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Preface

This collection of papers in commutative algebra stemmed out of the 2009 Fall South-
eastern American Mathematical Society Meeting which contained three special ses-
sions in the field:

� Special Session on Commutative Ring Theory, a Tribute to the Memory of James
Brewer, organized by Alan Loper and Lee Klingler;

� Special Session on Homological Aspects of Module Theory, organized by Andy
Kustin, Sean Sather-Wagstaff, and Janet Vassilev; and

� Special Session on Graded Resolutions, organized by Chris Francisco and Irena
Peeva.

Much of the commutative algebra community has split into two camps, for lack of a
better word: the Noetherian camp and the non-Noetherian camp. Most researchers
in commutative algebra identify with one camp or the other, though there are some
notable exceptions to this. We had originally intended this to be a Proceedings Volume
for the conference as the sessions had a nice combination of both Noetherian and non-
Noetherian talks. However, the project grew into two Volumes with invited papers that
are blends of survey material and new research. We hope that members from the two
camps will read each others’ papers and that this will lead to increased mathematical
interaction between the camps.

As the title suggests, this volume, Progress in Commutative Algebra II, contains sur-
veys on aspects of closure operations, finiteness conditions and factorization. Contri-
butions to this volume have come mainly from speakers in the first and second sessions
and from invited articles on closure operations, test ideals, Noetherian rings without
finite normaliztion and non-unique factorization. The collection documents some cur-
rent trends in two of the most active areas of commutative algebra.

Closure operations on ideals and modules are a bridge between Noetherian and
non-Noetherian commutative algebra. The Noetherian camp typically study structures
related to a particular closure operation such as the core or the test ideal or how par-
ticular closure operations yield nice proofs of hard theorems. The non-Noetherian
camp approach closure operations from the view of multiplicative ideal theory and
the relationship to Kronecker function rings. This volume contains a nice guide to
closure operations by Epstein, but also contains an article on test ideals by Schwede
and Tucker and one by Enescu which discusses the action of the Frobenius on finite
dimensional vector spaces both of which are related to tight closure.

Finiteness properties of rings and modules or the lack of them come up in all aspects
of commutative algebra. For instance, the division between the Noetherian and the
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non-Noetherian crowd comes down to the property that all ideals in a Noetherian ring
are finitely generated, by definition. However, in the study of non-Noetherian rings it
is much easier to find a ring having a finite number of prime ideals. We have included
papers by Boynton and Sather-Wagstaff and by Watkins that discuss the relationship
of rings with finite Krull dimension and their finite extensions. Finiteness properties in
commutative group rings are discussed in Glaz and Schwarz’s paper. And Olberding’s
selection presents us with constructions that produce rings whose integral closure in
their field of fractions is not finitely generated.

The final three papers in this volume investigate factorization in a broad sense. The
first paper by Celikbas and Eubanks-Turner discusses the partially ordered set of prime
ideals of the projective line over the integers. We have also included a paper on zero
divisor graphs by Coykendall, Sather-Wagstaff, Sheppardson and Spiroff. The final
paper, by Chapman and Krause, concerns non-unique factorization.

The first session was a Tribute to the Memory of James Brewer. As many of the au-
thors participated in this session, we dedicate this volume to Brewer’s memory. Enjoy!

March 2012 Sean Sather-Wagstaff
Chris Francisco

Lee Klingler
Janet C. Vassilev
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A Guide to Closure Operations
in Commutative Algebra

Neil Epstein

Abstract. This article is a survey of closure operations on ideals in commutative rings, with
an emphasis on structural properties and on using tools from one part of the field to analyze
structures in another part. The survey is broad enough to encompass the radical, tight clo-
sure, integral closure, basically full closure, saturation with respect to a fixed ideal, and the
v-operation, among others.

Keywords. Closure Operation, Tight Closure, Integral Closure, Star-operation.

2010 Mathematics Subject Classification. Primary: 13-02; Secondary: 13A15, 13A35,
13B22, 13A99.

1 Introduction

There have been quite a few books and survey articles on tight closure (e.g. [40, 49,
50, 71, 72]), on integral closure (e.g. [51, 73, 74]), and on star-operations on integral
domains (e.g. [23; 25, Chapters 32 and 34] but as far as this author knows, no such
article on closure operations in general. However, several authors (e.g. [9, 19, 75]) have
recently found it useful to consider closure operations as a subject in itself, so I write
this article as an attempt to provide an overall framework. This article is intended both
for the expert in one closure operation or another who wants to see how it relates to
the rest, and for the lay commutative algebraist who wants a first look at what closure
operations are. For the most part, this article will not go into the reasons why any given
closure operation is important. Instead, I will concentrate on the structural aspects of
closure operations, how closure operations arise, how to think about them, and how to
analyze them.

The reader may ask: “If the only closure operation I am interested in is c, why
should I care about other closure operations?” Among other reasons: the power of
analogical thinking is central to what mathematicians do. If the d-theorists have dis-
covered or used a property of their closure operation d, the c-theorist may use this to
investigate the analogous property for c, and may not have thought to do so without
knowledge of d-closure. Morover, what holds trivially for one closure operation can
be a deep theorem (or only hold in special cases) for another – and vice versa. A good
example is persistence (see Section 4.3).

The author was partially supported by a grant from the DFG (German Research Foundation).



2 N. Epstein

In most survey articles, one finds a relatively well-defined subject and a more-or-
less linear progression of ideas. The subject exists as such in the minds of those who
practice it before the article is written, and the function of the article is to introduce
new people to the already extant system of ideas. The current article serves a somewhat
different function, as the ideas in this paper are not linked sociologically so much
as axiomatically. Indeed, there are at least three socially distinct groups of people
studying these things, some of whom seem barely to be aware of each other’s existence.
In this article, one of my goals is to bridge that gap.

The structure of the article is as follows: In Section 2, I introduce the notion of
closures, eleven typical examples, and some non-examples. In Section 3, I exhibit
six simple constructions and show how all the closure operations from Section 2 arise
from these. The next section, Section 4, concerns properties that closures may have;
it comprises more than 1=4 of the paper! In it, we spend a good bit of time on star-
and semi-prime operations, after which we devote a subsection each to forcing al-
gebras, persistence, homological conjectures, tight closure-like properties, and (ho-
mogeneous) equational closures. The short Section 5 explores a tightly related set of
notions involving what happens when one looks at the collection of subideals that have
the same closure as a given ideal. In Section 6, we explore ring properties that arise
from certain ideals being closed. Finally in Section 7, we talk about various ways
to extend to closures on (sub)modules. Beyond the material in Sections 2 and 3, the
reader may read the remaining sections in almost any order.

Throughout this paper, R is a commutative ring with unity. At this point, one would
normally either say that R will be assumed Noetherian, or that R will not necessarily
be assumed to be Noetherian. However, one of the reasons for the gap mentioned
above is that people are often scared off by such statements. It is true that many of the
examples I present here seem to work best (and are most studied) in the Noetherian
context. On the other hand, I have also included some of the main examples and
constructions that are most interesting in the non-Noetherian case. As my own training
is among those who work mainly with Noetherian rings, it probably is inevitable that
I will sometimes unknowingly assume a ring is Noetherian. In any case, the article
should remain accessible and interesting to all readers.

2 What Is a Closure Operation?

2.1 The Basics

Definition 2.1.1. Let R be a ring. A closure operation cl on a set of ideals I of R is a
set map cl W I ! I (I 7! I cl/ satisfying the following conditions:

(i) (Extension) I � I cl for all I 2 I.

(ii) (Idempotence) I cl D .I cl/cl for all I 2 I.

(iii) (Order-preservation) If J � I are ideals of I, then J cl � I cl.
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If I is the set of all ideals of R, then we say that cl is a closure operation on R.
We say that an ideal I 2 I is cl-closed if I D I cl.

As far as I know, this concept is due to E. H. Moore [60], who defined it (over a
century ago!) more generally for subsets of a set, rather than ideals of a ring. Moore’s
context was mathematical analysis. His has been the accepted definition of “closure
operation” in lattice theory and universal algebra ever since (e.g. [5, V.1] or [12, 7.1]).
Oddly, this general definition of closure operation does not seem to have gained cur-
rency in commutative algebra until the late 1980s [62, 64], although more special
structures already had standard terminologies associated to them (see 4.1).

Example 2.1.2 (Examples of closures). The reader is invited to find his/her favorite
closure(s) on the following list. Alternately, the list may be skipped and referred back
to when an unfamiliar closure is encountered in the text.

(i) The identity closure, sending each ideal to itself, is a closure operation on R.
(In multiplicative ideal theory, this is usually called the d-operation.)

(ii) The indiscrete closure, sending each ideal to the unit ideal R, is also a closure
operation on R.

(iii) The radical is the first nontrivial example of a closure operation on an arbitrary
ring R. It may be defined in one of two equivalent ways. Either

p
I WD ¹f 2 R j 9 a positive integer n such that f n 2 I º

or p
I WD

\

¹p 2 SpecR j I � pº:
The importance of the radical is basic in the field of algebraic geometry, due to
Hilbert’s Nullstellensatz (cf. any introductory textbook on algebraic geometry).

(iv) Let a be a fixed ideal ofR. Then a-saturation is a closure operation onR. Using
the usual notation of .� W a1/, we may define it as follows:

.I W a1/ WD
[

n2N

.I W an/ D ¹r 2 R j 9n 2 N such that anr � I º

This operation is important in the study of local cohomology. Indeed,

H 0
a .R=I / D

.I W a1/
I

:

(v) The integral closure is a closure operation as well. One of the many equivalent
definitions is as follows: For an element r 2 R and an ideal I of R,1 r 2 I� if

1 Some may find my choice of notation surprising. Popular notations for integral closure include Ia
and I . I avoid the first of these because it looks like a variable subscript, as the letter a does not
seem to stand for anything. The problem with the second notation is that it is overly ambiguous.
Such notation can mean integral closure of rings, integral closure of ideals, a quotient module, and
so forth. So in my articles, I choose to use the I� notation to make it more consistent with the
notation of other closure operations (such as tight, Frobenius, and plus closures).
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there exist n 2 N and ai 2 I i for 1 � i � n such that

rn C
n
X

iD1
air

n�i D 0:

Integral closure is a big topic. See for instance the books [51, 74].

(vi) Let R be an integral domain. Then plus closure is a closure operation. It is
traditionally linked with tight closure (see below), and defined as follows: For
an ideal I and an element x 2 R, we say that x 2 IC if there is some injective
map R ! S of integral domains, which makes S a finite R-module, such that
x 2 IS . (See Section 3.2 (vi) for general R.)

(vii) Let R be a ring of prime characteristic p > 0. Then Frobenius closure is a
closure operation on R. To define this, we need the concept of bracket powers.
For an ideal I , I Œp

n� is defined to be the ideal generated by all the pnth powers
of elements of I . For an ideal I and an element x 2 R, we say that x 2 IF if
there is some n 2 N such that xp

n 2 I Œpn�.

(viii) Let R be a ring of prime characteristic p > 0. Then tight closure is a closure
operation on R. For an ideal I and an element x 2 R, we say that x 2 I�
if there is some power e0 2 N such that the ideal

T

e�e0
.I Œp

e� W xpe

/ is not
contained in any minimal prime of R.

(ix) Let R be a complete local domain. For an R-algebra S , we say that S is solid
if HomR.S;R/ ¤ 0. We define solid closure on R by saying that x 2 I? if
x 2 IS for some solid R-algebra S . (See 3.2(ix) for general R.)

(x) Let � be a multiplicatively closed set of ideals. The �-closure [64] of an ideal
I is I� WD S

K2�.IK W K/. Ratliff [64] shows close connections between
�-closure and integral closure for appropriate choices of �.

(xi) If .R;m/ is local, and I is m-primary, then the basically full closure [31] of I
is I bf WD .Im W m/. (Note: This is a closure operation even for non-m-primary
ideals I . However, only for m-primary I does it produce the smallest so-called
“basically full” ideal that contains I .)

Additional examples of closures include the v-, t-, and w-operations (4.1), various
tight closure imitators (4.5), continuous and axes closures [8], natural closure [20], and
weak subintegral closure [77]. (See the references for more details on these last four.)

Some properties follow from the axiomatic definition of a closure operation:

Proposition 2.1.3. Let R be a ring and cl a closure operation. Let I be an ideal and
¹I˛º˛2A a set of ideals.

(i) If every I˛ is cl-closed, so is
T

˛ I˛ .

(ii)
T

˛ I˛
cl is cl-closed.
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(iii) I cl is the intersection of all cl-closed ideals that contain I .

(iv)
�

P

˛ I˛
cl
�cl D �P˛ I˛

�cl
.

Proof. Let I and ¹I˛º be as above.
(i) For any ˇ 2 A, we have

T

˛ I˛ � Iˇ , so since cl is order-preserving, we have
.
T

˛ I˛/
cl � Iˇ cl D Iˇ . Since this holds for any ˇ, we have .

T

˛ I˛/
cl � Tˇ Iˇ D

T

˛ I˛ .
(ii) This follows directly from part (i).
(iii) Let J be an ideal such that I � J D J cl. Then by order-preservation, I cl �

J cl D J , so I cl is contained in the given intersection. But since I cl D .I cl/cl is one of
the ideals being intersected, the conclusion follows.

(iv) ‘�’: By the Extension property, I˛cl � I˛ , so
P

˛ I˛
cl � P

˛ I˛ . Then the
conclusion follows from order-preservation.

‘�’: For any ˇ 2 A, Iˇ �
P

˛ I˛ � .
P

˛ I˛/
cl, so by order-preservation and

idempotence, Iˇ
cl � ..P˛ I˛/

cl/cl D .
P

˛ I˛/
cl. Since this holds for all ˇ 2 A, we

have
P

˛ I˛
cl � .P˛ I˛/

cl.

We finish the subsection on “basics” by giving two alternate characterizations of
closure operations on R:

Remark 2.1.4. Here is a “low-tech” way of looking at closure operations, due essen-
tially to Moore [60]. Namely, giving a closure operation is equivalent to giving a
collection C of ideals such that the intersection of any subcollection is also in C .

For suppose cl is a closure operation on R. Let C be the class of cl-closed ideals.
That is, I 2 C iff I D I cl. By Proposition 2.1.3 (i), the intersection of any subcollec-
tion of ideals in C is also in C .

Conversely, suppose C is a collection of ideals for which the intersection of any
subcollection is in C . For an ideal I , let I cl WD T¹J j I � J 2 Cº. All three
of the defining properties of closure operations follow easily. Hence, cl is a closure
operation.

The applicability of this observation is obvious: Given any collection of ideals in a
ring, one may obtain a closure operation from it by extending it to contain all intersec-
tions of the ideals in the collection, and letting these be the closed ideals. The resulting
closure operation may then be used to analyze the property that defined the original
class of ideals.

Remark 2.1.5. On the other hand, here is a “high-tech” way of looking at closure
operations. Let R be a ring, and C be the category associated to the partially ordered
set of ideals of R. Then a closure operation on R is the same thing as a monad in
the category C (see [58, VI.1] for the definition of monad in a category). It is easy to
see that any monad in a poset is idempotent, and the theory of idempotent monads is
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central in the study of so-called “localization functors” in algebraic topology (thanks
to G. Biedermann and G. Raptis, who mention [1, Chapter 2] as a good source, for
pointing me in this direction).

2.2 Not-quite-closure Operations

It should be noted that the three given axioms of closure operations are independent
of each other; many operations on ideals satisfy two of the axioms without satisfying
the third. For example, the operation on ideals that sends every ideal to the 0 ideal
is idempotent (condition (ii)) and is order-preserving (condition (iii)), but of course is
not extensive unless R is the zero ring.

For an operation that is extensive (i) and order-preserving (iii), but is not idempotent,
let f be a fixed element (or ideal) of R, and consider the operation I 7! .I W f /. This
is almost never idempotent. For example one always has ..f 2 W f / W f / D .f 2 W
f 2/ D R of course, but if f is any nonzero element of the Jacobson radical of R, then
.f 2 W f / ¤ R.

Another non-idempotent operation that is extensive and order-preserving is the so-
called “a-tight closure", for a fixed ideal a [28], denoted .�/�a. By definition, x 2 I�a

if there is some e0 2 N such that the ideal
T

e�e0
.I Œp

e� W ap
e

xp
e

/ is not contained
in any minimal prime. In their Remark 1.4, Hara and Yoshida note that if a D .f /

is a principal ideal, then I�a D .I� W a/, an operation which we have already noted
fails to be idempotent. (For a similarly-defined operation which actually is a closure
operation, see [79].)

Consider the operation which sends each ideal I to its unmixed part I unm [50].
This is defined by looking at the primary ideals (commonly called components) in an
irredundant minimal primary decomposition of I , and then intersecting those com-
ponents that have maximum dimension. Although the decomposition is not uniquely
determined, the components of maximum dimension are, so this is a well-defined op-
eration. Moreover, this operation is extensive (i) and idempotent (ii) (since all the
components of I unm already have the same dimension), but is not order-preserving
in general. For an example, let R D kŒx; y� be a polynomial ring in two variables
over a field k, and let J WD .x2; xy/ and I WD .x2; xy; y2/. Then J � I , but
J unm D .x/ ª I unm D I . Similar comments apply in the 3-variable case when
J D .xy; xz/ and I D .y; z/.

For another extensive, idempotent operation which is not order-preserving, consider
the “Ratliff–Rush closure” (or “Ratliff–Rush operation”), given in [65], defined on so-
called regular ideals (where an ideal I of R is regular if it contains an R-regular
element), defined by QI WD S1

nD1.InC1 W In/. In [30, 1.11] (resp. in [29, 1.1]), the
domain R WD kŒŒx3; x4�� (resp. R WD kŒx; y�) is given where k is any field and x; y
indeterminates over k, along with nonzero ideals J � I of R such that eJ ªeI .

Many of the topics and questions explored in this article could be applied to these
not-quite-closure operations as well, but additional care is needed.
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3 Constructing Closure Operations

There are, however, some actions one can take which always produce closure opera-
tions.

3.1 Standard Constructions

Construction 3.1.1. Let U be an R-module. Then the operation I 7! I cl WD ¹f 2
R j f U � IU º D .IU WR U / gives a closure operation on R. Extension and order-
preservation are clear. As for idempotence, suppose f 2 .I cl/cl. Then f U � I clU .
But for any g 2 I cl, gU � IU , whence I clU � IU , so f U � IU as required.

As we shall see, this is a very productive way to obtain closure operations, especially
when U is an R-algebra. For example, letting a be an ideal of R and U WD R=a, we
see that the assignment I 7! I C a gives a closure operation. On the other hand,
letting U WD a, the resulting closure operation becomes I 7! .Ia W a/, which is the
basis for the �-closures of [64] and for the basically full closure of [31].

Construction 3.1.2. We give here a variant on Construction 3.1.1.
Let � W R ! S be a ring homomorphism and let d be a closure operation on S .

For ideals I of R, define I c WD ��1..�.I /S/d/. (One might loosely write I c WD
.IS/d \R.) Then c is a closure operation on R.

Extension and order-preservation are clear. As for idempotence, if f 2 .I c/c, then
�.f / 2 ..I c/S/d � ..IS/d/d D .IS/d, so that f 2 I c.

Construction 3.1.3. Let ¹c�º�2ƒ be an arbitrary collection of closure operations on
ideals of R. Then I c WDT�2ƒ I c� gives a closure operation as well.2

Again, extension and order-preservation are clear. As for idempotence, suppose
f 2 .I c/c. Then for every � 2 ƒ, we have f 2 .I c/c� . But since I c � I c� and c�
preserves order, we have

f 2 .I c/c� � .I c�/c� D I c� ;

where the last property follows from the idempotence of c�. Since � 2 ƒ was chosen
arbitrarily, f 2 I c as required.

For the next construction, we need to mention the natural partial order on closure
operations on a ring R. Namely, if c and d are closure operations, we write c � d if
for every ideal I , I c � I d.

Construction 3.1.4. Let ¹c�º�2ƒ be a directed set of closure operations. That is, for
any �1; �2 2 ƒ, there exists some � 2 ƒ such that c�i

� c� for i D 1; 2. Moreover,
assume that R is Noetherian. Then I c WDS�2ƒ I c� gives a closure operation.

2 Similar considerations in the context of star-operations on integral domains are used in [2] to give
lattice structures on certain classes of closure operations.
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First note that I c is indeed an ideal. It is the sum
P

�2ƒ I c� . After this, extension
and order-preservation are clear. Next, we note that for any ideal I , there is some
� 2 ƒ such that I c D I c� . To see this, we use the fact that I c is finitely generated
along with the directedness of the set ¹c� j � 2 ƒº. Namely, I c D .f1; : : : ; fn/; each
fi 2 I c�i ; then let c� be such that c�i

� c� for i D 1; : : : ; n.
To show idempotence, take any ideal I . By what we just showed, there exist

�1; �2 2 ƒ such that .I c/c D .I c/c�1 and I c D I c�2 . Choose � 2 ƒ such that
c�i
� c� for i D 1; 2. Then

.I c/c D .I c�2 /c�1 � .I c�/c� D I c� � I c:

Construction 3.1.5. Let d be an operation on (ideals of) R that satisfies properties (i)
and (iii) of Definition 2.1.1, but is not idempotent. Let S be the set of all closure
operations on R defined by the property that c 2 S if and only if I d � I c for all ideals
I of R. Then by Construction 3.1.3, the assignment I 7! I d1 WD T

c2S I
c is itself a

closure operation, called the idempotent hull of d [15, Section 4.6]. It is obviously the
smallest closure operation lying above d.

If R is Noetherian, it is equivalent to do the following: Let d1 WD d, and for each
integer n � 2, we inductively define dn by setting I dn WD .I dn�1

/d. Let I d0 WD
S

n I
dn

for all I . One may routinely check that d0 is an extensive, order-preserving
operation on ideals of R, and idempotence follows from the ascending chain condition
on the ideals ¹I dnºn2N . Clearly, I d0 D I d1

.

Construction 3.1.6. This construction is only relevant when R is not necessarily Noe-
therian.

Let c be a closure operation. Then we define cf by setting

I cf WD
[

¹J c j J a finitely generated ideal such that J � I º:
This is a closure operation: Extension follows from looking at the principal ideals
.x/ for all x 2 I . Order-preservation is obvious. As for idempotence, suppose z 2
.I cf /cf . Then there is some finitely generated ideal J � I cf such that z 2 J c. Let
¹z1; : : : ; znº be a finite generating set for J . Since each zi 2 I cf , there exist finitely
generated ideals Ki � I such that zi 2 Kc

i . Now let K WDPn
iD1Ki . Then J � Kc,

so that
z 2 J c � .Kc/c D Kc;

and since K is a finitely generated sub-ideal of I , it follows that z 2 I cf .

If c D cf , we say that c is of finite type. Clearly cf is of finite type for any clo-
sure operation c, and it is the largest finite-type closure operation d such that d � c.
Connected with this, we have the following:

Proposition 3.1.7. Let c be a closure operation of finite type onR. Then every c-closed
ideal is contained in a c-closed ideal that is maximal among c-closed ideals.
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The proof is a standard Zorn’s lemma argument. The point is that the union of a
chain of c-closed ideals is c-closed because c is of finite type.

3.2 Common Closures as Iterations of Standard Constructions

Here we will show that essentially all the closures we gave in Example 2.1.2 result as
iterations of the constructions just given:

(i) The identity needs no particular construction.

(ii) The indiscrete closure is an example of Construction 3.1.1, by letting U D 0.

(iii) As for the radical, we use the characterization of it being the intersection of the
prime ideals that contain the ideal. Consider the maps �p W R ! Rp=pRp DW
�.p/ for prime ideals p. Note that

��1p .I�.p// D
´

p; if I � p;

R; otherwise:

Let Ip WD ��1p .I�.p//. This is an instance of Construction 3.1.1 with U D
�.p/, and the intersection of all such closures (Construction 3.1.3) is the radical.
That is,

p
I DTp2SpecR I

p.

(iv) The a-saturation may be obtained in one of two ways. Assuming one already
has the extensive, order-preserving operation .� W a/, then applying Construc-
tion 3.1.5 yields the a-saturation.

Alternately, let ¹a� j � 2 ƒº be a generating set for a, with each a� ¤ 0. Let
`� W R ! Ra�

be the localization map. Then each .I W a1
�
/ D `�1

�
.IRa�

/ DW
I� is an instance of Construction 3.1.1 (or 3.1.2, if you like), and we may apply
Construction 3.1.3 to get .I W a1/ DT�2ƒ.I W a1� / D

T

�2ƒ I�.

(v) For integral closure, let p be a minimal prime of R, let V be a valuation ring (or
if R=p is Noetherian, it’s enough to let V be a rank 1 discrete valuation ring)
between R=p and its fraction field, let jV W R ! V be the natural map, and
let IV WD j�1V .IV / (which gives a closure operation via Construction 3.1.1
with U D V ). Then it is a theorem (e.g. [51, Theorem 6.8.3]) that I� D
T

all such V I
V , which is an application of Construction 3.1.3.

(vi) For plus closure, when R is an integral domain, let Q be its fraction field, Q an
algebraic closure of Q, and let RC be the integral closure of R in Q. That is,
RC consists of all elements of Q that satisfy a monic polynomial over R. Then
we let IC WD IRC \R, by way of Construction 3.1.1 with U D RC.

In the general case, where R is not necessarily a domain, for each minimal
prime p of R we let �p W R ! R=p be the natural surjection. Then IC WD
T

all such p �
�1
p ..IR=p/C/, via Construction 3.1.2.
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(vii) For Frobenius closure (when R has positive prime characteristic p), we intro-
duce the left R-modules eR for all e 2 N. eR has the same additive group
structure as R (with elements being denoted er for each r 2 R), and R-module
structure given as follows: For a 2 R and er 2 eR, a � er D e.ap

e

r/. Let
fe W R ! eR be the R-module map given by a 7! a � e1 D e.ap

e

/. Let Fe be
the closure operation given by IFe WD f �1e .I �eR/, via Construction 3.1.1. Note
that this is a totally ordered set (and hence a directed set) of closure operations,
in that Fe � FeC1 for all e, due to the R-module maps eR ! eC1R given by
er 7! eC1.rp/. Thus, we may use Construction 3.1.4 to get IF WDSe2N I

Fe .

(viii) For tight closure (when R has positive prime characteristic p), we cannot use
these constructions directly. However, recall the theorem [37, Theorem 8.6]
that under quite mild assumptions on R (namely the same ones that guarantee
persistence of tight closure, see 4.3), I� D I?, and use the constructions for
solid closure below.

(ix) For solid closure (when R is a complete local domain), letting iS W R ! S

for solid R-algebras S and IS WD i�1S .IS/ by way of Construction 3.1.1 with
U D S , we note that this is a directed set of closure operations, since [37,
Proposition 2.1a] if S and T are solid R-algebras, so is S ˝R T . Thus, we have
I? DSall such iS I

S via Construction 3.1.4.

For general R: Let m be a maximal ideal of R, bRm the completion of Rm

at its maximal ideal, p a minimal prime of bRm, and um;p W R ! bRm=p

the natural map. Then we use Constructions 3.1.3 and 3.1.2 to get I? WD
T

all such pairs m;p u
�1
m;p..I

bRm=p/?/.

(x) For �-closure, first note that for any ideal K 2 �, IK WD .IK W K/ gives a
closure operation via Construction 3.1.1 with U D K. Next, note that the clo-
sure operations ¹.�/K j K 2 �º form a directed set, since for any H;K 2 �,
IH C IK � IKH . Thus, Construction 3.1.4 applies to give I� WDSK2� IK .

(xi) For basically full closure, we merely apply Construction 3.1.1 with U D m.

4 Properties of Closures

4.1 Star-, Semi-prime, and Prime Operations

Definition 4.1.1. Let cl be a closure operation for a ring R. We say that cl is

(i) semi-prime [63] if for all ideals I; J ofR, we have I �J cl � .IJ /cl. (Equivalently,
�

I clJ cl
�cl D .IJ /cl for all I; J .)

(ii) a star-operation [25, Chapter 32 and see below] if for every ideal J and every
non-zerodivisor x of R, .xJ /cl D x � .J cl/.

(iii) prime [55, 56, 64] if it is a semi-prime star-operation.
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Sociological Comment. In the literature of so-called “multiplicative ideal theory”
(which is, roughly, that branch of commutative algebra that uses [25] as its basic text-
book), the definition of star-operation is somewhat different from the above. Namely,
one assumes first thatR is an integral domain, one defines star-operations on fractional
ideals of R. However, when R is a domain, it is equivalent to do as I have done above.
Moreover, the terminology of star-operations is different from the terminology of this
article. For instance, if c is a star-operation on a domain R, then I c is not called the
c-closure, but rather the c-envelope (or sometimes c-image) of I , and if I D I c, then
I is said to be a c-ideal. For the sake of self-containedness, I have elected rather to use
the terminology I was raised on.

The field of closure operations on Noetherian rings has remained nearly disjoint
from the field of star- (and “semistar-”) operations on integral domains. I think this
is largely because the two groups of people have historically been interested in very
different problems and baseline assumptions. Multiplicative ideal theorists do not like
to assume their rings are Noetherian, for example. But I feel it would save a good deal
of energy if the two fields would come together to some extent. After all, there are
very reasonable assumptions under which tight, integral, plus, and Frobenius closures
are prime- (and hence star-) operations (see below). This provides the star-operation
theorists with a fresh infusion of star-operations to study, and it provides those who
study said closures with a fresh arsenal of tools with which to study them.

I take the point of view natural to one of my training, in which one generalizes from
integral domains to general commutative rings.

First note the following:

Lemma 4.1.2. Let cl be a closure operation on a ring R.

(i) cl is a semi-prime operation if and only if for all x 2 R and ideals J � R, we
have x � J cl � .xJ /cl.

(ii) If R is an integral domain, then cl is a star-operation if and only if it is prime.

Proof. If cl is a semi-prime operation, then for any x 2 R and ideal J � R, we have

x � J cl D .x/ � J cl � ..x/J /cl D .xJ /cl:

Conversely, suppose xJ cl � .xJ /cl for all x and J . Let I be an ideal of R, and let
¹a�º�2ƒ be a generating set for I . Then

I � J cl D
X

�2ƒ
a� � J cl �

X

�

.a�J /
cl �

�

X

�

a�J
�cl D .IJ /cl;

so that cl is semi-prime.
Now suppose R is an integral domain. By definition any prime operation must

be a star-operation. So let cl be a star-operation on R. To see that it is semi-prime,
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we use part (i). For any x 2 R, either x D 0 or x is a non-zerodivisor. Clearly
0 � J cl D 0 � 0cl D .0J /cl. And if x is a non-zerodivisor, then x � J cl D .xJ /cl by
definition of star-operation.

One reason why the star-operation property is useful is as follows: any star-operation
admits a unique extension to the set of fractional ideals of R (where a fractional ideal
is defined to be a submodule M of Q, the total quotient ring of R, such that for
some non-zerodivisor f of R, fM � R). Namely, if cl is a star-operation and M
is a fractional ideal, an element x 2 Q is in M cl if f x 2 .fM/cl, where f is a
non-zerodivisor of R such that fM � R. After this observation, another important
property of star-operations is that if two fractional ideals M;N are isomorphic, their
closures are isomorphic as well.

Star-operations are important in the study of so-called Kronecker function rings (for
a historical and topical overview of this connection, see [23]). However, the star-
operation property is somewhat limiting. For instance, I leave it as an exercise for the
reader to show that if R is a local Noetherian ring, then the radical operation on R is a
star-operation if and only if depthR D 0. The only star-operation on a rank 1 discrete
valuation ring is the identity. On the other hand, it is well known that integral closure
is a star-operation on R if and only if R is normal. This is true of tight closure as well:

Proposition 4.1.3. Consider the following property for a closure operation cl:

For any non-zerodivisor x 2 R and any ideal I , I cl D ..xI /cl W x/: (#)

(i) A closure operation cl is a star-operation if and only if it satisfies .#/ and .x/cl D
.x/ for all non-zerodivisors x 2 R.

(ii) Closure operations that satisfy (#) include plus-closure (when R is a domain),
integral closure, tight closure (in characteristic p > 0), and Frobenius closure.

Proof. (i) Suppose cl is a star-operation, x is a non-zerodivisor, and I an ideal. Then
.x/cl D ..x/R/cl D x � Rcl D .x/, and ..xI /cl W x/ D .x.I cl/ W x/ (since cl is a
star-operation) D I cl (since x is a non-zerodivisor).

Conversely, suppose cl satisfies (#) and that all principal ideals generated by non-
zerodivisors are cl-closed. For a non-zerodivisor x and ideal I , we have x � I cl D
x � ..xI /cl W x/ � .xI /cl, so we need only show that .xI /cl � x � I cl. So suppose
g 2 .xI /cl. Since xI � .x/, it follows that g 2 .x/cl D .x/, so g D xf for some
f 2 R. Thus, xf 2 .xI /cl, so f 2 ..xI /cl W x/ D I cl, whence g D xf 2 x � I cl as
required.

(ii) (Frobenius closure): Let g 2 ..xI /F W x/. Then xg 2 .xI /F , so there is some
q D pn such that

xqgq D .xg/q 2 .xI /Œq� D xqI Œq�:
Since xq is a non-zerodivisor, gq 2 I Œq�, whence g 2 IF .

(Tight closure): The proof is similar to the Frobenius closure case.
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(Plus closure): If xg 2 .xI /C, then there is some module-finite domain extension
R � S such that xg 2 xIS . But since x is a non-zero element of the domain S (hence
a non-zerodivisor on S ), it follows that g 2 IS , whence g 2 IC.

(Integral closure): Suppose xg 2 .xI /�. Then there is some n 2 N and elements
ai 2 .xI /i (1 � i � n) such that

.xg/n C
n
X

iD1
ai .xg/

n�i D 0:

But each ai 2 .xI /i D xiI i , so for some bi 2 I i (for each i ), we have ai D xibi .
Then the displayed equation yields:

xn
�

gn C
n
X

iD1
big

n�i� D 0;

and since xn is a non-zerodivisor, it follows that g 2 I�.

Semi-prime operations, however, are ubiquitous. (In fact, some authors [54] even
include the property in their basic definition of what a closure operation is!) One can,
of course, cook up a non-semi-prime closure operation, even on a rank 1 discrete valu-
ation ring [75, Example 2.3]. However, essentially all the examples and constructions
explored so far yield semi-prime operations, in the following sense (noting that all of
the following statements have easy proofs):

� Any closure arising from Construction 3.1.1 is semi-prime.

� In Construction 3.1.2, if d is a semi-prime operation on S , then c is a semi-prime
operation on R.

� In Construction 3.1.3, if every c� is semi-prime, then so is c.

� In Construction 3.1.4, if every c� is semi-prime, then so is c.

� In Construction 3.1.5, if I � J d � .IJ /d for all ideals I; J of R, then d1 is
semi-prime.

� In Construction 3.1.6, if c is semi-prime, then so is cf .

� Hence by 3.2, all of the closures from Example 2.1.2 are semi-prime.3

Here are some nice properties of semi-prime closure operations:

Proposition 4.1.4. Let cl be a semi-prime closure operation on R. Let I , J be ideals
of R, and W a multiplicatively closed subset of R.

(i) .I W J /cl � .I cl W J /. Hence if I is cl-closed, then so is .I W J /.
(ii) .I cl W J / is cl-closed.

3 One need not go through solid closure to show that tight closure must always be semi-prime.
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(iii) If R is Noetherian and I is cl-closed, then .IW �1R/ \R is cl-closed.

(iv) If R is Noetherian and I is cl-closed, then all the minimal primary components
of I are cl-closed. Hence, if I D I cl has no embedded components, it has a
primary decomposition by cl-closed ideals.

(v) The maximal elements of the set ¹I j I cl D I ¤ Rº are prime ideals.

Proof. (i) Let f 2 .I W J /cl. Then Jf � J.I W J /cl � .J � .I W J //cl � I cl:

(ii) follows directly from part (i).
(iii) Let J WD .IW �1R/ \ R. Then J D ¹f 2 R j 9w 2 W such that wf 2 I º.

But J is finitely generated (since R is Noetherian); say J D .f1; : : : ; fn/. Then for
each 1 � i � n, there exists wi 2 W such that wifi 2 I . Let w WD Qn

iD1wi . Then
wJ � I , so J � .I W w/. But it is obvious that .I W w/ � J , so J D .I W w/. Then
the conclusion follows from part (i).

(iv) The minimal primary components of I look like IRP \ R, for each minimal
prime P over I . Then the conclusion follows from part (iii).

(v) Let I be such a maximal element. Let x; y 2 R such that xy 2 I and y … I .
Then .I W x/ is a cl-closed ideal (by part (i)) that properly contains I (since y 2
.I W x/ n I ), so since I is maximal among proper cl-closed ideals, it follows that
.I W x/ D R, which means that x 2 I .

Finally, here is a construction on semi-prime operations:

Construction 4.1.5. Let c be a semi-prime closure operation onR. Let cf -MaxR (see
Construction 3.1.6 for the definition of cf ) denote the set of cf -closed ideals which
are maximal among the set of all cf -closed ideals. By Proposition 4.1.4 (v), cf -MaxR
consists of prime ideals, and by Proposition 3.1.7, every cf -closed ideal is contained
in a member of cf -MaxR. Then we define cw as follows:

I cw WD ¹x 2 R j 8p 2 cf - MaxR; 9d 2 R n p such that dx 2 I º:

In other words, I cw consists of all the elements of R that land in the extension of I to
all localizations R ! Rp for p 2 cf -MaxR. As this arises from Constructions 3.1.1
and 3.1.3, cw is a semi-prime closure operation.

Moreover, cw � cf . To see this, let x 2 I cw . Then for all p 2 cf -MaxR, there
exists dp 2 R n p with dpx 2 I . Let J be the ideal generated by the set ¹dp j p 2 cf -
MaxRº. Then Jx � I and J cf D R, so since cf is semi-prime, we have

x D 1 � x 2 R.x/ D J cf .x/ � .J x/cf � I cf :

If R is a domain, and c is a star-operation (i.e. prime), then this construction is
essentially due to [3], who show that in this context cw distributes over finite intersec-
tions, is of finite type, and is the largest star-operation d of finite type that distributes
over finite intersection such that d � c.
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The v-operation

Arguably the most important star-operation (at least in the theory of star-operations per
se) is the so-called v-operation. Classically it was only defined when R is a domain
[25, Chapters 16, 32, 34], but it works in general. Most star-operations in the literature
(among those that are identified as star-operations) are based in one way or another on
the v-operation:

Definition 4.1.6. LetR be a ring andQ its total quotient ring. For an ideal I , the set Iv

is defined to be the intersection of all cyclic R-submodules M of Q such that I �M .

Proposition 4.1.7. (i) v is a star-operation.

(ii) For any star-operation cl on R, I cl � Iv for all ideals I of R. (That is, v is the
largest star-operation on R.)

(iii) There exists a ring R for which v is not semi-prime (and hence not prime).

Proof. It is easy to see that v is a closure operation. For the star-operation property, let
x be a non-zerodivisor and I an ideal of R. Let a 2 Iv. Let M be a cyclic submodule
of Q that contains xI . Then M D R � r

s
for some r; s 2 R with s a non-zerodivisor.

Moreover, xI �M implies that I � R � r
sx

. Since a 2 Iv, we have a 2 R � r
sx

as well,
so that xa 2 R � r

s
DM . Thus, xa 2 .xI /v as required.

For the opposite inclusion, we first note that principal ideals are v-closed because
they are cyclic R-submodules of Q. Now let a 2 .xI /v. Since xI � .x/, we have
a 2 .xI /v � .x/v D .x/, so a D xb for some b 2 R. Let M D R � r

s
be a cyclic

submodule of Q that contains I . Then xI � xM D R � xr
s

, so since a 2 .xI /v, it
follows that xb D a 2 xM D R � xr

s
D x � R � r

s
. Since x is a non-zerodivisor on Q,

we can cancel it to get b 2 R � r
s
D M , whence b 2 Iv. Thus, a D xb 2 x � Iv, as

required.
Now let cl be an arbitrary star-operation on R, and I an ideal. Let M D R � r

s
be

a cyclic submodule of R that contains I (so that r; s 2 R and s is not a zerodivisor).
Then sI � rR D .r/, so that

s � I cl D .sI /cl � .r/cl D .r/:
That is, I cl � R � r

s
DM . Thus, I cl � Iv.

For the counterexample, let

R WD kŒX; Y �=.X2; XY; Y 2/ D kŒx; y�;
where k is a field and X; Y are indeterminates over k (with the images in R denoted
x; y respectively). Let m WD .x; y/ be the unique maximal ideal of R. Since R is
an Artinian local ring, it is equal to its own total ring of quotients, and so the cyclic
R-submodules of said ring of quotients are just the principal ideals of R. Since m is
not contained in any proper principal ideal of R, we have mv D R. Thus, m �mv D
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m � R D m. On the other hand, .mm/v D .m2/v D 0v D 0, which shows that
m �mv ª .mm/v, whence v is not semi-prime.

Remark 4.1.8. When R is an integral domain, parts (i) and (ii) of the above Propo-
sition are well known (and since by Lemma 4.1.2, any star-operation on a domain is
prime, the analogue of (iii) is false). Two other well-known properties of the v-oper-
ation in the domain case are as follows:

� HomR.HomR.I; R/;R/ Š Iv as R-modules. For this reason, the v-operation is
sometimes also called the reflexive hull operation on ideals.

� Iv D .I�1/�1. (Recall that for a fractional ideal J of R, J�1 WD ¹x 2 Q j
xJ � Rº, where Q is the quotient field of R.) For this reason, the v-operation is
sometimes also called the divisorial closure.

These ideas have obvious connections to Picard groups and divisor class groups.

The t- and w-operations (see e.g. [80]) should be mentioned here as well. By defini-
tion, t WD vf (via Construction 3.1.6). When R is a domain, the w-operation is defined
by w WD vw (by Construction 4.1.5). So if R is a domain, then t is semi-prime, but
otherwise it need not be (as the counterexample in Proposition 4.1.7 shows), and w
may not even be well-defined in the non-domain case.

4.2 Closures Defined by Properties of (Generic) Forcing Algebras

Let R be a ring, I a (finitely generated) ideal and f 2 R. Then a forcing algebra [37]
for ŒI I f � consists of an R-algebra A such that (the image of) f 2 IA. In particu-
lar, given a generating set I D .f1; : : : ; fn/, one may construct the generic forcing
algebra A for the data Œf1; : : : ; fnI f �, given by

A WD RŒT1; : : : ; Tn�
ı

�

f C
n
X

iD1
fiTi

�

:

Clearly A is a forcing algebra for ŒI I f �. Moreover, if B is any other forcing algebra
for ŒI I f �, there is an R-algebra map A! B . To see this, if f 2 IB , then there exist
b1; : : : ; bn 2 B such that f CPn

iD1 fibi D 0. Then we define the map A ! B by
sending each Ti 7! bi .

Many closure operations may be characterized by properties of generic forcing al-
gebras. This viewpoint is explored in some detail in [9], where connections are also
made with so-called Grothendieck topologies. We list a few (taken from [9]), letting
f , I WD .f1; : : : ; fn/, and A be as above:

� f 2 I (the identity closure of I ) if and only if R is a forcing algebra for Œf I I �.
That is, f 2 I if and only if there is an R-algebra map A ! R. In geometric
terms, one says that the structure map SpecA! SpecR has a section.
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� f 2 pI if and only if f 2 IK for all fields K that are R-algebras, if and
only if the ring map R ! A has the lying-over property, if and only if the map
SpecA! SpecR is surjective (as a set map).

� f 2 I� if and only if f 2 IV for all rank-1 discrete valuations of R (appropri-
ately defined), if and only if for all such V , there is an R-algebra map A ! V .
It is not immediately obvious, but this is equivalent to the topological property
that the map SpecA! SpecR is universally submersive (also called a universal
topological epimorphism).

� If R has prime characteristic p > 0, f 2 IF if and only if f 2 IR1, if and
only if there is an R-algebra map A! R1.

The final closure to note in this context is solid closure (the connection of which to tight
closure has already been noted). For simplicity, let .R;m/ be a complete local domain
of dimension d . We have f 2 I? if and only if there is some solid R-algebra S such
that f 2 IS , i.e. iff there is an R-algebra map A ! S . Hochster [37, Corollary 2.4]
showed in turn that this is equivalent to the condition that Hd

m.A/ ¤ 0. (!) This
viewpoint brings in all sorts of cohomological tools into the study of solid closure, and
hence tight closure in characteristic p. Such tools were crucial in the proof that tight
closure does not always commute with localization [10].

4.3 Persistence

Although it is possible to do so, usually one does not define a closure operation one
ring at a time. The more common thing to do is define the closure operation for a whole
class of rings. In such cases, the most important closure operations are persistent:

Definition 4.3.1. Let R be a subcategory of the category of commutative rings; let c be
a closure operation defined on the rings of R. We say that c is persistent if for any ring
homomorphism � W R! S in R and any ideal I of R, one has �.I c/S � .�.I /S/c.

Common choices for R are

� All rings and ring homomorphisms.

� Any full subcategory of the category of rings.

� Graded rings and graded homomorphisms.

� Local rings and local homomorphisms.

For instance, it is easy to show that radical and integral closure are persistent on the
category of all rings (as are the identity and indiscrete closures), and that Frobenius
closure is persistent on characteristic p rings. Tight closure is persistent along maps
R! S of characteristic p rings, as long as either R=

p
0 is F -finite or R is essentially

of finite type over an excellent local ring, although this is truly a deep theorem [44].
On the other hand, tight closure is persistent on the category of equal characteristic 0
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rings because of the way it is defined (see the discussion after Theorem 4.5.1). Satu-
ration (with respect to the maximal ideal) is persistent on the category of local rings
and local homomorphisms, as well as on the category of graded rings and graded ho-
momorphisms over a fixed base field.

Plus closure is also persistent on the category of integral domains, as is evident from
the fact that the operation of taking absolute integral closure of the domains involved
is weakly functorial, in the sense that any such map R ! S extends (not necessarily
uniquely) to a map RC ! SC [42, p. 139]. This argument may be extended to
show that plus closure is persistent on the category of all rings as well, by considering
minimal primes.

Basically full closure, however, is not persistent, even if we restrict to complete
local rings of dimension one, m-primary ideals, and local homomorphisms R ! S

such that S becomes a finite R-module. For a counterexample, let k be any field, let
x; y; z be analytic indeterminates over k, let R WD kŒŒx; y��=.x2; xy/, I WD yR, S WD
kŒŒx; y; z��=.x2; xy; z2/, and let the map .R;m/ ! .S;n/ be the obvious inclusion.
Then I bf D .my WR m/ D .x; y/ because x is killed by all of m. But x … .IS/bf D
.ny WS n/ because zx 2 nx n ny. (Indeed, IS is a basically full ideal of S .)

4.4 Axioms Related to the Homological Conjectures

A treatment of closure operations would not be complete without mentioning the so-
called “homological conjectures” (for which we assume all rings are Noetherian). So
named by Mel Hochster, these comprise a complex list of reasonable-sounding state-
ments that have been central to research in commutative algebra since the 1970s. For
the original treatment, see [35]. For a more modern treatment, see [39]. Rather than
trying to cover the topic comprehensively, consider the following two conjectures:

Conjecture 4.4.1 (Direct Summand Conjecture). Let R ! S be an injective ring
homomorphism, where R is a regular local ring, such that S is module-finite over R.
Then R is a direct summand of S , considered as R-modules.

Conjecture 4.4.2 (Cohen–Macaulayness of Direct Summands conjecture). Let A !
R be a ring homomorphism which makes A a direct summand of R, and suppose R is
regular. Then A is Cohen–Macaulay.

Assuming a “sufficiently good” closure operation in mixed characteristic, these con-
jectures would be theorems. Indeed, they are theorems in equal characteristic, a fact
which can be seen as a consequence of the existence of tight closure, as discussed in
Section 4.5 (although the proof in equal characteristic of Conjecture 4.4.1 predated
tight closure by some 15 years [34], as did a proof of some special cases of Conjec-
ture 4.4.2 that come from invariant theory [46]).

Consider the following axioms for a closure operation cl on a category R of Noether-
ian rings:
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(i) (Persistence) For ring maps R! S in R, we have I clS � .IS/cl.

(ii) (Tightness) If R is a regular ring in R, then I cl D I for all ideals I of R.

(iii) (Plus-capturing) If R ! S is a module-finite extensions of integral domains in
R and I is any ideal of R, then IS \R � I cl. (i.e. IC � I cl)

(iv) (Colon-capturing) Let R be a local ring in R and x1; : : : ; xd a system of param-
eters. Then for all 0 � i � d � 1, .x1; : : : ; xi / W xiC1 � .x1; : : : ; xi /cl.

Notation. Let d 2 N, and let a; b be numbers such that either a D b is a rational
prime number, a D b D 0, or a D 0 and b is a rational prime number. For any such
triple .d; a; b/, let Rd;a;b be the category of complete local domains .R;m/ such that
dimR D d , charR D a, and char.R=m/ D b.

Proposition 4.4.3. Let .d; a; b/ be a triple as above.
Suppose a closure operation cl exists on the category Rd;a;b that satisfies conditions

(i), (ii), and (iii) above. Then the Direct Summand Conjecture holds in the category
Rd;a;b .

Proof. Let R! S be a module-finite injective ring homomorphism in Rd;a;b , where
R is a regular local ring. Let I be any ideal of R. Then I � IS \ R � I cl D I by
properties (iii) and (ii). That is, R! S is cyclically pure. But then by [36], since R is
a Noetherian domain it follows that R ! S is pure. Since S is module-finite over R,
it follows that R is a direct summand of S [47, Corollary 5.3].

Proposition 4.4.4. Let .d; a; b/ be as above.
Suppose a closure operation cl exists on the category Rd;a;b that satisfies conditions

(i), (ii), and (iv) above. Then Conjecture 4.4.2 holds in the category Rd;a;b .

Proof. Let A! R be a local ring homomorphism of Noetherian local rings such that
A is a direct summand of R, and suppose R is regular. Let x1; : : : ; xd be a system of
parameters for A, and pick some 0 � i < d . Then

.x1; : : : ; xi / W xiC1 � .x1; : : : ; xi /cl � .x1; : : : ; xi /clR \ A
� ..x1; : : : ; xi /R/cl \ A D .x1; : : : ; xi /R \ A D .x1; : : : ; xi /:

Thus, A is Cohen–Macaulay.

Remark 4.4.5. These ideas are closely related to Hochster’s big Cohen–Macaulay
modules conjecture. Indeed, Conjecture 4.4.1 holds when R has a so-called ‘big
Cohen–Macaulay module’ (see e.g. [39, the final remark of §4]). When R is a com-
plete local domain, Dietz [14] has given axioms for a persistent, residual closure opera-
tion onR-modules (see Section 7 for the basics on module closures) that are equivalent
to the existence of a big Cohen–Macaulay module over R.
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4.5 Tight Closure and Its Imitators

Tight closure has been used, among other things, to carry out the program laid out in
Section 4.4 in cases where the ring contains a field. Indeed, we have the following:

Theorem 4.5.1 ([41, 45]). Consider the category R WD Rd;p;p, where d is any non-
negative integer and p � 0 is either a prime number or zero. Then we have

(i) (Persistence) For ring maps R! S in R, we have I�S � .IS/�.

(ii) (Tightness) If R is a regular ring in R, then I� D I for all ideals I of R.

(iii) (Plus-capturing) If R ! S is a module-finite extensions of integral domains in
R and I is any ideal of R, then IS \R � I�. (i.e. IC � I�)

(iv) (Colon-capturing) Let R be a local ring in R and x1; : : : ; xd a system of param-
eters. Then for all 0 � i � d � 1, .x1; : : : ; xi / W xiC1 � .x1; : : : ; xi /�.

(v) (Briançon–Skoda property) For any R 2 R and any ideal I of R,

.Id /� � I� � I�:
Hence, by Propositions 4.4.3 and 4.4.4, both the Direct Summand Conjecture and
Conjecture 4.4.2 hold in equal characteristic.

Tight closure is defined (in [45]) for finitely generated Q-algebras by a process of
“reduction to characteristic p”, a time-honored technique that we will not get into here
(but see Definition 6.3.1 for a baby version of it). Next, tight closure was defined on
arbitrary (excellent) Q-algebras in an “equational” way (see Section 4.6), and then
Artin approximation must be employed to demonstrate that it has the properties given
in Theorem 4.5.1. This is a long process, so various attempts have been made to give
a closure operation in equal characteristic 0 that circumvents it. More importantly,
though, people have been trying to obtain a closure operation in mixed characteristic
that has the right properties.

The first such attempt was probably solid closure [37], already discussed. Unfor-
tunately, it fails tightness for regular rings of dimension 3 [67]. Parasolid closure [7]
(a variant of solid closure) agrees with tight closure in characteristic p, and it has all
the right properties in equal characteristic 0, but is not necessarily easier to work with
than tight closure, and it may or may not have the right properties in mixed charac-
teristic. Other at least partially successful attempts include parameter tight closure
[38], diamond closure [48] and dagger closure (defined in [43], but shown to satisfy
tightness just recently in [11]).

The most successful progress on the homological conjectures since the advent of
tight closure theory is probably represented by Heitmann’s proof [33] of the direct
summand conjecture (Conjecture 4.4.1) for R3;0;p (i.e. in mixed characteristic in di-
mension 3), which he does according to the program laid out above. Indeed, he shows
the analogue of Theorem 4.5.1 when R D R3;0;p and tight closure is replaced every-
where with extended plus closure, denoted epf, first defined in his earlier paper [32].
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(So in fact, his proof works to show the dimension 3 version of Conjecture 4.4.2 as
well.)

4.6 (Homogeneous) Equational Closures and Localization

Let cl be a closure operation on some category R of rings. We say that cl commutes
with localization in R if for any ring R and any multiplicative set W � R such
that the localization map R ! W �1R is in R, and for any ideal I of R, we have
I cl.W �1R/ D .IW �1R/cl.

Tight closure does not commute with localization [10], unlike Frobenius closure,
plus closure, integral closure, and radical. In joint work with Mel Hochster [21], we
investigated what it is that makes a persistent closure operation commute with local-
ization, and in so doing we construct a tight-closure-like operation that does commute
with localization. Our closure is in general smaller than tight closure, though in many
cases (see below), it does in fact coincide with tight closure.

To do this, we introduce the concepts of equational and homogeneous(ly equational)
closure operations. The former notion is given implicitly in [45], where Hochster and
Huneke define the characteristic 0 version of tight closure in an equational way.

In the following, we let ƒ be a fixed base ring. Often ƒ D Fp , Z, or Q.

Definition 4.6.1. Let F be the category of finitely generated ƒ-algebras, and let c be
a persistent closure operation on F . Then the equational version of c, denoted ceq, is
defined on the category of all ƒ-algebras as follows: Let R be a ƒ-algebra, f 2 R,
and I an ideal of R. Then f 2 I ceq if there exists A 2 F , an ideal J of A, g 2 A, and
a ƒ-algebra map � W A! R such that g 2 J c, �.g/ D f , and �.J / � I .

Let G be the category of finitely generated N-graded ƒ-algebras A which have
the property that ŒA�0 D ƒ. Let c be a persistent closure operation on G . Then the
homogeneous(ly equational) version of c, denoted ch, is defined on the category of
all ƒ-algebras as follows: Let R be a ƒ-algebra, f 2 R, and I an ideal of R. Then
f 2 I ch if there exists A 2 G , a homogeneous ideal J of A, a homogeneous element
g 2 A, and a ƒ-algebra map � W A! R such that g 2 J c, �.g/ D f , and �.J / � I .

If c is a closure operation on ƒ-algebras, we say it is equational if one always has
I c D I ceq, or homogeneous if one always has I c D I ch.

In [21], we prove the following theorem:

Theorem 4.6.2. Suppose c is a homogeneous closure operation. Then it commutes with
arbitrary localization. That is, if R is aƒ-algebra, I an ideal, andW a multiplicative
subset of R, then .W �1I /c D W �1.I c/.

In particular, homogeneous tight closure (I�h) commutes with localization. The
following theorem gives circumstances under which I� D I�h. Parts (i) and (iii)
involve cases where tight closure was already known to commute with localization,
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thus providing a “reason” that it commutes in these cases. Part (ii) gives a reason
why the coefficient field in Brenner and Monsky’s counterexample is transcendental
over F2.

Theorem 4.6.3. Let R be an excellent Noetherian ring which is either of prime char-
acteristic p > 0 or of equal characteristic 0.

(i) If I is a parameter ideal (or more generally, ifR=I has finite phantom projective
dimension as an R-module), then I� D I�h.

(ii) If R is a finitely generated and positively-graded k-algebra, where k is an alge-
braic extension of Fp or of Q, and I is an ideal generated by forms of positive
degree, then I� D I�h.

(iii) If R is a binomial ring over any field k (that is, R D kŒX1; : : : ; Xn�=J , where
the Xj are indeterminates and J is generated by polynomials with at most two
terms each), then for any ideal I of R, I� D I�h.

5 Reductions, Special Parts of Closures, Spreads, and Cores

5.1 Nakayama Closures and Reductions

Definition 5.1.1. [18] Let .R;m/ be a Noetherian local ring. A closure operation c on
ideals of R is Nakayama if whenever J , I are ideals such that J � I � .J CmI /c,
it follows that J c D I c.

It turns out that many closure operations are Nakayama. For example, integral clo-
sure [61], tight closure [18], plus closure [17], and Frobenius closure [19] are all
Nakayama closures under extremely mild conditions. The fact that the identity clo-
sure is Nakayama is a special case of the classical Nakayama lemma (which is where
the name of the condition comes from). However, radical is not Nakayama. For exam-
ple, if R D kŒŒx�� (the ring of power series in one variable over a field k), J D 0, and
I D .x/ D m, then clearly J � I � pJ CmI , but the radical ideals J and I are
distinct.

Definition 5.1.2. Let R be a ring, c a closure operation on R, and J � I ideals. We
say that J is a c-reduction of I if J c D I c. A c-reduction J � I is minimal if for all
ideals K ¨ J , K is not a c-reduction of I .

For any Nakayama closure c, one can make a very strong statement about the exis-
tence of minimal c-reductions:

Lemma 5.1.3 ([18, Lemma 2.2]). If cl is a Nakayama closure on R and I an ideal,
then for any cl-reduction J of I , there is a minimal cl-reduction K of I contained
in J . Moreover, in this situation any minimal generating set ofK extends to a minimal
generating set of J .
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This is another reason to see that radical is not Nakayama, as, for instance, the ideal
.x/ in the example above has no minimal

p
-reductions at all.

5.2 Special Parts of Closures

Consider the following notion from [19]:

Definition 5.2.1. Let .R;m/ be a Noetherian local ring and c a closure operation onR.
Let I be the set of all ideals of R. Then a set map csp W I ! I is a special part of c if
it satisfies the following properties for all I; J 2 I:

(i) (Trapped) mI � I csp � I c,

(ii) (Depends only on the closure) .I c/csp D I csp,

(iii) (Order-preserving) If J � I then J csp � I csp,

(iv) (Special Nakayama property) If J � I � .J C I csp/c, then I � J c.

Of course, any closure operation c that admits a special part csp must be a Nakayama
closure. Examples of special parts of closures include:

� “Special tight closure” (first defined by Adela Vraciu in [78]), when R is excel-
lent and of prime characteristic p:

I�sp WD ¹f 2 R j xq0 2 .mI Œq0�/� for some power q0 of pº:
� The special part of Frobenius closure (see [19]), when R has prime characteris-

tic p:
IF sp WD ¹f 2 R j xq0 2 mI Œq0� for some power q0 of pº:

� The special part of integral closure (see [19]):

I�sp WD ¹f 2 R j xn 2 .mIn/� for some n 2 Nº:
� The special part of plus closure (when R is a domain) (see [17]):

ICsp WD ¹f 2 R j f 2 Jac.S/IS for some module-finite
domain extension R! Sº;

where Jac.S/ is the Jacobson radical of S

All of these are in fact special parts of the corresponding closures. Moreover, we
have the following:

Proposition 5.2.2.
� If .R;m/ has a perfect residue field, then IF D I C IF sp for all ideals I [19].

� If .R;m/ is a Henselian domain with algebraically closed residue field, then
IC D I C ICsp for all ideals I [17].
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� If .R;m/ is either an excellent, analytically irreducible domain with algebraically
closed residue field, or an excellent normal domain with perfect residue field, then
I� D I C I�sp for all ideals I [18, 52].

This property is called special c-decomposition, and goes back to the theorem of
Huneke and Vraciu [52] on tight closure, and K. Smith’s theorem [70, Theorem 2.2]
as a kind of pre-history. Of course integral closure fails this property rather badly.
Nevertheless, special c-decompositions allow for the following, matroidal proof of the
existence of the notion of “spread” in such circumstances:

Theorem 5.2.3. Suppose c is a closure with a special part csp. Suppose the following
property holds:

.˛/ I c D I C I csp for all ideals I of R.

Let I be an arbitrary ideal. Then every minimal c-reduction of I is generated by the
same number of elements: the c-spread `c.I / of I .

Proof. Let J , K be minimal c-reductions of I . Say ¹a1; : : : ; anº is a minimal gener-
ating set for J , ¹b1; : : : ; brº is a minimal generating set for K, and n � r .

Claim. There is a reordering of the aj ’s in such a way that for each 0 � i � n, we
have I � Lc

i , where Li WD .a1; : : : ; ai ; biC1; : : : ; bn/.
Proof of Claim. We proceed by descending induction on i . If i D n there is nothing to
prove. So assume that I � Lc

i for some 1 � i � n. We need to show that I � Lc
i�1.

It suffices to show that ai 2 Lc
i�1, since this would imply that Li � Lc

i�1.
Note that bi 2 I c D Lc

i D LiCLcsp
i (by property (˛)). Hence, there exist rj ; sj 2 R

such that

bi C
n
X

jDiC1
rj bj C

i
X

jD1
sjaj 2 Lcsp

i :

If all the sj 2 m, then

bi C
n
X

jDiC1
rj bj 2 .mLi C Lcsp

i D Lcsp
i D I csp/ \K D Kcsp \K D mK;

contradicting the fact that the bj form a minimal generating set for K. Hence, by
reordering the aj , we may assume that si … m.

Thus, ai 2 Li�1 C Lcsp
i . It then follows from the special Nakayama property that

ai 2 Lc
i�1, as required.

Applying the Claim with i D 0 gives that I � Lc
0 D .b1; : : : ; bn/

c. But since
K was a minimal c-reduction of I , it follows that .b1; : : : ; bn/ D K D .b1; : : : ; br/,
whence n D r .
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Remark 5.2.4. Integral closure does not satisfy quite the same matroidal properties
shared by plus closure, tight closure, and Frobenius closure, but it does so ‘generically’
as shown in [6].

It is natural to ask the following: Suppose c is a closure operation with well-defined
c-spread `c. If one picks a random collection of `c.I / elements of I=mI , will their
lifts to I generate a minimal c-reduction of I ? This is unknown in general, but at least
for integral closure and tight closure, the answer is often “yes”:

Proposition 5.2.5. Let I be an ideal of the Noetherian local ring .R;m/. Suppose we
are in one of the following situations:

� [61, Theorem 5.1] R has infinite residue field, and c D integral closure.

� [24, Theorem 4.5] charR D p > 0 prime, R is excellent and normal with infinite
perfect residue field, and c D tight closure.

Let ` WD `c.I /. Then there is a Zariski-open subset U � .I=mI /` such that whenever
x1; : : : ; x` 2 I are such that .x1 CmI; : : : ; x` CmI / 2 U , the ideal .x1; : : : ; x`/ is
a minimal c-reduction of I .

As soon as one knows that minimal c-reductions exist in the sense given in Lemma
5.1.3 (thus, for any Nakayama closure c), one can investigate the c-core of an ideal,
which is by definition the intersection of all its (minimal) c-reductions. When c D
integral closure (in which case we just call this object the core), this notion was first
investigated by Rees and Sally [66]. They showed that if R is a regular local ring
of dimension d , then for any ideal I , .Id /� � core.I /. Fouli and Vassilev [24] have
investigated the relationship between the core and the �-core of ideals in rings of prime
characteristic p.

In joint work with Holger Brenner, we are developing a related notion (which one
could call “specific c-closure” c	), which we show in many cases coincides with csp,
defined as follows: Let c be a closure operation defined by certain properties of generic
forcing algebras (see Section 4.2). That is, let .R;m/ be local and for f 2 R and an
ideal I D .f1; : : : ; fn/ of R, let A D RŒT1; : : : ; Tn�=.f CPn

iD1 fiTi /. Consider the
ideal n WD mAC .T1; : : : ; Tn/ of A. Suppose that P is a property of R-algebras such
that f 2 I c if and only if A has property P . We say that f is in the specific c-closure
of I if An also has property P . In the cases where both are defined, we can show
that I csp � I c� . Moreover, we show that F sp D F	 in general, that Csp D C	 in
Henselian domains (e.g. complete local domains), and that �sp D ?	 in normal local
domains of prime characteristic with perfect residue field.

6 Classes of Rings Defined by Closed Ideals

A typical reason that a closure operation is studied in the first place is often that the
closedness of certain classes of ideals is related (and often equivalent) to the ring hav-
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ing certain desirable properties. In the following, we will give examples based on
various closure operations.

6.1 When Is the Zero Ideal Closed?

When c D F;C;�; ?;p ; or �, we have 0c D p0, the nilradical of the ring. Hence,
in these cases, the zero ideal is closed iff the ring is reduced.

For a local ring .R;m/, we have .0 W m1/ D H 0
m.R/. So the zero ideal is m-

saturated iff depthR � min¹dimR; 1º (that is, iff R is an (S1) ring).

6.2 When Are 0 and Principal Ideals Generated by Non-zerodivisors
Closed?

Example (Radical). For a Noetherian ring R, the answer here is: “R is a product of
fields”. First, note that if R is a product of fields, all ideals are radical. Conversely,
R is a Noetherian ring where 0 and all principal ideals generated by non-zerodivisors
are radical. As noted above, the fact that 0 is radical means that R is reduced. Now
take any non-zerodivisor z of R. We have z 2 p.z2/ D .z2/ (since z2 is a non-
zerodivisor), so there is some r 2 R with z D rz2. That is, z.1 � rz/ D 0. Since z
is a non-zerodivisor, this means that rz D 1, so that z is a unit. Hence R is a reduced
ring in which all non-zerodivisors are units, and thus a product of fields.

When R is reduced, this condition may be written: R D Q.R/.
Example (Integral and tight closures). Recall that for reduced rings, tight closure and
integral closure coincide for principal ideals. So in these cases, we may look at inte-
gral closure, in which case the answer is: “R is integrally closed in its total ring of
fractions".

For suppose R is integrally closed in its total ring Q of fractions. Let f 2 R be a
non-zerodivisor, and suppose g 2 .f /�. Then we have an equation of the form

gn C a1fgn�1 C � � � C anf n D 0;
where a1; : : : ; an 2 R. Dividing through by f n, we get the equation:

.g=f /n C a1.g=f /n�1 C � � � C an D 0;
which shows that the element g=f 2 Q is integral over R. But this means that g=f 2
R, whence g 2 .f /. The converse statement follows the same steps in reverse.

For reduced rings, this condition may be written: R D RC \Q.R/.
Example (Frobenius closure). For a Noetherian ring of characteristic p > 0, the an-
swer here is: “R is weakly normal”4. To see this, recall first [53, Proposition 1] that a
Noetherian ringR is weakly normal if and only if the following conditions hold (where
Q is the total quotient ring of R):

4 Weak normality has a complicated history. The reader may consult the recent guide, [76].
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(i) R is reduced.

(ii) For every f 2 Q such that f 2; f 3 2 R, one has f 2 R.

(iii) For every f 2 Q such that there exists a prime integer n with f n; nf 2 R, one
has f 2 R.

Suppose first that R is weakly normal. The fact that R is reduced means that 0 is
Frobenius closed. So let z be a non-zerodivisor of R and suppose y 2 .z/F . Then
there is some a 2 R and q D pe such that yp

e 2 .zpe

/ as an ideal ofR. InQ.R/, this
means that .y=z/p

e D ..y=z/pe�1

/p 2 R. But we also have p � .y=z/pe�1 D 0 2 R,
so by condition (iii) above, it follows that .y=z/p

e�1 2 R, i.e., yp
e�1 2 .zpe�1

/. By
induction on e, it follows that y 2 .z/.

Conversely, suppose that 0 and every principal ideal generated by a non-zerodivisor
is Frobenius closed. Condition (i) follows from 0 being Frobenius closed. For con-
dition (ii), note that there exist integers a; b 2 N such that 2a C 3b D p. So if
f 2; f 3 2 R, it follows that f p D .f 2/a.f 3/b 2 R as well. But f D y=z for some
y; z 2 R, where z is a non-zerodivisor, so f p 2 R means that yp 2 .zp/, so that
y 2 .z/F D .z/, whence f 2 R. As for condition (iii), let f , n be as given. If n ¤ p,
then the image of n in R is a unit, so that the fact that nf 2 R means that f 2 R
automatically. So we may assume that n D p. But then f p 2 R, which means that
yp 2 .zp/ (where f D y=z for some non-zerodivisor z), whence y 2 .z/F D .z/

and f 2 R.

6.3 When Are Parameter Ideals Closed (Where R Is Local)?

For this subsection and the next, we need the following definitions (which represent a
special case of “reduction to characteristic p”):

Definition 6.3.1. Let P be a property of positive prime characteristic rings. Let R
be a finitely generated K-algebra, where K is a field of characteristic 0. That is,
R D KŒX1; : : : ; Xn�=.f1; : : : ; fm/. Let A be the Z-subalgebra of K generated by the
coefficients of the polynomials f1; : : : ; fm. Let RA WD AŒX1; : : : ; Xn�=.f1; : : : ; fm/.
We say that R is of P -type (resp. dense P -type) if there is a nonempty Zariski-open
subset U of the maximal ideal space of A (resp. an infinite set U of maximal ideals
of A) such that for all � 2 U , the ring RA ˝A A=� has property P .

Example (Frobenius closure). Suppose .R;m/ is a local Cohen–Macaulay ring of
prime characteristic p > 0. Consider the map R ! 1R defined in Section 3.2 (vii).
By definition R is F -injective if the induced maps on local cohomology H i

m.R/ !
H i

m.
1R/ are injective. All parameter ideals are Frobenius closed if and only if R is

F -injective.
Moreover, there are connections to characteristic 0 singularity theory. Namely, if

R is a reduced, finitely generated Q-algebra (or C-algebra) of dense F -injective type,
then SpecR has only Du Bois singularities [68]. (A converse is not known.)
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Example (Tight closure). By definition, a ring R of prime characteristic p > 0 is
F -rational if every parameter ideal is tightly closed.

The connection to characteristic 0 singularity theory is very strong. Indeed, it was
shown by [26, 69] (Smith showed one direction and Hara showed the converse) that
a finitely generated Q-algebra (or C-algebra) R is of F -rational type if and only if
SpecR has only rational singularities.

Example (Integral closure). Let .R;m/ be a Noetherian local ring. Then every pa-
rameter ideal is integrally closed if and only if R is either a field or a rank 1 discrete
valuation ring.

As usual, one direction is clear: if R is a field or a rank 1 DVR, then every ideal
is integrally closed. So we prove the converse. We already know that R must be a
normal domain (from the integral closure example in Section 6.2), so we need only
show that dimR � 1. Accordingly, suppose dimR � 2. Let x; y be part of a system
of parameters. Then x2; y2 is also part of a system of parameters. Thus, we have

xy 2 .x2; y2/� D .x2; y2/;
But this is easily seen to contradict the fact that x; y are a regular sequence (which in
turn arises from the fact that R is normal, hence (S2).)

6.4 When Is Every Ideal Closed?

Example (Frobenius closure). For a Noetherian ring R of prime characteristic, we say
that R is F -pure if the map R ! 1R defined in Section 3.2 (vii) is a pure map of R-
modules – that is, when tensored with any otherR-module, the resulting map is always
injective. This is easily seen to be equivalent to the condition that Frobenius closure
on modules is trivial, which for excellent rings is then equivalent to the condition that
all ideals are Frobenius closed (by [36, Theorem 1.7], since the rings in question must
be reduced as .0/F is the nilradical of the ring).

Again, there is a connection to characteristic 0 singularity theory. Namely, if R
is normal, Q-Gorenstein, and characteristic 0 of dense F -pure type, then SpecR has
only log canonical singularities [27]. (No converse is known.)

Example (Tight closure). For a Noetherian ring R of prime characteristic, we say that
R is weakly F -regular if every ideal of R is tightly closed. It is called F -regular if
Rp is weakly F -regular for all prime ideals p. (Or equivalently, W �1R is weakly
F -regular for all multiplicative sets W 	 R.) One of the outstanding open problems
of tight closure theory is whether these two concepts are equivalent. The problem is
open even for finitely generated algebras over a field.

In any case, we again have a connection to characteristic 0 singularity theory.
Namely, if R is normal, Q-Gorenstein, and characteristic 0, then R has F -regular
type if and only if SpecR has only log terminal singularities [27].
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Example (Integral closure). As shown earlier, assuming that R is Noetherian, all ide-
als are integrally closed iff R is a Dedekind domain. (More generally, all ideals are
integrally closed iff R is a Prüfer domain.)

Example (The v-operation). Let R be a Noetherian domain. Then [59, Theorem 3.8]
all ideals are v-closed (equivalently t-closed) if and only if R is Gorenstein of Krull
dimension � 1 (iff Q=R is an injective R-module, where Q is the total quotient ring
of R).

7 Closure Operations on (Sub)modules

Whenever an author writes about a closure operation on (ideals of) rings that extends
to a closure operation on (sub)modules, a choice must be made. Either the operation is
defined generally for all submodules, after which all proofs and statements are made
for modules and the statements about ideals follow as a corollary, or everything is done
first exclusively on ideals and only afterwards is the reader shown how to extend it to
the module case. I have opted for the latter option.

Definition 7.0.1. LetR be a ring and M a category ofR-modules. A closure operation
on M is a collection of maps ¹clM j M 2 Mº, such that for any submodule L � M
of a module M 2 M, clM .L/ WD Lcl

M is a submodule of M , such that the following
properties hold:

(i) (Extension) L � Lcl
M for all submodules L �M 2M.

(ii) (Idempotence) Lcl
M D .Lcl

M /
cl
M for all submodules L �M 2M.

(iii) (Order-preservation) If M 2 M and K � L � M are submodules, then Kcl
M �

Lcl
M . If moreover L 2M, then Kcl

L � Kcl
M .

Some other properties of closure operations on modules are given below:

Definition 7.0.2. Let cl be a closure operation on a category M of R-modules. We say
that cl is

(i) functorial if whenever g WM ! N is a morphism in M, then for any submodule
L �M , we have g.Lcl

M / � g.L/cl
N .

(ii) semi-prime if whenever L � M are modules with M 2M and I is an ideal, we
have I � Lcl

M � .IL/cl
M .

(iii) weakly hereditary if whenever L � M � N are submodules such that M;N 2
M, if L D Lcl

M and M DM cl
N then L D Lcl

N .

(iv) hereditary if whenever L � M � N are submodules such that M;N 2M, then
Lcl
N \M D Lcl

M .
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(v) residual if whenever � W P � M is a surjection of modules in M, and N � P
is a submodule, we have

N cl
P D ��1.�.N /cl

M /

Remark 7.0.3. 5 We note here that any functorial closure is semi-prime, provided
that for any x 2 R and M 2 M, the endomorphism �x W M ! M (defined by
multiplying by the element x) is in M. To see this, let L � M be a submodule and
x 2 I . Then x � Lcl

M D �x.Lcl
M / � .�x.L//cl

M D .xL/cl
M . But by order-preservation,

.xL/cl
M � .IL/cl

M for any x 2 I . Thus, we have

I � Lcl
M D

X

x2I
x � Lcl

M �
X

x2I
.xL/cl

M � .IL/cl
M :

For systematic reasons, one usually assumes that a closure operation is functorial.
The disadvantage, of course, is that there is no way to extend a non-semi-prime closure
onR to a functorial module closure on M (e.g. the v-operation on certain non-domains,
as in Proposition 4.1.7 (iii)).

Remark 7.0.4. Given a closure operation on (ideals of) R that one wants to extend
to a (functorial) closure on a category M of R-modules, one typically must make a
choice: should the resulting operation be weakly hereditary or residual? Most closure
operations on modules do not satisfies both conditions (but see Section 7.1 below).

Among integral closure-theorists, the usual goal has been to construct a weakly
hereditary operation (so that for instance, if J is a reduction of an integrally closed
ideal I , then the integral closure of J as a submodule of I is required to be I itself).
See [16], or [51, Chapter 16] for a general discussion.

On the other hand, tight closure-theorists have gone the residual route (so that for
instance, to compute the tight closure of an ideal I , one may take the tight closure of 0
in the R-submodule R=I and contract back). See [49, Appendix 1]. For a residual
version of integral closure, see [22], by the present author and Bernd Ulrich.

Lemma 7.0.5 (Taken from [21]). Let F (resp. Ffin) be the category of free (resp.
finitely generated free) R-modules. Let cl be a functorial closure operation on F

(resp. Ffin). Then cl extends uniquely to a residual closure operation on the category
of all (resp. all finitely generated) R-modules if and only if for all (resp. for all finitely
generated) R-modules F1; F2 and submodules L1 � F1, L2 � F2, we have

.L1 ˚ L2/cl
F1˚F2

D .L1/cl
F1
˚ .L2/cl

F2
:

We omit the easy proof. As for the construction: For a (f.g.) R-module M , let
� W F !M be a surjection from a (f.g.) R-module F , and let Lcl

M WD �.��1.L/cl
F /.

Indeed, this is the way that tight closure, Frobenius closure, and plus closure are
defined on modules. First they were defined for free modules, and then extended to a
residual operation in the way outlined above.

5 Thanks to Holger Brenner for pointing this out.
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Remark 7.0.6. All but one of the constructions from Section 3 can be extended to
make residual closure operations. Namely:

� Construction 3.1.1 may be extended as follows: Fix an R-module U as before,
and let L � M be R-modules. We say that f 2 Lcl

M if the image of the map
U ˝R .Rf ,!M/ is contained in the image of the map U ˝R .L ,!M/. This
always yields a residual and functorial closure operation.

� Construction 3.1.2 may be extended similarly. That is, if � W R ! S is a ring
homomorphism and d is a closure operation on S-modules, then for R-modules
L �M , let jM WM ! S ˝RM be the natural map, and for z 2M , we declare
that z 2 Lc

M if the image (under jM ) of z is in the d-closure (in S ˝RM ) of the
image of the map S ˝R .L ,!M/. Then c is a closure operation, semi-prime if
d is, functorial if d is, and residual if d is.

� Constructions 3.1.3, 3.1.4, and 3.1.5 may be extended in the obvious way to mod-
ules, and the resulting operation is semi-prime (resp. residual, resp. functorial) if
the operations it is based on are.

In this way (via Section 3.2), all the closure operations from Example 2.1.2 may
be extended to residual, functorial closure operations on modules. This yields the
usual definitions of Frobenius, plus, solid, tight, and basically full closures, and also
of the a-saturation. The resulting extension of integral closure is of course not the
usual (weakly hereditary) definition, but rather the residual, “liftable integral closure”
from [22]. The extension of radical is the one mentioned in [9].

An analogue of Proposition 4.1.4 (i)–(iv) is also available for semi-prime closure
operations on modules.

One more construction should be mentioned:

Construction 7.0.7. Let c be a closure operation on a module category M. We define
the finitistic c-closure of a submodule L �M by setting

L
cfg
M WD

[

¹Lc
N j L � N �M such that N=L is finitely generated and N 2Mº

For a closure operation c, one may ask what the difference is, if any, between the
closure operations c and cfg. This is very important in tight closure theory, for instance,
in the question of whether weak F -regularity and F -regularity coincide. Indeed, if
.R;m/ is an F -finite Noetherian local ring of characteristic p and E is the injective
hull of the residue field R=m, then R is weakly F -regular if and only if 0�fg

E D 0 [41,
Proposition 8.23], but it is F -regular if 0�E D 0 [57, follows from Proposition 2.4.1].

Thus, the two concepts would coincide if 0�E D 0�fg
E .

7.1 Torsion Theories

A functorial closure operation on modules that is both residual and weakly hereditary
is essentially equivalent to the notion of a torsion theory (see [13] for torsion theories,
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the book [4] for the connection with preradicals, or [9, Section 6] for a connection
with Grothendieck topologies). We briefly outline the situation below, as this provides
a fertile source of residual closure operations:

Definition 7.1.1. Let M be a category of R-modules which is closed under taking
quotient modules, and let r WM!M be a subfunctor of the identity functor (That is,
it assigns to eachM 2M a submodule r.M/ 2M ofM , and every map g WM ! N

in M restricts to a map r.g/ W r.M/! r.N /.) Then we say that r is a preradical.
A preradical r is called a radical if for any M 2M, we have r.M=r.M// D 0.
A radical r is idempotent if r ı r D r.
A radical r is hereditary if for any submodule inclusion L � M with L;M 2 M,

we have L \ r.M/ D r.L/.

Definition 7.1.2. Let M be an Abelian category. Then a torsion theory is a pair .T ;F /
of classes of objects of M (called the torsion objects and the torsion-free objects,
respectively), such that:

(i) T \ F D ¹0º,
(ii) T is closed under isomorphisms and quotient objects,

(iii) F is closed under isomorphisms and subobjects, and

(iv) For any object M 2M, there is a short exact sequence

0! T !M ! F ! 0

with T 2 T and F 2 F .

(Recall that the T and F in the short exact sequence are unique up to isomorphism.)
A torsion theory .T ;F / is hereditary if T is also closed under taking subobjects.

Proposition 7.1.3. Given an Abelian category M of R-modules, the following struc-
tures are equivalent:

� a functorial, residual closure operation on M.

� a radical on M.

Moreover, the closure operation is weakly hereditary if and only if the radical is idem-
potent. In this case, the structures are equivalent to specifying a torsion theory on
M. In this case, the closure operation is hereditary iff the radical is hereditary iff the
torsion theory is hereditary.

Proof. Instead of a complete proof, we show the correspondences below and leave the
elementary proofs to the reader.

If c is a functorial, residual closure operation on M, we define a radical r on M by
letting r.M/ WD 0c

M for any M 2M.
If r is a radical on M, we define a closure operation on M by letting Lc

M WD
��1.r.M=L// for any L �M , where � WM !M=L is the canonical surjection.
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Given an idempotent radical r on M, we define a torsion theory by letting T WD
¹r.M/ j M 2 Mº and F WD ¹M 2 M j r.M/ D 0º. Conversely, given a torsion
theory .T ;F /, we let r.M/ WD T , where 0 ! T ! M ! F ! 0 is a short exact
sequence with T 2 T and F 2 F .

The literature on torsion theories is immense. At the time of publication, I could not
find the first place where it is shown that specifying a hereditary radical is equivalent
to specifying a certain kind of filter of ideals, but this is nevertheless true, and was
known by the late 1960s.

None of tight closure, plus closure, Frobenius closure, or radical (as given in Re-
mark 7.0.6) are weakly hereditary; hence none of them provide examples of torsion
theories. However, we have the following illustrative examples:

� For any ideal a of R, the a-saturation (defined by Lc
M WD .L WM a1/ D ¹z 2

M j 9n 2 N such that anz � Lº) is a hereditary, residual, functorial closure
operation on R-modules, and thus provides an example of a hereditary torsion
theory on R-modules. (The corresponding radical is H 0

a .�/.)
� Let R be a commutative ring that contains at least one non-zerodivisor x that is

not a unit, and let Q be its total ring of quotients (so that in particular, Q ¤ R).
Recall that a module M is divisible if for every non-zerodivisor r of R, the map
M ! M given by multiplication with r is surjective. Any module has a unique
largest divisible submodule, since any sum of divisible submodules of a module
is divisible. Consider the assignment d given by d.M/ WD the largest divisible
submodule of M . Then this is a weakly hereditary radical that is not hereditary.
Hence, it defines a weakly hereditary residual closure operation that is not hered-
itary, hence a non-hereditary torsion theory. To see that it is not hereditary, note
that d.Q/ \R D R but 1 … d.R/ since x is not a unit.
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1 Introduction

Test ideals were first introduced by Mel Hochster and Craig Huneke in their celebrated
theory of tight closure [70], and since their invention have been closely tied to the
theory of Frobenius splittings [109, 121]. Subsequently, test ideals have also found
application far beyond their original scope to questions arising in complex analytic
geometry. In this paper we give a contemporary survey of test ideals and their wide-
ranging applications.

The test ideal has become a fundamental tool in the study of positive characteristic
algebraic geometry and commutative algebra. To each ring R of prime characteristic
p > 0, one can associate a test ideal 
.R/ which reflects properties of the singularities
of R. If R is regular, then 
.R/ D R; more generally, if the singularities of R are
mild, one expects that 
.R/ is close to or equal to R. Conversely, severe singularities
give rise to small test ideals.

While the name test ideal comes from Hochster and Huneke’s original description
as the so-called test elements in the theory of tight closure, we initially define them
herein more directly without any reference to tight closure. Briefly, our approach
makes use of pairs .R; �/ where R is an integral domain and �WR1=p ! R is an
R-module homomorphism, a familiar setting to readers comfortable with the theory
of Frobenius splittings. This perspective has numerous advantages. In addition to the
relative simplicity of the definition of the test ideal, this setting also provides a natural

The first author was partially supported by NSF DMS #1064485/0969145.
The second author was partially supported by a National Science Foundation Postdoctoral Fellowship
#1004344.
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segue into the connection between the test ideal and the multiplier ideal. Nevertheless,
we do however include a short section on the classical definition via tight closure
theory. In addition, we also include sections focusing on various related measures of
singularities in positive characteristic besides the test ideal, such as F-rationality and
Hilbert–Kunz multiplicity.

We have tried to make the sections of this paper modular, attempting to minimize
the reliance of each individual section on the previous sections. Following the initial
discussion on preliminaries and notation, the main statements throughout the remain-
der of the document can all be read independently. In addition, we have included
numerous exercises scattered throughout the text. It should be noted that while many
of the exercises are quite easy, some have been decorated with a * to indicate that they
are substantially more difficult.

We hope that this survey will be readable and useful to a wide variety of potential
audiences. In particular, we have three different audiences in mind:

(i) Readers working in characteristic p > 0 commutative algebra who wish to un-
derstand generalizations to “pairs” and connections between test ideals and alge-
braic geometry. These individuals will probably be most interested in Sections 3,
6, and 7.

(ii) Readers familiar with Frobenius splitting techniques who wish to learn of the lan-
guage and methods used by their counterparts studying tight closure (Section 5)
and connections to the minimal model program (Section 4). These individu-
als may wish to skim Section 2. They may additionally find Sections 3 and 8
useful.

(iii) Readers with a background in complex analytic and algebraic geometry working
on notions related to multiplier ideals or the minimal model program who wish
to learn about characteristic p > 0 methods. The most useful material for these
individuals is likely found in Sections 2, 3, 4 and 6.

This survey is not, however, designed to be an introduction to tight closure, as there
are already several excellent surveys and resources on the subject, see [68, 76, 147]
and [27, Chapter 10]. In addition, the reader interested in Frobenius splitting and
related cohomology vanishing theorems is referred to [25]; we shall not have occasion
to discuss global vanishing theorems in this survey.

In the appendices to this paper, we very briefly review the notions of Cohen–Macau-
lay and Gorenstein rings, as well as several forms of duality which are used minimally
throughout the body of the paper. These include local duality, Matlis duality and
Grothendieck duality. Also included is a short summary of the formalism of divisors
on normal varieties from a very algebraic point of view.

As those experts already familiar with the technical language surrounding the de-
velopment of test ideas will be quick to notice, the terminology and notation in this
paper also differs from that used historically in the following way:
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Convention. When referring to the test ideal 
.R/ throughout this paper, we always
refer to the big (or non-finitistic) test ideal, often denoted by e
.R/ or 
b.R/ in the
literature. We will call the classical test ideal, i.e. the test ideal originally introduced
by Hochster and Huneke, the finitistic test ideal and denote it rather by 
fg.R/.

We make this simplifying convention largely because we believe there is now con-
sensus that the big test ideal is the preferable notion to study. Of course, the two
notions (finitistic and non-finitistic) are frequently known to coincide and are conjec-
tured to be equivalent in general (Conjecture 5.14).

2 Characteristic p Preliminaries

Setting. Throughout this paper all rings are integral domains essentially of finite type
over a field k. In this context, the word “essentially” means that R is obtained from
a finitely generated k-algebra by localizing at a multiplicative system. In this section,
that field k is always perfect of prime positive characteristic p > 0.1

2.1 The Frobenius Endomorphism

When working in characteristic p > 0, the Frobenius or p-th power endomorphism is
a powerful tool which can be thought of in several equivalent ways. First and foremost,
it is the ring homomorphism F WR ! R given by r 7! rp . However, in practice it
is often convenient to distinguish between the copies of R serving as the source and
target. To that end, consider the set R1=p of all p-th roots of elements of R inside
a fixed algebraic closure of the fraction field of R. The set R1=p is closed under
addition and multiplication, and it forms a ring abstractly isomorphic to R itself (by
taking p-th roots). The inclusion R � R1=p is naturally identified with the Frobenius
endomorphism of R and gives R1=p the structure of an R-module.

More generally, denoting by R1=p
e

the set of pe-th roots of elements of R and
iterating the above procedure gives

R � R1=p � R1=p2 � � � � � R1=pe � R1=peC1 � � � �

where each inclusion is identified with the Frobenius endomorphism of R. Thus, as
before R1=p

e

is a ring abstractly isomorphic to R, and the inclusion R � R1=p
e

is
identified with the e-th iterate F eWR ! R of Frobenius given by r 7! rp

e

. For any
ideal I D hz1; : : : ; zmi � R, we write I 1=p

e D hz1=pe

1 ; : : : ; z
1=pe

m iR1=pe to denote
the ideal (in R1=p

e

) of pe-th roots of elements of I . Again, we have that R1=p
e

is an
R-module via the inclusion R � R1=pe

.

1 Essentially all of the positive characteristic material in this paper can easily be generalized to the
setting of reduced F-finite rings. In addition, large portions of the theory extend to the setting of
excellent local rings.
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Exercise 2.1. Consider the polynomial ring S D kŒx1; : : : ; xd �. Show that S1=p
e

is a
free S -module of rank ped with S -basis ¹x�1=p

e

1 : : : x
�d=p

e

d
º0��i�pe�1.

IfM is anyR-module, the (geometrically motivated) notation F e�M is often used to
denote the corresponding R-module coming from restriction of scalars for F e . Thus,
M and F e�M agree as both sets and Abelian groups. However, if F e�m denotes the
element of F e�M corresponding to m 2 M , we have r � F e�m D F e� .rp

e � m/ for
r 2 R and m 2 M . It is easy to see that F e�R and R1=p

e

are isomorphic R-modules
by identifying F e� r with r1=p

e

for each r 2 R. While we have taken preference to the
use of R1=p

e

throughout, it can be very helpful to keep both perspectives in mind.

Remark 2.2. We caution the reader that the module F e�M is quite different from that
which is commonly denoted F e.M/ originating in [120]. This latter notation coin-
cides rather with M ˝R F e�R considered as an R-F e�R bimodule.

Exercise 2.3. Show that F e� . / is an exact functor on the category ofR-modules. Con-
clude that F e� .R=I / andR1=p

e

=I 1=p
e

are isomorphicR-modules (and furthermore as
(F e�R D R1=pe

)-modules) for any ideal I � R.

Lemma 2.4. R1=p
e

is a finitely generated R-module.

Proof. SinceR is essentially of finite type over k we writeRDW �1.kŒx1; : : : ; xn�=I /
where I is an ideal in S D kŒx1; : : : ; xn� and W is a multiplicative system in S=I .
First notice that .S=I /1=p

e D S1=pe

=I 1=p
e

is certainly a finite S=I -module by Exer-
cise 2.1. But then we have that W �1..S=I /1=pe

/ is a finitely generated W �1.S=I /-
module, and so the result is proven after observing

W �1..S=I /1=pe

/ D ..W pe

/�1.S=I //1=pe D .W �1.S=I //1=pe

:

Test ideals are measures of singularities of rings of characteristic p > 0, and will be
defined initially through the use of a homomorphism � 2 HomR.R1=p

e

; R/. The fol-
lowing result demonstrates that it is reasonable to use properties of R1=p

e

to quantify
the singularities of R.

Theorem 2.5 ([97]). R is regular if and only if R1=p
e

is a locally-free R-module.

Proof. The forward direction of the proof follows by reducing to the case of Exer-
cise 2.1, while the converse direction is more involved; see [97] and [102].

2.2 F-purity

Rather than requiring that R1=p
e

be a free R-module, one might consider the weaker
condition that R is a direct summand of R1=p

e

. To that end, recall that an inclusion
of rings A � B is called split if there is an A-module homomorphism sWB ! A such



A Survey of Test Ideals 43

that sjA D idA (in which case B is isomorphic as an A-module to A˚ ker.s/, and s is
called a splitting of A � B).

Definition 2.6. R is F-pure2 if the inclusions R � R1=pe

are split.

Exercise 2.7. Suppose that R is F-pure. Show that, for every R-module M and all
e � 1, the natural map M !M ˝R R1=pe

is injective.
In the setting of this paper – whereR is essentially of finite type over a perfect field k

– the converse statement also holds [67], but may fail in general. For an arbitrary ring,
the injectivity ofM !M˝RR1=pe

for allM is taken to be the definition of F-purity.

Exercise 2.8. Show that if R � R1=p
e

is split for some e � 1, then it is split for all
e � 1.

Exercise 2.9. Suppose that q 2 SpecR is a point such that Rq is F-pure. Show that
there exists an open neighborhood U � SpecR of q such that Rp is F-pure for every
point p 2 U .

Hint. Prove R � R1=pe

splits if and only if “evaluation at 1” HomR.R1=p
e

; R/! R

is surjective.

Exercise 2.10. Suppose that for every maximal ideal m 2 SpecR, Rm is F-pure.
Show that R is also F-pure.

In Theorem 2.14 below, we exhibit a simple way of determining whether R is F-
pure.

Definition 2.11 (Frobenius powers of an ideal). Suppose I D hy1; : : : ; ymi � R is an
ideal. Then for any integer e > 0, we set I Œp

e� to be the ideal hype

1 ; : : : ; y
pe

n iR.

Exercise 2.12. Show that .I Œp
e�/1=p

e D IR1=p
e

, and conclude I Œp
e� is independent

of the choice of generators of I .

Exercise 2.13. Suppose that R is a regular local ring and I 	 R is an ideal. If x 2 R,
show that x 2 I Œpe� if and only if �.x1=p

e

/ 2 I for all � 2 HomR.R1=p
e

; R/.

Theorem 2.14 (Fedder’s Criterion, [44, Lemma 1.6]). Suppose that S D kŒx1; : : : ; xn�
and that R D S=I is a quotient ring. Then for any point q 2 SpecR D V.I / �
SpecS , the local ring Rq is F-pure if and only if .I Œp� W I / 6� qŒp�. (Notice we are
abusing notation by identifying q 2 SpecR with its pre-image in SpecS ).

2 A splitting of R � R1=p is referred to as an F-splitting. At times, F-pure rings are also known as
F-split, but we caution the reader that (particularly when in a non-affine setting) these terms are not
always interchangeable. See also Exercise 2.7.
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Proof. We sketch the main ideas of the proof and leave the details to the reader.
First observe that every map � 2 HomR.R1=p

e

; R/ is the quotient of a map  2
HomS .S1=p

e

; S/ (use the fact that S1=p
e

is a projective S-module). Next prove
that HomS .S1=p

e

; S/ is isomorphic to S1=p
e

as an S1=p
e

-module. Finally, show
that .I Œp

e� W I /1=pe � HomS .S1=p
e

; S/ corresponds exactly to those elements of
HomS .S1=p

e

; S/ which come from HomR.R1=p
e

; R/. Once this correspondence is
in hand, show that the elements � 2 HomR.R1=p

e

; R/ that are surjective at Rq are in
bijective correspondence with the elements x 2 .I Œpe� W I / which are not contained
in qŒp

e�.

Exercise 2.15 (Coordinate Hyperplanes are F-pure). Suppose that S D kŒx1; : : : ; xn�
and I D hx1 � � � xni. Show that S=I is F-pure.

Exercise* 2.16 (Elliptic curves). Show that R D FpŒx; y; z�=hx3 C y3 C z3i is not
F-pure if p D 2; 3; 5; 11, but is F-pure if p D 7; 13. Generally, show that R is F-pure
if and only if p 
 1 mod 3, in which case the associated elliptic curve is ordinary
(see [61, p. 332]).

Exercise 2.17. Suppose that S D FpŒx; y; z� and that f D xy � z2 and g D x4 C
y4Cz4. Show that, for any choice of p, S=hf i is always F-pure while S=hgi is never
F-pure.

Exercise 2.18. [75, Proposition 5.31] A reduced ring R of characteristic p > 0 with
total quotient ring K is called weakly normal if it satisfies the following property: for
every x 2 K, xp 2 R automatically implies x 2 R as well. Prove that any F-pure
ring is weakly normal.
Hint. First check that a splitting of R � R1=p can be extended to a splitting of K �
K1=p .

3 The Test Ideal

Setting. In this section as before, all rings are integral domains of essentially finite
type over a perfect field of characteristic p > 0.

While the test ideal was first described as an auxiliary component of tight closure
theory, we give a description of the test ideal without reference to tight closure in this
section. This description has roots in [56, 107, 144]; see also [126, Theorem 6.3] for
further statements and details.

3.1 Test Ideals of Map-pairs

We begin by introducing test ideals for pairs .R; �/, where the addition of a homo-
morphism � 2 HomR.R1=p

e

; R/ in fact helps to simplify the definition.
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Definition 3.1. Fix an integer e > 0 and a non-zero R-linear map �WR1=pe ! R (for
example, a splitting of R � R1=pe

). We define the test ideal 
.R; �/ to be the unique
smallest non-zero ideal J � R such that �.J 1=p

e

/ � J .

We make two initial observations about this definition:

(i) It is in no way clear that there is such a smallest ideal! (More on this soon.)

(ii) The choice of � can wildly change the test ideal, as in Exercise 3.5 below. In
particular, 
.R; �/ does not just reflect properties of R, but rather incorporates
those of � as well.

Remark 3.2. If �WR1=pe !R is as above, and J �R is an ideal such that �.J 1=p
e

/�
J , then J is said to be �-compatible. Thus 
.R; �/ is the unique smallest non-zero
�-compatible ideal.

Exercise 3.3 (cf. [14]). With notation as above, show that �.
.R; �/1=p
e

/ D 
.R; �/.
Hint. Show that �.
.R; �/1=p

e

/ is �-compatible.

Exercise 3.4 ([45, Proposition 2.5; 126, Theorem 7.1; 159, Theorem 3.3]). Suppose
that in addition �WR1=pe ! R is surjective (for example, a splitting of R � R1=pe

).
Show that 
.R; �/ is a radical ideal. Furthermore, prove that R=
.R; �/ is an F-pure
ring.

Exercise 3.5. Suppose that R D F2Œx; y� and recall that R1=2 is a free R-module
(Exercise 2.1) with basis 1; x1=2; y1=2; .xy/1=2 . Consider the R-linear three maps
˛; ˇ; � WR1=2 ! R defined as follows:

R1=2
˛�! R R1=2

ˇ�! R R1=2
��! R

1 7! 0 1 7! 0 1 7! 1

x1=2 7! 0 x1=2 7! 1 x1=2 7! 0

y1=2 7! 0 y1=2 7! 0 y1=2 7! 0

.xy/1=2 7! 1 .xy/1=2 7! 0 .xy/1=2 7! 0

Prove that 
.R; ˛/ D R, 
.R; ˇ/ D hyi and 
.R; �/ D hxyi.

Now we turn our attention to the question of existence. We make use of the follow-
ing somewhat technical lemma, which has its origins in tight closure theory.

Lemma 3.6 ([70, Section 6; 129, Proposition 3.21]). Suppose that �WR1=pe ! R is
a non-zero R-linear map. Then there exists a non-zero c 2 R satisfying the following
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property: for every element 0 ¤ d 2 R, there exists an integer n > 0 such that
c 2 �n..dR/1=pne

/. Here �n is defined to be the composition map

R1=p
ne �1=p.n�1/e

�������! R1=p
.n�1/e �1=p.n�2/e

�������! R1=p
.n�2/e ! � � � ! R1=p

e ��! R:

Proof. The proof is involved, and so we omit it here and refer the interested reader to
[71, Theorem 5.10]. However, let us remark that if b 2 R is such that Rb WD RŒb�1�
is regular and also HomRb

.R
1=pe

b
; Rb/ is generated by �b as an R1=p

e

b
-module, then

c D bl will suffice for some l � 0. In fact, if additionally b 2 �.R1=pe

/, then c D b3
will work.

Remark 3.7. The element c 2 R constructed above in Lemma 3.6 is an example some-
thing called a test element. Its construction implies that c remains a test element after
localization and completion (this condition is also sometimes called being a completely
stable test element).

Theorem 3.8. With the notation of Definition 3.1, fix any c 2 R satisfying the condition
of Lemma 3.6. Then


.R; �/ D
X

n�0
�n..cR/1=p

ne

/:

Here �0 is defined to be the identity map R! R.

Proof. Certainly the sum
P

n�0 �n..cR/1=p
ne

/ is the smallest ideal J � R both con-

taining c and such that �.J 1=p
e

/ � J . On the other hand, if I � R is any non-zero
ideal such that �.I 1=p

e

/ � I , then Lemma 3.6 implies that c 2 I . This completes the
proof.

Exercise* 3.9. [124, Proposition 4.8] Prove that 
.R; �/ D 
.R; �m/ for any integer
m > 0.
Hint. The containment � is easy. For the other containment, use a clever choice of an
element from Lemma 3.6.

Exercise 3.10. Suppose thatW is a multiplicative system inR. Let� 2HomR.R1=p
e

;R/

and consider the induced map .W �1�/ 2 HomW �1R..W
�1R/1=pe

; W �1R/. Then
show that W �1
.R; �/ D 
.W �1R;W �1�/.
Hint. Suppose that c 2 R comes from Lemma 3.6. Prove that c=1 2 W �1R also
satisfies the condition of Lemma 3.6 for W �1�.

We conclude with an algorithm for computing the test ideal of a pair .R; �/.

Exercise 3.11 ([82]). Choose c satisfying Lemma 3.6 for a non-zero � 2
HomR.R1=p

e

; R/ (finding such a c can be quite easy, as explained in the proof of
Lemma 3.6). Consider the following chain of ideals. J0 D cR, J1 D J0 C �.J 1=p

e

0 /,

and in general Jn D Jn�1 C �.J 1=p
e

n�1 /. Show that Jn D 
.R; �/ for n� 0.
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3.2 Test Ideals of Rings

As noted above, 
.R; �/ is depends heavily on the choice of �. To remove this depen-
dence, one simply considers all possible � simultaneously.

Definition 3.12. We define the test ideal3 
.R/ to be the unique smallest non-zero
ideal J � R such that �.J 1=p

e

/ � J for all e > 0 and all � 2 HomR.R1=p
e

; R/.

It follows from the definition that 
.R; �/ � 
.R/ regardless of the choice of � 2
HomR.R1=p

e

; R/.

Exercise 3.13 ([70, Theorem 4.4]). Suppose that S D kŒx1; : : : ; xn�. Prove that

.S/ D S .

Hint. Use the fact that S1=p
e

is a free S -module to show the following: for any d 2 S ,
there exists an integer e > 0 and � 2 HomS .S1=p

e

; S/ such that �.d1=p
e

/ D 1.

Again, it is not clear that 
.R/ exists.

Theorem 3.14 ([56, Lemma 2.1]). Fix any non-zero � 2 HomR.R1=p; R/ and any
c 2 R satisfying the condition of Lemma 3.6 for �. Then


.R/ D
X

e�0

X

 

 ..cR/1=p
e

/:

where the inner sum runs over all  2 HomR.R1=p
e

; R/.

Proof. The proof is essentially the same as in Theorem 3.8 and so is left to the reader.

Exercise 3.15 (cf. [107, Theorem 7.1 (7)]). Prove that for any given multiplicative sys-
tem W , W �1
.R/ D 
.W �1R/.
Hint. Mimic the proof of Exercise 3.10.

Remark 3.16. The result of the above exercise holds in much more general settings
than we consider here. See [1, 107].

Exercise 3.17 ([45, 126, 159]). Suppose that R is an F-pure ring. Prove that 
.R/ is a
radical ideal and that R=
.R/ is also F-pure.

Exercise* 3.18 ([25, Exercise 1.2.E (4)]). Suppose that R is a reduced (possibly non-
normal) ring and RN is its normalization. The conductor ideal c � R is the largest

3 Strictly speaking, if we follow the literature, 
.R/ is traditionally called the big test ideal or the
non-finitistic test ideal and often denoted by 
b.R/ ore
.R/.
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ideal of RN which is also simultaneously an ideal of R (it can also be described as
AnnR.RN=R/). Show that 
.R/ � c.
Hint. Show that �.c1=p

e

/ � c for all � 2 HomR.R1=p
e

; R/ and all e � 0.

We conclude this section with a theorem which characterizes when 
.R/ D R.

Theorem 3.19. Suppose R is a domain essentially of finite type over a perfect field k.
Then we have 
.R/ D R if and only if for every 0 ¤ c 2 R, there exists an e > 0 and
an R-linear map �WR1=pe ! R which sends c1=p

e

to 1.

Proof. We leave it to the reader to reduce to the case where R is a local ring with max-
imal ideal m. First suppose that 
.R/ D R. Choose a non-zero c 2 R and consider the
ideal

P

e�0
P

  ..cR/
1=pe

/ where the inner sum runs over  2 HomR.R1=p
e

; R/.
Since 
.R/ D R, this sum must equal R as the sum is clearly compatible under
all  . Therefore, since R is local, there exists an e with  ..cR/1=p

e

/ ª m and
so 1 2  ..cR/1=pe

/. Thus 1 D  ..cd/1=p
e

/ for some d 2 R and so by setting
�. / D  .d1=pe � / we have 1 D �.c1=pe

/ as desired.
Conversely, suppose that the condition of the theorem is satisfied. It quickly follows

that every non-zero ideal J which is �-compatible for all � W R1=pe ! R and all
e > 0, satisfies 1 2 J . Thus 
.R/ D R.

Definition 3.20. A ring R for which 
.R/ D R is called strongly F-regular.

Theorem 3.21 ([69]). A regular ring R is strongly F-regular.

Proof. Left as an exercise to the reader (cf. Exercise 3.13).

Exercise 3.22 ([70, 71]). Prove that a strongly F-regular ring is Cohen–Macaulay.
Hint. Reduce to the case of a local ring .R;m/ and find a non-zero element c 2 R
which annihilates H i

m.R/ for all i < dimR. Now apply the functors H i
m. / to the

homomorphism R ! R1=p
e

which sends 1 ! c1=p
e

. Next, apply the same functors
to a map �WR1=pe ! R which sends c1=p

e

to 1. Finally, use the criterion for checking
whether a ring Cohen–Macaulay found in Appendix A, fact (iv).

Exercise 3.23 ([71]). Suppose thatR � S is a split inclusion of normal domains where
S is strongly F-regular (e.g. if S is regular). Show that R is also strongly F-regular
and in particular Cohen–Macaulay.

3.3 Test Ideals in Gorenstein Local Rings

Consider now that the ring R has a canonical module !R. Applying the functor
HomR. ; !R/ to the natural inclusion R � R1=pe

, yields a map

HomR.R
1=pe

; !R/! !R:
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Now, by Theorem A.8, we have HomR.R1=p
e

; !R/ Š !R1=pe D .!R/1=pe

. Thus the
map above may be viewed as a homomorphism

ˆeRW!1=p
e

R ! !R:

In a Gorenstein local ring we know that !R Š R, and so we have a nearly canonical
map ˆRWR1=pe ! R.

Setting. Throughout the rest of this subsection, we will assume thatR is a Gorenstein4

local domain essentially of finite type over a perfect field k, and the mapˆeRWR1=p
e !

R is as described above.

Lemma 3.24 ([124, Lemma 7.1], cf. [107, Example 3.6]). With notation as above, the
R-linear map ˆeRWR1=p

e ! R generates HomR.R1=p
e

; R/ as an R1=p
e

-module.

Proof. Left to the reader.

Remark 3.25. When one identifies R with !R, there is a choice to be made. In par-
ticular, using the above definition, ˆeR is not canonically determined in an absolute
sense. Rather, ˆeR 2 HomR.R1=p

e

; R/ is uniquely determined up to multiplication
by a unit in R1=p

e

. Using the Cartier operator, however, it is possible to give a more
canonical construction of ˆeR. See, for example [25], where ˆeR is called the trace.

Exercise 3.26. Suppose that S D kŒx1; : : : ; xn� where k is a perfect field and consider
the S -linear map ‰WS1=pe ! S which sends .x1 : : : xn/.p

e�1/=pe

to 1 and all other
monomials of the free basis ¹x�1=p

e

1 : : : x
�n=p

e

n º0��i�pe�1 to zero. Show that ‰ gen-
erates HomS .S1=p

e

; S/ as an S-module, and thus that ‰ may be identified with ˆeS .

At first glance, writing ˆeR might seem in conflict with the exponential notation in-
troduced in Lemma 3.6. However, it is not difficult to verify that – up to multiplication
by a unit as in Remark 3.25 – one has .ˆ1R/

e D ˆeR. See [99, Appendix F] or [124,
Lemma 3.9, Corollary 3.10] for further details.

Theorem 3.27. Suppose that R is Gorenstein and local and that ˆeR is as above (for
any e > 0). Then 
.R/ D 
.R;ˆeR/.

Proof. Certainly 
.R;ˆeR/ � 
.R/ since 
.R/ is certainly ˆeR-compatible. For the
converse inclusion, first note that by Exercise 3.9, 
.R;ˆeR/ D 
.R;ˆdR/ for any

4 Everything in this subsection can be immediately generalized to any ring satisfying !R Š R, a
condition sometimes called quasi-Gorenstein, or 1-Gorenstein. It is possible to generalize many
of the results in this setting to the Q-Gorenstein setting as well. See Appendix A for additional
definitions.
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integer d > 0. So consider now some � W F d� R ! R. We know we can write

�. / D ˆdR.c1=p
d � / for some element c 2 R1=pd

. Thus

�.
.R;ˆeR/
1=pd

/ D ˆdR.c1=p
d


.R;ˆdR/
1=pd

/

� ˆdR.
.R;ˆdR/1=p
d

/

� 
.R;ˆdR/ D 
.R;ˆeR/

and so 
.R/ � 
.R;ˆeR/ as desired.

Philosophical Statement 3.28. The previous theorem motivates the study of test ideal
pairs 
.R; �/. For example, consider the following situation. Suppose that R is a
non-normal Gorenstein domain and that RN is its normalization. By applying Exer-
cise 3.18, it can be shown that every R-linear map �WR1=pe ! R extends (uniquely)
to a RN-linear map �W .RN/1=p

e ! RN (for details, see [25, Exercise 1.2.E(4)]).
In particular, ˆeR W R1=p

e ! R extends to a map ˆeR on the normalization as
asserted above. However, even in the case where RN is Gorenstein, ˆeR is almost
certainly not equal to ˆe

RN. Nevertheless, it may still be advantageous to work on RN,
and the following exercise shows that 
.R/ can be computed on the normalization.

Exercise* 3.29. Suppose that R is Gorenstein and RN is its normalization (which is
not assumed Gorenstein). Fix ˆeR as above, show that 
.RN; ˆeR/ D 
.R/.

4 Connections with Algebraic Geometry

In this section we explain the connection between the test ideal and the multiplier ideal,
a construction which first appeared in complex analytic geometry. We assume that
the reader already has some familiarity with constructions such as divisors on normal
algebraic varieties, a resolution of singularities, and the canonical divisor. Note that we
have provided a brief review of divisors in Appendix B aimed at those mainly familiar
with algebraic techniques. Further references for this section include [90], [100] or
[15] (the latter giving a particularly satisfying introduction to multiplier ideals). Again,
we remind the reader that the material in this section is not required to understand the
sections that follow. See also Section 6.

Setting. Throughout this section, let R0 be a normal domain of finite type over C, and
let X0 D SpecR0 denote the corresponding affine algebraic variety.

4.1 Characteristic 0 Preliminaries

Before defining the multiplier ideal, we say a brief word about the type of resolution
of singularities we consider.
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Definition 4.1. Suppose that Y is a variety defined over C. A proper birational map
� W Y 0 ! Y is called a log resolution of singularities for Y if � is proper and birational
and Y 0 is smooth and exc.�/, the exceptional set of � , is a divisor with simple normal
crossings (see Definition B.5 in the appendix). Given a closed subscheme Z � Y ,
� is called a log resolution of singularities for Z � Y if � is a log resolution of
singularities for Y and if both ��1.Z/ and ��1.Z/[ exc.�/ are divisors with simple
normal crossings.

We first define the multiplier ideal of R0 in the case that R0 is Gorenstein. Let � W
eX0 ! X0 be a log resolution of singularities, and choose a canonical divisor K

eX0
on

eX0, in other words, we choose a divisorK
eX0

such that O
eX0
.K
eX0
/ D ^dimeX0�

eX0=C
.

We then obtain a canonical divisor on X0 as follows. Set KX0
to be the (unique)

divisor on X0 which agrees with K
eX0

wherever � is an isomorphism. We now can
define the multiplier ideal of X0.

Definition 4.2. Consider the module 
.eX0;O
eX0
.dK

eX0
� ��KX0

e//. This module is
called the multiplier ideal and is denoted by J.X0/. It is independent of the choice of
resolution.

Of course, it is natural to ask why this module is an ideal. However, set U D eX0 n
exc.�/ which is an open subset of both eX0 and X0 (in fact, X0 n U has codimension
at least 2). We have the natural inclusion


.eX0;O
eX0
.K
eX0
� ��KX0

// 	 
.U;O
eX0
.K
eX0
� ��KX0

//

But .K
eX0
� ��KX0

/jU is zero, so the right side is just 

�

U;OX0

� D R0 because R
is S2; see [61, Chapter III, the method of Exercise 3.5] and [63, Proposition 1.11].

The multiplier ideal has been discovered and re-discovered in many contexts. At
least as early as [47], it was noted that J.X0/ is independent of the choice of resolution
and might be an interesting object to study. Variants of the multiplier ideals described
also appeared throughout the work of Joseph Lipman and others in the 1970’s, see
for example [103]. However, multiplier ideals have been most useful in the context
of pairs (definitions will be provided below) and first appeared independently in the
works of Nadel [119], from the analytic perspective, as well as Lipman [104], from
the perspective of commutative algebra. However, the fundamental algebro-geometric
theory of multiplier ideals was worked out even earlier without the formalism of mul-
tiplier ideals by Esnault–Viehweg in relation to Kodaira-vanishing and its generaliza-
tion, Kawamata–Viehweg vanishing; see [86], [160] and [43].

Remark 4.3. Smooth varieties have multiplier ideal J.X0/ D OX0
. The easiest way

to see this is to simply take � as the identity (in other words, take X0 as its own
resolution). In general, the more severe the singularities of X0, the smaller the ideal
J.X0/ is.
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Example 4.4. Consider the following X0 D Spec CŒx; y; z�=hx3 C y3 C z3i D
SpecR0. Because this is a cone over a smooth variety (an elliptic curve), it has a
resolution eX0 ! X0 obtained by blowing up the origin. We embed X0 � C3 in the
obvious way and blow up the origin in C3 to obtain a log resolution � W Y ! C3 of
X0 inside C3.

E
� � ��

��

eX0
� � ��

��

Y

	
��

¹ptº � � �� X0
� � �� C3:

Here E is the elliptic curve obtained by blowing up the cone point in X0. We know
KY D 2F where F Š P2C is the exceptional divisor of � by [61, Chapter 8.5(b)], thus
we set KC3 D 0. It follows that KY C eX0 D 2F C eX0. On the other hand, we know
��X0 D eX0 C 3F , where the 3 comes from the fact that x3 C y3 C z3 vanishes to
order 3 at the origin (the point being blown-up). Therefore,

KY C eX0 D 2F C eX0 D ��X0 � F:
Now, X0 � 0 in Pic.C3/ D 0, so ��X0 � 0 also. Thus KY C eX0 � �F and so by
the adjunction formula (in the form of [61, Chapter II, Ex. 8.20]),

K
eX0
� .KY C eX0/j

eX0
� .�F /j

eX0
� �E:

So we set K
eX0
D �E and then see that the corresponding KX0

D 0 (since that is the
divisor that agrees with � �E outside of exceptional locus).

Therefore, O
eX0
.K
eX0
� ��KX0

/ D O
eX0
.�E/. This sheaf can be thought of as the

sheaf of functions in the fraction field of R0 which vanish to order 1 along E and have
no poles. It is then clear that 


�

U;OX0

�

is just the maximal ideal of the origin in R0.

Exercise 4.5. Compute the multiplier ideal of Spec CŒx; y; z�=hxn C yn C zni for
arbitrary n > 1.

4.2 Reduction to Characteristic p > 0 and Multiplier Ideals

We now relate the multiplier ideal and the test ideal. We need to briefly describe
reduction to characteristic p, a method of translating varieties in characteristic zero
to characteristic p > 0. We make many simplifying assumptions and so we refer the
reader to [147], [73], or [76] for a more detailed description of the reduction to positive
characteristic process in this context.

Suppose that X0 D SpecR0 D Spec CŒx1; : : : ; xn�=I � Cn. We write I D hf1;
: : : ; fmi where the fi are polynomials. For simplicity, we assume that all of the coef-
ficients of the fi are integers. We set RZ to be the ring ZŒx1; : : : ; xn�=hf1; : : : ; fmi.
For each prime integer p, consider the ring Rp WD RZ=pRZ Š .Z=pZ/Œx1; : : : ; xn�=
hf1 mod p; : : : ; fm mod pi and the associated schemeXp D SpecRp. The scheme
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Xp is called a characteristic p > 0 model for X0, and for large p � 0, Xp and X0
share many properties. For example, Rp is regular for large p � 0 if and only if R0 is
regular, [73]. Given an ideal J0 � R0, we may also reduce it to positive characteristic
by viewing a set of defining equations modulo p, to obtain an ideal Jp (of course, Jp
might depend on the particular generators of J chosen in small characteristics).

Remark 4.6. If the fi are not defined over Z, instead of working with RZ, one should
work with RA D AŒx1; : : : ; xn�=hf1; : : : ; fmi where A is the Z-algebra generated
by the coefficients of the fi (and the coefficients of any other ideals one wishes to
reduce to characteristic p > 0). Instead of working modulo prime integers, one should
quotient out by maximal ideals of A.

Containments and equality (or non-containments and non-equality) of ideals are
preserved after reduction to characteristic p � 0. By viewing finitely generated R0-
modules as quotients of R˚n0 , one can likewise reduce finitely generated modules to
positive characteristic. Maps between such modules can then be represented as matri-
ces, which themselves can be reduced to characteristic p > 0, and properties of those
maps, such as injectivity, non-injectivity, surjectivity and non-surjectivity are also be
preserved for p � 0. In particular, if a map of modules is an isomorphism after re-
duction to characteristic p � 0, then it is an isomorphism in characteristic zero as
well.

Now, if � W eX0 ! X0 is a resolution of the singularities of X0 obtained by blowing
up an ideal J0, then we may reduce J0 to Jp , and then blow that up to obtain �p W
eXp ! Xp , which is also a resolution of singularities for all p � 0 (of course, the
existence of resolutions of singularities for arbitrary varieties in characteristic p > 0

is still an open question [7, 28, 29, 30]). Finally, the multiplier ideal J.X/p (the
multiplier ideal reduced to characteristic p) coincides with the characteristic p > 0

multiplier ideal J.Xp/ WD 
.Xp;O
eXp
.K
eXp
� ��pKXp

// for p � 0. Again, we
suggest the reader see [147], [73], or [76] for a much more detailed description of the
reduction to characteristic p > 0 process.

Theorem 4.7 ([53, 146]). Suppose thatR0 is a Gorenstein ring in characteristic 0 with
X0 D SpecR0. Then J.X0/p D 
.Xp/ for all p � 0.

Proof. We will only prove the � containment. As above, we choose � W eX0 ! X0 to
be a log resolution of singularities which we reduce to a positive characteristic resolu-
tion of singularities �p W eXp ! Xp . We have the following commutative diagram of
schemes in characteristic p > 0

eXp

	p

��

F ��
eXp

	p

��
Xp

F

�� Xp
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where the maps labeled F are the Frobenius maps. By duality, see Corollary A.12, we
have the following diagram of obtained from canonical modules.


.eXp; !
eXp
/

��

ˆ
eXp

�� 
.eXp; ��!
eXp
/

��

.Xp; !Xp

/
ˆXp

�� 
.Xp; !Xp
/:

By working on a sufficiently small affine chart, becauseX0 and thusXp is Gorenstein,
we may assume that 
.Xp; !Xp

/ Š Rp and thus assume that ˆXp
is the map ˆRp

discussed in Subsection 3.3.
The image of the vertical maps is the multiplier ideal J.Xp/ and so it follows from

the diagram that the multiplier ideal is ˆR-compatible. Thus J.Xp/ � 
.Rp/ as long
as J.Xp/ ¤ 0 by Theorem 3.27. But J.Xp/ is non-zero because � is an isomorphism
at the generic points of Xp and eXp.

Exercise* 4.8. While the result above holds for p � 0, it does not necessarily hold
for small p > 0. Consider the ring R D F2Œx; y; z�=hz2C xyzC xy2C x2yi. Verify
the following:

(i) R is F-pure (use Fedder’s criterion).

(ii) R is not strongly F-regular (show that 
.R/ D hx; y; zi).
(iii) The singularities of R can be resolved in characteristic 2 and furthermore,

J.R/ D R (use the method of Example 4.4). This is more involved.

Also see [10] and [132, Example 7.12].

4.3 Multiplier Ideals of Pairs

We have so far only defined the multiplier ideal for a Gorenstein ring. We now consider
a more general setting.

Definition 4.9. Suppose that X is a normal variety of any characteristic. Then a
Q-divisor � is a formal sum of prime Weil divisors with rational coefficients (in other
words, a Q-divisor is just a divisor where we allow rational coefficients). A Q-divisor
� is called effective if all its coefficients are positive. Two Q-divisors �1 and �2 are
said to be Q-linearly equivalent, denoted �1 �Q �2, if there exists an integer n > 0

such that n�1 and n�2 are linearly equivalent Weil divisors. We say that a Q-divisor

 is Q-Cartier if there exists an integer n such that n
 is an integral Cartier divisor.
In that case, the index of 
 is the smallest positive integer n such that n
 is an inte-
gral Cartier divisor. See Appendix B for a more detailed discussion from an algebraic
perspective.
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Instead of working with an arbitrary variety, one often works with a pair.

Definition 4.10. A log Q-Gorenstein pair (or simply a pair if the context is under-
stood) is the data of a normal varietyX of any characteristic and an effective Q-divisor
� such that KX C � is Q-Cartier. A pair is denoted by .X;�/. The index of .X;�/
is defined to be the index of KX C�.

Remark 4.11. There are many reasons why one should consider pairs. Of course,
you might be interested in a divisor inside an ambient variety, and pairs are natural in
that context. Also, not all varieties are Gorenstein, and log Q-Gorenstein pairs have
associated multiplier ideals (as we’ll see shortly). Another reason that pairs occur
is if one changes the variety. In particular, suppose that Y ! X is a morphism of
varieties; for example, a closed immersion, a blow-up, a finite map, or a fibration.
Then in many cases properties of X (respectively Y ) can be detected by studying an
appropriate pair .X;�/ (respectively .Y;�/), see for example [85] or [87]. However,
many of the deepest applications of multiplier ideals of pairs are revealed by observing
the behavior of the multiplier ideal as the coefficients of � vary. This is not a topic we
will explore in this article. We invite the reader to see [33, 35, 100, 140, 141] for more
background.

Before we define the multiplier ideal, we first we state how to pull-back Q-Cartier
divisors. Suppose that 
 is a Q-Cartier divisor on X and � W Y ! X is a birational
map from a normal variety Y . Choose n such that n
 is Cartier and define ��
 to be
1
n
��.n
/.

Definition 4.12. Suppose that .X0; �0/ is a log Q-Gorenstein pair in characteristic
zero. Set � W eX0 ! X0 to be a log resolution of singularities of a pair .X0; �0/ (in
other words, we also assume that Supp.��1�0/[exc.�/ is a simple normal crossings
divisor). Consider the module 
.eX0;O

eX0
.K
eX0
� ��.KX0

C�0///. This module is
called the multiplier ideal and is denoted by J.X0; �0/. It is independent of the choice
of log resolution.

We say that .X0; �0/ has log terminal singularities if J.X0; �0/ D OX0
. For more

about log terminal singularities, see [90] and [92].

Exercise 4.13. Suppose that .X0; �0/ is a pair where X is smooth and �0 has simple
normal crossings support. Show that J.X0; �0/ D OX0

.�b�0c/.

Exercise 4.14. Suppose that X0 is smooth and thatD is an effective Cartier divisor on
X0. Prove that J.X0;D/ D OX0

.�D/.
Hint. Use the projection formula, [61, Chapter II, Exercise 5.1(d)]
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4.4 Multiplier Ideals vs. Test Ideals of Divisor Pairs

Previously we considered test ideals of pairs .R; �/ where R is a ring of characteristic
p and � W R1=pe ! R is an R-linear map. We will see that this pair is essentially the
same data as a log Q-Gorenstein pair .X;�/.

Setting. Throughout this subsection, R is used to denote a normal ring essentially of
finite type over a perfect field of characteristic p > 0. Furthermore, X D SpecR.

Suppose we are given a � 2 HomR.R1=p
e

; R/. The module HomR.R1=p
e

; R/

is S2 both as an R-module and as an R1=p
e

-module. Therefore it is determined by
its localizations outside a set Z � X of codimension 2 (the singular locus), see
[62, Theorem 1.12]. We set U to be the smooth locus of X and consider the sheaf
H omOU

.O
1=pe

U ;OU /. Tensoring with !U D OU .KU / and using the projection
formula, we see that this module is isomorphic to

H omOU
.O

1=pe

U ˝OU
OU .KU /;OU .KU //

ŠH omOU
..OU .p

eKU //
1=pe

;OU .KU //

Š .H omOU
.OU .p

eKU /;OU .KU ///
1=pe

Š .OU ..1 � pe/KU //1=pe

:

Here the first isomorphism is due to the projection formula and the fact that .F e/�L D
L pe

for any line bundle L . The second isomorphism is Theorem A.8 from the Ap-
pendix. The last isomorphism is just [61, Chapter II, Exercise 5.1(b)].

Because HomR.R1=p
e

; R/ is S2, it is determined on U , see [62, Theorem 1.12].
Therefore,

HomR.R
1=pe

; R/ Š HomOU
.O

1=pe

U ;OU /

Š 
.U; .OU ..1 � pe/KU //1=pe

/

Š 
.X; .OX ..1 � pe/KX //1=pe

/:

Of course, .OX ..1� pe/KX //1=pe

is abstractly isomorphic to OX ..1� pe/KX /1=pe

.
Therefore, � may be viewed as a global section of OX ..1 � pe/KX /. In particular,
by [61, Proposition 7.7] which also works for reflexive rank-1 sheaves on normal va-
rieties, � determines an effective divisor D� linearly equivalent to .1 � pe/KX . Set

�� WD 1

pe � 1D� :

Exercise 4.15. If R D FpŒx; y�, find � such that �� is the sum of the two coordinate
axes (in other words, that �� D div.xy/. Find a � such that �� D 0.
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It is straightforward check that there is a bijection between the following two sets,
see [124, Theorems 3.11, 3.13].
8

ˆ

<

ˆ

:

Non-zero R-linear maps
� W F e�R! R up to

pre-multiplication by units.

9

>

=

>

;

 !

8

ˆ

<

ˆ

:

Effective Q-divisors �
on X D SpecR such that
.1 � pe/.KX C�/ � 0.

9

>

=

>

;

: (4.15.1)

Exercise* 4.16 ([126, Proof of Theorem 6.7], cf. [57, Proof of the main theorem]).
Suppose that � W R1=pe ! R is a non-zero R-linear map and that � W eX ! X D
SpecR is a birational map where eX is normal. Prove that � induces a map

.O
eX
.dK

eX
� ��.KX C��/e//1=pe ! O

eX
.dK

eX
� ��.KX C��/e/

which agrees with � wherever � is an isomorphism.

Theorem 4.17 ([151, Theorem 3.2]). Suppose that X0 D SpecR0 is a variety of finite
type over C and that .X0; �0/ is a log Q-Gorenstein pair. Then, after reduction to
characteristic p � 0, .J.X0; �0//p D 
.Xp; ��p

/ where ��p
is a map correspond-

ing to �p as in (4.15.1) above.

Proof. We only briefly sketch the proof. By working on a smaller affine chart if nec-
essary, we may assume that n.KX0

C�0/ � 0 for some integer n. We reduce both X0
and �0 (and a log resolution) to characteristic p and notice that if n.KX0

C�0/ � 0,
then that property is preserved after reduction to characteristic p � 0. Thus we may
always assume that there exists an e > 0 such that .1�pe/.KXp

C�p/ is Cartier. We
set ��p

to be a map corresponding to �p via (4.15.1) above.
Now use the exercise 4.16 above to show that J.X0; �0/p D J.Xp; �p/ is �-

compatible. Thus the inclusion � is rather straightforward. The converse inclusion
requires additional techniques that we will not cover here.

Remark 4.18. While multiplier ideals are quite closely to test ideals, many basic prop-
erties which hold for multiplier ideals fail spectacularly for test ideals. For example, it
follows immediately from the definition that every multiplier ideal is integrally closed
(we suggest the reader prove this as an exercise). However, not every test ideal is
integrally closed [108] and furthermore, every ideal in a regular ring is the test ideal
of an appropriate pair 
.R; hf it /, see [118] (here .R; hf it / is a pair as discussed in
Section 6 below).

5 Tight Closure and Applications of Test Ideals

In this section we survey the test ideal’s historic connections with tight closure theory.
It is not necessary to read this section in order to understand later sections. We should
also mention that as a survey of tight closure, this section is completely inadequate.
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Some important aspects of tight closure theory are completely missing (for example,
phantom homology). Again, we refer the reader to the book [76] or [27, Chapter 10]
for a more complete account.

Setting. In this section, all rings are assumed to be integral domains essentially of
finite type over a perfect field of characteristic p > 0.

Suppose that R � S is an extension of rings. Consider an ideal I � R and its
extension IS . We always have that .IS/ \R � I , however:

Lemma 5.1. With R � S as above and further suppose the extension splits as a map
of R-modules. Then

.IS/ \R D I:
Proof. Fix � W S ! R to be the splitting given by hypothesis. Suppose that z 2 .IS/\
R, in other words, z 2 IS and z 2 R. Write I D hx1; : : : ; xni, we know that there
exists si 2 S such that z DP

sixi . Now, z D �.z/ D � .P sixi / DP xi�.si / 2 I
as desired.

A converse result holds too.

Theorem 5.2 ([67]). Suppose thatR � S is a finite extension of approximately Goren-
stein5 rings, a condition which every ring in this section automatically satisfies. If for
every ideal I � R, we have IS \R D S , then R � S splits as a map of R-modules.

Proof. See [67]

Consider now what happens if the extension R � S is the Frobenius map. Recall
from Definition 2.11 that if I D hx1; : : : ; xmi, then I Œp

e� D hxpe

1 ; : : : ; x
pe

m i. It is an
easy exercise to verify that this is independent of the choice of generators xi .

Exercise 5.3. Notice that R is abstractly isomorphic to R1=p
e

as a ring. Show that
under this isomorphism, I Œp

e� corresponds to the extended ideal I.R1=p
e

/ coming
from R � R1=pe

.

Definition 5.4. Given an ideal I � R, the Frobenius closure of I (denoted IF ) is the
set of all elements z 2 R such that zp

e 2 I Œpe� for some e > 0. Equivalently, it is
equal to the set of all elements z 2 R such that z 2 .IR1=pe

/ for some e > 0.

Remark 5.5. The set IF is an ideal. Explicitly, if z1; z2 2 IF , then zp
a

1 2 I Œp
a� and

z
pb

2 2 I Œpb�. Notice that we may assume that a D b. Thus z1 C z2 2 IF . On the
other hand, clearly hz1 2 IF for any h 2 R.

5 Nearly all rings in geometry satisfy this condition. Explicitly, a local ring .R;m/ is called approxi-
mately Gorenstein if for every integer N > 0, there exists I � mN such that R=I is Gorenstein.
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We point out a several basic facts about IF mostly for comparison with tight closure
(defined below).

Proposition 5.6. Fix R to be a domain and hx1; : : : ; xni D I � R an ideal.

(i) .IF /F D IF .

(ii) For any multiplicative set W , .W �1I /F D W �1.IF /.
(iii) R is F-split if and only if I D IF for all ideals I � R.

Proof. The proof of property (i) is left to the reader. For (ii), we note that .�/
is obvious. Conversely, suppose that z 2 .W �1I /F , thus zp

e 2 .W �1I /Œpe� D
W �1.I Œpe�/. Therefore, for somew 2W , wzp

e 2 I Œpe�, which implies that .wz/p
e 2

I Œp
e� and the converse inclusion holds. Part (iii) is obvious by Theorem 5.2.

Now we define tight closure.

Definition 5.7 ([70]). Suppose thatR is an F-finite domain and I is an ideal ofR, then
the tight closure of I (denoted I�) is defined to be the set

¹z 2 R j 9 0 ¤ c 2 R such that czp
e 2 I Œpe� for all e � 0º:

It should be noted that tight closure is notoriously difficult to compute. For a survey
on computations of tight closure (using highly geometric methods) we suggest reading
[23]. Also see [20, 21, 81, 136].

Proposition 5.8. Suppose we have an ideal hx1; : : : ; xni D I � R where R is an
F-finite domain.

(i) I� is an ideal containing I , [70, Proposition 4.1(a)].

(ii) .I�/� D I�, [70, Proposition 4.1(e)].

(iii) It is known that the formation of I� does NOT commute with localization, [24].

(iii0) If I is generated by a system of parameters, then the formation of I� does com-
mute with localization, [4, 142].

(iv) If 
.R/ D R, then I� D I for all ideals I , [69, Theorem 3.1(d)].

(v) We always have the containment I� � I where I is the integral closure of I ,
[70, Theorem 5.2].

Proof. For (i), suppose that czp
e 2 I Œpe� and dyp

e 2 I Œpe� for all e � 0 for certain
c; d 2 Rn¹0º. Then cd.zCy/pe 2 I Œpe� for all e � 0. Of course, clearly I� contains
I (choose c D 1). Property (ii) is left to the reader. The proof of (iii) is beyond the
scope of this survey, see [24]. The proof of (iii0) can be found in [142] where it is
actually shown that tight closure coincides with plus-closure.

For (iv), suppose that z 2 I� and 
.R/ D R. Choose c ¤ 0 such that czp
e 2 I Œpe�

for all e � 0. We know that there exists an e > 0 and � W R1=pe ! R which sends c
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to 1. Write czp
e DP aix

pe

i . Then z D �.czpe

/ DP xi�.ai / 2 I . For (v) we give
a hint in the form of a characterization of I . One has x 2 I if and only if there exists
0 ¤ c 2 R such that cxn 2 In for all n > 0.

We now state some important additional more subtle properties of tight closure.

Theorem 5.9 ([27, Chapter 10; 76; 147, Section 1.3]).

� (Persistence) Given any map of rings R! S , I�S � .IS/�.

� (Finite extensions) If R � S is a finite extension of rings, then .IS/ \ R � I�
for all ideals I � R. Also see [142].

� (Colon Capturing) If R is local and x1; : : : ; xd is a system of parameters for R,
then we have .x1; : : : ; xi / WR xiC1 � .x1; : : : ; xi /�.

Perhaps the most important open problem in tight closure theory is the following.

Conjecture 5.10. R is strongly F-regular if and only if I� D I for all ideals I .

Remark 5.11. A number of special cases of this conjecture are known; see [76, Theo-
rem 12.2], [106], [107], [6] and [149]. One should note that the method of Lemma 5.1
immediately yields the ()) implication.

In fact, one can also simply use tight closure of ideals to define a slightly different
variant of test ideals.

Definition 5.12. Suppose that R is a domain essentially of finite type over a perfect
field. Define 
fg.R/ to be

T

I�R.I WR I�/. This ideal is called the finitistic test ideal
or sometimes the classical test ideal.

Remark 5.13. The definition of the test ideal in this article is non-standard. Normally

fg.R/ is called the test ideal, while the ideal we denoted by 
.R/ is called the non-
finitistic test ideal, or sometimes the big test ideal and is commonly denoted bye
.R/
or 
b.R/. It is hoped that these two potentially different ideals always coincide, see
the conjecture below. However, even if they do not, there now seems to be consensus
that the non-finitistic test ideal is the better notion.

Conjecture 5.14. The ideals 
fg.R/ and 
.R/ coincide.

Exercise 5.15 (cf. [107, Theorem 7.1(4)]). Prove that 
.R/ � 
fg.R/.

Exercise 5.16 ([45, Proposition 2.5]). Suppose that R is F-pure, show that 
fg.R/ is a
radical ideal.
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5.1 The Briançon–Skoda Theorem

Now we move on to one of the classical applications of tight closure theory, a very
simple proof of the Briançon–Skoda theorem.

Theorem 5.17 ([70, Theorem 5.4]). Let R be an F-finite domain, and .u1; : : : ; un/ D
I � R an ideal. Then for every natural number m,

ImCn � ImCn�1 � .Im/�

and so

.R/ImCn � 
fg.R/ImCn � Im:

This gives a particularly nice statement in the case that R is strongly F-regular (be-
cause 
.R/ D R).

Proof from [68]. For any y 2 ImCn�1, we know that there exists 0 ¤ c 2 R such
that cyl 2 .ImCn�1/l for all l � 0, see [79, Exercise 1.5]. Consider a monomial
u
a1

1 : : : u
an
n where a1 C � � � C an D l.mC n � 1/l . Write each ai D bi l C ri where

0 � ri � l � 1. We claim that the sum of the bi is at least m, which will imply that
the monomial is contained in .Im/Œl� for all l such that l D pe. However, if the sum
b1 C � � � C bm � m � 1, then l.m C n � 1/ D P

ai � l.m � 1/ C n.l � 1/ D
l.mC n � 1/ � n < l.mC n � 1/, which implies the claim.

Thus cyp
e 2 I Œpe� and so y 2 .Im/� as desired.

Exercise 5.18. Following the method in the above proof, if a is an ideal generated by
r elements, show that arp

e � aŒp
e�a.r�1/pe

for all e � 0.

5.2 Tight Closure for Modules and Test Elements

Definition 5.19. Suppose that R is a domain and that M is an R-module. We define
the tight closure of 0 in M , denoted 0�M as follows.

0�M D ¹m 2M j 90 ¤ c 2 R; such that 0 D m˝c1=pe 2M˝RR1=pe

for all e � 0.º

If 0�M D 0, then we say that 0 is tightly closed in M .

Remark 5.20. More generally, given a submodule N � M , one can define N �
M �

M , the tight closure of N in M . However, this submodule is just the pre-image of
0�
M=N

�M=N under the natural surjection M !M=N , see [70, Remark 8.4].

It is known that a ring is strongly F-regular if and only if 0 is tightly closed in every
module, [68]. By Remark 5.20, note that I� D I , if and only if 0�

R=I
D 0.

We conclude with one more definition.
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Definition 5.21. An element 0 ¤ c 2 R is called a finitistic test element if for every
ideal I � R and every z 2 I�, we have

czp
e 2 I Œpe�:

An element 0 ¤ c 2 R is called a (big) test element if for every R-module M and
every z 2 0�M , we have

0 D z ˝ c1=pe 2M ˝R R1=pe

:

Theorem 5.22. Suppose that c 2 R is chosen as in Lemma 3.6 for some non-zero R-
linear map � W R1=pe ! R. Then c is a finitistic test element and a big test element.

Proof. First consider the finitistic case.
Suppose that z 2 I�. Then there exists a 0 ¤ d 2 R such that dzp

e 2 I Œpe� for
all e � 0. Fix � W R1=p ! R. It follows from Lemma 3.6 that there exists an integer
e0 > 0 such that �e0.d1=p

e0 / D c. Applying �e0 to the equation dzp
e 2 I Œpe� for

e � e0 yields
czp

e�e0 2 �e0.I Œp
e�/ � I Œpe�e0 �:

Since this holds for all e � e0, we see that c is indeed a finitistic test element.
We leave the non-finitistic case to the reader. It is essentially the same argument

but instead one considers the map E ˝R R1=pe ! E ˝R R D E which defined by
z˝ d1=pe 7! z˝ �.d1=pe

/ D �.d1=pe

/z where � W R1=pe ! R is the map given in
the hypothesis.

Exercise* 5.23 ([68, 70]). Show that 
fg.R/ is generated by the set of finitistic test
elements. Even more,


fg.R/ D ¹ the set of all of the finitistic test elements of Rº [ ¹0º:
Furthermore, show that 
.R/ is likewise generated by the big test elements of R.
Hint. Suppose that z 2 I�, show that for every e > 0, zp

e 2 .I Œpe�/�.

Remark 5.24. Test ideals are made up of test elements, or those elements which can
be used to test tight closure containments. This is the etymology of the name “test
ideals”.

Exercise 5.25. Suppose that .R;m/ is a local domain and E is the injective hull of the
residue field R=m. Show that 0�E is the Matlis dual of R=
.R/.
Hint. Choose an element 0 ¤ c 2 R satisfying the conclusion of Lemma 3.6. Show
that

0�E D
\

e�0
ker.E ! E ˝R1=pe

/

where the maps in the intersection send z 7! z ˝ c1=pe

. Show that this intersection
is the Matlis dual of the construction of the test ideal found in Theorem 3.14. See
Appendix A for Matlis Duality.
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6 Test Ideals for Pairs .R; at/ and Applications

As mentioned before, many of the most important applications of multiplier ideals in
characteristic zero were for multiplier ideals of pairs. Another variant of pairs not dis-
cussed thus-far in this survey is the pair .R0; at0/ where R0 is a normal Q-Gorenstein
domain of finite type over C, a0 is a non-zero ideal and t � 0 is a real number. The
associated multiplier ideals J.SpecR0; at0/ are important in many applications and
have themselves become objects of independent interest, see for example [100] and
[101]. Inspired by this relation, N. Hara and K.-i. Yoshida defined test ideals for such
pairs. They also proved the analog of Theorem 4.17 showing that the multiplier ideal
coincides with the test ideal after reduction to characteristic p � 0.

Setting. In this section, unless otherwise specified, all rings are assumed to be integral
domains essentially of finite type over a perfect field of characteristic p > 0.

6.1 Initial Definitions of at-test Ideals

We now show how to incorporate an ideal a and coefficient t 2 Q�0 into the test
ideal. An important motivating case is when R is in fact regular; in this situation, one
should think of this addition as roughly measuring the singularities of (a multiple of)
the closed subscheme of Spec.R/ defined by a.

Definition 6.1 ([58, 123]). Suppose that R is a ring, let a � R be a non-zero ideal,
and t 2 Q�0. The test ideal 
.R; at / (or simply 
.at / when confusion is unlikely to
arise) is defined to be the unique smallest non-zero ideal J � R such that we have
�..adt.pe�1/eJ /1=pe

/ � J for all e > 0 and all � 2 HomR.R1=p
e

; R/.

Remark 6.2. In other words, 
.R; at / is in fact the unique smallest non-zero ideal
which is �-compatible for all � 2 .adt.pe�1/e/1=pe � HomR.R1=p

e

; R/ and all e � 0.
Again, it is unclear that a smallest such non-zero ideal exists.

Remark 6.3. As in previous sections, N. Hara and K.-i. Yoshida’s original defini-
tion was the finitistic test ideal of a pair. In particular, they defined 
fg.R; a

t / to be
T

I�R.I W I�at

/ where I�at

is the at -tight closure of I , see Definition 6.13 below.
These two ideals are known to coincide in many cases including the case that R is
Q-Gorenstein.

Theorem 6.4 ([56]). Suppose thatR is a ring, a � R is a non-zero ideal, and t 2 Q�0.
Then, for any non-zero c 2 
.R; at /, we have


.R; at / D
X

e�0

X

�

�..cadt.pe�1/e/1=pe

/

where the inner sum runs over � 2 HomR.R1=p
e

; R/. More generally, the above
equality remains true if c is replaced by any non-zero element of 
.R; at /.
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Proof. This is left as an exercise to the reader. For a hint, reduce to the case of
Lemma 3.6.

Exercise 6.5 ([58, Remark 6.6]). Suppose that R is a ring, a1; : : : ; ak � R are non-
zero ideals, and t1; : : : ; tk 2 Q�0. Imitating the above result and its proof, show
that one can define a test ideal 
.at11 at22 � � � atkk / as the unique smallest non-zero ideal
J � R such that

�
��

J � b
k
Y

iD1
a
dti .pe�1//e
i

�1=pe
�

� J

for all e > 0 and all � 2 HomR.R1=p
e

; R/:

The following property of test ideals was inspired by analogous statement for mul-
tiplier ideals.

Theorem 6.6 ([16, Corollary 2.16; 18, Lemma 3.23; 117, Remark 2.12]). Suppose that
R is a ring, a � R is a non-zero ideal, and s; t 2 Q�0. If s � t , then 
.as/ � 
.at /.
Furthermore, there exists � > 0 such that 
.as/ D 
.at / for all s 2 Œt; t C ��.
Proof. If s � t , then .ads.pe�1/e/1=pe � .adt.pe�1/e/1=pe

and the first statement
is left as an exercise to for the reader. For the second statement, choose non-zero
elements c 2 
.R; atC1/ and x 2 a. Using the Noetherian property of R with Theo-
rem 6.4 above, there exists an N � 0 such that


.R; at / D
N
X

eD0

X

�

�..cxadt.pe�1/e/1=pe

/

where the inner sum runs over all � 2 HomR.R1=p
e

; R/. Let � D 1
pN�1 , so that

xadt.pe�1/e � ad.tC
/.pe�1/e for all 0 � e � N . Thus, we have


.R; at / �
X

e�0

X

�

�..cad.tC
/.pe�1/e/1=pe

/ D 
.R; atC
/

as desired.

Definition 6.7 ([16, 117, 156]). A positive real number � is called an F-jumping num-
ber of the ideal a if 
.a�/ ¤ 
.a��
/ for all � > 0. If R is strongly F-regular, then the
smallest F-jumping number of a is called the F-pure threshold of a.

Remark 6.8. The F-jumping numbers were introduced as characteristic p > 0 analogs
of jumping numbers of multiplier ideals in characteristic zero, [35]. We point out that
a great interest in F-jumping numbers has revolved around proving that the set of
F-jumping numbers form a discrete set of rational numbers. See [16, 17, 18, 54, 84,
128, 131, 155].
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Theorem 6.9 ([58]). Suppose that R is a ring, a;b � R are non-zero ideals, and
s; t 2 Q�0.

(i) If a � b, then 
.at / � 
.bt /. Furthermore, if a is a reduction of b (i.e. Na D Nb),
then 
.at / D 
.bt /.

(ii) We have a 
.bs/ � 
.abs/ with equality if a is principal. In particular, if R is
strongly F-regular, then a � 
.a/.

(iii) (Skoda) If a is generated by r elements, then 
.arbs/ D a 
.ar�1bs/.

Proof. The proof is left as an exercise to the reader. As a hint for (iii), using Exer-
cise 5.18, we have

carar.p
e�1/ D carpe D caŒpe�a.r�1/pe D aŒp

e�car�1a.r�1/.pe�1/:

Then manipulate


.arbs/ D
X

e�0

X

�

�..carar.p
e�1/bdt.pe�1/e/1=pe

/:

Exercise* 6.10 ([56, Theorem 4.1; 58, Theorem 2.1]). If a has a reduction generated
by at most r elements, show that 
.at / D a 
.at�1/ for any t � r . In particular,

.ah/ D ah�rC1 
.ar�1/ � ah�rC1 � a for any integer h � r .

Exercise 6.11 ([56, Proposition 3.1], cf. [126]). For any multiplicative system W ,
prove that W �1
.R; at / D 
.W �1R; .W �1a/t /.

Remark 6.12. While the above exercise was first stated as Proposition 3.1 in [56], the
proof provided therein is not sufficient. In particular, one needs the existence of a “test
element” that remains a test element after localization. See Remark 3.7. However,
once one uses Lemma 3.6 to construct such a test element, the proof in [56] goes
through without substantial change.

6.2 at-tight Closure

Definition 6.13. Suppose that R is a ring a � R is an ideal and t 2 Q�0. For any
ideal I of R, the at -tight closure of I (denoted I�at

) is defined to be the set

¹z 2 R j 9 0 ¤ c 2 R such that cadt.pe�1/ezpe 2 I Œpe� for all e � 0º:

See Definition 2.11 for the definition of I Œp
e�.

Exercise 6.14 ([58]). Show that I�at

is an ideal containing I , and that 
.R; at / I�at �
I for all I .
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Exercise 6.15 ([58, Proposition 1.3(4)]). If a is a reduction6 of b, prove I�at D I�bt

for all t 2 Q�0.

Exercise 6.16. In the definition of I�at

-tight closure, demonstrate that the containment
cadt.pe�1/ezpe 2 I Œpe� may be replaced by the containment cadtpeezpe 2 I Œpe� or
the containment cabt.pe�1/czpe 2 I Œpe� without change to I�at

. In fact, the original
definition of I�at

was the former of these, see [58].

Exercise 6.17 ([123]). Show that 
fg.a
t / WDTI�R.I�at W I / coincides with the set of

c 2 R satisfying the following condition: whenever z 2 I�at

, then cadt.pe�1/ezpe �
I Œp

e� for all e � 0.

Hint. Show that if z 2 I�at

, then for every e � 0, adt.pe�1/ezpe � .I Œpe�/�at

.

Remark 6.18. Note when a D R, we recover the original definition of tight closure.
In general, while there are many similarities between tight closure and at -tight closure,
there are some very important differences as well. In fact, at -tight closure fails to be a
closure operation at all: in many cases .I�at

/�at

is strictly larger than I�at

(in other
words, the operation is not idempotent). However, if a is primary to a maximal ideal,
A. Vraciu has developed an alternate version of at -tight closure which shares many
aspects of the same theory but which is idempotent, see [162].

Exercise 6.19. If R is strongly F-regular and a is a non-zero principal ideal, show that
I�a D I W a for all ideals I . Use this to produce an example where .I�at

/�at

is
strictly larger than I�at

.

6.3 Applications

The test ideal 
.at / of a pair was introduced because of the connection between 
.R/
and J.X0 D SpecR0/ discussed in Section 4. In particular, working in characteris-
tic zero, many of the primary applications of multiplier ideals involved pairs of the
form .X0; a

t
0/, or more generally .X0; at0b

s
0/. One such formula is the subadditivity

formula, see [32, 114]. In [152], S. Takagi proved analogous results for the test ideal.
In fact, Takagi was able to prove a subadditivity formula on singular varieties (for
simplicity, we only handle the smooth case below). Using reduction to characteristic
p > 0, one can then obtain the same formula for multiplier ideals, thus obtaining a new
result in characteristic-zero algebraic geometry. Recently, E. Eisenstein has obtained
a geometric proof in characteristic-zero of the results for singular varieties [37].

Exercise* 6.20 ([152, Proposition 2.1]). Given ideals a;b � R and numbers s; t 2
R�0, prove that I�at


.atbs/ � I 
.bs/ for any ideal I � R.

6 Again, an ideal a � b such that a D b.



A Survey of Test Ideals 67

Theorem 6.21 (Subadditivity, [152, Theorem 2.7]). Suppose R is a regular local ring,
and a;b are ideals in R. For any s; t 2 Q�0, we have


.atbs/ � 
.at /
.bs/:

If instead R is of finite type over a perfect field k but is not assumed to be regular, then
still:

J .R=k/
.atbs/ � 
.at /
.bs/;
where J .R=k/ is the Jacobian ideal of R over k, see [36, Section 16.6].

Proof. We only prove the first statement. Fix 0 ¤ c 2 
.atbs/ � 
.at / \ 
.bs/.
From Exercise 6.20, we have 
.at /�at


.atbs/ � 
.at /
.bs/. To finish the proof,
it suffices to show that 
.at /�at D R. For all  2 HomR.R1=p

e

; R/, we know
 ..cadt.pe�1/e/1=pe

/ � 
.at /. Thus, using Exercise 2.13, we see cadt.pe�1/e �

.at /Œp

e� for all e � 0. In particular, this shows 1 2 
.at /�at

as desired.

Corollary 6.22 ([152, Theorem 0.1]). Let X0 D SpecR0 be a normal Q-Gorenstein
variety over C and let J .R0=C/ be the Jacobian ideal sheaf ofX over C. Let a0;b0 2
OX0

be two non-zero ideal sheaves and fix real numbers s; t � 0. Then

J .R0=C/J.X0; a
t
0b
s
0/ � J.X0; a

t
0/J.X0;b

s
0/:

Proof. This follows via reduction to characteristic p > 0, see Subsection 4.2. Ap-
ply Theorem 6.21 and an analog of Theorem 4.17 which can be found in [58, Theo-
rem 6.8].

We now discuss another application of the subadditivity formula for test ideals: the
growth of symbolic and ordinary powers of an ideal. Recall that the n-th symbolic
power of an ideal a � R is given by a.n/ D .anW �1R/ \ R, where W � R is the
compliment of the union of the associated primes of a. In the case that a is a prime
ideal, a.n/ coincides with the a-primary component of an.

Theorem 6.23 ([72], cf. [34, 74, 157]). Let .R;m/ be a regular local ring with infinite
residue field R=m. Let a be any non-zero ideal of R and let h be the maximal height
of any associated prime ideal of a. Then a.hn/ � an for all integers n � 1.

Proof. SinceR is regular (and hence also strongly F-regular), using subadditivity (and
Theorem 6.9 (iii)) we have

a.hn/ � 
.a.hn// � .
..a.hn//1=n//n

for all integers n � 0. Thus, it suffices to check that 
..a.hn//1=n/ � a.1/ D a, which
may be done after localizing at each associated prime p of a. Since Rp has dimension
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at most h and infinite residue field, every non-zero ideal of Rp has a reduction gener-
ated by no more than h elements, [79, Proposition 8.3.7, Corollary 8.3.9]. Thus, since
a.hn/Rp D ahnRp, we have (using Exercises 6.10 and 6.11)


.R; .a.hn//1=n/Rp D 
.Rp; .a
hnRp/

1=n/ D 
.Rp; a
hRp/ � aRp

and we conclude that a.hn/ � an for all n � 0.

Exercise* 6.24. Modify the proof of Theorem 6.23 to show the stronger statement
a.kn/ � .a.k�hC1//n for all k � n.

7 Generalizations of Pairs: Algebras of Maps

In this short section we discuss a common generalization of the pairs .R; �/ and
.R; at / previously introduced. In fact this generalization encompasses all studied types
of pairs, triples, etc. This idea has also been generalized to modules in [12], although
we will not work in that generality.

Setting. In this section, unless otherwise specified, all rings are assumed to be integral
domains essentially of finite type over a perfect field of characteristic p > 0.

Fix a ring7 R and set Ce D HomR.R1=p
e

; R/. The test ideals and related notions
such as F-purity and F-regularity are detected by looking for Frobenius splittings and
similar special elements of Ce for various e � 0. Fundamentally, all pairs we have
previously considered restrict the potential elements of Ce (e.g. only multiples of a
fixed homomorphism �WR1=pe ! R). We abstract the idea of restricting potential
elements of Ce as follows.

Consider now the Abelian group

C D
M

e�0
Ce D

M

e�0
HomR.R

1=pe

; R/:

We can turn this into a non-commutative N-graded ring by the following multiplication
rule. For ˛ 2 Ce and ˇ 2 Cd we define

˛ � ˇ WD .˛ ı ˇ1=pe W R1=pdCe ! R/ 2 CdCe:

Explicitly, ˇ1=p
e

is the R1=p
e

-linear map R1=p
dCe ! R1=p

e

defined by the rule

ˇ1=p
e

.x1=p
dCe

/ D .ˇ.x1=pd

//1=p
e

:

We then compose with a map ˛ W R1=pe ! R to obtain ˛ � ˇ.

7 In fact, M. Blickle has shown that the theory below can be extended F-finite rings which are not
necessarily reduced [12].
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We call C the complete algebra of maps on R. Notice that C is not commuta-
tive (and C0 D R is not even central). Even more, this ring is not generally finitely
generated over C0 D R [83].

Remark 7.1. Suppose for simplicity that .R;m/ is local. The algebra C is, up to some
choices of isomorphism, Matlis dual to F .E/, the algebra of (iterated-)Frobenius ac-
tions on E, the injective hull of the residue field R=m. See [107].

Definition 7.2 ([129, Section 3]). An (algebra-)pair .R;D/ is the combined informa-
tion of R and a graded-subring D � C such that D0 D C0 D HomR.R;R/ Š R and
De ¤ 0 for some e > 0.

Example 7.3. Suppose R is a ring and a � R is an ideal. Then for any real number
t � 0, we can construct the submodule

De WD .adt.pe�1/e/1=pe � Ce D
M

e�0
..adt.pe�1/e/1=pe � HomR.R

1=pe

; R//:

One can verify that
L

e�0De forms a graded subalgebra which we denote by C at

.

Exercise 7.4 (Different roundings and algebras). Prove that C at

is indeed a graded
subalgebra of C . Give an example to show that

L

e�0.abt.p
e�1/c/1=pe � Ce is not a

graded subalgebra but
L

e�0.adtp
ee/1=pe � Ce is (although its first graded piece is not

necessarily isomorphic to R).

Example 7.5. If one fixes a homogeneous element � 2 Ce for e > 0, then one can
form the algebra h�i DLn�0 �nR1=p

ne � C which is just the subalgebra generated
by C0 and �.

Definition 7.6. Given a pair .R;D/, an ideal I � R is called D-compatible if
�.I 1=p

e

/ � I for all � 2 De and all e � 0.

Definition 7.7 ([129, Definition 3.16]). The big test ideal 
.R;D/ of a pair .R;D/, if
it exists, is the unique smallest ideal J that satisfies two conditions:

(i) J is D-compatible, and

(ii) J ¤ ¹0º.

Exercise 7.8 ([129]). Suppose that D has a non-zero homogeneous element � 2 De,
e > 0. Prove that 
.R;D/ exists by using Lemma 3.6.

Exercise 7.9 ([129]). Suppose that .R; at / is a pair as in Section 6. Prove that

.R;C at

/ D 
.R; at /. Further show that if � 2 Ce is non-zero, then 
.R; h�i/ D

.R; �/.
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Algebras of maps appear very naturally. For example, suppose that R is a ring and
CR is the complete algebra of maps on R. Suppose that I � R is a CR-compatible
ideal (such as the test ideal 
.R/ or the splitting prime8 P of [2].). One can then
restrict each element of CR to R=I . This yields an algebra of maps DR=I D CRjR=I
which may or may not be equal to CR=I .

Exercise 7.10 ([124]). With the notation above, suppose thatR is Gorenstein and local.
Prove that the algebra DR=I is equal to h�i for some � 2 CR=I .

One can define F-purity for algebras as well.

Definition 7.11. Suppose that .R;D/ is a pair. Then the pair is called sharply F-pure
(or sometimes just F-pure) if there exists a homogenous element � 2 De, e > 0 such
that �.R1=p

e

/ D R, i.e. � is surjective.

Exercise 7.12 ([129], cf. [12, 13]). Prove that for a sharply F-pure pair .R;D/,

.R;D/ defines an F-pure subscheme and so in particular is a radical ideal.

The following theorem is an application of this approach of algebras of pairs.

Theorem 7.13 ([129], cf. [31, 130]). Suppose that .R;D/ is a pair (i.e. D D C ). Then


.R;D/ D
X

e>0

X

�2De


.R; �/:

If R is additionally normal, then this also equals
P

e>0

P

�2De

.R;��/.

For non-Q-Gorenstein normal varieties X0 over C, de Fernex and Hacon have de-
fined a multiplier ideal J.X0/ [31]. Furthermore,

J.X0/ D
X

KX0
C�0

is Q-Cartier

J.X0; �0/:

It is therefore natural to conjecture following.

Conjecture 7.14. Given a variety X0 D SpecR0 in characteristic zero, we have

.Rp/ D J.X0/p for all p � 0 (here the subscript p denotes reduction to charac-
teristic p > 0 as in Subsection 4.2).

Work of M. Blickle implies that this conjecture holds for toric rings [11].

Remark 7.15. For other applications, it is likely important that one has a good measure
of the finiteness properties of the given algebra D . One very useful such property is the
Gauge-Bounded property introduced in [12] (cf. [9]). This property is quite useful for
proving questions related to the discreteness ofF-jumping numbers, see Definition 6.7.

8 In an F-pure local ring, the splitting prime is the unique largest CR-compatible ideal not equal to
the whole ring.
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8 Other Measures of Singularities in Characteristic p

So far we have talked about test ideals, F-regularity and F-purity. In this section we
introduce several other ways to measure singularities in positive characteristic. For a
more complete list, please see the appendix.

First we introduce two other classes of singularities. F-rationality and F-injectivity.

8.1 F-rationality

Setting. In this subsection, unless otherwise specified, all rings are assumed to be in-
tegral domains essentially of finite type over a perfect field of characteristic p > 0.

Definition 8.1. Suppose that R is a normal Cohen–Macaulay ring and that ˆRW
!R1=p D F�!R ! !R is the canonical dual of Frobenius, see Theorem A.8. We
say that R has F-rational singularities if there are no non-zero proper submodules
M � !R such that ˆR.F�M/ �M .

Exercise* 8.2. Prove that the hypothesis that R is normal above is redundant.

Exercise 8.3 ([45]). Prove that a strongly F-regular ring is F-rational and that a Goren-
stein F-rational ring is strongly F-regular.

Hint. For the first part, use Theorem 3.19 and apply the functor HomR. ; !R/.

Exercise* 8.4 ([144]). Recall that an integral domain R0 of finite type over C is said
to have rational singularities if for a resolution of singularities � W eX0 ! X0 D
SpecR0, ��!

eX0
D !X0

and X0 is Cohen–Macaulay9. Now suppose we are given an
integral domain R0 of finite type over C. Show that if Rp has F-rational singularities
after reduction to characteristic p � 0 (see Subsection 4.2), then R0 has rational
singularities in characteristic zero.

Remark 8.5. The converse of the above exercise also holds, but the proof is more
involved. See [51] and [110].

We briefly mention the original definition of F-rationality.

Theorem 8.6. A local ring .R;m/ has F-rational singularities if and only if some
ideal I D .x1; : : : ; xn/ generated by a full system of parameters satisfies I D I�
(here I� denotes the tight closure of I , see Section 5).

Proof. See [45] or [27, Chapter 10].

9 This is not normally the definition of rational singularities, but is instead a criterion often attributed
to Kempf, [89, p. 50].
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8.2 F-injectivity

Setting. In this subsection, unless otherwise specified, all rings are assumed to be re-
duced and essentially of finite type over a perfect field of characteristic p > 0.

Definition 8.7. A local ring .R;m/ is called F-injective if for every integer i > 0,
the natural map H i

m.R/ ! H i
m.R

1=p/ is injective. An arbitrary ring R is called
F-injective if all of its localizations at prime ideals are F-injective.

Exercise 8.8. Suppose that R is Cohen–Macaulay and local. Prove that R is F-
injective if and only if the canonical dual to Frobenius F�!R ! !R is surjective.

Exercise 8.9 ([44]). Prove that a Gorenstein ring is F-injective if and only if it is F-
pure and that an F-pure ring is always F-injective.

Exercise 8.10 ([45]). Suppose that .R;m/ is a Cohen–Macaulay local ring and f 2 R
is a regular element. Prove that if R=f is F-injective, then R is F-injective.

Hint. Using the criterion in Exercise 8.8, consider the diagram:

0 �� F�!R

��

�F�f
p

�� F�!R ��

��

F�!R=f p

ˇ

��

�� 0

0 �� !R
�f

�� !R �� F�!R=f �� 0

Show that ˇ surjects, by considering the map F�!R=f ! F�!R=f p . Now take the
cokernels of the left and middle vertical maps and use Nakayama’s lemma.

Remark 8.11. It is an open question whether Exercise 8.10 holds without the Cohen–
Macaulay assumption. It is however known that the analog of Exercise 8.10 does
not hold for F-pure rings in general, see [44] and also [137]. One can ask the same
question for strongly F-regular and F-rational singularities, and the answers are no
and yes respectively; see [45] and [138].

Exercise* 8.12. [94, 95, 126] A normal Cohen–Macaulay ring R0 of finite type over
C is called Du Bois if for some (equivalently any) log resolution of singularities
� W eX0 ! X0 D SpecR0 with simple normal crossings exceptional divisor E0,
��!

eX0
.E0/ Š !X0

. Prove that if Xp has F-injective singularities after reduction to
characteristic p � 0, then X0 has Du Bois singularities in characteristic zero.
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Hint. Consider the diagram

.��!
fXp
.peEp//

1=pe

�

��

�� ��!
fXp
.Ep/

ˇ

��
!
1=pe

Xp

ˆ �� !Xp

where the horizontal arrows are the dual of the Frobenius map (see Subsection 3.3).

Remark 8.13. The converse implication of the above exercise is false as stated, in fact
that singularity FpŒx; y; z�=hx3Cy3Cz3i is F-injective if and only if p D 1 mod 3.
However, it is an important open question whether a Du Bois singularity is F-injective
after reduction to characteristic p > 0 for infinitely many primes p (technically, a
Zariski-dense set of primes), this condition is called dense F-injective type whereas
the original condition is called open F-injective type. Likewise, it is an open question
whether a log canonical singularity is F-pure after reduction to characteristic p > 0

for infinitely many primes p.

Exercise* 8.14 ([57]). A log Q-Gorenstein pair .X;�/ of any characteristic is called
log canonical if for every proper birational map � W eX ! X with eX normal, all the
coefficients of K

eX
� ��.KX C �/ are � �1. This can be checked on a single log

resolution of .X;�/, if it exists (it does in characteristic zero). For more about log
canonical singularities, see [90] and [92].

Use the method of the above exercise to show the following. If X D SpecR is
a ring of characteristic p and � W R1=pe ! R is a divisor corresponding to � as
in (4.15.1), then if � is surjective (i.e. if .R; �/ is F-pure) show that .X;�/ is log
canonical. Conclude by showing that log Q-Gorenstein pairs .X0; �0/ over C of
dense F-pure type (i.e. such that ��p

is surjective for infinitely many p � 0) are
always log canonical.

8.3 F-signature and F-splitting Ratio

Recall that a ringRwas said to beF-pure if the all of Frobenius inclusionsR! R1=p
e

split as a maps of R-modules. In this section, we consider local numerical invariants
– the F-signature and F-splitting ratio – which characterize the asymptotic growth of
the number of splittings of the iterates of Frobenius.

Setting. In this subsection, unless otherwise specified, all rings are assumed to be local
integral domains essentially of finite type over a perfect field of characteristic p > 0.
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Definition 8.15. Let .R;m; k/ be a local ring. For each e 2 N, the e-th Frobenius
splitting (F-splitting) number of R is the maximal rank ae D ae.R/ of a free R-
module appearing in a direct sum decomposition of R1=p

e

. In other words, we may
write R1=p

e D R˚ae ˚Me where Me has no free direct summands.

Exercise 8.16. Show that R is F-pure if and only if ae > 0 for some e 2 N, in which
case ae > 0 for all e 2 N.

Exercise 8.17 ([5]). For any prime ideal p in R, show that ae.Rp/ � ae.R/.
Using the following proposition, it is easy to see that the F-splitting numbers are

independent of the chosen direct sum decomposition of R1=p
e

.

Proposition 8.18 ([2]). Assume that k D kp is perfect. Consider the sets

Ie WD ¹r 2 R j�.r1=pe

/ 2 m for all � 2 HomR.R
1=pe

; R/º:
Then Ie is an ideal in R with `R.R=Ie/ D ae .

Exercise* 8.19 ([2]). Check that Ie is, in fact, an ideal. Then prove the proposition.

Theorem 8.20 ([158]). Let .R;m; k/ be a local ring of dimension d . Assume k D kp
is perfect. Then the limit

s.R/ WD lim
e!1

ae

ped

exists and is called the F-signature of R.

The F-signature was first explicitly10 defined by C. Huneke and G. Leuschke [78]
and captures delicate information about the singularities of R. For example, the F-
signature of the two-dimensional rational double-points11 (An), (Dn), (E6), (E7), (E8)
is the reciprocal of the order of the group defining the quotient singularity [78, Exam-
ple 18]. However, a positive answer to a conjecture of Monsky implies the existence
of local rings with irrational F-signature, see [112].

The heart of the proof of Theorem 8.20 lies in the following technical lemma.

Lemma 8.21 ([158]). Let .R;m; k/ be a local ring of dimension d . If ¹Jeºe2N is any
sequence of m-primary ideals such that J Œp�e � JeC1 and mŒpe� � Je for all e, then
lime!1 1

ped `R.R=Je/ exists.

Exercise 8.22 ([158]). Show that the ideals Ie from Proposition 8.18 satisfy I Œp�e �
IeC1 and mŒpe� � Ie , and use the previous lemma to conclude the existence of the
F-signature limit.

10 Implicitly, the F-signature first appeared in [148].
11 Here it is necessary to assume that p � 7 to avoid pathologies in low characteristic.
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It is quite natural to expect the F-signature to measure the singularities ofR. Indeed,
when R is regular, R1=p

e

itself is a free R-module of rank ped . Thus, for general R,
the F-signature asymptotically compares the number of direct summands of R1=p

e

isomorphic to R with the number of such summands one would expect from a regular
local ring of the same dimension.

Theorem 8.23 ([5, Theorem 0.2]). Let .R;m; k/ be a local ring of dimension d . As-
sume k D kp is perfect. Then s.R/ > 0 if and only if R is strongly F-regular.

Definition 8.24 ([2]). Suppose R is F-pure. If Ie is as in Proposition 8.18, the ideal
P D \e2NIe is called the F-splitting prime of R.

Exercise* 8.25 ([2, 126]). Check that P is a prime ideal, and that �.P 1=p
e

/ � P for
all � 2 HomR.R1=p

e

; R/. In particular, conclude that 
.R/ � P . Show that P D h0i
if and only if R is strongly F-regular. More generally, show that R=P is strongly
F-regular.

Theorem 8.26 ([19, 158]). Let .R;m; k/ be an F-pure local of dimension d . Assume
k D kp is perfect. Let P be the F-splitting prime of R. Then the limit

rF .R/ WD lim
e!1

ae

pe dim.R=P/

exists and is called the F-splitting ratio of R. Furthermore, we have rF .R/ > 0.

8.4 Hilbert–Kunz(–Monsky) Multiplicity

Our goal in this section is to explore a variant, introduced by E. Kunz and P. Monsky, of
the Hilbert–Samuel multiplicity of a ring. Recall that the Hilbert–Samuel multiplicity
of a local ring .R;m; k/ along an m-primary ideal I is simply

e.I / WD lim
n!1

dŠ

nd
`R.R=I

n/ :

The existence of the above limit follows easily from the fact that, for sufficiently large
n, `R.R=In/ agrees with a polynomial in n of degree d . Since this polynomial maps
Z ! Z, it is easy to see that e.I / 2 Z. When I D m, e.R/ WD e.m/ is called the
Hilbert–Samuel multiplicity of R.

Roughly speaking, the idea behind Hilbert–Kunz multiplicity is to use the Frobenius
powers I Œp

e� of an ideal I , see Definition 2.11, in place of the ordinary powers In in
the definition of multiplicity. For a somewhat different introduction to the Hilbert–
Kunz multiplicity, see [76, Chapter 6].

Setting. In this subsection, unless otherwise specified, all rings are assumed to be local
integral domains essentially of finite type over a perfect field of characteristic p > 0.
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Theorem 8.27 ([98, 111]). Suppose .R;m; k/ is a local ring of dimension d and char-
acteristic p > 0. If I is any m-primary ideal, then the limit

eHK.I / WD lim
e!1

1

ped
`R.R=I

Œpe�/

exists and is called the Hilbert–Kunz multiplicity ofR along I . When I D m, we write
eHK.R/ WD eHK.m/ and we refer to this number as the Hilbert–Kunz multiplicity ofR.

Many basic properties of Hilbert–Kunz multiplicity (see [111] or [76]) mirror those
for Hilbert–Samuel multiplicity, such as the following:

� If I � J are m-primary ideals, then eHK.I / � eHK.J /.

� We always have eHK.R/ � 1 with equality when R is regular.

� eHK.R/ DPp2Assh.R/ eHK.R=p/ where Assh.R/ denotes the set of prime ideals
p of R with dim.R=p/ D dim.R/.

� [80, 163] If R is equidimensional, then eHK.R/ D 1 if and only if R is regular.

� If I is generated by a regular sequence, then eHK.I / D `R.R=I /.

Exercise 8.28. If R is regular, show that eHK.I / D `R.R=I / for every m-primary
ideal I .

Exercise 8.29 ([76, Lemma 6.1]). Show that eHK.I / � 1
dŠ
e.I /. Note that this inequal-

ity is known to be sharp if d � 2 by [50].

Monsky’s proof of the existence of Hilbert–Kunz multiplicity, however, bears little
resemblance to the proof of the existence of Hilbert–Samuel multiplicity. Indeed, the
function e ! `R.R=I

Œpe�/ frequently exhibits non-polynomial behavior, and eHK.R/

need not be an integer.

Example 8.30. Consider the characteristic 5 local ring

R D .F5Œw; x; y; z�=hw4 C x4 C y4 C z4i/hw;x;y;zi:
C. Han and P. Monsky in have computed in [49] that

`R.R=m
Œpe�/ D 168

61
.5e/3 � 107

61
3e

and, in particular, we have eHK.R/ D 168
61

.

In a sense, the proof of Theorem 8.27 is not constructive: Monsky proceeds to show
that ¹ 1

ped `R.R=I
Œpe�/ºe2N is a Cauchy sequence. As such, the limit is only known

to be a real number (and, in particular, not necessarily even rational). The computation
of Hilbert–Kunz multiplicity is widely considered to be a difficult problem.
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Exercise 8.31. Use Lemma 8.21 to show that eHK.I / exists when R is a domain.

Conjecture 8.32 ([113], cf. [22]). The Hilbert–Kunz multiplicity of the local ring

.F2Œx; y; z; u; v�=huv C x3 C y3 C xyzi/hx;y;z;u;vi
is 4
3
� 5

14
p
7

, and in particular not rational.

Example 8.33. Let p > 2 be a prime and consider the local rings

Rp;d D
�

FpŒx0; : : : ; xd �
ı

D

X

iD0
x2i

E�

hx0;:::;xsi
:

The numbers eHK.Rp;d / have been explicitly computed [49] and – even for a fixed d
– can depend on p in a complicated way. For example, when d D 4 we have

29p2 C 15
24p2 C 12:

However, I. Gessel and P. Monsky have shown that the eHK.Rp;d / have a well-defined
limit as p ! 1 equal to 1 plus the coefficient of zs in the power series expansion of
sec z C tan z.

Perhaps one of the most interesting open problems aims to identify the non-regular
rings Rp;d having the smallest Hilbert–Kunz multiplicity possible.

Conjecture 8.34. [165] Let d � 1 and p > 2 a prime number. LetR be d -dimensional
characteristic p unmixed local ring with residue field Fp . If R is not regular, then
eHK.R/ � eHK.Rp;d / with equality if and only if it is formally isomorphic to Rp;d ,

i.e. their respective completions bR ' bRp;d are isomorphic.

This conjecture is known to be true when R has dimension at most six, see [3], and
also when R is a complete intersection in arbitrary dimension in [42]. Finally also see
[139].

Many topics from previous sections share a close relationship with so-called rel-
ative Hilbert–Kunz multiplicities, i.e. the differences eHK.I / � eHK.J / for pairs of
m-primary ideals I � J . For example, as seen below, these differences may be used
to test for tight closure and are closely related to the F-signature.

Theorem 8.35 ([70, Theorem 8.17]). Assume R is a complete local domain. If I � J
are two m-primary ideals, then eHK.I / D eHK.J / if and only if I� D J �.

Proof. The (() direction is not difficult and is left as an exercise to the reader, along
with the following hint:
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Hint. First show that there exists a c 2 Rı such that cJ Œp
e� � I Œp

e� for all q � 0.
Set S D R=hci and consider its Hilbert–Kunz multiplicity with respect to I . Finally
show that there exists an integer k such that .S=.IS/Œp

e�/˚k can be mapped onto
J Œp

e�=I Œp
e� for all e � 0.

Theorem 8.36 ([78, Proposition 15]). IfR is a ring, then for any two m-primary ideals
I � J

s.R/ � eHK.I / � eHK.J /

`R.J=I /
: (8.36.1)

Question 8.37. Can one always find m-primary ideals I � J such that equality holds
in (8.36.1)?

In many cases, such as when R is Q-Gorenstein, the above question has a positive
answer. More generally, an affirmative response would immediately imply Conjec-
ture 5.10 [164].

8.5 F-ideals, F-stable Submodules, and F-pure Centers

Historically in commutative algebra, Frobenius has been used heavily to study local
cohomology. In particular, if .R;m/ is a local ring, the mapH i

m.R/! H i
m.R

1=p/ Š
H i

m.R/ is called the action of Frobenius on the local cohomology moduleH i
m.R/ and

denoted by F (more generally, one also has a similar action on H i
J .R/ for any ideal

J � R). Of course, one can iterate F , e-times, and obtain higher Frobenius actions
F e W H i

m.R/! H i
m.R/.

Remark 8.38. If one is willing to use Čech cohomology to write down specific ele-
ments of H i

J .R/, then the Frobenius action can be understood as raising those ele-
ments to their pth power. See [143] for more details.

Fix F W H i
m.R/ ! H i

m.R/ consider now the following ascending chain of sub-
modules.

kerF � kerF 2 � kerF 3 � � � �
In [64] (also see [105], [46] and [13]) it was shown that this ascending chain even-
tually stabilizes, even though the module in question is Artinian, and not generally
Noetherian. Set N to be that stable submodule. It is obvious that F.N/ � N . On
the other hand, Karen Smith observed that 0�

H dim R
m .R/

is the unique largest submod-

ule M � H dimR
m .R/, with non-zero annihilator such that F.M/ � M , see [144].

Motivated by this, she made the following definition:

Definition 8.39 ([143]). An ideal I � R is called an F-ideal if MI D AnnHd
m.R/

I

satisfies the condition F.MI / �MI .



A Survey of Test Ideals 79

Suppose that .R;m/ is Gorenstein. Then as in Subsection 3.3, we have a map
ˆR W R1=p ! R. The Matlis dual of this map is F W Hd

m.R/ ! Hd
m.R/ by local

duality, see Theorem A.6.

Exercise 8.40. Still assuming that R is Gorenstein, prove that I is an F-ideal if and
only if ˆR.I 1=p/ � I .

It turns out that this notion is very closely related to log canonical centers in char-
acteristic zero. Motivated by this connection we define the following.

Definition 8.41 ([25, 126]). A prime ideal Q 2 SpecR is called an F-pure center if
for every e > 0 and every � 2 HomR.R1=p

e

; R/, one has �.Q1=p
e

/ � Q. It is very
common to also assume that RQ is F-pure.

More generally, given some fixed � 2 HomR.R1=p
e

; R/, an ideal Q 2 SpecR is
called an F-pure center of .R; �/, if �.Q1=p

e

/ � Q. If additionally � is a Frobenius
splitting, then Q (or the variety it defines) is called compatibly �-split.

Exercise 8.42. Suppose that R is F-pure and Q 2 SpecR is an F-pure center. Show
that R=Q is also F-pure. Compare with [8, 87, 91] keeping in mind that F-pure
singularities are closely related to log canonical singularities cf. Exercise 8.14.

Exercise 8.43 ([126], cf. [2]). Suppose that R is F-pure and Q 2 SpecR is an F-pure
center which is maximal with respect to inclusion. Prove that R=Q is strongly F-
regular. Compare with [88]. If R is local, prove further that Q is the splitting prime,
Definition 8.24.

The structure of Frobenius stable submodules (and their annihilators) has been an
important object of study in commutative algebra for several decades. In particular,
several questions about their finiteness have been asked, and also answered, see for
example [39], [41] and [134]. These questions are closely related to the finiteness of
F-pure centers or compatibly �-split ideals. See [124, 96] for answers to this question
and see [13, 133] for generalizations.

Exercise* 8.44 ([126]). Suppose that .X;�/ is a log Q-Gorenstein pair of any char-
acteristic, see Definition 4.10. Then a subscheme Z � X is called a log canonical
center if there exists a proper birational map � W eX ! X with eX normal and a
prime divisor E on eX such that �.E/ D Z and also such that the coefficient of E in
K
eX
� ��.KX C�/ is �1.

Suppose now that .X D SpecR;�/ is a log Q-Gorenstein pair of characteristic
p > 0 and that� D �� for some � W R1=pe ! R1=p

e

as in (4.15.1). Show that every
log canonical center of .X;�/ is an F-pure center of .R; �/.



80 K. Schwede and K. Tucker

A Canonical Modules and Duality

A.1 Canonical Modules, Cohen–Macaulay and Gorenstein Rings

Throughout this section, we restrict ourselves to rings of finite type over a field k.
The generalization of the material in this section to rings of essentially finite type is
obtained via localization, and so will be left to the reader as an exercise. In particular,
we assume that R D kŒx1; : : : ; xn�=I D S=I .

All the material in this section can be found in [27] or [59].

Definition A.1. Suppose that R is as above and additionally that R is equidimensional
of dimension d . Then we define the canonical module, !R of R, to be the R-module

!R WD Extn�dS .R; S/:

We state several facts about canonical modules for the convenience of the reader.
Please see [60], [59] or [27] for details and generalizations.

(i) If R is a normal domain, then !R is isomorphic to an unmixed ideal of height
one in R. In particular, it can be identified with a divisor on SpecR. Any such
divisor is called a canonical divisor, see also Appendix B.

(ii) If R D S=hf i, then it is easy to check that !R Š R D S=hf i. (Write down the
long exact sequence computing Ext.)

(iii) The canonical module as defined seems to depend on the choice of generators and
relations (geometrically speaking, it depends on the embedding). In the context
we are working in, !R is in fact unique up to isomorphism. In greater generality,
the canonical module is only unique up to tensoring with locally-free rank-one
R-module.

Definition A.2. With R equidimensional of dimension d , we say that R is Cohen–
Macaulay if ExtiS .R; S/ D 0 for all i ¤ n � d . We say that R is Gorenstein if R is
Cohen–Macaulay and additionally if for each maximal ideal m 2 SpecR we have that
.!R/m Š Rm (abstractly).

For the reference of the reader we also recall some facts about Cohen–Macaulay
and Gorenstein rings.

(i) In a Cohen–Macaulay ring, !R has finite injective dimension and so in a Goren-
stein ring, R has finite injective dimension.

(ii) If R D S=.f / then R is Cohen–Macaulay and Gorenstein (this also holds if R
is a complete intersection).

(iii) A regular ring is always Gorenstein, and in particular, it is Cohen–Macaulay.

(iv) A local ring .R;m/ is Cohen–Macaulay if and only if H i
m.R/ D 0 for all 0 �

i < dimR.
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(v) If g 2 R is a regular element and R is local, then R=hgi is Gorenstein (re-
spectively Cohen–Macaulay) if and only if R is Gorenstein (respectively Cohen–
Macaulay).12

Finally, we include one more definition.

Definition A.3. A normal ring R is called Q-Gorenstein if the canonical module !R,
when viewed as a height-one fractional ideal !R � K.R/, has a symbolic power !.n/R
which is locally free (for some n > 0).

Equivalently, after viewing !R � R as a fractional ideal, one may associate a
divisor KR on SpecR. The symbolic power statement then is the same as saying
that nKR is Cartier.

A.2 Duality

In this section we discuss duality and transformation rules for canonical modules. First
we recall Matlis duality and the surrounding definitions. Throughout this section, we
restrict ourselves to rings essentially of finite type over a field.

Definition A.4 (Injective hull, [26, 27, 59, 60]). Suppose that .R;m/ is a local ring.
An injective hull E of the residue field R=m is a an injective R-module E � k that
satisfies the following property:

� For any non-zero submodule U � E we have U \ k ¤ ¹0º.
Injective hulls of the residue field are unique up to non-unique isomorphism. They

are in a very precise sense the smallest injective module containing E, see [27, Propo-
sition 3.2.2] for additional discussion.

Theorem A.5 (Matlis Duality, [26, 27, 59, 60]). Suppose that .R;m/ is a local ring
and that E is the injective hull of the residue field. Then the functor HomR. ; E/ is
a faithful exact functor on the category of Noetherian R-modules. More-over, apply-
ing this functor twice is naturally isomorphic to the ˝R OR functor where OR is the
completion of R-along m.

Additionally and in particular, if R is already complete, then HomR. ; E/ induces
an equivalence of categories between Artinian R-modules and Noetherian R-modules
(and vice versa).

Now we state a special case of local-duality.

Theorem A.6 (Local Duality, [26; 59, Chapter V, Section 6; 60]). Suppose that .R;m/
is a local ring and that E is the injective hull of the residue field. Then for any finitely
generated R-module M :

HomR.HomR.M;!R/; E/ Š H dimR
m .M/:

12 Notice that (v)C (iii) also imply (ii).
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In particular H dimR
m .!R/ Š E so that if R is Gorenstein then H dimR

m .R/ Š E.
Furthermore, if R is Cohen–Macaulay, then we have a natural isomorphism

HomR.ExtiR.M;!R/; E/ Š H dimR�i
m .M/

for all i � 0.

Remark A.7. If one is willing to work in the bounded derived category with finitely
generated cohomologyDbcoh.R/, then one obtains the more general statement (without
any Cohen–Macaulay hypothesis):

HomR.R Hom
�

R.M;!
�

R/; E/ 'qis R
m.M/:

where ! �

R is the dualizing complex of R.

Finally, we remark on the following transformation rule for the canonical module

Theorem A.8. Suppose that R � S is a finite extension of normal rings essentially of
finite type over a field k. Then

HomR.S; !R/ Š !S :
Proof. This is contained in for example [27, Theorem 3.3.7(b)] for Cohen–Macaulay
local rings and the statement holds more generally for Cohen–Macaulay schemes. In
particular, both modules are automatically isomorphic (with a natural isomorphism) on
the Cohen–Macaulay-locus. But both modules are reflexive, and thus since the non-
Cohen–Macaulay locus is of codimension at least 2, the modules are isomorphic.

Remark A.9. We will be applying Theorem A.8 to the case of the inclusionR � R1=p.
While R is finite type over k, R1=p is of finite type over k1=p. If k is perfect, then
k1=p D k and the inclusion R � R1=p can be interpreted as being k-linear (although
with possibly different choices of generators and relations for R1=p over k). If k is not
perfect, then R1=p need not be finite type over k, but it is if Œk1=p W k� <1 and again
in this case the generators and relations for R1=p over k maybe different than those
over k1=p.

However, as long as Œk1=p W k� < 1, then it can be shown that !R1=p Š .!R/
1=p

or in other words that !F�R Š F�!R. Also see the discussion around condition (�) in
[18, p. 921].

Remark A.10. If one is willing to work in the derived category Dbcoh.R/, then Theo-
rem A.8 should be viewed as a generalization of the following special case of duality
for a finite morphism where M 2 Dbcoh.S/:

R Hom
�

R.M;!
�

R/ Š R Hom
�

S .M;!
�

S /:

Simply take M D S .
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In fact, there is the following generalization of the above remark.

Theorem A.11 (Grothendieck Duality, [59]). Suppose that f W Y ! X is a proper
morphism of varieties over a field k. Then ! �

X and ! �

Y exist and furthermore, for
any coherent sheaf M (or more generally object of Dbcoh.X/), we have a functorial
isomorphism

R H om
�

OX
.Rf�M ; !

�

X / 'qis Rf�R H om
�

OY
.M ; !

�

Y /

in Dbcoh.X/. In particular, if we set M D OY , we have an isomorphism:

R H om
�

OX
.Rf�OY ; !

�

X / 'qis Rf�!
�

Y :

Corollary A.12. Suppose that � W Y ! X is a proper morphism of varieties of the
same dimension over a field k. Then we have a natural map

��!Y ! !X :

Proof. Consider the natural map OX ! R��OY and then apply the contra-variant
Grothendieck-duality functor R H omOX

. ; !
�

X /, use the second half of Theorem

A.11 and then take cohomology (the fact that H� dimYRf�! �

Y Š ��!Y follows by
analyzing the associated spectral sequence).

B Divisors

In this section, we review divisors on normal algebraic varieties. Divisors are some-
times a stumbling block for commutative algebraists trying to apply the techniques
of algebraic geometry. As such, this appendix is designed to serve as a reference for
divisors for those already familiar with commutative algebra. For those more geomet-
rically inclined, please read [61, Chapter II, Section 6] or [62].

We treat divisors here only in the case of an affine variety and describe them using
symbolic powers. The generalization to non-affine varieties is left to the reader. Of
course within the broader field of algebraic geometry, the formalism of divisors is
most useful in the study of projective (non-affine) varieties.

Definition B.1. Suppose that R is a normal domain of finite type over a field, and
let X D SpecR be the corresponding normal affine algebraic variety. Then a prime
divisor on X is a codimension 1 subvariety of X , and a Weil divisor on X is a formal
Z-linear combination of prime divisors. In other words, a Weil divisor is an element
of the free Abelian group on the set of all prime divisors.

Remark B.2. A prime divisor is exactly the same data as a height one prime ideal
P � R. More generally, a Weil divisor can be viewed as the combined data of a
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finite set of height-one prime ideals with formal coefficients ni . In other words D D
P

niV.Pi / where the Pi are prime ideals and V.Pi / D ¹Q 2 SpecR jPi � Qº D
Spec.R=Pi / � X is the vanishing locus of Pi .

Given a prime P 2 SpecR, and an integer n > 0, we use P .n/ D .P nRP / \ R
to denote the n-th symbolic power of P . If n D 0, then P .n/ D R. If n < 0 then
P .n/ is the fractional ideal which is the inverse to P .jnj/. Explicitly, P .n/ D ¹ x 2
K.R/ j xP .jnj/ � R º.
Definition B.3. Given a divisorD DPniV.Pi / on an algebraic varietyX D SpecR,
the sheaf OX .D/ is simply the coherent sheaf of OX -modules associated with the
fractional ideal

T

i P
.�ni /
i . In particular, note also that OX .�D/ is determined by

T

i P
.ni /
i .

Because the category of coherent sheaves of OX -modules is equivalent to the cate-
gory of finitely generated R-modules, in what follows we will treat OX .D/ as if it was
a fractional ideal and not a sheaf.

Remark B.4. A key property of OX .D/ D
T

i P
.�ni /
i is that it is S2 as an R-module.

Because it has full dimension and R is normal, this means that it is also reflexive
as an R-module (in other words, applying the functor HomR. ; R/ twice yields an
isomorphic module). Therefore if OX .D/ D

T

i P
.�ni /
i and OX .E/ D

T

i P
.�mi /
i

then OX .DCE/ D
T

i P
.�ni�mi /
i is the largest ideal that agrees with OX .D/�OX .E/

at all the height-one-primes of R. See [62] for additional discussion.

Definition B.5. We now list some common properties/prefixes associated to Weil di-
visors. Suppose that D DPniV.Pi / is a Weil divisor on X D SpecR.

(i) D is called effective if all of the ni ’s are non-negative.

(ii) D is called Cartier if for every maximal (equivalently prime) ideal m 2 SpecR,
.OX .D//m is a principal ideal. In other words, if

T

i P
.�ni /
i is locally principal.

(iii) D is called reduced if all of the ni ’s are equal to 1.

(iv) D is called Q-Cartier if there exists an integer n > 0 such that nD is Cartier.
Equivalently, this means .

T

i P
.�ni /
i /.n/ is locally principal. The index of a

Q-Cartier divisor is the smallest such n.

(v) D is called a canonical divisor if OX .D/ is (abstractly) isomorphic to a canon-
ical module of R.

(vi) A reduced divisor is said to have normal crossings if it is Cartier, and for each
q 2 SpecR containing the ideal OX .�D/, Rq is regular and .OX .�D//q D
.
T

i P
.ni /
i /q is an ideal generated by a product of minimal generators of the

maximal ideal of RP . If each R=Pi is a regular ring, we then say that D has
simple normal crossings.



A Survey of Test Ideals 85

(vii) Two divisors D and E are said to be linearly equivalent if OX .D/ is abstractly
isomorphic to OX .E/. In that case, we write D � E.

(viii) The non-zero elements x 2 
.X;OX .D// are in bijective correspondence with
effective divisors linearly equivalent to D.

Exercise B.6. Prove that every divisor in a regular ring is Cartier and that every pair of
Cartier divisors in a regular local ring are linearly equivalent.

Exercise B.7. Prove that V.hx; yi/ on Spec kŒx; y; z�=.x2 � yz/ is not Cartier but is
Q-Cartier.

Finally we also describe Q-divisors.

Definition B.8. A Q-divisor is a formal sum
P

i niDi D
P

i niV.Pi / of prime divi-
sors with rational coefficients ni 2 Q. The set of Q-divisors also form a group under
addition.

Remark B.9. It is also very natural to define R-divisors. We will not do that here
however.

Definition B.10. We now state some common terminology with Q-divisors.
Fix a Q-divisor � DPniDi

(i) � is called effective if all of the ni ’s are non-negative.

(ii) We define d�e DPidnieDi , likewise b�c DPibnicDi .
(iii) When dealing with a Q-divisor D, we say that D is integral if D is simultane-

ously a Weil-divisor and a Q-divisor (in other words, if all the ni are integers).

(iv) We say that� is a Q-Cartier divisor if there exists an integer n > 0 such that n�
is an integral divisor and a Cartier divisor. The index of a Q-Cartier Q-divisor is
the smallest such n.

(v) We say that two Q-divisors �1 and �2 are Q-linearly equivalent if there exists
an integer n > 0 such that n�1 and n�2 are linearly equivalent integral Weil-
divisors. In this case we write �1 �Q �2.

C Glossary and Diagrams on Types of Singularities

We collect the various measures of and types of singularities in characteristic p. Most
of these are mentioned in the paper. First we display a diagram explaining the rela-
tionship between the various singularity classes in characteristic zero and characteristic
p > 0.
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Log Terminal
��

+ Gor.

�� ��
��

��

Rational

��

�� ��
F-Regular

		

+ Gor.

��

��

F-Rational

��
Log Canonical ��





) conj.

��

+ Gor. & normal

Du Bois 



) conj.

F-Pure/F-Split ��
��

+ Gor.

F-Injective

The left-square is classes of singularities in characteristic zero. The right side is classes
of singularities in characteristic p > 0. An arrow A ) B between two classes of
singularities means that all singularities of type A are also of type B . For example, the
arrow Log terminal) Rational means that all log terminal singularities are rational.

The connecting arrows between the two squares are via reduction to characteristic p,
see [51, 57, 110, 125, 144]. There has been some progress on the conjectural direction
between F-pure and log canonical singularities, [52, 65, 115, 116, 135, 154].

It should be noted that some of the implications on the characteristic zero side are
highly non-trivial, see [38, 91, 93, 122].

C.1 Glossary of Terms

(Big) test ideal. Given an F-finite reduced ring R of characteristic p, the (big) test
ideal 
.R/ D 
b.R/ is defined to be the smallest ideal I � R, not contained in any
minimal prime, such that �.I 1=p

e

/ � I for all e � 0 and all � 2 HomR.R1=p
e

; R/.
It also coincides with

T

M .0 WR 0�M / where M runs over all R-modules. The big
test ideal is closely related to the multiplier ideal in characteristic zero, see [53, 146]
for the original statements and see [58, 151] for generalizations to pairs.

(Big/finitistic) test element. An element r 2 Rwhich is not contained in any minimal
prime of R is called a finitistic test element if z 2 I� implies that czp

e 2 I Œpe� for
all e � 0. It is called a big test element if z 2 0�M implies that 0 D c1=p

e ˝
z 2 R1=pe ˝M for all R-modules M . It is an open question whether these two
definitions are equivalent. See [70], [107] and [68].

Completely stable (finitistic) test element. An element r in a local ring R, such that
r is not contained in any minimal prime of R, is called a completely stable test
(finitistic) element if it is a finitistic test element and if it remains a finitistic test
element after both localization and completion.

Dense F-XXX type. For a given class of singularities “F-XXX” in characteristic p,
a characteristic zero scheme X (or pair as appropriate) is said to have dense F-
XXX type if for all sufficiently large finitely generated Z-algebras A and families
XA ! SpecA of characteristic p-modules of X (in particular, the generic point of
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that family agrees with X up to field-base-change), there exists a Zariski-dense set
of maximal ideals q 2 SpecA such that the fiber Xq has F-XXX singularities.

Divisorially F-regular. The combined information of a normal variety X in char-
acteristic p > 0 and an effective reduced divisor D � X is called divisorially
F-regular if for every c 2 R, not vanishing on any component of D, there is an
R-linear map � W R1=pe ! R, for some e > 0, which sends c1=p

e

to 1. Diviso-
rially F-regular pairs were introduced in [57]. Unfortunately for the terminology,
divisorially F-regular pairs correspond to purely log terminal singularities in char-
acteristic zero, see [153].

F-finite. A reduced ring of characteristic p > 0 is called F-finite if R1=p is a finite
R-module. Every ring essentially of finite type over a perfect field is F-finite. See
[98].

F-injective. A reduced F-finite ring of characteristic p > 0 is called F-injective if the
natural map H i

m.R/! H i
m.R

1=p/ is injective for every i � 0 and every maximal
ideal m � R. See [44]. F-injective rings are closely related to rings with Du Bois
singularities in characteristic zero, [125].

F-ideal. Suppose that .R;m/ is a local ring. An ideal I � R is called an F-ideal if
MI WD AnnHd

m.R/
I satisfies the condition F.MI / DMI , see [143].

F-jumping number. Suppose that R is an F-finite reduced ring and a � R is an
ideal. The F-jumping numbers of the pair .R; a/ are the real numbers t � 0 such
that 
.R; at / ¤ 
.R; at�"/ for all " > 0.

F-pure. A reduced ring of characteristic p > 0 is called F-pure if for everyR-module
M , the map M ! M ˝R R1=p is injective. If R is finite type over a perfect field,
then this is equivalent to the condition thatR! R1=p splits as a map ofR-modules.
F-purity was first introduced by Hochster and J. Roberts in [75]. F-pure rings are
closely related to rings with log canonical singularities in characteristic zero, [57].
See [57, 129, 150] for generalizations to pairs/triples.

F-pure center (a.k.a. center of F-purity). Suppose that R is an F-finite ring. A
prime ideal Q 2 SpecR is called an F-pure center if for every e > 0 and ev-
ery � 2 HomR.R1=p

e

; R/, one has �.Q1=p
e

/ � Q. It is very common to also
assume that RQ is F-pure. See [126].

F-pure threshold. For a given pair .R; a/, the F-pure threshold of .R; a/ is the real
number sup¹s � 0j.R; as/ is F-pureº: It was introduced in [156] and is an analog of
the log canonical threshold. Also compare with the F-threshold introduced [117].

F-threshold. For a given pair .R; a/ where R is a local ring with maximal ideal m,

the F-threshold of the pair is the limit lime!1 max¹rjar ªmŒpe�º
pe : This coincides with

the F-pure threshold when R is regular, but is distinct otherwise. It was introduced
in [117].
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F-rational. An F-finite reduced local ring R is called F-rational if it is Cohen–
Macaulay and there is no proper non-zero submodule J � !R such that dual to
the Frobenius map F�!R ! !R sends F�J back into J . Equivalently, R is F-
rational if all ideals generated by a full system of parameters are tightly closed.
See [45] for the original definitions. F-rational singularities are closely related to
rational singularities in characteristic zero, see [144], [51] and [110].

F-regular. A ring R of characteristic p > 0 is called F-regular if all ideals in all
localizations of R are tightly closed, see [70].

F-split. A scheme X of finite type over a perfect field characteristic p > 0 is called
F-split (or Frobenius split) if the Frobenius map OX ! O

1=p
X splits. If X is affine

and F-finite, this is the same as F-pure. The use of F-splittings to study the global
geometry of schemes was introduced in [109] and [121]. Also see [48] and [25]. F-
split projective schemes are closely related to log Calabi-Yau pairs in characteristic
zero [130].

F-signature. Suppose that .R;m/ is a local ring of characteristic p > 0 with per-
fect residue field R=m. Then the F-signature of R, denoted s.R/, is the limit
lime!1 ae=p

ed where ae is the number of free R-summands of R1=p
e

; in other
words R1=p

e D R˚ae ˚M . It was first defined explicitly in [78], also see [148].
The limit was shown to exist by the second author in [158].

F-stable submodule. SupposeM is an R-module with a Frobenius action F WM !
M (an additive map such that F.rx/ D rpF.x/). Most typically M D H dimR

m .R/

and F is the induced action of Frobenius. Then an F-stable submodule N � M is
a submodule N �M such that F.N/ � N .

(FFRT) Finite F-representation type. Suppose we are given an F-finite complete
local ring .R;m/ and consider the Krull–Schmidt decomposition R1=p

e DM1;e˚
� � � ˚Mne;e of R1=p

e

for each e. We say that R has finite F-representation type,
or simply FFRT, if the set of isomorphism classes of the Mi;e is finite (as e varies).
Rings with FFRT were introduced by [148]. It is worth mentioning that tight closure
commutes with localization in rings with FFRT [166].

(Finitistic) test ideal. Given a ringR of characteristic p, the finitistic test ideal 
fg.R/

is defined to be
T

I�R.I W I�/ where I� is the tight closure of I . Classically,
finitistic test ideals were known simply as test ideals, see [70].

Frobenius action. Suppose that R is a ring and M is an R-module. A Frobenius
action on M (or simply an F-action) is an additive map f W M ! M satisfying
the rule f .r:m/ D rp:m for all r 2 R and m 2M .

Generalized test ideal. In the literature, the test ideal 
.R; at / (or more generally for
more complicated pairs and triples) is often called the generalized test ideal. At
one point it was believed that the generalized test ideal was not made up of “test
elements”, but it is made up of appropriately defined test elements, see Exercise
6.17 and [123].
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Globally F-regular. A schemeX of characteristic p > 0 is called globally F-regular
if for every effective divisor D there exists an e > 0 such that the Frobenius map
OX ! .OX .D//

1=pe

splits. If X is affine and F-finite, this is the same as strongly
F-regular. Globally F-regular varieties were introduced in [145]. Globally F-
regular projective schemes are closely related to log Fano pairs in characteristic
zero [130].

Hartshorne–Speiser–Lyubeznik (HSL)-number. Given a local ring .R;m/, the
Hartshorne–Speiser–Lyubeznik number of R (or simply the HSL-number) is the
smallest natural number e � 0 such that the kernel of the local cohomology e-
iterated Frobenius

ker.H dimR
m .R/! H dimR

m .F e�R//

is equal to the kernel ker.H dimR
m .R/ ! H dimR

m .F eC1� R//. It is always a finite
number by [64, 105]. See [134, Definition 3.14] where this definition is generalized
to any Artinian R-module with a Frobenius action, instead of simply H dimR

m .R/.

Hilbert–Kunz(–Monsky) multiplicity. Given a local ring .R;m/ of characteristic
p > 0 and an m-primary ideal a, the Hilbert–Kunz multiplicity of a � R is de-
fined to be

lim
e!1 lengthR.R=a

Œpe�/;

it is denoted by eHK.a; R/. Although originally thought not to always exist, [98,
p. 1011], Monsky showed it did indeed always exist in [111]. It is however notori-
ously difficult to compute. There are many connections between the Hilbert–Kunz
multiplicity and tight closure of ideals as well as the F-signature.

(Open) F-XXX type. For a given class of singularities “F-XXX” in characteristic p,
a characteristic zero scheme X (or pair as appropriate) is said to have dense F-
XXX type if for all sufficiently large finitely generated Z-algebras A and families
XA ! SpecA of characteristic p-modules of X (in particular, the generic point of
that family agrees withX up to field-base-change), there exists an open and Zariski-
dense U � SpecA such that for all maximal ideals q 2 U , the fiberXq has F-XXX
singularities.

Sharply F-pure. A variant of F-purity for pairs introduced in [123]. This variant
uses the d.pe �1/�e or dt .pe �1/e-exponent instead of bt .pe �1/c or dtpee. One
aspect that distinguishes it from previous F-purity definitions for pairs, see [57]
[150], is that the test ideal of a sharply F-pure pair is always a radical ideal. See
[123, Corollaries 3.15 and 4.3] as well as [127] and [66] for further refinements.

Splitting prime. Given an F-finite F-pure local ring .R;m/ of characteristic p > 0,
the splitting prime P � R is defined to be the set ¹c 2 Rj�.c1=pe

/ 2 m;8e >
0;8� 2 HomR.R1=p

e

; R/º. The splitting prime was introduced by Aberbach-
Enescu in [2]. It closely related to a minimal log canonical center in characteristic
zero, see [126]. As an ideal, it is the largest F-pure center.
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Strongly F-regular. An F-finite reduced ring of characteristic p > 0 is called
strongly F-regular if for every c 2 R not contained in a minimal prime, there is
an R-linear map � W R1=pe ! R, for some e > 0, which sends c1=p

e

to 1, see
[69]. Strongly F-regular rings are closed related to rings with log terminal singu-
larities in characteristic zero, see [57]. See [57, 129, 150] for generalizations to
pairs/triples. For generalizations to the non-F-finite setting, see [68].

Strong test ideal. A strong test ideal for a ring R is any ideal J (not contained in any
minimal prime) such that JI� D JI for all ideals I � R. They were introduced in
[77]. The strong test ideal coincides with the test ideal in many cases, see [55] and
[161]. Additional generalizations to modules can be found in [40].

Strongly F-pure. A variant of F-purity for pairs introduced in [57]. A pair .R;�/
is strongly F-pure if there exists � 2 HomR.F e�R.bpe�c/; R/ � HomR.F e�R;R/
with �.F e�R/ D R.

Test ideal. See big test ideal or finitistic test ideal.

Test element. See big/finitistic test element.

Tight closure. The tight closure I� of an ideal I � R is the set of z 2 R such that
there exists c 2 R, but not in any minimal prime of R, so that czp

e 2 I Œpe� for all
e � 0. See [70].

q-weak test element. An element c 2 R not in any minimal prime is called a q-weak
test element if for all pe � q D pd , we have that cxp

e 2 I Œpe� for all x 2 I� as I
ranges over all ideals of R, see [70, Section 6].

Weakly F-regular. A ring R of characteristic p > 0 is called weakly F-regular if all
ideals are tightly closed, see [70]. It is an open question whether weakly F-regular
rings are strongly F-regular.
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1 Introduction

Among all the modules defined over a commutative ring of positive characteristic a
special class arises naturally. These are the modules that admit a Frobenius action and
their properties have been studied extensively in commutative algebra in recent years.
More precisely, if A is a commutative ring of prime characteristic p, then, for an A-
moduleM , a Frobenius action is an additive mapFM WM !M such thatFM .am/ D
apFM .m/ for all a 2 A;m 2 M . Perhaps the most important example of nontrivial
A-modules with a natural Frobenius action is given by the local cohomology modules
of A with support in an ideal I of A, namely H i

I .A/; i D 0; 1; : : : . The Frobenius
action on these local cohomology modules is induced from the natural action on the
ring via the Čech complex. One remarkable point is that important properties of a
local ring .A;m/ can be often rephrased in terms of the Frobenius action on the local
cohomology modules of A with support in its maximal ideal. This approach has been
developed and exploited by many of authors who produced significant results in the
theory of rings of positive characteristic, with many of these results connected to either
tight closure theory or birational geometry (see [4–9, 11–13, 17, 18, 20–25, 30–41] for
a representative but incomplete list).

The particular case of finite dimensional vector spaces that admit a Frobenius action
has connections to other areas of mathematics, such as number theory and Lie alge-
bras. However, this case was not systematically studied and presented, with results
developed only as needed, scattered through the literature, and often rediscovered by
different authors. A coherent and complete presentation of this theory has not been
available so far, even if it is considered a classical subject. Work for the vector space
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case has been included in papers of Blickle and Böckle [9], Hochster [17], Harthsorne
and Speiser [16], Lyubeznik [23] and Yoshino [43]. This paper is meant to serve the
commutative algebra community, by providing a place where the contributions on this
subject are collected. Moreover, there is one particular current direction of research
where we expect that the study here will be useful. The notion of F-injectivity for rings
of positive characteristic has been studied at length in the past decade or so. Most of
the work has been carried in the case of Cohen–Macaulay rings where F-injectivity is
considerably easier to handle. We expect that the results and techniques collected here
to help in the study of F-injective rings that are generalized Cohen–Macaulay. In this
case, the local cohomology modules of index strictly less that the dimension of the
ring have finite length, and hence they could be investigated with the tools presented
here. We included one result, Theorem 7.14, that illustrates this idea.

Our plan is to provide a unifying point of view to the theory of finite dimensional
vector spaces with a Frobenius action, including the most important results of the
theory and exploring connections to current research. We framed our presentation by
following some classical work of N. Jacobson which applies naturally in the case of
vector spaces over a perfect field, and puts the theory in a new light. Moreover, it gives
the opportunity to the reader to rediscover and appreciate important work in module
theory which nowadays is not included in standard textbooks of modern algebra. This
work is the classification of finitely generated modules over noncommutative principal
ideal domains based on the work of Asano [1, 2], Nakayama [29], Teichmüller [42],
and presented beautifully by Jacobson in his classical treatise [26].

2 A Noncommutative Principal Ideal Domain

We will first introduce the objects of our study. LetK be a field of positive characteris-
tic p, where p is prime. ThenK admits the natural Frobenius homomorphism defined
by F.k/ D kp , for all k 2 K.

Let K¹F º be the skew polynomial ring in the indeterminate F with coefficients in
K, modulo the relations given by Fk D kpF , for all k 2 K.

More precisely, this ring is defined by considering the set of all formal expressions
Pn
iD0 aiF i where F is an indeterminate, n 2 N and ai 2 K for all i D 0; : : : ; n.

The elements of this set will be called polynomials in F by analogy to the commu-
tative case. Endow this set with the operations of addition and multiplication in the
following way: the addition is the natural addition operation of polynomials and the
multiplication has the property that

aF k � bF l WD aF kbF l D abpk

F kF l D abpk

F kCl ;

for all a; b 2 K, k; l 2 N, and it is extended to arbitrary polynomials via the distribu-
tive property of multiplication over addition.
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It is a routine check to verify that this set together with these two operations forms
a noncommutative ring. We denote this ring by K¹F º and call its elements (skew)
polynomials.

This construction can be performed in a more general setting where K can be re-
placed by any ring R and F by a ring endomorphism of R. Rings obtained in such
way are called skew polynomials rings and are a basic construction in noncommutative
ring theory, see Chaper 1 in [15] and Chapter 1 in [28].

Let V be a finite dimensional K-vector space and FV W V ! V a Frobenius action
on V , that is FV is additive and FV .kv/ D kpFV .v/ for all k 2 K and v 2 V .
Allowing a Frobenius action on V is equivalent to endowing V with a left K¹F º-
module structure by putting F � v D FV .v/. For these reasons, we will simply denote
the action on V by F D FV .

Therefore the study of vector spaces with a Frobenius action is equivalent to that of
the category of left modules over the skew polynomial ring K¹F º. Skew polynomial
rings have been long-studied, and in what follows we will present the applications
to their module theory with an eye towards the case we have in mind, that of finite
dimensional vector spaces with a Frobenius action. It should be noted here that a
notion of Cartier modules has been defined recently by Blickle and Böckle in [9]. A
vector space V over a field K of positive characteristic p is called a Cartier vector
space if it admits a Cartier map, that is an additive map CV W V ! V such that
CV .a

pv/ D aCV .v/ for all a 2 K; v 2 V . These vector spaces are exactly the right
modules over the ring K¹F º. The connection between left and right modules over the
skew polynomial ring have been studied recently in [36] in addition to [9]. The theory
that we present in this paper can be developed analogously for right modules, but we
will not pursue it here.

If f D a0C a1F C � � � C anF n 2 K¹F º with an ¤ 0, we say that f has degree n
and write deg.f / D n. Using the degree function one can easily check that K¹F º is a
domain. The degree function also gives a division and remainder type theorem:

Proposition 2.1. Let f; g be two polynomials in K¹F º. Assume that g ¤ 0.

(i) There exists uniquely determined q; r 2 K¹F º such that f D qg C r and either
r D 0 or deg.r/ < deg.g/.

(ii) Assume that F W K ! K is a automorphism, i.e. K is perfect. Then there exists
uniquely determined q; r 2 K¹F º such that f D gq C r and either r D 0 or
deg.r/ < deg.g/.

Proof. The proof is a routine exercise.

This proposition enables one to show the following important result (see Theo-
rem 1.11 in [15] for a more general setting and a proof).
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Theorem 2.2. The ring K¹F º is a left principal ideal domain (i.e. all left ideals are
principal). IfK is perfect thenK¹F º is a left and right principal ideal domain (i.e. all
left ideals and all right ideals are principal).

Definition 2.3. A noncommutative ring R that is a left and right principal ideal do-
main will be called a noncommutative PID. In this paper, all such examples will be of
noncommutative rings, so a noncommutative PID will be sometimes called simply a
PID.

We have the following important properties of a noncommutative PID.

Proposition 2.4. LetR be a noncommutative PID. ThenR is left and right Noetherian.
Moreover, the descending chain condition holds for chains of left (respectively, right)
ideal that have nonzero intersection. Therefore if 0 ¤ a 2 R then R=Ra is left
Artinian and R=aR is right Artinian.

3 Ideal Theory and Divisibility in Noncommutative PIDs

In this section we let R denote a noncommutative PID. We present some of the basic
features of ideal theory and divisibility in such a ring, using Jacobson’s treatment, [26],
as reference. We included proofs for some of the results, while in some cases we only
indicated what is behind the proofs. When explanations are missing we invite the
reader to consult the original work which is quite readable even today.

Two-sided ideals ofR will be simply referred to as ideals. A left (respectively, right)
generator for an left (respectively, right) ideal I is an element a such that I D Ra

(respectively, I D aR). Two elements a; b in R are called left associated if there exist
u; v 2 R such that a D ub; b D va. These conditions imply that uv D vu D 1 if
a ¤ 0 or, equivalently, b ¤ 0. Hence, for a left ideal in R, the left generators a and b
for I are left associated. Similarly, one can talk about right associated elements.

If I is an ideal in R, then I D Ra D bR for some a; b 2 R. Then a D bu; b D va
for u; v 2 R. This implies that a D vau; b D vbu. Since au 2 I , then au D wa, for
some w 2 R and then we get a D vau D vwa. So, 1 D vw and this gives that v is
invertible. Also, similarly one gets that u is invertible as well.

In conclusion a is a left and right generator for I (and so is b). Such an element a
with the property that Ra D aR is called a two-sided generator in R. So, any left (or
right) generator of an ideal I of R is a two-sided generator.

Definition 3.1. Let R be a PID and a 2 R, nonzero and not a unit.

(i) We say that a is irreducible if it cannot be written as the product of two nonzero,
nonunits from R.

(ii) We say that a is indecomposable if R=Ra is indecomposable as a left R-module.
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It is easy to see that a is irreducible in R if and only of R=Ra is nonzero simple left
R-module.

Definition 3.2. Let a; b 2 R nonzero elements. The greatest left common divisor of
a; b is an element d 2 R such that a D da0; b D db0 and for any other element
d 0 2 R with a D d 0a00; b D d 0b00 there exists c 2 R such that d D d 0c: We
denote this element by .a; b/l . In similar fashion one can define the least common
right multiple of a and b which is denoted by Œa; b�r : it is the element m such that
m D xa D yb and for any other common right multiple m0 of a and b there exists z
such that m0 D zm.

Furthermore, one can define a greatest right common divisor denoted by .a; b/r and
the least left common multiple denoted by Œa; b�l .

Proposition 3.3. Let a; b 2 R nonzero. The greatest common left (respectively, right)
divisor and the least common right (respectively, left) multiple exist and are nonzero
and unique up to multiplication by units on the right (respectively, left).

An important notion for our purposes is that of similarity. It is defined as follows:

Definition 3.4. Let a; b 2 R both nonzero.
We say that a and b are left (respectively right) similar if and only if there exists

u 2 R such that
R D RuCRb; Rau D Ru \Rb;

(respectively, R D uRC bR; uaR D uR \ bR:)

An important characterization of similarity that explains its relevance is given below.

Proposition 3.5. Let a; b 2 R both nonzero.
Then a and b are right similar if and only if they are left similar if and only if

R=Ra ' R=Rb as R-left modules if and only if R=aR ' R=bR as R-right modules.

Proof. Assume that a; b are left similar. Then the map f W R=Ra! R=Rb define by
f .c CRa/ D cuCRb is well-defined and an isomorphism:

Indeed, c � c0 2 Ra implies cu � c0u 2 Rau D Ru \ Rb 	 Rb, so cuC Rb D
c0uCRb. Also, cu 2 Rb implies that cu 2 Ru\Rb D Rau and so c 2 Ra. Finally,
since 1 D ruC sb for some r; s 2 R and therefore c D cruC csb or c D cru 2 Rb.
Hence f .cr CRa/ D cruCRb D c CRb.

Now assume that that f W R=Ra ! R=Rb is an isomorphism and let u 2 R
such that f .1 C Ra/ D u C Rb. So f .c C Ra/ D c.u C Rb/ D cu C Rb for all
c 2 R. In particular, au 2 Rb. So Rau 	 Ru \ Rb. On the other hand, to show that
Ru \ Rb 	 Rau, note that if cu 2 Rb, then f .c C Ra/ D 0 so c 2 Ra because f
is injective. This shows that cu 2 Rau which is want we wanted.
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Finally, since 1CRb 2 Im.f / then there exists c 2 R such that cuCRb D 1CRb.
This immediately shows that R D RuCRb.

We also know that au D vb for some v 2 R. We plan to show that vr \aR D vbR
and vRC aR D R which shows that a; b are right similar.

First let z 2 R such that aRC vR D zR. Then a D zr; v D zs for some r; s 2 R.
Therefore, zru D zsb so ru D sb 2 Ru \ Rb D Rau which shows that ru D tau

or r D ta D tzr and hence 1 D tz Therefore R D zR D vr C aR.
Let w 2 R such that vR \ aR D wR. Then since au D vb 2 aR \ vR D wR

we see that au D vb D ws for some s 2 S . But w D vr D at , for some r; t 2 R.
In conclusion, vb D vrs, au D ats and so b D rs and u D ts. This gives that
R D Rb C Ru 	 Rs. Hence s is invertible and then, because vb D ws, we get that
vbR D wR. In conclusion, vR \ aR D vbR.

Reversing the roles of left and right we see now that the result follows.

Therefore elements that are left (or right) similar will be called similar elements.
An application of the Jordan–Hölder theorem gives the following result.

Proposition 3.6. Let a 2 R be a nonzero and not a unit. Then a D b1 � � � bn with bi
irreducible. If a D c1 � � � cm with ci irreducible, then m D n and the b’s and c’s may
be be paired in similar pairs.

The number n will be called the length of a and denoted by �.a/. It is also equal
to the length of a composition series for R=Ra. The following relation can be estab-
lished.

Proposition 3.7. For any a; b 2 nonzero and nonunits we have that

�.ab/ D �.Œa; b�r/C �..a; b/l/:

Proposition 3.8. Let a 2 R be nonzero and not a unit. Then a D Œb1; : : : ; bn�r where
each bi is indecomposable and

.bi ; Œb1; : : : ; bi�1; biC1; : : : ; bn�r /l D 1:

In addition if a D Œc1; � � � ; cm�r , where each ci is indecomposable, and

.ci ; Œc1; : : : ; ci�1; ciC1; : : : ; cm�r/l D 1;

then m D n and b’s and c’s can be paired in similar pairs.

Proof. This is an application of the Krull–Schmidt Theorem.

Definition 3.9. Let a; b 2 R. We say that a is a total divisor of b if there is a two-sided
ideal I such that Rb � I � Ra. We will write a jt b.
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Proposition 3.10 (Teichmüller’s condition). Let a; b 2 R. Then a is a total divisor of
b if and only if RbR � Ra \ aR.

Proof. First assume that RbR � Ra \ aR.
Since Rb � RbR � Ra and RbR is a two-sided ideal we conclude that a jt b.
Now assume that a jt b.
Let I be an ideal generated by x such that Rb � I D Rx D xR � Ra.
Clearly, Rb � xR implies that RbR � xR � Ra.
Let aRC xR D dR, so auC xv D d for some u; v 2 R. Since x D wa for some

w 2 R we have that

wd D wauC wxv D wauC xw0v D wauC waw0v D w.auC aw0v/
with w0 2 R since Rx D xR.

So, d D auC aw0v which implies that d 2 aR.
But then I D Rx D xR � dR � aR.
In conclusion I � Ra \ aR which implies that RbR � Ra \ aR.

Remark 3.11. We would like to observe that total divisibility is invariant under sim-
ilarity, more precisely, if a jt b, a and c are similar, and b and d are similar, then
c jt d . This is Theorem 14 on page 40 in [26].

Proposition 3.12. Let R be a PID.

(i) If I 	 J are two-sided ideals, then I D J � J 0 where J 0 is a two-sided ideal.

(ii) If I is a proper two-sided ideal then I D J1 � � �Jn where each Ji is a two-sided
maximal ideal.

(iii) Any two maximal two-sided ideals I; J commute, that is IJ D JI .

(iv) The two-sided ideals form a commutative semigroup under multiplication, and,
for any proper two-sided ideal I , the factorization of I into a product of maximal
two-sided ideals is unique.

3.1 Examples in K ¹F º
For an element f 2 R D K¹F º the degree of f is in fact equal to dimK.

R
Rf
/, so the

degree of an element of R is an invariant under similarity. Proposition 3.6 shows that
the degree of the irreducible elements in the factorization of f depend only on f .

To construct elements similar to f , let u 2 R be a unit. Then Ru D R and hence
Ru \ Rf D Rf and R D Ru C Rf . Therefore any generator of Rf that can be
written in the form gu will provide an element g 2 R similar to f . But a generator
for Rf is of the form vf with v unit, and so vf D gu or g D vf u�1. In conclusion
an element of the form vf w with v;w units in R is similar to f .

For a concrete example let us take f D F n � � with � 2 K. For w; u 2 K and
nonzero we get that g D vwpn

F n�vw� is similar to f . Hence, g D F n�w�pnC1�
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are monic polynomials that are similar to f . This example shows that similar elements
do not generate necessarily the same left (or right) ideals.

Proposition 3.13. Let K be a perfect field.

(i) Assume that K D Fpk . Let f DPn
iD0 aiF i with 0 ¤ an 2 K. Let Supp.f / D

¹i W ai ¤ 0º. Then f is a two-sided generator if and only if k divides gcd.j � i W
i � j with i; j 2 Supp.f // (naturally, if Supp.f / has one element, we assume
that the condition is empty).

(ii) Assume that K is not finite. Then every ideal I is generated by F n for some
n � 0.

Proof. (i) If I D Rf D fR, then by degree considerations we have that for all a 2 K,
there exists b 2 K such that af D f b. In fact, since F n generates an ideal for any
n, as can easily be checked, this condition is in fact necessary and sufficient for f to
satisfy Rf D fR.

The equality af D f b implies that for all i D 0; : : : ; n

aai D aibpi

;

which in turn is equivalent to

a D bpi

for all i 2 Supp.f / which, in conjunction with K perfect, says that bp
i D bpj

for all
b 2 K and i � j with i; j 2 Supp.f /:

This is indeed equivalent to c D cp
j �i

, for all c 2 K and i � j with i; j 2
Supp.f /: Since K D Fpk we get that Fpk � Fpj �i , that is, k j j � i , for all i � j
with i; j 2 Supp.f /:

(ii) When K is not finite, the proof above shows that the only possibility is that

jSupp.f /j D 1;
which represents the claim.

Remark 3.14. Let K D Fpk . For degree n polynomials f D Pn
iD0 aiF i with

a0 ¤ 0, the condition in Proposition 3.13 is equivalent to k j i for all i 2 Supp.f /.
Therefore, any two-sided generator f 2 K¹F º is a product between a power of F and
a polynomial with nonzero constant coefficient and only nonzero degrees divisible by
k in its support.

Example 3.15. Let K D Fp2 . Then f D F 6CF 4 � F 2 � 1 is a two-sided generator
for R D K¹F º according to the above Proposition.

Proposition 3.16. Let a; b 2 R D K¹F º such that a jt b. Assume that K is perfect,
not finite. Then a D uF k where k � 0 and u 2 K.
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Proof. Since a jt b, there exists an ideal I of R such that I � Ra. But K is not finite
so by Proposition 3.13 we get that I is generated by F l for some l � 0.

Therefore F l D ra with r 2 R.
It is clear that F is irreducible inR D K¹F º so by the unique factorization theorem

one has that a D uF k where k � 0.

Example 3.17. Over a finite field, there exist many interesting examples of pairs a; b 2
K¹F º such that a jt b. For example let K D Fp2 and let a D F 3 C F 2 C F C 1 and
b D F 7 C F 6 C F 5 C F 4 � F 3 � F 2 � F � 1. According to the Proposition 3.13
neither a nor b are two-sided generators in R.

However b D .F C 1/.F 6 C F 4 � F 2 � 1/ and

F 6 C F 4 � F 2 � 1 D .F 3 � F 2 C F � 1/.F 3 C F 2 C F C 1/:

As seen earlier, F 6 C F 4 � F 2 � 1 is a two-sided generator, so a jt b.

4 Matrix Transformations over Noncommutative PIDs

In this section we are considering matrices with entires in a noncommutative PID R.
The collection of n 
m matrices with entries in R will be denoted by Mn;m.R/.

First we would like to note that a noncommutative PID R can be embedded in a
division ring Q as follows: consider pairs of the form .a; b/ 2 R 
 R n ¹0º and
let .a; b/ 
 .c; d/ if Œb; d �r D bb1 D dd1 implies ab1 D cd1. This defines an
equivalence relation and the equivalence class of a pair .a; b/ will be denoted by a=b.

The addition of two classes is defined by a=b C c=d D .ab1 C cd1/=m where
b1; d1 are such that Œb; d �r D bb1 D dd1. The multiplication is defined as follows:
.a=b/ � .c=d/ D .ab2/=.dc2/ if c ¤ 0; Œb; c�r D bb2 D cc2. If c D 0, we simply put
.a=b/ � .0=d/ D 0=d . It is well known that Q defined in this fashion is a division ring
and that R can be naturally embedded in Q.

Since R can be embedded in a division ring then for two n 
 n matrices U; V with
entries in R such that UV D 1 we see that V U D 1 as well.

Let A;B be two n 
 r matrices with entries in R. We say that A;B are associates
if B D UAV where U; V are invertible matrices in Mn;n.R/, respectively Mr;r .R/.

Let Eij denote the square matrix that has 1 on the main diagonal and the position
.i; j /, and zero for the rest.

The following represents a list of elementary transformations for a given matrix
A 2Mn;r.R/:

(i) Adding to the i th column the j th column of the matrix A multiplied on the right
by q. Similarly, adding to the i th row the j th row of the matrix A multiplied on
the left by q. The operations are A.1CEj iq/, respectively .1CEij q/A.



110 F. Enescu

(ii) Interchanging the i th and the j th rows (columns) of A. This corresponds to
A.1CEij CEj i �Ei i �Ejj /, respectively .1CEij CEj i �Ei i �Ejj /A.

(iii) Multiplying the i th column (row) on the right (left) by a unit u. This corresponds
to A.1C .u � 1/Ei i /, respectively .1C .u � 1/Ei i /A.

In addition to these transformations, given a matrix A with row

.c1; : : : ; ci�1; a; ciC1; : : : ; cj�1; b; cjC1; : : : ; cn/

there is a matrix associated toA of the formAV where V is invertible with row i equal
to

.c1; : : : ; ci�1; d; ciC1; : : : ; cj�1; 0; cjC1; : : : ; cn/;

where d D .a; b/l . A similar statement holds for the columns of A with the new
matrix of the form UA where U is invertible. Such transformation will be called
special transformations.

We sketch here the construction of the matrix V that can be used in a special trans-
formation. Since .a; b/l D d one can find p; q; r; s 2 R such that pa C qb D d and
raC sb D 0 and Rr CRs D R. The it can be checked that the matrix

 

p q

r s

!

is invertible. Finally the matrix U D .uij /1�i;j�n has the following entries: uhh D 1
for h ¤ i; j , ui i D p; ujj D s; uij D r; uj i D q and the rest of the entries are zero.

Repeated application of elementary and special transformations leads to the follow-
ing:

Theorem 4.1. Any matrix A 2 Mn;r.R/ has an associate with nonzero elements
d1; d2; : : : ; ds on the main diagonal only such that s � min.n; r/ and di is a total
divisor of dj for i < j :

0

B

B

@

d1 0 � � �
0 d2

: : :

:::
: : :

: : :

1

C

C

A

:

Proof. We will sketch here the procedure that gives an associate of A as in the con-
clusion of the theorem. The idea is to use elementary transformations and therefore
arrange that A is associated to a matrix that has in the upper left corner a nonzero el-
ement of smallest length. If this element a11 is not a left factor of any of the a1i (or
a right factor of any of the aj1) then after elementary transformations one can replace
a11 by an element of smaller length. After a finite number of elementary transfor-
mations, we therefore obtain an element in the upper left corner that is a left factor
(respectively, right factor) of any element in the first row (respectively, first column).
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One can perform repeated elementary transformations to obtain an associated matrix
to A that has a nonzero entry in the upper left corner and zeros on the rest of the entries
on the first row and first column. Continuing like this we produce an associated matrix
to A that has only nonzero entries on the diagonal, say d1; d2; : : : ; ds .

Let us show that we may assume that di jt dj for all i < j . In the case that there
exists b ¤ 0 such that di is not a left factor of dj , go ahead and rename i D 1, j D 2
for simplicity. The upper left corner of the matrix is of the form

 

d1 bd2

0 d2

!

after an elementary transformation. The highest left factor of d1 and bd2 has length
less that the length of d1. We can repeat the diagonalization process to obtain an
associated matrix with an upper left corner entry of length smaller than the length
of d1. Repeated application of this process produces an associated diagonal matrix
where di is a left factor for all bdj for all nonzero b and all i < j . But then obviously
Rdj 	 RdjR 	 diR which shows that di jt dj .

5 Module Theory over Noncommutative PIDs

Any cyclic R-module M is isomorphic to R=Ra where a 2 R. If M D Rm,
then Ra D AnnR.m/ D ¹r 2 R W rm D 0º. We call the element m torsion if
AnnR.m/ ¤ 0. Since in this case AnnR.m/ D R� for some 0 ¤ � 2 R we say that
� is the order of m and denoted by ord.m/. Any two orders of m are left associated.

Let M be an R-module. It can be checked that T .M/ D ¹m 2 M W ord.m/ ¤ 0º
is a submodule of M . The reader that has difficulty verifying this statement will find
helpful the observation that the intersection of two left nonzero ideals is a nonzero left
ideal. As always, if M D T .M/ we say that M is a torsion R-module.

The following result follows from the Krull–Schmidt Theorem for modules (p. 115
in [27]).

Proposition 5.1. Let M be an R-module that satisfies the (ACC) and (DCC) condi-
tions on its left submodules. Then

M ' I1 ˚ � � � ˚ Ik;

where Il are indecomposable R-modules for all l D 1; : : : ; k. For any other similar
decomposition into indecomposable R-modules

M ' L1 ˚ � � � ˚ Lh;

we have k D h and, up to renumbering, Il ' Ll for all l D 1; : : : ; k.
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In what follows we will need some basic considerations on linear maps of free
modules over a ring R and matrices with entries in R. We will of course use this in
the noncommutative setting, so we will review these facts in this case as many basic
books discuss them only in the special commutative case.

Let � W Rm ! Rn be an R-linear map. Fix u1; : : : ; um and v1; : : : ; vn be bases
of Rm, respectively Rn, and write �.ui / D Pn

jD1 aij vj for all i D 1; : : : ; m. Then
if r D Pm

iD1 riui , then �.r/ D Pm
iD1 ri�.ui / D

Pn
jD1

Pm
iD1.riaij /vj : If we set

A D .aij /1�i�n;1�j�m, the map � can be described by

.r1; : : : ; rn/ 7�! .r1; : : : ; rn/A:

A simple check establishes the existence of a group isomorphism

‚ W .HomR.R
m; Rn/;C/ �! .Mm;n.R/;C/

given by
� 7�! A:

Obviously, the map ‚ D ‚u;v.�/ depends on the bases u D ¹u1; : : : ; umº and
v D ¹v1; : : : ; vnº; and we will not indicate the chosen bases, when the choice is clear
from the context. The construction of a well-defined ‚u;v.�/ requires that v is a basis
for Rn, while u only needs to be a set of generators for Rm.

Now consider another R-linear map  W Rn ! Rh and let w1; : : : ; wh be a basis
for Rh. Let  .vj / DPh

lD1 bjlwl , for all j D 1; : : : ; n. Therefore

. ı �/.r/ D
m
X

iD1
ri . ı �/.ui /

D
m
X

iD1
ri 

�

n
X

jD1
aij vj

�

D
m
X

iD1
ri

n
X

jD1
aij .vj /

D
m
X

iD1
ri

�

n
X

jD1
aij bjl

�

wl :

This computation shows that

‚u;w. ı �/ D AB D ‚u;v.�/ �‚v;w. /:
Now consider two bases for Rn, e D ¹e1; : : : ; enº and f D ¹f1; : : : ; fnº. Write

ei DPn
jD1 tijfj and denote T D .tij /1�i;j�n, an n 
 n-matrix with entries from R,

referred to as the transition matrix between bases.
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This can be written in matrix form as

e D

0

B

B

B

B

@

e1

e2
:::

en

1

C

C

C

C

A

D T �

0

B

B

B

B

@

f1

f2
:::

fn

1

C

C

C

C

A

D T � f:

It is clear that‚e;f .1Rn/ D T . Similarly we can write f D S �e where S is an n
n-
matrix with entries in R. In particular, In D ‚e;e.1Rn/ D ‚e;f .1Rn/ �‚f;e.1Rn/ D
TS: Similarly, ST D In.

Now let � W Rm ! Rn and we fix bases u D ¹u1; : : : ; umº and v D ¹v1; : : : ; vnº.
Assume that u0 D ¹u01; : : : ; u0mº and v0 D ¹v01; : : : ; v0nº are bases for Rm and Rn

and let C;D be the transition matrices such that u0 D Cu; v0 D Dv. Note that
‚u0;u.1Rm/ D C and ‚v;v0.1Rn/ D D�1.

Then ‚u0;v.�/ D ‚u0;v.1Rm�/ D ‚u0;u.1Rm/‚u;v.�/ D C‚u;v.�/, and, simi-
larly, ‚u;v.�/ D ‚u;v0.�/D.

Using this, we can see that ‚u0;v0.�/ D C‚u;v.�/D�1.
The following two results have proofs similar to their well-known counterparts in

the commutative case and are not included below (see Theorems 17 and 18 in [26]).

Theorem 5.2. Let G be a free R-module that admits a basis with n elements and
N 	 G a submodule. Then N is also free and there exists a basis of N with m � n
elements.

Theorem 5.3. Let M be a finitely generated R-module. Then there exists a finite rank
free submodule G of M such that

M D T .M/˚G:

Theorem 5.4. If M is a finitely generated torsion R-module, then there exist nonzero
elements f1; : : : ; fn inR such that fi is a total divisor of fiC1 for all i D 1; : : : ; n�1
and

M ' R

Rf1
˚ � � � ˚ R

Rfn
:

Proof. Since M is finitely generated over R we can map a free R-module onto M via
an R-module homomorphism �, � W Rn ! M ! 0. Let N D Ker.�/. According to
Theorem 5.2, N admits a basis f1; : : : ; fm with m elements, where m � n. Denote
e D ¹e1; : : : ; enº the standard basis in Rn.

Therefore M D Coker.i W N ,! Rn/. Let ‚.i/ D A and note that according to
our earlier observations, a change of bases for N and Rn to say f 0, respectively e0
produces a new matrix ‚f 0;e0.i/ that is associate of A.
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Therefore we can apply the matrix considerations from an earlier section and con-
clude that for an appropriate choice of bases for N and Rn we have

‚.i/ D

0

B

B

@

f1 0 � � �
0 f2

: : :

:::
: : :

: : :

1

C

C

A

with fi is a total divisor for fj for all j > i . Let s the number of nonzero fi ’s. Clearly
s � n. Since Coker.‚.i// D R=Rf1 ˚ R=Rf2 ˚ � � � ˚ R=Rfs ˚ Rn�s , we can
conclude that s D n since otherwiseM has nontorsion elements. The statement of the
theorem is now clear.

Corollary 5.5. (i) Let M be a finitely generated indecomposable R-module. Then
M is cyclic.

(ii) Any R-module M that satisfies the (ACC) and (DCC) conditions on its left sub-
modules is a direct sum of cyclic indecomposable R-modules of the form R=Rm,
m 2 R. The elements m that appear in the decomposition are determined up to
similarity and their number is an invariant of the module M .

(iii) If M is finitely generated R-torsion module, then there exist n and nonzero
e1; : : : ; en such that for all i D 1; : : : ; n, R=Rei is indecomposable and

M ' R=Re1 ˚ � � � ˚R=Ren:
The number n is uniquely determined by M and the elements e1; : : : ; en 2 R are
determined up to similarity.

The elements in the above Corollary are called elementary divisors ofM , in the case
M is R-torsion and finitely generated. In the general case when M is finitely gener-
ated, but not necessarily R-torsion, the elementary divisors of M are by definition the
elementary divisors of T .M/.

6 Computing the Invariant Factors

Let F W V ! V be a Frobenius action on V . Let ¹v1; : : : ; vnº denote a basis for V
and write

F.vi / D
n
X

jD1
aij vj ; i D 1; : : : ; n; aij 2 K:

Therefore

F
�

n
X

iD1
xivi

�

D
n
X

iD1
x
p
i F.vi / D

n
X

iD1
x
p
i

n
X

jD1
aij vj D

n
X

jD1

�

n
X

iD1
x
p
i aij

�

vj :
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If we write .x1; : : : ; xn/ for
Pn
jD1 xj vj and A D .aij /1�i;j�n then the above

equation can be summarized as

F.x1; : : : ; xn/ D .xp1 ; : : : ; xpn / � A
The R D K¹F º-structure on V is defined by F � v D F.v/. So given a fixed basis
¹v1; : : : ; vnº of V , the action F is determined by the matrix A and vice versa. We
would like to outline the computation of the invariant factors of V as an R-module
from the matrix A.

Note that we can define a R-module homomorphism � W Rn ! V by letting
�.ei / D vi where e D ¹e1; : : : ; enº form a basis for Rn. This is obviously a sur-
jection since V is generated over K and hence over K¹F º by v1; : : : ; vn.

Let us notice that V is torsion over R. Indeed, since dimK.V / <1, for any v 2 V ,
there exists n such that v; F.v/; : : : ; F n.v/ areK-linearly dependent and so there exist
a0; : : : ; an in K, not all zero, such that a0vC a1F.v/C � � � C anF n.v/ D 0. One can
assume that an ¤ 0 and note that this implies that .a0 C a1F C � � � C anF n/ � v D 0.
In conclusion, Theorem 5.4 can be applied.

Theorem 6.1. Let V be a K-vector space with basis ¹v1; : : : ; vnº. Assume that V
admits a Frobenius action F over K and let A be the matrix associated to this action
with respect to the chosen basis.

Consider the natural R-homomorphism � W Rn ! V sending each element ei of
the basis to vi for all i D 1; : : : ; n. Then a basis for W D Ker.�/ is given by the set
of vectors

.FIn � A/ �

0

B

B

B

B

@

e1

e2
:::

en

1

C

C

C

C

A

(interpreted as a matrix multiplication).

Proof. Let
0

B

B

B

B

@

f1

f2
:::

fn

1

C

C

C

C

A

D .F � 1n � A/ �

0

B

B

B

B

@

e1

e2
:::

en

1

C

C

C

C

A

;

therefore

fi D F � ei �
n
X

jD1
aij ej :

Note that �.fi / D F�.ei / �Pn
jD1 aij�.ej / D F.vi / �Pn

jD1 aij vj D 0 which
shows that each fi belongs to W .
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To prove that f1; : : : ; fn generate W let us denote by W 0 the R-submodule gener-
ated by these elements. The goal is to check that W 0 D W . Consider the K-subspace
of Rn, E, generated by e1; : : : ; en. Clearly, F � ei D fi CPn

jD1 aij ej and so belongs
toW 0CE. Using this fact, we can immediately check thatW 0CE is anR-submodule
of Rn. Now, it contains all e1; : : : ; en so it must equal Rn. Let w 2 W 	 Rn and
write w D w0 C e with w0 DPn

iD1 rifi and e DPn
iD1 aiei where each ri 2 R and

ai 2 K. But �.w/ D 0. We already know that �.w0/ D 0, so we obtain �.e/ D 0

which leads to
Pn
iD1 ai�.ei / D

Pn
iD1 aivi D 0 therefore ai D 0 for all i D 1; : : : ; n.

Hence w D w0 2 W 0 and the equality W 0 D W is verified.
To check that f1; : : : ; fn are linearly independent overR let us consider r1; : : : ; rn 2

R such that
r1f1 C r2f2 C � � � C rnfn D 0:

Now each nonzero ri has a leading term of the form ani
F ni with ani

2 K; ani
¤ 0.

Consider the above relation in the highest degree for which F appears on the left hand
side, and note that it leads to a relation of the form

P

i ani
ei D 0, where the sum runs

over a nonempty subset of the set of indices i such that ri ¤ 0. But e1; : : : ; en are
linearly independent over K, so in fact we must have ri D 0 for all i .

Corollary 6.2. Let V be a K-vector space with basis ¹v1; : : : ; vnº. Assume that V
admits a Frobenius action F over K and let A be the matrix associated to this action
with respect to the chosen basis.

Then the invariant factors of V as anR-module are the invariant factors ofF �1n�A.

Proof. Construct a surjection � W Rn ! V by mapping the elements of a basis e D
¹e1; : : : ; enº to V by �.ei / D vi . Let W D Ker.�/.

In the proof of Theorem 5.4 the invariant factors of V are obtained as the invariant
factors of the matrix ‚.i/ where i W W ! V is the natural inclusion.

With the notations from Theorem 6.1, we have that f D ¹f1; : : : ; fnº is basis ofW .
But fi D F � ei �Pn

jD1 aij ej and so ‚f;e.i/ D F � 1n � A.

Let us present a example.

Example 6.3. Let K be a field of characteristic p > 2, V D K2 and denote v1 D
.1; 0/; v2 D .0; 1/ for the canonical basis for V .

LetA D � 1 0�2 0
�

and define a Frobenius action on V such that its matrix with respect
to the chosen basis equals A, that is F.v1/ D v1; F .v2/ D �2v1.

For arbitrary .x; y/ 2 V , we have F.x; y/ D .xp; yp/ � � 1 0�2 0
� D .xp � 2yp; 0/:

Consider now

F � In � A D
 

F � 1 0

2 F

!

:

We will perform the elementary and special transformations described in Section 4
in order to compute the invariant factors. An important feature is that we can multiply
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a rown on the left and add to another row, and we can multiply a column on the right
and add it to another column as described in Section 5. The rows will be denoted by
R1; R2 and columns by C1; C2 and the transformations will be described as follows:
R01 D R1 C aR2 means for example that the we replace the old row R1 by a new one
obtained by first multiplying row R2 on the left by a and then adding it to row R1.
Therefore

 

F � 1 0

2 F

!

R0
1D.�1=2p/FR2CR1�

 

�1 .�1=2p/F 2
2 F

!

and
 

�1 .�1=2p/F 2
2 F

!

R0
2D2R1CR2�

 

�1 .�1=2p/F 2
0 F � .2=2p/F 2

!

Continuing like this we obtain
 

�1 .�1=2p/F 2
0 F � .2=2p/F 2

!

C 0
2
DC1.�1=2p/F 2CC2�

 

�1 0

0 F � .2=2p/F 2
!

and further
 

�1 0

0 F � .2=2p/F 2
!

�
 

.1=2p�1/F 2 � F 0

0 1

!

Therefore V is R-isomorphic to

R

..1=2p�1/F 2 � F /R;

and we can understand better the action of F on V by inspecting the elementary trans-
formations performed on F � In � A.

These elementary transformations correspond to multiplying F � In � A on the left
by

X D
 

0 1

�1 0

!

�
 

1 0

2 1

!

�
 

1 .�1=2p/F
0 1

!

and on the right by

Y D
 

1 .�1=2p/F 2
0 1

!

�
 

0 1

�1 0

!

But

X D
 

2 .�1=2p�1/F C 1
�1 .1=2p/F

!

while

Y D
 

.1=2p/F 2 1

�1 0

!

:
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We know that V D Coker.i/where i W W ! R2, and as in the proof of Theorem 5.4
the matrix

 

.1=2p�1/F 2 � F 0

0 1

!

is the matrix of the map i with respect to the basis X � f for W and the basis Y �1 � e
for R2.

Now the

Y �1 � e D
 

0 �1
1 .1=2p/F 2

!

�
 

e1

e2

!

D
 

�e2
e1 C .1=2p/F 2e2

!

:

Under the isomorphism

R

..1=2p�1/F 2 � F /R ' V

the class of the element 1 on the left corresponds to the image of the class of �e2 in
V D Coker.i/ on the right therefore. So 1 corrresponds to �v2.

Note that R
..1=2p�1/F 2�F /R has K-basis w1 D 1;w2 D F . The reader might

want to know what basis of V this is. Our above calculations have shown that 1
corresponds to �v2 and, of course, F will correspond to F.�v2/ D .�1/pF.v2/ D
�.�2v1/ D 2v1.

In particular we obtain that V is R-generated by �v2 and AnnR.�v2/ D .F 2 �
2p�1F /.

6.1 Injective Frobenius Actions on Finite Dimensional Vector Spaces
over a Perfect Field

In the study of modules with Frobenius action the case when the action is injective
plays an especially important role.

Proposition 6.4. Let K be a perfect field and V be a finitely dimensional vector space
with a Frobenius action F . Fix a basis for V say v D ¹v1; : : : ; vnº and denote by A
the matrix associated to F . Then F is injective if and only if A is invertible inMn.K/.

Proof. The proof is a simple exercise.

The following theorem, that we could not find in the literature, is a simple conse-
quence to the theory developed so far.

Theorem 6.5. Let K be an infinite perfect field and V be a finitely dimensional K-
vector space. Assume that V admits an injective Frobenius action. Then V isR-cyclic.
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Proof. We have noted earlier that V is necessarily a torsion R-module. Therefore V
is R-isomorphic to a direct sum of the form ˚siD1R=Rfi ; where f1; : : : ; fs are the
invariant factors of V regarded as an R-module.

The invariant factors f1; : : : ; fs have the property fi jt fiC1, i D 1; : : : ; s � 1.
This implies that there exist ideals Ii such that Rfi 	 I 	 RfiC1. However, ideals
in R are of the form .F k/ for some k by Proposition 3.13. So let Ii D .F ki / for all
i D 1; : : : ; s � 1. Since F ki 2 RfiC1, and fiC1 kills a nonzero element of V as can
be readily seen from the R-structure of V , we see that F ki kills a nonzero element of
V . But F is an injective action on V so we conclude that fi D 0 for all i � 2 which
leads to the conclusion of the theorem.

We can use this theorem to give a proof of a result of Dieudonné. This result is
well-known and has appeared in many texts.

Theorem 6.6 (Dieudonné). Let K be an algebraically closed field and V a finite di-
mensional K-vector space with an injective Frobenius action FK W V ! V . Then V
admits a K-basis which is fixed under F .

We will give an extension here that is suited to our point of view and it has been
known to the experts. For example, the reader might consult [4] (Section 3.6.1) for a
nice proof that has some similarities with the one below.

Theorem 6.7. LetK be a perfect field and V a finite dimensionalK-vector space with
an injective Frobenius action FK W V ! V . Then there exists a finite field extension
K 	 L such that the Frobenius action on VL D L˝K V given by

FL W VL ! VL; FL D 1L ˝ FK
admits an L-basis which is fixed under FL.

Proof. According to Theorem 6.5 we know that V D R=Rf where f 2 R D K¹F º.
We can assume that f D F n�Pn

iD1 �iF i�1, with �1 ¤ 0 because F acts injectively
on V .

Let us fix the following basis of V : vi D F i�1, i D 1; : : : ; n. With respect to this
basis the matrix of the Frobenius action is given by

A D

0

B

B

B

B

B

B

B

@

0 1 0 � � � 0

0 0 1
: : :

:::
:::

:::
: : :

: : : 0

0 0 � � � 0 1

�1 �2 �3 � � � �n

1

C

C

C

C

C

C

C

A

:

If v D x1v1C� � �Cxnvn, then F.v/ D v leads to the following system of equations

x
p
i C xpn�iC1 D xiC1; i D 0; : : : ; n � 1; x0 D 0:
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Substituting recursively we obtain
Pn
iD1 x

pn�iC1

n �
pn�i

i � xn D 0 which is a poly-
nomial over K admitting distinct roots, because its derivative is invertible. Call these
roots x1;n; x2;n; : : : ; xpn;n. Adjoining these solutions to K we get a finite field exten-
sion L of K.

Once xn D xk;n is obtained we see that the corresponding x1; : : : ; xn�1 can be

calculated immediately with xj D xk;j D
Pj
iD1 x

pn�iC1

k;n
�
pn�i

i .
We claim that for n distinct nonzero choices of xk;n, k D 1; : : : ; n, the elements of

VL given by
wj D xj;1v1 C � � � C xj;nvn

with j D 1; : : : ; n form a basis for VL. It is clear that FL.wj / D wj .
The transition matrix from basis v1; : : : ; vn to basis w1; : : : ; wn has kth row equal

to
�

x
p

k;n
�1; : : : ;

j
X

iD1
x
pn�iC1

k;n
�
pn�i

i ; : : :
�

:

We need to show that this matrix has nonzero determinant. Since �1 ¤ 0, we can
in fact assume �1 D 1, and now simple column operations show that the determinant
of the transition matrix is a Vandermonde determinant in the nonzero distinct elements
x1;n; : : : ; xn;n, which is therefore different from zero.

Definition 6.8. Let V be a K-vector space with a Frobenius action. For a subset S
of V , hSiK denotes the K-subspace of V generated by the elements of S . Then the
stable part of V is the subspace Vs DTe�0hF e.V /iK . The nilpotent part of V is the
subspace Vnil D ¹v 2 V W F e.v/ D 0 for some e � 0º. It is clear that both Vs and Vnil

inherit the Frobenius action from V . Also, V is called semisimple if hF .V /iK D V .
Therefore Vs is semisimple.

Proposition 6.9. Let K be perfect field. Let V be a K-vector space with a Frobenius
action. Then V D Vs ˚ Vnil.

Proof. SinceK is perfect then hF e.V /iK D F e.V / for all e � 0. There exists e0 � 0
such that Vs D F e.V / for all e � e0. Also since Vnil is finite dimensional we can find
m � 0 such that Fm.Vnil/ D 0. One can assume m � e0.

Let v 2 Vs \ Vnil. Then v D Fm.w/ for some w 2 V . So, 0 D Fm.v/ D F 2m.w/
hence w 2 Vnil. But this gives Fm.w/ D 0, or v D 0. Therefore, Vs \ Vnil D 0.

Now, let v 2 V . Since Fm.v/ 2 Vs then Fm.v/ D FmCe0.w/ for some w 2 V .
So, Fm.v � F e0.w// D 0 or in other words v � F e0.w/ 2 Vnil.

Now note that v D v � F e0.w/C F e0.w/ and that F e0.w/ 2 F e0.V / D Vs .
The following result has appeared first in [19], based on ideas of Lang, and then

Hochster gave another proof more recently, see [17]. It extends Dieudonné’s result,
Theorem 6.6, in a complementary way to Theorem 6.7.
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Theorem 6.10. Let V be a K-vector space and K a separably closed field. Then Vs
admits a basis that is fixed by F .

7 The Antinilpotent Case

In this section we will present some applications to the case of antinilpotent vector
spaces. The notion of an antinilpotent module was introduced in [13] with respect
to modules that admit a Frobenius action. It has applications in the study of local
cohomology modules of a local ring A with support in its maximal ideal. These local
cohomology modules are Artinian, but not finitely generated. However, to understand
the notion of antinilpotency it is natural to first consider it in the context of simpler
situations, such as finite dimensional vector spaces, and finitely generated modules
over a commutative Noetherian ring. The treatment of vector spaces with Frobenius
action which is the subject of the paper will be applied in this section.

We will first start with reviewing the antinilpotency of modules. In this section, A
denotes a commutative Noetherian ring of positive characteristic p where p is prime.
Let M be an A-module and assume that there exist an additive map F D FM W M !
M such that F.am/ D apF.m/ for all a 2 A;m 2M . We call F D FM a Frobenius
action on M .

Definition 7.1. Let M be an A-module that admits a Frobenius action F W M ! M .
We say that M is antinilpotent (with respect to F ) if for any F-compatible (or F-
invariant) submodule N the induced map F W M=N ! M=N is injective. This is
equivalent to the condition that F does not act nilpotently on (equivalently, does not
kill) any nonzero subquotient Q=N of F-compatible submodules Q;N of M .

Let S 	 A be a multiplicative set and M be an A-module with a Frobenius action.
Then F extends naturally to a Frobenius action on S�1M by F.m

s
/ D F.m/

sp for all
m 2M; s 2 S . If M is antinilpotent, then S�1M is antinilpotent as well.

The following result represents the motivation behind the study of antinilpotent
modules. For a commutative ring A of prime characteristic p, we say that A is F-
pure if F W A! A is a pure homomorphism of A-modules.

Theorem 7.2 (Enescu–Hochster, [13]). Let .A;m/ be an F-pure Gorenstein local ring
of dimension d . Then Hd

m.A/ is antinilpotent with respect to the canonical Frobenius
action on it.

Under the Gorenstein hypothesis, the F-purity of A is equivalent to the injectivity
of the Frobenius action on Hd

m.A/. So, when A is Gorenstein, Theorem 7.2 says that
the injectivity of the Frobenius action implies a stronger form of injectivity, namely
antinilpotency. Therefore, it makes sense to understand the connection between these
two concepts in a general setting.

An interesting property of antinilpotent modules is highlighted by the next result.
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Theorem 7.3 (Enescu–Hochster, [13]). Let M be an Artinian A-module. Assume that
M admits a Frobenius action F such that M is antinilpotent. Then M has finitely
many submodules that are F-compatibile.

Let M be an A-module and F WM !M a Frobenius action on M . For a submod-
ule N of M we denote hF .N/iA the A-submodule generated by F.N/ in M .

Lemma 7.4. Let M be an A-module, and F W M ! M an injective Frobenius action
on M . Then M is antinilpotent if and only if for all F-compatible submodules N of
M , hF .N/iA D N .

Proof. First assume that M is antinilpotent and let N be an F-compatible submodule
of M . Then we have an induced Frobenius action F W N

hF .N/iA ! N
hF .N/iA which is

trivially kills N
hF .N/iA . Thefore, N D hF .N/iA, since M is antinilpotent.

For the converse, let N be an F-compatible submodule of M . We plan to show that
F W M

N
! M

N
is injective, or, in other words, if m 2M with F.m/ 2 N , then m 2 N .

Let N0 D Rm C N . Clearly, F.N0/ 	 hF .N0/iA � hF .N/iA � N � N0
which means that N0 is F-compatible. By hypothesis, hF .N0/iA D N0, so N D N0.
Therefore m 2 N .

Let A be a ring and m a maximal ideal of A. Let V be a vector space over A=m
and consider the natural A-module structure on V obtained by restriction of scalars to
A, denoted by V.m/. As sets V D V.m/. Obviously, if F is a Frobenius action on V
over A=m, one obtains a natural Frobenius action on V.m/ as an A-module.

Proposition 7.5. (i) Let .A;m/ be a local ring andM a finitely generatedA-module
with an antinilpotent Frobenius action. Then mM D 0 and hence M D V.m/,
where in fact V DM regarded asA=m-vector space and V is finite-dimensional
and antinilpotent.

(ii) Let A be a Noetherian ring and M be an antinilpotent module that is finitely
generated over A. Then there exist a finite set ƒ of maximal ideals of A
and antinilpotent A=mi -vector spaces Vi , for any mi 2 ƒ such that M D
L

mi2ƒ Vi .mi /.

Proof. For (i), for any ideal I , F acts injectively on IM=I 2M . On the other hand F
kills IM=I 2M and so IM D I 2M . Therefore IM D 0 and in particular mM D 0.
The rest of assertions follow.

(ii) Again I 2M D IM for all I ideals in A and this is preserved under localization.
Note thatM !Q

m2Max.A/Mm is injective. By .1/mMm D 0. SoMm D V.m/ for
some A=m-vector space V . Now it follows easily that the image of M is of the form
stated in the conclusion. The fact the only a finite number of maximal ideals appear in
the product giving M comes from the fact that M is Noetherian.
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Let F�A D A.1/ be the right A-algebra obtained on A via the Frobenius map F W
A ! A by restriction of scalars. By convention, A.1/ equals A as a left A-module.
Let M be an A-module with a Frobenius action FM W M ! M . Let F�.M/ D
A.1/ ˝AM .

It is easy to check that the Frobenius actions onM are in one-to-one correspondence
to elements of HomA.F�.M/;M/ (as in Remark 3.2 in [25]). Under this correspon-
dence FM maps to !M , where !M .a˝m/ D aF.m/, for all a 2 A;m 2M .

This construction is functorial in the sense that if g W N ! M is an A-linear map
with compatible Frobenius action

N
g����! M

FN

?

?

y

?

?

y

FM

N
g����! M

then the following diagram of A-linear maps

A.1/ ˝A N 1˝g����! A.1/ ˝AM
!N

?

?

y

?

?

y

!M

N
g����! M

commutes.
An example of an A-linear map compatible with the Frobenius actions is the inclu-

sion map i W N ! M defined by an F-compatible submodule N of M . Note that
hF .N/iA D !N .A.1/ ˝A N/.

Proposition 7.6. Let V be a finite dimensional vector space with a Frobenius action
F W V ! V and corresponding !V W K.1/˝K V ! V . Then V is antinilpotent if and
only if !V is isomorphism if and only if !V is injective if and only if !V is surjective.

Proof. The composition of V ! K.1/ ˝K V !V! V gives the Frobenius action on V
so the injectivity of !V implies that F is injective.

First note that dimK.1/.K.1/ ˝K V / D dimK.V /. But on the left K.1/ is simply
K. Therefore the surjectivity of !V implies that !V is an isomorphism of K-vector
spaces.

Now consider an F-compatible K-subspace V 0 of V . Since K is field we get that

K.1/ ˝K V 0 i
,! K.1/ ˝K V . Moreover we have the following commutative diagram

K.1/ ˝K V 0 1˝i����! K.1/ ˝K V
!V 0

?

?

y

?

?

y

!V

V 0 i����! V
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which implies that K.1/ ˝K V 0 ! V 0 is injective. As above, by dimension consid-
erations, it must also be surjective, hence hF .V 0/iK D V 0 which implies that V is
antinilpotent, according to Lemma 7.4.

For the converse, if V is antinilpotent then !V .K.1/ ˝K V / D V by Lemma 7.4,
hence !V is surjective

Corollary 7.7. Let K be a perfect field. Let V be a finite dimensional K-vector space
that admits a Frobenius action. Then the Frobenius action is injective if and only if V
is antinilpotent.

Proof. Fix a basis for V . If the Frobenius action F is injective, then Proposition 6.4
shows that the matrix describing the action is invertible. But this matrix coincides with
the one describing the map !V therefore Theorem 7.6 applies.

Corollary 7.8. Let K � L be a finite field extension. Consider the Frobenius map on
L which can be regarded as a Frobenius action of L as K-vector space.

Then L is antinilpotent over K if and only if K 	 L is separable.

Proof. It suffices to note that K.1/ ˝K L ! L is injective if and only if K 	 L is
separable.

We would like to give now an example of a finite dimensional K-vector space V
that admits an injective Frobenius action, but it is not antinilpotent. Note that the base
field K is not perfect.

Example 7.9. Let ˛ be a solution of the equation t3 C t2 D 1 over F3. Let X be an
indeterminate and construct K D F3.˛/.X/ 	 L D F3.˛/.

3
p
X/.

Let V D L2. Since L is finite over K of degree 3 then dimK.V / D 6.
We define the following Frobenius action

F.x1; x2/ D .x31 ; x32/ �
 

1 1

0 1

!

D .x31 ; x31 C x32/;

for all x1; x2 2 L.
It is an immediate check to see that F is injective.
Let W D K � .˛;�1/ 	 V .
Let a 2 K. Then F.a.˛;�1// D a3F.˛;�1/ D a3.˛3; ˛3� 1/ D a3.˛3;�˛2/ D

˛2 � a.˛;�1/ … W , since ˛2 … F3.
But if v D 3

p
X.˛;�1/, we get F.v/ D ˛2 �X.˛;�1/ 2 W , while v … W .

This shows that V is not antinilpotent with respect to the action considered.

We explain now a relationship between the notion of F -modules, due to Lyubeznik
[23] who in turn was inspired by work of Harthsorne–Speiser [16], and antinilpotent
modules.
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Definition 7.10. Let M be an A-module with a Frobenius action F W M ! M . We
say that M is an F -module if the map

A.1/ ˝AM !M

is an A-isomorphism of modules. Note that, as an left A-algebra, A.1/ D A.

Over a regular ring A, every F -module M has the property that a submodule N is
an F -module if and only if hF .N/iA D N .

Corollary 7.11. A finite dimensional vector space V over a field K is an F -module if
and only if it is antinilpotent.

When K D Fp we note that a Frobenius action of a K-vector space is simply a K-
linear function. In this situation the antinilpotency of V is equivalent to the injectivity
of F on V as it is clear from the characterization in Theorem 7.6. In this case since V
is finite is clear that there are finitely many (F-compatible) subspaces of V .

One question that arises in this context is the following. Assume that K is now an
(infinite) field and let T W V ! V be a K-linear map. Is it true that there are at most
finitely many subspaces V 0 of V compatible with T , i.e. T .V 0/ 	 V 0?

The reader can check that this is the case if and only if V has no repeated elementary
divisors, when K is infinite.

We would like to close with an extension of Theorem 4.21 in [13] that shows how
the results in this survey might be used in current research.

Proposition 7.12. Let .A;m/ be a complete local ring with perfect residue field K.
Assume that A has prime characteristic p, and let M be an A-module of finite length
that admits a Frobenius action F . If F acts injectively on M then M is antinilpotent
with respect to F .

Proof. Note thatA contains a copy ofK. Hence, sinceM is of finite length overA,M
is a finite dimensional vector space over K. The action F is injective on M when M
is regarded as a K-vector space so by Corollary 7.7 it follows that M is antinilpotent
as a K-vector space. This automatically makes M antinilpotent as an A-module as
well.

Definition 7.13. Let .A;m/ be a local ring of dimension d . We say that A is general-
ized Cohen–Macaulay if H i

m.A/ is of finite length over A, for all i < d . A local ring
of prime characteristic p > 0 .A;m/ is called FH-finite if, for all i D 0; : : : ; d , the
module H i

m.A/ has only finitely many F-compatible submodules.

Theorem 7.14. Let .A;m/ be a local, complete domain. Assume that A is F-injective,
generalized Cohen–Macaulay with perfect residue field K. If the test ideal of A is
m-primary, then A is FH -finite.
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Proof. Since for all 0 � i � d � 1, H i
m.A/ are of finite length over A, we have that

each H i
m.A/ is antinilpotent with regard to the natural Frobenius action because this

action is injective, by Proposition 7.12.
Let V D 0�H whereH D Hd

m.A/. Denote by 
 the test ideal of A. Then it is known
that 
 � V D 0 and that V is the largest proper F-compatible submodule of H by a
theorem of K. E. Smith. Since V is Artinian and 
 is m-primary it follows that V is of
finite length over A. Again we conclude that V is antinilpotent, by Proposition 7.12.

To conclude that the action on H is antinilpotent we need to show that F acts
injectively on the quotient H=V . But H=V is a simple K¹F º-module. This means
that we only need to check that F does not kill H=V .

Let x1; : : : ; xd a system of parameters for A. Think of H as the last cohomology
module in Čech complex associated to x1; : : : ; xd . The elements of H can be thought
of as classes Œ a

.x1���xd /t
� with a 2 A and t � 0. Denote by 1 the element Œ 1

x1���xd
�. Note

that this element generates H as an A¹F º-module. Now assume that F kills H=V .
Then F.1/ 2 V . But F.1/ also generates H as an A¹F º-module. So this implies that
H � V which is a contradiction.

Therefore H and hence all modules H i
m.A/ are antinilpotent with respect to the

canonical Frobenius action. But then Theorem 4.14 in [13] shows that A is FH-finite.
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1 Introduction

Let R be a commutative ring with identity and let G be an Abelian group written
multiplicatively. The group ring RG is the free R module on the elements of G with
multiplication induced by G. An element x in RG has a unique expression: x D
P

g2G xgg, where xg 2 R and all but finitely many xg are zero. With addition,
multiplication, and scalar multiplication by elements of R defined analogously to the
standard polynomial operations, RG becomes a commutative R algebra.

Properties of the group ring RG, particularly in conjunction with questions of de-
scent and ascent of these properties between R and RG, have been of interest for at
least 70 years. In his book Commutative Semigroup Rings [14], Gilmer traces the be-
ginning of a systematic interest in the nature ofRG, for general ringsR and groupsG,
to Higman’s article [28] published in 1940. The commutative case became of interest
in its own right when the general results reached a stage of specialization at the start of
the 1960s. Many of the classical ring theoretic results for the commutative case were
collected in two books published in 1983–84: Gilmer [14], and Karpilovsky [32].

In this article, we survey the known results for several related families of properties
in the context of commutative group rings. These properties include: finiteness proper-
ties (such as Noetherianess, coherence, quasi coherence, and finite conductor proper-
ties), homological properties (such as weak global dimension behavior, von Neumann
regularity, semihereditarity, and regularity properties), and properties which connect
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these two families (such as zero divisor controlling conditions, and Prüfer conditions).
Most of the work in this area has been done after the publication of [14], and [32], and
employs homological algebra techniques – a direction that was not considered in [14],
and only marginally touched in [32]. In addition to highlighting the recent progress
in these areas, the article points out open problems and possible future directions of
investigation.

Section 1 explores finiteness conditions in the commutative group ring setting. Par-
ticularly, this section includes the necessary and sufficient conditions for a group ring
to be Noetherian or Artinian (Connell [9]); the necessary and sufficient conditions for
a group ring to be coherent (Glaz [16]); and a discussion, particular cases, and open
questions, regarding the finite-conductor and quasi coherence properties. This discus-
sion brings in a number of factoriality properties that are closely related to the finite
conductor condition, such as GCD, G-GCD and UFD conditions.

Section 2 delves into homological conditions in the group ring setting. The sec-
tion includes the determination of necessary and sufficient conditions for a group ring
to be von Neumann regular (Auslander [2], McLaughlin [37], and Villamayor [44]),
semihereditary (Glaz [16]), or coherent regular (Glaz [20]). It also exhibits a formula
connecting the weak global dimension of RG with the weak global dimension of R
and rank G (Douglas [11], Glaz [16]), and ends with a discussion of possible future
directions of exploration of properties such as global dimension, Cohen–Macaulay and
Gorenstein ring conditions.

Section 3 considers three zero divisor controlling conditions that can be explored
by homological techniques: the PP condition, the PF condition, and the condition that
Q.R/, the total ring of fractions of the ring R, is von Neumann regular. The section
includes the determination of conditions for ascent and descent of these properties
between R and RG, (Schwarz and Glaz [43]). It also highlights the applications of
these results to the exploration of Prüfer conditions in group ring setting (Schwarz
and Glaz [43]). The Prüfer conditions under exploration include arithmetical rings,
Gaussian rings, locally Prüfer rings, and Prüfer rings.

2 Finiteness Conditions

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. The first finiteness conditions to be considered were the properties
of being a Noetherian or an Artinian ring. The results in this direction are due to
Connell [9].

Theorem 2.1 ([9]). Let R be a commutative ring and let G be an Abelian group. Then
RG is a Noetherian ring if and only if R is a Noetherian ring and G is a finitely
generated group.

As a corollary of this result, Connell [9] determined when a commutative group ring
is Artinian.
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Corollary 2.2 ([9]). LetR be a commutative ring and letG be an Abelian group. Then
RG is an Artinian ring if and only if R is an Artinian ring and G is a finite group.

The next finiteness property to be considered was coherence. We start by recalling
a few definitions.

Definition 2.3. Let R be a commutative ring. R is said to be stably coherent if the
polynomial rings in finitely many variables over R are all coherent rings.

It is well known that contrary to the situation for Noetherian rings, the coherence
of a ring R does not necessarily ascend to RŒx�, the polynomial ring in one variable
over R (see, for example, [17, Chapter 7] for Soublin’s example of such a case). But it
is still an open question whether the coherence of the polynomial ring in one variable
over a ring R implies the coherence of the polynomial rings in any finite number of
variables over R. In all cases where the coherence of R ascends to RŒx� this is indeed
the case, although the proofs do not employ an inductive argument on the number of
variables (as is the case for Noetherian rings). The class of rings which are known
to be stably coherent is of considerable size. To name a few: Noetherian rings, von
Neumann regular rings, semihereditary rings, coherent rings of global dimension two,
and others, are all stably coherent rings. For more details see [17, Chapter 7].

Definition 2.4. Let G be a multiplicative Abelian group. The rank of G, denoted by
rankG can be defined as follows: A set of non identity elements ofG, ¹g1; : : : ; gkº, is
called independent if the equation gn1

1 g
n2

2 � � �gnk

k
D 1, where 0 < ni 2 Z, implies that

g
n1

1 D gn2

2 D � � � D gnk

k
D 1. An infinite set of elements of G is called independent if

every finite subset of it is independent. By Zorn’s Lemma, for every group G we can
select an independent set of elements that contains only elements of infinite order and
is maximal with respect to this property. The cardinality of this set is rankG. Note
that if rankG > 0, then G contains a free subgroup of order rankG.

With these definitions we can now describe the conditions under which RG is a
coherent ring. The necessary and sufficient conditions for the coherence of RG were
found by Glaz [16].

Theorem 2.5 ([16]). Let R be a commutative ring and let G be an Abelian group.

(i) If G is a torsion group, then RG is a coherent ring if and only if R is a coherent
ring.

(ii) If 0 < rankG D n <1, thenRG is a coherent ring if and only if the polynomial
ring in n variables over R is a coherent ring.

(iii) If rankG D 1, then RG is a coherent ring if and only if R is a stably coherent
ring.
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Several finiteness properties exist which relax the coherence conditions on the ring
without completely eliminating them. Prominent among those are the finite conductor
and quasi coherence properties.

Definition 2.6. Let R be a commutative ring. For an element c in R denote by .0 W c/
the annihilator of c. R is said to be a finite conductor ring if aR \ bR and .0 W c/ are
finitely generated ideals of R for all elements a, b, and c in R. A ring R is said to be
a quasi coherent ring if a1R \ � � � \ anR and .0 W c/ are finitely generated ideals of R
for all elements a1; : : : ; an, and c in R.

The finite conductor property for integral domains first came into prominence in
McAdam’s work [36]. Quasi coherence for integral domains was defined by Dobbs
[10]. The definitions for general rings are due to Glaz [18]. The theory of these rings
is developed in [18]; while [19] provides a survey of the results in this direction and
a multitude of examples. Among the class of finite conductor (also quasi coherent)
rings we count all coherent rings, UFDs, and GCD domains (that is, integral domains
where any two non zero elements have a greatest common divisor), and G-GCD do-
mains (that is, integral domains in which the intersection of two invertible ideals is an
invertible ideal). Glaz [18] generalized this last class of rings to rings with zero divi-
sors, and called them G-GCD rings (A ring R is a G-GCD ring if principal ideals of
R are projective and the intersection of any two finitely generated flat ideals of R is a
finitely generated flat ideal of R). Neither the finite conductor, not the quasi coherence
properties have been investigated in the general group ring setting. A few cases, where
the finite conductor (or quasi coherent) ring is a particular integral domain, have been
solved by Gilmer and Parker [15]. We provide these results in Theorems 2.7 and 2.9
below:

Theorem 2.7 ([15]). Let R be a commutative ring and let G be an Abelian group.
Then RG is a GCD domain if and only if R is a GCD domain and G is a torsion free
group.

Definition 2.8. Let G be an Abelian group. G is said to be cyclically Noetherian if G
satisfies the ascending chain conditions for cyclic subgroups.

Theorem 2.9 ([15]). Let R be an integral domain and let G be a torsion free Abelian
group. Then RG is a UFD if and only if R is a UFD and G is cyclically Noetherian.

In the general ring setting, it follows from [19, Proposition 3.2] that both the fi-
nite conductor and the quasi coherence properties descend from RG to R. Regarding
ascent of these properties from R to RG, [19, Proposition 3.1] reduces the question
to the case where G is finitely generated. Beyond this not much is known about the
ascent of either property, not even for the simple case, where R is a G-GCD ring and
the structure of RG can be made very explicit (for example, when G an infinite cyclic
group). We venture to make the following conjecture:
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Conjecture 2.10. If R is a G-GCD ring and G is a finitely generated free Abelian
group, then the finite conductor and the quasi coherent properties ascend from R

to RG.

A further exploration of these conditions in the group ring setting may shed light on
a problem that is still open: Are the finite conductor and the quasi coherence properties
distinct [18, 19]?

3 Homological Dimensions and Regularity

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. The first homological condition to be considered in the commuta-
tive group ring setting was von Neumann regularity, that is, the case of weak global
dimension equal to zero. The determination of conditions under which RG is von
Neumann regular, given in Theorem 3.2, was discovered independently, and almost
simultaneously, by Auslander in 1957 [2], McLaughlin in 1958 [37], and Villamayor
in 1959 [44]. Their work was also the first to mention a condition linking the ring
R and the group G that plays an important role in the majority of results involving
homological considerations.

Definition 3.1. Let G be an Abelian group and let R be a commutative ring. R is said
to be uniquely divisible by the order of every element of G if for every g in G of finite
order n, n divides every element r 2 R, and if for r 2 R, we have r D ns D nt for
some t; s 2 R, then s D t .

Since R is a ring with identity, R is uniquely divisible by an integer n if and only if
n is a unit in R. It follows that for an Abelian group G the condition of Definition 3.1
is equivalent to asking that for every element g ofG, with order of g equal to p, where
p is a prime number, p is a unit in R.

Theorem 3.2 ([2,37,44]). LetR be a commutative ring and letG be an Abelian group.
RG is a von Neumann regular ring if and only if the following three conditions hold:

(i) R is a von Neumann regular ring.

(ii) G is a torsion group.

(iii) R is uniquely divisible by the order of every element of G.

A year after the solution of the von Neumann regular case, Douglas [11] found a
general connection between the weak global dimension of R and that of RG. This
result was proved independently and by a different method for the case where R is
a coherent ring by Glaz in 1987 [16]. Combining the conditions required for the co-
herence of RG with the formulas for the weak global dimension made it possible to
determine when a commutative group ring is semihereditary.
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Theorem 3.3 ([11, 16]). Let R be a commutative ring and let G be an Abelian group.
Then w: gl: dimRG <1 if and only if the following three conditions hold:

(i) w: gl: dimR <1
(ii) rankG <1

(iii) R is uniquely divisible by the order of every element of G

Moreover, when condition (iii) holds we have:

w: gl: dimRG D w: gl: dimRC rankG:

One corollary of this theorem is another proof of the characterization of von Neu-
mann regular group rings given in Theorem 3.2.

Recall that a ring R is a semihereditary ring if every finitely generated ideal of R is
projective. The class of semihereditary rings possesses the next level of homological
complexity after the class of von Neumann regular rings. Specifically:

Theorem 3.4 ([17]). LetR be a commutative ring. The following conditions are equiv-
alent:

(i) R is a semihereditary ring.

(ii) R is a coherent ring and w: gl: dimR � 1.

(iii) Q.R/, the total ring of fractions of R, is a von Neumann regular ring and Rm is
a valuation domain for every maximal ideal m of R.

Equipped with this characterization Glaz [16] determined necessary and sufficient
conditions for a group ring to be semihereditary.

Theorem 3.5 ([16]). Let R be a commutative ring and let G be an Abelian group.
Then RG is a semihereditary ring if and only if exactly one of the following conditions
hold:

(i) R is a von Neumann regular ring, rankG D 1, and R is uniquely divisible by the
order of every element of G.

(ii) R is a semihereditary ring, G is a torsion group, and R is uniquely divisible by
the order of every element of G.

Since the group ring of an infinite cyclic group over R is isomorphic to RŒx; x�1�,
where x is an indeterminate over R, we obtain as a bonus the following corollary.

Corollary 3.6 ( [16]). Let R be a commutative ring and let x be an indeterminate
over R. Then RŒx; x�1� is a semihereditary ring if and only if R is a von Neumann
regular ring.

Definition 3.7. A commutative ring R is said to be a regular ring if every finitely
generated ideal of R has finite projective dimension.
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This notion coincides with the usual definition of regularity if the ringR is Noether-
ian. The notion had been extended to coherent rings with a considerable degree of
success. Examples of coherent regular rings include all coherent rings of finite weak
global dimension. In particular von Neumann regular rings and semihereditary rings
are coherent regular rings. But, contrary to the situation for Noetherian rings, there are
local coherent regular rings of infinite weak global dimension. One such ring is, for
example, kŒŒx1; x2; : : : ��, the power series ring in infinitely many indeterminates over
a field k. For a detailed account of the notion of regularity in the context of coherent
rings, see [17, Chapter 6].

It was therefore natural that the determination of necessary and sufficient conditions
for a group ring to be coherent of finite weak global dimension raised the following
question [16]: When is a group ring a coherent regular ring? This was answered by
Glaz in the follow up paper [20].

Theorem 3.8 ([20]). Let R be a commutative ring and let G be an Abelian group such
that RG is a coherent ring. Then RG is a regular ring if and only if the following two
conditions hold:

(i) R is a coherent regular ring.

(ii) R is uniquely divisible by the order of every element of G.

We note that it is not known if this result holds without the coherence assumption. In
general, although the notion of regularity of rings makes sense without any finiteness
assumption, the theory of regular rings that do not possess some finiteness condition
is still to be developed. Not much is known about regular rings that are not, at least,
coherent.

There are a number of open homological questions whose solutions will consider-
ably enrich our knowledge of the nature of group rings. A natural occurring question
is:

Question 3.9. Under what conditions can one find a formula (perhaps similar to the
formula found in Theorem 3.3) that connects the global dimension of RG, the global
dimension of R and some invariant of the group G?

Very little progress has been made in this direction. Particularly, the only known
result is in the case of global dimension zero, the so called semisimple rings. This
is a classical result called Maschke’s Theorem, stated in Theorem 3.10, which can
be found, for example, in [32]. It is not known in general under what conditions a
commutative group ring is semisimple or hereditary (that is, of global dimension equal
to one).

Theorem 3.10 ([32]). Let G be a finite group and let K be a field. Then KG is a
semisimple ring if and only if the characteristic of K does not divide the order of the
group G.
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Another interesting direction to consider is a relatively recent development in co-
herent ring theory, the extension of the Cohen–Macaulay and Gorenstein ring notions
to the non-Noetherian setting. Theories of coherent Cohen–Macaulay and Goren-
stein rings have been developed by Hamilton, Marley, and Hummel (see, for exam-
ple, [25,26,29]). [30] provides an in-depth overview of the recent developments in the
subject and an extensive bibliography. It will be of much interest to explore the con-
ditions under which coherent group rings acquire the Cohen–Macaulay or Gorenstein
properties.

4 Zero Divisor Controlling Conditions

Let RG be the group ring associated with a commutative ring R and a multiplicative
Abelian group G. This section focuses on the recent results obtained by Schwarz
and Glaz [43] regarding a number of zero divisor controlling conditions that can be
explored using homological algebra techniques and some of the applications of these
results to Prüfer conditions. The determination of conditions under which RG is a
domain goes back Higman’s 1940 article [28]:

Theorem 4.1 ([28]). LetR be a commutative ring and letG be an Abelian group. Then
RG is an integral domain if and only ifR is an integral domain andG is a torsion free
group.

We note that for a commutative ring the property of being an integral domain may
be viewed as a homological condition on principal ideals of the ring. Specifically, a
commutative ring R is an integral domain if and only if its principal ideals are free
[43]. Therefore Theorem 4.1 states that principal ideals of RG are free if and only
if principal ideals of R are free and G is a torsion free group. Related homological
conditions on principal ideals yield two other zero divisor controlling conditions.

Definition 4.2. A commutative ring R is said to be a PP ring (or weak Baer ring) if
principal ideals of R are projective. R is said to be a PF ring if principal ideals of R
are flat.

PP rings were first introduced by Hattori [27] and Endo [12] in 1960. Hattori aimed
to develop a torsion theory for modules over general rings. This condition has impli-
cations on the nature of the annihilator ideals of elements of the ring, and as such on
the nature of the zero divisors. Specifically:

Theorem 4.3 ([4]). Let R be a commutative ring. The following conditions are equiv-
alent:

(i) R is a PP ring.

(ii) For every element a in R, the ideal .0 W a/ is generated by an idempotent.
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(iii) Every element of R can be expressed as a product of a non zero divisor and an
idempotent.

Although possessing a weaker condition, PF rings can be more explicitly linked to
domains. Specifically:

Theorem 4.4 ([17, 35]). Let R be a commutative ring. The following conditions are
equivalent:

(i) R is a PF ring.

(ii) Rp is a domain for every prime ideal p of R.

(iii) Rm is a domain for every maximal ideal m of R.

(iv) R is a reduced ring and every maximal ideal m of R contains a unique minimal
prime ideal p. In this case p D ¹r 2 RW there is a u 2 R�m such that ur D 0º
and Rp D Q.Rm/, the quotient field of Rm.

The two conditions are related to another zero divisor controlling condition, namely
the requirement that Q.R/, the total ring of fractions of R is von Neumann regular.
Denote by MinR the set of all minimal prime ideals of R with the induced Zariski
topology. The three zero divisor controlling conditions are closely linked in the theo-
rem below, which is Glaz’s [17] correction of a result of Quentel [39, 40]:

Theorem 4.5 ([17,39,40]). LetR be a commutative ring. The following conditions are
equivalent:

(i) R is a PP ring.

(ii) R is a PF ring and Q.R/ is a von Neumann regular ring.

(iii) R is a PF ring and MinR is compact in the Zariski topology.

PP and PF rings make frequent appearances in the literature in a great variety of
contexts. The condition that Q.R/ is von Neumann regular appears classically in the
characterization of semihereditary rings, Theorem 3.4, and has also appeared in a wide
variety of both classical and current investigations. For a small sample of papers where
some or all three of these conditions appear, see [1, 7, 12, 13, 17, 27, 31, 33–35, 39–42].
Recently all three conditions, but particularly the condition requiring the total ring of
quotients to be von Neumann regular, played an important role in the development of
the theory of Prüfer conditions in rings with zero divisors, see [3–6, 23] and [24] for
a comprehensive survey of this area. We further elaborate on this point later in this
section. In the context of group rings, the (not necessarily commutative) PP condition
was touched in Pelaez and Teply [38] and in Chen and Zan [8]. All three conditions
are explored in depth in Schwarz and Glaz [43], which contains further references to
other works involving these conditions. Most of the following results are taken from
Schwarz and Glaz [43].

We first resolved the case of von Neumann regularity of the total ring of quotients.
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Theorem 4.6 ([43]). Let R be a commutative ring, and let G be a group that is either
torsion free or R is uniquely divisible by the order of every element of G. If Q.R/ is a
von Neumann regular ring, then Q.RG/ is a von Neumann regular ring.

We note that the converse of this theorem is not true, even if the group is torsion
free. [43] provides an example of a torsion free group G (in fact infinite cyclic) and a
ring R with Q.RG/ von Neumann regular, but Q.R/ not von Neumann regular.

In contrast, if the group is torsion free the situation for the PP and the PF conditions
is more symmetrical.

Theorem 4.7 ([43]). Let R be a commutative ring, and let G be a torsion free group.
Then RG is a PF ring if and only if R is a PF ring.

Putting there two results together we conclude:

Corollary 4.8 ([43]). Let R be a commutative ring and let G be a torsion free group.
Then RG is a PP ring if and only if R is a PP ring.

We extended the descent results to the general case:

Theorem 4.9 ([43]). Let R be a commutative ring and let G be an Abelian group. If
RG is a PF ring (respectively, a PP ring), thenR is a PF ring (respectively, a PP ring)
and G is either a torsion free group or R is uniquely divisible by every element of G.

The converse of Theorem 4.9 does not hold ifG is not a torsion free group for either
the PP or the PF case. Chen and Zan [8] provide an example of a ring R which is PP
and a group G such that R is uniquely divisible by the order of every element of G,
but RG is not a PP ring. Schwarz and Glaz [43] show that in this case RG is not a PF
ring either.

We conclude this section with an application of the results we obtained for the three
zero divisor controlling conditions in this section to the extension of the Prüfer con-
ditions to rings with zero divisors. Prüfer domains admit many equivalent definitions.
Through the years several of these conditions were explored in a general ring setting,
and although there are strong connections between them, in general these conditions
were not found to be equivalent.

Definition 4.10. A ring R is said to be an arithmetical ring if ideals of Rm are totally
ordered by inclusion for each maximal ideal m of R. Let R be a commutative ring
and let f 2 RŒx�, the polynomial ring in one variable over R. The so-called content
of f , denoted c.f /, is the ideal of R generated by the coefficients of f . R is said to
be a Gaussian ring if c.fg/ D c.f /c.g/ for all f; g 2 RŒx�. R is said to be a Prüfer
ring if every finitely generated regular ideal of R is invertible. R is said to be a locally
Prüfer ring if Rp is a Prüfer ring for every prime ideal p of R.
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In particular, we considered the following extensions of a Prüfer domain notion to
rings with zero divisors:

(i) R is a semihereditary ring.

(ii) w: gl: dimR � 1
(iii) R is an arithmetical ring.

(iv) R is a Gaussian ring.

(v) R is a locally Prüfer ring.

(vi) R is a Prüfer ring.

These six Prüfer conditions had been extensively studied for the last 5 to 7 years.
For a comprehensive survey and an extensive list of references on the subject see [4]
and [24]. In particular, [3, 6, 22] show that the Prüfer conditions listed above satisfy
the following diagram of strict implications.

(i)) (ii)) (iii)) (iv)) (v)) (vi):

Glaz [23] and Bazzoni and Glaz [3, 4] found conditions that allow for reversals
of implications for properties (i)–(iv) and (vi), while Boynton [6] covered the same
ground for property (v). In particular, the three zero divisor controlling conditions
described in this section allow several reversals of implications and if Q.R/ is a von
Neumann regular ring, then conditions (i)–(vi) are equivalent for the ring R.

Theorem 3.5 gives the exact conditions under which a commutative group ring sat-
isfies the first Prüfer condition, that is, the semihereditary condition. As a corollary of
Theorem 3.3, we obtain similar conditions for a commutative group ring to satisfy the
second Prüfer condition, that is, w: gl: dimR � 1.

Theorem 4.11 ([43]). Let R be a commutative ring and let G be an Abelian group.
Then w: gl: dimRG D 1 if and only if exactly one of the following conditions hold:

(i) R is a von Neumann regular ring, rankG D 1, and R is uniquely divisible by the
order of every element of G.

(ii) w: gl: dimR D 1, G is a torsion group, and R is uniquely divisible by the order
of every element of G.

Using the result of Theorem 4.6 we can prove the following:

Theorem 4.12 ([43]). Let R be a commutative ring, and let G be a torsion free or a
mixed Abelian group. Then the following conditions are equivalent:

(i) RG is a semihereditary ring.

(ii) w: gl: dimRG D 1
(iii) RG is an arithmetical ring.

(iv) RG is a Gaussian ring.
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(v) RG is a locally Prüfer ring.

(vi) RG is a Prüfer ring.

(vii) R is a von Neumann regular ring and rankG D 1.

Some of these equivalences (iii), (vi), and (vii) were proved by different methods
in [14] and [15]. As a consequence we obtain as a corollary:

Corollary 4.13 ([43]). Let R be a commutative ring and let x be an indeterminate
over R. Then RŒx; x�1� satisfies any of the six Prüfer conditions if and only if R is a
von Neumann regular ring.

If G is a torsion group and R is uniquely divisible by the order of every element of
G, we obtain a result similar to Theorem 4.12 under the assumption that the total ring
of fractions of R is von Neumann regular.

Theorem 4.14 ([43]). Let R be a commutative ring such that Q.R/, the total ring of
fractions of R, is von Neumann regular. Let G be a torsion Abelian group and assume
that R is uniquely divisible by the order of every element of G. Then the following
conditions are equivalent:

(i) RG is a semihereditary ring.

(ii) w: gl: dimRG D 1
(iii) RG is an arithmetical ring.

(iv) RG is a Gaussian ring.

(v) RG is a locally Prüfer ring.

(vi) RG is a Prüfer ring.

(vii) R is a semihereditary ring.

An example is given in [43], which shows that the conclusions of Theorem 4.14
need not hold without the assumption that Q.R/ is von Neumann regular. At this
point the conditions onR andG under whichRG satisfies any of the individual Prüfer
conditions (iii)–(vi) are not clear. We note that there are several scattered results in
the literature giving conditions under which a commutative group ring satisfies one
of the Prüfer conditions (iii)–(vi), but those seem to be ad hoc conditions that do not
generalize. For example, below is a result from [14]:

Theorem 4.15 ([14]). Let R be a local arithmetical ring with maximal ideal m and
let c D char.R=m/. Assume that G is a finite group of prime power order pk , where
c ¤ p. Then RG is an arithmetical ring.



Finiteness and Homological Conditions in Commutative Group Rings 141

Some examples of group rings that satisfy some, but not other of the six Prüfer
conditions also muddy the waters (see [43] for more details). The answer may, or
may not, lie in the exploration of other zero divisor controlling conditions in RG. In
any case, it is worthwhile exploring other zero divisor controlling conditions in the
group ring setting. See [21] for a survey of many of these conditions that appear in the
literature.

As a concluding remark, we point out that some of the properties described in this
article in the setting when R is a commutative ring and G is an Abelian group have
been extended to the case where G is an Abelian monoid. But not all the properties
described in this article were considered in this case. In particular, the recent work on
Prüfer conditions and zero divisor controlling conditions have not yet been considered
in the Abelian monoid setting. Given that in the past such extensions yielded rich and
interesting results, this is one direction worth pursuing.
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1 Introduction

Let R be a commutative ring with identity. A classical theorem in dimension theory
states that the Krull dimension of the polynomial ringRŒX� is between nC1 and 2nC1
where n D dim.R/. Moreover, it was shown by Seidenberg [35, Theorem 3] that for
every pair of nonnegative integers m; n such that n C 1 � m � 2n C 1, there exists
an integrally closed quasilocal domain R such that dim.R/ D n and dim.RŒx�/ D m.
The ring R is constructed using what we now know of as the “classical” D C M

construction, introduced (as best we know) by Krull [30] and popularized by Gilmer
[26, Appendix 2].

For the classical construction, start with a valuation domain V containing a retract
fieldK, meaning that V D KCM whereM is the unique maximal ideal of V . LetD
be a subring ofK, and form the subringDCM 	 V . This is the situation considered
by Dobbs and Papick [16]. A more general version of this is introduced by Brewer and
Rutter [10] where the valuation condition in the ring T D K CM is dropped. Brewer
and Rutter lay much of the foundation for this subject, focusing on the transference of
properties between D CM and the rings D and K CM . A sample of their results is
contained in the next theorem.

Theorem 1.1. Given an integral domain of the form T D K CM where K is a field
and D is a subring of K, the following statements hold for the ring R D D CM :

This material is based on work supported by North Dakota EPSCoR and National Science Foundation
Grant EPS-0814442. Sean Sather-Wagstaff was supported in part by a grant from the NSA.
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(i) [10, Theorem 4] The ring R is Noetherian if and only if T is Noetherian, D is a
field and ŒK W D� <1.

(ii) [10, Theorem 3] The ring R is coherent if and only if T is coherent and either
(M is T -finite, D is a field, and ŒK W D� <1) or (TM is a valuation ring, D is
coherent, and Q.D/ D K).

(iii) [10, Theorem 5] The ring R is a Prüfer domain if and only if T andD are Prüfer
domains and Q.D/ D K.

(iv) [10, Theorem 10] The ring R is a Prüfer domain with the n-generator property
if and only if T and D are Prüfer domains with the n-generator property.

TheDCM construction is a special case of a pullback. Moreover, it is a particular
pullback coming from a conductor square. Since this construction is the focus of this
paper, we describe it here explicitly. Start with a ring surjection �1WT � B and an
inclusion of rings �1WA ,! B with B ¤ 0, hence A ¤ 0. Let R denote the pullback
of these maps, that is, the subring of A 
 T consisting of all elements .a; t/ such that
�1.a/ D �1.t/. The natural maps �2WR � A and �2WR ,! T yield a commutative
diagram of ring homomorphisms

R
� �

2 ��

�2 ����

T

�1����
A

� �

1 �� B

(�)

such that Ker.�2/ and Ker.�1/ are isomorphic via �2. (We abuse notation in the se-
quel, viewing R as a subring of T , and writing Ker.�2/ D Ker.�1/.) The common
ideal Ker.�i / is the largest common ideal of R and T ; it is denoted C and called
the conductor of T into R. When C contains a T -regular element, we say that the
conductor square .�/ is regular.

Conductor squares can also be built as follows. Let T be a commutative ring with
subring R, and suppose that R and T have a common, non-zero ideal. We call the
largest common ideal C the conductor of T intoR. SettingA D R=C andB D T=C ,
we obtain a commutative diagram .�/ which is a conductor square. For additional
information on pullbacks, see Fontana, Huckaba, and Papick [21, Chapter I].

It is common in the study of pullback constructions to assume that T is an integral
domain and that C is a maximal ideal of T . However, important examples are obtained
by allowing zero-divisors in the pullback square. For example, let D be an integral
domain with field of fractions K, and let E D ¹e1; : : : ; erº 	 D. Setting T D KŒX�

and C D .X � e1/ � � � .X � er /KŒX�, we have B D T=C Š Qr
iD1K. Using A D

Qr
iD1D in the conductor square, we get R D Int.E;D/ D ¹g 2 KŒX� j g.E/ 	 Dº,

the ring of integer-valued polynomials onD determined by the subsetE. Observe that
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the rings A and B are not integral domains. It is worth noting that McQuillan [33,
Proposition 5] explicitly identifies Int.E;D/ as C CPr

iD1D�i where �1; : : : ; �r are
the Lagrange interpolation polynomials of degree r � 1. Other important examples
using pullbacks are collected by Lucas [32].

The point of this paper is to investigate the following question of Chapman and Glaz
[12, Open Problem 50]: What ring-theoretic properties transfer in the conductor square
.�/ when C is not a maximal (or even a prime) ideal of T ? We take our motivation
from Theorem 1.1, and from other similar results, e.g., [1, 9, 27, 33].

In this paper, we survey some of the results in the literature for conductor squares,
and we include some results that are (as best we know) new. We include specific refer-
ences for the older results, not necessarily to the original article where they appeared,
but we only include proofs for these results in a few cases. Given the wealth of re-
search in this area, we cannot hope to survey every known result. Our choices reflect
our current research interests. The articles of Gabelli and Houston [25] and Kabbaj
[29] contain excellent surveys of other aspects of this area.

The new results focus on regular conductor squares. Our perspective is that the
regularity condition implies that the rings R and T are not too far apart. (For instance,
see Proposition 2.5.) This is akin to Glaz’s assumption in [27] that the map R ,! T

be a “flat epimorphism.” It is worth noting that Sections 2–5 contain both new and old
results, while Sections 6 and 7 consist entirely of survey material.

2 Some Background

We begin with some preliminary results regarding general pullback constructions. Re-
call that the total quotient ring of a commutative ring U is the localization Q.U / WD
V �1U where V is the set of non-zero-divisors of U . An overring of U is a U -algebra
W that is isomorphic (as a U -algebra) to a subring ofQ.U /. Also, given a ring homo-
morphism f WU ! W and a multiplicatively closed subset S � W , the localization of
W as a U -module S�1W is a U -algebra under the natural operations; moreover, it is
an S�1U -algebra that is isomorphic to the localization f .S/�1W ' .S�1U /˝U W .

Lemma 2.1. Consider the conductor square .�/.

(i) [27, p. 149] There is an isomorphism B ' A˝R T .

(ii) [21, Lemma 1.1.4(3)] If P 2 Spec .R/ and C ª P , then there is a unique
Q 2 Spec .T / such that Q \ R D P ; moreover, the induced map RP ! TQ is
an isomorphism.

(iii) If T ' S�1R for some multiplicatively closed set S 	 R, then B ' S�1A;
moreover, B is an overring of A.
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(iv) If C is finitely generated overR, then it is finitely generated over T . The converse
holds if R ,! T is finite.

(v) The extensionA ,! B is of finite type (resp. integral, finite) if and only ifR ,! T

is of finite type (resp. integral, finite).

Proof. (iii) If T ' S�1R, then B ' A ˝R T ' A ˝R .S�1R/ ' S�1A. To see
that B ' S�1A is an overring of A, use the fact that the map A ,! B ' S�1A '
�2.S/

�1A is a monomorphism to conclude that �2.S/ consists of non-zero-divisors
for A, so B is naturally a subring of Q.A/.

(iv) For one implication, assume that C D Rc1C � � � CRcn. Since C is an ideal of
R and an ideal of T , we have C D TC D Tc1C � � � C Tcn, so C is finitely generated
over T .

For the converse, suppose that T D Rt1 C � � � C Rtm and that C D Tc1 C � � � C
Tcn. Then for each c 2 C we have c D Pn

iD1 sici D
P

i�n.
P

j�m rij tj /ci D
P

i;j rij .tj ci /. It follows that ¹tj ciº is a set of generators for C over R.
(v) If R ,! T is of finite type (resp. integral, finite), then A ,! B is of finite type

(resp. integral, finite) by part (i). The converse holds by [21, Lemma 1.1.4 (7)].

It is reasonable to ask if “finitely presented” can be added to the list of finiteness
conditions in Lemma 2.1 (v) above. In the result that follows, we find that under certain
conditions, this is indeed the case.

Lemma 2.2. Consider the conductor square .�/.
(i) If T is finitely presented over R, then B is finitely presented over A.

(ii) If T is finitely generated over R, B is finitely presented over A, and C is finitely
presented (over R or T ), then T is finitely presented over R.

Proof. (i) Assume that T is finitely presented over R, and consider an exact sequence
Rn ! Rm ! T ! 0 over R. It follows that T is finitely generated over R. The
right-exactness of �˝R A provides an exact sequence

Rn ˝R A! Rm ˝R A! T ˝R A! 0

over A. From the isomorphism T ˝R A Š B , this yields an exact sequence An !
Am ! B ! 0 over A, so B is finitely presented over A.

(ii) Assume that T is finitely generated over R, B is finitely presented over A, and
C is finitely presented (over R or T ). Since T is finitely generated over R, there is an
R-module epimorphism ˛WRm � T . To show that T is finitely presented over R, it
suffices to show that Ker.˛/ is finitely generated over R.

As in the proof of part (i), the right-exactness of � ˝R A provides an A-module
epimorphism ˛WAm � B . The maps ˛ and ˛ fit into the following commutative



Regular Pullbacks 149

diagram with exact rows and columns:

Rm

˛
��

f m

�� Am ��

˛
��

0

T
f 0

��

��

B ��

��

0

0 0:

Here, the maps f WR ! A and f 0WT ! B are the natural ones from the conductor
square .�/. In particular, we have Ker.f m/ D Cm and Ker.f 0/ D C . Given this
commutative diagram, we conclude that ˛.Ker.f m// � Ker.f 0/, yielding the next
commutative diagram with exact rows and columns:

0 �� Cm

 ��

˛0

��

Rm

˛
��

f m

�� Am ��

˛
��

0

0 �� C
i ��

��

T
f 0

��

��

B ��

��

0

0 0 0:

Here, the maps i and � are the inclusions, and ˛0 is the restriction of ˛ to Ker.f m/ D
Cm.

Claim 1. The map ˛0 is T -linear. The map ˛WRm ! T is R-linear, so there are
elements t1; : : : ; tm 2 T such that ˛.r1; : : : ; rm/ D Pm

jD1 rj tj . It follows that
˛0.c1; : : : ; cm/ DPm

jD1 cj tj ; and that ˛0 respects T -scalar multiplication.

Claim 2. The map ˛0 is surjective. (This is a fairly routine diagram chase with a twist.)
Let c 2 C . Since f m is surjective, there is a vector r D .r1; : : : ; rm/ 2 Rm such that
Pm
jD1 rj tj D ˛.r/ D 1. Hence, cr D .cr1; : : : ; crm/ 2 Cm is an element such that

˛0.cr/ DPm
jD1 crj tj D c.

Pm
jD1 rj tj / D c.1/ D c.

Claim 3. The module Ker.˛0/ is finitely generated over T and over R. Since ˛0 is
R-linear and T -linear, we know that Ker.˛0/ is an R-module and a T -module.

Assume first that C is finitely presented over T . It follows that Cm is finitely
generated over T , and the exact sequence

0! Ker.˛0/! Cm
˛0

�! C ! 0

implies that Ker.˛0/ is finitely generated over T ; see [34, Corollary 3.63]. Since T is
finitely generated over R, this implies that Ker.˛0/ is finitely generated over R.
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Assume next that C is finitely presented over R. The argument of the previous
paragraph implies that Ker.˛0/ is finitely generated over R. Since Ker.˛0/ is a T -
module and T is an R-algebra, it follows that Ker.˛0/ is finitely generated over T .
This completes the proof of Claim 3.

The Snake Lemma provides the following exact sequence:

0! Ker.˛0/! Ker.˛/! Ker.˛/! 0:

Since B is finitely presented over A, we know that Ker.˛/ is finitely generated over A,
hence over R. Claim 3 implies that Ker.˛0/ is finitely generated over R, so the above
exact sequence implies that Ker.˛/ is finitely generated over R, as desired.

The next result concerns local rings and pullbacks. Here, we observe how the local
property transfers in a general pullback of the type .�/.

Proposition 2.3. Consider the conductor square .�/.
(i) [21, Lemma 1.1.5] If R is local, then C is contained in the Jacobson radical of

T and there is a 1-1 correspondence between the maximal ideals of B and the
maximal ideals of T .

(ii) If A and T are local rings, then R is a local ring.

(iii) The rings R and B are local if and only if A and T are local.

Proof. (ii) Since A is local, it has a unique maximal ideal M for some maximal ideal
M of R.

We claim that C � N for each maximal ideal N of R. By way of contradiction,
suppose that C ª N . Lemma 2.1 (ii) provides a unique prime ideal N 0 of T such that
N 0 \R D N . The uniqueness of N 0, with the fact that N is maximal, implies that N 0
is maximal. Since T is local, it follows that N 0 is the unique maximal ideal of T . The
fact that T is local and C ¤ T implies that C 	 N 0; but the condition N 0 \ R D N

contradicts the assumption C ª N .
Using the claim with the prime correspondence for quotient rings, we conclude that

R is local with unique maximal ideal M
(iii) .)/ As R is local, so is A. As B is local, part (i) implies that T is local.
.(/ As T is local, so is B; and R is local by part (ii).

Notation 2.4. Given the conductor square .�/ and a prime ideal P of R that contains
C , we may use the R-flatness of RP to build a new square .�P / with conductor ideal
CP displayed below.

RP
� � ��

����

TP

����
AP

� � �� BP

(�P )
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Our next result is particular to regular conductor squares of the type .�/. Part (i) is
from the folklore of the subject; as best we know, parts (ii) and (iii) are new. Although
the proofs of parts (i) and (ii) are very straightforward, they prove to be extremely
useful in the sequal. In a sense, part (ii) says that T is very close to R. Part (iii) is a
generalization of [10, Lemma 1].

Proposition 2.5. Consider the regular conductor square .�/.
(i) T is an overring of R.

(ii) C contains an isomorphic copy of the R-module T .

(iii) If C is finitely generated over R, then every maximal ideal in B contracts to a
maximal ideal in R.

Proof. First we select any T -regular element c 2 C
(i) One readily checks that the map T ! Q.R/ given by t 7! ct

c
is a well-defined

monomorphism.
(ii) Since c is T -regular, there is an R-module isomorphism T ' Tc � C � R.
(iii) Fix a maximal ideal n 	 B , and let N denote the contraction of n in T along

the surjection T � B . Then N is a maximal ideal of T containing C . Set p D A\n.

Claim. C=NC ¤ 0. Since c is not annihilated by any element of T , we have
0 ¤ c=1 2 CN. In particular, the module CN is non-zero. Also, since C is finitely
generated over R, it is finitely generated over T . Hence CN is finitely generated over
TN. Nakayama’s Lemma implies that 0 ¤ CN=NCN Š C=NC .

Claim. C=NC is a finitely generated A=p-module. Let P denote the contraction of
p in R along the surjection R � A. Via the composition R ! A ! B , we have
PB D pB � n. It follows that C=NC is a module overR=P Š A=p via the structure
a �c D a � c. Since C is finitely generated overR, it follows that C=NC is also finitely
generated over R, hence over R=P Š A=p.

It remains to show that p is maximal. The quotient C=NC is a non-zero vector
space over the field T=N Š B=n, so there is a B=n-module epimorphism C=nC �
B=n. By construction, this is an A=p-module epimorphism. Since C=nC is finitely
generated over A=p, it follows that B=n is finitely generated over A=p. That is, the
extension A=p ,! B=n is module-finite. Thus, we have dim.A=p/ D dim.B=n/ D 0,
so p is maximal.

3 Pullbacks of Noetherian Rings

In this section, we investigate the transference of Noetherianicity in a conductor square
of the type .�/. We begin by recalling the next result which relates the Noetherianicity
of rings in the most general setting for pullbacks.
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Theorem 3.1 ([21, Proposition 1.1.7]). For the conductor square .�/, the rings R and
B are Noetherian and R ,! T is finite if and only if A and T are Noetherian rings
and A ,! B is finite.

Theorem 1.1 (i) above suggests the following analogous result for conductor
squares .�/ in which C contains a T -regular element.

Theorem 3.2. Consider the conductor square .�/ and the following conditions:

(i) The ring R is Noetherian.

(ii) The rings A, T , and B are Noetherian and the extensions A ,! B and R ,! T

are finite.

(iii) The rings A and T are Noetherian and the extension R ,! T is finite.

(iv) The rings A and T are Noetherian and the extension A ,! B is finite.

The implications (iv) , (iii) , (ii) ) (i) always hold. If the conductor square .�/
is regular, then the conditions (i)–(iv) are equivalent.

Proof. The implication (ii) ) (iii) is trivial, and the equivalence (iv) ) (iii) is from
Lemma 2.1 (v).

(iii) ) (ii) Since A ,! B is finite, Lemma 2.1 (v) asserts that the map R ,! T

is finite. Also, the fact that A ,! B is finite and A is Noetherian implies that B is
Noetherian.

(ii) ) (i) Since R ,! T is finite and T is Noetherian, Eakin’s Theorem [18,
Theorem 2] implies that R is Noetherian.

(i)) (iii) Assume that the conductor square .�/ is regular. Since R is Noetherian,
the ideal C is finitely generated over R and A is Noetherian. Since .�/ is regular,
Proposition 2.5 (ii) says that C contains an R-submodule that is isomorphic to T .
Hence, T is a submodule of a finitely generated module over the Noetherian ring R
and so, it too is a finitely generated R-module. It follows that the extension R ,! T is
finite, which in turn ensures that T is Noetherian.

The next three examples show why we need to assume that C is regular as an ideal
of T in the implications (i)) .n/ of Theorem 3.2.

Example 3.3. Let F be a field, and let S be a commutative F -algebra. Consider the
rings R D F 
 F and T D F 
 S with the common ideal C D F 
 0. The quotient
rings are A D R=C Š F and B D T=C Š S ; under these isomorphisms, the
induced map A! B is the same as the map F ! S giving S its F -algebra structure.
In particular, the ring R is Noetherian, but the rings T and B need not be Noetherian.
(They are Noetherian if and only if S is Noetherian.) Also, the maps R ! T and
A! B are not necessarily finite. (They are finite if and only if S is finite over F .)

Since pathologies are often easy to construct using products, we present the next
examples which do not decompose as products.
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Example 3.4. Let F be a field. Consider the rings R D F ŒX; Y �=.XY; Y 2/ and S D
F ŒŒX; Y ��=.XY; Y 2/ with the natural inclusion R ! S . The ideal C D .Y /R D
.Y /S is isomorphic to F as an R-module and as an S -module since XY D 0 D Y 2.
For quotients, we have A D R=C Š F ŒX� and B D T=C Š F ŒŒX��; under these
isomorphisms, the induced map A! B is the same as the natural inclusion F ŒX�!
F ŒŒX��. The ring F ŒŒX�� is not finitely generated as an F ŒX�-module.1 It follows that T
is not finitely generated as an R-module.

Of course, in the previous example, the rings T and B are Noetherian. This is not
the case in the next example.

Example 3.5. Let F be a field. Consider the rings R D F ŒX; Y �=.XY; Y 2/ and S D
F ŒX; Y;Z1; Z2; : : :�=.XY; Y

2; YZ1; YZ2; : : :/ with the natural inclusion R ! S .
The ideal C D .Y /R D .Y /S is isomorphic to F as an R-module and as an S -
module since XY D 0 D Y 2 D ZiY . For quotients, we have A D R=C Š F ŒX�

and B D T=C Š F ŒX;Z1; Z2; : : :�; under these isomorphisms, the induced map
A ! B is the same as the natural inclusion F ŒX� ! F ŒX;Z1; Z2; : : :�. The ring
F ŒX;Z1; Z2; : : :� is not Noetherian and is not finitely generated as an F ŒX�-module.
It follows that T is not Noetherian and is not finitely generated as an R-module.

4 Pullbacks of Prüfer Rings

In this section we consider the following six extensions of the Prüfer condition to
commutative rings with zero-divisors and investigate their behavior in the conductor
square .�/.

Definition 4.1. A fractional ideal of a commutative ring R is an R-submodule of the
total quotient ring Q.R/, possibly zero and possibly non-finitely generated. An ideal
I � R is invertible if there is a fractional ideal K such that IK D R.

(i) R is semihereditary if every finitely generated ideal of R is projective.

(ii) R has weak global dimension � 1 if every finitely generated ideal of R is flat.

(iii) R is arithmetical if its lattice of ideals is distributive.

(iv) R is Gaussian if for every f; g 2 RŒX�, one has the content ideal equation
c.fg/ D c.f /c.g/.

1 This is well known, but we do not know of a proper reference. To explain this fact, consider the
induced ring homomorphism F ŒX�.X/ ! F ŒŒX��. Since F ŒX�.X/ is not complete (with respect
to the ideal-adic topology determined by its maximal ideal), we conclude from [22, Theorem B]
that F ŒŒX�� is not finitely generated over F ŒX�.X/, so it is not finitely generated over the subring
F ŒX�. Alternately, suppose that F ŒŒX�� were finitely generated over F ŒX�.X/. Since F ŒŒX�� is flat
over the local ring F ŒX�.X/, it is free, so there is an F ŒX�.X/-module epimorphism F ŒŒX�� �
F ŒX�.X/. Since F ŒŒX�� is finitely generated over F ŒX�.X/, it follows that F ŒX�.X/ is complete, a
contradiction.
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(v) R is locally Prüfer if RP is a Prüfer ring (see condition (vi)) for every prime
ideal M of R.

(vi) R is Prüfer if every finitely generated regular ideal is invertible.
We say that R satisfies Prüfer condition .n/ when R satisfies condition .n/ from the
above list.

It is worth noting that the definitions above are equivalent when R is a domain.
Also, for non-domains, to verify locally Prüfer, it is not enough to check localizations
at maximal ideals; see [5, Example2.4].

The following characterizations of Prüfer rings will be quite useful for us. The proof
is straightforward.

Lemma 4.2. Let R be any commutative ring.
(i) If I is finitely generated and regular then: I is invertible if and only if I is

projective if and only if I is locally principal.

(ii) If every 2-generated ideal of R is locally principal, then every finitely generated
ideal of R is locally principal.

(iii) If R is local, then R is Prüfer if and only if every 2-generated regular ideal is
principal.

(iv) The ring R is Prüfer if and only if every 2-generated regular ideal is locally
principal.

The papers [2, 6] also show that the implications in the next result are strict.

Theorem 4.3 ([2, for n D i; ii; iii; iv] and [6, Theorem 2.2 for n D iv; v; vi]). For
any commutative ring, we have the following implications for Prüfer condition .n/:
(i)) (ii)) (iii)) (iv)) (v)) (vi).

The next result relates the Prüfer condition of a ring with its total quotient ring. It is
crucial for the main theorem of this section.

Theorem 4.4 ([3, Theorems 3.7 and 3.12 for n D i; ii; iii; iv; v; vi] and [6, Theorem
3.4 for n D 5]). Let R be any commutative ring. Then R has Prüfer condition .n/ if
and only if R is a Prüfer ring and Q.R/ has Prüfer condition .n/.

Use the fact that every overring of a Prüfer ring is again a Prüfer ring (see for exam-
ple [31, Theorem 10.19]) together with Theorem 4.4 to obtain the following.

Lemma 4.5. Let R be any commutative ring. If R has Prüfer condition .n/ and if T is
an overring of R, then T has the same Prüfer condition .n/.

The next result gives more information about overrings in the local case.

Lemma 4.6 ([5, Theorem 3.6]). Let R be any local commutative ring. If R has Prüfer
condition .n/ and if T is an overring of R, then T is a local ring with Prüfer condition
.n/. Moreover, T D RP for some prime ideal P of R.
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The next result shows that all of the Prüfer conditions are in fact well behaved in
.�/ in the local case. Note that the cases n D v and n D vi are equivalent in the local
case.

Theorem 4.7 ([5, Theorem 4.1]). Consider the regular conductor square .�/. The
commutative ring R is a local ring with Prüfer condition .n/ if and only if T is a local
ring with Prüfer condition .n/, A is a local Prüfer ring, and B is an overring of A.

In the next result, we say that B is locally an overring of A if for every prime P 2
Spec.A/ the localization BP is an overring of AP . Note that the cases n D i; ii; ii; iv
are from [5, Theorem 4.2], but our proof works equally well for all cases.

Theorem 4.8. Consider the regular conductor square .�/. For n D i; ii; ii; iv; v, the
ring R has Prüfer condition .n/ if and only if T has Prüfer condition .n/, A is locally
Prüfer, and B is locally an overring of A.

Proof. .)/ Assume that R has Prüfer condition .n/. The fact that T has Prüfer con-
dition .n/ follows from Proposition 2.5 (i) and Lemma 4.5. Since n 2 ¹i; ii; iii; iv; vº,
we conclude that R is locally Prüfer by the implication .n/ ) (v) in Theorem 4.3.
To complete this implication, let P 2 Spec.A/, and let P be the contraction of P
in R along the surjection R � A. It follows that the localization .�P/ is a regular
conductor square such that RP is Prüfer. From Theorem 4.7, it follows that AP D AP

is Prüfer and BP is an overring of AP . We conclude that A is locally Prüfer and B is
locally an overring of A.
.(/ Assume that T has Prüfer condition .n/, A is locally Prüfer, and B is locally

an overring of A. Since n 2 ¹i; ii; iii; iv; vº, we conclude that T is locally Prüfer by the
implication .n/) (v) in Theorem 4.3.

We claim that R is locally Prüfer. To see this, let P 2 Spec.R/. If C ª P then,
by Lemma 2.1 (ii), there is a prime ideal Q 	 T such that RP ' TQ; since T is
locally Prüfer, the ring RP ' TQ is Prüfer. Assume that C � P. In this case,
we have the regular conductor square

�

�P

�

. Since AP is a local Prüfer ring and
BP is an overring of AP, Lemma 4.6 implies that BP is a local Prüfer ring. Thus,
Proposition 2.3 (i) implies that TP is local. Since T is locally Prüfer, the ring TP is
Prüfer. An application of Theorem 4.7 to the conductor square .�P/ implies that RP

is Prüfer. This establishes the claim.
The claim implies that R is Prüfer because of the implication (v) ) (vi) in Theo-

rem 4.3. The ring T is an overring of R by Proposition 2.5 (i), so we have Q.R/ D
Q.T /. Since T has Prüfer condition .n/, we conclude from Theorem 4.4 thatQ.R/ D
Q.T / has Prüfer condition .n/. The fact thatR is Prüfer then implies thatR has Prüfer
condition .n/ by another application of Theorem 4.4.

Question 4.9. Does the conclusion of Theorem 4.8 hold for n D vi?
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5 Pullbacks of Coherent Rings

We refer the reader to [27] for more background information on coherent rings, in-
cluding unspecified terminology.

Definition 5.1. Let R be any commutative ring.

(i) An R-module M is coherent if it is finitely generated and if every finitely gener-
ated R-submodule of M is finitely presented.

(ii) The ring R is coherent if it is coherent as an R-module.

It is well known that every Noetherian ring is coherent, as is every Prüfer domain.
Moreover, every semihereditary ring is coherent.

To discuss the behavior of coherence in conductor squares, we recall some facts
about coherent rings.

Theorem 5.2 ([27, Theorem 4.1.1]). Let �WR ! T be any homomorphism of com-
mutative rings making T into a finitely presented R-module. (For instance, this is the
case when T Š R=I where I is a finitely generated ideal of R.) If R is coherent, then
so is S . The converse holds when � is injective.

The next result represents the first progress on the transference of the coherent prop-
erty for conductor squares outside of the D CM setting. Note that the term “epimor-
phism” is used in a category-theory sense, as in [27] ; in particular, an epimorphism of
commutative rings need not be surjective.

Theorem 5.3 ([27, Theorems 4.1.4 and 5.1.3]). Given the conductor square .�/, sup-
pose that R ,! T is a flat epimorphism and that C is flat as an R-module.

(i) If R is coherent, then so is T .

(ii) If A; T are coherent and C is a maximal ideal of T , then R is coherent.

(iii) If A is coherent such that wk.gl.dim..A/ � 1 and if T is semihereditary, then R
is coherent.

(iv) If A is Noetherian and T is coherent, then R is coherent.

To continue our survey of coherence, we need a few more definitions.

Definition 5.4. Let D be any integral domain with quotient field K.

(i) The inverse of a fractional ideal I is the fractional ideal I�1 D .D W I / D ¹x 2
K j xI � Dº.

(ii) A fractional ideal I is divisorial if I D .I�1/�1.

(iii) The v-closure of a fractional ideal I is Iv D .I�1/�1. (This is also called the “v
divisorial closure” of I .)
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(iv) A fractional ideal I is v-invertible if .II�1/v D D.

(v) A fractional ideal I is v-finite if I�1 D J�1 for some finitely generated frac-
tional ideal J of D.

(vi) The t -closure of a fractional ideal I is It D S¹Jv j J is a finitely generated
fractional subideal of I º.

(vii) A fractional ideal I is t -invertible if .II�1/t D D.

We now recall several coherent-like properties studied in [24].

Definition 5.5. An integral domain D is

(i) quasicoherent if every finitely generated ideal I of D has the property that I�1
is finitely generated.

(ii) a v-coherent if every finitely generated ideal I of D has the property that I�1 is
v-finite.

(iii) a finite conductor domain if the intersection of any two principal ideals of D is
finitely generated.

(iv) a Prüfer v-multiplication domain (PVMD) if every finitely generated ideal of D
is t -invertible.

(v) a v-domain if every finitely generated ideal of D is v-invertible.

(vi) a DVF domain if every divisorial ideal of D is v-finite.

(vii) a Mori domain if it satisfies the ascending chain condition on divisorial ideals.

We summarize the relations between these conditions (from [24]) next:

coherent �� quasicoherent ��

��

finite conductor

v-domain PVMD ��

 v-coherent DVF

 Mori.



The transference of these coherent-like properties in a special case of .�/ is well-
studied in [24]. We list the main results of that paper in the three theorems that follow.

Theorem 5.6. Consider the conductor square .�/ such that R and T are domains,
Q.A/ D B , and C is a maximal ideal of T .

(i) [24, Theorem 3.4] The ringR is v-coherent if and only if A and T are v-coherent
and C is a t -ideal of T .

(ii) [24, Theorem 4.7] The ring R is (quasi)coherent if and only if A and T are
(quasi)coherent and TC is a valuation domain.
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(iii) [24, Theorem 4.8] The ring R is a finite conductor domain if and only if A and
T are finite conductor domains and TC is a valuation domain.

(iv) [24, Theorem 4.20 (1)] If T is local, then R is a DVF domain if and only if A and
T are DVF domains and C is a nonprincipal v-finite divisorial ideal of T .

Theorem 5.7. Consider the conductor square .�/ such that R and T are domains,
Q.A/ ¤ B , and C is a maximal ideal of T , so B is a field.

(i) [24, Theorem 3.5] The ringR is v-coherent if and only if A and T are v-coherent
and either C is not a t -ideal of T or C is a v-finite divisorial ideal of T .

(ii) [24, Theorems 4.9 and 4.11] The ring R is (quasi)coherent if and only if T is
(quasi)coherent, A is a field with ŒB W A� < 1, and C is a finitely generated
ideal of T .

(iii) [24, Theorem 4.10] The ring R is a finite conductor domain if and only if T is
a finite conductor domain, A is a field with ŒB W A� < 1, and C is a finitely
generated ideal of T .

(iv) [24, Theorem 4.20(2)] If T is local, then R is a DVF domain if and only if A and
T are DVF domains and either C is not a t -ideal of T or C is a v-finite divisorial
ideal of T .

Theorem 5.8. Consider the conductor square .�/ where R and T are domains and C
is a maximal ideal of T .

(i) [20, Theorem 4.1] The ring R is a PVMD if and only if A and T are PVMDs,
Q.A/ D B , and TC is a valuation domain.

(ii) [24, Theorem 4.15] The ring R is a v-domain if and only if A and T are v-
domains, Q.A/ D B , and TC is a valuation domain.

(iii) [24, Theorem 4.18] The ringR is a Mori domain if and only if T is a Mori domain
and A is a field.

The final result of this section characterizes the coherency of R in a regular conduc-
tor square .�/.

Theorem 5.9. Consider the conductor square .�/ and the following conditions:

(i) The ring R is coherent and the extension R ,! T is finite.

(ii) The rings A, T; and B are coherent, B is finitely presented over A, and T is
finitely presented over R.

(iii) The rings A and T are coherent and T is finitely presented over R.

(iv) The rings A and T are coherent and B is finitely presented over A.
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The following hold:

(a) The implications (iv)( (iii), (ii)) (i) always hold.

(b) IfC is finitely generated overR or over T , then we have (iv), (iii), (ii)) (i).

(c) If the conductor square .�/ is regular and C is finitely generated over R or
over T , then the conditions (i)–(iv) are equivalent.

Proof. (a) The implication (ii)) (iii) is trivial, and (iii)) (iv) is from Lemma 2.2 (i).
For (iii)) (ii), use Lemma 2.2 (i) to conclude that B is finitely presented over A, and
use Theorem 5.2 to show that B is coherent. The implication (ii) ) (i) also follows
from Theorem 5.2, using the fact that T finitely presented over R implies that T is
finitely generated over R, by definition.

(b) Assume that C is finitely generated over R or T . We need to show (iv)) (iii),
so assume thatA and T are coherent andB is finitely presented overA. Lemma 2.1 (v)
implies that T is finitely generated overR, thus C is finitely generated overR and over
T by Lemma 2.1 (iv). Since T is coherent andC is finitely generated over T , it follows
that C is finitely presented over T , and we conclude that T is finitely presented over
R by Lemma 2.2 (ii).

(c) Assume that the conductor square .�/ is regular and C is finitely generated over
R or over T . We need to prove that (i) ) (ii), so we assume that R is coherent and
the extension R ,! T is finite. Lemma 2.1 (iv) implies that C is finitely generated
over R and over T . By Proposition 2.5 (ii), the R-module T is isomorphic to an ideal
of R. Since T is a finitely generated over the coherent ring R, we conclude that T is
finitely presented over R. Theorem 5.2 implies that T is coherent, and that A D R=C
is coherent.

6 The n-generator Property in Pullbacks

This section is devoted to the behavior of the (strong) n-generator property in the
conductor square .�/. We recall the following definitions.

Definition 6.1. Let R be any commutative ring.

(i) An ideal I of R is n-generated if there exist a1; : : : ; an 2 I such that I D
.a1; : : : ; an/.

(ii) An ideal I of R is strongly n-generated if for every nonzero a 2 I , there exist
a1; : : : ; an�1 2 I such that I D .a; a1; : : : ; an�1/. It is also common to say that
I is “.n � 1/1

2
-generated.”

(iii) The ring R is said to have the (strong) n-generator property if every finitely
generated ideal is (strongly) n-generated.

We record some familiar examples here.
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Example 6.2. (i) A domain has the 1-generator property if and only if it is Bézout,
by definition. In particular principal ideal domains have the 1-generator property.

(ii) Every Prüfer domain of finite character has the strong 2-generator property. In
particular, Dedekind domains have the strong 2-generator property. See [23, The-
orem 2.2 (a)].

(iii) Every integrally closed domain with the 2-generator property is a Prüfer domain
by [23, Proposition 1.11].

(iv) It is routine to show that if a commutative ring S has the strong n-generator
property (n � 2), then any proper homomorphic image of S must have the .n�1/-
generator property.

As best we know, there are no comprehensive theorems in the literature regarding
the transference of the n-generator property in the most general setting of .�/. For
example, the proof of Theorem 1.1 (iv) relies heavily on the fact that T contains a
retract field. In the theorem that follows, the retract condition in T is dropped.

Theorem 6.3 ([28, Theorem]). Suppose that C is a maximal ideal in the conductor
square .�/ and let I ª C be an ideal of R. If IA is an n-generated ideal of A and if
IT is an m-generated ideal of T , then I is max¹2; n;mº-generated.

In order to study the n-generator property in a conductor square of the type .�/
where C is not a prime ideal, we put a strong condition on the ring T making it a
PID. In doing so, we are able to give some partial results regarding the transference
of the (strong) n-generator property in a conductor square .�/ where C is a finite
intersection of maximal ideals. The set up for these results is next.

Definition 6.4. Let D be an integral domain that is not a field. Let K be its field of
fractions. In the diagram .�/ above, we set T D KŒX� andC D F1 � � �FrKŒX�where
F1; : : : ; Fr are irreducible polynomials over the field K that are pairwise coprime in
KŒX�. Now we have thatB DQr

iD1KŒ�i �where, for each index i � r , the element �i
is a root of Fi in some extension field ofK. IfDi is any subring ofKŒ�i � that contains
DŒ�i �, then a conductor square .�/ with A DQr

iD1Di yields a ringR betweenDŒX�
and KŒX� with a non-zero conductor from KŒX� into R.

R
� � ��

����

KŒX�

����
Qr
iD1Di

� � ��
Qr
iD1KŒ�i �

(�)

In this case we will say that R is defined by a conductor square of the type .�/. It is
worth noting that one can assume without loss of generality in this construction that
each Fi is monic with coefficients in D.
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Example 6.5. Let D be an integral domain with field of fractions K and let E D
¹e1; : : : ; erº be any finite subset of D. As noted in the introduction, setting C D
.X � e1/ � � � .X � er/KŒX� and A D Qr

iD1D, we find that R D Int.E;D/ D ¹g 2
KŒX� j g.E/ 	 Dº; the ring of integer-valued polynomials on D determined by the
subset E, is defined by a conductor square of the type .�/.

More generally, it was observed by Elliot [19, Proposition 6.1] that Int.S;D/ is
defined by the conductor square .�/ where S is any subset of D, T D KŒX�, B D
KS , the map T � B is evaluation at S , and A D DS .

Next, we generalize some definitions made for the ring Int.E;D/whereE is a finite
subset of D. For more information on the various Skolem properties, see [11].

Definition 6.6. Suppose that R is a domain defined by a conductor square of type .�/.
(i) We call an ideal U � R unitary if U \D ¤ 0. It is straightforward to show that

an ideal U is unitary if and only if UKŒX� D KŒX� if and only if U \K ¤ 0.

(ii) For each subset I � KŒX� and each element � 2 F where F is an extension
field of K, set I.�/ D ¹g.�/ j g 2 I º � F . Note that in a conductor square of
type .�/, the set I.�i / is an ideal of Di , moreover it is the ideal IDi .

(iii) We say that the domain R has the almost strong super Skolem property if, for
every pair of unitary ideals U; V � R and every index k � r , one has U D V if
and only if U.�k/ D V.�k/.2

The point of the next few results is to remove the Prüfer assumption from several
results of [4]. We begin with [4, Theorem 5.4].

Theorem 6.7 ([4, Theorem 5.4]). Suppose that R is a domain defined by a conductor
square of the type .�/. Then R has the almost strong super Skolem property.

Proof. Let U and V be unitary ideals of R such that U.�i / D V.�i / for i D 1; : : : ; r .

Claim 1. C � U \ V . (Compare to [4, Lemma 5.2].) We show that C � U ; the
containment C � V then follows by symmetry. Let g 2 C . Since U is unitary, there
is a non-zero element d 2 U \D. Since d is a non-zero constant in KŒX�, we have
g=d 2 KŒX�. Furthermore, we have .g=d/.�i / D g.�i /=d D 0 since d is constant
and Fi divides g. By definition, this means that g=d 2 R, so the condition d 2 U
implies that g D d.g=d/ 2 dR � U , as desired.

Claim 2. For any ideal I � R, we have IA D .I CC/=C DLr
iD1 I.�i /. (Compare

to [4, Lemma 5.3].) By definition, we have A DQr
iD1Di Š R=C , hence the equality

IA D .I C C/=C . Since the map R ! A is given by f 7! .f .�1/; : : : ; f .�r//,
the containment IA � Lr

iD1 I.�i / is routine. For the reverse containment, let x D
.f1.�1/; : : : ; fr.�r// 2Lr

iD1 I.�i / with each fi 2 I . Let e1; : : : ; er 2Qi Di denote

2 Note that this differs from the terminology used in [4], but is consistent with [11].
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the primitive idempotents, and fix liftings t1; : : : ; tr 2 R. By assumption, this implies
that ti .�j / D ıij , the Kroenecker delta. The element f DP

i tifi is in I , since each
fi is in I , and the image of f in

Q

i Di is
P

i eifi .�i / D x, so we have x 2 IA, as
desired.

To complete the proof of the theorem, note that the assumption U.�i / D V.�i / for
i D 1; : : : ; r explains the second equality in the following display

U=C D UA D
r
M

iD1
U.�i / D

r
M

iD1
V.�i / D VA D V=C:

The other equalities are from Claims 1 and 2. It follows that U D V , as desired.

The almost strong super Skolem property guaranteed by the previous result is key
for the proof of the next theorem, which in turn yields the two subsequent results.
Compare to [4, Theorems 6.2 and 6.3, and Corollary 6.4].

Theorem 6.8. Let R be a domain defined by a conductor square of the type .�/, and
let U � R be a unitary ideal.

(i) U is principal if and only if there is a non-zero v 2 U \ K such that U D Rv

if and only if there is a non-zero v 2 U \ K such that U.�k/ D Dkv for each
k � r .

(ii) U is strongly 2-generated if and only if U .�k/ is principal for each k � r .

(iii) For n � 2, the ideal U is strongly .n C 1/-generated if and only if U is n-
generated if and only if U .�k/ is n-generated for all k � r .

Proof. (i) If there is a non-zero v 2 U \K such that U D Rv, then U is principal and
U.�k/ D Dkv for each k � r . If U is principal and unitary, write U D Rv for some
v 2 U . The unitary condition implies that KŒX� D UKŒX� D vKŒX�, and it follows
that v is a constant in KŒX�, so v 2 K \ U .

Assume that there is a non-zero v 2 K \ U such that U .�k/ D Dkv for k D
1; : : : ; r . Set V D Rv, and observe that V is necessarily unitary since v 2 V \ K.
For each index k � r , we have V .�k/ D Dkv D U .�k/. Theorem 6.7 implies that
U D V D Rv.

(ii) .)/ If U is strongly 2-generated, then its homomorphic image U.�k/ is princi-
pal in the proper quotient Dk by Example 6.2 (iv).
.(/ Choose any non-zero f 2 U . Since each U.�k/ is principal, we can write

U D Qr
kD1Dkdk , where each dk 2 Dk; moreover, there exist polynomials rk 2 R

such that rk .�k/ D dk . Now, form the polynomial g D Pr
kD1 rkek , where each

ek 2
Q

i Di is the primitive idempotent corresponding toDk , and set V 0 D Rf CRg.
If V 0 is unitary then V 0 .�k/ D Dkf .�k/ C Dkdk D Dkdk D U .�k/, and we

are done by Theorem 6.7. If not, then we show (as in [13, Theorem 4]) how to find a
polynomial h 2 KŒX� such that g0 D gChF1 � � �Fr is relatively prime to f inKŒX�;
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once this is shown, then g0.�k/ D g.�k/ D dk 2 Dk for each index k, which implies
that g0 2 R and V D Rf CRg0 is unitary, so again Theorem 6.7 ensures that U D V .

Note that the fact that U is unitary implies that U.�k/ ¤ 0 for each k, so dk ¤ 0

and it follows that g is relatively prime to F1 � � �Fr . Write f D f1h where f1 and h
are relatively prime, each irreducible factor of f1 divides g, and each irreducible factor
of h does not divide g. To show that f and g0 D gChF1 � � �Fr are relatively prime in
KŒX�, we let p 2 KŒX� be an irreducible factor of f and show that p does not divide
g0. Since p divides f D f1h, there are two cases.

Case 1: p j f1. In this case, we have p j g and p − h by construction of f1. Since
g is relatively prime to F1 � � �Fr and p j g, we have p − F1 � � �Fr , so p − hF1 � � �Fr
and p − g C hF1 � � �Fr D g0.

Case 2: p j h. In this case, we have p − g by construction of h. Since p j h, we
have p j hF1 � � �Fr , so p − g C hF1 � � �Fr D g0.

(iii) Certainly if U is n-generated, then it is strongly .nC 1/-generated, and if U
is strongly .nC 1/-generated, then each of the proper homomorphic images U .�k/ is
n-generated by Example 6.2 (iv). Thus, we assume that n � 2 and that each U .�k/ is
n-generated. It suffices to prove that U is also n-generated. Write U.�k/ D Dkd1;kC
� � � CDkdn;k; then for each index k � r , there exist polynomials ai;k 2 R such that
ai;k .�k/ D di;k . Since U is unitary, we have U.�k/ ¤ 0 for each k, so we have
dj;k ¤ 0 for some j . Reorder the di;k if necessary to assume that d1;k ¤ 0 for each
k. As in [9, Theorem 3], for each i � n put gi D ai;1e1 C � � � C ai;rer , where
ek 2

Q

i Di is the primitive idempotent corresponding to Dk for all k � r , and set
V D Rg1 C � � � CRgn. Note that g1.�k/ D di;k ¤ 0 for all k.

If V is unitary, then the condition U .�k/ D V .�k/ for each k � r implies that
U D V , by Theorem 6.7. If V is not unitary, then, as above, we can find a polynomial
h 2 KŒX� such that g01 D g1ChF1 � � �Fr is relatively prime to g2 inKŒX�. It follows
that V 0 D Rg01 C Rg2 C � � � C Rgn is unitary and that U .�k/ D V 0 .�k/ for each
index k � r . Again by Theorem 6.7, we get that U D V .

As a consequence of the preceding result, we obtain the following theorem and its
corollary describing the behavior of the (strong) n-generator property in a conductor
square .�/.

Theorem 6.9. Let R be a domain defined by a conductor square of type .�/.
(i) If n � 2 and R has the strong n-generator property, then Dk has the .n � 1/-

generator property for each index k.

(ii) If n � 2 and Dk has the n-generator property for each index k, then R has the
n-generator property.

(iii) The ring R has the strong 2-generator property if and only if Dk is Bézout for
each index k.
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Proof. Note that every finitely generated ideal in R is isomorphic to a unitary ideal;
argue as in [33] or see [7]. Thus, the desired result follows from Example 6.2 (iv) and
Theorem 6.8.

Corollary 6.10. If R is a domain defined by a conductor square of type .�/, then the
following conditions are equivalent for n � 2:

(i) For each index k, the ring Dk has the n-generator property.

(ii) R has the n-generator property.

(iii) R has the strong .nC 1/-generator property.

We summarize the implications from the preceding results in the next diagram.

each Dk: 1 �� 11
2

�� 2 ��

��

21
2

�� 3 ��

��

31
2

�� � � �

R: 1 �� 11
2

��
��

���������

�������

2 �� 21
2

��

����������

��������

3 �� 31
2

��

����������

��������

� � �

In contrast to the previous results, note that the Prüfer hypothesis in the next corol-
lary is crucial; see Example 6.12.

Corollary 6.11 ([4, Theorem 6.6]). IfR is any Prüfer domain between ZŒX� and QŒX�
such that the conductor with respect to QŒX� is non-zero, then R has the 2-generator
property.

Proof. By [4, Proposition 4.5], the ring R is a Prüfer domain defined by a conductor
square of the type .�/. Since R is integrally closed in Q.R/ D K.X/, it is integrally
closed inKŒX�. It follows from [21, Lemma 1.1.4 (8)] that

Q

kDk is integrally closed
in
Q

k KŒ�k�, that is, that each Dk is integrally closed in its quotient field KŒ�k�. The
containment ZŒ�k� 	 Dk , implies that each Dk contains the integral closure Zk of Z
in QŒ�k�. The Krull-Akizuki Theorem says that Zk is a Dedekind domain. Since Dk
is an overring of Zk , it too is a Dedekind domain by [31, Theorem 6.21] and therefore
has the (strong) 2-generator property. Now apply Corollary 6.10.

Next, we show that, if r D 1 and D1 is Bézout in the conductor square .�/, then R
need not be Bézout, in contrast to the statement of [4, Theorem 6.3 (4)]. In particular,
[4, Example 6.8 (1)] incorrectly states that the ring R in the next example is Bézout.
Note that Theorem 6.9 (iii) implies that R does have the strong 2-generator property.
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Example 6.12. We consider the specific conductor square

R
� � ��

����

QŒX�

����
ZŒi � � � �� QŒi �

which has conductor ideal C D .X2 C 1/. It is straightforward to show that R D
ZCZXC .X2C1/QŒX�; in other words, a polynomial f 2 QŒX� is in R if and only
if the remainder after dividing by X2C1 is in ZŒX�. The ring ZŒi � is Bézout. To show
that R is not Bézout, we show that the ideal U D .X C 1;X2 C 1/R is not principal.

By way of contradiction, suppose that U is principal. Since the polynomials X C 1
and X2 C 1 are relatively prime in QŒX�, the ideal U is unitary. Theorem 6.8 (i)
provides a non-zero element c 2 U \Q such that U D cR. Since X C 1 2 U D cR,
we have .X C 1/=c 2 R. Given the explicit description of R, the condition c 2 R
implies that c 2 Z, and the condition .X C 1/=c 2 R implies that c D ˙1. We
conclude that 1 D ˙c 2 U D .XC1;X2C1/R, so there are elements p; q 2 R such
that 1 D .X C 1/p C .X2 C 1/q. Rewriting p and q using the explicit description
of R, we conclude that there are elements Qp 2 ZŒX� and Qq 2 QŒX� such that 1 D
.XC1/ QpC .X2C1/ Qq. Evaluating at i , we obtain the equation 1 D .iC1/ Qp.i/ which
implies that .1 � i/=2 D 1=.1C i/ D Qp.i/ 2 ZŒi � a contradiction.

7 Factorization in Pullbacks

In this section, we highlight a few examples in the theory of factorization supplied by
pullback constructions. First we recall some relevant definitions.

Definition 7.1. Let D be any integral domain.

(i) We denote by D	 the set of all nonzero nonunits of D.

(ii) We denote by A.D/ the set of all atoms (irreducible elements) of D.

(iii) We call D an atomic domain if for every a 2 D	, one has a factorization a D
p1p2 � � �pn where each pi 2 A.D/ and n � 1.

(iv) We say that D is ACCP if it satisfies the ascending chain condition on principal
ideals.

(v) We call D a half factorial domain (HFD) if for every a 2 D	, one has a fac-
torization a D p1p2 � � �pn where each pi 2 A.D/ and n � 1. Moreover, if
a D q1q2 � � � qn is any other such factorization, then m D n.
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The following implications are straightforward:

UFD �� HFD �� ACCP �� Atomic

Noetherian �� Mori

��

It is worth noting that these factorization properties are not well behaved in a con-
ductor square of the type .�/. In fact, one of the most basic constructions ZCXQŒX�
is not even atomic [17, Exercise 9.3.4] while the rings Z and QŒX� are UFDs. More
generally, if A � B , then A C XBŒX� is a UFD if and only if A D B and A is a
UFD. In order to investigate the weaker half factorial condition in the A C XBŒX�
construction, [15] makes the following definitions.

Definition 7.2. Let D be any integral domain.

(i) Two nonzero elements x; y 2 D are called v-coprime if xD \ yD D xyD.

(ii) A subset S 	 D is called a splitting multiplicative set of D if every d 2 D is
expressible as d D st where s 2 S and t is v-coprime to every element of S .

We can now give a characterization of the HFD property in the A C XBŒX� con-
struction.

Theorem 7.3 ([15, Corollary 3.5]). Let A � B be any pair of integral domains such
that B has a “proper” element b 2 B (no unit of B multiplies b into A). In the
conductor square .�/, set T D BŒX�, C D XBŒX�, and R D A C XBŒX�. The
following statements are equivalent:

(i) S D ¹g 2 R j g.0/ ¤ 0º is a splitting set of R.

(ii) R is an HFD and A � ¹0º is a splitting set of R.

(iii) B is integrally closed and A � ¹0º is a splitting set of R.

Example 7.4. We use the conductor square .�/ to exhibit some examples in the theory
of factorization.

(i) [32, Example 26] Though it is true that a domainD is a UFD if and only ifDŒX�
is a UFD, the same cannot be said about HFDs. Indeed, the ringR D RCXCŒX�
is a Noetherian HFD while the polynomial ring RŒt� is not an HFD. For example,
X � X � .1 C t2/ D X2 C X2t2 D .X C iXt/.X � iXt/ has an irreducible
factorization of length 2 and of length 3.

(ii) [32, Example 27] In [14, Theorem 2.2], it is shown that ifD is an integral domain
such that its polynomial ring DŒX� is an HFD, then D must be integrally closed.
However, we cannot conclude that D is completely integrally closed. Let A be
any UFD and let X; Y be indeterminates. If R D A C XAŒX; Y �, then R is an
HFD and its polynomial ring RŒt� is an HFD as well. However, R is neither a
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UFD nor completely integrally closed. For example, X;XY;XY 2 are all atoms
so that X � XY 2 D X2Y 2 D XY � XY is not a unique factorization into atoms.
Moreover, Y … R while XY n 2 R for all n � 1 so that R is not completely
integrally closed.

(iii) [32, Example 25] The integral closureD of an atomic integral domainD may not
be atomic. Let Z denote the set of all algebraic integers and setR D ZCXZŒX�.
Then R satisfies ACCP and is therefore atomic. However, the integral closure
R D ZŒX� of R is not atomic.

We conclude this paper with a result that guarantees that the ring R in the conductor
square .�/ is atomic.

Theorem 7.5 ([8]). For the conductor square .�/, we set C D X.X � 1/KŒX�, so
that B D K 
 K and A D D1 
 D2. Also, set S D ¹d1d2 j d1 2 D1; d2 2 D2º
and J0.R/ D R \K. If the following conditions hold, then the ring R defined by the
conductor square .�/ is atomic:

(i) S D K.

(ii) Every nonunit of J0.R/ is also a nonunit of D1 and D2.

(iii) The J0.R/-modules D1 and D2 satisfy ACC on their cyclic submodules.
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1 Introduction

The publication of Emmy Noether’s seminal works of 1921 and 1927 on ideal decom-
positions led to a number of fundamental properties of Noetherian rings being swiftly
established. Within five years of the second of these articles, Ore remarked in a sur-
vey on ideal theory, perhaps a bit optimistically: “The theory itself to a large extent is
still in an evolutionary stage and has not reached the harmonious form it will probably
assume later on. Only for domains in which the finite chain condition [i.e., ascending
chain condition] holds does it seem to have arrived at some degree of perfection” [47,
page 728]. Five years later, in a review of Krull’s Idealtheorie, he would refer to “the
maze of material accumulated in recent years in the field of abstract ideal theory” [48,
page 460]. In these two articles, Noether introduced the ascending chain condition to
axiomatize the ideal theory of finitely generated algebras over a field and orders in al-
gebraic number fields. The importance of local rings, as well as their completions, was
quickly realized and emphasized by Krull [21] and Chevalley [7]. Shortly thereafter,
in 1946, Cohen provided a structure theory for complete local rings: Every such ring
is the homomorphic image of a power series ring over a field or a rank one discrete
valuation ring [9]. Thus, locally and at the limit, Noetherian rings behave like the rings
arising from the geometric and arithmetic contexts which Noether sought to capture
with the axiom of the ascending chain condition.

However, non-complete local Noetherian rings prove to be more elusive and capa-
ble of betraying the geometric and arithmetic intuition in which the theory is rooted,
and over the ninety years since the introduction of the ascending chain condition into
commutative ideal theory, there has developed along with the axiomatic theory a large
bestiary of examples that behave in one fundamental way or another differently than
the “standard” rings that motivate and drive the subject. Thus the need for additional
hypotheses such as “excellence” to capture, for example, geometric features like desin-
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gularization [27]. Similarly, there are a number of penetrating variations on excellence,
such as G-rings, Japanese rings, Nagata rings and geometric rings. Miles Reid com-
ments on the delicacy of this part of the theory: “Grothendieck (in [15, IV2, 7.8]) has
developed the theory of ‘excellent rings’ (following Akizuki, Zariski and Nagata), that
assembles everything you might ever need as a list of extra axioms, but it seems that
this will always remain an obscure appendix in the final chapter of commutative alge-
bra textbooks: ‘Le lecteur notera que le résultats les plus delicates du §7 ne serviront
qu’assez peu dans la suite’ ” [54, page 136].

Nevertheless, regardless of whether one views these issues as foundational or ob-
scure, there do exist Noetherian rings at a far remove from excellence. Unlike complete
local rings, these rings behave in essential ways differently than rings in arithmetic and
geometric applications. Such rings earn the appellation “bad” in Nagata’s famous ap-
pendix to his 1962 monograph, Local rings. As early as 1935, bad Noetherian rings
were known: in that year Akizuki and Schmidt each published examples of bad one-
dimensional local Noetherian domains. What made their examples bad was the failure
to have finite normalization; that is, the integral closure of the ring in its total quotient
ring is not a finitely generated module over the base ring. We discuss the examples of
Akizuki and Schmidt in Section 3.

In what follows we survey examples and constructions of Noetherian rings that are
bad in the sense that they fail to have finite normalization. Finite normalization is,
as we recall in Section 2, closely related to the absence of nontrivial nilpotents in the
completion, and thus there is a parallel emphasis on the completion of the rings in the
constructions we discuss.

The designation “bad,” as well as the technical ingenuity behind some of the ex-
amples, reinforce a notion that these examples are esoteric and hard to produce.1 In
Sections 3, 4 and 5, we review, beginning with the early discoveries of Akizuki and
Schmidt, examples of one-dimensional local Noetherian domains without finite nor-
malization, and we also look to more recent constructions, including in Section 5 a
geometric example. While the theory behind the constructions is often involved, the
constructions themselves are often conceptually straightforward, and show that there is
a certain inevitability to the examples: one encounters them with standard operations
such as a finite extension of a DVR, as the kernel of a differential, or as an intersection
of an image of the completion of a local domain with its quotient field. From this
point of view, the examples are not so exotic, and one of the motivations behind this
survey is to describe how Noetherian domains without finite normalization occur be-
tween (Section 3), above (Sections 4 and 5) and below (Section 6) naturally occurring
Noetherian rings.

1 Miles Reid: “The catch-phrase ‘counterexamples due to Akizuki, Nagata, Zariski, etc., are too
difficult to treat here’ when discussing questions such as Krull dimension and chain conditions for
prime ideals, and finiteness of normalization is a time-honoured tradition in commutative algebra
textbooks...This does little to stimulate enthusiasm for the subject, and only discourages the reader
in an already obscure literature” [54, page 136].
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In Section 3 we consider examples of one-dimensional local Noetherian rings with-
out finite normalization that occur in an immediate extension of rank one discrete val-
uation rings (DVRs), and in Corollary 3.11 we give a simple field-theoretic criterion
for when a such an example can be sandwiched into an immediate extension of DVRs.
Well-known examples due to Akizuki, Schmidt, Nagata, and Ferrand and Raynaud, all
fit into this framework.

Section 4 also focuses exclusively on one-dimensional examples. However, the
emphasis here is on when such examples can be found birationally dominating a given
local Noetherian domain of dimension possibly larger than 1. The examples in this
section occur in a particularly transparent way, either as a kernel of a certain exterior
differential or cut out of the quotient field of a local Noetherian domain by an image
of its completion. The latter construction leads to the striking theorem of Heinzer,
Rotthaus and Sally that every local Noetherian domain of Krull dimension greater than
one which is essentially of finite type over a field is birationally dominated by a one-
dimensional local Noetherian domain without finite normalization (see Theorem 4.3).

Section 5 is devoted to a geometric example, due to Reguera, of a one-dimensional
Noetherian domain without finite normalization. This example stands out from the rest
in that it has a direct geometric interpretation: it is the local ring of a point, not on a
curve, but on the space of arcs associated to the curve.

Section 6 discusses mainly a technique from [43] for locating Noetherian domains
without finite normalization as subintegral extensions of “known” Noetherian domains.
This technique produces such Noetherian rings in any Krull dimension, and affords a
good deal of control over the traits of the examples it yields. The tradeoff however is
that strong demands are made on the quotient field of the domain in order to guarantee
existence of these well-behaved subrings.

The literature on bad Noetherian rings is diverse and scattered, since these rings of-
ten arise as counterexamples on frontiers of various topics. What follows is an attempt
to organize and point out a few central ideas in some of these examples. The focus
remains narrowly on local Noetherian domains without finite normalization, and does
not touch in any detail on other classes of bad Noetherian rings. For more on other
sorts of nonstandard Noetherian rings, see [29] and its references.

Terminology and notation. All rings are commutative and have an identity. A quasilo-
cal ring is a not-necessarily-Noetherian ring with a unique maximal ideal; in general
our focus is on the Noetherian case, and for this we follow tradition and refer to a
quasilocal Noetherian ring as a local Noetherian ring. The completion of a local
Noetherian ring R with maximal ideal m in its m-adic topology is denoted bR. A
rank one discrete valuation ring (DVR) is a local principal ideal domain. The integral
closure of a ringR in its total ring of quotients is denotedR. The ringR is also referred
to more succinctly as the normalization of R. The ring R has finite normalization if R
is a finitely generated R-module; R is normal if R D R. An overring of a domain R
is a ring between R and its quotient field.
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2 Normalization and Completion

In this section we sketch some of the history regarding the relationship between nor-
malization and completion of a local Noetherian ring. Krull proved in 1938 that when
a local Noetherian domain R has Krull dimension 1, then R has finite normalization
if and only if the completion of R in its m-adic topology has no nonzero nilpotent
elements; that is, R is analytically unramified [21]. Ten years later, Zariski noted that
when a local domain R has finite normalization, then R is analytically unramified if
and only if its normalization is analytically unramifed [64, page 360]. Thus, granted
finite normalization, whether R is analytically unramified depends entirely on the ana-
lytic ramification of the normalizationR. Motivated by this, as well as Krull’s theorem
above, Zariski proved that if the local ring of a point on an irreducible variety is nor-
mal, then the completion of this local ring is a domain; i.e., the local ring is analytically
irreducible [64, page 352]. Two years later, in 1950, he reached a stronger conclusion:
Such a normal local domain is analytically normal, meaning that its completion is a
normal local domain [65, Théorème 2]. That the local rings of points on a normal
variety are analytically normal can be viewed as a version of Zariski’s Main Theorem;
see [33, pages 207–214], [40] and [66].

In the article of 1948, Zariski asked then whether every normal Noetherian local
domain is analytically irreducible [64, page 360]. (Nagata later answered this question
in the negative, as we mention in Section 3.) Zariski identified two conditions on a
normal local Noetherian domain R that are sufficient but not necessary for R to be
analytically irreducible [64, page 360]:

(i) for each prime ideal P of R, R=P is analytically unramified, and

(ii) if P1 and P2 are distinct associated prime ideals of bR, then .P1 C P2/\R ¤ 0.

Statement (ii) implies the fiber of the prime ideal ¹0º under the mapping Spec.bR/ !
Spec.R/ is connected. For if the fiber of ¹0º is not connected, then there exist ideals I
and J of bR such that .I C J /\R ¤ 0 and I and J each are intersections of minimal
prime ideals of bR. But then if P1 � I and P2 � J are minimal, hence associated,
prime ideals of bR, .P1 C P2/ \R ¤ 0.

A geometric version of condition (i) winds through the literature under different
guises: In his 1962 monograph, Local rings, Nagata defines a Noetherian ring R to be
pseudo-geometric if for each prime idealP ofR and each finite extension fieldL of the
quotient field �.P / of R=P , the integral closure of R=P in L is finite over R=P (it is
the persistence of (i) across finite extensions that earns the adjective “geometric” here)
[36, page 131]. Grothendieck later replaced the terminology of pseudo-geometric rings
with that of anneaux universellement japonais; Bourbaki and Matsumura, whom we
follow, in turn refer to pseudo-geometric rings as Nagata rings.

In any case, Nagata proves that a local Noetherian Nagata domain is analytically
unramified [36, (36.4), page 131], and that a ring essentially of finite type over a Nagata
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ring is also a Nagata ring [36, (36.5), page 132]. Consequently, since fields and the
ring of integers are Nagata rings, we arrive at the fundamental fact:

A finitely generated algebra over a field or the ring of integers has finite
normalization.

This answered in a strong way an earlier question of Zariski: Is the local ring of a point
of an irreducible algebraic variety analytically unramified? (Chevallay had provided
the first positive answer to Zariski’s specific question about local rings of points on
varieties [8, Lemma 9 on page 9 and Theorem 1 on page 11], and Zariski himself also
later gave another proof of Chevallay’s theorem in [64, page 356].)

In summary, a local Noetherian Nagata domain is analytically unramified. Nagata
also proved a partial converse in an article of 1958: If R is a reduced local Noetherian
ring and R is analytically unramified, then R has finite normalization [35, Proposition
1, page 414]. Of course, Nagata rings demand something quite a bit stronger than
simply finite normalization. Indeed, Nagata gave an example in 1955 of a normal local
Noetherian domain that is analytically ramified [34, page 111]; thus a local domain
having finite normalization need not be a Nagata ring or analytically unramified.

Finally in 1961, Rees made precise the connection between analytic ramification
and normalization:

Theorem 2.1 (Rees [51, Theorems 1.2 and 1.5]). Let R be a reduced local Noetherian
ring, and let F be its total ring of quotients. Then R is analytically unramified if and
only if for all x1; : : : ; xn 2 F , the ring RŒx1; : : : ; xn� has finite normalization.

In light of the connection between analytic ramification and normalization, one
source of local Noetherian domains without finite normalization are those local do-
mains (or possibly overrings of such domains) whose completions have nilpotent el-
ements. There is a rich and extensive literature on realizing complete local rings as
the completion of local Noetherian rings having specified properties. In 1981, Larfeldt
and Lech gave one such method: Let K be a field, let X1; : : : ; Xn be indeterminates
for K and let I be an ideal of KŒX1; : : : ; Xn� that is primary for .X1; : : : ; Xn/. Set
A D KŒX1; : : : ; Xn�=I . Then using a notion of flat couples, it is shown that there
exists a one-dimensional local Noetherian domain R such that bR D AŒŒT ��, where T
is an indeterminate for A [22, page 201]. In a later article, Lech proved a much more
general existence theorem:

Theorem 2.2 (Lech [23, Theorem 1]). A complete local ring R with maximal ideal m

is the completion of a local Noetherian domain if and only if

(i) m D .0/ or m … Ass.R/, and

(ii) no nonzero integer of R is a zero-divisor.

Lech’s article initiates a deep sequence of papers characterizing the completions
of local UFDs (Heitmann [19, Theorems 1 and 8]), reduced local rings (Lee, Leer,
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Pilch and Yasufuku [24, Theorem 1]) and excellent local domains containing the ring
of integers (Loepp [28, Theorem 9]). These results all demand remarkably little of a
complete local ring in order to realize it as the completion of a specific sort of local
Noetherian domain. That the completions of more abstract local Noetherian domains
could behave so differently from those arising in algebraic geometry and algebraic
number theory occasions Eisenbud’s remark, “This is one of the ways in which the
Noetherian property is ‘too general’ ” [12, page 193].

In any case, the construction of Lech guarantees the existence of many examples
of one-dimensional local Noetherian domains without finite normalization: If R is a
one-dimensional complete local Cohen–Macaulay ring that is not reduced, its prime
subring is a domain and R is torsion-free over its prime subring, then there exists a
one-dimensional local Noetherian domain whose completion is R, and hence this ring
does not have finite normalization.

3 Examples between DVRs

As discussed in Section 2, a one-dimensional local Noetherian domain has finite nor-
malization if and only if it is analytically ramified. In this section we give an overview
of some examples of one-dimensional analytically ramified local Noetherian domains,
as well as some of the general theory regarding the existence of such examples. This
section concerns one-dimensional local rings sandwiched into an immediate extension
of discrete rank one valuation rings (DVRs), while the next section deals with the ex-
istence of one-dimensional analytically ramified local rings birationally dominating a
local Noetherian domain.

An extension U � V of DVRs is immediate if U and V have the same value
group and residue field; equivalently, with M the maximal ideal of U , MV ¤ V and
V D U CMV . It is easy to see that an extension U � V of DVRs is immediate if and
only if the inclusion U � V lifts to an isomorphism of U -algebras bU ! bV . Thus for
a DVR U , the extension U � bU is immediate. We use the following lemma to explain
why some classical examples due to Akizuki, Schmidt and Nagata, all of which occur
within an immediate extension of DVRs, fail to have finite normalization.

Lemma 3.1. If U � R ¨ V is an extension of rings such that U � V is an immediate
extension of DVRs, then V=R is a divisible R-module, and hence V is not a finite
R-module.

Proof. Let 0 ¤ r 2 R. To see that V D RC rV , use the fact that V is a DVR to find
nonnegative integers i and j such that r iV DMjV , where M is the maximal ideal of
U . Since U � V is an immediate extension, V D U CMjV D U C r iV � RC rV ,
proving that V D RC rV and that D WD V=R is a divisible R-module. Since D ¤ 0,
there exists a maximal ideal M of R such that DM ¤ 0. But since D is divisible,
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DM DMDM , so that by Nakayama’s Lemma, D is not a finite R-module, and hence
V is not a finite R-module.

We now outline without proof the 1935 example of Akizuki. With the exception of
our use of Lemma 3.1, we follow Reid [53, Section 9.5] and [54], where commentary
and a complete justification for the example can be found.

Example 3.2 (Akizuki [2]). Let U be a DVR with maximal ideal M D tU and quo-
tient field K such that there exists z D P1

iD0 ui tei 2 bU (with each ui a unit in U )
that is transcendental over K and ei � 2ei�1 C 2 for all i � 1, where e0 D 0. For
i � 0, let zi D ui C uiC1teiC1�ei C uiC2teiC2�ei C � � � . Let R be the localization
of U Œt.z0 � u0/; ¹.zi � ui /2º1iD0� at the maximal ideal generated by t and t .z0 � u0/.
Calculations show that R is a one-dimensional local Noetherian domain with quotient
field K.z/ and normalization V D K.z/ \ bU properly containing R (for details, see
[53, 54]). Thus since U � V is an immediate extension of DVRs, Lemma 3.1 shows
that R does not have finite normalization, a fact which can also be proved by a direct
argument [53, 54].

More can be said about this example: Since the maximal ideal M of R is generated
by 2 elements and M 2 D tM [53, Exercise 9.5, page 148], it follows that R has
multiplicity 2, and hence every ideal ofR can be generated by 2 elements [57, Theorem
1.1, page 49]. We discuss rings for which every ideal can be generated by 2 elements
later in this section.

Another example, this one due to Schmidt, appeared in the same year as Akizuki’s
example. Unlike Akizuki’s example, Schmidt’s example requires positive character-
istic, but this in turn makes the justification for the example easier. We give this ex-
ample next, but presented and justified differently than the original. For another ap-
proach, one that makes explicit the valuation theory in the example, see Zariski [63,
pages 23–25].

Example 3.3 (Schmidt [58]). Let k be a field of characteristic p > 0, let X be an
indeterminate for k, and let z 2 XkŒŒX�� such that z is transcendental over k.X/.
(Such an element z must exist; see [67, page 220].) Then kŒX; z� � kŒŒX��. Let
U D k.X; zp/ \ kŒŒX��, and consider the ring R D U Œz� � k.X; z/. Then U is a
DVR with maximal ideal generated by X , and R has quotient field k.X; z/. Since z
is integral over U , R is a finite extension of U , so R is a one-dimensional Noetherian
domain. Let V D k.X; z/ \ kŒŒX��. Then V is a DVR with maximal ideal generated
by X . Moreover, V is integral over R, since V p � U . Thus R is a local ring with
normalization V . Since R is a finite U -module and U ¨ V , Lemma 3.1 implies that
R ¤ V , so again by Lemma 3.1, R does not have finite normalization.

The next example is from Nagata’s appendix, “Bad Noetherian domains” [36]. Na-
gata considers the ring A D kpŒŒX1; : : : ; Xn��Œk�, where k is a field of characteristic
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p > 0 such that Œk W kp� D 1 and X1; : : : ; Xn are indeterminates for k. He proves
that A is a regular local ring and a proper subring of its completion kŒŒX1; : : : ; Xn��
[36, (E3.1), page 206]. By varying the choices of n and z 2 kŒŒX1; : : : ; Xn�� appropri-
ately, he fashions the ringAŒz� such that it is (depending on the choice of n and z): (i) a
one-dimensional analytically ramified local Noetherian domain; (ii) a two-dimensional
local Noetherian domain without finite normalization having a non-Noetherian ring
between itself and its normalization; (iii) a three-dimensional local Noetherian do-
main without finite normalization and whose normalization is not Noetherian; (iv)
a normal local Noetherian domain which is analytically ramified; and (e) a subring
of a one-dimensional Noetherian domain without finite normalization but such that
each localization at a prime ideal has finite normalization [36, Examples 3–6 and 8,
pages 205–212]. While all these examples are relevant here, we mention only how the
choice is made in case (i), since it fits into the present discussion of one-dimensional
rings. We differ from Nagata’s original justification of the example in that we rely on
Lemma 3.1; see also Reid [53, pages 136–137] for a general approach to the example.

Example 3.4 (Nagata [36, Example 3, page 205]). With notation and assumptions as
above, let U D kpŒŒX��Œk�, so that U is a DVR. (Thus in the notation above, U D A

with n D 1.) Since Œk W kp� D 1, there exist countably many distinct p-independent
elements ˛1; ˛2; : : : of k. Set z D P1

iD0 ˛iX i 2 kŒŒX��. Then since z is integral
over U , the ring R D U Œz� is a one-dimensional Noetherian domain. Also, since the
DVR V D U.z/\ kŒŒX�� is integral over R (indeed, V p � R), it follows that V is the
normalization of R, and hence R is a local ring. The choice of coefficients of z forces
z … U , so U ¨ R � V . Also, R ¤ V , since otherwise V=U is a finite U -module,
contrary to Lemma 3.1. Thus U ¨ R ¨ V , and another application of Lemma 3.1
shows that R does not have finite normalization.

In all of the above examples, the one-dimensional analytically ramified local Noe-
therian domain R has the property that the inclusion R ! V lifts to a surjection
bR ! bV . (This follows from the fact that since V=R is a divisible R-module, V D
R CM iV , where M is the maximal ideal of R, for all i > 0.) Since bV is a domain
and R is not a DVR, the kernel P of this mapping is a nonzero prime ideal. Moreover,
since the integral closure of R is a local ring, the ring bR has a unique height 1 prime
ideal P [30, Theorem 7.9, page 77], which therefore, sincebR has dimension 1, must be
nilpotent. In summary: If U � R ¨ V is an extension of rings such that U � V is an
immediate extension of DVRs, V is the normalization of R and R is a Noetherian ring
(all these requirements are satisfied by the examples of Akizuki, Schmidt and Nagata),
then there is a nonzero nilpotent prime ideal P of bR such that bR=P Š bV . In [4],
Bennett proves a converse for positive characteristic:

Theorem 3.5 (Bennett [4, Theorem 1, page 133]). Let R be a one-dimensional local
Noetherian domain of characteristic p > 0. If there is a nilpotent prime ideal P of bR
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such that bR=P is a DVR, then there is a DVR U such that U � R � bU and Rq � U
for some q D pe .

A one-dimensional analytically ramified local Noetherian domain can always be
modified by finitely many quadratic transformations to produce a ring R whose com-
pletion has a nilpotent prime ideal with residue ring a DVR [4, Section 1]. Bennett
refers to the extension U � R � bU in the theorem, with R purely inseparable over U ,
as a presentation of R. The positive characteristic examples of Nagata and Schimdt
occur within such a presentation. As discussed above, a presentation U � R � bU

forces the existence of a prime ideal P of bR such that bR=P is a DVR, and if also R
has a local normalization, then P is a nilpotent prime ideal of bR. Turning this around,
Bennett considers when a complete local ring having a nonzero nilpotent prime ideal
with residue ring a DVR arises from a presentation of an analytically ramified local
ring:

Theorem 3.6 (Bennett [4, Theorem 6.0.4]). Let V be a complete DVR of positive char-
acteristic, and let C be a one-dimensional local Noetherian ring that is a flat finite
V -algebra with nilpotent ideal P such that C=P Š V . Then there exists a local
Noetherian domain R and a DVR U such that bU D V , U � R � V and bR Š C .

Since V is a DVR, the assertion here that C is flat means only that the nonzero
elements of V are nonzerodivisors on C . The idea behind the construction, which
Bennett terms “quasi-algebrization,” is to begin with a suitable choice for the DVR
U , select carefully a finite U -subalgebra S of V D bU , and then perform an infinite
sequence of operations on S to produce R, all the while staying in the quotient field of
S . The quotient field of R is then finite over that of U , but R is not finite over U .

Bennett’s article was partly inspired by examples of Ferrand and Raynaud, who in
1970 introduced a method based on derivations to construct analytically ramified local
Noetherian domains [13]. We will have more to say about their method in Section 6,
but we mention here one of the examples produced with their construction, an example
which occurs in an immediate extension of DVRs. In that sense it fits within the se-
quence of examples considered so far; however, it does not fit directly within Bennett’s
framework because it has characteristic 0.

The example of Ferrand and Raynaud uses the notion of idealization of a module.
When A is a ring and L is an A-module, we denote by A ? L the Nagata idealization
(or, trivialization) of L. This ring is defined as a set by

A ? L D ¹.a; `/ W a 2 A; ` 2 Lº;

where for all a1; a2 2 A and `1; `2 2 L, addition and multiplication in the ring are
defined by:

.a1; `1/C .a2; `2/ D .a1 C a2; `1 C `2/
.a1; `1/.a2; `2/ D .a1a2; a1`2 C a2`1/:
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The completion of the local ring in the following proposition is the Nagata idealization
of a module; the completions considered later in this section also have this form.

Proposition 3.7 (Ferrand and Raynaud [13, Proposition 3.1]). Let C¹Xº be the ring
of convergent power series with complex coefficients, and let F be the quotient field of
C¹Xº. Then for each e 2 N there exists a subring R of C¹Xº such that the following
statements hold for R.

(i) R is a Noetherian domain with quotient field F , embedding dimension eC 1 and
normalization C¹Xº.

(ii) bR Š CŒŒX�� ? J , for some free CŒŒX��-module J of rank e.

(iii) If e > 1, then R does not have a canonical ideal and the generic formal fiber of
R is not Gorenstein.

The ring R is sandwiched into the immediate extension CŒX�.X/ � C¹Xº. It arises
as D�1.K/, where D W C¹Xº ! L is a well-chosen derivation, L is a C..X//-
vector space and K is a finite rank free CŒŒX��-submodule of L. In the terminology of
Section 6, R is a “strongly twisted” subring of C¹Xº. It also can be deduced from (ii)
that the multiplicity and embedding dimension of R agree.

Goodearl and Lenagan generalize this idea to incorporate higher-order differentials,
and in so doing permit multiplicity and embedding dimension to differ. The rings they
construct with this method are differentially simple, meaning there is a derivation D
from the ring to itself such that no proper nonzero ideal is invariant under D.

Theorem 3.8 (Goodearl–Lenagan [14, Proposition 6 and Example D]). For any pair
of positive integers m and t , there exists a one-dimensional analytically ramified lo-
cal Noetherian domain R containing the field of rational numbers such that R has
embedding dimension mC 1, multiplicity mC t and is differentially simple.

The issue of differential simplicity is relevant to our themes here because Posner
showed in 1960 that a differentiably simple ring of characteristic zero finitely gener-
ated over its field of constants (“constants” here being the constants for the relevant
derivation; the ring of all such constants forms a field in a differentially simple ring)
is normal [49, Theorem 12], and he asked implicitly in a subsequent paper whether
a differentiably simple ring of characteristic zero must be normal [50, page 1421].
This question is made more compelling by the 1966 observation of Seidenberg that if
a Noetherian domain R contains the rational numbers, then the conductor .R WR R/

of the normalization of R into itself is invariant under the derivation [59, page 169].
Thus if R is a differentially simple local Noetherian domain containing the rational
numbers, then either R is normal or R does not have finite normalization, and hence
arises the question of whether the latter case can occur.

2 There is a mistake in the proof of the first lemma of Posner’s article which is corrected in [59].
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Moreover, Vasconcelos showed that if R is a one-dimensional analytically unram-
ified local Noetherian ring containing the rational numbers and having a derivation
D such that D.x/ D 1 for some nonunit x of R, then R is a DVR, and he asked
whether this remains true if R is assumed to be reduced but analytically ramified
[62, page 230]. Lequain answered Vasconcelos’ question in the negative by modi-
fying Akizuki’s construction, Example 3.2, to produce a one-dimensional analytically
ramified local Noetherian domain R having a nonunit x such that D.x/ D 1 for a
derviation D W R! R [25, Theorem 2.1 and Example 2.2]. Since R is local and one-
dimensional, the condition D.x/ D 1 then forces R to be differentially simple with
respect to D. Another construction in mixed characteristic given later by de Souza
Doering and Lequain produced similar examples, but of arbitrary large embedding di-
mension and multiplicity [10, Proposition 1]. However, as noted in [14, page 479],
the calculations to justify these examples are “long and technical.” The construction
of Goodearl and Lenagan, in addition to showing every possible pair 2 � m � e can
occur as embedding dimension and multiplicity, respectively, of such an example, has
the advantage of being computationally simpler than the previous examples, as well as
having an obvious choice for the derivation to decide the differential simplicity of the
ring, namely the derivation that defines the ring as a pullback.

Proposition 3.7, which is the point of departure for the construction of Goodearl
and Lenagan, can be viewed as a particular instance of a more general method of
extracting analytically ramified local rings as subrings of rings possessing a special sort
of derivation. As discussed in Section 6, this method can be applied to produce rings
of any Krull dimension. But in dimension 1, some consequences of the method can
be described without mention of the notion of what is termed in Section 6 a “strongly
twisted” subring. So in keeping with the focus on one-dimensional rings, we discuss
some of these consequences now and postpone till Section 6 an explanation of the
method behind the results.

In dimension 1, the method of strongly twisted subrings produces stable domains.
An ideal I of a domain R is stable if it is projective over EndR.I /, its ring of en-
domorphisms. The terminology here is due to Lipman [26]; see the survey [41] for
background and an explanation of the terminology. In this section we are interested
exclusively in the case in which R is a quasilocal ring, and in this situation stable ide-
als are simply ideals having a principal reduction of reduction number � 1; that is, an
ideal I of a quasilocal domain R is stable if and only if I 2 D iI for some i 2 I (see
[26] and [42, Lemma 3.1]). The domain R is stable provided every nonzero ideal is
stable.

Bass proved that the class of stable domains includes the 2-generator domains, those
domains for which every ideal can be generated by 2 elements [3]. A local Noethe-
rian domain with finite normalization is a 2-generator ring if and only if it is a stable
domain; see Drozd and Kiričenko [11] or Sally and Vasconcelos [55, Theorem 2.4].
The latter authors noted that a stable Noetherian domain must have Krull dimension 1
[56], and they proved that a stable local Noetherian domain of embedding dimension
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2 must be a 2-generator ring [56, Lemma 3.2]. Using the method of Ferrand and Ray-
naud they also gave an example in characteristic 2 of a local Noetherian stable domain
that does not have the 2-generator property, and hence does not have finite normaliza-
tion [56, Example 5.4]. Heinzer, Lantz and Shah modified this example to show that
every embedding dimension > 1 was possible for a local Noetherian stable domain
without finite normalization [17, (3.12)]. (It is easy to see that for a local Noetherian
stable domain, since its maximal ideal has reduction number 1, the embedding dimen-
sion and multiplicity of the ring agree.) A consequence of Theorem 3.13 below is that
examples of large embedding dimension exist in any characteristic.

Thus analytically unramified local Noetherian stable domains are simply 2-generator
rings, but the class of analytically ramified local Noetherian stable domains properly
includes the class of 2-generator rings, and whether an analytically ramified local
Noetherian stable domain R is a 2-generator ring is conditioned on whether its em-
bedding dimension is � 2. The embedding dimension of R reflects how far away R is
from its normalization:

Theorem 3.9 ([44, Theorem 4.2]). Let R be a quasilocal domain with normalization
R and quotient field F , and let n > 1. Then R is an analytically ramified local
Noetherian stable domain of embedding dimension n if and only if R is a DVR and
R=R ŠLn�1

iD1 F=R as R-modules.

More characterizations in this same spirit can be found in [44]. The case n D 1

implies that the analytically ramified local 2-generator domains are precisely those
quasilocal domains R for which R is a DVR and R=R Š F=R as R-modules [44,
Corollary 4.5]. It follows that when R is an analytically ramified local 2-generator
domain, then R � R is what is termed in [16] a J -extension, meaning that every
proper R-subalgebra of R is a finitely generated R-module. It is in fact the unique
J -extension of R in its quotient field [16, Proposition 3.1]. More generally, when
R is an analytically ramified local Noetherian domain, then the J -extensions R � S ,
where S is an overring ofR, are in one-to-one correspondence with the minimal prime
ideals of the total quotient ring of bR [16, Theorem 2.1]. An analytically ramified local
Noetherian domain, even a Gorenstein one, may have more than one J -extension in
its quotient field [16, Example 3.8].

Analytically ramified local Noetherian stable domains arise from immediate exten-
sions of DVRs, as we see in the next theorem, which uses the notion of the exterior
differential of a ring extension. Given an A-linear derivation D W S ! L, with L
an S -module, there exists a universal module through which D must factor. More
precisely, for an extension R � S of rings, there exists an S -module �S=R, and an
R-linear derivation dS=R W S ! �S=R, such that for every derivation D W S ! L,
there exists a unique S -module homomorphism ˛ W �S=R ! L with D D ˛ ı dS=R;
see for example [12, 20]. The S -module �S=R is the module of Kähler differentials
of the ring extension R � S , and the derivation dS=R W S ! �S=R is the exterior
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differential of the extension R � S . If L is a torsion-free S -module, then a submodule
K of L is full if L=K is a torsion S -module.

Theorem 3.10 ([45, Theorems 4.1 and 4.4]). Let U � V be an immediate extension
of DVRs with quotient fields Q and F , respectively. Suppose K is a full V -submodule
of �F=Q such that n WD dimV=MK=MK is positive, where M is the maximal ideal
of V . Then R D V \ d�1

F=Q
.K/ is an analytically ramified quasilocal stable domain

with normalization V . Every quasilocal stable domain containing U and having nor-
malization V must arise this way for a unique choice of K, and satisfy the following
properties.

(i) R is a Noetherian domain (with embedding dimension nC 1) if and only if n is
finite.

(ii) If R is a Noetherian domain, then bR Š bV ? J , where J is a free bV -module of
rank n.

With some basic facts about the module of Kähler differentials, the theorem yields a
criterion for when an analytically ramified local Noetherian domain can be sandwiched
into an immediate extension of DVRs.

Corollary 3.11 ([45, Corollary 4.2]). Let U � V be an immediate extension of DVRs
having quotient fieldsQ and F , respectively. Then there exists an analytically ramified
local Noetherian domain containing U and having normalization V if and only if ei-
ther (i) F has characteristic 0 and is not algebraic overQ, or (ii) F has characteristic
p > 0 and F ¤ QŒF p�.

Proof. The proof depends on the fact that statements (i) or (ii) hold precisely when
�F=Q ¤ 0 [20, Proposition 5.7]. Suppose that R is an analytically ramified local
Noetherian domain containing U and having normalization V . Then there exists an
analytically ramified local ring between R and V that has normalization V and is a
stable ring (see Theorem 4.2 below). Thus by Theorem 3.10, �F=Q ¤ 0, as claimed.
Conversely, if �F=Q ¤ 0, then since�F=Q is an F -vector space, we may choose any
proper full S -submodule K of �F=Q such that dimV=MK=MK is finite and apply
Theorem 3.10 to obtain the ring in the corollary.

Remark 3.12. In positive characteristic, every analytically ramified local Noetherian
stable domain must arise as in Theorem 3.10. For if R is an analytically ramified local
Noetherian stable domain, then there exists a prime ideal P of bR such that P 2 D 0

and bR=P is a DVR [44, Corollary 3.5]. Thus when R has positive characteristic, there
exists by Theorem 3.5 a DVR U such that U � R � bU . With F the quotient field of
R, we have that U � V WD bU \ F is an immediate extension, and so we are in the
setting of the theorem. See also [45, Theorem 6.4].
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Corollary 3.11 helps explain why the examples of Akizuki, Schmidt and Nagata
given earlier in this section are couched as they are.

� Akizuki’s example. The ring in this example is sandwiched into an immediate ex-
tension of DVRs U � V with quotient fields K and K.z/, respectively, where z is
transcendental over K. Thus �K.z/=K has dimension 1 as a K.z/-vector space, and
as in the proof of Corollary 3.11, there exists an analytically ramified local Noether-
ian stable domain containing U and having normalization V . As discussed after
Akizuki’s example, the ring produced in the example is a 2-generator ring, so in fact
Theorem 3.10 captures this same ring from another point of view, as a pullback of a
derivation.

� Schmidt’s example. This ring is sandwiched into a characteristic p immediate exten-
sionU � V , whereU and V have quotient fieldsQ WD k.X; zp/ and F WD k.X; z/,
respectively, and X and z are transcendental over k. Since F ¤ QŒF p�, Corol-
lary 3.11 shows there is an analytically ramified local Noetherian domain containing
U and having normalization V .

� Nagata’s example. This example involves an immediate extension U � V of DVRs
in characteristic p > 0, where (in the notation of the example) the quotient field of
U is Q D kp..X//Œk� and the quotient field of V is F D kp..X//Œk�.z/. Now
z 2 F but z … QŒF p� D Q, so by Corollary 3.11, there must be an analytically
ramified local Noetherian stable domain containing U and having normalization V .

Theorem 3.10, along with technicalities involving separability and valuation the-
ory, leads to an existence theorem in the setting of function fields which shows that
analytically ramified local Noetherian stable domains of arbitrarily large embedding
dimension exist is every characteristic (compare to the discussion preceding Theo-
rem 3.9). By a DVR in F=k we mean a DVR that is a k-algebra having quotient field
F . A divisorial valuation ring in F=K is a DVR V in F=k such that trdegkV=M D
trdegkF � 1; where M is the maximal ideal of V .

Theorem 3.13 ([45, Theorem 7.3]). Let F=k be a finitely generated field extension,
and let V be a DVR in F=k with maximal ideal M such that V=M is a finitely gener-
ated extension of k. Then the following statements are equivalent.

(i) V is the normalization of an analytically ramified local Noetherian domain con-
taining k.

(ii) V is the normalization of an analytically ramified Noetherian stable ring con-
taining k and having embedding dimension d D trdegkF�trdegkV=M.

(iii) V is not a divisorial valuation ring in F=k.

If F=k is a finitely generated field extension of transcendence degree d > 1, then
there exists a DVR V inF=k with maximal ideal M such that V=M is a finite algebraic
extension of k (see Theorem 4.3). Thus by Theorem 3.13, V is the normalization of
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an analytically ramified Noetherian stable ring containing k and having embedding
dimension d .

At the other extreme from function fields are those local Noetherian domains whose
normalizations are complete DVRs. The following theorem is obtained by sandwich-
ing local Noetherian domains into an immediate extension of DVRs.

Theorem 3.14 ([45, Theorem 7.6]). Let V be a complete DVR with residue field k.

(i) If V has characteristic p ¤ 0 and k is perfect, then there does not exist an
analytically ramified local Noetherian domain containing k whose normalization
is V .

(ii) If either (a) V D bZp, (b) V and k have characteristic 0, or (c) V has charac-
teristic p ¤ 0 and Œk W kp� is uncountable, then for every d > 1 there exists
an analytically ramified local Noetherian stable domain of embedding dimension
d whose normalization is V . There also exists a non-Noetherian stable domain
whose normalization is V .

If R is an analytically ramified local Noetherian domain of dimension 1 whose nor-
malization is a DVR, then by Theorem 4.2 below, there exists an analytically ramified
2-generator overring of R having the same normalization as R. Using Matlis’ theory
of Q-rings, such rings which have normalization a complete DVR are classified in
[45]. (An integral domain R with quotient field Q is a Q-ring if Ext1R.Q;R/ Š Q;
see [31].)

Theorem 3.15 ([45, Theorem 8.4]). A one-dimensional quasilocal domainR with quo-
tient field Q is an analytically ramified local 2-generator ring whose normalization
R is a complete DVR if and only if bR has rank 2 as a torsion-free R-module, R=R
is a nonzero divisible R-module and there are no other proper nonzero divisible R-
submodules of Q=R.

4 Examples Birationally Dominating a Local Ring

The analytically ramified local Noetherian domains considered in the last section are
sandwiched into an immediate extension of DVRs. We depart now from this approach,
and while the analytically ramified rings we next consider have normalization a DVR,
we do not need that they have a DVR subring which anchors an immediate extension.
(Although by Theorem 3.5, in positive characteristic such a DVR is always present
modulo an adjustment by finitely many quadratic transformations.) To frame this next
sequence of results, we require some terminology: IfB � R is an extension of quasilo-
cal domains, then R dominates B if the maximal ideal of B is a subset of the maximal
ideal of R. The ring R birationally dominates B if R dominates B and has the same
quotient field as B . When B is a quasilocal domain with maximal ideal m, we say the
quasilocal ring R finitely dominates B if R birationally dominates B and R=mR is a
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finite B-module. When also R=mR is a nonzero cyclic B-module, we say R tightly
dominates B; i.e., the quasilocal ring R tightly dominates B if R birationally domi-
nates B and R D BCmR. Thus R tightly dominates the subring B if and only if mR

is the maximal ideal of R and B and R share the same residue field and quotient field.
Tightly dominating DVRs arise from analytic arcs. For example, if k is a field

and X1; : : : ; Xn are indeterminates for k, then the ring A D kŒX1; : : : ; Xn� embeds
into kŒŒX1�� as a kŒX1�-algebra in such a way that the images of X2; : : : ; Xn are in
X1kŒŒX1�� (see [67, page 220]). Identifying A with its image in kŒŒX1��, the DVR that
is the intersection of kŒŒX1�� with the quotient field of A tightly dominates A. More
generally, if A is a local Noetherian domain, then there exists a DVR V that tightly
dominates A if and only if there is a prime ideal P ofbA such that P \A D 0 andbA=P
is a DVR [44, Corollary 5.5].

If A is a local Noetherian domain and P is a prime ideal of bA such that P \A D 0
and dim.bA=P / D 1 (i.e., the dimension of the generic formal fiber ofA is dim.A/�1),
then there is a finitely generated birational extension ofA that is tightly dominated by a
DVR. For example, if a local domainA of dimension d is essentially of finite type over
a field, thenA is birationally dominated by a DVR whose residue field is finite over the
residue field of A (see Theorem 4.3), so A has a finitely generated birational extension
of dimension d that is essentially of finite type over k and tightly dominated by this
DVR. Thus blowing up at an ideal of A produces a ring that is tightly dominated by a
DVR. As the next theorem shows, in such a situation it is conceptually easy to locate
analytically ramified local Noetherian domains. Recall from Section 3 that dV=A is the
exterior differential of the ring extension V=A.

Theorem 4.1 ([45, Theorems 5.1 and 5.3 and Corollary 5.4]). Let U � A ¨ V be
an extension of local Noetherian domains, where U � V is an immediate extension
of DVRs with quotient fields Q and F , respectively, and V birationally dominates A.
The ring R D Ker dV=A is an analytically ramified local Noetherian stable ring that
tightly dominates A; R has normalization V ; R has maximal ideal mR extended from
the maximal ideal m of A; and R is contained in every stable ring between A and V .
If also A is essentially of finite type over U with Krull dimension d > 1 and P is the
kernel of bA! bV , then

emb.dim R D 1C dimF �F=Q D 1C emb.dim bAP :

Moreover, if F is separable overQ, then emb.dim R D d and the ringbAP is a regular
local ring.

Thus in the context of the theorem, when A is essentially of finite type over U , then
the embedding dimension of R is a measure of the regularity of a corresponding prime
ideal in the generic formal fiber. If U is an excellent DVR, then A is excellent, and
hence the generic formal fiber ofA is regular. Therefore, in this case, emb.dim R D d .
This occurs, for example, in the following circumstance. Let k be a field, and let A be
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a local domain of Krull dimension d > 1 that is essentially of finite type over k. Then
A is finitely dominated by a DVR (see Theorem 4.3). If in fact A is tightly dominated
by a DVR V , then, choosing t 2 A such that tV is the maximal ideal of V , we have
that U WD kŒt �.t/ � V is an immediate extension of DVRs, and A is essentially of
finite type over U . Therefore, the theorem is applicable to U � A ¨ V , and since A
is excellent, we conclude also that emb.dim R D d .

There is also a version of the theorem for dimension 1, but in this case the base
ring A must necessarily be analytically ramified, since otherwise every overring of
A has finite normalization. More precisely, let A be an analytically ramified local
Noetherian domain whose normalization A is a DVR that tightly dominates A. Then
R D Ker dA=A is an analytically ramified local Noetherian stable domain such that
every stable overring of A contains R; this is established in the proof of [44, Theorem
5.11]. The assumption here that A is a DVR that tightly dominates A is equivalent
to the assertion that A=A is a divisible A-module. Divisible submodules of A=A play
an important role in Matlis’ approach to one-dimensional analytically ramified Cohen–
Macaulay rings in the monograph [30], where the subtleties of the analytically ramified
case are dealt with in some detail. These ideas also lead in [44, Theorem 5.11] to
another proof of the following theorem of Matlis.

Theorem 4.2 (Matlis [30, Theorem 14.16]). Every one-dimensional analytically ram-
ified local Noetherian domain is finitely dominated by an analytically ramified local
2-generator ring R.

If R is a one-dimensional analytically unramified local ring, then every overring
of R is analytically unramified. But in higher dimensions, there is much more room
between a Noetherian domain A and its quotient field for pathological behavior, and
even though A may be a natural enough Noetherian ring, say, a polynomial ring over
a field, there can exist analytically ramified local Noetherian overrings of A. This is a
consequence of the following theorem, which shows that under mild hypotheses, such
analytically ramified overrings must exist. The equivalence of statements (ii), (iv) and
(v) can be deduced from Heinzer, Rotthaus and Sally [18, Corollaries 1.27 and 2.4].
That the other statements are equivalent to these three, as well as the assertion about
the case in which A is excellent, is proved in [44, Corollary 5.13]. The final assertion
of the theorem is due to Matsumura, who proved that (v) holds for a local domain of
dimension d > 1 that is essentially of finite type over a field [32, Theorem 2].

Theorem 4.3. Let A be a local Noetherian domain with Krull dimension d > 1. Then
the following statements are equivalent.

(i) A is finitely dominated by an analytically ramified local Noetherian stable ring.

(ii) A is finitely dominated by an analytically ramified one-dimensional local Noethe-
rian ring.
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(iii) A is tightly dominated by an analytically ramified one-dimensional local Noethe-
rian ring.

(iv) A is finitely dominated by a DVR.

(v) The dimension of the generic formal fiber of A is d � 1.

If also A is excellent, then the stable ring in (i) can be chosen to have embedding
dimension d but no bigger. Moreover, these five equivalent conditions are satisfied
when A is essentially of finite type over a field and has dimension d > 1.

The ring in (ii) is obtained using a theorem, stated below, of Heinzer, Rotthaus and
Sally, which involves intersecting a homomorphic image of the completion of a local
domain with the quotient field of the domain. This is a third source of one-dimensional
analytically ramified local rings (the other two being immediate extensions of DVRs
and kernels of exterior differentials). To formalize this idea, letA be a local Noetherian
domain, and suppose that I is an ideal of bA such that every associated prime P of I
satisfies A \ P ¤ 0. Then the canonical mapping A ! bA=I is an embedding,
and we can identify A with its image in bA=I . Under this identification, since the
associated primes of I contract to 0 in A, it follows that the nonzero elements of
A are nonzerodivisors in bA=I . Therefore, the quotient field F of A can be viewed
as a subring of the total quotient ring of bA=I , and hence we may consider the ring
R D F \ .bA=I/.

Theorem 4.4 (Heinzer–Rotthaus–Sally [18, Corollary 1.27]). LetA be a local Noether-
ian domain with quotient field F , and let I be a ideal of bA such that dim.bA=I/ D 1

and every associated prime P of I satisfies A\P ¤ 0. Then R D bA=I \F is a one-
dimensional local Noetherian domain with bR Š bA=I , and if I is properly contained
in its radical, then R is analytically ramified.

Thus ifA has dimension d > 1 and the generic formal fiber ofA has dimension d�1
(as is the case in the context of Theorem 4.3), then we may choose a prime ideal P of
bA such thatbA=P has dimension 1. For any P -primary ideal I ofbA properly contained
in P , the theorem shows thatR D bA=I \F is a one-dimensional analytically ramified
local Noetherian ring. If also P 2 � I , then R is a stable domain [44, Theorem 5.3].

Moreover, if the generic formal fiber of A has n distinct prime ideals P1; : : : ; Pn of
dimension 1, then choosing I D Q1 \ � � � \Qn, where each Qi is Pi -primary and at
least oneQi is not prime, yields a one-dimensional analytically ramified local domain
whose normalization has nmaximal ideals. Such an example can be realized for exam-
ple whenever A is a countable local Noetherian domain of Krull dimension > 1. For
in this case, there exists for each n > 0, n distinct prime ideals of dimension 1 in the
generic formal fiber of A [18, Proposition 4.10]. Lech’s construction in Theorem 2.2
is another way to produce one-dimensional analytically ramified local Noetherian do-
mains with normalization not a local ring.
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5 A Geometric Example

As discussed in Section 2, the local rings of points of varieties are analytically un-
ramified, and hence one does not encounter local Noetherian domains without finite
normalization in a direct way in geometric contexts. However, Reguera has recently
shown that local rings of certain points in the the space of arcs of an irreducible curve
are analytically ramified. The space of arcs of a variety, introduced by Nash in [37]
to study the geometry of the singular locus of a variety, encodes information about the
exceptional divisors of desingularizations of the variety. This space, which is in fact a
scheme, is somewhat mysterious, since it need not be of finite type over a field, or even
Noetherian. We discuss in a very limited way the space of arcs of an affine scheme in
order to give some context for the example of Reguera.

Let X be a separated scheme of finite type over a perfect field k, and let K=k be a
field extension. AK-arc on X over k is a k-morphism SpecKŒŒT ��! X . Associated
to X is a scheme X1, the space of K-arcs of X over k, whose K-rational points
are the K-arcs on X . The scheme X1 is constructed as a direct limit of spaces of
“truncated arcs,” but we omit this description here, and give instead an interpretation
of X1 in the case where X is affine; see [52] for the more general version.

If X is the affine space Spec kŒX1; : : : ; Xm�=I , with I an ideal of kŒX1; : : : ; Xm�,
then X1 can described as follows. For each i � 0, let X i D .X1;i ; : : : ; Xm;i / be an
m-tuple of indeterminates for k. For each f 2 I , we have

f
�

1
X

iD0
X1;iT

i ; : : : ;

1
X

iD0
Xm;iT

i
�

D
1
X

iD0
FiT

i ;

for some Fi 2 kŒX0; : : : ; X i ; : : :�. Then X1 is the affine scheme X1 D Spec A,
where

A D kŒX0; : : : ; X i ; : : :�=.¹Fiºi�0;f 2I /:
The space X1 parameterizes the arcs of X in the following way. For P a prime ideal
of A, let �.P / denote the residue field of P , and let �P W A! �.P / be the canonical
homomorphism. Then corresponding to P is the �.P /-arc ˛P W Spec �.P /ŒŒT ��! X

induced by the ring homomorphism

˛#
P W kŒX1; : : : ; Xm�=I ! �.P /ŒŒT �� W Xt C I 7!

1
X

iD0
�P .Xt;i /T

i :

Thus there is a morphism of schemes j W X1 ! X which sends P 2 X1 to the
image under ˛P of the closed point of Spec �.P /ŒŒT ��; i.e., j sends P to the center of
the arc ˛P on X .

Reguera considers the structure of the ring A, as well as A=N.A/, with N.A/ the
nilradical ofA, and shows that for the cusp f .X; Y / D X3�Y 2, there is a localization
AP ofA at a height one prime idealP such thatB D AP =N.AP / is a one-dimensional
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analytically ramified local Noetherian domain of embedding dimension 2. This exam-
ple is abstracted into a more general result, which we state below in Theorem 5.2. We
first sketch the example, and refer to [52, Corollary 5.6] for the extensive theory and
calculations which justify the example.

Example 5.1 (Reguera [52]). Let X and Y be indeterminates for C, let f .X; Y / D
X3�Y 2 and let C be the affine curve Spec CŒX; Y �=.f /. Then C1 D SpecA, where

A D CŒX0; Y0; X1; Y1; : : :�=.F0; F1; : : :/

and as above,
�

1
X

iD0
XiT

i
�3 �

�

1
X

iD0
YiT

i
�2 D

1
X

iD0
FiT

i :

In particular, F0 D X30 � Y 20 and F1 D 3X20X1 � 2Y0Y1. Let

P D
p

.X0; X1; Y0; Y1; Y2/A:

Then P is a prime ideal of A [52, Example 3.16]. The ring AP is not a Noetherian
ring, but AP =N.AP / is a one-dimensional analytically ramified Noetherian domain of
embedding dimension 2 [52, Corollary 5.6].

The prime ideal P in the example also has geometric significance: it is the generic
point of the closed subset of C1 consisting of the arcs on C centered at the origin [52,
Corollary 5.6]. The ideas behind the example yield a more general result:

Theorem 5.2 (Reguera [52, Corollary 5.7]). Let C be an irreducible formal curve of
multiplicity e � 2 over a field k of characteristic 0, and let P be the generic point of
the irreducible closed subset consisting of the arcs centered at a singular point of C .
Then for B D OC1;P , the ring B=N.B/ is a one-dimensional analytically ramified
local Noetherian domain of embedding dimension e.

6 Strongly Twisted Subrings of Local Noetherian Domains

Let S be a ring, and let L be an S -module. When D W S ! L is a derivation,
then for each S -submodule K of L, the pullback D�1.K/ is a subring of S . This
simple observation is used in a sophisticated way by Ferrand and Raynaud in their
1970 article to construct analytically ramified local Noetherian domains of dimension
1 and 2. (A third example in dimension 3 was also constructed, but it was produced
from the two-dimensional example rather than directly from a derivation.) The ring in
Theorem 3.7 is the one-dimensional example. In that case S D C¹Xº, L is a finite
dimensional vector space over the field C..X//, andK is a free module over CŒŒX�� of
the same rank as the dimension of L. The ringR in the theorem is thenR D D�1.K/,
and the fact that R works as advertised in the theorem is the real content of the con-
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struction. That the ring R is Noetherian is subtle and sensitive to the setting here, and
in general, because the derivation is not an R-module map, the connection between
module-theoretic properties of K and ideal-theoretic properties of R is opaque. Fer-
rand and Raynaud’s approach to this difficulty is to single out in a technical lemma
what specifically makes their example work [13, Lemme 2.1]. Because of its length
we do not reproduce their lemma here, but ultimately it asserts that bR Š bS ?bK (where
? represents Nagata idealization, as discussed in Section 3). To do so it demands much
of S , K and L, and even the resulting pullback R; e.g., it requires a priori that R is a
Noetherian ring, which presents significant challenges to applying the lemma. In any
case, the example in Theorem 3.7 just meets the requirements of their lemma.

Remarkably, however, Ferrand and Raynaud find a two-dimensional UFD S that
also satisfies the criteria of the lemma, and as a consequence they produce a two-
dimensional local Noetherian domain R whose completion fails to be analytically un-
ramified in a dramatic way, in that it has embedded primes. In this case S D C¹X; Y º,
L is a vector space over the quotient field of S , and K is a V -submodule of L, where
V is a DVR tightly dominating S . The derivation D W S ! K is carefully chosen to
force R D D�1.K/\ S to be a Noetherian ring [13, Proposition 3.3]. The method of
Ferrand and Raynaud was abstracted and improved upon by Goodearl and Lenagan in
1989 to obtain more examples in dimensions 1 and 2 (see also Section 3). A good bit
of the method of Goodearl and Lenagan can be fit into the larger framework of twisted
subrings discussed below. However, as discussed in Section 2, Goodearl and Lenagan
also extended their method in dimension 1 to higher order derivations, and as a conse-
quence were able to construct one-dimensional analytically ramified local Noetherian
domains whose multiplicity and embedding dimension differ. By contrast in dimen-
sion 1 the method of strongly twisted subrings as outlined below and demonstrated in
Section 3 produces stable domains, and multiplicity and embedding dimension coin-
cide for such rings.

Goodearl and Lenagan also abstracted the method of Ferrand and Raynaud to di-
mension 2, and provided a wider class of examples of two-dimensional local Noethe-
rian domains whose completions have an embedded prime. Their method produces the
following example. Let k be a field, let X be an analytic indeterminate for k and let
y; z 2 XkŒŒX�� be algebraically independent over k.X/. Let U D k.X; z/ \ kŒŒX��,
let S be the localization of U Œy� at the maximal ideal .X; y/, and let d W S !
k..X// be the restriction of the partial derivative @=@z on k.X; y; z/ to S . Then R D
d�1.kŒŒX�� \ k.X; y; z// is a two-dimensional analytically ramified local Noetherian
domain with normalization S [14, page 494]. This example is an instance of something
more general:

Proposition 6.1 (Goodearl–Lenagan [14, page 494]). IfX; Y;Z are indeterminates for
the field k, then there exists a two-dimensional analytically ramified local Noetherian
domain R containing kŒX; Y;Z� with quotient field k.X; Y;Z/ whose normalization
is a regular local ring.
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In [43], derivations are used to construct large classes of Noetherian domains with-
out finite normalization. The method allows for strong control over the constructed
ring, and as with the methods discussed above, realizes the ring as a subring of a
“standard” Noetherian domain S . The method can be arranged to produce rings of any
Krull dimension, but the only way of which I am aware to use the method to produce
rings of dimension > 1 is with rather specific assumptions on the quotient field of S ,
as evidenced by Theorem 6.3. In dimension 1, the method is much easier to imple-
ment. Ultimately the technical reason for this is that immediate extensions of DVRs
are more easily found in nature than are examples of the higher dimensional analogue
of “strongly analytic” extensions. Strongly analytic extensions are discussed later in
this section.

More formally, we begin with a domain S having quotient field F and a derivation
D from F to a torsion-free divisible S -module L. As in the method of Ferrand and
Raynaud, we choose a submodule K of L and define R D S \D�1.K/. The ring R
then is the object of interest. To obtain control over the ideal-theoretic traits of R, the
derivation D needs to be somewhat special:

Definition 6.2. Let S be a domain with quotient field F , and let R be a subring of S .
LetK be a torsion-free S -module, and let FK denote the divisible hull F ˝S K ofK.
We say that R is strongly twisted byK if there is a derivation D W F ! FK such that:

(i) R D S \D�1.K/,
(ii) D.F / generates FK as an F -vector space, and

(iii) S � Ker D C sS for all 0 ¤ s 2 S .

The derivation D strongly twists R by K.

The reason for the adverb “strongly” here is that there is a weaker notion of a subring
twisted along a multiplicatively closed subset of S ; we discuss this later in the section.
Parsing the above definition shows that the real demand on D occurs in (iii). This is
a strong property, and it is what makes the requirements of the definition a challenge
to satisfy. By contrast, (i) asserts nothing, since we may simply define R to be S \
D�1.K/. (Recall from our earlier discussion that D�1.K/ is always a ring.) The
criterion (ii) can also easily be arranged: If D.F / falls short of generating all of FK,
then, setting L to be the F -subspace of FK generated by D.F /, we may replace K
with L \K, and doing so will not change R.

It also follows from the definition that if there is some nonzero torsion-free module
K such that the subring R of S is strongly twisted by K, then there are many strongly
twisted subrings of S . Indeed, it is easy to see that for every torsion-free S-module J
with rank.J / � rank.K/, there exists a subring of S that is strongly twisted by J [43,
Lemma 3.1]. Thus the issue for finding strongly twisted subrings of the Noetherian
domain S is whether there exists a derivation fulfilling the requirements of the defi-
nition. When S is a DVR with quotient field F , then the existence of the derivation
depends entirely on whether there is a DVR subring U of S with quotient field Q
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such that U � S is an immediate extension and �F=Q ¤ 0; see Theorem 3.10 and
Corollary 3.11. But when S has dimension > 1, then the only way I know to satisfy
the requirements of the definition is via the following theorem, which guarantees the
existence of a strongly twisted subring when the quotient field of S is sufficiently large
and of positive characteristic.

Theorem 6.3 ([43, Lemma 3.4 and Theorem 3.5]). Let F=k be a field extension such
that k has positive characteristic and at most countably many elements. Suppose that
the cardinality of F and the dimension of the F -vector space �F=k are the same
(which is the case if F=k is a separably generated extension of infinite transcendence
degree). If S is a k-subalgebra of F with quotient field F and K is a nonzero torsion-
free S module of at most countable rank, then there exists a subring R of S that is
strongly twisted by K.

The proof of the theorem reduces to proving that under the hypotheses on S and its
quotient field, there exists a subring A of S such that the A-module S=A is torsion-
free and divisible and the extension A � S has trivial generic fibers; i.e., P \ A ¤ 0

for all nonzero prime ideals P of S . In [43], such an extension is termed a strongly
analytic extension. It is the condition of having trivial generic fibers where positive
characteristic is needed, so as to arrange S to be a purely inseparable extension of
A. Strongly analytic extensions of DVRs are exactly the immediate extensions, but
in higher dimensions, the only strongly analytic extensions of Noetherian rings I am
aware of are those constructed in the proof of the theorem.

Strongly analytic extensions provide an alternative, derivation-free way to view
strongly twisted subrings: A subring R of the domain S is strongly twisted by an
S -module if and only if there is a subring A of R such that A � S is a strongly an-
alytic extension, R and S share the same quotient field and the extension R � S is
quadratic, meaning that every R-submodule between R and S is a ring [43, Corol-
lary 2.6].

Theorem 6.3 assures the existence of easy-to-locate strongly twisted subrings. For
example, if k is a field of positive characteristic that is a separably generated extension
of infinite transcendence degree over a countable subfield, and X1; : : : ; Xn are inde-
terminates for k, then every ring S between kŒX1; : : : ; Xn� and k.X1; : : : ; Xn/ has
strongly twisted subrings; in fact, for each such ring S , there exists for each nonzero
torsion-free S -module of at most countable rank a subring of S that is strongly twisted
by K.

Granted existence, the next theorems deal with the properties of strongly twisted
subrings, and we see that these are determined by the choice of K and S . Although
we are mainly interested in the Noetherian case, a few general facts can be stated
for strongly twisted subrings of a not-necessarily-Noetherian domain. The extension
R � S , where R is a strongly twisted subring of S , proves to be a particularly strong
sort of integral extension. It is, first of all, a quadratic extension, as defined above;
that is, for all s; t 2 S , it is the case that st 2 sR C tR C R. A quadratic extension
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is clearly an integral extension. In our context these quadratic extensions are also
subintegral, in the sense of Swan [60]: In addition to the extension R � S being
integral, the contraction mapping Spec.S/ ! Spec.R/ is a bijection and the induced
maps on residue field extensions are isomorphisms (so for every prime ideal P of S ,
SP D RP\R C PSP ). This is included in the following theorem, which collects
together a number of observations from [43].

Theorem 6.4 ([43, Lemma 4.1 and Theorems 4.2 and 4.4]). Let S be a domain with
quotient field F , let K be a nonzero torsion-free S-module and let FK D F ˝R K.
Suppose that R is a subring of S that is strongly twisted by K, and let D be the
derivation that twists R. Then:

(i) R and S share the same quotient field.

(ii) The extension R � S is subintegral and quadratic.

(iii) The derivation D induces an isomorphism of R-modules S=R! FK=K.

(iv) Every ring T between R and S must be of the form T D S \D�1.L/ for some
unique S -module L with K � L � FK.

(v) Given an S -submodule L with K � L � FK, there is an intermediate ring
R � T � S such that T is strongly twisted by L.

(vi) The ring S is a finite R-module only when R D S .

Whether a strongly twisted subring R of a Noetherian ring S is Noetherian is de-
termined by the module K. This is the content of the next theorem, which relies on
the following idea. When R is a subring of S strongly twisted by K and D is the
derivation that twists R, then there is an embedding R ! S ? K W r 7! .r;D.r//.
This mapping is faithfully flat, and for each 0 ¤ a 2 S \Ker D, it induces an isomor-
phism R=aR! S=aS ?K=aK [43, Theorem 4.6]. Thus the mapping R! S ?K is
“locally” an isomorphism, a fact which is behind many of the results mentioned in this
section. In this way, a strongly twisted subring of S is a kind of inversion of idealiza-
tion: Rather than ramify S with K to produce S ? K, we use K to excavate a subring
R of S which behaves in small enough neighborhoods like S ? K.

Theorem 6.5 ([43, Theorem 5.2]). Let S be a domain, let K be a torsion-free S -
module, and suppose that R is a subring of S strongly twisted by K. Let D be the
derivation that strongly twists R. Then R is a Noetherian domain if and only if S is a
Noetherian domain and for each 0 ¤ a 2 S \ Ker D, K=aK is a finite S-module.

Thus if S is a Noetherian domain and K is a finitely generated S -module, then R is
a Noetherian domain. We will outline this case in Theorem 6.7. However, the theorem
leaves just enough room for other, more subtle, choices of K; one such case is treated
in Theorem 6.9. So we elaborate shortly on the structural relationship between R, S
and K in two cases that depend on the choice of K. But both cases will force R to
be Noetherian, so we consider first in Theorem 6.6 the general situation in which R
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is Noetherian, or, equivalently, by Theorem 6.5, the case in which K=aK is a finite
S -module for all 0 ¤ a 2 S \ Ker D.

To state Theorem 6.6, we recall the following standard notions. Let I be an ideal
of a ring A. Then an ideal J � I is a reduction of I if there exists n > 0 such that
InC1 D JIn. The smallest number n for which such an equation holds for J and I
is the reduction number of I with respect to J . The ideal J is a minimal reduction of
I if J itself has no proper reduction. If I is an ideal of a local Noetherian ring, then
minimal reductions must exist [61, Theorem 8.3.5]. The minimum of the reduction
numbers of the minimal reductions of the ideal I of A is denoted rA.I /. The analytic
spread of an ideal I in a local Noetherian ring .A;m/, denoted `A.I /, which is useful
in detecting minimal reductions (see for example [6] or [61]), is defined to be the
Krull dimension of the fiber cone of I with respect to A, where for an ideal I and an
A-module L, the fiber cone of I with respect to L is:

FI;L WD LŒI t�=mLŒI t� Š
1
M

nD0
InL=mInL:

In addition to facts about reductions of ideals in strongly twisted subrings, Theorem 6.6
calculates the local cohomology of such rings: If A is a local ring and I is an ideal of
A, then H i

I is the right derived functor of the I -torsion function 
I defined for each
A-module L by 
I .L/ D ¹` 2 L W I k` D 0 for some k > 0º. If I is an ideal of the
local Noetherian ring A and L is an A-module, then depthI .L/ is the greatest integer
i such that for all j < i , H j

I .L/ D 0. When L is a finite A-module, then depthI .L/
is the length of a maximal regular sequence on L [5, Theorem 6.27].

The underlying theme of the next theorem, as well as Theorems 6.7 and 6.9, is that
various properties of nonzero ideals I of a strongly twisted subring R of S which
are contracted from S are determined by IS and K. We use “contracted” here in the
basic sense: The ideal I of R is contracted from S if there is an ideal J of S such
that I D J \ R; equivalently, I D IS \ R. Since R � S is by Theorem 6.4 an
integral extension, every integrally closed ideal of R is contracted from an ideal of S .
In particular, every prime ideal of R is contracted from an ideal of S . Statement (vii)
of the theorem can be found in [43, Corollary 4.3]; (viii) in [43, Corollary 4.7]; and
the remaining statements are collected from [46, Sections 3 and 4].

Theorem 6.6. Let S be a local Noetherian domain with maximal idealN and quotient
field F , and letK be a nonzero torsion-free S -module. Suppose thatR is a Noetherian
subring of S that is strongly twisted by K. Then statements (i)–(vi) of Theorem 6.4
hold for R, as do all of the following statements.

(vii) R is a local ring; R and S have the same residue field; and N D MS , where
M is the maximal ideal of R.

(viii) There is an isomorphism of rings: bR Š bS ? bK, where bR is the completion of
R in the M -adic topology and bS and bK denote the completions of S and K,
respectively, in the N -adic topology.
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(ix) For each nonzero ideal I of R contracted from S , there is an isomorphism of
rings:

FI;R Š FIS;S ? FIS;K :

(x) For each nonzero ideal I of R contracted from S , `R.I / D `S .IS/:
(xi) Suppose R (equivalently, S ) has infinite residue field. If I is a nonzero ideal of

R contracted from S , then rS .IS/ � rR.I / � rS .IS/C 1:
(xii) If I is a nonzero ideal of R, then there is an isomorphism of R-modules:

H i
I .R/ Š H i

IS .S/˚H i
IS .K/:

(xiii) If I is an ideal of R, then depthI .R/ D min¹depthIS .S/; depthIS .K/º:
Examples show the bound on rR.I / in (xi) cannot be improved [46, Section 3].

Note also that (xi) implies that if I is an ideal of R contracted from a principal ideal of
S , then I 2 D iI for some i 2 I . Thus, in the terminology of Section 3, I is a stable
ideal of R. Therefore, if S is a DVR, then R is a stable domain. This is one reason
for the the emphasis on stable domains in Section 3, since the existence results in that
section which involve stable domains rely on the method of strongly twisted subrings
to produce these rings. More generally, strongly twisted subrings of Dedekind domains
must be stable domains [43, Theorem 7.1].

We specialize next to the case where K is a finitely generated S -module. Since
by Theorem 6.5, a subring R of a Noetherian domain S strongly twisted by a finitely
generated S -module K is Noetherian, all the properties listed in Theorem 6.6 hold for
R. But the fact that K is finitely generated allows for the stronger conclusions of the
next theorem, which utilizes the following standard terminology. When .A;m/ is a
local Noetherian ring and L is a finitely generated A-module, then �.L/ denotes the
minimal number of generators needed to generate L; that is �.L/ is the dimension of
A=m-vector space L=mL. The embedding dimension of A, denoted emb.dim A, is
�.m/. When J is an m-primary ideal of A, the Hilbert function of the module L with
respect to J , denoted HJ;L, is given then by

HJ;L.n/ D length J nL=J nC1L;

with the convention J 0 D A. For large enough n, the Hilbert function HJ;L agrees
with a polynomial having rational coefficients [12, Proposition 12.2 and Exercise
12.6]. The leading coefficient of this polynomial is of the form e=.d � 1/Š for some
positive integer e, which is designated the multiplicity of J on L. We write e.J; L/
for e to emphasize the dependence on J and L. The multiplicity of the local ring A
is denoted e.A/, and is defined by e.A/ D e.m; A/. Statements (xiv)–(xvii) of the
next theorem can be found in [46, Section 6]; (xviii)–(xxiii) can be deduced from the
preceding statements and [43, Theorem 7.2]; (xxiv) is proved in [43, Corollary 7.3];
(xxv) follows from [43, Proposition 5.3].
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Theorem 6.7. Let S be a local Noetherian domain with maximal idealN and quotient
field F , and letK be a nonzero finitely generated torsion-free S -module. Suppose that
R is a subring of S strongly twisted by K. Then R is a local Noetherian domain and
statements (i)–(vi) of Theorem 6.4 and statements (vii)–(xiii) of Theorem 6.6 hold for
R, as do all of the following statements.

(xiv) If I is a nonzero ideal of R contracted from S , then �R.I / D �S .IS/ C
�S .K/:

(xv) emb.dim R D emb.dim S C �S .K/:
(xvi) If I and J are ideals of R contracted from S , with J an M -primary ideal,

then:
e.I; J / D e.IS; S/ � .1C rank.K//:

(xvii) The multiplicity of R is e.R/ D e.S/ � .1C rank.K//.

(xviii) R is a Cohen–Macaulay ring if and only if S is a Cohen–Macaulay ring and
K is a maximal Cohen–Macaulay S -module.

(xix) R is a Gorenstein ring if and only if S is a Cohen–Macaulay ring that admits a
canonical module !S and K Š !S . Moreover, if R is a Gorenstein ring, then
e.R/ D 2e.S/.

(xx) R is a complete intersection if and only if S is a complete intersection and
K Š S .

(xxi) R is a hypersurface if and only if S is a regular local ring and K Š S .

(xxii) If R is a hypersurface, then R has minimal multiplicty, and in fact, e.R/ D 2

and emb.dim R D d C 1, where d is the dimension of S .

(xxiii) If S is a regular local ring, and K is a finitely generated free S-module, then
R is a Cohen–Macaulay ring of minimal multiplicity.

(xxiv) The Cohen–Macaulay rings properly betweenR and S are in one-to-one corre-
spondence (see Theorem 6.4 (vii) and (viii)) with the maximal Cohen–Macaulay
modules properly between K and FK.

(xxv) If S has Krull dimension > 1, then there exists a non-Noetherian ring between
R and S .

The following example illustrates the theorem with a simple choice of S and K.

Example 6.8. Let k be a field of postive characteristic that is a separably generated
extension of infinite transcendence degree over a countable subfield. Let X1; : : : ; Xd
be indeterminates forK, and define S D kŒX1; : : : ; Xd �.X1;:::;Xd /. LetK be a free S -
module of rank n > 0. Then by Theorems 6.3, 6.4 and 6.6, there is a local Noetherian
subring R of S strongly twisted by K such that every nonzero integrally closed ideal
of R, in particular every prime ideal of R, needs at least nC 1 generators. Moreover,
R � S is a quadratic subintegral extension, and R and S both share the same quotient
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field. The embedding dimension of R is d C n, its multiplicity is 1 C n and R is a
Cohen–Macaulay ring. If n is chosen to be 1, then R is a hypersurface.

One of Nagata’s bad Noetherian rings is a two-dimensional local Noetherian domain
R that has a non-Noetherian domain between R and its normalization [36, Example
4, page 206]. Theorem 6.7(xxv) provides another source of such examples; e.g., set
d D 2 in Example 6.8.

Next we consider a case in which K is not finitely generated yet still produces a
strongly twisted subring that is Noetherian. Though not finitely generated, the module
K has the property that K=sK is finitely generated for all 0 ¤ s 2 S , which in
turn guarantees by Theorem 6.5 that R is a Noetherian ring. In addition to being
an S -module, K is also a V -module, where V is a DVR that finitely dominates S .
Such DVRs are the subject of Theorem 4.3, and we recall from that theorem that if
S is essentially of finite type over a field, then such a DVR must exist. This assures
that there are plenty of natural choices for S and K to which the construction can be
applied. That the ring R in the theorem is Noetherian follows from Theorem 6.5; for
an explicit argument see [43, Example 5.4]. Statements (xiv) and (xvi) can be found
in [46, Section 7]; (xv) and (xvii) follow from (xiv) and (xvi), respectively; (xviii) is
in [43, Proposition 6.4]; (xix) follows from (xviii); (xx) and (xxi) follow from (xix);
(xxii) is proved in [45, Proposition 6.6]; (xxiii) can be found in [46, Section 7]; (xxiv)
follows from (xxiii); and (xxv) is in [43, Proposition 5.6].

Theorem 6.9. Let S be a local Noetherian domain with maximal idealN and quotient
field F , and such that there exists a DVR V that finitely dominates S . Let m D
dimS=N V=NV , let K be a nonzero torsion-free finite rank V -module with K ¤ FK,
and let rK D dimV=MK=MK; where M is the maximal ideal of V . Suppose that R
is a subring of S that is strongly twisted by K. Then R is a local Noetherian domain
and statements (i)–(vi) of Theorem 6.4 and statements (vii)–(xiii) of Theorem 6.6 hold
for R, as do all of the following statements.

(xiv) For each nonzero ideal I of R contracted from S , �R.I / D �S .IS/Cm � rK ;
and if K is a free V -module, then rK D rank.K/.

(xv) emb.dim R D emb.dim S Cm � rK :
(xvi) If I and J are ideals of R contracted from S and J is M -primary, then:

e.J; I / D e.JS; S/C
´

rK � length V=JV if S has Krull dimension 1

0 if S has Krull dimension > 1:

(xvii) The multiplicity of the local ring R is

e.R/ D e.S/C
´

m � rK if S has Krull dimension 1

0 if S has Krull dimension > 1:
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(xviii) For each nonmaximal prime ideal P of R, RP D SP 0 , where P 0 is the unique
prime ideal of S lying over R.

(xix) For each i less than the Krull dimension of S , Serre’s regularity condition Ri
holds for S if and only if it holds for R.

(xx) If S is integrally closed and has Krull dimension > 1, then for each height 1
prime ideal P of R, RP is a DVR.

(xxi) If S is a regular local ring, then R has an isolated singularity.

(xxii) The maximal idealM ofR is the associated prime of a nonzero principal ideal.

(xxiii) The local cohomology modules for a nonzero ideal I of R are given by

H i
I .R/ Š

8

ˆ

<

ˆ

:

0 if i D 0
H 1
IS .S/˚ FK=K if i D 1

H i
IS .S/ if i > 1:

(xxiv) depthM .R/ D 1.

(xxv) If V tightly dominates R, then every intermediate ring T , R � T ¨ S , is
a local Noetherian ring that is strongly twisted by some V -module L with
K � L ¨ FK.

Here is a simple example:

Example 6.10. Let k be a field of positive characteristic, and suppose that k is sep-
arably generated and of infinite transcendence degree over a countable subfield. Let
S D kŒX1; : : : ; Xd �.X1;:::;Xd /, where d > 1. Then by Theorem 4.3, there exists a
DVR V that meets the requirements of Theorem 6.9. LetK be a torsion-free V -module
of finite rank n > 0. Then by Theorem 6.3, there exists a local Noetherian subring R
of S strongly twisted by K and satisfying all the statements of Theorems 6.4, 6.6
and 6.9. Moreover, as discussed at the beginning of Section 4, the DVR V can be
chosen to tightly dominate S , so that m D 1 in Theorem 6.9.

Nagata constructs an example of a local Noetherian domain of multiplicity 1 that
is not a regular local ring [36, Example 2, page 203]. Example 6.10, with K D S , is
another such example when the DVR V is chosen so that it tightly dominates S .

Abyhankar constructs in [1] for each pair of integers n > d > 1 a local ring of
embedding dimension n, Krull dimension d and multiplicty 2. Example 6.10 accom-
plishes something similar, but with multiplicity 1 and all the rings R occur in subin-
tegral extensions R � S , with S fixed: Choose V to be a DVR tightly dominating S
and for n > d , choose K to be a free V -module of rank n � d .

We conclude with a note on generality. To simplify the presentation, we have re-
stricted everything to strongly twisted subrings, but there is a weaker notion of twisted
subring for which suitable variations on many of the preceding ideas apply. Let S be
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a ring, let K be an S -module, and let C be a multiplicatively closed subset of nonze-
rodivisors of S that are also nonzerodivisors on K. Then a subring R of S is twisted
by K along C if there is a C -linear derivation D W SC ! KC such that:

(i) R D S \D�1.K/,
(ii) D.SC / generates KC as an SC -module, and

(iii) S � Ker D C cS for all c 2 C .

A strongly twisted subring of a domain S is twisted along C D S n ¹0º, but the
converse need not be true; more precisely, being twisted along C D S n ¹0º is not
sufficient to guarantee condition (iii) in the definition of strongly twisted subring.

Relativized versions of many of the properties discussed in this section hold for a
subring R of S twisted along C . Instead of working with nonzero ideals of R con-
tracted from S , one usually must restrict to ideals of R contracted from S and meet-
ing C . For example, when S is Noetherian and K is a finitely generated S -module,
then it is in general possible to conclude only that every ideal ofRmeetingC is finitely
generated. Thus Noetherianness of R is no longer guaranteed; instead, there is a filter
of ideals which behave like ideals in a Noetherian ring. However, in the special circum-
stance when S is a two-dimensional local UFD finitely dominated by a DVR V , then
a subring R of S twisted by a torsion-free finite rank V -module along any multiplica-
tively closed subset containing a nonunit of S is Noetherian [43, Theorem 5.7]. This is
an abstract version of the example of Ferrand and Raynaud of a two-dimensional local
Noetherian domain whose completion has embedded primes [13, Proposition 3.1].

Acknowledgments. I thank the referee for helpful comments and corrections.
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1 Introduction

When we say that space has
three dimensions, what do we mean?

Henri Poincaré (1854–1912)

As the above quotation from the great French mathematician Henri Poincaré indicates,
the notion of n-dimensional space was merely an intuitive one as late as the nineteenth
century. From the ancient Greeks we have inherited the idea that lines and curves are
made up of points, and that in turn surfaces are bounded by curves and that volumes
are bounded by surfaces. It is all well and good to say that of course n-dimensional
Euclidean space has dimension n, and that any set of points in a Euclidean space has
dimension n if n parameters are needed to describe the set, but what does that mean?

The notion of dimension is of obvious importance in geometry, and Poincaré was not
the only nineteenth century mathematician to recognize just how elusive this concept
is. Georg Cantor used his revolutionary idea of one-to-one correspondence to show
that all n-dimensional spaces have the same number of points as a line, and hence are
indistinguishable as sets; or, as he put it in a letter to Dedekind in 1877:

The distinction between domains of different dimensions must be sought
for in quite another way than by the characteristic number of independent
coordinates.

And, by the 1890s, the truly remarkable space filling curves produced by Peano and
Hilbert made it completely clear just how elusive the notion of dimension is. This
extremely unsettling situation was resolved in 1912 by L. E. J. Brouwer who finally
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provided us with a precise topological definition of dimension. In 1912, Brouwer also
proved the famous ‘Brouwer fixed point theorem’ which states that every continuous
function from a convex compact set in a Euclidean space (e.g., a closed ball) to itself
has a fixed point.

Because of the link between algebra and geometry, it then became natural to look for
an algebraic analogue of the topological notion of dimension. This algebraic analogue
was first introduced in ring theory by Wolfgang Krull in 1937. Krull’s definition is
now so commonly viewed as the ‘correct’ definition that the standard terminology for
it, Krull dimension, is often shortened to simply dimension.

Definition 1.1. Let R be a commutative ring with 1. The Krull dimension of R is
the supremum of the lengths of chains of prime ideals in R. We write dimR for the
dimension of R. The length of a chain of distinct prime ideals

P0 	 P1 	 P2 	 � � � 	 Pn
is said to be n.

Note that this corresponds to the dimension of a vector space over a field being
the length of the longest chain of proper subspaces. Similarly, in algebraic geometry
the dimension of an algebraic variety X over an algebraically closed field k is the
supremum of the lengths of chains Z0 	 Z1 	 Z2 	 � � � 	 Zn of irreducible closed
subsets of X , and by Hilbert’s Nullstellensatz such a chain corresponds exactly to a
chain I.Z0/ � I.Z1/ � I.Z2/ � � � � � I.Zn/ of prime ideals.

Let’s look at several examples. If K is a field, then dimK D 0 (since the ideal
P0 D .0/ is the only proper ideal in K); conversely, if R is an integral domain, and
dimR D 0, then R is a field. On the other hand, if R is a principal ideal domain that is
not a field, then any nonzero prime ideal is of the form .p/ where p is irreducible, and
so .p/ is maximal; hence, the longest chains of prime ideals in R look like .0/ 	 .p/
and dimR D 1. Thus, both Z, the ring of integers, andKŒx�, the polynomial ring over
a field K, have dimension 1.

Note that, in particular, for a field K,

dimKŒx� D dimK C 1:
This is a special case of an extremely important result about the dimension of the
polynomial ring KŒx1; x2; : : : ; xn� in n indeterminates over a field K. The chain of
ideals

.0/ 	 .x1/ 	 .x1; x2/ 	 � � � 	 .x1; x2; : : : ; xn/
is a chain of distinct prime ideals of length n in this ring. In fact, it turns out that there
are no longer chains of prime ideals in this ring. In other words, the polynomial ring
KŒx1; x2; : : : ; xn� has dimension n; that is,

dimKŒx1; x2; : : : ; xn� D dimK C n:
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Proofs of this classical theorem are typically rather involved and can be given only
after the Hilbert basis theorem and Krull’s principal ideal theorem have been proven
(see [5] and [9]). This approach has the unfortunate consequence of giving the im-
pression that this fundamentally important result about the dimension of polynomial
rings is as deep as these two enormously famous theorems. At the 1972 Conference on
Commutative Algebra held at the University of Kansas, J. W. Brewer, W. J. Heinzer,
P. R. Montgomery, and E. A. Rutter presented an elementary proof of this and other
classical results concerning the Krull dimension of polynomial rings [3]. Their ap-
proach in this truly remarkable paper is very much in the same extraordinarily elegant
style as Irving Kaplansky in [8].

2 A Key Property of RŒx�

Let R be a commutative ring with 1. A very useful and easily proven basic fact con-
cerning localizations of the polynomial ring RŒx� is that if T is a multiplicative system
of R, then

.RŒx�/T Š RT Œx�:
For example, ifR is an integral domain, then we can let T be the multiplicative system
of all nonzero elements of R. In this case, then, .RŒx�/T is just KŒx�, where K is
the quotient field of R. So, the process of localization yields a one-to-one order-
preserving correspondence between the prime ideals in KŒx� and the prime ideals of
RŒx� which are disjoint from T . But, a prime idealQ in RŒx� is disjoint from T if and
only if Q \ R D .0/. Thus, we conclude that there is a one-to-one order-preserving
correspondence between the prime ideals in KŒx� and the prime ideals of RŒx� whose
intersection with R is (0).

An immediate consequence of this is the following very elementary theorem from
[8], which is of fundamental importance in the study of chains of prime ideals in
polynomial rings. The theorem says simply that it is impossible to have a chain of
three distinct prime ideals in a polynomial ring RŒx� whose intersections with R are
all equal.

Theorem 2.1. Let R be a ring, and let Q1 � Q2 � Q3 be a chain of three distinct
prime ideals in RŒx�. Then,Q1 \R ¤ Q3 \R.

Proof. We switch to the ring .R=Q3/Œx�, the ring of polynomials over the integral
domainR=Q3. In the ring .R=Q3/Œx�we have a chain of distinct prime ideals, namely

Q1=Q3 � Q2=Q3 � Q3=Q3 D .0/:
Assume, by way of contradiction, that Q1 \ R D Q3 \ R. This means that all three
ideals Q1=Q3, Q2=Q3, and Q3=Q3 have intersection .0/ with R=Q3.

Since R=Q3 is an integral domain, we can let L be the quotient field of R=Q3,
and so, by virtue of the one-to-one correspondence discussed above, these three ideals
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whose intersection with R=Q3 is .0/ correspond to a chain of three distinct prime
ideals inLŒx�. But, this is clearly impossible because, as we saw earlier, dimLŒx� D 1.
This completes the proof of the theorem.

Theorem 2.1 allows us to give upper and lower bounds on the dimension of a poly-
nomial ring RŒx� in terms of the dimension of R. For the lower bound, we will use
the basic fact that an ideal P is a prime ideal of R if and only if P Œx� is a prime ideal
of RŒx�.

Theorem 2.2. Let R be a commutative ring with 1, and let dimR D n. Then,

nC 1 � dimRŒx� � 2nC 1:

Proof. Let

Q0 	 Q1 	 Q2 	 � � � 	 Qm
be a chain of distinct prime ideals in RŒx�. Then, by Theorem 2.1,

Q0 \R 	 Q2 \R 	 Q4 \R 	 � � � 	 Q2bm
2
c \R

is a chain of length bm
2
c of distinct prime ideals in R. Therefore, we see that bm

2
c � n.

It follows that m � 2nC 1. Thus, dim RŒx� � 2nC 1, as desired.
Now, for the lower bound, let

P0 	 P1 	 P2 	 � � � 	 Pn

be a chain of length n of distinct prime ideals in R. Then,

P0Œx� 	 P1Œx� 	 P2Œx� 	 � � � 	 PnŒx� 	 PnŒx�C .x/

is a chain of length nC1 of distinct prime ideals inRŒx�. Therefore, dimRŒx� � nC1,
as desired. This completes the proof of the theorem.

Theorem 2.2 is best possible in the following sense: for any integer n � 0 and any
integer m such that nC 1 � m � 2nC 1, there is a ring R of dimension n such that
the dimension of RŒx� is m. In other words, in the absence of additional conditions on
the ring R, Theorem 2.2 says all that can be said about the dimension of RŒx�.

3 The Main Theorem

We now turn to the major result in [3]. We begin with a definition of the height of a
prime ideal.
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Definition 3.1. Let R be a commutative ring with 1, and let P be a prime ideal of R.
The height of P – written ht.P / – is the supremum of the lengths of chains of prime
ideals in R descending from P . Thus, if P has height k, there is a chain of distinct
prime ideals

P D P0 � P1 � P2 � � � � � Pk;
but none longer.

For example, minimal prime ideals have height 0; whereas, maximal ideals in the
ring of integers Z or in a polynomial ring KŒx� over a field K all have height 1. The
height of a prime P is also sometimes referred to as the codimension of P , or, in an
older terminology, as the rank of P .

Next, we prove a useful intermediate result from [3] concerning the height of a
prime ideal in a polynomial ring. We have already observed that if P is a prime
ideal of a ring R, then P Œx� is a prime ideal of RŒx�. Moreover, it is easy to see that
P Œx� \ R D P . What can be said about the height of a larger prime ideal Q of RŒx�
whose intersection with R also equals P ?

Theorem 3.2. Let x; x2; : : : ; xn be n indeterminates, and let R be a commutative ring
with 1. Let Q be a prime ideal of RŒx�, and let the ideal P of R be the prime ideal
P D Q \R.

If Q � P Œx� – that is, if Q and P Œx� are distinct primes of RŒx� – then,

ht.Q/ D ht.P Œx�/C 1;

and, for n > 1,

ht.QŒx2; : : : ; xn�/ D ht.P Œx; x2; : : : ; xn�/C 1:

Proof. Not surprisingly, the proof depends almost entirely upon Theorem 2.1. If
ht.P / D1, then both results are obvious. So, we assume that ht.P / is finite, and use
induction on ht.P / to prove the first result.

First, we suppose that ht.P / D 0. It follows that ht.P Œx�/ D 0, for, if not, we have

Q � P Œx� � Q1
for some prime idealQ1 ofRŒx�. But, then, by Theorem 2.1,Q\R ¤ Q1\R. There-
fore, Q1 \ R is a prime ideal properly contained in P , contradicting that ht.P / D 0.
Hence, ht.P Œx�/ D 0.

Similarly, and still assuming that ht.P / D 0, we can see that ht.Q/ D 1. This is
true because if Q2 is a prime ideal such that Q2 	 Q, then the prime ideal Q2 \ R
must be P since ht.P / D 0 and Q2 \ R � Q \ R D P . So, a chain of length 2 of
distinct prime idealsQ � Q1 � Q2 is impossible, by Theorem 2.1. Thus, ht.Q/ D 1,
and in this case, ht.Q/ D ht.P Œx�/C 1, as desired.
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Now, let ht.P / D m, for some integer m > 0, and assume that the first result
holds for all 0 � k < m. We claim that, for any prime Q1 such that Q1 	 Q,
ht.Q1/ � ht.P Œx�/. In order to prove this claim, let P1 D Q1 \ R. Thus, P1 � P .
If P1 D P , then P Œx� � Q1 forces Q1 D P Œx�, since otherwise we have a chain
P Œx� 	 Q1 	 Q of three distinct prime ideals whose intersections with R are all
equal, contrary to Theorem 2.1; and so, trivially, we conclude that ht.Q1/ D ht.P Œx�/.
This means that ht.Q1/ � ht.P Œx�/, as claimed. On the other hand, if P1 	 P , then
either Q1 D P1Œx�, or Q1 � P1Œx�. In the first case, of course,

ht.Q1/ D ht.P1Œx�/ < ht.P Œx�/I
and, in the latter case, we can use induction (since ht.P1/ < m) to get

ht.Q1/ D ht.P1Œx�/C 1 � ht.P Œx�/:

Thus, the claim is verified.
It follows immediately from this claim that a chain of distinct primes in RŒx� de-

scending from Q can be no longer than ht.P Œx�/C 1, that is, ht.Q/ � ht.P Œx�/C 1.
And, since Q � P Œx�, it has been obvious all along that ht.Q/ � ht.P Œx�/C 1. Thus,
ht.Q/ D ht.P Œx�/C1. This completes the verification of the first result of the theorem.

Next, turning to the second result of the theorem, we temporarily will consider
the ring RŒx; x2; : : : ; xn� as RŒx�Œx2; : : : ; xn� (this allows us to still think of having
Q 	 RŒx� and P D Q \R). Then, we can see that

QŒx2; : : : ; xn� \RŒx2; : : : ; xn� D .Q \R/Œx2; : : : ; xn� D P Œx2; : : : ; xn�:
Now, considering the ring RŒx; x2; : : : ; xn� as RŒx2; : : : ; xn�Œx�, we can apply the first
result of the theorem – which we just proved – since QŒx2; : : : ; xn� is a prime ideal of
RŒx2; : : : ; xn�Œx�, and

QŒx2; : : : ; xn� � P Œx2; : : : ; xn�Œx�;
since Q � P Œx�.

Therefore, by the first result of the theorem, we have

ht.QŒx2; : : : ; xn�/ D ht.P Œx2; : : : ; xn�Œx�/C 1;
which is the second result since P Œx2; : : : ; xn�Œx� D P Œx; x2; : : : ; xn�. This completes
the proof of the theorem.

We now use Theorem 3.2 to prove the main theorem in [3]:

Theorem 3.3. Let R be a commutative ring with 1. Let Q be a prime ideal of the ring
RŒx1; x2; : : : ; xn�, and let the ideal P of R be the prime ideal P D Q \R. Then,

ht.Q/ D ht.P Œx1; : : : ; xn�/C ht.Q=P Œx1; : : : ; xn�/

� ht.P Œx1; : : : ; xn�/C n:
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Proof. We give a proof by induction on n. First, we do the case n D 1. If Q D
P Œx1�, then we are done, since ht.Q/ D ht.P Œx1�/. If Q � P Œx1�, then ht.Q/ D
ht.P Œx1�/C 1, by Theorem 3.2. But, ht.Q=P Œx1�/ D 1, by Theorem 2.1, and so, it is
true that

ht.Q/ D ht.P Œx1�/C ht.Q=P Œx1�/ � ht.P Œx1�/C 1;
as desired.

Now, we let n > 1, and assume that the theorem is true for all 1 � k < n. Let
Q1 D Q \ RŒx1�. Consider first the case where Q1 D P Œx1�. This case follows
immediately using induction in the ring RŒx1�Œx2; : : : ; xn� where k D n � 1, and we
have

ht.Q/ D ht.P Œx1�Œx2; : : : ; xn�/C ht.Q=P Œx1�Œx2; : : : ; xn�/

� ht.P Œx1�Œx2; : : : ; xn�/C n � 1;
and ht.Q/ � ht.P Œx1; x2; : : : ; xn�/C n, as desired.

Next, consider the case where Q1 � P Œx1�. In this case, the first thing to observe
is that, by Theorem 3.2,

ht.Q1Œx2; : : : ; xn�/ D ht.P Œx1; : : : ; xn�/C 1:
Therefore, again using induction in the ring RŒx1�Œx2; : : : ; xn� where k D n � 1, we
get

ht.Q/ D ht.Q1Œx2; : : : ; xn�/C ht.Q=Q1Œx2; : : : ; xn�/

� ht.Q1Œx2; : : : ; xn�/C n � 1
D ht.P Œx1; : : : ; xn�/C 1C n � 1
D ht.P Œx1; : : : ; xn�/C n:

Thus, we have shown, as desired, that ht.Q/ � ht.P Œx1; : : : ; xn�/C n.
In order to complete the proof, we still need to show that, in this case,

ht.Q/ D ht.P Œx1; : : : ; xn�/C ht.Q=P Œx1; : : : ; xn�/:

To do this, we first observe that, since Q1 � P Œx1�,
ht.Q=P Œx1; : : : ; xn�/ � ht.Q=Q1Œx2; : : : ; xn�/C 1I

this trivial fact will be used very shortly. We now simply repeat the same argument we
used previously; so, once again, by induction we get

ht.Q/ D ht.Q1Œx2; : : : ; xn�/C ht.Q=Q1Œx2; : : : ; xn�/

D ht.P Œx1; : : : ; xn�/C 1C ht.Q=Q1Œx2; : : : ; xn�/

� ht.P Œx1; : : : ; xn�/C ht.Q=P Œx1; : : : ; xn�/:
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But, then, since it is obvious that

ht.Q/ � ht.P Œx1; : : : ; xn�/C ht.Q=P Œx1; : : : ; xn�/;

it follows that

ht.Q/ D ht.P Œx1; : : : ; xn�/C ht.Q=P Œx1; : : : ; xn�/;

as desired. This completes the proof of the theorem.

Theorem 3.3 is a rather remarkable theorem. Its proof depends upon nothing more
than the elementary Theorem 2.1, and yet it is powerful enough to prove many of the
classical results in dimension theory. As the authors of [3] point out, this theorem
“is of no greater depth than the fact that there cannot exist in RŒX1� a chain of three
distinct prime ideals having the same contraction to R. This fact in turn is really no
deeper than the fact that KŒX1� is a PID if K is a field. Thus, we obtain an elementary
proof of the next result.”

Theorem 3.4. Let K be a field. Then,

dimKŒx1; : : : ; xn� D n:
Proof. Since KŒx1; : : : ; xn�=.x1; : : : ; xi / Š KŒxiC1; : : : ; xn�, for each 1< i <n, and
since KŒxiC1; : : : ; xn� is an integral domain for each 0� i <n, we see that

.0/ 	 .x1/ 	 .x1; x2/ 	 � � � 	 .x1; x2; : : : ; xn/
is a chain of distinct prime ideals of length n in this ring; hence, dimKŒx1; : : : ; xn��n:

Now, suppose thatQ is a prime ideal of the ringKŒx1; x2; : : : ; xn�. Then,Q\K D
.0/. (Otherwise, sinceK is a field,Q\K D K, and then 1 2 Q.) So, by Theorem 3.3,
ht.Q/ � 0C n: Therefore, dimKŒx1; : : : ; xn� � n:

Hence, dimKŒx1; : : : ; xn� D n. This completes the proof of the theorem.

A recent proof of this classical result has also been given in [4] where the authors
provide a characterization of the Krull dimension of a ring in terms of elements in the
ring rather than in terms of prime ideals.

4 Additional Applications

Since dimK D 0, for a field K, the result in Theorem 3.4 has the form

dimRŒx1; : : : ; xn� D nC dimR:

Theorem 3.3 can be used to prove that there are rings other than fields where this
same relationship holds between the dimension of a ring and the dimensions of the
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polynomial rings. We now turn to the task of showing that two classes of rings behave
in this same way with respect to the dimensions of their polynomial rings, namely,
Noetherian rings and semi-hereditary rings.

In order to prove this result for Noetherian rings, we need two fundamental results
in commutative ring theory, each of which we state without proof. The first is Krull’s
hugely influential principal ideal theorem of 1928; see [8, page 110] for a proof.

Theorem 4.1. Let R be a Noetherian ring. Let I D .a1; : : : ; ak/ be a proper ideal of
R generated by k elements. Let P be a prime ideal of R that is minimal over I . Then,
ht.P / � k.

The second is a useful converse to Krull’s principal ideal theorem; see [8, page 112]
for a proof (Kaplansky mentions that this theorem “is not at all of the same depth as
the principal ideal theorem. In fact, the proof really used just the ascending chain
condition on radical ideals . . . ”).

Theorem 4.2. Let R be a commutative Noetherian ring with 1, and let P be a prime
ideal ofR. Let ht.P / D n. Then, there are elements a1; : : : ; an such that P is minimal
over .a1; : : : ; an/.

We can now use these two results, together with Theorem 3.3, to give a classical re-
sult on the relationship between the dimension of a Noetherian ring and the dimensions
of its polynomial rings.

Theorem 4.3. Let R be a commutative Noetherian ring with 1. Then,

dimRŒx1; : : : ; xn� D nC dimR:

Proof. First, we observe that the general fact that

dimRŒx1; : : : ; xn� � nC dimR

follows immediately from the lower bound in Theorem 2.2.
Next, we remark that RŒx1; : : : ; xn� is Noetherian, and also, then, for any multi-

plicative system T , so too is the localization RŒx1; : : : ; xn�T .
Now, letQ be a maximal ideal in the ring RŒx1; : : : ; xn�, and let P D Q\R. Con-

sider the multiplicative system R n P . There is a one-to-one correspondence between
prime ideals in the localization RŒx1; : : : ; xn�RnP and prime ideals in RŒx1; : : : ; xn�
disjoint fromRnP . But, sinceQ\R D P , any chain of prime ideals descending from
Q will be disjoint from R n P ; therefore, by virtue of this one-to-one correpondence,

ht.Q/ D ht.Q.RŒx1; : : : ; xn�/RnP /:

Thus, we can, without loss, assume that R is a local ring, and that P is its unique
maximal ideal.
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We will also need to show that ht.P Œx1; : : : ; xn�/ D ht.P /. It is for this purpose
that we need Krull’s principal ideal theorem. Let ht.P / D k.

Since any chain of length k of distinct primes in R

P D P0 � P1 � P2 � � � � � Pk
can immediately be ‘lifted’ to a chain of length k of distinct primes in RŒx1; : : : ; xn�:

P Œx1; : : : ; xn� D P0Œx1; : : : ; xn� � P1Œx1; : : : ; xn�
� P2Œx1; : : : ; xn� � � � � � PkŒx1; : : : ; xn�;

we conclude that ht.P Œx1; : : : ; xn�/ � ht.P /.
Now, by Theorem 4.2, there is an ideal I D .a1; : : : ; ak/ of R such that P is min-

imal over I . So, then, P Œx1; : : : ; xn� is minimal over I Œx1; : : : ; xn�. But, in the ring
RŒx1; : : : ; xn�, the ideal I Œx1; : : : ; xn� is also generated by the k elements a1; : : : ; ak .
Therefore, by Theorem 4.1 – that is, by Krull’s principal ideal theorem – we conclude
that ht.P Œx1; : : : ; xn�/ � k. Thus, ht.P Œx1; : : : ; xn�/ � ht.P /, and we have shown
that

ht.P Œx1; : : : ; xn�/ D ht.P /;

as desired.
Finally, then, we can apply Theorem 3.3 – and, using the fact that R is a local ring

with unique maximal ideal P , so that ht.P / D dimR – to get

ht.Q/ � nC ht.P Œx1; : : : ; xn�/

D nC ht.P /

D nC dimR:

Since Q is an arbitrary maximal ideal in RŒx1; : : : ; xn�, it follows immediately that
dimRŒx1; : : : ; xn� � nC dimR: Therefore,

dimRŒx1; : : : ; xn� D nC dimR:

This completes the proof of the theorem.

Next, we use Theorem 3.3 to give a similar result on the relationship between the
dimension of a semihereditary ring and the dimensions of its polynomial rings. Recall
that a ring is semihereditary if its finitely generated ideals are projective.

Theorem 4.4. Let R be a commutative semihereditary ring with 1. Then,

dimRŒx1; : : : ; xn� D nC dimR:
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Proof. As in the proof of Theorem 4.3 it suffices to prove that

dimRŒx1; : : : ; xn� � nC dimR:

Moreover, we can once again, without loss, assume that R is a local ring, and that
P is its unique maximal ideal. In this case, then, since R is semihereditary, RP is a
valuation domain (see [6, page 113]).

So, to complete the proof, all we need to do is show that if V is a valuation domain
with maximal ideal M , then ht.MŒx1; : : : ; xn�/ D ht.M/, since the remainder of the
proof then follows from Theorem 3.3 exactly as in the proof of Theorem 4.3. Of
course, as before, it is clear that ht.MŒx1; : : : ; xn�/ � ht.M/.

Let Q be a nonzero prime ideal of V Œx1; : : : ; xn� such that Q 	 MŒx1; : : : ; xn�.
Let f ¤ 0 2 Q. Then, since V is a valuation domain its ideals are totally ordered,
and in particular, its principal ideals are totally ordered, so we can write f D ag

where a 2 V and g 2 V Œx1; : : : ; xn� is such that some coefficient of g is a unit
in V . Thus, g … MŒx1; : : : ; xn�; and so, g … Q. But, ag D f 2 Q, and Q
is prime, so we conclude that a 2 Q. Therefore, a 2 Q \ V , and f D ag 2
.Q \ V /Œx1; : : : ; xn�. Hence, Q � .Q \ V /Œx1; : : : ; xn�. On the other hand, it is
clear that Q � .Q \ V /Œx1; : : : ; xn�, and so, Q D .Q \ V /Œx1; : : : ; xn�. It follows
that ht.MŒx1; : : : ; xn�/ � ht.M/. Therefore, ht.MŒx1; : : : ; xn�/ D ht.M/, as desired.
This completes the proof of the theorem.

The next two results from [3] concern Hilbert rings. A commutative ring R with 1
is a Hilbert ring if every prime ideal of R is an intersection of maximal ideals. The
fact that for a field K, the polynomial ring KŒx1; : : : ; xn� is a Hilbert ring provides a
very natural approach to Hilbert’s Nullstellensatz (see [8, page 19]). The motivating
idea behind Hilbert rings, and the one we use in the proofs to follow, is that a ring R is
a Hilbert ring if the contraction Q\R of any maximal ideal Q in the polynomial ring
RŒx� is a maximal ideal in R.

Theorem 4.5. Let R be a commutative ring with 1 such that for some n � 1 all maxi-
mal ideals of RŒx1; : : : ; xn� have the same height, then R is a Hilbert ring.

Proof. It is sufficient to prove this for the case n D 1 since R is a Hilbert ring if and
only if RŒx� is a Hilbert ring (see [8, page 18]). LetQ be a maximal ideal of RŒx�. We
must prove thatQ\R is a maximal ideal of R. Assume, by way of contradiction, that
P D Q \R is not maximal, and let P 	M , where M is a maximal ideal in R. Note
that MŒx� is not a maximal ideal of RŒx�.

Now, by Theorem 3.3, ht.Q/ � ht.P Œx�/ C 1 < ht.MŒx�/ C 1, and so, it follows
that ht.MŒx�/ � ht.Q/. But, MŒx� is not a maximal ideal, so this contradicts the
hypothesis that all maximal ideals of RŒx� have the same height. Therefore, P D
Q \ R is a maximal ideal, and R is a Hilbert ring. This completes the proof of the
theorem.
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Since the polynomial ring KŒx1; : : : ; xn� is a Hilbert ring for any field K, we know
that whenever Q is a maximal ideal in RŒxkC1�, where R D KŒx1; : : : ; xk�, then
M D Q \ R is a maximal ideal of R. So, it is easy to use induction together with
Theorem 3.4 to show that, for each n � 1, all maximal ideals of KŒx1; : : : ; xn� have
height n. The next theorem generalizes this idea.

Theorem 4.6. LetR be a commutative Hilbert ring with 1 such that all maximal ideals
of R have the same height. If, for some n � 1, ht.M/ D ht.MŒx1; : : : ; xn�/ for each
maximal idealM ofR, then all maximal ideals ofRŒx1; : : : ; xn� have the same height.

In particular, then, if R is a Noetherian ring or a semihereditary ring, all maximal
ideals of RŒx1; : : : ; xn� have the same height.

Proof. First, we observe that for an integral domain D with quotient field K there is a
one-to-one order preserving correspondence between prime ideals P ofDŒx1; : : : ; xn�
with P \D D .0/ and all prime ideals ofKŒx1; : : : ; xn�. Therefore, since all maximal
ideals of KŒx1; : : : ; xn� have height n, if Q is a maximal ideal of DŒx1; : : : ; xn� with
Q \D D .0/, then ht.Q/ D n.

Now, let Q1 and Q2 be maximal ideals of RŒx1; : : : ; xn�, and let M1 D Q1 \ R
and M2 D Q2 \ R. We then apply the above observation to the integral domains
RŒx1; : : : ; xn�=.Mi Œx1; : : : ; xn�/, for i D 1; 2; thus, ht.Qi=.Mi Œx1; : : : ; xn�// D n,
and

ht.Q1/ D ht.M1Œx1; : : : ; xn�/C n D ht.M1/C n
D ht.M2/C n D ht.M2Œx1; : : : ; xn�/C n D ht.Q2/:

Hence, all maximal ideals of RŒx1; : : : ; xn� have the same height, as desired.
The last statement in the theorem then follows immediately since, as we saw during

the proofs of Theorems 4.3 and 4.4, the condition that ht.M/ D ht.MŒx1; : : : ; xn�/

for each maximal ideal M of R is satisfied if R is Noetherian or semihereditary. This
completes the proof of the theorem.

In [3] the authors present examples proving that neither of the last two theorems can
be strengthened: an example of an integrally closed Hilbert domain D of dimension 1
such that not all maximal ideals ofDŒx� have the same height; and, an integrally closed
Hilbert domain D such that all maximal ideals of DŒx� have the same height but this
is not true of D. An example is given in [10] of a Hilbert ring of dimension 2 with an
uncountable number of maximal ideals of height 1.

As a final application of Theorem 3.3, we present a greatly simplified proof of Jaf-
fard’s special chain theorem (see [7, page 35]). A chain

Q0 	 Q1 	 Q2 	 � � � 	 Qk
of distinct prime ideals in a polynomial ring RŒx1; : : : ; xn� is called a special chain if,
for each Qi , the ideal .Qi \R/Œx1; : : : ; xn� belongs to the chain.
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Theorem 4.7. LetR be a commutative ring with 1. IfQ is a prime ideal of finite height
in RŒx1; : : : ; xn�, then ht.Q/ can be realized as the length of a special chain of primes
of RŒx1; : : : ; xn� descending from Q.

In particular, if R is finite dimensional, then dim.RŒx1; : : : ; xn�/ can be realized as
the length of a special chain of primes of RŒx1; : : : ; xn�.

Proof. This follows immediately by induction on ht.Q/ by Theorem 3.3.

5 The Dimension of Power Series Rings

It is worth briefly mentioning in conclusion a result from [2] in which the behavior
between the dimension of a ring and the dimension of its power series ring is exactly
what we would wish it to be. But first, we look at an example that illustrates just how
pathological behavior can be for power series rings.

As in the polynomial ring case, for a prime P of a ring R, the heights of the prime
idealsP Œx� andP ŒŒx�� are at least as great as the height of the primeP , simply because
any chain of primes descending from P can be ‘lifted’ to chains of the same length
descending from P Œx� and from P ŒŒx��. One immediate consequence of this is that

if dimR D1; then dimRŒx� D1 and dimRŒŒx�� D1:
When the dimension of R is finite, Theorem 2.2 shows that there are strict limita-

tions on the dimension of RŒx� in terms of the dimension of R. And, we know that for
some classes of rings, such as Noetherian and semihereditary rings, the lower bound
is even achievable and we have

dimRŒx� D dimRC 1:
However, for power series, the story is very different. It is even possible to have a

ring R such that dimR D 0, and yet, dimRŒŒx�� D 1. The source of the dramatic
difference between the polynomial situation and the power series situation is that in a
power series ring RŒŒx��, the ideal IRŒŒx�� generated by I , while clearly contained in
the ideal I ŒŒx��, may not actually be equal to I ŒŒx��.

Here is an example of this phenomenon. LetR D Q
Q
Q
� � � be the ring which
is a countably infinite product of the rationals Q. Let I be the ideal of R generated by
the countably many elements

.1; 0; 0; 0; 0; : : : /; .0; 1; 0; 0; 0; : : : /; .0; 0; 1; 0; 0; : : : /; : : : I
that is, I is the set of elements of R that have finite support. Now, if f 2 IRŒŒx��,
then f has finite support; however, here is a power series in I ŒŒx�� that clearly does
not have finite support:

g D .1; 0; 0; 0; 0; : : : /C .0; 1; 0; 0; 0; : : : /x C .0; 0; 1; 0; 0; : : : /x2 C � � � I
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hence, g 2 I ŒŒx�� n IRŒŒx��. Now, a beautiful theorem in [1] says that if there is an
ideal I in a ring R such that I ŒŒx�� 6� p

IRŒŒx�� then dimRŒŒx�� D 1. Thus, since
g 2 I ŒŒx��, but g does not have finite support, g …pIRŒŒx��; and so, dimRŒŒx�� D1,
even though dimR D 0.

On the other hand, if K is a field, then the only nonzero ideals of KŒŒx�� are
.x/; .x2/; .x3/; : : : I and so, .0/ 	 .x/ is the longest possible chain of prime ideals
in KŒŒx��. Thus, dimKŒŒx�� D 1, and we have

dimKŒŒx�� D dimK C 1:

Not surprisingly, as we see in the following theorem from [2], Noetherian rings exhibit
this same good behavior. Once again, we must rely on Krull’s principal ideal theorem.

Theorem 5.1. Let R be a commutative Noetherian ring with 1. Then,

dimRŒŒx�� D dimRC 1:

Proof. Let dimR D n, and let

P D P0 � P1 � P2 � � � � � Pn
be a chain of distinct prime ideals of R of length n. As usual, this chain can ‘lifted’ to
a chain of the same length in RŒŒx��. But, in this case, we can also add one more prime
ideal at the top, and get

P C .x/ � P ŒŒx�� D P0ŒŒx�� � P1ŒŒx�� � P2ŒŒx�� � � � � � PnŒŒx��;

which is a chain of distinct prime ideals of RŒŒx�� of length nC 1. Thus,

dimRŒŒx�� � dimRC 1:

Note that up to this point in the proof we have not invoked the Noetherian property of
the ring R, and so, this inequality holds in general.

Now, let Q be a maximal ideal of RŒŒx��. Then, Q D M C .x/ where M is a
maximal ideal of R. Since dimR D n, we have ht.M/ � n. Therefore, by Theorem
4.2, there are elements a1; : : : ; an inR such thatM is minimal over .a1; : : : ; an/. But,
then,M C .x/ is minimal over .a1; : : : ; an; x/. So, by Krull’s principal ideal theorem,
Theorem 4.1, ht.MC.x// � nC1. SinceQ was an arbitrary maximal ideal ofRŒŒx��,
it follows that dimRŒŒx�� � nC 1. Hence,

dimRŒŒx�� D dimRC 1;

as desired. This completes the proof of the theorem.
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The Projective Line over the Integers

Ela Celikbas and Christina Eubanks-Turner

Abstract. In this article we survey work that has been done to describe the partially ordered set
of prime ideals of the projective line over the integers, denoted by Proj.ZŒh; k�/. We consider
a conjecture given by Aihua Li and Sylvia Wiegand that would complete a characterization of
Proj.ZŒh; k�/ D Spec.ZŒx�/ [ Spec.ZŒ 1

x
�/. In this paper we give some previous results and

some new results that support the conjecture. In particular we show that a possible axiom for
Proj.ZŒh; k�/ proposed by Arnavut, Li and Wiegand holds for a large number of previously
unknown cases.
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1 Introduction

Let h and k be indeterminates over the integers Z. The projective line Proj.ZŒh; k�/
over the integers can be viewed as the partially ordered set under inclusion of all prime
ideals of ZŒh; k� that are generated by finite sets of homogeneous polynomials in h
and k other than those prime ideals that contain both h and k. For x an indeterminate
over Z, the prime spectrum of ZŒx� or Spec.ZŒx�/, the partially ordered set of prime
ideals of ZŒx� under inclusion, is sometimes called the affine line over Z. In this paper
we let x D h=k and we view Proj.ZŒh; k�/ as the union of its affine pieces Spec.ZŒx�/
and Spec.ZŒ 1

x
�/. In this view of Proj.ZŒh; k�/, the intersection of Spec.ZŒx�/ with

Spec.ZŒ 1
x
�/ is identified with Spec.ZŒx; 1

x
�/; cf. Notation 2.7 (ii).

In 1986, Roger Wiegand gave five axioms that characterized the prime spectrum
of ZŒx� as a partially ordered set; cf. [7] and Definition 2.4 below. Four of those ax-
ioms hold for Proj.ZŒh; k�/, but Proj.ZŒh; k�/ fails to satisfy the key fifth axiom of
Spec.ZŒx�/; cf. [5]. So far no one has completed a characterization of Proj.ZŒh; k�/,
although there have been several related results. In 1994 William Heinzer, David Lantz
and Sylvia Wiegand determined those partially ordered sets that occur as the projective
line Proj.RŒh; k�/ when R is a one-dimensional semilocal domain. In 1997, Aihua
Li and Sylvia Wiegand described some properties of Proj.ZŒh; k�/. In 2002, Meral
Arnavut conjectured that a modified form of the key axiom of Spec.ZŒx�/ would com-
plete a characterization of Proj.ZŒh; k�/; she gave partial results toward her conjecture;
cf. [1] and Axiom 4.2 below.

The key axiom for Spec.ZŒx�/ stipulates the existence of “radical elements”, defined
in Definition 2.2, for pairs .S; T / of finite subsets of Spec.ZŒx�/, where the elements
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of S have height one and those of T have height two. Radical elements often exist
for sets S and T in Proj.ZŒh; k�/, but not always. We expect that the determination of
when radical elements exist would lead to a characterization of Proj.ZŒh; k�/.

In this article we continue the investigation of the projective line over the integers.
In the process we give further evidence for Arnavut’s conjecture. Among our main re-
sults are new cases when radical elements exist, such as Theorem 5.5 and Theorem 5.8.
In Theorem 5.5, we show the existence of radical elements when every maximal ideal
of T \Spec.ZŒx�/ has form .x; p/ZŒx�, where p is a prime integer; each .x; p/ corre-
sponds to exactly one maximal ideal of form . 1

x
; p/ZŒ 1

x
� 2 T \ Spec.ZŒ 1

x
�/; and vice

versa. In Theorem 5.8, we find radical elements for sets of form

S D
°

.p1/; : : : ; .pn/; .x/;
� 1

x

�

; .x � a/; .x � b/
±

; and

T D
°

.x; p1/; : : : ; .x; p`/;
� 1

x
; p`C1

�

; : : : ;
� 1

x
; pn

�±

;

where the pi are prime integers relatively prime to a; b 2 Z, under certain conditions.
It is difficult to produce prime ideals that are the correct radical elements. For the proof
of Theorem 5.5, we use Hilbert’s Irreducibility Theorem to find radical elements. For
the proof of Theorem 5.8, we use Euler’s theorem. Theorem 5.8 is a special case of
the conjecture and answers a question in Arnavut’s paper [1].

In Section 2 we restate relevant notation, definitions and previous results of Meral
Arnavut, Aihua Li and Sylvia Wiegand from [1], [4], and [5]. In Section 3 we discuss
the coefficient subset of Proj.ZŒh; k�/ from [4]. A coefficient subset of Proj.ZŒh; k�/
behaves like the set of all prime ideals of Proj.ZŒh; k�/ generated by prime integers.
In Section 4 we summarize Meral Arnavut’s results towards the conjecture. Our new
results are in Section 5; they all support the conjecture.

2 Definitions and Background

First we establish some notation.

Notation 2.1. Let N be the natural numbers and let Q be the rationals. Let U be a
partially ordered set, sometimes abbreviated poset. A chain in U is a totally ordered
subset of U . Throughout we suppose that U has a unique minimal element u0 and that
every chain in U is finite.

For u 2 U , the height of u, ht.u/, is the length t of a maximal length chain in U of
form u0 < u1 < u2 < � � � < ut D u; the dimension of U , dim.U /, is the maximum
of ¹ht.u/ j u 2 U º; and we set

H1.U / WD ¹u 2 U j ht.u/ D 1º; and H2.U / WD ¹u 2 U j ht.u/ D 2º:
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For every u; v 2 U and S � H1.U /, define

u" WD ¹v 2 U j u < vº; v# WD ¹u 2 U j u < vº; .u; v/" WD u" \ v"; and

S" D ¹t 2 U j t 2 s"; for all s 2 Sº
For U WD Spec.R/, where R is a Noetherian ring, and a 2 R, let

a" WD ¹P 2 Spec.R/ j a 2 P º and

.a; b/" WD ¹P 2 Spec.R/ j a 2 P and b 2 P º:
In Definition 2.4, we give the five axioms that Roger Wiegand showed characterize

Spec.ZŒx�/ as a partially ordered set; cf. [7]. The key axiom is easier to state if we
first define “radical element”.

Definition 2.2 ([4]). Let U be a partially ordered set of dimension two and let S and
T be finite subsets of U such that ; ¤ S � H1.U / and T � H2.U /. If w 2 H1.U /
satisfies (i) and (ii), then w is called a radical element for .S; T /:

(i) w < t , for every t 2 T ,

(ii) Whenever m 2 U is greater than both w and s, for some s 2 S , then m 2 T .

(In other words, w is a radical element for .S; T / if and only if
S

s2S .w; s/" �
T 	 w".)

The following picture illustrates the relations between a radical element and the
associated sets S and T in a two-dimensional poset:

Figure 1. Relations for a radical element w.

For convenience we also introduce the following notation that is used later.

Notation 2.3. A ht.1; 2/-pair of a poset U is a pair .S; T / of finite subsets S and T of
U such that ; ¤ S � H1.U / and T � H2.U /.
Definition 2.4. Let U be a partially ordered set. The following five axioms are called
the Countable Integer Polynomial (CZP) Axioms:

(P1) U is countable and has a unique minimal element.

(P2) U has dimension two.
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(P3) For each element u of height-one, u" is infinite.

(P4) For each pair u, v of distinct elements of height-one, .u; v/" is finite.

(RW) Every ht.1; 2/-pair of U has at least one radical element in U .

Note: Such a set also satisfies Axiom P30 below, which follows from Axiom RW.

(P30) For every height-two element t , the set t# is infinite.

Axiom RW is essential because it distinguishes Spec.ZŒx�/ from other similar prime
spectra such as Spec.QŒx; y�/; cf. [7]. The following theorem from R. Wiegand shows
that the CZP axioms characterize Spec.ZŒx�/.

Theorem 2.5 ([7]). A poset U satisfies the CZP axioms of Definition 2.4 if and only if
U is order isomorphic to Spec.ZŒx�/.

Remarks 2.6. The first two remarks are from [4, 5]:

(i) By Theorem 2.5, every ht.1; 2/-pair of Spec.ZŒx�/ has infinitely many radical
elements in Spec.ZŒx�/.

(ii) Since Spec.ZŒ 1
x
�/ Š Spec.ZŒx�/, every ht.1; 2/-pair of Spec.ZŒ 1

x
�/ has infinitely

many radical elements in Spec.ZŒ 1
x
�/.

(iii) The following discussion shows how the existence of radical elements is im-
portant for showing that two posets U and V that both satisfy axioms for
Proj.ZŒh; k�/ are order isomorphic. Since Proj.ZŒh; k�/ is a countable set, we
would want to define an order-isomorphism ' at each stage between finite sub-
sets F and G of U and V respectively, and then extend ' to U and V . If u0 and
v0 are the minimal elements of U and V respectively, S is the set of height-one
elements of F , T is the set of height-two elements of F , and ' is an order-
isomorphism from F D ¹0º [S [ T in U to G D ¹0º [S 0 [ T 0 in V , we would
try to extend ' so that a radical element for .S; T / goes to a radical element for
.S 0; T 0/. This is a simplification of the process; actually a height-one set S , and a
height-two set T , might be enlarged first and ' defined on enlarged ht.1; 2/-pair
before defining the map ' on a radical element. The process is described more
explicitly in Roger Wiegand’s paper [6]. If we knew which pairs had radical
elements, we could perhaps obtain such an order-isomorphism.

Notation 2.7. As mentioned in the introduction, the projective line over the integers,
denoted by Proj.ZŒh; k�/, where h and k are indeterminates, has two standard interpre-
tations as a partially ordered set. The first interpretation is from algebraic geometry;
the second is more ring-theoretic and is used in this paper.

(i) Proj.ZŒh; k�/ is the set of all prime ideals of ZŒh; k� generated by finite sets of
homogeneous polynomials in the variables h and k, but not those prime ideals
containing both h and k.
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(ii) Proj.ZŒh; k�/ WD Spec.ZŒx�/ [ Spec.ZŒ 1
x
�/, where Spec.ZŒx�/ \ Spec.ZŒ 1

x
�/

is identified with Spec.ZŒx; 1
x
�/. In this identification each prime ideal of the

form pZŒx�, where p is a prime integer, is considered the same as pZŒ 1
x
�, and

f .x/ZŒx� is identified with x� deg.f /f .x/ZŒ 1
x
�, for every irreducible polynomial

f .x/ of ZŒx� n xZŒx� with deg.f / > 0.

In particular, in the second view, if f .x/ D anx
n C � � � C a1x C a0 2 ZŒx� is

irreducible, and an ¤ 0 and a0 ¤ 0, then we identify .f .x// 2 Spec.ZŒx�/ with
. 1
xnf .x// 2 Spec.ZŒ 1

x
�/, written .f .x// � . 1

xnf .x//, where

1

xn
f .x/ D a0

� 1

x

�n C � � � C an�1
� 1

x

�

C an:

Thus .x2C2xC3/ZŒx� � .1C 2
x
C 3
x2 /ZŒ

1
x
�. The only elements of Spec.ZŒ 1

x
�/ that

are not in Spec.ZŒx�/ are the height-one prime 1
x

ZŒ 1
x
� and the height-two maximals

.p; 1
x
/ZŒ 1

x
�, where p is a prime integer. Similarly xZŒx� is the only height-one element

of Spec.ZŒx�/ not in Spec.ZŒ 1
x
�/, and ¹.p; x/ZŒx�, p is a prime integerº is the set of

all the height-two elements that are in Spec.ZŒx�/ but not in Spec.ZŒ 1
x
�/.

Here is an illustration of Proj.ZŒh; k�/ with this interpretation, from [5].

Figure 2. Proj.ZŒh; k�/.

The following proposition is useful for finding radical elements. The proof is
straightforward and is omitted.

Proposition 2.8 ([1]). Let f .x/ D anx
n C � � � C a0 2 ZŒx�, where a0; : : : ; an 2 Z

and an ¤ 0, let l.f / denote the leading coefficient an of f .x/ and let c.f / denote the
constant term a0 of f .x/.

(i) If p is a prime integer, then

(a) f .x/ 2 .x; p/ZŒx� , p j c.f /;
(b) .f .x// D . 1

xnf .x// � . 1x ; p/ZŒ 1x � , p j l.f /.
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(ii) If f .x/ is an irreducible element of ZŒx� of positive degree in x, then

(a) l.f / D ˙1 , .f; 1
x
/" D ; , .f /" � Spec.ZŒx�/:

(b) c.f / D ˙1 , .f; x/" D ; , .f /" � Spec.ZŒ 1
x
�/:

By the following theorem, some adjustment of the CZP axioms of Definition 2.4 is
necessary in order to describe Proj.ZŒh; k�/.

Theorem 2.9 ([5]). Proj.ZŒh; k�/ satisfies Axioms P1–P4 of Definition 2.4, but does
not satisfy Axiom RW of Definition 2.4. Thus Proj.ZŒh; k�/ © Spec.ZŒx�/.

The following example shows that the (RW) axiom fails for Proj.ZŒh; k�/:

Example 2.10 ([5]). Let S D ¹. 1
x
/; .2/; .5/º and T D ¹.x; 2/; . 1

x
; 2/; . 1

x
; 3/º in

Proj.ZŒh; k�/. Then the pair .S; T / does not have a radical element in Proj.ZŒh; k�/.

Remark 2.11. If there is a radical element w for a ht.1; 2/-pair in Proj.ZŒh; k�/, then
w … S . Otherwise, w" � T by Definition 2.2 (i), and this would imply T is infinite
by (P3) of Definition 2.4, a contradiction.

Our goal in this paper is to determine answers to Questions 2.12.

Questions 2.12. For which ht.1; 2/-pairs of Proj.ZŒh; k�/ do radical elements exist?
Which pairs have no radical element?

In what follows we obtain partial answers to these questions.

3 The Coefficient Subset and Radical Elements
of Proj.ZŒh; k�/

In this section we give some more background and describe various ht.1; 2/-pairs of
Proj.ZŒh; k�/ in order to obtain partial answers to Question 2.12. In particular the
“coefficient” subset C0 of Proj.ZŒh; k�/ of prime ideals generated by prime elements
of Z is relevant. It is more feasible that a ht.1; 2/-pair .S; T / has a radical element if,
for every prime element p of Z with .p/ 2 S , there is a maximal ideal M 2 T so that
p 2M , cf. Proposition 3.5.

First in Proposition 3.1 we observe that some ht.1; 2/-pairs .S; T / inherit infinitely
many radical elements in Proj.ZŒh; k�/ from Spec.ZŒx�/ or Spec.ZŒ 1

x
�/. This is be-

cause Spec.ZŒx�/ and Spec.ZŒ 1
x
�/ are CZP, cf. Theorem 2.5.

Proposition 3.1 ([5]). Every ht.1; 2/-pair .S; T / of Proj.ZŒh; k�/ has infinitely many
radical elements in case (i) or (ii) hold:

(i) For every s 2 S , s" � Spec.ZŒx�/, and T � Spec.ZŒx�/.

(ii) For every s 2 S , s" � Spec.ZŒ 1
x
�/, and T � Spec.ZŒ 1

x
�/.
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Next we consider subsets of Proj.ZŒh; k�/ like the subsets of prime ideals generated
by all prime integers of Proj.ZŒh; k�/. We consider the existence of radical elements
for various ht.1; 2/-pairs subject to conditions involving such a “coefficient” subset.

Definition 3.2 ([1]). Let U be a poset of dimension two. A subset C of height-one
elements is called a coefficient subset of U if

(i) For every p 2 C , p" is infinite.

(ii) For every pair p, q of distinct elements of C , p ¤ q 2 C , .p; q/" D ;.

(iii)
S

p2C p" D H2.U /.
(iv) For every p 2 C and u 2 H1.U / n C , we have .p; u/" ¤ ;, and p" D

S

v2H1.U /nC .p; v/
".

Definition 3.3. Let A � H1.U /, with .a; b/" D ; for every a; b 2 A. A coefficient
subsetC is said to be attached toA if, for every p 2 C and every a 2 A, j.p; a/"j D 1.

Example 3.4. The set C0 of all prime ideals of ZŒx� generated by prime integers
is a coefficient subset of Proj.ZŒh; k�/ attached to ¹.x/; . 1

x
/º. It is also attached to

¹.x/; . 1
x
/; .x � 1/º or ¹.x/; . 1

x
/; .x C 1/º.

Proposition 3.5 ([5]). Let .S; T / be a ht.1; 2/-pair and let C be a coefficient subset
of Proj.ZŒh; k�/. Suppose that there exist distinct elements P0 and P1 of C such that
P0 2 S and T \ P "0 D ;, but T \ P "1 ¤ ;. Then

(i) .S; T / has no radical element except possibly P1,

(ii) If T ª P
"
1 , then P1 is not a radical element by Definition 2.2 (i),

(iii) There exists Q 2 H1.Proj.ZŒh; k�// n C and t 2 P "1 \Q" \ T ; thus P1 is not
a radical element for .S [ ¹Qº; T /.

Proof. For (i), let t 2 T \ P "1 . Suppose Q were a radical element for .S; T / and
Q ¤ P1. If Q 2 C , then .Q;P1/" D ; by (ii) of Definition 3.2, and so t … Q",
a contradiction to Definition 2.2 for Q a radical element. Thus Q … C , and so there
exists t 0 2 .P0;Q/" by (4) of Definition 3.2. By hypothesis t 0 2 P "0 H) t 0 … T ,
again contradicting that Q is a radical element. Thus .S; T / has no radical element
except possibly P1.

(ii) follows directly from Definition 2.2.
For (iv), since P "1 is infinite, there exists t 2 P "1 n T . Now by (4) of Definition 3.2,

there exists Q … C with t 2 P "1 \Q". Thus P1 is not a radical element for the pair
.S [ ¹Qº; T /.
Corollary 3.6 ([5]). Let .S; T / be a ht.1; 2/-pair in Proj.ZŒh; k�/. If T ¤ ;, then
there exists a finite subset S

0

of H1.Proj.ZŒh; k�// such that S � S 0

and .S
0

; T / has
no radical element in Proj.ZŒh; k�/.
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The following results, Proposition 3.7 and Theorem 3.8, are used later to construct
radical elements in various cases.

Proposition 3.7 ([2, page 102, Exercise 3]). Let R be a domain and let y be an in-
determinate over R. Suppose (i) ¹a; bº is an R-sequence or (ii) .a; b/ D R, where
b ¤ 0. Then .aC by/ is a prime ideal of RŒy�.

Theorem 3.8 (Hilbert’s Irreducibility Theorem, [3, page 141]). If f 2QŒx1; : : : ; xr ; x�
is an irreducible polynomial, then there exist a1; : : : ; ar 2Q such that f .a1; : : : ; ar ; x/
remains irreducible in QŒx�.

Meral Arnavut shows that the coefficient subset of Proj.ZŒh; k�/ is unique. She also
gives partial results concerning the existence of radical elements in Proj.ZŒh; k�/.

Proposition 3.9 ([1]). C0 WD ¹pZŒx� j p is a prime integerº is the only coefficient
subset of Proj.ZŒh; k�/.

Proof. We sketch the proof from [1] briefly. If 
 is a coefficient subset of Proj.ZŒh; k�/
such that 
 ¤ C0, then 
 \ C0 D ;. Let p be a prime integer. Then .p/" is infinite
and

S

�2�.�; p/" D .p/". Hence 
 is infinite. Therefore there exist distinct elements

˛ and ˇ in 
 n C0 n ¹.x/; . 1x /º; say ˛ D .f .x//, ˇ D .g.x//, for two relatively prime
irreducible polynomials f .x/ and g.x/ of ZŒx� of positive degree. By Proposition 3.7,
.f C yg/ is a prime ideal in ZŒx; y�, where y is an indeterminate over ZŒx�. By
Hilbert’s Irreducibility Theorem 3.8, there exists a prime integer p so that f C pg
is irreducible in ZŒx�. By Definition 3.2 (ii), no height-two prime ideals contain both
f and g. If .f C pg/ … 
 , we contradict .f; g/" D ;. Hence .f C pg/ 2 
 . But
.f; p/" � .f /"\.f Cpg/" D .f; f Cpg/". This contradicts Definition 3.2 (ii).

Remark 3.10 ([1]). Let .S; T / be a ht.1; 2/-pair in Proj.ZŒh; k�/. If T ¤ ;, then
.S; T / has at most one radical element in C0.

Proposition 3.11 ([1]). Let .S; T / be a ht.1; 2/-pair in Proj.ZŒh; k�/. If .S; T / has a
radical element Q in Proj.ZŒh; k�/ then either

(i) S \ C0 �SM2T .M# \ C0/ or

(ii) Q 2 C0.

In case (ii), if T D ;, then S � C0; if T ¤ ;, then Q is the only radical element.

Sketch of the proof from [1]. If (i) fails, there exists P 2 S \ C0 with T \ P " D ;.
Then Q" \ P " D ;. Thus, by Definition 3.2 (iv), Q 2 C0. Also

S

s2S .s;Q/" �
T � Q". Thus if T D ;, then s 2 C0, for all s 2 S . If T ¤ ;, then T contains
an element of form .f .x/; p/, where p is a prime integer and either f .x/ 2 ZŒx� has
positive degree or f .x/ D 1

x
. In either case .f .x/; p/ 2 Q" implies .p/ D Q, and so

Q is unique.
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Meral Arnavut notes that, if Condition 1 of Proposition 3.11 (i) is not satisfied, then
it is difficult to find radical elements; cf. [1], and Proposition 3.5 and Proposition 3.11
of this paper.

Proposition 3.12 ([1]). Let .S; T / be a ht.1; 2/-pair in Proj.ZŒh; k�/ such that

(i) S \ C0 �SM2T .M# \ C0/, and

(ii)
S

s2S .s; 1x /" � T , or (ii0)
S

s2S .s; x/" � T .

Then .S; T / has infinitely many radical elements in Proj.ZŒh; k�/.

Proof. We give the proof with hypothesis (ii); the proof for .ii0/ is similar (replace
1
x

by x). Since .s; 1
x
/" � T , for every s 2 S , and T is finite, . 1

x
/ … S . Therefore

S � Spec.ZŒx�/. If T D ;, then, for every s 2 S , s" � Spec.ZŒx�/. Thus, by
Proposition 3.1, .S; T / has infinitely many radical elements in Proj.ZŒh; k�/ as desired.
If T ¤ ;, let p1; : : : ; pr denote the distinct positive prime integers such that

¹.p1/; : : : ; .pr/º D
[

M2T
.M# \ C0/:

Then, for each t 2 T , some pi 2 t . Let f1; : : : ; fn be irreducible polynomials of
ZŒx� of positive degree so that S � C 0 D ¹.f1/; : : : ; .fn/º. Let T 0 D T � . 1

x
/".

Therefore T 0 � Spec.ZŒx�/ and S � Spec.ZŒx�/. Since Spec.ZŒx�/ is CZP, there
are infinitely many radical elements for .S; T 0/ in Spec.ZŒx�/. By Proposition 3.10,
.S; T 0/ has at most one radical element in C0. Thus .S; T 0/ has infinitely many radical
elements in Spec.ZŒx�/ � C0. Let P0 be such a radical element; say P0 D .f .x//,
where f .x/ is an irreducible polynomial of ZŒx� of positive degree so that f .x/ …
xZŒx�[f1ZŒx�[� � �[fnZŒx�[Z. Let � be a positive integer greater than the degree
of f .x/. Then f .x/ and the product p1 � � �prf1 � � �fnx� are relatively prime in ZŒx�.
By Proposition 3.7, .yp1 � � �prf1 � � �fnx�C f .x// is a prime ideal of ZŒx; y�, where
y is an indeterminate over ZŒx�. By Hilbert’s Irreducibility Theorem 3.8, for each �,
there exists a prime integer p� such that g�.x/ D p�p1 � � �prf1 � � �fnx� C f .x/ is
an irreducible polynomial of ZŒx�; thus w� WD .g�.x// is a prime ideal of ZŒx�. For
each � > deg.f /, w� is a radical element for .S; T / in Proj.ZŒh; k�/. Thus .S; T / has
infinitely many radical elements.

4 The Conjecture for Proj.ZŒh; k�/ and Previous Partial
Results

In Proposition 3.12 some conditions are given for a ht.1; 2/-pair .S; T / so that there
are infinitely many radical elements. Item (ii) of Proposition 3.12 implies . 1

x
/ … S and

item (ii)0 implies that .x/ … S . In either case, we get infinitely many radical elements
in Proj.ZŒh; k�/. If both .x/ and . 1

x
/ belong to S , it is more difficult to find a radical
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element. The following conjecture first given by Aihua Li and Sylvia Wiegand, then
adjusted by Meral Arnavut, addresses this case; cf. [1, 5].

Proj.ZŒh; k�/ Conjecture 4.1 ([1]). Let .S; T / be a ht.1; 2/-pair in Proj.ZŒh; k�/. As-
sume

(i) S \ C0 �Sm2T .m# \ C0/, and

(ii) .x/ 2 S , . 1
x
/ 2 S .

Then there exist infinitely many radical elements for .S; T / in Proj.ZŒh; k�/.

It appears that some axiom regarding the existence of radical elements analogous to
Axiom RW is necessary for Proj.ZŒh; k�/. The following axiom was proposed by Li
and Wiegand and modified by Arnavut, cf. [1, 5].

Axiom 4.2 (Axiom P5, [1]). Let U be a poset of dimension two.

(P5a) There exist a unique coefficient subset 
 of U and special elements u1; u2 2 U
such that .u1; u2/" D ; and 
 is attached to u1 and u2. (Thus, for every � 2 
 ,
j.�; u1/"j D 1 D j.�; u2/"j.)

(P5b) Let S be a nonempty finite subset of H1.U / and let T be a nonempty finite
subset of H2.U /.

(P5b.1) If �" \ T ¤ ;, for every � 2 S \ 
 , then there exist infinitely many
radical elements for .S; T /.

(P5b.2) If there exists an element � 2 S \ 
 such that �" \ T D ;, then there
is at most one possible radical element �0 for .S; T /, and �0 2 
 n S .

Arnavut shows that Conjecture 4.1 implies Axiom P5 above for Proj.ZŒh; k�/ and
thatU WD Proj.ZŒh; k�/nC0 is CZP; cf. [1]. We believe that this will lead to a complete
characterization of Proj.ZŒh; k�/.

We give a special case of the Conjecture 4.1 when T D ;.

Proposition 4.3 ([1]). Suppose S is a finite subset of H1.Proj.ZŒh; k�// of the form

S D
°

.x/;
� 1

x

�

; .f1/; : : : ; .fn/
±

;

where f1; : : : ; fn are monic irreducible polynomials of ZŒx� of positive degree. Then
.S;;/ has infinitely many radical elements in Proj.ZŒh; k�/.

Remark 4.4. Similarly one can find infinitely many radical elements if T D ; and S
is a finite subset ofH1.Proj.ZŒh; k�// such that S D ¹.x/; . 1

x
/; .f1/; : : : ; .fn/º, where

f1; : : : ; fn are irreducible polynomials in ZŒx� of positive degree with c.fi / D ˙1.
However we do not know what happens when T D ;, c.fi / ¤ ˙1 and `.fi / ¤ ˙1.
In this case if there is a radical element .g.x//where g.x/ is an irreducible polynomial,
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then c.g/ D ˙1, `.g/ D ˙1 and .g.x/; fi .x// D 1. If we could find such radical
elements, the conjecture would hold for T D ;. This might help prove the conjecture
for the T ¤ ; case as well.

Meral Arnavut introduces the following notation and gives some partial results re-
lated to the conjecture, recorded here as Theorem 4.6, cf. [1].

Notation 4.5. Let T be a nonempty finite subset of H2.Proj.ZŒh; k�//.
Let F WD ¹p 2 Z; p prime j .x; p/ 2 T º and let G WD ¹p 2 Z; p prime j . 1

x
; p/ 2

T º. Then A1 WD F nG, A2 WD F \G, and A3 WD G n F are disjoint sets.
Define ai WD Q

p2Ai
p , for i D 1; 2; 3. Thus a1, a2 and a3 are pairwise relatively

prime integers. For each i , if Ai D ;, we set ai D 1. Now let n 2 N, and define
fn.x/ 2 ZŒx� by

fn.x/ WD
´

a3x
n C a1; if F \G D ; .i.e., a2 D 1/;

an2a3x
2 C a1a3x C an2a1; if F \G ¤ ;:

Theorem 4.6 ([1]). Let .S; T / be an ht.1; 2/-pair in Proj.ZŒh; k�/ and let F , G, A1,
A2, A3, a1, a2, a3 and fn be as in as in Notation 4.5. Suppose

� T � .x/" [ . 1
x
/",

� S \ C0 � ¹.p/ j p 2 F [Gº,
� .x/ 2 S , . 1

x
/ 2 S .

Then:
(i) If .s; fn/" � T , for every s 2 S n .C0 [ ¹.x/; . 1x /º/, then .fn/ is a radical

element for .S; T / in Proj.ZŒh; k�/.

(ii) If S n C0 D ¹.x/; . 1x /º, then .S; T / has infinitely many radical elements in
Proj.ZŒh; k�/.

(iii) If F \ G D ; and, for every irreducible polynomial f .x/ of ZŒx� such that
.f / 2 S n .C0 [ ¹.x/; . 1x /º/, (a) or (b) holds, that is,

(a) `.f / is a unit, and a1 divides every coefficient of f .x/ except `.f /,

(b) c.f / is a unit, and a3 divides every coefficient of f .x/ except c.f /,

then .S; T / has infinitely many radical elements in Proj.ZŒh; k�/.

(iv) If F \G D ; and S nC0 D ¹.x/; . 1x /º[ ¹.xC˛/º, for some ˛ 2 Z such that a1
and ˛ are relatively prime, then .S; T / has a radical element in Proj.ZŒh; k�/.

Corollary 4.7 ([1]). Let

S D
°

.p1/; : : : ; .pn/; .x/;
� 1

x

�

; .f1/; : : : ; .fm/
±

;

T D
°

.x; p1/; : : : ; .x; pl/;
� 1

x
; plC1

�

; : : : ;
� 1

x
; pn

�±

;

where 0 � l � n, p1; : : : ; pn are distinct prime integers.
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(i) If fi .x/ 2 ZŒx� has the form xdi C p1 � � �plbi , for some di 2 N and bi 2 Z
with 1 � i � m, then .S; T / has infinitely many radical elements.

(ii) If fi .x/ 2 ZŒx� has the form biplC1 � � �pnxdi C 1, for some di 2 N and bi 2 Z
with 1 � i � m, then .S; T / has infinitely many radical elements.

5 New Results Supporting the Conjecture

In this section we give some new results that further support Conjecture 4.1. We
consider various different types of ht.1; 2/-pairs in Proj.ZŒh; k�/.

Theorem 5.1. Let .S; T / be an ht.1; 2/-pair in Proj.ZŒh; k�/. Suppose

(i) T � .x/",

(ii) S \ C0 � ¹.p/ j .x; p/ 2 T; p 2 Spec.Z/º,
(iii) SnC0 D ¹.x/; . 1x /º[¹.a1xC1/; : : : ; .amxC1/º for some ai 2 Z, i D 1; : : : ; m.

Then .S; T / has infinitely many radical elements in Proj.ZŒh; k�/.

Proof. Assume that T ¤ ;. Since T � .x/" by (i), we have F ¤ ; where F WD ¹p 2
Z; pprime j .x; p/ 2 T º. Let � 2 N be such that � � 2. Define

g�.x/ WD xmC� C b.a1x C 1/ � � � .amx C 1/ 2 ZŒx�

where the ai are as in (iii) and b D Q

p2F p. We show w� D .g�.x// is a radical
element for .S; T / in Proj.ZŒh; k�/. By Eisenstein’s Criteria, g�.x/ is irreducible in
ZŒx�. To see that w� satisfies Definition 2.2, let t 2 T . Then t D .x; p/, for some
p 2 F . But p j c.g�/, and so w� 	 t , for every t 2 T . Let s 2 S and let
M 2 H2.Proj.ZŒh; k�// be such that g�.x/ 2 M and s 	 M . We consider .w�; s/"
for all possible types of s 2 S :

(i) Since .g�.x/; aix C 1/ D .1/, .g�.x/; aix C 1/" D ;, for all i D 1; : : : ; m.

(ii) Since .g�.x/;
1
x
/ D .1/, . 1

x
; g�.x//

" D ;.

(iii) Since .g�.x/; x/ D .x; b/, M D .x; p/, for some p 2 F , and hence M 2 T .

(iv) Since .g�.x/; p/ D .xmC�; p/, for p 2 F such that p j b, M D .x; p/.
Thus M 2 T , and so .p; g�.x//" 2 T .

Thus w� D .g�.x// is a radical element for .S; T / in Proj.ZŒh; k�/ for each � 2 N,
and so there are infinitely many radical elements w� for .S; T /.

If T D ;, then take b D 1 and define

g�.x/ WD xmC� C .a1x C 1/ � � � .amx C 1/ 2 ZŒx�:

Similarly w� D .g�.x// is a radical element for .S; T / in Proj.ZŒh; k�/, for � 2 N.
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Remark 5.2. Similarly there exist infinitely many radical elements for a ht.1; 2/-pair
.S; T / in Proj.ZŒh; k�/ satisfying the following:

(i) T � . 1
x
/",

(ii) S \ C0 � ¹.p/ j . 1x ; p/ 2 T; p 2 Spec.Z/º,
(iii) S nC0 D ¹.x/; . 1x /º[ ¹.xCa1/; : : : ; .xCam/º for some ai 2 Z, i D 1; : : : ; m.

Proposition 5.3. Consider

S D ¹.p1/; : : : ; .pn/; .x/; . 1
x
/; .x C a1/; : : : ; .x C am/º;

T D ¹.x; p1/; . 1
x
; p2/; : : : ; .

1

x
; pn/; .x C a1; p1/; : : : ; .x C am; p1/º

where p1; : : : ; pn are distinct prime integers, n > 1, a1; : : : ; am 2 Z and .ak; p1/ D
1 for each k D 1; : : : ; m. Then .S; T / has infinitely many radical elements in
Proj.ZŒh; k�/.

Proof. Let � 2 N. Define h�.x/ D b�x�.x C a1/ : : : .x C am/ C p�1 where b D
Qn
iD2 pi . We show thatw� D .h�.x// is a radical element for .S; T / in Proj.ZŒh; k�/.

First, by Eisenstein’s Criteria for ZŒ 1
x
�, h�.x/ is irreducible in ZŒ 1

x
�. Also w� 	 t for

all t 2 T . Let s 2 S andM 2 H2.Proj.ZŒh; k�// be such that h�.x/ 2M and s 	M .
We consider .w�; s/" for all possible types of s 2 S :

Since .h�.x/; x C ak/ D .x C ak; p�1 /, M D .x C ak; p1/ is the only maximal
ideal that contains .h�.x/; x C ˛k/, for k D 1; : : : ; m, that is, .h�.x/; x C ak/" 2 T .

Since .h�.x/; x/ � .x; p�1 /, M D .x; p1/ is the only maximal ideal that contains
.h�.x/; x/, that is, .h�.x/; x/" 2 T .

Since .h�.x/;
1
x
/ D .b�; 1

x
/, for i D 2; : : : ; n, M has form . 1

x
; pi / for some i , and

the . 1
x
; pi / are the only maximal ideals that contain .h�.x/;

1
x
/, for i D 2; : : : ; n.

Since .h�.x/; p1/ D .b�x�.x C a1/ : : : .x C am//, M D .x; p1/ or M D .x C
ak; p1/ 2 T , for some k D 1; : : : ; m, and these are the only maximal ideals that
contain .h�.x/; p1/.

If s D .pi /, for i D 2; : : : ; n, then we get .h�.x/; pi / D .p�1 ; pi / D .1/ since
pi j b. Therefore, for each � 2 N, w� is a radical element for .S; T /.

Proposition 5.4. Let ˛1; : : : ; ˛m 2 Z be such that gcd.˛1; : : : ; ˛m/ ¤ 1. Suppose
that p1; : : : ; pk are all the prime integers that are factors of any of the ˛i and that p1
divides each of the ˛i . Say each ˛i D pei1

1 � � �peik

k
, for some ei` � 0. Then let n � 1

and choose prime integers q1; : : : ; qn distinct from p1; : : : ; pk . Let

B1 WD ¹.x; qj /; .x C ˛i ; qj /º1�i�m1�j�n;

B2 WD ¹.x C ˛i ; p`/
ˇ

ˇp` − ˛iº1�`�k1�i�m;

B3 WD ¹.x; p1/ : : : .x; pk/º;
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and set

S D
°

.x/;
� 1

x

�

; .x C ˛1/ : : : ; .x C ˛m/º [ ¹.qj /
±

1�j�n [ ¹.p`/º1�`�k;
T D B1 [ B2 [ B3:

Then .S; T / has infinitely many radical elements in Proj.ZŒh; k�/.

Proof. Let � 2 N. Define a0 WD Q.1�`�k
1�j �n/

p` � qj and h�.x/ D x�.x C ˛1/ � � � .x C
˛m/C a0.

We show that w� D .h�.x// is a radical element for .S; T / in Proj.ZŒh; k�/.
Note that h�.x/ is irreducible by Eisenstein in ZŒx�, since gcd.˛1; : : : ; ˛m/ ¤ 1

and p1 j gcd.˛1; : : : ; ˛m/. Also w� 	 t for all t 2 T .
Let s 2 S and t 2 H2.Proj.ZŒh; k�// be such that h�.x/ 2 t and s � t .
If s D .qj /, .h�; qj / D .x�.x C ˛1/ � � � .x C ˛m/; qj /, for j D 1; : : : ; n, and so

.h�; qj /
" D ¹.x; qj /; .x C ˛1; qj /; : : : ; .x C ˛m; qj /º 	 B1. Similarly, if s D .p`/,

then .h�; p`/" 	 B2[B3, for ` D 1; : : : ; k. If s D .x/, then .h�; x/ 	 .x; qj /, for all
j; 1 � j � n and also .h�; x/ 	 .x; p`/, 1 � ` � k. If s D . 1

x
/, then .h�;

1
x
/ D .1/

because h� is a monic polynomial of ZŒx�. If s D .x C ˛i / for some i , 1 � i � m,
then .h�; x C ˛i / 	 .x C ˛i ; qj / 2 B1 for some j; 1 � j � `. If p` − ˛i , then
.h�; x C ˛i / 	 .x C ˛i ; p`/ 2 B2 and if p` j ˛i , .h�; x C ˛i / 	 .x C ˛i ; p`/ 2 B3,
for each i; 1 � i � m and 1 � ` � k.

Therefore, in any of the latter cases, .h�; xC ˛i /" 	 T , for i; 1 � i � m. Thus w�
is a radical element for .S; T / in Proj.ZŒh; k�/. Now, since � 2 N, there are infinitely
many w� in Proj.ZŒh; k�/ and so .S; T / has infinitely many radical elements.

Theorem 5.5. There exist infinitely many radical elements for every ht.1; 2/-pair in
Proj.ZŒh; k�/ of the form S D ¹.x/; . 1

x
/; .p1/; : : : ; .pn/º and T D ¹.x; p1/; : : : ;

.x; pn/; .
1
x
; p1/; : : : ; .

1
x
; pn/º, where p1; : : : ; pn are distinct prime integers.

Proof. First consider the subsets

Sx WD ¹.x/; .p1/; : : : ; .pn/º; Tx WD ¹.x; p1/; : : : ; .x; pn/º;

S 1
x
WD
°� 1

x

�

; .p1/; : : : ; .pn/
±

; T 1
x
WD
°� 1

x
; p1

�

; : : : ;
� 1

x
; pn

�±

:

Then Sx [ Tx � Spec.ZŒx�/. Thus we see that for every � 2 N,

f�.x/ WD x� C p1 � � �pn 2 ZŒx�

.f�/ is a radical element for .Sx; Tx/ in Spec.ZŒx�/ since f .x/ is irreducible by Eisen-
stein. Similarly for

h�

� 1

x

�

WD p1 � � �pn C 1

x�
2 Z

h 1

x

i



The Projective Line over the Integers 235

.h. 1
x
// is a radical element for ¹S 1

x
; T 1

x
º. We identify h. 1

x
/ with

g�.x/ WD x�h�
� 1

x

�

D x�p1 � � �pn C 1 2 ZŒx�:

Let y be another indeterminate over ZŒx� and let k.x/ D p1 � � �pnx�. Then

f�.x/g�.x/ D x2�p1 � � �pn C ..p1 � � �pn/2 C 1/x� C p1 � � �pn:
Since f�.x/g�.x/ and k.x/ are relatively prime elements of ZŒx�, f�.x/g�.x/ C
yk.x/ is a prime ideal in ZŒx; y� by Proposition 3.7. Thus there exists a prime integer
q so that f�.x/g�.x/Cq.p1 � � �pnx�/ is irreducible in ZŒx� by Hilbert’s Irreducibility
Theorem 3.8.

We show that w� WD .r�.x// D .f�.x/g�.x/ C qk.x// is a radical element for
.S; T / for all � 2 N. First observe

r�.x/ D p1 � � �pnx2� C ..p1 � � �pn/2 C 1C qp1 � � �pn/x� C p1 � � �pn:
It is easy to see that w� 	 t for every t 2 T , since pi j `.r/ and pi j c.r/, for
i D 1; : : : ; n. Also .r�; x/ � .pi ; x/ for all i D 1; : : : ; n. Similarly .r�;

1
x
/ �

. 1
x
; pi /, for all i D 1; : : : ; n. Moreover .r�; pi / D .x�; pi / and so .x; pi / is the only

maximal element that contains .r�; pi /", for i D 1; : : : ; n. Thus .r�; pi /" 2 T , for
i D 1; : : : ; n. Therefore w� is a radical element for each � 2 N.

Example 5.6. There are infinitely many radical elements for every ht.1; 2/-pair in
Proj.ZŒh; k�/ of the form

S D
°

.x/;
� 1

x

�

; .2/; .3/; .5/
±

;

T D
°

.x; 2/; .x; 3/; .x; 5/;
� 1

x
; 2
�

;
� 1

x
; 3
�

;
� 1

x
; 5
�±

:

First consider the following subsets as in the previous proof of Theorem 5.5:

Sx D ¹.x/; .2/; .3/; .5/º; Tx D ¹.x; 2/; .x; 3/; .x; 5/º;

S 1
x
D
°� 1

x

�

; .2/; .3/; .5/
±

; T 1
x
D
°� 1

x
; 2
�

;
� 1

x
; 3
�

;
� 1

x
; 5
�±

:

Then Sx [ Tx � SpecZŒx� and for every � 2 N, f�.x/ WD x� C 30 in ZŒx�
generates a radical element for .Sx; Tx/ in Spec.ZŒ 1

x
�/. Similarly h�.

1
x
/ WD 30 C

1
x� 2 ZŒ 1

x
� is a radical element for .S 1

x
; T 1

x
/. We identify h�.

1
x
/ with g�.x/ WD

30x� C 1 2 ZŒx�. Let y be another indeterminate over ZŒx�. Since f�.x/g�.x/ and
30x� are relatively prime elements of ZŒx�, .f�.x/g�.x/C y.30x�// is a prime ideal
of ZŒx; y� by Proposition 3.7. There exists a prime integer q so that f�.x/g�.x/ C
q.30x�/ is irreducible in ZŒx� by Hilbert’s Irreducibility Theorem 3.8. Thereforew D
.f�.x/g�.x/C 30qx�/ is a radical element for each � 2 N.
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In [1], Arnavut raises some questions about particular ht.1; 2/-pairs in Proj.ZŒh; k�/.
We consider one such unanswered question below.

Question 5.7. Does .S; T / have a radical element if

S D
°

.p1/; : : : ; .pn/; .x/;
� 1

x

�

; .x � a/; .x � b/
±

;

T D
°

.x; p1/; : : : ; .x; p`/;
� 1

x
; p`C1

�

; : : : ;
� 1

x
; pn

�±

;

where 0 � ` � n, gcd.ab; p1 � � �p`/ D 1, and the pi are distinct prime integers for
i D 1; : : : ; n?

Theorem 5.8 answers Question 5.7 in a special case.

Theorem 5.8. Assume a and b are relatively prime integers and let S and T be the
following subsets of Proj.ZŒh; k�/:

S WD
°

.p1/; : : : ; .pn/; .x/;
� 1

x

�

; .x � a/; .x � b/
±

;

T WD
°

.x; p1/; : : : ; .x; p`/;
� 1

x
; p`C1

�

; : : : ; .
1

x
; pn/

±

;

where 0 � ` � n, gcd.ab; p1 : : : p`/ D 1, and the pi are distinct prime integers for
i D 1; : : : ; n. Suppose also that pq divides .1� pt /.b2C abC a2/C qa3b3 and .1�
pt C qb2a2/.b C a/ where p D p1 : : : p`, q D p`C1 : : : pn, t D lcm.�.a2/; �.b2//,
and � is the Euler phi function. Then .S; T / has infinitely many radical elements in
Proj.ZŒh; k�/.

Proof. Consider the polynomial g.xIu; v; w/ of the form

g.xIu; v; w/ D qx4 C .pqu/x3 C .pqv/x2 C .pqw/x C .p/t

where t D lcm.�.a2/; �.b2//.
We show there exist infinitely many triples u, v, andw 2 Z such that .g.xIu; v; w//

is a radical element for .S; T / in Proj.ZŒh; k�/.
First, by Euler’s theorem, .p/�.a

2/ 
 1 .mod a2/ and .p/�.b
2/ 
 1 .mod b2/,

since gcd.a; p/ D 1 and gcd.b; p/ D 1. Thus pt � 1 
 0 .mod a2b2/, that is, a2b2

divides pt � 1.
To find u, v, and w 2 Z, we solve the system of linear equations g.aIu; v; w/ D 1

and g.bIu; v; w/ D 1; that is,

qa4 C pqa3uC pqa2v C pqaw C pt D 1; and

qb4 C pqb3uC pqb2v C pqbw C pt D 1:



The Projective Line over the Integers 237

This becomes:

uC v

a
C w

a2
D 1 � pt � qa4

pqa3
(5.1)

uC v

b
C w

b2
D 1 � pt � qb4

pqb3
(5.2)

By subtracting (5.2) from (5.1), we get

v
�b � a
ab

�

C w
�b2 � a2
a2b2

�

D .1 � pt /.b3 � a3/C q.b � a/a3b3
pqa3b3

: (5.3)

After simplifying (5.3), we deduce

v C w
�aC b
ab

�

D .1 � pt /.b2 C ab C a2/C qa3b3
pqa2b2

: (5.4)

Therefore, for every w D abk where k 2 Z, we get

v D .1 � pt /.b2 C ab C a2/C qa3b3
pqa2b2

� .aC b/k: (5.5)

Similarly, by eliminating v, and letting w D abk for k 2 Z, we get

u D �.1 � pt C qb2a2/.b C a/
pqa2b2

� k: (5.6)

Note that pq divides .1�pt /.b2CabCa2/Cqa3b3 and .1�pt Cqb2a2/.bCa/.
Moreover a2b2 divides 1 � pt . Hence u and v are integers in (5.5) and (5.6).

Now we claim that for every triple of integers u, v and w that we have found above,
the polynomial g.xIu; v; w/ WD qx4C .pqu/x3C .pqv/x2C .pqw/xC .p/t 2 ZŒx�
generates a radical element for .S; T /. First g.xIu; v; w/ is irreducible by Eisenstein’s
Criteria in ZŒ 1

x
�. Since c.g/ D pt and `.g/ D q, we have .g.xIu; v; w// � z, 8

z 2 T . Consider .g.xIu; v; w/; s/" for each s 2 S :
For s D .x/, .g.xIu; v; w/; x/ D .pt ; x/ � .pi ; x/ 2 T , where i D 1; : : : ; `.
For s D . 1

x
/, we have .g.xIu; v; w/; 1

x
/ D .q; 1

x
/. The only maximal ideals con-

taining .q; 1
x
/ are .pj ; 1x / 2 T , for j D `C 1; : : : ; n.

For s D .pi /, where i D 1; : : : ; `, we get .g.xIu; v; w/; pi / D .qx4; pi /. The only
maximal ideals containing .qx4; pi / are .x; pi /, since .q; pi / D .1/.

For sD .pj /, where j D `C1; : : : ; n, we have .g.xIu; v; w/; pj /D .pt ; pj /D .1/.
For s D .x � a/, we have .g.xIu; v; w/; x � a/ D 1 since g.aIu; v; w/ D .1/.
Similarly, for sD .x�b/, we get .g.xIu; v; w/; x�b/D .1/ since g.bIu; v; w/D 1.
Therefore we conclude that .g.xIu; v; w// is a radical element for .S; T /, for all

u; v and w 2 Z as chosen in the proof. Thus there are infinitely many radical elements
for this .S; T /-pair in Proj.ZŒh; k�/.
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Example 5.9. For S D ¹.2/; .3/; .x/; . 1
x
/; .x � 5/; .x � 7/º and T D ¹.x; 2/; . 1

x
; 3/º,

the polynomial g.xIu; v; w/ WD 3x4C 6ux3C 6vx2C 6wxC 2420 2 ZŒx� generates
a radical element for .S; T / for w D 0,

u D .1 � 2420 C 3 � 52 � 72/.5C 7/
2 � 3 � 52 � 72 2 Z; and

v D .1 � 2420/.52 C 35C 72/C 3 � 53 � 73
2 � 3 � 52 � 72 2 Z:

Note that u and v are integers since 52 �72 divides 1�2420, and also 2 �3 D 6 divides
the numerators .1�2420C3 �52 �72/.5C7/ and .1�2420/.52C35C72/C3 �53 �73.

Also, if w D 5 � 7 � k D 35k, for k 2 Z, then we get different integers u and v,
that is, g.xIu; v; w/ generates a different radical element for every k 2 Z. Therefore
.S; T / has infinitely many radical elements in Proj.ZŒh; k�/.

6 Summary and Questions

As the reader can see, there is still much to be done for the characterization of
Proj.ZŒh; k�/. In particular, the determination of which .S; T /-pairs have radical el-
ements appears to be very challenging. In the future we hope to address some of the
following questions:

Questions 6.1. (i) In the setting of Theorem 4.7 with

S D
°

.p1/; : : : ; .pn/; .x/;
� 1

x

�

; .f1/; : : : ; .fm/
±

;

T D
°

.x; p1/; : : : ; .x; pl/;
� 1

x
; plC1

�

; : : : ;
� 1

x
; pn

�±

;

where 0 � l � n, p1; : : : ; pn are distinct prime integers, is there a radical ele-
ment for .S; T / if

(a) The leading coefficient of f1 � � �fm is not a unit and plC1 � � �pn does not
divide the leading coefficient of fi , for some i?

(b) The constant coefficient of f1 � � �fm is not a unit and p1 � � �pl does not
divide the constant coefficient of fi , for some i?

(c) gcd.p1 � � �pn; `.f1 � � �fm// D 1 and gcd.p1 � � �pn; c.f1 � � �fm// D 1?

(ii) Does the .S; T /-pair in Theorem 5.8 have a radical element if we remove some
assumptions?

(iii) Let u1; : : : ; un; v1; : : : ; vm 2 H1.Proj.ZŒh; k�// � C0, and let P 2 C0. Does
there exist a Q 2 C0 such that jSn

iD1.ui ; P /"j D j
Sm
jD1.vj ; P /"j?

(iv) What happens if we change T ?



The Projective Line over the Integers 239

Acknowledgments. We are grateful to Sylvia Wiegand for her help with this article,
which is part of Celikbas’s thesis. We wish to thank Jim Coykendall for helping us to
find an example for Question 5.7 in Section 5. We also would like to thank the referee
whose comments and suggestions have greatly improved the presentation of the paper.

Bibliography

[1] Arnavut, M., The projective line over the integers. Arab J Sci Eng Sect C Theme Issues.
2001;26:1,31–44,1319–8025.

[2] Kaplansky, I., Commutative rings, Boston: Allyn and Bacon; 1970.

[3] Lang, S., Diophantine geometry. New York: Interscience; 1959.

[4] Li, A., Wiegand. S., Polynomial behavior of prime ideals in polynomial rings and the
projective line over Z. Proceedings, Factorization in Integral Domains; 1996, Iowa City,
IA. Lecture notes in Pure and applied mathematics. New York: Marcel Dekker; 1997.
p. 383–399.

[5] Li, A., Wiegand, S., Prime ideals in birational extensions of polynomials over the integers.
J Pure Appl Algebra 1998;130:313–324.

[6] Wiegand, R., Homomorphisms of affine surfaces over a finite field. J Lond Math Soc (2).
1978;18:28–32.

[7] Wiegand, R., The prime spectrum of a two-dimensional affine domain. J. Pure Appl Alge-
bra. 1986;40:209–214.

Author Information

Ela Celikbas, Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE,
USA.
E-mail: s-ecelikb1@math.unl.edu

Christina Eubanks-Turner, Department of Mathematics, University of Louisiana at Lafayette,
Lafayette, LA, USA.
E-mail: ceturner@louisiana.edu





Progress in Commutative Algebra 2, 241–299 © De Gruyter 2012

On Zero Divisor Graphs
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Abstract. We survey the research conducted on zero divisor graphs, with a focus on zero
divisor graphs determined by equivalence classes of zero divisors of a commutative ring R.
In particular, we consider the problem of classifying star graphs with any finite number of
vertices. We study the pathology of a zero divisor graph in terms of cliques, we investigate
when the clique and chromatic numbers are equal, and we show that the girth of a Noetherian
ring, if finite, is 3. We also introduce a graph for modules that is useful for studying zero
divisor graphs of trivial extensions.
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1 Introduction

In this paper, the term “ring” (unless explicitly stated otherwise) means “commutative
ring with identity,” and ring homomorphisms are assumed to respect identities.

This paper continues with the overarching goal of research in the area of zero divisor
graphs, namely the investigation of the interplay between the ring-theoretic properties
of a ring R and the graph theoretic properties of certain graphs obtained from R.
Our particular focus is on 
E .R/, the zero divisor graph determined by equivalence
classes, introduced in [29], and further studied in [8, 35] (see Definition 2.13). We
sometimes discuss G.R/, the graph defined by I. Beck, and 
.R/, the graph defined
by D. F. Anderson and P. S. Livingston; see Definitions 2.1 and 2.4. A survey of the
research concerning these graphs is given in Section 2.

The graph 
E .R/ is a condensed version of G.R/ and 
.R/, constructed in such a
way as to reduce the “noise” produced by individual zero divisors. (In [8], this is called
the “compressed” zero divisor graph.) Accordingly, 
E .R/ is smaller and simpler than
G.R/ and 
.R/. One might expect that these graphs are finite or at least have a finite
clique number1 if some finiteness condition is imposed on the ring, for example, if the
ring is Noetherian or Artinian. However, in [35], S. Spiroff and C. Wickham show
that the Noetherian condition is not enough to ensure a finite graph by exhibiting a

1 See Appendix B for a brief dictionary of terms from graph theory.

This material is based on work supported by North Dakota EPSCoR and National Science Foundation
Grant EPS-0814442. Sean Sather-Wagstaff was supported in part by a grant from the NSA.
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Noetherian ring R such that 
E .R/ is an infinite star. Moreover, in the current paper,
we show how to construct an Artinian ring R such that 
E .R/ is an infinite star; see
Examples 3.28–3.30. Proposition 5.3 shows that these examples are minimal with
respect to length.

Recall that Anderson and Livingston [10] completely characterized the star graphs
of the form 
.R/ where R is finite, proving that the star graphs G that occur as 
.R/
are precisely those such that jGj is a prime power. This leads to the question of whether
or not a star graph of any size could be realized as 
E .R/. In Section 3, we investigate
this question. In particular, Example 3.25 shows how to find rings R such that 
E .R/
is a star with c vertices where c is any positive number of the following form

2n � 4; 2n � 3; 2n � 2; 2n � 1;
2n; 2n C 1; 2n C 2; 2n C 3;
2n � 3 � 2; 2n � 3 � 1; 2n � 3; 2n � 3C 1;
2n � 3C 2; 2n � 3C 3; 2n � 7 � 4; 2n � 7 � 3;
2n � 7 � 2; 2n � 7 � 1; 2n � 7; 2n � 7C 1;
2n � 7C 2; 2n � 7C 3; 2n � 15 � 12; 2n � 15 � 11;
2n � 15 � 6; 2n � 15 � 5; 2n � 15 � 4; 2n � 15 � 3
2n � 15; 2n � 15C 1; 2n � 15C 2; 2n � 15C 3

with n a non-negative integer. At this time, the smallest star graph we do not know
how to obtain is the star with 36 vertices; see Examples 3.14, 3.15, and 3.24.

In addition, we show that the Artinian condition not is enough to guarantee finite
clique number. In particular, in Section 5, we construct an Artinian local ring with
length 6 whose graph contains an infinite clique; see Example 5.2. Our method uses
the trivial extension of the ring by its dualizing module. This is facilitated by our use
of a graph associated to an R-moduleM , called the torsion graph ofM . In an effort to
show that our example with infinite clique number is minimal, we show that for rings
R of length at most 4, the graph 
E .R/ has a finite clique number; see Propositions 5.3
and 5.8. The case where R is local of length 5 is still open.

In terms of the classification of these zero divisor graphs, we investigate cut vertices,
girth, and edge domination in Section 6 when R is Noetherian. In particular, we show
that a cut vertex of 
E .R/ corresponds to an associated prime, and the girth of the
graph, if finite, is 3; see Proposition 6.9 and Theorem 6.6. (If R is non-Noetherian and
girth.
E .R// <1, then girth.
E .R// � 4; see Proposition 6.1 (iii).)

In keeping with the previous research on zero divisor graphs, we also consider graph
homomorphisms and colorings in Sections 4 and 7, respectively. For colorings, we are
able to address a version of Beck’s conjecture regarding chromatic numbers for the
graph 
E .R/ by constructing a ring R such that !.
E .R// D 3, but �.
E .R// D 4;
see Example 7.7.
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2 Survey of Past Research on Zero Divisor Graphs

Because so much literature has been written on the topic of various zero divisor graphs,
often from very different points of view, we collect here an overview of the material.
The terms in bold are defined within the text, while the italicized terms appear in
Appendix B. Throughout, and unless otherwise stated, R will be a commutative ring
with unity.

2.1 Beck’s Zero Divisor Graph

The idea of a zero divisor graph originated with I. Beck [12].

Definition 2.1 ([12]). Given a ringR, letG.R/ denote the graph whose vertex set isR,
such that distinct vertices r and s are adjacent provided that rs D 0.

By definition, G.R/ is a simple graph, so there are no loops; thus the existence
of self-annihilating elements of R is not encoded in the graph. Moreover, because
the zero vertex is adjacent to every ring element, the graph G.R/ is connected with
diameter at most 2.

Beck’s main interest was the chromatic number �.G.R// of the graph G.R/. He
conjectured that �.G.R// equals !.G.R//, the clique number of G.R/. The clique
number is a lower bound for the chromatic number since all the vertices in a clique are
adjacent to one another and require distinct colors. Moreover, we have the following:

Theorem 2.2 ([12, Theorems 3.9, 6.13, 7.3, Propositions 7.1, 7.2]). Let R be a ring.

(i) The following conditions are equivalent:

(a) �.G.R// is finite;

(b) !.G.R// is finite;

(c) the nilradical of R is finite and is a finite intersection of prime ideals; and

(d) G.R/ does not contain an infinite clique.

(ii) Let R be such that �.G.R// is finite. If R is a finite product of reduced rings and
principal ideal rings, then !.G.R// D �.G.R//.

(iii) If �.G.R// <1, then �.G.R// D n if and only if !.G.R// D n, for n � 4.

(iv) If �.G.R// D 5, then !.G.R// D 5.

In addition, Beck lists all the finite rings R with �.G.R// � 3.
Although this result provides evidence for Beck’s conjecture, D. D. Anderson and

M. Naseer [4] provided a example where the chromatic number is strictly greater than
the clique number.
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Example 2.3 ([4, Theorem 2.1]). If R is the factor ring of Z4ŒX; Y;Z� determined by
the ideal .X2 � 2; Y 2; Z2; 2X; 2Y; 2Z; YX;XZ; YZ � 2/, then �.G.R// D 6 and
!.G.R// D 5.

Moreover, they extended Beck’s classification of finite rings with small chromatic
number to �.G.R// D 4.

2.2 Anderson and Livingston’s Zero Divisor Graph

The first simplification of Beck’s zero divisor graph was introduced by D. F. Anderson
and P. S. Livingston [10]. Their motivation was to give a better illustration of the zero
divisor structure of the ring. In this new zero divisor graph, which is still a simple
graph with edges defined the same way as above, only the zero divisors of the ring are
included; i.e., non-zero elements r of R such that AnnR.r/ ¤ .0/.

Definition 2.4 ([10]). Given a ring R, let Z�.R/ denote the set of zero divisors of R.
Let 
.R/ denote the graph whose vertex set isZ�.R/, such that distinct vertices r and
s are adjacent provided that rs D 0.

In general, we have the following, despite the absence of the zero vertex:

Theorem 2.5 ([10, Theorem 2.3]). Given a ring R, the graph 
.R/ is connected with
diameter at most 3.

Anderson and Livingston often focus on the case when R is finite, as these rings
yield finite graphs. They determine for which rings the graph is complete or a star.
For the stars, we have the following:

Theorem 2.6 ([10, Theorem 2.13]). Given a finite ring R, if the graph 
.R/ is a star
with at least four vertices, then j
.R/j D pn, for some prime p and integer n � 0.
Moreover, each star graph of order pn can be realized as 
.R/ for some R.

Anderson and Livingston, and others, e.g., [1, 2, 7, 29], investigate the interplay
between the graph theoretic properties of 
.R/ and the ring theoretic properties of
R. For example, D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston [7] study
the clique number of 
.R/ and the relationship between graph isomorphisms and ring
isomorphisms. A particularly important and surprising result is the following:

Theorem 2.7 ([7, Theorem 4.1]). Given finite reduced rings R and S that are not
fields, the graphs 
.R/ and 
.S/ are graph isomorphic if and only if R and S are
ring isomorphic.

The authors [7] also determine all n for which 
.Zn/ is planar, and pose the ques-
tion of which finite rings in general determine a planar zero divisor graph. This was
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partially answered by S. Akbari, H. R. Maimani, and S. Yassemi [1], who were able to
refine the question to local rings of cardinality at most thirty-two:

Theorem 2.8 ([1, Theorems 1.2 and 1.4]). If R is a finite local ring that is not a field
and contains at least thirty-three elements, then 
.R/ is not planar.

However, at the same time, N. O. Smith [33], independently provided a complete
answer, as well as a classification of which rings are planar, listing forty-four isomor-
phism classes in all.

Theorem 2.9 ([33, Theorems 3.7 and Corollary 3.8]). If R is a finite local ring that is
not a field and contains at least twenty-eight elements or ten zero divisors, then 
.R/
is not planar.

Some of these results were recovered by R. Belshoff and J. Chapman [13], who have
also worked on questions concerning planarity, also known as genus zero. Addition-
ally, Smith [34] studied planarity of infinite rings, as well as zero divisor graphs with
genus one, also known as toroidal zero divisor graphs. In particular, H.-J. Chiang-
Hsieh, N. O. Smith, and H.-J. Wang [16] consider rings with toroidal zero divisor
graphs. C. Wickham [36] is another researcher who has studied zero divisor graphs of
genus one. Moreover, along with N. Bloomfield, C. Wickham [14] considers graphs
of genus two.

A key component to proofs concerning planarity is Kuratowski’s Theorem, which
says that a graph is planar if and only if it contains no subgraph homeomorphic to
the complete graph K5 or the complete bipartite graph K3;3. Akbari, Maimani, and
Yassemi [1] list the rings that determine a complete r-partite graph. In particular, they
show the following:

Theorem 2.10 ([1, Theorems 2.4 and 3.2]). Let R be a finite ring such that 
.R/ is
r-partite.

(i) Then r is a prime power.

(ii) If r � 3, then at most one partitioning subset of 
.R/ can have more than one
vertex.

(iii) If R is reduced, then 
.R/ is bipartite (i.e., r D 2) if and only if there exist two
distinct primes in R with trivial intersection.

(iv) If R is reduced and 
.R/ is bipartite, then 
.R/ is complete bipartite.

These results are similar to those of Theorem 2.6 which describe the rings R such
that 
.R/ is a star, i.e., a complete bipartite graph of the form K1;n.

Another graph invariant that is studied for zero divisor graphs is the girth. Ander-
son and Livingston showed that if R is Artinian and 
.R/ contains a cycle, then the
girth is no more than four, and they conjectured that this upper bound would hold in
general. This conjecture was subsequently, and independently, established as fact by
F. DeMeyer and K. Schneider [19] and S. B. Mulay [29].
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Theorem 2.11 ([19, Theorem 1.6], [29, (1.4)]). Given a ring R, if 
.R/ is not acyclic,
then the girth of 
.R/ is at most 4.

This bound on the girth is sharp, given the following:

Example 2.12 ([10, Example 2.1 (b)]). The graph 
.Z3 
 Z3/ is a 4-cycle.

Moreover, this example shows that zero divisor graphs are not chordal. This jibes
with the fact chordal graphs are perfect. Additional results concerning the girth of

.R/ can also be found in [1, 7].

2.3 Mulay’s Zero Divisor Graph

S. B. Mulay [29] introduces the next zero divisor graph associated to a ring.

Definition 2.13 ([29]). Given a ring R, two zero divisors r; s 2 Z�.R/ are equivalent
if AnnR.r/ D AnnR.s/. The equivalence class of r is denoted Œr�. The graph 
E .R/
has vertex set equal to the set of equivalence classes ¹Œr� j r 2 Z�.R/º, and distinct
classes Œr� and Œs� are adjacent in 
E .R/ provided that rs D 0 in R.

It is shown in [29] that this is well-defined, that is, that adjacency in 
E .R/ is
independent of representatives of Œr� and Œs�. By definition, the graph 
E .R/ is simple.
Furthermore, we have the following:

Theorem 2.14 ([29]; see also [18, Theorem 1.2] and [35, Proposition 1.4]). Given a
ring R, the graph 
E .R/ is connected with diameter at most 3.

In [35], S. Spiroff and C. Wickham compare and contrast 
E .R/ with 
.R/. One
important difference between this new graph and its two predecessors is that 
E .R/
can be finite even when R is infinite, thus giving a more succinct visual description of
the zero divisor structure of the ring. Another difference is found in the set of graphs
that can be realized as 
E .R/. For instance, we have the following, in contrast with
the results of [1, 10]:

Theorem 2.15 ([35]). Let R be a Noetherian ring.

(i) If 
E .R/ is complete Kn, then n D 2.

(ii) If 
E .R/ is complete bipartite Kn;m, then n D 1, i.e., 
E .R/ is a star.

(iii) If 
E .R/ has at least three vertices, then it is not a cycle, more generally, it is
not regular.

One important aspect of this graph is that, since the vertices in the graph correspond
to annihilator ideals in the ring, the associated primes of R are represented in 
E .R/.

In order to illustrate the difference between the three zero divisor graphs discussed
so far, we provide an example of each for the same ring.
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Example 2.16. Let R D Z=12Z.

G.Z=12Z/

1

2

3

4

5

6

7

8

9

10

11

0

In Beck’s graph above, every element of Z=12Z is represented by a distinct vertex.


.Z=12Z/
6

2

10

4

8

3 9

Anderson and Livingston’s graph includes only the zero divisors, but each such
element determines a distinct vertex.


E .Z=12Z/
Œ6�Œ2� Œ4� Œ3�

In Mulay’s graph, the four distinct classes are determined by AnnR.2/ D .6/,
AnnR.3/ D .4/, AnnR.4/ D .3/, and AnnR.6/ D .2/.

2.4 Other Zero Divisor Graphs

S. P. Redmond [31] introduces a zero divisor graph with respect to an ideal.

Definition 2.17 ([31]). Given a ring R and an ideal I , the graph 
I .R/ has vertices x
from RnI such that .I WR x/ ¤ I . Distinct vertices x and y are adjacent if xy 2 I .

Of course, if I D .0/, then 
I .R/ is just 
.R/. If I is prime, then 
I .R/ D ;.
Redmond discusses the relationship between 
I .R/ and 
.R=I /.

Theorem 2.18 ([31, Corollary 2.7 and Remark 2.8]). Given a ring R and an ideal I ,
the graph 
I .R/ contains jI j disjoint subgraphs isomorphic to 
.R=I /. Moreover, if

.R=I / is a graph on n vertices, then 
I .R/ has n � jI j vertices.
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In contrast with Theorem 2.7, we have the following:

Example 2.19 ([31, Remark 2.3]). Set R D Z6 
 Z3 and S D Z24, with ideals
I D .0/ 
 Z3 and J D .8/, respectively. Then the graphs 
.R=I / and 
.S=J / are
isomorphic, but 
I .R/ and 
J .S/ are not.

H. R. Maimani, M R. Pournaki, and S. Yassemi [27] continue the study of this new
graph and take up the question of when 
I .R/ Š 
J .S/ might imply 
.R=I / Š

.S=J /. They show the following:

Theorem 2.20 ([27, Theorem 2.2]). If I and J are finite radical ideals of the rings R
and S , respectively, then 
.R=I / Š 
.S=J / and jI j D jJ j iff 
I .R/ Š 
J .S/.

Further incarnations of zero divisor graphs involve objects other than commutative
rings. For example, given a commutative semigroup S , expressed multiplicatively,
which contains 0, F. DeMeyer, T. McKenzie, and K. Schneider [18] defined a graph in
the spirit of Anderson and Livingston.

Definition 2.21 ([18]). Let S be a commutative multiplicative semigroup with 0. De-
note by 
.S/ the graph whose vertex set is the (non-zero) zero divisors of S , with an
edge drawn between distinct zero divisors x and y if and only if xy D 0.

F. DeMeyer and L. DeMeyer [17] further this construction and give some necessary
conditions for a graph G to be of the form 
.S/. For example:

Theorem 2.22 ([17, Theorem 1]). If G is the graph of a semigroup, then for each pair
x, y of non-adjacent vertices of G, there is a vertex z with N .x/ [ N .y/ � N .z/,
where N .z/ D N .z/ [ ¹zº is the closure of the neighborhood N .z/ of z.

In addition, they provide some classes of graphs that can be realized from semi-
groups, e.g., G is complete, complete bipartite, or has at least one end and diameter 2.
See [17, Theorems 1 and 3]. They also consider a zero divisor graph more in line
with Beck’s original one by including 0 in the vertex set. Denote this graph by G.S/.
In [30], S. K. Nimbhokar, M. P. Wasadikar, and L. DeMeyer study these graphs under
the additional assumption that every element of S is idempotent, in which case S is
called a meet-semilattice, and show that a version of Beck’s conjecture regarding the
chromatic number holds in this setting:

Theorem 2.23 ([30, Theorem 2 and Corollary 1]). Let S be a commutative multiplica-
tive semigroup with 0 such that every element of S is idempotent. If !.G.S// < 1,
then �.G.S// D !.G.S// and �.
.S// D !.
.S//.

Zero divisor graphs associated to semigroups are also studied by L. DeMeyer, L.
Greve, A. Sabbaghi, and J. Wang [21] and L. DeMeyer, M. D’Sa, I. Epstein, A. Geiser,
and K. Smith [20], among others.
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Remark 2.24. It is important to note that when R is a commutative ring, 
E .R/ is the
zero divisor graph of a semigroup, namely the semigroup determined by the equiva-
lence classes of zero divisors. Therefore, some of the results on semigroups may be
applied to 
E .R/; e.g., connected and diameter less than or equal to three [18, The-
orem 1.2]. However, not every semigroup graph can be obtained as 
E .R/ for some
commutative ring R; e.g., if G is complete or complete bipartite but not a star graph,
then it can be realized as 
.S/ [17, Theorems 3], but not as 
E .R/ [35, Proposi-
tions 1.5 and 1.7].

Yet another interpretation of a zero divisor graph focuses on posets P containing 0,
a concept which was introduced by R. Halas̆ and M. Jukl [24]. Their graph is in the
spirit of Beck’s original definition.

Definition 2.25 ([24]). Given a poset P containing 0, let G.P / be the graph whose
vertex set is P , such that distinct vertices x and y are adjacent provided that 0 is the
only element lying below x and y.

Theorem 2.26 ([24, Theorem 2.9]). Given a posetP containing 0, if !.G.P // is finite,
then �.G.P // D !.G.P //.

Subsequently, D. Lu and T. Wu [26] define a zero divisor graph for posets à la
Anderson and Livingston:

Definition 2.27 ([26]). Let P be a poset containing 0. A non-zero element x 2 P is a
zero divisor if there is a non-zero element y 2 P such that 0 is the only element lying
below x and y. Let 
.P / be the graph whose vertex set is Z�.P /, such that distinct
vertices x and y are adjacent provided that 0 is the only element lying below x and y.

Of particular importance in the work in [26] is the notion of a compact graph. For
instance, we have the following:

Theorem 2.28 ([26, Theorems 3.1 and 3.2]). A simple graph G is the zero divisor
graph of a poset if and only ifG is compact. Moreover, ifG is compact with!.G/<1,
then !.G/ D �.G/.

In general, zero divisor graphs of rings are not compact because of the possible
existence of nilpotent elements in the ring and the absence of loops in the graph. Ac-
cordingly, it can be shown that reduced rings yield compact zero divisor graphs (using
any of the definitions), and hence satisfy !.G/ D �.G/ whenever either is finite, or
!.G/ is infinite. Similarly, we have the following:

Theorem 2.29 ([26, Propositions 2.2 (1) and 4.1]). Given a commutative reduced mul-
tiplicative semigroup S with 0, the graph 
.S/ is compact and if 
.S/ has finite girth,
then it has girth at most 4.
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Lastly, zero divisor graphs have also been defined for non-commutative rings.

Definition 2.30 ([32]). In a non-commutative ring D, a non-zero element x is a zero
divisor if either xy D 0 or yx D 0 for some non-zero element y. Let 
.D/ be the
directed graph whose vertices are the zero divisors of D, with an edge x ! y drawn
between distinct vertices provided that xy D 0.

From the viewpoint that an undirected edge is a pair of directed edges, this definition
reverts to that of 
.R/ in the case of a commutative ring R. S. P. Redmond showed
that connectivity in the non-commutative case depends upon whether or not the set
of left and right zero-divisors coincide. S. Akbari and A. Mohammadian [3] continue
the study of this directed graph, giving an example of the smallest zero divisor graph
associated to a non-commutative ring, namely 
.D/, for D D ®�

a b
0 0

� W a; b 2 Z2
¯

,
which has the form E11  E12 ! .E11 CE12/.

Redmond also defined an undirected graph for a non-commutative ring.

Definition 2.31 ([32]). Given a non-commutative ring D, let 
 0.D/ be the graph
whose vertices are the zero divisors ofD, with an edge drawn between distinct vertices
x and y provided that xy D 0 or yx D 0.

For this graph, the properties of connectivity, diameter less than or equal to 3, and
girth less than or equal to 4 when finite, all hold, as with earlier zero divisor graphs.
Moreover, Akbari and Mohammadian show the following:

Theorem 2.32 ([3, Corollary 10]). A finite star graph can be realized as 
 0.D/ if and
only if the vertices number pn or 2pn � 1, for some prime p and some integer n � 0.

It should be noted that over 100 papers, by many authors, have been written on the
topic of zero divisor graphs, and hence we only highlight a handful of results from a
few papers. Our aim in the above survey is to give a flavor of the available research
on zero divisor graphs, especially as it pertains to the current project, which focuses
on 
E .R/, the zero divisor graph determined by equivalence classes. For another
survey article on the topic of zero divisor graphs, see D. F. Anderson, M. C. Axtell,
and J. A. Stickles [6].

3 Star Graphs
In this section, we describe some rings R such that 
E .R/ is a star. The construc-
tions are not only different, but more complicated than for 
.R/, which have a nice
characterization, namely having exactly pn vertices for p a prime and n � 0. By our
methods, stars with c < 100 vertices can be constructed as 
E .R/ for the following c
values: 1–35, 42–67, 90–99. At the time of this publication, we do not have a complete
characterization of which stars are possible.

To motivate our constructions, note that small stars, as well as an infinite star, are
constructed in [35]; see also Examples 3.28–3.30. Thus, we may assume that 
E .R/
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has at least four vertices. When R is Noetherian, then Ass.R/ D ¹pº, with p3 D 0,
and the characteristic of R is either 2, 4, or 8 by [35, Proposition 2.4]. Furthermore,
since localization at p does not change the graph (see Corollary 4.3), we may take R
to be Artinian and local with maximal ideal m D p.

For simplicity, we focus on the case where R is finite of characteristic 2. Also, we
take all zero divisors of R to be square-zero, since at most one class of zero divisor
can fail to have this property. To aid in computations, we focus on the case where R is
a standard graded algebra over F2 with irrelevant maximal ideal m such that m3 D 0.
This implies that the socle of R contains the graded ideal R2 D m2. Thus, the only
non-trivial zero divisors are in R1, that is, they are linear forms in the generators of m.
Furthermore, we have R Š F2 ˚R1 ˚R2.

We begin with a construction R[ that yields stars with even numbers of vertices.
The distinct annihilator ideals of R[ are described in Proposition 3.11. The structure
of 
E .R[/ is given in Theorems 3.12 and 3.13, and some specific star graphs are
described in Examples 3.14–3.15. In addition, at the end of the section we detail some
examples (3.28–3.30) that are relevant to our study in Section 5 of clique numbers of
“small”rings.

Construction 3.1. Let R be a Z-graded ring R D F2 ˚ R1 ˚ R2 generated over F2
by R1 such that r2 D 0 for all r 2 R1. Set d D dimF2

.R1/, and choose a basis
X1; : : : ; Xd for R1 over F2. Assume that d � 1, and fix integers e, t such that e � 1
and 1 � t � min.d; e/. Let Y D Y1; : : : ; Ye be a sequence of indeterminates, and set

R0 D RŒY�=.R2 SpanF2
.Y/C .Y/2/

R[ D RŒY�=.R2 SpanF2
.Y/C .Y/2 C .XiXj CXiYj CXjYi j 1 � i < j � t //

Š R0=.XiXj CXiYj CXjYi j 1 � i < j � t /:
Remark 3.2. Under the assumptions and notation of Construction 3.1, the ring R is
local with maximal ideal m D RC D 0˚ R1 ˚ R2 because the ideal m is maximal
and m3 D 0. The ring R0 is the special case of R[ where t D 1. The polynomial ring
RŒY� is Z2-graded where RŒY�.i;j / consists of all the homogeneous forms in RŒY� of
degree j with coefficients in Ri . For instance, this provides

Ri SpanF2
.Y/ D RŒY�.i;1/ Š

e
M

kD1
RiYk :

The next example shows how to build rings R that satisfy the assumptions of Con-
struction 3.1.

Example 3.3. Fix an integer d � 1, and let X D X1; : : : ; Xd be indeterminates.
(i) First, we consider the ring R D F2ŒX�=.X/2. Since the ideal .X/2 is homoge-

neous, the quotient ring R is graded as follows:

R D F2 ˚ SpanF2
.X/:
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It follows that R2 D 0, so r2 D 0 for all r 2 RC D 0 ˚ R1. We conclude that
Soc.R/ D R1, and 
E .R/ is a single vertex ŒX1�.

(ii) Next, we consider the ring

R D F2ŒX�=..X21 ; : : : ; X
2
d /C .X/3/:

Since the ideal .X21 ; : : : ; X
2
d
/ C .X/3 is homogeneous, the quotient ring R is graded

as follows:
R D F2 ˚ SpanF2

.X/˚ SpanF2
.¹XiXj j i ¤ j º/:

Since X2i D 0 in R for all i , it follows that r2 D 0 for all r 2 RC D 0˚R1 ˚R2.
If d D 1, then R is the same as the ring constructed in part (i), so 
E .R/ is a

single vertex ŒX1�. Assume then that d � 2. In this event, 
E .R/ is a star with 2d

vertices. Specifically, the zero divisors of R are the non-zero elements of RC, and for
each l 2 R1 and f 2 R2 with l; f ¤ 0, one has

AnnR.f / D RC D R1 ˚R2
AnnR.l/ D AnnR.l C f / D 0˚ SpanF2

.l/˚R2:
(Argue as in the proofs of Propositions 3.8 and 3.11.) Thus, 
E .R/ is a star with
central vertex Œf � and with edges Œf �� Œl1�; : : : ; Œf �� Œl2d�1� where l1; : : : ; l2d�1 are
the distinct non-zero elements of R1.

Proposition 3.4. Continue with the assumptions and notation of Construction 3.1.

(i) The ring R0 is Z2-graded with

R0 D R0.0;0/ ˚ ŒR0.1;0/ ˚R0.0;1/�˚ ŒR0.2;0/ ˚R0.1;1/�
Š F2 ˚ ŒR1 ˚ SpanF2

.Y/�˚ ŒR2 ˚R1 SpanF2
.Y/�:

(ii) The ring R0 is local with maximal ideal

m0 D R0C D 0˚ ŒR0.1;0/ ˚R0.0;1/�˚ ŒR0.2;0/ ˚R0.1;1/�:
(iii) For each non-unit f 2 R0, we have f 2 D 0.

Proof. (i) Following Remark 3.2, we have R2 SpanF2
.Y/ D RŒY�.2;1/, and the ideal

.Y/2 is generated byRŒY�.0;2/. It follows that the ideal I D .R2 SpanF2
.Y/C.Y/2/ �

RŒY� is Z2-graded, generated by RŒY�.2;1/CRŒY�.0;2/. In other words, I is the direct
sum of RŒY�.i;j / taken over the set of all ordered pairs .i; j / such that either (j � 2)
or (i � 2 and j � 1). Since Ri D 0 for all i � 3, the only bi-graded pieces of RŒY�
that survive in the quotient R0 are the following

R0.0;0/ D RŒY�.0;0/ D F2; R0.0;1/ D RŒY�.0;1/ D SpanF2
.Y/;

R0.1;0/ D RŒY�.1;0/ D R1; R0.1;1/ D RŒY�.1;1/ D R1 SpanF2
.Y/;

R0.2;0/ D RŒY�.2;0/ D R2:
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(ii) Since R0
.1;0/

D R1 and R0
.0;1/

D SpanF2
.Y/ consist of square-zero elements,

the ideal m they generate is nilpotent. Since m is maximal, it is therefore the unique
maximal ideal.

(iii) Every non-unit f 2 R0 is of the form f1 CPj gjYj where f1 is a non-unit of
R and gj 2 R. Since we are working over F2, the assumption f 21 D 0 implies that
f 2 D f 21 C

P

j g
2
j Y

2
j D 0C

P

j g
2
j 0 D 0.

We will often make use of the Z2-graded structure of R0 from Proposition 3.4 (i).
Sometimes, though, we only need to know that R0 is Z-graded, where we use the
standard induced Z-grading:

R0i D
M

pCqDi
R.p;q/;

R00 Š F2 ˚ 0˚ 0;
R01 Š 0˚ ŒR1 ˚ SpanF2

.Y/�˚ 0;
R02 Š 0˚ 0˚ ŒR2 ˚R1 SpanF2

.Y/�;

R0i D 0 for all i � 3.

Proposition 3.5. Continue with the assumptions and notation of Construction 3.1.

(i) The ring R[ is Z-graded with

R[ D R[0 ˚R[1 ˚R[2
Š F2 ˚ ŒR1 ˚ SpanF2

.Y/�

˚
�

R2 ˚R1 SpanF2
.Y/

SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t /

	

:

(ii) The ring R[ is local with maximal ideal

m[ D R[C D 0˚R[1 ˚R[2:

(iii) For each non-unit f 2 R[, we have f 2 D 0.

(iv) For 1 � i � j � t , we have .Xi C Yi /.Xj C Yj / D 0 in R[.

(v) dimF2
.R[1/ D d C e.

Proof. (i) The elements XiXj CXiYj CXjYi 2 R0 are Z-homogeneous of degree 2,
so the quotient

R[ Š R0=.XiXj CXiYj CXjYi j 1 � i < j � t /
is Z graded with deg.Xi / D 1 D deg.Yj /. The ring R0 only has non-zero summands
in degrees 0, 1, and 2. Since the elements XiXj C XiYj C XjYi have degree 2,
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the summands R0p and R[p are isomorphic (for p D 0; 1) via the natural surjection

R0 ! R[. Since R02 is in Soc.R0/, the ideal generated by the XiXj CXiYj CXjYi is
just SpanF2

.XiXj CXiYj CXjYi j 1 � i < j � t /. Hence, the desired descriptions
of R[ follow from Proposition 3.4 (i).

(ii) Since R0 is local and SpanF2
.XiXj CXiYj C XjYi j 1 � i < j � t / � m0, it

follows that R[ is local with maximal ideal

m[ D m0=SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t /:

(iii) Since every non-unit in R0 is square-zero, the same is true of the homomorphic
image R[.

(iv) When i D j , this follows from part (iii). When i < j , we have

.Xi C Yi /.Xj C Yj / D XiXj CXiYj CXjYi C YiYj D XiXj CXiYj CXjYi D 0

in R[ because YiYj D 0 D XiXj CXiYj CXjYi by construction.
(v) This follows from the description of R[1 in part (i).

Lemma 3.6. Continue with the assumptions and notation of Construction 3.1. InRŒY�,
let l 2 R1 and m 2 SpanF2

.Y/ such that lm 2 SpanF2
.XiYj C XjYi j 1 � i <

j � t /. Then l D 0 or m D 0.

Proof. Consider the polynomial ring S D F2ŒX� with the natural Z-graded surjection

 WS ! R. Note that 
i is an isomorphism for i D 0; 1. It follows that the induced
Z2-graded surjection 
ŒY�WSŒY� ! RŒY� is an isomorphism for multi-degrees .i; j /
with i � 1. (Here deg.Xi / D .1; 0/ and deg.Yj / D .0; 1/.) Thus, the condition
lm 2 SpanF2

.XiYj C XjYi j 1 � i < j � t / in RŒY�.1;1/ Š SŒY�.1;1/ implies that
there are elements �i;j 2 F2 such that lm D P

1�i<j�t �i;j .XiYj C XjYi / in SŒY�.
It follows that

lm 2 I D I2
 

X1 � � � Xt

Y1 � � � Yt

!

� SŒY�

where I is the ideal of SŒY� generated by the size-2 minors of the matrix of variables.
Since I is generated by elements of degree .1; 1/, we have I \ SŒY�.1;0/ D 0 and
I \ SŒY�.0;1/ D 0.

From [15, Theorem 2.10] we know that the ideal I 0 in F2ŒX1; : : : ; Xt ; Y1; : : : ; Yt �
generated by the size-2 minors of the matrix of variables is prime. It follows that
the ideal I D I 0SŒY� is prime in SŒY�. Hence, either l 2 I \ SŒY�.1;0/ D 0 or
m 2 I \ SŒY�.0;1/ D 0, as desired.

Remark 3.7. Set H D SpanF2
.Xi C Yi j 1 � i � t / � R[1 D R01 D RŒY�1: Given

an element f D Pd
iD1 aiXi C

Pe
jD1 bjYj 2 R[1, it is straightforward to show that

f 2 H if and only if the following conditions are satisfied:
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(i) ai D 0 D bj for all i; j > t ; and

(ii) ai D bi for all i � t .
Furthermore, in the case t D 1, we have H D 0.

Proposition 3.8. Continue with the assumptions and notation of Construction 3.1 and
Remark 3.7.

(i) For all l 2 R1 n ¹0º and m 2 SpanF2
.Y/ n ¹0º, we have lm ¤ 0 in R[.

(ii) Soc.R[/ D R[2.

(iii)
ˇ

ˇŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H�ˇˇ D 2dCe � 2d � 2e � 2t C 2.

Proof. (i) Suppose by way of contradiction that lm D 0 in R[. In the polynomial ring
RŒY� we have lm 2 RŒY�.1;1/. From the relations used to create R[, it follows that

lm 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lm D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi /

D
X

1�i<j�t
�i;jXiXj C

X

1�i<j�t
�i;j .XiYj CXjYi /

inRŒY�. The elements lm and
P

1�i<j�t �i;j .XiYj CXjYi / are inRŒY�.1;1/, and the
element

P

1�i<j�t �i;jXiXj is in RŒY�.2;0/. It follows that
P

1�i<j�t �i;jXiXj D
0, and hence

lm D
X

1�i<j�t
�i;j .XiYj CXjYi / 2 SpanF2

.XiYj CXjYi j 1 � i < j � t / � RŒY�

so Lemma 3.6 implies that l D 0 or m D 0, a contradiction.
(ii) Since R[i D 0 for all i � 3, the containment Soc.R[/ � R[2 is routine. For the

reverse containment Soc.R[/ � R[2, we use the fact that the socle of R[ is a Z-graded
ideal; this follows from the fact that R[ is Z-graded. Since R[0 consists of units, it
suffices to show that the only elements of degree 1 in Soc.R[/ are 0.

Let f 2 Soc.R[/1 � R[1 D R1 ˚ SpanF2
.Y/, and fix l 2 R1 and m 2 SpanF2

.Y/
such that f D l Cm. The assumption f 2 Soc.R[/ implies that

0 D f Y1 D lY1 CmY1 D lY1
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since .Y/2 D 0 in R[. Thus, part (i) implies that l D 0. Thus, we have f D m, and it
follows that

0 D X1f D X1m
so part (i) implies that f D m D 0, as desired.

(iii) Since R1, SpanF2
.Y/, and H have pair-wise trivial intersection, the number

of elements of ŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [ H� is given by the formula
2dCe � 2d � .2e � 1/ � .2t � 1/.
Notation 3.9. Set v D 2dCe � 2d � 2e � 2t C 2. Write

ŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H� D ¹f1; : : : ; fvº
and let 0 ¤ z 2 Soc.R/.

Lemma 3.10. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Let l; p 2 R1 and m; q 2 SpanF2

.Y/ such that l; m ¤ 0.

Set f D l Cm and g D p C q, and assume that fg D 0 in R[.

(i) If f 2 H , then g 2 H .

(ii) If f … H , then either g D 0 or g D f .

Proof. If p D 0 D q, then g D 0 and we are done. Thus, we assume that either p ¤ 0
or q ¤ 0.

Suppose that p D 0 and q ¤ 0. If follows that g D q 2 SpanF2
.Y/ n ¹0º. Since

l; m ¤ 0, we have f D lCm … AnnR[.q/ D AnnR[.g/, contradicting the assumption
fg D 0.

If p ¤ 0 and q D 0, then we arrive at a similar contradiction. Thus, we assume for
the rest of the proof that p; q ¤ 0.

In R[, we have

0 D fg D lp C lq Cmp Cmq D lp C lq Cmp
since .Y/2 D 0. It follows that

lp C lq Cmp 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lp C lq Cmp D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi / (3.10.1)

in RŒY�. Fix elements ai ; ˛i ; bj ; ǰ 2 F2 such that

l D
d
X

iD1
˛iXi ; p D

d
X

iD1
aiXi ; m D

e
X

jD1
ǰYj ; q D

e
X

jD1
bjYj :
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Substituting these expressions into (3.10.1) and collecting homogeneous components,
we obtain the following:

d
X

iD1

d
X

jD1
˛iajXiXj D

X

1�i<j�t
�i;jXiXj ; (3.10.2)

d
X

iD1

e
X

jD1
.˛ibj C ai ǰ /XiYj D

X

1�i<j�t
�i;j .XiYj CXjYi /: (3.10.3)

The set ¹XiYj j 1 � i � d; 1 � j � eº is linearly independent over F2 since the
Xi ’s are linearly independent. Thus, equation (3.10.3) yields the following system of
equations in F2:

˛ibj C ai ǰ D
´

�i;j D j̨ bi C ajˇi for 1 � i < j � t ;
0 otherwise.

(3.10.4)

The assumption l; m ¤ 0 implies that there are indices i0; j0 such that ˛i0 D 1 D
ǰ0

. Assume that i0 and j0 are the largest such indices.

Case 1: i0 > t . (This is a special case of the case f … H .) In this case, equa-
tion (3.10.4) implies that bj D ai0 ǰ for j D 1; : : : ; e. It follows that q D ai0m, and
thus g D p C ai0m. Consider the element

g C ai0f D p C ai0l 2 R1:
Since fg D 0 D ai0f 2, we have f .gCai0f / D 0. Since f ¤ 0, Proposition 3.11 (i)
implies that g C ai0f D 0, that is, that g D ai0f . Since ai0 2 F2 and g ¤ 0, it
follows that g D f , as desired.

Case 2: j0 � t . (This is another special case of the case f … H .) As in Case 1, it
follows that g D f , as desired.

Case 3: For all i; j > t we have ˛i D 0 D ǰ , and f 2 H . If there is an index i1 > t
such that ai1 D 1, then we conclude that f D g as in Case 1. Thus, we assume that
ai D 0 for all i > t and, similarly, that bj D 0 for all j > t .

Case 3A: f 2 H . The condition f 2 H implies that ˇi D ˛i for i D 1; : : : ; t ; see
Remark 3.7. To show that g 2 H , we need to show that bi D ai for i D 1; : : : ; t . For
each i , equation (3.10.4) implies that

˛ibi D aiˇi D ai˛i :
If ˛i D 1, then it follows that bi D ai , as desired. Assume that ˛i D 0. It follows that
ˇi D ˛i D 0 and ˇi0 D ˛i0 D 1, so equation (3.10.4) implies that

ai D ˛ibi0 C aiˇi0 D ˛i0bi C ai0ˇi D bi
as desired.
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Case 3B: f … H . It follows that there is an index i2 � t such that ˛i2 ¤ ˇi2 .

Case 3Bi: ˛i2 D 1 and ˇi2 D 0. Equation (3.10.4) with j D i2 yields

bi2 D ˛i2bi2 D ai2ˇi2 D 0:

For j ¤ i2, equation (3.10.4) implies that

bj C ai2 ǰ D ˛i2bj C ai2 ǰ D 0:

Combining these displays, we find that bj D ai2 ǰ for j D i; : : : ; t . It follows that
q D ai2m, and we deduce that g D f as in Case 1.

Case 3Bii: ˛i2 D 0 and ˇi2 D 1. Argue as in Case 3Bi to conclude that g D f .

Proposition 3.11. Continue with the assumptions and notation of Construction 3.1,
Remark 3.7, and Notation 3.9. For all l 2 R1 n 0 and m 2 SpanF2

.Y/ n 0, we have

(i) AnnR[.l/ D 0˚ ŒAnnR.l/1 ˚ 0�˚R[2
(ii) AnnR[.m/ D 0˚ Œ0˚ SpanF2

.Y/�˚R[2

(iii) AnnR[.l Cm/ D
´

0˚ ŒSpanF2
.l Cm/�˚R[2 if l Cm … H ,

0˚H ˚R[2 if l Cm 2 H .

Proof. (i) Since l is homogeneous of degree 1, the ideal AnnR[.l/ is also Z-graded.
Thus, we need only check the equality AnnR[.l/ D 0 ˚ ŒAnnR.l/ ˚ 0� ˚ R[2 for
graded pieces. Since R[0 consists of units of R[, the assumption l ¤ 0 implies that
AnnR[.l/0 D 0. Since Soc.R[/ D R[2, it is straightforward to show that AnnR[.l/2 D
R[2. In degree 1, the containment AnnR[.l/1 � AnnR.l/1 is straightforward. For the
reverse containment AnnR[.l/1 � AnnR.l/1, let

f 2 AnnR[.l/1 � R[1 D R1 ˚ SpanF2
.Y/

and fix p 2 R1 and q 2 SpanF2
.Y/ such that f D p C q.

In the polynomial ring RŒY� we have lf 2 RŒY�.2;0/ ˚ RŒY�.1;1/. In light of the
relations used to create R[, it follows that

lf 2 SpanF2
.XiXj CXiYj CXjYi j 1 � i < j � t / � RŒY�:

It follows that there are elements �i;j 2 F2 such that

lf D
X

1�i<j�t
�i;j .XiXj CXiYj CXjYi /;

lp C lq D
X

1�i<j�t
�i;jXiXj C

X

1�i<j�t
�i;j .XiYj CXjYi /
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in RŒY�. The elements lp and
P

1�i<j�t �i;jXiXj are in RŒY�.2;0/ and the elements
lq and

P

1�i<j�t �i;j .XiYj CXjYi / are in RŒY�.1;1/. It follows that

lp D
X

1�i<j�t
�i;jXiXj ; (3.11.1)

lq D
X

1�i<j�t
�i;j .XiYj CXjYi / (3.11.2)

Since l ¤ 0, equation (3.11.2) implies that q D 0 by Lemma 3.6. Thus, we have
f D p 2 R1 \ AnnR[.l/ D AnnR.l/1, as desired.

(ii) Again, it suffices to show that AnnR[.m/1 � SpanF2
.Y/. Let p 2 R1 and

q 2 SpanF2
.Y/ such that f D p C q 2 AnnR[.m/. Since .Y/2 D 0 in R[, we have

0 D f m D pmC qm D pm
so Lemma 3.6 implies that p D 0. It follows that f D q 2 SpanF2

.Y/, as desired.
(iii) Since AnnR[.l C m/ is a Z-graded ideal, it suffices to verify the equalities

degree-by-degree. The degree 0 and degree 2 parts are straightforward since lCm ¤ 0
and Soc.R[/ D R[2. SinceH 2 D 0 D .lCh/2 by Proposition 3.5 (iii), (iv), the degree
1 parts follow from Lemma 3.10.

Theorem 3.12. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Assume that Soc.R/ D R2.

(i) The number of distinct vertices in 
E .R[/ is c[ D c C v C 2.

(ii) 
E .R[/ is formed from 
E .R/ by adding vC2 vertices Œf1�; : : : ; Œfv�; ŒX1CY1�;
ŒY1�, and v C 2 edges Œz� � ŒY1�; Œz� � Œf1�; : : : ; Œz� � Œfv�; Œz� � ŒX1 C Y1�.

(iii) 
E .R[/ is a star if and only if 
E .R/ is a star.

Proof. (i) Proposition 3.8 (ii) says that Soc.R[/ D R[2. As z 2 Soc.R/ D R2 � R[2 D
Soc.R[/, it follows that the vertex set of 
E .R[/ consists of the socle vertex Œz� and
the vertices Œu� where u ranges through the elements of R[1 with distinct annihilators.

The non-zero elements of R[1 are of the form l , m, and l Cm where l 2 R1 n 0 and
m 2 SpanF2

.Y/ n 0; see Proposition 3.5 (i). Using Proposition 3.11, we see that:

(i) the vertices Œl �, Œm�, and Œl C m� are all distinct in 
E .R[/ since the annihilator
ideals are all different;

(ii) given another element l 0 2 R1 n 0, we have AnnR[.l/ D AnnR[.l 0/ if and only if
AnnR.l/ D AnnR.l 0/, so Œl � D Œl 0� in 
E .R[/ if and only if Œl � D Œl 0� in 
E .R/;

(iii) given another element m0 2 SpanF2
.Y/ n 0, we have AnnR[.m/ D AnnR[.m0/,

so Œm� D Œm0� in 
E .R[/;

(iv) If lCm … H , then AnnR[.lCm/ D AnnR[.l 0Cm0/ if and only if lCm D l 0Cm0,
so Œl Cm� D Œl 0 Cm0� in 
E .R[/ if and only if l Cm D l 0 Cm0; and
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(v) If l C m 2 H , then AnnR[.l C m/ D AnnR[.l 0 C m0/ if and only if l 0 C m0 2
H n ¹0º.

Thus, the distinct vertices of 
E .R[/ are the following:

(i0) Œz�;
(ii0) Œl � where l ranges through the distinct vertices Œl � ¤ Œz� of 
E .R/;

(iii0) ŒY1�;
(iv0) Œl C m� where l and m range through R1 n 0 and SpanF2

.Y/ n 0, respectively,
with l Cm … H ; and

(v0) ŒX1 C Y1�
accounting for all the elements of H . In particular, the number of vertices in 
E .R[/
is

c[ D 1C .c � 1/C 1C ˇˇŒR1 ˚ SpanF2
.Y/� n ŒR1 [ SpanF2

.Y/ [H�ˇˇC 1
D c C 2C 2dCe � 2d � 2e � 2t C 2
D c C v C 2

by Proposition 3.8 (iii).
(ii) Using the fact that z 2 Soc.R[/ with Proposition 3.11, we see the following:

(i00) the vertices Œz� and Œf � are adjacent in 
E .R[/ for every 0 ¤ f 2 R[1;

(ii00) given l; l 0 2 R1 n 0, the vertices Œl � and Œl 0� are adjacent in 
E .R[/ if and only
if they are adjacent in 
E .R/; and

(iii00) the vertices ŒY1�, Œl Cm�, and ŒX1 C Y1� are only adjacent to Œz� in 
E .R[/.

Thus, the graph 
E .R[/ has the desired form.
(iii) This follows from part (ii).

Next, we deal with the case where Soc.R/ ¤ R2, that is, when Soc.R/ © R2.
This case is slightly more complicated, but part (iii) gives us many more stars, using
Theorem 3.12.

Theorem 3.13. Continue with the assumptions and notation of Construction 3.1, Re-
mark 3.7, and Notation 3.9. Assume that Soc.R/ ¤ R2, and assume that z 2
Soc.R/ nR2. Let Œl1�; : : : ; Œlc�1�; Œz� be the distinct vertices of 
E .R/.

(i) The number of distinct vertices in 
E .R[/ is c[ D c C v C 3.

(ii) The graph 
E .R[/ is obtained from 
E .R/ by adding the following vC3 vertices
ŒY1�; Œf1�; : : : ; Œfv�; ŒzY1�; ŒX1C Y1� and the vC cC 2 edges ŒzY1�� ŒX1C Y1�;
ŒzY1�� ŒY1�; ŒzY1�� Œf1�; : : : ; ŒzY1�� Œfv�; ŒzY1�� Œz�; ŒzY1�� Œl1�; : : : ; ŒzY1��
Œlc�1�.
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(iii) The following conditions are equivalent:

(a) 
E .R[/ is a star;

(b) 
E .R/ is a single vertex;

(c) R2 D 0;

(d) Soc.R/ D R1; and

(e) c D 1.

Proof. Parts (i) and (ii) are proved like the corresponding parts of Theorem 3.12. The
only real difference is in the fact that z 2 R1 implies that z … R[2 D Soc.R[/; see
Proposition 3.8 (ii). Thus, the graph 
E .R[/ has a new socle vertex ŒzY1�.

(iii) We first show that .e/ ) .n/ for n D a–d. Assume that c D 1. It follows
by definition that Œz� is the only vertex in 
E .R/. In other words, every non-unit
f 2 R n ¹0º has AnnR.f / D AnnR.z/ D m where m D 0 ˚ R1 ˚ R2. It follows
that R2 D m2 D 0 and hence Soc.R/ D m D R1. Finally, the description of

E .R

[/ from part (ii) shows that 
E .R[/ is a star in this case. This gives the desired
implications.

Next, we show .n/ ) .e/ for n D a–d. We argue by contrapositive, so assume
that c � 2. It follows by definition that 
E .R/ is not a single vertex. Thus, there
is an element f 2 m such that AnnR.f / ¤ AnnR.z/ D m. That is, mf ¤ 0,
so R2 D m2 ¤ 0. It follows that Soc.R/ ¤ R1 since 0 ¤ R2 � Soc.R/ n R1.
Finally, the description of 
E .R[/ in part (ii) shows that 
E .R[/ contains the cycle
Œz� � Œf � � ŒzY1� � Œz� so 
E .R[/ is not a star in this case. This gives the desired
implications.

The example below uses the computations from Theorems 3.12 and 3.13.

Example 3.14. Start with R D F2ŒX�=.X/2 where X D X1; : : : ; Xd1
is a sequence of

indeterminates with d D d1 � 1. Then R2 D 0, Soc.R/ D R1, and 
E .R/ is a single
vertex; see Example 3.3 (i). Thus, Theorem 3.13 (iii) applies, and the graph 
E .R[/
obtained using e D e1 and t D t1 is a star with number of vertices

c[ D 1C v1 C 3 D 2d1Ce1 � 2d1 � 2e1 � 2t1 C 6:
For instance, when e1 D 1 we must have t1 D 1 and

c[ D 2d1C1 � 2d1 � 21 � 21 C 6 D 2d1 C 2: (3.14.1)

Some example graphs in this case are the following:

e1 D 1 D t1; d1 D 1:

ŒX1�

ŒY1�

ŒX1 C Y1�ŒX1Y1�
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d1 D 2:

ŒX1�

ŒX1 C Y1�

ŒX1 CX2 C Y1�ŒX1Y1�

ŒY1� ŒX2 C Y1�

d1 D 3:
ŒX1 CX3 C Y1�

ŒX1 CX2 C Y1�
ŒX3 C Y1�

ŒX1 C Y1�

ŒY1�

ŒX1�

ŒX2 C Y1�
ŒX2 CX3 C Y1�

ŒX1 CX2 CX3 C Y1�

ŒX1Y1�

For instance, when e1 D 2 we must have t1 D 1 or 2, and in this case we have

c[ D
´

2d1 � 3 if t1 D 1,

2d1 � 3 � 2 if t1 D 2.
(3.14.2)

Note that the case t1 D 2 above requires that d1 � 2. However, when d1 D 1, the
formula yields c[ D 4, which is covered by the case d1 D e1 D t1 D 1. Similarly, the
values of (3.14.1) and (3.14.2) for d1 D 0 can also be found.

The following table includes the values of c[ for star graphs we can construct using
this method with c[ < 100:

d1 e1 t1 c[

1 1 1 4
1 2 1 6
1 3 1 10
1 4 1 18
1 5 1 34
1 6 1 66

d1 e1 t1 c[

2 2 1 12
2 2 2 10
2 3 1 24
2 3 2 22
2 4 1 48
2 4 2 46

d1 e1 t1 c[

2 5 1 96
2 5 2 94
3 3 1 52
3 3 2 50
3 3 3 46

Proposition 3.8 (ii) implies that Soc.R[/ D R[2, so we can apply Theorem 3.12 to
conclude that 
E .R[[/ is a star with c[[ vertices where

c[[ D c[ C v2 C 2;
D Œ2d1Ce1 � 2d1 � 2e1 � 2t1 C 6�C Œ2d2Ce2 � 2d2 � 2e2 � 2t2 C 2�C 2;
D Œ2d1Ce1 � 2d1 � 2e1 � 2t1 C 6�C Œ2d1Ce1Ce2 � 2d1Ce1 � 2e2 � 2t2 C 2�C 2;
D 2d1Ce1Ce2 � 2d1 � 2e1 � 2t1 � 2e2 � 2t2 C 10:
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The tables in Appendix A include the values of c[[ for star graphs we can construct
using this method with c[[ < 100. The next display gives some special cases of this
formula:

c[[ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

2d1 � 7 if t1 D e1 D t2 D 1 and e2 D 2,

2d1 � 7 � 2 if t1 D e1 D 1 and t2 D e2 D 2,

2d1 � 15 � 4 if t1 D 1 and e1 D t1 D e2 D 2,

2d1 � 15 � 6 if t1 D e1 D t2 D e2 D 2.

(3.14.3)

The case t1 D e1 D t2 D e2 D 1 is not included, as it repeats a previous formula.
This process can be repeated ad nauseum, but the number of vertices grows very

quickly, even if one uses only one new variable at each iteration. See Appendix A.
For ease of reference, the list of even c-values with c < 100 we can produce with

this method is 2–18, 22–34, 46–66, 94–98. (Note that c D 2 is achieved from the ring
F2ŒX�=.X3/.)

Example 3.15. Fix an integer d D d1 � 2, and let X D X1; : : : ; Xd1
be indetermi-

nates. Consider the ring R D F2ŒX�=..X21 ; : : : ; X
2
d1
/C .X/3/ from Example 3.3 (ii).

The graph 
E .R/ is a star with 2d1 vertices, and Soc.R/ D R2, so we may apply
Construction 3.1 as in Example 3.14 to find that 
E .R[/ is a star with number of
vertices

c[ D 2d1Ce1 � 2e1 � 2t1 C 4:
Some special cases of this are listed next:

c[ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2d1C1 if t1 D e1 D 1,

2d1C2 � 2 if t1 D 1 and e1 D 2,

2d1C2 � 4 if t1 D e1 D 2,

2e1 � 3C 2 if d1 D 2 and t1 D 1,

2e1 � 3 if d1 D 2 and t1 D 2,

2e1 � 7C 2 if d1 D 3 and t1 D 1,

2e1 � 7 if d1 D 3 and t1 D 2,

2e1 � 7 � 4 if d1 D 3 and t1 D 3,

2e1 � 15C 2 if d1 D 4 and t1 D 1,

2e1 � 15 if d1 D 4 and t1 D 2,

2e1 � 15 � 2 if d1 D 4 and t1 D 3,

2e1 � 15 � 4 if d1 D 4 and t1 D 4,

(3.15.1)



264 J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff

This yields a few more c-values to add from the list from Example 3.14:

c[ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

20 if d1 D 2, e1 D 3, and t1 D 1,

44 if d1 D 2, e1 D 4, and t1 D 1,

42 if d1 D 2, e1 D 4, and t1 D 2,

92 if d1 D 2, e1 D 5, and t1 D 1,

90 if d1 D 2, e1 D 5, and t1 D 2.

(3.15.2)

Thus, the list of even c-values with c < 100 we can produce with this method (com-
bined with the values from Example 3.14 is 2–34, 42–66, 90–98. At this time, we do
not know how to obtain the values 36–40, 68–88.

Next, we show how to build some star graphs with odd numbers of vertices.

Construction 3.16. Let R be a Z-graded ring R D F2 ˚ R1 ˚ R2 generated over F2
by R1. Let Y be an indeterminate, and set

R# D RŒY �=..Soc.R/Y /C .R1Y 2/C .Y 3//:

Remark 3.17. Continue with the assumptions and notation of Construction 3.16. Once
again, the ring R is local with maximal ideal m D RC D 0˚R1 ˚R2. Note that we
are not assuming that r2 D 0 for all r 2 R1.

The next result is proved like Propositions 3.4 and 3.5.

Proposition 3.18. Continue with the assumptions and notation of Construction 3.16.

(i) The ring R# is Z2-graded with

R# D R#
.0;0/ ˚ ŒR#

.1;0/ ˚R#
.0;1/�˚ ŒR#

.2;0/ ˚R#
.1;1/ ˚R#

.0;2/�

Š F2 ˚ ŒR1 ˚ SpanF2
.Y /�˚

�

R2 ˚
R1 SpanF2

.Y /

Soc.R/1 SpanF2
.Y /
˚ SpanF2

.Y 2/

	

:

(ii) The ring R# is local with maximal ideal

m# D R#C D 0˚ ŒR#
.1;0/ ˚R#

.0;1/�˚ ŒR#
.2;0/ ˚R#

.1;1/ ˚R#
.0;2/�:

The element Y 2 R# is a non-unit such that Y 2 ¤ 0. Contrast this with the behavior
of the non-units in the rings R, R0, and R[.

The next results are proved like Propositions 3.8 and 3.11, and Theorem 3.12.

Proposition 3.19. Continue with the assumptions and notation of Construction 3.16.

(i) For all l 2 R1 n Soc.R/ and m 2 SpanF2
.Y / n ¹0º, we have lm ¤ 0 in R#.

(ii) Soc.R#/ D 0˚ ŒSoc.R/1 ˚ 0�˚R#
2.
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Proposition 3.20. Continue with the assumptions and notation of Construction 3.16.
For all l 2 R1 n 0, we have

(i) AnnR#.l/ D
´

m# D R#C if l 2 Soc.R/,

0˚ ŒAnnR.l/1 ˚ 0�˚R#
2 if l … Soc.R/.

(ii) AnnR#.Y / D 0˚ ŒSoc.R/1 ˚ 0�˚R#
2 D AnnR#.l C Y /.

We break the description of 
E .R#/ into three results.

Theorem 3.21. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in 
E .R/. Assume that there is an element l 2 R1
such that AnnR.l/ D Soc.R/.

(i) The number of distinct vertices in 
E .R#/ is c# D c.

(ii) 
E .R#/ is graph isomorphic to 
E .R/.

(iii) 
E .R#/ is a star if and only if 
E .R/ is a star.

Theorem 3.22. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in 
E .R/, and fix an element z 2 Soc.R/ n 0. Assume
that AnnR.l/ ¤ Soc.R/ for all l 2 R1.

(i) The number of distinct vertices in 
E .R#/ is c# D c C 1.

(ii) 
E .R#/ is formed from 
E .R/ by adding one vertex ŒY � and one edge Œz�� ŒY �.
(iii) 
E .R#/ is a star if and only if 
E .R/ is a star.

Corollary 3.23. Continue with the assumptions and notation of Construction 3.16. Let
c denote the number of vertices in 
E .R/, and fix an element z 2 Soc.R/ n 0. Assume
that m2 ¤ 0 and that r2 D 0 for all non-units r 2 R.

(i) AnnR.l/ ¤ Soc.R/ for all l 2 R1.

(ii) The number of distinct vertices in 
E .R#/ is c# D c C 1.

(iii) 
E .R#/ is formed from 
E .R/ by adding one vertex ŒY � and one edge Œz�� ŒY �.
(iv) 
E .R#/ is a star if and only if 
E .R/ is a star.

Proof. By Theorem 3.22, it suffices to show that AnnR.l/ ¤ Soc.R/ for all l 2 R1.
So, let l 2 R1 be given, and suppose that AnnR.l/ D Soc.R/. By assumption, we have
l 2 AnnR.l/ D Soc.R/, so lm D 0. This implies that m � AnnR.l/. The condition
AnnR.l/ D Soc.R/ implies that l ¤ 0, so we have m D AnnR.l/ D Soc.R/. It
follows that m2 D 0, a contradiction.

Example 3.24. We return now to the assumptions and notation of Construction 3.1.
Proposition 3.4 implies that .m[/2 ¤ 0 and that r2 D 0 for all non-units r 2 R[. The-
orems 3.12–3.13 and Corollary 3.23 imply that 
E .R[#/ is a star with c C 1 vertices.
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Thus, for each star graph with an even number of vertices c � 2 we constructed in Ex-
amples 3.14 and 3.15, we obtain a star graph with an odd number of vertices cC1. (Of
course, the graph of the ring F2ŒX�=.X2/ is a degenerate star with one vertex.) The
list of odd c-values with c < 100 we can produce with this method is 1–35, 43–67,
91–99, while we do not know how to produce 37–41, 69–89.

Next, we indicate how we obtain the list of stars from the introduction.

Example 3.25. Let n be a non-negative integer.
c D 2n � 4: If n � 4, then we may use equation (3.15.1) with t1 D e1 D 2 and

n D d1 C 2 to find a ring R[ such that 
E .R[/ is a star with 2n � 4 vertices. For
the remaining values of n, the cases n D 0; 1; 2 imply that 2n � 4 � 0 (so we do not
consider these); and the case n D 3 gives c D 2n�4 D 4which we obtained explicitly
in Example 3.14.
c D 2n�3: The rings produced in the previous paragraph all satisfy the hypotheses

of Theorems 3.12–3.13 and Corollary 3.23, as in Example 3.24, so we obtain ringsR[]

such that 
E .R[]/ is a star with 2n � 4C 1 vertices, when n � 3. For the remaining
values of n, the cases n D 0; 1 imply that 2n�3 � 0 (so we do not consider these); and
the case n D 2 gives c D 2n � 3 D 1 which we obtained explicitly in Example 3.24.

The remaining cases are derived similarly using the numbered equations from Ex-
amples 3.14 and 3.15, in conjunction with Example 3.24.

Example 3.26. Continue with the assumptions and notation of Construction 3.16. In
the ringR#, the element Y satisfies AnnR#.Y / D 0˚ ŒSoc.R/1˚0�˚R#

2 D Soc.R#/;
see Propositions 3.19 (ii) and 3.20 (ii). Thus, Theorem 3.21 (ii) implies that 
E .R##/

is graph isomorphic to 
E .R#/. Thus, one can not simply iterate this process to create
rings with star graphs of any size.

Remark 3.27. Because they are needed for the proof of Proposition 5.8 we include
three more examples of star graphs. These examples are instrumental to our argument
that rings of length less than five must have a finite clique number. See Section 5.

Example 3.28. Let k be a field of characteristic 2, and set R D kŒX; Y �=.X2; Y 2/

where X and Y are indeterminates. Then R is a local ring with length 4 and maximal
ideal m D .x; y/R where x and y are the residues of X and Y in R.

We claim that 
E .R/ is a star with number of vertices equal to 2Cjkj. The argument
is similar to the proofs above, so we only outline the steps. We have the following:

Soc.R/ D m2 D .xy/R;
AnnR.y/ D .y/RCm2 D .y/R;

AnnR.x C ay/ D .x C ay/RCm2 D .x C ay/R for all a 2 k.
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It follows that for all b; c; d 2 k such that bx C cy C dxy ¤ 0, we have

Œbx C cy C dxy� D

8

ˆ

<

ˆ

:

Œxy� if b D 0 D c,

Œy� if b D 0 and c ¤ 0,

Œx C b�1cy� if b ¤ 0,

and the distinct vertices in 
E .R/ are Œxy�, Œy�, and all classes of the form Œx C ay�
where a 2 k. No distinct vertices of the form Œy�, ŒxC ay�, and ŒxC a0y� are adjacent
in 
E .R/, and all such vertices are adjacent to Œxy�.

Example 3.29. Let k be a field of characteristic 2, and let .Q; 2Q; k/ be a discrete
valuation ring. (Note that such a ring Q exists, e.g., as a ring of Witt vectors.) We set
R D QŒY �=.4; Y 2/ where Y is an indeterminate. Then R is a local ring with length 4
and maximal ideal m D .2; y/R where y is the residue of Y in R. Since 4 D 0 D y2
in R, it follows that m2 D .2y/R.

We claim that 
E .R/ is a star with number of vertices equal to 2 C jkj. Because
most of our previous examples contain a field, we include more details for this one.
First, we observe that R Š .Q=4Q/ŒY �=.Y 2/, so R is a free Q=4Q-module of rank 2
with basis 1; y. Units in R are of the form q0 C q1y where q0 2 Qn2Q and q1 2 Q;
here, for each element q 2 Q, we write q for the residue of q in Q=4Q. Non-units in
R are of the form 2q0C q1y where q0; q1 2 Q. Moreover, it is not difficult to see that
every non-unit r 2 R satisfies r2 D 0.

We claim that Soc.R/ D m2: The containment Soc.R/ � m2 follows from the
fact that m3 D 0. For the reverse containment, let r 2 Soc.R/, say r D 2q0 C q1y
for elements q0; q1 2 Q. The equalities 0 D 2r D 4q0 C 2q1y D 2q1y imply
that 2q1 D 0 in Q=4Q; this uses the fact that R is free of rank 2 over Q=4Q with
basis 1; y. Since Q is a discrete valuation ring with maximal ideal generated by 2, it
follows that q1 2 2Q, so we have q1 D 2q01 for some q01 2 Q. Similarly, the equation
0 D yr implies that q0 D 2q00 for some q00 2 Q. Thus, we have

r D 2q0 C q1y D 4q00 C 2q01y D 2q01y 2 m2

as desired.
Next, we claim that

AnnR.y/ D .y/RCm2 D .y/R:
The containment .y/RCm2 � .y/R follows from the fact that m2 D .2y/R � .y/R
and the reverse containment is routine. The containment AnnR.y/ � .y/R is from
the fact that y2 D 0. For the reverse containment, let r 2 AnnR.y/, where, since r
is a non-unit, r D 2q0 C q1y for elements q0; q1 2 Q. Again, the equation ry D 0

implies that q0 D 2q00 for some q00 2 Q. From this we have r D q1y 2 .y/R, as
desired.

Next, we claim that

AnnR.2C qy/ D .2C qy/RCm2 D .2C qy/R (3.29.1)
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for all q 2 Q=4Q. The equality .2 C qy/R C m2 D .2 C qy/R follows as in the
previous paragraph because 2y D y.2 C qy/. The containment AnnR.2 C qy/ �
.2Cqy/RCm2 is straightforward; thus, let r 2 AnnR.2Cqy/. Since r is a non-unit
we have r D 2q0 C q1y for elements q0; q1 2 Q. Then we have

0 D r.2C qy/ D .2q0 C q1y/.2C qy/
D 4q0 C .2q0 q C 2q1/y C q1 qy2 D .2q0 q C 2q1/y:

As before, this implies that 2q0 q C 2q1 D 0 in Q=4Q, and it follows that �2q0 q C
2q1 D 0 in Q=4Q. Thus, we have 2q1 D 2q0 q in Q=4Q, and it follows that
q1 D q0 q C 2q00 for some q00 2 Q. From this we have

r D 2q0 C q1y D 2q0 C .q0 q C 2q00/y D q0.2C qy/C 2q00y 2 .2C qy/RCm2

as desired.
Next we claim that every vertex in 
E .R/ is of the form Œy�, Œ2y� or Œ2 C qy�

for some q 2 Q. Let 0 ¤ r 2 m. If r 2 m2 D Soc.R/, then Œr� D Œ2y� since
0 ¤ 2y 2 m2 D Soc.R/. Assume then that r … m2, and fix q0; q1 2 Q such that
r D 2q0 C q1y. If q0 2 2Q, then r D q1y, and the fact that r … m2 implies that
q1 2 Qn2Q; thus q1 is a unit in R and Œr� D Œy�. Assume then that q0 … 2Q. It
follows that q0 is a unit in R, so Œr� D Œ2q0C q1y� D Œ2C .q0/�1q1y� which is of the
form Œ2C qy�, as desired.

The vertices Œ2� and Œ2y� are distinct since y 2 AnnR.2y/, but y … AnnR.2/.
Likewise, the vertices Œ2y� and Œ2 C qy� are distinct for all q 2 Q. The vertices Œy�
and Œ2C qy� are distinct for all q 2 Q since y 2 AnnR.y/, but y … AnnR.2C qy/.

We claim that the vertices Œ2Cqy� and Œ2Cq0y� are equal if and only if q�q0 2 2Q,
i.e., if and only if q and q0 represent the same element in the field Q=2Q Š k. For
the first implication, assume that q � q0 2 2Q and write q � q0 D 2q00 where q00 2 Q.
Then

2C qy D 2C q0y C 2q00y
in R. Since 2q00y is in m2, by (3.29.1) it follows that Œ2C qy� D Œ2C q0y�.

For the converse, assume that Œ2 C qy� D Œ2 C q0y� in 
E .R/. It follows that
2C qy 2 AnnR.2C q0y/ D .2C q0y/R, so there are elements q0; q1 2 Q where

2C qy D .2C q0y/.q0 C q1y/ D 2q0 C .q0q0 C 2q1/y: (3.29.2)

It follows that 2 D 2q0 in Q=4Q, so 1 � q0 D 2q00 for some q00 2 Q. From the y
coefficients in (3.29.2), we have

q D q0q0 C 2q1 D q0.1 � 2q00/C 2q1 D q0 C 2.q1 � q0q00/
in Q=4Q. It follows that q � q0 2 2Q, as desired. This ends the proof of the claim.

From the above claims, we conclude that 
E .R/ is a star with central vertex Œ2y�
and distinct ends Œy� and Œ2C qy� where q ranges through a set of representatives of
Q=2Q Š k in Q=4Q. Thus, the graph 
E .R/ is a star with jkj C 2 vertices.
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Example 3.30. Let k be a field of characteristic 2, and let .Q; 2Q; k/ be a discrete
valuation ring. We let X and Y be indeterminates and set

R D QŒ�X; Y ��=.4;X2; Y 2; 2X; 2Y; 2 �XY /
Š QŒX; Y �=.4;X2; Y 2; 2X; 2Y; 2 �XY /:

We show that the graph 
E .R/ is a star with jkj C 2 vertices.
The ring R is local with maximal ideal m D .2; x; y/R D .x; y/R where x and y

are the residues of X and Y in R; this is from the equation 2 D xy in R. Given the
other equations determining R, we have m2 D .xy/R. (Note that the element 4 in the
ideal defining R is redundant since 4 D 2.2�XY /CX.2Y / inQŒŒX; Y ��. We include
it explicitly so that it is clear that 4 D 0 in R.) Since x2 D 0 D y2 and xy D 2 in R,
the elements of R all have the form s C px C qy, with p; q; s 2 Q.

We claim that len.R/ D 4. To see this, note that the ring QŒŒX; Y ��=.4;X2; Y 2/
has length 8, being a quotient of a regular local ring by the squares of the elements
of a regular system of parameters. Modding out by a non-zero element of the socle
reduces the length by 1. Thus, the ring QŒŒX; Y ��=.4;X2; Y 2; 2XY / has length 7, the
ring QŒŒX; Y ��=.4;X2; Y 2; 2X/ has length 6, the ring QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y /
has length 5, and QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2 �XY / has length 4.

Consider an element r D sCpxC qy 2 R, with p; q; s 2 Q. We claim that r D 0
if and only if p; q 2 2Q and s 2 4Q. One implication follows from the equalities
4 D 0 D 2x D 2y in R. For the converse, assume that r D 0. It follows that there are
elements f; f 0; g; g0; h 2 QŒŒX; Y �� such that

s C pX C qY D X2f C Y 2g C 2Xf 0 C 2Yg0 C .2 �XY /h: (3.30.1)

Write f D P

i;j�0 fi;jX iY j with fi;j 2 Q, and similarly for f 0; g; g0; h. Compar-
ing constant terms and coefficients for x and y in this equation, we have

s D 2h0;0 2 2Q; p D 2f 00;0 C 2h1;0 2 2Q; q D 2g00;0 C 2h0;1 2 2Q

so it remains to show that s 2 4Q. To this end, compare coefficients forXY in (3.30.1)
to find that

0 D 2f 00;0 C 2g00;0 � h0;0 C 2h1;1:
It follows that h0;0 2 2Q, so s D 2h0;0 2 4Q, as desired.

As a consequence of the previous paragraph, we find that the kernel of the natural
map Q! R is precisely 4Q.

Next, we note that an element r D s C px C qy 2 R, with p; q; s 2 Q, is a
unit in R if and only if s … 2Q. Indeed, if s 2 2Q, then r 2 .2; x; y/R D m.
For the converse, assume that s … 2Q, that is, that s is a unit in Q. It follows that
sCpX C qY is invertible inQŒŒX; Y ��, say with inverse

P

i;j�0 ai;jX iY j . Given the

fact that x2 D 0 D y2 in R, it follows readily that r�1 DP1
iD0

P1
jD0 ai;jxiyj .
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Given what we have shown, the following facts are readily verified. First, one has

Soc.R/ D m2;

AnnR.x/ D .x/RCm2 D .x/R;
AnnR.y/ D .y/RCm2 D .y/R;

AnnR.x C qy/ D .x C qy/RCm2 D .x C qy/R for all q 2 Q.

We have 2 2 Soc.R/, so every vertex v ¤ Œ2� in 
E .R/ has the form Œx�, Œy� or ŒxCqy�
for some unit q 2 Q. Furthermore, we have Œx� ¤ Œy� and Œx� ¤ Œx C qy� ¤ Œy� for
each unit q 2 Q. Also, given units q; q0 2 Q, we have ŒxCqy� D ŒxCq0y� if and only
if q�q0 2 2Q if and only if q and q0 represent the same element inQ=2Q Š k. From
this, it follows that 
E .R/ is a star with central vertex Œ2� and with 2C jkj vertices.

4 Graph Homomorphisms and Graphs Associated
to Modules

In this section we study graph homomorphisms 
E .R/! 
E .S/ induced by ring ho-
momorphisms R! S . This allows us to produce an Artinian ring R of length 4 such
that 
E .R/ is an infinite star. In addition, we introduce and study a “torsion graph”
associated to an R-module M , which is used in Section 5 to produce an Artinian ring
R of length 6 such that 
E .R/ has infinite clique number.

Proposition 4.1. Given a flat ring monomorphism 'WR ,! S , the graph 
E .R/ is
isomorphic to an induced subgraph of 
E .S/.

Proof. Let r be a zero divisor in R. Then rr 0 D 0 for some zero divisor r 0 2 R. Since
' is a ring monomorphism, it follows that '.r/ and '.r 0/ are non-zero elements of S
such that '.r/'.r 0/ D 0. Thus, Z�.R/ maps into Z�.S/. Moreover, if r; r 0 2 Z�.R/
are equivalent, then '.r/ and '.s/ are equivalent in Z�.S/: the equivalence of r and
r 0 means that AnnR.r/ D AnnR.r 0/, so the flatness of ' implies that AnnS .'.r// D
AnnR.r/S D AnnR.r 0/S D AnnS .'.r 0//, as desired; see [28, Theorem 7.4 (iii)].

Moreover, if Ann.r1/ ¤ Ann.r2/, then Ann.'.r1// ¤ Ann.'.r2// since x 2
Ann.r1/nAnn.r2/ implies '.x/ 2 Ann.'.r1//, but '.x/'.r2/ ¤ 0 since xr2 ¤ 0.
Thus, ' preserves equivalence classes. Also, we have already seen that edges in 
E .R/
correspond to edges in 
E .S/. This means that 
E .R/ is a subgraph of 
E .S/. Fi-
nally, to see that 
E .R/ is an induced subgraph, note that if there is an edge between
Œ'.r1/� and Œ'.r2/� in 
E .S/, then there is an edge between Œr1� and Œr2� in 
E .R/
since 0 D '.r1/'.r2/ D '.r1r2/ and ' is injective.

A special case of the next result is stated without proof in [29, page 3552, lines 4–5].
It is worth noting that the analogous result for 
.R/ is proved in [9, Theorem 2.2].
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Proposition 4.2. Let U be a multiplicatively closed subset, consisting of non-zero di-
visors, in the ring R. Then 
E .R/ and 
E .U�1R/ are isomorphic as graphs.

Proof. Let ' W R ,! U�1R. By Proposition 4.1, 
E .R/ is an induced subgraph of

E .U

�1R/, therefore, we only need to show that there is a one-to-one correspondence
between the vertices of 
E .R/ and those of 
E .U�1R/. Let Œr=u� 2 
E .U�1R/.
Then there exists a non-zero element r 0=u0 2 U�1R such that rr 0=uu0 D 0; i.e., there
exists u00 such that u00rr 0 D 0 in R. However, since u00 is a non-zero divisor, we must
have rr 0 D 0; so r 2 Z�.R/. Moreover, this shows that r 0=u0 2 AnnU�1R.r=u/ if
and only if r 0 2 AnnR.r/. It follows that Œr=u� D Œr=1� in 
E .U�1R/.

Corollary 4.3. If Z�.R/ [ ¹0º D nil.R/, then nil.R/ is a prime ideal and hence

E .R/ Š 
E .Rnil.R//; if R is also Noetherian, then 
E .R/ Š 
E .A/ where A is an
Artinian local ring.

As a tool for studying the clique numbers of 
E .R/, we introduce the “torsion
graph” of a finitely generated R-module M . Note that our definition is different from
those recently appearing in the literature [23].

Definition 4.4. To the pair R;M , we associate a torsion graph: (i) let GR.M/ be
the graph where every element of M is a distinct vertex; (ii) let 
R.M/ be the graph
where each non-zero torsion element of M is represented by a distinct vertex; and
(iii) let 
RE .M/ be the graph whose vertices Œm� are the equivalence classes of non-
zero torsion elements, where m; n 2 M are equivalent provided that AnnR.m/ D
AnnR.n/. For each of these graphs, join an edge between each pair of distinct vertices
if and only if their annihilator ideals have a non-trivial intersection; i.e., if and only if
AnnR.m/ \ AnnR.n/ ¤ .0/.

Example 4.5. Let R DM D Z=6Z. The graphs associated to M are shown below:

1

2

3

4

5

0

GR.M/

2

3

4


R.M/

Œ2�

Œ3�


RE .M/

On the other hand, if we let M D Z=6Z, but change the ring to R D Z, then
GZ.M/ D K6, 
Z.M/ D K5 (since 0 is omitted), and 
Z

E .M/ D K3. For
the last graph, note that there are now three classes determined by AnnR.1/ D 6Z,
AnnR.2/ D 3Z, and AnnR.3/ D 2Z.
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Proposition 4.6. If R is a domain or AnnR.M/ ¤ .0/, then 
RE .M/ is complete.

Proof. If R is a domain and M is torsion free, then the result holds vacuously; like-
wise, if the elements in the torsion submodule Tor.M/ form a single equivalence
class, then the result holds trivially. Thus, suppose Tor(M ) contains at least two
distinct classes Œm� and Œm0�. If R is a domain, there are 0 ¤ r 2 AnnR.m/ and
0 ¤ r 0 2 AnnR.m0/ such that 0 ¤ rr 0 2 AnnR.m/ \ AnnR.m0/: Likewise, if
0 ¤ r 2 AnnR.M/.

Remark 4.7. These examples and results show that many standard results for zero
divisor graphs of rings do not hold for torsion graphs associated to modules, regardless
of how the vertices are chosen. For example, all previous zero divisor graphs have
been connected. Moreover, considering 
E .R/, cycle graphs and complete graphs
with more than two vertices are not possible.

From a different perspective, given a ring R and R-module M , one can consider
the graph 
E .R ËM/, where R ËM is the trivial extension of R by M , also known
as the “idealization” of M . (Another notation for this construction is R.C/M , as in
the survey [5].) As an additive Abelian group, one has R Ë M D R ˚ M . The
multiplication .r;m/ � .r 0; m0/ D .rr 0; rm0 C r 0m/ makes R Ë M into a ring. The
following results will be useful in studying infinite cliques in the next section.

Fact 4.8. Set S D R ËM and let r 2 R and m 2M . Then:

(i) AnnS .r; 0/ D AnnR.r/˚ AnnM .r/, where AnnM .r/ D ¹m 2M jrm D 0º;
(ii) AnnS .0;m/ D AnnR.m/˚M ;

(iii) AnnS .r;m/ D ¹.s; n/js 2 AnnR.r/; n 2M with rnC sm D 0º;
(iv) If R is a domain and r ¤ 0, then AnnS .r; 0/ D AnnS .r;m/ D 0˚ AnnM .r/.

Proposition 4.9. For any ring R and any R-module M , the graph 
RE .M/ is a sub-
graph of 
E .R ËM/; it is an induced subgraph if and only if 
RE .M/ is complete.

Proof. Fact 4.8 (ii) shows the following: (1) if m is a non-zero element of M , then
.0;m/ 2 R ËM is a non-zero torsion element; and (2) two non-zero torsion elements
m;m0 2 M are equivalent if and only if the elements .0;m/ and .0;m0/ in R Ë M

are equivalent. This shows that 
RE .M/ is a subgraph of 
E .R Ë M/. However, the
classes Œ.0;m/� in 
E .R Ë M/ form a complete subgraph, therefore 
RE .M/ would
need to be complete in order to be induced.

It is natural to ask whether the natural ring homomorphism R ! R Ë M induces
a well-defined graph homomorphism 
E .R/ ! 
E .R Ë M/. Fact 4.8 (i) shows
that this is equivalent to the following: for all r; r 0 2 R if AnnR.r/ D AnnR.r 0/,
then AnnM .r/ D AnnM .r 0/. Our next result gives a criterion guaranteeing that this
condition is satisfied.
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Proposition 4.10. Assume that M satisfies one of the following conditions:

(i) M is an R-submodule of HomR.N;R/ for some R-module N .

(ii) The natural “biduality” map ıM WM ! HomR.HomR.M;R/;R/ is injective.

(iii) M is a submodule of a finite rank free R-module.

Then the natural ring homomorphism R ! R Ë M induces a well-defined graph
monomorphism 
E .R/ ! 
E .R Ë M/ making 
E .R/ into an induced subgraph of

E .R ËM/.

Proof. It is straightforward to show that (iii) ) (ii) ) (i), so we assume that M
satisfies condition (i). Let r; r 0 2 R such that AnnR.r/ D AnnR.r 0/. We claim that
AnnM .r/ D AnnM .r 0/. By symmetry, it suffices to show that AnnM .r/ � AnnM .r 0/,
so let f 2 AnnM .r/. Then f is an R-module homomorphism N ! R such that
rf D 0, that is, such that rf .n/ D 0 for all n 2 N . It follows that Im.f / �
AnnR.r/ D AnnR.r 0/, and similar reasoning implies that f 2 AnnM .r 0/.

Using the claim, Fact 4.8 (i) implies that for all r; r 0 2 R if AnnR.r/ D AnnR.r 0/,
then AnnRËM .r; 0/ D AnnRËM .r 0; 0/. Thus, the rule of assignment Œr� 7! Œ.r; 0/�

describes a well-defined function from the vertex set of 
E .R/ to the vertex set of

R.R ËM/. Moreover, Fact 4.8 (i) implies that for all r; r 0 2 R if AnnRËM .r; 0/ D
AnnRËM .r 0; 0/, then AnnR.r/ D AnnR.r 0/; hence this map is injective. Finally, it is
straightforward to show that .r; 0/.r 0; 0/ D 0 in R ËM if and only if rr 0 D 0 in R, so

E .R/ is an induced subgraph of 
E .R ËM/.

The next example shows that the natural ring homomorphism R! RËM does not
necessarily induce a well-defined graph homomorphism 
E .R/! 
E .R ËM/. See
also Example 5.2.

Example 4.11. Let R D kŒX; Y �=.X; Y /2 where k is a field, and set M D R=XR.
Then we have AnnR.X/ D .X; Y /R D AnnR.Y /, but AnnM .X/ D M © YM D
AnnM .Y /. Thus, we have ŒX� D ŒY � in 
E .R/, but Œ.X; 0/� ¤ Œ.Y; 0/� in 
E .RËM/.
It follows that the rule of assignment Œr� 7! Œ.r; 0/� does not describe a well-defined
function from the vertex set of 
E .R/ to the vertex set of 
R.R ËM/.

5 Cliques

One of our main motivations is the question of how pathological the behavior of

E .R/ can be, and how one might avoid such pathologies by imposing mild con-
ditions on R. As mentioned in the introduction, assuming that the ring is Noetherian
or Artinian is not enough to ensure that the associated graph is finite or even has finite
clique number. To construct a “small” ring R such that !.
E .R// D 1, we begin
by considering direct products of rings and reduce to the local case. Ultimately our
construction yields an Artinian ring of length 6 with an infinite clique, but the question
of whether such an example exists in length 5 is open.



274 J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff

Proposition 5.1. Let R and S be rings.

(i) 
E .R 
 S/ is infinite if and only if 
E .R/ or 
E .S/ is infinite.

(ii) 
E .R 
 S/ has an infinite clique if and only if 
E .R/ or 
E .S/ has an infinite
clique.

(iii) !.
E .R 
 S// D1 if and only if !.
E .R// D1 or !.
E .S// D1:

Proof. (i) The distinct vertices of 
E .R 
 S/ have the form Œ.1; 0/�, Œ.0; 1/�, Œ.r; 1/�,
Œ.1; s/�, Œ.r; 0/�, Œ.0; s/�, and Œ.r; s/� where r 2 Z�.R/ and s 2 Z�.S/. (This holds
even when R or S is a domain.) Thus, it is routine to show that

j
E .R 
 S/j D 2C 2j
E .R/j C 2j
E .S/j C j
E .R/jj
E .S/j;

and the result follows immediately.
(ii) If 
E .R/ has an infinite clique, then 
E .R 
 S/ has an infinite clique with

vertices of the form Œ.r; 0/�; and similarly if 
E .S/ has an infinite clique.
Conversely, assume that 
E .R 
 S/ has an infinite clique. Given the form of the

vertices of 
E .R 
 S/, it follows that 
E .R 
 S/ has an infinite clique containing
only vertices of one of the following forms: Œ.r; 1/�, Œ.1; s/�, Œ.r; 0/�; Œ.0; s/�, or Œ.r; s/�
where r 2 Z�.R/ and s 2 Z�.S/. No two vertices of the form Œ.r; 1/� or Œ.1; s/�
are adjacent, so the infinite clique must contain only vertices of one of the following
forms: Œ.r; 0/�, Œ.0; s/�, or Œ.r; s/�. If there is an infinite clique in 
E .R 
 S/ with
vertices of the form Œ.r; 0/�, then the r-values for this clique yield an infinite clique in

E .R/; and similarly if there is an infinite clique in 
E .R 
 S/ with vertices of the
form Œ.0; s/�.

Thus, we assume that 
E .R 
 S/ contains a clique with infinitely many vertices of
the form Œ.ri ; si /� where i D 1; 2; 3; : : : . Since these vertices are distinct, the ideals
AnnR.ri / ˚ AnnS .si / D AnnR�S .ri ; si / must be distinct. Thus, there are either
infinitely many distinct ideals in the set ¹AnnR.ri /ºi or in the set ¹AnnS .si /ºi . Since
rirj D 0 and sisj D 0 for all i ¤ j , it follows that either the Œri � form an infinite
clique in 
E .R/ or the Œsi � form an infinite clique in 
E .S/.

(iii) Argue as in the proof of part (ii), showing that 
E .R 
 S/ has arbitrarily large
cliques if and only if 
E .R/ or 
E .S/ has arbitrarily large cliques.

With the next example we show that even the Artinian condition on a ring is not
enough to prevent its graph of zero divisors from having an infinite clique.

Example 5.2. Let k be a field and set R D kŒX; Y �=.X; Y /2. Let x and y be the
residues in R of the variables X and Y . As a k-vector space, the ring R has rank 3
with basis 1; x; y. Moreover, this basis imposes a Z2-graded structure on R that is
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represented by the following diagram.

R �
�

��

���

Set M D ER.k/, the injective hull of k, in other words, the graded canonical module
of R, which is given as M D HomkŒX;Y �.R; kŒX; Y �/. As a k-vector space, the mod-
ule M has rank 3 with basis e; x�1; y�1, where the R-module structure is described
according to the following rules:

x � e D 0; x � x�1 D e; x � y�1 D 0;
y � e D 0; y � y�1 D e; y � x�1 D 0:

This basis imposes a Z2-graded structure on M , represented by the next diagram.

� ���

��

M �

It is straightforward to verify the following computations where a 2 k:

AnnR.e/ D .x; y/R; AnnR.y
�1/ D xR; AnnR.x

�1 C ay�1/ D .ax � y/R:

In particular, the graph 
RE .M/ has at least jkj C 2 distinct vertices. (In fact, these are
exactly the distinct vertices of 
RE .M/.) Thus, Proposition 4.9 implies that the graph

E .RËM/ contains a clique with jkjC2 distinct vertices. In particular, if k is infinite,
then 
E .R ËM/ contains an infinite clique. It is straightforward to show that R ËM
has length 6.

We conclude the example by showing that the rule of assignment Œr� 7! Œ.r; 0/� does
not describe a well-defined function from the vertex set of 
E .R/ to the vertex set of

R.R ËM/. (Contrast this with Proposition 4.10.) As in Example 4.11, this follows
from the next equalities

AnnR.x/ D .x; y/R D AnnR.y/

AnnM .x/ D .e; y�1/R ¤ .e; x�1/R D AnnM .y/

by Fact 4.8 (i).
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It is natural to ask whether the previous example is minimal, that is, if one can
construct a ring R of length 5 or less such that 
E .R/ contains an infinite clique.
Accordingly, we next characterize all graphs 
E .R/ such that len.R/ � 3, and we
show that 
E .R/ cannot contain an infinite clique if len.R/ � 4. The length 5 case is
still open; see Question 5.9 and Remark 5.10.

Proposition 5.3. If len.R/ � 3, then 
E .R/ is finite. In particular:

(i) If len.R/ D 1, then 
E .R/ D ;.

(ii) If len.R/ D 2, then 
E .R/ is either a single edge or a single vertex.

(iii) If len.R/ D 3, then j
E .R/j � 6; specifically, the graph 
E .R/ is

(a) a triangle with three ends if R is a product of three fields;

(b) a path of length 3 if R is a product of a field and a local ring of length 2, or

(c) either a single edge or a single vertex if R is local.

Proof. If len.R/ D 1, then R is a field and has no zero divisors. If len.R/ D 2, then
R is either a product of two fields, or a local ring of length 2. If R Š K1 
 K2,
then 
E .R/ is the edge Œ.1; 0/� � Œ.0; 1/�. Otherwise, there is a complete discrete
valuation ring .Q; 
/ such that R Š Q=.
2/Q; in this case, every non-unit of R is a
unit multiple of 
 , so 
E .R/ is the single vertex Œ
 �.

Suppose len.R/ D 3. Then R is isomorphic to one of the following: (1) a product
K1 
 K2 
 K3 of three fields, (2) a product of a field K1 with a local ring R2 of
length 2, or (3) a local ring.

(1) If R Š K1 
K2 
K3; then R has exactly eight ideals, including 0 and R itself,
namely, the products of copies of 0 and the Ki ’s. Each of the six non-trivial ideals is
the annihilator of an element .a; b; c/ with a; b; c D 0 or 1. It is not difficult to see that
the three vertices [(1,0,0)], [(0,1,0)], and [(0,0,1)] are all adjacent, with ends [(0,1,1)],
[(1,0,1)], and [(1,1,0)], respectively; i.e., the graph is as described.

(2) Assume that R Š K1 
 R2; where R2 has length 2. Then there is a complete
discrete valuation ring .Q; 
/ such that R Š Q=.
2/Q, and 
E .R/ is the graph
Œ.0; 1/� � Œ.1; 0/� � Œ.0; 
/� � Œ.1; 
/�.

(3) Assume that .R;m/ is local of length 3, and let e be the embedding dimension
of R, that is, the minimal number of generators of m. Since len.R/ D 3, we have
e D 1 or e D 2. If e D 1, then there is a complete discrete valuation ring .Q; 
/ such
that R Š Q=.
3/Q, and 
E .R/ is the edge Œ
 � � Œ
2�. If e D 2, then the equalities
3 D len.R/ D len.R=m/C len.m=m2/C len.m2/ imply that m2 D 0; it follows that
Soc.R/ D m, and 
E .R/ is the single vertex Œx� for any 0 ¤ x 2 m.

Remark 5.4. In general, if R is a product of n fields, then 
E .R/ will have 2n � 2
vertices and clique number n, corresponding to the n primesK1
 � � � 
cKi 
 � � � 
Kn.

Proposition 5.5 (See [7, Theorem 3.8].). If R is a reduced Noetherian ring, then
!.
E .R// D jAss.R/j <1.
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Proof. Let R be a reduced Noetherian ring and let U be the set of non-zero divisors
of R. Then U�1R is Noetherian and a finite product of fields K1 
 � � � 
Kn. Proposi-
tion 4.2 implies that 
E .R/ Š 
E .U�1R/, so Remark 5.4 implies that !.
E .R// D
!.
E .U

�1R// D n D jAss.U�1R/j D jAss.R/j.

Noting that a reduced ring contains no self-annihilating elements, we consider a
relationship between clique size and self-annihilating elements.

Proposition 5.6. Let S be clique in 
E .R/, and set N D ¹Œr� 2 S W r2 ¤ 0º and
A D ¹Œa� 2 S W a2 D 0º. If jS j � 3 and jN j � 2, then j
E .R/j � jAj C 2jN j � 1.

Proof. Suppose S is a clique in 
E .R/, and X D ¹x1; : : : xkº ¨ S with k � 2.
Consider the element x D x1 C � � � C xk . For any y 2 S � X we have xy D
Pk
iD1 xiy D 0, while for xi 2 X , we have xxi D .x1 C � � � C xk/xi D x2i , since

xixj D 0 for i ¤ j . If no element of X is self-annihilating, then Œx� is not adjacent to
any vertex of X , while Œx� is adjacent to all other vertices of S . So each such choice
of X determines a unique vertex Œx� such that Œx� … S . Letting jN j D n, there are
2n � n � 1 subsets of N with at least two elements, so we have at least 2n � n � 1
vertices of 
E .R/ which are not elements of S .

We now see

j
E .R/j � jS j C .2n � n � 1/ D jAj C jN j C .2n � n � 1/ D jAj C 2n � 1:

Corollary 5.7. If a clique of 
E .R/ contains infinitely many elements which are not
self-annihilating, then R is uncountable.

The next result uses the following facts: an Artinian ring R is isomorphic to a finite
product of Artinian local rings, and the length of R is the product of the lengths of the
factors. We note that, except for the case (v) (c), all the graphs turn out to be finite.
Also, by the notation edim we mean the embedding dimension.

Proposition 5.8. Let R be a ring of length 4.

(i) If R is a product of four fields, then !.
E .R// D 4.

(ii) If R is a product of two fields and a local ring of length 2, then !.
E .R// D 3.

(iii) If R is a product of two local rings of length 2, then !.
E .R// D 3.

(iv) If R is a product of a field and a local ring R2 of length 3, then:

(a) If edim.R2/ D 1, then !.
E .R// D 3; and

(b) If edim.R2/ D 2, then 
E .R/ is a K1;2 star graph and has clique num-
ber 2.
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(v) If R is local, we have the following:

(a) If edim.R/ D 1, then 
E .R/ is aK1;2 star graph and has clique number 2;

(b) If edim.R/ D 3, then 
E .R/ is a single vertex; and

(c) If edim.R/ D 2, then 
E .R/ can be infinite, but !.
E .R// � 3.

Proof. (i) This is from Remark 5.4.
(ii) Assume that R Š K1 
K2 
 R3 where K1 and K2 are fields and R3 is a local

ring of length 2. Then there is a complete discrete valuation ring .Q; 
/ such that
R3 Š Q=.
2/Q. Note that the only ideals of R3 are R3, 
R3, and 0.

It is straightforward to see that 
E .R/ contains a clique with vertices Œ.1; 0; 0/�,
Œ.0; 1; 0/�, and Œ.0; 0; 1/�. (There are several other cliques on three vertices.) To show
that 
E .R/ does not have a clique on four vertices, it suffices to show that it does not
have four vertices of degree at least 4.

We claim that this graph consists of the following:

� two vertices of degree 5, namely Œ.1; 0; 0/� and Œ.0; 1; 0/�;

� four vertices of degree 3, namely Œ.0; 0; 1/�, Œ.0; 0; 
/�, Œ.1; 0; 
/�, Œ.0; 1; 
/�;

� one vertex of degree 2, namely Œ.1; 1; 0/�; and

� three vertices of degree 1, namely Œ.1; 0; 1/�, Œ.0; 1; 1/�, and Œ.1; 1; 
/�.

For instance, to check that all the vertices of 
E .R/ are listed, observe that R has
exactly twelve ideals, each of the form I1 
 I2 
 I3, where Ij is an ideal of Rj for
j D 1; 2; 3. Each of the non-trivial ideals is the annihilator ideal of a zero-divisor. For
instance we have 0 
 K2 
 
R3 D AnnR.1; 0; 
/. Checking that each vertex has the
given degree is tedious but not difficult. For instance, the vertices adjacent to Œ.1; 0; 
/�
are Œ.0; 1; 0/�, Œ.0; 0; 
/�, and Œ.0; 1; 
/�.

(iii) Assume that R Š R1 
 R2 where R1 and R2 are local rings of length 2. Then
there are complete discrete valuation rings .Qi ; 
i / such that Ri Š Qi=.


2
i /Q for

i D 1; 2. Each ring Ri has exactly three ideals, namely Ri , 
iRi , and 0. This implies
that R has exactly nine ideals. Each of the seven non-trivial ideals is the annihilator
ideal of a zero-divisor.

It is straightforward to see that 
E .R/ contains a clique with vertices Œ.0; 
2/�,
Œ.
1; 
2/�, and Œ.
1; 0/�. This is actually the only clique on three vertices, and there
are no cliques on four vertices, as one can see from the following sketch of 
E .R/:

Œ.1; 
2/�

Œ.0; 
2/�

Œ.1; 0/�

Œ.
1; 0/�

Œ.0; 1/�

Œ.
1; 1/�

Œ.
1; 
2/�

It follows readily that !.
E .R// D 3.
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(iv) Assume thatR Š K1
R2 whereK1 is a field andR2 is a local ring of length 3.
Let e2 be the embedding dimension of R2, that is, the minimal number of generators
of m2. Since len.R2/ D 3, we have e2 D 1 or e2 D 2.

If e2 D 1, then there is a complete discrete valuation ring .Q; 
/ such that R2 Š
Q=.
3/Q, and 
E .R/ is the following graph with !.
E .R// D 3:

Œ.0; 1/�

Œ.1; 0/�

Œ.0; 
/�

Œ.0; 
2/�

Œ.1; 
2/�

Œ.1; 
/�

If e2 D 2, then we have m2
2 D 0, as in the proof of Proposition 5.3. It follows that

Soc.R2/ D m2, so the graph 
E .R/ has the form Œ.1; 0/�� Œ.0; x/�� Œ.1; x/� for some
(equivalently, any) 0 ¤ x 2 m2.

(v) Assume that R is local with e D edim.R/. Since len.R/ D 4, we can have
e D 1, 2, or 3. If e D 1, then R Š Q=.
4/ where .Q; 
/ is a discrete valuation ring;
in this case, the graph 
E .R/ is Œ
 � � Œ
3� � Œ
2�. If e D 3, then m2 D 0, as in the
proof of Proposition 5.3; in this case, it follows that Soc.R/ D m so 
E .R/ is the
single vertex Œx� for some (equivalently, any) 0 ¤ x 2 m.

Assume now that e D 2. The fact that 4 D len.R/ D len.R=m/C len.m=m2/C
len.m2=m3/C len.m3/ implies that m2 is principal (and nonzero) and m3 D 0.

We argue by cases.

Case 1: There is a generating sequence x; y of m such that x2 ¤ 0, and xy D y2 D 0.
In this case, it follows readily that 
E .R/ is a single edge Œx�� Œx2�, which has clique
number 2.

Case 2: There is a generating sequence x; y of m such that x2 ¤ 0, y2 ¤ 0, and
xy D 0. In this case, we show that 
E .R/ can be infinite, but that !.
E .R// D 3.

Since m3 D 0 and x2; y2 are non-zero, we conclude that x2 and y2 are each
generators for the principal ideal m2. It follows that there is a unit u 2 R such that
y2 D ux2.

We claim that

AnnR.x
2/ D AnnR.y

2/ D m; (5.8.1)

AnnR.x/ D .y/RCm2 D .y/R; (5.8.2)

AnnR.y/ D .x/RCm2 D .x/R; (5.8.3)

AnnR.x C ay/ D .x � u�1a�1y/RCm2 D .x � u�1a�1y/R; (5.8.4)

where a is a unit in R.
(5.8.1) This follows from the fact that x2 and y2 are non-zero elements of m2 and

that m3 D 0.
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(5.8.2) Since xy D 0 and m2 D .y2/R � .y/R, it suffices to show that AnnR.x/ �
.y/RCm2. Let r 2 AnnR.x/. Since r is a non-unit, there are elements s; t 2 R such
that r D sx C ty. Then we have

0 D xr D x.sx C ty/ D sx2:

If s were in Rnm, then s would be a unit, so the display would imply that x2 D 0, a
contradiction. Thus, we have s 2 m and so

r D sx C ty 2 mx C .y/R � m2 C .y/R

as desired.
(5.8.3) This is analogous to (5.8.2).
(5.8.4) First, we observe that

.x C ay/.x � u�1a�1y/ D x2 � u�1y2 D 0

since y2 D ux2. Next, we note that x.x � u�1a�1y/ D x2; it follows that m2 D
.x2/R � .x � u�1a�1y/R. Thus, it remains to show the reverse containment. Let
r 2 AnnR.x C ay/, and write r D sx C ty for s; t 2 R. Then we have

0 D .xC ay/r D .xC ay/.sxC ty/ D sx2C aty2 D sx2C atux2 D .sC atu/x2:

It follows that s C atu 2 AnnR.x2/ D m D .x; y/R, so there are elements b; c 2 R
such that s C atu D bx C cy. We then have

sx C ty D �atux C bx2 C cxy C ty D �atux C bx2 C ty
D �tau.x � a�1u�1y/C bx2 2 .x � u�1a�1y/RCm2

as desired.
Next, we observe that the vertices of 
E .R/ are of the following form: Œx2�, Œx�,

Œy�, or Œx C ay� for some unit a 2 R. Let r be a non-zero non-unit of R. Then r
is of the form r D sx C ty with s; t 2 R. If s; t 2 m, then r 2 m2 D Soc.R/,
so we have Œr� D Œx2�. If s 2 m and t 2 Rnm, then sx 2 m2 D Soc.R/ so
Œr� D Œsx C ty� D Œty� D Œy� since t is a unit in R. Similarly, if s … m and t 2 m,
then Œr� D Œx�. The last remaining case has s; t 2 Rnm, that is, they are both units, so
we have Œr� D Œsx C ty� D Œx C s�1ty�.

Since m3 D 0, we see that every vertex v ¤ Œx2� is adjacent to Œx2�. Also, the
vertices Œx� and Œy� are adjacent, so the vertices Œx2�, Œx�, and Œy� form a triangle in

E .R/, i.e., a clique of size 3. Thus, we need to show that 
E .R/ does not have a
clique of size 4. To this end, it suffices to note that the equations (5.8.1)–(5.8.4) show
that every vertex v ¤ Œx2� in 
E .R/ has degree at most 3, so this graph can not have
a clique of size 4. This concludes the proof in Case 2.
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Case 3: There is a generating sequence x; y of m such that x2 ¤ 0 and xy ¤ 0. In
this case, a change of variables reverts back to Case 1 or 2. Specifically, since m2 is
principal and x2; xy are non-zero, we have .x2/R D m D .xy/. Write xy D vx2 for
some unit v 2 R, and set Qy D y � vx. Then x2 ¤ 0 and x Qy D xy � vx2 D 0, so we
revert back to Case 1 or 2, depending on whether or not . Qy/2 D 0.

Case 4: Since all the previous arguments deal with the case where an element in a
generating sequence is not square zero, we are reduced to the assumption that any
element in a generating sequence is square zero. Moreover, if an element in m is not
a minimal generator, then as a member of m2, its square is also zero since m3 D 0.
Thus, in this case we assume that s2 D 0 for all s 2 m. We will show that 
E .R/ is
a non-degenerate star, in which case !.
E .R// D 2. Our assumptions imply that for
any generating sequence x; y of m, we have x2 D y2 D 0, but xy ¤ 0 since m2 ¤ 0.
It follows that m2 D .xy/R. Note that

0 D .x C y/2 D x2 C 2xy C y2 D 2xy:
If 2 is a unit, then xy D 0, contradicting the fact that 0 ¤ m2 D .xy/R. Thus, 2 2 m,
and hence 4 D 22 D 0 in R. There are the following two possibilities:

Case 4a: 2 D 0 in R. In this case, the ring R has characteristic 2, so R contains a field
of characteristic 2. Since R is Artinian, it is complete, so it contains a subfield k0 � R
such that k0 Š k. Cohen’s structure theorem implies that there is a ring epimorphism

 W k0ŒŒX; Y �� � R given by X 7! x and Y 7! y. Since x2 D 0 D y2, we conclude
that X2; Y 2 2 Ker.
/, so there is an induced epimorphism 
 0W k0ŒŒX; Y ��=.X2; Y 2/ �
R. Since len.k0ŒŒX; Y ��=.X2; Y 2// D 4 D len.R/, the map 
 0 is an isomorphism
R Š k0ŒŒX; Y ��=.X

2; Y 2/ Š k0ŒX; Y �=.X
2; Y 2/. Example 3.28 implies that 
E .R/

is a non-degenerate star.

Case 4b: 2 ¤ 0 in R.

Case 4b(i): 2 is a minimal generator for m. In this case, Cohen’s structure theorem
implies that there is a complete discrete valuation ring .Q; 2Q; k/ and an epimor-
phism 
 WQŒŒY �� � R such that m D .2; 
.Y //R. Since 22 D 0 D 
.Y /2 in R, it
follows that 4; Y 2 2 Ker.
/. Thus, the induced epimorphism 
 0WQŒŒY ��=.4; Y 2/ � R

is an isomorphism, as len.R/ D 4 D len.QŒŒY ��=.4; Y 2//. It follows that we have
R Š QŒŒY ��=.4; Y 2/ Š QŒY �=.4; Y 2/. Thus, Example 3.29 implies that 
E .R/ Š

E .QŒY �=.4; Y

2// is a non-degenerate star.

Case 4b(ii): 2 is not a minimal generator for m. In this case, we have 2 2 m2.
Cohen’s structure theorem implies that there is a complete discrete valuation ring
.Q; 2Q; k/ and an epimorphism 
 WQŒŒX; Y �� � R such that m D .
.X/; 
.Y //R.
Set x D 
.X/ and y D 
.Y /. Since x2 D 0 D y2 D 4 in R, it follows that
2 2 m2 D .xy/R. Writing 2 D axy for some element a 2 R, we see that a
must be a unit in R; if not, then a 2 m and so 2 D axy 2 m3 D 0, a contradic-
tion. Define 
 0WQŒŒX; Y �� ! R by sending X 7! ax and Y 7! y. Then 
 0 is also
a ring epimorphism with the added advantage of satisfying 2 D 
 0.X/
 0.Y / in R.
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It follows that 2 � XY 2 Ker.
 0/. As 
 0.X/2 D 0 D 
 0.Y /2 D 4 in R, we have
X2; Y 2; 4 2 Ker.
 0/. The facts 2 2 m2 and m3 D 0 imply that 2
 0.X/ D 0 D
2
 0.Y /, so 2X; 2Y 2 Ker.
 0/. In summary, we have .4; X2; Y 2; 2X; 2Y; 2 � XY / �
Ker.
 0/. We conclude that R Š QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2 � XY /, because
len.QŒŒX; Y ��=.4;X2; Y 2; 2X; 2Y; 2�XY // D 4; see Example 3.30. From this exam-
ple, we also know that 
E .R/ is a non-trivial star.

Question 5.9. Is there an Artinian ring R with len.R/ D 5 and !.
E .R// D1?

Remark 5.10. Working as in the proof of Proposition 5.8, one readily reduces Ques-
tion 5.9 to the case where R is local with edim.R/ D 2 or 3.

6 Girth and Cut Vertices

Assume throughout this section that R is a Noetherian ring.
In this section we continue the investigation started in [35] into the graph theoretic

properties satisfied by 
E .R/. One of our primary tools is the behavior of the associ-
ated primes of R as represented in 
E .R/; see Proposition 6.1 (ii). We prove that the
girth of 
E .R/ is no more than 3 when finite. On the other hand, there is no similar
bound on the circumference of 
E .R/. We also consider cut vertices in the graph.

6.1 Girth

We begin by listing several known results, some of which follow from direct proof on
zero divisor graphs of rings, and others that are from results on semigroups. Some
of the results in this section have a lot in common with work on Anderson and Liv-
ingston’s graph 
.R/. Therefore, where applicable, we point out the relevant papers.

Proposition 6.1.

(i) [17, Theorem 1]. If Œx� and Œy� are non-adjacent vertices of 
E .R/, then the
closed neighborhood of the vertex Œxy� contains the neighborhoods of Œx� and
Œy�; i.e., N .Œx�/ [N .Œy�/ � N .Œxy�/.

(ii) [35, Lemma 1.2]. If x; y 2 R such that AnnR.x/ and AnnR.y/ are distinct
associated primes of R, then Œx� and Œy� are adjacent in 
E .R/. If Œv� is a vertex
of 
E .R/, then either AnnR.v/ 2 Ass.R/ or there is a vertex Œw� adjacent to Œv�
such that AnnR.w/ 2 Ass.R/.

(iii) [19, Theorem 1.6; 29, (2.4)]. If Œv� 2 
E .R/ is contained in a cycle, then it is
contained in a cycle of length 3 or 4. In particular, if girth.
E .R// is finite, then
girth.
E .R// � 4.

(iv) [18, Theorem 1.5]. If girth.
E .R// < 1, then each Œv� 2 
E .R/ is either an
end or is contained in some cycle.
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Proposition 6.2. (Compare to [1, Remark 2.7].) Any vertex Œx� of 
E .R/ such that
AnnR.x/ 2 Ass.R/ dominates the edges of 
E .R/. That is, for every edge in 
E .R/,
at least one end of that edge is in N .Œx�/. Moreover, every vertex Œy� ¤ Œx� such that
y is nilpotent is adjacent to Œx�.

Proof. This follows immediately from the fact that yz D 0 2 p for all p D Ann.x/ 2
Ass.R/ forces y or z to be in Ann.x/.

Corollary 6.3. If j
E .R/j > 3 and the graph has at least one vertex Œx� with two or
more ends, then

(i) Ass.R/ D ¹AnnR.x/º;
(ii) every vertex Œy� ¤ Œx� must be adjacent to Œx�; in particular,

(a) deg.Œx�/ D j
E .R/j � 1 if j
E .R/j is finite, and

(b) no vertex other than Œx� can have an end.

Proof. Let Œx� be a vertex of 
E .R/ that has (at least) two ends Œy1�; Œy2�. Since

E .R/ has at least four vertices, it follows from [35, Proposition 3.2] that AnnR.y1/
and AnnR.y2/ are not prime. Proposition 6.1 (ii) implies that there is an associated
prime p D AnnR.z/ such that Œz� 2 N .Œy1�/; since Œy1� is an end for Œx�, we have
Œx� D Œz�, so AnnR.x/ D p 2 Ass.R/.

Since Œy1� and Œy2� are ends for Œx�, we conclude that either y21 D 0 or y22 D 0;
if not, we would have AnnR.y1/ D AnnR.y2/, contradicting the assumption Œy1� ¤
Œy2�. Assume by symmetry that y21 D 0.

Let Ann.w/ 2 Ass.R/. Proposition 6.2 implies that Œy1� is adjacent to Œw�, so the
fact that Œy1� is an end for Œx� implies that Œx� D Œw�, and so Ann.x/ D Ann.w/. That
is, we have Ass.R/ D ¹Ann.x/º. This explains (i), and Proposition 6.1 (ii) implies that
every vertex Œv� ¤ Œx� must be adjacent to Œx�. From this, part (ii) is immediate.

Proposition 6.4 (Compare to [19, Theorem 1.12].). If 
E .R/ is acyclic, then it is a
star graph or a path of length 3.

Proof. If jAss.R/j � 3 then the clique of associated primes contains a cycle; see
Proposition 6.1 (ii). Thus, we have jAss.R/j � 2. Since the graph is acyclic and each
vertex is adjacent to some associated prime, every vertex not in Ass.R/ must be an
end. In the case that one of the associated primes has two ends, then by Corollary 6.3,
we have jAss.R/j D 1, and hence every vertex in the graph is adjacent to a single
central vertex; i.e., the graph is a star. In the case that each associated prime has at
most one end, 
E .R/ is a path. (Note that if j
E .R/j < 4, the path is also a star.)

Proposition 6.5 (Compare to [1, Theorems 2.6 and 2.8, Corollary 2.2].).

(i) If jAss.R/j D 1, then either girth.
E .R// D 1 or girth.
E .R// D 3. More-
over, diam.
E .R// � 2.

(ii) If jAss.R/j � 3, then girth.
E .R// D 3.
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Proof. Note that (ii) follows immediately from Proposition 6.1 (ii) since all elements in
Ass.R/ are adjacent. Thus, suppose p D Ann.x/ is the unique associated prime of R.
Every vertex Œv� ¤ Œx� is adjacent to Œx� by Proposition 6.1 (ii), hence the diameter is
at most 2. Moreover, 
E .R/ is either a star graph, in which case girth.
E .R// D 1,
or there is at least one additional edge, in which case girth.
E .R// D 3.

Theorem 6.6. If the girth of 
E .R/ is finite, then it is 3.

Proof. Applying Proposition 6.1 (iii), we assume that girth.
E .R// D 4 and obtain a
contradiction. We claim that we may assume j
E .R/j � 6. Zero divisor graphs with
exactly five vertices are the subject of [25], where it is shown that in the four realizable
graphs the girth is either infinite or 3. Likewise, of the six connected graphs on exactly
four vertices, only three can be realized as 
E .R/ by [35, Propositions 1.5 and 1.7],
and the girth is either infinite or 3. Clearly no graph with less than four vertices can
have girth 4. Thus, assume j
E .R/j � 6:

By Proposition 6.5, there are exactly two associated primes, say p1 D AnnR.x1/
and p2 D AnnR.x2/. Proposition 6.1 (ii) implies that Œx1� and Œx2� are adjacent. Quite
a bit of information can be deduced from Proposition 6.2 since we are assuming that

E .R/ has no three cycles.

For instance, we claim that no vertex in 
E .R/, except possibly Œx1� or Œx2�, is
represented by a self-annihilating element. To see this, let Œy� 2 
E .R/n¹Œx1�; Œx2�º
and suppose that y2 D 0. Then y 2 p1 \ p2, i.e., Œy� 2 N .Œx1�/ \N .Œx2�/, resulting
in the 3-cycle Œy� � Œx1� � Œx2� � Œy�.

Using similar reasoning, we show that no pair of distinct classes in N .Œxi �/ can be
adjacent. We argue for i D 1; the case i D 2 is by symmetry. Suppose that Œv� and
Œw� are adjacent vertices in N .Œx1�/. If Œv� ¤ Œx2� ¤ Œw�, then the condition vw D 0

implies that v 2 p2 or w 2 p2; hence, either Œv� or Œw� is in N .Œx2�/, forming a 3-
cycle with Œx1� and Œx2�, a contradiction. Thus, either Œv� or Œw� is equal to Œx2�, say
Œw� D Œx2�. Then the condition vw D 0 implies that v 2 AnnR.w/ D AnnR.x2/, so
we have the 3-cycle Œv� � Œx1� � Œx2� � Œv�, another contradiction.

Next, we show that, given an edge Œa�� Œb� such that ¹Œa�; Œb�º\¹Œx1�; Œx2�º D ;, we
have a 4-cycle Œa��Œxi ��Œxj ��Œb�. Since Œa� … ¹Œx1�; Œx2�º, Proposition 6.1 (ii) implies
that Œa� is adjacent to Œxi � for some i . Similarly Œb� is adjacent to either Œxi � or Œxj �
where j ¤ i . If Œb� is adjacent to Œxi �, then we would have the 3-cycle Œa�� Œxi �� Œb�,
a contradiction. Thus Œb� is adjacent to Œxj �, and we have the 4-cycle Œa�� Œxi �� Œxj ��
Œb� � Œa�.

Next, we show that 
E .R/ has a 4-cycle containing Œx1� and Œx2�. For this, it
suffices to show that 
E .R/ contains an edge Œa�� Œb� in 
E .R/ such that ¹Œa�; Œb�º \
¹Œx1�; Œx2�º D ;, by the previous paragraph. Each Œxi � has at most one end. Since
j
E .R/j � 6 this implies that there is a vertex Œa� … ¹Œx1�; Œx2�º that is not an end.
Proposition 6.1 (ii) implies that Œa� is adjacent to Œxi � for some i . Since Œa� is not an
end, there is a vertex Œb� ¤ Œxi � adjacent to Œa�. Note that Œb� ¤ Œxj �: if Œb� D Œxj �,
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then we would have the 3-cycle Œa� � Œxi � � Œxj � D Œb� � Œa�, a contradiction. Thus,
the edge Œa� � Œb� provides the desired 4-cycle.

Note also that Corollary 6.3 implies that each Œxi � can have at most one end Œvi �,
which (by the third paragraph of this proof) necessarily satisfies v2i ¤ 0.

Next, consider the relationship between p1 and p2, and suppose pi ¨ pj . If there
is some Œy� 2 N .Œxi �/n¹Œxj �º, then there is the 3-cycle Œy� � Œx1� � Œx2� � Œy�. Thus,
all the remaining vertices must be in N .Œxj �/nN .Œxi �/. But this is impossible, since if
Œy� and Œz� are two such vertices, then they can not be adjacent to one another or Œxi �,
and hence must both be ends of Œxj �, contradicting Corollary 6.3. Thus, both p1 and
p2 are maximal elements in the family of annihilator ideals of R.

Next, we show that each vertex in N .Œxi �/n¹Œxj �º that is not an end must be part
of a 4-cycle with the edge Œx1� � Œx2� and some vertex in N .Œxj �/n¹Œxi �º. Indeed, let
Œv� 2 N .Œxi �/n¹Œxj �º such that Œv� is not an end. Since Œv� is adjacent to Œxi �, and Œv�
is not an end, there is another vertex Œw� ¤ Œxi � adjacent to Œv�. If Œw� D Œxj �, then we
have a 3-cycle Œv� � Œw� D Œxj � � Œxi � � v, a contradiction. So we have Œw� ¤ Œxj �.
Thus there is an edge Œv� � Œw� such that ¹Œv�; Œw�º \ ¹Œx1�; Œx2�º D ;, so the fifth
paragraph of this proof provides a 4-cycle Œv� � Œxi � � Œxj � � Œw� � Œv�.

The diagram below summarizes the paragraphs above and demonstrates what gen-
eral form 
E .R/must take: (1) Œx1� and Œx2� are adjacent and are part of a 4-cycle with
every edge disjoint from the edge Œx1�� Œx2�; (2) each Œxi � has at most one end; (3) any
vertex in N .Œxi �/n¹Œxj �º that is not an end must be part of a 4-cycle with Œx1�; Œx2�,
and some vertex in N .Œxj �/n¹Œxi �º; and (4) there is at least one 4-cycle on the graph.

Œv1�

Œx1�

Œa1�

Œx2�

Œb1�

Œv2�

Œa2� Œb2�

Let A be the set of all elements in N .Œx1�/n¹Œx2�º which are not ends; i.e., each
class Œai � 2 A is adjacent to some element(s) in N .Œx2�/n¹Œx1�º. Likewise, let B be
the set of all elements Œbj � in N .Œx2�/n¹Œx1�º which are not ends.

Suppose there exist distinct classes Œa1�; Œa2� 2 A: If N .Œa1�/ D N .Œa2�/, then a1
and a2 have the same annihilators, since a2i ¤ 0, so Œa1� D Œa2�, a contradiction. As-
sume by symmetry that we have N .Œa2�/ 6� N .Œa1�/, and let Œb2� 2 N .Œa2�/nN .Œa1�/.
Also, let Œb1� 2 N .Œa1�/. Thus, we have Œb1�; Œb2� 2 B such that a1b1 D 0 D a2b2
and a1b2 ¤ 0. Then N .Œa1�/ [N .Œb2�/ � N .Œa1b2�/ � N .Œxi �/ for some i , where
the first containment is Proposition 6.1 (i), and the second follows from the fact that
every annihilator ideal, in particular AnnR.a1b2/, is contained in a maximal element
of the family of annihilator ideals, hence either AnnR.x1/ or AnnR.x2/. Suppose
AnnR.a1b2/ � AnnR.x1/: Then Œb1� 2 N .Œa1�/ � N .Œx1�/, translates into the 3-
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cycle Œx1�� Œb1�� Œx2�� Œx1�, a contradiction. Likewise, if AnnR.a1b2/ � AnnR.x2/,
then Œa2� 2 N .Œb2�/ � N .Œx2�/ translates into the 3-cycle Œx1� � Œa2� � Œx2� � Œx1�.
Thus, assuming that jAj � 2, which forces jBj � 2, leads to a contradiction. By sym-
metry, assuming that jBj � 2 forces jAj � 2 and leads to a contradiction. Therefore,
we must have jAj D jBj D 1, say A D ¹Œa1�º and B D ¹Œb1�º, where a1b1 D 0; i.e.,
there is exactly one 4-cycle in the graph. Next, recall that j
E .R/j � 6. Based on the
above arguments and assumptions, it follows that j
E .R/j must be exactly 6, and that
Œx1� and Œx2� each have an end Œv1�, Œv2�, respectively.

Consider v1v2, which is a zero divisor annihilated by x1 and x2. If Œv1v2� is not
Œx1� or Œx2�, then the graph has the 3-cycle Œx1�� Œv1v2�� Œx2�� Œx1�, a contradiction.
Thus, we have Œv1v2� D Œxi � for some i . Without loss of generality, assume that
Œv1v2� D Œx1�. Since x1 2 AnnR.v1v2/ D AnnR.x1/, it follows that x21 D 0. Recall
that v21 ; v

2
2 ¤ 0. In the graph we have Œv1v2� D Œx1��Œv1�, so v21v2 D 0 and v21v

2
2 D 0.

However, since Œx1� D Œv1v2� is not adjacent to Œv2�, we have v1v22 ¤ 0. Since Œv2� is
an end for Œx2� and v21v2 D 0 ¤ v21 , we have Œv21 � D Œx2�.

Now consider a1Cx1, which is annihilated by x1, but not by v1, a1, b1, or x2. Thus,
Œa1 C x1� D Œv1�. Note that .a1 C x1/2 D a21, hence Œa21� D Œv21 � D Œx2�; this follows
from the readily verified fact that AnnR.a1/ D AnnR.v1/ implies that AnnR.a21/ D
AnnR.v21/. Thus, we have a21v2 D 0, so a1v2 is annihilated by a1; x1; x2, and b1. As
there is no such class and a1v2 can not be zero, this is the final contradiction.

Remark 6.7. To contrast the above results, note that Proposition 6.1 (iii) does not force
every 5-cycle to have a chord. In fact, it does not preclude the existence of arbitrarily
long cycles without chords. For example, for n � 4, the graph of the Noetherian
ring R D F2ŒX1; : : : ; Xn�=.X1X2; X2X3; : : : ; Xn�1Xn; XnX1/ has a Cn subgraph of
ŒX1��ŒX2��� � ��ŒXn�1��ŒXn��ŒX1�with no chord; i.e., circumference(
E .R// � n.
On the other hand, girth(
E .R// D 3 by Theorem 6.6.

6.2 Cut Vertices

Cut vertices in Anderson and Livingston’s graph 
.R/ are investigated in [11].

Lemma 6.8. If Ass.R/ D ¹Ann.v/º, then v2 D 0.

Proof. The assumption Ass.R/ D ¹Ann.v/º implies that Ann.v/ D Z�.R/ [ ¹0º,
hence v 2 Ann.v/.

In part (iii) of the next result, we employ the following terminology: LetA andB be
disjoint sets of vertices of a graph G. We say that a vertex v of G n .A[B/ separates
A and B if for all a 2 A and all b 2 B every path from a to b in G passes through v.

Proposition 6.9. Suppose v is a cut vertex in 
E .R/. Then Ann.v/ is an associated
prime of R. Moreover,
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(i) if v has at least two ends, then Ass.R/ D ¹Ann.v/º;
(ii) if v does not have an end, then Ass.R/ D ¹Ann.v/º;

(iii) if v separates subsets ¹Œa�; Œa0�º and ¹Œb�; Œb0�º where Œa�; Œa0�; Œb�; Œb0� are distinct
vertices satisfying aa0 D 0 and bb0 D 0, then Ass.R/ D ¹Ann.v/º.

Proof. Let Œv� be a cut vertex in 
E .R/, in which case there are at least three vertices in
the graph. If Œv� has an end, then Ann.v/ is an associated prime by [35, Corollary 3.3],
and (i) follows from Corollary 6.3. If Œv� does not have an end, then it is straightforward
to show that the hypotheses of part (iii) are satisfied. Thus, it remains to prove part (iii).

(iii) Assume that v separates subsets ¹Œa�; Œa0�º and ¹Œb�; Œb0�º where Œa�; Œa0�; Œb�; Œb0�
are distinct vertices satisfying aa0 D 0 and bb0 D 0. Suppose that there is an associ-
ated prime Ann.w/ ¤ Ann.v/. (Note that we do not yet know that Ann.v/ is prime.)
Since the elements of Ass.R/ dominate the edges of the graph, at least one of Œa�, Œa0�
is adjacent to Œw�, and at least one of Œb�, Œb0� is adjacent to Œw�. This provides a path
from Œa� to Œb� via Œw� avoiding Œv�, a contradiction. Thus, Ann.v/ is the only ideal that
might be an associated prime of R. Since R has an associated prime, the ideal Ann.v/
is therefore the unique associated prime of R.

Corollary 6.10. If Œv� satisfies the hypotheses of Proposition 6.9 (iii), and j
E .R/j <
1, then deg.Œv�/ > deg.Œu�/ for all Œu� 2 
E .R/.
Proof. If 
E .R/ is finite with n C 1 vertices, then Propositions 6.1 (ii) and 6.9 (iii)
show that deg.Œv�/ D n. (Recall that no vertex is adjacent to itself.) Given any other
Œu� 2 
E .R/, the cut vertex Œv� must separate Œu� from some vertex Œw�. So Œu� is not
adjacent to all other vertices, and hence deg.Œu�/ < n.

Example 6.11. The graph shown below on the left can not be the 
E .R/ for a ring
R as per the Proposition; on the other hand, the graph on the right is 
E .R/ for
R D .Z=3Z/ŒŒX; Y ��=.XY;X3; Y 3; X2 � Y 2/, where lower case letters represent the
cosets of the upper case letters in the quotient ring; see [35, Example 3.9].

Œx�

Œa�

Œw�

Œb�

Œy�

Œv�

Œx�

Œx C y�

Œy�

Œx C 2y�

Œx2�

The converse to Proposition 6.9 is not true; i.e., an associated prime need not be a
cut vertex, even when R is finite, as the next example shows.

Example 6.12. In the ring R D F2ŒX; Y;Z�=.X2; Y 2; Z2/, the ideal AnnR.xyz/ D
.x; y; z/R is the unique associated prime ideal, but not a cut vertex. To see this,
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note first that the only elements v 2 R such that AnnR.v/ D AnnR.xyz/ are the
non-zero scalar multiples of xyz. Write R as AŒZ�=.Z2/ Š A Ë A where A D
F2ŒX; Y �=.X2; Y 2/. Let r D f0.x; y/C f1.x; y/ � z and s D g0.x; y/C g1.x; y/ � z
be two non-equivalent zero divisors, where the constant coefficients of f0; g0 are nec-
essarily zero. Assume that Œr� ¤ Œxyz� ¤ Œs�. We show that Œr� and Œs� are connected
by a path not containing Œxyz�.

If both f0 and g0 have a linear term, then Œr� and Œs� are connected by the path
Œr� � Œf0z� � Œg0z� � Œs�. Note that the assumptions on f0 and g0 imply that Œf0z� ¤
Œxyz� ¤ Œg0z�. Also, the vertices Œf0z� and Œg0z� may be distinct or not, so this path
has length 2 or 3.

If f0 does not have a linear term (e.g., if f0 D 0) and g0 does have a linear term,
then we use the path Œr�� Œxz�� Œg0z�� Œs�. If f0 does have a linear term and g0 does
not have a linear term (e.g., if g0 D 0), then we use the path Œr� � Œf0z� � Œxz� � Œs�.
If f0 and g0 do not have linear terms, then we use the path Œr� � Œxz� � Œs�.

7 Chromatic Numbers and Clique Numbers

Assume throughout this section that R is a Noetherian ring.
As mentioned in the survey, the origin of research in the theory of zero divisor

graphs involved their chromatic numbers. It is important to note that D. D. Ander-
son and M. Naseer’s [4] counterexample to Beck’s conjecture that the chromatic and
clique numbers of G.R/ are equal is not reduced and has clique number 5. When
�.G.R// < 5 or R is reduced and �.G.R// <1, then Beck’s conjecture is valid [12,
Theorem 3.8 and §7]. In this section, we study smaller chromatic numbers for 
E .R/
as well as establish a version of Beck’s conjecture when R is a reduced Noetherian
ring, but ultimately prove that it does not hold in general, e.g., for the set of non-
reduced rings or rings with clique number as small as 3.

We begin with a simple upper bound on the chromatic number:

Lemma 7.1. Let � be the maximum degree of a vertex in 
E .R/. Then we have
�.
E .R// � �, except for the case � D 1 where �.
E .R// D 1 or 2.

Proof. By Brook’s Theorem [22, Theorem 5.2.4], �.
E .R// � �, unless the graph
is complete or an odd cycle. However, when 
E .R/ has at least three vertices, it is
never complete or a cycle, as per [35, Propositions 1.5 and 1.8]. The only exception is
j
E .R/j D 2, in which case �.
E .R// D 2, but � D 1.

Proposition 7.2. If R is a reduced ring, then �.
E .R// D !.
E .R// D jAss.R/j.
Proof. Recall Proposition 5.5, by which jAss.R/j D !.
E .R// � �.
E .R//. Let
Min.R/ D ¹p1; : : : ; ptº. The fact that R is reduced implies that for each x 2 Z�.R/
there are indices i and j such that x 2 pi and x … pj . Define a coloring by f .Œx�/ D
min¹i W x … piº. If f .Œx�/ D k C 1, then x 2 pi for 1 � i � k, but x … pkC1.
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If Œx� and Œy� are adjacent, then y 2 pkC1, by Proposition 6.2. Thus, Œx� and Œy� are
assigned different colors. Hence, we have �.
E .R// � jMin.R/j D jAss.R/j.

Following Beck’s lead, we establish some results for rings with small chromatic
numbers for 
E .R/. We note that D. F. Anderson, A. Frazier, A. Lauve, and P. S. Liv-
ingston [7, Section 3] have considered similar ideas for the Anderson and Livingston
graph 
.R/.

7.1 Chromatic/Clique Number 1

Since 
E .R/ is connected, we have �.
E .R// D 1 if and only if !.
E .R// D 1 if
and only if 
E .R/ consists of a single vertex. Hence, when these conditions are satis-
fied, we have xy D 0 for every x; y inZ�.R/. Thus, Anderson and Livingston’s graph

.R/ is complete; see [10, Theorem 2.8]. We have the following characterization.

Proposition 7.3. We have �.
E .R// D 1 if and only if Ass.R/ D ¹pº such that
p2 D 0. When these conditions are satisfied, we have Q.R/ D Rp Š R0 Ë V , where
.R0;m0/ is a local ring such that m0 D pR0 where p D char.Rp=pRp/ satisfies
m2
0 D 0 and V is a finite-dimensional vector space over R0=m0.

Proof. Assume first that �.
E .R// D 1. Then

1 � jMin.R/j � jAss.R/j � �.
E .R// D 1
so Ass.R/ D ¹pº for some prime p. It follows that Z�.R/ D p � ¹0º. As we noted
above, we have xy D 0 for every x; y in Z�.R/ D p � ¹0º, so p2 D 0.

Conversely, assume that Ass.R/ D ¹pº such that p2 D 0. It follows that xy D 0 for
every x; y in Z�.R/ D p � ¹0º, so 
E .R/ is a single vertex, hence �.
E .R// D 1.

Continue to assume that Ass.R/ D ¹pº such that p2 D 0. It follows that Z�.R/ D
p�¹0º, soQ.R/ D Rp is a local ring with maximal ideal pRp such that .pRp/

2 D 0.
The fact that Rp has the desired form is probably well known; however, we do not
know of an appropriate reference, so we include a proof here.

Replace R by Rp to assume that R is a local ring with unique maximal ideal p such
that p2 D 0. In particular R is a complete local ring. Set k D R=p.

If R contains a field, then Cohen’s structure theorem provides a monomorphism
k ! R such that the composition k ! R ! R=p D k is an isomorphism. It
follows that R is the internal direct sum R D k ˚ p as a k-vector space. From this,
it is straightforward to show that R Š k Ë p. Since p is finitely generated such that
p2 D 0, we conclude that p is a finite dimensional vector space over k.

Assume that R does not contain a field, and set p D char.k/. In this case, Cohen’s
structure theorem provides a complete discrete valuation ring .A; pA; k/ and a ring
homomorphism f WA ! R such that the induced map k D A=pA ! R=p D k

is an isomorphism. Since R does not contain a field and p2 D 0, we conclude that
Ker.f / D p2A. In R we have p ¤ 0 since R does not contain a field, and p2 D 0
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since p2 2 p2 D 0. In particular, we have p 2 p � p2, so p has a minimal generating
sequence of the form p; x1; : : : ; xn. The map F WAŒŒX1; : : : ; Xn��! R given byXi 7!
xi is a well-defined ring epimorphism. Since we have chosen a minimal generating
sequence for p, the fact that p2 D 0 implies that Ker.F / D .p;X1; : : : ; Xn/

2. Thus,
we have

R Š AŒŒX1; : : : ; Xn��=.p;X1; : : : ; Xn/2 Š .A=p2A/ŒŒX1; : : : ; Xn��=.pXi ; XiXj /:
From this description, it follows readily that R Š .A=p2A/ Ë V where V is the finite
dimensional vector space V D .x1; : : : ; xn/R over A=pA D k.

Corollary 7.4. If R is a finite ring such that �.
E .R// D 1, then R is local with
maximal ideal m such that m2 D 0 and char.R/ D p or p2 where p D char.R=m/.
Moreover, R Š R0 Ë V , where .R0;m0/ is either isomorphic to the finite field R=m
or a ring of order jR=mj2 such that m0 D pR0 satisfies m2

0 D 0, and V is a finite-
dimensional vector space over R0=m0.

7.2 Chromatic/Clique Number 2

The non-trivial star graphs in Section 3 have chromatic number 2, as does a path of
length 3. Our next result says that these are the only ways to get chromatic number 2.

Proposition 7.5. The following are equivalent:

(i) !.
E .R// D 2;

(ii) �.
E .R// D 2;

(iii) 
E .R/ is acyclic, with at least two vertices; and

(iv) 
E .R/ is a non-degenerate star or a path of length 3.

Proof. If 
E .R/ is a single vertex, then !.
E .R// D �.
E .R// D 1, and all the
conditions (i)–(iv) are false. Assume 
E .R/ has at least two vertices. Since it is
connected, we have �.
E .R// � !.
E .R// � 2, hence (ii) ) (i). We have
!.
E .R// D 2 if and only if 
E .R/ contains no cycle of length 3, since such a cycle
is also a clique of size 3. By Theorem 6.6, 
E .R/ contains no cycle of length 3 if and
only if it is acyclic. So (i), (iii). By [22, Proposition 1.6.1], we have �.
E .R// D 2
if and only if 
E .R/ contains no odd cycle. Thus, we have (iii) ) (ii). The equiva-
lence (iv), (iii) is from Proposition 6.4.

7.3 Chromatic/Clique Number 3

Proposition 7.6. If �.
E .R// D 3, then !.
E .R// D 3.

Proof. If �.
E .R// D 3, then !.
E .R// � 3 and 
E .R/ has an odd cycle by [22,
Proposition 1.6.1]. Consequently, !.
E .R// D 3 by Theorem 6.6.
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The next example provides a finite local ring R such that !.
E .R// D 3 and
�.
E .R// D 4. In particular, the converse of the previous result is false, as our exam-
ple provides a negative answer to the question, motivated by Beck’s original work, of
whether or not !.
E .R// D �.
E .R//.

Example 7.7. Let F be a field. Consider a sequence X D X1; : : : ; X5 of indetermi-
nates, and set

R D F ŒX�
.X1X2; X2X3; X3X4; X4X5; X1X5/C .X/3 :

Note that R is local and Artinian with maximal ideal m D .X/R such that m3 D 0.
To simplify computations, we perform arithmetic on subscripts modulo 5. For in-

stance, we occasionally write XiC2 in place of Xi�3 when i � 4. This allows us to
consider expressions like XiXiC2 for i D 1; : : : ; 5 without worrying about separate
cases for i � 3 and i > 3. For instance, this allows us to write Xi�1Xi D 0 D
XiXiC1 in R for i D 1; : : : ; 5.

For i D 1; : : : ; 5 let ei 2 Z5 be the i th standard basis vector. The ring R is Z5-
graded with deg.Xi / D ei because the ideal definingR is a monomial ideal. It follows
readily that

Soc.R/ D 0˚ 0˚R2 (7.7.1)

where we use the naturally induced Z-grading, and

AnnR.Xi / D 0˚ SpanF .Xi�1; XiC1/˚R2: (7.7.2)

It follows that

AnnR.X
2
1 / D Soc.R/ D AnnR.q.X// (7.7.3)

for all nonzero quadratic forms q.X/ 2 R2.
Next, we claim that for i D 1; : : : ; 5 and for all non-zero elements a; b 2 F we

have

AnnR.aXi C bXiC2/ D 0˚ SpanF .XiC1/˚R2: (7.7.4)

The containment � follows from the fact that XiXiC1 D 0 D XiC1XiC2. For the
reverse containment, let l 2 AnnR.aXi C bXiC2/. Since R is graded with Soc.R/ D
R2, we assume without loss of generality that l 2 AnnR.aXi C bXiC2/1. There
are (unique) elements c1; : : : ; c5 2 F such that l D P5

jD1 cjXj . The condition
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l 2 AnnR.aXi C bXiC2/ implies that

0 D l.aXi C bXiC2/ D
�

5
X

jD1
cjXj

�

.aXi C bXiC2/:

The coefficient of X2i in the right-hand expression is cia; the Z5 grading implies that
cia D 0, so ci D 0 since a is a unit in the field F . (This uses the fact that X2i is not
in the ideal defining R.) Similarly, we have ciC2 D 0. The coefficient for XiXiC3
is ciC3a, so the same reasoning implies that ciC3 D 0. Similarly, the XiC2XiC4
coefficient implies that ciC4 D 0. It follows that l D ciC1XiC1 2 SpanF .XiC1/,
establishing the claim.

Note that the claim implies that

AnnR.aXi C bXiC2/ D AnnR.Xi CXiC2/ (7.7.5)

for i D 1; : : : ; 5 and for all non-zero elements a; b 2 F . The same reason shows that
all other linear forms have trivial annihilator; in other words:

l 2 R1 n
5
[

iD1
.SpanF .Xi / [ Span.Xi CXiC2//

) AnnR.l/ D R2 D AnnR.X1 CX2/:
Combining this with (7.7.2)–(7.7.5), we find that 
E .R/ is takes the form of a “pin-
wheel” and one edge, as shown below.

ŒX1�

ŒX2�

ŒX3�ŒX4�

ŒX5�

ŒX21 �

ŒX5 CX2�

ŒX1 CX3�

ŒX2 CX4�

ŒX3 CX5�

ŒX4 CX1�

ŒX1 CX2�
From the graph, it is easy to see that !.
E .R// D 3. However, �.
E .R// D 4

since the 5-cycle on ŒXi �; 1 � i � 5 requires 3 colors [22, Theorem 1.6.1] and the
vertex ŒX21 � is adjacent to every ŒXi � and hence requires a fourth color.
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A Tables for Example 3.14

The following table includes the values of c[[ (with c[[ < 100) for star graphs we can
construct using the method of Example 3.14.

d1 e1 t1 d2 e2 t2 c[[

1 1 1 2 1 1 8

1 1 1 2 2 1 14

1 1 1 2 2 2 12

1 1 1 2 3 1 26

1 1 1 2 3 2 24

1 1 1 2 4 1 50

1 1 1 2 4 2 48

1 1 1 2 5 1 98

1 1 1 2 5 2 96

1 2 1 3 1 1 14

1 2 1 3 2 1 28

1 2 1 3 2 2 26

1 2 1 3 3 1 56

1 2 1 3 3 2 54

1 2 1 3 3 3 50

1 3 1 4 1 1 26

1 3 1 4 2 1 56

1 3 1 4 2 2 54

1 4 1 5 1 1 50

1 5 1 6 1 1 98

2 2 1 4 1 1 28

2 2 1 4 2 1 58

2 2 1 4 2 2 56

2 2 2 4 1 1 26

2 2 2 4 2 1 56

2 2 2 4 2 2 54

2 3 1 5 1 1 56

2 3 2 5 1 1 54

The next three iterations of the process are given below.



294 J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, and S. Spiroff

d1 e1 t1 d2 e2 t2 d3 e3 t3 c[[[

1 1 1 2 1 1 3 1 1 16

1 1 1 2 1 1 3 2 1 30

1 1 1 2 1 1 3 2 2 28

1 1 1 2 1 1 3 3 1 58

1 1 1 2 1 1 3 3 2 56

1 1 1 2 1 1 3 3 3 52

1 1 1 2 2 1 4 1 1 30

1 1 1 2 2 1 4 2 1 60

1 1 1 2 2 1 4 2 2 58

1 1 1 2 2 2 4 1 1 28

1 1 1 2 2 2 4 2 1 58

1 1 1 2 2 2 4 2 2 56

1 1 1 2 3 1 5 1 1 58

1 1 1 2 3 2 5 1 1 56

1 2 1 3 1 1 4 1 1 30

1 2 1 3 1 1 4 2 1 60

1 2 1 3 1 1 4 2 2 58

1 2 1 3 2 1 5 1 1 60

1 2 1 3 2 2 5 1 1 58

1 3 1 4 1 1 5 1 1 58

2 2 1 4 1 1 5 1 1 60

2 2 2 4 1 1 5 1 1 58

d1 e1 t1 d2 e2 t2 d3 e3 t3 d4 e4 t4 c[[[[

1 1 1 2 1 1 3 1 1 4 1 1 32

1 1 1 2 1 1 3 1 1 4 2 1 62

1 1 1 2 1 1 3 1 1 4 2 2 60

1 1 1 2 1 1 3 2 1 5 1 1 62

1 1 1 2 1 1 3 2 2 5 1 1 60

1 1 1 2 2 1 4 1 1 5 1 1 62

1 1 1 2 2 2 4 1 1 5 1 1 60

1 2 1 3 1 1 4 1 1 5 1 1 62

d1 e1 t1 d2 e2 t2 d3 e3 t3 d4 e4 t4 d5 e5 t5 c[[[[[

1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 64
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B Graph Theory

Listed below are all the relevant definitions from Graph Theory. A good reference on
the subject is [22] and for the material on zero divisor graphs, the papers [10], [2], and
[1] provide a good background.

(i) A graph is acyclic if it contains no cycles.

(ii) A graph is bipartite (respectively, r-partite) if the vertices can be partitioned
into two (resp., r) disjoint subsets so that every edge has one vertex in each
subset (resp., every edge joins vertices in distinct subsets).

(iii) A graph is chordal if every cycle with four or more vertices has a chord, or
edge joining two vertices of the cycle that are not adjacent.

(iv) The circumference of a graph is the maximum length of a cycle in the graph.
If the graph is acyclic, then the circumference is zero.

(v) A clique in a graph is a subset of vertices of the graph that are all pairwise
adjacent; i.e. a vertex set which induces a complete subgraph.

(vi) If a graph G contains a clique of size n and no clique has more than n ele-
ments, then the clique number of the graph is said to be n; if the clique size
is unbounded, then the clique number is infinite. It is denoted by !.G/.

(vii) The closure of a neighborhood of a vertex v in a graph is the neighborhood
of v along with v itself; i.e., N .v/ [ ¹vº. It is denoted by N .v/.

(viii) The chromatic number or coloring number of a graph G, denoted �.G/, is
the minimal number of colors which can be assigned to the vertices of G such
that no pair of adjacent vertices has the same color.

(ix) A graph is compact if it is a simple connected graph satisfying the property
that for every pair of non-adjacent vertices x and y, there is vertex z adjacent
to every vertex adjacent to x and/or y.

(x) A graph is said to be complete if every vertex in the graph is adjacent to every
other vertex in the graph. The notation for a complete graph on n vertices
is Kn.

(xi) A complete bipartite is a bipartite graph such that every vertex in one par-
titioning subset is adjacent to every vertex in the other partitioning subset. If
the subsets have cardinality m, and n, then this graph is denoted by Km;n.

(xii) A complete r-partite graph is an r-partite graph such that every vertex in
any partitioning subset is adjacent to every vertex in every other partitioning
subset.

(xiii) A graph is said to be connected if there is a path between every pair of vertices
of the graph.
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(xiv) A cut vertex in a connected graph G is a vertex whose removal from the
vertex set of G results in a disconnected graph; v is said to separate vertices
a and b if every path between the two includes v.

(xv) A cycle in a graph is a path of length at least 3 through distinct vertices which
begins and ends at the same vertex.

(xvi) A cycle graph is an n-gon for some integer n � 3.

(xvii) The degree of a vertex is the number of vertices adjacent to it.

(xviii) The diameter of a connected graph is the supremum of the distances between
any two vertices.

(xix) A directed graph is a pair .V;E/ of disjoint sets (of vertices and edges)
together with two maps initWE ! V and terWE ! V assigning to every edge
e an initial vertex init.e/ and a terminal vertex ter.e/. The edge e is said to be
directed from init.e/ to ter.e/.

(xx) The distance between two vertices v and w in a connected graph is the length
of the shortest path between them; if no path exists between a pair of vertices,
then the distance is defined to be infinite.

(xxi) A vertex is an end if it has degree 1.

(xxii) The girth of a graph is the length of the shortest cycle in the graph; it is infinite
if the graph is acyclic.

(xxiii) A graph consists of a set of vertices, a set of edges, and an incident relation,
describing which vertices are adjacent (i.e., joined by an edge) to which.

(xxiv) Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. A homomorphism
G ! G0 is a function �WV ! V 0 respecting adjacency, that is, such that for
all x; y 2 V if xy 2 E, then �.x/�.y/ 2 E 0.

(xxv) An induced subgraph of a graph G is obtained by taking a subset U of the
vertex set of G together with all edges which are incident in G only with
vertices belonging to U .

(xxvi) Let G D .V;E/ and G0 D .V 0; E 0/ be two graphs. An isomorphism G
Š�!

G0 is a bijection �WV ! V 0 with xy 2 E if and only if �.x/�.y/ 2 E 0 for
all x; y 2 V .

(xxvii) The neighborhood of a vertex v in a graph is the set of all vertices adjacent
to v. It is denoted by N .v/. [Note that for simple graphs, v … N .v/.]

(xxviii) A non-degenerate star graph is a star graph with at least two vertices.

(xxix) A path of length n between two vertices v and w is a finite sequence of
vertices u0; u1; : : : ; un such that v D u0, w D un, and ui�1 and ui are
adjacent for all 1 � i � n.

(xxx) A graph is perfect if for every induced subgraph, including the graph itself,
the chromatic number and clique numbers agree.
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(xxxi) A graph is planar if it can be drawn in the plane with no crossings of edges.

(xxxii) A regular graph is one in which all the vertices have the same degree.

(xxxiii) A vertex v in a graph G is said to separate vertices a and b if every path
between a and b includes v.

(xxxiv) A simple graph is one with no loops on a vertex and no multiple edges be-
tween a pair of vertices.

(xxxv) A star graph is a complete bipartite graph in which one of the partitioning
subsets is a singleton set. The notation for this graph is K1;n.
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A Closer Look at Non-Unique Factorization
via Atomic Decay and Strong Atoms

Scott T. Chapman and Ulrich Krause

Abstract. LetD be an integral domain and x an irreducible (or atom) ofD. We call x a strong
atom ofD if every irreducible divisor of xk , for k a positive integer, is an associate of x. If x is
not a strong atom, then there is a factorization of x of the form xk D x1 � � � xn where k is mini-
mal and each xi is irreducible and not associated to x. In this case we say that x admits atomic
decay with respect to x1; : : : ; xn. In this paper, we consider various implications of atomic de-
cay in integral domains. We characterize strong atoms in a general integral domain in terms of
a separation property involving prime ideals. We then use two classic examples from algebraic
number theory to illustrate how atomic decay effects factorization properties in general. While
we show that atomic decay behaves in a relatively mild manner in ZŒ

p�5�, we also show that
its effect is much more dramatic in the subring ZŒ5{� of the Gaussian integers ZŒ{�.

Keywords. Non-unique Factorization, Algebraic Number Ring, Prime Ideals, Half-factoriality.
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1 Introduction

In a first course in Abstract Algebra (such as one taught from [5]), the theory of inte-
gral domains culminates with the study of the factorization of elements into products
of irreducible elements. Of particular interest in such a discussion are two types of
elements. If D is an integral domain and x is a nonzero nonunit of D, then

(i) x is prime if whenever x divides yz with y and z in D, then either x divides y
or x divides z;

(ii) x is irreducible (or an atom) if whenever x D yz with y and z in D, then either
y or z is unit of D (a divisor of 1).

An elementary argument shows that a prime element must be irreducible, but the con-
verse fails (see equation (�) and its accompanying description in Section 4). Moreover,
it is easy to verify that a prime element p has the nice property that any atom which
divides a power pk of p must be an associate of p. We call an atom which has this
property a strong atom (in the literature, these atoms have also been called absolutely
irreducible [1] or [6, Definition 7.1.3], or completely irreducible [12]). An atom which
is not strong must have a power which is divisible by a nonassociated atom. That is,
powers of atoms can decay into other atoms, a phenomenon we refer to as atomic
decay. More precisely, we have the following definition.



302 S. T. Chapman and U. Krause

Definition 1.1. Let D be an integral domain and x an atom of D. We call x a strong
atom ofD if each irreducible divisor of xk (where k is a natural number) is an associate
of x. If x is not a strong atom and xk D x1 � � � xn where none of the atoms x1; : : : ; xn
are associates of x and k, n � 2, then we say that x admits atomic decay with respect
to x1; : : : ; xn.

A prime element is, of course, a strong atom, but the converse fails (see Proposi-
tion 4.1). Both prime elements and strong atoms play their roles in regard to unique
factorization in an integral domain D. Recall that D is a unique factorization domain
(also called a UFD or a factorial domain) if each nonzero nonunit of D factors into a
(finite) product of atoms which is unique up to order of associated factors. It is eas-
ily verified, for an atomic domain D (i.e., a domain where each nonzero nonunit is a
product of atoms), that D is a UFD if and only if every atom is prime. Moreover, as
we shall later see, the ring of integers of an algebraic number field is a UFD if and only
if each atom is a strong atom. Therefore, for these rings, we can consider nonunique
factorization as being rooted in atomic decay. We will demonstrate in this case that
some power of any nonzero nonunit can be factored by atomic decay into strong atoms
in a unique way (up to order and associates of factors). This can be viewed as a way
of restoring uniqueness without leaving the domain or the level of elements.

We break the remainder of our paper into 5 Sections. In Section 2 we characterize
for a general integral domain D strong atoms using a separation property involving
prime ideals. This allows us to describe, under certain conditions, strong atoms by
powers of prime ideals. Section 3 deals with the ring of integers of an algebraic num-
ber field for which the conditions in Section 2 are met. Using atomic decay, we obtain
the above mentioned factorization of powers of elements into strong atoms which is
essentially unique. From this we draw conclusions which characterize various factor-
ization properties in terms of the decay rate of atoms. In Section 4 we discuss in detail
an example within the domain ZŒ

p�5�, well known since the time of R. Dedekind,
where unique factorization breaks down. Atomic decay works in a relatively mild man-
ner in that all atoms admit a finite and unique decay. By taking squares, two different
factorizations of an element reveal hidden uniqueness. We also relate strong atoms to
the ideal numbers of E. E. Kummer as viewed by E. Hecke [7]. In Section 5 we con-
sider the failure of uniqueness in the subring ZŒ5{� of the Gaussian integers ZŒ{� which
appears at first seemingly simpler than ZŒ

p�5�. Atomic decay in this case, however,
is much more dramatic. The decay of some atoms never reaches strong atoms and
the powers of a single atom are divisible by infinitely many nonassociated atoms. In
Section 6 we conclude with some remarks and questions. We ask, for example, if there
is a direct way to check whether a given atom is strong. One goal in our paper is to
use tools as elementary as possible. Hence, the examples presented are appropriate for
students with a limited background in Abstract Algebra. To better facilitate this, we
make use of algebraic number rings, where the reader need only have knowledge of
the basic facts of ideal theory, which we explicitly state. Readers who desire a deeper
or more technical analysis of the theory of nonunique factorizations, are directed to
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the well-known monograph of Geroldinger and Halter-Koch [6]. The authors greatly
acknowledge comments on an earlier draft of this paper by Alfred Geroldinger, Nathan
Kaplan and William W. Smith.

2 Strong Atoms and Prime Ideals

To later describe atomic decay in algebraic number rings, we first analyze strong atoms
within the common theory of ideals. We remind the reader of some basic notions.
Let D be an integral domain. A subset I of D is called an ideal if I is an additive
subgroup of D which is closed under the multiplication by elements from D. For
x 2 D, .x/ D ¹rx j r 2 Dº is the principal ideal generated by x. If 1 2 .x/, then x
is called a unit. If .x/ D .y/, then the elements x and y are associates. An ideal P
is called a prime ideal if P ¤ D and whenever ab 2 P for a and b in D, then either
a 2 P or b 2 P . An ideal M is called a maximal ideal if M ¤ D and the only ideals
containing M are M and D. It is easy to show that a maximal ideal is a prime ideal,
but not conversely [5, Theorems 14.3 and 14.4]. If I and J are two ideals of D, then

IJ D
°

X

i

aibi
ˇ

ˇ ai 2 I and bi 2 J
±

is another ideal of D called the product of I and J . The product In of n copies of the
ideal I is the nth power of I . For an ideal I of D, the set

rad.I / D ¹x 2 D j xn 2 I for some n 2 Nº

is again an ideal called the radical of I .
For any integral domain D, the following lemma establishes relationships between

strong atoms and prime ideals.

Lemma 2.1. Let D be an integral domain and x 2 D an atom.

(i) The atom x is a strong atom if and only if x can be separated from any non-
associated atom y by a prime ideal P in the sense that x … P but y 2 P .

(ii) If .x/ D M k for some maximal ideal M and k 2 N, then x can be separated
by a prime ideal from every non-associated atom y with .y/ a product of prime
ideals.

(iii) Let x be a strong atom and .x/ a product of prime ideals such that for at least
one prime factor P there exists an atom y such that .y/ D Pm for some m 2 N.
Then .x/ D Pm.

Proof. (i) ()) Let x be a strong atom, S D ¹xk j k 2 N0º and suppose S \ .y/ ¤ ;
for an atom y non-associated to x. Then there exists r 2 D and k 2 N0 with xk D yr .
Since x is a strong atom it follows that x and y are associates. This is a contradiction



304 S. T. Chapman and U. Krause

and we must have that S \ .y/ D ;. By Zorn’s Lemma, there exists an ideal P which
is maximal with respect to .y/ � P and S \ P D ;. We show that P is a prime
ideal. Suppose a1a2 2 P with ai 2 D and ai … P for i D 1; 2. Then for the
smallest ideal .P; ai / containing P and ai , we have for i D 1; 2 that P ¨ .P; ai / and
.P; ai /\S ¤ ;. Thus, there exist si 2 S , ri 2 D and bi 2 P such that si D biCriai
for i D 1; 2. We obtain

s1s2 D .b1 C r1a1/.b2 C r2a2/ D b1b2 C b1r2a2 C b2r1a1 C r1r2a1a2:
Since a1a2 2 P it follows that s1s2 2 P . Therefore S \ P ¤ ; which is a contradic-
tion and hence P is a prime ideal. Obviously y 2 P and x … P since S \ P D ;.

(() Assume x can be separated from every nonassociated atom y. Let xn D yz for
some n 2 N where y is an atom and z 2 D. If y is not an associate of x, then y 2 P
and x … P for some prime ideal P . This implies xn 2 P but x … P , a contradiction.

(ii) Suppose, for every prime ideal Q, y 2 Q implies x 2 Q. We show that y must
be associated to x. By assumption .y/ D P1 � � �Pl for prime ideals Pi . Since y 2 Pi ,
we have x 2 Pi and, hence,M k D .x/ � Pi for all i . If p 2M , then pk 2M k � Pi
and, hence, p 2 Pi . That is, M � Pi for all i . Since M is maximal we have M D Pi
for all i . Thus, .x/ DM k and .y/ DM l . If k � l , then .y/ � .x/ and if k � l , then
.x/ � .y/. In any case, since x and y are atoms, they must be associated.

(iii) Let x be a strong atom with .x/ D P1 � � �Pk and Pmi D .y/ for some i ,m 2 N
and atom y. If y 2 Q for some prime ideal Q then Pmi � Q and, hence, Pi � Q.
Thus, .x/ � Q and x 2 Q. Since x is a strong atom, y has to be associated to x by
property (i). Therefore, .x/ D .y/ D Pmi .

As Lemma 2.1 indicates, there is a strong connection between the ideal theory of
an integral domain and the factorization properties of its elements. We weigh this
more carefully by considering three different ideal theoretic conditions on an integral
domain D:

(A) For every atom x 2 D there exist prime ideals P1; : : : ; Pk of D such that .x/ D
P1 � � �Pk .

(B) For every nonzero prime ideal P of D, there exists a positive integer m.P / such
that Pm.P/ D .y/ where y is an atom of D.

(C) Each nonzero prime ideal P of D is maximal.

Using these conditions, we obtain in Theorem 2.2 relationships between a strong atom
x and its resulting principal ideal .x/. In domains which satisfy conditions (A), (B),
and (C), the relationships will all be equivalent, a key fact for our work in Section 3.

Theorem 2.2. For an atom x in an integral domain D consider the following proper-
ties.

(a) The ideal .x/ is a power of a maximal ideal.

(b) The ideal rad.x/ is a maximal ideal.
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(c) The atom x is a strong atom.

(d) The ideal .x/ is a power of a prime ideal.
In an integral domain D the following relationships hold.

(i) .a/) .b/.

(ii) If D satisfies .C/, then (d)) (a).

(iii) If D satisfies .A/, then (b)) (a)) (c).

(iv) If D satisfies .A/ and .B/, then (c)) (d).
Hence, if D satisfies .A/, .B/ and .C/, then conditions (a)–(d) are equivalent.

Proof. (i) If y 2 rad.x/, then ym 2 .x/ D M k � M for some maximal ideal M .
Since M must be a prime ideal, we have that y 2 M . Conversely, y 2 M implies
yk 2M k D .x/ and, hence, y 2 rad.x/. Thus (a)) (b).

The proof of (ii) is obvious.
(iii) Suppose that for each atom y there are prime ideals P1; : : : ; Pk such that .y/ D

P1 � � �Pk . We show that (b) ) (a) ) (c). Let rad.x/ D M be a maximal ideal.
By assumption, .x/ D P1 � � �Pk with prime ideals Pi . If y 2 M D rad.x/, then
yn 2 .x/ � Pi and y 2 Pi . Therefore M � Pi for all 1 � i � k. M a maximal ideal
implies Pi D M for all i and .x/ D M k . This proves (b) ) (a). Furthermore, let
.x/ D M k where M is a maximal ideal. From Lemma 2.1 (ii) and (i), it follows that
x is a strong atom.

(iv) We note that (c)) (d) follows from Lemma 2.1 (iii). The final statement now
easily follows.

3 Atomic Decay in the Ring of Integers of an Algebraic
Number Field

The relationship between strong atoms and ideals given in Theorem 2.2 for integral
domains in general becomes particularly neat for the special class of algebraic number
rings. First we review some basic notation. An (algebraic) number field is a field
K D Q.�/ obtained as the smallest field containing the rational numbers Q and a root
� of a polynomial with coefficients in Z. The ring of integers of a number field K is
the set of all elements in K which are roots of a monic polynomial with coefficients
in Z. To describe atomic decay within the ring of integers D of a number field, we
will use the following well-known basic facts about the ideal theory in D. Proofs of
these facts can be found in [10] or [11].

� The Fundamental Theorem of Ideal Theory. Let I be an nonzero ideal of
D with I ¤ D. There exists a unique (up to order) sequence of prime ideals
P1; : : : ; Pk of D such that I D P1 � � �Pk .

� For each (nonzero) prime ideal P there exists m.P / 2 N such that Pm.P/ is the
principal ideal generated by an atom.

� Every (nonzero) prime ideal is a maximal ideal.
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By these facts, the properties (a)–(d) in Theorem 2.2 are equivalent for a ring D of
integers and strong atoms can be described in greater detail.

Theorem 3.1. Let D be the ring of integers of a number field.

(i) An element x 2 D is a strong atom if and only if x is an atom and rad.x/ is a
prime ideal, or, equivalently, if .x/ is a minimal power of a prime ideal.

(ii) For each nonzero nonunit x 2 D, there exists a sequence x1; : : : ; xk of strong
atoms and a minimal m 2 N such that

xm D x1 � � � xk (AD)

where this representation by atomic decay is unique up to ordering and associates
for the x1; : : : ; xk .

Proof. (i) Follows from Theorem 2.2 according to the equivalence of (a)–(d). Hence,
.x/ is a minimal power of P if .x/ D Pm.P/. (ii) By the Fundamental Theorem,
.x/ D P1 � � �Pk for nonzero prime ideals P1; : : : ; Pk of D. Furthermore, Pm.Pi /

i D
.yPi

/ for every prime ideal Pi , with m.Pi / 2 N and, by (i), yPi
a strong atom. Let

m D lcm¹m.Pi / j 1 � i � kº and for each i set m D m.Pi /n.Pi /. Then it follows
that .x/m D .xm/ D Qk

iD1 Pmi D
Qk
iD1.yPi

/n.Pi /. Therefore, there exist associates

xPi
of yPi

, strong atoms again, such that xm DQk
iD1 x

n.Pi /
Pi

.
Concerning the uniqueness of this representation, assume

Qk
iD1 v

ki

i D
Ql
jD1w

lj
j

for strong atoms vi , wj and ki , lj 2 N; the vi , as well as the wj are to be pairwise
different. By property (i), we have .vi / D P ni

i , .wj / D Qmj

j for nonzero prime ideals
Pi and Qj . Therefore

k
Y

iD1
P
niki

i D
l
Y

jD1
Q
mj lj
j :

From the uniqueness property of the Fundamental Theorem we have k D l and there
is a permutation 	 of ¹1; : : : ; kº such that Qi D P�.i/, mi D n�.i/, li D k�.i/.
Therefore, .wi / D .v�.i// and the representation is unique up to order and associates
of factors.

The condition in Theorem 3.1 (ii) has been studied in general. In [4], the current
authors define an integral domain D to be a Cale domain with base B � D if a
power of every nonzero nonunit ofD can be written uniquely as a product of elements
from B . For an algebraic ring of integers, the representation (AD) is known as the
Cale representation of x. It is an interesting feature of (AD) that the representation as
well as the definition of strong atoms is purely multiplicative. This is different for the
unique representation according to the Fundamental Theorem of Ideal Theory, which
does involve the addition operation of the ring. The reader interested in the general
Cale concept may find a more technical discussion in [3] or [4].
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As a further consequence, we obtain the following characterization of unique fac-
torization into atoms for rings of algebraic integers.

Corollary 3.2. The ring of integersD of a number field is a UFD if and only ifD does
not have atomic decay. That is, every atom is a strong atom.

Proof. Using the norm function (see Section 4 or [10, 11]), it is easily argued that
any element of D is a product of atoms. (() If every atom is strong, then by Theo-
rem 3.1 (ii) D is a UFD. ()) Assume D is a UFD. If x is an atom then

xn D x � � � x
„ƒ‚…

n times

is the unique representation into atoms and any atom dividing xn must be an associate
of x. Hence, x is a strong atom.

We note that Corollary 3.2 fails if the hypothesis that D is a ring of integers is
dropped. While there are domains D with all atoms strong that are not UFDs, we are
unaware of an elementary example. Many examples using the theory of Krull domains
can be constructed using the main results of the recent paper [1].

If a ring of algebraic integers D is not a UFD, then D has atomic decay and the
question arises how to arithmetically describe the different possible kinds of decay. A
natural measure to consider is the decay rate of a nonzero nonunit x 2 D, defined by

#.x/ D k

m

where xm D x1 � � � xk is the representation by decay (AD) according to Theorem
3.1 (ii). Notice that for any representation xn D y1 � � �yl with strong atoms yi one
has that #.x/ D l

n
. Namely, xmn D .x1 � � � xk/n D .y1 � � �yl/m and by uniqueness

nk D ml . The decay rate can be used to analyze two important invariants in the study
of non-unique factorizations. If x is a nonzero nonunit of D, then the elasticity of x is
defined by

�.x/ D sup

²

k

l

ˇ

ˇ

ˇ

x D a1 � � � ak D b1 � � � bl for atoms a1; : : : ; ak; b1; : : : ; bl of D

³

and the elasticity of D by

�.D/ D sup¹�.x/ j x a nonzero nonunit of Dº:
The elasticity of a ring of algebraic integers was first studied by Valenza [13]. Notice
that ifD is a UFD, then �.x/ D 1 for each nonzero nonunit and hence �.D/ D 1. The
converse of this statement is false (see Corollary 4.2). Hence, an integral domain D
with �.D/ D 1 is known as a half-factorial domain or HFD. The following Corollary
gives a relationship between the decay rate and elasticity.
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Corollary 3.3. Let D be the ring of integers of a number field.

(i) #.xy/ D #.x/C #.y/ for nonzero nonunits x, y 2 D.

(ii) D is half-factorial if and only if #.x/ D 1 for all atoms x of D.

(iii) �.D/ is finite if and only if

sup¹#.x/; #.x/�1 j x is an atom of Dº <1:

Proof. (i) Let xm D x1 � � � xk , yn D y1 � � �yl be the representations of x and y by
atomic decay. Then

.xy/mn D .xm/n.yn/m D .x1 � � � xk/n.y1 � � �yl/m:

From the uniqueness for the representations into strong atoms, we obtain

#.xy/ D nk Cml
mn

D k

m
C l

n
D #.x/C #.y/:

(ii) ()) If D is half-factorial, then the representation xm D x1 � � � xk implies
m D k, that is, #.x/ D 1. (() If x1 � � � xk D y1 � � �yl for atoms xi yj then by
(i) it follows that

k D
k
X

iD1
#.xi / D

l
X

jD1
#.yj / D l:

(iii) ()) The representation xm D x1 � � � xk implies k
m

, m
k
� �.D/ and hence if

C D sup¹#.x/; #.x/�1 j x an atomº then C � �.D/. (() Let x1 � � � xk D y1 � � �yl
for atoms xi , yi . If #.a/ D min#.xi /, #.b/ D min#.yj /, then from (i) it follows
that

k#.a/ �
k
X

iD1
#.xi / D

l
X

jD1
#.yj / � l#.b/:

Therefore, k
l
� #.b/#.a/�1 and C finite implies �.D/ is finite.

The point of Corollary 3.3 is that half-factoriality or finite elasticity can be checked
for rings of algebraic integers by considering only special factorizations a1 � � � ak D
b1 � � � bl where on one side all the elements are equal. With the results thus far ob-
tained, we consider more deeply in Section 4 the failure of nonunique factorization
using an example which appears frequently in many entry level textbooks. We follow
this in Section 5 with an even more striking example of non-uniqueness whose decay
of atoms into strong atoms does not terminate.
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4 The Fundamental Example of the Failure of Unique
Factorization: ZŒ

p�5�

The ring
D D ZŒ

p�5� D ¹mC np�5 j m; n 2 Zº
is the ring of integers of the algebraic number field Q.

p�5/. An example of non-
unique factorization into atoms in D, is

2 � 3 D .1Cp�5/.1 �p�5/: (�)

That the four elements involved are nonassociated atoms of D can be easily verified
using the norm function

N.mC np�5/ D m2 C 5n2

which has the property that N.xy/ D N.x/N.y/ for x, y 2 D. For example, to see
that 1Cp�5 is an atom notice N.1Cp�5/ D 6 and that 1Cp�5 D xy implies
N.x/, N.y/ 2 ¹1; 2; 3; 6º. That N.x/ D 2 or 3 is impossible and, hence, N.x/ D 1 or
6. N.x/ D 1 for x 2 D is an equivalent condition for x to be a unit of D. Therefore,
x or y must be a unit which implies that 1Cp�5 is an atom. Obviously, ˙1 are the
units ofD and, hence, 1Cp�5 is not associated to any of the other factors of (�). This
non-unique factorization implies also that none of the four factors is a prime element
of D. Obviously, for three of the factors, we have the following diagram outlining
atomic decay.

��
�

�
�

��
�

�
�
�

.�2Cp�5/ .�2�p5/

32

��
�

�
�

��
�

�
�
�

2 .�2Cp�5/

.1Cp�5/2

��
�

�
�

��
�

�
�
�

2 .�2�p�5/

.1�p�5/2

The factor 2 does not decay in a nontrivial way as shown by the following proposi-
tion.

Proposition 4.1. The element 2 is a strong atom of D which is not prime in D.

Proof. We have verified above that 2 is not prime in D. Suppose in D that an atom
x D mC np�5 divides a power 2k . Then N.x/ must divide 22k , that is m2C 5n2 D
N.x/ D 2l with 1 � l � 2k. Consider this equation modulo 2. If exactly one ofm and
n is odd, then 2l is odd, a contradiction. If m and n are both odd, then m D 2m1 C 1
and n D 2n1 C 1. Thus

.2m1 C 1/2 C 5.2n1 C 1/2 D 4w C 20v C 6 D 2l
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for integers w and v. Thus 2w C 10v C 3 D 2l�1 and l D 1. But m2 C 5n2 D 2 has
no solutions in Z. Thus, we must have that m and n are both even and, since x is an
atom, it follows that m D ˙2 and n D 0. Thus, any atom dividing a power of 2 in D
must be equal to˙2.

Below we will see that the other factors �2 ˙ p�5 appearing in the diagram of
atomic decay are strong atoms. Thus, by squaring the non-unique factorization (�),
we obtain a unique factorization of 62 into strong atoms (i.e., the representation of
Theorem 3.1 (ii)). The decay diagram also shows that all atoms in (�) have decay rate
equal to 1. The common view of restoring uniqueness for equation (�) is to use the
Fundamental Theorem of Ideal Theory as follows (see [10, page 60]). The decompo-
sitions of the factors of (�) into prime ideals are

.2/ D P 2; .3/ D Q �Q0; .1Cp�5/ D P �Q and .1 �p�5/ D P �Q0

with prime ideals

P D .2; 1Cp�5/; Q D .3; 1Cp�5/ and Q0 D .3; 1 �p�5/:
Thus, by taking ideals in equation (�), the non-uniqueness results from different group-
ings of the prime ideals P , Q and Q0. The above decompositions also show that the
elements 2, �2˙p�5 are strong atoms. Namely, .2/ D P 2 and .2.�2Cp�5// D
.1Cp�5/2 D P 2Q2, hence, .�2Cp�5/ D Q2. Similarly, .�2 �p�5/ D Q02 .
Therefore, according to Theorem 3.1 (i), 2 and �2˙p�5 are strong atoms. Thus, the
representation by atomic decay (AD) according to Theorem 3.1 (ii) becomes for the
element 6

62 D 2 � 2 � .�2Cp�5/.�2 �p�5/: (��)

By using the Fundamental Theorem as above and some further techniques from [10]
and [11] involving the class group of D, one can argue that the decay rate of all atoms
in D is 1. Thus, using Corollary 3.3 and equation (�), we obtain the following.

Corollary 4.2. D is a half-factorial domain which is not a unique factorization do-
main.

Carlitz [2] was the first to recognize that ZŒ
p�5� is half-factorial. The interested

reader can find many examples of half-factorial domains which are not UFD’s as well
as examples of domains exhibiting various values of elasticity in [6] and [8].

One is tempted to derive from (��) a factorization of 6 itself by taking square roots.
Of course, the complex roots obtained will in general not belong to D and are called
ideal numbers with respect to D. More precisely, call a complex number ˛ an ideal
prime number for ZŒ

p�5� if its square is a strong atom. Thus, complex numbers sat-
isfying ˇ2 D 2, �2 D �2Cp�5 or ı2 D �2 �p�5 are ideal primes for ZŒ

p�5�.
Taking roots with a positive sign, the square root of the (AD)-representation (��) be-
comes 6 D ˇˇ�ı. Of course, since by Theorem 3.1 (ii) the (AD)-representation is
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unique up to units of D, that is ˙1, we obtain uniqueness for factorization into ideal
primes only up to factors of fourth roots of 1. The non-unique factorization (�) reads
in ideal primes as

2 � 3 D ˇˇ�ı D ˇ� � ˇı D .1Cp�5/.1 �p�5/: (���)

Again, non-uniqueness results from different groupings, this time of ideal primes. The
ideal primes can be described by ideals in D as follows. Consider for an ideal prime
˛ the set

I.˛/ D ¹y 2 D j y D ˛˛0; ˛0m 2 D for some m 2 Nº:
One verifies easily for D D ZŒ

p�5� that I.ˇ/ D rad.2/, I.�/ D rad.�2 C p�5/
and I.ı/ D rad.�2 � p�5/. Therefore, I.ˇ/, I.�/ and I.ı/ are ideals in D given
as radical ideals for strong atoms. By Theorem 3.1 (i), these 3 ideals are prime ideals.
Indeed, one easily verifies that I.ˇ/ D P , I.�/ D Q and I.ı/ D Q0. Ideal numbers
were invented by E. E. Kummer (for the so called cyclotomic fields) prior to the in-
vention of prime ideals by R. Dedekind. E. Hecke, who considered Kummer to be the
creator of ideal theory (“Schöpfer der Idealtheorie,” [7, page 87]) gave a construction
of ideal numbers for the ring of integers of any number field. Though our definition of
ideal prime numbers differs from Hecke’s treatment, his discussion of another example
seems quite similar [7, pages 83–86].

5 A More Striking Example

While factorization of elements into products of irreducible elements is not unique
in ZŒ

p�5� D ZŒ
p
5{�, we were able to show for the example (�) that atomic decay

behaves in a finite manner. Namely, the decay of atoms reaches strong atoms just after
one step, the decay rate equals 1 for all atoms and the elasticity of the domain equals 1.
In this section, we construct an example of algebraic numbers where atomic decay is
not as well mannered. The decay of the atoms involved will never end with strong
atoms, infinitely many nonassociated atoms can divide the powers of a single atom
and the elasticity �.D/ is infinite. Consider

ZŒ5{� D ¹mC 5n{ j m; n 2 Zº
which is a subdomain of ZŒ{�, the domain of Gausssian integers. An example of non-
unique factorization in ZŒ5{� is given by

5 � 5 � 5 D .5C 10{/.5 � 10{/: (�)

All factors are nonassociated atoms in ZŒ5{� which is easily verified using the norm
functionN.mC5n{/ D m2C25n2 (see also Proposition 5.1 below). It is already clear
from equation (�) that ZŒ5{� is neither factorial nor half-factorial. As for the example
(�) in ZŒ

p�5�, the factors in (�) further decay into atoms as can be seen from the
following diagram.



312 S. T. Chapman and U. Krause

��
�

�
�

��
�

�
�
�

5.1C2i/ 5.1�2i/

53

��
�

�
�

��
�

�
�
�

5.1C2i/4 5.1�2i/

Œ5.1C2i/�3

��
�

�
�

��
�

�
�
�

5.1�2i/4 5.1C2i/

Œ5.1�2i/�3

The equation (�) is just the decay of 5 in the above diagram. Thus, in a manner
simpler than (�), it is not necessary to square (�) to see that both sides of the equation
contain the same atoms. In contrast to (�), however, all the atoms created above by
decay will decay further without reaching strong atoms. This will be demonstrated in
Proposition 5.1 and is illustrated by the following diagram where all elements ak D
5.1C 2{/k , k � 0, and their conjugates ak are atoms.

� � � � � � � �
a13 Na1 Na4 a1 Na13 a1 a4 Na1

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

�
�

��

a34 Na31 Na34 a31� � �� �

� �a91 Na91�
�

�
�

�

�
�

�
�
�

�
�

�
�

�

�
�

�
�
�

�527
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

��

Proposition 5.1. (i) The elements ak D 5.1C2{/k , k � 0, are nonassociated atoms
in ZŒ5{�.

(ii) Any (proper) power of the atom ak decays into exactly two nonassociated atoms,
a
p

k
D ap.kC1/�2 � ap�2 for any p � 2, k � 0.

(iii) For each k � 0 the set of non-associated atoms dividing ap
k

for some p � 0 is
infinite.

(iv) The elasticity of ZŒ5{� is infinite.

Proof. (i) Using the Binomial Theorem we obtain

ak D 5.1C 2{/k D
k
X

lD0

 

k

l

!

5.2{/l
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and hence ak 2 ZŒ5{�. Obviously, N.ak/ < N.al/ for k < l and, hence, the ak are
nonassociated. Suppose 5.1C 2{/k D .mC 5n{/.p C 5q{/ is a factorization of ak in
ZŒ5{�. Applying the norm function in ZŒ{� we obtain

N.5.1C 2{/k/ D N.5/ �N.1C 2{/k D 5kC2 D .m2 C 25n2/.p2 C 25q2/:

Therefore,

m2 C 25n2 D 5a; p2 C 25q2 D 5b; and aC b D k C 2 for a; b 2 N0:

We shall show that either a D 0 or b D 0. Then m C 5n{ D ˙1 or p C 5q{ D ˙1
which proves that ak is an atom. Suppose a � 1 and b � 1. Then m D 5m0, p D 5p0
and 5.1C 2{/k D 5.m0 C n{/5.p0 C q{/. It follows that

.1C 2{/k D .1C 2{/.1 � 2{/.m0 C n{/.p0 C q{/:

Hence, k � 2 and

.1C 2{/k�1 D .1 � 2{/.m0 C n{/.p0 C q{/:

Now, we can write 1C 2{ D .1� 2{/.�1C {/� { to obtain by the Binomial Theorem

.1C 2{/k�1 D .1 � 2{/
k�1
X

lD1

 

k � 1
l

!

.1 � 2{/l�1.�1C {/l .�{/k�1�l C .�{/k�1:

Therefore, .�{/k�1 D .1 C 2{/k�1 � .1 � 2{/˛ with ˛ 2 ZŒ{� and, combining we
obtain

.�{/k�1 D .1 � 2{/.m0 C n{/.p0 C q{/ � .1 � 2{/A D .1 � 2{/ � ˇ

with ˇ 2 ZŒ{�. Multiplying the two sides of this equation by its conjugate, we obtain
1 D 5 � ˇˇ, which is impossible.

(ii) By definition

ap.kC1/�2ap�2 D 5.1C 2{/p.kC1/�25.1 � 2{/p�2

D 52Œ.1C 2{/.1 � 2{/�p�2.1C 2{/pk

D 525p�2.1C 2{/pk
D ap

k
:

(iii) Is immediate from (ii) and (i).
(iv) Is immediate from (ii) and the definition of elasticity.
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Putting p D 3 in Proposition 5.1 (ii), one obtains a3
k
D a3.kC1/�2 � a1 which is the

formula that generates the atomic decay depicted in the diagram Figure 3. Though at
first the domain ZŒ5{� may seem simpler than the domain ZŒ

p�5�, Proposition 5.1
shows that the opposite is the case with respect to atomic decay. In ZŒ5{�, as in
ZŒ
p�5�, each nonzero nonunit is a product of atoms, as can again be seen using the

norm function. Also, there are strong atoms in ZŒ5{�, for instance 2, as can be seen
from the same argument used in Proposition 4.1. But ZŒ5{� differs from ZŒ

p�5�, as
there are not enough strong atoms to represent all elements by atomic decay.

6 Concluding Remarks and Questions

In this paper, we argue that non-unique factorization into atoms descends from atomic
decay. Of course, by its very definition an atom cannot be broken up into parts, but after
taking powers of an atom, atomic decay can occur, in which case unique factorization
fails. For the ring of integers of an algebraic number field, we proved using atomic
decay, that for each nonzero nonunit element some power can be factored uniquely (up
to order and associates of factors) into strong atoms. In this sense, unique factorization
is restored by forcing atoms to decay into strong atoms which can no longer decay.
In particular, unique factorization into atoms is possible precisely if each atom is a
strong atom. Also, the properties of half-factoriality and finite elasticity descend from
atomic decay and can be described by the decay rates of atoms. The decay behavior
may differ very much for different rings of algebraic integers. In one example we
found decay ending with strong atoms after finitely many steps. In another, the decay
turned out to be much more drastic and never ended with strong atoms. As a tool we
employed the Fundamental Theorem of Ideal Theory and some well-known related
simple properties. Is it possible to obtain unique factorization into strong atoms in a
more direct way, without these tools? One might think of “extracting” strong atoms out
of atoms in finitely many steps. Can this be done in an elementary way? For an indirect
and non-elementary example employing “extraction” see [3]. Also, is it possible to
check if a given atom is strong in a direct way? That is, using the norm function
but not ideal theory. We did this in the case ZŒ

p�5� for the element 2, but for other
elements we needed ideal theory. In such investigations, the interesting question arises
whether for a (rational) prime number p a prime power pl is of the formm2Ckn2 for
given k 2 N. Finally, though we touched upon historical issues in the paper there are
further interesting questions here. We mentioned Kummer’s ideal numbers, as seen by
Hecke, and connected these to strong atoms. It has been argued that Kummer’s ideal
numbers developed from the work of C. G. J. Jacobi (see the recent paper [9] and the
references therein). Do Jacobi’s “wahre complexe Primzahlen” (true complex prime
numbers) connect in any way to the notion of strong atom?
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