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General preface

Oxford Surveys in Semantics and Pragmatics aims to convey to the reader
the life and spirit of the study of meaning in natural language. Its
volumes provide distillations of the central empirical questions driving
research in contemporary semantics and pragmatics, and distinguish
the most important lines of inquiry into these questions. Each volume
offers the reader an overview of the topic at hand, a critical survey
of the major approaches to it, and an assessment of what consensus
(if any) exists. By putting empirical puzzles and theoretical debates
into a comprehensible perspective, each author seeks to provide orien-
tation and direction to the topic, thereby providing the context for a
deeper understanding of both the complexity of the phenomena and
the crucial features of the semantic and pragmatic theories designed
to explain them. The books in the series offer researchers in linguis-
tics and related areas—including syntax, cognitive science, computer
science, and philosophy—both a valuable resource for instruction and
reference and a state-of-the-art perspective on contemporary semantic
and pragmatic theory from the experts shaping the field.
In this volume, Ivano Ciardelli, Jeroen Groenendijk, and Floris

Roelofsen provide the first comprehensive introduction to Inquisitive
Semantics, a theory of linguistic meaning that aims to unify the
analysis of declarative and interrogative sentences. Unlike traditional
models of meaning, which distinguish declaratives and interrogatives
either in terms of semantic type or in terms of force, Inquisitive
Semantics builds an integrated analysis of both sentence types around
a particular formalization of information states, called “issues.” In the
first part of this book, Ciardelli, Groenendijk, and Roelofsen lay out the
formal foundations of the theory, showing how it provides a general
representation of semantic content and conversational contexts. In the
second part, they demonstrate the generality of the framework by first
applying it to the analysis ofmultiple types of interrogatives, extending it
to the analysis of disjunction, conditionals and propositional attitudes,
and finally comparing it to previous analyses of questions. With its
clear exposition, detailed formalization, substantive discussion of
empirical phenomena, and carefully constructed exercises in inquisitive
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semantic analysis, this book provides newcomers to the framework
with a much-needed introduction, and experienced researchers with a
valuable resource for further exploring its applications.

Chris Barker
New York University

Christopher Kennedy
University of Chicago
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Sources

Many of the papers referred to in this book can be accessed through
www.illc.uva.nl/inquisitivesemantics/papers. Some computational tools
that might help the reader to become familiar with the framework pre-
sented in the book are available at www.illc.uva.nl/inquisitivesemantics/
resources.
This book brings together a number of ideas and results from pre-

vious publications, manuscripts, and teaching materials. Below we list
the main sources for each chapter, which in some cases contain more
comprehensive discussion of the ideas presented here.

• Chapter : Ciardelli, Groenendijk, and Roelofsen (a)
• Chapter : Roelofsen (a)
• Chapter : Ciardelli (); Groenendijk and Roelofsen ();
Ciardelli and Roelofsen (); Roelofsen (a); Ciardelli
(d)

• Chapter : Roelofsen (c, a); Roelofsen and Farkas ();
Farkas and Roelofsen ()

• Chapter : Champollion, Ciardelli, and Zhang (); Ciardelli
(b); Ciardelli, Zhang, and Champollion (c)

• Chapter : Ciardelli and Roelofsen (, )
• Chapter : Ciardelli, Groenendijk, and Roelofsen (a); Ciardelli
(b); Ciardelli and Roelofsen (a); Farkas and Roelofsen
()

http://www.illc.uva.nl/inquisitivesemantics/papers
www.illc.uva.nl/inquisitivesemantics/resources
www.illc.uva.nl/inquisitivesemantics/resources
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Introduction

Inquisitive semantics is a new semantic framework mainly intended for
the analysis of linguistic information exchange. Information exchange
can be seen as a process of raising and resolving issues. Inquisitive
semantics provides a new formal notion of issues, which makes it
possible to model various concepts that are crucial for the analysis of
linguistic information exchange in a more refined and more principled
way than has been possible in previous frameworks. In particular:

. The semantic content of both declarative and interrogative sen-
tences can be represented in an integrated way, capturing not only
the information that such sentences convey, but also the issues that
they raise;

. Similarly, conversational contexts can be modeled as encompass-
ing not just the information that has been established in the
conversation so far, but also the issues that have been brought up;

. And finally, it becomes possible to formally represent a broader
range of propositional attitudes that are relevant for information
exchange: besides the familiar information-directed attitudes like
knowing and believing, issue-directed attitudes like wondering can
be captured as well.

This book provides a detailed exposition of the most basic features of
inquisitive semantics, and demonstrates some of the advantages that the
framework haswith respect to previously proposedways of representing
semantic content, conversational contexts, and propositional attitudes.
This introductory chapter will proceed to argue in some detail why a

framework like inquisitive semantics is needed for a satisfactory analysis
of information exchange (Section .), andwill endwith a global outline
of the remaining chapters (Section .).

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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1.1 Motivation

The most basic question that needs to be addressed in more detail
before we introduce the new formal notion of issues that forms the
cornerstone of inquisitive semantics is why such a notion is needed at
all for the analysis of linguistic information exchange. This will be done
in Section ...
A second fundamental point that we want to make is that the analysis

of linguistic information exchange does not just require a semantic the-
ory of declaratives and another semantic theory of interrogatives side by
side, but rather an integrated theory of declaratives and interrogatives;
neither sentence type can be fully understood in isolation. Reasons for
this will be given in Section ...
Finally, a third important point is that a semantic theory of declar-

atives and interrogatives should not employ two different notions of
semantic content, one for declaratives and one for interrogatives, but
should rather be based on a single notion of semantic content that is
general enough to capture both the information that sentences convey
and the issues that they may raise. This point will be substantiated in
Section ...

1.1.1 Why do we need a formal notion of issues?

There are several reasons why a formal notion of issues is needed for the
analysis of linguistic information exchange, and each of these is related
to one of the three aspects of information exchange listed above: some
arise from the need for a suitable notion of semantic content, some from
the need for a suitable model of conversational contexts, and yet others
from the need for a sufficiently refined representation of the mental
states of conversational participants. We will discuss each in turn.

Reason : To represent the content of interrogative sentences The
semantic content of a declarative sentence is standardly construed as
a set of possible worlds, those worlds that are compatible with the
information that the sentence conveys (as per the conventions of the
language; additional information may be conveyed pragmatically when
the sentence is uttered).This set ofworlds is referred to as the proposition
that the sentence expresses.
This notion of semantic content works well for declarative sentences,

whose main conversational role is indeed to provide information. For
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instance, the main communicative function of the declarative sentence
in () below is to convey the information that Bill is coming.

() Bill is coming.

But information exchange typically does not just consist in a sequence
of declarative sentences. An equally important role is played by inter-
rogative sentences, whose main conversational role is to raise issues.
Can the semantic content of an interrogative sentence be construed

as a set of possible worlds as well? Consider the example in (), a polar
interrogative:

() Is Bill coming?

Frege () famously proposed that the interrogative in () and the
declarative in () can indeed be taken to have the same semantic content:

An interrogative sentence and an indicative one contain the same thought; but the
indicative contains something else as well, namely, the assertion. The interrogative
sentence contains something more too, namely a request. Therefore two things must
be distinguished in an indicative sentence: the content, which it has in common with
the corresponding sentence-question, and the assertion. (Frege, , p. )1

So the idea is that declaratives and interrogatives have the same seman-
tic content—a proposition—but come with a different force—either
assertion or request. This idea has been quite prominent in the litera-
ture, especially in speech act theory (Searle, ; Vanderveken, ).2
However, as noted by Frege himself, it is limited in scope. It may
work for simple polar interrogatives, but not for many other kinds of
interrogatives, like ()–():

() Is Bill coming, or Sue?
() Who is coming?

Moreover, as has been argued extensively in the more recent literature
(see especially Groenendijk and Stokhof, ), even the idea that a
plain polar interrogative has the same content as the corresponding
declarative is problematic. In particular, when applied to embedded
cases it is not compatible with the principle of compositionality, which
requires that the semantic content of a compound expression be deter-
mined by the semantic content of its constituent parts, and the way in

1 The page reference is to the translated version, Frege ().
2 See also recent work on questions in dynamic epistemic logic (van Benthem and

Minică, ).
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which these parts are combined. To see this, compare the following two
examples, which contain embedded variants of the declarative in () and
the polar interrogative in (), respectively:

() John knows that Bill is coming.
() John knows whether Bill is coming.

If the embedded clauses had the same content, then by the principle of
compositionality the two sentences as awhole should also have the same
content. But this is clearly not the case. So the embedded clauses must
differ in content.
Thus, the standard notion of semantic content does not seem appli-

cable to interrogative sentences. Rather, what we need for interrogatives
is a notion of content that directly captures the issues that they raise.3

Reason : To model conversational contexts It has been argued
extensively in the literature that conversational contexts have to be
modeled in away that does not only take account of the information that
has been established in the conversation so far, but also of the issues that
have been brought up, often referred to as the questions under discussion
(Carlson, ; Groenendijk and Stokhof, ; van Kuppevelt, ;
Ginzburg, ; Roberts, ; Büring, ; Beaver and Clark, ;
Tonhauser et al., , among others). We will briefly discuss two
reasons why this is important. First, it is needed to develop a formal
theory of pragmatic reasoning and the conversational implicatures that
result from such reasoning. And second, it is needed for a theory of
information structural phenomena like topic and focus marking. Let us
first consider pragmatic reasoning.
A key notion in pragmatic reasoning is the notion of relevance. When

is a contribution to a conversation relevant for the purposes at hand?
One natural answer is that a contribution is relevant just in case it
addresses one of the issues under consideration. Even if the issues under
consideration only partially characterize what is ‘relevant’ in a broader
sense, this partial characterization is crucial for a formal theory of
conversational implicatures. For, the issues under consideration influ-
ence which conversational implicatures arise. To see this, consider the
following examples:

3 There is an extensive literature on the semantics of interrogatives (Hamblin, ;
Karttunen, ; Groenendijk and Stokhof, , among many others), and inquisitive
semantics strongly builds on the insights that have emerged from this work. A detailed
comparison will be provided in Chapter .
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() A: What did you do this morning?
B: I read the newspaper. � B did not do the laundry

() A: What did you read this morning?
B: I read the newspaper. �� B did not do the laundry

B’s utterance is exactly the same in both cases, but the issue that it
addresses is different. As a result, in (), where the question under
discussion is what B did this morning, there is a conversational impli-
cature that B did not do anything besides reading the newspaper, i.e.,
that he did not do the laundry for instance. On the other hand, in (),
where the question under discussion is what B read this morning, there
is a weaker conversational implicature, to the effect that B did not
read anything besides the newspaper. This does not imply that he did
not do other things, such as the laundry. Thus, we see that pragmatic
reasoning is sensitive to the issues that are at play in the context of
utterance.
Now let us illustrate the importance of contextual issues for infor-

mation structural phenomena. We will concentrate on focus marking.
Languages generally have grammatical ways to signal which part of
a sentence is in focus and which part is backgrounded. In English,
the focus/background distinction is marked intonationally: focused
constituents receive prominent pitch accents, while backgrounded con-
stituents do not. In other languages, focus is sometimes marked by
means of special particles or by means of word order.
Which constituents should be marked as being in focus and which

should be marked as being backgrounded is determined, at least partly,
by the issue that is being addressed. To see this, consider the following
examples, where capitalization is used to indicate focus marking by
means of prominent pitch accents.

() A: Who did Alf rescue?
B: Alf rescued BEA. / ALF rescued Bea.

() A: Who rescued Bea?
B: ALF rescued Bea. / Alf rescued BEA.

If the question is who Alf rescued, as in (), then the response that
Alf rescued Bea must be pronounced with a prominent pitch accent
on Bea. Placing a pitch accent on Alf instead results in infelicity. On
the other hand, if the question is who rescued Bea, as in (), then the
same response, i.e., that Alf rescued Bea, must be pronounced with a
prominent pitch accent on Alf rather than Bea. Thus, we see that focus
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marking, just like pragmatic reasoning, is sensitive to the issue under
discussion.4

Reason : To model issue-directed propositional attitudes and capture
the meaning of verbs that report such attitudes In order to under-
stand linguistic information exchange, it is important to have a way of
representing the information that is available to the agents participating
in the exchange, as well as the issues that they are interested in. In other
words, we need to be able to model what the agents know or believe
at any given time, and also what they wonder about. Knowledge and
belief are information-directed propositional attitudes; wondering is an
issue-directed propositional attitude. The standard way to model the
knowledge and beliefs of an agent is as a set of possible worlds, namely
those worlds that are compatible with what the agent knows or believes.
Such a set of worlds is thought of as representing the agent’s information
state. Similarly, in order to capture what an agent wonders about, we
need a representation of her inquisitive state. For such a representation,
we again need a formal notion of issues.
Moreover, turning back to language, just like there are verbs like know

and believe that describe the information state of an agent, as in ()
below, there are also verbs like wonder and be curious that describe the
inquisitive state of an agent, as in ().

() John knows that Bill is coming.
() John wonders who is coming.

Clearly, in order to analyse the meaning of verbs like wonder we do not
only need a suitable representation of the content of the interrogative
clause that the verb takes as its complement (here, who is coming), but
also a suitable representation of the inquisitive state of the subject of the
verb (here, John).

1.1.2 Declaratives and interrogatives cannot be treated separately

The analysis of linguistic information exchange requires a semantic the-
ory of declaratives and one of interrogatives. A question that naturally
arises, then, is whether the two sentence types could be analysed sep-
arately, or whether a more integrated approach is called for. Below we

4 Besides pragmatic reasoning and information structural phenomena like topic and
focus marking, it has been argued that a model of conversational contexts that comprises
the issues that have been raised is also needed for a suitable analysis of discourse particles
(see, e.g., Rojas-Esponda, ) and presupposition projection (e.g., Tonhauser et al., ).
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give two reasons why neither declaratives nor interrogatives can be fully
understood in isolation, making an integrated approach necessary.

Reason : Mutual embedding Declarative and interrogative sentences
can be embedded into one another, as exemplified in ()–().

() Bill asked me who won. embedded interrogative
() Who told you that Jane won? embedded declarative
() Bill asked me who told you that two-level embedding

Jane won.

So the meaning of a declarative sentence is sometimes partly deter-
mined by the meaning of an embedded interrogative sentence, and
vice versa. Clearly, then, a complete semantic account of declaratives
cannot be achieved without getting a handle on interrogatives, and the
other way around, a complete semantic account of interrogatives is
impossible without a treatment of declaratives. Thus, the two have to
be analysed hand in hand; considering them in isolation is bound to
lead to incomplete theories.

Reason : Interpretational dependencies As illustrated in () and
(), the interpretation of a declarative sentence sometimes partly
depends on the issue raised by a preceding interrogative. Notice that
examples ()–() differ from the previous examples ()–() in that
they contain the particle only.

() A: What did you do this morning?
B: I only read the newspaper. � B did not do the laundry

() A: What did you read this morning?
B: I only read the newspaper. �� B did not do the laundry

If the question is what you did this morning, as in (), then the truth
of the statement that you only read the newspaper requires that you
did not do other things, such as the laundry. On the other hand, if the
question is what you read this morning, as in (), then the truth of
the statement that you only read the newspaper just requires that you
did not read anything else, while it is compatible with the fact that
you did do other things besides reading, such as the laundry. Thus, not
just the pragmatic implicatures that a declarative statement may induce,
but even its truth-conditional content can depend on the issue that is
addressed, which again means that analyzing declaratives in isolation,
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without taking interrogatives into account as well, is bound to lead to
an incomplete theory.

1.1.3 Why do we need an integrated notion of semantic content?

As we discussed above, the notion of semantic content that is com-
monly assumed for declarative sentences does not seem suitable for
interrogative sentences. In principle, this does not mean that there is
anythingwrongwith this standard notion.We could attempt to construe
a suitable notion of content for interrogatives, andmaintain the existing
notion for declaratives.This, indeed, is the approach that has been taken
in most previous work (see Groenendijk and Stokhof, , for an
overview). We will argue, however, that a single, integrated notion of
semantic content is to be preferred.

Reason : Common building blocks Declaratives and interrogatives
are to a large extent built up from the same lexical, morphological,
and intonational elements. Clearly, we would like to have a uniform
semantic account of these elements, i.e., an account that captures
their semantic contribution in full generality, rather than two separate
accounts, one capturing their semantic contribution when they are part
of declarative sentences and the otherwhen they are part of interrogative
sentences.
Tomake this concrete, consider the following two examples, a declar-

ative and an interrogative which are built up from exactly the same
lexical items and also exhibit the same intonation pattern (we use ↑ and
↓ to indicate rising and falling intonation, respectively).

() Luca is from Italy↑ or from Spain↓.
() Is Luca from Italy↑ or from Spain↓?

In uttering the declarative in (), a speaker provides the information
that Luca is from Italy or from Spain, and she does not request any fur-
ther information from other conversational participants. On the other
hand, in uttering the interrogative in (), she takes the information that
Luca is from Italy or Spain for granted, and requests other participants
to provide further information determining exactly which of the two
countries he is from.
Both sentences contain the disjunction word or. In declaratives, or is

normally taken to yield the union of the semantic values of the disjuncts.
In (), each disjunct expresses a proposition, standardly represented as
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a set of possible worlds: the semantic value of the first disjunct is the set
of worlds where Luca is from Italy, and the semantic value of the second
disjunct is the set of worlds where Luca is from Spain. The proposition
expressed by () is the union of these two sets, i.e., the set of all worlds
where Luca is from either country.
This seems a reasonable account of or in declaratives. But what is the

role of or in interrogatives? Ultimately, we would like to have an account
of or that is general enough to capture its semantic contribution in both
declaratives and interrogatives in a uniform way. Assuming different
notions of semantic content for declarative and interrogative sentences
constitutes an obstacle for such a uniform account. By contrast, as
we will see, such an account naturally comes within reach once we
assume an integrated notion of semantic content. In this approach,
the semantic content of a complete sentence should capture both the
information that the sentence conveys and the issue that it raises (where
of course, either may be trivial), and the semantic content of any sub-
sentential constituent should capture the contribution that this con-
stituent makes both to the information conveyed and to the issue raised
by the sentence.

Reason : Entailment Entailment is normally thought of as a logical
relation between declarative sentences. One sentence is taken to entail
another if the first conveys at least as much information as the sec-
ond. This logical relation plays a central role in the standard logical
framework for natural language semantics. For one thing, predictions
about entailment constitute one of the primary criteria for empirical
success of semantic theories. That is, a theory is assessed by testing its
predictions about entailment. But besides this, entailment is important
in various other respects as well. For instance, it plays a crucial role in
the derivation of quantity implicatures, which involves comparing the
sentence that a speaker actually uttered with other sentences that the
speaker could have uttered instead. This comparison is done in terms
of informative strength, which is captured by entailment (see Grice,
, and much subsequent work). Similarly, entailment is needed to
formulate interpretive principles like the Strongest Meaning Hypoth-
esis, which has been argued to play a crucial role in the resolution
of semantic underspecification, for instance in the interpretation of
plural predication (Dalrymple et al., ; Winter, ). And as a final
example, entailment has been used to characterize the distribution of
positive and negative polarity items in terms of upward and downward
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entailing environments (e.g., Ladusaw, ; Kadmon and Landman,
).
Clearly, we would like our theories of quantity implicatures, plural

predication, polarity items, etc., to apply in a uniformway to declarative
and interrogative constructions. However, since the standard notion of
entailment compares two sentences in terms of their informative, truth-
conditional content (and sub-sentential expressions in terms of their
contribution to the informative content of the sentences that they are
part of), it does not suitably apply to interrogatives. For this reason, the
scope of entailment-based theories such as the ones just mentioned is
currently restricted to declaratives.
What we need, then, is a notion of entailment that is general enough

to apply to both declaratives and interrogatives in a uniform way. We
expect, for instance, to be able to account in a uniform way for the fact
that the declarative in (a) entails the one in (b), and for the fact that
the interrogative in (a) entails the one in (b).

() a. The number of planets is .
b. The number of planets is even.

() a. What is the number of planets?
b. Is the number of planets even?

For this, we need a notion of entailment which is sensitive to both infor-
mative and inquisitive strength. Such a notion can be naturally defined
once we operate with a notion of semantic content that encompasses
both informative and inquisitive content.

Reason : Logical operations Two declarative sentences can be com-
bined by means of conjunction and disjunction.

() Peter rented a car and Mary booked a hotel.
() Peter rented a car or he borrowed one.

This does not only hold for root declaratives, but also for embedded
ones.

() I believe that Peter rented a car and that Mary booked a hotel.
() I believe that Peter rented a car or that he borrowed one.

This is also true for interrogatives, both embedded and unembedded
ones.5

5 While the possibility of conjoining interrogative sentences is uncontroversial, the
possibility of disjoining interrogatives has been disputed by Szabolcsi (, a) and
Krifka (b). In Section .. we will examine Szabolcsi’s argument in some detail. On
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() Where can we rent a car, and which hotel should we take?
() Where can we rent a car, or who might have one that we could

borrow?
() I’m investigating where we can rent a car and which hotel we

should take.
() I’m investigating where we can rent a car or who might have one

that we could borrow.

These parallels between declaratives and interrogatives exist not only
in English, but in many other languages as well: words that are used to
conjoin declaratives are also used to conjoin interrogatives, and words
that are used to disjoin declaratives can often also be used to disjoin
interrogatives.
What we would like to have, then, is an account of conjunction and

disjunction that does not just apply to declaratives, but that is general
enough to apply to both declaratives and interrogatives in a uniform
way. As we will see, such an account comes within reach if we analyse
declaratives and interrogatives by means of a single notion of semantic
content that encompasses both informative and inquisitive content.
Besides conjunction and disjunction, another logical operation that

can be performed both on declaratives and on interrogatives is condi-
tionalization, as exemplified in () and ().

() If Bill asks Mary out, she will accept.
() If Bill asks Mary out, will she accept?

This calls for an account of conditionals that applies uniformly, regard-
less of whether the consequent is a declarative or an interrogative
sentence. Again, such an account is facilitated by a semantic framework
which encompasses both informative and inquisitive content.

1.2 Main aims and outline of the book

Given the above considerations, our main high-level aims in this book
will be to introduce:

. A formal notion of issues that allows for a suitable representation
of semantic content, conversational contexts, and propositional
attitudes;

the basis of examples such as () and (), we will argue that disjoining interrogatives is in
principle possible, and that the meaning of the resulting disjunction is correctly derived by
applying inquisitive disjunction to the meanings of the two interrogative disjuncts.
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. A logical framework that allows for an integrated semantic analysis
of declarative and interrogative sentences, with a single notion
of semantic content which is general enough to deal with both
sentence types at once, rather than a separate notion of semantic
content for each sentence type.

The remaining chapters of the book broadly fall into two parts. The
first part, spanning Chapters –, provides a detailed exposition of
the basic inquisitive semantics framework. The second part, consisting
of Chapters –, discusses several applications of the framework and
compares it to previous work.
More specifically, Chapter  introduces the new notions of issues,

propositions, and conversational contexts that form the heart of
inquisitive semantics; Chapter  identifies the basic operations that
can be performed on inquisitive propositions; and Chapter  presents
an inquisitive semantics for the language of first-order logic.
Then, turning to the second part, Chapter  shows how the meaning

of various kinds of questions occurring in natural languages can be
captured in the framework developed in Chapters –; Chapter  shows
how to derive the meaning of various declarative and interrogative
sentence types in a compositional way, providing a concrete illustra-
tion of the benefits of treating informative and inquisitive content
in an integrated way; Chapter  argues that the truth-conditions of
certain declarative sentences—in particular, conditionals—depend on
the inquisitive content of their constituents, which shows that the
richer notion of semantic content that inquisitive semantics provides
is beneficial even if one is just concerned with declaratives; Chapter 
discusses the representation of information-directed and issue-directed
propositional attitudes, as well as the semantics of verbs like know
and wonder which are used to report such attitudes; and Chapter 
discusses the advantages of inquisitive semantics as a framework for the
semantic analysis of interrogatives in comparison with previous work.
Finally, Chapter  concludes with a schematic overview of the book,
and discusses to what extent it meets the two high-level desiderata listed
at the beginning of the section.
The Further Reading section at the back of the book provides some

pointers to work that further extends or applies the framework pre-
sented here.
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Basic notions

In the previous chapterwe have argued that a formal notion of issues is of
crucial importance for the analysis of linguistic information exchange.
The present chapter specifies how issues are formally defined in inquis-
itive semantics. It also defines three other basic notions—information
states, propositions, and conversational contexts—and a number of fun-
damental relations that may hold between such entities. In particular, as
depicted in Figure ., we will specify what it means for an information
state to resolve an issue or to support a proposition, what it means for
a context to be updated with a proposition, when one context is an
extension of another, when one proposition entails another, when one
information state is an enhancement of another, and when one issue is a
refinement of another.

Before turning to the inquisitive setting, however, we first briefly
review how these notions—with the exception of issues—are standardly
defined.

2.1 The standard picture

The simplest way to construe information states, propositions, and
conversational contexts is as sets of possible worlds (see, e.g., Hintikka,
; Stalnaker, ). A set of possible worlds can be thought of as
representing a certain body of information, namely the information that
the actual world corresponds to one of the worlds in the set. Such a body
of information may be seen as the information available to a certain
conversational participant; in that case it can be taken to represent
the information state of that participant. On the other hand, a body
of information may also be seen as the information conveyed by a
certain sentence; in that case it can be taken to constitute the semantic
content of that sentence, the proposition that it expresses. And finally,
a body of information could be seen as the information that has so far
been commonly established by all the participants in a conversation; in

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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Figure . Basic notions in inquisitive semantics.

that case it embodies the common ground of the conversation, which
constitutes a minimal representation of the conversational context.1
Thus, depending on the perspective one takes, one and the same type
of formal object—a set of possible worlds—can be used to model all
three basic notions.

Let us now turn to the notions of enhancement (between informa-
tion states), entailment (between propositions), and extension (between
contexts). One information state s is an enhancement of another infor-
mation state s′ just in case all the information available in s′ is also
available in s, i.e., if every candidate for the actual world that is ruled
out by s′ is also ruled out by s. This holds just in case s ⊆ s′. Similarly,
one proposition p entails another proposition p′ if and only if p contains
at least as much information as p′ does, i.e., if p ⊆ p′, and one context
c is an extension of another context c′ if and only if all the information
that is commonly established in c′ is also commonly established in c, i.e.,
if c ⊆ c′. Thus, enhancement, entailment, and extension again formally
all amount to the same relation, i.e., set inclusion, though in each case
we take a somewhat different perspective on what this formal relation
encodes, mirroring the different perspectives on sets of possible worlds

1 Sometimes a distinction is made between the common ground of a conversation and the
context set (Stalnaker, ). The common ground is then construed as the set of pieces of
information that are publicly shared among the conversational participants, and the context
set as the set of possible worlds that are compatible with all these pieces of information.
For our purposes, it will not be necessary to make this distinction, so we simply construe
the common ground as the set of possible worlds that are compatible with the commonly
established body of information.
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when viewed as information states, propositions, and conversational
contexts.

Now let us turn to the notion of support, which relates information
states to propositions. An information state s is standardly taken to
support a proposition p just in case the information embodied by p is
already available in s, i.e., if every candidate for the actual world that
is ruled out by p is ruled out by s as well. This holds just in case s ⊆ p.
So support, just like entailment, enhancement, and extension, formally
amounts to set inclusion.

Finally, let us consider the notion of update. The result of updating
a context c with a proposition p is a new context c[p] which, besides
the information already present in c, also contains the information
embodied by p. That is, a candidate for the actual world is ruled out
by c[p] if it was already ruled out by the information established in the
old context c, or if it is ruled out by the new information embodied
by p. Formally, this means that update amounts to set intersection:
c[p]=c ∩ p.

What we have just reviewed is the simplest possible way to define
information states, propositions, conversational contexts, and the rela-
tions that may hold between them in possible world semantics. Various
more fine-grained versions of these basic notions have been proposed
in the literature. Our goal here, however, is to construct the direct
counterparts of these basic notions, together with a new notion of
issues, in the inquisitive setting. Once these elementary notions are in
place, one could set out to adapt the various refinements that have been
proposed in the standard setting to the inquisitive setting as well. This
will not be our direct concern in this book, but we will point to other
work where such refinements have been pursued.

We are now ready to start building up the inquisitive semantics
framework, starting with the notion of information states.

2.2 Information states

Information states are modeled in inquisitive semantics just as they are
in the standard setting, namely as sets of possible worlds—those worlds
that are compatible with the information available in the state. There
is no need to change the notion of information states since—unlike in
the case of propositions and conversational contexts, as we will see in
Sections . and .—this notion is just supposed to capture a body of
information, and not anything issue-related.
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Even thoughwe straightforwardly adopt the standard notion of infor-
mation states, we will define, discuss, and exemplify the notion some-
what more explicitly here than in the brief review in ., in preparation
of what is to come next. We use W to denote the entire logical space,
i.e., the set of all possible worlds.

Definition . (Information states)
An information state s is a set of possible worlds, i.e., s ⊆ W.

We will often refer to information states simply as states. Figure .
depicts some examples of information states in a logical space consisting
of just four possible worlds: w1,w2,w3,w4. Intuitively, an information
state can be thought of as locating the actual world within a certain
region of the logical space. For instance, the state in Figure .(d)
contains the information that the actual world is located in the upper
left corner of the logical space, while the state in Figure .(c) contains
the information that the actual world is located in the upper half of the
logical space.

If s and t are two information states and t ⊆ s, then t contains at least
asmuch information as s; it locates the actual worldwith at least asmuch
precision. In this case, we call t an enhancement of s.

Definition . (Enhancements)
A state t is called an enhancement of s just in case t ⊆ s.

Note that we do not require that t is strictly contained in s, i.e., that it
contains strictly more information than s. If t ⊂ s, then we say that t is
a proper enhancement of s.

The four information states depicted in Figure . are arranged
from left to right according to the enhancement order. The state in
Figure .(b) is an enhancement of the state in Figure .(a), and so on.
The state consisting of all possible worlds, W, depicted in Figure .(a),
is the least informed of all information states: any possible world is still
taken to be a candidate for the actual world, which means that we have

w1 w2

(a) (b) (c) (d)

w3 w4

w1 w2

w3 w4

w1 w2

w3 w4

w1 w2

w3 w4

Figure . Information states.
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no clue at all what the actual world is like. This state is therefore referred
to as the ignorant state. Every other state is an enhancement of it.

At the other far end of the enhancement order is the empty state, ∅.
This is an enhancement of any other state. It is a state in which all
possible worlds have been discarded as candidates for the actual world,
i.e., the available information has become inconsistent. It is therefore
referred to as the inconsistent state.

2.3 Issues

Wenow turn to the notion of issues, in a sense themost central notion in
inquisitive semantics. How should issues be represented formally? Our
proposal is to characterize issues in terms of what information it takes
to resolve them. That is, an issue is identified with a set of information
states: those information states that contain enough information to
resolve the issue.

We assume that every issue can be resolved in at least one way, which
means that issues are identified with non-empty sets of information
states. Moreover, if a certain state s contains enough information to
resolve an issue I, then this must also hold for every enhancement t ⊆ s.
This means that issues are always downward closed: if I contains a state s,
then it contains every t ⊆ s as well. Thus, issues are defined as non-
empty, downward closed sets of information states.2

Definition . (Issues)
An issue is a non-empty, downward closed set of information states.

Definition . (Resolving an issue)
We say that an information state s resolves an issue I just in case s ∈ I. If
s resolves I, we will sometimes also say that I is settled in s.

Figure . displays some issues. In order to keep the figures neat, only
the maximal elements of these issues are depicted. Since issues are
downward closed, we know that all enhancements of these maximal
elements are also included in the issues at hand. The issue depicted
in subfigure (a) can only be settled consistently by specifying precisely
which world is the actual one. The issue depicted in subfigure (b) can

2 Notice that this means that the inconsistent information state, ∅, is an element of every
issue. Thus, it is assumed that every issue is resolved in the inconsistent information state.
This limit case may be regarded as a generalization of the ex falso quodlibet principle to
issues.
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be settled either by establishing that the actual world is an element of
the set {w1,w2}, or by establishing that it is an element of {w3,w4}. The
issue depicted in subfigure (c) can be settled either by establishing that
the actual world is an element of {w1,w3,w4}, or by establishing that it is
an element of {w2,w3,w4}. Finally, the issue in subfigure (d) is trivially
settled: it does not require any information as to what the actual world
may be.

Given an issue I, the information state s := ⋃
I (the union of all the

elements in I) contains exactly the information that is necessary and
sufficient to guarantee that I can be truthfully resolved, i.e., to guarantee
that there is an information state that resolves the issue and contains
the actual world. For, if the actual world is located in s, this means
that it belongs to some t ∈ I: in this case t is an information state that
resolves I and contains the actual world, which means that I can indeed
be truthfully resolved. On the other hand, if the actual world lies outside
of s, then it does not belong to any information state that resolves I,
which means that I cannot be resolved truthfully.

We think of the information state
⋃

I as capturing the information
assumed by the issue I, and we say that I is an issue over

⋃
I.

Definition . (Issues over a state)
Let I be an issue and s an information state. Then we say that I is an issue
over s if and only if

⋃
I = s.

The issues depicted in Figure . are all issues over the information state
W ={w1,w2,w3,w4}. Notice that an issue I over a state s may contain s
itself. In this case resolving I does not require any information beyond
the information that is already available in s. If so, we call I a trivial issue
over s. Downward closure implies that for any state s there is precisely
one trivial issue over s, namely the issue consisting of all enhancements
of s, i.e., the powerset of s, whichwe denote as ℘(s). On the other hand, if

(a) (b) (c) (d)

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

Figure . Issues.
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I is an issue over s and s �∈ I, then in order to settle I further information
is required, that is, a proper enhancement of s must be established. In
this case we call I a proper issue over s. The issue in Figure .(d) is the
trivial issue over W; all the other issues in Figure . are proper issues
over W.

Two issues over a state s can be compared in terms of what it takes for
them to be settled: one issue I is at least as inquisitive as another issue J
just in case any state that settles I also settles J. In this case we also say
that I is a refinement of J. Since an issue is identified with the set of states
that settle it, the refinement order on issues just amounts to inclusion.

Definition . (Issue refinement)
Let I, J be two issues over a state s. Then I is at least as inquisitive as J if
and only if I ⊆ J. In this case we say that I is a refinement of J.

Among the issues over a state s there is always a least and a most
inquisitive one. The least inquisitive issue over s is the trivial issue
℘(s), whose resolution, as we saw, requires no information beyond the
information already available in s. The most inquisitive issue over s is
{{w} |w ∈ s} ∪ {∅}, which can only be settled consistently by providing a
complete description of what the actual world is like. Among the issues
in Figure ., the issue in subfigure (a) is the most inquisitive issue over
W, and thus a refinement of all other issues; the issue in subfigure (d)
is the least inquisitive issue over W, and all other issues are refinements
of it. As for the issues in subfigures (b) and (c), neither is a refinement
of the other.

Suppose that a given information state s resolves an issue I, and
there is no weaker information state t ⊃ s that also resolves I. Then s
contains just enough information to resolve I, it does not contain any
superfluous information. Such information states are precisely the max-
imal elements of I, since information states consisting of more worlds
contain less information. We will refer to these maximal elements as
the alternatives in I.

Definition . (Alternatives in an issue)
The maximal elements of an issue I are called the alternatives in I.

If an issue I over a state s is trivial, i.e., if s ∈ I, then s is the unique
maximal element of I, i.e., the unique alternative in I. On the other
hand, if I contains two or more alternatives, then it must be a non-trivial
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issue. If an issue contains only finitely many information states, which
will be the case in all the examples that we will consider here, then the
connection between containing multiple alternatives and being a non-
trivial issue also holds in the other direction.3

Fact . (Multiple alternatives and proper issues)
An issue containing finitely many elements is non-trivial if and only
if it contains at least two alternatives.

This fact makes it very easy to see whether an issue is inquisitive, given
a visual representation of it. For instance, the issue in Figure .(d)
is not inquisitive because it contains a single alternative, while all the
other issues in Figure . are inquisitive because they contain multiple
alternatives.

Note that, as exemplified in Figure .(c), two alternatives in an issue
I may very well overlap, they do not have to be mutually exclusive. How-
ever, since alternatives are defined as maximal elements, one alternative
can never be fully contained in another.4

2.4 Propositions

Traditionally, the semantic content of a sentence, the proposition that it
expresses, is intended to capture the information that a speaker conveys
in asserting the sentence (as per the conventions of the language; addi-
tional information may be conveyed through pragmatic implicatures).
In inquisitive semantics, propositions are not just intended to capture
the information that is conveyed in uttering a sentence, but also the issue
that may be raised in doing so. In short, propositions are intended to
embody both informative and inquisitive content.

How should such more versatile propositions be modeled formally?
The most straightforward option would be to construe a proposition

3 To see that this does not generally hold for issues containing infinitely many states,
consider an issue I that contains an infinite chain of states, s1 ⊂ s2 ⊂ s3 ⊂ . . . , without any
maximal element. Such an issue is non-trivial, since

⋃
I �∈ I, but it does not contain any

alternatives. So, if an issue contains at least two alternatives, then it is always non-trivial, but
the reverse implication only holds if we restrict ourselves to finite cases (Ciardelli, ).

4 Our use of the term alternatives here is closely related to its use in the framework of
alternative semantics (cf., Hamblin, ; Kratzer and Shimoyama, ; Simons, ;
Alonso-Ovalle, ; Aloni, , among others). One difference, however, is that in
alternative semantics one alternative may very well be fully contained in another. We will
discuss the commonalities and differences between inquisitive semantics and alternative
semantics in more depth in Section . and Section ..
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P as a pair 〈infoP, issueP〉, where infoP is a classical proposition, i.e.,
a set of possible worlds, embodying the informative content of P,
and issueP an issue, embodying the inquisitive content of P. We can
then think of a speaker who utters a sentence expressing the propo-
sition P as (i) providing the information represented by infoP, and
(ii) raising the issue represented by issueP. By the latter we mean that
the speaker proposes to enhance the current common ground of the
conversation in such a way that it comes to settle issueP; for short, we
will say that the speaker ‘steers the common ground towards a state
in issueP’.

This notion of propositions is a natural starting point, but note that
it does not impose any constraints on how the two components of a
proposition should be related to each other. There are two constraints
that we think should be enforced. First, all states that resolve issueP
should be enhancements of infoP. It would not make sense for a speaker
to steer the common ground towards a state where the information
embodied by infoP itself is not commonly established. Formally, this
means we should have that

⋃
issueP ⊆ infoP.

Second, the information that a speaker conveys should ensure that
the issue she raises can be resolved truthfully. This means that we should
have that infoP ⊆ ⋃

issueP. To see this, suppose that infoP �⊆ ⋃
issueP.

Then there is a world w ∈ infoP which is not contained in any state that
resolves issueP. According to infoP, w may well be the actual world.
Now, suppose it is the actual world. Then there is no way of resolving
issueP without discarding the actual world. So, in this case infoP does
not ensure that issueP can be resolved truthfully.

Putting the two constraints together, we get that issueP should be
an issue over infoP:

⋃
issueP = infoP. Given this, our formal notion of

propositions can be simplified considerably. After all, since infoP can
always be retrieved from issueP, it can just as well be left out of the
representation of P. Thus, a proposition P can simply be represented as a
non-empty, downward closed set of information states. The informative
content of P is then represented by the union of all these states,

⋃
P,

while the issue embodied by P is the one which is resolved in a state s
just in case s ∈ P.

Definition . (Propositions)

• A proposition P is a non-empty, downward closed set of informa-
tion states.

• The set of all propositions will be denoted by P .
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Definition . (Informative content)
For any proposition P: info(P) := ⋃

P

Definition . (The issue embodied by a proposition)
The issue embodied by a proposition P is the one that is resolved in a
state s just in case s ∈ P.

2.4.1 Truth and support

We say that a proposition P is true in a world w just in case w is
compatible with the informative content of P, i.e., w ∈ info(P).

Definition . (Truth)
A proposition P is true in a world w just in case w ∈ info(P).

We say that an information state s supports a proposition P just in
case it implies the informative content of P, i.e., s ⊆ info(P), and it
resolves the issue embodied by P, i.e., s ∈ P. But note that if s ∈ P, then
it must also be the case that s ⊆ info(P). So support just amounts to
membership.

Definition . (Support)
An information state s supports a proposition P if and only if s ∈ P.

From the fact that propositions are downward closed it follows that truth
and support are closely connected.

Fact . (Truth and support)
A proposition P is true in a world w if and only if P is supported by {w}.
The notion of support will become very useful later on. Notice that the
relation between propositions and support is exactly the same as that
between issues and resolution: a proposition consists of all states that
support it; an issue consists of all states that resolve it. Moreover, the
relation between propositions and support in inquisitive semantics is
also parallel to the relation between classical propositions and truth:
a classical proposition is the set of all worlds in which it is true. In
the present setting, truth does not relate directly to propositions in
this way, but rather to the informative content of a proposition: the
informative content of a proposition is the set of all worlds in which the
proposition is true. Evidently, the fact that the connection between truth
and propositions is more direct in the classical setting is an immediate
consequence of the fact that classical propositions exclusively encode
informative content.
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2.4.2 Informative and inquisitive propositions

We will say that a proposition P is informative just in case its informative
content is non-trivial, i.e., info(P) �= W. On the other hand, we will say
that P is inquisitive just in case establishing its informative content is not
sufficient to settle the issue that it raises, i.e., info(P) �∈ P.

Definition . (Informative and inquisitive propositions)

• A proposition P is informative iff info(P) �= W.
• A proposition P is inquisitive iff info(P) �∈ P.

Just as we did in the case of issues, we refer to the maximal elements
of a proposition as the alternatives in that proposition. These are states
that support the proposition and cannot be weakened in any way
without losing support. That is, they contain just enough information
to support P.

Definition . (Alternatives in a proposition)

• The maximal elements of a proposition P are called the alternatives
in P.

• The set of alternatives in P is denoted as alt(P).

When discussing issues, we noted that there is a close connection
between containing multiple alternatives and being non-trivial. For
propositions, there is a parallel connection between containing multiple
alternatives and being inquisitive. Namely, if P contains two or more
alternatives, then it cannot contain info(P) and therefore must be
inquisitive. On the other hand, if a proposition P is non-inquisitive,
i.e., if info(P) ∈ P, then it always contains a unique alternative, namely
info(P). If a proposition contains only finitely many information states,
which is the case in all the examples that we will consider, then the
connection between multiple alternatives and inquisitiveness is even
stronger. Namely, a proposition with finitely many elements is inquis-
itive if and only if it contains multiple alternatives.5

Fact . (Inquisitiveness and alternatives)
A proposition containing finitely many elements is inquisitive if and
only if it contains multiple alternatives.

5 See footnote  for an example showing that an inquisitive issue with infinitely many
states does not necessarily contain multiple alternatives; it may not contain any alternatives
at all. A parallel example can easily be constructed for propositions.



OUP CORRECTED PROOF – FINAL, //, SPi

 basic notions

(a) +informative
      −inquisitive

(b) –informative
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Figure . Propositions.

Figure . depicts a number of propositions. In each case, we only depict
the alternatives that the proposition contains. The proposition depicted
in Figure .(a) contains just one alternative and is therefore not inquisi-
tive, but it is informative, since its informative content does not cover the
entire logical space. The proposition depicted in Figure .(b) contains
two alternatives and is therefore inquisitive; on the other hand, it is not
informative, because its informative content, i.e., the union of the two
alternatives, covers the entire logical space. The proposition depicted in
Figure .(c) is both informative and inquisitive, since it contains two
alternatives and the union of these two alternatives does not cover the
entire logical space. Finally, the proposition depicted in Figure .(d)
contains a single alternative, which covers the entire logical space; it is
therefore neither informative nor inquisitive.

We will refer to a proposition that is both informative and inquisitive
as a hybrid proposition, and to one that is neither informative nor
inquisitive as a tautology.

Propositions can be thought of as inhabiting a two-dimensional
space, as depicted in Figure .. The horizontal axis is inhabited by non-
inquisitive propositions, the vertical axis by non-informative proposi-
tions, the ‘zero-point’ of the space by tautologies, and the rest of the
space by hybrids.

Non-informative
propositions

Non-inquisitive
propositionsTautologies

Hybrids

Figure . Propositions in a two-dimensional space.
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Spelling out what it means to be informative and/or inquisitive we
obtain the following direct characterization of propositions that are
non-informative, non-inquisitive, or tautological.

Fact .

• P is non-inquisitive iff info(P) ∈ P.
• P is non-informative iff info(P)=W.
• P is a tautology iff W ∈ P.

It will be insightful (and useful for later) to consider a number of
alternative characterizations of non-inquisitive propositions as well.

Fact . (Alternative characterizations of non-inquisitive propositions)
The following are equivalent for any proposition P:

. P is non-inquisitive;
. P = ℘(info(P));
. P has a greatest element;6
. P is supported by a state s just in case P is true in all worlds in s.

Proof. We will prove the chain of implications (1) ⇒ (2) ⇒ (3) ⇒
(4) ⇒ (1).

• (1) ⇒ (2). By definition, info(P) = ⋃
P, so for every t ∈ P we

have t ⊆ info(P), which means that t ∈ ℘(info(P)). This shows
that P ⊆ ℘(info(P)), regardless of whether P is non-inquisitive.
Now suppose P is non-inquisitive, i.e., suppose info(P) ∈ P: by
downward closure, every substate of info(P) must be in P as well,
so ℘(info(P)) ⊆ P. Putting the two inclusions together, we obtain
P = ℘(info(P)).

• (2) ⇒ (3). If P = ℘(info(P)), clearly info(P) is the greatest element
in P.

• (3) ⇒ (4). Suppose s supports P, i.e., s ∈ P. By downward closure,
{w} ∈ P for all w ∈ s. By Fact ., P is true at each w ∈ s.
Conversely, suppose P is true at each w ∈ s. By Fact ., this means
that {w} ∈ P for all w ∈ s. Suppose now that P has a greatest element,
and call this element smax. Then for all w ∈ s, {w} must be included

6 By a greatest element we mean a state smax ∈ P such that for every s ∈ P, s ⊆ smax.
Notice that if P has a greatest element smax, then smax is the unique maximal element in P.
Conversely, if P has a unique maximal element, then in the finite case (but not in the general
case) this is guaranteed to be the greatest element in P.
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in smax, and so also s ⊆ smax. Since smax ∈ P, it follows by downward
closure that s ∈ P, that is, P is supported at s.

• (4) ⇒ (1). Suppose () holds. Take any w ∈ info(P) = ⋃
P: then

w ∈ t for some t ∈ P. Since P is supported by t, by () P is true at w.
This shows that P is true at all w ∈ info(P): by () it follows that P
is supported by info(P), i.e., that info(P) ∈ P. �

The characterization of non-inquisitive propositions given in () makes
it particularly easy to say whether a proposition is non-inquisitive given
a visualization of it—we just have to check whether it has a greatest ele-
ment. We already established in Fact . that a proposition containing
finitely many elements is inquisitive if and only if it contains at least
two alternatives, and thus non-inquisitive if and only if it contains just
one alternative, i.e., one maximal element. The present characterization
in terms of greatest elements is more general since it applies to infinite
propositions as well.

The characterization of non-inquisitive propositions in () brings out
the fact that such propositions are fully characterized by their truth-
conditional content. This is not the case for inquisitive propositions. For
instance, the proposition depicted in Figure .(b) is true at all possible
worlds—it has tautological truth-conditions—yet it does not coincide
with the tautological proposition in Figure .(d).

Finally, one particular consequence of the characterization of non-
inquisitive propositions given in () is that there is only one proposition
that counts as a tautology, namely ℘(W). After all, tautologies are not
only non-inquisitive but also non-informative. So if P is a tautology,
then we must have that info(P)=W. But then, according to the charac-
terization in (), it must be the case that P=℘(W).

2.4.3 Entailment

Propositions can be ordered both in terms of their informative content
and in terms of their inquisitive content. A proposition P is at least
as informative as another proposition Q if and only if the informative
content of P determines with at least as much precision what the actual
world is like as the informative content of Q, i.e., info(P) ⊆ info(Q).

Definition . (Informative order on propositions)
For any P,Q ∈ P :

• P |�info Q iff info(P) ⊆ info(Q)
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Similarly, we say that P is at least as inquisitive as Q just in case any state
that settles the issue embodied by P also settles the issue embodied by
Q, i.e., if and only if P ⊆ Q.

Definition . (Inquisitive order on propositions)
For any P,Q ∈ P :

• P |�inq Q iff P ⊆ Q

Combining these two orders, we say that P entails Q just in case P is
both at least as informative and at least as inquisitive as Q. But note that
if P ⊆ Q, then it must also automatically hold that info(P) ⊆ info(Q).
So entailment simply amounts to inclusion.

Definition . (Entailment)
For any P,Q ∈ P :

• P |� Q iff P ⊆ Q

Entailment between two propositions can also be characterized
as preservation of support, just like classical entailment can be
characterized as preservation of truth: one proposition entails another
just in case any state that supports the former also supports the latter.

Fact . (Entailment in terms of support)
For any P,Q ∈ P :

• P |� Q iff any state that supports P also supports Q

Entailment forms a partial order on the set of all propositions, i.e., it is a
reflexive, transitive, and anti-symmetric relation. The tautology, ℘(W),
is entailed by any other proposition, i.e., it is the weakest element of the
partial order. On the other hand, the partial order also has a strongest
element, namely {∅}, which entails all other propositions. We refer to
this proposition as the contradictory proposition. We will denote the
tautological and the contradictory proposition as � and ⊥, respectively.

Definition . (Tautology and contradiction)

• � := ℘(W)

• ⊥ := {∅}
Fact . (Partial order)

• |� forms a partial order on P
• For every P ∈ P : ⊥ |� P and P |� �



OUP CORRECTED PROOF – FINAL, //, SPi

 basic notions

2.4.4 Some linguistic examples

The notion of propositions as non-empty, downward closed sets of
information states allows us to capture the informative and inquisitive
content of a wide range of declarative and interrogative sentences in
natural languages in a uniform and transparent way. We provide a brief
illustration here; more elaborate linguistic analyses will be presented in
Chapters –. Imagine a context in which we are dealing with a two-
digits code, where each digit can be either  or . Consider the following
sentences in English.

() a. The code is .
b. The second digit of the code is .
c. If the first digit is , the second digit is also .
d. Is the code ?
e. What is the first digit?
f. What is the second digit?
g. What is the code?
h. If the first digit is , what is the second?

Among these sentences, the first three are declaratives, while the
remaining five are interrogatives. These sentences can all be analysed
uniformly in terms of the notion of propositions developed in this
section. The propositions that they express are shown in Figure .,
where possible worlds are identified with the corresponding codes and
where, as before, only the maximal elements in each proposition—the
alternatives—are displayed.

The propositions expressed by the declaratives in (a)–(c) each
contain a single alternative, which does not cover the entire logical

11 10

01 00

(a) (1a)

11 10

01 00

(b) (1b)

11 10

01 00

(c) (1c)

11 10

01 00

(d) (1d)

11 10

01 00

(e) (1e)

11 10

01 00

(f) (1f)

11 10

01 00

(g) (1g)

11 10

01 00

(h) (1h)

Figure . Propositions expressed by (a)–(h), exemplifying several types of
declarative and interrogative sentences.
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space. Thus, these propositions are informative but not inquisitive. This
captures the fact that, in uttering one of (a)–(c), a speaker provides
some information but does not raise any issue.

While the semantic contents of (a)–(c) could have been captured
just as well by means of the standard notion of a proposition as a
set of possible worlds, the enriched notion of propositions allows us
to analyse also the interrogatives in (d)–(h). These are naturally
taken to express the propositions depicted in Figure .(d)–(h). In each
case, the relevant proposition is inquisitive, since it contains multiple
alternatives, and it is not informative, since these alternatives jointly
cover the entire logical space. This captures the fact that, in uttering
one of (d)–(h), a speaker raises an issue and does not provide any
information.

Let us consider in some more detail the issues expressed by these
questions. The polar question (d) raises an issue which is resolved
by an information state s just in case the information in s implies
that the code is  (s ⊆ {11}) or it implies that the code is not 
(s ⊆ {10,01,00}). The wh-question (e) raises an issue which is resolved
by an information state s just in case the information available in s
determines exactly what the first digit of the code is, i.e., it implies
that the first digit is  (s ⊆ {11,10}) or that the first digit is  (s ⊆
{01,00}). The situation is analogous for the question (f). The wh-
question (g) raises an issue which is resolved by an information
state s just in case the information available in s determines exactly
what the code is, that is, in case s ⊆ {11} or s ⊆ {10} or s ⊆ {01}
or s ⊆ {00}.

Finally, the conditional wh-question (h) raises an issue which is
resolved by an information state s just in case the information available
in s restricted to thoseworldswhere the first digit is  determines exactly
what the second digit is. This condition amounts to s ∩ {11,10} ⊆ {11}
or s ∩ {11,10} ⊆ {01}, and it is easy to see that this holds if and only if
s ⊆ {00,01,11} or s ⊆ {00,01,10}. Thus, the issue expressed by (h) is
one that can be settled either by establishing that if the first digit is ,
the second is also  (s ⊆ {00,01,11}) or by establishing that if the first
digit is , the second is  (s ⊆ {00,01,10}).

The uniform perspective on the semantics of (a)–(h) afforded by
the inquisitive notion of a proposition also gives rise to a uniform
perspective on the entailment relations that hold between these sen-
tences. As far as the declarative sentences (a)–(c) are concerned, we
predict the same entailments that truth-conditional semantics predicts:
(a) entails (b), which in turn entails (c). This is as it should be: in



OUP CORRECTED PROOF – FINAL, //, SPi

 basic notions

the absence of (proper) inquisitive content, entailment still amounts to
comparing informative strength, just like in the classical case.

Now, however, the same notion of entailment can also be used to
compare the questions in (d)–(h): in this case, informative content is
trivial, and entailment will compare inquisitive strength; an entailment
between a pair of questions will hold if the issue expressed by the first
is at least as demanding as the issue expressed by the second. Thus, for
instance, (g) entails any of the other questions: if one establishes what
the code is, one also thereby establishes whether the code is , what the
first digit is, and so on. More generally, the issue expressed by (g) is the
strongest possible issue over the ignorant state.

The analysis also captures that (f) entails (h): if one establishes what
the second digit is, one also thereby establishes what the second digit is
if the first digit is . Another prediction is that the questions in (d) and
(e) are incomparable in terms of inquisitive strength: on the one hand,
the information that the code is not  resolves (d) but not (e); on the
other hand, the information that the first digit is  resolves (e) but not
(d); thus, neither of these questions entails the other.

Finally, notice that entailment can also be used to compare declar-
atives with interrogatives. A declarative entails an interrogative just in
case the information provided by the former suffices to resolve the issue
raised by the latter. Thus, (a), which completely specifies the code,
entails all the questions in (d)–(h); (b), which only specifies the
seconddigit, entails only (f) and (h); and (c), which gives conditional
information about the second digit, entails only (h).

Conversely none of the above questions entails any of the given
declaratives. This is because, in terms of informative content, (d)–(h)
are trivial, while (a)–(c) are not.

2.5 Contexts

In Section .. we reviewed a number of reasons why conversational
contexts should be modeled in a way that does not only take account
of the information that has been established in the conversation so far,
but also of the issues that have been brought up, often referred to as
questions under discussion. This can be done using the notion of issues
introduced above.7 The most straightforward way of doing so would

7 It can also be done—and indeed has been done—using different formal notions
from the literature on questions (e.g., Hamblin, ; Groenendijk and Stokhof, ;
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be to model a context C as a pair 〈infoC, issuesC〉, where infoC is an
information state representing the information that the conversational
participants have commonly established so far, and issuesC a set of
issues which have been raised in the conversation so far and which
the conversational participants would like to see commonly resolved.
That is, while infoC represents the current common ground, the issues
in issuesC determine what kind of common ground the conversational
participants would like to establish, namely one in which every issue in
issuesC is settled. The initial context would then be 〈W,∅〉, consisting
of the trivial information state, which does not rule out any world, and
the empty set of issues. As the conversation progresses, worlds would be
removed from infoC and issues would be added to issuesC.

This way ofmodeling conversational contexts is a good starting point,
but just as in the case of propositions, it is natural to impose certain
constraints on how the informative and the inquisitive component of a
context are related to each other. First, every issue I ∈ issuesC should be
one that is settled only in information states that enhance the current
common ground, infoC. Formally, this means that for every I ∈ issuesC
we should have that

⋃
I ⊆ infoC.8

Second, for every issue I ∈ issuesC, the information available in the
current common ground should ensure that I can be resolved truthfully,
i.e., without discarding the actual world. This means that for every
I ∈ issuesC we should have that infoC ⊆ ⋃

I. To see this, we can follow
the same line of reasoning that we followed when considering proposi-
tions above. Thus, for every I ∈ issuesC, it should hold on the one hand
that

⋃
I ⊆ infoC and on the other hand that infoC ⊆ ⋃

I. Putting the
two together, we get that every I ∈ issuesC should be an issue over
infoC:

⋃
I = infoC.

If we impose this constraint, the considered notion of conversational
contexts is in principle a suitable notion. However, for our current
purposes, it can be simplified. We will do this in two steps. First,
rather than thinking of a context C as a pair 〈infoC, issuesC〉 where
issuesC is a set of issues over infoC, we may just as well think of it

Groenendijk, ; Mascarenhas, ). Chapter  provides a detailed comparison between
the current notion of issues and these previous notions.

8 In a conversation, it is of course possible to raise issues which call into question some of
the propositions which were part of the common ground. However, in order to countenance
such an issue, the common ground first needs to be weakened so as to make the relevant
issue again open for debate. We refer to Ciardelli and Roelofsen () for some discussion
of how the process of dropping a certain belief could be modeled in the inquisitive setting.



OUP CORRECTED PROOF – FINAL, //, SPi

 basic notions

as a pair 〈infoC, issueC〉 where issueC is a single issue over infoC. This
simplification is justified by the fact that any set of issues Ω over a state
s can be merged into a single issue over s:

IΩ := {t ⊆ s | t ∈ J for every J ∈ Ω}
which is settled precisely by those enhancements t ⊆ s that settle all
issues in Ω. Notice that if Ω �= ∅ the issue IΩ amounts to the intersection⋂

Ω of all issues in Ω, whereas if Ω = ∅, IΩ amounts to the trivial issue
℘(s) over s.9,10

So we can think of a context C as a pair 〈infoC, issueC〉, where infoC
is an information state and issueC a single issue over infoC. We can then
take the initial context to be the pair 〈W,℘(W)〉, consisting of the trivial
information state, which does not rule out any world, and the trivial
issue over this state, which is settled even if no information is present yet.

But this representation can be simplified further. After all, since
issueC is an issue over infoC, we always have that infoC = ⋃

issueC.That
is, infoC can always be retrieved from issueC. But then infoC can just as
well be left out of the representation of C. Thus, a context C can simply
be represented as an issue, i.e., a non-empty, downward closed set of
information states. The information commonly established in C is then
embodied by

⋃
C.

Definition . (Contexts)

• A context C is a non-empty, downward closed set of information
states.

• The set of all contexts will be denoted by C.

Definition . (The information available in a context)

• For any context C: info(C) := ⋃
C

9 Recall from footnote  that we are implicitly already assuming a similar simplification
concerning the informative component of a context: we do not keep track of all the separate
pieces of information that have been established in the conversation so far, but rather of the
set of worlds that are compatible with all these pieces of information—formally, this is again
the intersection of all the separately established pieces of information. For certain purposes
it is necessary to keep track of all the separate pieces of information and/or issues that
have been established/raised in a conversation (see, e.g., Roberts, ; Farkas and Bruce,
; Farkas and Roelofsen, ). For our current purposes, however, this would only add
unnecessary complexity.
10 Notice that IΩ is guaranteed to be an issue in the sense of Definition .. In particular,

it is guaranteed to be non-empty, since it always contains the inconsistent information state.
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We have moved from the commonplace notion of a context as a set
of possible worlds—representing the information established so far—
to a richer notion of contexts as non-empty, downward closed sets of
information states—representing both the information established and
the issues raised so far.Wewill now identify some special properties that
contexts may have (§..), some relations that may hold between them
(§..), and some operations that can be performed on them (§..).

2.5.1 Informed and inquisitive contexts

First of all, we say that a context C is informed just in case some
non-trivial information has been established in it, i.e., info(C) �= W.
Otherwise we say that the context is uninformed.

Definition . (Informed and uninformed contexts)

• A context c is informed iff info(C) �= W.
• A context c is uninformed iff info(C) = W.

Similarly, we say that a context C is inquisitive just in case the informa-
tion that has been established so far does not yet settle the issues that
have been raised, i.e., info(C) �∈ C. On the other hand, if all issues are
settled we say that C is indifferent.

Definition . (Inquisitive and indifferent contexts)

• A context C is inquisitive iff info(C) �∈ C.
• A context C is indifferent iff info(C) ∈ C.

There are two special contexts: the initial and the absurd context.
The initial context, C�, is the only context that is both uninformed
and indifferent. The absurd context, C⊥, is one in which the estab-
lished information is inconsistent and therefore rules out all possible
worlds.

Definition . (The initial and the absurd context)

• C� := ℘(W)

• C⊥ := {∅}
Some example contexts are depicted in Figure ., whereas before it
is assumed that W = {w1,w2,w3,w4}. Only the maximal states in each
context are depicted. Since contexts are downward closed, we know that
all enhancements of these maximal states are also part of the context at
hand. The context in (a) is the initial context, ℘(W), which is neither



OUP CORRECTED PROOF – FINAL, //, SPi

 basic notions

(a) –informed
      −inquisitive

(b) –informed
      +inquisitive

(d) +informed
      –inquisitive

(c) +informed
      +inquisitive

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

Figure . Some contexts.

informed nor inquisitive. The one in (b) is still not informed, but it is
inquisitive. In order to resolve the issue that is present in this context,
it either needs to be established that the actual world is one of {w1,w2}
or that it is one of {w3,w4}. The context in (c) is both informed and
inquisitive. In this context it is common ground that the actual world
is one of {w1,w2,w3}, i.e., w4 has been ruled out as a candidate for the
actual world, but in order to resolve the issue that has been raised, more
precise information is needed—namely, it either needs to be established
that the actual world is one of {w1,w2} or that it is one of {w1,w3}.
Finally, the context in (d) is informed, but not inquisitive. It is common
ground in this context that the actual world is one among {w1,w2}, and
no issues have been raised whose resolution would require more precise
information.

2.5.2 Context extension

Two contexts can be compared in terms of the information that has
been established or in terms of the issues that have been raised. One
context C′ is at least as informed as another context C if and only if
info(C′) ⊆ info(C).

Definition . (Informative order on contexts)
For any contexts C,C′:

• C′ ≥info C iff info(C′) ⊆ info(C)

Similarly, we say that C′ is at least as inquisitive as C if and only if every
state that settles all the issues that have been raised in C′ also settles all
the issues that have been raised in C, i.e., if and only if C′ ⊆ C.

Definition . (Inquisitive order on contexts)
For any contexts C,C′:

• C′ ≥inq C iff C′ ⊆ C
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Combining these two orders, we say that C′ is an extension of C just in
case C′ is both at least as informed and at least as inquisitive as C. But
note that if C′ ⊆ C, then itmust also be the case that info(C′) ⊆ info(C).
So context extension simply amounts to inclusion.

Definition . (Extending contexts)
For any contexts C,C′:

• C′ is an extension of C, C′ ≥ C, iff C′ ⊆ C

The extension relation forms a partial order on C, and C� and C⊥
constitute the extremal elements of this partial order: C⊥ is an extension
of every context, and every context is in turn an extension of C�.

Fact . (Partial order)

• ≥ forms a partial order on C
• For every C ∈ C: C⊥ ≥ C and C ≥ C�

In Figure ., the contexts in (b), (c), and (d) are all extensions of the
trivial context in (a). Moreover, (d) is also an extension of (b) and (c),
but neither (b) nor (c) is an extension of the other.

2.5.3 Updating contexts

Recall that in the standard setting,where both contexts andpropositions
are construed as sets of possible worlds, the result of updating a context c
with a proposition p is a new context c[p] which, besides the information
already present in c, also contains the information embodied by p.
That is, a candidate for the actual world is ruled out by c[p] if it was
already ruled out by the information established in the old context c,
or if it is ruled out by the new information embodied by p. Thus,
formally, update amounts to set intersection in the standard setting:
c[p] = c ∩ p.

In inquisitive semantics, we want the result of updating a context
C with a proposition P to be a new context C[P] which incorporates
both the informative content of P and the issue that it embodies. Thus,
on the one hand, a candidate for the actual world must be ruled out by
the information established in C[P] if it was either already ruled out
by the information established in the old context C, or if it is ruled
out by the informative content of P. Formally, this means that we must
have that info(C[P]) = info(C) ∩ info(P). On the other hand, a state
must resolve the issues present in C[P] if and only if it resolves the
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issues already present in C and also the issue embodied by P. Formally,
this means that we must have that C[P] = C ∩ P. Now, note that if the
latter condition is satisfied, then the former condition is automatically
satisfied as well. This means that, just as in the standard setting, update
can simply be defined as set intersection.

Definition . (Updating contexts)
For any C ∈ C and any P ∈ P :

• C[P] := C ∩ P

Some examples of context update are given in Figure .. In the first
case, the initial context is informed but not inquisitive.More specifically,
in this context it is commonly established that the actual world is one
among {w1,w2,w3}, and no issues have been raised that require more
precise information. This context is updated with a proposition which
is informative—embodying the information that the actual world is
one among {w1,w2,w4}—but not inquisitive. The result of the update,
obtained by intersection, is a new context in which it is established that
the actual world is among {w1,w2}, and where there are still no issues

3

Initial context Proposition New context

∩ =

∩ =

∩ =

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

w1 w2

w4w3

Figure . Some update examples.
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that require more precise information. Note that in this case, where
neither the initial context nor the proposition involved in the update
are inquisitive, our framework reproduces exactly the same result that
is obtained in the standard setting. This holds in full generality.

Fact . (Update without inquisitiveness yields standard results)
For any non-inquisitive context C and any non-inquisitive proposition
P, C[P] is a non-inquisitive context as well, and its unique maximal
element is the intersection of the unique maximal element of C and
that of P.

The second example in Figure . is one where the initial context is
the same as in the first example, but now the proposition with which
it is updated is inquisitive, embodying the issue of whether the actual
world is among {w1,w2} or among {w3,w4}. The context resulting from
the update is one in which this issue is present, together with the
information that was already available beforehand. That is, after the
update it is still established that the actual world is among {w1,w2,w3},
as in the initial context, but now there is also an issue as to whether
it is w3 or among {w1,w2}. Note that in order to obtain this result
simply by means of intersection, it is important that both contexts
and propositions are downward closed. Made fully explicit, the initial
context is represented as the following set of information states:

{{w1,w2,w3},{w1,w2},{w1,w3},{w2,w3},{w1},{w2},{w3},∅}
The proposition considered is:

{{w1,w2},{w3,w4},{w1},{w2},{w3},{w4},∅}
Applying intersection to these two sets yields the new context:

{{w1,w2},{w1},{w2},{w3},∅}
whose two maximal elements, {w1,w2} and {w3}, are the ones that are
depicted. This result would not be obtained if we discharged downward
closure and identified contexts and propositions exclusively with their
maximal elements. In that case, the initial context would be represented
as {{w1,w2,w3}}, the proposition at hand as {{w1,w2},{w3,w4}}, and
applying intersection to these two sets would yield the empty set, clearly
not the desired result.

The third example in Figure . is one where the initial context is
already inquisitive. The issue that is present is whether the actual world
is among {w1,w3} or among {w2,w4}. The proposition with which this
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context is updated is the same as in the previous example, embodying
the issue whether the actual world is among {w1,w2} or among {w3,w4}.
The update results in a context in which these two issues have been
merged. In order to resolve the issue that is present in this new context
it is necessary to determine exactly which of w1, w2, w3, and w4 is the
actual world. That is, it is necessary to resolve the issue that was already
present in the initial context, and also the issue that was embodied by
the proposition involved in the update.

Thus,while our update procedure yields standard results in the case of
non-inquisitive contexts and propositions, it also smoothly generalizes
to cases involving inquisitive contexts and/or propositions.

2.6 Summary and pointers to possible refinements

We have now introduced all the notions that we set out to introduce
(recall the diagram in Figure . at the beginning of the chapter). We
adopted the standard notion of information states as sets of possible
worlds. In terms of this familiar notion, we defined a new notion of
issues. We represent an issue as a non-empty, downward closed set of
information states, namely those information states that contain enough
information to resolve the issue. With this crucial notion in place, we
turned to propositions and contexts. We moved from the standard
notion of a proposition as a set of possible worlds, which just allows us to
capture the information that a sentence conveys, to a more fine-grained
notion, which also allows us to capture the issue that a sentence raises.
Similarly, we replaced the standard minimal notion of contexts, which
just captures the information that has been commonly established in
the conversation so far, by a richer notion that also allows us to capture
the issues that have been brought up. Formally, both propositions and
contexts are not modeled as sets of possible worlds in our framework,
but rather, just like issues, as non-empty, downward closed sets of
information states.

Turning to the relations that may hold between the various kinds of
objects, we have seen that entailment between propositions, enhance-
ment of information states, and extension of contexts all amount to set
inclusion, just as in the standard setting, and the same is true for the
newnotion of issue refinement. Support, a relation between information
states and propositions, is no longer defined as inclusion, but rather as
membership. This is a consequence of the fact that an information state
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no longer necessarily supports a proposition if it implies the informative
content of that proposition; rather, it should also contain enough infor-
mation to resolve the issue embodied by the proposition. Finally, context
update still amounts to set intersection. However, since the operation
no longer applies to sets of worlds but rather to sets of information
states, we have seen that it can deal in a uniformwaywith cases involving
purely informative propositions and indifferent contexts, and with cases
involving inquisitive propositions and/or contexts.

We briefly illustrated how the informative and inquisitive content
of various types of sentences in English can be captured using the
proposed notion of propositions. There are also several aspects of
meaning that are beyond the scope of the basic inquisitive semantics
framework that we are presenting here. However, the framework is set
up in such a way that it allows for several natural refinements. We
briefly mention four such refinements, with references to other work
for further detail.

First, instead of the static viewonmeaning thatwe have assumedhere,
one may also adopt a dynamic view on meaning (see, e.g., Kamp, ;
Heim, ; Groenendijk and Stokhof, ; Veltman, ). Under
this view, the meaning of a sentence is conceived of as its context change
potential, modeled formally as a function F that maps any context C
to a new context F(C), which would result from uttering the given
sentence in C. This new context F(C) need not necessarily be obtained
by intersecting C with the proposition P expressed by the sentence. In
fact, on a dynamic view, there is no need to associate sentences with
propositions at all. This allows for greater flexibility, which has led to
important advances in the treatment of various linguistic phenomena,
including anaphora and presuppositions. While we have taken a static
perspective here, the formal notions thatwe have introduced, in particu-
lar the notion of context, also forma suitable starting point for a dynamic
inquisitive semantics (see Ciardelli et al., , a, for initial work
in this direction, though much remains to be done).

Second, rather than starting out with the commonplace notion of
information states as sets of possible worlds, which imposes a very
specific (Boolean) structure on the space of information states, we
may also work with other notions of information states, giving rise to
information spaces with different structures. This strategy can be used,
in particular, to implement inquisitive semantics in a context where
the underlying view of information is non-classical (Punčochář, ;
Ciardelli et al., b).
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Third, in order to model more than just informative and inquisitive
content we may further enrich our notion of propositions and/or con-
texts, either by explicitly encoding additional dimensions of meaning
(see, e.g., Roelofsen and Farkas, ; AnderBois, b), or by weak-
ening the downward closure constraint that we have placed on contexts
and propositions here (Ciardelli et al., ; Punčochář, ; Groe-
nendijk and Roelofsen, ). Such amendments lead to richer notions
of meaning, and further broaden the range of linguistic phenomena
that can be captured in the framework. However, these refinements also
involve certain complications that do not arise in the basic framework
presented here.

Finally, in addition to the basic, incremental notion of context update
discussed in this chapter—where contexts are always enhanced by
adding more information or more issues—one might consider more
complex and realistic models of conversation, allowing conversational
participants to reject a given proposal or resist it in less drastic ways
(Bledin and Rawlins, ), as well as to retract previous claims and
challenge some of the information in the common ground.

2.7 Exercises

Exercise 2.1 Contexts

1. Give a representation of the following contexts:

(a) it is established that Bill is going to the party, and there is an issue as to
whether Mary is going as well;

(b) it is established that if Bill goes to the party, then Mary will go as well, and
there is an issue as to whether Bill is going;

(c) it is established that only one of Bill and Mary is going to the party, and
there is an issue as to which of them is going.

2. For each of these contexts, determine whether it is an extension of the
others.

Exercise 2.2 Propositions

1. Give a representation of the propositions encoding the following infor-
mation and issues:

(a) Information: that Bill is only going to the party if Mary is going.
Issue: whether Mary is going.
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(b) Information: none.
Issue: which among Bill and Mary are going to the party (only Bill, only
Mary, both, or neither).

(c) Information: that only Mary is going to the party, not Bill.
Issue: none.

2. For each of the above propositions, determine whether it entails the
others.

Exercise 2.3 Update

1. Determine the result of updating each of the contexts in Exercise 2.1 with
each of the propositions in Exercise 2.2.

2. Prove Fact 2.36, showing that the notion of update as intersection
yields standard results when applied to non-inquisitive contexts and
propositions.

Exercise 2.4 Informational and inquisitive triviality

Let P and P′ be two non-inquisitive propositions, and Q and Q′ two non-
informative propositions.

1. Is P ∩ P′ guaranteed to be non-inquisitive? If so, give a proof; if not, give a
counterexample.

2. Is Q ∩ Q′ guaranteed to be non-informative? If so, give a proof; if not, give
a counterexample.

3. Is P ∩ Q either guaranteed to be non-inquisitive or to be non-informative?
If so, give a proof; if not, give a counterexample.
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Basic operations on
propositions

Now that we have introduced a new notion of propositions, it is natural
to consider what the basic operations are that could be performed on
such propositions. In the classical setting, where propositions are simple
sets of worlds, we can form the intersection or the union of two proposi-
tions, or the complement of a single proposition. These operations play
a central role in logic and in semantic analyses of natural languages:
conjunction anddisjunction are standardly taken to express intersection
and union, respectively, while negation is standardly taken to express
complementation. Do these operations have natural counterparts in
the inquisitive setting, where propositions are no longer simple sets
of worlds?
We will address this question in Section ., adopting an algebraic

perspective. We will find that the basic algebraic operations on classical
propositions can indeed be applied to inquisitive propositions as well.
This result facilitates a very natural way of dealing with connectives
and quantifiers. In particular, in Chapter  it will allow us to define
an inquisitive semantics for the language of first-order logic which is,
from an algebraic perspective, the exact counterpart of classical first-
order logic in the inquisitive setting. In Chapter  we will suggest
that the algebraic operations are also crucial for the semantic analysis
of connectives in natural languages. In particular, they will yield a
uniform account of conjunction, disjunction, and conditionalization
of statements and questions, as illustrated by examples ()–() below,
repeated from Section ...

() a. Peter rented a car and Mary booked a hotel.
b. Where can we rent a car, and which hotel should we take?

() a. Peter rented a car or he borrowed one.
b. Where can we rent a car, or who has one that we could borrow?

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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() a. If Bill asks Mary out, she will accept.
b. If Bill asks Mary out, will she accept?

Returning now to the roadmap for the present chapter, after having
discussed the basic algebraic operations on inquisitive propositions in
Section ., wewill consider two other natural operations in Section .,
namely ones that trivialize the informative or the inquisitive content,
respectively, of any given proposition. For reasons that will become
clear below, we refer to such operators as projection operators. One
projection operator turns any proposition into a corresponding non-
inquisitive proposition, while the other turns any proposition into a
corresponding non-informative proposition. Clearly, these operations
do not have a counterpart in the classical setting, where propositions
capture only informative content to begin with; but in the inquisitive
setting they naturally arise, and we will suggest that they also have an
important role to play in the semantic analysis of natural languages.
More specifically, in Chapter  we will use these projection operators
to capture the semantic contribution of declarative and interrogative
complementizers.

3.1 Algebraic operations

In this section we will identify the basic algebraic operations that can be
applied to inquisitive propositions. To illustrate our approach, we will
first briefly review the algebraic perspective on classical logic.

3.1.1 The algebraic perspective on classical logic

In the classical setting a proposition P is simply a set of possible worlds.
Let us denote the set of all classical propositions asPcl. The proposition
expressed by a sentence can be thought of as carving out a certain region
in the logical space—the set of all possible worlds—and in asserting a
sentence, a speaker is taken to provide the information that the actual
world is located within this region. One proposition P entails another
proposition Q, P |� Q, just in case P ⊆ Q, which means that P carves
out a smaller region in the logical space than Q does, thereby encoding
more information as to what the actual world is like. Entailment forms
a partial order on the set of all classical propositions, i.e., it is a reflexive,
transitive, and anti-symmetric relation. In Figure . we have depicted
the set of all classical propositions, assuming that the logical space



OUP CORRECTED PROOF – FINAL, //, SPi

. algebraic operations 

Figure . The set of all propositions in classical semantics if the logical space consists
of two possible worlds (on the left) or three possible worlds (on the right). Arrows indicate
entailment.

consists of two worlds (the diagram on the left) or of three worlds (the
diagram on the right). In each case, the arrows indicate entailment.
Now, given a partially ordered set, we can ask what natural operations

can be defined on it—that is, what algebraic structure it has. The set of
classical propositions ordered by entailment, 〈Pcl, |�〉, forms a so-called
Heyting algebra, which comes with four basic operations:meet, join, rel-
ative pseudo-complementation and absolute pseudo-complementation.1
To illustrate these operations, we will make use of the diagrams in

Figure .. The grid in each diagram represents a space of propositions
ordered by entailment: each node in the grid is a proposition, and one
proposition entails another just in case there is a path from the first to
the second along the grid such that each step of the path goes up. For
instance, in Figure .(a) P entails Q, because there is a path going up
from P to Q, but P does not entail R because any path from P to R must
contain at least one step that goes down.

1 In fact, as we will discuss, the space of classical propositions ordered by entailment is a
special kind ofHeyting algebra, namely aBoolean algebra. For us, however, themore general
fact that it forms a Heyting algebra will be crucial, because we will find that in inquisitive
semantics the space of propositions no longer forms a Boolean algebra, but does still form
a Heyting algebra. This will allow us to construe the basic logical operators in inquisitive
semantics as the exact counterparts of those in classical logic.
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Q

Q
R

P ∪ Q

P ⇒ Q

P ∩ Q

P
P P

(a) illustrating entailment (b) join and meet (c) relative pseudo-complement

QQ

Figure . Visualization of basic algebraic operations.

Themeet ofP andQ is the greatest lower bound ofP andQwith respect
to entailment, i.e., the weakest proposition that entails both P and Q.
As indicated in Figure .(b), this greatest lower bound amounts to the
intersection of the two propositions: P ∩ Q. More generally, the meet of
a (possibly infinite) set of propositions Σ amounts to the intersection of
all the propositions in that set:

⋂
Σ={w ∈ W | w ∈ P for all P ∈ Σ}

If Σ is empty, then
⋂
Σ is the proposition consisting of all possible

worlds, W. This is the weakest of all propositions, since it is entailed
by all other propositions. It is denoted as 
. On the other hand, if Σ is
the set of all propositions, then

⋂
Σ is the empty proposition, ∅. This is

the strongest of all propositions, since it entails all other propositions. It
is denoted as ⊥.
The join of two propositions P and Q is the least upper bound of

P and Q with respect to entailment, i.e., the strongest proposition that
is entailed by both P and Q. As indicated in Figure .(b), this least
upper bound amounts to the union of the two propositions: P ∪ Q. More
generally, the join of a (possibly infinite) set of propositions Σ amounts
to the union of all the propositions in that set:

⋃
Σ={w ∈ W | w ∈ P for some P ∈ Σ}

If Σ is empty, then
⋃
Σ is the empty proposition,⊥. On the other hand,

if if Σ is the set of all propositions, then
⋃
Σ is the proposition consisting

of all possible worlds, 
.
The existence of meets and joins for arbitrary sets of propositions

implies that 〈Pcl, |�〉 forms a complete lattice, bounded by ⊥ and 
 as
its strongest and weakest elements, respectively.
Now let us turn to relative and absolute pseudo-complementation.

The pseudo-complement of a proposition P relative to another
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proposition Q, which we will denote as P ⇒ Q, can be thought of intu-
itively as the difference between P and Q: it is the weakest proposition R
such that P and R together contain at least as much information as Q.
More formally, it is the weakest proposition R such that P ∩ R |� Q.
To illustrate this notion, consider the propositions P and Q in Fig-
ure .(c). How do we find the pseudo-complement of P relative to Q?
The first step is to determine the set of all propositions R which
are such that P ∩ R |� Q. This is the shaded area in Figure .(c).
Indeed, if we take the meet of P with any proposition in this area,
we obtain a proposition that entails Q. The second step is to select the
weakest element of this set, i.e., that proposition which is entailed by all
other propositions in the set. In our diagrams, one proposition entails
another if there is a path going up from the first to the second. This
means that the weakest element of a set of propositions is the topmost
one. Thus, the topmost element of the shaded area in Figure .(c)
is the pseudo-complement of P relative to Q, which is denoted
as P ⇒ Q.
It can be shown that P ⇒ Q always consists of all possible worlds

which, if contained in P, are also contained in Q:

P ⇒ Q = {w | if w ∈ P then w ∈ Q as well}
Absolute pseudo-complementation is a limit case of its relative coun-
terpart. The absolute pseudo-complement of a proposition P, which we
will denote as P*, is the weakest proposition R such that P and R are
incompatible, in the sense that P and R together yield a contradiction.
More formally, P* is the weakest proposition R such that P ∩ R = ⊥.
This means that P* amounts to P ⇒ ⊥, the pseudo complement of P
relative to ⊥. Within the space of classical propositions, the pseudo-
complement of P is simply the set-theoretic complement of P:

P*= {w | w ∈ P}
In aHeyting algebra it always holds, by definition ofP*, thatP ∩ P*= ⊥.
In the specific case of 〈Pcl, |�〉, we also always have thatP ∪ P*= 
.This
means that in this particular setting,P* is in fact theBoolean complement
of P, and that 〈Pcl, |�〉 forms a Boolean algebra, a special kind of Heyting
algebra.
Thus, classical propositions are amenable to certain basic algebraic

operations. Classical first-order logic is obtained by associating these
operations with the connectives and the quantifiers. Indeed, the usual
definition of truth can be reformulated as a recursive definition of the



OUP CORRECTED PROOF – FINAL, //, SPi

 basic operations on propositions

set |φ| of worlds in which φ is true (given a domain D of individuals).
The inductive clauses then run as follows:

• |¬φ| = |φ|*
• |φ ∧ ψ| = |φ| ∩ |ψ|
• |φ ∨ ψ| = |φ| ∪ |ψ|
• |φ → ψ| = |φ| ⇒ |ψ|
• |∀x.φ(x)| = ⋂

d∈D |φ(d)|
• |∃x.φ(x)| = ⋃

d∈D |φ(d)|

Negation expresses absolute pseudo-complementation; conjunction
and disjunction express binary meet and join, respectively; implication
expresses relative pseudo-complementation; and quantified formulas,
∀x.φ and ∃x.φ, express the infinitary meet and join, respectively, of
{|φ(d)| | d ∈ D}.
Notice that everything started with a notion of propositions and a

natural entailment order on these propositions. The entailment order
induces certain basic operations on propositions, and classical first-
order logic is obtained by associating these basic semantic operations
with the connectives and quantifiers.

3.1.2 Algebraic operations on inquisitive propositions

Recall that in inquisitive semantics propositions are not sets of worlds,
but rather sets of information states, non-empty and downward closed.
In this setting, one proposition P entails another proposition Q just
in case P is at least as informative and at least as inquisitive as Q.
We have seen that this condition is satisfied just in case P ⊆ Q. So
technically entailment still amounts to inclusion, just like in classical
logic, though now it encompasses both informative and inquisitive
strength. In Figure . we have depicted the set of all propositions in a
logical space consisting of two possibleworlds, and in Figure .we have
done the same for a logical space consisting of three possible worlds. As
before, arrows indicate entailment.
Now let us consider the algebraic structure of the space of all inquis-

itive propositions ordered by entailment, 〈P , |�〉, in order to determine
which operations could be associated with the connectives and the
quantifiers in an inquisitive semantics for the language of first-order
logic.What kind of algebraic operations can be performedon inquisitive
propositions? Does every set of propositions still have a unique greatest



OUP CORRECTED PROOF – FINAL, //, SPi

. algebraic operations 

Figure . The set of all inquisitive semantics propositions if the logical space consists
of two possible worlds. Arrows indicate entailment.

lower bound (meet) and a unique least upper bound ( join) with regard
to entailment? Does every proposition still have a pseudo-complement
relative to any other proposition?
It turns out that these questions can be answered in the positive:

〈P , |�〉 forms a completeHeyting algebra, just like 〈Pcl, |�〉. First, any set
of propositions Σ⊆ P still has a meet and a join, which can moreover
still be characterized in terms of intersection and union.

Fact . (Meet)
Any set of propositions Σ⊆ P has a meet, which amounts to:

⋂
Σ= {s | s ∈ P for all P ∈ Σ}

Fact . (Join)
Any set of propositions Σ⊆ P has a join, which amounts to:

⋃
Σ= {s | s ∈ P for some P ∈ Σ}

if Σ = ∅, and to {∅} otherwise.
The existence of meets and joins for arbitrary sets of propositions
implies that 〈P ,⊆〉 forms a complete lattice. This lattice has a unique
strongest element,⊥ := {∅}, and a uniqueweakest element,
 := ℘(W).
Furthermore, just as in the classical setting, for every two proposi-

tions P and Q, there is a unique weakest proposition R such that P ∩ R
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Figure . The set of all inquisitive semantics propositions if the logical space consists
of three possible worlds. Arrows indicate entailment.
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entails Q. Recall that this proposition, the pseudo-complement of P
relative to Q, can be thought of intuitively as the difference between
P and Q.

Fact . (Relative pseudo-complement)
For any P,Q ∈ P , the pseudo-complement of P relative toQ amounts to:

P ⇒ Q := {s | for every t ⊆ s, if t ∈ P then t ∈ Q}
Theexistence of relative pseudo-complements implies that 〈P ,⊆〉 forms
a Heyting algebra. Finally, recall that the absolute pseudo-complement
of a proposition P, denoted P*, is defined as the pseudo-complement of
P relative to ⊥. We saw that in the classical setting, P* amounts to the
set of worlds that are not in P. In the inquisitive setting, P* amounts to
the set of states that are incompatible with any state in P.

Fact . (Absolute pseudo-complement)
For any proposition P ∈ P :

P*= {s | s ∩ t = ∅ for all t ∈ P}
A state s is incompatible with all states in P just in case it is incompatible
with the union

⋃
P of all these states, which amounts to info(P). In turn,

s is incompatible with info(P) just in case s ⊆ info(P). This leads to the
following alternative characterization of P*.

Fact . (Absolute pseudo-complements, alternative characterization)
For any proposition P ∈ P :

P*= ℘(info(P))

This characterization shows in particular that the absolute pseudo-
complement of any given proposition P always contains a single alter-
native, info(P), and is therefore never inquisitive.
The algebraic operations that we have identified are exactly the ones

that are present in the classical setting. One notable difference, however,
is that the absolute pseudo-complement of an inquisitive proposition is
not always its Boolean complement. In fact, most inquisitive proposi-
tions do not have a Boolean complement at all. To see this, suppose that
P and Q are Boolean complements. This means that:

(i) P ∩ Q = ⊥
(ii) P ∪ Q = 
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Since 
 = ℘(W), condition (ii) can only be fulfilled if either P or Q
contains W. Suppose W ∈ P. Then, since P is downward closed,
P=℘(W) = 
. But then, in order to satisfy condition (i), we must
have that Q={∅}=⊥. So the only two elements of our algebra that
have a Boolean complement are 
 and ⊥. Hence, the space 〈P , |�〉 of
inquisitive propositions does not form a Boolean algebra, unlike the
space 〈Pcl, |�〉 of classical propositions.
This difference has repercussions for the behavior of the logical

system that we will specify, in particular for negation (for instance,
the law of double negation will no longer hold). However, the sim-
ilarity between 〈P , |�〉 and 〈Pcl, |�〉 that we identified, i.e., the fact
that both form a Heyting algebra, is much more important for our
current purposes. In particular, the existence ofmeets, joins, and relative
and absolute pseudo-complements in 〈P , |�〉 will allow us to specify
an inquisitive semantics for the language of first-order logic which is,
from an algebraic perspective, the exact counterpart of classical first-
order logic in the inquisitive setting. We will turn to this in Chap-
ter . Before that, however, we will consider two additional operations
that are particularly natural to perform on propositions in inquisitive
semantics.

3.2 Projection operators

We noted in Section .. that propositions in inquisitive semantics
can be seen as inhabiting a two dimensional space, with non-inquisitive
propositions living on one axis andnon-informative propositions on the
other. Given this picture, it is natural to consider whether it is possible
to define general projection operators on this space, i.e., operators that
map any given proposition to a corresponding proposition on one of the
axes, trivializing either its informative or its inquisitive content. We will
refer to such operators as info-cancelling and issue-cancelling projection
operators.
Let us first consider more precisely what would be required for an

operator π to qualify as an issue-cancelling projection operator. Such an
operator should project a proposition onto the axis inhabited by non-
inquisitive propositions. This means that, when applied to a proposi-
tion P, π should (i) trivialize the inquisitive content of P, i.e., turn P into
a non-inquisitive proposition, and (ii) preserve the informative content
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of P, i.e., yield a proposition that has the same informative content as P.
This leads us to the following requirements.

Definition . (Requirements on issue-cancelling projection operators)
An operator π qualifies as an issue-cancelling projection operator just
in case for any P ∈ P :
• πP is non-inquisitive
• info(πP) = info(P)

Now, in Section .. we saw that if P is non-inquisitive, then we always
have that P = ℘(info(P)). This means that in order to satisfy the above
requirements, πP must amount to ℘(info(P)) for any proposition P.
Thus, the semantic behavior of π is uniquely determined by the given
requirements.

Fact . (Unique characterization)
An operator π qualifies as an issue-cancelling projection operator just
in case for any P ∈ P :
• πP = ℘(info(P))

Now let us consider which requirements π should fulfill in order to
qualify as an info-cancelling projection operator. Such an operator
should project a proposition onto the axis inhabited by non-informative
propositions. For this, we should require that π trivializes the infor-
mative content of the proposition to which it applies, i.e., πP should
always be non-informative. But, given this basic requirement, we cannot
further demand that π always preserve the inquisitive content of P.
For, if P and πP do not have the same informative content, then their
inquisitive content will differ as well.
Fortunately, there is a natural way to overcome this obstacle. Namely,

what we can require is that π preserve the decision set of P, i.e., the set
of states that either settle the issue embodied by P, or contradict the
informative content of P and thereby establish that it is impossible to
settle the issue altogether.

Definition . (Contradicting and deciding on a proposition)
Let s be an information state and P a proposition. Then we say that:

• s contradicts P just in case s ∩ info(P) = ∅;
• s decides on P just in case s either supports or contradicts P.
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Definition . (Decision set)
The decision set D(P) of a proposition P is the set of states that decide
on P.

The decision set of a proposition can be characterized explicitly as
follows.

Fact . (Decision set explicated)
For any proposition P:

• D(P) = P ∪ P*

Now, what we require of an info-cancelling projection operator π is that,
besides trivializing the informative content of the proposition it applies
to, it preserves the proposition’s decision set. This is a requirement that
can in principle be met, since P and πP can very well have the same
decision set even if they differ in informative content.

Definition . (Requirements on info-cancelling projection operators)
An operator π qualifies as an info-cancelling projection operator just in
case for any P ∈ P :
• πP is non-informative;
• D(πP) = D(P).

Now suppose that π fulfils these requirements. Then for any P,
πP is non-informative, which means that info(πP) = W. But then
(πP)*= ℘(info(P)) = ℘(W) = ℘(∅) = {∅}, and therefore D(πP) =
(πP) ∪ (πP)*= πP. But since π should preserve the decision set of P, we
also have that D(πP) = D(P) = P ∪ P*. Putting these facts together, we
obtain that πP = P ∪ P*. Thus, the requirements we placed on π again
uniquely determine its behavior.

Fact . (Unique characterization)
An operator π qualifies as an info-cancelling projection operator just in
case for any P ∈ P :
• πP = P ∪ P*

Thus, by spelling out the natural requirements on issue-cancelling
and info-cancelling projection operators we have arrived at a unique
characterization of these operators, which we will denote as ! and ?,
respectively.
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P = !P ∩ ?P

Figure . Projection operators.

Definition . (Projection operators)
For any proposition P:

• !P := ℘(info(P))

• ?P := P ∪ P*

As depicted in Figure ., the projection operators ! and ? turn any
propositionP into an non-inquisitive proposition !Pwhich has the same
informative content as P, and a non-informative proposition ?P which
has the same decision set as P. P itself can always be reconstructed as
the meet of these two ‘pure components’.

Fact . (Division)
For any proposition P:

• P = !P ∩ ?P

Finally, let us consider how ? and ! are related to the algebraic oper-
ations identified in Section .. Notice that ?P is already explicitly
characterized in terms of the algebraic operations: it amounts to the
join of P and its absolute pseudo-complement P*. It turns out that
!P can also be characterized in terms of pseudo-complementation.
Namely, for any proposition P, !P amounts to P**, i.e., to the proposition
that results from two successive applications of the absolute pseudo-
complementation operator to P.

Fact . (Projection operators and algebraic operators)
For any proposition P:

• !P = P**
• ?P = P ∪ P*
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This concludes our discussion of the basic semantic operations that
can be performed on propositions in inquisitive semantics. We end
this chapter with a brief remark on the linguistic relevance of these
operations, which will be further substantiated in later chapters.

3.3 Linguistic relevance

Since the algebraic operations on propositions that are associated with
the connectives and quantifiers in classical logic are so fundamental,
it is to be expected that natural languages will generally have ways
to express them as well; just like one would expect, for instance, that
basic arithmetic operations like addition and substraction are generally
expressible in natural languages. This makes the algebraic operations
discussed here of special interest from a linguistic point of view.
Similar considerations apply to the projection operators. Again, since

these semantic operators are so fundamental, it is to be expected that
they too are expressible in many natural languages. More specifically,
it seems plausible to hypothesize that they are expressed in English and
many other languages by declarative and interrogative clause typemark-
ers. For instance, on a first approximation, we may hypothesize that
declarative clause type marking in English invokes the issue-cancelling
projection operator ‘!’, and interrogative clause type marking the info-
cancelling projection operator ‘?’. A more detailed account of clause
type marking in English in terms of the projection operators will be
presented in Chapter .

3.4 Exercises

Exercise 3.1 Working through some examples

Consider the four propositions depicted in Figure 2.4.

1. Determine the absolute pseudo-complement of each of these proposi-
tions.

2. Determine the meet and the join of every pair among these propositions.

3. Determine the outcome of applying the projection operators to each of
these propositions.
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Exercise 3.2 Meets and joins

Prove Facts 3.1 and 3.2. That is, show that every set of propositions in
inquisitive semantics has a meet and a join with respect to entailment.

Exercise 3.3 Relative pseudo-complementation

Prove Fact 3.3. That is, show that in inquisitive semantics every proposition
P has a pseudo-complement relative to any other proposition Q, which
amounts to P ⇒ Q = {s | for every t ⊆ s, if t ∈ P then t ∈ Q}.

Exercise 3.4 Projection operators

Suppose we apply both projection operators to a given sentence, one after
the other. Does it matter in which order we do this? That is, does the following
hold for every proposition P:

?!P = !?P

Exercise 3.5 Projection operators

Show that the projection operators are idempotent, meaning that for every
proposition P we have !!P = !P and ??P = ?P.

Exercise 3.6 Division

Prove Fact 3.14. I.e., show that for every proposition P we have P = !P ∩ ?P.
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A first-order inquisitive
semantics

In this chapter we define an inquisitive semantics for the language of
first-order logic,making use of the operations onpropositions identified
in the previous chapter. We will highlight some of the main features of
the system, and illustrate it with a range of examples. In the following
chapters we will use this logical framework for the semantic analysis of
a number of linguistic constructions.

4.1 Logical language and models

We will consider a standard first-order languageL, based on a signature
that consists of a set of function symbolsFL and a set of relation symbols
RL, each with an associated arity n ≥ 0. As usual, 0-place function
symbols will be referred to as individual constants. We assume that the
language has ¬, ∨, ∧, →, ∃, and ∀ as its basic logical constants.

We will interpret L with respect to first-order information models.
Such models consist of a set of possible worlds W, each associated with
a standard first-order model. A standard first-order model, in turn,
consists of a domain of individuals D and an interpretation function I
which maps any function symbol in FL to a function over D and every
relation symbol in RL to a relation over D.

In order to avoid certain issues arising from quantification across
different possible worlds, we will restrict our attention to rigid first-
order information models, in which the domain of individuals as well as
the interpretation of function symbols is fixed across worlds. The only
thing thatmay differ fromworld toworld is the interpretation of relation
symbols.

Definition . (Rigid first-order information models)
A rigid first-order information model for L is a triple 〈W,D, I〉, where:

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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• W is a set, whose elements are referred to as possible worlds;
• D is a non-empty set, whose elements are referred to as individuals;
• I is a map that associates every w ∈ W with a first-order structure

Iw s.t.:
– for every w ∈ W, the domain of Iw is D;
– for every n-ary function symbol f ∈ FL, Iw( f ) : Dn → D;

with the condition that for every w,v ∈ W, Iw( f ) = Iv( f );
– for every n-ary relation symbol R ∈ RL, Iw(R) ⊆ Dn.

Unless specified otherwise, we will assume a fixed model throughout
our discussion and we will often omit explicit reference to it. So, while
in the previous chapters, where we were not yet considering a concrete
logical language, we simply assumed a set of possible worlds W as our
logical space, we now consider a triple 〈W,D, I〉, where W is still a set
of possible worlds, and the other elements specify the interpretation of
the function symbols and relation symbols in our language with regard
to these possible worlds.

In order not to have assignments in the way, we will assume that for
any d ∈ D, our language L contains an individual constant d′ such that
Iw(d′) = d for all w ∈ W: if this is not the case, we simply expand the
language by adding new constants, and we expand the map I accord-
ingly. In this waywe canwork onlywith sentences, i.e., formulas without
free variables, and we can do without assignments altogether. This move
is of course not essential, but it simplifies notation and terminology
considerably.

Finally, it will be convenient to have a notation for the set of worlds in
our model in which a given sentence φ is classically true, in the standard
sense.

Definition . (Truth-set)
For any φ ∈ L, the set of worlds where φ is classically true is called the
truth-set of φ and denoted as |φ|. In particular, for an atomic formula
R(t1, . . . , tn):1

|R(t1, . . . , tn)| = {w ∈ W | 〈Iw(t1), . . . , Iw(tn)〉 ∈ Iw(R)}
1 The interpretation Iw(t) of a term t is defined inductively as usual: if t is an individual

constant c, then Iw(t) = Iw(c). If t = f (t1, . . . , tn), then Iw(t) = Iw(f )(Iw(t1), . . . , Iw(tn)).
Notice that, since we are working only with formulas without free variables, we do not need
to consider the case that t is a variable.
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4.2 Semantics

We are now ready to recursively associate each sentence φ of our first-
order language with an inquisitive proposition [φ]. We will take atomic
sentences to behave classically: R(t1, . . . , tn) provides the information
that the relation R holds for the individuals t1, . . . , tn, and does not
raise any issue. Thus, R(t1, . . . , tn) will have as its informative content
the set |R(t1, . . . , tn)|, and it will not be inquisitive. By Fact ., this
implies that [R(t1, . . . , tn)] must amount to ℘(|R(t1, . . . , tn)|). As for the
connectives and quantifiers, we will take them to express the basic
algebraic operations that we identified in Section ..

Definition . (First-order inquisitive semantics)

. [R(t1, . . . , tn)] := ℘(|R(t1, . . . , tn)|)
. [¬φ] := [φ]∗
. [φ ∧ ψ] := [φ]∩ [ψ]
. [φ ∨ ψ] := [φ]∪ [ψ]
. [φ → ψ] := [φ] ⇒ [ψ]
. [∀x.φ(x)] := ⋂

d∈D [φ(d′)]
. [∃x.φ(x)] := ⋃

d∈D [φ(d′)]

We refer to this first-order system as InqB, where B stands for basic.
We refer to [φ] as the proposition expressed by φ. The clauses of InqB
constitute a proper inquisitive semantics in the sense that they indeed
associate every sentence φ ∈ Lwith a proposition in the sense of inquis-
itive semantics, i.e., a non-empty downward closed set of information
states.

Fact . (Suitability of the semantics)
For any φ ∈ L, [φ] ∈ P .

All the notions that were introduced in Chapter  with reference to
propositions can now be formulated with reference to the sentences
in our logical language. For instance, we define the informative content
of a sentence φ, info(φ), as the informative content of the proposition
it expresses, info([φ]). Similarly, the set of alternatives induced by φ,
alt(φ), is the set of alternatives in alt([φ]); and the issue raised by φ is
the issue embodied by [φ], which is resolved by an information state s
just in case s ∈ [φ].
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Definition . (Informative content, alternatives, and issues)
For any φ ∈ L:

• info(φ) := ⋃
[φ]

• alt(φ) := alt([φ])
• The issue raised by φ is one that is resolved by a state s just in case

s ∈ [φ].

Moreover, we say that one sentence φ entails another sentence ψ, φ |� ψ,
just in case the proposition expressed by φ entails the proposition
expressed by ψ, and we say that φ and ψ are equivalent, φ ≡ ψ, just in
case they express exactly the same proposition.2

Definition . (Entailment and equivalence)
For any φ,ψ ∈ L:

• φ |� ψ just in case [φ] ⊆ [ψ]
• φ ≡ ψ just in case [φ] = [ψ]

Finally, we say that φ is true in a world w in case the proposition it
expresses is true in w, i.e., w ∈ info(φ); and we say that φ is supported
by an information state s, s |� φ, in case the proposition it expresses is
supported by s, i.e., s ∈ [φ].

Definition . (Truth and support)
For any φ ∈ L:

• φ is true in w if and only if w ∈ info(φ)

• φ is supported by s, notation s |� φ, if and only if s ∈ [φ]

Notice that, just like the proposition expressed by φ in classical logic
is the set of worlds where φ is true, the proposition expressed by φ in
InqB is the set of states where φ is supported. As a consequence of this
fact, InqB is completely characterized by the support conditions of the
sentences in the language. These support conditions are as follows.

Fact . (Support conditions)

. s |� R(t1, . . . , tn) iff s ⊆ |R(t1, . . . , tn)|
. s |� ¬φ iff ∀t ⊆ s : if t �= ∅ then t �|� φ
. s |� φ ∧ ψ iff s |� φ and s |� ψ

2 Notice that the notions of entailment and equivalence given here are semantic notions
which assume a given informationmodel; as such, they incorporate facts that are encoded by
the model as analytical, i.e., true in all possible worlds, but which are not purely logical. The
purely logical notion of entailment—studied in inquisitive logic—is obtained by universally
quantifying over all information models.
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. s |� φ ∨ ψ iff s |� φ or s |� ψ
. s |� φ → ψ iff ∀t ⊆ s : if t |� φ then t |� ψ
. s |� ∀xφ(x) iff s |� φ(d′) for all d ∈ D
. s |� ∃xφ(x) iff s |� φ(d′) for some d ∈ D

In much work on inquisitive semantics (Ciardelli, ; Groenendijk
and Roelofsen, ; Ciardelli and Roelofsen, ; Ciardelli et al.,
; Ciardelli, d, ), InqB is in fact characterized directly in
terms of support conditions. The proposition expressed by a sentence
is then defined in terms of these support conditions, i.e., as the set
of all states that support the sentence. An advantage of this approach
is that it parallels the usual presentation of classical logic, with truth
conditions as the basic notion. Another advantage, at least for certain
purposes, is that it allows for a very efficient presentation of the system,
bypassing many of the more abstract notions that we introduced here
before even starting to consider a concrete logical language. In this
book, the support-based perspective will play a key role in Chapter ,
allowing for a perspicuous presentation of the inquisitive account of
propositional attitudes.

There are two main reasons why we have chosen a less direct route
here, following Ciardelli et al. (a) and Roelofsen (a). First,
the current presentation of the new inquisitive notion of propositions
(Chapter ) brings out very explicitly how the standard information-
centred notion of semantic content is enriched, why the new notion is
shaped exactly the way it is, and that it naturally allows for various fur-
ther extensions and refinements (see the references in section . as well
as in the Further Reading section.) Second, the algebraic perspective
adopted here (Chapter ) makes it possible to motivate the treatment of
the connectives and quantifiers in InqB in a solid way, relying only on
the structure of our new space of propositions. Moreover, it shows that
InqB is, in a very precise sense, the exact counterpart of classical logic
in the inquisitive setting. Thus, unlike a support-based exposition, this
mode of presentation flows directly from the abstract motivations and
conceptual underpinnings of the system to its concrete implementation.

4.3 Semantic categories and projection operators

Wesay that a sentence is informative, inquisitive, a hybrid, or a tautology
just in case the proposition that it expresses is. This amounts to the
following.
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Definition . (Semantic categories)
We say that a sentence φ ∈ L is:

• informative iff info(φ) �= W.
• inquisitive iff info(φ) �∈ [φ].
• a hybrid iff it is both informative and inquisitive;
• a tautology iff it is neither informative nor inquisitive.

Fact . (Direct characterization of trivial sentences)

• φ is non-inquisitive ⇐⇒ [φ] = ℘(info(φ))

⇐⇒ [φ] has a greatest element.
• φ is non-informative ⇐⇒ info(φ) = W.
• φ is a tautology ⇐⇒ [φ] = ℘(W).

In Section . we characterized two projection operators on proposi-
tions, which trivialize either the informative or the inquisitive content
of any given proposition. Now that we are considering a concrete logical
language, we will introduce two one-place connectives that express
these projection operators. We will denote these connectives as ! and ?,
just like the operators they express.

Definition . (Projection operators)
For any φ ∈ L:

• [!φ] := ![φ]
• [?φ] := ?[φ]

Recall from Fact . that the projection operators on propositions can
be characterized algebraically:

• !P = P∗∗
• ?P = P ∪ P∗

Since negation expresses absolute pseudo-complementation and dis-
junction expresses the join operation, this means that the connectives
! and ? can be characterized in terms of negation and disjunction.

Fact . (Projection operators in terms of negation and disjunction)
For any φ ∈ L:

• !φ ≡ ¬¬φ
• ?φ ≡ φ ∨ ¬φ
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Thismeans that ! and ? do not have to be added to our logical language as
primitive connectives; !φ and ?φ can simply be regarded as abbreviations
of ¬¬φ and φ ∨¬φ, respectively.

Finally, we have that a sentence φ is always equivalent to the conjunc-
tion of its two ‘pure components’ !φ and ?φ (the analogue of Fact .).

Fact . (Division)
For any φ:

• φ ≡ !φ ∧ ?φ

4.4 Examples

Now let us consider some concrete sentences in InqB and the proposi-
tions that they express. We will assume that our language contains just
one unary predicate symbol, R, and two individual constants, a and b.
Accordingly, wewill assume that the domain of discourse consists of just
two objects, denoted by a and b, respectively. Our logical space consists
of four worlds, one in which both Ra and Rb are true, one in which Ra
is true but Rb is false, one in which Rb is true but Ra is false, and one in
which neither Ra nor Rb is true. These worlds will be labeled 11, 10, 01,
and 00, respectively. As usual, in order to keep the pictures orderly we
display only the maximal elements of a proposition. For concreteness,
we will read Ra as ‘Ann is in Rome’, and Rb as ‘Bob is in Rome’.

Atomic sentences. Let us first consider the proposition expressed by
the atomic sentences Ra and Rb. According to the clause for atomic
sentences, [Ra] consists of all states s such that every world in s makes
Ra true, i.e., the state {11,10} and all substates thereof. Thus, as depicted
in Figure .(a), [Ra] has a greatest element, {11,10}. Fact . therefore
ensures that Ra is non-inquisitive. It provides the information that Ann
is in Rome, and it does not request any further information. So it
behaves just as in classical logic. Analogously, Rb provides the informa-
tion that Bob is in Rome, without requesting any further information.
The proposition expressed by Rb is depicted in Figure .(b).

Disjunction. Next, consider the disjunction Ra ∨ Rb. According to the
clause for disjunction, [Ra ∨ Rb] consists of those states that are in
[Ra] or in [Rb]. These are {11,10}, {11,01}, and all substates thereof,
as depicted in Figure .(c).
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(a) Ra (d) ¬Ra(b) Rb (e) ¬(Ra      Rb)(c) Ra     Rb

Figure . Atomic sentences, disjunction, and negation.

Since info(Ra ∨ Rb) = ⋃
[Ra ∨ Rb] = {11,10,01} �= W, the disjunc-

tion Ra ∨ Rb is informative. It provides the information that at least
one of Ann and Bob is in Rome. However, unlike in the case of
atomic sentences, in this case there is no unique greatest element in
[Ra∨Rb] that includes all the others. Instead, there are two maximal
elements, |Ra|={11,10} and |Rb| = {11,01}, which together contain all
the others. Thus, besides being informative, Ra ∨ Rb is also inquisitive.
In order to settle the issue that it raises, one has to establish either that
Ann is in Rome, or that Bob is in Rome.

A note of caution is perhaps in order here: it is important to keep in
mind that InqB does not directly embody an analysis of sentences in
natural language: it only provides the tools to formulate such analyses.
In particular, a disjunctive sentence in InqB like Ra ∨ Rb does not
necessarily correspond to a disjunctive declarative sentence in English
like () below, or to a disjunctive interrogative sentence like () for
that matter.

() Ann is in Rome or Bob is in Rome.
() Is Ann in Rome, or is Bob in Rome?

In Chapter  we will present a concrete analysis of such sentences using
InqB. On that analysis, () corresponds to !(Ra ∨ Rb) and () corre-
sponds either to ?(Ra ∨ Rb) or to Ra ∨ Rb, depending on intonation.

Negation. Let us now turn to negation.According to the clause for nega-
tion, [¬Ra] consists of all states s such that s does not have any world
in common with any state in [Ra]. Thus, [¬Ra] consists of all states that
do not contain the worlds 11 and 10, which are |¬Ra| = {01,00} and
all substates thereof, as depicted in Figure .(d). Since this set of states
has a greatest element, Fact . ensures that ¬Ra is non-inquisitive. It
provides the information that Ann is not in Rome, and does not request
any further information.

Now let us consider the negation of an inquisitive disjunction,
¬(Ra ∨ Rb). According to the clause for negation, [¬(Ra ∨ Rb)] consists
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of all states which do not have a world in common with any state
in [Ra ∨ Rb]. Thus, [¬(Ra ∨ Rb)] consists of all states that do not
contain the worlds 11, 10, and 01, which are {00} and ∅, as depicted
in Figure .(e). Again, there is a unique maximal element, namely
|¬(Ra ∨ Rb)| = {00}. Thus, ¬(Ra ∨ Rb) provides the information that
neither Ann nor Bob is in Rome, just like in classical logic, and does not
request any further information.

These examples of negative sentences exemplify the general obser-
vation that we made above concerning pseudo-complementation (just
below Fact .): the absolute pseudo-complement of a proposition
always contains a greatest element. This means that a negative sentence
¬φ is never inquisitive; it simply provides the information that φ is false,
and does not request any further information.

Projection operators. Next let us consider !(Ra ∨ Rb), which abbreviates
¬¬(Ra ∨ Rb). We have just seen that ¬(Ra ∨ Rb) expresses the proposi-
tion depicted in Figure .(e). Applying negation again, we arrive at the
proposition depicted in Figure .(a), which has |Ra ∨ Rb| as its unique
alternative. Notice that !(Ra ∨ Rb) is not equivalent with Ra ∨ Rb. The
two sentences have the same informative content, but the former is
purely informative, while the latter is also inquisitive. This exemplifies
the general nature of !: for any sentence φ, !φ is a non-inquisitive
proposition with the same informative content as φ. If φ itself is already
non-inquisitive, then !φ and φ are equivalent; if φ is inquisitive, as in the
example just considered, the two express different propositions.

Let us now turn to ?. Consider ?Ra, which is an abbreviation of
Ra ∨¬Ra. We have already seen what [Ra] and [¬Ra] are. According
to the clause for disjunction, [?Ra] = [Ra ∨ ¬Ra] consists of all states
that are either in [Ra] or in [¬Ra]. These states are |Ra|, |¬Ra|, and
all substates thereof, as depicted in Figure .(b). Since info(?Ra) = W,
?Ra is non-informative. On the other hand, since [?Ra] contains two
alternatives, it is inquisitive. In order to settle the issue that it raises, one
has to establish either that Ann is in Rome, or that Ann is not in Rome.

11 10

01 00

11 10

01 00

11 10

01 00

11 10

01 00

11 10

01 00

(a) !(Ra ∨ Rb) (d) ?(Ra ∨ Rb)(c) ?Rb (e) ?!(Ra ∨ Rb)(b) ?Ra

Figure . Projection operators.
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That is, one has to establish whether Ann is in Rome. Thus, while ?Ra is
shorthand for Ra ∨¬Ra, perhaps the most famous classical tautology, it
is not a tautology in InqB: instead, it corresponds to the polar question
‘whether Ra’. Analogously, ?Rb, depicted in Figure .(c), corresponds
to the polar question ‘whether Rb’.

If ? applies to the disjunction Ra ∨ Rb, which is already inquisitive,
then it yields the proposition depicted in Figure .(d). [Ra ∨ Rb]
already contains two alternatives, |Ra| and |Rb|; ? adds a third alterna-
tive, which is the set of worlds that are neither in |Ra| nor in |Rb|. Thus,
in order to resolve the issue raised by ?(Ra ∨ Rb), one has to establish
either that Ann is in Rome, or that Bob is, or that neither is.

Finally, let us consider a case where ! and ? both apply, one after the
other: ?!(Ra ∨ Rb). As we already saw above, [!(Ra ∨ Rb)] contains a
single alternative, consisting of all worlds where at least one of a and
b is in Rome. As depicted in Figure .(e), ? adds a second alternative,
which is the set of worlds where neither Ann nor Bob is in Rome. Notice
that the resulting proposition differs from that expressed by ?(Ra ∨ Rb),
which contains three alternatives rather than two. In order to settle the
issue expressed by ?!(Ra ∨ Rb) it is sufficient to establish that at least
one of Ann and Bob is in Rome. In order to settle the issue expressed by
?(Ra ∨ Rb) this is not sufficient; rather, it needs to be established for one
of Ann and Bob that he or she is in Rome, or that neither of them is. We
will see in Chapter  that the ability to capture such subtle differences is
crucial in order to account for various kinds of disjunctive questions in
natural languages.

Conjunction. Next, let us consider conjunction. First, let us look at the
conjunction of our two atomic, non-inquisitive sentences, Ra and Rb.
According to the clause for conjunction, [Ra ∧ Rb] consists of those
states that are both in [Ra] and in [Rb]. These are {11} and ∅. Thus,
[Ra ∧ Rb] has a greatest element, namely {11}, and accordingly Ra ∧ Rb
provides the information that both Ann and Bob are in Rome, just like
in the classical case, and does not request any further information.
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01 00
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(a) Ra ∧ Rb (d) Ra → ?Rb(c) Ra → Rb (e) ∀x.?Rx(b) ?Ra ∧ ?Rb

Figure . Conjunction, implication, and universal quantification.
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Now let us look at the conjunction of two inquisitive sentences, ?Ra
and ?Rb. As depicted in Figure .(b), the proposition [?Ra∧?Rb]
contains four alternatives, |Ra ∧ Rb|, |Ra ∧ ¬Rb|, |¬Ra ∧ Rb|, and
|¬Ra ∧¬Rb|. Since these alternatives together cover the entire logical
space ?Ra ∧ ?Rb is non-informative. On the other hand, since there is
more than one alternative, ?Ra ∧ ?Rb is inquisitive. In order to settle the
issue that it raises, one has to establish one of Ra ∧ Rb, Ra ∧¬Rb,
¬Ra ∧ Rb, ¬Ra ∧ ¬Rb. Thus, our conjunction is a purely inquisitive
sentence which requests enough information to settle both the issue
whether Ann is in Rome, contributed by ?Ra, and the issue whether
Bob is in Rome, contributed by ?Rb.

These two examples of conjunctive sentences exemplify a general
fact: if φ and ψ are non-inquisitive, then the conjunction φ ∧ ψ is non-
inquisitive as well, conveying both the information provided by φ and
the information provided by ψ; on the other hand, if φ and ψ are non-
informative, then the conjunction φ ∧ ψ is non-informative as well,
expressing an issue which is settled just in case both the issue expressed
by φ and the one expressed by ψ are settled.

Implication. Next, let us consider implication. Again, we will first con-
sider a simple case, Ra → Rb, where both the antecedent and the
consequent are atomic, and therefore non-inquisitive. According to the
clause for implication, [Ra → Rb] consists of all states s such that every
substate t ⊆ s that is in [Ra] is also in [Rb]. These are all and only those
states that are contained in |Ra → Rb| = {11,01,00}, as depicted in
Figure .(c). So, [Ra → Rb] has a unique greatest element, |Ra → Rb|,
whichmeans that the implication Ra → Rb is a non-inquisitive sentence
which, just like in the classical setting, provides the information that if
Ann is in Rome, then so is Bob.

Now let us consider a more complex case, Ra → ?Rb, where
the consequent is non-informative but inquisitive. As depicted in
Figure .(d), the proposition [Ra → ?Rb] contains two alternatives,
|Ra → Rb| = {11,01,00}, and |Ra → ¬Rb| = {10,01,00}. Since these
two alternatives together cover the entire logical space, our implication
is non-informative. Moreover, since there is more than one alternative,
the implication is inquisitive. In order to settle the issue that it raises,
one must either establish Ra → Rb, or Ra → ¬Rb. In the former case
one establishes that if Ann is in Rome, then so is Bob; in the latter case,
that if Ann is in Rome, then Bob isn’t. So Ra → ?Rb requests enough
information to establish whether Bob is in Rome under the assumption
that Ann is.
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Again, these two examples of conditional sentences exemplify
a general feature of InqB: if ψ is non-inquisitive, then φ → ψ is
non-inquisitive as well; and similarly, if ψ non-informative, then φ → ψ
is non-informative as well.

Quantification. Finally, let us consider existential and universal quan-
tification. As usual, existential quantification behaves essentially like
disjunction and universal quantification behaves essentially like con-
junction. In fact, since our current domain of discourse consists of
only two objects, denoted by a and b, respectively, ∃x.Rx expresses
exactly the same proposition as Ra ∨ Rb, depicted in Figure .(c), and
∀x.Rx expresses exactly the same proposition as Ra ∧ Rb, depicted in
Figure .(a). Finally, consider the proposition expressed by ∀x.?Rx,
depicted in Figure .(e). Notice that this proposition induces a par-
tition on the logical space, where each block of the partition consists
of worlds that agree on the extension of R. Thus, ∀x.?Rx asks for an
exhaustive specification of the individuals that are in Rome.

4.5 Informative content, truth, and support

Recall that info(φ) is defined as
⋃

[φ], which is a set of worlds. In
classical logic, the informative content of a sentence φ is also embodied
by a set of worlds, namely the set of all worlds where φ is true, |φ|. Thus,
it is natural to ask how these two notions of informative content relate
to each other. The answer is that the relation is as direct as it could be:
the two always coincide.

Fact . (Informative content and truth)
For any φ ∈ L, info(φ) = |φ|.
This shows that InqB preserves the classical treatment of informative
content. The system only differs from classical logic in that, besides
informative content, it takes inquisitive content into consideration
as well.

Notice that Facts . and . together yield the following charac-
terization of non-informative and non-inquisitive sentences in terms of
classical truth.

Fact . (Informational and inquisitive triviality in terms of classical
truth)

• φ is non-informative ⇐⇒ |φ| = W
• φ is non-inquisitive ⇐⇒ |φ| ∈ [φ] ⇐⇒ [φ] = ℘(|φ|)
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Thus, non-informative sentences in InqB are precisely those sentences
that are classically true at any world. On the other hand, a sentence φ
is non-inquisitive in InqB just in case the proposition it expresses is
fully determined by its classical truth-set: it provides the information
that φ is true, and does not request any further information. Thus, non-
inquisitive sentences behave exactly as in classical logic.

The classical behavior of non-inquisitive sentences results in a tight
connection between their support conditions and their truth condi-
tions. Namely, such a sentence φ is supported by a state s just in case it is
true in every world in s. This holds only for non-inquisitive sentences;
the moment a sentence becomes inquisitive, the connection between
support and truth breaks down.

Fact . (Support and truth)
The following are equivalent for any sentence φ ∈ L:

• φ is non-inquisitive
• For every information state s:

s |� φ ⇐⇒ φ is true in every world in s

4.6 Syntactic properties of non-hybrid sentences

Below we provide some syntactic conditions which make it easy to
recognize sentences that are either non-informative or non-inquisitive,
just based on their form, without inspecting their meaning.

Let us start with non-inquisitive sentences. The following fact pro-
vides some syntactic conditions which guarantee that a sentence is
non-inquisitive. These conditions generalize some of the more specific
observations that were already made in discussing the examples above.

Fact . (Sufficient conditions for non-inquisitivity)

. Atomic sentences are always non-inquisitive;
. ¬φ is always non-inquisitive;
. !φ is always non-inquisitive;
. If φ and ψ are non-inquisitive, then so is φ ∧ ψ;
. If ψ is non-inquisitive, then so is φ → ψ for any antecedent φ;
. If φ(d′) is non-inquisitive for all d ∈ D, then so is ∀xφ(x).

Now let us turn to non-informative sentences. Again we provide
some syntactic conditions that guarantee that a given sentence is non-
informative, generalizing some of the more specific observations made
in discussing the examples in Section ..
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Fact . (Sufficient conditions for non-informativity)

. ?φ is always non-informative;
. If φ and ψ are non-informative, so is φ ∧ ψ;
. If ψ is non-informative, then so are φ ∨ ψ and φ → ψ, for any φ;
. If φ(d′) is non-informative for all d ∈ D, then so is ∀xφ(x);
. If φ(d′) is non-informative for some d ∈ D, then so is ∃xφ(x).

4.7 Sources of inquisitiveness

The partial syntactic characterization of non-inquisitive sentences in
Fact . implies that disjunction, the existential quantifier, and the
projection operator ? are the only sources of inquisitiveness in our
logical language.

Fact . (Sources of inquisitiveness)
Any sentence that does not contain ∨, ∃, or ? is non-inquisitive.

Note that there is a close connection between disjunction, the existential
quantifier, and the ? operator in InqB. Namely, they all behave as join
operators: [φ ∨ ψ] is the join of [φ] and [ψ], [∃x.φ(x)] is the join of
{[φ(d′)] | d ∈ D}, and [?φ] is the join of [φ] and [φ]*. In terms of seman-
tic operators, then, the join operator is the essential source of inquis-
itiveness: without applying this operator, it is impossible to produce
inquisitive propositions from non-inquisitive ones.

This fact may provide the basis for an explanation of the well-
known observation that in many natural languages, question words
are homophonous with words for disjunction and/or existentials (see
Jayaseelan, ; Bhat, ;Haida, ; Jayaseelan, ; Cable, ;
AnderBois, ; Slade, , among others). For instance, Malayalam
-oo and Japanese ka are used for all three purposes.

Malayalam Japanese English

Existential aar-oo dare-ka someone
Disjunction Anna-oo Peter-oo Anna-ka Peter-ka Anna or Peter
Question Anna wannu-(w)oo Anna wa kita-ka Did Anna come?

Szabolcsi (b) proposes an account of this cross-linguistic phe-
nomenon in inquisitive semantics, suggesting that the inquisitive join
operation can indeed be seen as the semantic common core of dis-
junctive, existential, and interrogative constructions in languages like
Malayalam and Japanese.
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4.8 Comparison with alternative semantics

There is a close connection between the treatment of disjunction
and existentials in InqB, and their treatment in alternative semantics
(Kratzer and Shimoyama, ; Menéndez-Benito, ; Simons, ;
Alonso-Ovalle, ; Aloni, , among others). In both frameworks,
disjunction and existentials introduce sets of alternatives. In the case
of alternative semantics, this treatment is motivated by a number
of empirical phenomena, including free choice inferences, exclu-
sivity implicatures, and counterfactual conditionals with disjunctive
antecedents. The analysis of disjunction and existentials as introducing
sets of alternatives has made it possible to develop new accounts of
these phenomena which improve considerably on previous accounts.
However, while work on alternative semantics has provided ample
empirical motivation for its treatment of disjunction and existentials,
its explanatory power would increase substantially if the treatment
could be motivated by considerations independent of the linguistic
phenomena that it has aimed to capture.

Moreover, the empirical phenomena that have motivated work on
disjunction and existentials in alternative semantics have been taken
to require a radical departure from the classical algebraic treatment of
disjunction and existentials. For instance, Alonso-Ovalle () writes
in the conclusion section of his dissertation:

This dissertation has investigated the interpretation of counterfactuals with disjunctive
antecedents, unembedded disjunctions, and disjunctions under the scope of modals.
We have seen that capturing the natural interpretation of these constructions proves to
be challenging if the standard analysis of disjunction, under which or is the Boolean
join, is assumed.

Similarly, Simons () starts her paper as follows:

In this paper, the meanings of sentences containing the word or and a modal verb are
used to arrive at a novel account of the meaning of or coordinations. It has long been
known that such sentences […] pose a problem for the standard treatment of or as a
Boolean connective equivalent to set union.

The approach we have taken here shows that, once we take both infor-
mative and inquisitive content into account, general algebraic consid-
erations lead essentially to the treatment of disjunction that was pro-
posed in alternative semantics, thus providing exactly the independent
motivation that has so far been missing (for detailed discussion of this
point, see Roelofsen, b). Moreover, it shows that the treatment
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of disjunction as generating sets of alternatives can actually be seen
as a natural generalization of the classical treatment, rather than a
radical departure from it: as soon as we adopt a notion of meaning
that encompasses both informative and inquisitive content, treating
disjunction as a join operator automatically gives it the potential to
generate multiple alternatives. Thus, we can have our cake and eat it:
we can treat disjunction as a join operator and as introducing sets of
alternatives at the same time. In inquisitive semantics, the two go hand
in hand.3

4.9 Exercises

Exercise 4.1 Propositions in InqB

Using diagrams analogous to those in Figure 4.1, depict the propositions
expressed by the following formulas:

1. Ra ∧ ?Rb

2. ?Ra ∨ ?Rb

3. ¬(Ra ∧ Rb)

4. !∃xRx → ∃xRx

5. !∃xRx → ∀x?Rx

6. ?Ra → ?Rb

Exercise 4.2 De Morgan’s laws

Below are two well-known classical equivalences, known as De Morgan’s laws:

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ

Do these equivalences also hold in inquisitive semantics? If yes, give a proof.
If no, provide a counterexample.

3 It should be noted that, while both in alternative semantics and in inquisitive semantics
disjunction generates alternatives in a similar way, there is also a subtle but important
difference. Namely, in inquisitive semantics one alternative can never be nested in another,
unlike in alternative semantics. This has certain advantages, as we will discuss briefly in
Section . (for more detailed discussion of this difference, see Ciardelli and Roelofsen,
a).
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Exercise 4.3 The law of double negation

Recall that in classical logic, ¬¬φ → φ is a tautology for any given formula φ.
Show that, in InqB, ¬¬φ → φ is a tautology if and only if φ is non-inquisitive.

Explain why this difference between classical logic and InqB arises, even
though ¬ and → express exactly the same algebraic operations in both
frameworks (absolute and relative pseudo-complementation, respectively).
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Questions

In Chapters – we laid out the basic architecture of inquisitive
semantics. In the present chapter and the ones to follow we will discuss
its applications to the analysis of natural language, and its relations
to other semantic frameworks. In this chapter we discuss how and to
what extent the semantics of various types of questions in English can be
captured in InqB.We start in Sections .–. by examining a number of
classes of natural language questions, and discussing the corresponding
InqB-translations. In Section . we point out some features of the
meaning of questions which are not captured by these translations,
and we briefly discuss how InqB could be extended to capture these
features, providing pointers to the literature in which such extensions
are pursued.
Other important elements of the analysis of questions in inquisitive

semantics will be put in place in the following chapters. In Chapters
 and  we will see how the InqB-translation of certain classes of
questions and statements can be built up compositionally. In Chapter
 we will illustrate how the analysis of questions given here can be
combined with suitable inquisitive entries for attitude verbs like know
and wonder to obtain an analysis of question embedding. Finally, in
Chapter  we will compare our approach to other influential approaches
to question semantics.

5.1 Polar questions

Polar questions are questions that ask for the truth-value of a given
proposition, as exemplified in ().

() Is Alice married to Bob? ?Mab

The issue expressed by () is resolved in an information state s if it
follows from the information available in s that Alice is married to Bob
(i.e., if s ⊆ |Mab|) or if it follows that Alice is not married to Bob (i.e.,
Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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if s ⊆ |Mab|). This means that the issue expressed by () is precisely the
issue expressed by the InqB-sentence ?Mab, which can thus be regarded
as an InqB-translation of the English question in ().1

() [(1)]= [?Mab]
= {|Mab|, |Mab|}↓

5.2 Alternative questions

Alternative questions are questions that list a number of options, sep-
arated by disjunction, and ask for a choice among these. An example
is given in (), where the arrows ↑ and ↓ each mark the end of
an intonational phrase and indicate whether the intonation is rising
of falling at the end of that phrase (different intonation patterns for
disjunctive questions will be briefly discussed below and in more detail
in the next chapter).

() Is Alice married to Bob↑ or to Charlie↓? Mab ∨ Mac

The issue expressed by () is resolved in an information state s if it
follows from the information available in s that Alice is married to Bob
(i.e., if s ⊆ |Mab|) or if it follows that she is married to Charlie (i.e.,
s ⊆ |Mac|). This means that the issue expressed by () is the one that
is expressed by the InqB-sentenceMab ∨ Mac.

() [(3)]= [Mab ∨ Mac]
= {|Mab|, |Mac|}↓

Notice in particular that the disjunction word or occurring in () is
translated as the connective ∨ in InqB.
One concern with translating () in this way is that, in our ter-

minology, the formula Mab ∨ Mac is not only inquisitive, but also
informative. Its informative content is that Alice is married to either
Bob or Charlie. However, in uttering the question in (), a speaker
does not present the information that Alice is married to either Bob
or Charlie as new information, but rather as something that she pre-
supposes (see, e.g., Karttunen and Peters, ; Biezma and Rawlins,
). Properly capturing this requires an extension of the basic InqB

1 We will use the following notation throughout this chapter: for any set of information
states P, we will write P↓ for the set of information states that are contained in some element
of P, i.e., P↓ := {s | s ⊆ t for some t ∈ P}.
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framework which, besides informative and inquisitive content, allows
us to represent presuppositional content as well. We refer to AnderBois
(), Ciardelli et al. (), and Roelofsen (a) for such an exten-
sion of the framework, and a refined representation of the meaning of
alternative questions like ().
A special case of an alternative question is obtained by disjoining

a clause with its own negation, as in ().

() Is Alice married to Bob↑ or not↓? Mab ∨ ¬Mab

In this case, the translation isMab ∨¬Mab, which is equivalent with the
translation that we provided for the polar question in (), ?Mab. This is
expected, since the two questions indeed express the same issue.
Now consider the question in (), which only differs from () in

intonation: there is no intonational phrase boundary after the first
disjunct, i.e., the two disjuncts are pronounced in a single intonational
phrase, and the final pitch contour is rising rather than falling.

() Is Alice married to Bob or to Charlie↑? ?!(Mab ∨ Mac)

With this intonation pattern, the question is interpreted as a polar
question, askingwhether it is true or false that Alice ismarried to Bob or
Charlie. That is, the issue expressed by () is resolved in an information
state s if it follows from the information available in s that Alice is
married to Bob or Charlie (i.e., if s ⊆ |Mab ∨ Mac|) or if it follows that
she is not married to either Bob or Charlie (i.e., s ⊆ |Mab ∨ Mac|).
This means that the issue expressed by () is precisely the one that is
expressed by the InqB-sentence ?!(Mab ∨ Mac).

() [(6)]= [?!(Mab ∨ Mac)]
= {|Mab ∨ Mac|, |Mab ∨ Mac|}↓

5.3 Open disjunctive questions

There exists yet another intonational variant of (), given in () below.

() Context: Susan, who is in her sixties, decided to organize a high
school reunion. She is now sending out invitation letters. In school,
Susan was close friends with Alice, Bob, Charlie, and Drew. After
school, she moved to Spain and only kept in touch with Drew.
She heard long ago that Alice ended up marrying someone from
their class, but she doesn’t know who exactly. In case Alice got
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married to Bob or Charlie, Susan wants to write an invitation letter
to Alice and Bob/Charlie together, and say something nice about
their marriage. In case Alice got married to someone else, she will
just send her an individual invitation letter and won’t mention her
marriage. So she calls Drew and asks her:

Is Alice married to Bob↑ or to Charlie↑? ?(Mab ∨ Mac)

Questions of this kind are called open disjunctive questions (Roelofsen
and van Gool, ; Roelofsen and Farkas, ). Note that the two
disjuncts in () are pronounced in two separate intonational phrases, as
in the alternative question in () and unlike in the polar question in ().
However, the final pitch contour is rising, as in the polar question in ()
and unlike in the alternative question in (). Thus, the intonation pat-
tern of open disjunctive questions differs both from that of alternative
questions and from that of polar disjunctive questions.
The same holds for their resolution conditions. The issue expressed

by () is resolved in an information state s if (i) it follows from the
information available in s that Alice ismarried to Bob (i.e., if s ⊆ |Mab|),
or (ii) it follows that she is married to Charlie (i.e., s ⊆ |Mac|), or
(iii) it follows that she is not married to either Bob or Charlie (i.e.,
s ⊆ |Mab ∨ Mac|). This means that the issue expressed by () is the one
expressed by the InqB-sentence ?(Mab ∨ Mac).

() [(8)]= [?(Mab ∨ Mac)]
= {|Mab|, |Mac|, |Mab ∨ Mac|}↓

Note in particular that an information state inwhich it is established that
Alice is married to either Bob or Charlie, but not to which of the two,
does not contain enough information to settle the issue expressed by (),
while it does settle the issue expressed by the polar question in (). Also
note that () does not presuppose that Alice is married to either Bob or
Charlie, unlike the alternative question in ().2

5.4 Wh-questions

Besides polar questions, alternative questions, and open disjunctive
questions, another major class of questions occurring in natural

2 We refer to Roelofsen and Farkas () for further examples of open disjunctive ques-
tions, and further discussion of how they differ from alternative and polar disjunctive
questions. In particular, besides in intonation and in resolution conditions, the three
question-types also differ in the extent to which they license yes/no responses.
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languages consists of wh-questions. Below we will discuss several
prominent kinds of wh-questions, exemplified in ().

() a. Who did Alice invite to her birthday party?
b. What is something that Alice really likes?
c. Who is Alice married to?
d. Who is married to whom?
e. Which students did Alice invite to her party?

First, we will distinguish mention-all questions such as (a) from
mention-some questions such as (b) and single-match questions
such as (c). Then we will turn to questions with multiple wh-
words, such as (d), and ones involving explicit domain restriction,
such as (e).

5.4.1 Mention-all wh-questions

Mention-all wh-questions ask for a complete specification of the indi-
viduals that have a certain property, i.e., for a specification of the
complete extension of the property in the relevant domain of discourse.
Under its most salient interpretation, () below is an example of a
mention-all question.

() Who did Alice invite to her birthday party? ∀x?Pax

The issue expressed by () is resolved in a state s if the information
available in s determines exactly which individuals in the domain were
invited toAlice’s party, that is, if any twoworldsw,w′ ∈ s agree on the set
of individuals who were invited to the party. It is easy to check that this
is equivalent to the requirement that for each individual d ∈ D, s should
determine whether or not d was invited (s ⊆ |Pad| or s ⊆ |Pad|). This
shows that the issue expressed by () is precisely the one expressed by
the InqB-sentence ∀x?Pax.

() [(11)]= [∀x?Pax]
= {s | ∀d ∈ D : s ⊆ |Pad| or s ⊆ |Pad|}

5.4.2 Mention-some wh-questions

Mention-some wh-questions just ask for an instance of a certain prop-
erty. This is exemplifed in ().

() What is something that Alice really likes?
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The issue expressed by () is resolved in an information state s if the
information available in s implies, for some object d, that Alice really
likes d. This means that the issue expressed by () is the one expressed
by the InqB-sentence ∃xLax.

() [(13)]= [∃xLax]
= {|Lad| | d ∈ D}↓

It should be noted that the concern we mentioned above for alternative
questions also arises here: in InqB, the sentence ∃xLax has non-trivial
informative content, namely that there is at least one thing that Alice
really likes. However, in asking the question in () a speaker does not
present this information as new information, but rather presupposes
it. Again, to capture this distinction, a presuppositional extension of
InqB is required (see AnderBois, ; Ciardelli et al., ; Roelofsen,
a).
It is also worth remarking that, while mention-some wh-questions

have received comparatively little attention in the literature (relative to
mention-all wh-questions), they are extremely common in ordinary life
as well as in scientific settings, as illustrated by the following examples.

() a. Where can I buy an Italian newspaper around here?
b. What is a typical French dish?
c. What is a number we can call in case of an emergency?
d. What is an example of an arithmetic theorem that is not
provable in Peano Arithmetic?

Finally, while manymention-some questions involve existential expres-
sions (e.g., something that Alice really likes, an Italian newspaper, a
typical French dish, a number we can call), wh-questions without such
expressions can also receive mention-some interpretations, as exempli-
fied in ().

() a. What would you like to get for your birthday?
b. Who is driving to the party tonight and has space for two extra
passengers?

c. What would hold these two sticks firmly together without
damaging the paint?

d. How do I get to the station from here?
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5.4.3 Single-match wh-questions

Single-match wh-questions ask for the unique individual having a
certain property. This is exemplified in (), under the assumption
that nobody can be married to more than one person.

() Who is Alice married to? ∃xMax

The issue expressed by () is resolved in an information state s if,
for a specific individual d in the relevant domain of discourse, the
information available in s implies that Alice is married to d. This means
that the issue expressed by () is the one that is expressed by the InqB-
sentence ∃xMax.

() [(17)]= [∃xMax]
= {|Mad| | d ∈ D}↓

As is clear from this analysis, single-match wh-questions are a special
case of mention-some wh-questions in which the relevant property can
be satisfied by at most one individual. It is useful to explicitly consider
single-match wh-questions, since they have some special logical prop-
erties, which are not shared by other mention-some wh-questions. In
particular, the alternatives for single-match wh-questions always form
a partition of a subset of the logical space. In this respect, they are more
similar tomention-all questions than to othermention-some questions.

5.4.4 Questions with multiple wh-phrases

Wh-questions can contain multiple wh-phrases, as exemplified in ().
Under their most salient interpretation, multiple wh-questions like ()
are mention-all wh-questions: they ask for a specification of all the
individuals that stand in a certain relation—here, the relation of being
married. The arity of the relation equals the number of wh-phrases in
the question—in this case there are two wh-phrases, so the relation
whose extension needs to be specified is a binary relation.

() Who is married to whom? ∀x∀y?Mxy

The issue expressed by () is resolved in an information state s
in case all worlds w,w′ ∈ s agree on the extension of the relation
M (i.e., Iw(M ) = Iw′(M )). This is equivalent to the requirement that
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for every pair of individuals d,d′ ∈ D, the state s determines whether
d is married to d′ (s ⊆ |Mdd′| or s ⊆ |Mdd′|). This shows that the issue
expressed by () under its most salient interpretation is precisely the
one expressed by the InqB-formula ∀x∀y?Mxy.

() [(19)]= [∀x∀y?Mxy]
= {s | ∀d,d′ ∈ D : s ⊆ |Mdd′| or s ⊆ |Mdd′|}
= {s | ∀w,w′ ∈ s : Iw(M) = Iw′(M)}

5.4.5 Explicit domain restriction

Sometimes, the wh-phrase in a wh-question involves an explicit domain
restrictor, as exemplified in ().

() Which students did Alice invite to her party?

Several proposals have been put forward in the literature concerning the
contribution of the explicit restrictor in such questions.Here, wewill not
argue for a specific proposal, but we will consider several options and
describe how these analyses can be implemented in InqB.
According toGroenendijk and Stokhof (), () has two readings.

Under the de dicto reading, () asks for a specification of the set of
students who were invited by Alice. More precisely, the issue expressed
by () under this reading is resolved in an information state s in case
for every individual d, s determines whether or not d is a student who
was invited by Alice. This is the issue expressed by the InqB-sentence
∀x?(Sx ∧ Pax).

() [(21)]GS = [∀x?(Sx ∧ Pax)]
= {s | ∀d ∈ D : s ⊆ |Sd| ∩ |Pad| or s ⊆ |Sd| ∩ |Pad|}

Groenendijk and Stokhof also take () to have a second, de re reading,
under which it asks the addressee to specify for each actual student d
whether d was invited by Alice. More formally, if w0 is the actual world
and Iw0(S) = {d1, . . . ,dn}, we have:
() [(21)]GS = [?Pad1 ∧ ·· · ∧ ?Padn]

= {s | ∀d ∈ Iw0(S) : s ⊆ |Pad| or s ⊆ |Pad|}
Notice that, under this reading, the issue expressed by () varies
from world to world. Thus, it is not possible to give a single, world-
independent translation in InqB, where formulas express issues whose
resolution conditions do not depend on the world of evaluation. Of
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course, it would be possible to refine the InqB system so as to allow
for such world-dependency, but we will not pursue such a refinement
in detail here.
Velissaratou () puts forward a different analysis of which-

questions. In her theory, () expresses an issue which is resolved if
for every individual d, under the assumption that d is a student, it is
known whether d was invited by Alice. More formally, an information
state s counts as settling the relevant issue if for every d, the state s ∩ |Sd|
which results from assuming that d is a student settles whether or not
d was invited by Alice (that is, s ∩ |Sd| ⊆ |Pad| or s ∩ |Sd| ⊆ |Pad|). It
is easy to check that this is precisely the issue expressed by the InqB-
sentence ∀x(Sx → ?Pax).

() [(21)]V = [∀x(Sx → ?Pax)]
= {s | ∀d ∈ D : s ∩ |Sd| ⊆ |Pad| or s ∩ |Sd| ⊆ |Pad|}

5.5 Question coordination and conditionalization

As we mentioned in Section .., questions, just like statements, can
be coordinated by means of conjunction and disjunction, and condi-
tionalized by means of if -clauses. We will see that in each case, the
relevant operation is matched by the corresponding logical operation
in InqB.

5.5.1 Conjoined questions

A question like (), which consists of two polar questions coordinated
by means of the conjunction word and, asks for information which
resolves both of the conjuncts.

() Does Alice like Bob, and does he like her? ?Lab ∧ ?Lba

That is, the issue expressed by () is resolved in an information state
s just in case s resolves both the issue whether Alice likes Bob, and the
issue whether Bob likes Alice.This is precisely the issue expressed by the
conjunction ?Lab ∧ ?Lba in InqB.

() [(25)]= [?Lab ∧ ?Lba]
= [?Lab]∩ [?Lba]
= {|Lab| ∩ |Lba|, |Lab| ∩ |Lba|, |Lab| ∩ |Lba|,

|Lab| ∩ |Lba|}↓
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Notice that the English conjunction word and can simply be translated
here as the logical connective ∧. This holds in general: given two ques-
tions Q and Q′ whose InqB-translations are μ and μ′, the conjunctive
question Q and Q′ can be translated as μ ∧ μ′.

() [Q and Q′]= {s | s ∈ [Q] and s ∈ [Q′]}
= [Q]∩ [Q′]
= [μ]∩ [μ′]
= [μ ∧ μ′]

5.5.2 Disjoined questions

A question like (), consisting of two mention-some wh-questions
which are coordinated by means of the disjunction word or, asks for
information which resolves either one of the disjuncts.3

() Who can drive Alice to the party,
or who can lend her a car? ∃xDxa ∨ ∃xLxa

More precisely, the issue expressed by () is resolved in an information
state s if s implies for some individual d that d can drive Alice to the
party, or if s implies for some individual d that d can lend Alice a car.
If the disjuncts of () are translated as ∃xDxa and ∃xLxa, respectively,
then the issue expressed by () is precisely the issue expressed by the
disjunction ∃xDxa ∨∃xLxa.

() [(28)]= [∃xDxa ∨ ∃xLxa]
= [∃xDxa]∪ [∃xLxa]
= {|Dda| | d ∈ D}↓ ∪ {|Lda| | d ∈ D}↓

Notice that, as in the case of conjunction, the English disjunction word
or can simply be translated here as the logical connective ∨.

5.5.3 Conditional questions

Conditional questions ask for a resolution of a question, specified by
the main clause, under a certain assumption which is specified by an
adjoined if -clause. As an example, consider (), which is obtained by
conditionalizing a single-match wh-question.

3 We should note here, as we also did in footnote  in Section .., that disjunctions of
questions are much less common in language than conjunctions of questions. Some authors
have even claimed that questions cannot be disjoined at all (Szabolcsi, ; Krifka, b).
We are convinced by examples like () that disjoining questions is in principle possible.
This point will be discussed in more detail in Section ...
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() If Alice wins two tickets, who will she take with her?
Wa → ∃xTax

The issue expressed by () is resolved in an information state s if
restricting s to those worlds where Alice wins two tickets results in a
state s ∩ |Wa| which resolves the issue of who Alice will take with her,
i.e., a state which implies for some individual d that Alice will take d
with her.

() [(30)]= [Wa → ∃xTax]
= {s | s ∩ |Wa| ∈ [∃xTax]}
= {s | for some d ∈ D : s ∩ |Wa| ⊆ |Tad|}

Notice that the InqB-translation of () is a conditional whose
antecedent is the translation of the if -clause, and whose consequent
is the translation of the main clause. This is not a coincidence, but a
result that holds generally for indicative conditional questions. Suppose
that A is a statement whose InqB-translation is a non-inquisitive
formula α, and suppose Q is a question whose InqB-translation is μ.
The conditional question if A, Q is resolved in an information state s
if restricting s to those worlds where A is true results in a state which
resolves Q. Using the fact that α is non-inquisitive, we have:

() [if A,Q]= {s | s ∩ |A| ∈ [Q]}
= {s | s ∩ |α| ∈ [μ]}
= {s | ∀t ⊆ s : if t ∈ [α] then t ∈ [μ]}
= [α → μ]

This ensures that if A, Q can be translated as α → μ.
Besides indicative conditional questions, there are also counterfactual

conditional questions, such as ().

() If Alice had won two tickets, who would she have taken with her?

In order to translate (), we need to extend InqB with an analysis
of counterfactual conditionals. We will come back to this issue in
Chapter .

5.6 Limitations and extensions

While we have illustrated above that InqB allows us to formally capture
the resolution conditions of many kinds of questions occurring in
natural language, there are also some aspects of the interpretation of
questions that are beyond the immediate scope of this basic framework
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and require suitable extensions. For instance, we already remarked in
Sections . and . that, besides requesting information, questionsmay
also presuppose certain information, and InqB as such is not equipped
to encode such presuppositions. Below we will briefly discuss two other
aspects of question meaning that are beyond the immediate reach
of InqB, with pointers to the literature for further discussion of the
required extensions.

5.6.1 Beyond resolution conditions: anaphora and bias

Compare the prototypical polar question in () with the somewhat less
prototypical questions in () and ().

() Is the door open?
() Is the door open or closed?
() The door is open, isn’t it?

An information state resolves the issue expressed by any of these ques-
tions if and only if it either implies that the door is open, or that the
door is closed. Thus, these questions have exactly the same resolution
conditions, and therefore they express exactly the same issue.This com-
monality is captured in InqB: (), (), and () all express the same
proposition containing two alternatives, one consisting of all worlds
where the door is open, and one consisting of all worlds where the door
is closed.
However, despite the fact that the questions in ()–() have exactly

the same resolution conditions, they clearly differ in their overall con-
versational effects. For instance, () allows for yes/no answers and other
anaphoric continuations, while () does not.

() A: Is the door open?
B: Yes. / No. / I think so.

() A: Is the door open or closed?
B: Yes. / No. / I think so.

Moreover, while () can be felicitously uttered in a situation in which
the speaker expects the door to be closed, the tag-question in ()
cannot. In other words, the latter conveys a bias on the part of the
speaker that the door is open.

() Is the door open? I expect that it isn’t.
() The door is open, isn’t it? I expect that it isn’t.
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The InqB framework as such is not designed to capture these differences.
Dealing with yes/no answers and other anaphoric continuations
requires an extension of the framework in which the semantics of a
question does not only capture the resolution conditions of the issue
that the question expresses, but also the antecedents that the question
makes available for subsequent anaphoric expressions. For such an
extension of InqB, as well as a detailed account of yes/no answers, we
refer to Roelofsen and Farkas ().4
As for the bias conveyed by tag-questions like (), this may be

captured by integrating InqBwith an explicit commitment-basedmodel
of discourse (e.g., Gunlogson, ; Farkas and Bruce, ), allowing
for varying levels of speaker commitment. For such an approach we
refer to Farkas and Roelofsen ().

5.6.2 Contextual parameters

Just like the information provided by a natural language statement,
so also the issue expressed by a natural language question is rarely
completely determined by grammar alone; rather, it depends on the
conversational context in various ways. Some of the relevant contextual
factors can be illustrated by considering the following examples.

() a. Which students passed the exam?
b. What is the winning card?
c. Who is driving to the party tonight?
d. Where is Mary?

A first important contextual parameter is the intended domain of quan-
tification. For instance, the issue expressed by (a) depends on the set
of students which are relevant in a particular context.
A second contextual parameter manifests itself in (b). The issue

expressed by this question does not only depend on the intended

4 Note that the contrast between () and () is parallel to the famous contrast between
(i) and (ii) below (from Heim, , with attribution to Barbara Partee).
(i) I lost ten marbles and found all of them except for one. It’s probably under the sofa.
(ii) I lost ten marbles and found nine of them. It’s probably under the sofa.
This contrast shows that truth-conditionally equivalent declarative sentences (such as the
first sentences in (i) and (ii), respectively) can differ in their overall conversational effect, in
particular in the antecedents that they make available for subsequent anaphoric expressions
(here, the pronoun it in the second sentence). This observation has provided an important
piece of motivation for the development of dynamic semantic theories (Kamp, ; Heim,
; Groenendijk and Stokhof, , among others). Similarly, the framework of Roelofsen
and Farkas () can be seen as a first step toward a dynamic version of InqB.
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domain of quantification, but also on the intended method of identifi-
cation (Aloni, ). Suppose that the question is asked in a situation
in which there are two cards on the table, face down. If (b) is asked
by someone who wants to pick the winning card, it is resolved by any
piece of information that conveys whether the winning card is the one
on the left or the one on the right. On the other hand, if (b) is asked
by someone who does not know the rules of the game and wants a
description of the winning card in terms of suit and number, then it
is resolved by a piece of information that conveys, e.g., that the winning
card is the six of hearts.
The issue expressed by (c) depends, again besides the intended

domain of quantification, also on the kind of goal that the questioner
is trying to achieve in asking the question (van Rooij, ). For
instance, she may be trying to identify someone who could give her
a ride to the party, but she may also want to draw up a list of people
driving to the party. In the first case, the question gets a mention-
some interpretation: to resolve it, it suffices to specify one person
who is driving to the party. In the second case, the question gets a
mention-all interpretation: in this case, to resolve the question it is
necessary to specify the complete set of people who are driving to
the party.
Finally, the issue expressed by (d) depends on the intended level

of granularity (Ginzburg, ). In some contexts, the information
provided by (a) is sufficient to resolve the question. In other contexts,
Mary’s location needs to be determined more precisely, for instance by
providing the information in (b).

() a. Mary is at home.
b. Mary is in the bathroom.

Some sources of context-dependency are already taken into account in
InqB. After all, an InqB-sentence expresses different issues in different
information models. In this way, InqB captures the way in which the
issue expressed by a question depends on the intended domain of
quantification D, and on the set of worlds W which are considered
possible in the given context.
On the other hand, some extra machinery would have to be added

to InqB to model the influence of other contextual factors, such as
the method of identification, the questioner’s goals, and the intended
degree of granularity. In principle, it seems that the existing techniques
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designed to deal with these contextual factors (Ginzburg, ; van
Rooij, ; Aloni, ) can be combined with an inquisitive approach
to question semantics. However, a concrete implementation of these
techniques in the inquisitive setting has not been pursued yet.

5.7 Exercises

Exercise 5.1 Disjunctive questions

Consider the following disjunctive question, in the given context:

(43) Context: Mary keeps a small collection of things that could be nice
gifts. At the moment she has two items in her collection: a small
Picasso reproduction and a beautiful handicraft book rest that she got
on a trip to India. A good friend of hers, Sue, is getting married. She
knows that Sue loves ceramics, so that’s what she’ll give her. But she
also wants to give her fiancee Ben something. She doesn’t know him
so well yet, though, so she asks Sue:
Does Ben like Picasso↑ or does he read a lot↑?

Consider the following possible translations in InqB:

(44) a. Pb ∨ Rb
b. ?(Pb ∨ Rb)

c. ?!(Pb ∨ Rb)

d. ?Pb ∨ ?Rb

1. What are the resolution conditions of the question according to these
translations?

2. Which translation is the most appropriate? Why?

Exercise 5.2 Quantifying into questions

Consider the following question, with two possible translations into InqB:

(45) What did every man eat?
a. ∀y?∀x(Mx → Exy) [narrow scope for every man]
b. ∀x(Mx → ∀y?Exy) [wide scope for every man]

1. According to these two translations, what are the resolution conditions
of the question?

2. Do the two translations indeed correspond to two possible interpreta-
tions of the question?
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Exercise 5.3 Which questions

Consider the which question in (46), the polar question in (47), and the
statements in (48)[a–d], with the corresponding InqB-translations given on
the right.

(46) Which spies were arrested?

(47) Were any spies arrested? ?∃x(Sx ∧ Ax)

(48) a. No spies were arrested. ∀x(Sx → ¬Ax)

b. All spies were arrested. ∀x(Sx → Ax)

c. Alice is the only spy who was arrested. ∀x((Sx ∧ Ax) ↔ x = a)

d. Either Alice is the only spy who was arrested,
or Alice is not a spy and no spies were arrested.

∀x((Sx ∧ Ax) ↔ x = a)∨ (¬Sa ∧ ∀x¬(Sx ∧ Ax))

Recall that Groenendijk and Stokhof analyse (46) (on the de dicto reading) as
∀x?(Sx ∧ Ax), while Velissaratou (2000) analyses (46) as ∀x(Sx → ?Ax).

1. Which of the statements in (48) resolve (46) according to these analyses?

2. According to these analyses, does (46) entail (47)?

3. Discuss how well these predictions match your linguistic intuitions.
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Disjunction, clause typing,
and intonation

In Chapter  we considered various kinds of questions in English. We
described their resolution conditions and specified their translations in
InqB. We saw in particular that the interpretation of questions contain-
ing disjunction heavily depends on intonation. In the present chapter we
will have a closer look at how disjunction interacts with clause typing
(declarative versus interrogative) and intonation (intonational phrase
structure and final pitch contours), showing that inquisitive semantics
allows us to treat disjunction uniformly across statements and questions
with various intonation patterns.

The types of sentences that we will be primarily interested in are
exemplified in ()–() below—though we will see shortly that our
analysis applies to some closely related sentence types as well. As before,
we use arrows to indicate falling and rising intonation at the end of an
intonational phrase. Moreover, if two disjuncts are pronounced within
a single intonational phrase, we use hyphens to explicitly indicate the
absence of an intonational phrase break between the two disjuncts.

() Does Igor speak Spanish-or-French↑?
() Does Igor speak Spanish↑ or does he speak French↓?
() Does Igor speak Spanish↑ or does he speak French↑?
() Igor speaks Spanish-or-French↓.
() Igor speaks Spanish↑ or he speaks French↓.

The sentence types exemplified in ()–() were already discussed in
the previous chapter: () is a polar disjunctive question, which raises
an issue whose resolution requires establishing that Igor speaks either
Spanish or French, or establishing that he doesn’t speak either of the two
languages; () is an alternative question, which presupposes that Igor
speaks either Spanish or French and raises an issue whose resolution

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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requires establishing which of the two languages he speaks; and finally,
() is an open disjunctive question, which raises an issue that can be
resolved in three ways: by establishing that Igor speaks Spanish, by
establishing that he speaks French, or by establishing that he does not
speak either of the two languages.1

The disjunctive sentence types in () and () were not discussed in the
previous chapter yet, because they are statements rather than questions.
The difference between them is that in () the two disjuncts are part
of a single clause, while in () they are separate clauses. Unlike in the
case of questions, however, this difference in syntactic structure does
not result in a difference in interpretation. Both () and () convey the
information that Igor speaks Spanish or French, and do not request any
further information.

The similarities and differences in interpretation between ()–()
should be derivable in a systematic way from the similarities and differ-
ences in form between these sentences. Note that there are three formal
aspects that seem to play a particularly important role in determining
the interpretation of ()–().

The first important aspect is clause type marking: the clauses in
()–() are marked as interrogative clauses by the presence of a fronted
auxiliary verb, while the clauses in ()–() are marked as declarative
clauses by the absence of such fronted auxiliary verbs. This has a
semantic effect, as can be seen by comparing () and (). We assume
that these two examples form a minimal pair, i.e., that they only differ
in that the former involves interrogative clause type marking, while the
latter involves declarative clause type marking. This, then, should be the
source of the difference in interpretation between the two sentences.

1 As we saw in the previous chapter, open disjunctive questions are only used in rather
specific kinds of contexts. For the open disjunctive question in () one could, for instance,
imagine the following context. Igor has electronically applied for a grant from the European
Research Council. Two officers are processing the applications together, and one of them is
starting to compose a response letter to Igor. By default, such letters are in English, but if the
applicant has indicated in their application form that they prefer correspondence in Spanish
or French, then the letter will be in that language. The officer who is starting to compose the
letter to Igor does not remember which language he had indicated on his application form.
The other officer still has Igor’s application form on his computer screen. In this situation,
it is natural for the first officer to ask his colleague the open disjunctive question in (). On
the other hand, the alternative question in () would not be appropriate, since the officer
does not want to presuppose that Igor had indicated a preference for Spanish or French on
his form, and the polar disjunctive question in () would not be suitable either, because the
issue raised by that question could be resolved just by establishing that Igor speaks either
Spanish or French, without establishing which of the two; this would not be sufficient to
decide in which language the letter should be composed.
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A second formal aspect thatmatters is whether the final pitch contour
is falling or rising. That this has a semantic effect can be seen by com-
paring () and (). Again, we take this to be a minimal pair—the only
difference here is that () involves a final fall while () involves a final
rise. This, then, must be the source of the difference in interpretation
between the two.

Finally, a third important aspect is syntactic structure, in particular
whether the two disjuncts are part of a single clause, or rather form two
separate clauses. The fact that this has a semantic effect can be seen by
comparing () and (). Again, we take this to be a minimal pair. The
only difference is that in () the two disjuncts are part of a single clause,
while in () they form two separate clauses. This must be the source of
the difference in interpretation between the two.2

Thus, our aimwill be to showhow the differences inmeaning between
()–()may be derived from the differences in clause typemarking, final
pitch contour, and syntactic structure. In doing so, we will maintain
a uniform treatment of the English disjunction word or as expressing
the join operation, just like the InqB connective ∨. In this respect,
our account will differ from many previous analyses—in particular, the
classical theories of Karttunen () and Groenendijk and Stokhof
()—which donot offer a uniform treatment of disjunction across all
types of disjunctive questions and statements, but rather assume that the
semantic contribution of disjunction in alternative questions is different
from its contribution in polar disjunctive questions and in statements.3

2 One may wonder whether sentences like () could possibly also be treated as cases
where disjunction applies to two full clauses, where the second clause is almost entirely
elided, i.e., left unpronounced.This, however, would be incompatible with the commonplace
assumption that every syntactic clause boundary must align with an intonational phrase
boundary (see, e.g., Truckenbrodt, ; Selkirk, ). If the sentence in () consisted of
two full clauses, then there would have to be an intonational phrase break after the first,
i.e., immediately preceding the disjunction word. Since by assumption there are no such
intonational phrase breaks, () really has to be treated as involving a single clause, containing
a sub-clausal disjunction.

Note that there are also cases like (i) below, which are just like () except that they do
exhibit an intonational phrase boundary after the first disjunct:
(i) Does Igor speak Spanish↑ or French↑?
We will leave such cases out of consideration here and concentrate on those where it is clear
whether disjunction applies to two separate clauses or clause-internally.

3 The uniform treatment of disjunction across questions and statements to be presented
here is closely related to the treatment of disjunction in alternative semantics (Simons, ;
Alonso-Ovalle, ; Aloni, ). See Section . for some discussion of how the latter
treatment of disjunction is related to the inquisitive one. For more elaborate comparison,
see Roelofsen (b); Ciardelli et al. (a); Ciardelli and Roelofsen ().
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The account presented here will be a simplified version of the one
developed inRoelofsen (c, a).The same simplified account has
also been presented in Roelofsen and Farkas (), where it serves as
the basis for a theory of answer particles like yes and no.Themain reason
we present only a simplified version of the account here is that the full
account does not only aim to capture the informative and inquisitive
content of the various sentence types, but also their presuppositional
content, which, as discussed in Section ., requires an extension of the
InqB system. While such an extension increases the empirical coverage
of the account, a simplified non-presuppositional version should suffice
to demonstrate the advantages of inquisitive semantics in formulating a
uniform account of disjunction, clause type marking, and the relevant
intonational features.4

While our focus here will be on English, we expect that the basic
semantic operations that our account associates with the relevant lex-
ical, morphological, and intonational features may play a central role in
the interpretation of similar constructions in other languages as well.
The division of labor between the various elements is bound to vary
from language to language, but we expect that the basic repertoire of
semantic operations that our account draws on will be relatively stable
across languages.

We will proceed as follows. Section . provides an informal char-
acterization of the kind of syntactic structures that we take sentences
like ()–() to have, Section . formally specifies their logical forms,
and Section . specifies how these logical forms are to be interpreted
in InqB.

6.1 List structures

Drawing inspiration from Zimmermann (), we will view the sen-
tence types exemplified in ()–() as lists.5 Lists either consist of a single

4 Besides leaving presuppositions out of consideration, the present account is simplified
in another respect as well. Namely, in order to derive the fact that alternative questions
presuppose that exactly one of the disjuncts holds, the full account assumes that such
questions involve an exclusive strengthening operator. For simplicity, this operator is left out
of consideration here.

5 The idea that disjunction can be used to form lists has also been put forth by Simons
(, p. ), independently of Zimmermann (). In Simons’ work, however, this idea
does not form the basis for a particular semantic treatment of disjunctive sentences and
their various intonational features, but is rather part of a pragmatic explanation for the fact
that disjunctive declaratives are typically much more natural in response to a given question
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clause, as in () and (), or of multiple clauses separated by disjunction,
as in (), (), and (). We will refer to these clauses as ‘list items’. We
think of lists as being either open (signaled by a final rise), as in () and
(), or closed (signaled by a final fall), as in (), (), and (). Non-final list
items are canonically pronounced with rising intonation, both in open
and in closed lists. Moreover, each item is pronounced in a separate
intonational phrase, which means that there is an intonational phrase
break after each non-final item, before the disjunction word. In fact,
two non-final list items may be separated just by an intonational phrase
break, i.e., the disjunction word may be omitted if neither of the items
is final.

Thus, we take lists to differ along three basic parameters: they can be
declarative or interrogative, they can be open or closed, and they can
consist of a single clause or of multiple clauses separated by disjunction.
Given these parameters, there are in total × ×  =  types of lists,
five of which were exemplified in ()–(): the polar question in () is
a mono-clausal open interrogative list, the alternative question in () a
multi-clausal closed interrogative list, the open disjunctive question in
() a multi-clausal open interrogative list, the statement in () a mono-
clausal closed declarative list, and the statement in () a multi-clausal
closed declarative list.

Note that, while the mono-clausal lists in () and () contain a
disjunction, this is not a necessary feature of mono-clausal lists. Thus,
plain non-disjunctive polar questions and statements, exemplified in
()–() below, also count as lists under our perspective, and should
therefore also be covered by our account.

() Non-disjunctive mono-clausal open interrogative:
Does Igor speak Spanish↑?

() Non-disjunctive mono-clausal closed declarative:
Igor speaks Spanish↓.

So far, only five out of eight list types have been exemplified. The three
remaining list types are exemplified in ()–() below.

than truth-conditionally equivalent non-disjunctive sentences. For instance, if the question
is why Jane is not picking up the phone, then (ia) is a much more natural answer than (ib).
(i) a. Either she isn’t home, or she can’t hear the phone.

b. It’s not the case that she is at home and she can hear the phone.
To the extent that Simons’ analysis of this phenomenon is successful, it provides inde-
pendent motivation for our general outlook on disjunctive sentences as lists. A proper
discussion of Simons’ analysis, however, is beyond the scope of this book.
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() Mono-clausal open declarative:
Igor speaks Spanish↑?

() Mono-clausal closed interrogative:
Does Igor speak Spanish↓?

() Multi-clausal open declarative:
Igor speaks Spanish↑ or he speaks French↑?

Sentences like (), with declarative clause type marking and rising
intonation, are referred to in the literature as rising declaratives or
declarative questions (see, e.g., Gunlogson, , ; Malamud and
Stephenson, ; Farkas and Roelofsen, ; Westera, ). They
raise the same issue as the corresponding rising polar interrogative. In
the case of (), this issue can be resolved either by establishing that Igor
speaks Spanish or by establishing that he does not. However, unlike
rising polar interrogatives, rising declaratives also convey some sort of
bias towards the alternative that is explicitly mentioned, here the one
that Igor does speak Spanish. We will not present an account of this bias
here, but will derive that a rising declarative expresses the same issue as
the corresponding rising polar interrogative, and offer an explanation of
the fact that among a rising declarative and a rising polar interrogative
expressing the same issue, the rising polar interrogative is seen as the
canonical form to express that issue, and the rising declarative as a more
‘marked’ form.6 In light of the general tendency for the overall commu-
nicative effect of marked forms to be more complex than that of their
unmarked, canonical counterparts (see, e.g., Horn, ; Blutner, ),
it is unsurprising that rising declaratives have a special discourse effect
(signalling a bias), which plain polar questions lack. For an extension of
the account to be presented here which discusses the bias conveyed by
rising declaratives and other marked question types in detail, we refer
to Farkas and Roelofsen ().

Returning to the different list types, in () we have a mono-clausal
closed interrogative list, i.e., a falling polar interrogative. This sentence,
again, expresses exactly the same issue as the corresponding rising polar
interrogative, and is also generally seen as a more marked form than
the latter.7 Whether falling polar interrogatives are also systematically

6 For instance, Quirk et al. () state that “Yes–no questions are usually formed by
placing the operator before the subject and giving the sentence a rising intonation” (p. ).

7 For instance, Hedberg et al. () state that “the low-rise nuclear contour
(e.g., L*H-H) is the unmarked question contour and is by far the most frequently occur-
ring. Yes-no questions with falling intonation (e.g. H*L-L) do not occur frequently, but
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associated with a certain special discourse effect, like rising declaratives,
is not so clear—certainly, there does not seem to be a broad consensus in
the literature on what this effect would be (see Hedberg et al., , for
relevant recent discussion). In any case, our aim will just be to account
for the fact that a falling polar interrogative raises the same issue as the
corresponding rising polar interrogative, and to offer an explanation for
the fact that it is seen as a relatively marked sentence type.

Finally, in () we have amulti-clausal open declarative list, i.e., a sen-
tence consisting of two rising declarative clauses, joined by disjunction.
This sentence type strikes us as very odd. It is difficult, if not impossible,
to imagine a context in which it could be felicitously used. As far as we
know, it has not been discussed in any depth in the literature. It is an
interesting fact, however, that the commonplace ingredients that make
up this construction—two declarative clauses, disjunction, and rising
intonation—cannot be combined in this particular way. We will not be
able to give an account of this empirical observation here; this would
require amore detailed analysis of the bias associatedwithmono-clausal
rising declaratives, as pursued in Farkas andRoelofsen ().However,
we will offer an explanation of the fact that the construction is marked,
in the sense that it is not the canonical way of conveying the issue that
it expresses.

6.2 Logical forms

Wenow turn to amore formal specification of the syntactic structures—
the logical forms—that we take list structures to have. Globally, we
assume that a list with n items has the following logical form:

()

open/closed decl/int item1
or

…
or itemn

when they do, they can be classified in speech act terms as ‘non-genuine’ questions, where
one or more felicity conditions on genuine questions are not met.”
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We will refer to open/closed as completion markers, to decl/int
as complementizers, and to the rest of the structure as the body of the
list. We assume that each item in the body of the list is a full clause,
headed by a declarative or interrogative clause type marker, Cdecl or
Cint, depending on whether the list as a whole is headed by decl or
int, respectively. That is, if the complementizer of a list is decl, then all
clauses in the body of that list must be headed by Cdecl, and similarly if
the complementizer of the list is int.

To give a concrete example, the polar question in (), which consists
of a single clause containing a disjunctive phrase and exhibits a final rise,
is taken to have the following structure:

()

open int item1

Cint does Igor speak Spanish or French

On the other hand, the alternative question in (), which consists of
two clauses and exhibits a final fall, is taken to have the following
structure:

()

closed int

or item2

item1

Cint does Igor speak Spanish
Cint does he speak French

6.3 Interpreting logical forms

We will now specify a semantic interpretation of these logical forms by
translating them into InqB. Thereby we associate each logical form with
a proposition, namely the proposition expressed by the formula that
serves as its translation.
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The body of a list Let us first consider the body of a list, and after that
turn to complementizers and completion markers. Recall that the body
of a list consists of one ormore list items, separated by disjunction. Every
list item, in turn, is a full clause headed by a declarative or interrogative
clause type marker (Cdecl/int). The rest of the clause is a tense phrase
(TP), which may itself contain a disjunction.

The translation procedure is very straightforward. Any disjunction is
translated as ∨, no matter whether it separates two list items or occurs
within one of the list items. Every clause type marker, be it declarative
or interrogative, is translated as !. The rationale for this is that every list
item is seen, intuitively speaking, as one block, i.e., as contributing a
single alternative to the proposition expressed by the list as a whole.
This is ensured by applying !, which turns any proposition P into a
proposition with a single alternative,

⋃
P.8 Otherwise the procedure

is straightforward: basic clauses are translated as atomic formulas, and
English conjunction, disjunction, and negation are translated as the
corresponding InqB connectives. Thus, the body of a list is translated
according to the rule in (), where φ1, . . . ,φn are standard translations
of TP1, …, TPn into our logical language.

() Rule for translating the body of a list:

[[Cdecl/int TP1] or …or [Cdecl/int TPn]] � !φ1 ∨ . . . ∨ !φn

Returning to our concrete examples above, if we translate Igor speaks
Spanish as p and Igor speaks French as q, then we get the following
translations for the list bodies of () and (), respectively.9

8 Syntactically, interrogative clause type markers differ from declarative ones in that
they induce subject-auxiliary inversion. Semantically, both clause type markers are simply
taken to apply ! to the proposition expressed by the TP that they combine with. However,
the corresponding complementizers, decl and int, differ in their semantic contribution.
We will turn to this right below. Finally, we should note that in order to deal with wh-
interrogatives, the treatment of interrogative clause type markers given here has to be
generalized. We could assume, for instance, that interrogative clauses are generally headed
by an n-place interrogative clause type marker Cn

int, where n ≥ 0 is the number of wh-
phrases in the clause. This operator, then, could be assumed to take as its input an n-place
property, i.e., an object P of type 〈en,T〉, and to deliver the proposition ∃	x.!P	x, where 	x
is a sequence of n individual variables. In the special case where n = 0, i.e., the case of
non-wh-questions that we focus on in the present chapter, this means that the clause type
marker takes a 0-place property, i.e., a propositionP as its input and delivers the proposition
!P , exactly as assumed in the main text. See Champollion et al. () for some further
discussion.

9 In previous chapters, the logical language that we assumed was a first-order language,
with predicate symbols and individual constants and variables. Here, we simply use a
propositional languagewith atomic proposition symbols p and q, since the internal structure
of predicate-argument combinations is irrelevant for present purposes.
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() [Cint does Igor speak Spanish or French] � !(p ∨ q)

() [Cint does Igor speak Spanish] or [Cint does he speak French]
� !p ∨ !q

Complementizers and completion markers Now let us turn to complemen-
tizers and completion markers. To specify their semantic contribution it
is convenient to use some notation and terminology from type theory.10
Recall that in inquisitive semantics, propositions are sets of sets of
possible worlds, i.e., objects of type 〈〈s, t〉, t〉. Let us abbreviate this type
as T. Now, we will treat decl and int as propositional operators, i.e.,
as functions that take a proposition as their input, and deliver another
proposition as their output. This means that decl and int are of type
〈T,T〉. On the other hand, we will treat open and closed as modifiers
of propositional operators, i.e., as functions that take a propositional
operator as their input, and deliver a modified propositional operator
as their output. So open and closed are of type 〈〈T,T〉, 〈T,T〉〉. It
will become clear in a moment why open and closed are treated as
having this somewhat more complex type, rather than simply 〈T,T〉,
like decl and int. We will now take a more detailed look at each of the
complementizers and completion markers in turn.

Let us start with decl.Wewill treat decl asmaking a list purely infor-
mative, i.e., as eliminating inquisitiveness. This effect can be achieved
straightforwardly by treating decl as a function that takes the propo-
sition P expressed by the body of a list as its input and applies the
projection operator ! to it, returning !P. Using type-theoretic notation,
this can be formulated concisely as follows:

() decl � λP.!P
Next, consider int. We take the role of this operator to be that of
ensuring inquisitiveness.This is done by applying a conditional variant of
the ? operator, which we will denote here as 〈?〉. If the proposition P that
〈?〉 takes as its input is not yet inquisitive, then ? is applied to it. On the
other hand, if P is already inquisitive, then it is left untouched. The only

10 We will only use some type-theoretical notation here in the meta-language to describe
functions (as in, e.g., Heim and Kratzer, ). A more rigorous approach would be to
extend the InqB system to a full-fledged type theoretic framework (as done in Ciardelli,
Roelofsen, and Theiler, a). We leave this step implicit here because it would involve
quite some technicalities which are to a large extent orthogonal to our present concerns.
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case inwhich this procedure does not yield an inquisitive output is when
P is a tautology or a contradiction. In this case 〈?〉P is a tautology. In all
other cases, 〈?〉P is inquisitive. Thus, we assume the following treatment
of int:11

() int � λP.〈?〉P
Finally, let us consider open and closed. Intuitively speaking, we

treat these completionmarkers as encodingwhether the list is ‘complete’
and ready to be ‘sealed off ’, or rather left ‘open-ended’. The role of
closed is to mark the list as being complete, and to allow decl or int,
whichever is present, to seal off the list.Thus, closed is simply treated as
the identity function, leaving the propositional operator π expressed by
decl or int untouched and letting it apply to the proposition expressed
by the body of the list.

() closed � λπ.π

On the other hand, the role of open is to mark the list as being open-
ended. It prevents decl/int from sealing off the body of the list, and
instead applies the ? operator, which adds the set-theoretic complement
of

⋃
P as an additional alternative. This captures what we take to be the

characteristic semantic property of open lists, which is that they always
leave open the possibility that none of the given list items holds. Thus,
unlike closed, open prevents the operator π expressed by decl or int
from becoming operative, and instead applies ? to the proposition P
expressed by the body of the list.

() open � λπ.λP.?P

In total there are four types of lists, each featuring a combination of
one complementizer and one completionmarker. From the treatment of
the individual complementizers and completion markers given above, it
follows that the four types of lists are translated into our logical language
as specified in () below, where in each case φ stands for the translation
of the body of the list, obtained according to the rule in () above.

11 In addition to ensuring inquisitiveness, Roelofsen (c, a) assumes that int has
another effect as well: it ensures non-informativity, by introducing a presupposition that the
actual world must be contained in

⋃
P. This second aspect of interrogativity is important

in order to account for the presuppositional component of alternative questions (discussed
in Section .). Since in this section we are casting our account in InqB, which does not
represent presuppositions, we set aside this second effect of int.
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Table . Representative examples of all types of lists considered.

Translation Simplified

—Closed delaratives—
Igor speaks Spanish↓. !!p p
Igor speaks Spanish-or-French↓. !!(p ∨ q) !(p ∨ q)

Igor speaks Spanish↑ or he speaks French↓. !(!p ∨ !q) !(p ∨ q)

—Open declaratives—
Igor speaks Spanish↑? ?!p ?p
Igor speaks Spanish-or-French↑? ?!(p ∨ q) ?!(p ∨ q)

Igor speaks Spanish↑ or he speaks French↑? ?(!p ∨ !q) ?(p ∨ q)

—Closed interrogatives—
Does Igor speak Spanish↓? ?!p ?p
Does Igor speak Spanish-or-French↓? ?!(p ∨ q) ?!(p ∨ q)

Does Igor speak Spanish↑ or does he speak French↓? !p ∨ !q p ∨ q
—Open interrogatives—
Does Igor speak Spanish↑? ?!p ?p
Does Igor speak Spanish-or-French↑? ?!(p ∨ q) ?!(p ∨ q)

Does Igor speak Spanish↑ or does he speak French↑? ?(!p ∨ !q) ?(p ∨ q)

() Rules for translating lists
a. [[closed decl] body] � !φ
b. [[closed int] body] � 〈?〉φ
c. [[open decl] body] � ?φ
d. [[open int] body] � ?φ

The rules in () and () together give a complete specification of how
to translate declarative and interrogative lists in English into our logical
language. In Table . we provide translations for a number of examples
that are representative for all the types of lists that we are concerned
with. In the Table, as well as in the discussion below, we use hyphens
(Spanish-or-French) to indicate that the two disjuncts are pronounced
within one intonational phrase. In the translations of the examples, p
stands for Igor speaks Spanish and q for Igor speaks French, as above. In
each case we provide the direct translation and also a simpler formula
that is semantically equivalent in InqB to the direct translation. The
propositions expressed by all these simplified translations are depicted
in Figure ..

The following two sections discuss these results in more detail. First,
in Section ., we consider the ‘unmarked’ disjunctive sentence types
exemplified in ()–() at the beginning of this chapter, as well as the
unmarked non-disjunctive sentence types in ()–(). Then, in Sec-
tion ., we turn to the more ‘marked’ sentence types which were
exemplified in ()–().
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(a) [[p]] (b) [[!(p ∨ q)]] (c) [[ ?p]]

(d) [[ ?!(p ∨ q)]] (e) [[ ?(p ∨ q)]] (f) [[p ∨ q]]

Figure . Propositions expressed by the examples in Table ..

6.4 Unmarked cases

We start with the simplest unmarked sentence type, namely a non-
disjunctive declarative with falling intonation, repeated in ():

() Igor speaks Spanish↓. closed declarative

This sentence is taken to have the following logical form:

() [[closed decl] [Cdecl Igor speaks Spanish]]

The translation of this logical form is !!p, which can be simplified
to just p. The proposition expressed by this sentence is depicted in
Figure .(a). Thus, it is correctly predicted that the sentence provides
the information that Igor speaks Spanish, without requesting any addi-
tional information.

Next, consider the disjunctive falling declaratives in () and ():

() Igor speaks Spanish-or-French↓. closed declarative
() Igor speaks Spanish↑ or he speaks French↓. closed declarative

These sentences are taken to have the following logical forms, respec-
tively:

() [[closed decl] [Cdecl Igor speaks Spanish or French]]
() [[closed decl] [[Cdecl Igor speaks Spanish] or [Cdecl he speaks

French]]]

These logical forms have the same simplified translation, namely
!(p ∨ q), which expresses the proposition depicted in Figure .(b).
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Thus, the sentences are correctly predicted to provide the information
that Igor speaks Spanish or French, without requesting any additional
information.

Now let us turn to interrogatives. The simplest unmarked case here is
the polar question in ().

() Does Igor speak Spanish↑? open interrogative

This sentence is taken to have the following logical form:

() [[open int] [Cint does Igor speak Spanish]]

The simplified translation of this logical form is ?p, which expresses the
proposition depicted in Figure .(c). Thus, the sentence is correctly
predicted to request information as to whether Igor speaks Spanish, and
not to provide any information.

Next, consider the disjunctive polar question in ().

() Does Igor speak Spanish-or-French↑? open interrogative

This sentence is taken to have the following logical form:

() [[open int] [Cint does Igor speak Spanish or French]]

The simplified translation of this logical form is ?!(p ∨ q), which
expresses the proposition depicted in Figure .(d). Again, the sentence
is predicted to be inquisitive and non-informative. In order to resolve
the issue that it raises, one either needs to establish that Igor indeed
speaks at least one of the two languages, or that he does not speak
either.

Next, consider the open disjunctive question in (), which involves
two full clauses joined by disjunction.

() Does Igor speak Spanish↑ or does he speak French↑?
open interrogative

This sentence is taken to have the following logical form:

() [[open int] [[Cint does Igor speak Spanish] or
[Cint does he speak French]]]

The simplified translation of this logical form is ?(p ∨ q), which
expresses the proposition depicted in Figure .(e). As desired, the
sentence is predicted to bemore inquisitive than (): in order to resolve
the issue that it raises, it is not sufficient to establish whether or not Igor
speaks at least one of the two languages. Rather, it either needs to be
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established that Igor speaks Spanish, or that he speaks French, or that
he speaks neither.

Note in particular that () is not translated as ?p ∨ ?q, but rather
as ?(p ∨ q). This is a desirable result, because if it were translated as
?p ∨ ?q, then the account would predict that in order to resolve the
issue that () expresses, it would be sufficient to establish that Igor
does not speak Spanish, or to establish that he does not speak French.
This prediction would be wrong: to resolve the issue expressed by
(), establishing that Igor does not speak either language is sufficient,
but establishing that Igor does not speak Spanish (or that that he doesn’t
speak French) is not. In order to achieve this result, it is crucial that the
? operator is not contributed by the interrogative clause type markers
in (). Rather, it is contributed by the incompleteness marker open,
which scopes over the entire list structure.

Finally, consider the alternative question in (), which again involves
two full clauses joined by disjunction, but now with falling intonation
on the second clause.

() Does Igor speak Spanish↑ or does he speak French↓?
closed interrogative

This sentence is taken to have the following logical form:

() [[closed int] [[Cint does Igor speak Spanish] or
[Cint does he speak French]]]

The translation of this logical form, on the simplified non-
presuppositional account presented here, is p ∨ q, which expresses the
proposition depicted in Figure .(f). Notice that the ? operator is not
invoked here because the proposition that int gets as its input is already
inquisitive. Since the role of int is not to blindly apply ?, but rather
just to ensure inquisitiveness, it leaves the input proposition unaltered
in this case. The prediction, then, is that the alternative question in
() provides the information that Igor speaks at least one of the two
languages, and raises an issue as towhich of the two languages he speaks.

As anticipated, this prediction is not entirely satisfactory, because
it does not capture the fact that alternative questions presuppose that
exactly one of the disjuncts holds. However, as remarked at the outset, it
is impossible to properly capture this fact in InqB, which concentrates
exclusively on informative and inquisitive content and leaves presup-
positional aspects of meaning out of consideration. Again, we refer to
AnderBois (), Ciardelli et al. () and Roelofsen (a) for
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presuppositional extensions of InqB, and to the latter work for a more
sophisticated version of the account presented here, which does capture
the presuppositions triggered by alternative questions.

Aside from this loose end, we have seen that the present account
derives the basic semantic properties of all the unmarked sentence types
exemplified in ()–() at the beginning of the chapter. Note that the
account rests on a uniform treatment of disjunction, as well as a uniform
treatment of completion markers (final pitch contours), which are used
both in statements and in questions. Allowing for a uniform treatment
of these common building blocks is, in our view, an important virtue of
inquisitive semantics.

6.5 Marked cases

We now turn to the more marked sentence types: rising declaratives
(consisting of one or multiple clauses) and falling polar interrogatives.
The examples we gave in ()–() are repeated in ()–() below.

() Igor speaks Spanish↑?
() Does Igor speak Spanish↓?
() Igor speaks Spanish↑ or he speaks French↑?

We will first discuss which resolution conditions these sentences are
predicted to have, and then consider how their marked status may be
explained.

Resolution conditions The rising declarative in () and the falling polar
interrogative () are translated as ?p on our account, just like the
corresponding rising polar interrogative in ().

() Does Igor speak Spanish↑?

Thus, as desired, it is predicted that these sentences raise an issue which
can be resolved by establishing either that Igor speaks Spanish, or that he
does not.On the other hand, the simplified translation of () is ?(p ∨ q),
just like the corresponding open disjunctive question in ().

() Does Igor speak Spanish↑ or does he speak French↑?

Thus, it is predicted that the issue raised by () can be resolved in three
ways: by establishing that Igor speaks Spanish, by establishing that he
speaks French, or by establishing that he does not speak either of the two
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languages. In this case, it is difficult to judge whether this prediction is
correct, since, as discussed above, it seems quite impossible to imagine
a context in which () could be felicitously used.

Why are these sentence types marked? Now let us consider how themarked
status of these sentence types may be explained.12 The general idea that
we will pursue, familiar from much work in neo-Gricean pragmatics
and optimality theory (see, e.g., Horn, ; Blutner, ), is that an
expression is perceived as marked if there is another expression that
has the same semantic content and is, other things being equal, better
suited to express that content. One reason for this may be that the latter
expression is easier to produce; another reason may be that it has a
greater chance of being interpreted as intended. This second reason will
be most relevant for us.

Notice that the logical form of every sentence in ()–() is either
headed by [open decl] or by [closed int]. Vice versa, every sentence
type whose logical form is headed by one of these two complementizer-
completion-marker combinations is represented in ()–(), except
for alternative questions, i.e., multi-clausal closed interrogatives—we
will return to thismomentarily.Quite generally, then, there is something
marked about closed interrogatives and open declaratives. Why would
this be?

In Roelofsen (a); Farkas and Roelofsen () it is proposed
that the source of this markedness lies in the fact that these sentence
types are generally in competition with open interrogatives, and that
the latter are generally preferred because they maximize the chance of
being interpreted as intended. This is because, in many configurations,
open and int have precisely the same semantic effect, and even more
importantly, in these configurations the same overall interpretation
would result if either open or int were to be misinterpreted as closed
or decl, respectively.

Let us look at an example to make this more concrete. The open
declarative in () and the open interrogative in () are both translated
as ?p, and are thus predicted to have exactly the same semantic content.
Now suppose that someone hears () in a conversation and has to
determine its intended interpretation. If all goes well, the sentence is

12 Recall that we will not try here to characterize the special discourse effects and felicity
conditions of rising declaratives and falling polar interrogatives; see Farkas and Roelofsen
() for an analysis of rising declaratives that is compatible with the account presented
here.
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recognized as an open interrogative—through the interrogative word
order and the final rise. However, even if the sentence is mistakenly
parsed as an open declarative, or as a closed interrogative, the same
interpretation would still be derived. Thus, open interrogatives are
very robust: if one piece breaks, the whole construction still functions
as intended. This is not the case for the open declarative in (). If
this sentence is mistakenly parsed as a closed declarative, the intended
interpretation would not be obtained. This explains the non-optimal,
marked nature of this sentence type.

Exactly the same reasoning applies to the closed interrogative in ().
This sentence also has ?p as its translation, so it is also in competition
with the open interrogative in (). And again, it does not have the same
robustness as the open interrogative, because if it is mistakenly parsed
as a closed declarative, the intended interpretation is not obtained.

Finally, the markedness of the bi-clausal open declarative in ()
can be explained in a similar way as well, although here the reasoning
is somewhat more involved. As noted above, () is predicted to be
semantically equivalent with the open interrogative in (); both are
translated as ?(p ∨ q). Now consider which interpretations arise if either
() or () is not parsed as intended. If the open declarative in () is
mistakenly parsed as an open interrogative it is translated as ?(p ∨ q),
which is still its intended interpretation, but if it is mistakenly parsed as
a closed declarative it is translated as !(p ∨ q), which is clearly different
from ?(p ∨ q).

On the other hand, if the open interrogative in () is mistakenly
parsed as an open declarative, it is translated as ?(p ∨ q), which is
its intended interpretation, but if it is mistakenly parsed as a closed
interrogative it is translated as p ∨ q, which is different from ?(p ∨ q).
So if we just count the number of erroneous parses that lead to misin-
terpretation, there is no reason to prefer the open interrogative over the
open declarative in this case. If we take a closer look, however, we find
that such a reason does exist.

Consider the interpretations that arise if the two sentences are mis-
interpreted. In the case of () we obtain p ∨ q; in the case of () we
get !(p ∨ q). Neither of these coincides with the intended interpretation,
?(p ∨ q). However, it may be argued that the former misinterpretation
is less consequential than the latter. To see this, note that p ∨ q entails
?(p ∨ q), which means that every resolution of the former is also a
resolution of the latter. Thus, even if () is misinterpreted as p ∨ q,
it will still be taken to request information which would, if provided
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by the addressee, resolve the issue expressed by the sentence under its
intended interpretation. On the other hand, !(p ∨ q) does not entail
?(p ∨ q). In fact, unlike ?(p ∨ q), !(p ∨ q) is not inquisitive at all. So if ()
is misinterpreted as !(p ∨ q), then the addressee will not be prompted
to provide any information, let alone information that would resolve
the issue expressed by the sentence under its intended interpretation.
Thus, the potential misinterpretation of the open interrogative in ()
is less consequential than the potential misinterpretation of the open
declarative in (). This is a reason for speakers to prefer () over
() when they want to express the proposition associated with ?(p ∨ q).
This, then, explains the marked status of multi-clausal open declaratives
like ().

Finally, let us return to the case of alternative questions, i.e.,
multi-clausal closed interrogatives, which are not marked, even though
uni-clausal closed interrogatives are. The reason for this is that
multi-clausal closed interrogatives are not generally equivalent with
the corresponding open interrogatives. So in this case there is no
competition between the two types of lists.

To make this concrete again, consider the closed interrogative in ().

() Does Igor speak Spanish↑ or does he speak French↓?

The simplified translation of this sentence is p ∨ q. Thus, it does not
have the same semantic content as the corresponding open interrogative
in (), nor is there any other competing list type. This explains its
unmarked status.

This concludes our analysis of declarative and interrogative lists in
InqB. Even though there is much more to say about the linguistic
properties of such lists, we hope that the bare bones account thatwe have
presented here has succeeded in substantiating the general point that we
set out to make in this chapter: a uniform treatment of connectives and
intonational features across declarative and interrogative constructions
is greatly facilitated by a semantic framework which treats informative
and inquisitive content in an integrated way. If we want to give a
uniform characterization of the role of disjunction in declarative and
interrogative sentences, its lexical entry should specify its contribution
to both informative and inquisitive content in full generality, inde-
pendently of the kind of construction that it happens to be part of.
And similarly for the relevant intonational features. Simply put, the
fact that declarative and interrogative sentences are largely built up
from the same parts constitutes an important piece of motivation for
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inquisitive semantics, which treats informative and inquisitive content
in an integrated way, as opposed to approaches in which the standard
truth-conditional notion of meaning is maintained for declaratives
and a separate notion of meaning is invoked for interrogatives (e.g.,
Karttunen, ; Groenendijk and Stokhof, ).

6.6 Exercises

Exercise 6.1

Determine the logical form of each of the examples below, and derive, step
by step, how these logical forms are translated into InqB according to the
rules in (14) and (21). Translate the indefinite expressions a bike and a car
using existential quantifiers.

(42) a. Martina has a bike.↓.
b. Martina has a bike-or-a-car↓.
c. Martina has a bike↑ or she has a car↓.
d. Does Martina have a bike↑?
e. Does Martina have a bike-or-a-car↑?
f. Does Martina have a bike↑ or does she have a car↑?
g. Does Martina have a bike↑ or does she have a car↓?

Exercise 6.2

Extend the basic account given here in such a way that it predicts the
acceptability and interpretation of yes and no in response to the various
types of sentences considered.

• Data to be accounted for. Your theory should account for the acceptability
and interpretation of yes and no in response to sentences (1)–(5). In partic-
ular, it should account for the fact that:

– yes and no are both acceptable in response to (1), (4), and (5); in each case
yes means that Igor speaks Spanish or French and no means that he doesn’t
speak either Spanish or French.

– yes and no are not acceptable in response to (2).
– no is acceptable in response to (3), meaning that Igor doesn’t speak Spanish

or French; plain yes is not satisfactory in this case, but yes, he speaks Spanish
or yes, he speaks French are fine.

• Assumptions you can make. You can assume that:

– A sentence, besides expressing a certain proposition that captures
its informative and inquisitive content, generally also highlights a set
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of propositions, which may serve as the antecedents for subsequent
anaphoric expressions.

– yes and no are such anaphoric expressions:

* Both yes and no presuppose that the previous sentence highlighted a
unique proposition.

* If this presupposition is met, yes confirms the unique highlighted propo-
sition, while no rejects it.

* If the presupposition is not met, the meaning of yes and no is not defined.

– A yes/no response is only fully satisfactory if its presupposition is met
and it resolves the issue raised by the previous sentence.

• Your task. Give a recursive definition of the set of propositions that are
highlighted by sentences in InqB. You can restrict yourself to atomic sen-
tences, ∨, !, and ?. Then show which propositions are highlighted by (1)–
(5) according to your definition, and explain how this accounts for the
varying acceptability and interpretation of yes and no in response to these
sentences.
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Conditionals

In the previous chapter, we have seen that the inquisitive notion of
meaning allows us to obtain a uniform semantic analysis of lexical and
intonational elements that occur both in declarative and in interrogative
sentences. However, we assumed that the logical form of an (ordinary,
falling) declarative sentence is always headed by a projection operator, !,
which makes the sentence non-inquisitive. This may suggest that, as
long as we are only concerned with such sentences (and, therefore, not
with treating operators like disjunction in a way that works uniformly
across declaratives and interrogatives), the standard truth-conditional
notion of meaning serves us well enough, and keeping track of inquisi-
tive content is an unnecessary complication.
In this chapter, we will see that this is not the case: even for sen-

tences which are not inquisitive, and whose meaning is therefore com-
pletely determined by their truth conditions, these truth conditionsmay
depend crucially on the inquisitive content of some constituent within
the sentence. Thus, to derive the right truth conditions for the whole
sentence, the inquisitive content of the sentence’s constituents must be
taken into account.
We will demonstrate this based on recent experimental work by

Ciardelli, Zhang, and Champollion (c) on counterfactual condi-
tionals. This work shows that even if two clauses φ and φ′ have exactly
the same truth conditions, the counterfactuals φ > ψ and φ′ > ψ may
have different truth conditions. In particular, the counterfactuals (a)
and (b) have different truth-conditions, even though their antecedents
are truth-conditionally equivalent.

() a. If switch A or switch B was down, the light would be off.
b. If switch A and switch Bwere not both up, the light would be off.

This means that it is impossible to give a compositional account of
counterfactuals based on a purely truth-conditional notion of meaning.

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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Ciardelli et al. (c) show that the relevant contrast finds a natural
explanation once conditionals are analysed in inquisitive semantics.
Moreover, Ciardelli (b) argues that an inquisitive analysis of condi-
tionals has other merits as well: on the one hand, it solves a well-known
problem that classical analyses of conditionals have with disjunctive
antecedents; on the other hand, it does not only allow us to interpret
run-of-the-mill conditional statements, but also two other classes of
conditional constructions, namely, unconditionals such as (a, b), and
conditional questions such as (a, b).

() a. Whether they play Bach or Handel, Alice will go.
b. Whatever they play, Alice will go.

() a. If they play Bach, will Alice go?
b. If they played Bach, would Alice go?

In this chapter, we will present the experimental results and theo-
retical arguments of Ciardelli (b) and Ciardelli et al. (c) in
condensed form. Section . describes the experiment and explains
why the obtained results are problematic for the standard view that
equates meaning with truth-conditions. Section . introduces a recipe
for lifting theories of conditionals from truth-conditional semantics to
inquisitive semantics, and shows how the experimental results receive
a natural explanation once we combine this inquisitive lifting with suit-
able assumptions about the process of making counterfactual assump-
tions. Finally, Section . discusses various further advantages of an
inquisitive treatment of conditionals.

7.1 Evidence for truth-conditional effects

7.1.1 The experiment
Imagine a long hallway with a light in themiddle and with two switches,
one at each end. One switch is called switch A and the other one is
called switch B. As the wiring diagram in Figure . shows, the light
is on whenever both switches are in the same position (both up or both
down); otherwise, the light is off. Right now, switch A and switch B are
both up, and the light is on. But things could be different . . .

Which of the following counterfactual sentences are true in this
scenario?

() a. If switch A was down, the light would be off.
b. If switch B was down, the light would be off.
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c. If switch A or switch B was down, the light would be off.
d. If switch A and switch Bwere not both up, the light would be off.
e. If switch A and switch Bwere not both up, the light would be on.

Ciardelli et al. (c) conducted an experiment to test the intuitions
of native speakers of English about this question. Participants were
recruited online using Amazon’s Mechanical Turk platform; they
were first shown the short text above and the diagram in Figure .;
they were then presented with one of the sentences in () and a filler
sentence (one at a time, in random order), and they were asked to
judge these sentences as either true, false, or indeterminate. Data from
participants who failed to judge the filler correctly, or who otherwise
failed to qualify for the task, were rejected. The remaining results are
summarized in Table .. For our purposes, the most important result
is the contrast between sentences (c) and (d): (c) was judged true
by about  of participants, while only  of participants judged
(d) true.

7.1.2 A problem for the truth-conditional view on meaning

Assuming for the moment that the judgments found in the experiment
are due to an actual difference in truth value between (c) and (d) in
the given context, this is problematic for the standard view that equates

switch A switch B

Figure . A multiway switch.

Table . Results of Ciardelli et al.’s (c) main experiment

Sentence Number True () False () Indet. ()

(a)   .  .  .
(b)   .  .  .
(c)   .  .  .
(d)   .  .  .
(e)   .  .  .
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meaning with truth-conditions, regardless of the particular account of
conditionals one assumes. To seewhy, consider the clauses (a) and (b),
corresponding to the two antecedents of (c) and (d).

() a. Switch A or switch B is down
b. Switch A and switch B are not both up

Assuming that our switches can only take two positions, up and down,
these clauses have the same truth conditions. If switch A or switch
B is down, then clearly switch A and switch B are not both up. And
conversely, if switch A and switch B are not both up, then either of them
must be down. Under the view that the meaning of these clauses can
be identified with their truth conditions, this means that (a) and (b)
have the same meaning.
According to the principle of compositionality, the meaning of a

sentence depends only on the meaning of its constituents and the way
these constituents are combined. This implies that if, in a sentence φ, a
constituent c is replaced by another constituent c′ with the same mean-
ing, the resulting sentence φ[c′/c] must have the same meaning as φ.
Now, the counterfactual (d) can be obtained from (c) by replacing

the sentential constituent corresponding to (a)with (b), which has the
same meaning. Therefore, (c) and (d) must have the same meaning,
and thus the same truth conditions. It follows that, in every particular
context, these counterfactuals must have the same truth value. But this
is not the case: in the context described in the experiment, (c) is true,
but (d) is not.
This shows that, in combination with the principle of composition-

ality, the assumption that the meaning of a sentence can be identified
with its truth conditions leads to wrong empirical predictions.

7.1.3 Ruling out alternative explanations

Ciardelli et al. (c) strengthen the argument made in the previous
section by ruling out a number of alternative explanations for the data
in Table ..
First, one might worry that (c) and (d) are judged differently in

spite of actually having the same truth value, due to the interference
of other factors. The main concern that motivates this worry is that
participants may have judged (d) incorrectly for one of two reasons:
they may have misread the phrase ‘not both up’ as ‘both not up’, that
is, as ‘both down’; or they may have been confused by the higher
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processing cost of the antecedent, which involves a negation scoping
over a conjunction.
Neither of these hypotheses stands up to further scrutiny. According

to the first hypothesis, many participants misread ‘not both up’ as ‘both
down’. If so, we would expect many participants to judge the sentence
(e) as true, since the context explicitly specifies that the light is offwhen
both switches are down.This is not what we observe: instead, (e) is only
judged true by about  of participants, just like (d).
According to the second hypothesis, many participants fail to judge

(d) true as a consequence of some context-independent feature of this
sentence, such as processing cost. This hypothesis predicts that many
participants would also not judge this sentence true if the circuit had
beenwired differently. In a post-hoc experiment, participants were asked
to judge the sentences in () in a modified scenario, where the light is
on only when both switches are up. In this scenario, an overwhelming
majority of participants (about ) judged (d) to be true.The contrast
between the results in the two scenarios shows that the reason why (d)
was not judged true in the main experiment does not have to do with
intrinsic features of the sentence, but rather with the fact that if both
switches were down, the light would not be off. For this is the only
difference between the original scenario and the modified one.
Another way to resist the conclusion drawn in the previous section

is to accept that the difference in truth values between (c) and (d) is
genuine, but to deny that the antecedents of these sentences have the
same truth conditions. There are two natural ways to do this: one may
point out that down is not logically equivalent to not up, or hypothesize
that the disjunction in the antecedent of (c) is interpreted exclusively,
i.e., as requiring that only one (and not both) of the disjuncts is true,
for instance as a result of some exhaustification operation of the kind
discussed by Chierchia et al. ().
Again, further control experiments render these explanations

implausible. According to the first explanation, the contrast should
vanish if the word down was replaced by the expression not up
throughout the sentences in (). A post-hoc experiment revealed that
this prediction is not borne out: replacing down by not up does not
modify the pattern exhibited by the results in Table ..
According to the second explanation, the disjunction in the

antecedent of (c) is interpreted exclusively, possibly as a result of an
exhaustification operator. If so, we would naturally expect the main
disjunction in (a) to be interpreted exclusively as well, and thus to be
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judged as false or indeterminate in a scenario in which both switches are
down. In a pre-test, participants were presented with a picture which
displays the circuit with both switches down, and they were asked to
judge the sentences (a) and (b) as true, false, or indeterminate. Both
sentences were judged true by over  of participants.This shows that
an exclusive reading of disjunction in (a) is at best marginal, which
makes it unlikely that it is responsible for the observed contrast.1

7.2 Conditionals in inquisitive semantics

In this section, we show that the findings discussed in the previous sec-
tion have a natural explanation once we move from a truth-conditional
semantic setting to inquisitive semantics. We start in Section .. by
showing how inquisitive semantics assigns the same truth-conditions
but differentmeanings to the antecedents of (c) and (d), thus allowing
for a compositional account that assigns different truth conditions to
these counterfactuals. In Section .., we introduce the inquisitive
lifting operation developed in Ciardelli (b), and explain how a
difference in inquisitive content between two antecedents can result in
different truth conditions for the corresponding conditionals. Finally,
in Section .. we present the background theory of counterfactu-
als developed by Ciardelli et al. (c), and show that the inquis-
itive lifting of this theory yields the right predictions for the sen-
tences in ().

7.2.1 Breaking de Morgan’s law in inquisitive semantics

To see how inquisitive semantics allows us to explain the data in Table
., let us first formalize our sentences in the system InqB equippedwith
an additional counterfactual connective>.2 We will assume a predicate
Ux for ‘x is up’, an atomic sentence O for ‘the light is off ’, and two

1 To maintain that exhaustive strengthening is responsible for the observed effects, one
would have to assume that exhaustification takes place in conditional antecedents more
often than in matrix clauses. As far as we know, there is no evidence supporting this
assumption.
2 Clearly, the implication connective → provided by InqB is not suitable as a transla-

tion of counterfactuals. When applied to statements, this operator yields the same truth
conditions as the standard material implication connective of classical logic. Since the
antecedents of our counterfactual sentences are all false, this would immediately render all
these sentences true.
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(b) ¬Ub (b) ¬Ua ∨ ¬Ub (d) ¬(Ua ∧ Ub)(a) ¬Ua

↑↓↑↑

↓↑ ↓↓

↑↓↑↑

↓↑ ↓↓

↑↓↑↑

↓↑ ↓↓

↑↓↑↑

↓↑ ↓↓

Figure . The propositions expressed by the different antecedents. In world ↑↑, both
switches are up, in world ↑↓ A is up and B is down, and so on.

constants a,b which refer to the two switches. We will then analyse the
sentences in () as follows:3

(a) ¬Ua > O (d) ¬(Ua ∧ Ub) > O
(b) ¬Ub > O (e) ¬(Ua ∧ Ub) > ¬O
(c) ¬Ua ∨ ¬Ub > O

Let us consider the antecedents of these counterfactuals.Wewill assume
that our model contains four possible worlds, corresponding to the four
possible configurations of the switches. The propositions expressed by
the different antecedents in this model are depicted in Figure ..
Crucially, in inquisitive semantics, the antecedent of (c), ¬Ua ∨

¬Ub, and the antecedent of (d), ¬(Ua ∧ Ub), are not semantically
equivalent: while the two are assigned the same truth-conditions, the
former is inquisitive, while the latter is not. ¬Ua ∨¬Ub generates two
alternatives, namely, the set of worlds where A is down, and the set of
worlds where B is down. By contrast, ¬(Ua ∧ Ub) generates a single
alternative, namely, the set of worlds where the switches are not both
up. This means that the problem we pointed out for truth-conditional
semantics no longer arises in inquisitive semantics: the antecedents of
(c) and (d) have different meanings, and can therefore make different
semantic contributions.

7.2.2 Lifting conditionals to inquisitive semantics

We now want to explain how the difference in inquisitive content
between ¬Ua ∨ ¬Ub and ¬(Ua ∧ Ub) can lead to a difference in
truth-conditions for the counterfactuals in which these two clauses are

3 Of course, we do not mean here that the logical form of a sentence like (a) has to
contain a negation operator. We could introduce another predicate Dx for ‘x is down’, and
another atomic sentence On for ‘the light is on’. However, we would then have to introduce
some meaning postulates to enforce that Dx is true exactly when Ux is false, and On is true
exactly when O is false. This would then lead to the same results that our analysis gives.
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embedded as antecedents. For this, we adopt an idea of Alonso-Ovalle
(, ) (see also van Rooij, ). We assume that an antecedent
need not always specify a single counterfactual assumption; rather,
when we have multiple alternatives for an antecedent, each of them
is treated by the semantics as a distinct counterfactual assumption. In
order for the counterfactual to be true, the consequent must follow on
each of these assumptions.
To implement this idea in the inquisitive setting, Ciardelli (b)

describes a general procedure for lifting accounts of conditionals to
inquisitive semantics. This lifting procedure takes as its input a truth-
conditional account of (indicative or counterfactual) conditionals, given
in the form of a binary operation � which maps any two classical
propositions α and γ (expressed by the antecedent and the consequent
of a conditional, respectively) to a third classical proposition α � γ. All
the standard theories of counterfactual conditionals, such as selection
function semantics (Stalnaker, ), ordering semantics (Lewis, ),
and premise semantics (Kratzer, ) yield such an operation�.4
The output of the lifting procedure is an ‘inquisitivized’ version of

this truth-conditional account, which interprets a conditional φ > ψ by
means of the following support clause.5, 6

Definition . (Inquisitive lifting)
s |� φ > ψ iff ∀α ∈ alt(φ) ∃γ ∈ alt(ψ) such that s ⊆ (α � γ)

4 In each of these theories, the definition of α � γ makes use of some additional piece
of structure: a selection function in Stalnaker (), a similarity ordering in Lewis (),
an ordering source in Kratzer (). However, our lifting recipe only needs access to the
resulting operation on propositions—not to this underlying structure.
5 Note that the interpretation of φ > ψ is specified in terms of support conditions. Recall

that the proposition expressed by a sentence in InqB is the set of all states that support it; see
Section . for discussion.Also note that the support conditions ofφ>ψ are formulated here
in terms of alt(φ) and alt(ψ). This formulation assumes that alt(φ) and alt(ψ) completely
determine the meaning of φ and ψ, respectively, i.e., that [φ]={s | s⊆α for some α∈alt(φ)}
and similarly for ψ. This will indeed be the case for all the examples that we will consider
in this chapter, but it does not always hold in InqB (see footnote  on page ). For the
general case, the support conditions of φ > ψ can be formulated as follows, without making
reference to alternatives:

s |� φ > ψ iff ∀α ∈ [φ]∃α′ ∈ [φ]∃γ ∈ [ψ] : α′ ⊇ α and s ⊆ (α′ � γ)

Provided that the map � is upward monotonic in its second argument, which is true of
all truth-conditional theories of conditionals we are aware of, this clause boils down to the
clause of Definition . whenever alt(φ) and alt(ψ) completely determine the meaning of φ
and ψ.
6 The resulting inquisitive account is called the lifting of the original account because,

while the latter operates on classical propositions, the former operates on propositions in
the inquisitive semantics sense, which are objects of a higher semantic type.
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When φ and ψ are non-inquisitive, we have alt(φ)={|φ|} and
alt(ψ)={|ψ|}, and the clause therefore boils down to:

s |� φ > ψ ⇐⇒ ∀α ∈ {|φ|} ∃γ ∈ {|ψ|} such that s ⊆ (α � γ)

⇐⇒ s ⊆ |φ| � |ψ|
Thus, the conditional φ > ψ is predicted to be a statement whose unique
alternative is the classical proposition |φ| � |ψ| delivered by the given
base account. Except for (c), all of our counterfactuals have non-
inquisitive antecedents and consequents, so they will be interpreted just
as they are interpreted by the given base account. As for (c), translated
as ¬Ua ∨ ¬Ub > O, the clause yields the following:

s |� ¬Ua ∨¬Ub > O ⇐⇒ ∀α ∈ {|¬Ua|, |¬Ub|} ∃γ ∈ {|O|}
s.t. s ⊆ (α � γ)

⇐⇒ s ⊆ |¬Ua| � |O| and s ⊆ |¬Ub| � |O|
⇐⇒ s ⊆ (|¬Ua| � |O|) ∩ (|¬Ub| � |O|)

As in the other cases, the conditional as a whole is a statement. However,
the unique alternative for it, the set (|¬Ua| � |O|) ∩ (|¬Ua| � |O|), is
not the same as the set |¬Ua ∨¬Ub| � |O| that would be delivered
by applying the base account directly, without lifting it to inquisitive
semantics. Rather, the lifting procedure ensures that the base account is
applied twice, once for each disjunct in the antecedent, and the results
are then intersected. Thus, disjunctive antecedents are interpreted as
providingmultiple assumptions, and¬Ua ∨ ¬Ub > O is predicted to be
true just in case both¬Ua > O and¬Ub > O are true.This explains the
strong similarity between the response pattern of (c) and those of (a)
and (b).
Now the majority judgments in Table . could be predicted if we

could find a truth-conditional account of counterfactuals according to
which (a) and (b) are true, but (d) and (e) are not.The inquisitive lift
of this account wouldmake the same predictions about these sentences,
and it would also predict (c) to be true—something that no purely
truth-conditional account could do.

7.2.3 Background semantics for counterfactuals

Now that the problem of disentangling (c) and (d) is solved, one
might expect that we can just take a standard account of counterfactuals,
such as the ordering semantics of Lewis (), and lift it to inquisitive
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semantics to obtain an account of our data. However, as Ciardelli et al.
(c) discuss, this is not the case. The problem is that all standard
accounts of counterfactuals validate the following entailment:

¬Ua > O, ¬Ub > O |� ¬(Ua ∧ Ub) > O

Thus, regardless of how the parameters needed to interpret counterfac-
tuals are set in these theories, they can never predict that (a) and (b)
are true but (d) is not. Conceptually, the problem is that all the standard
theories are based on the idea that, when making a counterfactual
assumption, one is required to minimize the amount of change with
respect to the actual world. This means that, when counterfactually
assuming that A and B are not both up, one is required to retain the fact
that at least one of them is up.7 This does not seem right: when asked
to consider what would happen if the switches were not both up, we are
naturally lead to consider the case that just one switch was down, as well
as the case that both switches were down, which explains the observed
judgments for (d) and (e).
To solve this problem, Ciardelli et al. (c) adopt a different per-

spective: they propose to replace the minimal change requirement by
a qualitative distinction between aspects of the world that are in the
foreground whenmaking a counterfactual assumption, and aspects that
are in the background. The latter are held fixed in the counterfactual
scenario, while the former are allowed to change, and their change is
not subject to anyminimality requirement. We will refer to this account
of counterfactuals as background semantics.
For a simple example, consider the sentences in ():

() a. If I wore my hair longer, nobody would notice the difference.
b. If I wore my hair much longer, people would notice the

difference.

In both cases, when assuming that the antecedent is true, the length
of the speaker’s hair is in the foreground, and we feel no pressure to
imagine it to be as close as possible to the actual length; this explains
why in normal circumstances we are not inclined to judge (a) as true.
On the other hand, in both cases the fact that people are able to pick up
remarkable differences in hair length is in the background, and thus it

7 This may seem like an over-simplification since, e.g., in ordering semantics, one may
well stipulate that toggling two switches is not to be counted as a bigger change than toggling
just one. However, this stipulation would make it impossible to account for the truth of
¬Ua > O and ¬Ub > O. A similar argument applies to the other standard accounts.
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is held fixed when making the assumption; this explains why in normal
circumstances we judge (b) as true.
Now consider again (a), (b), and (d). When wemake the assump-

tion that switch A is down, the position of switch B is naturally regarded
as background, and therefore held fixed. This leads us to consider a
counterfactual scenario in which A is down, but B is still up. Reasoning
by the laws of the circuit, we therefore conclude that the light is off,
and judge (a) as true. Of course, the prediction is analogous for (b).
Now consider the assumption that the switches were not both up: in this
case, the positions of both switches are at stake, and thus foregrounded.
Therefore, we have no pressure to hold either of them fixed in the coun-
terfactual scenario. This leads us to consider counterfactual scenarios
where just one switch is down as well as scenarios where both switches
are down: since these two kinds of scenarios do not agree on the state
of the light, neither (d) nor (e) are judged true.
Let us now see how an account of the kind just sketched can be

formalized, and verify that the predictions we just described are indeed
derived. For conciseness, we present here a simplified version of the
original background semantics proposed in Ciardelli et al. (c).This
simplified version preserves the essence of the account of our sentences,
although it is limited in scope.8
The account relies on a formal notion of causal structures inspired by

the literature on causal reasoning (Pearl, ).9 For our purposes, such
structures can be defined as follows.

Definition . (Causal structures)
A causal structure is a triple S = 〈V ,E,L〉 where:

• V is a set of atomic polar questions, the causal variables of the
structure. The settings of a variable ?φ are the sentences φ and ¬φ.

• 〈V ,E〉 is a directed acyclic graph, whose edges encode causal influ-
ence.

• L is a set of statements, the causal laws of the structure; each
causal law has the form φ1 ∧ ·· · ∧ φn → ψ, where ψ is a setting of a
variable v ∈ V and φ1, . . . ,φn are settings of the parents of v in the
graph 〈V ,E〉.

8 In particular, unlike the original version of the semantics, the simplified version is not
equipped to deal with cases in which assumptions ‘intervene’ on causal laws, in the sense of
Pearl ().
9 For related theories of counterfactuals using causal structures, see Schulz (),

Kaufmann (), and Santorio ().
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The electric circuit described in Section . can be modeled naturally as
a causal structure as follows. The causal variables are ?Ua, ?Ub, and ?O,
corresponding to the states of the switches and the light. The variables
?Ua and ?Ub have causal influence on ?O, but not on each other. Thus,
the graph 〈V ,E〉 looks as follows:

?Ua −→ ?O ←− ?Ub

The causal laws are the following conditionals, encoding the behavior
of the circuit:

() a. Ua ∧ Ub → ¬O
b. Ua ∧¬Ub → O
c. ¬Ua ∧ Ub → O
d. ¬Ua ∧ ¬Ub → ¬O

Within the context of a causal structure, we can associate a possible
world with a set of facts—i.e., basic propositions that characterize the
world. Moreover, we can equip the set of facts with some structure that
reflects the causal relations between them.

Definition . (Facts)
A fact at a world w is a true setting of a causal variable. The set of
facts at w is denoted Fw. The causal graph 〈V ,E〉 naturally induces a
corresponding graph on the set of facts. We say that a fact f is causally
dependent on another fact f ′ if f ′ is an ancestor of f in this graph.

In our context, the facts are: that switch A is up; that switch B is up; and
that the light is on. That is, Fw ={Ua,Ub,¬O}. The fact that the light is
on is dependent on the other facts, and no other dependencies hold.
We nowwant to specify, given a certain counterfactual assumption α,

which of the facts in Fw are called into question by the assumption—
and should therefore be considered as potentially different in the coun-
terfactual scenario—and which facts can be regarded as background,
and can therefore be held fixed.The basic idea is simple: an assumption
α calls into question those facts that are logically responsible for its
falsity, as well as those facts that are causally dependent on them. The
remaining facts can be regarded as background, although other factors
in the context might lead to them being foregrounded as well, and thus
varied in the counterfactual scenario.10

10 Ciardelli et al. (c) discuss in detail the fact that seeing the filler sentence can
affect the way the target sentences are judged. Among the participants who saw the target
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The idea of a fact being responsible for the falsity of α can be
formalized as follows.

Definition . (Contributing to the falsity of a classical proposition)
Let w ∈ W, α ⊆ W a classical proposition, and f ∈ Fw a fact in w. Then,
if there exists some set F ⊆ Fw such that F is consistent with α, but
F ∪ { f } is inconsistent with α, we say that f contributes to the falsity of
α in w.11

Whenmaking a counterfactual assumption α, we can no longer take for
granted those facts that contribute to the falsity of α, nor anything that is
causally dependent on such facts. We say that these facts are called into
question by α.

Definition . (Calling a fact into question)
A classical proposition α calls into question f ∈ Fw if either (i) f is a fact
that contributes to the falsity of α, or (ii) f is causally dependent on some
such fact.

In our concrete setting, consider the classical proposition that switch A
is down, |¬Ua|. It is easy to see that the only fact f ∈ Fw that contributes
to the falsity of this proposition is Ua. Thus, the counterfactual assump-
tion |¬Ua| calls into question the fact that A is up, as well as the causally
dependent fact that the light is on, but it does not call into question the
fact that switch B is up. Similarly, the assumption that switch B is down
calls into question the fact that B is up and the fact that the light is on,
but not the fact that A is up.
Now consider the classical proposition that the switches are not both

up, |¬(Ua ∧ Ub)|. It is easy to see that the fact that A is up and the Fact

sentence first, less than  judged (a) and (b) as indeterminate. By contrast, among
the participants who saw the filler sentence before the target sentence, about  judged
(a) and (b) as indeterminate. Background semantics offers a natural explanation for this
finding. The filler sentence used in the experiment was (i), whose antecedent calls into
question the positions of both switches.
(i) If switch A and switch B were both down, the light would be off.
It is natural to assume that after seeing the filler, some of the participants kept thinking of the
position of switch B as foregrounded even when making the assumption that A was down.
Thus, they ended up considering the possibility that both switches are down, leading to the
high proportion of ‘indeterminate’ judgments for (a) (and similarly for (b)). For a more
systematic discussion of order effects, we refer the reader to Ciardelli et al. (c).
11 We say that a set of facts F is consistent with α if there is some world w ∈ W where

α is true (i.e., w ∈ α) and all facts in F are true. Notice that if some fact ‘contributes to the
falsity of α in w’, then α indeed has to be false in w. Otherwise no set of facts inFw could be
inconsistent with α.
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that B is up both contribute to the falsity of this proposition.Thus, these
facts are called into question, and so is the dependent fact that the light
is on.Therefore, in this case the assumption calls into question all of the
facts in our scenario.
The next step is to use these notions to determine which facts can be

regarded as background for a given counterfactual assumption, and thus
held fixed inmaking the assumption and assessing its consequences.We
assume that only facts that are not called into question by the assump-
tion can be backgrounded. Furthermore, we assume a requirement to
avoid gratuitous changes, and thus to avoid foregrounding anything
without a reason. In the absence of contextual cues providing a reason
to foreground other facts, the background will consist of all and only
the facts that are not called into question. We call this the maximal
background for the given assumption.12

Definition . (Maximal background for an assumption)
The maximal background for a classical proposition α at world w,
denoted Bw(α), is the set of all facts which are not called into question
by α.

Any fact that is part of the background for a given counterfactual
assumption is held fixed in the counterfactual scenario. In other words,
in making the assumption α, we imagine that α is true in addition to all
the background facts.
In our scenario, we haveBw(|¬Ua|) = {Ub}.This explains why, when

we suppose that switch A was down in our scenario, we envisage
a situation where switch A is down but switch B is up. Similarly,
Bw(|¬Ub|) = {Ua}: when we suppose that switch B was down, we
envisage a situation where switch B is down but switch A is still up. On
the other hand, since the assumption |¬(Ua ∧ Ub)| calls all facts in Fw
into question, we have Bw(|¬(Ua ∧ Ub)|) = ∅, which means that when
we suppose that the switches were not both up, no fact carries over from
the actual state of affairs to the counterfactual scenario.
We can now define the information state that results from mak-

ing a counterfactual assumption α in a certain world w. This is the

12 We should emphasize that the requirement to maximize the background is only a
default. In interpreting a counterfactual, a hearer may foreground other facts besides those
called into question by the antecedent, for instance because the possibility of those facts
changing is salient in the context (for some evidence that this is indeedpossible, see Section 
of Ciardelli et al., c). Here we focus on the case in which the background is maximized,
sincewe assume that it is this default interpretation that accounts for themajority judgments
about our counterfactuals.
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information determined by the assumption itself, the background facts,
and the underlying causal laws. Under a maximal background interpre-
tation, this amounts to the following.

Definition . (Information state resulting from an assumption)
The information state that results from making an assumption α at
world w, denoted Sw(α), is the set of worlds in which the following are
true: (i) the classical proposition α; (ii) all facts in Bw(α); and (iii) all
laws in L.

The last step is to specify at whichworlds the classical proposition α � γ
is true: this holds if the state that results from making the assumption,
Sw(α), supports the conclusion γ, that is, if Sw(α) ⊆ γ.

Definition . (Truth-conditional recipe for counterfactuals)
Given two classical propositions α and γ, the counterfactual proposition
α � γ is true at a world w in case Sw(α) ⊆ γ.

This completes the description of the truth-conditional map� that we
are going to use as the basis for our inquisitive account. Let us now check
that the inquisitive account that results from lifting this map correctly
predicts which of the counterfactuals in () are true in our scenario.
First consider the counterfactual assumption that switchAwas down,

|¬Ua|. We saw thatBw(|¬Ua|) = {Ub}. Take any world v ∈ Sw(|¬Ua|):
at world v, (i) our assumption |¬Ua| is true, that is, switch A is down;
(ii) the background facts are true, that is, switch B is up; (iii) all causal
laws are true, in particular the law ¬Ua ∧ Ub → O. Clearly, |O| must
then be true in v. This shows that Sw(|¬Ua|) ⊆ |O|, which means that
|¬Ua| � |O| is true at w. Since |¬Ua| � |O| is the unique alternative
that our inquisitive account assigns to ¬Ua > O, this counterfactual is
correctly predicted to be true. Of course, the truth of the counterfactual
¬Ub > O is predicted in an analogous way.
Now consider the counterfactual¬Ua ∨ ¬Ub > O.We saw in Section

.. that our inquisitive lifting account assigns a unique alternative
to this sentence, namely, the intersection (|¬Ua| � |O|) ∩ (|¬Ub| �
|O|). Since we have just seen that w belongs to both sets |¬Ua| �
|O| and |¬Ub| � |O|, w also belongs to their intersection. Thus,
¬Ua ∨¬Ub>O is predicted to be true.
Finally, consider the counterfactuals ¬(Ua ∧ Ub) > O and ¬(Ua ∧

Ub) > ¬O. We saw thatBw(|¬(Ua ∧ Ub)|) = ∅. Now, consider the state
Sw(|¬(Ua ∧ Ub)|): this state consists of those worlds where the switches
are not both up, and the causal laws hold; thus, this state contains
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worlds where only one switch is down and the light is off, as well
as worlds where both switches are down and the light is on. Therefore,
Sw(|¬(Ua ∧ Ub)|) �⊆ |O| and Sw(|¬(Ua ∧ Ub)|) �⊆ |¬O|, which means
that neither |¬(Ua ∧ Ub)|� |O|nor |¬(Ua ∧ Ub)|� |¬O| are true atw.
Since these are, respectively, the unique alternative for¬(Ua ∧ Ub) > O
and the unique alternative for ¬(Ua ∧ Ub) > ¬O, we predict that nei-
ther of these counterfactuals is true in our scenario.
Summing up, combining the background semantics for counterfac-

tuals described in this section with the inquisitive lifting procedure
described in Section .. we obtain an account that accurately predicts
which of the counterfactuals in () are true in the given scenario. The
crucial ingredients of this account are (i) the fine-grained notion of
meaning given by inquisitive semantics, (ii) an account of conditionals
which is sensitive to inquisitive content, and (iii) a procedure formaking
counterfactual assumptions which is not constrained by the require-
ment to minimize the difference with respect to the actual world.13

7.3 Further benefits

In the previous section, we have seen how any truth-conditional account
of conditionals, whether indicative or counterfactual, can be lifted to
inquisitive semantics. Moreover, we have applied this lifting procedure
to a particular truth-conditional account of counterfactuals in order to
explain the experimental findings in Table .. In this section, based on
Ciardelli (b), we will demonstrate some further general benefits of
the lifting procedure. We will see that no matter what truth-conditional
account of (indicative or counterfactual) conditionals we take as our
starting point, the lifted inquisitive account will improve on it in three
ways: first, it will give a more satisfactory account of conditionals with
disjunctive antecedents, avoiding a shortcoming which affects all truth-
conditional accounts; second, it will allow us to interpret not only
standard if-then conditionals, but also so-called unconditionals; and

13 The semantics described here is only concerned with predicting when a sentence is
true. For a complete account of the data in Table ., one would have to complement it
with a component that explains when non-true sentences are judged as indeterminate,
as opposed to simply false. It is natural to suppose that ‘indeterminate’ judgments result
from the failure of a homogeneity presupposition to the effect that making a counterfactual
assumption should lead to a state which settles whether the consequent is true (von Fintel,
). However, the issue of how failures of semantic presuppositions are reflected in truth
value intuitions is a notoriously tricky one (see von Fintel, ).
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finally, it will allow us to interpret not only conditional statements, but
also conditional questions. We will consider each of these topics in a
separate sub-section.

7.3.1 Simplification of disjunctive antecedents

Consider the sentences in (). One seems justified in inferring (b) from
(a), but certainly not in inferring (c) from (b).

() a. If Alice or Bea invited Charlie, he would go.
b. If Alice invited Charlie, he would go.
c. If Alice invited Charlie and then canceled, he would go.

The inference from (a) to (b) is an instance of a principle called simpli-
fication of disjunctive antecedents (SDA); the inference from (b) to (c)
is an instance of a principle called strengthening of the antecedent (SA).

A ∨ B > C
A > C (SDA)

A > C
A ∧ B > C (SA)

Intuitively, SDA is valid. Indeed, a conditional like (a) seems to mean
exactly the same as the conjunction in ().

() If Alice invites Charlie, he will go, and if Bea invites him, he will go.

However, classical theories of counterfactuals, such as Stalnaker ();
Lewis () and Kratzer (), fail to validate this principle. This has
been widely regarded as a problem for these theories (see, e.g., Fine,
; Nute, ; Ellis et al., ; Alonso-Ovalle, ; Fine, ) and
it has also been clear since Fine () that this problem is more than
an accidental shortcoming. Indeed, based on a truth-conditional view
on meaning and the classical treatment of connectives, a compositional
account that validates SDA is bound to validate SA as well, and this is
undesirable in view of the invalid inference from (b) to (c).14
In recent years, this problem has motivated approaches to counter-

factuals which rely on a more fine-grained semantic representation of

14 In fact, the problem is not limited to counterfactuals, but concerns conditionals more
generally.The intuitions about the indicative conditionals in (i) are exactly the same as those
for the corresponding counterfactuals in ().
(i) a. If Alice or Bea invites Charlie, he will go.

b. If Alice invites Charlie, he will go.
c. If Alice invites Charlie and then cancels, he will go.

The proof given by Fine () for counterfactuals also shows that a compositional account
of indicative conditionals based on truth-conditions is bound to make SDA and SA inter-
derivable.
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antecedents than the truth-conditional one. Perhaps the most promi-
nent account of this kind is due to Alonso-Ovalle (, ), which
we already mentioned above as an inspiration for the inquisitive lifting
procedure (for accounts in the same spirit, see also van Rooij, ;
Fine, ; Willer, ). The fundamental idea of this account is that
disjunctive sentences denote sets of classical propositions, rather than
single propositions, and that each proposition in the set serves as a sep-
arate counterfactual assumption. Clearly, this approach validates SDA:
evaluating a counterfactual with a disjunctive antecedent, A ∨ B > C,
effectively amounts to evaluating the conjunction (A > C)∧ (B > C).
On the other hand, SA is invalid: for non-disjunctive antecedents,
Alonso-Ovalle’s account coincides with the ordering semantics of Lewis
(), which invalidates SA.
The inquisitive lifting recipe achieves essentially the same: when an

antecedent is associated with multiple alternatives, the lifted account
leads us to run the base account separately for each of these alter-
natives. This holds in particular for disjunctive antecedents, which
typically present one alternative for each disjunct.Thus, no matter what
account of conditionals we take as our starting point, the lifting of this
account will interpret A ∨ B > C as equivalent with (A > C)∧ (B > C),
validating SDA.15 On the other hand, if the base account does not
validate SA, neither will its lifting, since the two will coincide in the
absence of inquisitiveness. Thus, inquisitive semantics provides a way
to disentangle SDA from SA and to avoid one of the central problems
faced by standard theories of conditionals.

15 Disjunctive antecedents where one of the disjuncts entails the other, either logically
or contextually, form an exception to this claim. If A,B are atomic sentences with |A| ⊆ |B|,
then A ∨ B ≡ B in inquisitive semantics, and as a consequence, (A ∨ B > C) ≡ (B > C). We
take this to be a welcome result. For consider a conditional of this special form, such as (i):
(i) If we hire an American or a Californian, we should arrange a visa.
This sentence is odd if uttered by someone who is aware of the fact that Californians are
Americans.This is commonly explained in terms of a ban against logical forms that contain
structural redundancy (Katzir and Singh, ; Meyer, ). In Alonso-Ovalle’s account,
this explanation is no longer available: even when |A|⊆|B|, we have (A ∨ B > C) �≡ (B>C),
so a sentence like (i) does not involve any structural redundancy. By contrast, on our
account we have that (A ∨ B > C)≡(B>C), which allows us to preserve the standard
explanation for the oddity of (i).This observation is not specific to conditionals, but it points
to an underlying difference between inquisitive semantics and alternative semantics, the
framework in which Alonso-Ovalle’s account is cast. For extensive discussion of this point,
see Ciardelli and Roelofsen (a). We will also come back to this in Section ., where we
compare inquisitive and alternative semantics in detail.
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With respect to Alonso-Ovalle’s own account, the inquisitive treat-
ment of conditionals can be seen as a generalization in three different
ways. First, on the inquisitive approach, disjunction is not treated as a
special, non-standard connective; instead, all connectives are taken to
operate on inquisitive propositions, rather than on classical proposi-
tions. As we saw in Chapter , this allows us to retain a principled and
well-behaved theory of propositional connectives, which preserves the
attractive features of the classical theory.
Second, Alonso-Ovalle’s account is based on a specific account of

conditionals, namely, the ordering semantics of Lewis (). By con-
trast, the inquisitive lifting recipe can be applied to any base account of
conditionals, provided that it is compositional and operates in a truth-
conditional setting. In the previous section, we have already made use
of this degree of freedom. As we saw, independently of the issue of
disjunctive antecedents, minimal change theories could not possibly
predict themajority judgments in Table ., as these run against the very
logic of these theories. The modularity of the inquisitive lifting strat-
egy allowed us to disentangle the problem of dealing with disjunctive
antecedents from the problem of determining the right procedure for
making counterfactual assumptions.
Finally, inquisitive lifting is not specifically designed to deal with dis-

junctive antecedents; rather, it provides a general treatment of the inter-
action between conditionals and inquisitiveness—an interaction which
is manifested not just in conditionals with disjunctive antecedents, but
in other classes of conditional sentences as well, as we will discuss in
Section .. and ...
Before turning to the next topic, let us spend a few words on some

examples that seem to show that SDA is not in fact generally valid.These
examples have a special form, with the consequent coinciding with one
of the disjuncts in the antecedent. The most famous such example is
(), due to McKay and Van Inwagen ():

() If Spain had foughtwith theAxis or theAllies inWWII, shewould
have fought with the Axis.

This sentence seems true, even though it is certainly not the case that if
Spain had fought with the Allies she would have fought with the Axis.
On a standard theory like the one of Lewis (), the truth of this
sentence would be explained by saying that some worlds where Spain
fought with the Axis aremore similar to the actual world than anyworld
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where Spain fought with the Allies. However, this diagnosis leads us to
expect that (a) is true, since it effectively boils down to (b).

() a. If Spain had fought with the Axis or the Allies in WWII,
Germany would have been pleased.

b. If Spain had fought with the Axis, Germany would have been
pleased.

As Nute () notes, this is wrong: (a) is naturally interpreted as
implying that Germany would have been pleased if Spain fought with
the Allies, in accordance with SDA.This problem, together with the fact
that these counterexamples have a very special form, suggests that these
cases involve some kind of anomaly.
In our inquisitive account, these counterexamples could be accounted

for by stipulating that it is in principle possible to insert a projection
operator ! in the antecedent.Thus, ()would be translated as !(Ax ∨ Al)
>Ax, and analysed as a basic conditional with a non-inquisitive
antecedent, which would block SDA in this case. However, the
possibility to insert ! should be restricted, in order to account for the
apparent lack of ambiguity of ordinary conditionals such as (a) and
(a). One way of explaining why ! is inserted in () is based on the
observation that a logical form such as Ax ∨ Al > Ax is equivalent with
the simpler form Al > Ax.16 Assuming a general ban against structural
redundancy, of the kind proposed by Meyer (), this would make
the logical form Ax ∨ Al > Ax unavailable for a conditional such as
(), justifying the insertion of ! as a repair strategy. This explanation
would account for why SDA only seems to fail in sentences where the
consequent coincides with one of the disjuncts in the antecedent.

7.3.2 Unconditionals

In the previous section, we mentioned that our account derives the
behavior of disjunctive antecedents as a particular case of a more
general pattern of interaction between conditionals and inquisitiveness.
Another class of sentences in which this interaction is manifested is that
of unconditionals. These are sentences such as the following:

() a. Whether they play Bach or not, Alice will go.
b. Whether they play Bach or Handel, Alice will go.
c. Whatever they play, Alice will go.

16 We are assuming here that the underlying account of conditionals makes any proposi-
tion α � α tautological. This is a minimal desideratum for an account of conditionals, both
indicative and counterfactual, and it holds in any theory that we are aware of.
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FollowingRawlins (), wewill analyse unconditionals as conditional
constructions where the ‘antecedent’ is an interrogative clause. Accord-
ing to the compositional account given in Chapter , we translate the
polar interrogative whether they play Bach or not as Pb ∨¬Pb, which
is equivalent to ?Pb, and the disjunctive interrogative whether they play
Bach or Handel as Pb ∨ Ph. Moreover, we assume that the antecedent of
(c) corresponds to the interrogativewhat they play, whichwe translate
as ∃xPx.17 This gives the following translation for our unconditionals.

() a. Whether they play Bach or not, Alice will go. ?Pb > G
b. Whether they play Bach or Handel, Alice will go.

Pb ∨ Ph > G
c. Whatever they play, Alice will go. ∃xPx > G

Let us now consider the semantics that our inquisitive account of condi-
tionals assigns to these sentences. Let us start with (a).The antecedent
is inquisitive, while the consequent is not: alt(?Pb) = {|Pb|, |¬Pb|},
alt(G) = {|G|}. Our support clause gives:
s |� ?Pb>G ⇐⇒ ∀α ∈ {|Pb|, |¬Pb|} ∃γ∈{|G|} such that s ⊆ (α�γ)

⇐⇒ s ⊆ (|Pb| � |G|) ∩ (|¬Pb| � |G|)
⇐⇒ s |� (Pb > G) ∧ (¬Pb > G)

According to this analysis, (a) is non-inquisitive, and it is true in case
Alice will go if they play Bach, and she will go if they do not. This is
precisely the analysis we expect for the unconditional (a). Similarly,
for (b) and (c) we obtain the following predictions:

s |� Pb ∨ Bh > G ⇐⇒ ∀α ∈ {|Pb|, |Ph|} ∃γ ∈ {|G|}
such that s ⊆ (α � γ)

⇐⇒ s ⊆ (|Pb| � |G|) ∩ (|Ph| � |G|)
⇐⇒ s |� (Pb > G) ∧ (Ph > G)

s |� ∃xPx > G ⇐⇒ ∀α ∈ {|Pd| |d ∈ D} ∃γ ∈ {|G|}
such that s ⊆ (α � γ)

⇐⇒ s ⊆
⋂

d∈D

(|Pd| � |G|)

⇐⇒ s |� ∀x(Px > G)

It is derived that both (b) and (c) are non-inquisitive; further, (b)
is true in case Alice will go both if they play Bach and if they play

17 Just as inChapter , we disregard at this point the presuppositional component of these
sentences. We will return to this later on in this section.
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Handel, and (c) is true if for every x in the domain, Alice will go if
they play x. Again, these are indeed the natural truth conditions for these
sentences.
Thus, our inquisitive account of conditionals extends naturally to a

general analysis of unconditional sentences. The resulting analysis is
in line with the one proposed by Rawlins (), and shares its core
idea. However, a nice feature of the inquisitive approach is that it is
modular: it does not commit us to a specific account of conditionals,
but is compatible with a wide range of accounts. A second advantage is
that nothing special had to be stipulated to analyse unconditionals: the
desired analysis follows for free from the semantics of questions and
the conditional operator, once unconditionals are analysed as condi-
tionals. Thus, the approach is not merely descriptive, but also has some
explanatory power. Another way to put this last point is this: we have
given a uniform account of disjunctive and interrogative antecedents as
introducingmultiple assumptions, and provided an explanation for this
commonality based on a feature shared by disjunctive and interrogative
clauses, namely, inquisitiveness.
One may complain that, in giving this uniform explanation, we have

gone too far: at this point, we have given exactly the same transla-
tion for the standard if -conditional in (a) and the unconditional
in (b).

() a. If they play Bach or Handel, Alice will go. Pb ∨ Ph > G
b. Whether they play Bach or Handel, Alice will go.

Pb ∨ Ph > G

There is a sense in which this prediction is correct. Both (a) and (b)
are not inquisitive, and they have the same truth conditions: both are
true in case Alice will go if they play Bach, and also if they play Handel.
Yet, intuitively there is also a difference between these sentences, which
is not reflected in our translation.
The idea pursued in Ciardelli (b), proposed already by

Zaefferer (), is that the difference between (a) and (b) is one of
presupposition: the unconditional in (b) presupposes that they will
play either Bach or Handel, whereas the conditional in (a) lacks this
presupposition. This can be seen with the following pair of examples,
the first of which is adapted from Zaefferer:

() a. The meeting might be in London; but if it is in Rome or in
Paris, Alice will be there.

b. ??The meeting might be in London; but whether it is in Rome
or in Paris, Alice will be there.
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() a. Whether the baby is a boy or a girl, they will be a happy family.
b. ??If the baby is a boy or a girl, they will be a happy family.

In the case of (), the first sentence in the discourse indicates that the
speaker cannot presuppose that the meeting is in Rome or in Paris. It is
then odd for her to continue with an unconditional which carries this
presupposition. By contrast, in the case of (), it would be natural for a
speaker to presuppose that the babywill be a boy or a girl.Thismakes her
use of a standard conditional form odd as a result of the principle maxi-
mize presupposition, which requires speakers to prefer equivalent forms
with stronger presuppositionswhenever these presuppositions are satis-
fied (see Ciardelli, b, for amore detailed discussion of these data).18
Importantly, in the analysis we described, this semantic difference

between standard conditionals and unconditionals does not have to
be stipulated, but can be derived from two standard generalizations
about the presuppositions of interrogatives, and the way presupposi-
tions project from conditional antecedents.

. Interrogative clauses presuppose that one of their alternatives is
true.
(see, e.g., Belnap, )19

. Conditionals inherit the presuppositions of their antecedent.
(see, e.g., Karttunen, , )

Since we view unconditionals as conditionals with an interrogative
clause as their antecedent, it follows from () and () that unconditionals
always presuppose that one of the alternatives for their antecedent
is true. For a formalization of these ideas in a system that captures
presuppositions, see Ciardelli (b).

7.3.3 Conditional questions

Another class of sentences which involve the interplay of conditionals
and inquisitiveness is given by conditional questions, such as those in
() and ().

() a. If Alice goes to the concert, will they play Bach?
b. If Alice goes to the concert, what will they play?

18 Ciardelli (b) also notes that the maximize presupposition principle explains the
oddness of a conditional like If they play Bach or they don’t, Alice will go. Since one can always
presuppose that either they will or they will not play Bach, the principle requires that, in any
context, a speaker should choose the corresponding unconditional form, Whether they play
Bach or not, Alice will go.
19 For further discussion of this generalization, see Ciardelli (d, pp. –).
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() a. If Alice went to the concert, would they play Bach?
b. If Alice went to the concert, what would they play?

Standard theories of conditionals, being couched in a truth-conditional
semantic framework, cannot be directly applied to analyse these sen-
tences. By contrast, the inquisitive lifting of such theories can be applied
directly to these questions, yielding natural results. Let us see how.Here,
we will not take a stance on what the semantic difference is between
indicative and counterfactual conditionals; we will just suppose that we
are given twomaps�i and�c which correspond to these two different
classes of conditionals, and we will assume two operators >i and >c
which are interpreted by lifting these maps to inquisitive semantics.20
As above, we translate the clause whether they play Bach as ?Pb, and

the clause what they play as ∃xPx. This gives the following translations
for our sentences:

(a) G >i ?Pb (a) G >c ?Pb
(b) G >i ∃xPx (b) G >c ∃xPx

Let us now see what predictions this yields for the conditional questions
in () and (). Since the lifting recipe works in the same way for
indicative and counterfactual conditionals, we will suppress subscripts
in the derivation. Let us start with the conditional polar questions in
(a) and (a).

s |� G>?Pb ⇐⇒ ∀α∈{|G|} ∃γ ∈ {|Pb|, |¬Pb|} such that s ⊆ (α�γ)

⇐⇒ s ⊆ |G| � |Pb| or s ⊆ |G| � |¬Pb|
⇐⇒ s |� G > Pb or s |� G > ¬Pb

Thus, (a) and (a) are predicted to be inquisitive. A state supports
G >i ?Pb iff it supports G >i Pb, or it supports G >i ¬Pb; this means
that in order to resolve (a), one must establish either that if Alice goes
theywill play Bach, or that if Alice goes theywill not play Bach.These are
precisely the resolution conditions that we expect for (a). Similarly,
(a) is supported iff either of G >c Pb and G >c ¬Pb is supported,
which again gives the natural resolution conditions for this question.
Now let us consider the conditional wh-questions in (b) and (b).

20 This assumption does not preclude the possibility of having a uniform semantics for
both classes of conditionals: in this case, themaps�i and�c will be derived from the same
underlying account, perhaps by setting some parameters differently in the two cases.
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s |� G > ∃xPx ⇐⇒ ∀α ∈ {|G|} ∃γ ∈ {|Pd| |d ∈ D}
such that s ⊆ (α � γ)

⇐⇒ s ⊆ |G| � |Pd| for some d ∈ D
⇐⇒ s |� G > Pd for some d ∈ D

Thus, (b) and (b) are predicted to be inquisitive. An information
state supports G >i ∃xPx iff it supports G >i Pd for some d ∈ D; this
means that in order to resolve (b), onemust establish for some specific
d that if Alice goes, they will play d. Similarly, (b) is supported iff
G >c Pd is supported for some d ∈ D. Again, these are precisely the res-
olution conditions that we would intuitively assign to these questions.
These examples illustrate how lifting an account of conditionals to

inquisitive semantics immediately yields an extension of this account
to conditional questions. This approach differs from previous accounts
of conditional questions such as Velissaratou () and Isaacs and
Rawlins (), which focus on indicative conditional questions like
those in () and cannot be used directly to analyse counterfactual
conditional questions like those in (). As we have seen, inquisitive
lifting applies uniformly to indicative and counterfactual questions.
Additionally, inquisitive lifting leaves us with a choice as to the under-
lying theory of conditionals that we use to interpret these questions.
Before concluding this section, an important issue remains to be

addressed. At this point, the reader might be worried that the condi-
tional statement (a) might end up being assigned the same meaning
as the conditional question (b).

() a. If Alice goes, they will play Bach or Handel.
b. If Alice goes, will they play Bach, or Handel?

This problem does not arise, however, since as discussed in Chapter ,
the LF of a declarative or interrogative clause always involves a comple-
mentizer which contributes a corresponding operator ! or 〈?〉. Thus, we
translate (a) to our formal language as G > !(Pb ∨ Ph), and we trans-
late (b) as G > 〈?〉(Pb ∨ Ph), which is equivalent to G > (Pb ∨ Ph). In
all the other examples discussed in this chapter inserting the operators !
and 〈?〉 in the main clause would have a vacuous effect, which is why
we could safely disregard these operators. However, it is crucial for us
to assume that the interpretation of an ‘if ’ clause does not involve any
projection operator. This is justified by the observation that if-clauses
are syntactically distinct fromboth declarative and interrogative clauses;
the former are headed by the complementizer ‘if ’, while the latter are
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taken to be headed by declarative or interrogative complementizers,
which in English main clauses are not lexicalized, but affect word
order.21
Summing up, in this section we saw that lifting an account of con-

ditionals to inquisitive semantics leads to an account which improves
on the original one in various ways: first, it gives a more satisfactory
treatment of disjunctive antecedents, which are interpreted as provid-
ing multiple assumptions; second, it extends the scope of the original
account beyond standard conditional statements, allowing us to analyse
two other classes of conditional constructions: unconditionals, and
conditional questions.

7.4 Summary

Our main goal in this chapter was to show that inquisitive content is
relevant even for phenomena that have no obvious link to questions,
and that the inquisitive content of a constituent can sometimes play
a crucial role in determining the truth conditions of a sentence. We
have illustrated this point with conditionals, which provide an especially
interesting and rich domain of application. In this domain, taking
inquisitive content into account provides a natural explanation for some
otherwise puzzling data (such as those in Table .), solves some long-
standing logical problems (the inter-derivability between SDA and SA),
and allows for a substantial extension of the scope of standard theories
(bringing unconditionals and conditional questions within reach).22
We think that conditionals are not an isolated case, but only one

of many environments where inquisitive content plays a role. To give
one example, it has been argued by Simons (), Aloni (), and
Willer (), among others, that something like inquisitive content is
responsible for the free-choice inferences triggered by disjunctions under

21 In the case of unconditionals, we assume that the antecedent is an interrogative, and
thus involves the operator 〈?〉. In all the cases that we discussed in this chapter, the presence
of this operator would not affect the meaning we predict. Nevertheless, as we discussed in
Section .., we take the fact that the antecedent is interrogative to be responsible for the
existential presupposition associated with unconditionals. In a presuppositional refinement
of our analysis of interrogative complementizers (see Roelofsen, a), this presupposition
would be derived automatically.
22 The analysis of indicative conditional statements and questions has also given rise to

further refinements of the basic inquisitive notion of meaning presented here (Groenendijk
and Roelofsen, , ; Aher and Groenendijk, ). These refinements address
empirical issues that are orthogonal to the ones considered here.
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modals, exemplified in (), which are not predicted under standard
theories of modals.

() a. Alice might speak Dutch or French. �(p ∨ q)

b. So, Alice might speak Dutch. � �p

Interestingly, the same contrast between disjunctions and negated
conjunctions that we discussed above in the case of counterfactual
antecedents is found in the domain of modals. For instance, (a) does
not have the free choice inference in (b). To see this, consider a
context where we are looking for someone to translate from Dutch to
French, and where it is known that Alice speaks Dutch, but it is not
known whether she also speaks French; in this context, (a) is true,
but (b) is not.

() a. Alice might not speak both Dutch and French. �¬(p ∧ q)

b. Alice might not speak Dutch. �� �¬p

If free choice inferences stem from the presence of multiple alternatives,
then the contrast is expected from the inquisitive semantics perspective,
since disjunctions are typically inquisitive, but negated conjunctions
are not.
Clearly, more work, both empirical and theoretical, is needed to

investigate exactly in which linguistic environments inquisitive content
plays a role, and to provide formal accounts of the relevant phenomena.

7.5 Exercises

Exercise 7.1 Lifting material implication

Show that inquisitive implication is the lifting of material implication. That is,
show that if � is defined as material implication (i.e., for every two classical
propositions p and q, p � q amounts to p ∪ q), then the support conditions
assigned to φ>ψ by the inquisitive lifting recipe coincide with the support
conditions of φ → ψ in InqB.

Exercise 7.2 Background semantics

Consider sentence (22) in the following two scenarios (Tichý, 1976):

• Context 1: Jones has the following habits as regards wearing his hat. Bad
weather invariably induces him to wear his hat. Fine weather, on the other
hand, affects him neither way: on fine days he puts his hat on or leaves
it on the peg, completely at random. Suppose moreover that actually the
weather is bad, so Jones is wearing his hat.
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• Context 2: Jones always flips a coin before he opens the curtains to see
what the weather is like. Heads means he is going to wear his hat in case
the weather is fine, whereas tails means he is not going to wear his hat
in that case. Like above, bad weather invariably makes him wear his hat.
Today heads came up when he flipped the coin, and it is raining. So Jones
is wearing his hat.

(22) If the weather was fine, Jones would be wearing his hat.

Intuitively, the sentence is true in context 2 but not in context 1. Show how
this is derived in background semantics of counterfactuals, modeling the
causal structure of each context.

Exercise 7.3 Quantification in the antecedent of a counterfactual

Consider an electrical circuit with four switches and one light. The light is on
if and only if an even number of switches is up. Currently, all switches are up,
so the light is on. Now consider the following sentences:

(23) If any of the switches was down, the light would be off.
(24) If the switches were not all up, the light would be off.

Intuitively, (23) is true in the given scenario, but (24) is not. Suppose that the
sentences are translated as (∃x.¬Ux) > O and (¬∀x.Ux) > O, respectively.

1. Show that the given intuitions cannot be captured by any truth-
conditional compositional account of counterfactuals.

2. Show that they are captured by the inquisitive account described above.

Exercise 7.4 Conditional questions with disjunctive antecedents

Consider the following indicative conditional question:

(25) If Alice goes to London or to Paris, will she take the train?

1. Translate the sentence into a suitable first-order logical language.

2. Assuming a truth-conditional map � for indicative conditionals, derive
the support conditions that the inquisitive lifting of � assigns to the
question in (25).

3. What does this predict about the circumstances under which the question
is resolved?



OUP CORRECTED PROOF – FINAL, //, SPi

8

Propositional attitudes

In the previous chapters we have seen that inquisitive semantics
provides a new notion of semantic content, which does not just embody
informative content but also inquisitive content, as well as a new notion
of conversational contexts, which does not only capture the information
that has been established in the conversation so far but also the issues
that have been raised. In this chapter we will show that the framework
also gives rise to a new view on propositional attitudes, especially those
that are relevant for information exchange. Namely, besides the familiar
information-directed attitudes like knowing and believing it also allows
us to model issue-directed attitudes like wondering and being curious.

A perspicuous and widely adopted formal treatment of information-
directed attitudes is provided by epistemic logic (EL), sometimes also
called the logic of knowledge and belief, which has its roots in the work
of Hintikka () and has been further developed by many authors
in subsequent work (see, e.g., Fagin et al., ; van Ditmarsch et al.,
; van Benthem, ). In this framework, the information state of
an agent is modeled as a set of possible worlds, namely those worlds
that are compatible with the information available to the agent. As we
have seen, this notion of information states also plays an important
role in inquisitive semantics. However, while the information-directed
attitudes of an agent can be captured in terms of her information state,
this clearly does not hold for issue-directed attitudes. In order to capture
the attitude of wondering, we need a description of the agent’s inquisitive
state, i.e., a representation of the issues that she entertains.

To this end, we will define an inquisitive epistemic logic (IEL, Ciardelli
and Roelofsen ()), which brings together ideas from standard EL
and InqB. This logic enriches InqB with two modal operators: K, which
is used to talk about the agents’ knowledge, and E, which is used to talk
about the issues that the agent entertains.

One purpose of IEL is to serve as a formal framework to describe
and reason about information- and issue-directed attitudes as such.

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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However, this is not the only purpose. Of equal importance, it also
provides a basic semantic treatment of verbs in natural languages that
are used to report such attitudes. In English, such verbs include know
and wonder, and many other languages have verbs that fulfil precisely
the same purpose. While the semantics of know and its cross-linguistic
kin has been considered extensively, its treatment in IEL differs from
most previous accounts in that it deals completely uniformly with cases
where know takes a declarative complement, as in (a), and cases where
it takes an interrogative complement, as in (b–d).

() a. Alice knows that Bob is coming.
b. Alice knows whether Bob is coming.
c. Alice knows whether Bob or Charlie is coming.
d. Alice knows who is coming.

As for wonder, IEL does not only capture its interpretation when taking
an interrogative complement, as in (a) below, but it also provides an
explanation of the fact that the verb cannot take a declarative comple-
ment, illustrated in (b).

() a. Alice wonders whether Bob is coming.
b. *Alice wonders that Bob is coming.1

We will proceed as follows. Section . describes the standard approach
to propositional attitudes, focusing on the analysis of know in epistemic
logic. Section . presents the IEL framework, and shows how inquisitive
semantics allows us to obtain a more general account of know and
an account of wonder. Finally, Section . broadens the scope of the
discussion, looking at the general view of modal operators that emerges
from IEL and sketching some directions for future work.

8.1 Propositional attitudes: the standard account

Information-directed attitudes like know, believe, and remember are
usually analysed as relations between agents and classical propositions,
and referred to as propositional attitudes.The traditional analysis of such
attitudes goes back to Hintikka (), and it lies at the heart of the
framework of epistemic logic.

1 Following the standard linguistic notation, we indicate the ungrammaticality of a
sentence by marking it with a ‘*’.
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Focusing on the case of knowledge, the standard approach can be
described succinctly as follows. For each agent a we consider a map σa
which assigns to each possible world w a set σa(w) of possible worlds—
those worlds which are compatible with what the agent knows at w. The
set of worlds σa(w) is referred to as the agent’s epistemic state in the
world w.2

In the logical language, one can then add a modal operator Ka that
allows us to talk aboutwhat the agent a knows. A formula Kaφ is true at a
world w if it follows fromwhat a knows at w that φ is true.More formally,
Kaφ is assigned the following truth-conditions, where |φ| denotes the set
of possible worlds where φ is true.3

() w |� Kaφ ⇐⇒ σa(w) ⊆ |φ|
This logical analysis is not only used in contexts where we want to
model and reason about information, which is often the case in logic,
economics, artificial intelligence and computer science; it is also stan-
dardly assumed in linguistics to be at the core of the workings of the
verb know and its cross-linguistic kin.4

Other information-directed attitudes like believe and remember
can be analyzed in much the same way: in this case, the set σa(w)

will consist of those worlds that are compatible with what the agent

2 Epistemic logic is most commonly presented in terms of a binary relation Ra ⊆W ×W,
where wRav holds if v is compatible with what a knows at w. This presentation is equivalent
to the one in terms of functions fromworlds to information states: given a relation Ra, we can
define a corresponding map σRa by letting σRa(w) := {v ∈ W | wRav}; conversely, given a
map σa : W → ℘(W), we can define a binary relation Rσa by letting wRσa v ⇐⇒ v ∈ σa(w).
It is immediate to see that the correspondence is one-to-one.

3 A well-known problem with this analysis of knowledge is the problem of logical
omniscience: an agent is always taken to know all the consequences of the things that she
knows (for discussion of this problem and for some solutions see, among others Eberle,
; Hintikka, , ; Fagin and Halpern, ; Fagin et al., ; Stalnaker, ;
Artemov and Kuznets, ). Our proposal will be an extension of epistemic logic, and it
will inherit the logical omniscience problem. On the other hand, the epistemic logic analysis
of knowledge and belief has proven very fruitful in many domains, from epistemology and
logic to economics, linguistics, and computer science, and thus provides a natural starting
point for our inquisitive extension.

4 One aspect of the semantics of the verb know which is not captured by the epistemic
logic analysis is the fact that a knowledge attribution presupposes the truth of the com-
plement. This problem becomes especially apparent when know appears under negation or
in a conditional antecedent: in English, the sentence Alice doesn’t know that Bob is coming
still implies that Bob is coming, but this is not captured by the rendition of this sentence in
epistemic logic, ¬KjCb, which is true in case Bill is not coming, or he is and Alice doesn’t
know this. To do justice to these observations, one should supplement the epistemic logic
analysis with the stipulation that Kaφ presupposes that φ is true, and with clauses that
determine how presuppositions are projected from sub-sentential constituents (in the style
of Karttunen, , ).
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believes/remembers, and a corresponding modality can be added to
the logical language, which will be interpreted by means of a clause
analogous to ().

Notice that, from a formal point of view, Ka operates by comparing
two sets ofworlds—twopropositions in the classical sense: the epistemic
state of the agent, and the proposition expressed by the complement.We
will see in Section . that, in the inquisitive setting, modalities have
essentially the same behavior, but they will compare two propositions
in the inquisitive sense: both the state of an agent and the proposition
expressed by the complement will be modeled as sets of information
states, encoding both information and issues.

Before turning to the inquisitive take on modality, however, we will
discuss some of the limitations of the standard view on propositional
attitudes and attitude verbs which are most relevant for our purposes.

Limitation : know + interrogatives. Some verbs expressing information-
directed attitudes, like know and remember, can combine not only
with declarative complement clauses, but also with interrogative ones.
Focusing on the case of know, in English we find not only sentences
like (), which can be analysed directly by means of clause (), but also
sentences like (a–c).

() Alice knows that Bob is coming.
() a. Alice knows whether Bob is coming.

b. Alice knows whether Bob or Charlie is coming.
c. Alice knows who is coming.

In order to account for the semantics of (a–c) while maintaining
that know primarily operates on a classical proposition, two types
of approaches have been pursued. Groenendijk and Stokhof ()
proposed a uniform approach: in their theory, complement clauses,
whether declarative or interrogative, have the same type of denotation—
a classical proposition; in the case of a declarative clause that α, the
denotation is the set of worlds where α is true, |α|; in the case of an
interrogative clause μ, the denotation is the true complete answer to
μ at the world of evaluation. In either case, the attitude verb can then
apply directly to the denotation of the embedded clause according to
the clause in ().

By contrast, Karttunen () proposed an approach based on type-
shifting: on this approach, an interrogative clause denotes a set Q of
propositions—the set of true answers to the interrogative. When know
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combines with such a clause, we proceed in two steps: first, from the
denotation Q of the embedded interrogative we derive the classical
proposition

⋂
Q, which represents the complete answer to Q at the

world of evaluation as given by Karttunen’s theory; second, an analysis
of know in line with () is applied to the resulting classical proposition.5

Both these approaches rest on the assumption that sentences like
(a–b) always express relations between an individual and a specific
classical proposition—the complete answer to the embedded question.
But this is problematic. To see why, consider a mention-some question
like ().

() Where can one buy an Italian newspaper in Amsterdam?

This question can be completely resolved by providing only one of
multiple places where Italian newspapers are sold. Now consider:

() Alice knows where one can buy an Italian newspaper in
Amsterdam.

There is no single classical proposition that Alice needs to know in order
for () to be true; rather, () may be true by virtue of Alice knowing
one among various classical propositions: that one can buy an Italian
newspaper at Central Station, that one can buy an Italian newspaper
at the airport, etc. Thus, the approaches of Groenendijk and Stokhof
() and Karttunen ()—which would interpret sentence () as
a claim that Alice knows a certain classical proposition—cannot assign
the right truth-conditions in this case.6

In the next section, we will develop an inquisitive counterpart of the
epistemic logic account of knowledge. On this account, the attitude of
knowing relates an agent to a proposition in the inquisitive semantics
sense. Since in inquisitive semantics both declaratives and interrogatives
express propositions, we can analyse () and () in a uniform way,
without assuming any type-shifting andwithout relying on the existence
of a complete true answer to the embedded question.

5 In addition to this, Karttunen () and Groenendijk and Stokhof () also differ
in their notion of complete answer to a wh-question. In the subsequent literature, the two
notions have come to be referred to, respectively, as the weakly exhaustive and the strongly
exhaustive answer to the wh-question. This difference is orthogonal to our main concerns
in this chapter.

6 To deal with these cases, Groenendijk and Stokhof () propose to treat () as having
a higher semantic type and to type-shift the entry for the embedding verb so that it can apply
to objects of this type. We will not discuss this option in detail here. A problem with this
lifting strategy is pointed out in footnote  of Ciardelli (b).
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Limitation : issue-directed attitudes Besides information-directed atti-
tudes like know and believe, there are also issue-directed attitudes like
wonder and be curious. Such issue-directed attitudes play a key role
in cognition and inquiry (see Friedman, ). However, these atti-
tudes cannot be construed at attitudes towards classical propositions:
if I wonder who is coming for dinner, the object of my wondering is
not a specific classical proposition, but rather the issue as such. For this
reason, issue-directed attitudes fall squarely beyond the scope of the
traditional approach to propositional attitudes.

These attitudes are also associated with corresponding verbs/
constructions in English. Interestingly, these verbs can only take an
interrogative complement. For instance, (a) is grammatical, but (b)
is not.

() a. Alice wonders who is coming for dinner.
b. *Alice wonders that Bill is coming for dinner.

In the literature, a verb like wonder has mostly been treated as an
un-analysed relation between individuals and question meanings (e.g.,
see Groenendijk and Stokhof, ). However, without some analysis of
this relation, we lack an account of the entailments licensed by sentences
involving wonder. We cannot predict, for instance, that the conclusion
in (c) follows from the premises in (a) and (b), but not from either
premise alone.

() a. Alice wonders who the culprit is.
b. Alice knows that the culprit is Bob or Charlie.
c. So, Alice wonders whether the culprit is Bob or Charlie.

As we will see, in the inquisitive setting issue-directed attitudes can be
analysed as relations between agents and inquisitive propositions. The
crucial difference between information-directed attitudes and issue-
directed attitudes is that, in order to analyse the latter, it is not sufficient
to equip an agent with an information state. Rather, we need to be able to
represent an agent’s inquisitive state—encoding the issues that the agent
is interested in.7

7 A particularly interesting inquisitive attitude is caring. Although the verb care does
embed both declaratives and interrogative complements, the attitude of caring itself cannot
in general be viewed as having a classical proposition as its object, but should rather be seen
as oriented towards an issue. See Elliott et al. () and Ciardelli and Roelofsen () for
discussion.
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This inquisitive analysis of wondering as an attitude also suggests an
analysis of the corresponding verb in natural language. As we will see,
this analysis accounts for the validity of entailments such as the one in
(), and provides an explanation for the fact that wonder does not embed
declarative complements.

8.2 Inquisitive epistemic logic

In this section, we illustrate the inquisitive approach to propositional
attitudes by presenting the framework of inquisitive epistemic logic (IEL,
Ciardelli and Roelofsen, ), which is designed to model not only
the knowledge that certain agents have, but also the issues that they
are interested in. This framework also provides an inquisitive analysis
of know and wonder that addresses the limitations pointed out in the
previous section.

8.2.1 Inquisitive epistemic models

In standard epistemic logic, every agent a is equipped with a map σa,
which gives for every possible world w a description of the epistemic
state of the agent at w, modeled as an information state σa(w). In
inquisitive epistemic logic, we model not only the information that an
agent has, but also the issues that she entertains. This is done by means
of a map Σa which gives, for every possible world w, an issue Σa(w)

over the information state σa(w), called the inquisitive state of agent a
at w. Intuitively, an information state s ⊆ σa(w) is in Σa(w) if and only
if all the issues that the agent entertains at w are resolved in s. In other
words, the states s ∈ Σa(w) are those that contain enough information
to satisfy the agent’s curiosity. We may view them as the states that the
agent would like to reach through inquiry, but one should not read too
much into this characterization: in particular, reaching a state in Σa(w)

need not be desirable for the agent in an absolute sense (the agent’s issues
may well be resolved in ways that the agent finds quite unpleasant).

The constraint that Σa(w) be an issue over the information state
σa(w), i.e., that

⋃
Σa(w)=σa(w), can be viewed as resulting from two

requirements. In one direction, we model an agent’s inquisitive state by
specifying which enhancements of the agent’s epistemic state contain
enough information to resolve the agent’s issues. This means that every
s ∈ Σa(w) must be a subset of σa(w), which implies

⋃
Σa(w) ⊆ σa(w).

For the converse, recall from Section . that the information state
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Σa(w) captures the information assumed by the issue Σa(w), i.e., the
information needed to guarantee that Σa(w) can be truthfully resolved.
For example, if Σa(w) is the issue of what Alice’s dog is called, then⋃

Σa(w) is the information that Alice has a dog. By requiring that
σa(w) ⊆ ⋃

Σa(w), we capture the idea that having the relevant infor-
mation is a prerequisite for entertaining the issue.8

Now, since σa(w) = ⋃
Σa(w), the agent’s epistemic state, σa(w) can

always be retrieved from her inquisitive state, Σa(w). Thus, in effect,
Σa(w) encodes both the knowledge and the issues of agent a in world w.
This means that the map Σa suffices as a specification of the state of
the agent at each world, and we do not have to list σa explicitly as
an independent component of our models. This leads to the following
definition of inquisitive epistemic models.

Definition . (Inquisitive epistemic models)
A first-order inquisitive epistemic model for a set of agents A is a
quadruple M = 〈W,D, I,ΣA〉, where:

• 〈W,D, I〉 is a first-order information model, in the sense of Defini-
tion ..

• ΣA = {Σa |a ∈ A} is a set of state maps Σa, one for each agent a ∈ A,
each of which assigns to any world w an issue Σa(w).
We refer to Σa(w) as the inquisitive state of a at w. Moreover, we let
σa(w) := ⋃

Σa(w), and we refer to σa(w) as the epistemic state of a
at w.

Just like in standard epistemic logic, this general characterization of
inquisitive epistemic models may be supplemented with certain con-
straints on the agents’ information states and inquisitive states. For
instance, the following conditions may (but need not) be imposed on
an inquisitive epistemic model:

• Factivity: for any w ∈ W, w ∈ σa(w)

• Introspection: for any w,v ∈ W, if v ∈ σa(w), then Σa(v) = Σa(w)

The factivity condition, which is exactly as in standard epistemic logic,
requires that the agent’s knowledge be truthful. The introspection con-
dition requires that the agent knows exactlywhat her state is, with regard

8 In an enrichment of IEL which also models defeasible beliefs, these requirements may
be weakened. For instance, Ciardelli and Roelofsen () propose a framework in which
we can distinguish between the agent’s prior issues and the agent’s current issues—the issues
entertained given the agent’s current beliefs.
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to both knowledge and issues: according to this condition, only worlds
where the state of the agent is the same as in w can be compatible
with what the agent knows at w; that means that an agent can never
be uncertain about what her own inquisitive state is.

These conditions are intended here just as an illustration: the choice
of the particular conditions to be imposed on the state maps Σa will
depend on the particular intended application of the framework, and in
any case, it is orthogonal to the main novelties introduced by IEL.

8.2.2 Knowledge

To obtain an inquisitive account of knowledge, we extend the first-order
language of InqB by means of modal operators Ka, where a is the index
for an agent, which can be applied without restrictions to any formula
in the language.

The semantics of InqB needs to be extended with an inductive clause
that specifies how a formula of the form Kaφ is to be interpreted. In
Chapter , we saw that in the inquisitive setting, a semantics can be spec-
ified recursively in two ways: one can directly define the proposition [φ]
expressed by a formula φ, or one can define a relation of support s |� φ
between information states and formulas, and then define the proposi-
tion expressed by φ as the set of states that support φ: [φ] = {s | s |� φ}.
In the present context, the latter presentation will be more convenient.
We will augment the recursive support clauses given by Fact . with
the following inductive clause for Kaφ:

() s |� Kaφ ⇐⇒ ∀w ∈ s : σa(w) |� φ

Notice that this clause ensures that the interpretation of Kaφ is persis-
tent: if s |� Kaφ and t ⊆ s, then t |� Kaφ. Moreover, Kaφ is vacuously
supported by the empty information state. This guarantees that the set
[Kaφ] of supporting states is indeed a proposition in the inquisitive
sense—a non-empty and downward closed set of information states—
and thus that the system we are defining fits within the general inquisi-
tive semantics framework defined in Chapter .

To understand the clause, it is useful to look at the truth-conditions to
which it gives rise. Recall that we say that a formula φ is true at a world
w in case w ∈ info(φ). Also, recall from Fact . that truth relative
to a world w always amounts to support at the singleton state {w}. By
specializing the support clause in () to a singleton state {w}, we obtain
the following truth-conditions for a formula Kaφ.
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() w |� Kaφ ⇐⇒ σa(w) |� φ

Given these truth conditions, it becomes clear that Kaφ is supported by
a state s just in case it is true at any world in s. This means, by Fact .
on page , that modal formulas are always non-inquisitive.

Fact . For any φ, Kaφ is non-inquisitive.

This also means that, in order to understand the semantics of Kaφ, we
just need to understand at which worlds Kaφ is true. The set |Kaφ| of
these worlds will be the unique alternative in the proposition expressed
by Kaφ.

According to clause (), the truth-conditions of Kaφ are very simple:
Kaφ is true at w just in case φ is supported by the epistemic state of
a at w. To see what this predicts for some particular cases, consider
again the examples in () and (). We assume that these sentences
can be translated to our logical language by applying the operator Ka
to the translations of the embedded clauses, which we assume to be
identical to the translation of the corresponding main clause. Given the
translations of these main clauses suggested in Chapter , this leads to
the following translations:

() a. Alice knows that Bob is coming. KaCb
b. Alice knows whether Bob is coming. Ka?Cb
c. Alice knows whether Bob or Charlie is coming. Ka(Cb ∨ Cc)
d. Alice knows who is coming. Ka(∀x?Cx)

The truth-conditions for these modal formulas are as follows:

() a. w |� KaCb ⇐⇒ σa(w) ⊆ |Cb|
b. w |� Ka?Cb ⇐⇒ σa(w) ⊆ |Cb| or σa(w) ⊆ |¬Cb|
c. w |� Ka(Cb ∨ Cc) ⇐⇒ σa(w) ⊆ |Cb| or σa(w) ⊆ |Cc|
d. w |� Ka(∀x?Cx) ⇐⇒ ∀d ∈ D : σa(w)⊆|Cd| or σa(w)⊆|¬Cd|

For sentence (a), translated as KaCb, we obtain the same predictions
that standard epistemic logic would deliver: KaCb is true if Alice’s
knowledge implies that Bob is coming. This holds whenever the com-
plement of Ka is non-inquisitive.

Fact . If φ is non-inquisitive, then w |� Kaφ ⇐⇒ σa(w) ⊆ |φ|
Recall from Chapter  that we assume that declarative clauses always
involve a projection operator ‘!’ which makes them non-inquisitive.
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Thus, we obtain generally that, for natural language sentences in which
know embeds a declarative clause, our account coincides with the one
given by standard epistemic logic: a sentence Alice knows that S is
predicted to be true in case it follows from Alice’s knowledge that S
is true.

Now, however, the same clause for K can be applied directly to analyze
sentences (b)–(d), in which know embeds an interrogative clause.
The predictions are the expected ones: (b) is true in case Alice’s
knowledge implies that Bob is coming, or it implies that Bob is not
coming; (c) is true in case Alice’s knowledge implies that Bob is
coming, or it implies that Charlie is coming; finally, (d) is true in case
for each individual d in the domain, Alice’s knowledge implies either
that d is coming, or that d is not coming; in other words, (d) is true if
Alice’s knowledge determines exactly what is the set of individuals who
are coming.

Notice that this treatment of interrogatives embedded under know,
unlike the ones of Groenendijk and Stokhof () and Karttunen
(), has no problems dealing with knowledge of mention-some
questions. To see this, consider again the mention-some question in
example (), repeated below as ().

() Where can one buy an Italian newspaper? ∃x.Ix

If Ix stands for ‘x is a place where one can buy an Italian newspaper,’
then () is naturally translated as ∃x.Ix: it expresses an issue which is
resolved in a state s just in case s implies of some d that d is a place where
one can buy an Italian newspaper (see Chapter ).

() s |� ∃x.Ix ⇐⇒ ∃d ∈ D : s ⊆ |Id|
As a consequence, the statement in (), repeated here as (), will be
translated as Ka(∃xIx).

() Alice knows where one can buy an Italian newspaper. Ka(∃x.Ix)

This yields the following truth-conditions: () is predicted to be true in
case for some d, it follows from Alice’s knowledge that d is a place where
one can buy an Italian newspaper.

() w |� Ka(∃x.Ix) ⇐⇒ ∃d ∈ D : σa(w) ⊆ |Id|
Thus, we correctly capture that () may be true by virtue of Alice
knowing different things: in one case, it may be true because she knows
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that one can buy an Italian newspaper at Central Station; in another
case, it might be true because she knows that one can buy an Italian
newspaper at the airport. The problem that we pointed out for the
analyses of Groenendijk and Stokhof () and Karttunen () is
avoided, because we do not try to reduce () to a claim that there is a
specific piece of information that Alice knows.

As a last example illustrating the generality of the inquisitive account
of knowledge, consider ().

() Alice knows whether Bob will win if he puts down his Ace.

In this case, the embedded clause is a conditional question Pb → ?Wb,
and so () as a whole is translated as Ka(Pb → ?Wb). This predicts the
following truth-conditions for ():

() w |� Ka(Pb → ?Wb) ⇐⇒ σa(w) ∩ |Pb|⊆|Wb| or
σa(w) ∩ |Pb|⊆|¬Wb|

That is, () is predicted to be true if Alice’s knowledge, restricted to
those worlds where Bob puts down his Ace, settles the question whether
Bill will win or not. This is the desired prediction, and it is another
case where the inquisitive account goes beyond what could be predicted
by existing theories of question embedding.9

This illustrates how, in inquisitive epistemic logic, the standard anal-
ysis of knowledge generalizes smoothly to the case in which the pre-
jacent has non-trivial inquisitive content. This makes it possible to
obtain a general account of the verb know in combination with both
declarative and interrogative clauses—an account that does not require
any type-shifting to take place and which extends the empirical cover-
age of existing accounts—dealing smoothly, among other things, with
mention-some questions and conditional questions.

9 Isaacs and Rawlins (), who are specifically concerned with conditional questions,
do provide an analysis of such questions embedded under know. However, since their
analysis of conditional questions is based on discourse dynamics, it requires a significant
complication of the lexical entry for know. In addition, since their analysis of questions is
based on binary relations, their account is less general (due to the limitations discussed
in Section . below). For example, it cannot account for an embedded mention-some
conditional question like the one in (i).
(i) Alice knows where Bob can buy an Italian newspaper if he is in Amsterdam.
Finally, essentially due to a technical problem pointed out in footnote  of Sano and Hara
(), Isaacs and Rawlins wrongly predict that knowing a conditional question implies
knowing whether the antecedent is true.
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8.2.3 Wondering

To provide an analysis of the attitude of wondering, the language of
inquisitive epistemic logic is equipped with a second kind of modal
operator. Besides themodality Ka, for each agent a we also have amodal-
ity Ea which allows us to talk about the issues that the agent entertains
(whence the notation Ea).10 A modal formula Eaφ is interpreted by
means of the following support clause.

() s |� Eaφ ⇐⇒ ∀w ∈ s, ∀t ∈ Σa(w) : t |� φ

As in the case of Kaφ, it is easy to see that the support conditions for Eaφ
are persistent and vacuously satisfied by the empty information state,
which ensures that [Eaφ] is a proposition in the inquisitive semantics
sense. By specializing the support condition to the case of a singleton
state {w}, we obtain the following truth-conditions for Eaφ.

() w |� Eaφ ⇐⇒ ∀t ∈ Σa(w) : t |� φ

Given these truth conditions, it is clear that Eaφ is supported by a state
s just in case it is true at any world in s. Thus, just like Kaφ, also Eaφ is
always non-inquisitive, regardless of whether φ is inquisitive or not.

Fact . For any φ, Eaφ is non-inquisitive.

This means that, in order to understand the semantics of Eaφ, we just
need to understand atwhichworlds this formula is true.Theproposition
expressed by Eaφ will then have a unique alternative, namely, the set
|Eaφ| of all worlds where the sentence is true.

According to (), Eaφ is true at a world w in case φ is supported by
all elements s ∈ Σa(w) of the agent’s inquisitive state. Now, recall that
the states t ∈ Σa(w) are precisely those states where the issues that a
entertains at w are resolved. Thus, Eaφ is true in case, if the issues that
a entertains were resolved, φ would be supported.

Notice that there is a trivial way in which Eaφ may be true: φ might
already be supported by the current epistemic state of the agent, σa(w).
In this case, since all elements of Σa(w) are enhancements of σa(w) and
support is persistent, all these elements will support φ as well, and Eaφ
will be true at w. Now, this trivial case holds precisely when Kaφ is true.
This allows us to define a new formula Waφ which says that Eaφ holds
non-trivially.

10 Although we read Ea as ‘entertain’—for lack of a better term—we do not propose to
regard the modality Ea as an analysis of the verb entertain (or any other English verb).
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() Waφ := ¬Kaφ ∧ Eaφ

The formula Waφ is true at w in case (i) the current epistemic state of
the agent does not support φ, but (ii) if the agent’s issues were resolved,
φ would come to be supported. We may read this less formally as: the
agent epistemic state does not support φ, but the agent strives to reach
a state where φ is resolved.

The operator Wa gives us a reasonable analysis of the issue-directed
attitude of wondering, and of the corresponding verb in natural lan-
guage. To see what this analysis predicts, consider (). By analysing the
verb wonder as Wa and the embedded interrogative in the usual way, we
obtain the translation Wa?Cb.

() Alice wonders whether Bob is coming. Wa?Cb

Let us consider the truth-conditions that are predicted: Wa?Cb is true
at a world w in case:

• Alice’s epistemic state σa(w) does not support ?Cb, that is, σa(w)

contains both Cb-worlds and ¬Cb-worlds;
• all the states s ∈ Σa(w) support ?Cb, that is, they consist either

exclusively of Cb-worlds, or exclusively of ¬Cb-worlds.

Condition (i) means that Alice’s current knowledge does not determine
whether Bob is coming; condition (ii)means that resolvingAlice’s issues
is bound to lead to a state that determines whether Bob is coming;
in other words, Alice’s issues are not resolved unless it is established
whether Bob is coming or not. This sounds like a reasonable analysis
of the truth-conditions of ().

As another example, consider (), translated as Wa(∀x?Cx).

() Alice wonders who is coming. Wa(∀x?Cx)

This sentence is true in case Alice’s current knowledge does not deter-
mine exactly which individuals are coming, but in order to resolve
Alice’s issues it would be necessary to establish exactlywhich individuals
are coming.

This analysis of wonder provides us with an account of the validities
of inferences such as (), repeated below as (), as the reader is asked
to show in Exercise ..

() a. Alice wonders who the culprit is.
b. Alice knows that the culprit is Bob or Charlie.
c. So, Alice wonders whether the culprit is Bob or Charlie.
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Moreover, this account of wonder also suggests an explanation of the
ungrammaticality of sentences like (), in which wonder embeds a
declarative clause.

() *Alice wonders that Bob is coming. WaCb

According to our analysis, this sentence would be translated as WaCb.
When is this formula true? By definition, WaCb amounts to the
conjunction ¬KaCb ∧ EaCb. Now let us consider what each conjunct
requires:

() a. w |� ¬KaCb ⇐⇒ w �|� KaCb ⇐⇒ σa �⊆ |Cb|
b. w |� EaCb ⇐⇒ ∀s ∈ Σa(w) : s ⊆ |Cb|

These two conditions are contradictory: (b) implies
⋃

Σa(w) ⊆ |Cb|,
that is, σa(w) ⊆ |Cb|, which contradicts (a). Hence, WaCb is a con-
tradiction.11

Notice that, in deriving this result, we have not used anything specific
about the embedded clause other than the fact that it expresses a
non-inquisitive proposition—a fact which is common to all declarative
complements. This means that combining wonder with a declarative
complement systematically results in a contradiction. This can be taken
to explain the ungrammaticality of this sort of construction (for the
connections between systematic contradictions and ungrammaticality,
see Gajewski, ; Chierchia, ; Abrusán, ).12,13

To conclude this brief exposition of IEL, let us illustrate the workings
of the modal operators of IEL with an example. Figures .(a)–.(c)
represent the inquisitive states of three agents at a given world w. In
each case, the solid blocks represent the maximal elements of the agent’s
inquisitive state, while the dashed area—corresponding to the union of
these blocks—represents the agent’s knowledge. Formally, the agents’

11 Notice that if a sentence φ is false at all worlds, this ensures that φ is a contradiction
not only in the truth-conditional sense, but also in the inquisitive sense, i.e., that [φ] = {∅}.
For by definition, the set of worlds where φ is true is info(φ) = ⋃

[φ]. But the only way that⋃
[φ] can be empty is if [φ] = {∅}, i.e., if φ is a contradiction in the inquisitive sense.
12 The explanation given here for the infelicity of wonder that does not need the

strong connection between information and issues that we are assuming by letting
σa(w) = ⋃

Σa(w): it suffices to assume that σa(w) ⊆ ⋃
Σa(w), i.e., that the agent knows

(or indeed believes) the information presupposed by the issues that she entertains. For
discussion of this point, see Ciardelli and Roelofsen ().

13 This explanation can be adapted naturally to other verbs such as be curious and
investigate, which can be analysed along the same lines as wonder. An explanation of the fact
that verbs like believe and think do not take interrogative complements can also be given in
inquisitive semantics, see Theiler et al. ().
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11 10

01 00

(a) Alice

11 10

01 00

(b) Bob

11 10

01 00

(c) Charlie

11 10

01 00

(d) ?p

Figure . The inquisitive states of three agents and the alternatives for ?p.

inquisitive states at the given world are as follows, where S↓ denotes the
downward closure of the set of states S:

• Σa(w) = {{11},{10}}↓
• Σb(w) = {{11,10},{01,00}}↓
• Σc(w) = {{11,10,01},{00}}↓

As a consequence, the agents’ epistemic states are as follows:

• σa(w) = {11,10}
• σb(w) = σc(w) = {11,10,01,00}

We take the name of each world to reflect the truth value of two atomic
sentences p and q: at world 11 both are true, at world 10 only p is true,
and so on. The alternatives for the polar question ?p are depicted in
Figure .(d).

Our three agents each stand in a different relation to the question ?p.
Alice’s epistemic state implies that p is true and thereby supports the
question: thus, Ka?p is true, i.e., Alice knows whether p. From this it
follows that Wa?p is false (because the condition ¬Ka?p fails), i.e., Alice
does not wonder whether p.

Bob’s epistemic state is trivial, and it does not support the question
?p. Thus, Kb?p is false, i.e., Bob does not know whether p. On the
other hand, the information states where Bob’s issues are resolved—
the elements of Σb(w)—are precisely the information states in which
?p is supported. This means that Eb?p is true. Together with ¬Kb?p, this
implies that Wb?p is true, i.e., Bob wonders whether p.

Charlie’s epistemic state is trivial as well, which means that, like
Bob, Charlie does not know whether p. However, some elements of his
inquisitive state (e.g., the information state {11,10,01}) fail to support
the question ?p. This means that Ec?p is false, and therefore, Wc?p is false
as well: thus, unlike Bob, Charlie does not wonder whether p.
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Interestingly, both Alice and Charlie do not wonder whether p, but
for different reasons: in Alice’s case, it is because she has already resolved
the question, while in Charlie’s case, it is because he is not interested in
resolving it.

8.3 Beyond know and wonder

We have focused our attention in this chapter on some specific modal
notions, in a particular logical setting. However, we think that the
general approach illustrated by IEL is applicable beyond this restricted
setting as well, giving rise to a richer view on the linguistic notion
of modality in general. We end this chapter with some programmatic
remarks on the potential benefits of such an enriched perspective.

In linguistics, modal expressions are standardly viewed as senten-
tial operators that relate the proposition expressed by their argument
(their prejacent) to a proposition encoding a set of relevant background
assumptions (the modal base). Somemodal expressions indicate that the
prejacent is consistent with the modal base (possibility modals), while
others indicate that the prejacent is entailed by themodal base (necessity
modals). The nature of the modal base depends on the particular flavor
of the modal expression. For instance, epistemic modals relate their
prejacent to a relevant body of information, while deontic modals relate
their prejacent to a modal base determined by a relevant set of rules.
Finally, modal expressions differ in their grammatical category. Among
the most widely investigated kinds of modal expressions are attitude
verbs like know, believe, want, and hope, and auxiliary verbs like might,
may, must, and should.

Sophisticated theories have been developed to capture the coremech-
anisms that underlie the linguistic behavior of all these different types
of modal expressions in a unified way (see in particular Kratzer  for
a collection of influential articles, and Kaufmann and Kaufmann 
for a recent survey). However, while the domain that is covered by these
theories is indeed impressively broad, the approach taken in inquisitive
epistemic logic suggests a substantial further generalization, both of the
linguistic notion of modal expressions as such, and of the theories that
deal with them.

Namely, rather than construing modal expressions as relating two
classical propositions, we may construe them as relating two proposi-
tions in the inquisitive sense. For instance, both modalities Ka and Ea
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of IEL can be seen as expressing relations between an agent’s inquisitive
state Σa(w) and the inquisitive proposition [φ] expressed by the preja-
cent. This becomes evident once their clauses are re-stated as follows:

• w |� Kaφ ⇐⇒ ⋃
Σa(w) ∈ [φ]

• w |� Eaφ ⇐⇒ Σa(w) ⊆ [φ]

This shift in perspective broadens our linguistic view on modality in
three ways. First, as exemplified in a very concrete way in IEL, the class
of modal expressions becomes richer, now also including ones that take
inquisitive constructions as their argument. Thus, it becomes possible
to pursue a unified account of propositional attitude verbs like know,
believe, want, and hope on the one hand, and issue-directed attitude
verbs like wonder, be curious, and care on the other. Second, a more
fine-grained notion of modal bases becomes available: we can now
interpret modal expressions not only in the context of a certain body of
information, but also in the context of a relevant background issue. And
third, while on the standard account there are only two salient relations
between the prejacent and the modal base, i.e., inclusion (entailment)
and overlap (consistency), in the inquisitive setting there are many
more, due to the fact that inquisitive propositions carry more structure
than simple sets of worlds. This allows for a refinement of the standard
dichotomy between possibility and necessity modals.

While these remarks are admittedly very programmatic and clearly
stand in need of concrete substantiation, the research programme that
they suggest seems an exciting one to pursue.The treatment of know and
wonder developed in IEL just constitutes the first step in this direction.

8.4 Pointers to further work

For a more detailed presentation of inquisitive epistemic logic, the
reader is referred to Ciardelli and Roelofsen () and Ciardelli
(d). Besides the knowledge and issues of individual agents, these
references are also concerned with collective notions of knowledge and
issues—in particular, with the common knowledge and common issues
which are publicly shared among the group. The modal logic arising
from IEL has been investigated and axiomatized in Ciardelli (,
d). Various extensions and refinements of IEL have been explored
in the recent literature as well. Ciardelli and Roelofsen () and van
Gessel () equip the IEL framework with a dynamics that models
the way in which a multi-agent scenario evolves when a statement is
made or a question is asked, generalizing the analysis of public and
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private announcements in dynamic epistemic logic (van Ditmarsch
et al., ). The logic of public announcements in the inquisitive
setting is axiomatized in Ciardelli (a). Ciardelli and Roelofsen
() develop a refinement of IEL that does not only deal with ‘hard
knowledge’ but also with defeasible beliefs, which may be revised
or retracted. This inquisitive belief revision framework can be used
to model not just linguistic information exchange, but also other
information-related processes such as rational inquiry, where the
interplay between issues and beliefs has been argued to play a crucial
role (see, e.g., Olsson and Westlund, ). In Theiler et al. (a,b)
the linguistic treatment of know suggested in IEL is refined in order
to capture, among other things, the observation that the truth of a
knowledge attribution requires not only that the agent have enough
knowledge to resolve the embedded question, but also that she not
believe any pieces of information that would falsely resolve the question
(Spector, ; George, ; Cremers and Chemla, ). In Theiler
et al. (), IEL is extended with a treatment of believe, which accounts
for the fact that this epistemic verb, unlike know, is neg-raising (e.g.,
Alice doesn’t believe that Bill did it typically leads to the inference that
Alice believes that Bill didn’t do it) and for the fact that it does not
take interrogative complements (e.g., Alice believes whether Bill did it
is ungrammatical). Finally, Roelofsen and Uegaki () and Cremers
et al. (a) discuss possible refinements of the IEL treatment of wonder
and believe in order to obtain a more comprehensive account of the
ignorance inferences that these verbs trigger. For instance, when wonder
embeds an alternative question, it does not just imply that the issue
expressed by the question is not yet resolved in the subject’s current
information state, but also that all the alternatives that make up the
issue are still compatible with the subject’s information state (e.g., Alice
wonders whether Bob, Charlie, or Daniel did it does not only imply that
Alice does not know yet who the culprit is, but also that she cannot yet
rule out any of Bob, Charlie, and Daniel as a potential culprit).

8.5 Exercises

Exercise 8.1 Truth conditions of knowledge and wonder attributions

Consider again the situation described in Figure 8.1. For each question μ
in the list below, determine for which agents x the formulas Kxμ and Wxμ
are true.

• ?q
• ?(p ∧ q)
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• ?!(p ∨ q)

• ¬q → ?p

Exercise 8.2 Reasoning about knowledge and wondering

Consider the inference in (9), repeated here as (28):

(28) a. Alice wonders who the culprit is.
b. Alice knows that the culprit is Bob or Charlie.
c. So, Alice wonders whether the culprit is Bob or Charlie.

1. Translate the premises and the conclusion of the inference in the lan-
guage of IEL. Use a predicate C which stands for ‘is the culprit’, and assume
that this predicate is satisfied by exactly one individual at each world in
the model. Recall that embedded declarative clauses are translated as
involving a projection operator ‘!’.

2. Prove that if (28a) and (28b) are true at a world, so is (28c).

3. Prove that (28a) and (28b) entail (28c) in the sense of inquisitive semantics.

Exercise 8.3 Inquisitive epistemic logic

For � ∈ {Ka, Ea, Wa}, determine whether the following logical principles are
valid or invalid. Provide proofs or counterexamples.

• Normality: �(φ → ψ) → (�φ → �ψ)

• Distribution laws:

– �(φ ∧ ψ) ↔ �φ ∧�ψ
– �(φ ∨ ψ) ↔ �φ ∨�ψ
– �(φ ∨ ψ) ↔ !(�φ ∨�ψ)

• Monotonicity: if φ |� ψ, then �φ |� �ψ

• Necessitation: if |� φ, then |� �φ

Exercise 8.4 Ignorance

Consider a new modal operator Na in IEL, where Na φ is informally read
as ‘a is completely ignorant with regard to φ’. Define a suitable semantic
interpretation of Na φ, which ensures that whenever φ is non-inquisitive, Na φ
is equivalent to ¬Ka ?φ.
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Comparison to alternative
approaches

As we have seen in previous chapters, one of the main purposes of
inquisitive semantics is to serve as a framework for the semantic analysis
of questions in natural languages. In this chapter we will compare
inquisitive semantics with some other frameworks which have been
proposed for this purpose, and which have been used widely in the
literature. In doing so, we will restrict our attention to those previous
proposals that are most closely related to our own. That is, we will
consider the alternative semantics framework proposed by Hamblin
() and Karttunen (), the partition semantics developed by
Groenendijk and Stokhof () and later cast in a dynamic framework
by Jäger (), Hulstijn (), and Groenendijk (), and the
inquisitive indifference semantics proposed by Groenendijk () and
Mascarenhas (). We will argue that the framework presented here
preserves the essential insights that have emerged from these previous
approaches, while overcoming their main shortcomings.1
Figure . provides a global overview of the different approaches.

In this figure, the proposed frameworks are ordered from left to right
in terms of restrictiveness—i.e., the constraints they impose on what
qualifies as a suitable questionmeaning—and the development through
time is indicated by the bent arrows. Alternative semantics, developed
in the 1970s, is the least restrictive among these framework, i.e., the
one that imposes the least constraints on what qualifies as a suit-
able question meaning. This, as we will see below, leads to problems

1 One prominent approach that we will not discuss here is the functional approach
(sometimes also called the categorial or the structured meanings approach), which has its
roots in the work of Hull (), Tichý (), and Hausser and Zaefferer (), and has
been further developed by Ginzburg and Sag (), Krifka (a), and Ginzburg (),
among others. For overviews of the literature on questions, we refer to Groenendijk and
Stokhof (), Ginzburg (), Krifka (), Cross and Roelofsen (), Dayal (),
and Dekker et al. ().

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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Figure . Semantic frameworks for the analysis of questions, ordered chronologically
and in terms of restrictiveness.

of overgeneration. Partition semantics on the other hand, originally
proposed in the 1980s and further developed in a dynamic setting
in the 1990s, is the most restrictive framework—leading to problems
of undergeneration. More recent work has tried to strike an optimal
balance between these two extremes, first leading to inquisitive indif-
ference semantics (Groenendijk, ; Mascarenhas, ) and then to
the present inquisitive semantics framework.
Alternative semantics will be discussed in Section ., partition

semantics in Section ., and inquisitive indifference semantics in
Section ., drawing comparisons in each case with the inquisitive
semantics framework presented in this book. After having examined
and compared these different frameworks for question semantics in
some detail, we shift our attention in Section . to another fundamental
issue, concerning the division of labor between question semantics and
other components of a general theory of the interpretation of questions,
including a theory of speech acts and discourse pragmatics. What
exactly should the role of a compositional semantic theory of questions
be within such a larger theory of interpretation? We will first consider
the received view on this issue, and then compare it to the one taken in
inquisitive semantics, which we argue to be more parsimonious.

9.1 Alternative semantics

Alternative semantics was first proposed by Hamblin (), driven by
the following idea:

Questions set up a choice-situation between a set of propositions, namely those
propositions that count as answers to it. (Hamblin, , p. )

Thus, Hamblin takes questions to denote sets of classical propositions.
These propositions are often referred to as alternatives, hence the name
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of the framework. Karttunen () independently proposed a very
similar view on question meanings: he also took questions to denote
sets of classical propositions, though he restricted the denotation of
a question in a particular world to propositions that correspond to
answers that are true in that world. In both systems, the meaning of a
question, i.e., its intension, is a function from worlds to sets of classical
propositions. In Hamblin’s system, this function maps every possible
world to the same set of propositions, corresponding to the set of all
possible answers; in Karttunen’s system, every world is mapped to a
subset of all possible answers, namely those that are true in the given
world. As noted by Karttunen (, p. ), this difference is inessential.
In both cases, the meaning of a question is fully determined by—
and could be identified with—the set of all classical propositions that
correspond to a possible answer.2
This classical view on question meanings faces some fundamental

problems. We will discuss these, and show that they no longer arise in
inquisitive semantics.

9.1.1 First problem: Possible answers

The first problem is that the framework’s core notion—that of a possible
answer—is difficult to pin down. Surely, Hamblin and Karttunen pro-
vide a compositional semantics for a fragment of English, and thereby
specify what they take to be the possible answers to the questions in
that fragment. But in order to assess such a compositional theory, or
even to properly understand what its predictions amount to, we first
need to have a pre-theoretical notion of possible answers, one that the
theoretical predictions can be evaluated against. The problem is that
such a pre-theoretical notion is difficult, if not impossible to identify.
To illustrate this, consider the question in () and the responses in ():

() What is Alice’s phone number?
() a. It is -.

b. It is - but she prefers to be contacted by email.

2 It should be noted that there are significant differences between Hamblin’s and
Karttunen’s approach concerning the compositional derivation of questionmeanings.While
Karttunen sticks to the standard Montagovian architecture, Hamblin proposes a rather
radical departure from it, adapting the semantic type of all lexical items and letting the
operation that is standardly used to compose themeanings of two constituents, i.e., function
application, operate in a pointwise fashion.This compositional architecture, however, faces a
number of thorny problems (see, e.g., Shan, ; Novel and Romero, ; Charlow, ).
In inquisitive semantics these problems can be overcome in a principled way. A detailed
discussion of compositionality, however, is beyond the scope of this book; we refer to
Ciardelli, Roelofsen, andTheiler (a).
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c. It is the same as Bob’s number but with ‘’ instead of ‘’ at the
end.

d. It is either - or -.
e. It starts with -.

In principle, each of the classical propositions expressed by the declar-
atives in () could be seen as a possible answer to (). For Hamblin and
Karttunen, only (a) counts as such. However, it is not clear what the
precise criteria are for being considered a possible answer, and onwhich
grounds (a) is to be distinguished from (b–e).
In inquisitive semantics, question meanings are also sets of classical

propositions, just like in alternative semantics. However, in inquisitive
semantics these classical propositions are not thought of as the ‘possible
answers’ to the question. Rather, they are thought of as the information
states—or equivalently, the pieces of information—that resolve the issue
that the question expresses. As a consequence, in inquisitive seman-
tics question meanings cannot be defined as arbitrary sets of classical
propositions, which is what Hamblin and Karttunen take them to be.
Rather, they have to be downward closed. After all, if an information state
s resolves the issue expressed by a given question Q, then any stronger
information state t ⊂ s will also resolve the issue expressed by Q. As a
consequence, inquisitive semantics is more restrictive than alternative
semantics.
Unlike the notion of a possible answer, the notion of a resolving

information state has a clear pre-theoretical significance. For instance,
here are two concrete ways to assess empirically whether an information
state s should count as one in which the issue expressed by a questionQ
is resolved. Imagine an agent awhose information state is s, and suppose
that the information available in s is true:3

• Knowledge test: would we say that a knows Q?
– If the answer is yes, s should count as a state in which the issue
expressed by Q is resolved.

– Otherwise, s should not count as such a state.
• Wondering test: is it possible for a to be wondering about Q?

– If the answer is no, s should count as a state in which the issue
expressed by Q is resolved.

– Otherwise, s should not count as such a state.

3 For the knowledge test, readers concerned about Gettier cases should replace the term
‘information state’ by ‘knowledge state’, and assume that only information that properly
qualifies as knowledge is reflected in s.
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If we apply these tests to the above example, it is clear that the
information states corresponding to (a–b) qualify as resolving states
for (), while those corresponding to (c–e) do not.4 Thus, theories
of questions formulated in inquisitive semantics can be assessed
empirically in a way that theories that yield sets of ‘possible answers’
cannot—at least in the absence of a more precise characterization of
what ‘possible answers’ are supposed to be.
Even though inquisitive semantics deliberately does not rely on the

notion of ‘possible answers’ as a primitive notion, the framework does of
course allow us to define various notions of answerhood. For instance,
we may characterize a minimal resolving answer to a question Q as a
piece of information that:

(i) resolves the issue expressed by Q, and
(ii) does not provide more information than necessary to do so, i.e.,

is not strictly stronger than any other piece of information that
also resolves the issue expressed by Q.

Under this definition, the minimal resolving answers to Q correspond
precisely to what we called the alternatives in the proposition expressed
by Q.5 In the above example, (a) would count as a minimal resolving
answer to the question in () under this definition, while (b–e) would
not. This is the same distinction that Hamblin and Karttunen made.
Now, however, it is clear on which grounds the distinction is made.6

4 By the information state corresponding to a declarative sentence we mean the set of
worlds where the sentence is true, in an information model containing no background
information.
5 Recall from footnote  in Chapter  that some propositions in InqB do not contain

any alternatives. According to the characterization of minimal resolving answers just given,
questions expressing such propositions do not have any minimal resolving answers. See
Ciardelli (), Ciardelli et al. (b), and Roelofsen (a) for further discussion of
such cases.
6 It is important to note that theHamblin/Karttunen notion of a possible answer does not

in general coincide with the notion of a minimal resolving answer. For instance, consider
the question (i) under its usual, mention-all reading.
(i) Who passed the exam?
(ii) a. {w | everybody except for Bob passed the exam in w}

b. {w | Alice passed the exam in w}
Assuming that it is known which individuals make up the intended domain, the classical
proposition in (iia) qualifies as a minimal resolving answer to (i). The one in (iib) does
not, since it provides no information on which individuals passed the exam besides
Alice. For Hamblin and Karttunen, the situation is reversed: the proposition in (iib)
qualifies as a possible answer to (i), but not the one in (iia). Thus, the Hamblin/Karttunen
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Answerhood Resolution

Alternative semantics

Inquisitive semantics
derived notion primitive notion

primitive notion derived notion

Figure . Primitive and derived notions in alternative/inquisitive semantics.

Besides characterizing minimal resolving answers along these lines,
we may also define notions of partial answerhood and subquestionhood
(see Groenendijk and Roelofsen, ), which are important for the
analysis of discourse structure and information structure (see, e.g.,
Ginzburg, ; Roberts, ; Büring, ). What is crucial is that
in inquisitive semantics the meaning of a question is not character-
ized in terms of possible/minimal/complete/partial answers. Rather, as
depicted in Figure ., it is the other way around: question meanings,
i.e., issues, are defined in terms of what it takes to resolve them, and the
possible/minimal/complete/partial answers to a question are defined
in terms of these resolution conditions. As a consequence, whichever
notion of answerhood we choose to adopt, there will be no need for
such a notion to correspond directly to some pre-theoretical concept.
Rather, it will be grounded, in a precisely circumscribed way, in the pre-
theoretical notion of what it takes for a given issue to be resolved.7

9.1.2 Second problem: Entailment

A second fundamental problem for alternative semantics, which was
pointed out and discussed at length in Groenendijk and Stokhof (),
is that it is difficult to define a suitable notion of entailment in this
framework that determines when one question ismore demanding than

notion of possible answers cannot be explicated in terms of minimal resolving pieces of
information.
7 Recall from Section .. that the issue expressed by questions in natural language is

sometimes not completely determined by linguistic conventions; various contextual factors
may play a role as well (the intended domain of quantification, the intended method of
identification, the intended level of granularity, and the general decision problem that the
speaker aims to resolve in asking the question).The challenges that are involved inmodeling
this context-sensitivity are orthogonal to the challenge of suitably representing the issue
expressed by a question under fixed assumptions about the relevant contextual parameters.
Inquisitive semantics, just like the work of Hamblin () and Karttunen (), addresses
the latter challenge, but remains neutral with respect to the former.



OUP CORRECTED PROOF – FINAL, //, SPi

. alternative semantics 

another. One consequence of this is that it is hard, if not impossible,
to give a principled account of the interaction between questions and
logical connectives and quantifiers. For instance, it proves problematic
to give a satisfactory treatment of the conjunction of two questions.
Without a suitable notion of entailment, conjunction can certainly no
longer be treated as a meet operator.8
This problem does not arise in inquisitive semantics, which comes

with a natural and well-behaved notion of entailment. As discussed in
Chapter , the space of propositions in inquisitive semantics, ordered by
entailment, has a familiar algebraic structure, and a natural treatment
of the logical connectives is obtained by associating themwith the basic
operations in this algebra.Thus, as we have seen, the classical treatment
of conjunction as a meet operation can be preserved in inquisitive
semantics to apply to informative and inquisitive sentences in a uniform
way, and the same goes for the other operations.
The two problems that we just discussed for alternative semantics

are closely related. After all, if it were possible to ground the notion of
‘possible answers’ in some pre-theoretical notion, then it would most
likely also become clear how to characterize entailment. That is, if there
were clear criteria for what it takes to count as a possible answer, we
would also know better on which grounds two sets of possible answers
should be compared, and underwhich conditions one set should be seen
as entailing another.9
Compare the situation with the one we have in classical logic. There,

the proposition expressed by a sentence is a set of possible worlds.These
worlds are intended to correspond to situations that are compatible
with the information that the sentence conveys. In this case, there is
a clear pre-theoretical intuition to build on, as to whether a certain
situation is or is not compatible with a given piece of information.
As a consequence, it is also clear when one sentence should be taken
to entail another, namely if it conveys at least as much information,

8 SeeRoelofsen (a); Ciardelli andRoelofsen (a); Ciardelli et al. (a) formore
elaborate discussion of this point, and a critical assessment of some concrete notions of
entailment and conjunction that may be considered in alternative semantics.
9 It is not the formal notion of meaning as such that stands in the way of a suitable notion

of entailment, but really the conception of these meanings in terms of possible answers.
For instance, if we construe the meaning of a sentence as a set of classical propositions, as
in alternative semantics, but think of these propositions as those that the sentence draws
attention to, rather than as possible answers, then it is quite straightforward to define a
suitable notion of entailment, which compares two sentences/meanings in terms of their
attentional strength (Roelofsen, b).
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meaning that the proposition it expresses is a subset of the proposition
expressed by the other sentence. In alternative semantics, the meaning
of a question is a set of classical propositions which are intended to
correspond to its possible answers. However, since it is not clear when
exactly a proposition should count as a possible answer, it is also difficult
to say when one question should entail another.
In inquisitive semantics, the proposition expressed by a question is

a set of information states, which are intended to be those information
states that resolve the issue that the question expresses. It is also clear,
then, when one question is more demanding than another, namely if
every information state that resolves the former also resolves the latter.
This immediately delivers the desired notion of entailment, as well as
the algebraic operations that are characterized in terms of it.

9.1.3 Third problem: Overgeneration

A third problem, which is again connected to the other two, is that there
are question meanings in alternative semantics which seem impossible
to express in natural languages.These are questionmeanings containing
two alternatives α and β such that one is strictly contained in the
other, α ⊂ β.
One may think that such meanings may be expressed by disjunctive

questions, where each disjunct contributes one of the two alternatives.
However, in order to get that α ⊂ β, we would have to construct the
question in such a way that one disjunct entails the other. As illustrated
in () and () below, such questions are infelicitous (Ciardelli and
Roelofsen, a).

() Is John American, or is he Californian?
() Is the value of x different from , or is it greater than ?

It has been well-known since Hurford () that disjunctive declar-
atives where one disjunct entails the other are generally infelicitous
as well.

() John is American or he is Californian.
() The value of x is different from  or it is greater than .

This phenomenon, known as Hurford’s constraint, has been given an
appealing explanation in terms of redundancy. More specifically, Katzir
and Singh () propose the following principle (see also Simons,
; Meyer, , for closely related proposals):
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Local redundancy: a sentence is deviant if its logical form contains a binary operator ◦
applying to two arguments A and B, and the outcome A ◦ B is semantically equivalent
to one of the arguments.10

Let us briefly consider how this principle predicts Hurford’s constraint.
In classical semantics, the meaning of a sentence A is a classical propo-
sition |A|, the set of worlds where the sentence is true. A entails B just
in case |A| ⊆ |B|. Moreover, sentential disjunction yields the union of
two propositions, that is, |A ∨ B| = |A| ∪ |B|.
Now, suppose that the logical form of a sentence contains a

sentential disjunction operator applying to two arguments A and B
such that |A| ⊆ |B|, as in examples () and (). Then we have that
|A ∨ B| = |A| ∪ |B| = |B|. So, the output is semantically equivalent to
one of the inputs.Thus, the given logical form exhibits local redundancy
and is therefore predicted to be deviant.
Now, one would of course hope that this explanation of Hurford’s

constraint in terms of redundancy would apply not only to declaratives
like () and (), but also to questions like () and (). But this is not
the case in alternative semantics, where the disjuncts express singleton
sets, {|A|} and {|B|}, respectively, and disjunction yields the set {|A|, |B|}.
Since the output of the disjunction operator is different from any of its
inputs, the local redundancy condition is not violated, and no deviance
is therefore predicted.
In inquisitive semantics, the explanation of Hurford’s constraint in

terms of redundancy does naturally apply to questions like () and ().
Assuming that each of the disjuncts expresses a proposition containing
all states that consist exclusively of worlds where that disjunct is true
(just like atomic sentences in InqB), and that or is analysed by means of
the inquisitive disjunction operator, we have [A]=℘(|A|), [B]=℘(|B|),
and [A ∨ B]= [A]∪ [B]=℘(|A|) ∪℘(|B|)=℘(|B|)= [B]. Thus, the
output of the disjunction operator is identical to one of its inputs, and
redundancy is predicted just as for declarative Hurford disjunctions.11

10 Katzir and Singh ()’s proposal is relativized to a context of utterance c. Since
context-dependency plays no role in our discussion, we omit reference to contexts for ease
of exposition.
11 It should be noted that there are apparent counterexamples to Hurford’s constraint,

which may seem to undermine the argument that we are making here. For instance:
(i) Bill solved two of the homework problems, or he solved all of them.
At first blush, it seems that the second disjunct entails the first, and yet the sentence
is felicitous. However, as argued in detail by Chierchia et al. (), in such cases the
weaker disjunct receives an exhaustive interpretation—here, that Bill solved only two of the
problems—which in effect makes it logically independent from the other disjunct. In fact,
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Let us try to better understand this contrast between inquisitive
semantics and alternative semantics by considering the notion of ‘alter-
natives’ that plays a role in the two frameworks. We have seen that
both frameworks associate questions with sets of alternatives, but that
the status of these alternatives crucially differs from one framework to
the other.
In inquisitive semantics, the alternatives in the proposition expressed

by a question are characterized as those pieces of information that
resolve the issue that the question raises in a minimal way. This implies
that sets of alternatives have to be of a particular form: two alternatives
are always logically independent, that is, one is never contained in
the other.
In alternative semantics on the other hand, there is no such constraint

on sets of alternatives: any set will do. This is connected, of course, to
the fact that the notion of an alternative is a primitive notion in this
framework, not defined in terms of resolution conditions or any other
more elementary notion.
Let us say that a set of classical propositions is non-nested if no

proposition in the set is included in another. In inquisitive semantics,
then, unlike in alternative semantics, only non-nested sets of classical
propositions are regarded as proper sets of alternatives. Thus, certain
meanings in alternative semantics do not have a counterpart in inquisi-
tive semantics. It is precisely these additional meanings, i.e., nested sets
of alternatives, which seem impossible to express in natural languages.
In principle, a Hurford disjunction would be exactly the right kind of
construction to express a nested set of alternatives. But we have seen
that such disjunctions are infelicitous. This seems to indicate that there
is something wrong with nested sets of alternatives as meanings, which
is puzzling from the perspective of alternative semantics, since in this
framework nested sets of alternatives have exactly the same status as
non-nested sets.
In inquisitive semantics, the puzzle does not arise, because nested sets

of alternatives simply do not exist. Importantly, such sets are not ruled
out by some special purpose constraint: rather, it just follows from the

Hurford’s constraint allows us to explain why the only reading of (i) is one in which the first
disjunct receives an exhaustive reading. So, far from undermining the existence of Hurford’s
constraint, cases like (i) provide further evidence for it. For amore detailed exposition of the
argument that we are presenting here, taking cases like (i) into account, we refer to Ciardelli
and Roelofsen (a).
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way alternatives are construed that they are never nested. This means
that from the perspective of inquisitive semantics, what is special about
Hurford disjunctions is not that they express some distinguished class of
meanings, but rather that they involve redundant disjuncts, which fail to
contribute an alternative to the meaning of the disjunction. As we have
seen, this is precisely what explains their infelicity.

9.2 Partition semantics

Departing from Hamblin and Karttunen’s work, Groenendijk and
Stokhof () propose that a question does not denote a set of classical
propositions at each world, but rather a single classical proposition
embodying the true exhaustive answer to the question in that world.
For instance, if w is a world in which Paul and Nina are coming for
dinner, and nobody else is coming, then the denotation of () in w is
the classical proposition expressed by ().

() Who is coming for dinner tonight?
() Only Paul and Nina are coming.

Themeaning of a question, i.e., its intension, then amounts to a function
from worlds to classical propositions. In Groenendijk and Stokhof ’s
framework these classical propositions are required to have two special
properties: they have to cover the entire logical space (since we must
have a true exhaustive answer at every world), and they have to be
mutually exclusive (since at each world, only one exhaustive answer
can be true). So, in Groenendijk and Stokhof ’s theory the meaning of a
question is determined by a set ρ of classical propositions that together
form a partition of the logical space.

9.2.1 Problem: Undergeneration

Partitions correspond to a specific kind of issues. Indeed, if a given
question Q has a true exhaustive answer at each world, then resolving
the question amounts to providing an exhaustive answer. This means
that if Q is associated with a partition ρ, then Q is resolved at a state s if
and only if s is included within some complete answer t ∈ ρ. This shows
that each partition ρ determines an issue Iρ consisting of all states that
are contained in one of the cells of the partition:

Iρ := {s ⊆ t | t ∈ ρ}
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However, not every issue corresponds to a partition. More importantly,
not all issues expressed by natural language questions correspond to
partitions. This is so only for those questions that have an exhaustive
answer at every world, in the following sense (for a precise statement of
this fact, see Exercise .).

() Exhaustive answer at a world: we say that a classical proposition a
is the exhaustive answer to an issue I at a world w if (i) a is true at
w and (ii) for all propositions p true at w: p ∈ I ⇐⇒ p ⊆ a.

There are two different reasons why a question may fail to have an
exhaustive answer at a world. First, it may not be possible to truthfully
resolve the question at some possible worlds. For instance, consider
(): as soon as our logical space includes worlds where Alice does not
have a husband, () cannot have an exhaustive answer at these worlds.

() How old is Alice’s husband?

However, this limitation can be overcome quite straightforwardly: it
suffices to take a question to express a partial function from worlds to
exhaustive answers, which corresponds to a partition of a subset of the
logical space.
However, the partition theory cannot be patched up in a similar

way to deal with questions that allow for various minimal resolving
propositions that are all true at some world. An important class of
questions with this feature is that of mention-some questions like those
in (), which we discussed in Section ...

() a. What is something that Alice really likes?
b. Where can I buy an Italian newspaper around here?
c. What is a typical French dish?
d. What is an example of an arithmetic theorem which is not
provable in Peano Arithmetic?

In order to resolve (a) it is necessary and sufficient to establish of some
x that x is something that Alice really likes. If Alice really likes string
quartets as well as scuba diving, then the proposition that she likes
string quartets and the proposition that she likes scuba diving are both
true at the actual world, and both resolve (a) in a minimal way. Thus,
at the actual world, there is no single proposition that counts as the
exhaustive answer to (a).This implies that the issue expressed by (a)
cannot be represented as a partition.
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In addition to mention-some questions, the class of questions
which express non-partition issues also includes conditional questions
like (a), disjoined questions like (b), open disjunctive questions like
(c), and approximate-value questions like (d) (about the latter type
of question, see exercise .).

() a. If Alice wins two tickets to Paris, who will she take with her?
b. Where can we rent a car, or who has one that we could borrow?
c. Does Igor speak Spanish↑, or French↑?
d. How many stars are there in the Milky Way, give or take ten?

Thus, while partition semantics gives an attractive analysis of questions,
which avoids the problems that we highlighted above for alternative
semantics, it does so at the cost of significant restrictions on its empirical
scope.12

9.2.2 A possible concern: disjunctions of questions

Inquisitive semantics provides a notion of question meaning that is
richer than the one assumed in partition semantics, and we have just
seen that this is crucial in order to accommodate several classes of
questions which express issues that do not correspond to partitions
of the logical space. However, this greater generality may also raise a
certain concern.
Consider the following sentence from Szabolcsi (, p. ), a

disjunction of two wh-questions, which is decidedly odd.

() Who did you marry or where do you live?

Szabolcsi (, a) has argued that the oddness of this sentence can
be explained in partition semantics. For a partition may be identified
with an equivalence relation on the space of possible worlds, and while
the intersection of two equivalence relations is itself again an equiv-
alence relation, the same is not true of the union of two equivalence
relations. If conjunction and disjunction are taken to express intersec-
tion and union, respectively, it is to be expected that conjunction, but
not disjunction, can apply to two questions to form a new question in
natural languages.
On the other hand, in inquisitive semantics the oddness of ()

cannot be explained on purely semantic grounds, because if we take

12 For a more detailed discussion of the relations between inquisitive semantics and
partition semantics, see Ciardelli et al. (, §) and Ciardelli (b).
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disjunction to express the join operator it delivers a perfectly sensible
issue, one that can be resolved either by establishing whom the
addressee married or by establishing where the addressee lives. This
issue does not correspond to a partition, but it is an issue nonetheless
in our framework. Thus, while the inquisitive notion of meaning has
important advantages with regard to partition semantics, it may also
seem to have a certain disadvantage.
However, note that the prediction arising from partition semantics is

a very strong one: it implies that questions cannot be directly disjoined
in natural languages at all. Szabolcsi (, a) claims that this gen-
eral prediction is indeed borne out,13 but we are convinced by examples
like (), repeated from Chapter , that it is too strong: disjunctions of
questions are not always infelicitous.

() Where can we rent a car, or who might have one that we could
borrow?

We should note that Szabolcsi remarks that a sentence like () may be
marginally acceptable if regarded as a case inwhich the speaker first asks
the question who did you marry, but then reconsiders and proposes to
replace this first question by the second,where do you live. In such cases,
Szabolcsi suggests, disjunction does not play its usual role but is rather
used as a corrective device.
Our example (), however, can be uttered by someone without any

reconsideration halfway, and it can be addressed by an addressee as a
single question, to which both disjuncts contribute. So, () seems to be
a genuine disjunction of questions.14
Szabolcsi () does not base her empirical claim merely on

cases like () but also on observations about embedded questions
in Hungarian. Hungarian complement clauses, whether declarative
or interrogative, are always headed by the subordinating complemen-
tizer hogy. Szabolcsi argues that this subordinating complementizer
expresses a lifting operation that needs to be invoked before two

13 Krifka (b) endorses Szabolcsi’s claim, though he offers a different explanation,
based on the assumption that questions do not express sets of propositions or partitions,
but rather speech acts, which Krifka models as operations on commitment states. Speech
act disjunction does not exist according to Krifka, because it “would lead to disjunctive sets
of commitments, which are difficult to keep track of ” (Krifka, b, p. ).
14 Haida and Repp () also challenge Szabolcsi’s empirical claim, although they

maintain a weaker version of it: questions can only be disjoined in downward entailing or
non-veridical contexts. Our example () presents a challenge for this weaker claim as well.
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interrogative complement clauses can be disjoined (just like proper
names have to be lifted into generalized quantifiers when they are
conjoined or disjoined with a quantificational noun phrase). Support
for this idea comes from examples like () and () below, which
indicate that (i) conjoined interrogative complement clauses can have
either two occurences of hogy, applying to both individual conjuncts,
or a single occurence of hogy, applying to the conjunction as a whole,
but (ii) disjoined interrogative complement clauses must have two
occurences of hogy, each applying to one of the individual disjuncts.

() János
Janos

megtudta,
found.out

hogy
subord

kit
whom

vettél
you.took

feleségül
as.wife

és
and

(hogy)
(subord)

hol
where

laksz.
you.live

‘Janos found out whom you married and where you live.’
() János

Janos
megtudta,
found-out

hogy
subord

kit
whom

vettél
you.took

feleségül
as.wife

vagy
or

*(hogy)
*(subord)

hol
where

laksz.
you.live

‘Janos found out whom you married or where you live.’

Szabolcsi concludes from this observation that disjunction cannot
directly apply to interrogative complement clauses, but always requires
intervention of a lifting operation, expressed overtly in Hungarian
by hogy.
However, there are counterexamples to the generalization. The Hun-

garian counterpart of our example () is a case in point.When embed-
ded, it may come either with one or with two occurences of hogy, no
matter whether the embedding verb is extensional (e.g., find out) or
intensional (e.g., investigate).15

() Péter
Peter

megtudta,
found.out

hogy
subord

hol
where

tudunk
can.we

autót
car

bérelni
rent.inf

vagy
or

(hogy)
(subord)

kinek
who.to

van
is

egy,
one

amit
which

kölcsönvehetnénk.
could.borrow.we

‘Peter found out where we can rent a car or who has one that we
could borrow.’

15 We are grateful to Donka Farkas, Anikó Liptak, and Anna Szabolcsi for discussion of
this datapoint.
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() Péter
Peter

azt
that.acc

vizsgálja,
investigates

hogy
subord

hol
where

tudnánk
could.we

autót
car

bérelni
rent.inf

vagy
or

(hogy)
(subord)

kinek
who.to

van
is

egy,
one

amit
which

kölcsönvehetnénk.
could.borrow.we
‘Peter is investigating where we could rent a car or who has one
we could borrow.’

In (), a single occurence of hogy favors a reading onwhich disjunction
takes narrow scope with regard to the verb, while two occurences of
hogy favor a reading on which disjunction takes wide scope (Peter is
investigating where we can rent a car or he is investigating who has one
we could borrow), a pattern that is in line with Szabolcsi’s idea that hogy
expresses a lifting operation.
It thus seems that, at least in some cases, disjunction can apply

directly to questions, both in English and in Hungarian. A question
that naturally arises, then, is whether the general disjunction operation
that inquisitive semanticsmakes available allows us to derive the correct
meaning for those disjunctions of questions which are felicitous. For
disjunctions of non-wh-questions, we have already argued this to be
the case in Chapter . The predictions for disjunctions of wh-questions
also seem to be correct. For instance, assuming that () is an open
interrogative list and that the two interrogative clauses each receive a
mention-some interpretation, the sentence is predicted to express an
issue which can be resolved either by identifying a place where the
speaker can rent a car, or by identifying a person who might have
a car that the speaker can borrow, or by establishing that there is
no such place and no such person. These are indeed the resolution
conditions we expect for (). Notice that this prediction is obtained
simply by applying inquisitive disjunction to the propositions expressed
by the two interrogative clauses—the same disjunction operation that,
in Chapter , we took to be at work in disjunctive non-wh-questions, as
well as disjunctive declaratives.
Thus, after all, disjunctive questions seem to provide a strong argu-

ment in favor of inquisitive semantics over partition semantics, where
examples such as () can only be handled at the cost of a significant
complication of the framework (and one that gives up some of its
most attractive features, such as the general account of entailment
and coordination among interrogatives; see Groenendijk and Stokhof,
).
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Of course, an interesting question that remains to be addressed is
why our example () behaves so differently from Szabolcsi’s example
(), both as a standalone question and when embedded. We think
that the difference may be explained pragmatically. A disjunction of
two questions expresses an issue that may be resolved equally well
by providing information resolving the first disjunct, or by providing
information resolving the second disjunct. Now, it is difficult to see what
kind of motivation (or what kind of decision problem, to follow van
Rooij ) a speaker could have that would lead her to raise or even
consider the issue expressed by (). This is very different in the case of
(): in this case, it is immediate to reconstruct the sort of motivation
that may lead a speaker to consider the relevant issue. We suggest that
the different cognitive plausibility of the two issues at stake underlies the
difference in the perceived felicity of the associated questions.

9.2.3 Dynamic partition semantics

While Hamblin (), Karttunen (), and Groenendijk and
Stokhof () all operate under a static view on meaning, there
are also a number of proposals that aim to capture the meaning of
questions in a dynamic framework. The first such proposals, developed
by Jäger (), Hulstijn (), and Groenendijk (), essentially
reformulate the partition theory of questions in the format of an
update semantics (Veltman, ).16 This means that they construe the
meaning of a sentence as its context change potential, i.e., a function that
maps a context to a new context. Just like we do here, these theories
do not model a context simply as a set of worlds—embodying the
information established in the conversation so far—but provide a more
refined notion of context, one that also embodies the issues that have
been raised so far. More specifically, a context C is modeled as an
equivalence relation over a set of worlds s ⊆ W. Such an equivalence
relation, which induces a partition on s, can be taken to encode both
information and issues. On the one hand, the information established
in C is encoded by the set of all worlds that are in the domain of C, i.e.,
all worlds in s. On the other hand, the issues present inC are encoded by
the partition thatC induces: two worldsw and v are connected byC and
therefore included in the same partition cell just in case the distinction
betweenw and v is not (yet) at stake in the conversation. In other words,
C is conceived of as a relation encoding indifference (Hulstijn, ): if

16 See the book Questions in dynamic semantics (Aloni et al., ) for several papers
elaborating on these early proposals.
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w and v are connected by C, the discourse participants have not yet
expressed an interest in information that would distinguish between w
and v.
Both statements and questions can then be taken to have the potential

to change the context in which they are uttered. A statement restricts the
domain s to thoseworlds inwhich the sentence is true (strictly speaking,
it removes all pairs of worlds 〈w,v〉 from C such that the sentence is
false in at least one of the two worlds). Questions disconnect worlds,
i.e., they remove a pair 〈w,v〉 from C just in case the true exhaustive
answer to the question in w differs from the true exhaustive answer to
the question in v.
Thus, the dynamic systems of Jäger (), Hulstijn (), and

Groenendijk () provide a notion of context and meaning that
embodies both information and issues in an integrated way, in terms
of an equivalence relation encoding indifference. However, just as clas-
sical partition semantics, these dynamic systems are too restrictive to
allow for a satisfactory treatment of conditional questions, disjunctive
questions, and mention-some wh-questions.17

9.3 Inquisitive indifference semantics

A core assumption of dynamic partition semantics is that indifference
should be encoded bymeans of an equivalence relation between possible
worlds. Mascarenhas () and Groenendijk () suggest that the
limitations of the framework may be overcome by re-examining this
assumption. Of course, whether indifference should be encoded by
means of an equivalence relation between possible worlds depends on
how exactly one conceives of the notion of indifference. One natural
perspective is that an agent is indifferent between two worlds w and v
just in case w and v agree on the truth value of all propositions that the
agent deems relevant. Under this perspective, a relation encoding the
agent’s indifference should indeed be an equivalence relation—it should
be reflexive because everyworldwill clearly agree with itself on the truth
value of all relevant propositions; it should be symmetric because if w

17 At least not without further amendments. Isaacs and Rawlins () develop a
dynamic partition semantics that allows for hypothetical updates of the context of evalu-
ation.This framework allows for a natural analysis of conditional questions. However, open
disjunctive questions and mention-some wh-questions remain beyond its reach.
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agrees with v then v must also agree with w; and it should be transitive
because ifw agrees with v and vwith u, thenwmust agree with u as well.
However, this is not the only sensible way to conceive of the notion of

indifference. Another natural perspective is that an agent is indifferent
between two worlds w and v just in case, if she were to be given
the information that the actual world is either w or v, the issues that
she entertains would be resolved and she would not require further
information determining precisely which ofw and v is the actual world.
Under this perspective, indifference relations should still be reflexive
and symmetric, but they do not necessarily have to be transitive. To see
this, suppose that our agent entertains just one issue, namely the one
expressed by the mention-some question in ():

() Where can one buy an Italian newspaper?

Now consider the following three possible worlds:

• w1: Italian newspapers are only sold at Central Station,
• w2: Italian newspapers are only sold at the airport,
• w3: Italian newspapers are sold in both places.

If the agent were to be told that the actual world is either w1 or w3,
her issue would be resolved: she could go get her newspaper at Central
Station and would not require further information determining which
of w1 and w3 is the actual world. The same holds if the agent were to be
told that the actual world is either w2 or w3: in this case she could get
her newspaper at the airport. However, if she were told that the actual
world is either w1 or w2, then she would need further information in
order to decide where to go: if the actual world is w1 she has to go to
Central Station, but if it is w2 she has to go to the airport. Thus, the
agent is indifferent between w1 and w3 as well as between w3 and w2,
but not between w1 and w3. This means that her indifference relation
is not transitive.
In view of such considerations, Groenendijk () andMascarenhas

() dropped the transitivity constraint on indifference relations. In
the resulting framework, which they referred to as inquisitive semantics,
the alternatives associated with a question are maximal sets of worlds
such that each pair in the set stands in the indifference relation induced
by the question. Since indifference relations are no longer required to be
transitive, the alternatives associated with a question may overlap. For
instance, in the above example, if we take our logical space to consist
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of w1, w2 and w3, the alternatives associated with the question in ()
are {w1,w3} and {w2,w3}. These alternatives overlap, since they both
contain w3. Note that {w1,w2,w3} is not an alternative associated with
(), because w1 and w2 do not stand in the indifference relation that
() induces.
Allowing for issues with overlapping alternatives by dropping the

transitivity requirement on indifference relations makes it possible to
extend the scope of partition semantics. However, Ciardelli ()
observed that the gain in generality resulting from this move is not yet
sufficient. While conditional questions like (a) and open disjunctive
questions with two disjuncts like (c) can be dealt with satisfactorily,
disjunctive questions with three or more disjuncts remain problematic,
and the same goes for mention-some wh-questions like ().
To briefly illustrate what the problem is (see also Exercise .), con-

sider a context c consisting of three possible worlds, as above, but now
let the availability of Italian newspapers in these worlds be as follows:

• w1: Italian newspapers are only sold at the Central Station and the
zoo.

• w2: Italian newspapers are only sold at the airport and the zoo.
• w3: Italian newspapers are only sold at the Central Station and the
airport.

The question in () is not resolved in this context, since c does not
imply of any place that it sells Italian newspapers. However, for any pair
of worlds v,v′ from the context c, if we are given the information that
the actual world is either v or v′, then more precise information distin-
guishing between the two worlds is not needed in order to resolve ().
Thus, the indifference relation expressed by () in the given context
is the total relation—which amounts to a trivial issue. This shows that
the approach of Groenendijk () and Mascarenhas () cannot
detect the fact that () expresses a non-trivial issue in the given
context.
This example shows that the resolution conditions of a question

cannot in general be reconstructed from the indifference relation that it
induces. Moreover, Ciardelli () argued that it is impossible to over-
come this problem without letting go of the most fundamental notion
in the framework of Groenendijk and Mascarenhas, inherited from
dynamic partition semantics, namely that of issues encoded by means
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of indifference relations. This insight led to the inquisitive semantics
framework presented in this book.18
To distinguish the two stages in the development of inquisitive

semantics, we refer to the framework proposed by Groenendijk ()
andMascarenhas () as inquisitive indifference semantics.19 In terms
of restrictiveness, inquisitive indifference semantics is situated in
between partition semantics and the current inquisitive semantics
framework, as indicated in Figure .. This is a direct consequence of
the main commonalities and differences between these frameworks.
On the one hand, inquisitive indifference semantics is similar to
dynamic partition semantics and differs from the present inquisitive
semantics framework in that it encodes issues by means of indifference
relations. On the other hand, it is similar to the present inquisitive
semantics framework and different from dynamic partition semantics
in that it ultimately characterizes issues in terms of what is needed to
resolve them. Only, unlike in the present framework, this is not done
directly, but via indifference relations. That is, an issue is encoded
as an indifference relation, and whether this relation holds between
two worlds w and v depends on whether the issue is resolved by
the information that the actual world is either w or v. In the present
framework, the connection between issues and resolution conditions is
more direct, since indifference relations no longer play a role.
Summing up, while some important aspects of inquisitive indiffer-

ence semantics persist in the present framework, its core notion—issues
encoded by means of indifference relations—has been replaced by a
more general one, and this generality is needed to suitably capture the
full range of question types in natural languages. Thus, our framework
naturally fits within the existing tradition of semantic theories of infor-
mative and inquisitive discourse, but it is more general and able to cover
more empirical ground than its predecessors.

18 A bit more historical detail: Groenendijk’s  paper was written and started circulat-
ing in , but appeared in print only in . Mascarenhas’s  master thesis was also
largely written in , but only presented in its final form in . Ciardelli’s  term
paper was written in the fall of , for a course taught by Groenendijk. The arguments
presented in the term paper were further elaborated in Ciardelli () and Ciardelli and
Roelofsen ().
19 In previous work (e.g., Ciardelli, ; Ciardelli and Roelofsen, ), inquisitive

indifference semantics has also been referred to as ‘inquisitive pair semantics’, since it can be
characterized in terms of a notion of supportwith regard to pairs ofworlds (seeGroenendijk,
). Here, we instead use the term ‘inquisitive indifference semantics’ because it refers
more transparently to the framework’s central concept.
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9.4 Division of labor

So far, we have compared a number of approaches based on how
they model question meanings—i.e., in terms of possible answers, true
exhaustive answers, indifference relations, or resolution conditions.
In this final section, we shift our attention to a different issue: What
should the role of a compositional semantics be within a larger theory
of question interpretation? That is, how should the labor be divided
between the compositional semantics of questions and other compo-
nents of the theory?Wewill first consider the received view on this issue,
and then compare it to the one taken in inquisitive semantics.20

9.4.1 The received view

The received view is one which, in fact, assigns a very minimal role to
compositional semantics. In order to say more specifically what this
role is, we have to look separately at matrix questions and embedded
questions. In the case of matrix questions, it is assumed under this view
that the issue raised in asking the question is not only determined by
the compositionally derived semantic value of the question, but also in
part by a specific update rule associated with question speech acts.
Similarly, in the case of embedded questions, it is assumed that the

semantic contribution of the embedded clause is not only determined by
the compositionally derived semantic value of the question, but also by
an answer operator which is assumed to always accompany embedded
questions.
Let us make this more concrete by briefly outlining a particular

theory instantiating this view. We opt here for the theory presented in
Heim (), which is very explicit about the interaction between the
semantics of questions, update rules, and answer operators. But many
other contemporary theories of questions assume a similar division of
labor and would in principle serve our present purposes equally well.
First, let us exemplify the semantic values that Heim ()

compositionally assigns to simple wh-questions and polar questions.
The wh-question in (a) receives the semantic value in (b), a set
containing the classical proposition |Pd| for every individual d.

() a. Who is going to the party?
b. { |Pd| | d ∈ D}

20 The general argument made in this subsection is drawn from Farkas and Roelofsen
().
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On the other hand, the polar question in (a) receives the semantic
value in (b), a singleton set containing just |Pj|.
() a. Is John going to the party?

b. { |Pj| }
Note that Heim operates in the alternative semantics framework of
Hamblin () and Karttunen (), where question meanings are
arbitrary sets of classical propositions, i.e., they need not be downward
closed, and they need not form partitions either. However, the semantic
values that Heim derives, in particular for polar questions, do not
coincide with those assumed by either Hamblin or Karttunen. That is,
while Hamblin and Karttunen take a polar question like (a) to have
two ‘possible anwers’, |Pj| and |¬Pj|, the semantic value of (a) in
Heim’s system only contains the first of these two.
This should not be taken to reflect a disagreement as to what the

‘possible answers’ to polar questions like (a) are. Rather, it reflects
a different take on what the semantic value of a question is intended
to represent. For Heim, the compositionally derived semantic value
of a question is not intended to directly embody the set of ‘possi-
ble answers’ to that question, or any other type of answers for that
matter. The semantic value of a question is just an abstract object
that serves as input for the update rule associated with questions (in
the case of matrix questions) or a suitable answer operator (in the
case of embedded questions). We now turn to these ingredients of the
theory.
In line with much earlier work, Heim assumes that in making a

statement or asking a question, a speaker proposes to update the con-
versational context in a particular way. What the proposed update
is, is determined by the update rules associated with statements and
questions, respectively. To spell out what Heim takes these rules to be,
we first need to briefly review how she models conversational contexts.
In this, Heim essentially follows the work on dynamic partition seman-
tics discussed above (Jäger, ; Hulstijn, ; Groenendijk, ).
That is, she models a conversational context C as a set of mutually
disjoint classical propositions.The union of these classical propositions,⋃

C, is a set of worlds, embodying the information that has been
commonly established among the conversational participants in C.
On the other hand, the elements of C together form a partition over⋃

C, embodying the exhaustive answers to the current question under
discussion.
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With this notion of contexts in place, Heim defines the following
update rules for statements and questions, respectively.

Definition . (Heim’s update rule for statements)
Inmaking a statement, i.e., in uttering a declarative sentenceφ, a speaker
proposes to replace the current context C by a new context which is
constructed by collecting all non-empty intersections of elements of
C with |φ|, the classical proposition expressed by φ. That is, C is to be
replaced by:

• {p ∩ |φ| | p ∈ C and p ∩ |φ| �= ∅}
Definition . (Heim’s update rule for questions)
In asking a question, i.e., in uttering an interrogative sentence φ, a
speaker proposes to replace the current context C by a new context
which is constructed by re-partitioning C into cells consisting of worlds
that agree on the truth of every element of [φ]. That is, C is to be
replaced by:

•
{{v | ∀p ∈ [φ] : w ∈ p ⇐⇒ v ∈ p} ∣∣w ∈ ⋃

C
}

To illustrate these update rules, suppose that our initial context is one in
which no information has been established and no questions have been
asked yet, i.e., C={W}. Now suppose a speaker utters the declarative
sentence Mary is going to the party, translated as Pm. Then, according
to the update rule for statements in Definition ., the speaker proposes
to replace C with the following context:

() C′ = {p ∩ |Pm| | p ∈ {W} and p ∩ |Pm| �= ∅}
= {|Pm|}

If the proposal is accepted by the other conversational participants,
C′ becomes the new context, which means that the information that
Mary is going to the party becomes common ground, and no further
information is requested.
Now let us return to our initial contextC and suppose that the speaker

instead utters the polar interrogative in (a), Is John going to the party?.
This time, according to the update rule for questions in Definition .,
the speaker proposes to replace C with the following context:

() C′ = { {v | w ∈ |Pj| ⇐⇒ v ∈ |Pj|} ∣∣w ∈ W
}

= {|Pj|, |¬Pj|}
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Thus, no new information becomes common ground, since
⋃

C′ still
covers the set of all possible worldsW. However, the context is now par-
titioned into two cells, |Pj| and |¬Pj|, which means that the participants
become publicly committed to resolving the question whether John is
going to the party or not.21
Now let us move from matrix questions to embedded ones. Heim

mainly focuses on questions embedded under know. For sentences in
which know takes a declarative complement, she assumes the standard
analysis. For instance, (a) is assigned the truth-conditions in (b):22

() a. Ann knows that John is going to the party.
b. w |� Ka(Pj) ⇐⇒ σa(w) ⊆ |Pj|

Here, σa(w) is Ann’s information state in w, modeled as a set of possible
worlds, and |Pj| is the classical proposition expressed by Pj, also a set
of possible worlds.
What if know takes a question as its complement, whose semantic

value is not a set of possible worlds but rather a set of classical proposi-
tions? Clearly, the standard analysis of know, exemplified in (), cannot
immediately be applied in this case. To overcome this obstacle, Heim
assumes, as many other authors have done as well, that the semantic
value of an embedded question, before it combines with that of the
verb, is first transformed by a so-called answer operator, ANS. This
answer operator takes as its input a possible world w and a question
meaningQ, i.e., a set of classical propositions, and delivers as its output a
single classical proposition ANS(w,Q). More specifically, Heim defines
the answer operator in such a way that ANS(w,Q) is always the true
exhaustive answer to Q in w.

Definition . (Heim’s answer operator)
For any possible world w and any question meaning Q:

• ANS(w,Q) := {v | ∀p ∈ Q : v ∈ p ⇐⇒ w ∈ p}
Thus, a sentence like (a) receives the truth-conditions in (b), which
is a satisfactory result.

21 The reader is invited to verify that the partition induced by a wh-question like (a)
according to Heim’s update rule for questions is precisely the one that is associated with it
in partition semantics.
22 We simplify here somewhat, leaving factivity presuppositions out of consideration.

These are orthogonal to the main issues that we will be concerned with in this section.
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() a. Ann knows whether John is going to the party.
b. w |� Ka ?Pj ⇐⇒ σa(w) ⊆ ANS(w,{|Pj|, |¬Pj|})

⇐⇒
{

σa(w) ⊆ |Pj| if w ∈ |Pj|
σa(w) ⊆ |¬Pj| if w ∈ |¬Pj|

This completes our illustration of the received view on the division of
labor between compositional semantics and other components of an
overall theory of question interpretation. Note that, as indicated at the
outset, the role assigned to compositional semantics on this view is very
minimal. In the case of matrix questions a decisive role is played by
the update rule, and in the case of embedded questions such a role is
fulfilled by the answer operator. In both cases, the semantic value that is
produced by the compositional semantics only serves as ‘raw material’
for these operators.
This, in our view, is a substantial weakness of the approach: it leaves

the compositional semantics of questions highly unconstrained. That is,
which values are produced by the compositional semantics does not
matter all that much, as long as one can formulate an update rule and
an answer operator which, when given these values as input, yield the
desired output.
It is important to note in this regard that both the update rule and

the answer operator are assumed to be specific to questions. Thus, they
can be tailor-made for the purpose of transforming the compositionally
derived semantic values to yield the desired output.They do not serve a
broader purpose in the overall theory of interpretation, and are there-
fore not independently constrained. This diminishes the explanatory
value of the approach.
It would be preferable to have a theory that does without any

question-specific update rule or answer operator, i.e., one inwhich there
is just one simple update rule that applies uniformly to statements and
questions, and one in which the embedding operator—if at all present—
is not specific to questions, but applies uniformly to declarative and
interrogative embedded clauses. This is precisely the kind of approach
that comes naturally with inquisitive semantics.

9.4.2 The inquisitive perspective

Let us first considermatrix questions and then embedded ones.We have
already seen in Section .. that inquisitive semantics comes with a
natural notion of context update, which is simply defined in terms of
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set intersection and applies uniformly to statements and questions.This
allows for a unification and simplification of Heim’s update rules for
statements and questions.

Definition . (Inquisitive update rule for statements and questions)
In uttering a sentence φ, be it a declarative or an interrogative, a speaker
proposes to replace the contextC by a new context which is constructed
by intersecting C with [φ]. That is, C is to be replaced by C ∩ [φ].

For comparison, let us apply this rule to the examples considered above.
As before, let the initial context C be one in which no information is
available and no issues have been raised yet. In inquisitive semantics,
this context is represented as {W}↓. Now suppose a speaker utters the
declarative sentence Mary is going to the party, translated as Pm. Then,
according to our general update rule, the speaker proposes to replace C
with the following context:

() C′ = C ∩ [Pm]
= {W}↓ ∩ {|Pm|}↓
= {|Pm|}↓

If the proposal is accepted by the other conversational participants,
C′ becomes the new context, which means that the information that
Mary is going to the party becomes common ground, and no further
information is requested.
Now let us again return to our initial context C and suppose that the

speaker instead utters the polar interrogative in (a), Is John going to
the party? According to our general update rule, the speaker proposes
to replace C with the following context:

() C′ = C ∩ [?Pj]
= {W}↓ ∩ {|Pj|, |¬Pj|}↓
= {|Pj|, |¬Pj|}↓

In this case, the speaker does not provide any information herself, but
she does raise an issue, requesting information from other participants
in order to establish a common ground that is contained either in |Pj|
or in |¬Pj|.
Thus, the results are essentially the same as in Heim’s system, but

they are obtained by using a uniform update rule (indeed, the standard
intersective update rule) rather than two separate update rules for
statements and questions.
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It should be emphasized that what we have gained is not just
simplicity. More importantly, the fact that the update rule determining
the contextual effect of questions is not question-specific but rather
plays a more general role in the overall theory means that it is
constrained by considerations that are independent of questions
altogether. This means that the approach leaves less room for ad-hoc
stipulations, and is therefore more explanatory.
Now let us turn to embedded questions.We have seen in Section ..

that in inquisitive epistemic logic the standard analysis of know is gener-
alized in such a way that it can deal uniformly with both declarative and
interrogative complements.The support conditions forKaφ are repeated
in () and the truth-conditions which can be derived from this in ().

() s |� Kaφ ⇐⇒ ∀w ∈ s : σa(w) |� φ
() w |� Kaφ ⇐⇒ σa(w) |� φ

Applying this analysis to the examples considered above yields the
following results:23

() a. Ann knows that John is going to the party.
b. w |� Ka(Pj) ⇐⇒ σa(w) |� Pj

⇐⇒ σa(w) ⊆ |Pj|
() a. Ann knows whether John is going to the party.

b. w |� Ka ?Pj ⇐⇒ σa(w) |� ?Pj

⇐⇒
{

σa(w) ⊆ |Pj| if w ∈ |Pj|
σa(w) ⊆ |¬Pj| if w ∈ |¬Pj|

Thus, again, the same results are obtained as in Heim’s account, but this
time without an answer operator. Just as in the case of matrix questions,
this is not just a gain in simplicity, but also in explanatory force—
assuming an answer operator that is specific to embedded questions
and does not serve a more general purpose in the overall theory makes
room for ad-hoc customization and leaves the compositional semantics
of questions highly unconstrained. On the other hand, doing without
such an answer operator leads to a theory in which the compositional
semantics of questions has to deliver semantic values which can be fed
immediately to the embedding verbs, without any transformation.This,
together with the fact that the same semantic values should also serve

23 The derivation in (b) assumes that σa is factive, i.e., that for any w, w ∈ σa(w). For
discussion of this constraint, see page .
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as input to the general intersective update rule discussed above in case
the question occurs in matrix form, results in a much more constrained
theory, and thus one with a greater explanatory value.24

9.5 Exercises

Exercise 9.1 Inquisitive semantics and alternative semantics

1. What is the technical difference between question meanings in alterna-
tive semantics and in inquisitive semantics?

2. Conceptually, what is the reason for this difference?

3. What are the repercussions of this difference for the analysis of questions
in natural languages?

Exercise 9.2 Conjunction in alternative semantics

Assume that in alternative semantics a polar question ?p is associated with
the set of possible answers [?p] = {|p|, |p|}.

1. Suppose conjunction is analysed in terms of intersection:

[Q ∧ Q′] = [Q] ∩ [Q′]

What set of possible answers does this analysis yield for (32)?

(32) Is the concert today, and will you attend it?

2. Now suppose conjunction is analysed in terms of point-wise intersection:

[Q ∧ Q′] = {a ∩ a′ | a ∈ Q and a′ ∈ Q′}
What set of possible answers does this analysis deliver for (32)?

3. Can this point-wise conjunction operation be characterized as a meet
operator with respect to some relation of entailment?
Hint: a meet operation must validate certain principles: in particular,
it must be commutative (a ∧ b = b ∧ a), associative (a ∧ (b ∧ c) =
(a ∧ b)∧ c), and idempotent (a ∧ a = a). Does the above definition of
conjunction validate these principles?

24 A detailed inquisitive account of declarative and interrogative embedded clauses and
the verbs that take such clauses as their complement is given in Theiler et al. (b). This
account, unlike the one presented here, assumes that embedded clauses always involve a so-
called embedding operator. This operator, however, is not specific to embedded questions. It
applies uniformly to both declarative and interrogative embedded clauses.Thus, it does not
make the overall theory less constrained.
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Exercise 9.3 Inquisitive semantics and partition semantics

Let I be an issue, w a world, and a a classical proposition. We say that a is a
true complete answer to I at w if (i) w ∈ a and (ii) for every information state s
with w ∈ s: s ∈ I ⇐⇒ s ⊆ a.

1. Show that if a true complete anwer to I at w exists, then it is unique.

2. Let us say that an issue I is a partition issue if it is induced by a partition,
i.e., if there is a partition ρ such that I = Iρ, where Iρ := {s ⊆ t | t ∈ ρ}. Show
that I is a partition issue iff a true complete answer to I exists at each
possible world.

3. Show that if an issue I has two overlapping alternatives, or its alternatives
do not cover the whole logical space, then I is not a partition issue.

Exercise 9.4 Approximate value questions

Consider the following question:

(33) How many stars are there in the Milky Way, give or take ten?

1. Describe the issue expressed by this question.

2. Using the characterization of partition issues given in the previous exer-
cise, show that this issue is not induced by a partition of the logical space.

Exercise 9.5 Inquisitive semantics versus indifference semantics

Determine the interpretation of a disjunction with three disjuncts, p ∨ q ∨ r,
in the semantics of Groenendijk (2009) and Mascarenhas (2009). How does
this differ from the proposition assigned to p ∨ q ∨ r in InqB? How does this
difference arise?
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Conclusion

Wewill endwith an overview of themain concepts that play a role in the
framework we presented, emphasizing its modular architecture. After
that, we will return to the high-level desiderata discussed in Chapter 
and consider to what extent they have been met.

10.1 Overview of main concepts

Figure . provides an overview of the main concepts that play a role
in InqB, the basic inquisitive semantics system presented in Chapter ,
and the dependencies between them. InqB assumes a particular logical
languageL, namely the language of standard first-order logic (the upper
leftmost item in the diagram). Given this language, we defined the
models relative to which the sentences in our language would be inter-
preted. Amodel was construed as a set of possible worldsW, associated
with a domain of discourse and an interpretation function determining
the denotation of the basic elements of our language (function symbols
and relation symbols) in each possible world.Thus, a model determines
a certain logical space, the set of worlds W, as well as a particular
connection between the worlds in this space and the basic elements of
the language under consideration.
We adopted the standard notion of information states as sets of

possible worlds, i.e., subsets of W. In terms of information states, we
defined a new notion of issues, and based on this notion of issues we
introduced a notion of propositions encompassing both informative
and inquisitive content. We defined a notion of entailment between
propositions, and characterized two kinds of semantic operators on
propositions: (i) algebraic operators, which for instance yield themeet or
the join of two propositionswith regard to entailment, and (ii) projection
operators, which trivialize either the informative or the inquisitive con-
tent of a given proposition. Finally, based on these semantic operators,

Inquisitive Semantics. First edition. Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen.
© Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen . First published  by Oxford
University Press.
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Language L Models Information states

Semantics for L Issues

Semantic operators Entailment Propositions

Figure . Dependency diagram of the main concepts in InqB.

we defined a semantics for the language L that we started out with,
coming full circle.
Having laid out this schematic overview of InqB, we would like

to emphasize that all the notions which play a crucial role in this
system, except for the logical language and the models with respect
to which the sentences in the language are interpreted, were already
characterized in Chapters –,without reference to any particular logical
or natural language.This makes these notions highly general and widely
applicable.
As we saw in Chapter , what becomes necessary when turning to a

particular language is a more specific characterization of the assumed
logical space. In Chapters –, we just assumed a generic set of possible
worlds W as our logical space, without any further specification. The
moment we fix a particular logical language, we have to establish a
connection between the worlds in our logical space and the basic
elements of our language. Thus, in Chapter , we supplemented the set
of possible worlds W with a domain of individuals D and a function
I determining the denotation of the basic elements of our language
(in this case, function symbols and relation symbols) with regard to each
worldw ∈ W. Having fixed this connection between ‘worlds and words’,
all the general notions introduced in Chapters – could be imported
straightforwardly.
In Chapter  we considered an extension of InqB with modal oper-

ators to describe the knowledge and issues of a given set of agents.
Accordingly, we equipped our logical space with a set of state maps ΣA,
determining the information states and inquisitive states of all the agents
at every world. Having thus equipped the possible worlds in our logical
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space with the structure needed to interpret our extended language,
all the general notions laid out in Chapters – could once again be
imported straightforwardly.
The fact that the framework is built up in this modular way makes it

very flexible.There aremanyways inwhich the basic notions introduced
heremay be further refined, extended, and applied (see Further Reading
for some references).

10.2 Mission accomplished?

Let us now return to the high-level desiderata discussed in Section .,
and assess to what extent the framework we presented addresses these
desiderata.
The first high-level desideratum was a formal notion of issues that

allows for a suitable representation of semantic content, conversational
contexts, and propositional attitudes. In Chapter  we introduced such
a notion of issues, and in terms of it we defined new notions of semantic
content (propositions), conversational contexts, and context update.
In Chapters , , and  we argued that the new notion of semantic
content is particularly suitable for the analysis of questions, overcoming
the main shortcomings of previous frameworks for question semantics
(alternative semantics, partition semantics, and indifference seman-
tics). In Chapter  we showed that the new notion of issues facilitates
a richer view on propositional attitudes as well, encompassing both
information-directed attitudes like know and issue-directed attitudes
like wonder.
The second high-level desideratum was a framework that allows for

an integrated treatment of declarative and interrogative sentences, with
a single notion of semantic content which is general enough to deal with
both sentence types at once, rather than a separate notion of content for
each sentence type. One argument we made to justify this desideratum
was that declarative and interrogative sentences are to a large extent built
up from the same lexical, morphological, and intonational elements.
A general characterization of the semantic contribution of each of these
elements should capture both their contribution to the informative
content and to the inquisitive content of the sentence that they are
part of. This requires a framework in which the semantic content of a
sentence—the proposition it expresses—encompasses both informative
and inquisitive content.
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The notion of propositions introduced in Chapter  satisfies this
requirement, and the merits of this feature of the framework were
illustrated most explicitly in Chapter  with an analysis of declarative
and interrogative sentences involving disjunction and various intona-
tion patterns. Both disjunction and the relevant intonational elements
were given a uniform treatment across various sentence types. Another
important result of the approach was discussed in Chapter : while
originally intended to broaden the domain of logical semantics from
declaratives to interrogatives, we have seen that it also leads to an
improved analysis of declaratives as such. We illustrated this point in
the domain of conditionals, whose truth-conditions are sensitive to the
inquisitive content of their antecedent.
Thus, both desiderata have been met and the ensuing benefits have

been concretely substantiated. From a narrow perspective, then, our
goals have been achieved. From a broader perspective, however, these
results just indicate that our general mission is worthwhile pursuing.
We do not see the basic framework presented here as a final product but
much rather as a point of departure.
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Further reading

Despite its relatively recent inception, there has already been a lot of work
on inquisitive semantics, much more than we have been able to cover in this
book. The basic framework presented here has been further extended, refined,
and applied in several ways, the logical properties of the framework have been
investigated, and some interesting connections with other logical frameworks
have emerged, though in all these areas there are still many open issues to be
addressed. Below we provide some pointers for further reading.

Extensions of InqB and IEL

• A type-theoretical extension of InqB, for full compositionality:
Ciardelli, Roelofsen, and Theiler (a)

• An extension of InqB with presuppositions:
Ciardelli, Groenendijk, and Roelofsen (, ); Roelofsen (a)

• An extension of InqB with propositional discourse referents:
Roelofsen and Farkas ()

• Integration of InqB with a commitment-based discourse model:
Farkas and Roelofsen ()

• An extension of IEL with dynamic operators that model the effects of
statements and questions that are publicly observable by all conversa-
tional participants: Ciardelli and Roelofsen ()

• An extension of IEL with dynamic operators that model the effects of
statements and questions that may only be partially observable by some
conversational participants: van Gessel ()

• An extension of IEL with graded beliefs next to hard knowledge:
Ciardelli and Roelofsen (); Sparkes ()

• An extension of InqB with a weak negation operator, whose treatment
requires the existence of propositions that are not downward closed:
Punčochář ()

Generalizations and refinements of InqB

• Generalizations of InqB based on non-classical logics of statements:
Punčochář (b,a, ); Ciardelli et al. (b)

• A refinement of InqB that is not only concerned with informative and
inquisitive content, but also ‘attentive content’, whose treatment again
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 further reading

requires propositions that are not downward closed:1
Ciardelli, Groenendijk, and Roelofsen ()

• A refinement of InqB that is not only concerned with informative and
inquisitive content, but also with ‘live possibilities’, those possibilities that
are to be taken seriously in inquiry:
Roelofsen () (see also Willer, , , for closely related work)

• A refinement of InqB that does not characterize a proposition just in
terms of the states that support it, but also in terms of the states that reject
it or ‘dismiss a supposition’ of it, referred to as InqS:
Groenendijk and Roelofsen ()

• An extension of InqS with operators corresponding to epistemic and
deontic modal auxiliaries (might, may, must):
Aher and Groenendijk ()

Logical investigations

• Logical investigation of InqB:
Ciardelli (); Ciardelli and Roelofsen (); Ciardelli (d);
Grilletti (); Grilletti and Ciardelli ()

• Logical investigation of IEL:
Ciardelli (, d); Ciardelli and Otto ()

• Logical investigation of extensions and generalizations of InqB:
Punčochář (, b,a, ); Ciardelli et al. (b)

• Logical investigation of inquisitive indifference semantics:
Mascarenhas (); Sano (, )

Applications in linguistics

• Root questions:
AnderBois (, ); Champollion et al. (); Roelofsen and Farkas
(); Roelofsen (a); Farkas and Roelofsen ()

• Embedded questions and question-embedding verbs:
Theiler (); Theiler et al. (); Herbstritt (); Roelofsen et al.
(); Roelofsen (); Roelofsen and Uegaki (); Cremers et al.
(a); Ciardelli and Roelofsen ()

• Disjunction:
AnderBois (, ); Winans (); Roelofsen (a,b); Ciardelli
and Roelofsen (a)

1 There is also work which argues that it is in fact impossible to capture all three types
of content—informative, inquisitive, and attentive—at once using a single semantic object,
and pursues a two-dimensional approach instead (Roelofsen, b).
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further reading 

• Conditionals:
Onea and Steinbach (); Starr (); Groenendijk and Roelofsen
(); Champollion et al. (); Ciardelli (b); Ciardelli et al.
(c); Willer ()

• Modal auxiliaries:
Aher (); Ciardelli et al. (); Aher and Groenendijk (); Willer
(, ); Roelofsen (b, )

• Scalar modifiers:
Coppock and Brochhagen (a,b); Blok (); Ciardelli et al. ();
Cremers et al. (b)

• Implicit questions in discourse: Onea ()
• Answer particles (yes/no): Roelofsen and Farkas ()
• Quantifier particles: Szabolcsi (b)
• Ellipsis: AnderBois (, a)
• Exhaustivity implicatures: Westera (, a,b, )
• Imperatives: Aloni and Ciardelli (); Ciardelli and Aloni ()

Applications in cognitive science

• Reasoning fallacies: Koralus and Mascarenhas (); Mascarenhas
()

• Implicit causality: Spenader ()

Applications in philosophical logic and epistemology

• General perspective on the role of questions in logic: Ciardelli (,
d)

• Fatalism: Bledin ()
• The Gettier puzzle: Uegaki ()
• Conversational inquiry: Hamami ()
• Belief revision: Ciardelli and Roelofsen (); Sparkes ()
• Contrastive knowledge: Cohen ()

Related frameworks

• Dependence logic: Väänänen ()
Discussion of connections with inquisitive semantics:
Yang (); Yang and Väänänen (); Ciardelli (a,d)

• Truth-maker semantics: Fine (); Yablo ()
Discussion of connections with inquisitive semantics: Ciardelli ()

• Possibility semantics for modal logic: Holliday (, )
Discussion of connections with inquisitive semantics: Ciardelli (d)
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 further reading

• Dynamic epistemic logic with questions:
Minică (); van Benthem and Minică ()
Discussion of connections with inquisitive semantics:
Ciardelli and Roelofsen (); Ciardelli (d); van Gessel ()

• Knowing value logic: Wang and Fan (, ); Fan et al. ()
Discussion of connections with inquisitive semantics: Ciardelli (d)

• Mental models theory: Johnson-Laird ()
Implementation using ideas from inquisitive semantics:
Mascarenhas (); Koralus and Mascarenhas ()

• Inferential erotetic logic: Wiśniewski ()
Discussion of connections with inquisitive semantics:
Wiśniewski and Leszczyńska-Jasion ()
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