(C) then add D to
S(C);

(CR3) If C ′ ∈ S(C), C ′ v ∃P.D ∈ T , and (C,D) 6∈ R(P ) then add (C,D) to
R(P );

(CR4) If (C,D) ∈ R(P ), D′ ∈ S(D),∃P.D′ v E ∈ T , and E 6∈ S(C) then
add E to S(C);

(CR5) If (C,D) ∈ R(P ),⊥∈ S(D), and ⊥6∈ S(C) then add ⊥ to S(C);

(CR6) If {a} ∈ S(C) ∩ S(D), C  R D, and S(D) 6⊆ S(C) then join S(D) to
S(C);

(CRR1) If (C,D) ∈ R(P ), P v S ∈ T , and (C,D) 6∈ R(S) then add (C,D)
to R(S);

(CRR2) If (C,D) ∈ R(R1), (D,E) ∈ R(R2), R1 ◦R2 v R3 ∈ T , and (C,E) 6∈
R(R3) then add (C,E) to R(R3).

Example 14. Consider the KB of Example 13, i.e.,

K = {C v ∃R.D,∃R.> v E} .

Note that K is already normalized. The following illustrates a classification
run.

1. Initialization:

S(C) := {C,>}
S(D) := {D,>}
S(E) := {E,>}
R(R) := ∅ .

2. Application of rule (CR3):

R(R) := R(R) ∪ {(C,D)} .

3. Application of rule (CR4):

S(C) := S(C) ∪ {E} .
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C

D
E

FIGURE 4.7: An EL++ classification example.

4. Stop. Figure 4.7 illustrates the final classification, which coincides with
the one in Figure 4.6.

4.4.3 The Case of the DL-Lite Family

We recall that DL-Lite-family [12, 82, 83, 87] has been specifically tailored
to capture some basic ontology language features, while keeping a low com-
plexity of reasoning. Reasoning means not only computing the subsumption
relationships between concepts, and checking satisfiability, but also answering
complex queries (i.e., conjunctive queries) over a huge set of instances.

In the following, we restrict our attention to DL-Litecore [82], which is
sufficient to highlight the main concepts for reasoning within the DL-Lite-
family.

Consider a DL-Litecore KB K = 〈T ,A〉 and a conjunctive query q(x) ←
∃y.ϕ(x,y). The main reasoning tasks related to K and q are:

• Knowledge base satisfiability problem;

• Subsumption checking;

• Concept coherence;

• Instance checking;

• Query answering, i.e., computing the answer set ans(K, q).

In the following, define an r-concept as any concept that can occur on the
right-hand side of a concept inclusion.

Note that the subsumption problem can be reduced to the KB unsatisfia-
bility problem. In fact, for a DL-Litecore axiom C v D , in order to determine
whether K |= C v D, consider a new concept name A, a new individual a,
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and set K′ = 〈T ′,A′〉, where

T ′ := T ∪ {A v C,A v ¬D}
A′ := A ∪ {a:A} .

Then, it is easy to see that K |= C v D iff K′ is not satisfiable.
Determining whether a r-concept C is coherent can be reduced to the

KB satisfiability problem as follows: consider a new concept name A, a new
individual a, and set K′ = 〈T ′,A′〉, where

T ′ := T ∪ {A v C}
A′ := A ∪ {a:A} .

Then, it is easy to see that C is coherent iff K′ is satisfiable.
Concerning instance checking, i.e., determining whether K |= a:C for r-

concept C, consider a new concept name A and set K′ = 〈T ′,A′〉, where

T ′ := T ∪ {A v ¬C}
A′ := A ∪ {a:A} .

Then, it is easy to see that K |= a:C iff K′ is not satisfiable.
Therefore, it remains to address the KB satisfiability problem and the

query answering problem. At first, however, we need a KB normalization step.

Knowledge Base normalization. The normalization of K = (T ,A) is ob-
tained by transforming K as follows. The ABox A is expanded by adding to
A the assertions a:∃R and b:∃R−, for each (a, b):R ∈ A.

Then T is expanded by closing it with respect to the following inference
rule: if B1 v B2 ∈ T and either B2 v ¬B3 ∈ T or B3 v ¬B2 ∈ T then add
B1 v ¬B3 to T . It can be shown that after computing the above closure we
have that T |= B1 v ¬B2 iff either B1 v ¬B2 ∈ T or B2 v ¬B1 ∈ T .

Now we store A in a relational database. That is, (i) for each basic concept
B occurring in A, we define a relational table tabB of arity 1, such that
〈a〉 ∈ tabB iff a:B ∈ A; and (ii) for each role P occurring in A, we define a
relational table tabP of arity 2, such that 〈a, b〉 ∈ tabP iff (a, b):P ∈ A. We
denote with DB(A) the relational database thus constructed.

Knowledge base satisfiability. To check the satisfiability of a normalized
KB K = (T ,A), we verify the following condition: there exists B1 v ¬B2 ∈ T
and a constant a such {a:B1, a:B2} ⊆ A. If this condition above holds, then
K is not satisfiable. Otherwise, K is satisfiable. Note that the algorithm can
verify this condition by posing to DB(A) a simple conjunctive query expressed
in SQL query, i.e., K is not satisfiable iff

q(x)← tabB1(x), tabB2(x)

has non-empty answer in DB(A).
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Notice that the algorithm does not consider the PIs (positive inclusions)
occurring in T during its execution. Indeed, it can be shown that PIs do not
affect the satisfiability of a DL-Lite KB, if the TBox is normalized [82].

It can be shown that the above described algorithm decides the KB satis-
fiability problem in polynomial time [82].

Query answering. We show now how to determine the answers of a con-
junctive query over K. To this end:

1. We have to check if K is satisfiable, as querying a non-satisfiable KB is
undefined in our case.

2. By considering T only, the user query q is reformulated into a set of
conjunctive queries r(q, T ). Informally, the basic idea is that the refor-
mulation procedure closely resembles a top-down resolution procedure
for logic programming, where each inclusion axiom B1 v B2 is seen as a
logic programming rule of the form B2(x)← B1(x). For instance, given
the query q(x, s) ← A(x) and suppose that T contains the inclusion
axioms B1 v A and B2 v A, then we can reformulate the query into
two queries q(x, s)← B1(x) and q(x, s)← B2(x), exactly as it happens
for top-down resolution methods in logic programming.

3. The reformulated queries in r(q, T ) are then evaluated over A only
(which is stored in a database), producing the requested answer set
ans(K, q).

The query reformulation step is as follows. We say that a variable in a con-
junctive query is bound if it corresponds to either a distinguished variable or
a shared variable, i.e., a variable occurring at least twice in the query body
(inclusive the scoring function), or a constant, while we say that a variable
is unbound if it corresponds to a non-distinguished non-shared variable (as
usual, we use the symbol “ ” to represent non-distinguished non-shared vari-
ables). Note that an atom of the form (∃P )(x) (resp. (∃P−)(x)) has the same
meaning as P (x, ) (resp. P ( , x)). For ease of exposition, in the following we
will use the latter form only.

An axiom τ is applicable to an atom B(x), if τ has B in its right-hand side,
and τ is applicable to an atom P (x1, x2), if either (i) x2 = and the right-hand
side of τ is ∃P , or (ii) x1 = and the right-hand side of τ is ∃P−. We indicate
with gr(g; τ) the atom obtained from the atom g by applying the inclusion
axiom τ . Specifically, if g = B1(x) (resp., g = P1(x, ) or g = P1( , x)) and
τ = B2 v B1 (resp., τ = B2 v ∃P1 or τ = B2 v ∃P−1 ), we have:

• gr(g, τ) = A(x), if B2 = A, where A is an atomic concept;

• gr(g, τ) = P2(x, ), if B2 = ∃P2;

• gr(g, τ) = P2( , x), if B2 = ∃P−2 .
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We are now ready to present the query reformulation algorithm. Given a
conjunctive query q and a set of axioms T , the algorithm reformulates q in
terms of a set of conjunctive queries r(q, T ), which then can be evaluated over
DB(A).

Algorithm 1 QueryRef(q, T )
Input: Conjunctive query q, normalized KB K.
Output: Set of reformulated conjunctive queries r(q, T ).
1: r(q, T ) := {q}
2: repeat
3: S = r(q, T )
4: for all q ∈ S do
5: for all g ∈ q do
6: if τ ∈ T is applicable to g then
7: r(q, T ) := r(q, T ) ∪ {q[g/gr(g, τ)]}
8: for all g1, g2 ∈ q do
9: if g1 and g2 unify then

10: r(q, T ) := r(q, T ) ∪ {κ(reduce(q, g1, g2))}
11: until S = r(q, T )
12: return r(q, T )

In the algorithm, q[g/g′] denotes the query obtained from q by replacing the
atom g with a new atom g′. At step 8, for each pair of atoms g1, g2 that unify,
the algorithm computes the query q′ = reduce(q, g1, g2), by applying to q the
most general unifier between g1 and g2.8 Due to the unification, variables that
were bound in q may become unbound in q′. Hence, inclusion axioms that
were not applicable to atoms of q, may become applicable to atoms of q′ (in
the next executions of step (5)). Function κ applied to q′ replaces with each
unbound variable in q′.

The main property of the query reformulation algorithm is as follows. It
can be shown that

ans(K, q) = {c | qi ∈ r(q, T ),A |= qi(c)} .

The above property dictates that the set of reformulated queries qi ∈ r(q, T )
can be used to find the answers, by evaluating them over the set of instances
A only, without referring to the ontology T anymore. Note, however, that the
size of r(q, T ) may be exponential w.r.t. T .

It can be shown that the above described algorithm computes correctly
the answer set of a conjunctive query.

From a computational complexity point of view, it can be shown that

Proposition 14 ([82]). Satisfiability of a KB K can be decided in time poly-
nomial in the size of K. Conjunctive query answering is in LogSpace in data
complexity, while is NP-complete in combined complexity.

Proposition 14 extends also to the case of disjunctive queries, to DL-LiteF,u,
DL-LiteR,u, DLR-LiteF,u and DLR-LiteR,u [83].

8We say that two atoms g1 = r(x1, . . . , xn) and g2 = r(y1, . . . , yn) unify, if for all i,
either xi = yi or xi = or yi = . If g1 and g2 unify, then the unification of g1 and g2 is
the atom r(z1, . . . , zn), where zi = xi if xi = yi or yi = , otherwise zi = yi [80].
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Example 15 ([410]). Suppose we have the following information about hotels
and conferences.

Accommodation v ∃HasALoc
Accommodation v ∃HasAPrice

Conference v ∃HasCLoc
Hotel v Accommodation

Hotel? v Accommodation
Hotel ? ? v Accommodation

.

.

.
.
.
.

.

.

.
Hotel ? ? ? ?? v Accommodation

HasALoc

AID HasLoc

a1 hl1

a2 hl2

.

.

.
.
.
.

HasCLoc

ConfID HasLoc

c1 cl1

c2 cl2

.

.

.
.
.
.

HasHPrice

AID Price

a1 150

a2 200

.

.

.
.
.
.

We may ask to find accommodations, their location, and price. The query may
be expressed as

q(a, hl, p)←Accomodation(a), HasHLoc(a, hl), HasHPrice(a, p) .

Then the following is the set of query rewritings r(q, T ):

q(a, hl, p) ← Accomodation(a), HasHLoc(a, hl), HasHPrice(a, p)

q(a, hl, p) ← Hotel(a), HasHLoc(a, hl), HasHPrice(a, p)

q(a, hl, p) ← Hotel?(a), HasHLoc(a, hl), HasHPrice(a, p)

...
...

...

q(a, hl, p) ← Hotel ? ? ? ??(a), HasHLoc(a, hl), HasHPrice(a, p) .

4.4.4 The Case of the Horn-DLs Family

A main feature of the Horn-DL family is its close relationship with logic pro-
gramming and, indeed, reasoning is performed via a translation of Horn-DL
statements into a logic programming language. In fact, [339] shows how OWL
2 RL can be implemented using the rule language RIF (Core).9

For the sake of ease of presentation, we are not going to present the whole
mapping for Horn-DL, but for a significant subset only that is sufficient to
illustrate the main idea behind this translation. The Horn-DL language we
consider here is

B −→ A | B1 uB2 | B1 tB2 | ∃R.B
C −→ A | C1 u C2 | ¬B | ∀R.C
R −→ P | P−

where inclusion axioms have the form

9A partial mapping is provided also in [341].
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B v C
R1 v R2 .

Assertions are of the form a:C, (a, b):R.
Our mapping follows [173]. In the following, a rule [263] is as a conjunctive

query with the exception that an unary or binary predicate occurs in the rule
head. A fact is a rule F ← with empty body. Facts are denoted F as well
(omitting the symbol ←).10

We now define a recursive mapping function σ which takes inclusions ax-
ioms and assertions and maps then into the following expressions:

σ(R1 v R2) 7→ σrole(R2, x, y)← σrole(R1, x, y)

σrole(R, x, y) 7→ R(x, y)

σr(R
−, x, y) 7→ R(y, x)

σ(B v C) 7→ σh(C, x)← σb(B)

σh(A, x) 7→ A(x)

σh(C1 u C2, x) 7→ σh(C1, x) ∧ σh(C2, x)

σh(∀R.C, x) 7→ σh(C, x)← σrole(R, x, y)

σb(A, x) 7→ A(x)

σb(C1 u C2, x) 7→ σb(C1, x) ∧ σb(C2, x)

σb(C1 t C2, x) 7→ σb(C1, x) ∨ σb(C2, x)

σb(∃R.C, x) 7→ σrole(R, x, y) ∧ σb(C, y)

σ(a:C) 7→ σh(C, a)←
σ((a, b):R) 7→ σrole(R, a, b)←

where y is a new variable.
We then transform the above generated expressions into rules by applying

recursively the following mapping:

σr((H ∧H ′)← B) 7→ σr(H ← B), σr(H
′ ← B)

σr((H ← H ′)← B) 7→ σr(H ← (B ∧H ′))
σr(H ← (B1 ∨B2)) 7→ σr(H ← B1), σr(H ← B2)

Eventually, if none of the above three rules can be applied then

σr(H ← B) 7→ H ← B .

10See Chapter 5.
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For instance, the GCI
A u ∃R.C v B u ∀P.D

is first mapped into the expression (via σ)

B(x) ∧ (D(x)← P (x, z))← A(x) ∧R(x, y) ∧ C(y)

that then is transformed into the two rules (via σr)

B(x) ← A(x), R(x, y), C(y)

D(z) ← A(x), R(x, y), C(y), P (x, z) .

It can be shown that

Proposition 15 ([173]). The above described transformation preserves se-
mantic equivalence. That is, let K be a KB and PK be the rule set that results
from applying the transformation to all axioms in K, then PK is logically
equivalent to K w.r.t. the semantics of FOL PK has the same set of models
and entailed conclusions as K.

Hence, reasoning in Horn-DL can be reduced to reasoning within logic pro-
gramming (see Chapter 5).

4.4.5 Reasoning Complexity Summary

We resume in Table 4.8 here the complexity of various reasoning task for
the OWL family.

TABLE 4.8: The complexity of various reasoning task for the OWL family.

Language Taxonomic Complexity Data Complexity Combined Complexity
OWL 2 2NExpTime-complete Decidable 2NExpTime-complete

OWL 2 EL PTime-complete PTime-complete PTime-complete
OWL 2 QL NLogSpace-complete AC0 NLogSpace-complete
OWL 2 RL PTime-complete PTime-complete PTime-complete
OWL DL 2NExpTime-complete Decidable NExpTime-complete
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Chapter 5

Rule Languages

5.1 Introduction

The Rule Interchange Format (RIF) [365] is the third building block of
the infrastructure for the Semantic Web, along with (principally) SPARQL,
RDF, and OWL. Although originally envisioned by many as a rules layer for
the Semantic Web, in reality the design of RIF is based on the observation
that there are many rules languages in existence, and what is needed is to
exchange rules between them. That is, RIF focuses on exchange rather than
trying to develop a single one-fits-all rule language because, in contrast to
other Semantic Web standards, such as RDF, OWL, and SPARQL, it was
immediately clear that a single language would not satisfy the needs of many
popular paradigms for using rules in knowledge representation and business
modelling (see also the case of RuleML [63]).

A rule is perhaps one of the simplest notions in computer science, specifi-
cally FOL: it is an IF - THEN construct, i.e., a Horn formula (named after the
logician Alfred Horn). If some condition (the IF part) that is checkable in some
dataset holds, then the conclusion (the THEN part) is processed. Deriving
somewhat from its roots in Logic, rule systems use a notion of predicates that
hold or not of some data object or objects. For example, the fact that two peo-
ple are married might be represented with predicates as Married(lisa, john).
Married is a predicate that can be said to hold between individuals lisa and
john. Adding the notion of variables, a rule could be something like:

if Married(x, y) then Loves(x, y) .

We would expect that for every pair of 〈x, y〉 (e.g., lisa and john) for which
the Married predicate holds, using this rule we would conclude that the Loves
predicate holds for that pair as well.

As pointed out in Section 2.3, RIF includes three dialects, a Core dialect
that is extended into a Basic Logic Dialect (BLD) and Production Rule Dialect
(PRD).

RIF-Core RIF-Core corresponds to Horn logic without function symbols
(i.e., Datalog [449]) with a number of extensions to support features
such as objects and frames as in F-logic [238]. RIF-Core is a subset of
RIF-BLD and RIF-PRD.

73
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RIF-BLD From a theoretical perspective, RIF-BLD corresponds to the lan-
guage of definite Horn rules with equality and a standard first-order
semantics [93]. RIF-Core is a a specialization of RIF-BLD.

RIF-PRD It aims at capturing the main aspects of various production rule
systems. Production rules have an if part, or condition, and a then part,
or action. The condition is like the condition part of logic rules (as cov-
ered by RIF-Core and its basic logic dialect extension, RIF-BLD). The
then part contains actions. An action can assert facts, modify facts, re-
tract facts, and have other side effects. In general, an action is different
from the conclusion of a logic rule, which contains only a logical state-
ment. However, the conclusion of rules interchanged using RIF-Core can
be interpreted, according to RIF-PRD operational semantics, as actions
that assert facts in the knowledge base.

As we did for RDFS and OWL 2, where we were looking at the logical founda-
tions of these languages, we present here the logical foundations behind RIF,
too. Specifically, we present here Datalog [2, 449] with concrete datatypes
(compare with OWL 2 concrete domains in Section 4.2.2.2), which is at the
heart of RIF-Core, the common ingredient between RIF-BLD and RIF-PRD,
and is sufficient to illustrate the main characteristics of the RIF family.

Appendix D describes RIF-Core and the mapping of a significant sub-
language of RIF-Core to Datalog.

5.2 Datalog Basics

Datalog is a rule and query language for deductive databases that syntac-
tically is a subset of Logic Programs [263] and became prominent as a separate
area around 1977 when Hervé Gallaire and Jack Minker organized a workshop
on logic and databases [166]. David Maier is credited with coining the term
Datalog [2].

A knowledge base K = 〈F ,P〉 consists of a finite facts component F and a
finite LP component P, which are both defined below.

Facts Component. F is a finite set of atoms of the form

p(c1, . . . , cn) ,

where p is an n-ary relation and every ci is an individual (also called constant).
For each p, we represent the facts p(c1, . . . , cn) in F by means of a relational n-
ary table Tp, containing the records 〈c1, . . . , cn〉. We assume that there cannot
be two records representing the same tuple (if there are, then we remove one
of them).
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Example 16 ([358]). Suppose we have a car-selling site, and we would like
to buy a car. The facts are the cars, which belong to the relation CarTable
shown below.

CarTable
ID MODEL TYPE PRICE KM COLOR AIR AIR ENG DISCOUNT

BAG COND FUEL

455 MAZDA 3 Sedan 12500 18000 Red 0 1 Gasoline 0.1
34 ALFA 156 Sedan 12000 17000 Black 1 0 Diesel 0.2

1812 FORD FOCUS Estate 13000 16000 Gray 1 1 Gasoline 0.2

Rule Component. P is a finite set of rules, which are similar as conjunctive
RDFS and DL queries (See Sections 3.3, 4.3 and 6), and are of the form

p(x)← ∃y.ϕ(x,y) , (5.1)

where now ϕ(x,y) is a conjunction1 of n-ary predicates pi(zi) and zi is a vector
of distinguished or non-distinguished variables. Specifically, we say that p(x)
is the head and ∃y.ϕ(x,y) is the body of the rule, x is a vector of variables
occurring in the body, called the distinguished variables, y are so-called non-
distinguished variables and are distinct from the variables in x, each variable
occurring in pi is either a distinguished or a non-distinguished variable. If
clear from the context, we may omit the existential quantification ∃y. We
also assume that predicate names in a rule body are distinct, i.e., pi 6= pj for
i 6= j. The intended meaning of a rule such as (5.1) is that the head p(x) is
true whenever the body y.ϕ(x,y) is true.

We also assume that relations occurring in F do not occur in the head
of rules (so, we do not allow that the fact relations occurring in F can be
redefined by P). As usual in deductive databases, the relations in F are called
extensional relations, while the others are intensional relations.

Example 17. Consider again Example 16. An excerpt of the domain ontology
is described below and partially encodes the web directory behind the car selling
site www. autos. com .

Vehicles(x)← Cars(x)
Vehicles(x)← Trucks(x)
Vehicles(x)← Vans(x)
Cars(x)← LuxuryCars(x)
Cars(x)← PassengerCars(x)
Cars(x1)← CarTable(x1, . . . , x9)
Cars(x)← Sedan(x)

Cars(x)← Estate(x)
PassengerCars(x)← MidSizeCars(x)
PassengerCars(x)← SportyCars(x)
PassengerCars(x)← CompactCars(x)
hasPrice(x1, x4)← CarTable(x1, . . . , x9)
hasKm(x1, x5)← CarTable(x1, . . . , x9)
FuelType(x1, x9)← CarTable(x1, . . . , x9)

Remark 10. Note that we impose relations pi in a rule body to be distinct.
This is not a limitation as we may rewrite, e.g.,

p(x)← q(x, y), q(y, z)

as

1Again we use the symbol “,′′ to denote conjunction in the rule body.

http://www.autos.com
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p(x)← q(x, y), p′(y, z)
p′(y, z)← q(y, z)

for a new relation symbol p′.

We may write a fact p(c) also as a rule of the form

p(c)← 1 , (5.2)

where 1 in the body is a ground atom, which is always interpreted as true.

Semantics. From a semantics point of view, given K = 〈F ,P〉, the notions of
Herbrand universe HK (the set of all constants occurring in K) and Herbrand
base BK of K (the set of all ground atoms that can be formed using constants
in HK and atoms occurring in K) are as usual.

Additionally, given K, the set of ground rules K∗ derived from the ground-
ing of K is constructed as follows:

1. set K∗ to be {p(c)← 1 | p(c) ∈ F};
2. add to K∗ the set of all ground instantiations of rules in P.

An interpretation I for K is a subset of BK. Given K, we say that I satisfies
(is a model of )

• the ground atom 1, denoted I |= 1;

• a ground atom A ∈ BK, denoted I |= A, iff A ∈ I;

• a ground rule body φ of a rule A ← φ ∈ K∗, denoted I |= φ, iff I is a
model of all atoms in φ;

• a ground rule r ∈ K∗, denoted I |= r, iff I is a model of the head of r
whenever I is a model of the body of r;

• K∗, denoted I |= K∗, iff I satisfies all rules r ∈ K∗;
• K, denoted I |= K, if I is a model of K∗.

Let IK = 2BK be the set of all interpretations (there are 2|BK| many). Now,
for I1, I2 ∈ IK , we write I1 ≤ I2 iff I1 ⊆ I2. It is easy to see that 〈IK,≤〉 is
a finite complete lattice.

Among all the models, one model plays a special role: namely the ≤-least
model MK of K. The existence, finiteness, and uniqueness of the minimal
model MK is guaranteed to exist by the following argument (see, e.g., [263]).

Consider the function TK : IK → IK defined as

TK(I) := {A | A← φ ∈ K∗ s.t. I |= φ} . (5.3)

Then, it can be shown that TK is monotone on IK, i.e., if I1 ≤ I2 then
TK(I1) ≤ TK(I2). By the well-known Tarski-Knaster fixed-point theorem [439]
for monotone functions over complete lattices, we get immediately:
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Proposition 16. For a knowledge base K, there exists a unique minimal
model MK that is the least fixed point of the function TK. MK can be obtained
as the limit of the ≤-monotone sequence, I0, . . . , Ii, . . ., where

I0 = F
Ii+1 = TK(Ii) . (5.4)

The minimal model is attained in at most 2|BK | TK iterations.

5.3 Concrete Domains

Similarly to DLs (see Section 4.2.2.2), we may extend Datalog with con-
crete domains, to deal with datatypes, such as strings and integers. The for-
malization is similar to DLs, i.e., we assume a set of constants that are data
values and a set of datatype predicates, where each datatype predicate has
a predefined arity n≥ 1. A datatype theory D = 〈∆D, ·D〉 consists of a finite
datatype domain ∆D and a mapping ·D that assigns to each data value an
element of ∆D and to each datatype predicate p of arity n a relation over ∆D

of arity n.
A concrete atom is an expression of the form d(z), where z is a vector of

variables or data values. We extend an interpretation I to concrete atoms by
saying that I satisfies (is a model of ) a ground concrete atom d(v), denoted
I |= d(v) iff v ∈ dD. For instance, ≥20 may be a unary predicate denoting the
set of integers greater or equal to 20. For convenience, we write “functional
predicates”2 as assignments of the form x :=f(z) and assume that the function
f(z) is safe.

Rules are then extended by allowing concrete atoms to occur in a rule body
with the condition that the concrete atom is safe, i.e., a variable occurring in
a concrete atom does also occur in non-concrete atoms, of the same rule. For
instance, the

GoodHotel(x, r, p) ← Hotel(x), HasRoomPrice(x, r, p),≤80(p) (5.5)

has intended meaning to define a good hotel as one having a room with a
price not larger than 80e.

Next, let us extend both the Herbrand universe as HD
K := HK ∪∆D and

the Herbrand base BD
K to the set of all ground atoms and ground concrete

atoms that can be formed from the constants in the Herbrand universe.
An interpretation I is extended by being a subset of BD

K with the addi-

tional condition that d(v) ∈ I iff I |= d(v). Of course, 〈2BD
K ,≤〉 is still a finite

complete lattice (recall that ∆D is finite).

2A predicate p(x, y) is functional if for any v there is unique v′ for which p(v, v′) is true.
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Now, the notions of satisfaction (is model of ) are extended in the obvious
way to rules including concrete atoms. It is then straightforward to see that
the analogue of Proposition 16 still applies to interpretations over BD

K in place
of BK.

5.4 Conjunctive Queries

A query is a rule
q(x)← ∃y.ϕ(x,y) , (5.6)

and the answer set of a query q w.r.t. a set K of facts and rules (denoted
ans(K, q)) is the set of tuples t such that there exists t′ such that the in-
stantiation ϕ(t, t′) of the query body is satisfied by the minimal model of K,
which is guaranteed to exist by Proposition 16.

Example 18. Consider the following rules:

r1 : path(x, y) ← edge(x, y) (5.7)

r2 : path(x, y) ← path(x, z), edge(z, y) (5.8)

The knowledge base K contains the rules above and the extensional database
of edges as shown in the relational table Tedge below:

Tedge
c b

a c

b a

a b

It can be verified that the set of answers of predicate path is given by:

ans(K, path)

a a b a c a

a b b b c b

a c b c c c

For instance, informally 〈a, a〉 ∈ ans(K, path) as there is an edge from a to b
and, thus, there is a path from a to b. Therefore, as there is and edge from b
to a as well, there is a path from a to a.

In order to verify the whole, below we report the computation of the mini-
mal model MK according to Proposition 16. We report only the restriction of
Ii to the predicate path, denoted as Ii(path) = {t | path(t) ∈ Ii}.3

3The analogous value of Ii(edge) remains constantly equal to the tuples in F .
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I0(path) = ∅
I1(path) = F
I2(path) = I1(path) ∪ {〈c, a〉, 〈b, c〉, 〈b, b〉, 〈a, a〉}
I3(path) = I2(path) ∪ {〈c, c〉}
I4(path) = I3(path) .

So, the least fixed point, i.e., minimal model is attained after four TP itera-
tions.

5.5 Reasoning

The major reasoning task is to compute the answer set ans(K, q) of a query
q, given a KB K.

A simple query answering procedure to determine ans(K, q) is:

1. Convert K into K∗;

2. Compute the minimal model MK of K∗;

3. Store the minimal model MK of K∗ in a database;

4. Translate the query q into an SQL statement;

5. Execute the SQL query over the relational database.

A bottleneck of this approach is that MK may be huge, in the worst case
exponential in the size of K (note that if k = |HK| and p is an n-ary predi-
cate then there are nk ground instances of p). To overcome this problem, the
LP community has developed numerous alternative approaches [2, 263, 449],
notably SLD-Resolution [147, 263] and memoing techniques (also called
tabling/tabulation/magic sets) –see, e.g., [95, 461].

We present them here as they are two major representatives, and which
broadly belongs to the family of so-called query driven answering procedures.

5.5.1 SLD-Resolution Driven Query Answering

SLD-Resolution (Selective Linear Definite clause resolution) is the basic
inference rule used in logic programming (see, e.g., [263]). It is a refinement of
resolution (see e.g., [67, 93, 158, 167, 378]), which is both sound and refutation
complete for Horn clauses and was introduced first in [147].

The basic principle underlying the method is as follows. We first illustrate
the propositional case and the FOL case.

The propositional SLD inference rule is as follows: assume we have propo-
sitional rules
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From A← A1, . . . , C, . . . , Ak
and B ← B1, . . . , Bm
and B = C

infer A← A1, . . . , B1, . . . , Bm, . . . , Ak

(5.9)

where the inferred rule is obtained from A ← A1, . . . , C, . . . , Ak by replacing
atom C with the atoms B1, . . . , Bm. The propositional atom B is called the
selected atom.

In the FOL case the atoms B and C, which may contain variables, need
not be equal. However, it is required that B and C have a most general unifier
(mgu) (see,e.g., [263]), that is a substitution θ of the variables in B and C
such that the application of the substitution to B and C make the two atoms
equal.

Specifically, a substitution θ is a finite set of the form

θ = {x1/t1, . . . , xn/tn} ,

where each xi is variable, each ti is either a variable or constant distinct from
xi, and the variables x1, . . . , xn are distinct. Each element xi/ti is called a
binding for xi. θ is called ground if all ti are constants. θ is called a variable
substitution iff all ti are variables.

Given an atom A and a substitution θ = {x1/t1, . . . , xn/tn}, with Aθ
we denote the atom obtained from A by replacing simultaneously all vari-
ables xi with ti. Given two substitutions θ = {x1/t1, . . . , xn/tn} and σ =
{y1/s1, . . . , ym/sm}, then the composition θσ of θ and σ is the substitution
obtained from the set

{x1/t1σ, . . . , xn/tnσ, y1/s1, . . . , ym/sm}

by deleting the bindings xi/tiσ for which xi = tiσ and deleting any binding
yj/sj for which yj ∈ {x1, . . . , xn}.

The substitution ε given by the empty set is called identity substitution.
Two atoms A and B are variants iff there is a substitution θ and σ such

that A = Bθ and B = Aσ.
A variable substitution θ = {x1/y1, . . . , xn/yn} is called a renaming of A

if given that

• V is the set of variables occurring in A;

• all xi are in V ;

• all yi are distinct,

then
(V \ {x1, . . . , xn}) ∩ {y1, . . . , yn} = ∅ .

Let S = {A1, . . . , An} be a set of atoms Ai, we say that a substitution θ is
an unifier for S iff Sθ = {A1θ, . . . , Anθ} is a singleton set. An unifier of S is
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called most general unifier (mgu) for S if, for each unifier σ of S there exists
a non-empty substitution γ such that σ = θγ. We say that two atoms A and
B unify iff there is an mgu for {A,B}. We refer the reader to, e.g., [263, 308],
for unification algorithms.

We are now ready to illustrate the SLD-resolution rule for Datalog rules:

From A← A1, . . . , C, . . . , Ak
and B ← B1, . . . , Bm
and θ as a mgu of {B,C}
infer Aθ ← A1θ, . . . , B1θ, . . . , Bmθ . . . , Akθ

(5.10)

in which we assume that all atoms in the second rule have been renamed in
order not to share any variable with the first one.

We have also a specialized case that involves a fact

From A← A1, . . . , C, . . . , Ak
and fact B
and θ as a mgu of {B,C}
infer Aθ ← A1θ, . . . , 1, . . . , Akθ

(5.11)

Now, consider a KB K and a query rule

q(x)← φ .

An SLD-derivation of q w.r.t. K consists of a finite sequence of rules r1, . . . , rn,
each of which has q as head, r1 is the query rule, each rule ri+1 is inferred
from ri via SLD-resolution, and rn is the rule

q(x)θ ← 1

telling us that indeed q(x)θ is always true. In that case, we say that the
restriction of the substitution θ to the variables in x is a computed answer for
q. With θ|x we denote the vector 〈x1θ, . . . , xnθ〉.

It can be shown that

Proposition 17 (Soundness & Completeness [263]). Given a KB K and a
query q of the form q(x)← φ, then

1. every computed answer is an answer, i.e., if θ is a computed answer of
q w.r.t. K, then θ|x ∈ ans(K, q);

2. for every answer c ∈ ans(K, q), there is a computed answer θ of q
w.r.t. K such θ|x = c.

Hence in order to compute the answer set ans(K, q) via SLD-derivation, it suf-
fices to determine (carefully, to avoid non-termination) all computed answers
of q w.r.t. K.
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Example 19. Consider Example 18 and the query

q(x, y)← path(x, y) .

The following is an SLD-derivation of q w.r.t. K:

q(x, y)← path(x, y)

q(x, y)← path(x, z), edge(z, y) θ|〈x,y〉 = 〈〉
q(x, y)← path(x, z1), edge(z1, z), edge(z, y) θ|〈x,y〉 = 〈−,−〉
q(x, y)← edge(x, z1), edge(z1, z), edge(z, y) θ|〈x,y〉 = 〈−,−〉

q(c, y)← 1, edge(b, z), edge(z, y) θ|〈x,y〉 = 〈c,−〉
q(c, y)← 1, 1, edge(a, y) θ|〈x,y〉 = 〈c,−〉

q(c, c)← 1, 1, 1 θ|〈x,y〉 = 〈c, c〉 .

Note that indeed θ|〈x,y〉 = 〈c, c〉 ∈ ans(K, q) is an answer computed by this
SLD-derivation.

Note that Example 19 exhibits also a potential non-terminating issue, if we
apply the SLD-resolution always to the first atom of the query rule body. To
this end appropriate atom selection strategies are required to avoid such a
problem. We will not address them here. We instead present an alternative
method that does not exhibit this issue, as illustrated next.

5.5.2 Tabling like Query Driven Query Answering

The algorithm we present here is an improved query driven query evalu-
ation algorithm based on the Semi Naive Evaluation Algorithm for Datalog
(see [33, 437, 449]) and may fall under the label of memoing technique (also
called tabling/tabulation) –see, e.g., [95, 461].

To start with, we recall that the Semi-Naive Evaluation Algorithm for Dat-
alog4 is a well-known query answering algorithm, whose basic idea is quite sim-
ple and has the advantage to be implemented on top of a relational database
system to which to submit SQL queries.

Basically, as we do not want to rely on grounding K, we collect the answers
to a query incrementally together: roughly the method is as follows:

1. start by assuming all IDB (intensional database) relations empty;

2. repeatedly evaluate the rules using the EDB (extensional database) and
the previous IDB, to get a new IDB;

3. stop when there is no change to IDB.

4http://infolab.stanford.edu/~ullman/fcdb/aut07/slides/dlog.ppt

http://infolab.stanford.edu
http://infolab.stanford.edu
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Of course, since the EDB never changes, on each round we only get new IDB
tuples if we use at least one IDB tuple that was obtained on the previous
round. This allows us to save work by avoiding rediscovering most known
facts.

To start with, we use the usual relation “directly depends on” among
relation symbols, i.e., given K, we say that relation symbol p directly depends
on relation symbol q if there is a rule in K such that p occurs in the head of
it and q occurs in the body of it. The relation depends on is the transitive
closure of “directly depends on”. The dependency graph of K is a directed
graph where nodes are relation symbols and the set of edges is the “directly
depends on” relation. The KB is recursive if there is a cycle in the dependency
graph (i.e., there is p depending on p).

The query answering method we present is called query driven as we re-
strict the computation to predicates that depend on a query only.

At first, consider a general rule of the form p(x) ← ϕ(x,y). Assume that
ϕ(x,y) depends on the predicates p1, . . . , pk, which occur in the rule body
ϕ(x,y). Assume that ∆p1

, . . . ,∆pk are the answers collected so far for the
predicates p1, . . . , pk. Let us consider a procedure eval(p,∆p1

, . . . ,∆pk), which
computes the set of answers c of p, by evaluating the body ϕ(x,y) over the
data provided by ∆p1 , . . . ,∆pk . Of course, if the predicate p is in the head of
more than one rule, then eval(p,∆p1 , . . . ,∆pk) is the union of all the evalua-
tions over the rules having p as head. Note also that eval(p,∆p1

, . . . ,∆pk) is
monotone in its arguments.

For instance, consider Example 18. Assume that both ∆edge and ∆path

are given by Tedge. Then eval(path, ∆edge,∆path) returns the set of answers
∆′path = I2(path). Note that eval(path,∆edge,∆path) can be obtained using
relational algebra as:

tab∆edge
∪ π1,4(tab∆edge

./2=3 tab∆path
) . (5.12)

In substance eval revises the set of answers for path. Note that with re-
spect to Example 18, tab∆′path does not have the record 〈c, c〉. However, we
obtain the answers after reiterating the evaluation step once more. That is,
eval(path,∆edge,∆

′
path) returns all answers of path. Note also that the union

in Eq. (5.12) is due to the fact that path is in the head of two rules.
We are not going to further investigate the implementation details of the

eval(p,∆p1 , . . . ,∆pk) procedure, though it has to be carefully written to min-
imize the number of table look-ups and relational algebraic operations such as
joins. It can be obtained by means of a combination of SQL statements over
the tables and the application of the truth combination functions occurring
in the rule body of p.

We point out that eval(p,∆p1 , . . . ,∆pk) can also be seen as a query to a
database made out by the relations tab∆p1

, . . . , tab∆pk
and that any succes-

sive evaluation step corresponds to the execution of the same query over an
updated database. We refer the reader to, e.g., [128, 129, 130, 259] concerning
the problem of repeatedly evaluating the same query to a database that is
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being updated between successive query requests. In this situation, it may
be possible to use the difference between successive database states and the
answer to the query in one state to reduce the cost of evaluating the query in
the next state.

We describe now our query answering procedure (see Algorithm 2). Assume
we are interested in determining all answers of q(x). We start with putting the
predicate symbol q in the active set of predicate symbols A. At each iteration
step we select a new predicate p from A and evaluate it using the eval function
with respect to the answers gathered so far. If the evaluation leads to a better
answer set for p (∆p > v(p)), we update the current answer set v(p) and add
all predicates p′, whose rule body contains p (the parents of p), to A, i.e., all
predicate symbols that might depend on p are put in the active set to be
examined. At some point (even if cyclic definitions are present) A will become
empty, as the truth space is finite, and we have actually found all answers of
q(x).

Algorithm 2 uses some auxiliary functions, data structures, and order def-
inition:

• for two sets of tuples ∆1 and ∆2, we define

∆1 > ∆2 iff ∆2 ⊂ ∆1 ; (5.13)

As eval(pi, v(pi1), ..., v(piki )) is monotone, an optimized version of
eval(pi, v(pi1), ..., v(piki )) may return only the newly retrieved tu-
ples w.r.t. v(pi). In that case, steps 10 and 11 have to be replaced with

if ∆pi 6= ∅ then v(pi) := v(pi) ∪∆pi , A := A ∪ (p(pi) ∩ dg)

• for predicate symbol pi, s(pi) is the set of predicate symbols occurring
in the rule body of a rule having pi as head, i.e., the sons of pi;

• for predicate symbol pi, p(pi) = {pj : pi ∈ s(pj)}, i.e., the parents of pi;

• in step 9, pi1 , . . . , piki are all predicate symbols occurring in the rule
bodies having pi in its head, i.e., the sons s(pi) = {pi1 , . . . , piki} of pi;

• the variable dg collects the predicate symbols that may influence the
result of the query predicates;

• the array variable exp traces the rule bodies that have been “expanded”
(the predicate symbols occurring in the rule bodies are put into the
active list);

• the variable in keeps track of the predicate symbols that have been put
into the active list so far due to an expansion (to avoid, to put the same
predicate symbol multiple times in the active list due to rule bodies
expansion).
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Algorithm 2 Answer(K, q)
Input: Knowledge base K, query q.
Output: A mapping v such that it contains all answers of q.
1: A := {q}, dg := {q}, in := ∅.
2: for all predicate symbols p in P do
3: v(p) = ∅, exp(p) = false

4: while A 6= ∅ do
5: select pi ∈ A, A := A \ {pi}, dg := dg ∪ s(pi)
6: if (pi extensional predicate) ∧ (v(pi) = ∅) then
7: v(pi) := tabpi
8: if pi intensional predicate then
9: ∆pi := eval(pi, v(pi1 ), ..., v(piki

))

10: if ∆pi > v(pi) then
11: v(pi) := ∆pi , A := A ∪ (p(pi) ∩ dg)
12: if not exp(pi) then
13: exp(pi) = true, A := A ∪ (s(pi) \ in), in := in ∪ s(pi)
14: return v

From a computational complexity point of view, we recall that there are two
main kinds of complexity connected to plain Datalog [452]:

• the data complexity is the complexity of checking whether 〈F ,P〉 |= A
when the set of rules P is fixed, whereas input databases F and ground
atom A are an input ;

• the combined complexity is the complexity of checking whether 〈F ,P〉 |=
A when input database F , the set of rules P, and ground atoms A are
an input.

Grounding P on an input database F yields polynomially many clauses in the
size of F ; hence, the complexity of propositional logic programming, which is
linear (see, e.g., [113, 132, 452]), is an upper bound for the data complexity.
We thus get

Proposition 18 ([113, 453]). Deciding whether t ∈ ans(K, q) is P-complete
in data complexity. The program complexity is exponentially higher: deciding
whether t ∈ ans(K, q) is ExpTime-complete in combined complexity.

Example 20. Consider Example 18. Let us compute all answers of predicate
path. So, let q = path. The execution of Answer(K, q) is shown in Table 5.1,
which also reports ∆pi and v(pi) at each iteration i.
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TABLE 5.1: Query driven computation related to Example 20.
1. A := {path}, pi := path, A := ∅, dg := {path, edge},∆path := ∅

exp(path) := true, A := {path, edge}, in := {path, edge}
2. pi := path, A := {edge},∆path := ∅
3. pi := edge, A := ∅, v(edge) = ∅, v(edge) := tabedge, A := {path}, exp(edge) := true

4. pi := path, A := ∅,∆path > v(path), v(path) := ∆path, A := {path}
5. pi := path, A := ∅,∆path > v(path), v(path) := ∆path, A := {path}
6. pi := path, A := ∅,∆path > v(path), v(path) := ∆path, A := {path}
7. pi := path, A := ∅,∆path = v(path)
8. stop. return v(path)

Iter i ∆pi v(pi)

0. − v(edge) = v(path) = ∅
1. ∆path = ∅ −
2. ∆path = ∅ −
3. − v(edge) = ∆edge

4. ∆path = {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈c, b〉} v(path) = ∆path

5. ∆path = { 〈a, a〉, 〈a, b〉, 〈a, c〉,
〈b, a〉, 〈b, b〉, 〈b, c〉,
〈c, a〉, 〈c, b〉 }

v(path) = ∆path

6. ∆path = { 〈a, a〉, 〈a, b〉, 〈a, c〉,
〈b, a〉, 〈b, b〉, 〈b, c〉,
〈c, a〉, 〈c, b〉, 〈c, c〉 }

v(path) = ∆path

7. ∆path = { 〈a, a〉, 〈a, b〉, 〈a, c〉,
〈b, a〉, 〈b, b〉, 〈b, c〉,
〈c, a〉, 〈c, b〉, 〈c, c〉 }

−



Chapter 6

Query Languages for SWL-based
Knowledge Bases

6.1 Introduction

SPARQL [380, 381] is a query language and a protocol for data that is
stored natively as RDF or viewed as RDF via middleware. The main mech-
anism for computing query results in SPARQL is subgraph matching: RDF
triples in both the queried RDF data and the query pattern are interpreted as
nodes and edges of directed graphs, and the resulting query graph is matched
to the data graph using variables as wild cards. Various W3C standards, in-
cluding RDF and OWL, provide semantic interpretations for RDF graphs that
allow additional RDF statements to be inferred from explicitly given asser-
tions. Many applications that rely on these semantics require a query language
such as SPARQL, but in order to use SPARQL, basic graph pattern match-
ing has to be defined using semantic entailment relations instead of explicitly
given graph structures. There are different possible ways of defining a basic
graph pattern matching extension for an entailment relation. [379] specifies
one such way for a range of standard Semantic Web entailment relations. Such
extensions of the SPARQL semantics are called entailment regimes. An en-
tailment regime defines not only which entailment relation is used, but also
which queries and graphs are well-formed for the regime, how the entailment
is used (since there are potentially different meaningful ways to use the same
entailment relation), or what kinds of errors can arise.

We are not going into the details of SPARQL specification, as we did not
go into the details of RDFS, OWL 2, and RIF specification, but rather look
at it from a logical perspective.

Specifically, we first introduce the notions of conjunctive / disjunctive
query for KBs based on RDFS, Description Logics, and Logic Programs. Con-
junctive queries have already been introduced in the previous chapters, though
here we give a more involved version, which will be useful later on in this book.
We then provide the formal definition of SPARQL 1.1.

87
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6.2 Conjunctive and Disjunctive Queries

The RDFS case. We assume that a RDFS graph G is ground, that is blank
nodes have been skolemized, i.e., replaced with terms in UL. We recap here
and extend the definitions of Section 3.3. So, an RDFS query is of the rule-like
form

q(x)← ∃y.ϕ(x,y)

where we additionally allow built-in triples of the form (s, p, o), where p is
a built-in predicate taken from a reserved vocabulary and having a fixed in-
terpretation. We generalize the built-ins to any n-ary predicate p, where p’s
arguments may be ρdf variables, values from UL, and p has a fixed interpre-
tation. We will assume that the evaluation of the predicate can be decided in
finite time. For convenience, we write “functional predicates”1 as assignments
of the form x :=f(z) and assume that the function f(z) is safe. We also as-
sume that a non-functional built-in predicate p(z) should be safe as well. For
instance,

q(x1, x2)← (x,worksFor, google), (x, hasSalary, s), (s,<, 23000)

is an RDFS query asking for Google employees earning less than 23000. Here
< is a built-in predicate.

The notions of answer and answer set of q w.r.t. G, i.e.,

ans(G, q) = {t | G |= q(t)} ,

are as from Section 3.3.
As next, we extend the query language by allowing so-called aggregates to

occur in a query. Essentially, aggregates may be like the usual SQL aggregate
functions such as SUM,AVG,MAX,MIN.

For instance, suppose we are looking for employees that work for some
company. We would like to know the average salary of their employment.
Such a query may be expressed as

q(x, avgS) ← (x,worksFor, y), (x, hasSalary, s),
GroupedBy(x),
avgS :=AVG[s] .

Essentially, we group by the employee, consider for each employee the
salaries, and compute the average salary value for each group. That is, if
g = {〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same value t for employee
x, and value ti for s, then the value of avgL for the group g is (

∑
i ti)/n.

1A predicate p(x, y) is functional if for any t there is unique t′ for which p(t, t′) is true.
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Formally, let @ be an aggregate function with

@ ∈ {SUM,AVG,MAX,MIN,COUNT}

then a query with aggregates is of the form

q(x, α) ← ∃y.ϕ(x,y),
GroupedBy(w),
α :=@[f(z)]

(6.1)

where w are variables in x or y, each variable in x occurs in w and any
variable in z occurs in y.

From a semantics point of view, we say that I is a model of (satisfies)
q(t, a), denoted I |= q(t, a) if and only if

a = @[a1, . . . , ak] where g = {〈t, t1〉, . . . , 〈t, tk〉},
is a group of k tuples with identical projection
on the variables in w, ϕ(t, tr) is true in I
and ar = f(t) where tr is the projection of tr
on the variables z .

Now, the notion of G |= q(t, a) is as usual, i.e., any model of G is a model of
q(t, a).

Eventually, we further allow to order answers according to some ordering
functions. For instance, assume that additionally would like to order the em-
ployee according to the average salary of employment. Then such a query will
be expressed as

q(x, avgS) ← (x,worksFor, y), (x, hasSalary, s),
GroupedBy(x),
avgS :=AVG[s],
OrderBy(avgS) .

Formally, a query with ordering is of the form

q(x, z) ← ∃y.ϕ(x,y),OrderBy(z)

or, in case grouping is allowed as well, it is of the form

q(x, z, α) ← ∃y.ϕ(x,y),
GroupedBy(w),
α :=@[f(z)],
OrderBy(z) .

(6.2)

From a semantics point of view, the notion of G |= q(t, z, a) is as before, but
the notion of answer set has to be enforced with the fact that the answers
are now ordered according to the assignment to the variable z. Of course, we
require that the set of values over which z ranges can be ordered (like string,
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integers, reals). Finally, note that the additional of the SQL-like statement
LIMIT(k) can be added straightforwardly.

It is obvious that we may devise the same query answering method as seen
in Section 3.4, by computing the closure, store it into a database, and then
using SQL queries with the appropriate support of built-in predicates.

Proposition 19. Given a ground graph G, t is an answer to q if and only if
there exists an instantiation ϕ(t, t′) that is true in the closure of G (i.e., all
triples in ϕ(t, t′) are in cl(G)). The answer set can be computed in LogSpace
w.r.t. the size of cl(G).

We conclude by defining a disjunctive query q as usual as a finite set of
conjunctive queries in which all the rules have the same head. Intuitively, the
answers to a disjunctive query are the union of the answers of the conjunctive
queries. That is, for a disjunctive query q = {q1, . . . , qm}, G entails q(t)
(denoted G |= q(t)) iff G |= qi(t) for some qi ∈ q.

The notion of answer and answer set of a disjunctive query is a straightfor-
ward extension of the ones for conjunctive queries. Also, it is straightforward
to see that the answer set of a disjunctive query can be computed similarly
as for conjunctive queries.

The OWL 2 and RIF cases. It is pretty obvious that the notion introduced
for conjunctive RDFS queries straightforwardly extends to the cases of OWL
2 and RIF. Essentially in the query body we have to replace triple expressions
with FOL predicates, which are unary or binary in case of OWL 2 (that is in
the DLs case), and n-ary in case of RIF (that is in the LPs case).

6.3 SPARQL

Our introduced query language so far allows for conjunctive and disjunctive
queries with aggregates, which may be seen as the logical counterpart of SQL.
In this section we will present now SPARQL, which has some specific features
not covered so far.

We recall that SPARQL [380, 381] is the W3C recommended query lan-
guage for RDF.

A SPARQL query is defined by a triple Q = (P,G, V ), where P is a graph
pattern (defined below) and the dataset G is an RDF graph and V is the
result form. We will restrict ourselves to SELECT queries in this work so it is
sufficient to consider the result form V as a list of variables.

Remark 11. Note that, for presentation purposes, we simplify the notion of
datasets by excluding named graphs and thus GRAPH queries. Our definitions
can be straightforwardly extended to named graphs and we refer the reader to
the SPARQL W3C specification [381] for details.
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We base our semantics of SPARQL on the semantics presented by Pérez
et al. [348], extending the multiset semantics to lists, which are considered a
multiset with “default” ordering.

RDF triples, possibly with variables in subject, predicate, or object posi-
tions, are called triple patterns. In the basic case, a graph pattern P is a set
of triple patterns, also called basic graph pattern (BGP).

Let U, B, L be defined as for RDFS (Chapter 3) and let V denote a set of
variables, disjoint from UBL. We further denote by var(P ) the set of variables
present in a graph pattern P .

Given a graph G and a BGP P , a solution [381, Section 12.3.1] θ for P over
G is a mapping over a subset V of var(P ), i.e., θ : V → term(G) such that
G |= Pθ where Pθ represents the triples obtained by replacing the variables
in graph pattern P according to θ, and where G |= Pθ means that any triple
in Pθ is entailed by G. We call V the domain of θ, denoted by dom(θ). For
convenience, sometimes we will use the notation θ = {x1/t1, . . . , xn/tn} to
indicate that θ(xi) = ti, i.e., variable xi is assigned to term ti.

Two mappings θ1 and θ2 are considered compatible if for all x ∈ dom(θ1)∩
dom(θ2), θ1(x) = θ2(x). We call the evaluation of a BGP P over a graph G,
denoted [[P ]]G, the set of solutions.

Remark 12. Note that variables in the domain of θ play the role of distin-
guished variables in conjunctive queries and there are no non-distinguished
variables.

The notion of solution for BGPs is the same as the notion of answers for
conjunctive queries:

Proposition 20. Given a graph G and a BGP P , then the solutions of P are
the same as the answers of the query q(var(P )) ← P (where var(P ) is the
vector of variables in P ), i.e., ans(G, q) = [[P ]]G.

We present the syntax of SPARQL based on [348] and present graph patterns
similarly. A triple pattern (s, p, o) is a graph pattern where s, o ∈ ULV and
p ∈ UV.2 Sets of triple patterns are called Basic Graph Patterns (BGPs). A
generic graph pattern is defined in a recursive manner: any BGP is a graph
pattern; if P and P ′ are graph patterns, R is a filter expression (see [381]),
then (P AND P ′), (P OPTIONAL P ′), (P UNION P ′), (P FILTER R) are
graph patterns. As noted in Remark 11 we do not consider GRAPH patterns.

Evaluations of more complex patterns including FILTERs, OPTIONAL
patterns, AND patterns, UNION patterns, etc., are defined by an algebra
that is built on top of this basic graph pattern matching (see [348, 381]).

The SPARQL relational algebra is defined as follows: Let Ω1 and Ω2 be
sets of mappings: then

2We do not consider blank nodes in triple patterns since they can be considered as
variables.
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Ω1 ./ Ω2 = {θ1 ∪ θ2 | θ1 ∈ Ω1, θ2 ∈ Ω2, θ1 and θ2 compatible}
Ω1 d Ω2 = {θ | θ ∈ Ω1 or θ ∈ Ω2}
Ω1 − Ω2 = {θ1 ∈ Ω1 | for all θ2 ∈ Ω2, θ1 and θ2 not compatible}
Ω1A./ Ω2 = (Ω1 ./ Ω2) d (Ω1 − Ω2) .

Now, let τ = (s, p, o) be a triple pattern, P, P1, P2 graph patterns and G an
RDF graph, then the evaluation [348, Definition 2.2] [[·]]G is recursively defined
as follows:

[[t]]G = {θ | dom(θ) = var(P ) and G |= τθ}
[[P1 FILTER P2]]G = [[P1]]GA./ [[P2]]G
[[P1 AND P2]]G = [[P1]]G ./ [[P2]]G
[[P1 UNION P2]]G = [[P1]]G d [[P2]]G
[[P1 OPTIONAL P2]]G = [[P1]]GA./ [[P2]]G
[[P FILTER R]]G = {θ ∈ [[P ]]G | Rθ is true } .

Let R be a FILTER3 expression, u, v ∈ V ∪ UBL. The valuation of R on a
substitution θ, written Rθ, is true if:

1. R = BOUND(v) with v ∈ dom(θ);

2. R = isBLANK(v) with v ∈ dom(θ) and θ(v) ∈ B;

3. R = isIRI(v) with v ∈ dom(θ) and θ(v) ∈ U;

4. R = isLITERAL(v) with v ∈ dom(θ) and θ(v) ∈ L;

5. R = (u = v) with u, v ∈ dom(θ) ∪UBL ∧ θ(u) = θ(v);

6. R = (¬R1) with R1θ is false;

7. R = (R1 ∨R2) with R1θ is true or R2θ is true;

8. R = (R1 ∧R2) with R1θ is true and R2θ is true.

Rθ yields an error (denoted ε), if:

1. R = isBLANK(v), R = isIRI(v), or R = isLITERAL(v) and v 6∈ dom(θ) ∪
T ;

2. R = (u = v) with u 6∈ dom(θ) ∪ T or v 6∈ dom(θ) ∪ T ;

3. R = (¬R1) and R1θ = ε;

4. R = (R1 ∨R2) and (R1θ 6= > and R2θ 6= >) and (R1θ = ε or R2θ = ε);

5. R = (R1 ∧R2) and R1θ = ε or R2θ = ε.

3For simplicity, we will omit from the presentation FILTERs such as comparison operators
(‘<’, ‘>’,‘≤’,‘≥’), data type conversion and string functions and refer the reader to [381,
Section 11.3] for details.
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Otherwise Rθ is false.
In order to make the presented semantics compliant with the SPARQL

specification [381], we need to introduce an extension to consider unsafe
FILTERs (also presented in [10]).

So, let P1, P2 be graph patterns R a FILTER expression. A mapping θ is
in [[P1 OPTIONAL (P2 FILTER R)]]DS if and only if:

1. θ = θ1 ∪ θ2, s.t. θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G are compatible and Rθ is true,
or

2. θ ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G, θ and θ2 are not compatible, or

3. θ ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G s.t. θ and θ2 are compatible, and Rθ3 is false
for θ3 = θ ∪ θ2.

We next extend our definitions to include variable assignments, aggregates,
and solution modifiers. These are extensions similar to the ones presented re-
lated to assignments and aggregations for conjunctive queries (see Section 6.2).

So, let P be a graph pattern and G a graph, the evaluation of an ASSIGN
statement is defined as:

[[P ASSIGN f(z) AS z]]G = {θ | θ1 ∈ [[P ]]G, θ = θ1[z/f(θ1(z))]}

where

θ[z/t] =

{
θ ∪ {z/t} if z 6∈ dom(θ)
(θ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value f(θ1(z)), which is the evalu-
ation of the function f(z) with respect to a substitution θ1 ∈ [[P ]]G.

For instance, using a built-in function we can retrieve for each employee
the length of employment for any company:

SELECT ?x ?y ?z WHERE {

(?x worksFor ?y), (?x workingPeriod ?l)

ASSIGN length(?l) AS ?z

}

Here, the length built-in predicate returns, given a temporal expression,
e.g., encoded in some way, the overall total length of the intervals.

Remark 13. Note that this definition is more general than “SELECT expr AS

?var” project expressions in current SPARQL 1.1 [380] due to not requiring
that the assigned variable be unbound.

We introduce the ORDERBY clause where the evaluation of a [[P ORDERBY ?x]]G
statement is defined as

[[P ORDERBY ?x]]G = [[P ]]G↑?x
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where ↑?x means that the ordering of the solutions – for any θ ∈ [[P ]]G – ac-
cording to the values of θ(?x). The ordering follows the rules in [381, Section
9.1]. Likewise, the SQL-like statement LIMIT(k) can be added straightfor-
wardly. Of course, similarly to ordering in the conjunctive query answering
setting, we require that the set of values over which x ranges can be ordered
and some linearization method for possible posets may be applied if necessary,
such as [248].

We can further extend the evaluation of SPARQL queries with aggregate
functions

@ ∈ {SUM,AVG,MAX,MIN,COUNT}
as follows: the evaluation of a GROUPBY statement is defined as:4

[[P GROUPBY(w) @f(z) AS α]]G = {θ | θ1 in [[P ]]G,

θ = θ1|w[αi/@ifi(θi(zi))]}DISTINCT

where the variables αi 6∈ var(P ), zi ∈ var(P ) and none of the GROUPBY vari-
ables w are included in the aggregation function variables zi. Here, we denote
by θ|w the restriction of variables in θ to variables in w. Using this notation, we
can also straightforwardly introduce projection, i.e., sub-SELECTs as an alge-
braic operator in the language covering another new feature of SPARQL 1.1:
namely

[[SELECT V {P}]]G = {θ | θ1 in [[P ]]G, θ = θ1|v} .
Remark 14. Please note that the aggregator functions have a domain of
definition and thus can only be applied to values of their respective domain. For
example, SUM and AVG can only be used on numeric values, while MAX,MIN
are applicable to any total order. Resolution of type mismatches for aggregates
is being defined in SPARQL 1.1 [380]. The COUNT aggregator can be used for
any finite set of values.

Remark 15. Please note that, unlike the current SPARQL 1.1 syntax, assign-
ment, solution modifiers (ORDER BY, LIMIT), and aggregation are stand-
alone operators in our language and do not need to be tied to a sub-SELECT
but can occur nested within any pattern. This may be viewed as syntactic sugar
allowing for more concise writing than the current SPARQL 1.1 [380] draft.

Example 21. Suppose we want to know, for each employee, the average salary
of their employments with different employers. Then such a query will be ex-
pressed as:

SELECT ?x ?avgS WHERE {

(?x worksFor ?y) (?x hasSalary ?s)

GROUPBY(?x)

AVG(?s) AS ?avgS

}

4In the expression, @f(z) AS α is a concise representation of n aggregations of the form
@ifi(zi) AS αi.
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Essentially, we group by the employee, consider for each employee its
salaries and compute the average value for each group. That is, if g =
{〈t, t1〉, . . . , 〈t, tn〉} is a group of tuples with the same value t for employee
x, and value ti for s, then the value of avgS for the group g is (

∑
i ti)/n.

Proposition 21. Assuming the built-in predicates are computable in finite
time, the answer set of any SPARQL is finite and can also be computed in
finite time.

This proposition can be demonstrated by induction over all the constructs we
allow in SPARQL.
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Part II

Fuzzy Logics and Semantic
Web Languages
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Chapter 7

Introduction

There has been a long-lasting misunderstanding in the literature of artifi-
cial intelligence and uncertainty modelling, regarding the role of probabil-
ity/possibility theory and vague/fuzzy theory. A clarifying paper is [143]. We
will recall here salient notes, which may clarify the role of these theories for
the inexpert reader and will move on to incorporate fuzziness within SWLs in
the following chapters.

A standard example that points out the difference between degrees of
uncertainty and degrees of truth is that of a bottle [143]. In terms of bi-
nary truth values, a bottle is viewed as full or empty. But if one accounts
for the quantity of liquid in the bottle, one may, e.g., say that the bottle is
“almost-full.” Under this way of speaking, “almost full” becomes a fuzzy pred-
icate [472] and the degree of truth of “the bottle is almost full” reflects the
amount of liquid in the bottle. The situation is quite different when express-
ing our ignorance about whether the bottle is either full or not full (we know
that only one of the two situations is the true one). Saying that the proba-
bility that the bottle is full is 0.8 does not mean that the bottle is almost
full.

We recall that under uncertainty theory fall all those approaches in which
statements rather than being either true or false, are true or false to some
probability or possibility (for example, “it will rain tomorrow”). That is, a
statement is true or false in any world, but we are “uncertain” about which
world to consider as the right one, and thus we speak about, e.g., a probability
distribution or a possibility distribution over the worlds. For example, we
cannot exactly establish whether it will rain tomorrow or not, due to our
incomplete knowledge about our world, but we can estimate to which degree
this is probable, possible, or necessary.

As for the main differences between probability and possibility theory, the
probability of an event is the sum of the probabilities of all worlds that satisfy
this event, whereas the possibility of an event is the maximum of the possibili-
ties of all worlds that satisfy the event. Intuitively, the probability of an event
aggregates the probabilities of all worlds that satisfy this event, whereas the
possibility of an event is simply the possibility of the “most optimistic” world
that satisfies the event. Hence, although both probability and possibility the-
ory allow for quantifying degrees of uncertainty, they are conceptually quite
different from each other. That is, probability and possibility theory represent
different facets of uncertainty.
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On the other hand, under vagueness/fuzziness theory fall all those ap-
proaches in which statements (for example, “the tomato is ripe”) are true to
some degree, which is taken from a truth space. That is, an interpretation
maps a statement to a truth degree, since we are unable to establish whether
a statement is completely true or false due to the involvement of vague con-
cepts, such as “ripe,” which only have an imprecise definition. For example,
we cannot exactly say whether a tomato is ripe or not, but rather can only
say that the tomato is ripe to some degree. Usually, such statements involve
so-called vague/fuzzy predicates [472].

Note that all vague/fuzzy statements are truth-functional, that is, the de-
gree of truth of every statement can be calculated from the degrees of truth of
its constituents, while uncertain statements cannot be a function of the uncer-
tainties of their constituents [142]. More concretely, in probability theory, only
the negation is truth-functional (see Equation. (E.1)), while in possibility the-
ory, only the disjunction resp. conjunction is truth-functional in possibilities
resp. necessities of events (see Equation (E.6)).

Furthermore, fuzzy logics are based on truly many-valued logical operators,
while uncertainty logics are defined on top of standard binary logical operators.

We refer the interested reader to Appendix E for a formalization of a simple
propositional probabilistic or possibilistic logic, which may help the reader to
verify the differences to fuzziness.



Chapter 8

Fuzzy Sets and Mathematical Fuzzy
Logic Basics

8.1 Fuzzy Sets Basics

The aim of this section is to introduce the basic concepts of fuzzy set
theory. To distinguish between fuzzy sets and classical (nonfuzzy) sets, we
refer to the latter as crisp sets. For an in-depth treatment we refer the reader
to, e.g., [139, 242].

8.1.1 From Crisp Sets to Fuzzy Sets

To better highlight the conceptual shift from classical sets to fuzzy sets, we
start with some basic definitions and well-known properties of classical sets.
In the following, let us denote with X the universal set containing all possible
elements of concern in each particular context. The power set, denoted 2A, of
a set A ⊂ X, is the set of subsets of A, i.e.,

2A = {B | B ⊆ A}.
Often sets are defined by specifying a property satisfied by its members, in
the form

A = {x | P (x)} ,
where P (x) is a statement of the form “x has property P” that is either true
or false for any x ∈ X.

Example 22. Examples of universe X and subsets A,B ∈ 2X may be

X = {x | x is a person}
A = {x | x is an employee}
B = {x | x is an employee and has salary equal or less than 23000} .

In the above case we have B ⊆ A ⊆ X.

The characteristic function, denoted χA, of a set A ⊆ X is a function mapping
elements of X into {0, 1}, i.e.,

χA : X → {0, 1}
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and is defined as

χA(x) =

{
1 for x ∈ A
0 for x 6∈ A .

Note that it is easily verified that for any sets A,B ∈ 2X , we have that (the
reader may verify it also in the case of Example 22)

A ⊆ B iff ∀x ∈ X. χA(x) ≤ χB(x) . (8.1)

Note that 〈⊆, 2X〉 is a Boolean algebra, or Boolean lattice, i.e., a complemented
distributive lattice.

When clear from context, we denoted with |A| the cardinality of a denu-
merable set A ⊆ X. The complement of a set A is denoted Ā, i.e.,

Ā = X \A .

Of course, ∅̄ = X and X̄ = ∅ and observe that

∀x ∈ X. χĀ(x) = 1− χA(x) . (8.2)

In a similar way, we may express set operations of intersection and union via
the characteristic function as follows:

∀x ∈ X. χA∩B(x) = min(χA(x), χB(x)) (8.3)

∀x ∈ X. χA∪B(x) = max(χA(x), χB(x)) . (8.4)

The Cartesian product, A×B, of two sets A,B ∈ 2X is defined as

A×B = {〈a, b〉 | a ∈ A, b ∈ B} .

The most fundamental properties of set operations are illustrated in Table 8.1
(where A,B,C ⊆ X).

As defined so far, the characteristic function of a crisp set A assigns a value
of either 1 or 0 to each individual of the universe set and, thus, discriminating
between being a member or not being a member of A.

However, in many cases this way to define sets is unsatisfactory, as illus-
trated below.

Example 23. For instance, by referring to Example 22, let us try to define
the set C of employees with a low salary, i.e.,

C = {x ∈ A | x has low salary} .

The problem relies on the fact that, in order to define such a set precisely,
we need to define when a salary is low and when it is not, i.e., we need a
definition making the statement P (x) “x has low salary” either true or false
for any x. For instance, we may decide that P (x) is true iff the salary is equal
or less than e 2000, or equivalently, using the characteristic function, define

χC(x) =

{
1 if salary of x is equal or less than e 2000
0 otherwise .
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TABLE 8.1: Fundamental properties of crisp set operations.

Involution ¯̄A = A
Idempotence A ∪A = A

A ∩A = A
Commutativity A ∪B = B ∪A

A ∩B = B ∩A
Associativity (A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)
Distributivity A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
Absorption A ∪ (A ∩B) = A

A ∩ (A ∪B) = A
Identity A ∪X = X

A ∩ ∅ = ∅
A ∪ ∅ = A
A ∩X = A

Law of contradiction A ∩ Ā = ∅
Law of excluded middle A ∪ Ā = X
De Morgan’s rule ¯A ∪B = Ā ∩ B̄

¯A ∩B = Ā ∪ B̄

It becomes evident then that the selection of such a threshold may be rather
subjective and context dependent. It also becomes difficult to conceive that
an employee having a salary of e 2001 does not have a low salary.

The main point is that statements involving concepts, such as

low, medium, high (8.5)

may not be a matter of true or false, but rather are graded, where the grade
may be taken from a specified range and indicates the membership degree to
which elements of the universe belong to the set in question. Larger values
denote higher degrees of set membership.

This idea can be formalized [472] by generalizing characteristic functions in
such a way that the values assigned to the elements of the universe fall within
a specified range, which is not necessarily {0, 1}. Such a function is called
membership function, the set so defined is called fuzzy set, concepts such as
those in Equation (8.5) are called fuzzy concepts, and statements involving
fuzzy concepts are called fuzzy statements.

The most commonly used range of membership function is [0, 1], though
other mathematical structures are used as well (see e.g., [186, 241, 242]).
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To what concerns us here, we will either use [0, 1] or, another typical setting
based on the finite-valued set (n ≥ 3).

Ln = {0, 1

n− 1
, . . . ,

n− 2

n− 1
, 1} . (8.6)

For instance, for n = 5,

L5 = {0, 0.25, 0.5, 0.75, 1} .

There are typically two distinct notations employed in the literature to denote
the membership function: in one of them the membership function of A is
denoted µA and is a function

µA : X → [0, 1] ,

while in the other one this function is denoted A and, thus, is a function

A : X → [0, 1] .

Note that in the second case, the symbol A may have two roles, one to indicate
the fuzzy set and another one to indicate the fuzzy membership function. We
will use both notations and the second one only if no ambiguity about the
role of the symbol A arises.

With 2̃X we denote the fuzzy power set over X, i.e., the set of all fuzzy
sets over X.

Example 24. By referring to Example 23, we may define the membership
function µC as, e.g.,

µC(x) =

 1 if salary of x is equal or less than e 2000
(2500− x)/500 if salary of x is in between e 2000 and e 2500
0 otherwise ,

which is illustrated below.

So, for instance, an employee having a salary of e 1500 definitely belongs to
C (the degree is 1), one having a salary of e 2100 belongs to C to degree 0.8,
while another one having a salary of e 2700 does not belong to C (the degree
is 0).
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As pointed out previously, the definition of the membership function depends
on the context, e.g., the definition of low salary may vary from country to
country. Moreover, also the shape of such functions may quite be different.
However, the trapezoidal (Fig. 8.1 (a)), the triangular (Figure 8.1 (b)), the
L-function (left-shoulder function, Figure 8.1 (c)), and the R-function (right-
shoulder function, Figure 8.1 (d)) are simple, but most frequently used to
specify membership degrees.

The trapezoidal function, trz(a, b, c, d), is defined as follows: let a < b ≤
c < d be rational numbers then

trz(a, b, c, d)(x) =


0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
1 if x ∈ (b, c]
(d− x)/(d− c) if x ∈ (c, d]
0 if x > d .

A triangular function, tri(a, b, c), is such that

tri(a, b, c)(x) =


0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
(c− x)/(c− b) if x ∈ (b, c]
0 if x > c .

Note that tri(a, b, c) = trz(a, b, b, c). The L-function is defined as

ls(a, b)(x) =

 1 if x ≤ a
(b− x)/(b− a) if x ∈ (a, b]
0 if x > b .

Finally, the R-function is defined as

rs(a, b)(x) =

 0 if x ≤ a
(x− a)/(b− a) if x ∈ (a, b]
1 if x > b .

So, for instance, in Example 24, we defined the membership function of the
employees with low salary as

µC = ls(2000, 2500) .

Although fuzzy sets have a far greater expressive power than classical crisp
sets, its usefulness depends critically on our capability to construct appropriate
membership functions for various given concepts in different contexts. The
problem of constructing meaningful membership functions is a difficult one
and we refer the interested reader to, e.g., [242, Chapter 10]. However, one
easy and typically satisfactory method to define the membership functions is
to uniformly partition the range of, e.g., salary values (bounded by a minimum
and maximum value), into 5 or 7 fuzzy sets using either trapezoidal functions
(e.g., as illustrated in Figure 8.2), or using triangular functions (as illustrated
in Figure 8.3). The latter one is the more used one, as it has less parameters.
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(a) (b)

(c) (d)

FIGURE 8.1: (a) Trapezoidal function trz (a, b, c, d); (b) Triangular function
tri(a, b, c); (c) L-function ls(a, b); and (d) R-function rs(a, b).

FIGURE 8.2: Fuzzy sets over salaries using trapezoidal functions.
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FIGURE 8.3: Fuzzy sets over salaries using triangular functions.

8.1.2 Standard Fuzzy Set Operations

We have seen that there are three basic operations on crisp sets, namely the
complement, the intersection, and the union. There are many ways to general-
ize these operations to fuzzy sets, though, one particular generalization, called
a standard fuzzy set operation, has been introduced originally in [472] and fol-
low immediately as a generalization of the characteristic functions of crisp sets
defined in the previous Section 8.1. In fact, inspired by Equations (8.2)–(8.4),
for fuzzy sets A,B ∈ 2̃X , the standard fuzzy set operations are defined for any
x ∈ X as

Ā(x) = 1−A(x) (8.7)

(A ∩B)(x) = min(A(x), B(x)) (8.8)

(A ∪B)(x) = max(A(x), B(x)) . (8.9)

In Figures 8.4 – 8.6 we show the graphical interpretation of standard fuzzy
set operations for fuzzy sets with triangular membership function, where the
grey part is the result of the operation.

The standard inclusion among fuzzy sets A,B ∈ 2̃X is defined directly from
Equation (8.1) as

A ⊆ B iff ∀x ∈ X. A(x) ≤ B(x) . (8.10)

It is interesting to observe that under definition (8.10) of inclusion, in fact the
inclusion relation is crisp and not fuzzy. We will see later on how one may
generalise this. Furthermore, note that under standard fuzzy set operations,
〈⊆, 2̃X〉 is a complemented distributive lattice (a Boolean algebra/lattice). It
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FIGURE 8.4: Graphical view of fuzzy set complement operation.

FIGURE 8.5: Graphical view of fuzzy set intersection operation.

FIGURE 8.6: Graphical view of fuzzy set union operation.
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satisfies all the properties listed in Table 8.1, except the law of contradiction
and the law of excluded middle. In fact it is easily verified that, e.g.,

min(A(x), 1−A(x)) = 0

is violated for at least one x ∈ X. This is easy as it is violated for any
A(x) ∈ (0, 1), while it holds for A(x) ∈ {0, 1}. The argument showing that

max(A(x), 1−A(x)) = 1

is violated is the same.

8.1.3 Norm-Based Fuzzy Set Operations

In the previous section we introduced the standard fuzzy set operations,
derived from their crisp analogue, and have seen that they behave exactly as
the corresponding crisp operations if the range in {0, 1} in place of [0, 1].

8.1.3.1 T-Norms

Of course, standard fuzzy set operations are not the only ones that can
be conceived to be suitable to generalize the classical Boolean operations.
For each of the three types of operations there is a wide class of plausible
fuzzy version. The most notable ones are characterized by the so-called class
of t-norms (called triangular norms), t-conorms (also called s-norm), and
negation (see, e.g., [241]).

T-norms are used to define fuzzy set conjunction, t-conorms are used to
define fuzzy set disjunction, while the negation operator is used to define
the fuzzy set complement operation. Several t-norms, s-norms, and negation
functions have been given in the literature. We will denote a t-norm with ⊗,
an s-norm with ⊕, while will denote a negation with 	.

An important aspect of such functions is that they satisfy some properties
that one expects to hold for the connectives as illustrated in Tables 8.2 and 8.3
(a, b ∈ [0, 1]).

TABLE 8.2: Axioms for t-norms and s-norms.

Axiom Name T-norm S-norm
Boundary condition a⊗ 1 = a a⊕ 0 = a

Commutativity a⊗ b = b⊗ a a⊕ b = b⊕ a

Associativity (a⊗ b)⊗ c = a⊗ (b⊗ c) (a⊕ b)⊕ c = a⊕ (b⊕ c)

Monotonicity if b ≤ c then a⊗ b ≤ a⊗ c if b ≤ c then a⊕ b ≤ a⊕ c
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TABLE 8.3: Axioms for negation functions.

Axiom Name Negation Function
Boundary condition 	 0 = 1

	 1 = 0

Antitonicity if a ≤ b then 	 a ≥ 	 b

Note that from the axioms we get also that

a⊗ 0 = 0

a⊕ 1 = 1

a⊗ b ≤ a

a⊕ b ≥ a .

Of course, due to commutativity, ⊗ and ⊕ are monotone also in the first
argument.

For any a ∈ [0, 1], we say that a negation function 	 is involutive iff
		 a = a for any a ∈ [0, 1]. Salient negation functions are:

Standard or  Lukasiewicz negation: 	la = 1− a;

Gödel negation: 	ga is 1 if a = 0, else is 0.

Of course,  Lukasiewicz negation is involutive, while Gödel negation is not.
Salient t-norm functions are:

Gödel t-norm: a⊗g b = min(a, b);

Bounded difference or  Lukasiewicz t-norm: a⊗l b = max(0, a+ b− 1);

Algebraic product or product t-norm: a⊗p b = a · b;

Drastic product: a⊗d b =

{
0 when (a, b) ∈ [0, 1[×[0, 1[
min(a, b) otherwise

Salient s-norm functions are:

Gödel s-norm: a⊕g b = max(a, b);

Bounded sum or  Lukasiewicz s-norm: a⊕l b = min(1, a+ b);

Algebraic sum or product s-norm: a⊕p b = a+ b− ab;

Drastic sum: a⊕d b =

{
1 when (a, b) ∈]0, 1]×]0, 1]
max(a, b) otherwise
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We say that a t-norm ⊗1 is weaker than a t-norm ⊗2 (denoted ⊗1 ≤ ⊗2) iff
for all (a, b) ∈ [0, 1]2 we have that a ⊗1 b ≤ a ⊗2 b. Similarly, an s-norm ⊕1

is weaker than an s-norm ⊕2 (denoted ⊕1 ≤ ⊕2) iff for all (a, b) ∈ [0, 1]2 we
have that a⊕1 b ≤ a⊕2 b.

We say that ⊗ is idempotent iff a ⊗ a = a for all a ∈ [0, 1], and sub-
idempotent iff a⊗a < a for all a ∈ [0, 1]. Similarly, we say that ⊕ is idempotent
iff a⊕a = a for all a ∈ [0, 1], and sup-idempotent iff a⊕a > a. An idempotent
element is a value a ∈ [0, 1] such that a⊗ a = a. So, 0 and 1 are idempotent
elements. The numbers 0 and 1, which are idempotent elements for any ⊗,
are called trivial.

The following important properties can be shown about t-norms.

Proposition 22 (See [241]).

1. There is the following ordering among t-norms (⊗ is any t-norm):

⊗d ≤ ⊗ ≤ ⊗g
⊗d ≤ ⊗l ≤ ⊗p ≤ ⊗g .

2. The only idempotent t-norm is ⊗g.

3. The only t-norm satisfying a⊗ a = 0 for all a ∈ [0, 1[ is ⊗d.

There is also an analogue of Proposition 22 for s-norms.

Proposition 23 (See [241]).

1. There is the following ordering among s-norms (⊕ is any s-norm):

⊕g ≤ ⊕ ≤ ⊕d
⊕g ≤ ⊕p ≤ ⊕l ≤ ⊕d .

2. The only idempotent s-norm is ⊕g.

3. The only s-norm satisfying a⊕ a = 1 for all a ∈]0, 1] is ⊕d.

Idempotent elements can be characterized as follows:

Proposition 24 ([241]). a ∈ [0, 1] is idempotent for ⊗ iff for all b ∈ [a, 1],
a⊗ b = min(a, b). If ⊗ is continuous then a ∈ [0, 1] is idempotent for ⊗ iff for
all x ∈ [0, 1] we have that a⊗ b = min(a, b).

A t-norm ⊗ is called nilpotent if it is continuous and each a in the open
interval (0, 1) is a nilpotent element, i.e., there is a natural number n such
that a ⊗ . . . ⊗ a (n times) equals 0. a ∈ (0, 1) is called a zero divisor of ⊗ if
there exists b ∈ (0, 1) such that a⊗ b = 0.

Remark 16.
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1. Each a ∈ (0, 1) is both a nilpotent element and a zero divisor of ⊗l and
⊗d.

2. ⊗g has neither nilpotent nor zero divisors and ⊗l and ⊗d have only
trivial idempotent elements.

3. The product ⊗p has neither non-trivial idempotent nor nilpotent ele-
ments nor zero divisors.

4. If a is an idempotent element, so is an, i.e., a⊗ . . .⊗ a (n times) and,
thus, no element in (0, 1) can be both idempotent and nilpotent.

5. If a is nilpotent for ⊗ then it is also a zero divisor for ⊗ and there is
always b ∈ (0, 1) such that b⊗ b = 0.

6. If a ∈ (0, 1) is nilpotent (a zero divisor) for ⊗ then each (0, a) is also a
nilpotent (a zero divisor) for ⊗. Therefore, the set for nilpotent elements
and the set of zero divisors for ⊗ is either the empty set, as for ⊗g and
⊗p, or an interval of the form (0, c) or (0, c].

7. ⊗l is nilpotent.

Proposition 25 ([241]). The following are equivalent:

1. ⊗ has zero divisors

2. ⊗ has idempotent elements

A t-norm ⊗ is called strict if it is continuous and strictly monotone, i.e., when-
ever a > 0 and b < c then

a⊗ b < a⊗ c .
For instance, ⊗p is strict. It is known that:

Proposition 26 ([241]).

1. If ⊗ is strictly monotone then it has only trivial idempotent elements.

2. If ⊗ is strictly monotone then it has no divisors (i.e., x⊗y = 0 if either
x = 0 or y = 0).

8.1.3.2 Dual Norms

There is a well-known property that allows us to derive a related s-norm from
any t-norm.

Proposition 27 (See [241]). A function ⊕ is an s-norm iff there is a t-norm
⊗ such that for all (a, b) ∈ [0, 1]2 we have that

a⊕ b = 1− (1− a)⊗ (1− b) . (8.11)
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An s-norm as defined by Equation (8.11) is called the dual s-norm of ⊗. Vice
versa, from any s-norm ⊕ we may define a t-norm ⊗ via

a⊗ b = 1− (1− a)⊕ (1− b) . (8.12)

A t-norm as defined by Equation (8.12) is called the dual t-norm of ⊕.
It is easily verified that for any of the t-norms ⊗i and s-norms ⊕i defined

above (i ∈ {g, l, p, d}) we have that for all (a, b) ∈ [0, 1]2

a⊕i b = 1− (1− a)⊗i (1− b) (8.13)

a⊗i b = 1− (1− a)⊕i (1− b) . (8.14)

Given ⊗,⊕, and 	, we call a tuple 〈⊗,⊕,	〉 a dual triple iff for all a, b ∈ [0, 1]

	(a⊗ b) = 	a⊕	b (8.15)

	(a⊕ b) = 	a⊗	b . (8.16)

These equations describe the de Morgan’s laws for fuzzy sets.
It is easily verified that

〈⊗g,⊕g,	l〉
〈⊗l,⊕l,	l〉
〈⊗p,⊕p,	l〉
〈⊗d,⊕d,	l〉

are dual triples. The following can be shown (see, e.g., [242])
The following can be shown (see, e.g., [242])

Proposition 28.

1. 〈⊗g,⊕g,	〉 and 〈⊗d,⊕d,	l〉 are dual triples for any 	;

2. 〈⊗,⊕,	l〉 is a dual triple for any dual s-norm ⊕ of ⊗;

3. 〈⊗,⊕,	l〉 is a dual triple for any dual t-norm ⊗ of ⊕;

4. If 〈⊗,⊕,	〉 is a dual triple satisfying the law of excluded middle and
the law of contradiction, then 〈⊗,⊕,	〉 does not satisfy the distributive
laws.

8.1.3.3 Distributive Norms

Given ⊗,⊕, we say that ⊗ is distributive over ⊕ iff for all a, b, c ∈ [0, 1]

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) (8.17)

and that ⊕ is distributive over ⊗ iff for all a, b, c ∈ [0, 1]

a⊕ (b⊗ c) = (a⊕ b)⊗ (a⊕ c) . (8.18)

If both ⊗ is distributive over ⊕ and ⊕ is distributive over ⊗ then the tuple
〈⊗,⊕〉 is called a distributive pair.

The following can be shown (see, e.g., [242])
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Proposition 29.

1. ⊕ is distributive over ⊗ iff ⊗ = ⊗g.

2. ⊗ is distributive over ⊕ iff ⊕ = ⊕g.

3. 〈⊗g,⊕g〉 is the only distributive pair.

8.1.3.4 T-Norm Representation Theorem

A major achievement about t-norms is the fact that any continuous t-
norm is piece-vice isomorphic to either Gödel,  Lukasiewicz, or product t-norm,
making these three t-norms among the most important of the t-norm family.
We address this property within this section.

A t-norm ⊗ is called Archimedean if it has the Archimedean property,
i.e., if for each a, b in the open interval (0, 1) there is a natural number n such
that a ⊗ . . . ⊗ a is less than or equal to b. Note that ⊗g is not Archimedian,
while ⊗l and ⊗p are.

Proposition 30 ([241]).

1. If ⊗ is right continuous and has only trivial idempotent elements then
it is Archimedian.

2. If ⊗ is strict then it is Archimedian.

3. If each a ∈ (0, 1) is nilpotent for ⊗ then ⊗ is Archimedian.

4. If ⊗ is Archimedian then ⊗ is left-continuous iff ⊗ is continuous.

5. ⊗ is Archimedian iff the only idempotent elements are 0 and 1.

6. A continuous Archimedean t-norm is strict if 0 is its only nilpotent ele-
ment; otherwise it is nilpotent.

The following proposition characterizes Archimedian t-norms:

Proposition 31 ([241]).
Let ⊗ be an Archimedian t-norm. The following are equivalent:

1. ⊗ is nilpotent.

2. There exists some nilpotent element for ⊗.

3. There exists some zero divisor for ⊗.

4. ⊗ is not strict.
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Now, note that for each continuous t-norm ⊗, the set E of its idempotents
is a closed subset of [0, 1]. Its complement, the set of all elements which are
not idempotent, is therefore a union of a set Iopen(E) of countably many
non-overlapping open intervals I ∈ I(E). Let us define I(E) as the set:

[a, b] ∈ I(E) iff (a, b) ∈ Iopen(E) .

For I ∈ I(E), let us denote with ⊗|I the restriction of ⊗ to I. The follow-
ing proposition characterizes fully continuous t-norms and is also called the
Mostert–Shields theorem [321].1

Proposition 32 ([186, 241]). Let ⊗ be continuous. Then

1. for each I ∈ I(E), ⊗|I is isomorphic to an Archimedian t-norm;

2. if a, b ∈ [0, 1] are such that there is no I ∈ I(E) such that a, b ∈ I, then
a⊗ b = min(a, b).

The above proposition tells us that any continuous t-norm ⊗ behaves as an
Archimedian t-norm within an interval I ∈ I(E), while for two points not
included within any interval I ∈ I(E), ⊗ is ⊗g.

Now, it is well-known that

Proposition 33. For any continuous Archimedian t-norm ⊗ we have that:

1. if ⊗ is strict then ⊗ is isomorphic to ⊗p;

2. if ⊗ is not strict, i.e., by Proposition 31, ⊗ is nilpotent, then ⊗ is iso-
morphic to ⊗l.

Hence, combining Propositions 32 and 33 we get

Proposition 34 ([186, 241]). Let ⊗ be continuous. Then

1. for each I ∈ I(E), ⊗|I is isomorphic to either product or  Lukasiewicz t-
norm;

2. if a, b ∈ [0, 1] are such that there is no I ∈ I(E) such that a, b ∈ I, then
a⊗ b = min(a, b).

Eventually, we conclude with the representation theorem of Mostert–Shields.
So, let us introduce the notion of ordinal sum. Let (⊗α)α∈A be a family of
t-norms and ((aα, bα))

α∈A be a family for non-empty, pairwise disjoint open
sub-intervals of [0, 1]. Then the following function

a⊗b =

{
aα + (bα − aα) · ( a−aα

(bα−aα) ⊗α ( b−aα
(bα−aα) ) if (a, b) ∈ (aα, bα)× (aα, bα);

min(a, b) otherwise .

is a t-norm and is called the ordinal sum of summands 〈aα, bα,⊗α〉, α ∈ A.
Putting Propositions 32 - 34 we get the Mostert–Shields characterization

of continuous t-norms:

1We say that a t-norm ⊗1 is isomorphic to a t-norm ⊗2 iff there is a strictly increasing
function f such that a⊗1 b = f−1(f(a)⊗2 f(b)).
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Proposition 35 (Mostert–Shields t-norm characterization [241]). The fol-
lowing are equivalent:

1. ⊗ is a continuous t-norm;

2. ⊗ is uniquely representable as an ordinal sum of continuous Archimedean
t-norms;

3. there is a uniquely determined countable family ((aα, bα))
α∈A of non-

empty, pairwise disjoint open sub-intervals of [0, 1] such that

(a) if ⊗ is strict on I = (aα, bα) then ⊗|I is isomorphic to product
t-norm ⊗p;

(b) if ⊗ is not strict, i.e., nilpotent, on I = (aα, bα) then ⊗|I is iso-
morphic to  Lukasiewicz t-norm ⊗l;

(c) if a, b ∈ [0, 1] are such that there is no I = (aα, bα) such that
a, b ∈ I, then a⊗ b = a⊗g b.

We may quote the above proposition as:

“A t-norm is continuous iff it is isomorphic to an ordinal sum of
Gödel,  Lukasiewicz, and product t-norm”,

which explains why Gödel,  Lukasiewicz, and product t-norm are considered
the most important ones with fuzzy logic. A similar characterization is not
known for non-continuous t-norms.

We summarize:

• ⊗g is the only idempotent t-norm, and is neither Archimedian, nor strict
nor nilpotent;

• ⊗l is Archimedian and nilpotent, and is neither idempotent, nor strict;

• ⊗p is Archimedian and strict, and is neither idempotent, nor nilpotent.

The above properties are summarized in the following Table 8.4:

TABLE 8.4: Some properties of t-norms.

t-norm Archimedian idempotent nilpotent strict

⊗g •
⊗l • •
⊗p • •
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TABLE 8.5: Properties for implication and negation functions.

Axiom Name Implication Function
Boundary condition 0⇒ b = 1

a⇒ 1 = 1
1⇒ 0 = 0

Antitonicity if a ≤ b, then a⇒ c ≥ b⇒ c

Monotonicity if b ≤ c, then a⇒ b ≤ a⇒ c

8.1.4 Fuzzy Implication

In fuzzy set theory and practice, an important notion is the concept of
fuzzy implication. A fuzzy implication, denoted ⇒, is a function

⇒ : [0, 1]× [0, 1]→ [0, 1]

and corresponds to a generalization of the notion of logical implication over
{0, 1} defined as a⇒ b is 1 (true) iff a ≤ b.

As for t-norms, also for implication functions some axioms have to be sat-
isfied and are illustrated in Table 8.5. Essentially, ⇒ should be not increasing
in its first argument, while not decreasing in its second argument.

In the literature, many implication functions have proposed (see, e.g., [242,
Section 11.2]), among which the salient ones are:

Gödel implication: a⇒g b =

{
1 if a ≤ b
b otherwise .

 Lukasiewicz implication: a⇒l b = min(1, 1− a+ b).

Gougen or product implication: a⇒p b =

{
1 if a ≤ b
b
a otherwise .

Kleene Dienes implication: a⇒kd b = max(1− a, b).

Reichebach implication: a⇒r b = 1− a+ ab.

Drastic s-implication: a⇒ds b =

 b if a = 1
1− a if b = 0
1 otherwise .

Drastic r-implication: a⇒dr b =

{
b if a = 1
1 otherwise .
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Besides the possibility to define an implication function directly, there are
methods to define them indirectly. One such method consists of departing
from a s-norm and a negation function and defines

a⇒ b = 	a⊕ b , (8.19)

which generalizes the classical implication ¬a∨b. These implications are called
usually s-implications in the literature.

Remark 17. It is easily verified that ⇒kd,⇒r,⇒l and ⇒ds are all s-
implications, all based on standard fuzzy negation 	l and s-norms ⊕g,⊕p,⊕l
and ⊕d, respectively.

Similarly as for t-norms, we say that an implication⇒1 is weaker than⇒2 iff
a⇒1 b ≤ a⇒2 b for all (a, b) ∈ [0, 1]2. It can be shown that

Proposition 36 ([242]).

1. Given a negation 	, then for s-norms ⊕1 and ⊕2 such that ⊕1 ≤ ⊕2.
Let ⇒1 and ⇒2 their corresponding s-implications. Then ⇒1 ≤ ⇒2

holds.

2. The following relation between S-implication holds:

⇒kd ≤ ⇒r ≤ ⇒a ≤ ⇒ds .

Another method, based on a t-norm only, gives rise to so-called r-implications
and is defined as follows. Let ⊗ be a continuous t-norm. Then the r-implication
w.r.t. ⊗, is defined as

a⇒ b = sup{c | a⊗ c ≤ b} . (8.20)

Remark 18. It is easily verified that ⇒g,⇒l,⇒p and ⇒dr are all r-
implications, based on t-norms ⊕g,⊕l,⊕p and ⊕d, respectively. ⇒l is the only
implication that is both an s-implication and an r-implication. Note also that
a⇒ b = 1 iff a ≤ b and that 1⇒ b = b.

It can be shown that

Proposition 37 ([242]).

1. Given t-norms ⊗1 and ⊗2 such that ⊗1 ≤ ⊗2. Let ⇒1 and ⇒2 their
corresponding r-implications. Then ⇒1 ≥ ⇒2 holds.

2. The following relation among r-implications holds:

⇒g ≤ ⇒p ≤ ⇒l ≤ ⇒dr .

An important property of r-implication is the following [186].



Fuzzy Sets and Mathematical Fuzzy Logic Basics 119

Proposition 38. For a given continuous t-norm ⊗ there is an unique impli-
cation a⇒ b satisfying, for all a, b, c ∈ [0, 1], the condition

a⊗ c ≤ b iff a⇒ b ≥ c (8.21)

namely, the r-implication a⇒ b = sup{c | a⊗ c ≤ c}.

We point out that in fact, given a continuous t-norm ⊗ and its r-implication
⇒, then we have that

a⊗g b = a⊗ (a⇒ b) (8.22)

a⊕g b = ((a⇒ b)⇒ b)⊗g ((b⇒ a)⇒ a) , (8.23)

which essentially allows us to define Gödel t-norm and s-norm, in terms of
any continuous t-norm ⊗.

We also can define a negation function from an r-implication as

	a = a⇒ 0 . (8.24)

It easily verified that

•  Lukasiewicz negation is obtained from  Lukasiewicz r-implication;

• Gödel negation is obtained from Gödel, or product r-implication.

Additionally, we have the following inferences we will use extensively in this
book: let a ≥ n and a⇒ b ≥ m. Then,

With Kleene-Dienes implication, we have that “if n > 1−m then
b ≥ m”.

More importantly, to what concerns our work, is that under an r-implication
relative to a t-norm ⊗, we have that

from a ≥ n and a⇒ b ≥ m, we infer b ≥ n⊗m . (8.25)

To see this, as a ≥ n and a ⇒ b = sup {c | a ⊗ c ≤ b} = c̄ ≥ m it follows
that b ≥ a⊗ c̄ ≥ n⊗m. In a similar way, under an r-implication relative to a
t-norm ⊗, we have that

from a⇒ b ≥ n and b⇒ c ≥ m, we infer that a⇒ c ≥ n⊗m . (8.26)

A final concept related to implications is related to the definition of inclusion
degree among a fuzzy sets. We have seen that the standard inclusion among
a fuzzy sets A,B ∈ 2̃X is crisp (see Equation (8.10)): either A ⊆ B or A 6⊆ B.
We may fuzzify ⊆ in the following way. Let ⇒ be an implication functions.
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TABLE 8.6: Some additional properties of combination functions of various
t-norms.

Property  Lukasiewicz Gödel Product Zadeh [472]

x⊗	x = 0 • • •
x⊕	x = 1 •
x⊗ x = x • •
x⊕ x = x • •
		x = x • •

x⇒ y = 	x⊕ y • •
x⇒ y = 	y ⇒ 	x • •
	 (x⇒ y) = x⊗	 y • •
	 (x⊗ y) = 	x⊕	 y • • • •
	 (x⊕ y) = 	x⊗	 y • • • •

x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z) • •
x⊕ (y ⊗ z) = (x⊕ y)⊗ (x⊕ z) • •

Then the degree of inclusion between fuzzy sets A,B ∈ 2̃X , denoted A - B
is defined as

inf
x∈X

A(x)⇒ B(x) . (8.27)

We conclude this section with the following important remark. Table 8.6
recalls some salient properties of the various settings. In the table, the column
name identifies the t-norm ⊗, from which the dual s-norm ⊕ is considered,
according to Equation (8.11), and the negation function is determined via the
r-implication by Equation (8.24). The “Zadeh” column is an exception and
refers to the set of functions {⊗g,⊕g,⇒kd,	l}.

As we may see, none of them satisfy all the properties. More important
is the fact that a set 〈⊗,⊕,	〉 of functions satisfying all the listed properties
in the upper part has necessarily to collapse to the Boolean, two-valued, case
{0, 1} [143]. As a note, [146] claimed that fuzzy logic collapses to Boolean
logic, but didn’t recognize that to prove it, all the properties of Table 8.6 had
been used.

8.1.5 Fuzzy Relation

We say that a binary fuzzy relation is a fuzzy set R ∈ 2̃X×X . The inverse
of R has membership function R−1(y, x) = R(x, y), for every x, y ∈ X. The
composition of two fuzzy relations R1 and R2 is defined as (R1 ◦ R2)(x, z) =
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supy∈X R1(x, y) ⊗ R2(y, z). A fuzzy relation R is transitive iff R(x, z)≥ (R ◦
R)(x, z).

8.1.6 Aggregation Operators

Aggregation Operators (AOs) (see, e.g., [443] and [242, Section 3.6]) are
mathematical functions that are used to combine information. There exists
a large number of different AOs that differ on the assumptions on the data
(data types) and about the type of information that we can incorporate in the
model. To what concerns us, an AO of dimension n is a mapping @ : Rn → R
that satisfies:

1. @(a) = a (idempotent if unary);

2. @(0, . . . , 0) = 0 and @(1, . . . , 1) = 1 (boundary conditions);

3. @(a1, . . . , an) ≤ @(b1, . . . , bn) if ∀i, ai ≤ bi (monotone).

Note that we always have that

min(a1, . . . , an) ≤ @(a1, . . . , an) ≤ max(a1, . . . , an) .

Often, an AO @ is parameterized with a vector of n weights W = [w1, . . . , wn]
such that wi ∈ [0, 1] and

∑
i wi = 1. In that case we will denote the AO as

@W .
Examples of AOs are the arithmetic mean,

@avg(a1, . . . , an) =
1

n

∑
i

ai , (8.28)

the weighted sum

@ws
W (a1, . . . , an) =

∑
i

wiai , (8.29)

and the Ordered Weighted Averaging (OWA) operators and the quantifier-
guided OWAs that we shall present next.

The OWA operators [464, 466, 468] provide a parameterized class of
mean type AOs. Formally, an OWA operator of dimension n is an AO such
that

@owa
W (a1, . . . , an) =

∑
j

wjbj , (8.30)

where bj is the j-th largest of the ai.
A fundamental aspect of these operators is the reordering step. In par-

ticular, a weight wi is not associated with a specific argument but with an
ordered position of the aggregate. By choosing different W we can implement
different AOs. The OWA operator is a non-linear operator as a result of the
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process of determining the bj . An OWA operator @ is a mean operator and is
also symmetric and idempotent:

Symmetric : @(a1, . . . , an) = @(aπ(1), . . . , aπ(n))
Idempotent : @(a, . . . , a) = a

where π is a permutation. Notable OWA operators are:

f(a1, . . . , an) = max(a1, . . . , an) for W = [1, 0, . . . , 0]
f(a1, . . . , an) = min(a1, . . . , an) for W = [0. . . . , 0, 1]
f(a1, . . . , an) = avg(a1, . . . , an) for W = [1/n, 1/n, . . . , 1/n]
f(a1, . . . , an) = med(a1, . . . , an) for wi = 0,

n odd and w(n+1)/2 = 1, or
n even and wn/2 = 0.5 = wn/2+1

In the equations above, avg and med are the average and median value of the
ai, respectively.

Next we recap quantifier aggregations [242, 465, 466, 467]. Classical logic
has two quantifiers, the universal ∀ and the existential ∃ quantifier. These are
extremal ones between several other linguistic quantifiers such as most, few,
about half, some, many, etc. Quantifiers can be seen as absolute of propor-
tional (see, e.g., [242]). To what concerns us, we consider the proportional
ones. In this case, a proportional type quantifier, such as most, can be repre-
sented as a fuzzy subset Q : [0, 1] → [0, 1] such that for each r ∈ [0, 1], the
membership grade Q(r) indicates the degree to which the proportion r satis-
fies the linguistic quantifier that Q represents. See Figure 8.7 for examples of
fuzzy quantifiers.
An important class of quantifiers are the monotone quantifiers that satisfy
the following conditions:

1. Q(0) = 0,

2. Q(1) = 1,

3. Q(r1) ≤ Q(r2) if r1 ≤ r2.

Essentially, these quantifiers are characterized by the idea that as the propor-
tion increases, the degree of satisfaction does not decrease. For two quantifiers
Q1, Q2, we write Q1 ≤ Q2 if for all r, Q1(r) ≤ Q2(r). We recall that the two
classical quantifiers ∃,∀ may be defined as the monotone quantifiers Q∀(r) = 0
if r 6= 1 and Q∃(r) = 1 if r 6= 0, respectively. Note that for any monotone
quantifier Q, we have that

Q∀ ≤ Q ≤ Q∃ (8.31)

dictating that ∀ and ∃ are indeed the lower and upper bounds of monotone
quantifiers.
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FIGURE 8.7: Some examples of fuzzy quantifiers.

To introduce quantifier-guided aggregation, we consider first the evaluation
of quantified propositions. So, let Y be a (crisp) set of objects and B some
fuzzy subset of Y . A quantified proposition is a statement of the form

QY ’s are B .

An example of such a statement is “most students are young.” Yager [465]
suggested an approach to evaluate the truth of such quantified propositions
using OWA. In the following we will assume that Q is a monotone quantifier.
The first step consists in associating to Q an OWA weighting vector WQ of
dimension n = |Y |, where |S| is the cardinality of a denumerable set S. The
weights are obtained as

wj = Q(
j

n
)−Q(

j − 1

n
) . (8.32)

Note that for Q monotone, wj ∈ [0, 1] and
∑
j wj = 1. Now, we can obtain

the truth t of the statement “QY ’s are B” as

t = @owa
WQ

(a1, . . . , an) (8.33)

where ai = B(yi), yi ∈ Y and @owa
WQ

is the OWA operator obtained using the
weights WQ found from Q as above.

We turn now to the issue of quantifier-guided aggregation, that has been
shown to be useful for evaluating multi-criteria decision problems [38]. So,
assume X to be a set of alternatives and we have a collection of n criteria
Ai that are of concern in a given problem. For x ∈ X, with Ai(x) we indi-
cate the degree to which the i-th criterion is satisfied by alternative x. It is
easily verified that the degree to which all criteria are satisfied by x can be
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determined by D(x) = min(A1(x), . . . , An(x)) while the degree to which some
criteria is satisfied by x can be determined by D(x) = max(A1(x), . . . , An(x)).
In general, for a monotone quantifier Q, the degree to which

Q of the criteria are satisfied by x

can be formalized as

D(x) = @owa
WQ

(A1(x), . . . , An(x)) , (8.34)

where @owa
WQ

is the OWA operator obtained using the weights WQ found from
Q.

Thus, by selecting an appropriate weighting vector W , we are essentially
implementing a kind of quantifier-guided aggregation.

We refer the reader to [443] for an in-depth discussion on the matter.

8.1.7 Matrix-Based Fuzzy Set Operations

We have seen that t-norms play an important role in the specification
of fuzzy set operations such as intersection, union, and negation. A main
feature is that they rely on some reasonable axioms one expects such fuzzy set
operations should satisfy. In this section, we provide another setting, especially
addressed by Hähnle [181, 182, 183, 184] related to many-valued logics, and
appears to be particularly interesting for practical cases. In fact, we replace the
set of membership degrees [0, 1] with the finite one Ln = {0, 1

n−1 , . . . ,
n−2
n−1 , 1}

(see Equation (8.6)).
This is not surprising as usually computers cannot deal with [0, 1], but

rather with Ln for a reasonable large n.
In this setting, a fuzzy set operation, called fuzzy combination function, is

simply defined as k-ary function

f : (Ln)k → Ln . (8.35)

So, for instance, intersection and union (resp. ⊗,⊕) may be seen as binary
functions, which may be extended to the n-ary case, while set complement
(	) is an unary function.

As Ln is finite, one way to represent a fuzzy combination function f is
by means of a matrix Mf with k + 1 columns and nk rows, where the first
k columns are the arguments of the function and the last column contains
the evaluation of the function on the arguments. As for k arguments, each of
which may have n values, the number of rows of the matrix is nk. Of course,
if the a binary function f : Ln × Ln is commutative, i.e., f(x, y) = f(y, x)
then we need not to represent all rows.
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For instance, for n = 5, the matrix for standard negation is

M	l =


0 1

0.25 0.75
0.5 0.5
0.75 0.25

1 0


Similarly, the t-norm ⊗l can be represented as

M⊗l =



0 0 0
0 0.25 0
0 0.5 0
0 0.75 0
0 1 0

0.25 0 0
0.25 0.25 0
0.25 0.5 0
0.25 0.75 0
0.25 1 0.25
0.5 0 0
0.5 0.25 0
0.5 0.5 0
0.5 0.75 0.25
0.5 1 0.5
0.75 0 0
0.75 0.25 0
0.75 0.5 0.25
0.75 0.75 0.5
0.75 1 0.75

1 0 0
1 0.25 0.25
1 0.5 0.5
1 0.75 0.75
1 1 1


In a similar way, we can represent the t-norm ⊕g, and the s-norms ⊕l
and ⊕g.

It is worth noting that the product t-norm ⊗p and s-norm ⊕p cannot
be finitely represented, unless n = 2 (the product · is not closed on Ln for
any n ≥ 3). So, for n ≥ 3 a matrix representation of the product is some
approximation x ·n y of a real product x · y, which is exactly what happens
usually on computers. For instance, we may decide to approximate ⊗p via a
rounding function, e.g., we round x · y to the closest value in Ln and in case
of a tie, we round to the lower value: specifically, for x, y ∈ L5, we may define
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x ·n y via the matrix

M·n =



0 0 0
0 0.25 0
0 0.5 0
0 0.75 0
0 1 0

0.25 0 0
0.25 0.25 0
0.25 0.5 0
0.25 0.75 0.25
0.25 1 0.25
0.5 0 0
0.5 0.25 0
0.5 0.5 0.25
0.5 0.75 0.25
0.5 1 0.5
0.75 0 0
0.75 0.25 0.25
0.75 0.5 0.25
0.75 0.75 0.5
0.75 1 0.75

1 0 0
1 0.25 0.25
1 0.5 0.5
1 0.75 0.75
1 1 1


Note that ·n is commutative, monotone, satisfies the boundary conditions, but
is not associative, thus, ·n is not a t-norm: e.g.,

0.25 ·n (0.75 ·n 0.75) = 0 6= 0.25 = (0.25 ·n 0.75) ·n 0.75 .

Another, more direct, approach to deal with fuzzy combination functions is to
rely directly on built-in functions provided by an underlying computer system,
rather than relying on matrix representation.

8.1.8 Fuzzy Modifiers

Fuzzy modifiers are an interesting feature of fuzzy set theory. Essentially,
a fuzzy modifier, such as very, more or less, and slightly, apply to fuzzy
sets to change their membership function.

Formally, a fuzzy modifier m represents a function

fm : [0, 1]→ [0, 1] .

For example, we may define fvery(x) =x2 and fslightly(x) =
√
x. In this way,

e.g., by referring to Example 24, we may express the fuzzy set of employees
having a very low salary by applying the modifier very to the fuzzy member-
ship function of “low,” i.e.,

µvery low(x) = fvery(µlow(x)) = (µlow(x))2 = (ls(2000, 2500)(x))2 .
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FIGURE 8.8: Linear modifier lm(a, b).

The typical shape of modifiers we will consider here are so-called linear mod-
ifiers, as illustrated in Figure 8.8.

Note that such a modifier can be parameterized by means of one parameter
c only, i.e., lm(a, b) = lm(c), where

a = c/(c+ 1) , b = 1/(c+ 1) .

8.2 Mathematical Fuzzy Logic Basics

Given that SWLs are grounded on mathematical logic, it is quite natural
to look at Mathematical Fuzzy Logic [186] to get inspiration for a fuzzy logic
extensions of SWLs. So far, we have put some effort on basic notions of fuzzy
set theory. Mathematical fuzzy logic is based on fuzzy sets as much as classical
logic is based on crisp set theory.

The aim of this section is to recap salient notions of mathematical fuzzy
logic. An in-depth discussion can be found in [186].

8.2.1 From Classical Logic to Mathematical Fuzzy Logic

In the setting of many-valued logics (see also [172, 183]), the convention
prescribing that a statement is either true or false is changed and is a matter
of degree measured on an ordered scale that is no longer {0, 1}, but [0, 1].
The conceptual shift reflects the shift from classical crisp sets to fuzzy sets.
For example, the compatibility of “tall” in the phrase “a tall man” with some
individual of a given height is often graded: the man can be judged not quite
tall, somewhat tall, rather tall, very tall, etc. Changing the usual true/false
convention leads to a new concept of statements, whose compatibility with a
given state of facts is a matter of degree and can be measured on an ordered
scale S that is no longer {0, 1}, but, e.g., the unit interval [0, 1]. This leads to
identifying “fuzzy statements” φ with a fuzzy set of possible states of affairs;



128 Foundations of Fuzzy Logic and Semantic Web Languages

the degree of membership of a state of affairs to this fuzzy set evaluates the
degree of fit between the statement and the state of facts it refers to. This
degree of fit is called degree of truth of the statement φ in the interpretation I
(state of affairs). Many-valued logics provide compositional calculi of degrees
of truth, including degrees between “true” and “false that correspond to the
fuzzy set operations of conjunction, union, and negation. So, a sentence is
now not true or false only, but may have a truth degree taken from a truth
space S, usually [0, 1] or Ln for an integer n≥ 3. In the sequel, we assume
S = [0, 1].

In this section, fuzzy statements have the form 〈φ, r〉, where r∈ [0, 1] (see,
e.g., [183, 186]) and φ is a FOL statement, which encodes that the degree of
truth of φ is greater or equal r. FOL statements are (see, e.g., [67, 93, 158,
167, 378]), inductively defined from atomic formulae as usual (where φ and ψ
are FOL formulae):

φ ∧ ψ , φ ∨ ψ , φ→ ψ , φ↔ ψ , ¬φ ,

∃x.φ , ∀x.φ .

Semantically, a many-valued interpretation I is similar to a classical interpre-
tation, which rather than mapping any atomic statement into {0, 1}, maps
now maps each atomic formula A into [0, 1] and is then extended inductively
to all statements as follows:

I(φ ∧ ψ) = I(φ)⊗ I(ψ)
I(φ ∨ ψ) = I(φ)⊕ I(ψ)
I(φ→ ψ) = I(φ)⇒ I(ψ)
I(φ↔ ψ) = I(φ→ ψ)⊗ I(ψ → φ)
I(¬φ) = 	I(φ)
I(∃x.φ) = supa∈∆I Iax(φ)
I(∀x.φ) = infa∈∆I Iax(φ) ,

(8.36)

where ∆I is the domain of I, the interpretation Iax is as I except that
x is mapped into a, and now, not surprisingly, ⊗, ⊕, →, and 	 are a t-
norm, s-norm, implication function, and a negation function, respectively.
This allows us to extend the classical Boolean conjunction, disjunction, im-
plication, and negation, respectively, to the many-valued case. Often, the im-
plication function ⇒ is defined as r-implication (see Section 8.1.4), that is,
a⇒ b = sup {c | a⊗ c ≤ b}, but this need not be the case.

We also consider here the following abbreviations:

φ ∧g ψ def
= φ ∧ (φ→ ψ) (8.37)

φ ∨g ψ def
= (φ→ ψ)→ φ) ∧g (ψ → φ)→ ψ) (8.38)

¬⊗φ def
= φ→ 0 . (8.39)

(8.40)
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TABLE 8.7: Combination functions of various fuzzy logics.

 Lukasiewicz Logic Gödel Logic Product Logic SFL

a⊗ b max(a+ b− 1, 0) min(a, b) a · b min(a, b)

a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b max(a, b)

a⇒ b min(1− a+ b, 1)


1 if a ≤ b

b otherwise

min(1, b/a) max(1− a, b)

	 a 1− a
{

1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1− a

In case⇒ is the r-implication based on ⊗, then ∧g (resp. ∨g) is interpreted as
Gödel t-norm (resp. s-norm), while ¬⊗ is interpreted as the negation function
related to ⊗ (see also Equation (8.24)).

As for fuzzy set theory, where we have seen that  Lukasiewicz, Gödel, and
product t-norm are the major players (see Proposition 35), in mathemat-
ical fuzzy logic, one usually distinguishes three different logics, namely
 Lukasiewicz, Gödel, and product logics [186], whose combination functions
are reported in Table 8.7. In the table, we call Standard Fuzzy Logic (SFL),
the logic with fuzzy combination functions ⊗g,⊕g,	l and impfkd. By Equa-
tions (8.37) and (8.38), in fact standard fuzzy logic is entailed, e.g., by
 Lukasiewicz logic, as min(a, b) = a ⊗l (a ⇒l b) and max(a, b) = 1 −min(1 −
a, 1 − b) and, thus, is usually not considered in the mathematical fuzzy logic
literature.
It is also worth nothing that these logics satisfy the same properties as illus-
trated in Table 8.6 and that there is no fuzzy logic satisfying all the properties
listed in this table (otherwise it has to collapse to classical logic).

A fuzzy interpretation I satisfies a fuzzy statement 〈φ, r〉 or I is a model
of 〈φ, r〉, denoted I |= 〈φ, r〉 iff I(φ) ≥ r. We say that two formulae φ and ψ
are equivalent, denoted ψ ≡ φ, if for any fuzzy interpretation I we have that
I(φ) = I(ψ). We say that I is a model of φ if I(φ) = 1 and φ is a tautology iff
all fuzzy interpretations are models of φ, i.e., ψ ≡ 1. A fuzzy knowledge base
(or simply knowledge base, if clear from context) is a set of fuzzy statements
and an interpretation I satisfies (is a model of) a knowledge base, denoted
I |= K, iff it satisfies each element in it.

We say 〈φ, n〉 is a tight logical consequence of a set of fuzzy statements K
iff n is the infimum of I(φ) subject to all models I of K. Notice that the latter
is equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the best entailment degree
of φ w.r.t. K (denoted bed(K, φ)), i.e.,

bed(K, φ) = sup {r | K |= 〈φ, r〉} . (8.41)
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On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I
{I(φ) | I |= K} . (8.42)

Of course, the properties of Table 8.6 immediately translate into equivalence
among formulae. For instance, the following equivalences hold (in brackets we
indicate the logic for which the equivalence holds)

¬¬φ ≡ φ ( L)

φ ∧ φ ≡ φ (G)

¬(φ ∧ ¬φ) ≡ 1 ( L, G,Π)

φ ∨ ¬φ ≡ 1 ( L) .

We would like to point out some crucial difference between fuzzy logic and
classical FOL, not illustrated so far.

Remark 19. Unlike the classical case, in general, we do not have that ∀x.φ
and ¬∃x.¬φ are equivalent. They are equivalent for  Lukasiewicz logic and SFL
(see later on, Remark 21), but are neither equivalent for Gödel nor for Product
logic. For instance, under Gödel negation, just consider an interpretation I
with domain {a} and I(p(a)) = u, with 0 < u < 1. Then I(∀x.p(x)) = u,
while I(¬∃x.¬p(x)) = 1 and, thus, ∀x.p(x) 6≡ ¬∃x.¬p(x).
On the other hand, it can be shown that (see later on, Remark 21), e.g.,

∀x.¬φ ≡ ¬∃x.φ .

We conclude, by pointing out that if the connective → is interpreted as r-
implication w.r.t. the t-norm ⊗, then the following graded deduction theorem
is valid:

K ∪ {〈φ, r〉, 〈φ→ ψ, s〉} |= 〈ψ, r ⊗ s〉 . (8.43)

In fact, consider an interpretation I satisfying K, 〈φ, r〉 and 〈φ→ ψ, s〉. Then,
from r ≤ I(φ), from s ≤ I(φ→ ψ) = I(φ)⇒ I(ψ), from the monotonicity of
⊗, and from Equation (8.21), we get

I(ψ) ≥ I(φ)⊗ s ≥ r ⊗ s .

This suggests also that the following graded deduction rule is correct:

〈φ, r〉, 〈φ→ ψ, s〉
〈ψ, r ⊗ s〉 . (8.44)
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8.2.1.1 On Witnessed Models

We say that a fuzzy interpretation I is a witnessed interpretation iff

I(∃x.φ) = Iax(φ), for some a ∈ ∆I (8.45)

I(∀x.φ) = Iax(φ), for some a ∈ ∆I . (8.46)

That is

I(∃x.φ) = max
a∈∆I

Iax(φ)

I(∀x.φ) = min
a∈∆I

Iax(φ) .

These equations say that the supremum (resp. infimum) are attained at some
point for a witnessed interpretation. Now, unlike the classical case, it may not
be true that Equation (8.45) and Equation (8.46) hold for any I, i.e., I may
not be witnessed. For instance, for I with domain the natural numbers and
Inx (A(x)) = 1− 1/n, we have that

I(∃x.A(x)) = sup
n
Inx (A(x)) = sup

n
1− 1/n = 1 , (8.47)

while in no point Inx (A(x)) is 1. So, I is not witnessed (the argument for ∀ is
similar).

The following important property can be shown (see, e.g., [186, 188, 189,
190]).

Proposition 39. In  Lukasiewicz logic and, thus, in SFL, a fuzzy statement
〈φ, r〉 has a witnessed fuzzy model iff it has a fuzzy model. This is not true for
Gödel and product logic.

This proposition says that, for  Lukasiewicz logic, we may restrict our attention
to witnessed models only. That is,  Lukasiewicz has the so-called witnessed
model property (there is a model iff there is witnessed model).

Of course, we also have that

Proposition 40. If the truth space is finite then any fuzzy logic has the
witnessed model property.

Interesting is that (see [188])

¬∀x.A(x) ∧ ¬∃x.¬A(x) (8.48)

has no classical model, but it has a fuzzy one, which has to be infinite. Indeed,
in [188], it is shown that in Gödel logic it has no finite model, but it has an
infinite fuzzy model. Of course, the above formula has no classical model. To
see that it has a model under Gödel logic, consider the fuzzy interpretation I
with domain the natural numbers and Inx (A(x)) = 1/(n+ 1). Then

I(∀x.A(x)) = inf
n
Inx (A(x)) = 0, and, thus, I(¬∀x.A(x)) = 1

I(∃x.¬A(x)) = sup
n
Inx (¬A(x)) = 0, and, thus, I(¬∃x.¬A(x)) = 1 .

Therefore, I is a model of φ.

http://resp.in$$$
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8.2.2 Reasoning

We refer the reader to, e.g., [182, 183, 186] for reasoning algorithms for
fuzzy propositional and first-order logics. For the purposes of this book, we
illustrate here some salient approaches that turn out to be useful later on.
Except for Section 8.2.2.1, where we present Hilbert style axiomatizations, all
the other methods will refer to the propositional case only, which however is
sufficient to illustrate the main concepts behind the reasoning methods.

8.2.2.1 Axiomatizations

At first, we start with a the typical Hilbert style axiomatization ap-
proach [186]. The purpose of the axiomatization is to characterize tautologies,
i.e., φ is provable from the axioms iff φ is a tautology, that is φ ≡ 1. The
axioms have also the benefit to allow to get a better understanding of a fuzzy
logic, but is unlikely suitable for any use in a practical scenario.

For the rest of this section, we restrict the logical connectives to ∧ and→,
where ∧ is interpreted as a t-norm ⊗ and → is its relative r-implication. ¬φ
is a shorthand for φ → 0. Atomic formulae are restricted to be propositional
letters. Additionally, a theory T is a set of formulae φ, a model of T is a fuzzy
interoperation being a model of all formulae in T , and T entails φ, denoted
T |= φ, iff any model of T is a model of φ. Of course, we have that

T |= φ iff {〈ψ, 1〉 | ψ ∈ T } |= 〈φ, 1〉 .

Essentially, we focus our attention to fuzzy statements true to degree 1.
As usual, with T ` φ we denote the fact that a formula can be derived

from a theory using the theory, a set of axioms2, and the deduction rule. With
T |=cl φ we denote that the formula φ is classically entailed by T .

Basic Logic BL. At first, consider the following axioms of the so-called BL-
logic:

(A1) (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)

(A2) (φ ∧ ψ)→ φ

(A3) (φ ∧ ψ)→ (ψ ∧ φ)

(A4) (φ ∧ (φ→ ψ))→ (ψ ∧ (ψ → φ))

(A5a) (φ→ (ψ → χ))→ ((φ ∧ ψ)→ χ))

(A5b) ((φ ∧ ψ)→ χ))→ (φ ∧ (ψ → χ))

(A6) (φ ∧ (ψ → χ))→ (((ψ → φ)→ χ))→ χ)

(A7) 0→ φ

2The set of axioms may vary from case to case and is indicated via a subscript.
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(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ.

We have that the following soundness and completeness result for BL-logic,
where the t-norm can be arbitrary:

Proposition 41 ([186]). Consider an arbitrary t-norm ⊗. Then T `bl φ iff
T |= φ. Also, if T `bl φ then T |=cl φ, but not vice versa (e.g., |=cl φ ∨ ¬φ,
but 6|=bl φ ∨ ¬φ).

Note also that

• T `bl (φ ∧ ¬φ)→ 0

• T `bl φ→ ¬¬φ, but T 6`BL ¬¬φ→ φ, e.g., φ = p∨¬p, t-norm is Gödel

• T `bl (φ→ ψ)→ (¬ψ → ¬φ), but not vice versa.

 Lukasiewicz Logic  L. We have seen that Proposition 41 provides us a sound-
ness and completeness result for the BL-logic, in which we allow any t-norm
to be considered to interpret the logical connective ∧.

As next, let us fix the t-norm to be ⊗l, i.e., we are considering
 Lukasiewicz logic. Consider the following axiomatization:

(Axioms) Axioms of BL

( L) ¬¬φ→ φ

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ.

We have that the following soundness and completeness result for
 Lukasiewicz logic:

Proposition 42 ([186]). Fix the t-norm to ⊗l. Then T `l φ iff T |= φ.

Remark 20. Note also that

• `l (φ→ ψ)↔ (¬ψ → ¬φ)

• `l (¬(φ ∧ ψ))↔ (¬φ ∨ ¬ψ)

• `l (φ→ ψ)↔ (¬(φ ∧ ¬ψ))

• `l (φ→ ψ)↔ (¬φ ∨ ψ)

• `l (¬(φ→ ψ))↔ (φ ∧ ¬ψ)

• SFL is entailed by  Lukasiewicz logic.

Product Logic Π. Let us fix the t-norm to be ⊗p, i.e., we are considering
product logic. Consider the following axiomatization
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(Axioms) Axioms of BL

(Π1) ¬¬χ→ ((φ ∧ χ→ ψ ∧ χ)→ (φ→ ψ))

(Π2) (φ ∧g ¬φ)→ 0

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ.

We have that the following soundness and completeness result for product
logic:

Proposition 43 ([186]). Fix the t-norm to ⊗p. Then T `p φ iff T |= φ.

Note also that

• `p ¬(φ ∧ ψ)→ ¬(φ ∧g ψ)

• `p (φ→ ¬φ)→ ¬φ

• `p ¬φ ∨g ¬¬φ.

Gödel Logic G. Let us fix the t-norm to be ⊗g, i.e., we are considering
Gödel logic. Consider the following axiomatization

(Axioms) Axioms of BL

(G) φ→ (φ ∧ φ)

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ.

We have that the following soundness and completeness result for Gödel logic:

Proposition 44 ([186]). Fix the t-norm to ⊗g. Then T `g φ iff T |= φ.

Note also that

• `g (φ→ ¬φ)→ ¬φ

Boolean Logic. One may ask how the various axiomatizations relate to
Boolean, classical, two-valued propositional logic. To this end, consider the
following axiomatization

(Axioms) Axioms of BL

(B) φ ∨g ¬φ

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ.

We have that the following soundness and completeness result for classical
Boolean logic:
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Proposition 45 ([186]). Fix interpretations to be classical, two-valued. Then
T `bool φ iff T |= φ.

Note that Boolean logic extends Gödel logic as

• `bool φ→ (φ ∧ φ).

Note also that the union of any two of our three main logics turns out to be
equivalent to the classical Boolean logic:

•  L + G is equivalent to Boolean logic

•  L + Π is equivalent to Boolean logic

• G + Π is equivalent to Boolean logic.

Rational Pavelka Logic RPL. So far, we considered only formulae and
their absolute truth, i.e., whether they have truth 1 in any model of a theory.
In the following, we devise an axiomatization for the case of fuzzy statements,
i.e., statements of form 〈φ, r〉 under  Lukasiewicz-logic. To do so, we introduce
the so-called Rational Pavelka Logic (RPL) [347].

In this setting, we fix the t-norm to be ⊗l, and we extend the so far
considered propositional language to include, besides 0 and 1, also any rational
r ∈ [0, 1] as atom in a formula. We denote the set of rational numbers in [0, 1]
with [0, 1]Q. Hence, e.g., (0.3∧φ)→ 0.8 is a formula. We extend interpretations
to rationals in the obvious way: I(r) = r. We also assume that any sub-formula
in which rationals occur only is recursively replaced with its evaluation using:

r ∧ s 7→ r ⊗l s (8.49)

r → s 7→ r ⇒ s (8.50)

¬r 7→ 1− r . (8.51)

The axiomatizations of RPL is as for  Lukasiewicz-logic and we have:

Proposition 46 (see [186]). For RPL, T `rpl φ iff T |= φ.

The interesting point is the following observation: for any fuzzy interpretation
I, for any formula φ and rational r ∈ [0, 1]Q

I(φ) ≥ r iff I(r → φ) = 1

I(φ) ≤ r iff I(φ→ r) = 1 .

That is, I is a model of 〈φ, r〉 iff it is a model of r → φ, and, similarly, I is
a model of 〈¬φ, r〉 iff it is a model of φ → (1 − r). As a consequence, from
Proposition 46 we get immediately a sound and complete proof procedure for
graded consequence under  Lukasiewicz logic (and, thus, for SFL): for a set of
fuzzy statements K, let

TK = {r → ψ | ψ ∈ K} .
Then
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Proposition 47 (see [186]). For a set of fuzzy statements K,

K |= 〈φ, r〉 iff TK `rpl r → φ .

The analogue of Proposition 47 fails for product logic and Gödel logic
(see [186]). We refer the reader to [148, 149] for more on this issue.

However, we may somewhat extend RPL, still guaranteeing soundness and
completeness [186]. In fact, consider RPL extend with a binary logical combi-
nation operator ∧p interpreted as product t-norm ⊗p. Let RPL(∧p) this logic.
Consider the evaluation of rationals as from Equations (8.49)–(8.51), plus the
additional evaluation

r ∧p s 7→ r ⊗p s ,

and, eventually, the axiomatization

(Axioms) Axioms of RPL

(RΠ1) (φ→ ψ)→ ((φ ∧p χ)→ (ψ ∧p χ))

(RΠ2) (φ→ ψ)→ ((χ ∧p φ)→ (χ ∧p ψ))

(Deduction rule) Modus ponens: from φ and φ→ ψ infer ψ

Then

Proposition 48 ([186]). T `pl(∧p) φ iff T |= φ.

Fuzzy First-Order Logic. Here we show how to provide an axiomatization
of fuzzy FOL logic. In the following, we extend the propositional language by
allowing predicates to occur as atomic formulae and quantified formulae are
the form ∀x.φ and ∃x.φ. A term t is either a variable or a constant.3

In the following, with C∀, where C ∈ { BL,  L, Π, G}, we denote the fuzzy
FOL in which the underlying logic is either the BL logic, the  Lukasiewicz logic,
the product logic or the Gödel logic. Now, consider the following axiomatiza-
tion

(Axioms) Axioms of C

(∀1) ∀x.φ(x)→ φ(t) (t substitutable for x in φ(x))

(∃1) φ(t)→ ∃x.φ(x) (t substitutable for x in φ(x))

(∀2) ∀x.(ψ → φ)→ (ψ → ∀x.φ) (x not free in ψ)

(∃2) ∀x.(φ→ ψ)→ (∃x.φ→ ψ) (x not free in ψ)

3Note that we may introduce functions symbols as well, with crisp semantics (but is
uninteresting), or we need to discuss also fuzzy equality (which we leave out here).
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(∀3) ∀x.(φ ∨g ψ)→ (∀x.φ) ∨g ψ (x not free in ψ)

(Modus ponens) from φ and φ→ ψ infer ψ

(Generalization) from φ infer ∀x.φ,

where the notions of “t substitutable for x in φ(x)” and “x not free in ψ” are
defined as for classical FOL (see, e.g., [67, 93, 158, 167, 378]).4

We have that the following soundness and completeness result for the
C∀ logic:

Proposition 49 ([186]). T `C φ iff T |= φ.

Remark 21. Note that

• `BL∀ ∃x.φ→ ¬∀x.¬φ

• `BL∀ ¬∃x.φ↔ ∀x.¬φ

• ` L∀ ∃x.φ↔ ¬∀x.¬φ

• `BL∀ (∀x.φ→ φ)↔ φ→ (∀x.φ) if x does not occur in φ

• `BL∀ (∃x.φ→ φ)↔ φ→ (∃x.φ) if x does not occur in φ .

Predicate Rational Pavelka Logic (RPL∀). The FOL variant is obtained
from RPL in the obvious way: we fix  Lukasiewicz t-norm and r-implication,
formulae are as for  L∀, where rationals r ∈ [0, 1]Q may appear as atoms and,
formulae with rationals are only evaluated according to Equations (8.49)–
(8.51), and a sound and complete axiomatization is the one as for  L∀.

8.2.2.2 Operational Research-based

An important and application oriented approach for reasoning with fuzzy
logic is based on Operational Research (OR). To this end, we first recap some
salient definitions related to OR.

OR basics. In this section we recall basic notions related to Mixed Integer
Linear Programming (MILP), Mixed Integer Quadratically Constrained Pro-
gramming (MIQCP) and Mixed Integer Non Linear Programming (MINLP)
optimization problems.

A general Mixed Integer Linear Programming (MILP) [366] problem con-
sists in minimizing a linear function with respect to a set of constraints that
are linear inequations in which rational and integer variables can occur. More
precisely, let x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , ym〉 be variables over Q and Z
respectively, over the integers and let A, B be integer matrices and h an integer

4Roughly, a constant is always substitutable, and a variable y is substitutable into φ for
x if the substitution does not make any free occurrence of x into a bound occurrence of y.
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vector. The variables in y are called control variables. Let f(x, y) be an k+m-
ary linear function. Then the general MILP problem is to find x̄ ∈ Qk, ȳ ∈ Zm
such that f(x̄, ȳ) = min{f(x, y) |Ax+By ≥ h}.

The general case can be restricted to what concerns the paper as we can
deal with bounded MILP (bMILP). That is, the rational variables usually
range over [0, 1], while the integer variables range over {0, 1}. It is well known
that the bMILP problem is NP-complete (for the belonging to NP, guess the y
and solve in polynomial time the linear system, NP-hardness follows from NP-
Hardness of 0-1 Integer Programming). Furthermore, we say that M ⊆ [0, 1]k

is bMILP-representable iff there is a bMILP (A,B, h) with k real and m 0− 1
variables such that M = {x : ∃y ∈ {0, 1}m such that Ax+By ≥ h}.

In general, we require that every constructor is bMILP representable.
For instance, classical logic, SFL, and  Lukasiewicz connectives, are bMILP-
representable, while Gödel negation is not. In general, connectives whose
graph can be represented as the union of a finite number of convex poly-
hedra are bMILP-representable [216], however, discontinuous functions may
not be bMILP representable.

There are a lot of available tools for solving these problems, such as Cbc5,
Gurobi6 or lpsolve7.

Concerning Mixed Integer Quadratically Constrained Programming
(MIQCP), let x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , ym〉 be variables over Q
and Z respectively. Now, for all i ∈ 0, 1, . . . , n, let ai be an integer vector
of length k, bi be an integer vector of length m, hi be an integer number
and Qi(x, y) = 1/2 · (x + y)T · Ci · (x + y), where Ci is a symmetric inte-
ger matrix of dimension (k + m) × (k + m). Let f(x, y) be an k + m-ary
linear function. The MICQP problem is to find x̄ ∈ Qk, ȳ ∈ Zm such that
f(x̄, ȳ) = min{f(x, y) : a0 · x+ b0 · y ≥ h0} subject to a set of n constraints of
the form: ai · x+ bi · y +Qi(x, y) ≥ hi or ai · x+ bi · y +Qi(x, y) ≤ hi, for all
i = 1, . . . , n. Notice that the objective function is linear, while the restrictions
can contain quadratic sections.

The general case may be restricted to the bounded MIQCP (bMIQCP),
with rational variables ranging over [0, 1] and integer variables range over
{0, 1}. M ⊆ [0, 1]k is bMICQP-representable iff there is a bMICQP
(ai, bi, Ci, hi) with k real and m 0 − 1 variables such that M = {x : ∃y ∈
{0, 1}m such that ai · x+ bi · y+Qi(x, y) ≥ hi or ai · x+ bi · y+Qi(x, y) ≤ hi.

This problem is known to be NP-Hard. Some examples of solvers are
CPLEX8 or Mosek9.

Concerning Mixed Integer Non Linear Programming (MINLP), let x =
〈x1, . . . , xk〉 and y = 〈y1, . . . , ym〉 be variables over Q and Z respectively,
and, for all i ∈ 0, 1, . . . , n, let hi be an integer number, and fi(x, y) be

5http://www.coin-or.org/projects/Cbc.xml
6http://www.gurobi.com
7http://sourceforge.net/projects/lpsolve
8http://www.ilog.com/products/cplex/
9http://www.mosek.com/

http://www.coin-or.org
http://www.gurobi.com
http://sourceforge.net
http://www.ilog.com
http://www.mosek.com
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an k + m-ary (possibly non linear) function. The Mixed Integer Non Lin-
ear Programming (MINLP) problem [160] is to find x̄ ∈ Qk, ȳ ∈ Zm such that
f0(x̄, ȳ) = minx∈x̄,y∈ȳ{f0(x, y)} subject to a set of n constraints of the form:
fi(x, y) ≥ hi, for all i = 1, . . . , n.

As in the previous cases, in the bounded MINLP (bMINLP), rational vari-
ables range over [0, 1] and integer variables range over {0, 1}. The problem is
NP-Hard, and there some available solvers, such as Bonmin10.

OR-based decision algorithm. Now, unlike Section 8.2.2.1, we show here
a simple method that allows to determine bed(K, φ) and bsd(K, φ) via Mixed
Integer Linear Programming (MILP) for propositional  Lukasiewicz logic and,
thus, for SFL as well (see, e.g., [359]). To this end, it can be shown that

bed(K, φ) = minx. such that K ∪ {〈¬φ, 1− x〉} satisfiable (8.52)

bsd(K, φ) = maxx. such that K ∪ {〈φ, x〉} satisfiable . (8.53)

In fact, e.g., concerning bed(K, φ), suppose the minimal value of x is n̄. We will
know then that for any fuzzy interpretation I satisfying the knowledge base
such that I(φ) < n̄, the starting set is not satisfiable (otherwise n̄ wouldn’t be
minimal) and, thus, I(φ) ≥ n̄ has to hold, which means that bed(K, φ) = n̄.

Note that in effect Equation (8.52) is the same as

bed(K, φ) = minx. such that K ∪ {〈φ ≤ x〉} satisfiable . (8.54)

Without loss of generalization, for  Lukasiewicz logic, we may consider a for-
mula φ in Negation Normal Form (NNF) (i.e., negation may be in front of an
atom only), which is obtained by applying recursively the rules

¬0 = 1

¬1 = 0

¬¬φ 7→ φ

¬(φ ∧ ψ) 7→ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) 7→ ¬φ ∧ ¬ψ
¬(φ→ ψ) 7→ φ ∧ ¬ψ .

With nnf(φ) we denote the NNF obtained from φ.
For a formula φ consider a variable xφ (with intended meaning: the de-

gree of truth of φ is greater or equal to xφ). Now we apply the following
transformation σ that generates a set of MILP in-equations:

bed(K, φ) = minx. such that x ∈ [0, 1],
x¬φ ≥ 1− x, σ(¬φ),
for all 〈ψ, n〉 ∈ K, xψ ≥ n, σ(ψ),

(8.55)

10http://www.coin-or.org/projects/Bonmin.xml

http://www.coin-or.org


140 Foundations of Fuzzy Logic and Semantic Web Languages

where the σ(·) is defined as follows:

σ(φ) =



xp ∈ [0, 1] if φ = p

x0 = 0 if φ = 0

x1 = 1 if φ = 1

xφ = 1− xφ′ ,
xφ ∈ [0, 1]

if φ = ¬φ′

xφ1 ⊗ xφ2 = xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∧ φ2

xφ1
⊕ xφ2

= xφ,
σ(φ1), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 ∨ φ2

(1− xnnf(¬φ1))⇒ xφ2 = xφ,
σ(nnf(¬φ1)), σ(φ2), xφ ∈ [0, 1]

if φ = φ1 → φ2 .

In the definition above, the conditions x1 ⊕ x2 = z, x1 ⊗ x2 = z, x1 ⇒ x2 = z
with 0 ≤ xi, z ≤ 1, can be encoded as the sets of constraints:

• x1⊗lx2 = z 7→ {x1+x2−1 ≤ z, x1+x2−1 ≥ z−y, z ≤ 1−y, y ∈ {0, 1}},
where y is a new variable.

• x1 ⊕l x2 = z 7→ {x1 + x2 ≤ z + y, y ≤ z, x1 + x2 ≥ z, y ∈ {0, 1}}, where
y is a new variable.

• x1 ⇒l x2 = z 7→ {(1− x1)⊕l x2 = z}.

As the set of constraints is linearly bounded by K and as MILP satisfiabil-
ity is NP-complete, we get the well-known result that determining the best
entailment/satisfiability degree is NP-complete for propositional  Lukasiewicz
logic and SFL.

For completeness, we illustrate here also the equations for propositional
SFL alone as well:

• x1⊗g x2 = z 7→ {z ≤ x1, z ≤ x2, x1 ≤ z+y, x2 ≤ z+(1−y), y ∈ {0, 1}},
where y is a new variable.

• x1⊕g x2 = z 7→ {z ≥ x1, z ≥ x2, x1 +y ≥ z, x2 +(1−y) ≥ z, y ∈ {0, 1}},
where y is a new variable.

• x1 ⇒kd x2 = z 7→ (1− x1)⊕g x2 = z.
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Concerning the best satisfiability problem, in a similar way we derive

bsd(K, φ) = maxx. such that x ∈ [0, 1],
xφ ≥ x, σ(φ),
for all 〈ψ, n〉 ∈ K, xψ ≥ n, σ(ψ) ,

(8.56)

while we may determine whether a KB K is satisfiable by checking whether
the set of constraints

sat(K) = {xψ ≥ n, σ(ψ) | 〈ψ, n〉 ∈ K} (8.57)

has a solution.
It is illustrative to show that the method based on OR in which we com-

pile a KB into a set of constraints, can be represented as well via an inference
method on formulae, as illustrated by the  L-ORFuzzySat algorithm (see Al-
gorithm 3).

Then, it can be shown that

Proposition 50. Let K be a propositional fuzzy KB K in  Lukasiewicz logic.
Then

1. The  L-ORFuzzySat procedure terminates.

2. K is satisfiable iff the  L-ORFuzzySat procedure returns true.

Note that a model I of K can immediately be built from a solution by assigning
to any atom p occurring in K

I(p) = x̄p ,

where x̄p is the value of variable xp is a solution to CK. We also have in this
model that

I(φ) = x̄φ

for any formula φ occurring in K.
We illustrated the method for the KB satisfiability problem. It is quite

straightforward to adapt it to best entailment and the best satisfiability prob-
lems as well via Equations (8.55) and (8.56).

Example 25. Consider

K = {〈p, 0.8〉, 〈p→ q, 0.9〉} .

Let us show that
bed(K, q) = 0.7 .
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Algorithm 3  L-ORFuzzySat.

Input: A propositional fuzzy KB K in  Lukasiewicz logic.
Output: Check if K satisfiable and if positive provide a model of K

1. Transform a KB K into NNF, i.e., by transforming the formulae in K into
NNF;

2. Initialize the fuzzy theory TK and the initial set of constraints CK by

TK = {φ | 〈φ, n〉 ∈ K}
CK = {xψ ≥ n | 〈φ, n〉 ∈ K} .

3. Apply the following inference rules until no more rules can be applied. Of
course, each rule instance is applied at most once.

(var). For variable xφ occurring in CK add xφ ∈ [0, 1] to CK.

( ¯var). For variable x¬φ occurring in CK add xφ = 1− x¬φ to CK.

(⊥). If 0 ∈ TK then CK := CK ∪ {x0 = 0}.
(>). If 1 ∈ TK then CK := CK ∪ {x1 = 1}.
(∧). If φ ∧ ψ ∈ TK, then

(a) add φ and ψ to TK
(b) CK := CK ∪ {xφ ⊗ xψ = xφ∧ψ}.

(∨). If φ ∨ ψ ∈ TK, then

(a) add φ and ψ to TK
(b) CK := CK ∪ {xφ ⊕ xψ = xφ∧ψ}.

(→). If φ→ ψ ∈ TK, then

(a) add nnf(¬φ) and ψ to TK
(b) CK := CK ∪ {(1− xnnf(¬φ))⇒ xψ = xφ→ψ}.

4. Return that K is satisfiable, i.e., true, iff the final set of constraints CK has
a solution.

under  Lukasiewicz logic. To do so, we need to determine

bed(K, q) = minx. such that x ∈ [0, 1],
x¬q ≥ 1− x,
1− xq = x¬q,
xp ≥ 0.8,
xp→q ≥ 0.9,
1− xp = x¬p,
x¬p + xq ≤ xp→q + y,
y ≤ xp→q,
x¬p + xq ≥ xp→q,
y ∈ {0, 1} .

I can be verified that the minimal value of x is 0.7.
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The case of Ln. We conclude this section by pointing out that the  L-
ORFuzzySat procedure can easily be adapted to a case in which we consider
the set Ln as truth space in place of [0, 1]. In fact, we have to simply enforce
that now, any [0, 1]-valued variable x takes values in Ln instead. Now,

x ∈ {0, 1

n− 1
, . . . ,

n− 2

n− 1
, 1}

can be encoded as
z = (n− 1) · x
z ∈ {0, 1, ..., n− 1} (8.58)

for a new integer variable z. Hence, for Ln we immediately have the analogue
of Proposition 50:

Proposition 51. Let K be a propositional fuzzy KB K under  Lukasiewicz logic.
Then

1. The  L-ORFuzzySat procedure terminates.

2. K is satisfiable w.r.t. Ln iff the  L-ORFuzzySat procedure returns true, in
which in the final set of MILP constraints CK the [0, 1]-valued variables
are enforced to take value in Ln as illustrated in Equation (8.58).

It is yet unclear if the  L-ORFuzzySat procedure can be adapted to the case in
which other truth combination functions over Ln are considered. We do not
address this further here.

8.2.2.3 Analytical Fuzzy Tableau

In this section we show that in fact there is a very simple decision procedure
for the propositional KB satisfiability problem in SFL, without relying on OR.
It is based on the following simple properties that hold in SFL:

• if I is model of 〈φ ∧ ψ, n〉 then I is a model of both 〈φ, n〉 and 〈ψ, n〉;

• if I is model of 〈φ ∨ ψ, n〉 then I is a model of either 〈φ, n〉 or 〈ψ, n〉.

• I cannot be a model of both 〈p, n〉 and 〈¬p,m〉 if n > 1−m.

For the remainder of this section, w.l.o.g. we may consider SFL KBs in which
any formula of the form φ→ ψ has been replaced with ¬φ ∨ ψ.

A clash is either

• a fuzzy statement 〈0, n〉 with n > 0; or

• a pair of fuzzy statements 〈p, n〉 and 〈¬p,m〉 with n > 1−m.

A KB is clash-free iff it does not contain a clash.
The decision procedure for the KB satisfiability problem is illustrated by

the SFD-TableauFuzzySat procedure described in Algorithm 4.
It is easily verified that
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Algorithm 4 SFD-TableauFuzzySat.

Input: A propositional fuzzy KB K under SFL.
Output: Check if K satisfiable.

1. Transform a KB K into NNF, i.e., by transforming the formulae in K into
NNF;

2. Initialize the completion SK = K;

3. Apply the following inference rules to SK until no more rules can be applied.
We call a set of fuzzy statements SK complete iff none of the rules below
can be applied to SK. Note that rule (∨) is non-deterministic.

(∧). If 〈φ ∧ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉} 6⊆ SK , then add both 〈φ, n〉 and
〈ψ, n〉 to SK.

(∨). If 〈φ ∨ ψ, n〉 ∈ SK and {〈φ, n〉, 〈ψ, n〉}∩SK = ∅, then add either 〈φ, n〉
or 〈ψ, n〉 to SK

(→). If 〈φ→ ψ, n〉 ∈ SK and 〈nnf(¬φ) ∨ ψ, n〉 6∈ SK, then add
〈nnf(¬φ) ∨ ψ, n〉 to SK

4. Return that K is satisfiable, i.e., true iff we find a complete and clash-free
completion SK of K.

Proposition 52. Let K be a propositional fuzzy KB K. Then

1. The SFD-TableauFuzzySat procedure terminates.

2. K is satisfiable iff the SFD-TableauFuzzySat procedure returns true.

Note that, unlike the  L-ORFuzzySat procedure, the SFD-TableauFuzzySat
procedure is non-deterministic as involves the non-deterministic rule (∨) and,
thus, in the worst case we have to generate exhaustively all possible (finite
many) completions SK of K.

Example 26. Consider K of Example 25. Let us show that K is satisfiable
under SFL. A clash-free completion of K is

SK = {〈p, 0.8〉, 〈p→ q, 0.9〉, 〈¬p ∨ q, 0.9〉, 〈q, 0.9〉}

from which we immediately may build a model I with I(p) = 0.8, I(q) = 0.9.

It remains to show how to address the entailment problem, i.e., to decide
whether K |= 〈φ, n〉 holds. To this end, it is easily verified that

K |= 〈φ, n〉 iff K ∪ {〈φ < n〉} is not satisfiable,

where an interpretation I is a model of the expression 〈φ < n〉 iff I(φ) < n.
Given that we now have an additional construct, we will show that we

have to ways to cope with it, that we will briefly illustrate.



Fuzzy Sets and Mathematical Fuzzy Logic Basics 145

The first method consists in extending the rules in the SFD-
TableauFuzzySat procedure to deal with < expressions. To this end, rather
than using expressions of the form (φ < n), we allow expressions of the form

〈φ, n〉+ (8.59)

where I is a model of the expression 〈φ, n〉+ iff I(φ) > n. Then, of course,

K |= 〈φ, n〉 iff K ∪ {〈¬φ, 1− n〉+} is not satisfiable . (8.60)

Now, we have to extend

1. the notion of clash; and

2. the inference rules to cope with expression of the form 〈φ, n〉+

That is, a clash is one of the following:

1. a fuzzy statement 〈0, n〉 with n > 0;

2. a fuzzy statement 〈0, n〉+;

3. a fuzzy statement 〈1, 1〉+;

4. a pair of fuzzy statements 〈p, n〉 and 〈¬p,m〉 with n > 1−m;

5. a pair of fuzzy statements 〈p, n〉 and 〈¬p,m〉+ with n ≥ 1−m;

6. a pair of fuzzy statements 〈p, n〉+ and 〈¬p,m〉 with n ≥ 1−m;

7. a pair of fuzzy statements 〈p, n〉+ and 〈¬p,m〉+ with n ≥ 1−m.

The additional rules to be considered within the SFD-TableauFuzzySat pro-
cedure are:

(∧)+. If 〈φ ∧ ψ, n〉+ ∈ SK and {〈φ, n〉+, 〈ψ, n〉+} 6⊆ SK , then add both 〈φ, n〉+
and 〈ψ, n〉+ to SK.

(∨)+. If 〈φ ∨ ψ, n〉+ ∈ SK and {〈φ, n〉+, 〈ψ, n〉+} ∩ SK = ∅, then add either
〈φ, n〉+ or 〈ψ, n〉+ to SK.

(→)+. If 〈φ→ ψ, n〉+ ∈ SK and 〈nnf(¬φ) ∨ ψ, n〉+ 6∈ SK, then add
〈nnf(¬φ) ∨ ψ, n〉+ to SK.

We call the procedure with these rules and clash definition SFD-
TableauFuzzySat+ and have:

Proposition 53. Let K be a propositional fuzzy KB. Then K |= 〈φ, n〉 iff the
SFD-TableauFuzzySat+ procedure returns true with input K∪{〈¬φ, 1− n〉+}.
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We may also solve the best entailment degree problem by relying on the fol-
lowing important observation (see, e.g., [394, 395, 396]). It has been shown
that, in case of propositional SFL, from a set K of fuzzy statements of the
form 〈φ, n〉 it is possible to determine a finite set NK ⊂ [0, 1], where |NK| is
O(|K|), such that bed(K, φ) ∈ NK, i.e., the best entailment degree of a formula
φ w.r.t. K has to be an element of NK.

Proposition 54 ([394]). Let K be a propositional fuzzy KB in NNF under
SFL and let φ be a formula. Then bed(K, φ) ∈ NK and bsd(K, φ) ∈ NK, where

NK = {0, 0.5, 1} ∪ {n | 〈φ, n〉 ∈ K}.
Therefore, bed(K, φ) can be determined by computing the greatest value
n ∈ NK such that K |= 〈φ, n〉. An easy way to search for this n is to or-
der the elements of NK and then to perform a binary search among these
values by successive entailment tests. Similarly, bsd(K, φ) can be determined
by computing the greatest value n ∈ NK such that K ∪ {〈φ, n〉} satisfiable.
Note that in this latter case we may rely on the SFD-TableauFuzzySat pro-
cedure.

Another method that does not require consideration of new constructs of
the form 〈φ, n〉+, is to represent 〈φ, n〉+ with a fuzzy statement of the form
〈φ, n+ ε〉, for a sufficiently small ε (this idea has been, e.g., used in [390]).
To choose such an ε, we may take advantage of Proposition 54. In fact, let us
define

N̄K = NK ∪ {1− n | n ∈ NK} . (8.61)

Now, we define ε as half of the minimal absolute difference among the values
in N̄KB . That is,

ε = min{d/2 | n,m ∈ N̄K, n 6= m, d = |n−m|} . (8.62)

Now we have that

Proposition 55. Let K be a propositional fuzzy KB. Then for n > 0

K |= 〈φ, n〉 iff K ∪ {〈¬φ, 1− n+ ε〉} is not satisfiable .

Moreover, K is satisfiable iff it has a model over the truth set N̄K.

Proposition 55 allows us now to use the SFD-TableauFuzzySat procedure in
place of SFD-TableauFuzzySat+ to decide both the entailment problem and
the best entailment degree problem.

Note also that a model I for K can be built as follows. Determine a clash-
free completion SK of K. Then build a model I by assigning I(p) = n if
〈p, n〉 ∈ SK and for which there does not exist another 〈p,m〉 ∈ SK with
m > n.

We complete this section, by showing that in fact the SFD-
TableauFuzzySat and SFD-TableauFuzzySat+ procedures can further be gen-
eralized to the  Lukasiewicz logic case over Ln. The main idea is to revert all
rules to non-deterministic rules in the following sense:
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• if I is model of 〈φ ∧ ψ, n〉 then I is a model of both 〈φ, n1〉 and 〈ψ, n2〉
for some n1, n2 ∈ Ln such that n1 ⊗l n2 = n;

• if I is model of 〈φ ∨l ψ, n〉 then I is a model of both 〈φ, n1〉 and 〈ψ, n2〉
for some n1, n2 ∈ Ln such that n1 ⊕ n2 = n.

Note the close relationship between the above properties and the (∧) and (∨)
rule in the  L-ORFuzzySat procedure, in which we used variables xφ and xψ
in place of the values n1 and n2 instead.

In fact, the following proposition shows that, using the fuzzy operators of
 Lukasiewicz fuzzy logic to combine two truth degrees a and b, no new degrees
can appear.

Proposition 56. Let a
n−1 ,

b
n−1 ∈ Ln. Then, under the fuzzy operators

of  Lukasiewicz fuzzy logic, 	l a
n−1 ,

a
n−1 ⊗l b

n−1 ,
a

n−1 ⊕ b
n−1 ,

a
n−1 ⇒ b

n−1 ∈
Ln [351].

Let  L-TableauFuzzySat procedure be as the SFD-TableauFuzzySat procedure,
in which we replace the rules with

(∧). If 〈φ ∧ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊗l n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n1〉 to SK.

(∨). If 〈φ ∨ ψ, n〉 ∈ SK, n1, n2 ∈ Ln such that n1 ⊕l n2 = n and
{〈φ, n1〉, 〈ψ, n2〉} 6⊆ SK , then add both 〈φ, n1〉 and 〈ψ, n1〉 to SK.

(→). If 〈φ→ ψ, n〉 ∈ SK and 〈nnf(¬φ) ∨ ψ, n〉 6∈ SK , then add
〈nnf(¬φ) ∨ ψ, n〉 to SK.

The  L-TableauFuzzySat+ procedure is determined from the SFD-
TableauFuzzySat+ procedure, by adapting additionally the (∧)+ and (∨)+

rules in a similar way as we did above and we can show:

Proposition 57. Let K be a propositional fuzzy KB K. Then

1. The  L-TableauFuzzySat procedure terminates.

2. K is satisfiable according to  Lukasiewicz logic over Ln iff the  L-
TableauFuzzySat procedure returns true.

3. K |= 〈φ, n〉 according to  Lukasiewicz logic over Ln iff the  L-
TableauFuzzySat+ procedure returns true with input K∪{〈¬φ, 1− n〉+}.

Eventually, it is not difficult to see that indeed, the SFL-TableauFuzzySat can
be modified to deal also with the case in which the truth combination functions
are specified via a matrix, as illustrated in Section 8.1.7. Specifically, in line
with Equation (8.35), let

f : (Ln)k → Ln

be a k-ary truth combination function, represented via a matrix Mf with
k + 1 columns and nk rows, where the first k columns are the arguments of
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the function and the last column contains the evaluation of the function on
the arguments. At first, in the following, we use expressions of the form

〈φ, n〉= (8.63)

where I is a model of the expression 〈φ, n〉= iff I(φ) = n.
Now, we extend

1. the notion of clash; and

2. the inference rules to cope with expressions of the form 〈φ, n〉=.

A clash is a pair 〈φ, n1〉= and 〈φ, n2〉= with n1 6= n2, while the additional rules
to be considered are of the following form. For any k-ary truth combination
function f

(Mf ). If 〈f(φ1, . . . , φk), n〉= ∈ SK and there are ni ∈ Ln (1 ≤ i ≤ k) such
that f(n1, . . . , nk) = n with 〈φi, ni〉= 6∈ SK, then add all 〈φi, ni〉= to
SK.

Of course, as the truth space Ln is finite, any rule (Mf ) can be applied only
finitely many times to an expression 〈f(φ1, . . . , φk), n〉= ∈ SK.

Now, the M-TableauFuzzySat procedure derived from the SFD-
TableauFuzzySat procedure is described in Algorithm 5.

Algorithm 5 M-TableauFuzzySat.

Input: A propositional fuzzy KB K with matrix-based truth combination functions.
Output: Check if K satisfiable.

1. Build non-deterministically a KB K′ such that

(a) |K′| ≤ |K|
(b) for each 〈φ, n〉 ∈ K there is 〈φ, n′〉= ∈ K′ with n′ ≥ n.

(c) there is no pair 〈φ, n〉 and 〈φ, n′〉 in K′ such that n′ 6= n.

2. Initialize the completion SK = K′;
3. Apply the following inference rules to SK′ until no more rules can be applied.

We call a set of fuzzy statements SK complete iff none of the rules below
can be applied to SK. Note that the rules are non-deterministic. For any
k-ary truth combination function f , consider

(Mf ). If 〈f(φ1, . . . , φk), n〉= ∈ SK and there are ni ∈ Ln (1 ≤ i ≤ k) such
that f(n1, . . . , nk) = n with 〈φi, ni〉= 6∈ SK, then add all 〈φi, ni〉= to
SK.

4. Return that K is satisfiable, i.e., true iff we find a complete and clash-free
completion SK of K.

It is easily verified that
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Proposition 58. Let K be a propositional fuzzy KB K with matrix-based truth
combination functions. Then

1. The M-TableauFuzzySat procedure terminates.

2. K is satisfiable iff the M-TableauFuzzySat procedure returns true.

3. K |= 〈ψ, n〉 iff the M-TableauFuzzySat procedure returns false for all
K∪ {〈ψ, n′〉=} with n′ < n and n′ ∈ Ln. Here we assume that Step 1 of
the M-TableauFuzzySat procedure adds 〈ψ, n′〉= to K′ as well.

Note that procedure M-TableauFuzzySat can straightforwardly be extended
to any finite and arbitrary structured truth space L, such as a complete lattice,
residuated lattice, etc.

Corollary 4. Proposition 58 holds also in case matrix-based truth combina-
tion functions are defined over any finite and arbitrary structured truth space
L in place of Ln.

Of course, there is a high amount of non-determinism inM-TableauFuzzySat
and it remains to be seen if such a method is viable in practice (possibly
involving several optimizations limiting the choices of the values).

8.2.2.4 Reduction to Classical Logic

In this section, our aim is to map both propositional SFL and
 Lukasiewicz logic knowledge bases into satisfiability and entailment preserv-
ing classical propositional knowledge bases. An immediate consequence is
then that we can rely on already implemented crisp SAT reasoners to rea-
son within these two propositional fuzzy logics fuzzy. This idea has been used
e.g., in [61, 396].

We illustrate first the case of SFL and then generalize it to
 Lukasiewicz logic.

Before we are going to formally present the mapping, we first illustrate the
basic idea we rely on. Our mapping relies on ideas presented in [36, 37] for
so-called regular multi-valued logics.

Assume we have a fuzzy KB

K = {α1, α2, α3, α4} with

α1 = 〈A, 0.4〉,
α2 = 〈¬A, 0.3〉,
α3 = 〈¬B, 0.8〉,
α4 = 〈¬B, 0.9〉 .

Let us introduce some new formulae, namely A≥0.4, A≤0.7, B≤0.2 and B≤0.1.
Informally, the expression A≥0.4 represents A is true to degree c ≥ 0.4, while
A≤0.7 represents A is true to degree c ≤ 0.7. Similarly, for the other formulae.
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Of course, we have to consider also the relationships among the introduced
formulae. For instance, B≤0.1 → B≤0.2. This formula dictates that if B’s
truth value is ≤ 0.1 then it is also ≤ 0.2. We may represent, thus, the fuzzy
statements α1 with the formula A≥0.4. Similarly, α2 may be mapped into
A≤0.7, α3 may be mapped into B≤0.2, while α4 may be mapped into B≤0.1.
This illustrates our basic idea.

Formally we proceed as follows. Let K be propositional SFL KB in
NNF in which all formulae of the form 〈φ→ ψ, n〉 have been replaced with
〈nnf(¬φ ∨ ψ), n〉.

Consider the set Ln. Without loss of generality, it can be assumed that Ln
is ordered: Ln = {γ1, . . . , γn} and γi < γi+1, 1 ≤ i ≤ n − 1. It is easy to see
that γ1 = 0 and γn = 1. We define L+

n = {c ∈ Ln : c 6= 0}.
Let A be the set of fuzzy atomic propositions occurring in K. For each

α, β ∈ Ln with α ∈ (0, 1] and β ∈ [0, 1), for each A ∈ A, two new atomic for-
mulae A≥α, A>β are introduced. A≥α represents the (non-fuzzy) proposition
“A’s truth is ≥ n”. A>β has similar meaning. The atomic elements A>1, A≥0

are not considered because they are not necessary, due to the restrictions on
the allowed degree of the propositions in the fuzzy KB.

The intended semantics of these newly introduced atomic formulae is pre-
served by some implication formulae. For each 1 ≤ i ≤ n−1, 2 ≤ j ≤ n−1 and
for each A ∈ A, CrispLn is the smallest set of classical formulae containing
these two type of formulae:

A≥γi+1 → A>γi

A>γj → A≥γj

(8.64)

As next, we need to map non-atomic fuzzy formulae into crisp variants. We
do this by reflecting the semantics of the logical connective. For instance,
〈A ∧B, 0.25〉 will be mapped into A≥0.25∧A≥0.35 and similarly, e.g., 〈¬A, 0.75〉
will be mapped into ¬A>0.25.

Formally, the reduction of fuzzy formulae mapping ρ.

CrispK = {ρ(φ, n) | 〈φ, n〉 ∈ K} ∪
CrispLn ,

(8.65)

where ρ(φ, n) is defined in Table 8.8:
It is easily verified that |CrispK| is linearly bounded by |K| and the fol-

lowing satisfiability preserving reduction property can be shown.

Proposition 59. Let K be a propositional SFL KB. Then K is satisfiable iff
CrispK is satisfiable, where CrispK is obtained according to Table 8.8.

Concerning the entailment problem, we may easily reduce it to the satisfia-
bility problem as, for c > 0, 〈¬φ, 1− c〉+ can be represented as 〈¬φ, 1− c−〉,
where c− is the next smaller value than c in Ln.
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TABLE 8.8: Mapping of propositional SFL statements to crisp statements.

x y ρ(x, y)

> c >
⊥ 0 >
⊥ c ⊥ if c > 0

A c A≥c
¬A c ¬A>1−c
φ ∧ ψ c ρ(φ, c) ∧ ρ(ψ, c)

φ ∨ ψ c ρ(φ, c) ∨ ρ(ψ, c)

Therefore, by relying on Equation (8.60), for c > 0, we have

K |= 〈φ, c〉 iff K ∪ {〈¬φ, 1− c−〉} is not satisfiable , (8.66)

where c− is the next smaller value than c in Ln and, thus, we may apply
Proposition 59 to solve the entailment decision problem. Eventually, the best
entailment degree problem can be reduced to calls to the entailment problem
for various c ∈ Ln, similarly as described in Section 8.2.2.3.

We next show how the mapping above can be extended to the case of
 Lukasiewicz logic as well. To this end, we recall the property

• if I is model of 〈φ ∧ ψ, n〉 then I is a model of both 〈φ, n1〉 and 〈ψ, n2〉
for some n1, n2 ∈ Ln such that n1 ⊗l n2 = n.

The main difference now is we cannot simply map, e.g., 〈A ∧B, 0.25〉 into
A≥0.25∧A≥0.35, but we need to take into account all possible combinations of
n1 and n2 such that n1⊗ln2 = 0.25 and, thus, 〈A ∧B, 0.25〉 is rather mapped
into ∨

c1,c2

A≥c1 ∧B≥c2

for c1, c2 ∈ L+
n such that c1 + c2 − 1 = 0.25.

The mapping is shown in Table 8.9.

Proposition 60. Let K be a propositional  Lukasiewicz logic KB. Then K
is satisfiable iff CrispK is satisfiable, where CrispK is obtained according to
Table 8.9.

As for the SFL case, both the entailment and the best entailment degree
problems can be reduced to the satisfiability problem (see Equation (8.66)).

Eventually, as for Section 8.2.2.3, we conclude by showing that the idea
illustrated for  Lukasiewicz logic can be adapted to the case of matrix-based
truth-combination functions (see Section 8.1.7). At first, for γ ∈ Ln we intro-
duce atomic formulae of the form

A=γ
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TABLE 8.9: Mapping of propositional  Lukasiewicz logic statements to crisp
statements.

x y ρ(x, y)

> c >
⊥ 0 >
⊥ c ⊥ if c > 0

A c A≥c
¬A c ¬A>1−c
φ ∧ ψ c

∨
c1,c2

ρ(φ, c1) ∧ ρ(ψ, c2)

for c1, c2 ∈ L+
n such that c1 + c2 − 1 = c.

φ ∨ ψ c ρ(φ, c) ∨ ρ(ψ, c) ∨∨c1,c2 ρ(φ, c1) ∧ ρ(ψ, c2)

for c1, c2 ∈ L+
n such that c1 + c2 = c.

Informally, the expression A=γ represents A is true to degree γ. Then, CrispLn
is the smallest set of classical formulae containing:∧

γ1 6=γ2
A=γ1

∧A=γ2
→ ⊥ (8.67)

stating that A cannot have two different truth degrees. Now, the reduction
of fuzzy formulae with truth combination functions defined via matrixes is
defined as

CrispK = {ρ(φ, n′) | 〈φ, n〉 ∈ K, n′ ≥ n} ∪
CrispLn ,

(8.68)

where ρ(φ, n) is defined in Table 8.10, and f is a k-ary truth combination
function

f : (Ln)k → Ln .

Then we have that

TABLE 8.10: Mapping of matrix-based fuzzy propositional statements to
crisp statements.

x y ρ(x, y)

> 1 >
> c ⊥ if c < 1

⊥ 0 >
⊥ c ⊥ if c > 0

A c A=c

f(φ1, . . . , φk) c
∨
〈c1,...,ck〉(ρ(φ1, c1) ∧ . . . ∧ ρ(φk, ck)))

for ci ∈ Ln (1 ≤ i ≤ k) such that f(c1, . . . , ck) = c.
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Proposition 61. Let K be a propositional fuzzy KB with matrix-based truth
combination functions. Then K is satisfiable iff CrispK is satisfiable, where
CrispK is obtained according to Table 8.10.

As for the SFL case, both the entailment and the best entailment degree
problems can be reduced to the satisfiability problem (compare with Propo-
sition 58).

Proposition 62. Let K be a propositional fuzzy KB with matrix-based truth
combination functions. Then K |= 〈ψ, n〉 iff for all n′ < n with n′ ∈ Ln,
CrispK ∪ {ρ(ψ, n′)} is not satisfiable.

Note that procedure M-TableauFuzzySat can straightforwardly be extended
to any finite and arbitrary structured truth space L, such as a complete lattice,
residuated lattice, etc.

Corollary 5. Proposition 58 holds also in case matrix-based truth combina-
tion functions are defined over any finite and arbitrary structured truth space
L in place of Ln.

8.2.3 Concrete Domains and Aggregation Operators

In this section, we will show how we may extend fuzzy logic endowed with
so-called fuzzy concrete domains [359, 398]. Specifically, we introduce the logic
P(D), a fuzzy propositional  Lukasiewicz logic under extended with concrete
domains in order to handle numerical, as well as non-numerical features, al-
lowing to express, for instance, e.g., I am searching for a passenger car costing
about 25000e yet if the car has a GPS system and more than two-year war-
ranty I can spend up to 28000e.

The notion is essentially an extension of the notion of concrete domains
we have introduced for description logics (see Section 4.2.2.2).

For instance, we may be able to express

“I would like a passenger car with an alarm system if it costs more
than 25000e”

using the expression

PassengerCar ∧ ((price ≥25000)→ AlarmSystem)

In the formula above the expression (price ≥25000) acts as a so-called con-
crete domain, i.e., the atom price has a fixed interpretation over a domain, in
this case an integer I(price) and (price ≥25000) will be true under an inter-
pretation I if I(price) ≥ 25000. Such expressions are called hard constraints
in [359]. Similarly, we may express so-called soft constraints (or fuzzy con-
straints) [359], we instead may be satisfied to a certain degree. For instance,
we may be able to express
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“if a GPS system is mounted on the car she can spend up to
22000efor a sedan. The less I spend the more I’m satisfied. I’m
definitely satisfied if I spend less than 18000e”

using the expression

GPS system→ (price ls(18000, 22000)) .

In the above expression, ls(18000, 22000) is the well-known left-shoulder fuzzy
set membership function we have seen in Section 8.1.1. Now, under un inter-
pretation I, the expression (price ls(18000, 22000)) will have a degree of truth
I((price ls(18000, 22000))) determined by the evaluation of the left-shoulder
function on the price, i.e.,11

I((price ls(18000, 22000))) = ls(18000, 22000)(I(price)) .

We next provide the exact formulation. Similarly to Section 4.2.2.2, a fuzzy
concrete domain, also called a fuzzy datatype theory D = 〈∆D, ·D〉 consists of
a datatype domain ∆D and a mapping ·D that assigns to each data value
an element of ∆D, to each datatype into a function from ∆D to [0, 1]. The
elementary datatypes we allow here are of two types: hard datatype and soft
datatype. A hard datatype has one of the following forms: for any rational
number n

≥n, ≤n, =n ,

with semantics

(≥n)D(x) = 1 if x ≥ n, else 0

(≤n)D(x) = 1 if x ≤ n, else 0

(=n)D(x) = 1 if x = n, else 0 .

A soft datatype has one of the following form:

ls(a, b), rs(a, b), tri(a, b, c), trz(a, b, c, d),

with semantics (see Section 8.1.1)

(ls(a, b))D(x) = ls(a, b)(x)

(rs(a, b))D(x) = rs(a, b)(x)

(tri(a, b, c))D(x) = tri(a, b, c)(x)

(trz(a, b, c, d))D(x) = trz(a, b, c, d)(x) .

Now, let F be an alphabet of feature names, distinct from the alphabet of
propositional letters. A concrete atom is an expression of the form

(f d) (8.69)

11Recall that I(price) is an integer.
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where f is a feature name and d is a datatype.
A formula is now inductively defined as follows:

1. every propositional letter is a formula;

2. every concrete atom is a formula;

3. if ψ and φ are formulae, then so are ¬ψ, ψ ∧ φ, ψ ∨ φ, ψ → φ. As usual,
we use ψ ↔ φ in place of (ψ → φ) ∧ (φ→ ψ);

4. if φ is a formula and w ∈ [0, 1], then w · φ is a formula;

5. if ψ1, . . . , ψk are formulae, then w1 ·ψ1 + . . .+wk ·ψk is a formula, where
wi ∈ [0, 1] and

∑
i wi ≤ 1;

6. if φ is a formula, then lm(a, b)(φ) is a formula, where lm(a, b) is a fuzzy
modifier (see Section 8.1.8);

7. if @ is an aggregation function (see Section 8.1.6) and ψ1, . . . , ψk are
formulae, then @(ψ1, . . . , ψk) is a formula.

A P(D) fuzzy statement is defined as follows:

• if ψ is a formula and n ∈ (0, 1] then 〈ψ, n〉 is a fuzzy statement of P(D).
If n is omitted, then 〈ψ, 1〉 is assumed.

Eventually, a P(D) fuzzy knowledge base is a set of P(D) fuzzy statements.
A fuzzy interpretation I w.r.t. a concrete domain D,

1. maps each propositional literal into [0, 1];

2. maps each feature name into ∆D.

I is inductively extended to formulae as follows:

I((f d)) = dD(I(f))

I(¬ψ) = 1− I(ψ)

I(ψ ∧ φ) = I(ψ)⊗l I(φ)

I(ψ ∨ φ) = I(ψ)⊕l I(φ)

I(ψ → φ) = I(ψ)→l I(φ)

I(w · φ) = w · I(φ)

I(lm(a, b)(φ)) = lm(a, b)(I(φ))

I(w1 · ψ1 + . . .+ wk · ψk) =
∑
i

wi · I(ψi)

I(@(ψ1, . . . , ψk)) = @(I(ψ1), . . . , I(ψk)) .

Eventually, the notions of a model of a fuzzy statement, of a knowledge base,
and that of entailment, best entailment degree and best satisfiability degree
are defined as in Section 8.2.1. For instance, I is a model (satisfies) of a fuzzy
statement 〈ψ, n〉 iff I(ψ) ≥ n.
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Example 27 ([48, 359]). Assume, that a car seller sells a sedan car. A buyer
is looking for a second-hand passenger car. Both buyers as well as sellers
have preferences (restrictions). Our aim is to find the best agreement. The
preferences are as follows. Concerning the buyer:

1. He does not want to pay more than 26000 euro (buyer reservation value).

2. If there is an alarm system in the car then he is completely satisfied with
paying no more than 22300 euro, but he can go up to 22750 euro to a
lesser degree of satisfaction.

3. He wants driver insurance and either theft insurance or fire insurance.

4. He wants air conditioning and the external color should be either black
or gray.

5. Preferably the price is no more than 22000 euro, but he can go up to
24000 euro to a lesser degree of satisfaction.

6. The kilometers warranty is preferably at least 175000, but he may go
down to 150000 to a lesser degree of satisfaction.

7. The weights of the preferences 2-6 are, (0.1, 0.2, 0.1, 0.2, 0.4). The
higher the value the more important is the preference.

Concerning the seller:

1. He wants to sell no less than 22000 euro (seller reservation value)

2. If there is a navigator system in the car then he is completely satisfied
with paying no less than 22750 euro, but he can go down to 22500 euro
to a lesser degree of satisfaction.

3. Preferably the buyer buys the Insurance Plus package.

4. The kilometers warranty is preferably at most 100000, but he may go up
to 125000 to a lesser degree of satisfaction.

5. The monthly warranty is preferably at most 60, but he may go up to 72
to a lesser degree of satisfaction.

6. If the color is black then the car has air conditioning.

7. The weights of the preferences 2-6 are, (0.3, 0.1, 0.3, 0.1, 0.2). The
higher the value the more important is the preference.

We have also some background theory about the domain:

1. A sedan is a passenger car.

2. A satellite alarm system is an alarm system.
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3. The navigator pack is a satellite alarm system with a GPS system.

4. The Insurance Plus package is a driver insurance together with a theft
insurance.

5. The car colors are black or gray.

Now, the background knowledge can be encoded as:

Sedan→ PassengerCar
SatelliteAlarm→ AlarmSystem
NavigatorPack ↔ (SatelliteAlarm ∧GPS system)
InsuranceP lus↔ (DriverInsurance ∧ TheftInsurance)
ExColorBlack ∨ ExColorGray
ExColorBlack ∧ ExColorGray → 0

The buyer’s preferences can be encoded as follows:

1. B ↔ (PassengerCar ∧ (HasPrice ≤26000))

2. B1 ↔ (AlarmSystem→ (HasPrice ls(22300, 22750))

3. B2 ↔ (DriverInsurance ∧ (TheftInsurance ∨ FireInsurance))

4. B3 ↔ (Airconditioning ∧ (ExColorBlack ∨ ExColorGray))

5. B4 ↔ (HasPrice ls(22000, 24000))

6. B5 ↔ (HasKMWarranty rs(15000, 175000))

7. Buy ↔ (B ∧ ((0.1 ·B1) + (0.2 ·B2) + (0.1 ·B3) + (0.2 ·B4) + (0.4 ·B5)))

Please note that the concept Buy collects all the buyer’s preferences together
in such a way that the higher the maximal degree of satisfiability of Buy
(i.e., bsd(K, Buy)), the more the buyer is satisfied.
The seller’s preferences can be encoded as follows:

1. S = (Sedan ∧ (HasPrice ≥ 22000))

2. S1 = (NavigatorPack → (HasPrice rs(22500, 22750))

3. S2 = InsuranceP lus

4. S3 = (HasKMWarranty ls(100000, 125000))

5. S4 = (HasMWarranty ls(60, 72))

6. S5 = (ExColorBlack → AirConditioning)

7. Sell = (S ∧ ((0.3 · S1) + (0.1 · S2) + (0.3 · S3) + (0.1 · S4) + (0.2 · S5)))

Similarly to the buyer case, the concept Sell collects all the seller’s preferences
together in such a way that the higher is the maximal degree of satisfiability
of Sell (i.e., bsd(K, Sell)), the more the seller is satisfied.

Now, it is clear that the best agreement among the buyer and the seller is
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determined by the maximal degree of satisfiability of the conjunction Buy ∧
Sell, i.e., we have to determine

bsd(K, Buy ∧ Sell) .
In particular, in a model guaranteeing the maximal degree of satisfaction of
Buy ∧ Sell, we have that

bsd(K, Buy ∧ Sell) = 0.7
HasPrice = 22000.0

HasKMWarranty = 175000.0
HasMWarranty = 0.0 .

Reasoning. We extend the OR-based KB satisfiability decision algorithm (see
Section 8.2.2.2, Algorithm  L-ORFuzzySat) to deal with concrete domains and
aggregates. The extension to the best entailment degree and best satisfiability
degree problems is as for Section 8.2.2.2.

The crucial point is to show that we may map the additional constructs
we have introduced here into sets of MILP constraints, that is, the newly
introduced operators should be MILP representable, which is indeed the case.
The rules can be found in Appendix F.

8.2.4 On Fuzzy IF-THEN Rules

One of the most important features of fuzzy logic is its ability to perform
approximate reasoning [473], which involves inference rules with premises,
consequences or both of them containing fuzzy propositions. A very popular
formalism, due to their practical success, is a fuzzy rule-based system.

A fuzzy IF-THEN system [242] consists of a rule base (a set of IF-THEN
rules) and a reasoning algorithm performing an inference mechanism such as
Rete [161]. In general, the input of the system is the current value for the
input variable and the output is a fuzzy set, which can be defuzzified into a
single value. In a fuzzy IF-THEN rule, its antecedents, consequences, or both
are fuzzy. Fuzzy IF-THEN rules are fired to a degree, which is a function of
the degree of match between their antecedent and the input. The deduction
rule is Generalised Modus Ponens.

Roughly speaking, given a rule “IF A THEN B”, where A and B are fuzzy
propositions, it is possible from a premise “A′” which matches A to some
degree, to deduce “B′”, which is similar to B.

One of the most popular IF-THEN systems is the Mamdani model [303].
In a Mamdani model, fuzzy rules have the form

IF X1 IS A1 AND . . . AND Xn IS An THEN Y IS B , (8.70)

where Ai and B are linguistic values defined by fuzzy sets on universes of
discourse Xi and Y respectively, i = 1, . . . n.
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For every clause in the antecedent of the rule, the matching degree between
the current value of the variable and the linguistic label in the rule is com-
puted (typically, using the minimum or another t-norm). If there exist several
clauses, they are aggregated into a firing degree, using a fuzzy logic operator
(typically, the maximum). Then, this firing degree is used for modifying the
consequent of the rule using some function (typically the minimum). Some-
times this function is referred to in the literature as an implication function,
but this is a misleading term which should be avoided (e.g., minimum is not
an implication function) [187].

Rules are fired using some inference algorithm. The computed conse-
quences related to the same variable are aggregated (typically, using the max-
imum). Then, the output variables can be defuzzified. Some examples of de-
fuzzification methods are the LOM (Largest Of Maxima), SOM (Smallest Of
Maxima), and MOM (Middle Of Maxima) [242]. More precisely, let B de-
note the fuzzy set to be defuzzified and let x be an arbitrary element of the
universe. Then for all x:

• xLOM is the LOM iff µB(xLOM ) ≥ µB(x) and, if µB(xLOM ) = µB(x)
then xLOM > x.

• xSOM is the SOM iff µB(xSOM ) ≥ µB(x) and, if µB(xSOM ) = µB(x)
then xSOM < x.

• xMOM is the MOM iff xMOM = (xLOM + xSOM )/2.

Now, we show here how to use P(D) (see Section 8.2.3) to represent Mamdani
fuzzy IF-THEN rules and to reason with them (differently from [3], which only
allows to represent fuzzy controllers). For more insights, we refer the reader
to [186]. The interesting thing is that it is not only possible to represent a
fuzzy control problem, but also background knowledge related to it.

In order to represent a fuzzy control problem we proceed as follows. Firstly,
for each variable of the system, we define a concrete feature name f repre-
senting it and specify its range (a subset of the reals [fmin, fmax]). Then, we
define the different linguistic labels, which will be used to describe the value
of these variables, using triangular fuzzy sets.

Next, we define a formula resuming the rule base. It is well known [186] that
a set {r1, . . . , rp} of Mamdani rules ri of the form (8.70) can be transformed
in a formula Mamd of the form

Mamd↔
∨

i∈{1,...,p}

(Ai1 ∧g . . . ∧g Ain ∧g Bi) (8.71)

An alternative [186] consists in involving an r-implication to represent a rule.
That is, a set {r1, . . . , rp} of Mamdani rules ri of the form (8.70) can be
transformed in a formula Rules of the form

Rules↔
∧

i∈{1,...,p}

((Ai1 ∧ . . . ∧Ain)→ Bi) (8.72)
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Then, we represent the input of the system as fuzzy propositions.

Example 28 ([48]). For the sake of concrete illustration, consider an adaption
of the simple example available at http: // en. wikipedia. org/ wiki/ Fuzzy_

system . It considers the design of a fuzzy controller for an anti-lock brak-
ing system. The encoding in P(D) is shown in Table 8.11. The system has
two input variables, temperature and pressure, which are used to compute an
output value which will adjust the throttle. Specifically,

• temperature has 5 labels associated: cold, cool, nominal, warm, and hot.

• pressure has 5 labels: weak, low, ok, strong, and high.

• throttle has 7 labels: N3 (large negative), N2 (medium negative), N1
(small negative), Z (zero), P1 (small positive), P2 (medium positive),
and P3 (large positive).

The rules of the system are the following:

1. IF temperature IS cool AND pressure IS weak, THEN throttle is P3.

2. IF temperature IS cool AND pressure IS low, THEN throttle is P2.

3. IF temperature IS cool AND pressure IS ok, THEN throttle is Z.

4. IF temperature IS cool AND pressure IS strong, THEN throttle is N2.

The linguistic labels of the variables are defined using fuzzy concrete con-
cepts. For example, TempCool, the label representing that the temperature
is cool, can be defined as tri(480, 500, 520), ThrottleP2 as tri(10, 15, 20) and
ThrottleZ as tri(15, 20, 25).

Now assume that the temperature is 489.6, which is represented as
(temperature =489.6). Then, µcool(481.92) = tri(480, 500, 520)(489.6) =
0.48. We also assume that the pressure is 42.15, i.e., we have (pressure =

42.15), and that µlow(42.15) = 0.57, µok(42.15) = 0.25 and µweak(42.15) =
µstrong(42.15) = µhigh(42.15) = 0. That is, the temperature is in the cool
state, the pressure is in the low and ok states, in such a way that only rules 2
and 3 are fired.

Rule 2 is fired with a degree min{0.48, 0.57} = 0.48, so throttle is P2 with
degree 0.48. Rule 3 is fired with a degree min{0.48, 0.25} = 0.25, so throttle
is Z with degree 0.25. These two values for throttle are aggregated using the
maximum.

Then, the defuzzification step is performed. It can be verified that LOM =
17.6, MOM = 15, and SOM = 12.4.

For concrete feature name throttle representing an output variable
of the system, LOM is implemented in the following steps (instruction
(defuzzify-lomMamd throttle) in Table 8.11).

1. Compute the maximum degree γ of satisfiability of Mamd, that is, we
determine γ = bsd(K,Mamd).

http://en.wikipedia.org
http://en.wikipedia.org
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TABLE 8.11: Fragment of a P(D) fuzzy KB example for fuzzy control.

%feature names
temperature
pressure
throttle

% Labels for the variables
TempCool := tri(480, 500, 520), . . .
PressLow := tri(30, 40, 45)
PressOK := tri(40, 48.6, 57.2), . . .
ThrottleP2 := tri(10, 15, 20),
ThrottleZ := tri(15, 20, 25), . . .

% Encoding of Mamdami Rules
Rule1 ↔ ((temperature TempCool) ∧g (pressure PressWeak) ∧g (throttle ThrottleP3))
Rule2 ↔ ((temperature TempCool) ∧g (pressure PressLow) ∧g (throttle ThrottleP2))
Rule3 ↔ ((temperature TempCool) ∧g (pressure PressOK) ∧g (throttle ThrottleZ))
Rule4 ↔ ((temperature TempCool) ∧g (pressure PressStrong) ∧g (throttle ThrottleN2))

% Encoding of Mamdami Rule base
Mamd = (Rule1 ∨g Rule2 ∨g Rule2 ∨g Rule3 ∨g Rule4)

% Input to the controller
(temperature =489.6)
(pressure =42.15)

% Output of the controller
(defuzzify-lom? Mamd throttle)

2. Ensure that Mamd is true equal or greater than γ, i.e., we add the fuzzy
statement 〈Mamd, γ〉 to the KB.

3. Now, maximize the value of the (internal) variable xthrottle representing
the value of throttle, i.e., determine

vthrottle := max xthrottle s.t. K ∪ {〈Mamd, γ〉} satisfiable .

4. Output the result vthrottle.

The SOM can be computed in a similar way, but minimizing the value of the
(internal) variable xthrottle representing the value of t. Finally, MOF can be
computed as (LOM + SOM)/2.
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Chapter 9

Fuzzy RDF & RDFS

9.1 Introduction

RDF [361] has become a quite popular Semantic Web representation
formalism. The basic ingredients are triples of the form (s, p, o), such as
(tom, likes, tomato), stating that subject s has property p with value o.

However, under the classical semantics, RDF cannot represent vague in-
formation and, to this purpose, some Fuzzy RDF variants have been pro-
posed [313, 314, 315, 429, 447, 448, 450]: essentially they allow us to state
that a triple is true to some degree, e.g., (tom, likes, tomato) is true to degree
at least 0.9.1

Our main goal of this part is to provide, under very general semantics, a
minimal deductive system for fuzzy RDF, along the lines described by [325].
That is, we essentially fuzzify the RDFS sub-language ρdf, which is the core
part of RDFS (see Chapter 3). To this end, the main conceptual shift parallels
the one from crisp statements to fuzzy statements (see Chapter 8). Namely,
rather than interpreting an RDFS triple (s, p, o) being either true or false, we
associate to it a degree of truth taken from the truth space [0, 1]. Therefore,
and not surprisingly, as we did for mathematical fuzzy logic (see Section 8.2),
in which fuzzy statements were of the form 〈φ, n〉 with n ∈ [0, 1], in fuzzy
RDFS we will have fuzzy triples of the form 〈(s, p, o), n〉 with the intended
meaning “the degree of truth of the triple (s, p, o) is equal or greater than n.”

9.2 Fuzzy RDF & RDFS

Syntax. To start with, we recall from Section 3.2 that a ρdf triple is a triple
τ of the form

(s, p, o) ∈ UBL×U×UBL ,

1We also refer the reader to [476, 265, 264, 427] to an even more general setting
in which we may annotate a triple with an element of a so-called annotation domain,
i.e., an idempotent and commutative semi-ring and the relative SPARQL query language
AnQL http://anql.deri.org/.
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where ρdf is defined as the following subset of the RDFS vocabulary

ρdf = {sp, sc, type, dom, range} ,

supporting sub-property (sp), subclass (sc), typing (type), property domain
restriction (dom), and property range restriction (range).

Now, a fuzzy RDFS triple is an expression

〈τ, n〉 ,

where τ is a triple and n ∈ [0, 1]. The intended semantics is that the
degree of truth of the fuzzy triple is not less than n. For instance,
〈(audiTT, type, SportsCar), 0.8〉 is a fuzzy triple, intending that AudiTT is
almost a sports car. In a fuzzy triple 〈τ, n〉, the truth value n may be omitted
and, in that case, the value n = 1 is assumed.

A fuzzy RDFS graph G (or simply a fuzzy graph, or fuzzy RDF Knowledge
Base) is a set of fuzzy RDF triples.

The notions of universe of a graph G, the vocabulary of G, ground graph,
and variable assignment are as for the crisp case (see Section 3.2).

Without loss of generality we may also assume that there are not two fuzzy
triples 〈τ, n〉 and 〈τ,m〉 in a fuzzy graph G. If this is the case, we may just
remove the fuzzy triple with the lower score.

Semantics. The semantics is a natural extension of the crisp one, in which
the interpretation of properties and classes become fuzzy sets instead of crisp
sets.

In the remainder, let us fix a t-norm ⊗ and its dual ⊕. A fuzzy interpre-
tation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 ,

where ∆R,∆P ,∆C ,∆L are interpretation domains of I and P [[·]], C[[·]], ·I are
interpretation functions of I.

They have to satisfy:

1. ∆R is a nonempty finite set of resources, called the domain or universe
of I;

2. ∆P is a finite set of property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R is a distinguished subset of ∆R identifying if a resource de-
notes a class of resources;

4. ∆L ⊆ ∆R, the set of literal values, ∆L contains all plain literals in L∩V ;

5. P [[·]] maps each property name p ∈ ∆P into a function P [[p]] : ∆R×∆R →
[0, 1], i.e., assigns a degree to each pair of resources, denoting the degree
of being the pair an instance of the property p;



Fuzzy RDF & RDFS 165

6. C[[·]] maps each class c ∈ ∆C into a function C[[c]] : ∆R → [0, 1], i.e., as-
signs a degree to every resource, denoting the degree of the resource
being an instance of class c;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P and such that ·I
is the identity for plain literals and assigns an element in ∆R to each
element in L.

Note that the only difference so far relies on points 5 and 6, in which the
extension functions become now fuzzy membership functions.

The notion entailment is defined using the idea of satisfaction of a graph
under certain interpretation. Intuitively a ground fuzzy triple 〈(s, p, o), n〉 in
a fuzzy RDF graph G will be satisfied under the interpretation I if p is in-
terpreted as a property name, s and o are interpreted as resources, and the
interpretation of the pair (s, o) belongs to the extension of the property as-
signed to p to a degree not less than n.

Formally, an interpretation I is a model of an annotated ground graph
G, denoted I |= G, if and only if I is an interpretation over the vocabulary
ρdf ∪ universe(G) that satisfies the following conditions:

Simple:

1. 〈(s, p, o), n〉 ∈ G implies pI ∈ ∆P and P [[pI ]](sI , oI) ≥ n;

Subproperty:

1. P [[spI ]](p, q)⊗ P [[spI ]](q, r) ≤ P [[spI ]](p, r);

2. P [[pI ]](x, y)⊗ P [[spI ]](p, q) ≤ P [[qI ]](x, y);

Subclass:

1. P [[scI ]](c, d)⊗ P [[scI ]](d, e) ≤ P [[scI ]](c, e);

2. C[[cI ]](x)⊗ P [[scI ]](c, d) ≤ P [[dI ]](x);

Typing I:

1. C[[c]](x) = P [[typeI ]](x, c);

2. P [[domI ]](p, c)⊗ P [[p]](x, y) ≤ C[[c]](x);

3. P [[rangeI ]](p, c)⊗ P [[p]](x, y) ≤ C[[c]](y);

Typing II:

1. For each e ∈ ρdf, eI ∈ ∆P ;

2. P [[spI ]](p, q) is defined only for p, q ∈ ∆P ;

3. C[[scI ]](c, d) is defined only for c, d ∈ ∆C ;

4. P [[domI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;
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5. P [[rangeI ]](p, c) is defined only for p ∈ ∆P and c ∈ ∆C ;

6. P [[typeI ]](s, c) is defined only for c ∈ ∆C .

It is easily verified that the classical setting is as the case in which the truth
space is L2 = {0, 1} in place of [0, 1] (the t-norm can be arbitrary).

It also easily verified that, e.g., the condition 1 of the subclass condition
encodes the fuzzy FOL statement

〈∀x.[(c(x)→ d(x)) ∧ (d(x)→ e(x))]→ (c(x)→ d(x)), 1〉 ,

that, by the way, can be derived via axioms (A1) and (A5a) of the BL logic
(see Section 8.2.2.1). The other conditions are derived similarly.

Finally, entailment among annotated ground fuzzy graphs G and H is as
usual. Now, G |= H, where G and H may contain blank nodes, if and only if
for any grounding G′ of G there is a grounding H ′ of H such that G′ |= H ′.

Example 29. Suppose we want to state the following: Skype collaborators are
also Ebay collaborators to some degree since Ebay possesses 30% of Skype’s
shares, and also that Toivo is a part-time Skype collaborator:

〈(SkypeCollab, sc, EbayCollab), 0.3〉
〈(toivo, type, SkypeCollab), 0.5〉

Then, e.g., under the product t-norm ⊗p, we can infer the following triple:

〈(toivo, type, EbayCollab), 0.15〉 .

Informally, as Toivo is a Skype collaborator and a Skype collaborator is an
Ebay collaborator, then Toivo is an Ebay collaborator, too. Concerning the
degree to which this statement holds, by Equation (8.25), we have that Toivo
is an Ebay collaborator to degree not smaller than 0.5⊗p 0.3 = 0.15.

Remark 22. Note that we always have that G |= 〈τ, 0〉. Clearly, triples of the
form 〈τ, 0〉 are uninteresting and, thus, in the following we do not consider
them as part of the language.

As for the crisp case, it can be shown that:

Proposition 63 ([429]). Any fuzzy RDFS graph has a finite model.

Therefore, we do not have to care about consistency.

9.3 Fuzzy Conjunctive Queries

Concerning query answering, we extend naturally the conjunctive queries
defined in Section 3.3 and more extensively in Section 6.2 to the fuzzy setting.
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As in Section 3.3, we assume that a fuzzy graph G is ground, that is blank
nodes have been skolemized, i.e., replaced with terms in UL.

Informally, queries are as for the classical case where triples are replaced
with fuzzy triples in which fuzzy variables (taken from an appropriate alphabet
and denoted Λ) may occur. We allow built-in triples of the form (s, p, o), where
p is a built-in predicate taken from a reserved vocabulary and having a fixed
interpretation, such as (λ,≤, l) stating that the value of λ has to be ≤ than
the value l ∈ L. We generalize the built-ins to any n-ary predicate p, where
p’s arguments may be fuzzy variables, ρdf variables, domain values of [0, 1],
values from UL, and p has a fixed interpretation. We will assume that the
evaluation of the predicate can be decided in finite time. As for the crisp case,
for convenience, we write “functional predicates” as assignments of the form
x :=f(z) and assume that the function f(z) is safe. We also assume that a
non-functional built-in predicate p(z) should be safe as well.

To start with, a fuzzy query is of the form

〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′) (9.1)

in which ϕ(x,Λ,y,Λ′) is a conjunction (as for the crisp case, we use “,” as
conjunction symbol) of fuzzy triples and built-in predicates, x and Λ are the
distinguished variables, y and Λ′ are the vectors of non-distinguished variables
(existential quantified variables), and x, Λ, y and Λ′ are pairwise disjoint.
Variable Λ and variables in Λ′ can only appear in place of degrees of truth or
built-in predicates. The query head contains at least one variable.

For instance, the query

〈q(x), s〉 ← 〈(x, type, SportsCar), s1〉, (x, hasPrice, y), s :=s1 · cheap(y) ,

where, e.g., cheap(p) = ls(10000, 1500)(x), has intended meaning to retrieve
all cheap sports cars, where ls(10000, 1500) is a left-shoulder fuzzy membership
function (see Section 8.1.1). Any answer x is scored according to the product
of being cheap and a sports car.

Given a fuzzy graph G, a query 〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′), a vector
t of terms in universe(G) and a truth degree λ in [0, 1], we say that 〈q(t), λ〉
is entailed by G, denoted G |= 〈q(t), λ〉, if and only if in any model I of G,
there is a vector t′ of terms in universe(G) and a vector λ′ of truth degrees
in [0, 1] such that I is a model of ϕ(t, λ, t′, λ′). If G |= 〈q(t), λ〉 then 〈t, λ〉 is
called an answer to q. The answer set of q w.r.t. G is

ans(G, q) = {〈t, λ〉 | G |= 〈q(t), λ〉, λ 6= 0 and
for any λ′ 6= λ such that G |= 〈q(t), λ′〉, λ′ ≤ λ holds} .

That is, for any tuple t, the truth degree λ is as large as possible.

Disjunctive fuzzy queries with aggregation operators. As we did in
Section 6.2, concerning crisp queries, we extend the notion of fuzzy conjunctive
query to include aggregation operators as well.
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As we have seen, aggregates may be like the usual SQL aggregate functions
such as SUM,AVG,MAX,MIN. But now, we have also logic specific aggregates
such as ⊕ and ⊗.

Formally, let @ be an aggregate function with

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

then a query with aggregates is of the form

〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,y,Λ′),
GroupedBy(w),
Λ:=@[f(z)] ,

(9.2)

where w are variables in x or y and each variable in x occurs in w and any
variable in z occurs in y or Λ′.

From a semantics point of view, we say that I is a model of (satisfies)
q(t, λ), denoted I |= 〈q(t),Λ〉 if and only if

λ = @[λ1, . . . , λk] where g = {〈t, t′1, λ′1〉, . . . , 〈t, λ, t′k, λ′k〉},
is a group of k tuples with identical projection
on the variables in w, ϕ(t, t′r, λ

′
r) is true in I

and λr = f(t) where t is the projection of 〈t′r, λ′r〉
on the variables z .

Now, the notion of G |= 〈q(t),Λ〉 is as usual: any model of G is a model of
〈q(t),Λ〉.

We conclude by defining a disjunctive query q as usual as a finite set of
conjunctive queries in which all the rules have the same head. Intuitively, the
answers to a disjunctive query are the union of the answers of the conjunctive
queries. That is, for a disjunctive query q = {q1, . . . , qm}, G entails q (denoted
G |= q) iff G |= qi for some qi ∈ q.

Top-k Retrieval. As now each answer to a query has a degree of truth
(i.e., score), the basic inference problem that is of interest is the top-k retrieval
problem, formulated as follows.

Given a fuzzy graph G, and a query q, retrieve k answers 〈t, λ〉 with
maximal degree and rank them in decreasing order relative to the degree λ,
denoted

ansk(G, q) = Topk ans(G, q) .

We point the interested reader to Appendix G for a variant of the SPRQL
query language for RDFS (see Section 6.3) allowing to query fuzzy RDFS
graphs.
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9.4 Reasoning

In what follows, we provide a sound and complete deductive system (for
the graph entailment problem) for fuzzy ρdf (see [429]).

The most important feature of fuzzy RDFS is that we are able to provide a
deductive system in the style of the one for classical RDFS (see Section 3.4).
Moreover, only the support for the domain dependent ⊗ and ⊕ operations
has to be provided and, thus, are amenable to an easy implementation on top
of existing systems. The rules in Table 9.1 are arranged in groups that cap-
ture the semantic conditions of models, A,B,C,X, and Y are meta-variables
representing elements in UBL and D,E represent elements in UL. The rule
set contains two rules, (1a) and (1b), that are the same as for the crisp case,
while rules (2a) to (5b) are the annotated rules homologous to the crisp ones.
Finally, rule (6) is specific to the annotated case.

Please note that rule (6) is destructive i.e., this rule removes the premises
as the conclusion is inferred. We also assume that a rule is not applied if the
consequence is of the form 〈τ, 0〉 (see Remark 22).

The reader may notice also that, except for rule (1a), (1b) and (6), all rules
apply the so-called graded deduction rule we have seen in Equation (8.44),
related to mathematical fuzzy logic.

It can be shown that:

Proposition 64 (Soundness and completeness [429]). For a fuzzy graph, the
proof system ` is sound and complete for |=, that is, (1) if G ` 〈τ, λ〉 then
G |= 〈τ, λ〉 and (2) if G |= 〈τ, λ〉 then there is λ′ ≥ λ with G ` 〈τ, λ′〉.
We point out that rules 2− 5 can be represented concisely using the following
inference rule:

(AG)
〈τ1, λ1〉, . . . , 〈τn, λn, {τ1, . . . τn} `RDFS τ〉

〈τ,⊗i λi〉
. (9.3)

Essentially, this rule says that if a classical RDFS triple τ can be inferred
by applying a classical RDFS inference rule to triples τ1, . . . τn (denoted
{τ1, . . . , τn} `RDFS τ), then the degree of truth of τ will be

⊗
i λi, where

λi is the degree of truth of triple τi. It follows immediately that, using rule
(AG), in addition to rules (1) and (6) from the deductive system above, it is
easy to extend these rules to cover the complete RDFS rule set.

Finally, like for the classical case, the closure is defined as cl(G) = {〈τ, λ〉 |
G `∗ 〈τ, λ〉}, where `∗ is as ` without rule (1a). Note again that the size
of the closure of G is polynomial in |G| and can be computed in polynomial
time, provided that the computational complexity of operations ⊗ and ⊕ are
polynomially bounded (from a computational complexity point of view, it is
as for the classical case, plus the cost of the operations ⊗ and ⊕ in L).
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TABLE 9.1: Inference rules for fuzzy ρdf.

1. Simple:

(a)
G

G′
for a map µ : G′ → G

(b)
G

G′
for G′ ⊆ G

2. Subproperty:

(a)
〈(A, sp, B), λ1〉, 〈(B, sp, C), λ2〉

〈(A, sp, C), λ1 ⊗ λ2〉

(b)
〈(D, sp, E), λ1〉, 〈(X,D, Y ), λ2〉

〈(X,E, Y ), λ1 ⊗ λ2〉

3. Subclass:

(a)
〈(A, sc, B), λ1〉, 〈(B, sc, C), λ2〉

〈(A, sc, C), λ1 ⊗ λ2〉

(b)
〈(A, sc, B), λ1〉, 〈(X, type, A), λ2〉

〈(X, type, B), λ1 ⊗ λ2〉

4. Typing:

(a)
〈(D, dom, B), λ1〉, 〈(X,D, Y ), λ2〉

〈(X, type, B), λ1 ⊗ λ2〉

(b)
〈(D, range, B), λ1〉, 〈(X,D, Y ), λ2〉

〈(Y, type, B), λ1 ⊗ λ2〉

5. Implicit Typing:

(a)
〈(A, dom, B), λ1〉, 〈(D, sp, A), λ2〉, 〈(X,D, Y ), λ3〉

〈(X, type, B), λ1 ⊗ λ2 ⊗ λ3〉

(b)
〈(A, range, B), λ1〉, 〈(D, sp, A), λ2〉, 〈(X,D, Y ), λ3〉

〈(Y, type, B), λ1 ⊗ λ2 ⊗ λ3〉

6. Generalization:

〈(X,A, Y ), λ1〉, 〈(X,A, Y ), λ2〉
〈(X,A, Y ), λ1 ⊕ λ2〉
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Eventually, similar propositions as Propositions 5 and 7 hold. Specifically,

Proposition 65. G ` H if and only if H ⊆ cl(G) or H is obtained from
cl(G) by applying rule (1a).

Therefore, like the crisp case, a simple method to determine G |= τ , where
both G and τ is ground, consists in computing cl(G), where the size of the
closure of G is O(|G|2), and check whether τ is included in cl(G).

Now, under the above closure computation, we have, as for the crisp
case [325]:

Proposition 66 (Size of Closure).

1. The size of the closure of G is O(|G|2).

2. The size of the closure of G is in the worst case no smaller than Ω(|G|2).

We conclude by showing how to compute the answer set of a fuzzy query.
Essentially, it follows the same procedure as for the crisp case (see Section 3.4).
In fact, we have that

Proposition 67. Given a graph G, 〈t, λ〉 is an answer to q if and only if
∃y∃Λ′.ϕ(t, λ,y,Λ′) is true in the closure of G and λ is ≤-maximal.2

By relying on Proposition 67, we may devise a similar query answering method
as for the crisp case: a method to determine ansk(G, q) is as follows.

1. Compute the closure cl(G) of G and store it into a database that sup-
ports top-k retrieval (e.g., RankSQL [258]3).

2. It can easily be verified that any fuzzy query can be mapped into a top-k
SQL query [258] over the underlying database schema.

3. Hence, ansk(G, q) is determined by issuing these top-k SQL queries to
the database.

Example 30. Consider

G = {〈(p, dom, c), 0.5〉, 〈(d, sc, c), 0.4〉, 〈(b, type, d), 0.3〉, 〈(a, p, b), 0.2〉}
under product logic. Then the closure of G is

cl(G) = G ∪ {〈(b, type, c), 0.12〉, 〈(a, type, c), 0.01〉} .
Therefore, for the query

〈q(x), s〉 ← 〈(x, type, c), s〉
we have that

ans1(G, q) = {〈(b, type, c), 0.12〉} .

2∃y∃Λ′.ϕ(t, λ,y,Λ′) is true in the closure of G if and only if for some t′, λ′ for all triples
in ϕ(t, λ, t′, λ′) there is a triple in cl(G) that subsumes it and the built-in predicates are
true, where an fuzzy triple 〈τ, λ1〉 subsumes 〈τ, λ2〉 if and only if λ2 ≤ λ1.

3But, e.g., Postgres http://www.postgresql.org/, MonetDB http://monetdb.cwi.nl/

may work as well.

http://www.postgresql.org
http://monetdb.cwi.nl
http://monetdb.cwi.nl
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Chapter 10

Fuzzy OWL

10.1 Introduction

In Chapter 4, we have introduced the Web Ontology Language OWL [338]
and its successor OWL 2 [101, 340], which together with RDFS (see Chapter 3)
have become the most popular Semantic Web representation formalisms. We
have also shown their relationship with the Description Logics family of logics.

The basic ingredients are the descriptions of classes, properties, and their
instances, such as

• a:C, such as a:Person u ∀hasChild.Femal, meaning that individual a is an
instance of concept/class C (here C is seen as a unary predicate);

• (a, b):R, such as (tom,mary):hasChild, meaning that the pair of individ-
uals 〈a, b〉 is an instance of the property/role R (here R is seen as a
binary predicate);

• C v D, such as Person v ∀hasChild.Person, meaning that the class C is
a subclass of class D;

• R v P , such as isContainedIn v isPartOf, meaning that the property R
is a subproperty of the property P .

However, under the classical semantics, OWL cannot represent vague infor-
mation, such as “tom likes apples to some grade,” and, to this purpose, several
fuzzy variants have been proposed: they can be classified according to

• the description logic resp. ontology language that they generalize [42,
49, 51, 52, 55, 138, 285, 286, 288, 287, 289, 291, 292, 367, 368, 369, 383,
391, 398, 399, 407, 415, 454, 471];

• the allowed fuzzy constructs [48, 220, 223, 222, 218, 219, 221, 217, 194,
195, 227, 299, 419];

• the underlying fuzzy logic [47, 45, 53, 188, 189, 397, 411, 405];

• applications [4, 114, 54, 262, 320, 386, 392, 393, 401, 406, 434, 435, 418,
430, 432, 431, 474];

173
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• their reasoning algorithms and computational complexity results [40, 50,
41, 43, 27, 28, 64, 70, 72, 71, 68, 74, 69, 73, 75, 91, 92, 469, 342, 384,
390, 389, 395, 396, 404, 410, 425, 426, 412, 475].

We also refer the reader to [290, 416, 422] for a survey.
As DLs [19] (see Chapter 4) are the logical counterpart of the family of

OWL languages, to illustrate the basic concepts of fuzzy OWL, it suffices to
show the fuzzy DL case. Briefly, one starts from a classical DL, and attaches
to the basic statements a degree n ∈ [0, 1], similarly as we did for fuzzy RDFS
in Chapter 9.

Our main goal of this part is to provide a very general semantics and
deductive systems similarly as we did in Chapter 4.

10.2 Fuzzy Description Logics Basics

In general, fuzzy DLs allow expressions of the form 〈a:C, n〉, stating that a
is an instance of concept C with degree at least n, i.e., the FOL formula C(a) is
true to degree at least n. Similarly, 〈C1 v C2, n〉 and 〈R1 v R2, n〉 state vague
subsumption relationships. Informally, 〈C1 v C2, n〉 dictates that the FOL
formula ∀x.C1(x) → C2(x) is always true to degree at least n. Essentially,
Fuzzy DLs are then obtained by interpreting the statements as fuzzy FOL
formulae and attaching a weight n to DL statements, thus, defining so fuzzy
DL statements.

10.2.1 Syntax and Semantics

Let us consider the DL SROIQ without concrete domains (see Sec-
tion 4.2.2.3 and Table 4.1). Consider n ∈ [0, 1], and the crisp SROIQ ax-
ioms (A1) - (A17) in Table 4.1. Then the following are fuzzy axioms of fuzzy
SROIQ:

• fuzzy GCIs of the form 〈C v D,n〉;
• fuzzy concept assertions of the form 〈a:C, n〉;
• fuzzy role assertions of the form 〈(a, b):R,n〉 and 〈(a, b):¬R,n〉;
• fuzzy RIAs of the form 〈R1 . . . Rn v R,n〉;
• axioms (A11), (A12), (A14)–(A17), i.e., trans(R), dis(S1, S2), ref(R),

irr(S), sym(R) and asy(S).

We will write fuzzy axioms also as 〈α, n〉, where α is a GCI a RIA or an
assertion. We will use interchangeably, if clear from context, α in place of
〈α, 1〉. We will say in this case that α is a classical axiom.
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We make one change only to the concept constructs, by allowing graded
singleton concept expressions of the form {n/a}, where n is a degree of truth,
in place of the crisp variant {a}.

It is worth noting that one may find in fuzzy DLs also fuzzy statements
of the form 〈α≥n〉, 〈α≤n〉, 〈α>n〉, 〈α<n〉, and 〈α = n〉, stating that the
degree of truth of axiom α is bounded by •n, where • ∈ {≥ , ≤ , > , < ,=}.
We stick here to the form 〈α, n〉, i.e., 〈α≥n〉, only (i) for uniformity among
the various fuzzy Semantic Web Languages presented in the book; and (ii) as
〈α, n〉 is the most used one. Besides, by reminding that graded statements are
intended to be produced semi- or automatically, it is hardly conceivable that
they may have, e.g., the form 〈α≤n〉, 〈α>n〉 or 〈α<n〉. However, sometimes
we will still use, if needed, expressions of the form 〈α • n〉.

A fuzzy knowledge base is now, similarly as for crisp SROIQ, a triple K =
〈T ,A,R〉, where now fuzzy axioms occur in place of classical axioms. T ,A
and R are called now fuzzy TBox, fuzzy ABox, and fuzzy RBox, respectively.

Example 31. Consider the following background knowledge about cars en-
coded as the fuzzy TBox T 1:

Car v ∃HasPrice.Price
Sedan v Car
V an v Car

CheapPrice v Price
ModeratePrice v Price
ExpensivePrice v Price
〈CheapPrice v ModeratePrice, 0.7〉

〈ModeratePrice v ExpensivePrice, 0.4〉
CheapCar = Car u ∃HasPrice.CheapPrice

ModerateCar = Car u ∃HasPrice.ModeratePrice
ExpensiveCar = Car u ∃HasPrice.ExpensivePrice
fun(HasPrice)

Essentially, the vague concepts here are CheapPrice,ModeratePrice, and
ExpensivePrice and the graded GCIs declare to which extent there is a rela-
tion ship among them.

The facts about two specific cars a and b are encoded with the following
fuzzy ABox A:

〈a:Sedan u ∃HasPrice.CheapPrice, 0.7〉
〈b:V an u ∃HasPrice.ModeratePrice, 0.8〉 .

So, a is a sedan having a cheap price, while b is a van with a moderate price.
The semantics is a natural extension of the crisp one for DLs presented in

Section 4, in which the interpretation of concepts and roles become fuzzy sets
instead of crisp sets. Specifically, we consider the first order reading of the

1For the sake of clarity, here fun(R) is a macro for > v (≤ 1 R).
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fuzzy DL constructs as from Section 4.2.2.3, specifically Table 4.1, and give
them a fuzzy FOL semantics as illustrated in Section 8.2.

For our purposes, let us consider truth combination functions ⊗,⊕,⇒ and
	 defined on a truth space L as from Chapter 8. Here, L may be [0, 1], [0, 1]Q
or Ln (so, e.g., ⊗ doesn’t necessarily have to be a t-norm, see Section 8.1.7).

Then, a fuzzy interpretation I = (∆I , ·I) consists of a nonempty set ∆I

(the domain) and of a fuzzy interpretation function ·I that assigns

• to each atomic concept A a function AI : ∆I → L;

• to each abstract role R a function RI : ∆I ×∆I → L;

• to each individual a an element aI ∈∆I such that aI 6= bI if a 6= b
(UNA).

CI denotes the membership function of the fuzzy concept C with respect to
the fuzzy interpretation I. For x ∈ ∆I CI(x) gives us the degree of being x an
element of the fuzzy concept C under I. Similarly, RI denotes the membership
function of the fuzzy role R with respect to I. For x, y ∈ ∆I , RI(x, y) gives
us the degree of being (x, y) an element of the fuzzy role R.

Interpretations are extended to SROIQ constructs as illustrated in
Table 10.1 (in Table 10.1, e.g., the condition (C3) has to be read as:

(C uD)
I
(x) = CI(x)⊗DI(x)).

We say that a fuzzy interpretation I satisfies (is a model of) a fuzzy
KB K = 〈T ,A,R〉 iff it satisfies each element in A, T and R. A fuzzy KB
K = 〈T ,A,R〉 entails an axiom E, denoted K |= E, iff every model of K
satisfies E. We say that two concepts C and D are equivalent, denoted C ≡K D
iff in any model I of K and for all x ∈ ∆I , CI(x) = DI(x).

As for the fuzzy FOL case (see Section 8.2.1), for concept assertion, role
assertion GCI or role inclusion axiom φ, we say that 〈φ, n〉 is a tight logical
consequence of K iff n is the infimum of φI subject to all models I of K.
Notice that the latter is equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the
best entailment degree of φ w.r.t. K (denoted bed(K, φ)), i.e.,

bed(K, φ) = sup {r | K |= 〈φ, r〉} . (10.1)

On the other hand, the best satisfiability degree of φ w.r.t. K (denoted
bsd(K, φ)) is

bsd(K, φ) = sup
I
{φI | I |= K} . (10.2)

For a concept C, we also say that the best satisfiability degree of C w.r.t. K
(denoted bsd(K, C)) is

bsd(K, C) = sup
I|=K

sup
x∈∆I

CI(x) .
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TABLE 10.1: Syntax and semantics of the fuzzy DL SROIQ.

Concepts Syntax (C) Semantics: truth value of CI(x)

(C1) A AI(x)

(C2) > >I(x) = 1

(C3) ⊥ ⊥I(x) = 0

(C4) C uD CI(x) ⊗DI(x)

(C5) C tD CI(x) ⊗DI(x)

(C6) ¬C 	CI(x)

(C7) ∀R.C inf
y∈∆I {R

I(x, y) ⇒ CI(y)}

(C8) ∃R.C sup
y∈∆I {R

I(x, y) ⊗ CI(y)}

(C11) {n/a} n if x = aI , 0 otherwise

(C12) (≥ m S.C) sup
y1,...,ym∈∆I [(⊗mi=1{S

I(x, yi) ⊗ C
I(yi)})

⊗
(⊗j<k≤n{yj 6= yk})]

(C13) (≤ m S.C) inf
y1,...,yn+1∈∆I

[(⊗n+1
i=1
{SI(x, yi) ⊗ C

I(yi)}) ⇒ (
⊕
j<k≤n+1{yj = yk})]

(C16) ∃S.Self SI(x, x)
Roles Syntax (R) Semantics of R(x, y)

(R1) R RI(x, y)

(R2) R− RI(y, x)
(R3) U 1

Other Syntax (X) Semantics: truth value of XI

(X1) a:C CI(aI)

(X2) (a, b):R RI(aI , bI)

(X3) (a, b):¬R 	RI(aI , bI)

(X6) C v D inf
x∈∆I C

I(x) ⇒ DI(x)

(X7) R1 . . . Rn v R sup
x1...xn+1∈∆I

⊗
[RI1 (x1, x2), . . . , RIn(xn, xn+1)] ⇒ RI(x1, xn+1)

Axiom Syntax (E) Semantics (I satisfies E if . . . )

(A1) 〈a:C, n〉 CI(aI) ≥ n
(A2) 〈(a, b):R, n〉 RI(aI , bI) ≥ n
(A3) 〈(a, b):¬R, n〉 	RI(aI , bI) ≥ n
(A6) 〈C v D,n〉 inf

x∈∆I C
I(x) ⇒ DI(x) ≥ n

(A7) 〈R1 . . . Rn v R, n〉 sup
x1...xn+1∈∆I

⊗
[RI1 (x1, x2), . . . , RIn(xn, xn+1)]

⇒ RI(x1, xn+1) ≥ n
(A9) trans(R) ∀x, y ∈ ∆I , RI(x, y) ≥ sup

z∈∆I RI(x, z) ⊗ RI(z, y)

(A10) disj(S1, S2) ∀x, y ∈ ∆I , SI1 (x, y) = 0 or SI2 (x, y) = 0

(A12) ref(R) ∀x ∈ ∆I , RI(x, x) = 1

(A13) irr(S) ∀x ∈ ∆I , SI(x, x) = 0,

(A14) sym(R) ∀x, y ∈ ∆I , RI(x, y) = RI(y, x)

(A15) asy(S) ∀x, y ∈ ∆I , if SI(x, y) > 0 then SI(y, x) = 0 .

Example 32. Consider Example 31 under Gödel semantics. Then it can be
shown that

K |= 〈a:ModerateCar, 0.7〉
K |= 〈b:ExpensiveCar, 0.4〉 .

Informally, in the former case the reasoning is as follows. As a is a sedan (at
least to degree 0.7), it is a car (at least to degree 0.7) and, thus, a is a car with
a cheap price (at least to degree 0.7). Therefore, by the definition of a cheap
car, a is, thus, a cheap car (at least to degree 0.7). In the latter case, as b is
a van (at least to degree 0.8), it is a car (at least to degree 0.8) and, thus, b is
a car with a moderate price (at least to degree 0.8). Therefore, as a moderate
price is to some degree an expensive price, b has, thus, an expensive price (at
least to degree min(0.8, 0.4) = 0.4). Eventually, by the definition of expensive
car, b is, thus, an expensive car (at least to degree 0.4).
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Remark 23. Like for the fuzzy FOL case, for which ∀ and ∃ are not comple-
mentary in general (see Remark 19), also for fuzzy DLs we have that ∀R.C
and ¬∃R.¬C are not, unlike the classical case, equivalent. However, they are
equivalent under  Lukasiewicz logic and SFL.

Remark 24 (On Number Restrictions). In [49] it has been pointed out that,
unlike the classical case (see Section 4.2.2.1), in the fuzzy case we do not have
in general that (≤ n R.C) ≡ ¬(≥ n+ 1 R.C) holds.

For instance, in  Lukasiewicz logic assume the following interpretation:

((tom, apple) : likes)I = ((tom, banana) : likes)I

= ((tom, orange) : likes)I

= ((tom, peach) : likes)I = 0.5

(apple:Fruit)
I

= (banana:Fruit)
I

= (orange : Fruit)I

= (peach:Fruit)
I

= 1 ,

where appleI , bananaI , orangeI , peachI are different.
Then, (≤ 1 likes.Fruit)

I
(tom) = 1. In this example, while one may expect

tom not liking more than one fruit, he likes many more fruits xi as long as
they satisfy ((tom, xi) : likes)I + (xi:Fruit)

I
< 1.

According to [49] the semantics of cardinality restrictions should satisfy
the following properties instead:

• If (≤ n R.C)
I
(a) = 1 then |{b | (R(a, b)

I ⊗ C(b))
I
> 0}| ≤ n.

• ∃R.C ≡ (≥ 1 R.C).

• (≤ n R.C) ≡ ¬(≥ n+ 1 R.C).

Therefore, [49] proposes the following semantics for number restrictions (using
the equivalence ∀x.¬φ ≡ ¬∃x.φ, see Remark 19 and Remark 21):

(≥ n R.C)I(x) = supy1,...,yn∈∆I [minni=1{RI(x, yi)⊗ CI(yi)}
⊗

(⊗j<k≤n{yj 6= yk})]

(≤ n R.C)I(x) = infy1,...,yn+1∈∆I [minn+1
i=1 {R

I(x, yi)⊗ CI(yi)} ⇒ (⊕j<k≤n+1{yj = yk})]

Note that, equivalences among fuzzy concepts are similar as for the fuzzy
propositional case (see Table 8.6) as illustrated in Table 10.2.

10.2.2 Some Additional Constructs

It is also useful to introduce the following constructs:

• C → D with semantics (C → D)
I
(x) = CI(x)⇒ DI(x);
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TABLE 10.2: Some additional fuzzy concept equivalences.

Property  Lukasiewicz Gödel Product SFL

C u ¬C ≡⊥ • • •
C t ¬C ≡ > •
C u C ≡ C • •
C t C ≡ C • •
¬¬C ≡ C • •

C → D ≡ ¬C tD • •
C → D ≡ ¬D → ¬C • •
¬ (C → D) ≡ C u ¬D • •
¬ (C uD) ≡ ¬C t ¬D • • • •
¬ (C tD) ≡ ¬C u ¬D • • • •

C u (D t E) ≡ (C uD) t (C u E) • •
C t (D u E) ≡ (C tD) u (C t E) • •

∃R.C ≡ ¬∀R.¬C • •

• C ↔ D for (C → D) u (D → C);

• min{C,D} for C u (C → D), and min{C1, . . . , Cn} for
min{. . .min{C1, C2}, . . .};

• max{C,D} for min((C → D) → D, (D → C) → C) and
max{C1, . . . , Cn} for max{. . .max{C1, C2}, . . .};

• for x ∈ {g, l, p, s}, C ux D, C tx D, C →x D, indicating that the
concept operators ux, tx and →x are interpreted according the logic
x ∈ {g, l, p, s}, where g, l, p, and s stand for Gödel logic,  Lukasiewicz
logic, product logic and SFL, respectively;

• C1 = C2 for the two axioms C1 v C2 and C2 v C1;

• 〈C1 = C2, n〉 for the axiom 〈> v (C1 ↔ C2), n〉;

• dom(R,C), called domain restriction axiom, for ∃R.> v C;

• ran(R,C), called range restriction axiom, for > v ∀R.C;

• (= n R.C) for (≥ n R.C) u (≤ n R.C);

• (= n R) for (= n R.>).

Remark 25. It is worth noting that, w.l.o.g., an axiom 〈C v D,n〉 may be
rewritten as 〈> v C → D,n〉, an axiom C1 = C2 may be rewritten as > v
C1 ↔ C2.
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Remark 26 (Fuzzy DLs under SFL). [395], which presents fuzzy ALC under
SFL, proposes a slightly different semantics for fuzzy GCIs. In fact, in [395]
a fuzzy GCI is of the form C v D with semantics: I is a model of C v D
iff for any x ∈ ∆I we have that CI(x) ≤ DI(x). This is the same of any
fuzzy axiom of the form 〈> v C →x D, 1〉, where →x is an r-implication. To
be compliant with [395] and most fuzzy DLs work developed later on under
SFL, we will use expressions

• CṽD with semantics: I is a model CṽD iff for any x ∈ ∆I we have
that CI(x) ≤ DI(x);

• A=̃C with semantics: I is a model A=̃C iff for any x ∈ ∆I we have
that AI(x) = CI(x);

• RṽS with semantics: I is a model RṽS iff for any x, y ∈ ∆I we have
that RI(x, y) ≤ SI(x, y).

10.2.3 Acyclic Fuzzy Ontologies

As for the crisp case (see Section 4.4.1.2), acyclic fuzzy ontologies play an
important role in fuzzy DLs both as they occur often in practices as well as
from a computational complexity point of view.

Specifically, let us also introduce a restricted form of TBoxes, i.e., acyclic
TBoxes. That is, let T be a Tbox in which the GCIs have one of the following
form

A vn C

A ṽ C

A =n C

A =̃ C ,

where A is a concept name, C is a concept, and A vn C is a shorthand for
〈> v A→ C, n〉 and A =n C is a shorthand for 〈> v A↔ C, n〉. We call the
former two GCIs primitive and call the latter two definitional.

We say that A is the head of these axioms and C is the body. Furthermore,
we also assume that no concept name A is in the head of more than one axiom.

Now, we say that

• concept name A directly uses concept name B w.r.t. T , denoted A→T
B, if A is the head of some axiom τ ∈ T such that B occurs in the body
of τ ;

• concept name A uses concept name B w.r.t. T , denoted A  T B, if
there exist concept names A1, . . . , An, such that A1 = A, An = B and,
for every 1 ≤ i < n, it holds that Ai →T Ai+1.

Eventually, we say that a TBox T is cyclic (acyclic) if there is (no) A such
that A  T A. We say also that a fuzzy TBox is unfoldable if it is an acyclic
TBox which only contains inclusion axioms of the form AṽC and A=̃C.
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10.2.4 On Witnessed Models

By relying on Table 10.1, in a similar way as for fuzzy FOL (see Sec-
tion 8.2.1.1), the use of infima (universal quantification ∀) and suprema (ex-
istential quantification ∃) may lead to counterintuitive behaviors (see also,
e.g., [186, 188, 189, 190]). For instance, consider the concept assertion

〈a:∃R.A, 1〉 .

Consider the interpretation I with domain N, aI = 1, and for all n,m ∈ N

AI(n) = 1− 1

n

RI(m,n) = 1 .

Then for any n ∈ N

RI(aI , n)⊗AI(n) = AI(n) = 1− 1

n
< 1

However,

(∃R.A)
I
(aI) = sup

n∈N
RI(aI , n)⊗AI(n) = sup

n∈N
AI(n) = sup

n∈N
1− 1

n
= 1 .

That is, unlike the crisp case, notwithstanding there is no individual n of the
domain of I satisfying

RI(aI , n)⊗AI(n) = 1 ,

still, I satisfies the assertion 〈a:∃R.A, 1〉, which is the fuzzy DL analogue of
Equation (8.47). Similar arguments apply to any of the expressions in Ta-
ble 10.1 involving infima and suprema2.

Additionally, in a similar way as for Equation (8.48), under Gödel logic we
may build a fuzzy assertion, e.g.,

〈a:¬∀R.A u ¬∃R.¬A, 1〉

that has no classical model, but it has a fuzzy one, which has to be infinite
and non-witnessed.

While such interpretations may exist in theory, we believe that they un-
likely may model any practical knowledge representation and reasoning do-
main. Therefore, we will restrict out attention to witnessed models only in the
sense of Section 8.2.1.1.

Specifically, a fuzzy interpretation I is witnessed iff the supremum of every
expression in Table 10.1 coincides with the minimum and the infimum of every
expression coincides with the maximum.

2That is, expressions of the form (C7), (C8), (C12), (C13), (X6), (X7), (A6), (A7), (A9).
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Note that it is obvious that all finite fuzzy interpretations (this means that
∆I is a finite set) are indeed witnessed but the opposite is not true. Note also
that still Proposition 39 applies.

Eventually, to what concern us here, we recall from [39] the following
property.

Proposition 68 ([39] Theorem 4.4.). In  Lukasiewicz logic, thus, in SFL, an
acyclic knowledge base K is satisfiable iff K has a finite model.

Proposition 68 is not true if we drop the acyclicity condition, i.e., any GCI
may occur in the TBox (see [39], Theorem 3.3). In fact, the following examples
show that if we allow arbitrary knowledge bases, then the fuzzy DL ALC
under  Lukasiewicz and Product fuzzy logics do not verify the Finite Model
Property (FPM) even if we restrict to witnessed models; in other words, finite
satisfiability and witnessed satisfiability are different for arbitrary knowledge
bases.

Remark 27 ([39]). K is the fuzzy KB with the following axioms

(1) 〈a:A, 0.5〉

(2) > v ∃R.>

(3) (∀R.A) ≡ (∃R.A)

(4) A ≡ (∀R.A) u (∀R.A)

Now, let I be a witnessed model of K under  Lukasiewicz fuzzy logic. Then,
it can be shown [39] that for every natural number n there are individuals
b1, b2, b3, . . . , bn such that 0.5 = AI(b1) < AI(b2) < AI(b3) < · · · < AI(bn) <
1. Therefore, there is no finite model for K under  Lukasiewicz fuzzy logic.
Moreover, K is, under  Lukasiewicz fuzzy logic, satisfiable by a witnessed model
but not by a finite model. In fact, one witnessed model of K is the model I
defined by

• ∆I = {1, 2, 3, . . . } ∪ {∞},

• RI is the crisp relation {(i, i+ 1) : i = 1, 2, 3, . . . } ∪ {(∞,∞)},

• AI(∞) = 1 and AI(i) = (2i − 1)/2i for every i = 1, 2, 3, . . .

• aI = 1.

Similar results hold for K under product logic: K is, under product fuzzy logic,
satisfiable by a witnessed model but not by a finite model. In fact, one witnessed
model of this fuzzy KB is the model I defined by

• ∆I = {1, 2, 3, . . . },

• RI is the crisp relation {(i, i+ 1) : i = 1, 2, 3, . . . },
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• AI(i) = 2i−1
√(

1
2

)
for every i = 1, 2, 3, . . . ,

• aI = 1.

Remark 28 ([39]). K′ is the fuzzy KB with the following axioms

(1) 〈a:A, 0.5〉

(2) > v ∃R.>

(3) (∀R.A) ≡ (∃R.A)

(4) A ≡ (∀R.A) u (∀R.A)

(5) 〈> v (¬A), 0.1〉

Note that K′ is obtained by adding axiom (5) to K in Example 27. In [39] it
has been shown that K′ is unsatisfiable both under  Lukasiewicz fuzzy logic as
well as under product logic.

We conclude by recalling the following interesting property.

Remark 29. Let us point out that w.r.t. witnessed models, similarly to the
classical case (see Section 4.4.1.2), if A is a concept name and ⊗ is continuous,
and⇒ is the related r-implication, then an axiom 〈A v D,n〉 may be rewritten
as 〈A = C uA′, n〉, where A′ is a new concept name.

Similarly, is it easily verified that any inclusion axiom AṽC may be rewrit-
ten as A=̃C uA′, where A′ is a new concept name.

Remark 30. Under the conditions of Remark 29, we may assume that GCIs
in an acyclic TBox have one of the forms

A =n C

A =̃ C .

10.3 Salient Language Extensions

As we did for fuzzy FOL (see Section 8.2.3), next we describe some salient
extension to fuzzy DLs, which make fuzzy DLs particularly attractive from
an application point of view.

Fuzzy Concrete Domains. To start with, we discuss how one may provide
concrete domains within fuzzy DLs. To do so, we rely on [398]. In general,
similarly to Section 8.2.3 (see also Section 4.2.2.2), a fuzzy concrete domain,
also called a fuzzy datatype theory D = 〈∆D, ·D〉 consists of a datatype do-
main ∆D and a mapping ·D that assigns to each data value an element of ∆D,
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and assigns to every n-ary datatype predicate d an n-ary fuzzy relation over
∆D. More specifically, fuzzy DLs do support unary datatypes only. Therefore,
·D maps indeed each datatype predicate into a function from ∆D to [0, 1].

Typical examples of datatype predicates d are the well known fuzzy mem-
bership functions

d := ls(a, b) | rs(a, b) | tri(a, b, c) | trz(a, b, c, d)

and the crisp membership functions

d := ≥v | ≤v | =v ,

where, e.g., ls(a, b) is the left-shoulder fuzzy membership function, while,
e.g., ≥v corresponds to the crisp set of data values that are greater than
equal to the value v.

Concerning roles, a role R is either an object property or a datatype prop-
erty. An interpretation maps an object property into a function ∆I ×∆I →
[0, 1], while maps a datatype property into a function ∆I × ∆D → {0, 1}. A
datatype property does not have an inverse, but may be functional.

We also use an alphabet for concrete individuals, denoted v, and extend
an interpretation to concrete individuals by mapping them into ∆D. As for
individuals, we adopt the UNA, i.e., v1

I 6= v2
I if v1 6= v2.

We can now extend concept expressions according to the following syntax:

C,D → ∀T.d | ∃T.d ,

where d is a datatype and T is a datatype property.
For instance, the expression

Human u ∃hasAge ≥18 ,

where the datatype property hasAge has been declared functional, will denote
the crisp set of humans, which have an age less or equal than 18, while

Human u ∃hasAge.ls(10, 30)

will denote the fuzzy set of young humans (their age is ls(10, 30)).

Example 33. According to the fuzzy wine ontology3, we have the following
inclusion

SparklingWine u ∃hasSugar.ExtraDrySugarContentForSparklingWine
v ExtraDrySparklingWine

where hasSugar is a functional role and

ExtraDrySugarContentForSparklingWine

3See http://nmis.isti.cnr.it/~straccia/software/FuzzyOWL/.

http://nmis.isti.cnr.it
http://nmis.isti.cnr.it
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TABLE 10.3: From fuzzy SROIQ to fuzzy SROIQ(D).

Concepts Syntax (C) Semantics: truth value of CI(x)

(C9) ∀T.d inf
v∈∆D TI(x, v) ⇒ dD(v)

(C10) ∃T.d sup
v∈∆D TI(x, v) ⊗ dD(v)

(C14) (≥ n T.d) sup
v1,...,vn∈∆D

⊗n
i=1(TI(x, vi) ⊗ dD(vi)) ⊗

⊗
1≤j<k≤n vj 6= vk

(C15) (≤ m T.d) sup
v1,...,vn+1∈∆D .

⊗n+1
i=1

(TI(x, vi) ⊗ dD(vi)) ⇒
⊕

1≤j<k≤n+1 vj = vk

Roles Syntax (R) Semantics of R(x, y)

(X4) (a, v):T TI(aI , vI)

(X5) (a, v):¬T 	TI(aI , vI)
Axiom Syntax (E) Semantics (I satisfies E if . . . )

(A4) 〈(a, v):T, n〉 TI(aI , vI) ≥ n
(A5) (a, v):¬T 	TI(aI , vI) ≥ n
(A8) T1 v T2 inf

x∈∆I ,v∈∆D T1
I(x, v) ⇒ T1

I(x, v)

(A11) dis(T1, T2) ∀x ∈ ∆I , v ∈ ∆D, TI1 (x, v) = 0 or TI2 (x, v) = 0

is a fuzzy concrete domain whose definition is

tri(12, 16, 20)

in which the values represent the amount of sugar (grams per litre) a sparkling
wine should have to be an extra dry sparkling wine. Informally, the closer the
amount of sugar is around 12g/l or 20g/l, the less the sparkling wine is an
extra dry one. Optimal is a sugar level of 16g/l.

We refer the reader to the fuzzy wine ontology for many more definitions
of this type.

More generally, fuzzy SROIQ(D) is obtained from fuzzy SROIQ (see Ta-
ble 10.1) by adding the constructs as illustrated in Table 10.3.

Modifiers. Fuzzy modifiers (see Section 8.1.8) such as very and slightly,
apply to fuzzy concepts to change their membership function. We re-
call from Section 8.1.8 that a fuzzy modifier m represents a function
(e.g., fvery(x) = lm(c)(x), see Figure 8.8)

fm : [0, 1]→ [0, 1] .

Now, we extend the language of fuzzy concept constructors by allowing to
apply a modifier m to a concept C or a concrete domain predicate d: i.e.,

C → m(C) | ∀T.m(d) | ∃T.m(d)

allowing, e.g., to express the concept

Human u ∃hasAge.very(ls(10, 30))

denoting the fuzzy set of very young humans (their age is very(ls(10, 30)) (see
also [48, 127, 194, 195, 196, 197, 198, 444]).
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From a semantics point of view, we extend fuzzy interpretations in the
obvious way

m(C)
I
(x) = fm(CI(x))

m(d)
I
(x) = fm(dD(x)) .

Aggregation Operators. Eventually, as for the fuzzy propositional case (see
Section 8.2.3), we may extend fuzzy DLs by allowing aggregation operators
(see Section 8.1.6) to aggregate concepts, as illustrated, e.g., in [58, 59]. So,
let @ be an n-ary aggregation operator as defined in Section 8.1.6, then we
extend the language of fuzzy concepts by allowing to apply @ to n concepts
C1, . . . , Cn, i.e.,

C → @(C1, . . . , Cn)

allowing, e.g., to express the concept

0.7 · ExpensiveHotel + 0.3 · LuxuriousHotel

denoting the fuzzy set of expensive and luxurious hotels, whose membership
function is the weighted sum of being an expensive and luxurious hotel.

From a semantics point of view, we extend fuzzy interpretations in the
obvious way

@(C1, . . . , Cn)
I
(x) = @(CI1 (x), . . . , CIn (x)) .

We conclude this section by illustrating how we analogously may encode Ex-
ample 27 in fuzzy DLs.

Example 34 ([48, 359]). Consider Example 27 concerning the matching about
a car seller and a buyer.

To start with, the background knowledge can be encoded as:

Sedan v PassengerCar
SatelliteAlarm v AlarmSystem
NavigatorPack = (SatelliteAlarm uGPS system)
InsuranceP lus = (DriverInsurance u TheftInsurance)
> v ExColorBlack t ExColorGray
ExColorBlack u ExColorGray v⊥
fun(HasAlarmSystem)
fun(HasAirConditioning)
fun(HasExColor)
fun(HasNavigator)
fun(HasMWarranty)
fun(HasPrice)
fun(HasKMWarranty)

The buyer’s preferences can be encoded as follows:
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1. B = (PassengerCar u ∃HasPrice. ≤26000)

2. B1 = (∃HasAlarmSystem.AlarmSystem→ ∃HasPrice.ls(22300, 22750))

3. B2 = (∃HasInsurance.DriverInsuranceu∃HasInsurance.(TheftInsurancet
FireInsurance))

4. B3 = (∃HasAirConditioning.Airconditioningu∃HasExColor.(ExColorBlackt
ExColorGray))

5. B4 = (∃HasPrice.ls(22000, 24000))

6. B5 = (∃HasKMWarranty.rs(15000, 175000))

7. Buy = (B u (0.1 ·B1 + 0.2 ·B2 + 0.1 ·B3 + 0.2 ·B4 + 0.4 ·B5))

In a similar way, the seller’s preferences can be encoded as follows:

1. S = (Sedan u ∃HasPrice. ≥22000)

2. S1 = ((∃HasNavigator.NavigatorPack)→ (∃HasPrice.rs(22500, 22750))))

3. S2 = (∃HasInsurance.InsuranceP lus)
4. S3 = (∃HasKMWarranty.ls(100000, 125000))

5. S4 = (∃HasMWarranty.ls(60, 72))

6. S5 = ((∃HasExColor.ExColorBlack)→ (∃HasAirConditioning.AirConditioning))

7. Sell = (S u (0.3 · S1 + 0.1 · S2 + 0.3 · S3 + 0.1 · S4 + 0.2 · S5))

Now, as for Example 27, the best agreement among the buyer and the seller is
determined by the maximal degree of satisfiability of the concept conjunction
Buy u Sell, i.e.,

bsd(K, Buy u Sell) ,
for which we have the analogous results4

bsd(K, Buy u Sell) = 0.7
HasPrice = 22000.0

HasKMWarranty = 175000.0
HasMWarranty = 0.0 .

It is easy to see that Example 28 can be encoded in fuzzy DLs in a similar
way (see [48]).

10.4 Fuzzy Conjunctive Queries

Concerning query answering, we extend naturally the notion of fuzzy con-
junctive queries defined in Section 9.3 for fuzzy RDFS (see Chapter 9) to the
fuzzy DLs case.

4The values of a data property are the values of the data property corresponding to the
individual that maximizes the degree of truth of the concept Buy u Sell.
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Informally, fuzzy DL queries are as for fuzzy RDFS where fuzzy triples are
replaced with fuzzy FOL assertions in which fuzzy variables (taken from an ap-
propriate alphabet and denoted Λ) may occur and where the fuzzy predicates
are either unary (for atoms) or binary (for roles).

To start with, a fuzzy query is of the form

〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′) (10.3)

in which ϕ(x,Λ,y,Λ′) is a conjunction (as for the crisp case, we use “,”
as conjunction symbol) of fuzzy unary or binary fuzzy atoms and built-in
predicates, x and Λ are the distinguished variables, y and Λ′ are the vectors
of non-distinguished variables (existential quantified variables), and x, Λ, y
and Λ′ are pairwise disjoint. Variable Λ and variables in Λ′ can only appear
in place of degrees of truth or built-in predicates. The query head contains at
least one variable.

For instance, the query

〈q(x), s〉 ← 〈SportsCar(x), s1〉, hasPrice(x, y), s :=s1 · ls(10000, 1500)(x)

has intended meaning to retrieve all cheap sports cars. Any answer x is scored
according to the product of being cheap and a sports car.

From a semantics point of view, we rely on the one for fuzzy RDFS and
integrate one of the classical DLs, described in Section 4.3. So, given a fuzzy
DL KB K, a query 〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′), a vector t of individuals
occurring in K and a truth degree λ in [0, 1], we say that 〈q(t), λ〉 is entailed
by K, denoted K |= 〈q(t), λ〉, if and only if there is a vector t′ of individuals
occurring K and a vector λ′ of truth degrees in [0, 1] such that for any model I
of K, I is a model of all fuzzy atoms occurring in ϕ(t, λ, t′, λ′). If K |= 〈q(t), λ〉
then 〈t, λ〉 is called an answer to q. The answer set of q w.r.t. K is

ans(K, q) = {〈t, λ〉 | K |= 〈q(t), λ〉, λ 6= 0 and
for any λ′ 6= λ such that K |= 〈q(t), λ′〉, λ′ ≤ λ holds} .

That is, for any tuple t, the truth degree λ is as large as possible.
Please note that, similarly to Remark 6 we have:

Remark 31. There is a subtle difference with the usual definition of answer,
stated as follows:

Given a knowledge base K, a query 〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′),
and a vector t of individuals occurring in K and a truth degree λ in
[0, 1], we say that 〈q(t), λ〉 is entailed by K, denoted K |= 〈q(t), λ〉,
if and only if for any model I of K, I is a model of the FOL for-
mula ∃y∃Λ′.ϕ(t,y), according to the standard definitions of first-
order logic. We denote the answer set according to this definition
as ansFOL(K, q).
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The following example shows the difference between our definition of answer
set and the usual one according to Remark 31. So, consider the simple knowl-
edge base

K = {〈(a, c):R, 0.7〉, 〈b:∃R, 0.8〉}

and the conjunctive query

〈q(x), s〉 ← 〈R(x, y), s〉 .

Then it is easily verified that

ans(K, q) = {〈a, 0.7〉}
ansFOL(K, q) = {〈a, 0.7〉, 〈b, 0.8〉} .

As for the crisp DL case, the difference is due to the fact that in our case the
instantiation of the non-distinguished variables has to be known independently
from any model of K, while according to Remark 31, for any model I of K, the
non-distinguished variables y,Λ′ may be substituted with domain elements
depending on I. Of course,

ans(K, q) ⊆ ansFOL(K, q)

holds. As for the crisp DL case, in general, our definition here is amenable to a
more efficient implementation, as in fact, determining whether a ∈ ans(K, q)
inherits the computational complexity of the complexity of entailment in the
underlying fuzzy DL. Indeed, a simple procedure to determine the answer set
ans(K, q) consists in computing off-line the instances of all atomics concepts
and roles occurring in K, store them into a relational database DBK, convert
q into and SQL query qSQL and submit qSQL.

Disjunctive fuzzy queries with aggregation operators. As for the fuzzy
RDFS case, we may extend conjunctive queries to disjunctive queries and to
queries including aggregation operators as well.

Formally, let @ be an aggregate function with

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

then a query with aggregates is of the form

〈q(x),Λ〉 ← ∃y∃Λ′.ϕ(x,y,Λ′),
GroupedBy(w),
Λ:=@[f(z)] ,

(10.4)

where w are variables in x or y and each variable in x occurs in w and any
variable in z occurs in y or Λ′.
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From a semantics point of view, we say that I is a model of (satisfies)
〈q(t), λ〉, denoted I |= 〈q(t), λ〉 if and only if

λ = @[λ1, . . . , λk] where g = {〈t, t′1, λ′1〉, . . . , 〈t, λ, t′k, λ′k〉},
is a group of k tuples with identical projection
on the variables in w, ϕ(t, t′r, λ

′
r) is true in I

and λr = f(t) where t is the projection of 〈t′r, λ′r〉
on the variables z .

Now, the notion of K |= 〈q(t), λ〉 is as usual: any model of K is a model of
〈q(t), λ〉.

We conclude by defining a disjunctive query q as usual as a finite set of
conjunctive queries in which all the rules have the same head. Intuitively, the
answers to a disjunctive query are the union of the answers of the conjunctive
queries. That is, for a disjunctive query q = {q1, . . . , qm}, K entails q (denoted
K |= q) iff K |= qi for some qi ∈ q.

The notion of answer and answer set of a disjunctive query is a straight-
forward extension of the ones for conjunctive queries.

Top-k Retrieval. As now each answer to a query has a degree of truth
(i.e., score), a basic inference problem that is of interest is the top-k retrieval
problem, formulated as follows.

Given a fuzzy KB K, and a query q, retrieve k answers 〈t, λ〉 with maximal
degree and rank them in decreasing order relative to the degree λ, denoted

ansk(K, q) = Topk ans(K, q) .

10.5 Representing Fuzzy OWL Ontologies in OWL

As pointed out in Section 4, OWL [338] and its successor OWL 2 [101, 340]
are standard W3C languages for defining and instantiating Web ontologies
whose logical counterpart are classical DLs. So far, several fuzzy extensions
of DLs exists and some fuzzy DL reasoners have been implemented, such as
fuzzyDL [48], DeLorean [42] and Fire [153, 385], SoftFacts [421] and
DLMedia [435, 420].

Not surprisingly, each reasoner uses its own fuzzy DL language for rep-
resenting fuzzy ontologies and, thus, there is a need for a standard way to
represent such information.

A first possibility would be to adopt as a standard one of the fuzzy ex-
tensions of the languages OWL and OWL 2 that have been proposed, such
as [168, 382, 383]. However, as it is not expected that a fuzzy OWL exten-
sion will become a W3C proposed standard in the near future, [54, 57, 60]
identifies the syntactic differences that a fuzzy ontology language has to cope
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FIGURE 10.1: Annotation property defining concept BuyerPreferences.

with, and proposes to use OWL 2 itself to represent fuzzy ontologies. More
precisely, [60] uses OWL 2 annotation properties to encode fuzzy SROIQ(D)
ontologies. The use of annotation properties makes it possible (i) to use cur-
rent OWL 2 editors for fuzzy ontology representation, and (ii) that OWL 2
reasoners discard the fuzzy part of a fuzzy ontology, producing almost the
same results as if it would not exist. In order to support this methodology for
fuzzy ontology representation, [60] describes an implementation of a Protégé
plug-in to edit fuzzy ontologies and some parsers that translate fuzzy ontolo-
gies represented using this methodology into the languages supported by some
fuzzy DL reasoners.

Roughly, firstly, we can build the core part of the ontology by using any
ontology editor supporting OWL 2, such as Protégé 4.15 [200, 333]. This allows
reasoning with this part using standard ontology reasoners. Then, we can add
the fuzzy part of the ontology by using annotation properties. Representing
the fuzzy information using OWL 2 annotations can also be done with an
OWL 2 ontology editor (see, e.g., Figures 10.1 and 10.2).

5http://protege.stanford.edu/

http://protege.stanford.edu
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FIGURE 10.2: Annotation property defining fuzzy datatype
ls(22000, 24000).

However, typing the annotations is a tedious and error-prone task, so a
Protégé plug-in that makes the syntax of the annotations transparent to the
users has been developed. The Fuzzy OWL 2 plug-in is publicly available on
the Web [165]. Once installed, a new tab Fuzzy OWL enables the plug-in.
The plug-in has a menu with the available options (see Figure 10.3). The user
can choose to define fuzzy elements in the ontology (fuzzy datatypes, fuzzy
modified concepts, weighted concepts, weighted sum concepts, fuzzy nomi-
nals, fuzzy modifiers, fuzzy modified roles, fuzzy axioms, and fuzzy modified
datatypes), and he/she can specify the fuzzy logic used in the ontology.

Figure 10.4 illustrates how the plug-in works by showing how to create
a new fuzzy datatype. The user specifies the name of the datatype, and the
type of the membership function. Then, the plug-in asks for the necessary
parameters according to the type. A picture is displayed to help the user
recall the meaning of the parameters. Then, after some basic error checking,
the new datatype is created and can be used in the ontology.

Furthermore, the plug-in is integrated with the fuzzyDL [164] reasoner [41]
and makes it possible to submit queries to it. For the moment, such queries
must be expressed using the particular syntax supported by fuzzyDL.

We are not going into more detail here and refer the reader to [60] and
the FuzzyOWL2 web site [165], from which one may download some fuzzy
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FIGURE 10.3: Menu options of the Fuzzy OWL 2 plug-in.

OWL 2 ontologies as well, such as a fuzzy wine ontology, an ontology for
matchmaking, and multi-criteria decision making.

10.6 Reasoning

In Section 4.4 we have described the various reasoning problems of in-
terest for crisp DLs such as the consistency problem, the subsumption prob-
lem, the instance checking problem, and the instance retrieval problem, which
have their natural fuzzy analogue. Other major reasoning problems are the
best entailment degree– and the best satisfiability degree problems (see Equa-
tion (10.1) and Equation (10.2) in Section 10.2.1).

In summary, in fuzzy DLs the following problems are of interest.

Consistency problem:

• Is K satisfiable?

• Is C coherent, i.e., is CI(x) > 0 for some model I of K and x ∈ ∆I?

Instance checking problem:

• Does K |= 〈a:C, n〉 hold?
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FIGURE 10.4: Creation of a fuzzy datatype with the Fuzzy OWL 2 plug-in.

Subsumption problem:

• Does K |= 〈C v D,n〉 hold?

Best entailment degree problem:

• What is bed(K, φ)?

Best satisfiability degree problem:

• What is bsd(K, φ)?

Instance retrieval problem:

• Compute the set {〈a, n〉 | n = bed(K, a:C)} .

Note that, as for the crisp case in order to determine whether

K |= 〈(a, b):R,n〉 ,

we may reduce it to the instance problem, as

K |= 〈(a, b):R,n〉 iff K ∪ {〈b:B, 1〉} |= 〈a:∃R.B, n〉 ,

where B is a new concept.
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Similarly as for the crisp case, all the above problems can be reduced to
satisfiability degree problems as long as the below presented reductions are
supported by the underlying DL language (if not then specific algorithms have
been developed): indeed, we have

Remark 32 (Fuzzy DL problem reductions). The following problem reduc-
tions hold:

• K is satisfiable iff bsd(K, a:⊥) > 0, where a is a new individual.

• C is coherent w.r.t. K iff one of the following holds:

– K ∪ {〈a:C > 0〉} is satisfiable, where a is a new individual;

– K 6|= 〈C v⊥, 1〉;
– bsd(K, a:C) > 0, where a is a new individual.

• K |= 〈a:C, n〉 iff one of the following holds:

– K ∪ {〈a:C < n〉} is not satisfiable;

– bed(K, a:C) ≥ n.

• K |= 〈C v D,n〉 iff one of the following holds:

– K∪{〈a:C → D < n〉} is not satisfiable, where a is a new individual;

– bed(K, C v D) ≥ n.

• Similarly to the propositional fuzzy logic case (see Equation (8.53)
and Equation (8.54)), we have that

bed(K, φ) = minx. such that K ∪ {〈φ ≤ x〉} satisfiable (10.5)

bsd(K, φ) = maxx. such that K ∪ {〈φ ≥ x〉} satisfiable . (10.6)

10.6.1 The Case of the AL Family

We describe here the major reasoning frameworks within the fuzzy AL
family. As for the crisp case (see Section 4.4.1), we describe here decision
algorithms for the knowledge base satisfiability problem for the fuzzy DL
ALC, which is sufficiently expressive to illustrate the main characteristic of
the methods, which follows to some extend those presented in Section 8.2.2
for the fuzzy propositional case.

But before we start, let us discuss some very important consequences
of Remark 28. The literature contains several reasoning algorithms for
 Lukasiewicz [49, 425, 426], Product [47], or any left continuous t-norm fuzzy
DLs [53, 387]) that claim to support GCIs. These algorithms restrict them-
selves to witnessed models. Unfortunately, these papers are implicitly assum-
ing that the logic satisfies FMP. However, by Remark 28 we have shown that
this assumption cannot be done.
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The fuzzy KB K′ is an example showing that some algorithms for
 Lukasiewicz logic [49, 425, 426] do not work properly. In fact, these algorithms
say that K′ is satisfiable, whereas it is not. More precisely, the blocking condi-
tion (see later on) of the algorithms fails due to an implicit assumption of the
FMP: it makes the algorithms stop after having created individual b2, whereas
the inconsistency appears at individual b3.

Similarly, K′ is also a counterexample to the algorithm for product
logic [47] and it is not difficult to obtain counterexamples for the algorithms
that consider other t-norms [53, 387] by doing small modifications in K′; it is
only necessary to change the degree of truth used in axiom (5).

Consequently, the proofs of the correctness of the cited algorithms are only
valid if we add some additional restrictions:

• [49, 425, 426] consider the fuzzy DL ALC under  Lukasiewcz fuzzy logic.
The proof is only valid in case we only consider acyclic KBs.

• [47] consider the fuzzy DL ALC under product fuzzy logic. Here, the
proof is only valid if we only consider unfoldable KBs.

• [53] provides reasoning algorithms for the fuzzy DLs ALC defined by
families of fuzzy operators corresponding to a left-continuous t-norm ex-
tended with an involutive negation6. This work restricts itself to acyclic
KBs, so for instance K cannot be represented in the logic. Here, the proof
is correct for  Lukasiewicz logic, while the proof of the correctness of the
algorithm for acyclic KBs in a fuzzy logic different from  Lukasiewicz is
not valid, while the proofs are correct for unfoldable KBs.

• [387] provides a reasoning algorithm for the fuzzy DLs SI defined by
families of fuzzy operators corresponding to a left-continuous t-norm.
Here, the semantics of GCIs is defined using Zadeh’s set inclusion, but
the proof of the correctness of the algorithm is only valid if we restrict
to unfoldable KBs, or to acyclic KBs and  Lukasiewicz fuzzy logic.

In the case of finite  Lukasiewicz fuzzy logic (that is, if a finite set of degrees
of truth is assumed), the algorithms [49, 425, 426] would not work properly
either. As we have shown, the models of K require an infinite number of
degrees of truth, so K is unsatisfiable under a finite number of degrees of
truth. However, these algorithms would say that K is satisfiable.

Remark 33. Finally, we would like to add a remark that should be taken into
account in the algorithms for reasoning in fuzzy DLs that include GCIs and
the weighted sum constructor [48]. It is not hard to see that, even in SFL, one

6Here the fuzzy logic corresponding to a left continuous t-norm ⊗ is understood as based
on the connectives given by the t-norm ⊗, its residuum,  Lukasiewicz negation, and the dual
t-conorm of ⊗. This is quite different than the logic of left-continuous t-norms as used
in [186, 188, 189], and closer (except for the use of truth constants as concept constructors)
to the framework in [169].
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can simulate fuzzy KBs that do not satisfy the FMP if we take K and replace
axiom (4) in Example 27 with

A ≡ (0.5 · ∀R.A+ 0.5 · ∀R.A) .

Hence, in this case, we also need to restrict to unfoldable TBoxes to guaran-
tee the FMP. In fact, the KB satisfiability problem in ALC under SFL with
weighted sum constructor is indeed undecidable (see below).

The issues raised by [39] generated a series of undecidability results [26, 27,
28, 69, 74, 92] caused essentially by cyclic TBoxes (see [74] for a more detailed
account) and non Gödelt-norms:

Proposition 69 ([74]). Assume that fuzzy GCIs are restricted to be classi-
cal, i.e., of the form 〈α, 1〉 only. Then for the following fuzzy DLs, the KB
satisfiability problem is undecidable:

1. ELC7 with classical axioms only under  Lukasiewicz logic and product
logic;

2. ELC under any non Gödelt-norm ⊗;

3. ELC with concept assertions of the form 〈α = n〉 only under any non
Gödelt-norm ⊗;

4. AL with concept implication operator →8 and concept assertions of the
form 〈α = n〉 only under any non Gödelt-norm ⊗.

5. ELC under SFL with weighted sum constructor.

On the other hand it is remarkable to note that from the results in [46] it
follows immediately that

Proposition 70 ([46]). The KB (witnessed) satisfiability problem is decidable
for the fuzzy DL SROIQ under Gödel logic, under SFL and any finitely valued
truth space.

As we will see later on, the result of Proposition 70 is obtained from the fact
that under Gödel logic, under SFL and any finitely valued logic, the satisfi-
ability problem of a fuzzy SROIQ KB can be reduced to a crisp SROIQ
satisfiability problem, which is known to be decidable (see Section 4.2 and
[203]).

7EL with complement.
8See Section 10.2.2.
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10.6.1.1 Reduction to Classical Logic

To start with, let us show how one may reduce the KB satisfiability prob-
lem in fuzzy DLs into crisp KB satisfiability problems under Gödel logic, under
SFL and any finitely valued logic. Besides obtaining decidability results, the
method has also the advantage that classical DL reasoners can be used to
reason within these fuzzy DLs. For instance, this is the method followed by
the fuzzy DL reasoner DeLorean [42].

To illustrate the method, we recap [396], which first proposed the method,
which then has been extended and improved in further works such as [41, 43,
44, 45, 46, 50, 56, 61, 383, 405]. Specifically,

• [396] proposed a reasoning preserving procedure for fuzzy ALCH into
crisp ALCH, under SFL;

• [405] extends [396] to the case of fuzzy ALC where the truth space is
any finitely valued complete lattice;

• [44] extends [396] to the case of fuzzy SROIQ(D);

• [45] extends [396] to the case of fuzzy SROIQ(D) under Gödel logic;

• [61] extends [396] to the case of fuzzy SROIQ under finitely many-
valued  Lukasiewicz logic;

• [46] extends [44] to the case of fuzzy SROIQ(D) under Gödel logic and
under SFL. The results extends immediately to any finitely valued fuzzy
SROIQ(D) as well.

Before we formally present the method, we first illustrate the basic idea it relies
on, which is based on the ideas presented in [36, 37] for so-called regular multi-
valued logics and somewhat resembles the method proposed in Section 8.2.2.4
for fuzzy propositional logic.

Assume we have a K = 〈∅,A〉, where A contains

〈a:A, 0.6〉
〈a:¬A, 0.7〉 .

Clearly, K is not satisfiable. Now, similarly to Equation (8.61), let N̄K be the
set of truth degrees that occur in K, their negation plus {0, 0.5, 1}, i.e.,

N̄K = {0, 0.3, 0.4, 0.5, 0.6, 0.7, 1}

and define
NK+ = NK \ {0} .

The important point here is that K has a model iff K has a model based on
the truth space N̄K and, thus, allows us to restrict our attention to the values
in N̄K only.
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Now, for each α ∈ N̄K we introduce new concepts A≥α. A≥α represents
the crisp set of individuals which is an instance of A with degree higher or
equal than α, i.e., the α-cut of A. Of course, we have to consider also the
relationships among the introduced concepts. so, e.g., we need the axioms

A≥0.5 v A≥0.4

A≥0.6 v A≥0.5 .

For instance, axiom A≥0.5 v A≥0.4 dictates that if a truth value is ≤ 0.5 then
it is also ≥ 0.4. Now, we will map

〈a:A, 0.6〉 7→ a:A≥0.6

〈a:¬A, 0.7〉 7→ a:¬A≥0.4 .

The argument behind the last map is that 〈a:¬A, 0.7〉 dictates that
〈a:A ≤ 0.3〉, which restricted to the truth space N̄K is the same as saying
that a cannot be an instance of A to degree ≥ 0.4. This illustrates our basic
idea.

Formally, consider fuzzy ALCH under SFL. We will assume that fuzzy
KBs do not include fuzzy axioms of the form 〈α, 0〉, 〈a:¬C, 1〉. The reason is
that they are always satisfied. Let K = 〈T ,A,R〉 be fuzzy ALCH KB under
SFL. Consider

XK = {0, 0.5, 1} ∪ {c | 〈α, c〉 occurs in K} (10.7)

from which we define

N̄K = XK ∪ {1− c | c ∈ XK} (10.8)

NK+ = N̄K \ {0} . (10.9)

Essentially, N̄K (which is finite) contains the truth degrees that occur in K
and their negation. The important point here is that K has a model iff K
has a model based on the truth space N̄K and, thus, allows us to restrict our
attention to the values in N̄K only. This property derives directly from [395]:

Proposition 71. A fuzzy ALCH KB K under Gödel logic and under SFL
has a model iff it has a (witnessed) model over the truth space N̄K.

In the following, we may assume now that the truth space N is a finite chain
of p+ 1 elements: namely

N = {0 = γ0 < γ1 < · · · < γp = 1} ,

where p ≥ 2, from which we define

N+ = N \ {γ0} .



200 Foundations of Fuzzy Logic and Semantic Web Languages

For instance, in the case of fuzzy ALCH KB K under SFL,

N := N̄K . (10.10)

Degrees of truth will be denoted as γ ∈N and α∈N+. We will also define
+γi = γi+1, −γi = γi−1.

We will also use ./ ∈ {≥, >,≤, <}, B ∈ {≥, >}, C ∈ {≤, <}. The
symmetric ./−, and the negation ¬ ./ of an operator ./ are defined as follows:

./ ./− ¬ ./
≥ ≤ <
> < ≤
≤ ≥ >
< > ≥

Now, let A be the set of atomic fuzzy concepts and R the set of atomic fuzzy
roles in a fuzzy KB K = 〈T ,A,R〉, respectively. For each α∈N+, for each
A ∈ A, a new atomic concept A≥α is introduced. Similarly, for each RA ∈ R,
a new atomic role RA≥α is created.

For each 1 ≤ i ≤ p − 1 and for each A ∈ A, T (N ) is the smallest TBox
containing these axioms:

A≥γi+1
v A≥γi . (10.11)

Similarly, for each RA ∈ R, R(N ) is the smallest RBox containing:

RA≥γi+1
v RA≥γi . (10.12)

Fuzzy concept and role expressions are reduced by using mapping ρ, as shown
in Table 10.4. Given a fuzzy concept C, ρ(C,≥ α) is a crisp set containing all
the elements which belong to C with a degree greater than or equal to α. The
other cases ρ(C, ./ γ) are similar. ρ is defined in a similar way for fuzzy roles
and this equivalence also holds.

Axioms are reduced as in Table 10.5, where κ(τ) maps a fuzzy axiom τ
into a set of crisp axioms. We note κ(A) the union of the reductions of all
the fuzzy axioms in A. Analogously, κ(T ) is the union of the reductions of all
fuzzy concepts in T , where as κ(R) is the union of the reductions of all fuzzy
roles in R.

Let crisp(K) denote the reduction of a fuzzy ontology K. That is, a fuzzy
KB K = 〈T ,A,R〉 is reduced into a KB

crisp(K) = 〈T (N ) ∪ κ(T ), κ(A), R(N ) ∪ κ(R)〉 .

Now, it can be shown that

Proposition 72 ([46, 396]). A ALCH fuzzy KB K under SFL is satisfiable
iff its crisp representation crisp(K) is satisfiable.

A consequence of Proposition 72 is that
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TABLE 10.4: Crisp mapping of concept and role expressions

ρ(>,Bγ) =>
ρ(>,Cγ) =⊥
ρ(⊥,Bγ) =⊥
ρ(⊥,Cγ) =>
ρ(A,≥ γ) =A≥γ
ρ(A,> γ) =A≥+γ

ρ(A,≤ γ) =¬A≥+γ

ρ(A,< γ) =¬A≥γ
ρ(¬C, ./ γ) = ρ(C, ./− 	Zγ)

ρ(C uD,Bγ) = ρ(C,Bγ) u ρ(D,Bγ)
ρ(C uD,Cγ) = ρ(C,Cγ) t ρ(D,Cγ)
ρ(C tD,Bγ) = ρ(C,Bγ) t ρ(D,Bγ)
ρ(C tD,Cγ) = ρ(C,Cγ) u ρ(D,Cγ)
ρ(∀R.C,≥ γ) = ∀ρ(R,> 	γ).ρ(C,≥ γ)
ρ(∀R.C,> γ) = ∀ρ(R,≥ 	γ).ρ(C,> γ)
ρ(∀R.C,Cγ) = ∃ρ(R,C− 	 γ).ρ(C,Cγ)
ρ(∃R.C,Bγ) = ∃ρ(R,Bγ).ρ(C,Bγ)
ρ(∃R.C,Cγ) = ∀ρ(R,¬C γ).ρ(C,Cγ)
ρ(RA,≥ γ) =RA≥γ
ρ(RA, > γ) =RA≥+γ

Proposition 73 ([46, 396]). Given a ALCH fuzzy KB K. Then under Gödel
logic or SFL, bed(K, α) ∈ N̄K. Moreover, given a fuzzy KB K over a finitely
valued truth space N , then bed(K, α) ∈ N .

Therefore, by a binary search on N̄K (reps. N ), the value of bed(K, α) can be
determined in at most log |N̄K| entailment tests and, thus, crisp entailment
tests. Therefore, the BED problem can be reduced to the crisp case as well.

The reductions for other logics such as Gödel logic or  Lukasiewicz logic are
based on a similar principle [46, 61]). For instance, under Gödel logic, we have,

TABLE 10.5: Crisp reduction of the fuzzy DL axioms

κ(〈a:C, γ〉) = {a:ρ(C,≥ γ)}
κ(〈(a, b):R, γ〉) = {(a, b):ρ(R,≥ γ)}
κ(〈C v D,n〉) = {ρ(C,> 	γ) v ρ(D,≥ γ)}

κ(CṽD) =
⋃
α∈N+

{ρ(C,≥ α) v ρ(D,≥ α)}
κ(A=̃C) =

⋃
α∈N+

{ρ(A,≥ α) = ρ(C,≥ α)}
κ(〈R v S, γ〉) = {ρ(R,> 	γ) v ρ(R,≥ γ)}

κ(RṽS) =
⋃
α∈N+

{ρ(R,≥ α) v ρ(S,≥ α)}
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e.g.,

κ(〈C v D, γ〉) =
⋃
α∈N+ | α≤γ{ρ(C,≥ α) v ρ(D,≥ α)} ,

while over finitely valued  Lukasiewicz logic, we have, e.g.,

κ(〈C v D, γ〉) =
⋃
γ1,γ2

{ρ(C,≥ γ1) v ρ(D,≥ γ2)}

for every pair γ1, γ2 ∈ N+ such that γ1 = γ2 + 1− γ .

The mapping ρ also changes: e.g., under Gödel logic, we have, e.g.,

ρ(∀R.C,≥ γ) =
l

α∈N+ | α≤γ

(∀ρ(R,≥ α).ρ(C,≥ α)) ,

while over finitely valued  Lukasiewicz logic, we have, e.g.,

ρ(∀R.C,≥ γ) =
l

γ1,γ2

∀ρ(R,≥ γ1).ρ(C,≥ γ2)

for every pair γ1, γ2 ∈ N+ such that γ1 = γ2 + 1− γ .

However, despite being the method simple to implement (see the De-
Lorean [42]) and the size of the crisp KB linearly bounded by the size of
|T ||N̄K| (resp., |T ||N |), from a practical point of view the method does not
scale yet, especially for the BED problem. For other logics, such as Gödel
logicor  Lukasiewicz logic, the reduction may become even exponential.

It is not hard to be convinced that the crisp reduction method can easily
be extended to SROIQ(D) under any other finitely valued DL as well, as
explained at the beginning of this section and, thus, proofs Proposition 70.

10.6.1.2 Analytical Fuzzy Tableau

We recall here the typical fuzzy tableau method employed for fuzzy DLs
of the fuzzy AL family under SFL semantics, introduced in [395] for acyclic
ALC and later on extend to fuzzy ALC with classical GCIs [390] and then
extended to more expressive DLs as in, e.g., [73, 384, 387, 389, 397, 405].

Specifically,

• [395] provides a tableau for acyclic fuzzy ALC KBs.

• [390] extents [395] to deal with ALC KBs with classical GCIs.

• [405] deals with acyclic ALC over finite complete lattices.

• [73] extends [405] to SHI with graded GCIs over finite complete resid-
uated De Morgan lattices.

• [389] extends [395] to acyclic fuzzy SHIN KBs.
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The method starts from the tableau algorithm for crisp DLs illustrated in
Section 4.4.1 and applies the ideas developed for the analytical tableau for
fuzzy propositional logic as from Section 8.2.2.3. So, let K = 〈T ,A〉 be an
ALC knowledge base under SFL.

At first, we transform any concept in K into negation normal form (NNF),
i.e., negation occurs only in front of atomic concepts. To do so, as for the crisp
case we push all negation signs as far as possible into the description, using de
Morgan’s rules and the usual rules for quantifiers: that is, we iteratively apply
the transformation rules of Equation (4.3) for the crisp case, which indeed are
semantics preserving under SFL (see Table 10.2):

¬¬C 7→ C

¬(C uD) 7→ ¬C t ¬D
¬(C tD) 7→ ¬C u ¬D
¬∃R.C 7→ ∀R.¬C
¬∀R.C 7→ ∃R.¬C .

With nnf(C) we denote the negation normal form of C, obtained by applying
the rules above.

Next, as for the fuzzy propositional case (see Equation (8.62)), we define ε
as half of the minimal absolute difference among the values in N̄KB . That is,

ε = min{d/2 | n,m ∈ N̄KB , d = |n−m|} . (10.13)

Now we have that the analogue of Proposition 55

Proposition 74 ([395]). Let K be a fuzzy KB in SFL. Then for n > 0 and
0 < n1 ≤ 0.5 < n2 ≤ 1

K |= 〈a:C, n〉 iff K ∪ {〈a:¬C, 1− n+ ε〉} is not satisfiable

K |= 〈C v D,n〉 iff K ∪ {〈a:C u ¬D), 1− n+ ε〉} is not satisfiable

K |= CṽD iff K ∪ {〈a:C, n〉} |= 〈a:D,n〉 for m ∈ {n1, n2}
K |= A=̃C iff K |= AṽC and K |= CṽA .

Proposition 74, like for the fuzzy propositional case and contrary to the usual
analytical fuzzy tableau methods such as [384, 387, 389, 390, 395, 397, 405],
allows us now to use an analytical tableau procedure to decide the KB sat-
isfiability problem and the entailment problem without requiring the use of
fuzzy statements of the form 〈α • n〉 with • ∈ {≤, <,>}, which simplifies the
calculus.

Now, we try to construct a finite fuzzy model I of K via a tableau al-
gorithm. Essentially, the tableau algorithm is a terminating algorithm that,
starting from an ABox, tries to build a clash-free forest of trees (called
completion-forest). If it succeeds then K is satisfiable and from the forest
a model can be built. Otherwise, K is not satisfiable.
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The Case with Empty TBox. As for the crisp case (see Section 4.4.1), we
start with the case of an empty TBox. So, Let K be a KB in NNF with empty
TBox. A completion-forest F for K is a collection of trees whose distinguished
roots are arbitrarily connected by edges. Each node v is labelled with a set
L(v) of expressions 〈C, n〉, where n ∈ (0, 1] and C ∈ sub(K). The intuition
here is that v is an instance of C to degree greater or equal than n. We will
always assume that there cannot be 〈C, n〉 ∈ L(v) and 〈C,m〉 ∈ L(v) with
m > n. If there are, the expression with the lower degree is dropped from
L(v).

Each edge 〈v, w〉 is labelled with a set L(〈v, w〉) of expressions 〈R,n〉, where
R occurs in K, indicating that 〈v, w〉 and instance of R to degree greater
than or equal to n. As for L(v), we will always assume that there cannot
be 〈R,n〉 ∈ L(〈v, w〉) and 〈R,m〉 ∈ L(〈v, w〉) with m > n. If there are, the
expression with the lower degree is dropped from L(〈v, w〉).

If nodes v and w are connected by an edge 〈v, w〉 with 〈R,n〉 ∈ L(〈v, w〉)
then w is called an Rn-successor of v and v is called an Rn-predecessor of w.
Ancestor is the transitive closure of predecessor, where we omit the degrees.

For a node v, L(v) is said to contain a clash iff L(v) contains either

• an expression 〈⊥, n〉 with n > 0; or

• a pair of expressions 〈A,n〉 and 〈¬A,m〉 with n > 1−m.

A completion-forest is called clash-free iff none of its nodes contain a clash; it
is called complete iff none of the expansion rules in Table 10.6 is applicable.

Now, the algorithm initializes a forest F as follows:

• F contains a root node vi0, for each individual ai occurring in A;

• F contains an edge 〈vi0, vj0〉, for each 〈(ai, aj):R,n〉 ∈ A;

• for each 〈ai:C, n〉 ∈ A, we add 〈C, n〉 to L(vi0);

• for each 〈(ai, aj):R,n〉 ∈ A, we add 〈R,n〉 to L(〈vi0, vj0〉).

Then the completion-forest F is then expanded by repeatedly applying the
completion rules described in Table 10.6 and answers “K is satisfiable” iff the
completion rules can be applied in such a way that they yield a complete and
clash-free completion-forest. Note that it is relatively easy to build a model I
from a complete and clash-free completion-forest. Informally,

• the domain of I are the nodes of the forest;

• the interpretation of individual ai is vi0;

• if 〈R,n〉 ∈ L(〈v, w〉), then RI(v, w) = n;

• if 〈A,n〉 ∈ L(v), then AI(v) = n.
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TABLE 10.6: The tableau rules for fuzzy ALC with empty TBox.

(u). If (i) 〈C1 u C2, n〉 ∈ L(v) and (ii) {〈C1, n〉, 〈C2, n〉} 6⊆ L(v), then add
〈C1, n〉 and 〈C2, n〉 to L(v).

(t). If (i) 〈C1 t C2, n〉 ∈ L(v) and (ii) {〈C1, n〉, 〈C2, n〉}∩L(v) = ∅, then add
some 〈C, n〉 ∈ {〈C1, n〉, 〈C2, n〉} to L(v).

(∀). If (i) 〈∀R.C, n〉 ∈ L(v), (ii) 〈R,m〉 ∈ L(〈v, w〉), m > 1 − n, and (iii)
〈C, n〉 6∈ L(w), then add 〈C, n〉 to L(w).

(∃). If (i) 〈∃R.C, n〉 ∈ L(v) and (ii) there is no 〈R,n1〉 ∈ L(〈v, w〉) with
〈C, n2〉 ∈ L(w) such that min(n1, n2) ≥ n, then create a new node w,
add 〈R,n〉 to L(〈v, w〉) and add 〈C, n〉 to L(w).

Now, termination, soundness, and completeness of the algorithm have been
shown.

Proposition 75 ([395]). For each knowledge base K = 〈∅,A〉,
1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield complete and clash-free completion-forest for K;

4. the KB satisfiability problem is PSpace-complete [395].

Example 35. Consider a fuzzy analogue of Example 9:

K = {〈a:∀R.A u ∃R.B, 0.9〉, 〈(a, b):R, 0.8〉, 〈(a, c):P , 0.7〉} .
K is satisfiable as there is a clash-free completion-forest (see Figure 10.5).
The model build from the forest is:

• ∆I = {a, b, c, x};
• the interpretation of individuals is the identity function;

• RI(a, b) = 0.8, RI(a, x) = 0.9, P I(a, c) = 0.7;

• AI(b) = AI(x) = BI(x) = 0.9.

The Case of Acyclic TBox. We next extend the previous algorithm to the
case of acyclic TBoxes.

Similarly to Section 4.4.1.2, we also present here a method, called lazy
unfolding. To do so, we extend our calculus in Table 10.6 with the rules in
Table 10.7.

As for Proposition 75, it can be shown that
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a

b x

<R,0.9><R,0.8>

c<P,0.7>

{<A,0.9>} {<A,0.9>,<B,0.9>}

{h8R.A u 9R.B, 0.9i, h8R.A, 0.9i, h9R.B, 0.9i}

FIGURE 10.5: Clash-free complete completion-forest from fuzzy ABox.

Proposition 76. For each knowledge base K = 〈T ,A〉 with acyclic T ,

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K.

Example 36. Consider Example 35, where we add

B v0.4 C

to K. K is satisfiable as there is a clash-free complete completion-forest (see
Figure 10.6).

TABLE 10.7: The tableau rules for fuzzy ALC with acyclic fuzzy KB.

(vA) If A vn C ∈ T , 〈A,m〉 ∈ L(v) with m > 1− n and 〈C, n〉 6∈ L(v) then
add 〈C, n〉 to L(v).

(ṽA) If AṽC ∈ T , 〈A,n〉 ∈ L(v) and 〈C, n〉 6∈ L(v) then add 〈C, n〉 to L(v).

(=A
1 ) If A =n C ∈ T , 〈A,m〉 ∈ L(v) with m > 1− n and 〈C, n〉 6∈ L(v) then

add 〈C, n〉 to L(v).

(=A
2 ) If A =n C ∈ T , 〈¬A,m〉 ∈ L(v) with m > 1 − n and 〈nnf(¬C), n〉 6∈
L(v) then add 〈nnf(¬C), n〉 to L(v).

(=̃A
1 ) If A=̃C ∈ T , 〈A,n〉 ∈ L(v) and 〈C, n〉 6∈ L(v) then add 〈C, n〉 to L(v).

(=̃A
2 ) If A=̃C ∈ T , 〈¬A,n〉 ∈ L(v) and 〈nnf(¬C), n〉 6∈ L(v) then add
〈nnf(¬C), n〉 to L(v).
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a

b x

<R,0.9><R,0.8>

c<P,0.7>

{<A,0.9>} {<A,0.9>,<B,0.9>, <C,0.4>}

{h8R.A u 9R.B, 0.9i, h8R.A, 0.9i, h9R.B, 0.9i}

FIGURE 10.6: Clash-free and complete completion-forest from acyclic fuzzy
KB.

The model built from the forest is:

• ∆I = {a, b, c, x};
• the interpretation of individuals is the identity function;

• RI(a, b) = 0.8, RI(a, x) = 0.9, P I(a, c) = 0.7;

• AI(b) = AI(x) = BI(x) = 0.9, CI(x) = 0.4.

The Case with General TBox. Eventually, we show here how we may deal
with the case in which the GCIs in the TBox are of the general form 〈C v D,n〉
and CṽD9. As we have seen in Remark 25, w.l.o.g. we may assume that the
former GCIs have the form 〈> v C ′, n〉.

Like for the crisp case, to cope with the non-termination problem, a notion
of blocking has to be introduced, which is the same as for the crisp case: we
say that a node v is directly blocked iff none of its ancestors is blocked and
there exists an ancestor w such that

L(v) = L(w) .

In this case we say that w directly blocks v. A node v is indirectly blocked iff
one of its ancestors is blocked. Finally a node v is blocked iff it is not a root
node and it is either directly or indirectly blocked.

Now, the calculus is as described above except that the rules are not applied
to blocked nodes. Specifically, the rules are described in Table 10.8. As before,
it can be shown that using the rules in Table 10.8

Proposition 77. For each knowledge base K = 〈T ,A〉
1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

9Axioms of the form A=̃C are replaced with AṽC and CṽA.
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TABLE 10.8: The tableau rules for fuzzy ALC with GCIs.

(u). If (i) 〈C1 u C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} 6⊆ L(v), and (iii) node
v is not indirectly blocked, then add 〈C1, n〉 and 〈C2, n〉 to L(v).

(t). If (i) 〈C1 t C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉}∩L(v) = ∅, and (iii) node
v is not indirectly blocked, then add some 〈C, n〉 ∈ {〈C1, n〉, 〈C2, n〉} to
L(v).

(∀). If (i) 〈∀R.C, n〉 ∈ L(v), (ii) 〈R,m〉 ∈ L(〈v, w〉) with m > 1 − n, (iii)
〈C, n〉 6∈ L(w), and (iv) node v is not indirectly blocked, then add 〈C, n〉
to L(w).

(∃). If (i) 〈∃R.C, n〉 ∈ L(v), (ii) there is no 〈R,n1〉 ∈ L(〈v, w〉) with 〈C, n2〉 ∈
L(w) such that min(n1, n2) ≥ n, and (iii) node v is not blocked, then
create a new node w, add 〈R,n〉 to L(〈v, w〉) and add 〈C, n〉 to L(w).

(v). If (i) 〈> v D,n〉 ∈ T , (ii) 〈D,n〉 6∈ L(v), and (iii) node v is not indirectly
blocked, then add 〈D,n〉 to L(v).

(ṽ). If (i) CṽD ∈ T , (ii) for some n ∈ NK+ , {〈nnf(¬C), 1− n+ ε〉, 〈D,n〉}∩
L(v) = ∅, and (iii) node v is not indirectly blocked, then add E to L(v)
for some E ∈ {〈nnf(¬C), 1− n+ ε〉, 〈D,n〉}.

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K.

Example 37. Consider a fuzzy variant of Example 12.

K = {〈a:A, 0.7〉, 〈A v ∃R.A, 0.6〉} .
K is satisfiable as there is a clash-free and complete completion-forest (see
Figure 10.7). Note that node y is blocked by x.

The model build from the forest is:

• ∆I = {a, x};
• the interpretation of individuals is the identity function;

• RI(a, x) = RI(x, x) = 0.6;

• AI(a) = 0.7, AI(x) = 0.6.

As for the crisp case, it is not our purpose to present here the tableau rules
for more expressive languages of the fuzzy AL family.

We refer the reader to, e.g., [389]. However, let us note that besides adding
a rule for each construct, the blocking condition is extended as well to a more
sophisticated definition, as, e.g., SHIF does not employ the finite model
property anymore.

Nevertheless, in Appendix H we recall the tableau calculus for fuzzy
SHIFg under SFL.
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a

x

y

R

R

{hA, 0.7i, h¬A t 9R.A, 0.6i}

{hA, 0.6i, h¬A t 9R.A, 0.6i}

{hA, 0.6i, h¬A t 9R.A, 0.6i}
FIGURE 10.7: Clash-free and complete completion-forest from fuzzy
ALC KB.

10.6.1.3 Fuzzy Tableau for Finite-Valued DLs

We have seen in Section 8.2.2.3, Algorithm 5, that in fact an analytical
fuzzy tableau for propositional fuzzy logic can be adapted to the case in which
the truth combination functions are defined via arbitrary matrix over a finite-
truth space such as Ln = {0, 1

n−1 , . . . ,
n−2
n−1 , 1} (see Section 8.1.7).

Next, we show that the tableau calculus illustrated in the previous Sec-
tion 10.6.1.2 can be adapted to this case in an analogous way [73].

The tableau algorithm is quite similar than the one described for fuzzy
ALC with GCIs, except that now all inference rules and the completion-forest
initialization phase become non-deterministic.

Specifically, consider a fuzzy ALC KB with GCIs, truth-space Ln =
{0, 1

n−1 , . . . ,
n−2
n−1 , 1} and truth-combination functions ⊗,⊕,⇒ and 	 defined

over Ln.
The notions of completion-forest, Rn-successor, Rn-predecessor, and an-

cestor is as for Section 10.6.1.2. However, we will interpret 〈C, n〉 ∈ L(v) as
a statement of the form:“v is an instance of C to degree exactly equal to n”.
The case for role expressions 〈R,n〉 ∈ L(〈v, w〉) is similar. The notion of clash
is adjusted as for the fuzzy propositional case and is as follows. For nodes v
and w,

• L(v) is said to contain a clash iff L(v) contains either

– an expression 〈⊥, n〉 with n > 0; or

– a pair of expressions 〈A,n〉 and 〈A,m〉 with n 6= m;

• L(〈v, w〉) is said to contain a clash iff L(v) contains

– a pair of expressions 〈R,n〉 and 〈R,m〉 with n 6= m.
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Now, the algorithm initializes a forest F non-deterministically as follows:

• F contains a root node vi0, for each individual ai occurring in A;

• F contains an edge 〈vi0, vj0〉, for each 〈(ai, aj):R,n〉 ∈ A;

• for each 〈ai:C,m〉 ∈ A, we add 〈C,m′〉 to L(vi0) for some m′ ∈ Ln with
m′ ≥ m;

• for each 〈(ai, aj):R,m〉 ∈ A, we add 〈R,m′〉 to L(〈vi0, vj0〉) for some
m′ ∈ Ln with m′ ≥ m.

Then the completion-forest F is then expanded by repeatedly applying the
completion rules described in Table 10.9 and answers “K is satisfiable” iff
the completion rules can be applied in such a way that they yield a com-
plete and clash-free completion-forest. It can be shown that using the rules in
Table 10.9

Proposition 78 ([73]). For each knowledge base K = 〈T ,A〉 with a finitely
valued truth space Ln

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a finite model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield a complete and clash-free completion-forest for K.

Of course, the method can be adapted to any truth space as well, as long as
it is finite.

In Appendix H.2 we extend it to fuzzy SHIFg.

10.6.1.4 Operational Research-based Fuzzy Tableau

Similarly as we have seen in Section 8.2.2.2 and Appendix F for the fuzzy
propositional case, an important and application oriented approach for rea-
soning with fuzzy DLs is based on Operational Research (OR) [47, 48, 51, 52,
53, 55, 58, 59, 62, 398, 399, 419, 418, 425, 426].

We will illustrate here the method under SFL. We refer to, e.g., [47, 53, 399]
to other semantics.

As for the analytical tableau case, we will assume here that all concepts
are in NNF.

The Case with Empty TBox. In the following, we will assume that the
TBox in a knowledge base is empty. Like the tableau algorithm presented for
crisp DLs such as [206, 209] our algorithm works on completion-forests since
an ABox might contain several individuals with arbitrary roles connecting
them. Our method combines appropriate DL tableaux rules, which constructs
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TABLE 10.9: The tableau rules for finitely valued fuzzy ALC with GCIs.

(u). If (i) 〈C1 u C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊗
m2 = m with {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node v is not
indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to L(v).

(t). If (i) 〈C1 t C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊕
m2 = m with {〈C1,m1〉, 〈C2,m2〉} ∩ L(v) = ∅, and (iii) node v is not
indirectly blocked, then add some 〈C, k〉 ∈ {〈C1,m1〉, 〈C2,m2〉} to L(v).

(¬). If (i) 〈¬C,m〉 ∈ L(v) with 〈C,	m〉 6∈ L(v) and (ii) node v is not indi-
rectly blocked, then add 〈C,	m〉 to L(v).

(→). If (i) 〈C1 → C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that
m1 ⇒ m2 = m and {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node v is
not indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to L(v).

(∀). If (i) 〈∀R.C,m〉 ∈ L(v), (ii) 〈R,m1〉 ∈ L(〈v, w〉), (iii) there is m2 ∈ Ln
such that m1 ⇒ m2 ≥ m with 〈C,m2〉 6∈ L(w), and (iv) node v is not
indirectly blocked, then add 〈C,m2〉 to L(w).

(∃). If (i) 〈∃R.C,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1⊗m2 =
m, (iii) there is no 〈R,m1〉 ∈ L(〈v, w〉) with 〈C,m2〉 ∈ L(w), and (iv)
node v is not blocked, then create a new node w, add 〈R,m1〉 to L(〈v, w〉)
and add 〈C,m2〉 to L(w).

(∃′). If (i) 〈∃R.C,m〉 ∈ L(v), (ii) 〈R,m1〉 ∈ L(〈v, w〉), (iii) there is m2 ∈ Ln
such that m1 ⊗m2 ≤ m with 〈C,m2〉 6∈ L(w), and (iv) node v is not
indirectly blocked, then add 〈C,m2〉 to L(w).

(∀′). If (i) 〈∀R.C,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⇒
m2 = m, (iii) there is no 〈R,m1〉 ∈ L(〈v, w〉) with 〈C,m2〉 ∈ L(w), and
(iv) node v is not blocked, then create a new node w, add 〈R,m1〉 to
L(〈v, w〉) and add 〈C,m2〉 to L(w).

(v). If (i) 〈C v D,m〉 ∈ T , (ii) there are m1,m2 ∈ Ln such that m1 ⇒ m2 ≥
m, (iii) {〈C,m1〉, 〈D,m2〉} 6⊆ L(v), and (iv) node v is not indirectly
blocked, then add 〈C,m1〉 and 〈D,m2〉 to L(v).

(ṽ). If (i) CṽD ∈ T , (ii) there are m1,m2 ∈ Ln such that m1 ≤ m2, (iii)
{〈C,m1〉, 〈D,m2〉} 6⊆ L(v), and (iv) node v is not indirectly blocked,
then add 〈C,m1〉 and 〈D,m2〉 to L(v).

the completion-forest with methods developed have seen in Section 8.2.2.2 and
Appendix F.

So, let K be a fuzzy KB with empty TBox. A completion-forest F for K
is a collection of trees whose distinguished roots are arbitrarily connected by
edges. Each node v is labelled with a set L(v) of concepts C ∈ sub(K). If
C ∈ L(v) then we consider a variable xv:C . The intuition here is that v is
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an instance of C to degree equal or greater than the value of the variable
xv:C . Each edge 〈v, w〉 is labelled with a set L(〈v, w〉) of roles R ∈ RK and if
R ∈ L(〈v, w〉) then we consider a variable x(v,w):R representing the degree of
being 〈v, w〉 and instance of R.

If nodes v and w are connected by an edge 〈v, w〉 with R ∈ L(〈v, w〉) then
w is called an R-successor of v.

The forest has associated a set CF of constraints c of the form l ≤ l′, l = l′,
where l, l′ are linear expressions. Essentially the constraints are added by
the application of rules to concept expressions to reflect the semantics of the
connectives. Intuitively, if for a node v, L(v) contains C1tC2 and CF contains
xv:C1tC2

≥ 0.7 (dictating that v is an instance of C1 t C2 to degree at least
0.7), then the application of the (t) rule to C1 tC2 will add the concepts C1

and C2 to L(v) and the constraints, encoding xv:C1
⊕xv:C2

≥ xv:C1tC2
, to CF .

Any assignment to the variables that satisfies these constraints, guarantees
then also that indeed v is an instance of C1 t C2 to degree at least 0.7.

We refer the reader to Section 8.2.2.2 and Appendix F for the encoding
of the truth combination functions. In what follows, we will be using the
expressions z ≤ x1 ⊕ x2, z ≤ x1 ⊗ x2 and z ≥ x1 ⊗ x2 both to denote
the inequality with respect to a t-norm (t-conorm) operation and the set of
constraints they are equivalent to.

Now, given K = 〈∅,A〉, the algorithm initializes a forest F as follows:

• F contains a root node vi0, for each individual ai occurring in A;

• F contains an edge 〈vi0, vj0〉, for each assertion axiom 〈(ai, aj) : R,n〉 ∈ A;

• for each 〈ai : C, n〉 ∈ A, we add both C to L(vi0) and xvi0:C ≥ n to CF ;

• for each 〈(ai, aj) : R,n〉 ∈ A, we add both R to L(〈vi0, vj0〉) and
x(vi0,v

j
0):R ≥ n to CF .

The completion-forest F is then expanded by repeatedly applying the com-
pletion rules described below. The completion-forest is complete when none
of the completion rules is applicable. Then, the bMILP (bounded Mixed In-
teger Linear Programming) problem on the set of constraints CF is solved.
We will show that if there is a solution to CF then K is satisfiable and vice
versa.

We also assume a fixed rule application strategy as the order of rules
below, such that the rule for (∃) is applied as last. Also, all expressions in
node labels are processed according to the order they are introduced into the
completion-forest F .

The rules for  L-ALC are in Table 10.10.
Note that, despite that |sub(K)| is O(|K|), we may well have that |CF | is

O(2|K|), as the completion-forest F may contain exponentially many nodes.
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TABLE 10.10: The OR-based tableau rules for fuzzy ALC with empty TBox.

(var). For variable xv:C occurring in CF add xv:C ∈ [0, 1] to CF . For variable
x(v,w):R occurring in CF add x(v,w):R ∈ [0, 1] to CF .

(⊥). If ⊥ ∈ L(v) then CF := CF ∪ {xv:⊥ = 0}.
(>). If > ∈ L(v) then CF := CF ∪ {xv:> = 1}.
(Ā). If ¬A ∈ L(v) then add A to L(v), and CF := CF ∪ {xv:A ≤ 1− xv:¬A}.
(u). If (i) C1uC2 ∈ L(v) and (ii) the rule has not been already applied to this

concept, then add C1 and C2 to L(v), and CF := CF ∪ {xv:C1 ⊗ xv:C2 ≥
xv:C1uC2

}.
(t). If (i) C1tC2 ∈ L(v) and (ii) the rule has not been already applied to this

concept, then add C1 and C2 to L(v), and CF := CF ∪ {xv:C1
⊕ xv:C2

≥
xv:C1tC2}.

(∀). If (i) ∀R.C ∈ L(v), R ∈ L(〈v, w〉) and (ii) the rule has not been already
applied to this concept, then add C to L(w), and CF := CF ∪ {xw:C ≥
xv:∀R.C ⊗ x(v,w):R}.

(∃). If (i) ∃R.C ∈ L(v) and (ii) the rule has not been already applied to this
concept, then create a new node w, add R to L(〈v, w〉), add C to L(w),
and CF := CF ∪ {x(v,w):R ⊗ xw:C ≥ xv:∃R.C}.

Indeed, consider a knowledge base containing only the assertion α

a:∃R.C1
1 u ∃R.C1

2 u
∀R.(∃R.C2

1 u ∃R.C2
2 u

∀R.(∃R.C3
1 u ∃R.C3

2 u
. . .

∀R.(∃R.Cn1 u ∃R.Cn2 ) . . .) .

It is not difficult to see that the completion-forest F is a binary tree of depth
n consisting of O(2n) nodes and that CF contains both O(2n) variables taking
values in {0, 1} as well as O(2n) variables taking values in [0, 1]. In determining
whether a MILP problem has a solution is an NP-complete problem [216]
we get an NexpTime upper bound for the satisfiability problem (guess the
assignment to the binary variables and solve the system of linear in-equations
in exponential time).

Now, it can be shown that

Proposition 79 ([53]). For each knowledge base K = 〈∅,A〉,

1. the tableau algorithm terminates;
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2. if the expansion rules can be applied to a knowledge base K = 〈∅,A〉
such that they yield a complete completion-forest F such that CF has a
solution, then K has a (finite) model;

3. if a knowledge base K = 〈∅,A〉 has a (finite) model, then the application
of the expansion rules yields a complete completion-forest for K such
that CF has a solution.

Example 38. Consider Example 35. A complete completion-forest F is as for
the crisp case (see Figure 4.2). The constraint set CF contains the following
inequations:

xa:∀R.A u ∃R.B ≥ 0.9,
x(a, b):R ≥ 0.8,

x(a, c):P ≥ 0.7,

xa:∀R.A ⊗ xa:∃R.B ≥ xa:∀R.A u ∃R.B ,
xb:A ≥ xa:∀R.A ⊗ x(a, b):R ,

x(a, x):R ⊗ xx:B ≥ xa:∃R.B ,

xx:A ≥ xa:∀R.A ⊗ x(a, x):R ,

from which we may build, e.g., the same model as in Example 35.

The Case of Acyclic TBox. We next extend the previous algorithm to the
case of acyclic TBoxes.

Similarly to the analytical fuzzy tableau case, we present here the method
based on lazy unfolding. We recall that A vn C is the same as 〈> v A→ C, n〉
and A =n C is the same as 〈> v A↔ C, n〉 (note that A→ C ≡ ¬AtC and
A ↔ C ≡ ((A → C) u (C → A))) and, thus, as we have seen in Remark 25,
w.l.o.g. we may assume that the GCIs in an acyclic TBox have the form
〈> v D,n〉, where D is of the form A→ C or A↔ C.

Now, we extend our calculus in Table 10.10 with the rules in Table 10.11.
As for Proposition 79, it can be shown that

Proposition 80 ([53]). For each knowledge base K = 〈T ,A〉 with acyclic T ,

1. the tableau algorithm terminates;

2. if the expansion rules can be applied to a knowledge base K = 〈T ,A〉
such that they yield a complete completion-forest F such that CF has a
solution, then K has a (finite) model;

3. if a knowledge base K = 〈T ,A〉 has a (finite) model, then the application
of the expansion rules yields a complete completion-forest for K such that
CF has a solution.
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TABLE 10.11: The OR-based tableau rules for fuzzy ALC with acyclic fuzzy
KBs.

(vA). Assume 〈> v D,n〉 ∈ T , D is of the form A → C or A ↔ C, v is a
node to which this rule has not yet been applied and A ∈ L(v), then
add D to L(v) and set CF := CF ∪ {xv:D ≥ n}.

(ṽA) If AṽC ∈ T , v is a node to which this rule has not yet been applied
and A ∈ L(v), then add C to L(v) and set CF := CF ∪ {xv:A ≤ xv:C}.

(=̃A
1 ) If A=̃C ∈ T , v is a node to which this rule has not yet been applied

and A ∈ L(v) then add C to L(v) and set CF := CF ∪ {xv:A = xv:C}.

(=̃A
2 ) If A=̃C ∈ T , v is a node to which this rule has not yet been applied

and ¬A ∈ L(v) then add nnf(¬C) to L(v) and set CF := CF ∪{xv:¬A =
xv:¬C}.

Example 39. Note that by referring to Example 36, a complete completion-
forest is as for Example 4.3 in which ¬B is added to the node label of x. The
set of constraints can be worked out easily from Example 36, by adding

xx:¬B t C ≥ 0.4 ,
xx:¬B ⊕ xx:C ≥ xx:¬B t C ,
xx:B ≤ 1− xx:¬B ,

from which we may build, e.g., the same model as in Example 36.

The Case with General TBox. Eventually, we show here how we may deal
with the case in which the GCIs in the TBox are of the general form 〈C v D,n〉
and CṽD10. As we have seen in Remark 25, w.l.o.g. we may assume that the
former GCIs have the form 〈> v C ′, n〉.

Like for the crisp and analytical fuzzy table case, to cope with the non-
termination problem, a notion of blocking has to be introduced, which is
the same as for the crisp case: we say that a node v is directly blocked
iff none of its ancestors are blocked and there exists an ancestor w such
that

L(v) = L(w) .

In this case we say that w directly blocks v. A node v is indirectly blocked iff
one of its ancestors is blocked. Finally a node v is blocked iff it is not a root
node and it is either directly or indirectly blocked.

10Axioms of the form A=̃C are replaced with AṽC and CṽA.
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TABLE 10.12: The OR-based tableau rules for fuzzy ALC with GCIs.

(var). For variable xv:C occurring in CF add xv:C ∈ [0, 1] to CF . For variable
x(v,w):R occurring in CF add x(v,w):R ∈ [0, 1] to CF .

(⊥). If ⊥ ∈ L(v) then CF := CF ∪ {xv:⊥ = 0}.
(>). If > ∈ L(v) then CF := CF ∪ {xv:> = 1}.
(Ā). If ¬A ∈ L(v) then add A to L(v), and CF := CF ∪ {xv:A ≤ 1− xv:¬A}.
(u). If (i) C1 u C2 ∈ L(v), (ii) the rule has not been already applied to this

concept, and (iii) node v is not indirectly blocked, then add C1 and C2

to L(v), and CF := CF ∪ {xv:C1
⊗ xv:C2

≥ xv:C1uC2
}.

(t). If (i) C1 t C2 ∈ L(v) and (ii) the rule has not been already applied to
this concept, and (iii) node v is not indirectly blocked, then add C1 and
C2 to L(v), and CF := CF ∪ {xv:C1 ⊕ xv:C2 ≥ xv:C1tC2}.

(∀). If (i) ∀R.C ∈ L(v), R ∈ L(〈v, w〉) and (ii) the rule has not been already
applied to this concept, and (iii) node v is not indirectly blocked, then
add C to L(w), and CF := CF ∪ {xw:C ≥ xv:∀R.C ⊗ x(v,w):R}.

(∃). If (i) ∃R.C ∈ L(v) and (ii) the rule has not been already applied to this
concept, and (iii) node v is not blocked then create a new node w, add R
to L(〈v, w〉), add C to L(w), and CF := CF∪{x(v,w):R⊗xw:C ≥ xv:∃R.C}.

(v). If (i) 〈> v D,n〉 ∈ T , (ii) v is a node to which this rule has not yet been
applied, and (iii) node v is not indirectly blocked, then add D to L(v)
and set CF := CF ∪ {xv:D ≥ n}.

(ṽ). If (i) CṽD ∈ T , (ii) v is a node to which this rule has not yet been
applied, and (iii) node v is not indirectly blocked, then add nnf(¬C)
and D to L(v) and set CF := CF ∪ {xv:nnf(¬C) ⊕l xv:D ≥ 1}.

Now, the calculus is as described above except that the rules are not applied
to blocked nodes. Specifically, the rules are described in Table 10.1211.

As before, it can be shown that using the rules in Table 10.12

Proposition 81. For each knowledge base K = 〈T ,A〉

1. the tableau algorithm terminates;

2. if the expansion rules can be applied to a knowledge base K = 〈T ,A〉
11Note that in the (ṽ) rule we use the fact that CṽD is the same as > v C →l D,

i.e., > v ¬C tl D.
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a

x

y

R

R

{A, ¬A t 9R.A, ¬A, 9R.A}

{A, ¬A t 9R.A, ¬A, 9R.A}

{A, ¬A t 9R.A, ¬A, 9R.A}
FIGURE 10.8: OR-based complete completion-forest from fuzzy ALC KB.

such that they yield a complete completion-forest F such that CF has a

solution, then K has a (finite) model;

3. if a knowledge base K = 〈T ,A〉 has a (finite) model, then the application
of the expansion rules yields a complete completion-forest for K such that
CF has a solution.

In Appendix H we recall the OR-based tableau calculus for fuzzy SHIFg
under SFL.

Example 40. Consider Example 37. A complete completion-forest is as in
Figure 10.8.

It can be verified that the constraint set contains

xa:A ≥ 0.7 ,

xa:¬A t ∃R.A ≥ 0.6 ,
xa:¬A ⊕ xa:∃R.A ≥ xa:¬A t ∃R.A ,
xa:A ≤ 1− xa:¬A ,
x(a, x):R ⊗ xx:A ≥ xa:∃R.A ,

xx:¬A t ∃R.A ≥ 0.6 ,
xx:¬A ⊕ xx:∃R.A ≥ xx:¬A t ∃R.A ,
xx:A ≤ 1− xx:¬A ,
x(x, y):R ⊗ xy:A ≥ xy:∃R.A ,

xy:¬A t ∃R.A ≥ 0.6 ,

xy:¬A ⊕ xy:∃R.A ≥ xy:¬A t ∃R.A ,

xy:A ≤ 1− xy:¬A .
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It can be verified that from this constraint set one may construct, e.g., a model
as in Example 37.

10.6.1.5 A Fuzzy Classification Algorithm

As for the crisp DL case (see Section 4.4.1.4), we provide here also an ontology
classification algorithm for the fuzzy AL-family.

So, let X be the finite set of concept names we want to classify. At first,
let us fix a t-norm ⊗ on which the subsumption relationship is based on.

As in the fuzzy case, the subsumption relationship is graded, we are only
interested in the case where the subsumption relationship is non-zero and
maximal, i.e., we consider a subsumption relationship of degree n among
atoms A and B if n = bed(K, A v B) ∈ (0, 1]. So, let ≤n⊆ X × X be
such a graded subsumption relation among concept names, where A ≤n B iff
n = bed(K, A v B) ∈ (0, 1].

The order is reflexive as for any a ∈ X

a ≤1 a .

The order is also max-⊗ transitive (or simply transitive), i.e.,

a ≤k c , where k = max{n⊗m | ∃b ∈ X s.t. a ≤n b ≤m c} .

Therefore, we call ≤n also a pre-order. Note that max-⊗ transitivity ensures
that we cannot have a ≤n b and a ≤m b with n 6= m. Therefore, ≤(·) can also
be seen as a function X ×X → (0, 1]. Also, as for the classical case, ≤n is not
antisymmetric and, thus, is not a partial order. Specifically, we may well have
a ≤n b and b ≤m a with both a 6= b and n 6= m.

We call a, b ∈ X equivalent (denoted a ≡ b) iff both a ≤1 b and b ≤1 a
hold. We call a, b ∈ X quasi-equivalent (denoted a ≡nm b) iff both a ≤n b and
b ≤m a hold. Of course, equivalent concepts are quasi-equivalent (n = m = 1).

Remark 34. Note that if a1 ≤n1 a2 ≤n2 . . . ≤nk ak ≤nk+1 a1 then not
necessarily all the ai are pairwise quasi-equivalent. In fact, consider a1 ≤n1

a2 ≤n2 a3 ≤n3 a1. Then one may think that a1 ≡n1
n2⊗n3

a2, but this is true only
if n2 ⊗ n3 6= 0, which is not always the case (e.g.,, a1 ≤0.1 a2 ≤0.2 a3 ≤0.3 a1

and  Lukasiewicz t-norm). However, if ⊗ is strict then all the ai are pairwise
quasi-equivalent.

With eq(a) we denote the set of equivalent objects to a without a itself, i.e.,

eq(a) = {b | a ≡ b, a 6= b} .

while with [a] we denote the equivalence class of a, i.e.,

[a] = {b | a ≡ b} .

Of course, eq(a) = [a] \ {a} and [a] = [b] if a ≡ b.
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Remark 35. Note that c ≤n a iff c ≤n x for all x ∈ [a] and, similarly, a ≤n c
iff x ≤n c for all x ∈ [a].

With qe(a) we denote the set of quasi-equivalent objects to a without a itself,
i.e.,

qe(a) = {b | a ≡nm b, a 6= b} .

Remark 36. Note that b, c ∈ qe(a) does not imply that b and c are quasi-
equivalent. However, in general b ∈ qe(a) iff a ∈ qe(b). But, if ⊗ is strict then
b and c are quasi-equivalent (by Remark 34).

Remark 37. Note that if c 6≤n a then it is still possible that c ≤m x for some
x ∈ qe(a) and, similarly, if a 6≤n c then it is still possible that x ≤m c for some
x ∈ qe(a). However, if ⊗ is strict then c 6≤n a iff c 6≤m x for all x ∈ qe(a) and
similarly, a 6≤n c then x ≤m c for all x ∈ qe(a) (the cases c ≤n a and a ≤n c
are similar).

Given the previous observations, we are going to represent ≤(·) via a possibly
cyclic directed graph, where in a node we collect the equivalent concepts for
a representative concept a, as for the classical case. There are cycles in the
graph if quasi-equivalent concepts exist.

We call ≺(·) a precedence relation of ≤(·), iff ≺(·) is the smallest relation
such that

1. its reflexive, transitive closure is ≤(·), except for pairs of equivalent ob-
jects, i.e., pairs of objects a, b such that a ≡ b;

2. for quasi-equivalent concepts a, b, if a ≡nm b then a ≺n b and b ≺m a.

Note that if x ≺k y then x ≤k y and there is no z 6∈ qe(x) ∪ qe(y) such that
x ≤n z ≤m y for some n,m ∈ (0, 1].
≺ is intended to represent the concept name relationships in a TBox T ,

which we want to compute. If x ≤n y then x is a successor of y and y is a
predecessor of x. Similarly, if x ≺n y then x is an immediate successor of y
and y is an immediate predecessor of x.

A concept name hierarchy graph ≺(·) is represented as a directed, labelled
graph, where

• there is a node a for an equivalence class [a], a ∈ X, such that there are
not two nodes a, b for equivalent concepts a and b;

• a node a is labelled with the set eq(a) of logically equivalent concept
names;

• there is an edge e from node b to node a, labelled with degree n if a ≺n b.

In few words: a node a is a place holder for the equivalence class [a], while an
edge between a and b represents the subsumption relationship among a and
b.
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Note that a ≺n b iff x ≺m b for any equivalent x ∈ eq(a). Similarly, a ≺n b
iff a ≺m x for any equivalent x ∈ eq(b).

A simple classification algorithm. Our algorithm proceeds similarly as for
the classical case (see Section 4.4.1.4), but some special care has to be given
to quasi-equivalent concepts and to cycles.

So, assume we have determined the precedence relation ≺(·)
i for a set

Xi ⊆ X of concept names. Initially, X0 = {⊥,>} and ⊥ ≺1
0 >. Consider a

concept name c ∈ X \Xi. We determine a method to compute the precedence

relation ≺(·)
i+1 for set Xi+1 = Xi ∪ {c}. To do so, we compute c’s immediate

predecessors (procedure topFuzzySearch), TXc
i as from Equation (4.4), and

immediate successors (procedure bottomFuzzySearch), BXc
i as from Equa-

tion (4.5), w.r.t. concept names in Xi and determine ≺(·)
i+1 as

≺(·)
i+1 = (S1 ∪ S2 ∪ S3) \ S4

where

S1 = ≺(·)
i

S2 = {c ≺n p | p ∈ TXc
i }

S3 = {s ≺n c | s ∈ BXc
i }

S4 = {s ≺ki p | s ∈ BXc
i , p ∈ TXc

i , s, p not quasi-equivalent,

s ≺n c ≺m p and k = n⊗m} .

As for the classical case, there is a special case if c is equivalent to some
x ∈ Xi, i.e., c ≤1 x and x ≤1 c. In that case, TXc

i = {x} dictating c ≤n x. In
this case, if n = 1 we test also if x ≤1 c. If the test is positive, c is equivalent
to x and we add c to eq(x).

The procedure SimpleFuzzyClassify(K) is as follows:

SimpleFuzzyClassify(K)

1. Let

(a) X be the set of concept names in T
(b) X0 := {⊥,>}. Create two nodes ⊥ and > with empty label,

and add an edge dictating ⊥ ≺1 >
2. If (X \Xi) = ∅ return 〈Xi,≺i〉 and exit

3. Select c ∈ X \Xi

4. Compute TXc
i

5. If TXc
i = {x} and c ≤1 x, then test x ≤1 c and if test is positive

add c to eq(x), and go to step 2.

6. Compute BXc
i
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7. Set

Xi+1 := Xi ∪ {c}

≺(·)
i+1 = (S1 ∪ S2 ∪ S3) \ S4

where

S1 = ≺(·)
i

S2 = {c ≺n p | p ∈ TXc
i }

S3 = {s ≺n c | s ∈ BXc
i }

S4 = {s ≺ki p | s ∈ BXc
i , p ∈ TXc

i , s, p not quasi-equivalent,

s ≺n c ≺m p and k = n⊗m} .

Note that c ≺n p is given by the value n := SubsF lag(c, p),
where the variable SubsF lag(., .) is updated in the procedure
enhancedFuzzyTopSubs.

8. Increment i and go to step 2.

We next show how to compute TXc
i and BXc

i in the fuzzy setting. We first
address TXc

i . The other case is dual.
To start with, we assume that the elements in Xi are represented as a

concept hierarchy, as explained previously. To determine TXc
i , our procedure,

called topFuzzySearch, starts with > ∈ Xi and visits the concept hierarchy Xi

in a top-down breadth-first fashion. That is,

TXc
i := topFuzzySearch(c,>) .

Some care has to be given to cycles to avoid visiting the same node
twice.

For each concept name x ∈ Xi under consideration, it determines whether x
has an immediate successor y satisfying c ≤n y. If there are such successors,
they are considered as well. Otherwise, x is added to the result list of the
topSearch algorithm.

To avoid multiple visits of elements of Xi and multiple comparisons of
the same element c, topFuzzySearch employs the label “visited” and another
label n ∈ [0, 1] if the subsumption test has been made and the degree of
subsumption is n.

The procedure topFuzzySearch gets two concepts as input, the concept
c, which has to be inserted and the element x ∈ Xi currently under con-
sideration. For x, we already know that c ≤n x and we look at direct suc-

cessors of x w.r.t. ≺(·)
i . For each direct successor y of x, we have to check

to which degree ny ∈ [0, 1], y subsumes c. This is done with the procedure
enhancedFuzzyTopSubs. The direct successors y for which the test was pos-
itive (ny > 0) are collected in a list PosSucc. If the list remains empty, x is
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added to the result list; otherwise topFuzzySearch is called for each positive
successor, if not already visited.

The topFuzzySearch(c, x) algorithm is as follows:

topFuzzySearch(c,x)

1. Visited(c, x):= true

2. For all y with y ≺mi x do: if enhancedFuzzyTopSubs(y, c) then
PosSucc := PosSucc ∪ {y}

3. If PosSucc = ∅ then Result := {x} and go to step 5.

4. For all y ∈ PosSucc do: if not Visited(c, y) then Result := Result∪
topFuzzySearch(c, y)

5. Return Result.

The enhancedFuzzyTopSubs(y, c) algorithm is as follows:

enhancedFuzzyTopSubs(y,c)

1. If SubsF lag(y, c) > 0 then Result := true and go to step 6.

2. If SubsF lag(y, c) = 0 then Result := false and go to step 6.

3. If ⊗ is a strict t-norm then

• if for all z with y ≺myi z it holds that enhancedFuzzyTopSubs(z, c)
and c ≤n y then SubsF lag(y, c) := n,Result := true and go
to step 6.

4. If ⊗ is not a strict t-norm and c ≤n y then SubsF lag(y, c) :=
n,Result := true and go to step 6.

5. SubsF lag(y, c) := 0, Result := false

6. Return Result.

Note that in step 3, before testing the subsumption c ≤n y we apply the
following heuristics using negative information [20, 22, 23], which works for
strict t-norms only:

If ⊗ is a strict t-norm and if for some predecessor z of y the test
c ≤m z has failed, we can conclude that c 6≤n y without performing
the expensive test c ≤n y. To gain maximum advantage, all pre-
decessor of y should have been tested before the test is performed
on y, which is obtained by recursive calls.

We next show how to compute BXc
i , which is dual to the topFuzzySearch

procedure and is performed by the bottomFuzzySearch algorithm. We have
that

BXc
i := bottomFuzzySearch(c,⊥)

bottomFuzzySearch(c,x)
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1. Visited(c, x):= true

2. For all y with x ≺mi y do: if enhancedFuzzyBottomSubs(c, y) then
PosPrec := PosPrec ∪ {y}

3. If PosPrec = ∅ then Result := {x} and go to step 5.

4. For all y ∈ PosPrec do: if not Visited(c, x) then Result := Result∪
bottomFuzzySearch(c, y)

5. Return Result.

The enhancedFuzzyBottomSubs(c, y) algorithm is as follows:

enhancedFuzzyBottomSubs(c,y)

1. if SubsF lag(c, y) > 0 then Result := true and go to step 6.

2. If SubsF lag(c, y) = 0 then Result := false and go to step 6.

3. If ⊗ is a strict t-norm then

• If for all z with z ≺mzi y it holds that enhancedFuzzyBottomSubs(c, z)
and y ≤n c then SubsF lag(c, y) := n, Result := true and go
to step 6.

4. If ⊗ is not a strict t-norm and y ≤n c then SubsF lag(c, y) :=
n,Result := true and go to step 6.

5. SubsF lag(c, y) := 0, Result := false

6. Return Result.

Note that in step 3, before testing the subsumption y ≤n c we apply the
following heuristics using negative information [20, 22, 23], which works for
strict t-norms only:

If ⊗ is a strict t-norm and if for some successor z of y the test z ≤m
c has failed, we can conclude that y 6≤n c without performing the
expensive test y ≤n c. To gain maximum advantage, all successors
of y should have been tested before the test is performed on y,
which is obtained by recursive calls.

Example 41. Consider a fuzzy analogue of Example 13 under product logic:

K = {〈C v ∃R.D, 0.7〉, 〈∃R v E, 0.8〉} .

Figure 10.9 illustrates a classification run.

Optimising fuzzy classification via told subsumers. We extend the no-
tion of a told subsumer introduced in Section 4.4.1.4 to the fuzzy case. Con-
sider a KB K = 〈T ,A〉.

1. If T contains 〈A v C,m〉 then C is called a told subsumer of A to degree
m, denoted A→m

ts C.
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FIGURE 10.9: A fuzzy DL classification run.

2. If T contains A = C then C is called a told subsumer of A to degree 1,
denoted A→1

ts C.

3. If 〈D v C1 u . . . u Cn,m〉 ∈ T then for all i, D →m
ts Ci.

4. If A = C1 u . . . u Cn ∈ T then for all i, A→1
ts Ci.

5. If 〈C1 t . . . t Cn v D,m〉 ∈ T then for all i, Ci →m
ts D.

6. If A = C1 t . . . t Cn ∈ T then for all i, Ci →1
ts A.

7. →ts is max−⊗-transitive.

We say that B is a told subsumer of A iff A →n
ts B with n > 0. Note that if

⊗ is strict and A→n
ts B then n > 0 and, thus, B is a told subsumer of A.

Remark 38. Note that if A→n
ts B with n > 0 we know that K |= 〈A v B,n〉.

Unfortunately, n is not necessarily the maximal degree of subsumption, e.g.,
for

〈A v B, 0.5〉
〈A v C, 1〉
〈C uD v B, 1〉
D = >

we have that A→0.5
ts B, though K |= 〈A v B, 1〉.

Now, the analogous of Remark 7 is not true.

Remark 39. Before classifying concept A, all of its told subsumers which have
already been classified, and all their subsumers, can be marked as subsumers
of A, though the maximal degree of subsumption may not be known, without
the subsumption test. That is:

if A→n
ts B with n > 0 then we know that A ≤m B with m ≥ n.
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However, the analogous of Remark 8 is true.

Remark 40. In procedure SimpleFuzzyClassify, in step 3, select concept
c ∈ X \Xi only if all of its told subsumer have been classified. That is,

if A→n
ts B with n > 0 then classify B before A

Therefore, we get a preference order on the atoms in X.

Fuzzy acyclic KBs case. This is like the crisp case: consider an acyclic KB
K = 〈T ,A〉. For acyclic KBs we may take advantage of the heuristics devel-
oped in the previous paragraph concerning told subsumers and the following
remark that works for acyclic KBs only.

Remark 41. Before classifying concept A, all of its told subsumers which have
already been classified, and all their subsumers, can be marked as subsumers
of A. Subsumption test for these atoms are, thus, unnecessary. That is, in the
procedure SimpleFuzzyClassify, we have another initialization step:

if A→n
ts B with n > 0 then set SubsF lag(B,A) = n.

So, for acyclic KBs if A→n
ts B with n > 0 then A ≤n B holds.

Specifically, apply the SimpleFuzzyClassify procedure with the two heuris-
tics described in Remark 41 and 40. Then the ordering induced by Remark 40
can be exploited by omitting the bottom search phase for primitive concept
names and assuming that they only subsume (concepts equivalent) to ⊥. This
is possible because, with an acyclic KB, a primitive concept can only subsume
concepts for which it is a told subsumer. Therefore, as concepts are classified
in definition order, a primitive concept will always be classified before any of
the concepts it subsumes (and, thus, the bottom search phase is redundant).

10.6.2 The Case of Fuzzy EL
We describe here a polynomial fuzzy classification algorithm for fuzzy EL+

(see Section 4.2.2.4 for the definition of crisp EL+) under Gödel logic [388,
475], which is the only reasoning algorithm within the EL family known so
far, though it is expected that fuzzy calculi involving different t-norms and/or
fuzzy calculi in the style of [229, 230, 243, 244, 245, 297] (see Remark 9) will
appear in the near future.

So, in EL+ concepts have the form as for EL, namely

C,D → A | (atomic concept)
> | (universal concept)

C uD | (concept conjunction)
∃R.C (qualified existential restriction)

General inclusion axioms are of the form 〈C v D,n〉, where C,D are EL+
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TABLE 10.13: Normalization rules for fuzzy EL+ TBoxes.

NF1 R1 ◦ · · · ◦Rk v S 7→ {R1 ◦ · · · ◦Rk−1 v U,U ◦Rk v S}

NF2 〈C1 u . . . u C̃ u . . . u Ck v C, n〉 7→ {〈C̃ v A,n〉, 〈C1 u . . . A . . . u Ck v C, n〉}

NF3 〈∃R.C̃ v D,n〉 7→ {〈C̃ v A,n〉, 〈∃R.A v D,n〉}

NF4 〈C̃ v D̃, n〉 7→ {〈C̃ v A,n〉, 〈A v D̃, n〉}

NF5 〈B v ∃R.C̃, n〉 7→ {〈B v ∃R.A, n〉, 〈A v C̃, n〉}

NF6 〈B v C uD,n〉 7→ {〈B v C,B v D,n〉}

where C̃, D̃ 6∈ CN>T , B ∈ CN>T U new role name, and A new concept name.

concepts, while role inclusion axioms are of the form R1 · · ·Rn v R, where
Ri and R are role names (note that the degree in role inclusions axioms is 1,
i.e., role inclusion axioms are classical).

Now, before applying the polynomial algorithm for classification, a fuzzy
EL+ TBox needs to be normalized [15, 25] in a similar way as we did for EL++

in Section 4.4.2 (see also [388]). Specifically, let CN>T (resp. CNT ) denote the
set of concept names occurring in T with (resp. without) the top concept >.
We say that a fuzzy EL+ Tbox T is normalized if

1. it only contains GCIs of the following form:

〈A1 u . . . uAk v B,n〉, 〈A v ∃R.B, n〉, 〈∃R.A v B,n〉,

where A,Ai ∈ CN>T and B ∈ CNT .

2. all role inclusions are of the form R v S or R1 ◦R2 v S.

As shown in [388], ant fuzzy EL+ TBox T can be turned in linear time into a
satisfiability preserving normalized TBox T ′ by exhaustively applying proper
normalization rules (see Table 10.13), which introduce new concept and role
names in the TBox.

As next, we assume that a TBox is normalized. Similarly to crisp EL++,
when developing the subsumption algorithm for normalized EL+ TBoxes, we
can restrict our attention to subsumption between concept names. In fact, T |=
〈C v D,n〉 iff T ′ |= 〈A v B,n〉, where T ′ = T ∪ {〈A v C, n〉, 〈D v B,n〉},
with A,B new concept names. Now, let RT to denote the set of all role names
used in T .

The algorithm computes a mapping S from CNT to a subset of CN>T ×
[0, 1], and a mapping R from RT to a subset of CN>T ×CN>T × [0, 1]. The intu-
ition is that these mappings make implicit subsumption relationships explicit
in the following sense:
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TABLE 10.14: Completion rules for fuzzy EL+.

(CR1) If for 1 ≤ i ≤ k, 〈Ai, ni〉 ∈ S(X), 〈A1 u . . . uAk v B,n〉 ∈ T , and
〈B,m〉 6∈ S(X), where m = min(n1, . . . nk, n) then add 〈B,m〉 to S(X);

(CR2) If 〈A,n〉 ∈ S(X), 〈A v ∃P.B, k〉 ∈ T , and 〈X,B,m〉 6∈ R(P ), where
m = min(n, k) then add 〈X,B,m〉 to R(P );

(CR3) If 〈X,Y, n1〉 ∈ R(P ), 〈A,n2〉 ∈ S(Y ), 〈∃P.A v B,n3〉 ∈ T , and
〈B,m〉 6∈ S(X), where m = min(n1, n2, n3) then add 〈B,m〉 to S(X);

(CR4) If 〈X,Y, n〉 ∈ R(P ), P v S ∈ T , and 〈X,Y, n〉 6∈ R(S) then add
〈X,Y, n〉 to R(S);

(CR5) If 〈X,Y, n1〉 ∈ R(R1), 〈Y, Z, n2〉 ∈ R(R2), R1 ◦ R2 v R3 ∈ T , and
〈X,Z,m〉 6∈ R(R3), where m = min(n1, n2) then add 〈X,Z,m〉 to
R(R3).

• 〈B,n〉 ∈ S(A) implies that T |= 〈A v B,n〉;

• 〈A,B, n〉 ∈ R(P ) implies T |= 〈A v ∃P.B, n〉.

These mapping are initialized as follows:

• S(A) := {〈A, 1〉, 〈>, 1〉} for each A ∈ CNT ;

• R(P ) := ∅ for each P ∈ RT .

Then, the sets S(A) and R(P ) are extended by applying the completion rules
shown in Table 10.14 until no more rules are applied.

Now, it can be shown that by appropriately optimizing the application of
the completion rules (see [15, 25, 388])

Proposition 82 ([388]). For a normalized EL+ TBox T ,

1. the rules of Table 10.14 can only be applied a polynomial number of
times, and each rule application is polynomial;

2. Let S be the mapping obtained after the application of the rules of Ta-
ble 10.14 to T has terminated, and let A,B be concept names occurring
in T , then for n ∈ (0, 1] we have that T |= 〈A v B,n〉 iff 〈B,n′〉 ∈ S(A)
for some n′ ≥ n.

Example 42. Let us consider K in Example 41 under Gödel logic.
Note that K is already normalized. The following illustrates a classification

run.
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FIGURE 10.10: A fuzzy EL++ classification example.

1. Initialization:

S(C) := {〈C, 1〉, 〈>, 1〉}
S(D) := {〈D, 1〉, 〈>, 1〉}
S(E) := {〈E, 1〉, 〈>, 1〉}
R(R) := ∅ .

2. Application of rule (CR2):

R(R) := R(R) ∪ {〈C,D, 0.7〉} .

3. Application of rule (CR3):

S(C) := S(C) ∪ {〈E, 0.7〉} .

4. Stop. Figure 10.10 illustrates the final classification, which coincides with
the one in Figure 10.9, except to the subsumption degree among E and
C.

10.6.3 The Case of Fuzzy DL-Lite

In Section 4.2.2.5 we described the crisp DL-Lite family, while in Sec-
tion 4.4.3 we described a conjunctive query answering procedure for crisp
DL-Litecore. As query answering is the major reasoning task of the DL-
Lite family, we do so here the same and describe indeed a top-k query an-
swering procedure of DL-Litecore under Gödel logic with involute negation
and which find its application in [344, 99, 420, 430, 431, 432, 435] (see,
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e.g., [289, 342, 343, 404, 410, 424, 434] for similar reasoning algorithms re-
lated to the DL-Lite family).

So, we recall that in fuzzy DL-Litecore concepts and roles have the following
syntax

B −→ A | ∃R
C −→ B | ¬B
R −→ P | P− .

Fuzzy inclusion axioms are classical, i.e., of the form

B v C

and fuzzy assertion axioms are, as usual of the form 〈a:A,n〉 and 〈(a, b):P , n〉.
As for the crisp case (see Section 4.4.3), we have a normalization step.

Knowledge Base normalisation. That is, the normalisation of K = (T ,A)
is obtained by transforming K as follows. The ABox A is expanded by adding
to A the assertions 〈a:∃R,n〉 and 〈b:∃R−, n〉, for each 〈(a, b):R,n〉 ∈ A. From
A we remove all fuzzy assertions 〈a:B,n〉 if there is another 〈a:B,m〉 in A with
degree m > n. We do the same for fuzzy role assertions. Then T is expanded
by closing it with respect to the following inference rule: if B1 v B2 ∈ T and
either B2 v ¬B3 ∈ T or B3 v ¬B2 ∈ T then add B1 v ¬B3 to T . It can be
shown that after computing the above closure we have that T |= B1 v ¬B2

iff either B1 v ¬B2 ∈ T or B2 v ¬B1 ∈ T .
Now we store A in a relational database. That is, (i) for each basic concept

B occurring in A, we define a relational table tabB of arity 2, such that
〈a, n〉 ∈ tabB iff 〈a:B,n〉 ∈ A; and (ii) for each role P occurring in A, we define
a relational table tabP of arity 3, such that 〈a, b, n〉 ∈ tabP iff 〈(a, b):P , n〉 ∈ A.
We denote with DB(A) the relational database thus constructed.

Knowledge Base satisfiability. Before we start to query the KB, once and
for all, we check whether the KB is satisfiable. To check the satisfiability
of a normalized KB K = (T ,A), we verify the following condition: there
exists B1 v ¬B2 ∈ T and a constant a such {〈a:B1, n〉, 〈a:B2,m〉} ⊆ A with
n > 1−m. If this condition above holds, then K is not satisfiable. Otherwise,
K is satisfiable.

Note that the algorithm can verify this condition by posing to DB(A) a
simple fuzzy conjunctive query expressed in SQL query, i.e., K is not satisfiable
iff

q(x)← tabB1(x, s1), tabB2(x, s2), s1 > 1− s2

has a non-empty answer in DB(A). As for the crisp case, it can be shown
that the above described algorithm decides the KB satisfiability problem in
polynomial time.

Top-k Query answering. To determine the answers of a top-k conjunctive
query over K is essentially similar to the case of the crisp case. To this end:
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1. We have to check if K is satisfiable, as querying a non-satisfiable KB is
undefined in our case.

2. By considering T only, the user query q is reformulated into a set of
fuzzy conjunctive queries r(q, T ).

3. The reformulated queries in r(q, T ) are then evaluated over A only
(which is stored in a database), producing the requested answer set
ans(K, q).

Now, let us consider a fuzzy conjunctive query without ranking aggregation
functions. The procedure is similar to the crisp case. Specifically, we have the
following. An axiom τ is applicable to an atom 〈B(x), s〉 in a query body, if
τ has B in its right-hand side, and τ is applicable to an atom 〈P (x1, x2), s〉
in a query body, if either (i) x2 = and the right-hand side of τ is ∃P , or
(ii) x1 = and the right-hand side of τ is ∃P−. We indicate with gr(g; τ)
the expression obtained from the atom g by applying the inclusion axiom τ .
Formally, if g = 〈B1(x), s〉 (resp., g = 〈P1(x, ), s〉 or g = 〈P1( , x), s〉) and
τ = B2 v B1 (resp., τ = B2 v ∃P1 or τ = B2 v ∃P−1 ), we have:

• gr(g, τ) = 〈A(x), s〉, if B2 = A, where A is an atomic concept;

• gr(g, τ) = 〈P2(x, ), s〉, if B2 = ∃P2;

• gr(g, τ) = 〈P2( , x), s〉, if B2 = ∃P−2 .

Now, the query reformulation algorithm, that given a conjunctive query q and
a set of axioms T , reformulates q in terms of a set of conjunctive queries
r(q, T ), which then can be evaluated over DB(A) is exactly as for the crisp
case (see Algorithm 1) and we have that

ansk(K, q) = Topk{〈t, λ〉 | qi ∈ r(q, T ),A |= 〈qi(t), λ〉} .

The above property dictates that the set of reformulated queries qi ∈ r(q, T )
can be used to find the top-k answers, by evaluating them over the set of
instances A only, i.e., over the database, without referring to the ontology T
anymore. As for the crisp case, note, however, that the size of r(q, T ) may be
exponential w.r.t. T .

In the following, we show how to find the top-k answers of the union of
the answer sets of conjunctive queries qi ∈ r(q, T ).

A naive solution would be: we compute for all qi ∈ r(q, T ) the whole
answer set ans(qi,A) = {〈t, λ〉 | A |= 〈qi(t), λ〉}, then we compute the union,⋃
qi∈r(q,T ) ans(qi, T ), of these answer sets, order it in descending order of

the scores and then we take the top-k tuples. We note that each conjunctive
query qi ∈ r(q, T ) can easily be transformed into a top-k SQL query expressed
over DB(A), i.e., the database encoding A. The transformation is conceptually
simple.
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Example 43 ([410]). Let us consider Example 15. We may ask to find cheap
accommodations, their location, and price. Such a query may be expressed as

〈q(a, hl, p), s〉 ←Accomodation(a), HasHLoc(a, hl),

HasHPrice(a, p), s := ls(50, 80)(p) .

Then the following is the set of query rewritings r(q, T ):

〈q(a, hl, p), s〉 ← Accomodation(a), HasHLoc(a, hl),

HasHPrice(a, p), s := ls(50, 80)(p)

〈q(a, hl, p), s〉 ← Hotel(a), HasHLoc(a, hl),

HasHPrice(a, p), s := ls(50, 80)(p)

〈q(a, hl, p), s〉 ← Hotel?(a), HasHLoc(a, hl),

HasHPrice(a, p), s := ls(50, 80)(p)

...
...

...

〈q(a, hl, p), s〉 ← Hotel ? ? ? ??(a), HasHLoc(a, hl),

HasHPrice(a, p), s := ls(50, 80)(p) .

A major drawback of this solution is the fact that there might be too many
tuples with non-zero score and hence for any query qi ∈ r(q,O), all these
scores should be computed and the tuples should be retrieved. This may not
be feasible in practice [424]. Indeed, in [424] it is shown that in some cases
this approach didn’t work at all due to main memory problems and motivated
the algorithm described next, called Disjunctive Threshold Algorithm, initially
proposed in [410], that does address the case for top-k join queries (queries
without ranking aggregates) and then has been extended to the case of queries
with ranking aggregates in [424].

The DTA for top-k join queries. An immediate method to compute
ansk(K, q) for top-k join queries is to compute for all qi ∈ r(q, T ), the top-k
answers ansk(A, qi). If both k and the number, nq = |r(q, T )|, of reformulated
queries are reasonable, then we may compute the union,

U(q,K) =
⋃

qi∈r(q,T )

ansk(A, qi) ,

of these top-k answer sets, order it in descending order w.r.t. score and then
we take the top-k tuples.

As an alternative, we can avoid computing the whole union U(q,K), so
further improving the answering procedure, by relying on a disjunctive vari-
ant [410] of the so-called Threshold Algorithm (TA) [152], called Disjunctive
TA (DTA).
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We recall that the TA has been developed to compute the top-k answers
of a conjunctive query without joins and with monotone score combination
function. In the following we show that we can use the same principles of the
TA to compute the top-k answers of the union of conjunctive queries without
ranking aggregates:

1. First, we compute for all qi ∈ r(q, T ), the top-k answers ansk(A, qi), us-
ing top-k rank-based relational database engine. Now, let us assume that
the tuples in the top-k answer set ansk(A, qi) are sorted in decreasing
order with respect to the score.

2. Then we process each top-k answer set ansk(A, qi) (qi ∈ r(q, T )) ac-
cording to some criteria (e.g., in parallel, or alternating fashion, or by
selecting the next tuple from the answer set with highest threshold θi de-
fined below), and top-down (i.e., the higher scored tuples in ansk(A, qi)
are processed before the lower scored tuples in ansk(A, qi)).
(a) For each processed tuple t, if its score is one of the k highest we

have already computed, then remember tuple t and its score st
(ties are broken arbitrarily, so that only k tuples and their scores
need to be remembered at any time).

(b) For each answer set ansk(A, qi), let θi be the score of the last tuple
processed in this set. Define the threshold value θ to be

θ = max(θ1, ..., θnq ) .

(c) As soon as at least k tuples have been processed whose score is at
least equal to θ, then halt (indeed, any successive retrieved tuple
will have score ≤ θ).

(d) Let Y be the set containing the k tuples that have been processed
with the highest scores. The output is then the set {〈t, st〉 | t ∈ Y }.
This set is ansk(K, q).

It is not difficult to see that the DTA determines the top-k answers. Indeed,
if at least k tuples have been processed whose score is at least equal to θ then
any new not yet processed tuple t will have score bounded by θ and, thus, it
cannot make it into the top-k. Hence, we can stop and the top-k tuples are
among those already processed.

Example 44 ([424]). Suppose we are interested in retrieving the top-3 an-
swers of the disjunctive query q that has been rewritten as {q3, q4, q

′′}. We
have seen that it suffices to find the top-3 answers of the union of the an-
swers to q3, q4 and to q′′. Let us show how the DTA works. First, we submit
q3, q4 and q′′ to a rank-based relational database engine, to compute the top-3
answers. Let us assume that

ans3(F , q3) = [〈0, 1.0〉, 〈3, 0.7〉, 〈4, 0.6〉]
ans3(F , q4) = [〈1, 0.9〉, 〈2, 0.8〉, 〈5, 0.5〉]
ans3(F , q′′) = [〈2, 0.84〉, 〈3, 0.64〉, 〈4, 0.36〉] .
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The lists are in descending order w.r.t. the score from left to right. Now we
process alternatively ansk(F , q3), then ansk(F , q4) and then ansk(F , q′′) in
decreasing order of the score. The table below summarizes the execution of our
DTA algorithm. The ranked list column contains the list of tuples processed.

Step Tuple θq3 θq4 θq′′ θ Ranked List
1 〈0, 1.0〉 1.0 - - - 〈0, 1.0〉
2 〈1, 0.9〉 1.0 0.9 - - 〈0, 1.0〉, 〈1, 0.9〉
3 〈2, 0.84〉 1.0 0.9 0.84 1.0 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉
4 〈3, 0.7〉 0.7 0.9 0.84 0.9 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉
5 〈2, 0.8〉 0.7 0.8 0.84 0.84 〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉〈3, 0.7〉

At step 5 we stop as the ranked list already contains three tuples
above the threshold θ = 0.84. So, the final output is ansk(F , q3) =
[〈0, 1.0〉, 〈1, 0.9〉, 〈2, 0.84〉]. Note that not all tuples have been processed.

Proposition 83 ([410, 424]). Given K = 〈A, T 〉 and a conjunctive query
q without ranking aggregates, then the DTA determines ansk(K, q) in linear
time w.r.t. the size of A.

Proposition 83 extends also to the case of disjunctive queries, to DL-LiteF,u,
DL-LiteR,u, DLR-LiteF,u and DLR-LiteR,u [424].

We remark that in case a ranking aggregate occurs in a query, the DTA has
to be modified as illustrated in [424]. We do not report it here and refer the
reader to [424] for an in-depth description and its experimentation. We just
recall that Proposition 83 extends also to disjunctive queries, to DL-LiteF,u,
DL-LiteR,u, DLR-LiteF,u, and DLR-LiteR,u, in which a ranking aggregate
@ ∈ {MIN,AVG,SUM,MAX} may occur in a query.

10.6.4 The Case of Fuzzy Horn-DLs

In Section 4.4.4, we have seen that reasoning in Horn-DLs may be per-
formed by a reduction to logic programming. We will show here that this is
indeed the case as well as for fuzzy Horn-DLs under Gödel logic (for other
logics the transformation still needs to be worked out). Specifically, we show
that a fuzzy Horn-DL KB K can be reduced to a reasoning preserving fuzzy
logic program PK (fuzzy logic programs are described in Chapter 11).

So, in the following consider a fuzzy Horn-DL based on the Gödel t-norm
⊗ and let K = 〈T ,A〉 be a KB in which concepts have the form

B −→ A | B1 uB2 | B1 tB2 | ∃R.B
C −→ A | C1 u C2 | ¬B | ∀R.C
R −→ P | P−

where for n ∈ (0, 1] inclusion axioms have the form

〈B v C, n〉
〈R1 v R2, n〉
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and fuzzy assertions are of the form 〈a:C, n〉, 〈(a, b):R,n〉.
Our mapping to fuzzy logic programming follows close the one described

in Section 4.4.4.
We anticipate informally (see Chapter 11), that a fact in fuzzy logic pro-

gramming is of the form
p(c1, . . . , cn)← n ,

where p is an n-ary relation, every ci is a constant, and n > 0 is a rational
in [0, 1]Q (meaning that the degree of truth of p(c1, . . . , cn) is no less than n),
while a fuzzy rule (to what concerns us here) is of the form

p(x)← f(p1(z1), . . . , pn(zk)) ,

where f is a k-ary monotone function f : [0, 1]k→[0,1], whose meaning is

“if ni is the degree of truth of pi(zi) then the degree of truth of
p(x) is no less than f(n1, . . . , nk)”.

We now define a recursive mapping function σ which takes a inclusion axioms
and assertions and maps it into the following expressions:

σ(〈R1 v R2, n〉) 7→ σrole(R2, x, y)← σrole(R1, x, y)⊗ n
σrole(R, x, y) 7→ R(x, y)

σr(R
−, x, y) 7→ R(y, x)

σ(〈B v C, n〉) 7→ σh(C, x)← σb(B)⊗ n
σh(A, x) 7→ A(x)

σh(C1 u C2, x) 7→ σh(C1, x) ∧ σh(C2, x)

σh(∀R.C, x) 7→ σh(C, x)← σrole(R, x, y)

σb(A, x) 7→ A(x)

σb(C1 u C2, x) 7→ σb(C1, x)⊗ σb(C2, x)

σb(C1 t C2, x) 7→ σb(C1, x)⊕ σb(C2, x)

σb(∃R.C, x) 7→ σrole(R, x, y)⊗ σb(C, y)

σ(〈a:C, n〉) 7→ σh(C, a)← n

σ(〈(a, b):R,n〉) 7→ σrole(R, a, b)← n

where y is a new variable.
We then transform the above generated expressions into rules by applying

recursively the following mapping:

σr((H ∧H ′)← B) 7→ σr(H ← B), σr(H
′ ← B)

σr((H ← H ′)← B) 7→ σr(H ← (B ∧H ′))
σr(H ← (B1 ∨B2)) 7→ σr(H ← B1), σr(H ← B2)
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Eventually, if none of the above three rules can be applied then

σr(H ← B) 7→ H ← B .

For instance, the GCI

〈A u ∃R.C v B u ∀P.D, n〉

is first mapped into the expression (via σ)

B(x) ∧ (D(x)← P (x, z))← A(x)⊗R(x, y)⊗ C(y)⊗ n

that then is transformed into the two rules (via σr)

B(x) ← A(x)⊗R(x, y)⊗ C(y)⊗ n
D(z) ← A(x)⊗R(x, y)⊗ C(y)⊗ P (x, z)⊗ n .

It can be shown that

Proposition 84. The above described transformation preserves semantic
equivalence. That is, let K be a fuzzy Horn-DL KB and PK be the rule set
that results from applying the transformation to all axioms in K, then PK is
logically equivalent to K w.r.t. the semantics of FOL PK has the same set of
models and entailed conclusions as K.

Hence, reasoning in fuzzy Horn-DL can be reduced to reasoning within fuzzy
logic programming (see Chapter 11).

10.6.5 The Case of Concrete Domains and Aggregation
Operators

A major ingredient of fuzzy DLs is the capability to deal with fuzzy con-
crete domains and aggregation operators (see Section 8.2.3 for the fuzzy propo-
sitional case), as illustrated in Section 10.3.

In Section 8.2.3 we have shown that indeed one may reason in the presence
of concrete domain and aggregation operators by relying on an OR-based de-
cision procedure, by mapping the constraints imposed by the concrete domain
and aggregation functions into set of inequations (see Appendix F). It is, thus,
not surprising that this approach may be followed also in the case of fuzzy
DLs [48, 51, 53, 58, 59, 398, 399]. We refer the reader to Appendix H.4 for the
detailed description of the inference rules.

We also remark that under SFL one may also map fuzzy DLs with concept
modifiers and concrete fuzzy concepts d ∈ {rs(a, b), tri(a, b, c), trz(a, b, c, d)}
into crisp fuzzy DLs, as illustrated in [45] and this is the method followed by
the DeLorean [42] reasoner. However, it is unknown whether this approach
can be adapted to aggregation operators.
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Chapter 11

Fuzzy Rule Languages

11.1 Introduction

In logic programming, the management of imperfect information has at-
tracted the attention of many researchers and numerous frameworks have
been proposed. Addressing all of them is almost impossible, due to both the
large number of works published in this field (early works date back to early
80’s [376], see also [416]) and the different approaches proposed. Like for the
DL case, essentially they differ in the underlying notion of uncertainty theory
and vagueness theory (probability theory, possibilistic logic, fuzzy logic and
multi-valued logic) and how uncertainty/vagueness values, associated to rules
and facts, are managed.

We report below a list of references and the underlying fuzziness and un-
certainty theory in logic programming frameworks. The list of references is
by no means intended to be all-inclusive. The author apologizes both to the
authors and with the readers for all the relevant works, which are not cited
here.

Probability theory: [29, 30, 34, 35, 102, 117, 119, 115, 116, 118, 163, 352,
353, 354, 232, 233, 231, 252, 250, 254, 255, 278, 279, 280, 281, 282, 282,
283, 310, 322, 327, 328, 329, 330, 349, 350, 455, 462]

Possibilistic logic: [5, 6, 7, 96, 137, 179, 331]

Fuzzy set theory: [309, 31, 32, 79, 90, 97, 144, 192, 214, 240, 176, 175, 309,
324, 323, 346, 363, 375, 376, 377, 298, 436, 451, 458, 456, 459, 460, 470]

Multi-valued logic: [65, 81, 103, 104, 105, 112, 110, 106, 107, 108, 109,
112, 121, 120, 124, 122, 123, 154, 155, 156, 157, 159, 180, 234, 235, 236,
239, 247, 249, 251, 253, 266, 267, 268, 269, 270, 271, 272, 273, 274, 300,
302, 301, 305, 311, 312, 318, 318, 316, 317, 319, 364, 372, 373, 374, 402,
400, 403, 408, 409, 414, 413, 429, 446]

While there is a large literature related to the management of fuzziness in
logic programs, there are frameworks that are general enough to cover a large
amount of them (see, e.g., [289, 400, 416, 456]). Roughly, rules are of the form

A← f(B1, ..., Bn) ,

237
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where A,Bi are atoms and f is a total function f : Sn → S over a truth
space S. Computationally, given an assignment/interpretation I of values to
the Bi, the value of A is computed by stating that A is at least as true as
f(I(B1), ..., I(Bn)).

The form of the rules is sufficiently expressive to encompass many ap-
proaches to many-valued logic programming. [289] provides an even more
general setting as the function f may also depend on the variables occurring
in the rule body. On the other hand there are also some extensions to many-
valued disjunctive logic programs [311, 312, 403]. In some cases, e.g., [253]
there is also a function g, which dictates how to aggregate the truth values in
case an atom is head of several rules.

Most works deal with logic programs without negation and some may
provide some technique to answer queries in a top-down manner, as e.g., [104,
239, 253, 456, 402]. On the other hand, there are very few works dealing with
normal logic programs [107, 154, 155, 266, 267, 268, 269, 270, 271, 272, 311,
400, 403, 408, 413, 288], and little is know about top-down query answering
procedures. The only exceptions are [400, 408, 413].

Another rising problem is the problem to compute the top-k ranked an-
swers to a query, without computing the score of all answers. This allows to
answer queries such as “find the top-k closest hotels to the conference loca-
tion.” Solutions to this problem can be found in [289, 409, 414, 428].

In the following, we will address the foundational part of rule-based lan-
guages.

11.2 Fuzzy Datalog Basics

As for Mathematical Fuzzy Logic, the main idea is that an atom p(t),
rather than being interpreted as either true or false, will be mapped into a
truth value (or score) r in [0, 1]Q (examples of other truth spaces can be found
in, e.g., [103, 250, 402]).

A knowledge base K = 〈F ,P〉 consists of a finite facts component F and a
finite LP component P, which are both defined below.

Facts Component. F is a finite set of expressions of the form

〈p(c1, . . . , cn), r〉 ,

where p is an n-ary relation, every ci is a constant, and r > 0 is a rational in
[0, 1]Q.

The underlying meaning of such an expression is that the degree of truth
of p(c1, . . . , cn) is equal to or greater than r. For each p, we represent the
facts 〈p(c1, . . . , cn), r〉 in F by means of a relational n + 1-ary table Tp, con-
taining the records 〈c1, . . . , cn, r〉. As usual, we assume that there cannot be
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two records 〈c1, . . . , cn, r1〉 and 〈c1, . . . , cn, r2〉 in Tp with r1 < r2 (if there are,
then we remove the one with the lower score). We assume each table sorted in
descending order with respect to the scores. For ease, we may omit the score
component and in such cases the value 1 is assumed.

Rule Component. P is a finite set of rules, which are similar as fuzzy con-
junctive RDFS and DL queries (See Sections 9.3 and 10.4), and are of the
form (where s = 〈s1, . . . , sn〉, n ≥ 0)

〈p(x), s〉 ← ∃y.〈p1(z1), s1〉, . . . , 〈pn(zn), sn〉, s :=f(s, z) , (11.1)

where

1. p is an n-ary relation, every pi is an ni-ary relation;

2. x are the distinguished variables;

3. y are existentially quantified variables called the non-distinguished vari-
ables;

4. z and every zi is a tuple of constants or variables in x or y;

5. s and elements in s are called scoring terms. Scoring terms are either
rational numbers in [0, 1]Q or variables, called scoring variables;

6. all variables in x, y, and variables in {s, s1, . . . , sn} are pairwise disjoint
and all variables in x occur in at least one of the zi;

7. f is a scoring function f : [0, 1]lQ → [0, 1]Q, which computes the overall
score to be assigned to the rule head. We assume that f is monotone,
that is, for each v,v′ ∈ [0, 1]lQ such that v ≤ v′, it holds f(v) ≤ f(v′),
where (v1, . . . , vl) ≤ (v′1, . . . , v

′
l) iff vi ≤ v′i for all i. We also assume that

the computational cost of f is bounded by l.

Similar to the crisp Datalog case, we call 〈p(x), s〉 the head and
∃y.〈p1(z1), s1〉, . . . , 〈pn(zn), sn〉, s :=f(s, z) the body of the rule; if clear from
the context, we may omit the existential quantification ∃y; as for the crisp
case, we assume that predicate names in a rule body are distinct, i.e., pi 6= pj
for i 6= j; we also assume that relations occurring in F do not occur in the
head of rules (so, we do not allow that the fact relations occurring in F can be
redefined by P); and the relations in F are called extensional relations, while
the others are intensional relations. We further call s :=f(s, z) a scoring atom
and an expression 〈p(z), s〉 a fuzzy atom.

Remark 42. In the following we will make the following convention: if a
scoring term is omitted then the value 1 is assumed and if the scoring term
in the rule head is a rational r ∈ [0, 1]Q, then the scoring atom is of the form
r :=f(. . .). For ease of presentation, if there is at least one fuzzy atom in the
rule body, we may omit a scoring atom of the form r :=r, for r ∈ [0, 1]Q.
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An example of fuzzy rule is the following:

〈GoodHotel(x), s〉 ← Hotel(x), 〈Cheap(x), s1〉,
〈CloseToV enue(x), s2〉, 〈Comfortable(x), s3〉,
s := 0.3 · s1 + 0.5 · s2 + 0.2 · s3 (11.2)

The intended meaning is to retrieve good hotels, where the degree of goodness
is a function of the degree of being cheap, close to the venue, and comfortable.

Remark 43. Note also that a classical LP rule

p(x)← p1(z1), . . . , pn(zn) ,

is nothing else than a special case of fuzzy rules, and, e.g., is the same as
writing

〈p(x), 1〉 ← 〈p1(z1), 1〉, . . . , 〈pn(zn), 1〉 .
So, e.g., all rules of Example 17 are fuzzy rules as well.

Remark 44. In the following, a fuzzy rule

〈p(x), s〉 ← ∃y.〈p1(z1), s1〉, . . . , 〈pn(zn), sn〉, s :=f(s) ,

in which the scoring function in the scoring atom depends on the scores of
the atoms in the body only (and all s, si are scoring variables), is represented
succinctly as

p(x)← f(p1(z1), . . . , pn(zn)) .

According to Remark 44, the rule in Equation (11.2) can be represented as
well as

GoodHotel(x)←min(Hotel(x), 0.3 · Cheap(x)

+ 0.5 · CloseToV enue(x) + 0.2 · Comfortable(x)) .

Semantics. From a semantics point of view, given K = 〈F ,P〉, the notions of
Herbrand universe HK (the set of all constants occurring in K) and Herbrand
base BK of K (the set of all ground atoms that can be formed using constants
in HK and atoms occurring in K) are as usual.

Similarly to the crisp case, given K, the (possibly infinite) set of ground
rules K∗ derived from the grounding of K is constructed as follows:

1. set K∗ to be {〈p(t), n〉 ← n :=n | 〈p(t), n〉 ∈ F , r ∈ [0, 1]Q};

2. add to K∗ the set of all ground instantiations of rules in K, in which we
do also replace scoring variables with rational values in [0, 1]Q.

Remark 45. Note that in K∗ we replace scoring variables with rational values
in [0, 1]Q. Therefore, K∗ does not consists of a finite set of rules iff at least
one scoring variable is present in P.
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An interpretation I for K is a function I : BK → [0, 1]Q. Given K, we say that
I satisfies (is a model of )

• a ground fuzzy atom 〈A, r〉, where A ∈ BK, denoted I |= 〈A, r〉, iff
I(A) ≥ r;

• a ground scoring atom r :=f(v) iff r = f(v). For ease, we use f both
denoting the logical function symbol as well as the interpreted function;

• a ground rule body φ of a rule ψ ← φ ∈ K∗, denoted I |= φ, iff I is a
model of all atoms in φ;

• a ground rule r ∈ K∗, denoted I |= r, iff I is a model of the head of r
whenever I is a model of the body of r;

• K∗, denoted I |= K∗, iff I satisfies all rules r ∈ K∗;
• K, denoted I |= K, if I is a model of K∗.

Example 45. Consider K as follows:

F = { 〈p(a), 0.2〉,
〈p(b), 0.5〉 }

P = { 〈q(x), s〉 ← 〈p(x), s′〉, s :=f(s′)

where for r ∈ [0, 1]Q

f(r) =

{
0 if r ≤ 0.3
r otherwise.

Then

HK = {a, b}

BK = {p(a), p(b), q(a), q(b)}

K∗ = {〈p(a), r〉 ← r :=0.2 | r ∈ [0, 1]Q} ∪
〈p(b), r〉 ← r :=0.5 | r ∈ [0, 1]Q} ∪
〈q(a), r〉 ← 〈p(a), r′〉, r :=f(r′) | r, r′ ∈ [0, 1]Q} ∪
〈q(b), r〉 ← 〈p(b), r′〉, r :=f(r′) | r, r′ ∈ [0, 1]Q} .

Now, consider the interpretations

I1(p(a)) = 0.4

I1(p(b)) = 0.7

I1(q(a)) = 0.5

I1(q(b)) = 0.8
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and

I2(p(a)) = 0.4

I2(p(b)) = 0.7

I2(q(a)) = 0.5

I2(q(b)) = 0.6 .

Note that I1 and I2 differ only in the interpretation of q(b). Now, it can be
verified that I1 is a model of K∗ and, thus, K, while I2 is not. Specifically, I2

is not a model of the rule

〈q(b), 0.7〉 ← 〈p(b), 0.7〉, 0.7:=f(0.7)

because, I2 is a model of the rule body, but is not a model of the rule head.

Now, let us extend the ≤ relation from [0, 1] to the set IK of all interpretations
point-wise: (i) I1 ≤ I2 iff I1(A) ≤ I2(A), for every ground atom A ∈ BK.
With I⊥ we denote the bottom interpretation (I⊥ maps all atoms to ⊥), while
with I> we denote the top interpretation (I> maps all atoms to 1). It turns
out that 〈IK,≤〉 is a complete lattice.

As for the crisp case, one model plays a special role: namely the ≤-least
model MK of K. The existence, finiteness, and uniqueness of the minimal
model MK are guaranteed to exist by the following argument. Consider the
function TK : IK → IK defined as follows: for all ground atoms A ∈ BK

TK(I)(A) = sup{r | 〈A, r〉 ← φ ∈ K∗ s.t. I |= φ} . (11.3)

Then, it can be shown that TK is monotone on IK, i.e., if I1 ≤ I2 then
TK(I1) ≤ TK(I2). In fact, if I1 ≤ I2 , 〈A, r〉 ← φ ∈ K∗ and I1 |= φ then
I2 |= φ as well. Therefore,

TK(I1)(A) = sup{r | 〈A, r〉 ← φ ∈ K∗ s.t. I1 |= φ}
≤ sup{r | 〈A, r〉 ← φ ∈ K∗ s.t. I2 |= φ}
= TK(I2)(A) .

Therefore, by the well-known Tarski-Knaster fixed-point theorem [439] for
monotone functions over complete lattices, we get immediately the analogue
of Proposition 16:

Proposition 85. For a knowledge base K, there exists a unique minimal
model MK that is the least fixed point of the function TK. MK can be obtained
as the limit of the ≤-monotone sequence, I0, . . . , Ii, . . . , where

I0 = I⊥
Ii+1 = TK(Ii) . (11.4)
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Example 46. Consider Example 45. Let us illustrate the computation of the
minimal model. We do only report the changes to the previous step.

I0 = I⊥

I1(p(a)) = TK(I0)(p(a)) = 0.2

I1(p(b)) = TK(I0)(p(b)) = 0.5

I2(q(b)) = TK(I1)(q(b)) = 0.5

I3 = TK(I2) = I2 .

Therefore, MK = I3 is the minimal model with

MK(p(a)) = 0.2

MK(p(b)) = 0.5

MK(q(a)) = 0.0

MK(q(b)) = 0.5 .

Let us remark that however, a finite number of iterations may not suffice
to compute the minimal model as illustrated by the following example (for
similar examples, see, e.g., [239, 456]).

Example 47. Consider the score combination function f(x) = x+a
2 (0 < a ≤

1), and K1 containing the rules:

〈p, s〉 ← s :=0

〈p, s〉 ← 〈p, s′〉, s :=f(s).

Then the minimal model is attained after ω steps of TK iterations starting
from I⊥ and is MK1(p) = a.

Now, consider the (non-continuous) function g(x) = 0 if x < a, and g(x) =
1 otherwise, and K2 containing only the rules

〈p, s〉 ← s :=0

〈p, s〉 ← 〈p, s′〉, s :=f(s)

〈q, s〉 ← 〈p, s′〉, s :=g(s) .

Then the minimal model is attained after ω+ 1 steps of TK iterations starting
from I⊥ and is MK2

(p) = a,MK2
(q) = 1.

However, it can be shown that if all functions appearing in P are Scott-
continuous, then at most ω steps are necessary to compute the minimal
model [400, 402].



244 Foundations of Fuzzy Logic and Semantic Web Languages

In any case, finiteness of the truth space, monotonicity of score combination
functions together with the finiteness of the grounded program guarantees
then that the minimal model can be computed in finite time by iterating TK
over I⊥.

Remark 46. Note that the requirement of being the scoring functions mono-
tone is crucial to guarantee the existence of a unique minimal model. For
instance, the KB

K = { 〈a, 0.2〉,
〈b, 0.3〉,

a← (1− b),
b← (1− a)

}

involving the non-monotone scoring function 1− x, has two minimal models,
M1 and M2: namely

M1
K(a) = 0.7

M1
K(b) = 0.3

and

M2
K(a) = 0.2

M2
K(b) = 0.8 .

11.3 Concrete Domains

The notion of concrete domains naturally extends the one for crisp Datalog
presented in Section 5.3 and is coherent with what proposed for the fuzzy
propositional logic case (see Section 8.2.3), where now a concrete atom, rather
being true or false only, is mapped into [0, 1]Q (see, e.g., [398]). Specifically, we
assume a set of constants that are data values and a set of datatype predicates,
where each datatype predicate has a predefined arity n≥ 1. A datatype theory
D = 〈∆D, ·D〉 consists of a finite datatype domain ∆D and a mapping ·D
that assigns to each data value an element of ∆D and assigns to each n-ary
datatype predicate p a n-ary function pD : ∆D × . . .×∆D → [0, 1]Q.

A concrete atom is an expression of the form d(z), where z is a vector of
variables or data values. For instance, ls(18000, 22000) is the well-known left-
shoulder fuzzy set membership function we have seen in Section 8.1.1, which
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maps a data value into [0, 1]Q. A concrete atom d(z) may occur in a rule body
only in the form of a fuzzy atom expression 〈d(z), s〉.

As in Section 5.3, let us extend both the Herbrand universe as HD
K :=

HK ∪ ∆D and the Herbrand base BD
K to the set of all ground atoms and

ground concrete atoms that can be formed from the constants in the Herbrand
universe. Then, an interpretation I for K is a function I : BD

K → [0, 1]Q with
the additional condition that dI = dD, for each datatype predicate d.

Now, the notions of satisfaction (is model of ) are extended in the obvious
way to rules including concrete fuzzy atoms. For instance, an interpretation
I is a model of a ground concrete fuzzy atom 〈d(v), r〉 iff dD(v) ≥ r. It is
then straightforward to see that the analogue of Proposition 85 still applies
to interpretations over BD

K in place of BK.

11.4 Fuzzy Conjunctive Queries

Similarly to Section 5.4, a fuzzy query is a fuzzy rule

〈q(x), s〉 ← ϕ(x,y, s), s :=f(x,y, s) , (11.5)

and the answer set of a query q w.r.t. a KB K (denoted ans(K, q)) is the set
of tuples 〈t, r〉 such that MK′(q(t)) = r > 0, where K′ is obtained from K
by extending it with the query rule (11.5) (MK′ is guaranteed to exists by
Proposition 85).

Example 48. Given K with rule

q(x)← 0.5 · p(x) + 0.7 · r(x)

and facts
〈p(a), 0.4〉, 〈p(b), 0.2〉, 〈r(b), 0.5〉

then ans(q,K) = {〈a, 0.45〉, 〈b, 0.2〉}.
In the following, to ease the presentation, we will also say that a fuzzy query is
of the form q(x), intended as a question about the truth degree of the ground
instances of q(x) in the minimal model of K.

11.5 Reasoning

We present here some methods to determine the answer set ans(K, q) of
a query q, given a KB K. The first one is a generalization of the one SLD-
resolution methods presented in Section 5.5.1, the second one maps fuzzy LPs
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into crisp LPs, while the third one addresses a rather novel problem in the
context of fuzzy LPs, namely the problem of determine the top-k answers [289,
409, 414, 428]:

Top-k retrieval. Given K, retrieve top-k tuples of the answer set of q ranked
in decreasing order relative to the score, denoted

ansk(K, q) = Topk(ans(K, q)) .

For the sake of illustrative purposes, we consider the following well-known
example in which we define a path in a weighted graph.

Example 49 ([428]). Consider the following rules

r1 : path(x, y) ← edge(x, y) (11.6)

r2 : path(x, y) ← min(path(x, z), edge(z, y)) (11.7)

and the facts

Tedge
c b 0.6
a c 0.5

b a 0.4

a b 0.3

It can be verified that the set of answers of predicate path is given by:

ans(K, path)

a a 0.4 b a 0.4 c a 0.4

a b 0.5 b b 0.4 c b 0.6

a c 0.5 b c 0.4 c c 0.4

The top-3 answers for path are instead:

ansk(K, q) = {〈c, b, 0.6〉, 〈a, b, 0.5〉, 〈a, c, 0.5〉} .

We next introduce the following requirements.

Truth space. To always guarantee termination of the procedures presented
here, we will assume that the truth space is L = {⊥, 0, 1

n , . . .
n−1
n , 1}, for some

positive integer n. We will use the symbol ⊥ to denote the truth “undefined”
and extend the linear order ≤ over rational numbers by postulating ⊥ < 0. In
the rules, we assume that the scoring function is such that f(. . . ,⊥, . . .) = ⊥.
We assume that for a fact 〈p(t), r〉, r > ⊥ holds. The semantics is a straight-
forward adaption of the one presented in Section 11.2 and Proposition 85
extends easily to this setting as well:
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Proposition 86 ([428]). Given a truth space L = {⊥, 0, 1
n , . . .

n−1
n , 1}, then

for a knowledge base K, there exists a unique minimal model MK that is the
least fixed point of the function TK. MK can be obtained as the limit of the
≤-monotone sequence, I0, . . . , Ii, . . . ,, where

I0 = I⊥
Ii+1 = TK(Ii) . (11.8)

in which the interpretation I⊥ maps all ground atoms to ⊥. Furthermore, the
number of iterations is bounded by |L|.

From a practical point of view the finiteness of L is a limitation we can live
with especially taking into account that computers have finite resources, and
thus, only a finite set of truth degrees can be represented. For other conditions
that guarantee termination, we refer the reader to, e.g., [103, 104, 105, 111,
112, 239, 400, 402].

Remark 47. Note that we have introduced ⊥ to distinguish the case where
a tuple t may be retrieved, even though the score is 0, from the case where a
tuple is not retrieved, since it does not satisfy the query. In particular, if a
tuple does not belong to an extensional relation, then its score is assumed to
be undefined (⊥), while if I would be defined on {0, 1

n , . . .
n−1
n , 1}, then the

score of this tuple would be 0. The semantics is inspired by [289, 428].

To further illustrate the case, consider the following example.

Example 50. Consider again Example 48. Then, w.r.t. L = {⊥, 0, 1
10 , . . .

9
10 , 1},

ans(q,K) = {〈b, 0.2〉}. Please, note that 〈a, 0.45〉 6∈ ans(q,K) since
MK(r(a)) = ⊥ and 0.5 · 0.9 + 0.7 · ⊥ = ⊥, by definition of scoring functions.

Eventually, it is not difficult to see that, w.l.o.g. we may assume that all fuzzy
rules are of the form

〈p(x), s〉 ← ∃y.〈p1(z1), s1〉, . . . , 〈pn(zn), sn〉, s :=f(s, z) , (11.9)

in which all scoring terms s, si are scoring variables, and all variables occurring
in the rule occur in the scoring function as well. This may easily achieved by
observing that

• a fuzzy atom 〈pi(z), r〉 occurring in the rule body with r ∈ [0, 1]Q, may be
replaced with a fuzzy atom 〈pi(z), s′〉, where s′ is a new scoring variable
and where the scoring function f(s, z) is replaced with

g(s, z, s′) =

{
f(s, z) if s′ ≥ r
⊥ otherwise;

• a fuzzy atom 〈p(z), r〉 in the head with r ∈ [0, 1]Q, may be replaced with
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a fuzzy atom 〈p(z), s′〉, where s′ is a new scoring variable and where the
scoring atom r :=f(s, z) is replaced with s :=g(s, z), where

g(s, z) =

{
r if f(s, z) = r

⊥ otherwise;

• if a variable z′ occurring in the rule and not being the scoring variable
in the head, does not occur in the scoring function, then the scoring
function f(s, z) is replaced with

g(s, z, z′) = f(s, z) .

For instance, note that a rule1

〈p, 0.7〉 ← 〈q, 0.5〉

is replaced with the rule

〈p, s〉 ← 〈q, s′〉, s :=g(s′) (11.10)

where

g(s′) =

{
0.7 if s′ ≥ 0.5

⊥ otherwise.

In fact, in the rule
〈p, 0.7〉 ← 〈q, 0.5〉, 0.7:=0.7

by replacing 〈q, 0.5〉 the rule becomes

〈p, 0.7〉 ← 〈q, s′〉, 0.7:=f(s′)

where

g(s′) =

{
0.7 if s′ ≥ 0.5

⊥ otherwise

and then by replacing 〈p, 0.7〉 we obtain the rule in Equation (11.10).
In the following, we will assume that the answer set of a query q w.r.t. K

is defined as the set ans(q,K) of tuples 〈t, r〉 ∈ HK × . . .×HK ×L such that
MK(q(t)) = r > ⊥ (the score of t is r > ⊥ in the minimal model).

We conclude this section by recalling the notion of recursive / non-recursive
KB from Section 5.5.2, i.e., given K, we say that relation symbol p directly
depends on relation symbol q if there is a rule in K such that p occurs in
the head of it and q occurs in the body of it. The relation depends on is the
transitive closure of “directly depends on.” The dependency graph of K is a
directed graph where nodes are relation symbols and the set of edges is the
“directly depends on” relation. The KB is recursive if there is a cycle in the
dependency graph (i.e., there is p depending on p).

1Recall that the scoring atom 0.7:=0.7 is omitted.
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11.5.1 SLD-Resolution Driven Query Answering

The method proposed here naturally generalizes the one presented in Sec-
tion 5.5.1 to the fuzzy case and is inspired to [104, 239, 456]. We first present
the propositional case and extend it to the FOL case.

The propositional fuzzy SLD inference rule is as follows: assume we have
propositional rules in which we assume that all scoring variables in the second
rule have been renamed in order not to share any variable with the first one.

From 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj , sj〉, . . . , 〈Ak, sk〉, s :=f(s)
and 〈B, s′〉 ← 〈B1, s′1〉, . . . , 〈Bm, s′m〉, s′ :=g(s′)
and B = Aj
infer 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj−1, sj−1〉,

〈B1, s′1〉, . . . , 〈Bm, s′m〉,
〈Aj+1, sj+1〉 . . . , 〈Ak, sk〉,
s :=f(s1, . . . , sj−1, g(s

′), sj+1, . . . , sk) .

(11.11)

The propositional atom B is called the selected atom. Essentially, we replace
the fuzzy atom 〈Aj , sj〉 with the fuzzy atoms 〈B1, s

′
1〉, . . . , 〈Bm, s′m〉 and ac-

cordingly replace the scoring variable sj occurring in the scoring function f
with g(s′).

When the second rule is replaced with a fact, the specialized fuzzy SLD
inference rule is:

From 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj , sj〉, . . . , 〈Ak, sk〉, s :=f(s)
and 〈B, r〉
and B = Aj
infer 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj−1, sj−1〉,

〈Aj+1, sj+1〉 . . . , 〈Ak, sk〉,
s :=f(s1, . . . , sj−1, r, sj+1, . . . , sk) .

(11.12)

In the above inference rules, we assume that the scoring function is evaluated
as soon as all required parameters are ground.

A fuzzy SLD-derivation of q w.r.t. K consists of a finite sequence of rules
r1, . . . , rn, each of which has q as head, each rule ri+1 is inferred from ri via
fuzzy SLD-resolution, and rn is the rule

〈q, s〉 ← s :=r

telling us that indeed the truth of q in the minimal model is greater or equal
than r ∈ [0, 1]Q. r is called a computed answer of q w.r.t. K.

Example 51. Consider the following KB K with rules

〈q, s〉 ← 〈p1, s1〉, 〈p2, s2〉, s :=s1 · s2 (11.13)

〈q, s′〉 ← 〈p3, s3〉, s′ := max(0.5, s3) (11.14)

〈p3, s
′′〉 ← 〈p1, s4〉, 〈p2, s5〉, s′′ :=0.3 · s4 + 0.7 · s5 (11.15)

and facts

〈p1, 0.7〉 (11.16)

〈p2, 0.6〉 (11.17)
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Let us determine the truth of q in the minimal model of K. The following are
two fuzzy SLD-derivations of q w.r.t. K:

〈q, s〉 ← 〈p2, s2〉, s :=0.7 · s2 via (11.13), (11.16) (11.18)

〈q, s〉 ← s :=0.42 via (11.18), (11.17) (11.19)

〈q, s′〉 ← 〈p1, s4〉, 〈p2, s5〉, s′ := max(0.5, 0.3 · s4 + 0.7 · s5) via (11.14), (11.15) (11.20)

〈q, s′〉 ← 〈p2, s5〉, s′ := max(0.5, 0.3 · 0.7 + 0.7 · s5) via (11.20), (11.16) (11.21)

〈q, s′〉 ← s′ :=0.63 via (11.21), (11.17) (11.22)

It is easily verified that there is no other fuzzy SLD-derivation of q ending
with a higher score than 0.63.

It can be shown that

Proposition 87 (Soundness & Completeness [104, 239, 456]). Given a KB
K and a query q, then

1. if r ∈ [0, 1]Q is a computed answer of q w.r.t. K then MK(q) ≥ r;
2. there is a (finite) fuzzy SLD-derivation such that MK(q) is a computed

answer of q w.r.t. K.

We next address the FOL case, which is essentially the same as the proposi-
tional case described above, except that now we have to take unification into
account.

The inference rules are the following (as usual, we assume a variable re-
naming of the second input in the inference rules):

From 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj , sj〉, . . . , 〈Ak, sk〉, s :=f(z, s)
and 〈B, s′〉 ← 〈B1, s′1〉, . . . , 〈Bm, s′m〉, s′ :=g(z′, s′)
and θ as a mgu of {B,Aj}
infer 〈Aθ, s〉 ← 〈A1θ, s1〉, . . . , 〈Aj−1θ, sj−1〉,

〈B1θ, s′1〉, . . . , 〈Bmθ, s′m〉,
〈Aj+1θ, sj+1〉 . . . , 〈Akθ, sk〉,
s :=f(z, s1, . . . , sj−1, g(z

′, s′), sj+1, . . . , sk)θ .

(11.23)

From 〈A, s〉 ← 〈A1, s1〉, . . . , 〈Aj , sj〉, . . . , 〈Ak, sk〉, s :=f(z, s)
and 〈B, r〉
and θ as a mgu of {B,Aj}
infer 〈Aθ, s〉 ← 〈A1θ, s1〉, . . . , 〈Aj−1θ, sj−1〉,

〈Aj+1θ, sj+1〉 . . . , 〈Akθ, sk〉,
s :=f(z, s1, . . . , sj−1, r, sj+1, . . . , sk)θ .

(11.24)

Now, a fuzzy SLD-derivation of a query q w.r.t. K consists of a finite sequence
of rules r1, . . . , rn, each of which has q as head, each rule ri+1 is inferred from
ri via fuzzy SLD-resolution, and rn is the rule

〈q(x)θ, s〉 ← s :=r

telling us that indeed the truth of

q(x)θ
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in the minimal model is greater than or equal to r ∈ [0, 1]Q. With θ|x we
denote the vector 〈x1θ, . . . , xnθ〉, i.e., the restriction of the substitution θ to
the variables in x. In that case, we say 〈θ|x, r〉 is a computed answer for q.

As for the propositional case (see Proposition 87), it can be shown that

Proposition 88 (Soundness & Completeness [104, 239, 456]). Given a KB
K and a query q(x), then

1. if 〈t, r〉 is a computed answer, then MK(q(t)) ≥ r, i.e., there is an
answer 〈t, r′〉 ∈ ans(K, q) such that r′ ≥ r;

2. if 〈t, r〉 ∈ ans(K, q), then there is a (finite) fuzzy SLD-derivation such
that 〈t, r〉 is a computed answer of q(x) w.r.t. K.

Therefore, in order to compute the answer set ans(K, q) via fuzzy SLD-
derivation, it suffices to determine all computed answers of q w.r.t. K.

Example 52. Let us consider a FOL variant of Example 51. Consider the
following KB K with rules

〈q(x), s〉 ← 〈p1(x), s1〉, 〈p2(x), s2〉, s :=s1 · s2 (11.25)

〈q(x), s〉 ← 〈p3(x), s3〉, s := max(0.5, s3) (11.26)

〈p3(x′), s′〉 ← 〈p1(x′), s4〉, 〈p2(x′), s5〉, s′ :=0.3 · s4 + 0.7 · s5 (11.27)

and facts

〈p1(a), 0.7〉 (11.28)

〈p2(a), 0.6〉 (11.29)

Let us determine the answer set of q. The following are two fuzzy SLD-
derivation of q(x) w.r.t. K:

〈q(a), s〉 ← 〈p2(a), s2〉, s :=0.7 · s2 (11.25), (11.28),

θ1 = {x/a} (11.30)

〈q(a), s〉 ← s :=0.42 (11.30), (11.29) (11.31)

〈q(x), s〉 ← 〈p1(x), s4〉, 〈p2(x), s5〉, s := max(0.5, 0.3 · s4 + 0.7 · s5) (11.26), (11.27),

θ2 = {x′/x} (11.32)

〈q(a), s〉 ← 〈p2(a), s5〉, s := max(0.5, 0.3 · 0.7 + 0.7 · s5) (11.32), (11.28),

θ2 = {x′/x, x/a}(11.33)

〈q(a), s〉 ← s :=0.63 (11.33), (11.29) (11.34)

Hence, we have two computed answers 〈a, 0.42〉 and 〈a, 0.63〉. It easily verified
that no other computed answer 〈a, r〉 with r > 0.63 exists and, thus, 〈a, 0.63〉 ∈
ans(K, q) (specifically, we have ans(K, q) = {〈a, 0.63〉}).
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Example 53. Consider Example 49 and the query

〈q(x, y), s〉 ← 〈path(x, y), s1〉, s :=s1 .

The following is a SLD-derivation of q w.r.t. K (see also Example 19):

〈q(x, y), s〉 ← 〈path(x, y), s1〉, s :=s1

〈q(x, y), s〉 ← 〈path(x, z), s1〉, 〈edge(z, y), s2〉, s := min(s1, s2)

〈q(x, y), s〉 ← 〈path(x, z1), s1〉, 〈edge(z1, z), s2〉, 〈edge(z, y), s3〉, s := min(s1, s2, s3)

〈q(x, y), s〉 ← 〈edge(x, z1), s1〉, 〈edge(z1, z), s2〉, 〈edge(z, y), s3〉, s := min(s1, s2, s3)

〈q(c, y), s〉 ← 〈edge(b, z), s2〉, 〈edge(z, y), s3〉, s := min(0.6, s2, s3)

〈q(c, y), s〉 ← 〈edge(a, y), s3〉, s := min(0.6, 0.4, s3)

〈q(c, c), s〉 ← s := min(0.6, 0.4, 0.5) .

〈〈c, c〉, 0.4〉 is an answer computed by this SLD-derivation.

11.5.2 Reduction to Classical Logic

Another and simple way to reason with fuzzy rules consists in mapping
them into crisp LP rules, if arithmetic built-in atoms are supported (which
is often the case). Essentially, we map an n-ary fuzzy atom 〈p(z), r〉 into an
n+ 1-ary atom p(z, r), i.e.,

〈p(z), r〉 7→ p(z, r) (11.35)

and use the additional slot as a place holder of the degree of truth of the fuzzy
atom. So a fact is mapped as

〈p(t), r〉 7→ p(t, r) ,

while the rules having the same predicate in the head,

〈p(x), s〉 ← ϕ1(x,y1, s1)

...
...

...

〈p(x), s〉 ← ϕk(x,yk, sk)

can be transformed as

p′1(x, s) ← ϕ′1(x,y1, s1)

...
...

...

p′k(x, s) ← ϕ′k(x,yk, sk)

p(x, s) ← p′1(x, s1), . . . , p′k(x, sk), s := max(s1, . . . , sk) ,
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where p′i are new predicate symbols and ϕ′i(x,yi, si) is obtained from
ϕi(x,yi, si) by using the replacement schema of Equation (11.35), which con-
cludes the transformation.

11.5.3 Top-k Query Answering

While there are many works addressing the top-k problem for vague queries
in databases (cf. [78, 94, 150, 152, 212, 213, 258, 257, 306]), little is known
for the corresponding problem in knowledge representation and reasoning [97,
98, 110, 111, 289, 224, 358, 360, 404, 409, 410, 414, 421, 457].

We note that retrieving the top-k answers of an extensional relation p is
trivial as we have just to retrieve the first k tuples in the relational table
Tp associated to p. Hence, we restrict top-k retrieval to intensional relations
only. Note also that (i) ansk(K, q) is not necessarily unique as there may be
several tuples having the same score of the bottom ranked one in ansk(K, q)
(we assume in this case that ties are broken arbitrary); and (ii) there may be
less than k tuples in ansk(K, q) as there might not be k non-⊥ scored tuples
in ans(K, q).

Furthermore, please note that having introduced the degree ⊥ ∈ L allows
us to be compatible with top-k SQL retrieval over relational databases (see,
e.g., [258]), where it is understood and common practice not to retrieve tuples
that do not satisfy the condition of the plain SQL query (that is, the SQL
query where the function computing the score is left out), and, in particular,
tuples not occurring in any relational table (see e.g., Example 50).

In the following, we address first the top-k retrieval problem for non-
recursive KBs [409] and then address the general case [423].

11.5.3.1 Top-k Retrieval for Non-Recursive KBs

Consider a non-recursive KB K. Interestingly, for such case there is a
simple procedure to determine the top-k answers of a query [409], which closely
resembles the one for DL-Lite (see Section 10.6.3):

1. by considering the rule component, the user query q is reformulated into
a set of conjunctive queries r(q,K) using the fuzzy SLD-resolution rule;

2. the reformulated queries in r(q,K) are then evaluated over the facts
component, which is stored in a database, producing the requested top-
k answer set ansk(K, q).

Specifically, given the fuzzy SLD-resolution rule (11.23), let r, r′, r′′ be the
first, second, and inferred rule, respectively. We say that rule r′ is applicable
to atom Aj occurring in rule r and we call r′′ the resolvent of r and Aj ,
denoted resolve(r′, Aj).

The query reformulation algorithm (Algorithm 6) is is quite similar to the
DL-Lite case (see Section 10.6.3). Given a query q and a KB K, the algorithm
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reformulates q in terms of a set of conjunctive queries r(q,K), which then can
be evaluated over the facts component in K.

Algorithm 6 QueryRef(q,K)
Input: query q, KB K.
Output: Set of reformulated conjunctive queries r(q,K).
1: r(q,K) := {q(x)← φ | q(x)← φ ∈ K}
2: repeat
3: S = r(q,K)
4: for all queries q ∈ S do
5: for all atoms Aj ∈ q do
6: if rule r′ ∈ K is applicable to Aj then
7: r(q,K) := r(q,K) ∪ {resolve(r′, Aj)}
8: until S = r(q,K)
9: return r(q,K)

The termination of the query reformulation step is guaranteed by the non-
recursiveness of K. This concludes the query reformulation step.

Example 54 ([409]). Suppose the rule component P contains the rules r1 and
r2:

r1 : T (x, y) ← P (x, y)
r2 : R(x, y) ← B(x), C(y) .

We also assume that the fact component F is

P

0 1

3 2

4 5

6 8

B

1

2

5

7

C

1

3

2

4

Assume also that we have the rules

q′ : 〈q(x), s〉 ← T (x, y), R(y, z), s := max(0, 1− x/10)
q′′ : 〈q(x), s〉 ← C(x), s := max(0, 1− x/5) .

Now, it can be verified that, e.g.,

K |= 〈q(3), 0.7〉
K |= 〈q(1), 0.8〉 , and
K 6|= 〈q(6), v〉 for any v ∈ [0, 1] ,

The answer set is

ans(K, q) = {〈0, 1.0〉, 〈1, 0.8〉, 〈2, 0.6〉, 〈3, 0.7〉, 〈4, 0.6〉}

and, thus, that the top-3 answers are

ans3(K, q) = {〈0, 1.0〉, 〈1, 0.8〉, 〈3, 0.7〉} .
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It can also be verified that

r(q,K) = {q′, q′′, q1, q2} ,
where

q1 : 〈q(x), s〉 ← P (x, y), R(y, z), s := max(0, 1− x/10)
q2 : 〈q(x), s〉 ← P (x, y), B(y), C(z), s := max(0, 1− x/10) .

It is easily verified that now we have only to evaluate q′′ and q2 over the facts
component of K, as both q′ and q1 queried over the fact components provide
empty results only. Specifically, we have that

ans(F , q′′) = {〈1, 0.8〉, 〈3, 0.4〉, 〈2, 0.6〉, 〈4, 0.2〉}
ans(F , q2) = {〈0, 1.0〉, 〈3, 0.7〉, 〈4, 0.6〉} .

Hence, ans(K, q) is obtained from ans(F , q′′)∪ans(F , q2) from which we drop
a tuple 〈t, r〉 if there is another tuple 〈t, r′〉 in it with r′ > r.

The main property of the query reformulation algorithm is as follows. It can
be shown that

Proposition 89 ([409]). Given a KB K = 〈F ,P〉 and a query q, then

ansk(K, q) = Topk{〈t, v〉 | qi ∈ r(q,P), 〈qi(t), v〉 ∈ ans(F , qi)} .
The above property dictates that in order to determine the top-k answers, we
may reformulate the query q using the rule component P only, and then query
the reformulated queries qi ∈ r(q,P) against the fact component F stored in
a relational database. From the union of these answer sets we can find the
top-k answers.

Of course, the size of the rewriting r(q,P) may be exponential w.r.t. to the
size of q and P in the worst case as the following simple example illustrates.

Example 55. Consider the query

q(x)← A0(x)

and a set of rules P of the form (i = 0, 1, . . . , k − 1)

Ai(x) ← Ai+1(x), Ci+1(x)

Ai(x) ← Ai+1(x), Di+1(x) .

Then {q} ∪ P has 2k + 1 rules, whose size (number of atoms) is bounded by
3. So, |q|+ |P| is O(k). Now, it is easy to see that r(q,P) consists instead of
2k+1 rules. The size of r(q,P) is

k∑
i=0

2i·(i+2) = 2·
k∑
i=0

·2i+
k∑
i=0

i·2i = 2·2k+1+(k−1)·2k+1+2 = (k+1)·2k+1+2 ,

which is O(k · 2k) and, thus, is exponential w.r.t. |q|+ |P|.
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We next show how to find the top-k answers of the union of the answer
sets of queries qi ∈ r(q,P).

A naive solution to the top-k retrieval problem is as for the case of DL-Lite:
we compute for all qi ∈ r(q,P) the whole answer set ans(F , qi), then we
compute the union of these answer sets, order it in descending order of the
scores and then we take the top-k tuples.

A more effective solution consists in relying on existing top-k query an-
swering algorithms for relational databases (see, e.g., [94, 150, 258]). Like for
DL-Lite, we may compute for all qi ∈ r(q,P), the top-k answers ansk(F , qi),
using e.g., the system RankSQL [258]; and if both k and the number,
nq = |r(q,P)|, of reformulated queries is reasonable, then we may compute
the union, of these top-k answer sets, order it in descending order w.r.t. score
and then we take the top-k tuples.

We can further improve this solution by adopting the Disjunctive Threshold
Algorithm (DTA) we have seen also for DL-Lite.

While computing r(q,P) may require exponential time w.r.t. the size of
q and P (see Example 55), computing the top-k answers of each query qi ∈
r(q,P) requires (sub) linear time w.r.t. the database size (using, e.g., [94]),
and, thus, so does the DTA.

11.5.3.2 Top-k Retrieval: The General Case

We address here now the more general case in which P may be recursive
(see [428]).

Consider K = 〈F ,P〉, consisting of a facts component F and an LP com-
ponent P. F is a finite set of facts of the form 〈p(c1, . . . , cn), s〉. We assume
that all rules in P are of the form

p(x)← f(p1(z1), . . . , pm(zm)) .

For our purposes, in the following, let HK and BK be the Herbrand universe
and Herbrand base of K, respectively. An interpretation I for K is a function
I : BK → L, where L = {⊥, 0, 1

n , . . .
n−1
n , 1} and

1. I(r) = r, for r ∈ L; and

2. I(f(A1, . . . , Am)) = f(I(A1), . . . , I(Am))).

With I⊥ we denote the bottom interpretation (I⊥ maps all atoms to ⊥), while
with I> we denote the top interpretation (I> maps all atoms to 1).

We recap that I is a model of K iff for all ground rules A ← ϕ ∈ K∗,
I(ϕ) ≤ I(A) holds. Differently to Section 11.2, the existence, finiteness, and
uniqueness of the minimal model MK is guaranteed to exist by the following
non usual argument.

Consider K, the Herbrand base BK = {A1, . . . , An} and K∗. Note that
both are finite and so is K∗. Let us associate each atom Ai ∈ BK with a
variable xi, which will take a value in L (sometimes we will refer to that
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variable with xA as well). An interpretation I may be seen as an assignment
of truth values to the variables x1, ..., xn and vice versa. Now, for each ground
fact 〈A, r〉 in K∗, we consider the equation

xA = r

while for each ground rule A← f(A1, . . . , Am) in K∗ we consider the equation

xA = f(xA1
, . . . , xAm)

if A is head of at most one rule, while we consider the equation

xA = max{f(. . .) | A← f(. . .) ∈ K∗}

if A is head of more than one rule.
Now, given K∗, we have obtained the system of equations

x1 = f1(x11
, . . . , x1a1

) ,
...

xn = fn(xn1 , . . . , xnan ) ,

(11.36)

where the variables inside the functions fi belong to {x1, ..., xn}.
Each variable xik will take a value in L, each (monotone) function fi

determines the value of xi (i.e., Ai). We refer to the monotone system as in
Equation (11.36) as the tuple S = 〈L, V, f〉, where V = {x1, ..., xn} are the
variables and f = 〈f1, ..., fn〉 is the tuple of functions.

Now, it can be verified that the minimal model ofK∗, i.e.,MK, is bijectively
related to the least solution of the system (11.36). As it is well known (see,
e.g., [9]), a monotonic equation system as (11.36) (each function fi : Lai 7→ L
in Equation (11.36) is ≤-monotone) has a ≤-least solution, lfp(f), the ≤-least
fixed-point of f is given as the least upper bound of the ≤-monotone sequence,
y0, . . . ,yi, . . ., where

y0 = ⊥
yi+1 = f(yi) .

(11.37)

It is thus immediate that, as the truth space is finite, the above sequence
converges in a finite number of steps and that the ≤-least model MK of K is
finite.

Computing top-k answers. We describe an incremental query driven top-k
query answering algorithm.

A distinguishing feature of our query answering procedure is that we do
not determine all answers, but collect, during the computation, answers in-
crementally together and we can stop as soon as we have gathered k answers
greater or equal than a computed threshold δ.

For the ease of reading, we will proceed stepwise. In the next section, we
will provide an algorithm answering ground queries. Additionally, we will see
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later on that the same algorithm can be used to compute the threshold we
are going to use later on. Eventually, we will extend the latter procedure to
compute the top-k answers only.

A query driven procedure for equational systems. It is illustrative to
address the following specific problem. Consider an equational system S =
〈L, V, f〉 and a variable xi. How can we compute the value of variable xi in
the least fixed point of S? The immediate way is to compute bottom-up the
least fixed point as described in Equation (11.37), and then look for the value
of xi in the least fixed point. But, there is also a query driven method [9]. The
method has been used then in [400] as a basis for a query driven ground query
answering method for normal logic programs and has further been extended
in [289, 413, 414]. This is not surprising, as we have seen in the previous
section that the minimal model of K∗, i.e., MK, is bijectively related to the
least solution of a system of the form (11.36). Hence, if we want to know the
truth value of a ground atom A in MK, it suffices to look at the value of the
variable xA in the least fixed point of the related equational system.

Formally, consider an equational system S = 〈L, V, f〉 of the form (11.36).
The procedure described in Algorithm 7 determines the value of a set of
variables in Q in the least-fixed point, and is a slight refinement of the one
presented in [9].

Algorithm 7 Solve(S, Q)

Input: ≤-monotonic system S = 〈L, V, f〉, where Q ⊆ V is the set of query variables
Output: A mapping v that equals lfp(f) on Q
1: A : = Q, dg : = Q, in : = ∅
2: for all x ∈ V do
3: v(x) = ⊥, exp(x) = false

4: while A 6= ∅ do
5: select xi ∈ A, A : = A \ {xi}, dg : = dg ∪ s(xi)
6: r : = fi(v(xi1 ), ..., v(xiai ))

7: if r > v(xi) then
8: v(xi) : = r, A : = A ∪ (p(xi) ∩ dg)
9: if not exp(pi) then

10: exp(xi) = true, A : = A ∪ (s(xi) \ in), in : = in ∪ s(xi)
11: return v

We next describe how it works. We use some auxiliary functions. s(x)
denotes the set of sons of x, i.e.,

s(xi) = {xi1 , . . . , xiai}

(the set of variables appearing in the right-hand side of the definition of xi in
(11.36)). p(x) denotes the set of parents of x, i.e., the set

p(x) = {xi | x ∈ s(xi)}

(the set of variables depending directly on the value of x). We assume that
each function fi : Lai 7→ L in Equation (11.36) is ≤-monotone. We also use fx
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in place of fi, for x = xi. Informally the algorithm works as follows. Assume
we are interested in the value of x0 in the least fixed point of the system.
We associate to each variable xi a marking v(xi) denoting the current value
of xi (the mapping v contains the current value associated to the variables).
Initially, v(xi) is ⊥.

We start with putting x0 in the active set of variables A, for which we
evaluate whether the current value of the variable is identical to whatever its
right-hand side evaluates to. When evaluating a right-hand side it might of
course turn out that we do indeed need a better value of some sons (which
are initialized with the value ⊥) and put them on the set of active nodes to
be examined. If it turns out that a variable changes its value (actually, it can
only ≤-increase) all variables that might depend on this variable are put in
the active set to be re-examined. At some point (even if cyclic definitions are
present) the active set will become empty, because of the finiteness of the
truth space, and we have actually found part of the fixed point, sufficient to
determine the value of the query x0.

The variable dg collects the variables that may influence the value of the
query variables, the array variable exp traces the equations that have been
“expanded” (the body variables are put into the active set), while the variable
in keeps track of the variables that have been put into the active set so far
due to an expansion (to avoid putting the same variable multiple times in the
active set due to function body expansion).

In [9], it is shown that the above algorithm behaves correctly.

Proposition 90 ([9]). Given a monotone system of equations S = 〈L, V, f〉,
then after a finite number of steps, Solve(S, Q) determines a mapping v that
equals to lfp(f) on Q, i.e., v|Q = lfp(f)|Q.

See [428] for the computational complexity of the Solve procedure.

A query driven top-k procedure. We are ready now to describe the query
driven top-k algorithm [428].

The procedure TopAnswers is detailed in Algorithm 8.2 Basically, we will
compute answers iteratively one by one together with a threshold δ such that
if we have already collected k answers with a score greater than or equal to
δ we can stop, as any not yet computed answer will have a score no greater
than δ.

Roughly, we proceed as follows. Suppose q is the query. We start with
putting the predicate symbol q in the active set of predicate symbols A. At
each iteration step we select a new predicate p from A, look for the next highest
scoring tuple for p (procedure getNextTuple), update the current answer set
for p (rankedList(p)), add all predicates p′, whose rule body contains p (the
parents of p), to A, i.e., all predicate symbols that might depend on p are put
in the active set to be examined, and finally we update the threshold. If we

2The condition rL′ = rankedList means that the contents do not change.
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have already gathered k answers for q whose score is greater than or equal to
the threshold we stop. Our procedure uses also some auxiliary functions and
data structures:

• for predicate symbol pi, s(pi) is the set of predicate symbols occurring
in the rule body of a rule having pi in its head3, i.e., the sons of pi, from
which we exclude the extensional predicates. p(pi) denotes the parents
of pi, i.e., p(pi) = {pj | pi ∈ s(pj)};

• the variable rankedList contains, for each intensional relation p, the
current ranked tuples together with their score;

• the variable Q is a global variable. It is used in the getNextTuple proce-
dure and contains, for each intensional relation p, the next top-ranked
tuple to be returned. The tuples in Q(p) are ranked in decreasing order
with respect to the score s.

Algorithm 8 TopAnswers(L,K, q, k)

Input: Truth space L, KB K = 〈F ,P〉, query relation q, k ≥ 1.
Output: Mapping rankedList such that rankedList(q) contains top-k answers of q.
1: δ = 1
2: for all predicates p in P do
3: if p intensional then
4: rankedList(p) = ∅, Q(p) := ∅
5: if p extensional then
6: rankedList(p) = Tp
7: repeat
8: if A = ∅ then
9: A := {q}, dg := {q}, in := ∅, rL′ := rankedList, initialise all pointers in the

relations tables to point to the first record
10: for all intensional predicates p do
11: exp(p) = false

12: select p ∈ A, A := A \ {p}, dg := dg ∪ s(p)
13: 〈t, s〉 := getNextTuple(p)
14: if 〈t, s〉 6= null then
15: rankedList(p) := rankedList(p) ∪ {〈t, s〉}, A := A ∪ (p(p) ∩ dg)
16: if not exp(p) then
17: exp(p) = true, A := A ∪ (s(p) \ in), in := in ∪ s(p)
18: Update threshold δ
19: until (rankedList(q) does contain k top-ranked tuples with score greater or equal than

query rule threshold) or ((rL′ = rankedList) and A = ∅)
20: return top-k ranked tuples in rankedList(q)

Note that the termination of the algorithm is guaranteed by the finiteness of
the knowledge base, the finiteness of the truth set, and the monotonicity of
the score combination functions: each tuple may enter a ranked list at most
h = |L|− 1 times and we stop as soon as two successive loops in TopAnswers
do not change the ranked lists and the queue A becomes empty.4

3Recall that there may be more than one rule having pi in its head.
4(rL′ = rankedList) and A = ∅.
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Algorithm 9 getNextTuple(p)
Input: Intensional relation symbol p.
Output: Next instance of p together with the score.
1: Consider set of rules R = {r | r : p(x)← f(A1, . . . , An) ∈ P}
2: Let pi be the relation symbols occurring in Ai
3: if Q(p) 6= ∅ then
4: 〈t, s〉 := getTop(Q(p))
5: remove 〈t, s〉 from Q(p)
6: return 〈t, s〉
7: repeat
8: for all r ∈ R do
9: Generate the set T of all new valid join tuples t for rule r, using tuples in

rankedList(pi) and square ripple join (see [212])
10: for all t ∈ T do
11: s := compute the score of p(t) using f
12: if neither 〈t, s′〉 ∈ rankedList(p) nor 〈t, s′〉 ∈ Q(p) with s ≤ s′ then
13: insert 〈t, s〉 into Q(p)
14: until Q(p) 6= ∅ or no new valid join tuple can be generated
15: if Q(p) 6= ∅ then
16: 〈t, s〉 := getTop(Q(p))
17: remove 〈t, s〉 from Q(p)
18: return 〈t, s〉
19: else
20: return null

We now describe the getNextTuple procedure (see Algorithm 9). Its main
purpose is, given a relation symbol p and the rules ri : p(x) ← ϕi having
p(x) as head, to get back the next tuple (and its score) satisfying the body
conditions of some of these rules using the so far retrieved tuples for the
relations occurring in ϕi.

Whenever we already have some join combinations for p in the queue
Q(p) (obtained by a previous call) then we just return the top-ranked one.
Otherwise, we take into account all rules r having p in its head. For each
rule r, we try to generate join combinations for p, involving all seen tuples
of the relations occurring in the rule body of r. For each join combination
we compute its score. We put the results on the queue Q(p) and return the
top-ranked one. As Q(p) may still contain answers for p, the next time we ask
for a next tuple with respect to p, we access Q(p) directly.

Example 56 ([428]). Consider the rule

r : p(x, z)← p1(x, y) · p2(y, z) .

Assume that actually rankedList(p1) and rankedList(p2) contain the fol-
lowing tuples.

recId rankedList(p1) rankedList(p2)
1 a b 1.0 m h 0.95
2 e f 0.9 m j 0.85
3 l m 0.8 f k 0.75
4 c d 0.7 m n 0.65
5 o p 0.6 p q 0.55
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It can be verified that a call to getNextTuple(p), will put two join combina-
tions 〈l, h, 0.76〉 and 〈l, j, 0.68〉 into Q(p). Therefore, the procedure will return
〈l, h, 0.76〉 as the result and remove 〈l, h, 0.76〉 from Q(p).

The second call of getNextTuple(p), we will return 〈l, j, 0.68〉 as Q(p) is
still non-empty, and remove this tuple from Q(p) (which makes it empty).
The third call of getNextTuple(p), it will return 〈e, f, 0.675〉. The fourth
call of getNextTuple(p), it we return 〈l, n, 0.52〉. Finally, in the fifth call of
getNextTuple(p), it will return 〈o, q, 0.33〉.

Threshold for querying an extensional knowledge base. Assume that
we have a knowledge base in which the rule component consists of one rule
only (the query rule) of the form

r : q(x)← f(p1, p2, . . . , pn) ,

where all pi are extensional predicates. Example 56 is such a case. In this case,
the threshold δ is determined as in [212], which we illustrate next.

Let tri be the last tuple seen in rankedList(pi) so far with respect to
rule r, while let t̂i be the top ranked one in rankedList(pi). With t.score
we indicate the score of tuple t.5 Then we define δr as the maximum of the
following n values:

δr1 = f(tr1.score, t̂2.score, . . . , t̂n.score)

δr2 = f(t̂1.score, t
r
2.score, . . . , t̂n.score)

...
...

...

δrn = f(t̂1.score, t̂2.score, . . . , t
r
n.score) .

Finally, we define the threshold to be used in the TopAnswer procedure as
δ = δr. For instance, for

q(x)← p1(x, y) · p2(y, z)

we have

δr1 = tr1.score · t̂2.score

δr2 = t̂1.score · tr2.score
δr = max(δr1, δ

r
2) .

Example 57 (Example 56 cont.). After the first call of getNextTuple(p) we
have that

t̂1 tr1 t̂2 tr2
〈a, b, 1.0〉 〈l,m, 0.8〉 〈m,h, 0.95〉 〈m, j, 0.85〉

5If no tuple has been yet seen in pi, then t.score = 1 is assumed.
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and, thus,

δr1 = 0.8 · 0.95 = 0.76

δr2 = 1.0 · 0.85 = 0.85

δr = max(0.76, 0.85) = 0.85 .

The important fact is now that whenever we consider a new join combination
for rule r, its score will be less than or equal to δr. Indeed, if we consider a
new join tuple using the next unseen tuple from rankedList(p1) and a seen
tuple in rankedList(p2), its score will be less than or equal to δr1, while if we
consider a new join tuple using the next unseen tuple from rankedList(p2)
and a seen tuple in rankedList(p1), its score will be less than or equal to δr2.
Therefore, overall the score will be less than or equal to δr.

Example 58 (Example 57 cont.). In the second call to getNextTuple(p), we
get 〈l, j, 0.68〉 and 0.68 ≤ 0.85 = δr, in the third call to getNextTuple(p), we
get 〈e, f, 0.675〉 and 0.675 ≤ 0.85 = δr, in the fourth call to getNextTuple(p),
we get 〈l, n, 0.52〉 and 0.52 ≤ 0.76 = δr (note that after the third call, δr =
0.76), while the fifth call to getNextTuple(p), we get 〈o, q, 0.33〉 and 0.33 ≤
0.665 = δr (after the fourth call, δr = 0.665).

As a consequence, whenever we have top-k answers for q with a score
greater than or equal to δr, we can stop the retrieval process (see step 9
of TopAnswers).
This property can be generalized to n-ary joins (see [212], Theorem 4.2.1).
The following result holds:

Proposition 91 ([428]). For a knowledge base in which the rule compo-
nent consists of one rule r only (the query rule) of the form r : q(x) ←
f(p1, p2, . . . , pn), where all pi are extensional predicates, then the threshold-
based method correctly reports the top-k results ordered by the score.

We next show that we may easily extend our threshold-based method to the
case that for a query we have a knowledge base in which the rule component
consists of m ≥ 1 rules (the query rules) of the form

r1 : q(x)← f1(p1
1, p

1
2, . . . , p

1
n1

)
...

...
rm : q(x)← fm(pm1 , p

m
2 , . . . , p

m
nm)

where all pji are extensional predicates. In this case, let δri be the threshold
for rule ri, as computed previously. Now, let δq be

δq = max(δr1 , . . . , δrm) . (11.38)

Finally, we define δ = δq.
It is easily verified that Proposition 91 holds for this more general case as

well.
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Proposition 92 ([428]). For a knowledge base in which the rule compo-
nent consists of rules r1, . . . , rm having q(x) as their head (the query rules),
where the arguments of the rules are extensional predicates and δ = δq =
max(δr1 , . . . , δrm), then the threshold-based method correctly reports the top-k
results ordered by the score.

Threshold for querying an intensional knowledge base. We address
now the general case [428]. For this purpose consider the following example.

The solution provided by [428] is that we need to take into account a
threshold for each intensional predicate related to the query as they may
depend on each other.

Specifically, let us consider a knowledge base in which an intensional pred-
icate is head of one rule only (we address the case p is head of more than one
rule later on, similarly as we did previously). So, for an intensional predicate
p heading exactly one rule r

r : p(x)← f(p1(z1), . . . , pn(zn))

we consider a threshold variable δp. With r.tpi (r̂.tpi) we denote the last
tuple seen (the top ranked one) in rankedList(pi) with respect to rule r. We
assume that by default r̂.tpi .score = 1 if no tuple is rankedList(pi). For an
intensional predicate pi, we define

p>i = max(δpi , r̂.tpi .score)

p⊥i = δpi ,

while if pi is an extensional predicate, we define

p>i = r̂.tpi .score

p⊥i = r.tpi .score .

Now, for each rule r we consider the equation δ(r)

δp = max(f(p⊥1 , p
>
2 , . . . , p

>
n ), f(p>1 , p

⊥
2 , . . . , p

>
n ), . . . , f(p>, p>, . . . , p⊥n )) . (11.39)

Eventually, for a knowledge base K = 〈F ,P〉, we consider the set ∆ of all
equations involving intensional predicates. Note that, if K has m intensional
predicates, ∆ consists of m equations and m variables. As all equations in-
volve monotone functions only, the system of equations is monotone, ∆ has a
minimal solution, denoted ∆̄. Finally, for a query q(x), the threshold δ of the
TopAnswers algorithm is defined as

δ = δ̄q ,

where δ̄q is the solution to variable δq in the minimal solution ∆̄ of the set of
equations ∆.
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Please note that ∆̄ and, thus, δ̄q, can be computed iteratively as described
in Equation 11.37. Of course, if specific functions are involved only (e.g., linear
functions), then better methods may be available to compute the minimal
solution. We may also apply the Solve(∆, {δq}) algorithm to compute δ̄q in a
more effective and query driven manner.

In case an intensional relation p is in the head of more than one rule, e.g.,

r1 : p(x) ← ϕ1(x,y)
r2 : p(x) ← ϕ2(x,y)

(11.40)

we proceed as previously in case of empty logic program in which now δp is
the maximum among the thresholds computed for rule r1 and r2 according to
Equation (11.39). That is, for two new relations p′, p′′, we define

δp = max(δp
′
, δp
′′
) (11.41)

where δp
′
, δp
′′

are the thresholds computed according to Equation (11.39) for
the two rules

p′(x) ← ϕ1(x,y)
p′′(x) ← ϕ1(x,y) .

(11.42)

Example 59 (Example 49 cont.). Let us determine top-3 answers for path.
It can be verified that the equations for the threshold computation are:

δpath = max(δpath
′
, δpath

′′
)

δpath
′

= r1.tedge.score

δpath
′′

= max(min(δpath, r̂2.tedge.score),min(max(δpath, r̂2.tpath.score), r2.tedge.score))

The computation is shown below (we use the abbreviations p, p′, p′′, e for
path, path′, path′′ and edge, respectively).

TopAnswers

scores

Iter A p 〈t, s〉 rankedList(p) δp δp
′

δp
′′

r1.te r̂2.tp r2.te r̂2.te

Loop 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1. p p′ 〈c, b, 0.6〉 〈c, b, 0.6〉 1.0 0.6 1.0 0.6 1.0 1.0 1.0
2. p p 〈a, c, 0.5〉 〈c, b, 0.6〉, 〈a, c, 0.5〉 0.5 0.5 0.5 0.5 0.6 0.4 0.6
3. p p 〈c, a, 0.4〉 〈c, b, 0.6〉, 〈a, c, 0.5〉,

〈c, a, 0.4〉
0.5 0.5 0.5 0.5 0.6 0.4 0.6

4. p p 〈a, b, 0.5〉 〈c, b, 0.6〉, 〈a, c, 0.5〉,
〈a, b, 0.5〉, 〈c, a, 0.4〉

0.4 0.4 0.4 0.4 0.6 0.4 0.6

Stop, return〈c, b, 0.6〉, 〈a, c, 0.5〉, 〈a, b, 0.5〉

Note that further answers for path have a score not greater than the threshold
δpath = 0.4.

Proposition 93 ([428]). Given a knowledge base, the generalized threshold-
based method correctly reports the top-k results ordered by the score.

We refer the reader to [428] for further insights on the top-k retrieval algorithm
and for the computational complexity analysis of the TopAnswers procedure.
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Appendix A

RDFS Semantics and Inference Rules

For the sake of completeness, we reproduce here the definitions and axioms of
the normative semantics of RDFS [307, 362] consisting of a model theory and
axiomatic triples. We also recap a complete inference rule set.

The set rdfsV stands for the RDFS vocabulary and is illustrated in Ta-
ble A.1 with the shortcuts we use in brackets. The first column shows built-in
classes, and the second and third show built-in properties.

An interpretation I over a vocabulary V is a tuple

I = 〈∆R,∆P ,∆C ,∆L, P [[·]], C[[·]], ·I〉 ,

where ∆R,∆P , ∆C ,∆L are the interpretation domains of I, which are finite
non-empty sets, and P [[·]], C[[·]], ·I are the interpretation functions of I. They
have to satisfy:

1. ∆R are the resources (the domain or universe of I);

2. ∆P are property names (not necessarily disjoint from ∆R);

3. ∆C ⊆ ∆R are the classes;

4. ∆L ⊆ ∆R are the literal values and contains L ∩ V ;

5. P [[·]] is a function P [[·]] : ∆P → 2∆R×∆R ;

TABLE A.1: RDFS vocabulary.
rdfs:Resource [res] rdf:type [type] rdfs:isDefinedBy [isDefined]
rdf:Property [prop] rdfs:domain [dom] rdfs:comment [comment]
rdfs:Class [class] rdfs:range [range] rdfs:label [label]
rdfs:Literal [literal] rdfs:subClassOf [sc] rdf:value [value]
rdfs:Datatype [datatype] rdfs:subPropertyOf [sp] rdf:nil [nil]
rdf:XMLLiteral [xmlLit] rdf:subject [subj] rdf: 1 [ 1]
rdfs:Container [cont] rdf:predicate [pred] rdf: 2 [ 2]
rdf:Statement [stat] rdf:object [obj] . . .
rdf:List [list] rdfs:member [member] rdf: i [ i]
rdf:Alt [alt] rdf:first [first] . . .
rdf:Bag [bag] rdf:rest [rest]
rdf:Seq [seq] rdfs:seeAlso [seeAlso]
rdfs:ContainerMembershipProperty [contMP]
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TABLE A.2: RDFS axiomatic triples.
(type, type, prop) (subj, type, prop) (pred, type, prop) (obj, type, prop)
(first, type, prop) (rest, type, prop) (value, type, prop) ( 1, type, prop)
( 2, type, prop) . . .
(nil, type, list) (type, dom, res) (dom, dom, prop) (range, dom, prop)
(sp, dom, prop) (sc, dom, class) (subj, dom, stat) (pred, dom, stat)
(obj, dom, stat) (member, dom, res) (first, dom, list) (rest, dom, list)
(seeAlso, dom, res) (isDefined, dom, res) (comment, dom, res) (label, dom, res)
(value, dom, res) (type, range, class) (dom, range, class) (range, range, class)
(sp, range, prop) (sc, range, class) (subj, range, res) (pred, range, res)
(obj, range, res) (member, range, res) (first, range, res) (seeAlso, range, res)
(isDefined, range, res) (comment, range, literal) (label, range, literal) (value, range, res)
(alt, sc, cont) (bag, sc, cont) (seq, sc, cont) (contMP, sc, prop)
(isDefined, sp, seeAlso) (xmlLit, type, datatype) (xmlLit, sc, literal) (datatype, sc, class)
( 1, type, contMP) ( 1, dom, res) ( 1, range, res) ( 2, type, contMP)
( 2, dom, res) ( 2, range, res) . . .

6. C[[·]] is a function C[[·]] : ∆C → 2∆R ;

7. ·I maps each t ∈ UL ∩ V into a value tI ∈ ∆R ∪∆P , and such that ·I
is the identity for plain literals and assigns an element in ∆R to each
element in L.

An interpretation I is a model of a ground graph G, denoted I |= G, if
and only if I is an interpretation over the vocabulary rdfsV ∪ universe(G)
that satisfies the RDFS axiomatic triples [307, 362] (see Table A.2) and the
semantic conditions as in Table A.3.

A ground graph G entails a ground graph H if and only if any model of
G is also a model of H. A graph G entails a graph H, denoted G |= H, if
and only if for any grounding G′ of G there is a grounding H ′ of H such that
G′ |= H ′.

Next, we provide a sound and complete deductive system for RDFS. The
system is arranged in groups of rules that capture the semantic conditions
of models. In every rule, A,B,C,X, and Y are meta-variables representing
elements in UBL and D,E represent elements in UL. The rules are described
below.

1. Simple:

(a) G
G′ for a map µ : G′ → G

(b) G
G′ for G′ ⊆ G

2. Subproperty:

(a) (A,sp,B),(B,sp,C)
(A,sp,C)

(b) (D,sp,E),(X,D,Y )
(X,E,Y )

(c) (A,type,contMP)
(A,sp,member)
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TABLE A.3: Semantic conditions for classical RDFS interpretations.
Simple: 1. for each (s, p, o) ∈ G, pI ∈ ∆P and (sI , oI) ∈ P [[pI ]];

RDF: 1. p ∈ ∆P if and only if (p, propI) ∈ P [[typeI ]];
2. if l ∈ universe(G) is a typed XML literal with lexical form w then

lI is the XML literal value of w, lI ∈ ∆L and (lI , xmlLitI) ∈ P [[typeI ]];

RDFS: 1. x ∈ ∆R if and only if x ∈ C[[resI ]];

2. x ∈ ∆C if and only if x ∈ C[[classI ]];

3. x ∈ ∆L if and only if x ∈ C[[literalI ]];
4. if c ∈ ∆C then (c, resI) ∈ P [[scI ]];

5. if x ∈ C[[datatypeI ]] then (x, literalI) ∈ P [[scI ]];

6. if x ∈ C[[contMPI ]] then (x,memberI) ∈ P [[spI ]];

Subproperty: 1. P [[spI ]] is reflexive and transitive over ∆P ;
2. if (p, q) ∈ P [[spI ]] then p, q ∈ ∆P and P [[p]] ⊆ P [[q]];

Subclass: 1. P [[scI ]] is reflexive and transitive over ∆C ;
2. if (c, d) ∈ P [[scI ]] then c, d ∈ ∆C and C[[c]] ⊆ C[[d]];

Typing: 1. x ∈ C[[c]] if and only if (x, c) ∈ P [[typeI ]];

2. if (p, c) ∈ P [[domI ]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P [[rangeI ]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

3. Subclass:

(a) (A,sc,B),(B,sc,C)
(A,sc,C)

(b) (A,sc,B),(X,type,A)
(X,type,B)

(c) (A,type,class)
(A,sc,res)

(d) (A,type,datatype)
(A,sc,literal)

4. Typing:

(a) (D,dom,B),(X,D,Y )
(X,type,B)

(b) (D,range,B),(X,D,Y )
(Y,type,B)

(c) (A,D,B)
(D,type,prop)

(d) (A,D,B)
(A,type,res)

(e) (l,type,xmlLit) if l ∈ universe(G) is a typed XML literal
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5. Implicit Typing:

(a) (A,dom,B),(D,sp,A),(X,D,Y )
(X,type,B)

(b) (A,range,B),(D,sp,A),(X,D,Y )
(Y,type,B)

6. Subproperty Reflexivity:

(A,type,prop)
(A,sp,A)

7. Subclass Reflexivity:

(A,type,class)
(A,sc,A)

A proof is defined as follows. Let G and H be RDFS graphs. Then G `RDFS H
iff there is a sequence of graphs P1, . . . , Pk with P1 = G ∪ {τ | τ is an RDFS
axiom as in Table A.2 } and Pk = H, and for each j (2 ≤ j ≤ k) one of the
following holds:

1. there exists a map µ : Pj → Pj−1 (rule (1a));

2. Pj ⊆ Pj−1 (rule (1b));

3. there is an instantiation R
R′ of one of the rules (2)(5), such that R ⊆ Pj−1

and Pj = Pj−1 ∪R′.

The sequence of rules used at each step (plus its instantiation or map), is
called a proof of H from G. Now it can be shown that

Proposition 94 (Soundness and Completeness [307]). For RDFS graphs G
and H,

G |=RDFS H if and only if G `RDFS H .

Moreover, if G `RDFS H then there is a proof of H from G where the rule
(1a) is used at most once and at the end.
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From OWL to Description Logics

B.1 The Case of OWL 2

The syntax of OWL 2 expressions and the mapping to SROIQ(D) is
essentially as follows. In the following, A is an atom (unary predicate), R is
a role (binary predicate), R− is the inverse of role R, S is a simple role, T
is a datatype property, a, b are individuals, and l is a literal of the concrete
domain supported by OWL 2. Symbols may have a subscript.

An object property R may also be the top relation U or the bottom relation
⊥r, with obvious extension UI = ∆I ×∆I and ⊥rI = ∅, respectively, for any
interpretation I.

Assertion axioms. Assertion axioms are of the form:

SameIndividual(a, b) 7→ a = b. Note that in Section 4.2.2.3 we used UNA instead.
DifferentIndividuals(a, b) 7→ a 6= b
ClassAssertion(C, a) 7→ a:C
ObjectPropertyAssertion(R, a, b) 7→ (a, b):R
NegativeObjectPropertyAssertion(R, a, b) 7→ (a, b):¬R
DataPropertyAssertion(T, a, l) 7→ (a, l):T
NegativeDataPropertyAssertion(T, a, l) 7→ (a, l):¬T

Class Expressions. We recap here briefly the syntax of OWL 2 class ex-
pressions.

C −→ A | C1 u C2 || C1 t C2 | ¬C | {a} |
∃R.C | ∀R.C | ∃R.{a} | ∃S.Self |
(≥ n S.C) | (≤ n S.C) | (= n S.C) |
∃T.d | ∀T.d | ∃T. =l|
(≥ n T.d) | (≤ n T.d) | (= n T.d)

Class Axioms. The class axioms of OWL 2 are of the following form

SubClassOf(C1, C2) 7→ C1 v C2

EquivalentClasses(C1, C2) 7→ C1 = C2

DisjointClasses(C1, C2) 7→ disj(C1, C2)
DisjointUnion(C,C1, C2) 7→ C = C1 t C2, disj(C1, C2)
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Object Property Axioms. The object property axioms of OWL 2 are of
the following form

SubObjectPropertyOf(R1, R2, . . . , Rn, R) 7→ R1 . . . Rn v R
EquivalentObjectProperties(R1, R2) 7→ R1 v R2, R2 v R1

DisjointObjectProperties(S1, S2) 7→ disj(S1, S2)
InverseObjectProperties(R1, R2) 7→ EquivalentObjectProperties(R1, R

−
2 )

ObjectPropertyDomain(R,C) 7→ dom(R,C)
ObjectPropertyRange(R,C) 7→ ran(R,C)
FunctionalObjectProperty(S) 7→ fun(R)
InverseFunctionalObjectProperty(S) 7→ fun(R−)
ReflexiveObjectProperty(R) 7→ ref(R)
IrreflexiveObjectProperty(S) 7→ irr(R)
SymmetricObjectProperty(R) 7→ sym(R)
AsymmetricObjectProperty(S) 7→ asy(R)
TransitiveObjectProperty(R) 7→ trans(R)

Data Property Axioms. The data property axioms of OWL 2 are of the
following form

SubDataPropertyOf(T1, T2) 7→ T1 v T2

EquivalentDataProperties(T1, T2) 7→ T1 v T2, T2 v T1

DisjointDataProperties(T1, T2) 7→ disj(T1, T2)
DataPropertyDomain(T,C) 7→ dom(T,C)
DataPropertyRange(T,d) 7→ ran(R,d)
FunctionalDataProperty(T ) 7→ fun(T )

Datatypes. We refer the reader to http://www.w3.org/TR/2008/WD-owl2-
syntax-20081008/#Datatype Maps concerning the datatypes supported by
OWL 2.

Simple roles. An object property R is composite w.r.t. a set of object prop-
erty axioms R iff

1. R is either >r or ⊥r; or

2. R contains an axiom of the form

(a) SubObjectPropertyOf(R1, R2, . . . , Rn, R);

(b) SubObjectPropertyOf(R1, R2, . . . , Rn, R
−);

(c) TransitiveObjectProperty(R);

(d) TransitiveObjectProperty(R−);

The relation → w.r.t. R is the smallest relation for which the following con-
ditions hold:

http://www.w3.org
http://www.w3.org
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1. If R contains SubObjectPropertyOf(R1, R2), then R1 → R2;

2. If R contains EquivalentObjectProperties(R1, R2), then R1 → R2 and
R2 → R1;

3. IfR contains InverseObjectProperties(R1, R2), then R1 → R−2 and R−2 →
R1;

4. If R contains SymmetricObjectProperty(R), then R→ R−;

5. If R1 → R2 then R−1 → R−2 .

Let →∗ be the reflexive-transitive closure of →.
An object property expression R is simple w.r.t. R if, for each object

property R′ such that R′ →∗ R holds, R′ is not composite.
We also assume that no SubObjectPropertyOf axiom contains the uni-

versal role U property (similarly, no SubDataPropertyOf axiom contains the
universal datatype property) and that R is regular (see Section 4.2.2.3).

B.2 The Case of OWL QL

The syntax of OWL QL expressions and the mapping to DL-Lite is es-
sentially as follows. In the following, A is an atom (unary predicate), R is a
role (binary predicate) and R− is the inverse of role R. Symbols may have a
subscript. The mapping to DL-LiteR is derived from the one for OWL 2 (see
Section B.1).

Assertions. Assertion axioms are of the form:

ClassAssertion(A, a)
ObjectPropertyAssertion(R, a, b)

Class Expressions. In OWL 2 QL, there are two types of class expressions.
The B sub class production defines the class expressions that can occur as sub
class expressions in SubClassOf axioms, and the C super class production
defines the classes that can occur as super class expressions in SubClassOf
axioms. Their syntax is:

B −→ A | ∃R
C −→ A | B1 u C2 | ¬B | ∃R.A

Class Axioms. The class axioms of OWL 2 QL are of the following form.

SubClassOf(B,C)
EquivalentClasses(B1, B2)
DisjointClasses(B1, B2)
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Property Axioms. The property axioms of OWL 2 QL are of the following
form

SubObjectPropertyOf(R1, R2)
EquivalentObjectProperties(R1, R2)
DisjointObjectProperties(R1, R2)
InverseObjectProperties(R1, R2)
ObjectPropertyDomain(R,C)
ObjectPropertyRange(R,C)
ReflexiveObjectProperty(R)
SymmetricObjectProperty(R)
AsymmetricObjectProperty(R)

Note that there are some differences among DL-LiteR and OWL 2 QL:

1. existential quantification to a class ∃R.C;

2. symmetric property axioms and asymmetric property axioms;

3. reflexive property axioms and irreflexive property axioms.

Notice that, although 1 and 2 are not natively supported by DL-LiteR, they
are actually expressible in DL-LiteR by suitably processing the intensional
level of the ontology. Conversely, reflexivity and irreflexivity axioms are brand
new features and require new inference mechanisms.

Native handling of qualified existential quantification. It is well known
that an axiom τ of the form

B v ∃R.A
can be replaced with the transformation

τ 7→ {B v ∃Raux, Raux v R,∃R−aux v A} ,

where Raux is a new role. We point out that [100] provides also a query
reformulation method that does not require the translation.

Native handling of symmetric and asymmetric object property ax-
ioms.

1. each SymmetricObjectProperty(R) is managed by adding R v R− to the
DL component;

2. each AsymmetricObjectProperty(R) is managed by adding R v ¬R− to
the DL component;

Handling of reflexive and irreflexive object property axioms. It has
been observed in [100] that since (i) the asymmetry axiom on a property
implies the irreflexivity axiom on the same property; and (ii) the asymmetry
axiom influences only the consistency check on the ontology; the irreflexivity
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axiom influences only the consistency check, too. [100] shows how to deal with
irreflexivity axioms in the consistency checking phase.

On the other hand, reflexive role declarations impact the query reformu-
lation phase, cannot be represented in DL-LiteR, and they have to be dealt
with specifically in the reformulation algorithm, though the solution is easy.
Essentially, a reflexive role R means that R(x, x) is always true, we have
to appropriately drop any occurrence of R(x, x) occurring in a query dur-
ing the query reformulation procedure. We refer the reader to [100] for the
details.

B.3 The Case of OWL EL

We recap here briefly the syntax of OWL EL class expressions. In the
following, A is an atom (unary predicate), R is a role (binary predicate), S is
a simple role, and T is a datatype property. Symbols may have a subscript.

The mapping to EL++(D) is derived from the one for OWL 2 (see Sec-
tion B.1).

Assertions.. Assertion axioms are of the form:

ClassAssertion(A, a)
ObjectPropertyAssertion(R, a, b)

Class Expressions. OWL 2 EL class expression are as follows:

C −→ A | C1 u C2 | {a} | ∃R.C | ∃R.{a} | ∃S.Self
∃T.d |

Class Axioms. The class axioms of OWL 2 EL are of the following form

SubClassOf(C1, C2)
EquivalentClasses(C1, C2)
DisjointClasses(C1, C2)

Property Axioms. The property axioms of OWL 2 QL are of the following
form

SubObjectPropertyOf(R1, R2)
EquivalentObjectProperties(R1, R2)
ObjectPropertyDomain(R,C)
ObjectPropertyRange(R,C)
ReflexiveObjectProperty(R)
TransitiveObjectProperty(R)
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B.4 The Case of OWL RL

We recap here briefly the syntax of OWL RL expressions. In the following,
A is an atom (unary predicate), R is a role (binary predicate), S is a simple
role, and T is a datatype property. Symbols may have a subscript.

The mapping to Horn-DL is derived from the one for OWL 2 (see Sec-
tion B.1).

Assertions. Assertion axioms are of the form:

ClassAssertion(C, a)
ObjectPropertyAssertion(R, a, b)

Class Expressions. In OWL 2 RL, there are two types of class expressions.
The sub class B production defines the class expressions that can occur as sub
class expressions in SubClassOf axioms, and the C super class production
defines the classes that can occur as super class expressions in SubClassOf
axioms. The D class production defines the classes that can occur in concept
definitions. Their syntax is (m ∈ {0, 1}):

B −→ A | {a} | B1 uB2 | B1 tB2 | ∃R.B | ∃R.{a} | ∃T.d | ∃T. =l

C −→ A | C1 u C2 | ¬B | ∀R.C | ∃R.{a} | ∀T.d | ∃T. =l|
(≤ m S.B) | (≤ m S) | (≤ m T.d)

D −→ ∃R.{a} | ∃T. =l| D1 uD2

R −→ P | P−

Class Axioms. The class axioms of OWL 2 RL are of the following form

SubClassOf(B,C)
EquivalentClasses(A,D)
DisjointClasses(B1, B2)

Property Axioms. The property axioms of OWL 2 QL are of the following

form
SubObjectPropertyOf(R1, R2)
EquivalentObjectProperties(R1, R2)
DisjointObjectProperties(S1, S2)
InverseObjectProperties(R1, R2)
ObjectPropertyDomain(R,C)
ObjectPropertyRange(R,C)
FunctionalObjectProperty(S)
InverseFunctionalObjectProperty(S)
IrreflexiveObjectProperty(S)
SymmetricObjectProperty(R)
AsymmetricObjectProperty(S)
TransitiveObjectProperty(R)



Appendix C

A Tableau Calculus for SHIF g

The major issue introduced by functional roles is that together with inverse
roles they may cause a concept to be satisfiable in an infinite model only.

Example 60. Consider the following KB K = 〈R, T ,A〉 with

R = ∅
T = {> v ∃S.A}
A = {a:¬A} ,

where the inverse of the role S is functional, i.e., fun(S−). Then, K has a
model, but no finite one. Indeed, a model I of K is

∆I = N
aI = 1
1 6∈ AI

n ∈ AI for all n > 1
(n, n+ 1) ∈ SI for all n ≥ 1 .

This property is well-known for SHIFg. In order to cope with this issue, clas-
sical DLs have proposed the so-called notion of pairwise blocking to guarantee
the correct termination of a tableau from which then we may build a possibly
infinite model (see, e.g., [209]).

With respect to ALC, we need to extend some notions. The set of roles
is the set of roles and their inverse. To avoid considering roles such as R−−,
we define a function Inv such that Inv(R) = R− if R is an atomic role, and
Inv(R) = R1 if R = R−1 . We also define a function Trans(R) to return true iff
R is a transitive role, i.e., trans(R) or trans(Inv(R)) (note that R is transitive
iff Inv(R) is transitive).

We start with considering role axioms and role inclusion axioms. Given an
RBox R, we define the sub-role relation v∗R as the transitive-reflexive closure
of v over R′ = R∪ {Inv(R1) v Inv(R2) | R1 v R2 ∈ R}, that is

1. if R occurs in R′ then R v∗R R;

2. if R1 v R2 ∈ R′ then R1 v∗R R2;

3. if R1 v R2 ∈ R′ and R2 v R3 ∈ R′ then R1 v∗R R3.

279
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We extend an interpretation I to interpret R1 v∗R R2 as I |= R1 v∗R R2

iff I |= R1 v R2. It is then easy to see that K |= R1 v∗R R2 iff R1 v∗R R2.
This provides us a simple procedure to determine whether K |= R1 v∗R R2.

Let K be a SHIFg KB. Recall SHIFg differs from SHIF as there are no
local functional roles (≤ 1 R) occurring in K, but there are global functional
roles fun(R) only.

Now, a completion-forest F for K is a collection of trees whose distin-
guished roots are arbitrarily connected by edges. Each node v is labelled with
a set L(v) of concepts C ∈ sub(K). The intuition here is that v is an instance
of C. Each edge 〈v, w〉 is labelled with a set L(〈v, w〉) of roles R occurring in
K indicating that 〈v, w〉 and instance of R.

If nodes v and w are connected by an edge 〈v, w〉 then w is called a successor
of v and v is called a predecessor of w. Ancestor is the transitive closure of
predecessor, and descendant is the transitive closure of successor.

If nodes v and w are connected by an edge 〈v, w〉 with R′ ∈ L(〈v, w〉) and
R′ v∗R R, then w is called an R-successor of v and v is called an R-predecessor
of w. If node w is an R-successor of v or an Inv(R)-predecessor of v, then w
is called an R-neighbor of v.

For a node v, L(v) is said to contain a clash iff {A,¬A} ⊆ L(v). A
completion-forest is called clash-free iff none of its nodes contains a clash;
it is called complete iff none of the expansion rules in Table C.1 is applicable.

Now, the algorithm initializes a forest F as follows:

• F contains a root node vi0, for each individual ai occurring in A;

• F contains an edge 〈vi0, vj0〉, for each assertion axiom (ai, aj):R ∈ A;

• for each assertion ai:C ∈ A, we add C to L(vi0);

• for each (ai, aj):R ∈ A, we add R to L(〈vi0, vj0〉).

We also need a technical definition involving functional roles (see [295]). Let F
be forest, R a functional role such that we have two edges 〈v, w1〉 and 〈v, w2〉
such that R occurs in L(〈v, w1〉) and L(〈v, w2〉), respectively. Then we call
such a pair a fork. As R is functional, such a fork means that w1 and w2 have
to be interpreted as the same individual. Such a fork can be deleted by adding
both L(〈v, w2〉) to L(〈v, w1〉), and L(w2) to L(w1), and then deleting node
w2. Of course, as inverse roles are allowed these may also contribute to create
a fork, i.e., we have a fork if w1 and w2 are R-neighbors of v.

We assume that forks are eliminated as soon as they appear (as part of a
rule application) with the proviso that newly generated nodes are replaced by
older ones and not vice versa.

At the beginning, we check that there are no forks in the initial forest,
otherwise the KB is not satisfiable (due to the unique name assumption, if we
have (a, b1):R and (a, b2):R with b1 6= b2 then R cannot be functional).

As next we define the notion of pairwise blocking (see Figure C.1). A node
v is blocked iff it is not a root node and it is either directly blocked or indirectly
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v

w

L(v) = L(w)

L(w)

v'

L(<v',v>) 

w' L(v') = L(w')

L(<v'v>) = L(<w',w>)

L(<w',w>) 

L(w')

L(v')

L(v)

FIGURE C.1: Pairwise blocking in SHIF .

blocked. A node v is directly blocked iff none of its ancestors are blocked, and
it has ancestors v′, w, w′ such that

1. w is not a root node,

2. v is a successor of v′,

3. w is a successor of w′,

4. L(v) = L(w),

5. L(v′) = L(w′),

6. L(〈v′, v〉) = L(〈w′, w〉).
The set of reasoning rules are shown in Table C.1.
Note that a model I from a complete and clash-free completion-forest can

be built as follows [206]. The major problem now is that the model may be
infinite. The main idea is that an individual in the domain ∆I intuitively
corresponds to a path, in a complete completion-forest F , from a root node
to some node that is not blocked, and that goes only through non-root nodes.
To obtain an infinite model, these paths may be cyclic. Instead of going to
a direct blocked node, these path go “back” to the blocking node and this
an infinite number of times. Thus, if blocking occurred while constructing a
complete and clash-free completion-forest, we obtain an infinite domain. More
precisely, a path is of the form

[
v0

v′0
, . . . ,

vn
v′n

] ,
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TABLE C.1: The tableau rules for SHIFg.

(u). If (i) C1 u C2 ∈ L(v), (ii) {C1, C2} 6⊆ L(v) and (iii) node v is not
indirectly blocked, then add C1 and C2 to L(v).

(t). If (i) C1 t C2 ∈ L(v), (ii) {C1, C2} ∩ L(v) = ∅ and (iii) node v is not
indirectly blocked, then add some C ∈ {C1, C2} to L(v).

(∀). If (i) ∀R.C ∈ L(v), (ii) there is an R-neighbour w of v with C 6∈ L(w)
and (iii) node v is not indirectly blocked, then add C to L(w).

(∃). If (i) ∃R.C ∈ L(v), (ii) there is no R-neighbour w of v with C ∈ L(w)
and (iii) node v is not blocked, then create a new node w, add R to
L(〈v, w〉) and add C to L(w).

(∀+). If (i) ∀S.C ∈ L(v), (ii) there is some R with Trans(R) and R v∗R S,
(iii) there is an R-neighbour w of v with ∀R.C 6∈ L(w) and (iii) node v
is not indirectly blocked, then add ∀R.C to L(w).

(v). If (i) > v D ∈ T , (ii) D 6∈ L(v) and (ii) node v is not indirectly blocked,
then add D to L(v).

where vi, v
′
i are nodes of F . For such a path, we define Tail(p) = vn. With

[p | vn+1

v′n+1
] we denote the path [ v0

v′0
, . . . , vnv′n

, vn+1

v′n+1
]. The set of paths Path(F) is

defined inductively as follows:

1. for root nodes vi0 in F , [
vi0
vi0

] ∈ Path(F);

2. for a path p ∈ Path(F) and a node w in F

(a) if w is a successor of Tail(p) and w is neither blocked nor a root
node, then [p | ww ] ∈ Path(F); or

(b) if for some node v in F , v is a successor of Tail(p) and w blocks v,
then [p | wv ] ∈ Path(F).

Please note that, due to the construction of Path(F), for p ∈ Path(F) with
p = [p′ | wv ], we have that w is not blocked, v is blocked iff w 6= v, and v is
never indirectly blocked. Furthermore, L(w) = L(v).

Now, let F be a complete and clash-free completion-forest constructed by
the tableaux algorithm for K.

• The domain of I are the paths of the forest, i.e.,

∆I = Path(F) .

• The interpretation of an individual ai occurring in K is as follows:

aI = [
vi0
vi0

] .
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• >I = ∆I , ⊥I = ∅.
• The interpretation of an atom A is as follows:

AI = {p ∈ ∆I | v = Tail(p), A ∈ L(v)} .

• The interpretation of a role R is as follows:

RI = {〈p, q〉 ∈ Path(F)× Path(F) |
q = [p | v

v′
] and v′ is a R-successor of Tail(p), or

p = [q | v
v′

] and v′ is a Inv(R)-successor of Tail(q)} ∪

{〈[v
v

], [
w

w′
]〉 | v, w are root nodes and w is an R-neighbor of v} .

It can be shown that:

Proposition 95 ([209]). For each SHIFg knowledge base K
1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion-forest, then K has a model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield complete and clash-free completion-forest for K;

4. the KB satisfiability problem is NExpTime-complete [442].

Example 61. Consider the KB in Example 60. K is satisfiable as there is a
clash-free complete completion-forest (see Figure C.2). Note that nodes x, y,
and z form a pairwise blocking condition, with w′ = x,w = y = v′ and v = z.

a

x

y

S

S

z

S

FIGURE C.2: Clash-free complete completion-forest for SHIF KB.
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Appendix D

From RIF-Core to Datalog

In this appendix, we provide a mapping of a significant subset of RIF-Core
statements into Datalog with concrete domains.

Syntax. To start with, a term t and atoms are defined as follows:

1. a constant is a term;

2. a variable is a term.

An atomic formula is of the form p(t1, . . . , tn), where ti are terms. A formula
φ has the following grammar (where A is an atom, p is a predicate symbol,
and ti are terms)

φ → A | (atom)
φ1 ∧ φ2 | (conjunction)
φ1 ∨ φ2 | (disjunction)

Ext(p(t1, . . . , tn)) | (external atom)
∃x.φ (existential formula) .

A fact is an atom (not necessarily ground), while a rule is of the form (n ≥ 1)

A1 ∧ . . . ∧An ← φ , (D.1)

where Ai are atoms and φ is a formula.
Note that external atoms are used for representing built-in predicates as

“procedurally attached” predicates, which might exist in various rule-based
systems, but are not specified by RIF.

For a rule A1∧ . . .∧An ← φ, A1∧ . . .∧An is called, head, while φ is called
the body of the rule. Rules have to be safe, that is any variable occurring in
an external term or atom have to also occur in the same rule body within a
non external atom. Rules and facts are considered as universally quantified.
In a fact or rule, the universally quantified variables are called distinguished
variables, while the existentially quantified variables in a rule body are the
so-called non-distinguished variables and are distinct from the distinguished
variables (note that there are non existential quantifications in facts).

A RIF-Core knowledge base is a pair K = 〈F ,P〉, where F is a finite set
of facts and P is a finite set of rules.

285
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Remark 48. Let us note that RIF-Core [365] also provides some other forms
of atoms, such as membership, equality, and frame atoms, which are however
peculiar features of F-Logic and do not strictly belong to the Datalog realm as
F-Logic is a Higher-Order Language. We refer the interested reader to [237,
238]. Examples of such atoms are

1. Frame atoms: john[age → x, spouse → y], dictating that “the age of
john is x, while his spouse is y”. We may well use variables in place of
the attributes (predicate) age and spouse and the constant john, which
makes RIF-Core a higher order logic;

2. Membership term: john#Person, dictating that “john is a Person”. We
may well use a variables in place of the constant john and the unary
predicate symbol Person.

Eventually, RIF-Core also employs “lists” as built-in terms and external func-
tion calls. Specifically

• if t1, . . . , tn are terms, then List(t1, . . . , tn) is a so-called closed list
term;

• if f is a function symbol, t1, . . . , tn are constants or variables then
Ext(f(t1, . . . , tn)) is an externally defined term.

We do not address these types of terms and atoms here. Note that such external
terms can be simulated anyway via an external atom Ext(pf (t1, . . . , tn), x)
for an appropriate external predicate pf where x will hold the result of the
application of f to the arguments t1, . . . , tn.

Semantics. The semantics extend the one for Datalog with concrete domains
(see Sections 5.2 and 5.3). Specifically, let K = 〈F ,P〉 be a knowledge base
and consider a finite datatype theory D = 〈∆D, ·D〉 including the support for
all externally defined atoms occurring in K.

The Herbrand universe HK is the set of all constants occurring in K to-
gether with the values in ∆D. The Herbrand base BK of K is the set of all
ground atoms that can be formed using constants in HK and atoms occurring
in K.

The set of ground rules K∗ derived from the grounding of P is constructed
as follows (we extend the language by allowing the ground atomic formula 1,
denoting the truth true, to occur in the rule body):

1. set K∗ to be

K := {p(c)← 1 | p(c) ∈ F} ∪ {p(c)← 1 | p(x) ∈ F , c ∈ HK} ;

2. add to K∗ the set of all ground instantiations of rules in K, i.e., rules
obtained by replacing distinguished and non-distinguished variables with
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elements from the Herbrand universe HK and from which we remove
the existential quantification expression of the form ∃x. Note that rule
bodies of rules in K∗ are Boolean propositional formulae.

An interpretation I for K is a subset of BK. Given K, we say that I satisfies
(is a model of )

• the ground atom 1, denoted I |= 1;

• a ground atom A ∈ BK, denoted I |= A, iff A ∈ I;

• a ground formula φ, denoted I |= φ iff (inductively)

1. I |= A if φ is an atom A;

2. I |= φ1 and I |= φ2 if φ is a conjunction φ1 ∧ φ2;

3. I |= φ1 or I |= φ2 if φ is a disjunction φ1 ∨ φ2;

4. t ∈ pD if φ is an external atom Ext(p(t));

• a ground rule r ∈ K∗, denoted I |= r, iff I is a model of the head of r
whenever I is a model of the body of r;

• K∗, denoted I |= K∗, iff I satisfies all rules r ∈ K∗;

• K, denoted I |= K, if I is a model of K∗.

Let IK = 2BK be the set of all interpretations (there are 2|BK| many). Now,
for I1, I2 ∈ IK, we write I1 ≤ I2 iff I1 ⊆ I2. It is easy to see that 〈IK,≤〉 is a
finite complete lattice.

The minimal model of K, denoted MK, is the ≤-least model of K. The
existence, finiteness, and uniqueness of the minimal model MK is guaranteed
to exist using the same argument as for Datalog (see Proposition 16).

Mapping. The mapping of our RIF-Core sublanguage to Datalog is as follows.
Facts are mapped as follows:

p(c) 7→ p(c)

p(x) 7→ p(c) for all c ∈ HK .

Concerning rules, consider a rule A1∧ . . .∧An ← φ. First of all, we transform
the rule body φ into a Prenex Disjunctive Normal Form (PDNF), which is of
the form

∃x.(φ1 ∨ . . . ∨ φk) ,

where each φi is a conjunction of atoms or external atoms. To do so, we apply
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recursively the following rules (we assume that x 6= y)1

∃x.φ1 ∧ ∃y.φ2 7→ ∃x∃y.(φ1 ∧ φ2)

∃x.φ1 ∧ ∃x.φ2 7→ ∃x∃y.(φ1 ∧ φ2[x/y]), where y new variable

∃x.φ1 ∨ ∃y.φ2 7→ ∃x∃y.(φ1 ∨ φ2)

∃x.φ1 ∨ ∃x.φ2 7→ ∃x∃y.(φ1 ∨ φ2[x/y]), where y new variable

∃x.(φ1 ∧ (φ2 ∨ φ3)) 7→ ∃x.((φ1 ∧ φ2) ∨ (φ1 ∧ φ3))

Now, consider a rule A1∧. . .∧An ← φ, where φ is in PDNF, we may eventually
map it into a set of Datalog rules by applying the following two rules:

A1 ∧ . . . ∧An ← φ 7→ A1 ← φ, . . . , An ← φ

A← ∃x.(φ1 ∨ . . . ∨ φk) 7→ A← φ1, . . . , A← φk .

This concludes the mapping.

1With φ[x/y] we denote, as usual, the formula obtained from φ by replacing all free
occurrences of x with y (see, e.g., [93]). We also omit the rules obtained by commutativity
of ∧ and ∨.



Appendix E

Basic Logics to Deal with Uncertain
Statements

The aim of this section is to illustrate typical logics to deal with uncertainty,
i.e., we illustrate a typical formalization of uncertain statements via a prob-
abilistic and a possibilistic setting. Reasoning procedures are presented as
well.

E.1 Probabilistic Logic

Probabilistic logic has its origin in philosophy and logic. Its roots can
be traced back to Boole in 1854 [66]. There is a wide spectrum of formal
languages that have been explored in probabilistic logic, ranging from con-
straints for unconditional and conditional events to rich languages that spec-
ify linear inequalities over events (see especially the work by Nilsson [332],
Fagin et al. [151], Dubois and Prade et al. [8, 133, 134, 135], Frisch and Had-
dawy [162], and [275, 276, 284]; see also the survey on sentential probability
logic by Hailperin [185]). Recently, non-monotonic generalizations of proba-
bilistic logic have been developed and explored; see especially [277] for an
overview. In this section, for illustrative purposes, we recall only the simple
probabilistic logic described in [332].

We first define probabilistic formulas and probabilistic knowledge bases.
We assume a set of basic events Φ = {p1, . . . , pn} with n≥ 1. We use ⊥ and >
to denote false and true, respectively. We define events by induction as follows.
Every element of Φ∪{⊥,>} is an event. If φ and ψ are events, then also ¬φ,
(φ ∧ ψ), (φ ∨ ψ), and (φ→ ψ) are events. We adopt the usual conventions to
eliminate parentheses.

A probabilistic formula is an expression of the form 〈φ, n〉, where φ is
an event, and n is a real number from the unit interval [0, 1]. Informally,
〈φ, n〉 says that φ is true with a probability of at least n. For example,
〈rain tomorrow, 0.7〉 may express that it will rain tomorrow with a proba-
bility of at least 0.7. Notice also that 〈¬φ, 1− n〉 encodes that φ is true with
a probability of at most u. A probabilistic knowledge base K is a finite set of
probabilistic formulas.

289
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We next define worlds and probabilistic interpretations. A world I
associates with every basic event in Φ a binary truth value. We extend I
by induction to all events as usual. We denote by IΦ the (finite) set of all
worlds for Φ.

A world I satisfies an event φ, or I is a model of φ, denoted I |=φ, iff
I(φ) = true.

A probabilistic interpretation Pr is a probability function on IΦ (that is,
a mapping Pr : IΦ → [0, 1] such that all Pr(I) with I ∈IΦ sum up to 1).
Intuitively, Pr(I) is the degree to which the world I ∈IΦ is probable, that is,
the probability function Pr encodes our “uncertainty” about which world is
the right one, though, in any world a statement is either true or false.

The probability of an event φ in Pr , denoted Pr(φ), is the sum of all Pr(I)
such that I ∈IΦ and I |=φ. That is,

Pr(φ) =
∑
I |=φ

Pr(I) .

The following proposition is an immediate consequence of the above defini-
tions.

Proposition 96. For all probabilistic interpretations Pr and events φ and ψ,
the following relationships hold:

Pr(φ ∧ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∨ ψ) ;
Pr(φ ∧ ψ) ≤ min(Pr(φ),Pr(ψ)) ;
Pr(φ ∧ ψ) ≥ max(0,Pr(φ) + Pr(ψ)− 1) ;
Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∧ ψ) ;
Pr(φ ∨ ψ) ≤ min(1,Pr(φ) + Pr(ψ)) ;
Pr(φ ∨ ψ) ≥ max(Pr(φ),Pr(ψ)) ;
Pr(¬φ) = 1− Pr(φ) ;
Pr(⊥) = 0 ;
Pr(>) = 1 .

(E.1)

A probabilistic interpretation Pr satisfies a probabilistic formula 〈φ, n〉, or
Pr is a model of 〈φ, n〉, denoted Pr |= 〈φ, n〉, iff Pr(φ)≥n. We say Pr satisfies
a probabilistic knowledge base K, or Pr is a model of K, iff Pr satisfies all
F ∈K. We say K is satisfiable iff a model of K exists.

A probabilistic formula F is a logical consequence of K, denoted K |=F , iff
every model of K satisfies F . We say 〈φ, n〉 is a tight logical consequence of K
iff n is the infimum of Pr(φ) subject to all models Pr of K. Notice that the
latter is equivalent to n= sup {r | K |= 〈φ, r〉}. n is called the best entailment
degree of φ w.r.t. K (denoted bed(K, φ)), i.e.,

bed(K, φ) = sup {r | K |= 〈φ, r〉} .

The main decision and optimization problems in probabilistic logic are decid-
ing the satisfiability of probabilistic knowledge bases and logical consequences
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from probabilistic knowledge bases, as well as computing the best entailment
degree from probabilistic knowledge bases, which can be done by deciding
the solvability of a system of linear inequalities and by solving a linear op-
timization problem, respectively. In particular, column generation techniques
from operations research have been successfully used to solve large problem
instances in probabilistic logic; see especially the work by Jaumard et al. [215]
and Hansen et al. [191].

For the sake of completeness, we provide here a simple procedure to solve
the KB satisfiability problem as well as the best entailment problem. In the
following, we use variable yI as a placeholder for the value of Pr(I). Then
a probabilistic knowledge base K has a model Pr iff the following system of
linear constraints over the variables yI (I ∈IΦ), is solvable:

for all yI , yI ≥ 0∑
I yI = 1

for all 〈φ′, n〉 ∈ K, ∑
I|=φ′ yI ≥ n .

(E.2)

Specifically, if yI is a solution to (E.2), then the probabilistic interpretation
Pr(I) := yI (for all I ∈IΦ) is a probabilistic model of K. If no solution to
(E.2) exists then K has no model. Note that (E.2) has exponentially as many
variables yI , one for each possible classical interpretation I.

Similarly, the best entailment degree bed(K, φ) can be computed as

minimize
∑
I|=φ yI subject to

for all yI , yI ≥ 0∑
I yI = 1

for all 〈φ′, n〉 ∈ K, ∑
I|=φ′ yI ≥ n

(E.3)

We point out that bed(K, φ) can be computed as well as

bed(K, φ) = minx. such that K ∪ {〈¬φ, 1− x〉} satisfiable. (E.4)

Informally, concerning the minimization in computing bed(K, φ), suppose the
minimal value of x is n̄. We will know then that for any interpretation Pr
satisfying the knowledge base such that Pr(φ) < n̄, the starting set is not
satisfiable (otherwise n̄ wouldn’t be minimal) and, thus, Pr(φ) ≥ n̄ has to
hold. Which means that bed(K, φ) = n̄.
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Therefore, we may rewrite (E.3) as follows:

minimize x subject to 0 ≤ x ≤ 1

for all yI , yI ≥ 0∑
I yI = 1∑
I|=φ yI ≤ x

for all 〈φ′, n〉 ∈ K, ∑
I|=φ′ yI ≥ n

(E.5)

In the above system we used the fact that∑
I|=φ

yI +
∑
I|=¬φ

yI = 1

and, thus, the condition ∑
I|=¬φ

yI ≥ 1− x

is the same as ∑
I|=φ

yI ≤ x .

E.2 Possibilistic Logic

We next recall possibilistic logic; see especially [140]. The main syntactic
and semantic differences to probabilistic logic can be summarized as follows.
Syntactically, rather than using probabilistic formulas to constrain the proba-
bilities of propositional events, we now use possibilistic formulas to constrain
the necessities and possibilities of propositional events. Semantically, rather
than having probability distributions on worlds, each of which associates with
every event a unique probability, we now have possibility distributions on
worlds, each of which associates with every event a unique possibility and a
unique necessity. Differently from the probability of an event, which is the sum
of the probabilities of all worlds that satisfy that event, the possibility of an
event is the maximum of the possibilities of all worlds that satisfy the event.
As a consequence, probabilities and possibilities of events behave quite dif-
ferently from each other (see Equations (E.1) and (E.6)). These fundamental
semantic differences between probabilities and possibilities can also be used
as the main criteria for using either probabilistic logic or possibilistic logic in
a given application involving uncertainty. In addition, possibilistic logic may
especially be used for encoding user preferences, since possibility measures can
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actually be viewed as rankings (on worlds or also objects) along an ordinal
scale.

The semantic differences between probabilities and possibilities are also re-
flected in the computational properties of possibilistic and probabilistic logic,
since reasoning in probabilistic logic generally requires to solve linear optimi-
sation problems, while reasoning in possibilistic logic does not, and thus can
generally be done with less computational effort. Note that although possibil-
ity measures can be viewed as sets of upper probability measures [141], and
possibility and probability measures can be translated into each other [136],
no translations are known between possibilistic and probabilistic knowledge
bases as described here.

We first define possibilistic formulas and knowledge bases. Possibilistic
formulas have the form 〈Pφ, n〉 or 〈Nφ, n〉, where φ is an event, and n is a
real number from [0, 1]. Informally, such formulas encode to what extent φ
is possibly resp. necessarily true. For example, 〈Prain tomorrow, 0.7〉 encodes
that it will rain tomorrow is possible to degree 0.7, while 〈Nfather→ man, 1〉
says that a father is necessarily a man. A possibilistic knowledge base K is a
finite set of possibilistic formulas.

A possibilistic interpretation is a mapping π : IΦ → [0, 1]. Intuitively, π(I)
is the degree to which the world I is possible. In particular, every world I such
that π(I) = 0 is impossible, while every world I such that π(I) = 1 is totally
possible. We say π is normalized iff π(I) = 1 for some I ∈IΦ. Intuitively, this
guarantees that there exists at least one world, which could be considered the
real one.

The possibility of an event φ in a possibilistic interpretation π, denoted
Poss(φ), is then defined by

Poss(φ) = max {π(I) | I |=φ}

where max ∅= 0. Intuitively, the possibility of φ is evaluated in the most pos-
sible world where φ is true. The dual notion to the possibility of an event φ
is the necessity of φ, denoted Nec(φ), which is defined by

Nec(φ) = 1− Poss(¬φ) .

It reflects the lack of possibility of ¬φ, that is, Nec(φ) evaluates to what extent
φ is certainly true. The following theorem follows immediately from the above
definitions.

Proposition 97. For all possibilistic interpretations π and events φ and ψ,
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the following relationships hold:

Poss(φ ∧ ψ) ≤ min(Poss(φ), Poss(ψ)) ;
Poss(φ ∨ ψ) = max(Poss(φ), Poss(ψ)) ;
Poss(¬φ) = 1−Nec(φ) ;
Poss(⊥) = 0 ;
Poss(>) = 1 (in the normalized case);

Nec(φ ∧ ψ) = min(Nec(φ), Nec(ψ)) ;
Nec(φ ∨ ψ) ≥ max(Nec(φ), Nec(ψ)) ;
Nec(¬φ) = 1− Poss(φ) ;
Nec(⊥) = 0 (in the normalized case);
Nec(>) = 1 .

(E.6)

A possibilistic interpretation π satisfies a possibilistic formula 〈Pφ, n〉 (resp.,
〈Nφ, n〉), or π is a model of 〈Pφ, n〉 (resp., 〈Nφ, n〉), denoted π |= 〈Pφ, n〉 (resp.,
π |= 〈Nφ, n〉), iff Poss(φ)≥n (resp., Nec(φ)≥n). The notions of satisfiability,
logical consequence, tight logical consequence and best entailment degree for
possibilistic knowledge bases are then defined as usual (in the same way as in
the probabilistic case). Specifically, we recall

bed(K,Pφ) = sup{r | K |= 〈Pφ, r〉}
bed(K,Nφ) = sup{r | K |= 〈Nφ, r〉} .

We refer the reader to [140, 199] for algorithms for possibilistic logic. However,
for the sake of completeness, we provide here an analogous reasoning procedure
as for the probabilistic case.

Similarly to the probabilistic case (see Equation (E.4)), it can be shown
that

bed(K,Pφ) = minx. such that K ∪ {Pφ ≤ x} satisfiable, (E.7)

where a possibility distribution π satisfies the expression Pφ ≤ x iff Poss(φ) ≤
x. The problem above can be solved by the mixed integer linear programming
problem (see [216], how the problem below converts to a mixed integer linear
programming problem) with variables x, yI with I ∈IΦ:

minx. such that 0 ≤ x ≤ 1

for all I, 0 ≤ yI ≤ 1

max{yI | I |= φ} ≤ x

for all 〈Pφ′, n〉 ∈ K, max{yI | I |= φ′} ≥ n

for all 〈Nφ′, n〉 ∈ K, min{1− yI | I 6|= φ′} ≥ n .

(E.8)

The case for bed(K,Nφ) can be addressed similarly:

bed(K,Nφ) = minx. such that K ∪ {Nφ ≤ x} satisfiable, (E.9)
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where a possibility distribution π satisfies the expression Nφ ≤ x iff Necc(φ) ≤
x. Now, it suffices to change the third row in Equation (E.8) with

min{1− yI | I 6|= φ} ≤ x .

Of course, a possibilistic KB K is satisfiable iff the system

for all I, 0 ≤ yI ≤ 1

for all 〈Pφ′, n〉 ∈ K, max{yI | I |= φ′} ≥ n

for all 〈Nφ′, n〉 ∈ K, min{1− yI | I 6|= φ′} ≥ n

(E.10)

is satisfiable. Specifically, if yI is a solution to (E.10), then the possibilistic
interpretation π(I) := yI (for all I ∈IΦ) is a possibilistic model of K. If no
solution to (E.10) exists then K has no model.
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Appendix F

OR-based Inference Rules for P(D)

We restrict our presentation to the case in which the truth space is Ln. So,
let the truth space be Ln and let us define

ε =
1

2 · (n− 1)
. (F.1)

For a feature name f , we assume that f ’s values are rational numbers,
[fmin, fmax] is the range of allowed values in the concrete domain D for values
f may take. We assume that there is some natural number p, such that for
any feature name f , the smallest positive value f may take is equal or greater
than 10−p. With pε we define the value

pε = 10−(p+1) . (F.2)

We recall that any [0, 1]-valued variable x has to take values in Ln, i.e.,

x ∈ {0, 1

n− 1
, . . . ,

n− 2

n− 1
, 1} ,

which can be encoded as

z = (n− 1) · x
z ∈ {0, 1, ..., n− 1} (F.3)

for a new integer variable z.
The P(D) rules to be considered in the  L-ORFuzzySat procedure (Sec-

tion 8.2.2.2) are as follows.

(var). For variable xφ occurring in CK, set

CK := CK ∪ {xφ ∈ [0, 1], z = (n− 1) · x, z ∈ {0, 1, ..., n− 1}} ,

where z is a new integer variable.

( ¯var). For variable x¬φ occurring in CK add xφ = 1− x¬φ to CK.

(⊥). If 0 ∈ TK then CK := CK ∪ {x0 = 0}.
(>). If 1 ∈ TK then CK := CK ∪ {x1 = 1}.
(∧). If φ ∧ ψ ∈ TK, then

297



298 Foundations of Fuzzy Logic and Semantic Web Languages

1. add φ and ψ to TK
2. CK := CK ∪ {xφ ⊗ xψ = xφ∧ψ}.

(∨). If φ ∨ ψ ∈ TK, then

1. add φ and ψ to TK
2. CK := CK ∪ {xφ ⊕ xψ = xφ∧ψ}.

(→). If φ→ ψ ∈ TK, then

1. add nnf(¬φ) and ψ to TK
2. CK := CK ∪ {(1− xnnf(¬φ))⇒ xψ = xφ→ψ}.

(→). If φ→ ψ ∈ TK, then

1. add nnf(¬φ) and ψ to TK
2. CK := CK ∪ {(1− xnnf(¬φ))⇒ xψ = xφ→ψ}.

(≥). If (f ≥m) ∈ TK, then

CK = CK ∪ { xf ≥ fmin · (1− x(f ≥m)) +m · x(f ≥m),

xf ≤ (m− pε) · (1− x(f ≥m)) + fmax · x(f ≥m),

x(f ≥m) ∈ {0, 1}, xf ∈ [fmin, fmax]} .

(¬ ≥). If ¬(f ≥m) ∈ TK, then add (f ≥m) to TK and set

CK = CK ∪ {x¬(f ≥m) = 1− x(f ≥m)} .

(≤). If (f ≤m) ∈ TK, then

CK = CK ∪ { xf ≤ fmax · (1− x(f ≤m)) +m · x(f ≤m),

xf ≥ (m+ pε) · (1− x(f ≤m)) + fmin · x(f ≤m),

x(f ≤m) ∈ {0, 1}, xf ∈ [fmin, fmax]} .

(¬ ≤). If ¬(f ≤m) ∈ TK, then add (f ≤m) to TK and set

CK = CK ∪ {x¬(f ≤m) = 1− x(f ≤m)} .

(=). If (f =m) ∈ TK, then

CK = CK ∪ { xf ≥ fmin · (1− x(f =m)) +m · x(f =m),

xf ≤ fmax · (1− x(f =m)) +m · x(f =m),

xf ≤ fmax · (1− y1) + (m− pε) · y1,

xf ≥ fmin · (1− y2) + (m+ pε) · y2,

x(f =m) + y1 + y2 = 1,

x(f =m) ∈ {0, 1}, yi ∈ {0, 1}, xf ∈ [fmin, fmax]} ,

where yi are new variables.
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(¬ =). If ¬(f =m) ∈ TK, then add (f =m) to TK and set

CK = CK ∪ {x¬(f =m) = 1− x(f =m)} .

(ls). If (f ls(a, b)) ∈ TK, then

CK = CK ∪ { xf + (fmax − a) · y1 ≤ fmax,

x(f ls(a,b)) ≥ y1,

xf + (fmin − a) · y2 ≥ fmin,

xf + (fmax − b) · y2 ≤ fmax,

xf + x(f ls(a,b)) · (b− a) ≥ b− (b− fmin) · (1− y2),

xf + x(f ls(a,b)) · (b− a) ≤ b− (a− fmax) · (1− y2),

xf + (fmin − b) · y3 ≥ fmin,

x(f ls(a,b)) ≤ 1− y3,

y1 + y2 + y3 = 1,

yi ∈ {0, 1}, xf ∈ [fmin, fmax]} ,

where yi are new variables.

(¬ls). If ¬(f ls(a, b)) ∈ TK, then add (f ls(a, b)) to TK and set

CK = CK ∪ {x¬(f ls(a,b)) = 1− x(f ls(a,b))} .

(rs). If (f rs(a, b)) ∈ TK, then

CK = CK ∪ { xf + (fmax − a) · y1 ≤ fmax,

x(f rs(a,b)) ≤ 1− y1,

xf + (fmin − a) · y2 ≥ fmin,

xf + (fmax − b) · y2 ≤ fmax,

−xf + x(f rs(a,b)) · (b− a) ≥ −a+ (a− fmax) · (1− y2),

−xf + x(f rs(a,b)) · (b− a) ≤ −a+ (b− fmin) · (1− y2),

xf + (fmin − b) · y3 ≥ fmin,

x(f rs(a,b)) ≥ y3,

y1 + y2 + y3 = 1,

yi ∈ {0, 1}, xf ∈ [fmin, fmax]} ,

where yi are new variables.

(¬rs). If ¬(f rs(a, b)) ∈ TK, then add (f rs(a, b)) to TK and set

CK = CK ∪ {x¬(f rs(a,b)) = 1− x(f rs(a,b))} .



300 Foundations of Fuzzy Logic and Semantic Web Languages

(tri). If (f tri(a, b, c)) ∈ TK, then

CK = CK ∪ { xf + (fmax − a) · y1 ≤ fmax,

x(f tri(a,b,c)) ≤ 1− y1,

xf + (fmin − a) · y2 ≥ fmin,

xf + (fmax − b) · y2 ≤ fmax,

−xf + x(f tri(a,b,c)) · (b− a) ≥ −a+ (a− fmax) · (1− y2),

−xf + x(f tri(a,b,c)) · (b− a) ≤ −a+ (b− fmin) · (1− y2),

xf + (fmin − b) · y3 ≥ fmin,

xf + (fmax − c) · y3 ≤ fmax,

xf + x(f tri(a,b,c)) · (c− b) ≥ c− (c− fmin) · (1− y3),

xf + x(f tri(a,b,c)) · (c− b) ≤ c− (b− fmax) · (1− y3),

xf + (fmin − c) · y4 ≥ fmin,

x(f tri(a,b,c)) ≤ 1− y4,

y1 + y2 + y3 + y4 = 1,

yi ∈ {0, 1}, xf ∈ [fmin, fmax]} ,

where yi are new variables.

(¬tri). If ¬(f tri(a, b, c)) ∈ TK, then add (f tri(a, b, c)) to TK and set

CK = CK ∪ {x¬(f tri(a,b,c)) = 1− x(f tri(a,b,c))} .

(trz). If (f trz(a, b, c, d)) ∈ TK, then

CK = CK ∪ { xf + (fmax − a) · y1 ≤ fmax,

x(f trz(a,b,c,d)) ≤ 1− y1,

xf + (fmin − a) · y2 ≥ fmin,

xf + (fmax − b) · y2 ≤ fmax,

−xf + x(f trz(a,b,c,d)) · (b− a) ≥ −a+ (a− fmax) · (1− y2),

−xf + x(f trz(a,b,c,d)) · (b− a) ≤ −a+ (b− fmin) · (1− y2),

xf + (fmin − b) · y3 ≥ fmin,

xf + (fmax − c) · y3 ≤ fmax,

x(f trz(a,b,c,d)) ≥ y3,

xf + (fmin − c) · y4 ≥ fmin,

xf + (fmax − d) · y4 ≤ fmax,

xf + x(f trz(a,b,c,d)) · (d− c) ≥ d− (d− fmin) · (1− y4),

xf + x(f trz(a,b,c,d)) · (d− c) ≤ d− (c− fmax) · (1− y4),
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xf + (fmin − d) · y5 ≥ fmin,

x(f trz(a,b,c,d)) ≤ 1− y5,

y1 + y2 + y3 + y4 + y5 = 1,

yi ∈ {0, 1}, xf ∈ [fmin, fmax]} ,

where yi are new variables.

(¬trz). If ¬(f trz(a, b, c, d)) ∈ TK, then add (f trz(a, b, c, d)) to TK and set

CK = CK ∪ {x¬(f trz(a,b,c,d)) = 1− x(f trz(a,b,c,d))} .

(w). If w · φ ∈ TK, then

1. add φ to TK
2. CK := CK ∪ {xw·φ = w · xφ}.

(¬w). If ¬(w · φ) ∈ TK, then

1. add nnf(¬φ) to TK
2. CK := CK ∪ {xw·φ = w · xφ}.

(ws). If w1 · ψ1 + . . .+ wk · ψk ∈ TK, then

1. add all ψi to TK
2. CK := CK ∪ {xw1·ψ1+...+wk·ψk =

∑
i wi · xψ}.

(¬ws). If ¬(w1 · ψ1 + . . .+ wk · ψk) ∈ TK, then

1. add all ¬ψi to TK
2. CK := CK ∪ {x¬(w1·ψ1+...+wk·ψk) = 1−∑i wi · xψ}.

(lm). If lm(a, b)(φ) ∈ TK, then add φ to TK and set

CK := CK ∪ { xφ − y ≤ a,
xφ ≥ a · y,
xφ + a/b · y ≥ a/b · xlm(a,b)(φ),

xφ − y ≤ a/b · xlm(a,b)(φ),

(a− 1) · xlm(a,b)(φ) + (1− b) · xφ ≤ (a− b) · y + 2(1− y),

(a− 1) · xlm(a,b)(φ) + (1− b) · xφ + 2(1− y) ≥ (a− b) · y,
y ∈ {0, 1}}

where y is a new variable.

(¬lm). If ¬lm(a, b)(φ) ∈ TK, then

1. add lm(a, b)(φ) to TK
2. CK := CK ∪ {x¬lm(a,b)(φ) = 1− xlm(a,b)(φ)}.

(owa). If @owa
W (ψ1, . . . , ψk) ∈ TK, then add all ψi to TK and set
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CK := CK ∪ {x@owa
W (ψ1,...,ψk) =

k∑
i=1

wi · yi} ∪ perm(xψ1
, . . . , xψk) ,

where W = 〈w1, . . . , wk〉 and perm(x1, . . . , xk) is the set of constraints
(N = {1, . . . , k} and i, j ∈ N)

perm(x1, . . . , xk) = { y1 ≥ y2, . . . , yk−1 ≥ yk,
yi ≤ xj + 2zij ,

xj ≤ yi + 2zij ,

k∑
j=1

zij = k − 1,

k∑
i=1

zij = k − 1,

yi ∈ [0, 1], zij ∈ {0, 1} } ,

where yi, zij are new variables.

(¬owa). If ¬@owa
W (ψ1, . . . , ψk) ∈ TK, then

1. add @owa
W (ψ1, . . . , ψk) to TK

2. CK := CK ∪ {x¬@owa
W (ψ1,...,ψk) = 1− x@owa

W (ψ1,...,ψk)}.
(qowa). If @owa

WQ
(ψ1, . . . , ψk) ∈ TK, then add all ψi to TK and set

CK := CK ∪ {x@owa
WQ

(ψ1,...,ψk) =
∑
i

wi · yi} ∪ perm(xψ1
, . . . , xψk) ,

where WQ = 〈w1, . . . , wk〉 is such that

wi = Q(
i

k
)−Q(

i− 1

k
)

and perm(x1, . . . , xk) is as for the (owa) rule.

(¬qowa). If ¬@owa
WQ

(ψ1, . . . , ψk) ∈ TK, then

1. add @owa
WQ

(ψ1, . . . , ψk) to TK
2. CK := CK ∪ {x¬@owa

WQ
(ψ1,...,ψk) = 1− x@owa

WQ
(ψ1,...,ψk)}.

Some comments are in place.

Remark 49 (hard datatype rules). For, e.g., the (≥) rule, note that strict
inequalities are not allowed, and hence, the inequality xf < m is expressed as
xf ≤ m− pε, for a sufficiently small pε ∈ (0, 1].
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Remark 50 ((ws), (¬ws) rules). For the (ws) and (¬ws) rules note the
following:

• concerning (ws), w1 ·ψ1+. . .+wk ·ψk is equivalent to w1 ·ψ1∨. . .∨wk ·ψk;

• concerning (¬ws), ¬(w1 · ψ1 + . . . + wk · ψk) is the same as ¬w1 · ψ1 ∧
. . . ∧ ¬wk · ψk, and thus, we would

1. add all ¬wi · Ci to TK;

2. set CK := CK∪{max(0, (
∑
i x¬wi·ψi)−(n−1)) = x¬(w1·ψ1+···+wk·ψk)}.

The above rules can then further be simplified by exploiting the fact that

xwi·ψi = wi · xψi
x¬wi·ψi = 1− xwi·ψi

and applying the weighted sum rule.

Remark 51 ((lm) rule). For the (lm) rule note the following:

• if xφ ≤ a the xlm(a,b)(φ) = b
a · xφ;

• if xφ ≥ a the xlm(a,b)(φ) = b−1
a−1 · xφ + (1− b−1

a−1 ).

Remark 52 ((owa) rule). The (owa) rule has been obtained directly from the
encoding for Fuzzy DLs with aggregation operators [58], which we recap here.

Yager [467] has shown that the maximization of @owa
W (x1, . . . , xn) can in-

deed be encoded as a MILP problem. However, this encoding does not work
in our setting as we are not maximizing @owa

W (x1, . . . , xk), but rather need to
show that the set

g(@owa
W ) = {〈x1, . . . , xk, x〉 : @owa

W (x1, . . . , xk) = x}

is MILP representable. To this end, we need a different encoding.
So, let N = {1, . . . , k}. Similarly to [467], we introduce new [0, 1]-valued

variables yi (i ∈ N) and impose

y1 ≥ y2 ≥ . . . ≥ yk . (F.4)

The intuition is that yi will take the value of the i-th largest of the xj. Hence, by
definition of OWA, yi has weight wi and therefore, we add also the constraint∑

i wi · yi = x . (F.5)

The remaining of the encoding concerns are now to establish which one among
x1, . . . , xk are the yi. Consider the following set of equations: for i, j ∈ N , new
binary variables zij

yi ≤ xj + 2zij xj ≤ yi + 2zij∑
j zij = k − 1

∑
i zij = k − 1 zij ∈ {0, 1} .

(F.6)
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It can be verified that (i) if zij = 0 then yi = xj is imposed; (ii) for any yi,
there is only one xj imposed to be equal to yi; and (iii) for any xj, there is
only one yi imposed to be equal to xj. That is, there is a bijection among the
yj and the xi, which together with Eq. (E.6) guarantees that the equations
(E.6) - (F.6) correctly encode @owa

W (x1, . . . , xk) = x.



Appendix G

Fuzzy SPARQL: a Query Language for
Fuzzy RDFS Graphs

The aim of this appendix is to introduce a fuzzy SPARQL, a fuzzy extension
of SPARQL that is compliant with the crisp variant described in Section 6.3.

G.1 Fuzzy SPARQL

Fuzzy SPARQL [476, 264] extends SPARQL allowing to query fuzzy RDFS
graphs.

A Fuzzy SPARQL has its counterpart in a generalization of fuzzy conjunc-
tive queries, which are of the general form

q(x,Λ, α, z) ← ∃y∃Λ′.ϕ(x,Λ,y,Λ′),
GroupedBy(w),
α :=@[f(z)],
OrderBy(z) .

The semantics is a straightforward extension of the one that has been
defined in Section 9.3 (see also [476]).

Now, the Fuzzy SPARQL query languages are defined as follows [476]. A
simple fuzzy SPARQL query is defined – analogously to a SPARQL query –
as a triple Q = (P,G, V,A) with the differences that

• G is an fuzzy RDF graph;

• we allow fuzzy graph patterns and

• A is the set of fuzzy variables taken from an infinite set A (distinct from
V).

We further denote by fvar(P ) the set of fuzzy variables present in a graph
pattern P .

Let λ be a fuzzy value from [0, 1] or an fuzzy variable from A. We call λ an
fuzzy label. Triple patterns in fuzzy SPARQL are defined the same way as in
SPARQL. For a triple pattern τ , we call 〈τ, λ〉 an fuzzy triple pattern and sets
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of fuzzy triple patterns are called basic fuzzy patterns (BFP). A generic fuzzy
graph pattern is defined in a recursive manner: any BFP is a fuzzy graph pat-
tern; if P and P ′ are fuzzy graph patterns, R is a filter expression (see [381]),
then (P AND P ′), (P OPTIONAL P ′), (P UNION P ′), (P FILTER R) are fuzzy
graph patterns.

Example 62. Suppose we are looking for rich people who own a sports car.
This query can be posed as follows:

SELECT ?p ?l1 ?c WHERE {

<(?p type RichPerson), ?l1>

OPTIONAL{<(?p hasSportsCar ?c), ?l2>}

}

Assuming our example dataset has the following triples:

〈(toivo, type, RichPerson), 0.8〉
〈(toivo, hasSportsCar, ferrari), 1.0〉
〈(toivo, hasSportsCar, audiTT ), 0.7〉

we will get the following answers:

θ1 = {?p/toivo, ?l1/0.8}
θ2 = {?p/toivo, ?l1/0.8, ?c/ferrari}
θ3 = {?p/toivo, ?l2/0.8, ?c/audiTT} .

The first answer corresponds to the answer in which the OPTIONAL pattern
is not satisfied. In the second and third answers, the OPTIONAL pattern is
also matched.

From a semantics point of view, the semantics of fuzzy SPARQL queries extend
the notion of SPARQL BGP matching. As for the SPARQL query language,
we are going to define the notion of solutions for BFP as the equivalent notion
of answers set of fuzzy conjunctive queries. Just as matching BGPs against
RDF graphs is at the core of SPARQL semantics, matching BFPs against
fuzzy RDF graphs is the heart of the evaluation semantics of fuzzy SPARQL.

We extend the notion of substitution to include a substitution of fuzzy
variables in which we do not allow any assignment of a fuzzy variable to 0. A
value of 0, although it is a valid answer for any triple, does not provide any
additional information and thus is of minor interest. Furthermore this would
contribute to increasing the number of answers unnecessarily.

Let P be a BFP and G an fuzzy RDF graph. We define evaluation [[P ]]G as
the list of substitutions that are solutions of P , i.e., [[P ]]G = {θ | G |= θ(P )},
and where G |= θ(P ) means that any fuzzy triple in θ(P ) is entailed by G.

As for SPARQL, we have:

Proposition 98. Given a fuzzy graph G and a BFP P , the solutions of P
are the same as the answers of the fuzzy query q(var(P ))← P (where var(P )
is the vector of variables in P ), i.e., ans(G, q) = [[P ]]G.
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For the extension of the SPARQL relational algebra to the fuzzy case we
introduce – inspired by the definitions in [348] – definitions of compatibility
and union of substitutions:

Two substitutions θ1 and θ2 are ⊗-compatible if and only if (i) θ1 and
θ2 are compatible for all the non-fuzzy variables, i.e., θ1(x) = θ2(x) for any
non-fuzzy variable x ∈ dom(θ1)∩ dom(θ2); and (ii) θ1(λ)⊗ θ2(λ) 6= 0 for any
fuzzy variable λ ∈ dom(θ1) ∩ dom(θ2).

Given two ⊗-compatible substitutions θ1 and θ2, the ⊗-union of θ1 and
θ2, denoted θ1 ⊗ θ2, is as θ1 ∪ θ2, with the exception that any fuzzy variable
λ ∈ dom(θ1) ∩ dom(θ2) is mapped to θ1(λ)⊗ θ2(λ).

We now present the notion of evaluation for generic fuzzy SPARQL graph
patterns. Let P be a BFP, P1, P2 fuzzy graph patterns, G an fuzzy graph
and R a filter expression, then the evaluation [[·]]G, i.e., set of answers,1 is
recursively defined as:

• [[P ]]G = {θ | dom(θ) = var(P ) and G |= θ(P )}
• [[P1 AND P2]]G = {θ1 ⊗ θ2 | θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2 ⊗-compatible}
• [[P1 UNION P2]]G = [[P1]]G ∪ [[P2]]G

• [[P1 FILTER R]]G = {θ | θ ∈ [[P1]]G and Rθ is true}
• [[P1 OPTIONAL P2[R]]]G =

{θ | and θ meets one of the following conditions:

1. θ = θ1 ⊗ θ2 if θ1 ∈ [[P1]]G, θ2 ∈ [[P2]]G, θ1 and θ2⊗-compatible, and
Rθ is true;

2. θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,
R(θ1⊗θ2) is true, and for all fuzzy variables λ ∈ dom(θ1)∩dom(θ2),
θ2(λ) ≺ θ1(λ);

3. θ = θ1 ∈ [[P1]]G and ∀θ2 ∈ [[P2]]G such that θ1 and θ2 ⊗-compatible,
R(θ1 ⊗ θ2) is false }.

Let R be a FILTER expression and x, y ∈ A ∪ L, in addition to the FILTER
expressions, we further allow the expressions presented next. The valuation of
R on a substitution θ, denoted Rθ is true if:2

• R = (x ≤ y) with x, y ∈ dom(θ) ∪ L ∧ θ(x) ≤ θ(y);

• R = p(z) with p(z)θ = true if and only if p(θ(z)) = true, where p is a
built-in predicate;

1 Strictly speaking, we consider sequences of answers – note that SPARQL allows du-
plicates and imposes an order on solutions, see below for more discussion – but we stick
with set notation representation here for illustration. Whenever we mean “real” sets where
duplicates are removed we write {. . .}DISTINCT.

2We consider a simple evaluation of filter expressions where the “error” result is ignored,
see [381, Section 11.3] for details.
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• Otherwise Rθ is false.

Remark 53. For practical convenience, we retain in [[·]]G only “domain max-
imal answers.” That is, let us define θ′ ≤ θ if and only if (i) θ′ 6= θ; (ii)
dom(θ) = dom(θ′); (iii) θ(x) = θ′(x) for any non-fuzzy variable x; and (iv)
θ′(λ) ≤ θ(λ) for any fuzzy variable λ. Then, for any θ ∈ [[P ]]G we remove any
θ′ ∈ [[P ]]G such that θ′ ≤ θ.

The following proposition shows that we have a conservative extension of
SPARQL:

Proposition 99 ([476, 264]). Let Q = (P,G, V ) be a SPARQL query over an
RDF graph G. Let G′ be obtained from G by annotating triples with 1.0. Then
[[P ]]G under SPARQL semantics is in one-to-one correspondence to [[P ]]G′

under fuzzy SPARQL semantics such that for any θ ∈ [[P ]]G there is a θ′ ∈
[[P ]]G′ with θ and θ′ coinciding on var(P ).

Next, we will present extensions to include variable assignments, aggre-
gates, and solution modifiers. These extensions are similar to the ones pre-
sented in Section 6.3.

Let P be a fuzzy graph pattern and G a fuzzy graph, the evaluation of an
ASSIGN statement is defined as:

[[P ASSIGN f(z) AS z]]G = {θ | θ1 ∈ [[P ]]G, θ = θ1[z/f(θ1(z))]}

where

θ[z/t] =

{
θ ∪ {z/t} if z 6∈ dom(θ)
(θ \ {z/t′}) ∪ {z/t} otherwise .

Essentially, we assign to the variable z the value f(θ1(z)), which is the evalu-
ation of the function f(z) with respect to a substitution θ1 ∈ [[P ]]G.

Example 63 ([476]). Using a built-in function we submit a query such as:

SELECT ?p ?c ?z WHERE {

<(?p type RichPerson), ?l1>

<(?p hasSportsCar ?c), ?l2>

ASSIGN ?l1 * ?l2 AS ?z

}

Fuzzy SPARQL also supports the ORDERBY clause where the evaluation of
a [[P ORDERBY ?x]]G statement is defined as the ordering of the solutions –
for any θ ∈ [[P ]]G – according to the values of θ(?x). Ordering for non-fuzzy
variables follows the rules in [381, Section 9.1].

In case the variable x is a fuzzy variable, the order is induced by ≤. In case
the order is some partial order then we may use some linearization method
for posets, such as [248]. Likewise, the SQL-like statement LIMIT(k) can be
added straightforwardly.
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We can further extend the evaluation of fuzzy SPARQL queries with ag-
gregate functions

@ ∈ {SUM,AVG,MAX,MIN,COUNT,⊕,⊗}

as follows:
The evaluation of a GROUPBY statement is defined as:3

[[P GROUPBY(w) @f(z) AS α]]G = {θ | θ1 in [[P ]]G,

θ = θ1|w[αi/@ifi(θi(zi))]}DISTINCT

where the variables αi 6∈ var(P ), zi ∈ var(P ) and none of the GROUPBY vari-
ables w are included in the aggregation function variables zi. Here, we denote
by θ|w the restriction of variables in θ to variables in w. Using this notation, we
can also straightforwardly introduce projection, i.e., sub-SELECTs as an alge-
braic operator in the language covering another new feature of SPARQL 1.1:

[[SELECT V {P}]]G = {θ | θ1 in [[P ]]G, θ = θ1|v} .

Remark 54. Please note that the aggregator functions have a domain of
definition and thus can only be applied to values of their respective domain. For
example, SUM and AVG can only be used on numeric values, while MAX,MIN
are applicable to any total order. Resolution of type mismatches for aggregates
is currently being defined in SPARQL 1.1 [380] and we aim to follow those,
as soon as the language is stable. The COUNT aggregator can be used for any
finite set of values. The last two aggregation functions, namely ⊕ and ⊗, are
defined by the fuzzy domain [0, 1] and thus can be used on any fuzzy variable.

Example 64. Suppose we want to know, for each person, the average score
of being rich and having a sports car. Then such a query will be expressed as:

SELECT ?x ?avgS WHERE {

<(?p type RichPerson), ?l1>

<(?p hasSportsCar ?c), ?l2>

GROUPBY(?p)

AVG(?l1 * ?l2) AS ?avgL

}

Proposition 100. Assuming the built-in predicates are computable in finite
time, the answer set of any fuzzy SPARQL is finite and can also be computed
in finite time.

3In the expression, @f(z) AS α is a concise representation of n aggregations of the form
@ifi(zi) AS αi.
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Appendix H

Tableau Calculi for Fuzzy SHIF g

As we have seen in Appendix C, the major issue introduced by functional roles
is that together with inverse roles they may cause a concept to be satisfiable
in an infinite model only as Example 60 illustrates. Of course, this property
applies to fuzzy SHIFg as well.

In order to cope with this issue, like for the crisp DLs case, we use the
so-called notion of pairwise blocking to guarantee the correct termination of
a tableau from which then we may build a possibly infinite model.

To start with, in this appendix, we restrict fuzzy RIAs in a fuzzy
RBox R to be of the form R1ṽR2 only.

Then the definitions of Inv(R), Trans(R) and v∗R (the transitive-reflexive clo-
sure of ṽ over R′ = R∪{Inv(R1)ṽInv(R2) | R1ṽR2 ∈ R}) are as for the crisp
case (see Appendix C).

H.1 Analytical Fuzzy Tableau under SFL

We now extend the analytical fuzzy tableau under SFL seen in Sec-
tion 10.6.1.2 for fuzzy ALC to fuzzy SHIFg. So, let K be a SHIFg KB. The
notions of completion-forest, clash, and the initialization of a completion-forest
is like Section 10.6.1.2.

If nodes v and w are connected by an edge 〈v, w〉 then w is called a successor
of v and v is called a predecessor of w. Ancestor is the transitive closure of
predecessor, and descendant is the transitive closure of successor.

If nodes v and w are connected by an edge 〈v, w〉 with 〈R′, n〉 ∈ L(〈v, w〉)
and R′ v∗R R, then w is called an Rn-successor of v and v is called an Rn-
predecessor of w. If node w is an Rn-successor of v or an Inv(R)n-predecessor
of v, then w is called an Rn-neighbor of v.

Similarly to the crisp case, we also need a technical definition involving
functional roles. Let F be forest, R a functional role such that we have two
edges 〈v, w1〉 and 〈v, w2〉 such that 〈R,n1〉 occurs in L(〈v, w1〉) and 〈R,n2〉
occurs L(〈v, w2〉), respectively. Then we call such a pair a fork. As R is func-
tional, such a fork means that w1 and w2 have to be interpreted as the same
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individual. Such a fork can be deleted by adding both L(〈v, w2〉) to L(〈v, w1〉),
and L(w2) to L(w1), and then deleting node w2. Of course, as inverse roles
are allowed these may also contribute to create a fork, i.e., we have a fork if
w1 and w2 are R-neighbors of v.

We assume that forks are eliminated as soon as they appear (as part of a
rule application) with the proviso that newly generated nodes are replaced by
older ones and not vice versa.

At the beginning, we check that there are no forks in the initial forest,
otherwise the KB is not satisfiable (due to the unique name assumption, if
we have 〈(a, b1):R,n1〉 and 〈(a, b2):R,n2〉 with b1 6= b2 then R cannot be
functional).

The notion of pairwise blocking, blocked node, directly blocked, and indi-
rectly blocked is as for crisp SHIFg (see Appendix C).

The set of reasoning rules are shown in Table H.1, where ε is given by
Equation (10.13):

TABLE H.1: The tableau rules for fuzzy SHIFg.

(u). If (i) 〈C1 u C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉} 6⊆ L(v) and (iii) node v
is not indirectly blocked, then add 〈C1, n〉 and 〈C2, n〉 to L(v).

(t). If (i) 〈C1 t C2, n〉 ∈ L(v), (ii) {〈C1, n〉, 〈C2, n〉}∩L(v) = ∅ and (iii) node
v is not indirectly blocked, then add some 〈C, n〉 ∈ {〈C1, n〉, 〈C2, n〉} to
L(v).

(∀). If (i) 〈∀R.C, n〉 ∈ L(v), (ii) there is an Rm-neighbour w of v with m >
1−n, (iii) 〈C, n〉 6∈ L(w), and (iv) node v is not indirectly blocked, then
add 〈C, n〉 to L(w).

(∀+). If (i) 〈∀S.C, n〉 ∈ L(v), (ii) there is some R with Trans(R) and R v∗R S,
(iii) there is an Rm-neighbour w of v with m > 1− n, (iv) 〈∀R.C, n〉 6∈
L(w) and (iii) and node v is not indirectly blocked, then add 〈∀R.C, n〉
to L(w).

(∃). If (i) 〈∃R.C, n〉 ∈ L(v), (ii) there is no Rn1-neighbour w of v with
〈C, n2〉 ∈ L(w) such that min(n1, n2) ≥ n, and (iii) node v is not
blocked, then create a new node w, add 〈R,n〉 to L(〈v, w〉) and add
〈C, n〉 to L(w).

(v). If (i) 〈> v D,n〉 ∈ T , (ii) 〈D,n〉 6∈ L(v) and (ii) node v is not indirectly
blocked, then add 〈D,n〉 to L(v).

(ṽ). If (i) CṽD ∈ T , (ii) for some n ∈ NK+ , {〈nnf(¬C), 1− n+ ε〉, 〈D,n〉}∩
L(v) = ∅ and (iii) node v is not indirectly blocked, then add E to L(v)
for some E ∈ {〈nnf(¬C), 1− n+ ε〉, 〈D,n〉}.

It can be shown in a similar way as in [389] that:

Proposition 101. For each SHIFg knowledge base K
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1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion forest, then K has a model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield complete and clash-free completion forest for K.

H.2 Fuzzy Tableau for Finite-Valued DLs

We shortly show how one may extend the tableau calculus illustrated in
Section 10.6.1.3 for ALC to SHIFg as well.

So, let K be a SHIFg KB. The notions of completion-forest, successor,
predecessor, ancestor, and neighbor and the management of forks are as in
Section H.1. The notions of clash and the initialization of a completion-forest
is like Section 10.6.1.3. The notion of pairwise blocking is as for the crisp case.

The set of reasoning rules are shown in Table H.2:
We have that

Proposition 102 ([73]). For each SHIFg knowledge base K with a finitely
valued truth space Ln

1. the tableau algorithm terminates;

2. if the expansion rules can be applied in such a way that they yield a
complete and clash-free completion forest, then K has a model;

3. if K has a model, then the expansion rules can be applied in such a way
that they yield complete and clash-free completion forest for K.

Of course, the method can be adapted to any truth space as well, as long as
it is finite.

H.3 Operational Research-based Fuzzy Tableau under
SFL

We now extend the OR-based fuzzy tableau under SFL seen in Sec-
tion 10.6.1.4 for fuzzy ALC to fuzzy SHIFg. So, let K be a SHIFg KB. The
notions of completion-forest, R-successor, R-predecessor, R-neighbor, succes-
sor, predecessor, neighbor, and ancestor are as for the crisp case (see Ap-
pendix C). As for ALC, a forest has associated a set CF of mixed-integer
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TABLE H.2: The tableau rules for finitely valued fuzzy SHIFg.

(u). If (i) 〈C1 u C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊗
m2 = m with {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node v is not
indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to L(v).

(t). If (i) 〈C1 t C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⊕
m2 = m with {〈C1,m1〉, 〈C2,m2〉} ∩ L(v) = ∅, and (iii) node v is not
indirectly blocked, then add some 〈C, k〉 ∈ {〈C1,m1〉, 〈C2,m2〉} to L(v).

(¬). If (i) 〈¬C,m〉 ∈ L(v) with 〈C,	m〉 6∈ L(v) and (ii) node v is not indi-
rectly blocked, then add 〈C,	m〉 to L(v).

(→). If (i) 〈C1 → C2,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that
m1 ⇒ m2 = m and {〈C1,m1〉, 〈C2,m2〉} 6⊆ L(v), and (iii) node v is
not indirectly blocked, then add 〈C1,m1〉 and 〈C2,m2〉 to L(v).

(∀). If (i) 〈∀R.C,m〉 ∈ L(v), (ii) 〈R,m1〉 ∈ L(〈v, w〉), (iii) there is m2 ∈ Ln
such that m1 ⇒ m2 ≥ m with 〈C,m2〉 6∈ L(w), and (iv) node v is not
indirectly blocked, then add 〈C,m2〉 to L(w).

(∃). If (i) 〈∃R.C,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1⊗m2 =
m, (iii) there is no 〈R,m1〉 ∈ L(〈v, w〉) with 〈C,m2〉 ∈ L(w), and (iv)
node v is not blocked, then create a new node w, add 〈R,m1〉 to L(〈v, w〉)
and add 〈C,m2〉 to L(w).

(∃′). If (i) 〈∃R.C,m〉 ∈ L(v), (ii) 〈R,m1〉 ∈ L(〈v, w〉), (iii) there is m2 ∈ Ln
such that m1 ⊗m2 ≤ m with 〈C,m2〉 6∈ L(w), and (iv) node v is not
indirectly blocked, then add 〈C,m2〉 to L(w).

(∀′). If (i) 〈∀R.C,m〉 ∈ L(v), (ii) there are m1,m2 ∈ Ln such that m1 ⇒
m2 = m, (iii) there is no 〈R,m1〉 ∈ L(〈v, w〉) with 〈C,m2〉 ∈ L(w), and
(iv) node v is not blocked, then create a new node w, add 〈R,m1〉 to
L(〈v, w〉) and add 〈C,m2〉 to L(w).

(∀+). If (i) 〈∀S.C,m〉 ∈ L(v), (ii) there is some R with Trans(R) and R v∗R S,
(iii) there is an Rm1-neighbour w of v and m2 ∈ Ln such that m1 ⇒
m2 ≥ m (iv) 〈∀R.C,m2〉 6∈ L(w), and (iv) and node v is not indirectly
blocked, then add 〈∀R.C,m2〉 to L(w).

(v). If (i) 〈C v D,m〉 ∈ T , (ii) there are m1,m2 ∈ Ln such that m1 ⇒ m2 ≥
m, (iii) {〈C,m1〉, 〈D,m2〉} 6⊆ L(v), and (iv) node v is not indirectly
blocked, then add 〈C,m1〉 and 〈D,m2〉 to L(v).

(ṽ). If (i) CṽD ∈ T , (ii) there are m1,m2 ∈ Ln such that m1 ≤ m2, (iii)
{〈C,m1〉, 〈D,m2〉} 6⊆ L(v), and (iv) node v is not indirectly blocked,
then add 〈C,m1〉 and 〈D,m2〉 to L(v).
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linear programming constraints. The initialization of a completion-forest is
like for ALC (see Section 10.6.1.4), too.

We assume that forks are eliminated as soon as they appear (as part of
a rule application) with the proviso that newly generated nodes are replaced
by older ones and not vice versa. At the beginning, we check that there are
no forks in the initial forest, otherwise the KB is not satisfiable (due to the
unique name assumption, if we have 〈(a, b1):R,n1〉 and 〈(a, b2):R,n2〉 with
b1 6= b2 then R cannot be functional).

The notion of pairwise blocking, blocked node, directly blocked, and indi-
rectly blocked is as for crisp SHIFg (see Appendix C).

The set of reasoning rules are shown in Table H.3:
Again, it can be shown that using the rules in Table H.3 we have that:

Proposition 103. For each knowledge base K = 〈T ,A〉

1. the tableau algorithm terminates;

2. if the expansion rules can be applied to a knowledge base K = 〈T ,A〉
such that they yield a complete completion forest F such that CF has a
solution, then K has a (witnessed) model;

3. if a knowledge base K = 〈T ,A〉 has a (witnessed) model, then the appli-
cation of the expansion rules yields a complete completion-forest for K
such that CF has a solution.

H.4 Reasoning with Fuzzy Concrete Domains and Ag-
gregation Operators under SFL

Fuzzy Concrete Domains. [398] first showed a general OR-based method
to deal with concrete domains. Specifically, for a functional datatype property
a fork is eliminated as soon as it appears, in the same way as for an object
property (i.e., role). For a datatype property T , we assume that T ’s values
are rational numbers, [Tmin, Tmax] is the range of allowed values that T -fillers
may take. The OR-based inference rules related to concept expressions of the
form

C,D → ∀T.d | ∃T.d
are the datatype property analogue of the (∀) and (∃) rule in Table H.3, i.e.,

(∀d). If (i) ∀T.d ∈ L(v), there is a T -neighbor w of v, (ii) the rule has not been
already applied to this concept, and (iii) node v is not indirectly blocked,
then add d to L(w), and CF := CF ∪ {xw:d ≥ xv:∀T.d ⊗ x(v,w):T , Tmin ≤
xw ≤ Tmax}.
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TABLE H.3: The OR-based tableau rules for fuzzy SHIFg with GCIs.

(var). For variable xv:C occurring in CF add xv:C ∈ [0, 1] to CF . For variable
x(v,w):R occurring in CF add x(v,w):R ∈ [0, 1] to CF .

(⊥). If ⊥ ∈ L(v) then CF := CF ∪ {xv:⊥ = 0}.
(>). If > ∈ L(v) then CF := CF ∪ {xv:> = 1}.
(Ā). If ¬A ∈ L(v) then add A to L(v), and CF := CF ∪ {xv:A ≤ 1− xv:¬A}.
(u). If (i) C1 u C2 ∈ L(v), (ii) the rule has not been already applied to this

concept, and (iii) node v is not indirectly blocked, then add C1 and C2

to L(v), and CF := CF ∪ {xv:C1
⊗ xv:C2

≥ xv:C1uC2
}.

(t). If (i) C1 t C2 ∈ L(v) and (ii) the rule has not been already applied to
this concept, and (iii) node v is not indirectly blocked, then add C1 and
C2 to L(v), and CF := CF ∪ {xv:C1 ⊕ xv:C2 ≥ xv:C1tC2}.

(∀). If (i) ∀R.C ∈ L(v), there is a R-neighbour w of v and (ii) the rule has not
been already applied to this concept, and (iii) node v is not indirectly
blocked, then add C to L(w), and CF := CF∪{xw:C ≥ xv:∀R.C⊗x(v,w):R}.

(∀+). If (i) ∀S.C ∈ L(v), (ii) there is some R with Trans(R), R v∗R S and
R ∈ L(〈v, w〉) and (iii) the rule has not been already applied to this
concept, and (iv) node v is not indirectly blocked, then add ∀R.C to
L(w), and CF := CF ∪ {xw:∀R.C ≥ xv:∀R.C ⊗ x(v,w):R}.

(∃). If (i) ∃R.C ∈ L(v) and (ii) the rule has not been already applied to this
concept and (iii) node v is not blocked then create a new node w, add R
to L(〈v, w〉), add C to L(w), and CF := CF∪{x(v,w):R⊗xw:C ≥ xv:∃R.C}.

(v). If (i) 〈> v D,n〉 ∈ T , (ii) v is a node to which this rule has not yet been
applied, and (iii) node v is not indirectly blocked, then add D to L(v)
and set CF := CF ∪ {xv:D ≥ n}.

(ṽ). If (i) CṽD ∈ T , (ii) v is a node to which this rule has not yet been
applied, and (iii) node v is not indirectly blocked, then add nnf(¬C)
and D to L(v) and set CF := CF ∪ {xv:nnf(¬C) ⊕l xv:D ≥ 1}.

(∃d). If (i) ∃T.d ∈ L(v) and (ii) the rule has not been already applied to
this concept and (iii) node v is not blocked then create a new node w,
add T to L(〈v, w〉), add d to L(w), and CF := CF ∪ {x(v,w):T ⊗ xw:d ≥
xv:∃T.d, x(v,w):T ∈ {0, 1}, Tmin ≤ xw ≤ Tmax}.

In the rules above, xw is the variable representing the concrete value of a
concrete predicate d (e.g., see the case of ls below).

In the following we assume that a function L is MILP representable (see
Section 8.2.2.2) and for L we consider the graph g(L) = {〈x1, x2〉 ∈ [0, 1] ×
[0, 1] | L(x1) = x2}. The general inference rules to deal with concrete domains
are
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(d). If d ∈ L(w) and the rule has not been already applied to this concept
then CF = CF ∪ γ(w,d), where the set γ(w,d)) is obtained from the
bMILP representation of g(d) by replacing all occurrences of x2 with
xw:d and x1 with xw.

(¬d). If ¬d ∈ L(w) and the rule has not been already applied to this concept
then add d to L(w) and set CF = CF ∪ {xw:¬d = 1− xw:d}.

For instance, the inference rule for ls(a, b) ∈ L(w), where w is a T -successor
of v, is obtained immediately from the (ls) rule for P(D) (Appendix F) in
which we replace

• fmax and fmin with Tmax and Tmin, respectively;

• xf with xw; and

• x(f ls(a,b)) with xw:ls(a,b).

That is, the rules for ls(a, b) are

(ls). If ls(a, b) ∈ L(w), the rule has not been already applied to this concept
and w is a T -successor of v, then

CF = CF ∪ { xw + (Tmax − a) · y1 ≤ Tmax,

xw:ls(a,b) ≥ y1,

xw + (Tmin − a) · y2 ≥ Tmin,

xw + (Tmax − b) · y2 ≤ Tmax,

xw + xw:ls(a,b) · (b− a) ≥ b− (b− Tmin) · (1− y2),

xw + xw:ls(a,b) · (b− a) ≤ b− (a− Tmax) · (1− y2),

xw + (Tmin − b) · y3 ≥ Tmin,

xw:ls(a,b) ≤ 1− y3,

y1 + y2 + y3 = 1,

yi ∈ {0, 1}} ,

where yi are new variables.

(¬ls). If ¬ls(a, b) ∈ L(w) and the rule has not been already applied to this
concept then add ls(a, b) to L(w) and set CF = CF ∪ {xw:¬ls(a,b) =
1− xw:ls(a,b)}.

The rules for d ∈ {rs(a, b), tri(a, b, c), trz(a, b, c, d),¬rs(a, b),¬tri(a, b, c) and
¬trz(a, b, c, d)} occurring in L(w), where w is a T -successor of v, are obtained
analogously from the (d) rule for P(D) (Appendix F) in which we replace

• fmax and fmin with Tmax and Tmin, respectively;

• xf with xw; and
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• x(f d) with xw:d.

The inference rules for the cases d ∈ {≥m,≤m,=m} can be worked out sim-
ilarly. Indeed, let pε as determined in Appendix F. Then the inference rules
for d ∈ {≥m,≤m,=m} occurring in L(w), where w is a T -successor of v, are
obtained immediately from the (d) rule for P(D) in which we replace

• fmax and fmin with Tmax and Tmin, respectively;

• xf with xw;

• x(f d) with xw:d.

Fuzzy Modifiers. We next show how to deal with fuzzy modifiers as de-
scribed in Section 10.3. So, concept expressions are of the form

C → m(C) | ∀T.m(d) | ∃T.m(d)

where we further assume that m is a linear modifier. The rules for lm(C) or
lm(d) occurring in L(w) can again easily be derived from the (lm) rule for
P(D). Specifically, we have

(lm). If lm(a, b)(E) ∈ L(w), where E is a concept C or a concrete fuzzy
predicate d, the rule has not been already applied to this concept and
if E is a concept then node w is not indirectly blocked, then add X to
L(w) and set

CF := CF ∪ { xw:E − y ≤ a,
xw:E ≥ a · y,
xw:E + a/b · y ≥ a/b · xw:lm(a,b)(E),

xw:E − y ≤ a/b · xw:lm(a,b)(E),

(a− 1) · xw:lm(a,b)(E) + (1− b) · xw:E ≤ (a− b) · y + 2(1− y),

(a− 1) · xw:lm(a,b)(E) + (1− b) · xw:E + 2(1− y) ≥ (a− b) · y,
y ∈ {0, 1}}

where y is a new variable.

(¬lmE). If ¬lm(a, b)(E) ∈ L(w), where E is a concept C or a concrete fuzzy
predicate d, the rule has not been already applied to this concept and
if E is a concept then node w is not indirectly blocked, then add lmE

to L(w) and set CF = CF ∪ {xw:¬lm(a,b)(E) = 1− xw:lm(a,b)(E)}.

Aggregation Operators. We start by showing how to reason with weighted
sum concepts, i.e., concept expressions of the form

w1 · C1 + · · ·+ wk · Ck
where mi ∈ (0, 1),

∑
imi ≤ 1.

The inference rules are derived immediately from the corresponding one
for P(D) in which we replace ψi with Ci and, thus, get
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(ws). If w1 ·C1 + · · ·+wk ·Ck ∈ L(v), the rule has not been already applied
to this concept, and node v is not indirectly blocked, then

1. add C1, . . . , Ck to L(v);

2. set CF := CF ∪ {
∑
i wi · xv:Ci = xv:w1·C1+···+wk·Ck}.

(¬ws). If ¬(w1 ·C1 + · · ·+wk ·Ck) ∈ L(v), and the rule has not been already
applied to this concept, and node v is not indirectly blocked, then

1. add ¬C1, . . . ,¬Ck to L(v);

2. set CF := CF ∪ {1−
∑
i wi · xv:Ci = xv:¬(w1·C1+···+wk·Ck)}.

Remark 55. Note that, by Remark 33, to guarantee decidability in presence
of the weighted sum operator, we need to restrict the attention to acyclic KBs
only.

Eventually, we address how to deal with OWA and the quantifier-guided OWA
(see Section 8.1.6 and Section 10.3). Not surpassingly, again the inference rules
can immediately be derived from the (owa) and (qowa) rules for P(D) in which
we replace ψi with Ci and, thus, get

(owa). If @owa
W (C1, . . . , Ck) ∈ L(v), the rule has not been already applied to

this concept, and node v is not indirectly blocked, then

1. add C1, . . . , Ck to L(v);

2. set

CF := CF ∪ {xv:@owa
W (C1,...,Ck) =

k∑
i=1

wi · yi} ∪

perm(xv:C1 , . . . , xv:Ck) ,

where W = 〈w1, . . . , wk〉 and perm(x1, . . . , xk) is the set of con-
straints (N = {1, . . . , k} and i, j ∈ N)

perm(x1, . . . , xk) = { y1 ≥ y2, . . . , yk−1 ≥ yk,
yi ≤ xj + 2zij ,

xj ≤ yi + 2zij ,

k∑
j=1

zij = k − 1,

k∑
i=1

zij = k − 1,

yi ∈ [0, 1], zij ∈ {0, 1} } ,

where yi, zij are new variables.
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(¬ws). If ¬@owa
W (C1, . . . , Ck) ∈ L(v), and the rule has not been already ap-

plied to this concept, and node v is not indirectly blocked, then

1. add @owa
W (C1, . . . , Ck) to L(v);

2. set CF := CF ∪ {1− xv:@owa
W (C1,...,Ck) = xv:¬@owa

W (C1,...,Ck)}.

It is straightforward to see now that indeed also the inference rules for
quantifier-guided OWA, namely rules (qowa) and (¬qowa) for P(D), can be
adapted to the fuzzy DL case in a similar manner as we did for the OWA.

Eventually, note that Remark 55 applies to OWA and quantifier-guided
OWA as well.
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Wolter. Integrating description logics and action formalisms: first re-
sults. In Proceedings of the 20th National Conference on Artificial in-
telligence - Volume 2, pages 572–577. AAAI Press, 2005.

[25] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Is
tractable reasoning in extensions of the description logic EL useful in
practice. In Proceedings of the 2005 International Workshop on Methods
for Modalities (M4M-05), 2005.
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ing the crisp representation of the fuzzy description logic SROIQ. In
Uncertainty Reasoning for the Semantic Web I, volume 5327 of Lecture
Notes in Computer Science, pages 189–206. Springer Verlag, 2008.

[44] Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. Crisp
representations and reasoning for fuzzy ontologies. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(4):501–530,
2009.

[45] Fernando Bobillo, Miguel Delgado, Juan Gómez-Romero, and Umberto
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reasoning with imprecise probabilities. Journal of Intelligent Informa-
tion Systems, 2:319–363, 1993.

[135] D. Dubois, H. Prade, and J.-M. Touscas. Inference with imprecise nu-
merical quantifiers. In Z. W. Ras and M. Zemankova, editors, Intelligent
Systems, chapter 3, pages 53–72. Ellis Horwood, 1990.

[136] Didier Dubois, Laurent Foulloy, Gilles Mauris, and Henri Prade.
Probability-possibility transformations, triangular fuzzy sets, and prob-
abilistic inequalities. Reliable Computing, 10(4):273–297, 2004.
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[169] Àngel Garćıa-Cerdaña, Eva Armengol, and Francesc Esteva. Fuzzy de-
scription logics and t-norm based fuzzy logics. International Journal of
Approximate Reasoning, 51:632–655, July 2010.

[170] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoi-
los. A novel approach to ontology classification. Journal of Web Seman-
tics, 14:84–101, 2012.

[171] Birte Glimm and Yevgeny Kazakov. Role conjunctions in expressive de-
scription logics. In Proceedings of the 15th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-
08), pages 391–405, Berlin, Heidelberg, 2008. Springer-Verlag.

[172] S. Gottwald. A Treatise on Many-Valued Logics. A Research Studies
Press Book, 2000.

[173] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In Proceedings of the 12th International Conference on World
Wide Web, pages 48–57. ACM Press, 2003.

[174] N. Guarino and R. Poli. Formal ontology in conceptual analysis and
knowledge representation. International Journal of Human and Com-
puter Studies, 43(5/6):625–640, 1995.

[175] Dusan Guller. Procedural semantics for fuzzy disjunctive programs.
In Matthias Baaz and Andrei Voronkov, editors, Logic for Program-
ming, Artificial Intelligence, and Reasoning 9th International Confer-
ence, LPAR 2002, Tbilisi, Georgia, October 14-18, 2002, Proceedings,
volume 2514 of Lecture Notes in Computer Science, pages 247–261.
Springer, 2002.

[176] Dusan Guller. Semantics for fuzzy disjunctive programs with weak sim-
ilarity. In Ajith Abraham and Mario Köppen, editors, Hybrid Informa-
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description logic with hedges and concept modifiers. In Proceedings of
the 10th International Conference on Information Processing and Man-
agment of Uncertainty in Knowledge-Based Systems, (IPMU-04), 2004.

[198] Steffen Hölldobler, Hans-Peter Störr, and Tran Dinh Khang. The sub-
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