
Progress in Commutative Algebra 1





Progress in
Commutative Algebra 1

Combinatorics and Homology

edited by
Christopher Francisco

Lee Klingler
Sean Sather-Wagstaff

Janet C. Vassilev

De Gruyter



Mathematics Subject Classification 2010
13D02, 13D40, 05E40, 13D45, 13D22, 13H10, 13A35, 13A15, 13A05, 13B22, 13F15

ISBN 978-3-11-025034-3
e-ISBN 978-3-11-025040-4

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

” 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Typesetting: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de
Printing: Hubert & Co. GmbH & Co. KG, Göttingen

� Printed on acid-free paper

Printed in Germany

www.degruyter.com

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.
For details go to http://creativecommons.org/licenses/by-nc-nd/4.0/.

An electronic version of this book is freely available, thanks to the support of libra-
ries working with Knowledge Unlatched. KU is a collaborative initiative designed to 
make high quality books Open Access. More information about the initiative can be 
found at www.knowledgeunlatched.org



Preface

This collection of papers in commutative algebra stemmed out of the 2009 Fall South-
eastern American Mathematical Society Meeting which contained three special ses-
sions in the field:

� Special Session on Commutative Ring Theory, a Tribute to the Memory of James
Brewer, organized by Alan Loper and Lee Klingler;

� Special Session on Homological Aspects of Module Theory, organized by Andy
Kustin, Sean Sather-Wagstaff, and Janet Vassilev; and

� Special Session on Graded Resolutions, organized by Chris Francisco and Irena
Peeva.

Much of the commutative algebra community has split into two camps, for lack of
a better word: the Noetherian camp and the non-Noetherian camp. Most researchers
in commutative algebra identify with one camp or the other, though there are some
notable exceptions to this. We had originally intended this to be a Proceedings Volume
for the conference as the sessions had a nice combination of both Noetherian and non-
Noetherian talks. However, the project grew into two Volumes with invited papers that
are blends of survey material and new research. We hope that members from the two
camps will read each others’ papers and that this will lead to increased mathematical
interaction between the camps.

As the title suggests, this volume, Progress in Commutative Algebra I, contains
combinatorial and homological surveys. Contributions to this volume are written by
speakers in the second and third sessions. To make the volume more complete, we
have complemented these papers by articles on three topics which should be of broad
interest: Boij–Söderburg theory, the current status of the homological conjectures and
crepant resolutions. The collection represents the current trends in two of the most
active areas of commutative algebra. Of course, the divisions we have outlined here
are slightly artificial, given the interdependencies between these areas. For instance,
much of combinatorial commutative algebra focuses on the topic of resolutions, a
homological topic. So, we have not officially divided the volume into two parts.

The combinatorial papers document some of the increasing focus in commutative
algebra recently on the interaction between algebra and combinatorics. Specifically,
one can use combinatorial techniques to investigate resolutions and other algebraic
structures as with the papers of Fløystad on Boij–Söderburg theory, of Geramita, Har-
bourne and Migliore and of Cooper on Hilbert Functions, of Clark on Minimal Poset
Resolutions and of Mermin on Simplicial Resolutions. One can also utilize algebraic
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invariants to understand combinatorial structures like graphs, hypergraphs, and sim-
plicial complexes such as in the paper of Morey and Villarreal on Edge Ideals.

Homological techniques have become indispensable tools for the study of Noethe-
rian rings. These ideas have yielded amazing levels of interaction with other fields
like algebraic topology (via differential graded techniques as well as the foundations
of homological algebra), analysis (via the study of D-modules), and combinatorics (as
described in the previous paragraph). The homological articles we have included in
this volume relate mostly to how homological techniques help us better understand
rings and singularities both Noetherian and non-Noetherian such as in the papers by
Roberts, Yao, Hummel and Leuschke.

Enjoy!

March 2012 Sean Sather-Wagstaff
Chris Francisco

Lee Klingler
Janet C. Vassilev
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Boij–Söderberg Theory: Introduction and
Survey

Gunnar Fløystad

Abstract. Boij–Söderberg theory describes the Betti diagrams of graded modules over the
polynomial ring, up to multiplication by a rational number. Analog Eisenbud–Schreyer theory
describes the cohomology tables of vector bundles on projective spaces up to rational multiple.
We give an introduction and survey of these newly developed areas.

Keywords. Betti Diagrams, Cohomology of Vector Bundles, Cohen–Macaulay Modules, Pure
Resolutions, Supernatural Bundles.

2010 Mathematics Subject Classification. Primary: 13D02, 14F05; Secondary: 13C14,
14N99.

Introduction

In November 2006 M. Boij and J. Söderberg put out on the arXiv a preprint “Graded
Betti numbers of Cohen–Macaulay modules and the multiplicity conjecture”. The
paper concerned resolutions of graded modules over the polynomial ring S D
kŒx1; : : : ; xn� over a field k. It put forth two striking conjectures on the form of their
resolutions. These conjectures and their subsequent proofs have put the greatest flood-
light on our understanding of resolutions over polynomial rings since the inception of
the field in 1890. In this year David Hilbert published his syzygy theorem stating that a
graded ideal over the polynomial ring in n variables has a resolution of length less than
or equal to n. Resolutions of modules both over the polynomial ring and other rings
have since then been one of the pivotal topics of algebraic geometry and commutative
algebra, and more generally in the field of associative algebras.

For the next half a year after Boij and Söderberg put out their conjectures, they
were incubating in the mathematical community, and probably not so much exposed
to attacks. The turning point was the conference at MSRI, Berkeley in April 2007
in honor of David Eisenbud 60th birthday, where the conjectures became a topic of
discussion.

For those familiar with resolutions of graded modules over the polynomial ring, a
complete classification of their numerical invariants, the graded Betti numbers .ˇij /,
seemed a momentous task, completely out of reach (and still does). Perhaps the central
idea of Boij and Söderberg is this: We do not try to determine if .ˇij / are the graded
Betti numbers of a module, but let us see if we can determine ifm �.ˇij / are the graded
Betti numbers of a module if m is some big integer.
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This is the idea of stability which has been so successful in stable homotopy theory
in algebraic topology and rational divisor theory in algebraic geometry.

Another way to phrase the idea of Boij and Söderberg is that we do not determine
the graded Betti numbers .ˇij / but rather the positive rays t � .ˇij / where t is a positive
rational number. It is easy to see that these rays form a cone in a suitable vector space
over the rational numbers.

The conjectures of Boij and Söderberg considered the cone B of such diagrams
coming from modules of codimension c with the shortest possible length of resolution,
c. This is the class of Cohen–Macaulay modules. The first conjecture states precisely
what the extremal rays of the cone B are. The diagrams on these rays are called pure
diagrams. They are the possible Betti diagrams of pure resolutions,

S.�d0/
ˇ0;d0  S.�d1/

ˇ1;d1  � � �  S.�dc/
ˇc;dc (0.1)

of graded modules, where the length c is equal to the codimension of the module. To
prove this conjecture involved two tasks. The first is to show that there are vectors
on these rays which actually are Betti diagrams of modules. The second is to show
that these rays account for all the extremal rays in the cone B , in the sense that any
Betti diagram is a positive rational combination of vectors on these rays. This last part
was perhaps what people found most suspect. Eisenbud has said that his immediate
reaction was that this could not be true.

Boij and Söderberg made a second conjecture giving a refined description of the
cone B . There is a partial order on the pure diagrams, and in any chain in this partial
order the pure diagrams are linearly independent. Pure diagrams in a chain therefore
generate a simplicial cone. Varying over the different chains we then get a simplicial
fan of Betti diagrams. The refinement of the conjectures states that the realization of
this simplicial fan is the positive cone B . In this way each Betti diagram lies on a
unique minimal face of the simplicial fan, and so we get a strong uniqueness statement
on how to write the Betti diagram of a module.

After the MSRI conference in April 2007, Eisenbud and the author independently
started to look into the existence question, to construct pure resolutions whose Betti di-
agram is a pure diagram. They came up with the construction of the GL.n/-equivariant
resolution described in Subsection 3.1. Jerzy Weyman was instrumental in proving the
exactness of this resolution and the construction was published in a joint paper in
September 2007 on the arXiv, [11]. In the same paper also appeared another construc-
tion of pure resolutions described in Subsection 3.5.

After this success D. Eisenbud and F.-O. Schreyer went on to work on the other part
of the conjectures. And in December 2007 they published on the arXiv the proof of
the second part of the conjectures of Boij and Söderberg, [12]. But at least two more
interesting things appeared in this paper. They gave a construction of pure resolutions
that worked in all characteristics. The constructions above [11], work only in charac-
teristic zero. But most startling, they discovered a surprising duality with cohomology
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tables of algebraic vector bundles on projective spaces. And fairly parallel to the proof
of the second Boij–Söderberg conjecture they were able to give a complete descrip-
tion of all cohomology tables of algebraic vector bundles on projective spaces, up to
multiplication by a positive rational number.

In the wake of this a range of papers have followed, most of which are discussed in
this survey. But one thing still needs to be addressed. What enticed Boij and Söderberg
to come up with their conjectures? The origin here lies in an observation by Huneke
and Miller from 1985, that if a Cohen–Macaulay quotient ring of A D S=I has pure
resolution (0.1) (so d0 D 0 and ˇ0;d0

D 1), then its multiplicity e.A/ is equal to the
surprisingly simple expression

1

cŠ
�

c
Y

iD1

di :

This led naturally to consider resolutions F� of Cohen–Macaulay quotient rings A D
S=I in general. In this case one has in each homological term Fi in the resolution a
maximal twist S.�ai / (so ai is minimal) and a minimal twist S.�bi / occurring. The
multiplicity conjecture of Herzog, Huneke and Srinivasan, see [25] and [26], stated
that the multiplicity of the quotient ring A is in the following range

1

cŠ

c
Y

iD1

ai � e.A/ � 1

cŠ

c
Y

iD1

bi :

Over the next two decades a substantial number of papers were published on this treat-
ing various classes of rings, and also various generalizations of this conjecture. But
efforts in general did not succeed because of the lack of a strong enough understanding
of the (numerical) structure of resolutions. Boij and Söderberg’s central idea is to see
the above inequalities as a projection of convexity properties of the Betti diagrams of
graded Cohen–Macaulay modules: The pure diagrams generate the extremal rays in
the cone of Betti diagrams.

Notation. The graded Betti numbers ˇij .M/ of a finitely generated module M are
indexed by i D 0; : : : ; n and j 2 Z. Only a finite number of these are nonzero. By a
diagram we shall mean a collection of rational numbers .ˇij /, indexed as above, with
only a finite number of them being nonzero.

The organization of this paper is as follows. In Section 1 we give the important
notions, like the graded Betti numbers of a module, pure resolutions and Cohen–
Macaulay modules. Such modules have certain linear constraints on their graded Betti
numbers, the Herzog–Kühl equations, giving a subspaceLHK of the space of diagrams.
We define the positive cone B in LHK of Betti diagrams of Cohen–Macaulay modules.
An important technical convenience is that we fix a “window” on the diagrams, con-
sidering Betti diagrams where the ˇij are nonzero only in a finite range of indices
.i; j /. This makes the Betti diagrams live in a finite dimensional vector space. Then
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we present the Boij–Söderberg conjectures. We give both the algorithmic version,
concerning the decomposition of Betti diagrams, and the geometric version in terms
of fans.

In Section 2 we define the simplicial fan † of diagrams. The goal is to show that
its realization is the positive cone B , and to do this we study the exterior facets of
†. The main work of this section is to find the equations of these facets. They are
the key to the duality with algebraic vector bundles, and the form of their equations
are derived from suitable pairings between Betti diagrams and cohomology tables of
vector bundles. The positivity of the pairings proves that the cone B is contained in
the realization of †, which is one part of the conjectures.

The other part, that† is contained in B , is shown in Section 3 by providing the exis-
tence of pure resolutions. We give in Subsection 3.1 the construction of the equivariant
pure resolution of [11], in Subsection 3.4 the characteristic free resolution of [12], and
in Subsection 3.5 the second construction of [11]. For cohomology of vector bundles,
the bundles with supernatural cohomology play the analog role of pure resolutions. In
Subsection 3.2 we give the equivariant construction of supernatural bundles, and in
Subsection 3.3 the characteristic free construction of [12].

In Section 4 we first consider the cohomology of vector bundles on projective
spaces, and give the complete classification of such tables up to multiplication by a
positive rational number. The argument runs analogous to what we do for Betti dia-
grams. We define the positive cone of cohomology tables C , and the simplicial fan
of tables � . We compute the equations of the exterior facets of � which again are
derived from the pairings between Betti diagrams and cohomology tables. The posi-
tivity of these pairings show that C � � , and the existence of supernatural bundles
that � � C , showing the desired equality C D � .

Section 5 considers extensions of the previous results. First in Subsection 5.1 we
get the classification of graded Betti numbers of all modules up to positive rational
multiples. For cohomology of coherent sheaves there is not yet a classification, but
in Subsection 5.2 the procedure to decompose cohomology tables of vector bundles is
extended to cohomology tables of coherent sheaves. However this procedure involves
an infinite number of steps, so this decomposition involves an infinite sum.

Section 6 gives more results that have followed in the wake of the conjectures and
their proofs. The ultimate goal, to classify Betti diagrams of modules (not just up to
rational multiple) is considered in Subsection 6.1, and consists mainly of examples
of diagrams which are or are not the Betti diagrams of modules. So far we have
considered kŒx1; : : : ; xn� to be standard graded, i.e. each deg xi D 1. In Subsection 6.2
we consider other gradings and multigradings on the xi . Subsection 6.3 considers
the partial order on pure diagrams, so essential in defining the simplicial fan †. In
Subsection 6.4 we inform on computer packages related to Boij–Söderberg theory,
and in Subsection 6.5 we give some important open problems.



Boij–Söderberg Theory 5

1 The Boij–Söderberg Conjectures

We work over the standard graded polynomial ring S D kŒx1; : : : ; xn�. For a graded
moduleM over S , we denote byMd its graded piece of degree d , and byM.�r/ the
module where degrees are shifted so thatM.�r/d DMd�r .

Note. We shall always assume our modules to be finitely generated and graded.

1.1 Resolutions and Betti Diagrams

A natural approach to understand such modules is to understand their numerical in-
variants. The most immediate of these is of course the Hilbert function:

hM .d/ D dimkMd :

Another set of invariants is obtained by considering its minimal graded free resolution:

F0  F1  F2  � � �  Fl : (1.1)

Here each Fi is a graded free S -module
L

j 2Z S.�j /ˇij .

Example 1.1. Let S D kŒx; y� and M be the quotient ring S=.x2; xy; y3/. Then its
minimal resolution is

S
Œx2 xy y3 � �������� S.�2/2 ˚ S.�3/

"

y 0

�x y2

0 �x

#

 ������� S.�3/˚ S.�4/:

The multiple ˇi;j of the term S.�j / in the i th homological part Fi of the reso-
lution, is called the i th graded Betti number of degree j . These Betti numbers con-
stitute another natural set of numerical invariants, and the ones that are the topic of
the present notes. By the resolution (1.1) we see that the graded Betti number deter-
mine the Hilbert function ofM . In fact the dimension dimkMd is the alternating sum
P

.�1/i dimk.Fi /d . The Betti numbers are however more refined numerical invari-
ants of graded modules than the Hilbert function.

Example 1.2. LetM 0 be the quotient ring S=.x2; y2/. Its minimal free resolution is

S  S.�2/2  S.�4/:

Then M of Example 1.1 and M 0 have the same Hilbert functions, but their graded
Betti numbers are different.
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The Betti numbers are usually displayed in an array. The immediate natural choice
is to put ˇi;j in the i th column and j th row, so the diagram of Example 1.1 would be:

0

1

2

3

4

0 1 2
2

6

6

6

6

6

6

4

1 0 0

0 0 0

0 2 0

0 1 1

0 0 1

3

7

7

7

7

7

7

5

However, to reduce the number of rows, one uses the convention that the i th column
is shifted i steps up. Thus ˇi;j is put in the i th column and the j � i th row. Alterna-
tively, ˇi;iCj is put in the i th column and j th row. So the diagram above is displayed
as:

0

1

2

0 1 2
2

6

4

1 0 0

0 2 1

0 1 1

3

7

5

(1.2)

A Betti diagram has columns indexed by 0; : : : ; n and rows indexed by elements
of Z, but any Betti diagram (of a finitely generated graded module) is nonzero only in
a finite number of rows. Our goal is to understand the possible Betti diagrams that can
occur for Cohen–Macaulay modules. This objective seems however as of yet out of
reach. The central idea of Boij–Söderberg theory is rather to describe Betti diagrams
up to a multiple by a rational number. I.e. we do not determine if a diagram ˇ is a
Betti diagram of a module, but we will determine if qˇ is a Betti diagram for some
positive rational number q. By Hilbert’s syzygy theorem we know that the length l of
the resolution (1.1) is � n. Thus we consider Betti diagrams to live in the Q-vector
space D D L

j 2Z QnC1, with the ˇij as coordinate functions. An element in this
vector space, a collection of rational numbers .ˇij /iD0;:::;n;j 2Z where only a finite
number is nonzero, is called a diagram.

1.2 The Positive Cone of Betti Diagrams

We want to make our Betti diagram live in a finite dimensional vector space, so we
fix a “window” in D as follows. Let c � n and ZcC1

deg be the set of strictly increasing

integer sequences .a0; : : : ; ac/ in ZcC1. Such an element is called a degree sequence.
Then ZcC1

deg is a partially ordered set with a � b if ai � bi for all i D 0; : : : ; c.

Definition 1.3. For a; b in ZcC1
deg let D.a; b/ be the set of diagrams .ˇij /iD0;:::;n;j 2Z

such that ˇij may be nonzero only in the range 0 � i � c and ai � j � bi .
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We see that D.a; b/ is simply the Q-vector space with basis elements indexed by
the pairs .i; j / in the range above determined by a and b. The diagram of Example
1.1, displayed above in (1.2), lives in the window D.a; b/ with a D .0; 1; 2/ and
b D .0; 3; 4/ (or a any triple � .0; 1; 2/ and b any triple � .0; 3; 4/).

If the moduleM has codimension c, equivalently its Krull dimension is n � c, the
depth ofM is � n � c. By the Auslander–Buchsbaum theorem, [8], the length of the
resolution is l � c. To make things simple we assume that l has its smallest possible
value l D c or equivalently thatM has depth equal to the dimension n� c. This gives
the class of Cohen–Macaulay (CM) modules.

Definition 1.4. Let a and b be in ZcC1
deg .

� L.a; b/ is the Q-vector subspace of the window D.a; b/ spanned by the Betti
diagrams of CM-modules of codimension c, whose Betti diagrams are in this
window.

� B.a; b/ is the set of nonnegative rays spanned by such Betti diagrams.

Lemma 1.5. B.a; b/ is a cone.

Proof. We must show that if ˇ1 and ˇ2 are in B.a; b/ then q1ˇ1 C q2ˇ2 is in B.a; b/
for all positive rational numbers q1 and q2.

This is easily seen to be equivalent to the following: Let M1 and M2 be CM-
modules of codimension c with Betti diagrams in D.a; b/. Show that c1ˇ.M1/ C
c2ˇ.M2/ is in B.a; b/ for all natural numbers c1 and c2. But this linear combination
is clearly the Betti diagram of the CM-module M c1

1 ˚M c2

2 of codimension c. And
clearly this linear combination is still in the window D.a; b/.

Our main objective is to describe this cone.

1.3 Herzog–Kühl Equations

Now given a resolution (1.1) of a moduleM , there are natural relations its Betti num-
bers ˇij must fulfil. First of all if the codimension c � 1, then clearly the alternating
sum of the ranks of the Fi must be zero. I.e.

X

i;j

.�1/iˇij D 0:

When the codimension c � 2 we get more numerical restrictions. Since M has di-
mension n� c, its Hilbert series is of the form hM .t/ D p.t/

.1�t/n�c , where p.t/ is some
polynomial. This may be computed as the alternating sum of the Hilbert series of each
of the terms in the resolution (1.1):

hM .t/ D
P

j ˇ0j t
j

.1 � t /n �
P

j ˇ1j t
j

.1 � t /n C � � � C .�1/
l

P

j ˇlj t
j

.1 � t /n :
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Multiplying with .1 � t /n we get

.1 � t /cp.t/ D
X

i;j

.�1/iˇij t
j :

Differentiating this successively and setting t D 1, gives the equations
X

i;j

.�1/ijpˇij D 0; p D 0; : : : ; c � 1: (1.3)

These equations are the Herzog–Kühl equations for the Betti diagram ¹ˇij º of a mod-
ule of codimension c.

We denote by LHK.a; b/ the Q-linear subspace of diagrams in D.a; b/ fulfilling the
Herzog–Kühl equations (1.3). Note that L.a; b/ is a subspace of LHK.a; b/. We shall
show that these spaces are equal.

1.4 Pure resolutions

Now we shall consider a particular case of the resolution (1.1). Let d D .d0; : : : ; dl/

be a strictly increasing sequence of integers, a degree sequence. The resolution (1.1)
is pure if it has the form

S.�d0/
ˇ0;d0  S.�d1/

ˇ1;d1  � � �  S.�dl /
ˇl;dl :

By a pure diagram (of type d) we shall mean a diagram such that for each column i
there is only one nonzero entry ˇi;di

, and the di form an increasing sequence. We see
that a pure resolution gives a pure Betti diagram.

When M is CM of codimension c, the Herzog–Kühl equations give the following
set of equations

2

6

6

6

6

4

1 �1 � � � .�1/c
d0 �d1 � � � .�1/cdc

:::
:::

d c�1
0 �d c�1

1 � � � .�1/cd c�1
c

3

7

7

7

7

5

2

6

6

6

6

4

ˇ0;d0

ˇ1;d1

:::

ˇc;dc

3

7

7

7

7

5

:

This is a c� .cC1/matrix of maximal rank. Hence there is only a one-dimensional
Q-vector space of solutions. The solutions may be found by computing the maximal
minors which are Vandermonde determinants and we find

ˇi;di
D .�1/i � t �

Y

k¤i

1

.dk � di /

where t 2 Q. When t > 0 all these are positive. Let �.d/ be the diagram which is the
smallest integer solution to the equations above. As we shall see pure resolutions and
pure diagrams play a central role in the description of Betti diagrams up to rational
multiple.
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1.5 Linear Combinations of Pure Diagrams

The rays generated by the �.d/ turn out to be exactly the extremal rays in the cone
B.a; b/. Thus any Betti diagram is a positive linear combination of pure diagrams. Let
us see how this works in an example.

Example 1.6. If the diagram of Example 1.1

ˇ D
0

1

2

2

6

4

1 0 0

0 2 1

0 1 1

3

7

5

is a positive linear combination of pure diagrams �.d/, the only possibilities for these
diagrams are

�.0; 2; 3/ D

2

6

4

1 0 0

0 3 2

0 0 0

3

7

5

; �.0; 2; 4/ D

2

6

4

1 0 0

0 2 0

0 0 1

3

7

5

; �.0; 3; 4/ D

2

6

4

1 0 0

0 0 0

0 4 3

3

7

5

:

Note that by the natural partial order on degree sequences we have

.0; 2; 3/ < .0; 2; 4/ < .0; 3; 4/:

To find this linear combination we proceed as follows. Take the largest positive multi-
ple c1 of �.0; 2; 3/ such that ˇ�c1�.0; 2; 3/ is still nonnegative. We see that c1 D 1=2
and get

ˇ1 D ˇ � 1
2
�.0; 2; 3/ D

2

6

4

1=2 0 0

0 1=2 0

0 1 1

3

7

5

:

Then take the largest possible multiple c2 of �.0; 2; 4/ such that ˇ1 � c2�.0; 2; 4/ is
nonnegative. We see that c2 D 1=4 and get

ˇ2 D ˇ � 1
2
�.0; 2; 3/ � 1

4
�.0; 2; 4/ D

2

6

4

1=4 0 0

0 0 0

0 1 3=4

3

7

5

:

Taking the largest multiple c3 of �.0; 3; 4/ such that ˇ2 � c3�.0; 3; 4/ is nonnegative,
we see that c3 D 1=4 and the last expression becomes the zero diagram. Thus we get
ˇ as a positive rational combination of pure diagrams

ˇ D 1

2
�.0; 2; 3/C 1

4
�.0; 2; 4/C 1

4
�.0; 3; 4/:
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The basic part of Boij–Söderberg theory says that this procedure will always work:
It gives a nonnegative linear combination of pure diagrams. We proceed to develop this
in more detail. With ZcC1

deg equipped with the natural partial order, we get for a; b 2
ZcC1
deg the interval Œa; b�deg consisting of all degree sequences d with a � d � b. The

diagrams �.d/ where d 2 Œa; b�deg are the pure diagrams in the window determined by
a and b.

Example 1.7. If a D .0; 2; 3/ and b D .0; 3; 4/, the vector space D.a; b/ consists of
the diagrams which may be nonzero in the positions marked by � below.

2

6

4

� 0 0

0 � �
0 � �

3

7

5

;

and so is five-dimensional. The Herzog–Kühl equations for the diagrams (c D 2) are
the following two equations

ˇ0;0 � .ˇ1;2 C ˇ1;3/C .ˇ2;3 C ˇ2;4/ D 0;
0 � ˇ0;0 � .2ˇ1;2 C 3ˇ1;3/C .3ˇ2;3 C 4ˇ2;4/ D 0:

These are linearly independent and so LHK.a; b/ will be three-dimensional. On the
other hand the diagrams �.0; 2; 3/; �.0; 2; 4/ and �.0; 3; 4/ are clearly linearly inde-
pendent in this vector space and so they form a basis for it. This is a general phe-
nomenon.

The linear space LHK.a; b/ (and as will turn out L.a; b/) may be described as fol-
lows.

Proposition 1.8. Given any maximal chain

a D d1 < d2 < � � � < dr D b

in Œa; b�deg. The associated pure diagrams

�.d1/; �.d2/; : : : ; �.dr/

form a basis for LHK.a; b/. The length of such a chain, and hence the dimension of
the latter vector space is r D 1CP.bi � ai /.

Proof. Let ˇ be a solution of the HK-equations contained in the window D.a; b/.
The vectors d1 and d2 differ in one coordinate, suppose it is the i th coordinate, so
d1 D .: : : ; d1

i ; : : : / and d2 D .: : : ; d1
i C1; : : : /. Let c1 be such that ˇ1 D ˇ�c1�.d1/

is zero in position .i; d1
i /. Then ˇ1 is contained in the window D.d2; b/ and d2; : : : ; dr
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is a maximal chain in Œd2; b�deg. We may proceed by induction and in the end get ˇr�1

contained in Œb; b�deg. Then ˇr�1 is pure and so is a multiple of �.dr /. In conclusion

ˇ D
r
X

iD1

ci�.di /:

To see that the �.di / are linearly independent, note that �.d1/ is not a linear combina-
tion of the �.di / for i � 2 since �.d1/ is nonzero in position .i; d1

i / while the �.d
i /

for i � 2 are zero in this position. Hence a dependency must involve only �.di / for
i � 2. But then we may proceed by induction.

1.6 The Boij–Söderberg Conjectures

The first part of the original Boij–Söderberg conjectures states the following.

Theorem 1.9. For every degree sequence d, a strictly increasing sequence of integers
.d0; : : : ; dc/, there exists a Cohen–Macaulay module M of codimension c with pure
resolution of type d.

We shall in Section 3 give an overview of the constructions of such resolutions,
making the conjecture a theorem.

Corollary 1.10. The linear space L.a; b/ is equal to LHK.a; b/.

Proof. The diagram �.d/ may now be realized, up to multiplication by a scalar, as the
Betti diagram of a Cohen–Macaulay module.

The second part of the Boij–Söderberg conjectures says the following.

Theorem 1.11. Let M be a Cohen–Macaulay module of codimension c with Betti
diagram ˇ.M/ in D.a; b/. There is a unique chain

d1 < d2 < � � � < dr

in Œa; b�deg such that ˇ.M/ is uniquely a linear combination

c1�.d1/C c2�.d2/C � � � C cr�.dr/;

where the ci are positive rational numbers.

Remark 1.12. When M is any graded module of codimension � c, the same essen-
tially holds true, but one must allow degree sequences di in Zp

deg where p ranges over
c C 1; : : : ; nC 1. See Subsection 5.1.

Remark 1.13. Combining this with Theorem 1.9 we see that there are modules Mi

with pure resolution of type di such that for suitable multiples p and pi thenMp and
L

i M
pi

i have the same Betti diagram.
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1.7 Algorithmic Interpretation

As a consequence of Theorem 1.11 we get a simple algorithm to find this unique
decomposition, which is the way we did it in Example 1.6. This algorithm, with in-
teresting consequences, is presented in [12, Section 1]. For a diagram ˇ, for each
i let di be the minimal j such that ˇij is nonzero. This gives a sequence d.ˇ/ D
.d0; d1; : : : ; dc/, the lower bound of ˇ.

Example 1.14. Below the nonzero positions of ˇ is indicated by �’s.

0

1

2

3

2

6

6

6

6

4

� � 0 0 0

� � � 0 0

0 � � � �
0 0 0 � �

3

7

7

7

7

5

Then d.ˇ/ D .0; 1; 3; 5; 6/.

There is a pure Betti diagram �.d.ˇ// and let c.ˇ/ > 0 be the maximal number
such that ˇ0 D ˇ � c.ˇ/�.d.ˇ// is nonnegative.

LetM be a Cohen–Macaulay module. The algorithm is now as follows.

1. Let ˇ D ˇ.M/ and i D 1.
2. Compute di WD d.ˇ/ and ci WD c.ˇ/. Then di will be a strictly increasing

sequence. Let ˇ WD ˇ � ci�.di /.

3. If ˇ is nonzero let i WD i C 1 and continue with Step 2. Otherwise stop.

The output will then be the unique positive linear combination

ˇ.M/ D c1�.d1/C c2�.d2/C � � � C cr�.dr/:

1.8 Geometric Interpretation

Since for any chainD W d1 < d2 < � � � < dr in Œa; b�deg the Betti diagrams �.d1/; : : : ;

�.dr / are linearly independent diagrams in D.a; b/, their positive rational linear com-
binations give a simplicial cone �.D/ in D.a; b/, which actually is in the subspace
LHK.a; b/. Two such cones will intersect along another such cone, which is the con-
tent of the following.

Proposition 1.15. The set of simplicial cones �.D/ where D ranges over all chains
d1 < � � � < dr in Œa; b�deg form a simplicial fan, which we denote as †.a; b/.
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Proof. LetD be a chain like above and E another chain e1 < � � � < es in Œa; b�deg. We
shall show that �.D/ and �.E/ intersect in �.D \E/. So consider

ˇ D
X

ci�.di / D
X

c0
i�.e

i /

in the intersection. By omitting elements in the chain we may assume all ci and c0
i

positive. Then the lower bound of ˇ which we denoted d.ˇ/, will be d1. But it will
also be e1, and so e1 D d1. Assume say that c1 � c0

1. Let ˇ
0 D ˇ� c1�.d1/. Then ˇ0

is in �.Dn¹d1º/ and in �.E/. By induction on the sum of the cardinalities of D and
E, we get that ˇ0 is in �.D \En¹d1º/ and so ˇ is in �.D \E/.

We now get the following description of the positive cone B.a; b/.

Theorem 1.16. (i) The realization of the fan †.a; b/ is contained in the positive
cone B.a; b/.

(ii) The positive cone B.a; b/ is contained in the realization of the fan †.a; b/.

In conclusion the realization of the fan †.a; b/ is equal to the positive cone B.a; b/.

It may seem overly pedantic to express it in this way but the reason should be clear
from the proof.

Proof. Part (i) is equivalent to the first part of the Boij–Söderberg conjectures, Theo-
rem 1.9. Part (ii) is equivalent to the second part of the Boij–Söderberg conjectures,
Theorem 1.11.

2 The Exterior Facets of the Boij–Söderberg Fan and Their
Supporting Hyperplanes

In order to prove Theorem 1.11, which is equivalent to part b. of Theorem 1.16, we
must describe the exterior facets of the Boij–Söderberg fan †.a; b/ and their support-
ing hyperplanes.

2.1 The Exterior Facets

Let D W d1 < � � � < dr be a maximal chain in Œa; b�deg. The positive rational linear
combinations of the pure diagrams �.d1/; : : : ; �.dr/ is a maximal simplicial cone
�.D/ in the Boij–Söderberg fan †.a; b/. The facets of the cone �.D/ are the cones
�.Dn¹diº/ for i D 1; : : : ; r . We call such a facet exterior if it is on only one simplicial
cone in the fan †.a; b/.

Example 2.1. Let a D .0; 1; 3/ and b D .0; 3; 4/. The Hasse diagram of the poset
Œa; b�deg is the diagram.
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��

��

��

��

��

.0; 3; 4/

.0; 2; 3/

.0; 1; 3/

.0; 1; 4/

.0; 2; 4/

There are two maximal chains in this diagram

D W .0; 1; 3/ < .0; 2; 3/ < .0; 2; 4/ < .0; 3; 4/
E W .0; 1; 3/ < .0; 1; 4/ < .0; 2; 4/ < .0; 3; 4/

so the realisation of the Boij–Söderberg fan consists of the union of two simplicial
cones of dimension four. We intersect this transversally with a hyperplane to get a
three-dimension picture of this as the union of two tetrahedra. (The vertices are la-
belled by the pure diagrams on their rays.)

�.0; 3; 4/

�.0; 1; 4/

�.0; 1; 3/

�.0; 2; 3/

�.0; 2; 4/

There is one interior facet of the fan, while all other facets are exterior. The exterior
facets are of three types. We give an example of each case by giving the chain.

(i) Dn¹.0; 1; 3/º. Here we omit the minimal element a. Clearly this can only be
completed to a maximal chain in one way so this gives an exterior facet.

(ii) En¹.0; 2; 4/º. This chain contains .0; 1; 4/ and .0; 3; 4/. Clearly the only way to
complete this to a maximal chain is by including .0; 2; 4/, so this gives an exterior
facet.

(iii) Dn¹.0; 2; 4/º. This contains .0; 2; 3/ and .0; 3; 4/. When completing this to a
maximal chain clearly one must first increase the last 3 in .0; 2; 3/ to 4, giving
.0; 2; 4/. SoD is the only maximal chain containing this.

The following tells that these three types are the only ways of getting exterior facets.
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Proposition 2.2. Let D be a maximal chain in Œa; b�deg and f 2 D. Then �.Dn¹f º/
is an exterior facet iff one of the following holds:

(i) f is either a or b.

(ii) The degree sequences of f � and f C immediately before and after f in D differ
in exactly one position. So for some r we have

f � D .: : : ; r � 1; : : : /; f D .: : : ; r; : : : /; f C D .: : : ; r C 1; : : : /:
(iii) The degree sequences of f � and f C immediately before and after f in D differ

in exactly two adjacent positions such that in these two positions there is an
integer r such that

f � D .: : : ; r � 1; r; : : : /; f D .: : : ; r � 1; r C 1; : : : /;
f C D .: : : ; r; r C 1; : : : /:

In Case (iii) we denote the exterior facet by facet.f; �/ where � is the position of
the number r � 1 in f .
Proof. That these cases give exterior facets is immediate as in the discussion of the
example above. That this is the only way to achieve exterior facets is also easy to
verify.

2.2 The Supporting Hyperplanes

If � is full dimensional simplicial cone in a vector spaceL, each facet of � is contained
in a unique hyperplane, which is the kernel of a nonzero linear functional h W L! k.

We shall apply this to the cones �.D/ in LHK.a; b/, and find the equations of the
hyperplanes H defining the exterior facets of �.D/. Actually we consider the inclu-
sion �.D/ � LHK.a; b/ � D.a; b/ and rather find a hyperplane H 0 in D.a; b/ with
H D H 0 \LHK.a; b/. The equation of such a hyperplane is not unique up to constant
however. Since LHK.a; b/ is cut out by the Herzog–Kühl equations, we may add any
linear combinations of these equations, say `, and get a new equation h00 D h0 C `
defining another hyperplane H 00 � D.a; b/ which still intersects LHK.a; b/ in H . In
Cases (i) and (ii) of Proposition 2.2 there turns out to be a unique natural choice for
the hyperplane, while in Case (iii) there are two distinguished hyperplanes.

Example 2.3. We continue Example 2.1 and look at the various types of exterior facets
of Proposition 2.2.

(i) In the chain

D W .0; 1; 3/ < .0; 2; 3/ < .0; 2; 4/ < .0; 3; 4/
if we look at the facet of �.D/ we get by removing .0; 1; 3/, the natural equation
for a hyperplane in D.a; b/ is ˇ1;1 D 0. This hyperplane contains �.0; 2; 3/,
�.0; 2; 4/, and �.0; 3; 4/, but it does not contain �.0; 1; 3/. We may get other



16 Gunnar Fløystad

equations by adding linear combinations of the Herzog–Kühl equations but this
equation is undoubtedly the simplest one.

(ii) In the chain
E W .0; 1; 3/ < .0; 1; 4/ < .0; 2; 4/ < .0; 3; 4/

if we consider the facet of �.D/we get by removing .0; 2; 4/, the natural equation
for a supporting hyperplane is ˇ1;2 D 0.

(iii) In the case that we remove f D .0; 2; 4/ from D things are more refined. There
turns out to be two linear functionals on D.a; b/ which define two distinguished
hyperplanes, called respectively the upper and lower hyperplanes. We will rep-
resent the equation of a hyperplane in D.a; b/ by giving the coefficients of the
ˇij . To describe the upper hyperplane note that the Betti diagram of the sequence
f C D .0; 3; 4/ immediately after f is

�1
0

1

2

2

6

6

6

6

4

0 0 0

1� 0 0

0 0� 0�

0 4C 3C

3

7

7

7

7

5

The nonzero entries of the diagram have been additionally labelled with �;C and
C. Similarly the nonzero positions of �.f �/ will be labelled by �;� and �.
Thinking of the Betti diagram as stretching infinitely upwards and downwards,
the zeros in the diagram for f C are divided into an upper and lower part. The
equation of the upper hyperplane, the upper equation will have possible nonzero
values only in the upper part of f C (marked with normalsized �’s):

�2 � � �
�1 � � �
0 0� � �
1 0 �� ��

2 0 0C 0C

: (2.1)

Remark 2.4. The choice of facet equation ˇij D 0 for exterior facets of type (i) and (ii)
and of the upper equation for exterior facets of type (iii) is further justified in the last
paragraph of Subsection 5.1. The Betti diagrams of all graded modules whose Betti
diagram is in the window D.a; b/, generate a full-dimensional cone in this window.
The exterior facet types above have corresponding larger facets in this cone, and the
equations above give the unique (up to scalar) equations of these larger facets.

Before proceeding to find the upper hyperplane equation, we note the following
which says that the choice of window bounds a and b does not have any essential
effect on the exterior facets, and that the exterior facets of type (iii) essentially only
depend on the f omitted and not on the chain.
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Lemma 2.5. Consider facets of type (iii) in Proposition 2.2.

(i) If D and E are two maximal chains in Œa; b�deg which both contain the subse-
quence f � < f < f C, the exterior facets �.Dn¹f º/ and �.En¹f º/ define the
same hyperplane in LHK.a; b/.

(ii) Let a0 � a � b � b0 and suppose D0 is a maximal chain in Œa0; b0�deg restricting
to D in Œa; b�deg. If H 0 in D.a0; b0/ is a hyperplane defining �.D0n¹f º/, then
H 0 \D.a; b/ is a hyperplane defining �.Dn¹f º/.

Proof. As for part (ii) �.Dn¹f º/ is a subset of �.D0n¹f º/ and so is contained in
H 0. But H 0 does not contain LHK.a; b/ since H 0 does not contain �.f / which is
contained in this linear space, and so H 0 \ LHK.a; b/ is a hyperplane in LHK.a; b/.
ThusH 0 \D.a; b/ is a hyperplane in D.a; b/ defining �.Dn¹f º/.

For part (i) note that ifD is the chain

a D d1 < � � � < dp�1 D f � < f < f C D dpC1 < � � � < dr D b

the space L� spanned by �.d1/; : : : ; �.dp�1/ is by Proposition 1.8 equal to
LHK.a; f �/, and so depends only on a and f �. Similarly LC spanned by �.dpC1/;

: : : ; �.dr/ is equal to LHK.f C; b/. The hyperplane of �.Dn¹f º/ is then spanned by
L� and LC, which depends only on f , f C, f �, a and b.

Example 2.6. Let us return to Example 2.3 to find the hyperplane equations when we
remove f D .0; 2; 4/ from D. By the previous proposition we may as well assume
that a is some tuple with small coordinates and b is a tuple with large coordinates.

The upper hyperplane equation hup, which has the form given in (2.1), does not
vanish on �.f / but will, by Lemma 2.5 vanish on �.g/ when g < f . In particular it
vanishes on

�.f �/ D �.0; 2; 3/ D
�1
0

1

2

6

4

0 0 0

1� 0 0

0 3� 2�

3

7

5

;

and so the coefficients of hup must have the form

�2 � � �
�1 � � �
0 0 � �
1 0 2˛ �3˛

where ˛ is some nonzero constant, which we may as well take to be ˛ D 1. Also hup
must vanish on

�.0; 1; 3/ D 0
1

"

2 3 0

0 0 1

#

:
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This shows that the coefficients of hup must be

�2 � � �
�1 � � �
0 0 1 �
1 0 2 �3

.

We may continue with an element just before .0; 1; 3/ in a maximal chain, say
.0; 1; 2/. Since

�.0; 1; 2/ D 0
h

1 2 1
i

:

we get that the coefficients of hup are

�2 � � �
�1 � � �
0 0 1 �2
1 0 2 �3

.

In this way we may continue and hup will be uniquely determined in all positions in
the window determined by a and b. We find that the coefficients of hup are given by
the diagram:

�3 3 �2 1

�2 2 �1 0

�1 1 0 �1
0 0� 1 �2
1 0 2� �3�

2 0 0C 0C

.

In order to find the lower equation, we may in a similar way consider the diagram
of �.f �/

�1
0

1

2

2

6

6

6

6

4

0 0 0

1� 0 0

0 3� 2�

0 0C 0C

3

7

7

7

7

5

:

Again thinking of the Betti diagram as stretching infinitely upwards and downwards,
the positions with zero are divided into an upper and a lower part. There is a unique
hyperplane defined by a linear form hlow which may have nonzero entries only in the
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lower part of the diagram of �.f �/. We find that the coefficients of hlow are given by
the following:

0 0� 0 0

1 �1 0� 0�

2 �2 3C �4C

3 �3 4 �5
4 �4 5 �6
5 �5 6 �7

.

Proposition 2.7. Let f � < f < f C be the degree sequence as in part 3 of Proposi-
tion 2.2. There is a unique hyperplane in D.a; b/, the upper hyperplane, that contains
facet.f; �/ and whose equation has coefficient zero of ˇi;j for all j � f C

i .

Proof. This is done as in the example by choosing any chain f � D dp�1 > dp�2 >

� � � > d1 D a and making the equation of the hyperplane vanish on the elements of
this chain. Lemma 2.5 shows that we get the same hyperplane equation independent
of the choice of chain.

A regular feature of the equations is that the diagonals from lower left to upper
right have the same absolute values but alternating signs in the range where they are
nonzero.

Lemma 2.8. Let bij be the coefficient of ˇij in the upper equation hup. If j < f C
i

then biC1;j D �bi;j .

Proof. Both hup and hlow are equations of the same hyperplane in the subspace
LHK.a; b/. A linear combination of them, in our examples hup C hlow, then vanishes
on this space and so must be a linear combination of the Herzog–Kühl equations (1.3).
But looking at these equations we see that the coefficient of ˇiC1;j and ˇi;j always
have the same absolute value but different signs.

What are the explicit forms of the facet equations, i.e. what determines the num-
bers occurring in these equations? We are interested in this because each supporting
hyperplane H defines a halfspace HC and the intersection of all these halfspaces is a
positive cone contained in the Boij–Söderberg fan †.a; b/. We will be able to show
that each Betti diagram of a module is in all the positive halfspaces. This shows that
the positive cone B.a; b/ is contained in the realization of †.a; b/, so we obtain part
b. of Theorem 1.11.

The numbers in the example above are too simple to make any deductions as to what
governs them in general. A more sophisticated example is the following.
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Example 2.9. The upper equation of facet..�1; 0; 2; 3/; 1/ has coefficients:

U :

�4 21 �12 5 0

�3 12 �5 0 3

�2 5 0 �3 4

�1 0� 3� �4� 3

0 0 0C 0C 0�

where in U the superscripts � and C indicate the nonzero parts of �.f C/, while
the � and � indicate the nonzero parts of �.f �/. The polynomial ring in this case
is S D kŒx1; x2; x3�. Eisenbud and Schreyer, [12], recognised the numbers in this
diagram as the Hilbert functions of the homology modules of the complex

E W E0 D S.1/5 d�! S.2/3 D E1 (2.2)

for a general map d .
The homology table of this complex is:

d �3 �2 �1 0 1 2 3 4 5 6

dimk.H
1E/d 0 3 4 3 0 0 0 0 0 0

dimk.H
0E/d 0 0 0 0 0 5 12 21 32 45.

Two features of this cohomology table that we note are the following. The dimensions
of .H 0E/d are the values of the Hilbert polynomial of H 0E for d � 1. This Hilbert
polynomial is

5

 

d C 3
2

!

� 3
 

d C 4
2

!

D .d � 1/.d C 3/:

This polynomial also gives the dimensions of H 1E in the degrees d D �2;�1; 0 but
with opposite sign. Note also that the roots of this polynomial are 1 and �3 which
are the negatives of the first and last entry in the degree sequence .�1; 0; 2; 3/ that we
consider. In fact the lower and upper facet equations are now fairly simple to describe.

Given a sequence z W z1 > z2 > � � � > zc�1 of integers. It gives a polynomial

p.d/ D
c�1
Y

iD1

.d � zi /:

LetH.z/ be the diagram in D such that:

� The value in position .0; d/ is p.�d/.
� The entries in positions .i C 1; d/ and .i; d/ for i D 0; : : : ; c � 1 have the same
absolute values but opposite signs.
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Example 2.10. When c D 3 and p.d/ D .d � 1/.d C 3/ the diagram H.z/ is the
following rotated 90ı counterclockwise

6 5 4 3 2 1 0 �1 �2 �3
� � � 5 0 �3 �4 �3 0 5 12 21 32 � � �
� � � �12 �5 0 3 4 3 0 �5 �12 �21 � � �
� � � 21 12 5 0 �3 �4 �3 0 5 12 � � �
� � � �32 �21 �12 �5 0 3 4 3 0 �5 � � �

Now given a facet.f; �/ of the Boij–Söderberg fan. Associated to the sequence of
integers

Of W �f0 > �f1 > � � � > �f��1 > �f�C2 > � � � > �fc

we get a H. Of /. Let U.f; �/ be the diagram we get by making all entries of H. Of /
on and below the positions occupied by �.f C/ equal to zero. Explicitly U.f; �/ij D
H. Of /ij for j < f C

i and U.f; �/ij D 0 otherwise. The associated linear form is then:

X

i<�
d<fi

.�1/iˇi;dp.�d/C
X

iD�
d�f�

.�1/iˇi;dp.�d/C
X

i>�
d<fi

.�1/iˇi;dp.�d/: (2.3)

Proposition 2.11. The upper equation hup of facet.f; �/ has coefficients given by the

diagram U.f; �/. The coefficients of the lower facet equation is H. Of / � U.f; �/.
Proof. First note that hup.�.f // is nonzero. If the degree sequence f 0 � f C then
clearly hup.�.f 0// D 0. When f 0 � f � it is shown in [12, Theorem 7.1] that
hup.�.f

0// D 0.

2.3 Pairings of Vector Bundles and Resolutions

In order to prove Proposition 2.11 we had to show that the hyperplane equation hup
given by U.f; �/ is positive on �.f / and vanishes on the other �.f 0/. With the ex-
plicit forms we have for all these expressions this could be done with numerical calcu-
lations. However to prove Theorem 1.11 we need to show that the form given by hup
is nonnegative on all Betti diagrams of Cohen–Macaulay modules.

In order to prove this positivity we must go beyond the numerics. It then appears
that if ˇ is a Betti diagram, the linear functional determined by U.f; �/ evaluated on
ˇ arises from a pairing between a Betti diagram and the cohomology table of a vector
bundle. This is the fruitful viewpoint which enables us to show the desired positivity.

Example 2.12. Going back to the complex (2.2), if we sheafify this complex to get a
complex of direct sums of line bundles on the projective plane P2

QE W OP2.1/5
Qd�! OP2.2/3;
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the map Qd is surjective and so the only nonvanishing homology is E D H 0. QE/. The
table below is the cohomology table of the vector bundle E .

d � � � �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6 � � �
dimkH

2E.d/ � � � 21 12 5 0 0 0 0 0 0 0 0 0 0 � � �
dimkH

1E.d/ � � � 0 0 0 0 3 4 3 0 0 0 0 0 0 � � �
dimkH

0E.d/ � � � 0 0 0 0 0 0 0 0 5 12 21 32 45 � � �

and the values are the absolute values of .d�1/.dC3/. This is an example of a bundle
with supernatural cohomology as we now define.

Definition 2.13. Let
z1 > z2 > � � � > zm

be a sequence of integers. A vector bundle E on the projective space Pm has super-
natural cohomology if:

(i) The Hilbert polynomial is �E.d/ D r0

mŠ
�Qm

iD1.d � zi / for a constant r0 (which
must be the rank of E).

(ii) For each d let i be such that zi > d > ziC1. Then

H iE.d/ D
´

r0

mŠ
�Qm

iD1 jd � zi j; zi > d > ziC1;

0; otherwise:

The sequence z1 > z2 > � � � > zm is called the root sequence of the bundle E .

In particular we see that for each d there is at most one nonvanishing cohomology
group. We show in Section 3 that for any sequence z of strictly decreasing integers
such a vector bundle exists.

Remark 2.14. The naturality of the notion of supernatural cohomology for a vector
bundle, may be seen from the fact that it is equivalent to its Tate resolution, see Sub-
section 6.5, being pure, i.e. each cohomological term in the Tate resolution, a free
module over the exterior algebra, being generated in a single degree.

Proposition 2.11 and the explicit form (2.3) just before it, may now be translated to
the following.

Proposition 2.15. For a facet.f; �;) let E be a vector bundle on P c�1 with supernatu-
ral cohomology and root sequence

�f0 > �f1 > � � � > �f��1 > �f�C2 > � � � > �fc :
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Let �i;d D H iE.d/ and ��i;d the alternating sum �0;d � �1;d C � � �C .�1/i�i;d . The
upper facet equation hup.ˇ/ is defined by the linear form
X

i<�
d<fi

.�1/iˇi;d��i;�d C
X

d�f�

.�1/�ˇ�;d���;�d C
X

d<f�C1

.�1/�C1ˇ�C1;d���;�d

C
X

i>�C1
d<fi

.�1/iˇi;d��i�2;�d :

To understand this as a special case of the upcoming (2.4), we may note the follow-
ing.

� ��i;�d D 0 when i < � and d � fi .
� ����1;�d D 0 when d > f� .
� ��i�2;�d D 0 when i > � C 1 and d � fi .
By studying many examples and a leap of insight, Eisenbud and Schreyer defined for

any integer e and 0 � � � n�1 a pairing hˇ; �ie;� between diagrams and cohomology
tables as the expression

X

i<�;
d2Z

.�1/iˇi;d��i;�d C
X

d�e

.�1/�ˇ�;d���;�d C
X

d>e

.�1/�ˇ�;d����1;�d (2.4)

C
X

d�eC1

.�1/�C1ˇ�C1;d���;�d C
X

d>eC1

.�1/�C1ˇ�C1;d����1;�d

C
X

i>�C1;
d2Z

.�1/iˇi;d��i�2;�d :

When e D f� and � is the cohomology table of the supernatural bundle of Proposition
2.15, this reduces to the expression given there. IfF� is a resolution andF is a coherent
sheaf on Pn�1 we let �.F / be its cohomology table and define

hF�;F ie;� D hˇ.F�/; �.F /ie;� :

That this pairing is the natural one is established by the following which is the key
result of the paper [12], extended somewhat in [15].

Theorem 2.16. For any minimal free resolution F� of length � c and coherent sheaf
F on P c�1 the pairing

hF�;F ie;� � 0:
The proofs of this uses the spectral sequence of a double complex. It is not long but

somewhat technical so we do not reproduce it here, but refer the reader to Theorem
4.1 of [12] and Theorem 4.1 of [15], or the latest Theorem 3.3 of [14]. It is essential
that F� is a minimal free resolution. Using the above results we are now in a position
to prove Theorem 1.11 or equivalently Theorem 1.16 (ii).
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Proof. If facet.f; �/ is a facet of type (iii) of the fan †.a; b/, the upper hyperplane
equation is h�; �.E/ie;� D 0 where e D f� and E given in Proposition 2.15. For
facets of type (i) or (ii) the hyperplane equations are ˇij D 0 for suitable i; j .

Each exterior facet determines a nonnegative half planeHC. Since the forms above
are nonnegative on all Betti diagrams ˇ.M/ in D.a; b/ by Theorem 2.16, the cone
B.a; b/ is contained in the intersection of all the half planes HC which again is con-
tained in the fan †.a; b/.

3 The Existence of Pure Free Resolutions and of Vector
Bundles with Supernatural Cohomology

There are three main constructions of pure free resolutions. The first appeared on
the arXiv.org in September 2007 [11]. This construction works in char k D 0 and
is the GL.n/-equivariant resolution. Then in December 2007 appeared the simpler
but rougher construction of [12] which works in all characteristics. In the paper [11]
there also appeared another construction, resolutions of modules supported on deter-
minantal loci. This construction is somewhat less celebrated but certainly deserves
more attention for its naturality and beauty. It is a comprehensive generalization of the
Eagon–Northcott complexes and Buchsbaum–Rim complexes in a generic setting.

Quite parallel to the first two constructions of pure free resolutions, there are anal-
ogous constructions of vector bundles on Pn�1 with supernatural cohomology. These
constructions are actually simpler than the constructions of pure free resolutions, and
were to some extent known before the term supernatural cohomology was coined in
[12]. In the following we let V be a finite dimensional vector space and let S be the
symmetric algebra S.V / with unique graded maximal ideal m.

3.1 The Equivariant Pure Free Resolution

We shall first give the construction of the GL.V /-equivariant pure resolution of type
.1; 1; : : : ; 1/ and more generally of type .r; 1; : : : ; 1/ for r � 1. These cases are known
classically, and provide the hint for how to search for equivariant pure resolutions of
any type d.

Pure resolutions of type .1; 1; : : : ; 1/. In this case the resolution is the Koszul com-
plex

S  S ˝k V  S ˝k
V2

V  � � �  S ˝k
Vn

V

which is a resolution of the module k D S=m. (We consider V to have degree 1,
and

Vp
V to have degree p.) The general linear group GL.V / acts on each term

S ˝k
Vp

V since it acts on S and
Vp

V . And the differentials respect this action
so they are maps of GL.V /-modules. We say the resolution is GL.V /-equivariant.

To define the differentials note that there are GL.V /-equivariant maps
VpC1

V
��!
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V ˝k
Vp

V . Also let 	 W S ˝k V ! S be the multiplication map. The differential in
the Koszul complex is then:

S ˝k
VpC1

V
1S ˝��! S ˝k V ˝k

Vp
V

�˝1�! S ˝k
Vp

V:

Pure resolutions of type .r; 1; : : : ; 1/. Let us consider resolutions of type .3; 1; 1/.

Example 3.1. In S D kŒx1; x2; x3� the ideal m3 D .x1; x2; x3/
3 has 3-linear resolu-

tion. The resolution of the quotient ring (a Cohen–Macaulay module of codimension
three) is :

S
d0 � S.�3/10 d1 � S.�4/15 d2 � S.�5/6:

Looking at this complex in degree 3, the exponent 10 is the third symmetric power
S3.V / of V D hx1; x2; x3i. Looking at the complex in degree 4, we see that 15 is
the dimension of the kernel of the multiplication V ˝k S3.V /! S4.V /. This map is
GL.V /-equivariant and the kernel is the representation S3;1.V / which has dimension
15 (see below for references explaining this representation). The inclusion

S3;1.V /! V ˝k S3.V /

induces a composition

V ˝k S3;1.V /! V ˝k V ˝k S3.V /! S2.V /˝k S3.V /:

This is the map d1 in degree 5 and the kernel of this map is the representation S3;1;1.V /

whose dimension is 6, accounting for the last term in the resolution above.

In general it is classically known that the resolution of S=mr is

S  S ˝k Sr .V / S ˝k Sr;1.V / � � �  S ˝k Sr;1n�1.V /: (3.1)

This is a pure resolution of type .r; 1; 1; : : : ; 1/.

Representations of GL.V /. Let us pause to give a brief explanation of the terms
Sr;1n�1.V /. The irreducible representations of GL.V / where n D dimk V are classi-
fied by partitions of integers


 W 
1 � 
2 � � � � � 
n:

For each such partition there is a representation denoted by S�.V /. The details of the
construction are easily found in various textbooks like [23], [8] or [29].

Such a partition may be displayed in a Young diagram if 
n � 0. With row index
going downwards, put 
i boxes in row i , and align the rows to the left. (Call this
Horizontal display. Another convention is to display 
i boxes in column i and top
align them. Call this Vertical display.)
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If


0 W 
1 C a � 
2 C a � � � � � 
n C a;
then S�0.V / D .

Vn
V /a ˝k S�.V / where

Vn
V is the one-dimensional determinant

representation. In Example 3.1 we needed to consider tensor products S�.V / ˝k

S�.V /. In char k D 0 this decomposes into a direct sum of irreducible representations.
In general this is complicated, but in one case there is a simple rule which is of central
use for us in the construction of equivariant resolutions.

For two partitions 	 and 
 with 	i � 
i for each i , say that 	n
 is a horizontal
strip (vertical strip with vertical display) if 	i � 
i�1 for all i . Thus when removing
the diagram of 
 from that of 	, no two boxes are in the same column.

Pieri’s rule.

Sr.V /˝k S�.V / D
M

�n�
is a horizontal strip

with r boxes

S�.V /:

Resolutions of length two. Let us examine one more case where equivariant pure free
resolutions are easily constructed: The case when S D kŒx; y�.

Example 3.2.

S2

�

4x3 3x2y 2xy2 y3 0

0 x3 2x2y 3xy2 4y3

�

 �������������������� S.�3/5

2

6

6

6

6

4

y2 0 0

�2xy y2 0

x2 �2xy y2

0 x2 �2xy

0 0 x2

3

7

7

7

7

5

 ��������������� S.�5/3:

The matrices here are chosen so that the complex is GL.2/-equivariant, but we are
really free to vary the coefficients of the first matrix as we like, in an open set, and
there will be a suitable match for the second matrix.

In general one may construct a GL.2/-equivariant complex

S ˝k Sa�1;0  S ˝k SaCb�1;0  S ˝k SaCb�1;a: (3.2)

This is a resolution of type .a� 1; aC b � 1; 2aC b � 1/. By twisting it with a� 1 it
becomes of type .0; b; aC b/.

Resolutions of length three. Now suppose we want to construct pure resolutions of
type .d0; d1; d2; d3/. Since we may twist the complex by �r to get a pure resolution
of type .d0 C r; d1 C r; d2 C r; d3 C r/, what really matters are the differences e1 D
d1 � d0; e2 D d2 � d1, and e3 D d3 � d2. Looking at the complexes (3.1) and (3.2)
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it seems that one should try to construct a complex as follows

S ˝k S�1;�2;�3

d1 � S ˝k S�1Ce1;�2;�3
(3.3)

d2 � S ˝k S�1Ce1;�2Ce2;�3

d3 � S ˝k S�1Ce1;�2Ce2;�3Ce3
:

After looking at the numerics, i.e. the dimensions of the representations and the
Herzog–Kühl equations, there is one choice that fits exactly. This is taking


3 D 0; 
2 D e3 � 1; 
1 D .e2 � 1/C .e3 � 1/:
We must then construct these complexes. To construct d1 one must chose a map

S�1Ce1;�2;�3
! Se1

˝k S�1;�2;�3
:

But by Pieri’s rule the first module occurs exactly once as a component in the sec-
ond tensor product. Hence there is a nonzero map as above, unique up to a nonzero
constant. Similarly d2 is given by

S�1Ce1;�2Ce2;�3
! Se2

˝k S�1Ce1;�2;�3

and again by Pieri’s rule there is a nonzero such map unique up to a nonzero constant.
Similarly for d3. Hence up to multiplying the differentials with constants there is a
unique possible such complex (3.3) with nonzero differentials. What must be demon-
strated is that this is a resolution, i.e. the only homology is the cokernel of d1. And in
fact this is the challenging part.

General construction of equivariant resolutions. To construct a pure resolution of
type .d0; d1; : : : ; dn/ in general one lets ei D di � di�1. Let 
i DPj >i .ej � 1/ and
define the partition

˛.e; i / W 
1 C e1; : : : ; 
i C ei ; 
iC1; : : : ; 
n:

Theorem 3.3 ([11]). There is a GL.n/-equivariant resolution

E.e/ W S ˝k S˛.e;0/  S ˝k S˛.e;1/  � � �  S ˝k S˛.e;n/:

This complex is uniquely defined up to multiplying the differentials by nonzero con-
stants.

These equivariant complexes have a canonical position as follows. Since the com-
plex above is equivariant for GL.n/ it is equivariant for the diagonal matrices in GL.n/.
Hence it is a Zn-graded complex. Fix a sequence of differences .e1; : : : ; en/. Consider
Zn-graded resolutions

F0  F1  � � �  Fn (3.4)
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of Artinian Zn-graded modules which (i) become pure when taking total degrees,
i.e. when making a new grading by the map Zn ! Z given by .a1; : : : ; an/ !
Pn

1 ai , and (ii) such that the differences of these total degrees are the fixed num-
bers e1; : : : ; en. Each Fi D L

j2Zn S.�j/ˇij . We may encode the information of
all the multigraded Betti numbers ˇij as an element in the Laurent polynomial ring
T D ZŒt1; t�1

1 ; : : : ; tn; t
�1
n �. Namely for i D 0; : : : ; n let Bi D L

j2Zn ˇijt
j, which

we call the Betti polynomials. Consider the lattice (Z-submodule) L of T nC1 gen-
erated by all tuples of Betti polynomials .B0; : : : ; Bn/ derived from resolutions (3.4).
This is in fact a T -submodule of T nC1.

The Betti polynomial of the module S˝k S�.V / is the Schur polynomial s� and so
the tuple of the equivariant resolutions E.e/ is

s.e/ D .s˛.e;0/; s˛.e;1/; : : : ; s˛.e;n//:

Fløystad shows that this tuple has a distinguished status among tuples of Betti polyno-
mials of Zn-graded resolutions of Artinian modules.

Theorem 3.4 (Theorem 1.2, [21]). Let char k D 0 and assume the greatest common
divisor of e1; : : : ; en is 1. The T -submoduleL of T nC1 is a free T -module of rank one.
The tuple s.e/ is, up to a unit in T (which is ˙ta, where ta is a Laurent monomial),
the unique generator of this T -module.

Generalizations

The diagram ˛.e; 1/n˛.e; 0/ is a horizontal strip living only in the first row. In [28],
S. Sam and J. Weyman consider partitions ˇ and ˛ such that ˇn˛ is a horizontal strip
(vertical strip in Vertical display). They give explicitly the minimal free resolutions
[28, Theorem 2.8], of the cokernel of the map (char k D 0):

S ˝k Sˇ .V /! S ˝k S˛.V /:

This cokernel may no longer be a Cohen–Macaulay module. It may even have positive
rank. In the case that ˇn˛ contains boxes only in the i th and nth row for some i , they
show that the resolution is pure, [28, Corollary 2.11]. The methods used in this paper
have the advantage that they are more direct and explicit than the inductive arguments
given in [11].

More generally they give the (not necessarily minimal) free resolution of the coker-
nel of

M

i

S ˝k Sˇ i .V /! S ˝k S˛.V /

where ˇin˛ are horizontal strips, and if for each i the horizontal strip lives in one row,
the resolution is minimal.

Sam and Weyman in [28, Section 3] also generalize the construction of GL.V /-
equivariant pure resolutions to resolutions equivariant for the symplectic and orthogo-
nal groups.
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3.2 Equivariant Supernatural Bundles

The equivariant resolution has an analog in the construction of bundles with supernat-
ural cohomology. Given any ring R and an R-module F , one may for any partition 

in a functorial way construct the Schur module S�F , see [8], [23] or [29]. In the case
when R D k and F is a vector space V in char k D 0, with GL.V / acting, the Schur
modules S�V give the irreducible representations of GL.V /. The construction of S�F

respects localization and so for a locally free sheaf E , an algebraic vector bundle on a
scheme, we get Schur bundles S�E . In particular consider the sheaf of differentials on
Pn, the kernel of the natural map ev:

0 OPn

ev � H 0OPn.1/˝k OPn.�1/ �Pn  0;

we may construct Schur bundles S�.�Pn.1//.

Example 3.5. The cohomology of the bundle �Pn.1/ is well known and it has super-
natural cohomology. It is easily computed by the long exact cohomology sequence
associated to the short exact sequence above.

� In the range 1 � p � n � 1 the only nonvanishing cohomology Hp�Pn.i/ is
when p D 1 and i D 0: H 1�Pn Š k.

� H 0�Pn.i/ vanishes for i � 1 and is nonvanishing for i � 2.
� Hn�Pn.i/ vanishes for i � �.n � 1/ and is nonvanishing for i � �n.
The root sequence of �Pn.1/ is 0;�2;�3; : : : ;�n and its Hilbert polynomial is

1

.n � 1/Š � z �
n
Y

iD2

.z C i/:

In general the bundle S�.�Pn.1// has supernatural cohomology. It is standard to
compute its cohomology by the Borel–Bott–Weil formula in the theory of linear al-
gebraic groups, [27] or [29]. The computation of its cohomology is done explicitly
in [20, Section 4], or in [16, Theorem 5.6] for the dual bundle. In fact the nonzero
cohomology modules HpS�.�Pn.i// are all irreducible representations S�V , where
	 depends on 
; i and p.

Theorem 3.6. The Schur bundle S�.�Pn.1// has supernatural cohomology with root
sequence


1 � 1; 
2 � 2; 
3 � 3; : : : ; 
n � n:

3.3 Characteristic Free Supernatural Bundles

It is a general fact that if F is a coherent sheaf on PN and PN �Ü Pn is a projection
whose center of projection is disjoint from the support of F , then ��.F / and F have
the same cohomology

H i .Pn; .��F /.p// Š H i .PN ;F .p//
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for all i and p. (By the projection formula [24, page 124], and since one can use
flasque resolutions to compute cohomology,[24, Chapter III.2].)

Example 3.7. The Segre embedding embeds P1 � Pn�1 as a variety of degree n into
P2n�1. If we take a general projection P2n�1 Ü Pn, the line bundle OP1.�2/ ˝
OPn�1 projects down to a vector bundle of rank n on Pn which is the sheaf of dif-
ferentials �Pn . In fact the cohomology of the line bundle OP1.�2/˝ OPn�1 and its
successive twists by OP1.1/˝OPn�1.1/ is readily computed by the Künneth formula
and it is a sheaf with supernatural cohomology. It has the same cohomology as �Pn ,
and it is not difficult to argue that the projection is actually this bundle.

This example may be generalized as follows. The Segre embedding embeds Pa�Pb

into PabCaCb as a variety of degree
�

aCb
a

�

. Consider the line bundle OPa.�a � 1/˝
OPb on Pa � Pb . The line bundle of the hyperplane divisor on PabCaCb pulls back
to OPa.1/ ˝ OPb .1/ and by twisting with this line bundle, the above line bundle is
a sheaf with supernatural cohomology. Taking a general projection of PabCaCb to
PaCb this line bundle projects down to the bundle

Va
�PaCb of rank

�

aCb
a

�

, as may
be argued using Tate resolutions, [22, Proposition 3.4]. The root sequence of this
bundle is a; a � 1; : : : ; 1;�1;�2; : : : ;�b. It is natural to generalize this by looking
at Segre embeddings Pa1 � � � � � Par ,! PN composed with a general projection
PN Ü Pn where n DPi ai .

Theorem 3.8. Let a root sequence be the union of sets of consecutive integers

r
[

iD1

¹zi ; zi � 1; : : : ; zi � .ai � 1/º

where zi � ziC1 C ai , and let n D a1 C a2 C � � � C ar . The line bundle

p�
1 OPa1 .�z1 � 1/˝ � � � ˝ p�

r�1OPar�1 .�zr�1 � 1/˝ p�
r OPar .�zr � 1/

considered on the Segre embedding of Pa1 � � � � � Par has supernatural cohomol-
ogy. By a general projection down to Pn it projects down to a vector bundle with
supernatural cohomology of rank

�

n
a1a2���ar

�

and root sequence given above.

Remark 3.9. Although in the case r D 2 the projection is a Schur bundle
Va

�Pn , it
is no longer true for r > 2 that one gets twists of Schur bundles S�.�Pn/.p/, as may
be seen from the ranks.

3.4 The Characteristic Free Pure Resolutions

In this construction of [12, Section 5] one starts with a complex of locally free sheaves
on a product of projective spaces Pm0 � Pm1 � � � � � Pmr , whose terms are direct
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sums of line bundles O.t0; : : : ; tr/. The complex is linear in each coordinate twist
and is exact except at the start, so is a locally free resolution. Then we successively
push this complex forward by omitting one factor in the product of projective spaces
at a time. Each time some linear part of the complex “collapses”, so that at each step
we get “multitwisted” pure resolutions. In the end we will have a singly twisted pure
resolution on Pm0 of the type we desire.

The main ingredient in the construction is the following.

Proposition 3.10 (Proposition 5.3, [12]). Let F be a sheaf on X � Pm, and denote by
p1 and p2 the projections onto the factors of this product. Suppose F has a resolution
of the form

p�
1 G0 ˝ p�

2 OPm.�e0/ � � �  p�
1 GN ˝ p�

2 OPm.�eN / 0:

where e0 < e1 < � � � < eN . Suppose for some k � 0 the subsequence .ekC1; : : : ;

ekCm/ is equal to .1; 2 : : : ; m/. Then Rlp1�F D 0 for l > 0 and p1�F has a
resolution on X of the form

G0 ˝H 0OPm.�e0/ G1 ˝H 0OPm.�e1/ � � �
 Gk ˝H 0OPm.�ek/ GkCmC1 ˝HmOPm.�ekCmC1/ � � �
 GN ˝HmOPm.�eN /:

The proof of this is quite short and uses the hypercohomology spectral sequence.

Example 3.11. Let Y be the complete intersection of m forms of type .1; 1/ on Pa �
Pb . Assume m � b C d where d is a nonnegative integer. Let F be the twisted
structure sheaf OY .0; d/. The resolution of OY .0; d/ is

O.0; d/˛0  O.�1; d � 1/˛1  � � �  O.�d; 0/˛d

 O.�d � 1;�1/˛dC1  � � �  O.�d � b;�b/˛dCb

 O.�d � b � 1;�b � 1/˛dCbC1  � � �  O.�m; d �m/˛m :

The first coordinate twist is the one we are interested in. If we push this complex
forward to Pa, the above Proposition 3.10, shows that p�OY .0; d/ has a resolution

O.0/˛
0
0  O.�1/˛0

1  � � �  O.�d/˛0
d

 O.�d � b � 1/˛0
dCbC1  � � �  O.�m/˛0

m :

We see that we adjusted the second coordinate twist so that we got a collapse in the
first coordinate twist resulting in a gap from d to dCbC1. We have a complex which
is pure but no longer linear.
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For the general construction, suppose we want a pure resolution of a sheaf on Pn

by sums of line bundles,

OPn.�d0/
˛0  OPn.�d1/

˛1  � � �  OPn.�dn/
˛n : (3.5)

We see in the example above that we get a leap in twist O.�d/ O.�d � b � 1/
by pushing down omitting a factor Pb . The leaps in the pure resolution we want are
di � di�1, so we consider a projective space Pmi where mi D di � di�1 � 1. On
the product Pn � Pm1 � � � � � Pmn we let Y be the complete intersection ofM D dn

forms of type .1; 1; : : : ; 1/, and let F be OY .0; d0; d1; : : : ; dn�1/. Its resolution is

O.0; d0; : : : ; dn�1/ O.�1; d0 � 1; : : : ; dn�1 � 1/ � � �
 O.�dn�1; d0 � dn�1; : : : ; 0/

˛0  � � �
 O.�dn�1 �mn; d0 � dn�1 �mn; : : : ;�mn/

˛00

 O.�dn; : : : ;�mn � 1/˛000

Note that when the coordinate twist corresponding to Pmi varies through 0;�1; : : :
�mi ;�mi � 1 (displayed when i D n in the second and third line above), the first
coordinate twist varies through

� di�1;�di�1 � 1; : : : ;�di�1 �mi ;�di�1 �mi � 1
.D �di C 1/; .D �di /:

Hence after the projection omitting Pmi , only the first twist �di�1 and the last
�di survive in the first coordinate. After all the projections we get a pure resolution
consisting of sums of line bundles (3.5) on Pn. Taking global sections of all twists of
this complex, we get a complex

S.�d0/
˛0  � � �  S.�dn/

˛n :

That this is a resolution follows by the Acyclicity Lemma [11, Lemma 20.11] or may
be verified by breaking (3.5) into short exact sequences

0 Ki�1  O.�di /
˛i  Ki  0:

By descending induction on i starting from i D n one easily checks that there are
exact sequences of graded modules

0 ��Ki�1  S.�di /
˛i  ��Ki  0:
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Generalizations

In [3] this method of collapsing part of the complex by suitable projections is general-
ized considerably. They construct wide classes of multilinear complexes from tensors
� in Ra ˝ Rb1 ˝ � � � ˝ Rbn where R is a commutative ring, and weights w in ZnC1

(the twist .0; d0; d1; : : : ; dn�1/ above is such a weight). In a generic setting these are
resolutions generalizing many known complexes, like for instance Eagon–Northcott
and Buchsbaum–Rim complexes which arise from a 2-tensor (a matrix).

In particular, Theorem 1.9 of [3] provides infinitely many new families of pure
resolutions of type d for any degree sequence d. The essential idea is that given a
degree sequence, say .0; 4; 7/, the integers in the complement

: : : ;�3;�2;�1; 1; 2; 3; 5; 6; 8; 9; 10; : : :

may be partitioned in many ways into sequences of successive integers, and by cleverly
adjusting the construction above, all twists in such sequences may be collapsed.

The paper also give explicit constructions of the differentials of the complexes, and
in particular of those in the resolutions constructed above by Eisenbud and Schreyer.

3.5 Pure Resolutions Constructed from Generic Matrices

We now describe the second construction of pure resolutions in [11], which also
requires that char k D 0. It gives a comprehensive generalization of the Eagon–
Northcott and Buchsbaum–Rim complexes in a generic setting.

Resolutions of length two. For a map Rr�1
��! Rr of free modules over a com-

mutative ring R, let mi be the minor we get by deleting row i in the map �i . The
well-known Hilbert–Burch theorem says that if the ideal I D .m1; : : : ; mr/ has depth
� 2 then there is a resolution of R=I

R
Œm1;�m2;:::;.�1/r mr � ��������������� Rr � � Rr�1:

We get a generic situation if we let F and G be vector spaces with bases f1; : : : ; fr�1

and g1; : : : ; gr respectively, and set S D Symm.G� ˝ F /. Then G� ˝ F has basis
eij D g�

i ˝ fj , where the g�
i are a dual basis for G�. We have a generic map

G ˝k S
Œeij � F ˝k S.�1/:

The Hilbert–Burch theorem gives a resolution

S
Œm1;�m2;:::;.�1/r�1mr � ����������������� G ˝k S.�r C 1/

Œeij � ��� F ˝k S.�r/:



34 Gunnar Fløystad

The construction of [11, Section 4] generalizes this to pure resolutions of type
.0; s; r/ for all 0 < s < r . This is a resolution

Vr�1
F ˝k

Vs
F � ˝k S  �

Vr�1
F ˝k

Vs
G� ˝k S.�s/

 �Vr�1
F ˝k

Vr�s
F ˝k

Vr
G� ˝k S.�r/:

Note that the right map here identifies as the natural map
Vr�1

F˝k
Vr
G�˝k

Vr�s
G˝kS.�s/ �

Vr�1
F˝k

Vr
G�˝k

Vr�s
F˝kS.�r/:

Also note that the ranks of the modules here are different from the ranks of the
modules in the equivariant case. For instance the rank of the middle term in this
construction is

�

r
s

�

while in the equivariant construction this rank is simply r .

Example 3.12. When r D 5 we derive in the case s D 4 the Hilbert–Burch complex

S
Œm1;�m2;m3;�m4;m5� ��������������� S.�4/5 Œeij � ��� S.�5/4:

When s D 3 we get a complex

S.
4
3/

˛ � S.�3/.5
3/D.5

2/
ˇ � S.�5/.4

2/:

There is a natural basis of the first term S.
4
3/ consisting of three-sets of basis elements

¹f �
i1
; f �

i2
; f �

i3
º of F � and a basis for S.�3/.5

3/ consisting of three-sets of basis elements
¹g�

j1
; g�

j2
; g�

j3
º of G�. The entries of ˛ are the 3 � 3 -minors corresponding to the

columns i1; i2; i3 and rows j1; j2; j3 of the 5 � 4 matrix Œeij �. Similarly the entries of
ˇ consists of 2 � 2-minors of the matrix Œeij �.

When s D 2 we get a complex

S.
4
2/

˛ � S.�2/.5
2/D.5

3/
ˇ � S.�5/.4

3/;

and when s D 1 we get a complex

S.
4
1/

˛ � S.�1/.5
1/D.5

4/
ˇ � S.�5/.4

4/:

Resolutions of length three and longer. To construct resolutions of length three one
must start with a vector space F of rank r � 2 and a vector space G of rank r . The
resolution of pure type .0; a; aC b; aC b C c D r/ has the following form

S2c�1;1b�1F ˝k S
˛1 �Vr�2

F ˝k
Vc�1

F ˝k
Va

G� ˝k S.�a/
˛2 �Vr�2

F ˝k
VbCc�1

F ˝k
VaCb

G� ˝k S.�a � b/
˛3 �Vr�2

F ˝k S2c ;1b�1F ˝k
Vr
G� ˝k S.�r/:
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When b D c D 1 this is the Eagon–Northcott complex associated to a generic map.
When a D c D 1 it is the Buchsbaum–Rim complex, and when a D b D 1 we get the
third complex occurring naturally in this family as given in [8, Appendix A.3].

In general for a degree sequence d D .d0; : : : ; dc/, denote ei D di � di�1. One
chooses G of rank r DPc

1 ei and F of rank r � c C 1. Let �.e; i / be the partition

..c � 1/ec�1; .c � 2/ec�1�1; : : : ; ieiC1�1; iei ; .i � 1/ei�1�1; : : : ; 1e1�1/:

This is the dual of the partition ˛.e; i / defined in the equivariant case. The terms in
our complex will be

H.d; i / D S	.e;i/F ˝k
VdiG� ˝k S.�di /:

The differentialsH.d; i /
	i�! H.d; i � 1/ in the complex are given by

S	.e;i/F ˝k
VdiG� ˝k S.�di /

#
S	.e;i�1/F ˝k

Vdi �di�1F ˝k
Vdi �di�1G� ˝k

Vdi�1G� ˝k S.�di /

#
S	.e;i�1/F ˝k

Vdi�1G� ˝k S.�di�1/:

The last map is due to
Vdi �di�1F˝k

Vdi �di�1G� being a summand of Symm.F˝
G�/di �di�1

.

Theorem 3.13 (Theorem 0.2, [11]). The complex H.d; �/ is a GL.F / � GL.G/ equi-
variant pure resolution of type d.

4 Cohomology of Vector Bundles on Projective Spaces

In their paper [12], Eisenbud and Schreyer also achieved a complete classification of
cohomology tables of vector bundles on projective spaces up to a rational multiple.
This runs fairly analogous to the classification of Betti diagrams of Cohen–Macaulay
modules up to rational multiple. First we introduce cohomology tables of coherent
sheaves and vector bundles, and notation related to these.

4.1 Cohomology Tables

For a coherent sheaf F on the projective space Pm our interest shall be the cohomo-
logical dimensions

�i;d .F / D dimkH
iF .d/:
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The indexed set .�i;d /iD0;:::;m;d2Z is the cohomology table of F , which lives in the
vector space T D D� D …d2ZQmC1 with the �i;d as coordinate functions. An
element in this vector space will be called a table.

We shall normally display a table as follows.

� � � �n;�n�1 �n;�n �n;�nC1 � � � n
:::

:::
:::

� � � �1;�2 �1;�1 �1;0 � � � 1

� � � �0;�1 �0;0 �0;1 � � � 0

� � � �1 0 1 � � � dni
Compared to the natural way of displaying �i;d in row i and column d , we have

shifted row i to the right i steps. With the above way of displaying the cohomology
table, the columns correspond to the terms in the Tate resolution (see Subsection 6.5)
of the coherent sheaf F . We writeH i�F DLn2ZH

iF .n/. This is an S-module, the
i th cohomology module of F .

Example 4.1. The cohomology table of the ideal sheaf of two points in P2 is

� � � 6 3 1 b0 0 0 0 � � �
� � � 2 2 2 2 1 b0 0 � � �
� � � 0 0 0 0 1 3 8 � � �
� � � �3 �2 �1 0 1 2 3 � � �

In this table there are in the two upper rows two distinguished corners with 0, indi-
cated with a b, such that the quadrant determined by it only consists of zeroes. The 0
in the H 1-row is in the column labelled by 2 so it is in degree z1 D 2 � 1. The 0 in
the H 2-row is in the column labelled by 0 so its degree is z2 D 0 � 2. The sequence
z1; z2 is called the root sequence of the cohomology table.

Recall that the classical Castelnuovo–Mumford regularity of a coherent sheaf F is
defined by

r D inf¹mjH iF .m � i/ D 0 for i � 1º:

Definition 4.2. For p � 1 the p-regularity of a coherent sheaf is defined to be

rp D inf¹d jH iF .m � i/ D 0 for i � p;m � dº:
(Is is not difficult to show that the numbers r1 and r are the same.) The root sequence
of F is zp D rp � p for p � 1.

(Eisenbud and Schreyer call in [13] the zp the regularity sequence, but by private
communication from Schreyer the notions of root sequence and regularity sequence
were mixed up in that paper.)
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Example 4.3. Let E be the vector bundle on P3 which is the cohomology of the com-
plex

OP3

Œx0;x1;x2
2

;x2
3

� ��������� OP3.�1/2 ˚OP3.�2/2 Œ�x2
2

;�x2
3

;x0;x1�t

 ������������ OP3.�3/:
The cohomology table of this is

� � � 21 7 1 0 0 0 0 � � � 3

� � � 0e 1 2 1 0 0 0 � � � 2

� � � 0 0 0e 1 2 1 0 � � � 1

� � � 0 0 0 0e 1 7 21 � � � 0

� � � -2 -1 0 1 2 3 4 � � � dni

For a vector bundle E all the intermediate cohomology modules H i�E have finite
length for i D 1; : : : ; m � 1. Also H 0E.d/ vanishes for d 	 0. Hence in this case it
is for rows 0; 1; : : : ; m � 1 also meaningful to speak of the corners with 0, extending
downwards and to the left, indicated by e in the diagram above.

4.2 The Fan of Cohomology Tables of Vector Bundles

We want to consider vector bundles whose cohomology tables live in a finite dimen-
sional subspace of T . Let Zm

root be the set of strictly decreasing integer sequences
.a1; : : : ; am/. Such sequences are called root sequences. This is a partially ordered
set with a � b if ai � bi for i D 1; : : : ; m. The interval Œa; b�root is the set of all root
sequences z such that a � z � b. We will consider vector bundles E such that for each
i D 1; : : : ; m we haveH iE.p/ D 0 for p � bi . (This is the same as the root sequence
of E being � b. )

As shown in Example 4.3, for a vector bundle we may also bound below the ranges
of the cohomology modulesH i�E for i D 0; : : : ; m�1, and we assume thatH iE.p/ D
0 for p � aiC1 for i D 0; : : : ; m � 1. In particular note that bi � 1 bounds above the
supporting range ofH i�E and aiC1C1 bounds below the supporting range ofH i�E . If
E has supernatural cohomology, the conditions means that its root sequence is in the
interval Œa; b�root.

Definition 4.4. T .a; b/ is the subspace of T consisting of all tables such that
� �i;d D 0 for i D 1; : : : ; m and d � bi .

� �i;d D 0 for i D 0; : : : ; m � 1 and d � aiC1.

� The alternating sum �0;d��1;dC� � �C.�1/m�m;d is a polynomial in d of degree
� m for d � b1 and for d � am.

The space T .a; b/ is a finite dimensional vector space as is easily verified, since the
values of a polynomial of degree� m is determined by any ofmC1 successive values.
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The last condition for T .a; b/ is not really canonical. The conditions are just to get
a simply defined finite-dimensional space containing the cohomology tables of vector
bundles with supernatural cohomology and root sequences in the interval Œa; b�root.
Note that set of all positive rational multiples of cohomology tables of vector bundles
whose tables are in T .a; b/, forms a positive cone which we denote by C.a; b/.

For a root sequence z W z1 > z2 > � � � > zm we associate a table � z given by

� z
i;d D

´

1
mŠ
…m

iD1jd � zi j; zi > d > ziC1;

0; otherwise:

This is the supernatural table associated to this root sequence.

Lemma 4.5. IfZ W z1 > z2 > � � � > zr is a chain of root sequences, then � z1

; � z2

; : : : ;

� zr

are linearly independent.

Hence these supernatural tables span a simplicial cone �.Z/ in T .

Proposition 4.6. The set of simplicial cones �.Z/ where Z ranges over the chains
Z W z1 < z2 < � � � < zr in Œa; b�root, form a simplicial fan in T .a; b/ which we denote
as �.a; b/.

Here is the analog of Theorem 1.16.

Theorem 4.7. (i) The realization of the fan �.a; b/ is contained in the positive cone
C.a; b/.

(ii) The positive cone C.a; b/ is contained in the realization of the fan �.a; b/.
In conclusion the realization of �.a; b/ and the positive cone C.a; b/ are equal.

Part (i) is a consequence of the existence of vector bundles with supernatural coho-
mology which is treated in Subsections 3.2 and 3.3. The proof of part (ii) is analogous
to the proof of Theorem 1.16 (ii), which we developed in Section 2. We outline this in
the next subsection and the essential part is again to find the facet equations of �.a; b/.

4.3 Facet Equations

Example 4.8. Let a D .0;�4;�5/ and b D .0;�2;�4/. Considering the interval
Œa; b�root as a partially ordered set, its Hasse diagram is:

��

����

��

��

.0;�2;�4/

.0;�3;�4/.0;�2;�5/

.0;�3;�5/

.0;�4;�5/
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There are two maximal chains in this diagram

Z W .0;�4;�5/ < .0;�3;�5/ < .0;�3;�4/ < .0;�2;�4/
Y W .0;�4;�5/ < .0;�3;�5/ < .0;�2;�5/ < .0;�2;�4/

so the realization of the Boij–Söderberg fan consists of the union of two simplicial
cones of dimension four. Cutting it with a hyperplane, we get two tetrahedra. (The
vertices are labelled by the pure diagrams on its rays.)

�.0;�4;�5/

�.0;�3;�4/
�.0;�2;�4/

�.0;�2;�5/

�.0;�3;�5/

There is one interior facet of the fan, while all other facets are exterior. The exterior
facets are of three types. We give an example of each case by giving the chain.

(i) Zn¹.0;�2;�4/º. Here we omit the maximal element b. Clearly this can only
be completed to a maximal chain in one way so this gives an exterior facet. The
nonzero values of the table � .0;�2;�4/ is

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � �4 �3 �2 �1 0 1 2 � � �

The second coordinate is changing from b to its predecessor. Hence the facet
equation is �2;�3 D 0, since �2;�3 is nonzero on � .0;�2;�4/ but vanishes on the
other elements in Z.

(ii) Zn¹.0;�3;�5/º. This chain contains .0;�3;�4/ and .0;�4;�5/. Clearly the
only way to complete this to a maximal chain is by including .0;�3;�5/, so this
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gives an exterior facet. The tables associated to these root sequences has nonzero
positions as follows

� � � � � C � � � � � � �
� � � � � 
 � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � �4 �3 �2 �1 0 1 2 � � �

In column�2 each of � .0;�3;�4/; � .0;�3;�5/ and � .0;�4;�5/ has only one nonzero
value, indicated by a C;
 and � respectively. We see that �2;�4 is nonzero
on � .0;�3;�5/ but vanishes on the other elements in the chain, giving the facet
equation �2;�4 D 0.

(iii) Y n¹.0;�3;�5/º. This chain contains .0;�2;�5/ and .0;�4;�5/. Clearly the
only way to complete this to a maximal chain is by including .0;�3;�5/, so
this gives an exterior facet. The nonzero cohomology groups of � .0;�2;�5/ are
indicated by � andC in the following diagram, those of � .0;�4;�5/ are indicated
by � and �, while those of the element omitted, � .0;�3;�5/, are indicated by �’s,
the firstC and the second �.

� � � � � � � � � � � � � �
� � � � � � C C � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

The diagram is divided into two parts. The upper part consists of all positions
above the � and � positions, and the lower part below the � and C positions.
There will be an upper and a lower facet equation. Working it out in a way
analogous to Example 2.6, the lower facet equation is given by the following
table

� � � 0� 0� 0� 0 0 0 0 0 � � �
� � � 0 0 4 0C 0C 0 0 0 � � �
� � � 0 �4 15 �20 10 0� 0 0 � � �
� � � 4 �15 20 �10 0 1 0� 0� � � �

The meaning of the numbers turns out to be as follows. Taking the negative of the
union of the degree sequences of zC; z and z� we get d D .0; 2; 3; 4; 5/. The pure
resolution of this type has exactly the absolute values of the nonzero numbers in the
bottom row as Betti numbers:

S  S.�2/10  S.�3/20  S.�4/15  S.�5/4:
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Proposition 4.9. Let Z be a maximal chain in Œa; b�root and z 2 Z. Then �.Zn¹zº/ is
an exterior facet of �.a; b/ if either of the following holds.

(i) z is either a or b. The facet equation is �i;d D 0 for appropriate i and d .

(ii) The root sequences of z� and zC immediately before and after z in Z differ in
exactly one position. So for some r we have

z� D .: : : ;�.r C 1/; : : : /; z D .: : : ;�r; : : : /; zC D .: : : ;�.r � 1/; : : : /:

(iii) The root sequences of z� and zC immediately before and after z in Z differ in
two consecutive positions such that for some r we have

z� D .: : : ;�r;�.r C 1/; : : : /; z D .: : : ;�.r � 1/;�.r C 1/; : : : /;
zC D .: : : ;�.r � 1/;�r; : : : /:

Letting i be the position of �.r � 1/, the facet equation is �i;�r D 0.

For facets of type (ii) the description of the facet equations are as follows.

Theorem 4.10. Let Z be a chain giving an exterior facet of type (ii), and let z�; z and
zC be successive elements in this chain which differ only in the i th position. Let f be
the degree sequence which is the union of zC; z and z� and let F� be a pure resolution
corresponding to the degree sequence f . The facet equation of this exterior facet is
then

hˇ.F�/; �ie;i D 0
where e D �zi � 1.

We may now prove Theorem 4.7 (ii).

Proof. Consider a facet of type (ii) of the fan �.a; b/ associated to the root sequence
z and position i . The upper equation is hˇ.F�/;�ie;i D 0 where e D �zi � 1 and F�

is given in Theorem 4.10. For facets of type (i) or (iii) the hyperplane equations are
�i;d D 0 for suitable i; d .

Each exterior facet determines a nonnegative half planeHC. Since the forms above
are nonnegative on all cohomology tables �.E/ in T .a; b/ by Theorem 2.16, the cone
C.a; b/ is contained in the intersection of all the half planes HC which again is con-
tained in the fan �.a; b/.

5 Extensions to Non-Cohen–Macaulay Modules and to
Coherent Sheaves

We have in Sections 1 and 2 considered Betti diagrams of Cohen–Macaulay mod-
ules over S D kŒx1; : : : ; xn� of a given codimension. Shortly after Eisenbud and
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Schreyer proved the Boij–Söderberg conjectures, Boij and Söderberg, [6], extended
the theorems to the case of arbitrary (finitely generated and graded) modules over this
polynomial ring. The description here is just as complete as in the Cohen–Macaulay
case.

In [13] Eisenbud and Schreyer extended the decomposition algorithm for vector
bundles to a decomposition algorithm for coherent sheaves. This cannot however be
seen as a final achievement since it does not give a way to determine if a table is the
cohomology table, up to rational multiple, of a coherent sheaf on a projective space.

5.1 Betti Diagrams of Graded Modules in General

The modifications needed to extend the Boij–Söderberg conjectures (theorems actu-
ally) to graded modules in general are not great. Let Z�nC1

deg be the set of increasing
sequences of integers d D .d0; : : : ; ds/ with s � n and consider a partial order on this
by letting

.d0; : : : ; ds/ � .e0; : : : ; et /

if s � t and di � ei when i ranges from 0; : : : ; s. Note that if we identify the sequence
d with the sequence .d0; : : : ; dn/ where dsC1; : : : ; dn are all equal to C1, then this
is completely natural.

Associated to d, we have a pure diagram �.d/ by Subsection 1.4, such that any
Cohen–Macaulay module of codimension s with pure resolution of type d, will have
a Betti diagram which is a multiple of �.d/. Boij–Söderberg prove the following
variation of Theorem 1.11 for an arbitrary module.

Theorem 5.1. Let ˇ.M/ be the Betti diagram of a graded S -module M . Then there
exists positive rational numbers ci and a chain of sequences d1 < d2 < � � � < dp in
Z�nC1
deg such that

ˇ.M/ D c1�.d1/C � � � C cp�.dp/:

The algorithm for this decomposition goes exactly as the algorithm in Subsection
1.7.

Example 5.2. LetM D kŒx; y; z�=.x2; xy; xz2/. This is a module with Betti diagram

0

1

2

2

6

4

1 0 0 0

0 2 1 0

0 1 2 1

3

7

5

which can be decomposed as

1

5
�

2

6

4

1 0 0 0

0 5 5 0

0 0 0 1

3

7

5

C 1

10
�

2

6

4

3 0 0 0

0 10 0 0

0 0 15 8

3

7

5

C 1
6
�

2

6

4

1 0 0 0

0 0 0 0

0 4 3 0

3

7

5

C 1
3
�

2

6

4

1 0 0 0

0 0 0 0

0 1 0 0

3

7

5

:
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The cone cut out by the facet equations. Let a; b in ZnC1
deg be degree sequences of

length .n C 1/. In the linear space LHK.a; b/ we know that the positive cone cut out
by the functionals ˇij and h�;Eie;� , where e is an integer, 0 � � � n � 1, and E is
a vector bundle on Pn�1, is the positive cone B.a; b/. We may then ask what is the
positive cone Beq.a; b/ cut out by these functionals in the space of all diagrams in the
window D.a; b/.

Let Bmod.a; b/ be the positive cone consisting of all rational multiples of Betti dia-
grams of graded modules whose diagram is in the window D.a; b/. Since the function-
als are nonnegative on all Betti diagrams of modules, by Proposition 2.16, it is clear
that Bmod.a; b/ � Beq.a; b/. In [5] they describe the facet equations of Bmod.a; b/.
They are limits of facet equations of the type h�;Eie;� where elements in the root se-
quence of E tend to infinity. This shows that also Bmod.a; b/ � Beq.a; b/. Hence the
cone Beq.a; b/ in D.a; b/ cut out by the functionals is simply Bmod.a; b/, the positive
cone generated by all Betti diagrams of graded modules with support in in the window
D.a; b/.

When c D n, the exterior facets of type (i) (when removing a minimal element), (ii),
and (iii) in Proposition 2.2 are on unique exterior facets of the full-dimensional cone
Bmod.a; b/ D Beq.a; b/ in D.a; b/. The unique hyperplane equation (up to scalar) of
these latter facets are given by the ˇij and the upper equation respectively, testifying
to the naturality of these choices in Section 2.

5.2 Cohomology of Coherent Sheaves

In contrast to the case of vector bundles the decomposition algorithm for coherent
sheaves on projective space is not of a finite number of steps.

In order to extend the algorithm we need to define sheaves with supernatural coho-
mology. Let

z W z1 > z2 > � � � > zs

be a sequence of integers. It will be convenient to let z0 D 1 and zsC1 D zsC2 D
� � � D �1. A coherent sheaf F on Pm has supernatural cohomology if:

(i) The Hilbert polynomial is �F .d/ D d0

sŠ
�…s

iD1.d � zi / for a constant d0 (which
must be the degree of F ).

(ii) For each d let i be such that zi > d > ziC1. Then

H iF .d/ D
´

d0

sŠ
�…s

iD1jd � zi j; zi > d > ziC1;

0; otherwise:

In particular we see that for each d there is at most one nonvanishing cohomology
group.

The typical example of such a sheaf is a vector bundle with supernatural cohomol-
ogy living on a linear subspace P s � Pm. Let � z be the cohomology table of the sheaf
with supernatural cohomology with root sequence z.
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We need to define one more notion derived from a cohomology table of a coherent
sheaf.

Example 5.3. Consider the cohomology table :

� � � 23 11 5 b1 0 0 0 � � � 3

� � � 6 5 4 3 2 b1 0 � � � 2

� � � 0 0 1 1 1 1 0 � � � 1

� � � 0 0 0 0 1 3 8 � � � 0

� � � �2 �1 0 1 2 3 4 � � � dni .
In rows 3 and 2 there are two distinguished corners with nonzero values, marked with a
b such that in the first quadrant determined by them, these are the only nonzero values.
In this case the root sequence is z1 D 4�1 D 3, z2 D 4�2 D 2 and z3 D 2�3 D �1.
We see that there is no corner position in row 1 because z2 D z1 � 1.

Definition 5.4. Given a root sequence z1 > � � � > zs . The position .i; d/ D .i; zi � 1/
is a corner position if ziC1 < zi � 1.

We may verify that � z has nonzero values at each corner position. Assume z is the
root sequence of the cohomology table � of a coherent sheaf. Let ˛r ; ˛r�1; : : : ; ˛0 be
the values of the corner positions of � , and let ar ; ar�1; : : : ; a0 be the values of the
corresponding corner positions in � z.

Define
qz D min

°˛0

a0
; : : : ;

˛r

ar

±

:

Eisenbud and Schreyer [13] show the following.

� The table � � qz�
z has nonnegative entries.

� The root sequence z0 of this new table is < than the root sequence z.

The algorithm of Eisenbud and Schreyer is now to continue this process. For a table
� , let dim � be the largest i such that row i is nonzero.

0. Let s D dim � and �0 D � .
1. �1 D �0 � qz0

� z0

where z0 is the root sequence of �0.

2. �2 D �1 � qz1
� z1

where z1 is the root sequence of �1.
:::

In the case of vector bundles in T .a; b/ we are guaranteed that this process stops
at latest when zi D a, and we get the decomposition derived from the simplicial fan
structure of C.a; b/, Theorem 4.7. For coherent sheaves this process gives a strictly
decreasing chain of root sequences

z0 > z1 > z2 > � � �
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and may continue an infinite number of steps. Clearly the top value zi
s must tend

to �1 as i tends to infinity. In the end we get a table �1 where row s is zero so
dim �1 < s. Note that we are not guaranteed that the entries of �1 are rational
numbers.

We may repeat this process with � 0 D �1, which has dimension strictly smaller
than that of � . Eisenbud and Schreyer [13] show the following.

Theorem 5.5. Let �.F / be a cohomology table of a coherent sheaf F on Pm. There
is a chain of root sequences Z and positive real numbers qz for z 2 Z such that

�.F / D
X

qz�
z:

BothZ and the numbers qz are uniquely determined by these conditions. The qz are
rational numbers if dim � z D dim � .

The way qz is defined we are only sure that the corner values of � � qz�
z stays

nonnegative. The essential ingredient in the proof is to show that not only the corner
values stay nonnegative but that every entry in the table stays nonnegative. In order
to prove the theorem, Eisenbud and Schreyer show that certain linear functionals are
nonnegative when applied to the cohomology table of a coherent sheaf.

6 Further Topics

6.1 The Semigroup of Betti Diagrams of Modules

Theorem 1.9 gives a complete description of the positive rational cone B.a; b/ gen-
erated by Betti diagrams of Cohen–Macaulay modules in the window D.a; b/. Of
course a more ultimate goal is to describe precisely what the possible Betti diagrams
of modules really are.

This is a much harder problem and the results so far may mostly be described as
families of examples. Investigations into this has been done mainly by D. Erman in
[17] and by Eisenbud, Erman and Schreyer in [9].

Denote by Bint D B.a; b/int the semigroup of integer diagrams in B.a; b/, which
we call the semigroup of virtual Betti diagrams, and let Bmod D B.a; b/mod be the
semigroup of diagrams in B.a; b/ which are actual Betti diagrams of modules of codi-
mension n.

As a general result Erman shows:

Theorem 6.1 ([17]). The semigroups Bint and Bmod are finitely generated.

Not every virtual Betti diagram may be an actual Betti diagram of a module.
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Example 6.2. The pure diagram � D �.0; 1; 3; 4/ is
"

1 2 � �
� � 2 1

#

:

If this were the Betti diagram of a module, this module would have resolution

S
Œl1; l2� � S.�1/2  S.�3/2  S.�4/:

But this is not possible since writing S.�1/2 D Se1˚ Se2 with ei 7! li , there would
be a syzygy l2e1 � l1e2 of degree 2.

However 2� is an actual Betti diagram. Take a sufficiently general map S2 d �
S.�1/4, for instance

d D
 

x1 x2 x3 x4

x1 2x2 3x3 4x4

!

:

The resolution of the cokernel of d is then

S2 d � S.�1/4  S.�3/4  S.�4/2:
Also, the equivariant resolution E.1; 2; 1/ (recall that 1; 2; 1 are the differences of
0; 1; 3; 4) is given by

S3  S.�1/6  S.�3/6  S.�4/3:
So we see that on the ray determined by � the integer diagrams

"

m 2m � �
� � 2m m

#

are actual Betti diagrams for m � 2 but not for m D 1.
Recall that if d is a degree sequence, then �.d/ is the smallest integer diagram on

the ray t�.d/; t > 0. The integer diagrams are then m�.d/;m 2 N.

Conjecture 6.3 ([11, Conjecture 6.1]). For every degree sequence d there is an integer
m0 such that for m � m0 the diagram m�.d/ is the Betti diagram of a module.

For rays in the positive coneB.a; b/which are not extremal, things are more refined.
The following examples are due to Erman [17].

Example 6.4. The diagram

ˇ D
"

2 3 2 �
� 5 7 3

#
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is a virtual Betti diagram in Bint, and

� D �.0; 2; 3; 4/ D
"

1 � � �
� 6 8 3

#

is the Betti diagram of the module S=.x1; x2; x3/
2. Erman shows that ˇ Cm� is not

in Bmod for any integer m � 0. In particular BintnBmod may not be finite.

In the following example we let S D kŒx1; : : : ; xpC1� where p is a prime. It gener-
alizes Example 6.2 above which is the case p D 2.

Example 6.5. Erman calculates that the diagram

� D �.0; 1; p C 1; : : : ; 2p/ D

2

6

6

4

1 2 � � � � � �
::: � :::

:::

� � � � � � � �

3

7

7

5

:

If m� is the Betti diagram of a CM-module then its resolution starts

Sm d � S.�1/2m  � � � :

An a� .aCm/matrix degenerates in codimension� mC1. Since we are considering
CM-modules, their codimension is one less than the length of the degree sequence
defining � , which is p C 1. So m� is in Bmod only if m � p.

Example 6.6. The diagram

ˇ D
"

2 4 3 �
� 3 4 2

#

is a virtual Betti diagram. Erman shows that ˇ and 3ˇ are not in Bmod, but 2ˇ is in
Bmod. In particular the points on Bmod on a ray in Bint may contain nonconsecutive
lattice points.

In [18] Erman is able to apply Boij–Söderberg theory to prove the Buchsbaum–
Eisenbud–Horrocks conjecture in some special cases.

Module theoretic interpretations of the decomposition. When decomposing the
Betti diagram of a moduleM into a linear combination of pure diagrams associated to
a chain of degree sequences

ˇ.M/ D
t
X

iD1

ci�.di / (6.1)
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where d1 < � � � < dt , one may ask if the decomposition reflects some decomposition
of the the minimal free resolution ofM .

Eisenbud, Erman and Schreyer, [9], ask if there exists a filtration of

M DMt �Mt�1 �Mt�2 � � � � �M1 �M0 D 0 (6.2)

such that theMi=Mi�1 have pure resolutions ci�.di /. Of course in general this can-
not be so since the coefficient ci in the decomposition of ˇ.M/ may not be integers.
However even in the case of integer ci , examples show there may not exist such a
filtration of M or even of M˚r for r � 1, [28, Example 4.5]. There is the question
though if some deformation or specialization ofM orM˚r for r � 1 could have such
a filtration.

In [9] they give sufficient conditions on chains of degree sequences such that if
M has a decomposition (6.1), the ci are integers and there is a filtration (6.2). As a
particular striking application they give the following.

Example 6.7. Let S D kŒx1; x2; x3� and p D 2k C 1 be an odd prime. Consider the
pure diagrams

�.0; 1; 2; p/ D

2

6

6

4

�

p�1
2

�

p2 � 2p �

p
2

� �
:::

:::

� � � 1

3

7

7

5

;

�.0; p � 2; p � 1; p/ D

2

6

6

4

1 � � �
:::

:::

� �

p
2

�

p2 � 2p �

p�1
2

�

3

7

7

5

and

�.0; k; k C 1; p/ D

2

6

6

6

6

6

6

6

4

1 � � �
:::

� p p �
:::

� � � 1

3

7

7

7

7

7

7

7

5

:

If ˛ C 1C �p�1
2

�  0 .mod p/ the diagram

ˇ D 1

p
�.0; 1; 2; p/C ˛

p
�.0; k; k C 1; p/C 1

p
�.0; p � 2; p � 1; p/

is an integer diagram and the integer diagrams on the ray of ˇ are mˇ where m is a
positive integer. In [9] they show that ifM is a module with Betti diagram mˇ, then it
has a filtration (6.2). Thus the coefficients in the decomposition ofmˇ are integers and
so m must be divisible by p. Hence we have a ray where only 1

p
of the lattice points

are actual Betti diagrams of modules.
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6.2 Variations on the Grading

The Boij–Söderberg conjectures concerns modules over the standard graded polyno-
mial ring kŒx1; : : : ; xr � where each deg xi D 1. Since the conjectures have been
settled, it is natural to consider variations on the grading or finer gradings on the poly-
nomial ring and module categories. Specifically each degree of xi may be an element
of Nr

0n¹0º and the modules Zr -graded. When the module category we consider is
closed under direct sums, the positive rational multiples of their Betti diagrams form a
cone. The topic one has been most interested in concerning other gradings, is what are
the extremal rays in this cone. This is the analog of the rays of pure resolutions. More
precisely one is interested in finding the Betti diagrams ˇ.M/ such that if one has a
positive linear combination

ˇ.M/ D q1ˇ.M1/C q2ˇ.M2/;

whereM1 andM2 are other modules in the category, then each ˇ.Mi / is a multiple of
ˇ.M/.

In the case S D kŒx; y� and deg x D 1; degy D 2, this is investigated in the note
[1] by B. Barwick et al. where they give candidates for what the extremal rays are,
although no proofs.

Also with the polynomial ring in two variables, Boij and Fløystad, [4], consider the
case when deg x D .1; 0/; deg y D .0; 1/. They fix a degree sequence .0; p; p C q/
and consider bigraded Artinian modules whose resolution becomes pure of this type
when taking total degrees by the map Z2 ! Z given by .d1; d2/ 7! d1 C d2. Let
P.p; q/ be the positive rational cone generated by such modules.

Theorem 6.8 ([5]). When p and q are relatively prime the extremal rays in the cone
P.p; q/ are parametrized by pairs .a; I / where a is an integer and I is an order
ideal (down set) in the partially ordered set N2, contained in the region px C qy <
.p � 1/.q � 1/.

In particular there is a maximal order ideal in this region; it corresponds to the
equivariant resolution. And there is a minimal order ideal, the empty set; it corresponds
to a resolution of a quotient of monomial ideals given in the original [5, Remark 3.2].

For the polynomial ring in any number r of variables, Fløystad [21] lets deg xi be
the i th unit vector ei . He considers Zr -graded Artinian modules whose resolutions
becomes pure of a given type .d0; d1; : : : ; dc/ when taking total degrees. He gives a
complete description of the linear space generated by their multigraded Betti diagrams,
see Theorem 3.4 in this survey.

Instead of Betti diagrams one may consider cohomology tables arising from other
gradings. Eisenbud and Schreyer in [12] consider vector bundles F on P1 � P1. The
cohomology groups

H iF .a; b/; i D 0; 1; 2; .a; b/ 2 Z2 (6.3)
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give a cohomology table in
L

.a;b/2Z2 Q3. One gets a positive rational cone of bi-
graded cohomology tables and one may ask what are the extremal rays of this cone. If
for each .a; b/ the cohomology groups (6.3) are nonvanishing for at most one i , F is
said to have natural cohomology. In [12] they give sufficient conditions for a vector
bundle with natural cohomology to be on an extremal ray.

Let us end the subsection with a quote by F.-O. Schreyer [14]: “Very little is known
for the extension of this theory to the multi-graded setting. I believe that there will be
beautiful results ahead in this direction.”

6.3 Poset Structures

In the unique decomposition of a Betti diagram

ˇ.M/ D
s
X

iD1

ci�.di /

that we consider, we require that the degree sequences form a chain d1 < d2 <

� � � < dr .
C. Berkesch et al. [2] show that this order condition is reflected on modules with

pure resolutions.

Theorem 6.9 ([2]). Let d and d0 be degree sequences. Then d � d0 if and only if there
exists Cohen–Macaulay modules M and M 0 with pure resolutions of types d and d0
with a nonzero morphism M 0 !M of degree � 0.

They also show the analog of this for vector bundles. This point of view may be
fruitful when trying to understand decomposition algorithms of Betti diagrams under
variations on the gradings.

D. Cook, [7], investigates the posets Œa; b�deg and shows that they are vertex-decom-
posable, Cohen–Macaulay and square-free glicci.

6.4 Computer Packages

Macaulay 2 has the package “BoijSoederberg”. We mention the most important rou-
tines in this package.

� decompose: Decomposes a Betti diagram B as a positive linear combination of
pure diagrams.

� pureBettiDiagram: Lists the smallest positive integral Betti diagram of a pure
resolution of a given type.

� pureCohomologyTable: Gives the smallest positive integral cohomology table
for a given root sequence.

� facetEquation: Computes the upper facet equation of a given facet of type (iii).
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� Routines to compute the Betti numbers for all three pure resolutions constructed
in Section 3.

– The equivariant resolution.

– The characteristic free resolution.

– The resolutions associated to generic matrices.

The package “PieriMaps” contains the routine PureFree to compute the equivariant
resolutions constructed in Subsection 3.1, and the routine pieriMaps to compute the
more general resolutions of [28], see the end of Subsection 3.1.

6.5 Three Basic Problems

The notes [19] is a collection of open questions and problems related to Boij–
Söderberg theory. We mention here three problems, which we consider to be fun-
damental. (They are not explicitly in the notes.)

In [12] Eisenbud and Schreyer give a decomposition of the cohomology table of a
coherent sheaf on Pn involving an infinite number of data. It does not seem possi-
ble from this to determine the possible cohomology tables of coherent sheaves up to
rational multiple.

Problem 1. Determine the possible cohomology tables of coherent sheaves on Pn up
to rational multiple. Can it by done by essentially a finite number of data? (At least if
you fix a suitable “window”.)

Let E D LdimV
iD0

Vi
V be the exterior algebra. A Tate resolution is an acyclic

complex unbounded in each direction

� � � ! Gi�1 ! Gi ! GiC1 ! � � �

where each Gi is a free graded E-module
L

j 2ZE.j /
	i;j . To any coherent sheaf F

is associated a Tate resolution T .F /, see [10]. Tate resolutions associated to coherent
sheaves constitute the class of Tate resolutions which are eventually linear i.e. such that
Gi D E.i�i0/ for i � 0 and some integer i0. Hence the following is a generalization
of the above Problem 1.

Problem 2. Determine the tables .�i;j / of Tate resolutions, up to rational multiple.

A complex F� of free S -modules comes with three natural sets of invariants: The
graded Betti numbers B , the Hilbert functions H of its homology modules, and the
Hilbert functions C of the homology modules of the dualized complex D.K/, where
D D Hom.�; !S / is the standard duality.

When H and C each live in only one homological degree, F� is a resolution of
a Cohen–Macaulay module and Boij–Söderberg theory describes the positive rational
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cone of Betti diagramsB and, sinceH andC are determined byB , the set of the triples
.B;H;C /. If H only lives in one homological degree, i.e. F� is a resolution, we saw
in Subsection 5.1 that Boij and Söderberg, [6], gave a description of the possible B
which are projections onto the first coordinate of such triples, up to rational multiple.

Problem 3. Describe all triples .B;H;C / that can occur for a complex of free S-
modules F�, up to rational multiple. Also describe all such triples under various natural
conditions on B;H and C .

Acknowledgments. We thank the referee for several corrections and useful sugges-
tions for improving the presentation.
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Hilbert Functions of Fat Point Subschemes of
the Plane: the Two-fold Way

Anthony V. Geramita, Brian Harbourne, and Juan C. Migliore

Abstract. Two approaches for determining Hilbert functions of fat point subschemes of P 2

are demonstrated. A complete determination of the Hilbert functions which occur for 9 double
points is given using the first approach, extending results obtained in a previous paper using the
second approach. In addition the second approach is used to obtain a complete determination
of the Hilbert functions for n � 9 m-multiple points for everym if the points are smooth points
of an irreducible plane cubic curve. Additional results are obtained using the first approach for
n � 9 double points when the points lie on an irreducible cubic (but now are not assumed to
be smooth points of the cubic).

Keywords. Fat Points, Hilbert Functions, Linkage, Blow Ups, Projective Plane.

2010 Mathematics Subject Classification. Primary: 13D40, 14J26, 14M07; Secondary:
14M06, 14N05.

1 Introduction

If X is a reduced set of n points in P2, the fat point subscheme Z D mX � P2 is the
.m�1/-st infinitesimal neighborhood ofX . ThusmX is the subscheme defined by the
symbolic power I.X/.m/ � R D kŒP2� (that is, by the saturation of the ideal I.X/m

with respect to the ideal generated by the coordinate variables in the ring kŒP2�). The
question motivating this paper is: What are the Hilbert functions of such subschemes
of P2? There have been two main approaches to this question, and one goal of this
paper is to demonstrate them in various situations.

The two approaches are exemplified by the papers [9] and [7]. The approach of [9]
is to identify constraints that Hilbert functions must satisfy and then for each function
satisfying those constraints to try to find a specific subscheme having that function
as its Hilbert function. A complete classification of all Hilbert functions of reduced
0-dimensional subschemes of projective space was given in [8] using essentially this
approach. The paper [9] then uses [8] as the starting point for classifying Hilbert func-
tions for subschemes of the form Z D 2X � P2 with X reduced and 0-dimensional.

We thank the NSF, whose support for the MAGIC05 conference at the University of Notre Dame gave us
an opportunity to begin work on this paper. Geramita also thanks the NSERC for research support, and
Harbourne and Migliore thank the NSA for its partial support of their research (under grants H98230-
11-1-0139 and H98230-07-1-0066 for Harbourne and under grants H98230-07-1-0036 and H98230-09-
1-0031 for Migliore).
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This approach is most effective when the class of possible functions is fairly limited,
hence the restriction in [9] to the case m D 2. This approach has the advantage of
providing explicit results often without needing detailed information about the dispo-
sition of the points, but it has the disadvantage of not providing a complete dictionary
of which point sets give which Hilbert function. The approach of [7] is to use the
geometry of the surface Y obtained by blowing up the points of the support of Z
to obtain information about the Hilbert function of Z. This approach is most effec-
tive when the geometry of Y is well-understood, hence the restriction in [7] to the
case n � 8. Given points pi and non-negative integers mi , the subscheme defined
by the ideal

Tn
iD1.I.pi /

mi / is also called a fat point subscheme, and is denoted by
m1p1C� � �Cmnpn. The advantage of the second approach, as implemented in [7], is
that it provided complete results for all fat point subschemesZ D m1p1C� � �Cmnpn

with n � 8, together with a complete determination of which Z give the same Hilbert
function, but it had the cost of needing a lengthy analysis of the geometry of Y , and
gives only recursive determinations of the Hilbert functions. However, for n � 8 and
k D 2 there are only finitely many cases, so a complete list of the Hilbert functions
which occur can be given. See [7] for this list.

The first case left open by [7] is n D 9 points of P2. It should, in principle, be
possible to carry out the necessary analysis to obtain a complete recursive classification
of Hilbert functions and corresponding points sets for n D 9, but whereas for n � 8
there are only finitely many classes of sets of n points, there will certainly be infinitely
many when n D 9 (related to the fact that there can be infinitely many prime divisors
on Y of negative self-intersection, and to the fact that effective nef divisors F can
occur with h1.Y;OY .F // > 0). Thus a complete classification in this case using the
methods of [7] will be a substantial effort, which we leave for future research (not
necessarily by us).

Instead, in this paper we will focus on some special cases. We devote Section 2 to
demonstrating the first approach by obtaining a complete answer in the case of n D 9
and m D 2. This also shows how one could recover the result for n D 8 and m D 2

obtained in [7] using the methods of [9].
The rest of the paper is devoted to demonstrating both methods for the case of n

points of multiplicitym on cubics, under somewhat different hypotheses chosen to play
to the strengths of each method. The Philosophy of the First Way is to use known facts
about Hilbert functions to say things about what Hilbert functions are possible. The
Philosophy of the Second Way is to use known facts about cohomology of blown up
surfaces to say things about what dimensions of linear systems are possible. Sections 3
(using the First Way) and 4 (using the Second Way) illustrate how we can attack the
same problem and obtain overlapping and sometimes complementary results, but using
dramatically different ways to do so.

So, given points on a plane cubic, for the First Way we will assume the cubic is
irreducible, that m D 2 and, in some cases, that n is not too small. Our main results
here are Theorem 3.4 and Theorem 3.7. For the Second Way we will make no re-
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strictions on m nor assume the cubic is irreducible but we will assume the points are
smooth points of the cubic and we will assume that the points are evenly distributed
(meaning essentially that no component contains too many of the points). Under these
two assumptions we give a complete determination of all possible Hilbert functions
in Theorem 4.2. Using the same techniques we will, in Remark 4.5, also recover the
Hilbert functions for X and 2X when X is a reduced set of points contained in a re-
duced, irreducible singular cubic curve in case the singular point of the curve is one of
the points of X .

We now discuss both methods in somewhat more detail. For the first approach we
will follow [7] and [9] and sometimes work with the first difference, h2X , of the
Hilbert function h2X rather than with h2X directly, since for our purposes h2X is
easier to work with. (For clarity we will refer to it as the Hilbert difference function,
but we regardh2X as just an equivalent formulation of the Hilbert function, so when-
ever our goal is to determine a Hilbert function, we will regard specifying the Hilbert
difference function as having achieved the goal.) The first approach can be summa-
rized as follows. We start by listing all Hilbert difference functions hX for reduced
sets X of n D 9 points, using [8], and then we analyze each case in turn using hX to
constrain the behavior of h2X . For example, in some extreme cases the form of hX

forces many of the points of X to lie on a line; knowing this can be very useful in
determining h2X .

Our analysis uses the following tools: (i) a crude bound on the regularity of I.2X/,
giving an upper bound for the last degree in which h2X can be non-zero; (ii) Bézout
considerations giving the values of h2X in most degrees; (iii) the fact that the sum
of the values of h2X is 27; and (iv) a theorem of Davis [4] giving geometric conse-
quences for certain behavior of the functionh2X . The idea is that we know the value
of the Hilbert function for most degrees by (i), (ii) and (iii), and we can exhaustively
list the possibilities for the remaining degrees. Then we use (iv) to rule out many of
these. Finally, for the cases that remain, we try to construct examples of them (and in
the situations studied in this paper, we succeed).

For the second approach we study hZ for an arbitrary fat point subscheme Z D
m1p1 C � � � Cmnpn � P2 using the geometry of the surface Y , where � W Y ! P2

is the morphism obtained by blowing up the points pi . This depends on the well
known fact that dim I.Z/t D h0.Y;OY .F // where F D tL �m1E1 � � � � �mnEn,
OY .L/ D ��OP2.1/ and Ei D ��1.pi /. The fundamental fact here is the theorem
of Riemann–Roch:

h0.Y;OY .F // � h1.Y;OY .F //C h2.Y;OY .F //

D F 2 �KY � F
2

C 1 D
 

t C 2
2

!

�
X

i

 

mi C 1
2

!

:
(1.1)

To see the relevance of (1.1), note that KY D �3L C E1 C � � � C En, so we have
by duality that h2.Y;OY .F // D h0.Y;OY .KY � F // and thus h2.Y;OY .F // D 0 if
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t > �3. Now, since we are interested in the values of Hilbert functions when t � 0,
we have hZ.t/ D dim.Rt /� dim.I.Z/t / D

�

tC2
2

�� h0.Y;OY .F // which using (1.1)
becomes

hZ.t/ D
X

i

 

mi C 1
2

!

� h1.Y;OY .F //: (1.2)

This second approach, as applied in [7], depended on knowing two things: the set
Neg.Y / of all prime divisors C on Y with C 2 < 0 and on knowing h0.Y;OY .F // for
every divisor F for which we have F � C � 0 for all C 2 Neg.Y /. Given Neg.Y /,
one can in principle reduce the problem of computing h0.Y;OY .F // for an arbitrary
divisor F to the case that F � C � 0 for all C 2 Neg.Y /. If n � 2 and F � C � 0
for all C 2 Neg.Y /, then h2.Y;OY .F // D 0, so from Riemann–Roch we have only
h0.Y;OY .F // � 1C .F 2 �KY � F /=2.

When n � 8 or the points pi lie on a conic (possibly singular), this inequality is
always an equality, but for n � 9 points not contained in a conic it need not be, so
more information in general is needed. Similarly, in case n � 8 or the points pi lie on
a conic (possibly singular), it turns out, in fact, that Neg.Y / is a finite set, but this also
can fail for n � 9 points not contained in a conic. As a consequence, given Neg.Y /
one can determine hZ for any fat point subscheme Z D m1p1 C � � � C mnpn � P2

if either n � 8 or the points pi lie on a conic. This raises the question of what sets
Neg.Y / occur under these assumptions. We answered this question in [7]. There are
only finitely many possibilities and [7] gives a complete list.

When n � 9 and the points pi do not lie on a conic then not only can Neg.Y / fail
to be finite but h1.Y;OY .F // need not vanish, even if F � C � 0 for all C 2 Neg.Y /
and even if F is effective. Assuming that the points pi lie on a cubic curve does
not eliminate either difficulty, but it does mean that �KY is effective (whether the
cubic is irreducible or not), and thus the results of [12] can be applied to the problem
of computing h0.Y;OY .F //. In case �KY is effective, it is known what kinds of
classes can be elements of Neg.Y /, but no one has yet classified precisely which sets
Neg.Y / arise for n � 9 (doing this for n D 7; 8 was the new contribution in [7]).
On the other hand, even without this complete classification, partial results can still be
obtained using the second approach, as we will show here using information about the
geometry of Y developed in [12].

2 Approach I: Nine Double Points

It is natural to ask what can be said for fat point schemes Z supported at n > 8 points.
As observed in [7, Remark 2.2], there are infinitely many configuration types of n > 8
points, so we will restrict our attention to subschemes 2Z D 2.p1 C � � � C pn/ of P2.
Since we are now restricting the multiplicities of the points to be at most 2, it is not
necessary to make an exhaustive list of the configuration types – indeed, we will point
out situations where different configurations exist but nevertheless do not give different
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Hilbert functions. Instead, in this situation we can bring to bear the methods developed
in [9], and to demonstrate additional methods which can be used. We will determine
all Hilbert functions that occur for double point subschemes 2Z D 2.p1 C � � � C p9/

of P2, for every Hilbert function occurring as the Hilbert function of a simple point
subscheme Z D p1 C � � � C p9.

Definition 2.1. Let Z be a zero-dimensional subscheme of PN with Hilbert function
hZ . The difference function of Z is the first difference of the Hilbert function of Z,
hZ.t/ D hZ.t/ � hZ.t � 1/. (This is sometimes also called the h-vector of Z, and
sometimes the Castelnuovo function of Z.)

The Hilbert function and its difference function clearly give equivalent information
and it is primarily because of the simpler bookkeeping allowed by the first difference
that we use it. Notice that hZ is the Hilbert function of any Artinian reduction of
R=IZ by a linear form.

One problem raised in [9] is the existence and determination of maximal and min-
imal Hilbert functions. In the current context, this means that we fix an underlying
Hilbert function h that exists for some set of 9 points in P2, and letting X move in the
irreducible flat family of all sets of points with Hilbert function h, we ask whether there
is a maximal and a minimal Hilbert function for the corresponding schemes Z D 2X .
It was shown in [9] that there does exist a maximal such Hilbert function, denoted
hmax (for any number of points). The proof in [9] is nonconstructive, and [9] de-
termines hmax in only a few special cases. The paper [9] also raises the question of
whether hmin always exists; i.e., whether there exists an X 0 such that h2X is at least as
big in every degree as h2X 0 for every X with hX D hX 0 . This question remains open.

A useful tool is the following lemma. This lemma, and generalizations of it, are
well-known. For a very short proof of the statement given here see [9, Lemma 2.18].

Lemma 2.2. Let X be a reduced set of points in P2 with regularity r C 1. Then the
regularity of I2X is bounded by reg.I2X / � 2 � reg.IX / D 2r C 2.

We will also use the following result of Davis [4]. It is a special case of a more
general phenomenon [1] related to maximal growth of the first difference of the Hilbert
function.

Theorem 2.3. Let X � P2 be a zero-dimensional subscheme, and assume that
hX .t/ D hX .t C 1/ D d for some t; d . Then the degree t and the degree t C 1
components of IX have a GCD, F , of degree d . Furthermore, the subscheme W1 of
X lying on the curve defined by F (i.e. IW1

is the saturation of the ideal .IX ; F /) has
Hilbert function whose first difference is given by the truncation

hW1
.s/ D min¹hX .s/; dº:
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Furthermore, the Hilbert function of the points W2 not on F (defined by IW2
D IX W

.F /) has first difference given by the (shifted) part above the truncation:

hW2
.s/ D max¹hX .s C d/ � d; 0º:

We will see precisely the possibilities that occur for the first infinitesimal neighbor-
hood of nine points, and we will see that there is in each case a maximum and min-
imum Hilbert function. All together, there occur eight Hilbert functions for schemes
X D p1 C � � � C p9. We give their difference functions, and the possible Hilbert
functions that occur for double point schemes 2X , in the following theorem.

Theorem 2.4. The following table lists all possibilities for the Hilbert difference func-
tion for nine double points, in terms of the Hilbert difference function of the underlying
nine points. In particular, for each Hilbert function h, both hmax and hmin exist, and we
indicate by “max” or “min” the function that achieves hmax or hmin, respectively, for
each h. Of course when we have “maxD min,” the Hilbert function of 2X is uniquely
determined by that of X .

difference function of X possible difference functions of 2X max/min

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 maxD min

1 2 1 1 1 1 1 1 1 2 3 4 2 2 2 2 2 1 1 1 1 1 1 1 maxD min

1 2 2 1 1 1 1 1 2 3 4 4 3 2 2 1 1 1 1 1 1 maxD min

1 2 2 2 1 1 1 2 3 4 4 4 3 2 1 1 1 1 maxD min

1 2 2 2 2 1 2 3 4 4 4 4 2 2 1 max

1 2 3 4 4 4 3 2 2 2 min

1 2 3 1 1 1 1 2 3 4 5 5 2 1 1 1 1 1 maxD min

1 2 3 2 1 1 2 3 4 5 6 4 2 max

1 2 3 4 5 6 3 2 1
1 2 3 4 5 6 3 1 1 1
1 2 3 4 5 6 2 2 1 1 min

1 2 3 3 1 2 3 4 5 6 6 max

1 2 3 4 5 6 5 1
1 2 3 4 5 6 4 2
1 2 3 4 5 6 3 3
1 2 3 4 5 5 4 3 min

(2.1)

Proof. One has to “integrate” the difference functions in order to verify the claims
about hmax or hmin. We leave this to the reader. The fact that the eight Hilbert functions
specified above for X give a complete list is standard, and we omit the proof.
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Case 1: 1 1 1 1 1 1 1 1 1. IfX has this difference function then X must be a set
of 9 collinear points in P2. Such a set of points is necessarily a complete intersection,
so it is easy to check that the difference function for 2X is the one claimed. (Even the
minimal free resolution is well known; see for instance [2, 3, 10, 11].)

Case 2: 1 2 1 1 1 1 1 1. If X has this difference function then X must consist
of 8 points on a line and one point off the line (it follows from Theorem 2.3). It is
not hard to check, using Bézout arguments, that then 2X has the claimed difference
function.

Case 3: 1 2 2 1 1 1 1. If X has this difference function then X must consist of
seven points on a line, say 
1, and two points off the line (again using Theorem 2.3).
LetQ1;Q2 be these latter points. We will see that the Hilbert function is independent
of whether Q1 and Q2 are collinear with one of the seven other points or not. Note
first that 2X contains a subscheme of degree 14 lying on a line. Hence the regularity
is � 14, so the difference function ends in degree � 13.

Let L1 be a linear form defining 
1 and let L2 be a linear form defining the line
joiningQ1 andQ2. Using Bézout’s theorem, it is clear that there is no form of degree
� 3 vanishing on 2X . Furthermore, L2

1L
2
2 is the only form (up to scalar multiples) of

degree 4 vanishing on 2X . Now, in degrees 5, 6 and 7 we have that L2
1 is a common

factor for all forms in the ideal of 2X . Hence .I2Q1C2Q2
/t�2 Š .I2X /t for 5 � t � 7,

where the isomorphism is obtained by multiplying by L2
1. But 2Q1 C 2Q2 imposes

independent conditions on forms of degree 3, so we can compute that dim.I2X /t D
4; 9; 15 for t D 5; 6; 7 respectively.

The calculations above give the claimed difference function up to degree 7, namely
.1; 2; 3; 4; 4; 3; 2; 2/. But the sum of the terms of the difference function has to equal
27 (D deg 2X ), and the terms past degree 7 must be non-increasing, and positive
through degree 13. This is enough to force the claimed difference function.

Case 4: 1 2 2 2 1 1. By Theorem 2.3, X must consist of six points, X1, on a line,

1, and three collinear points, X2, on another line, 
2. The intersection of 
1 and 
2

may or may not be a point of X1; it is not a point of X2. We will see, as in Case 3, that
this combinatorial distinction does not affect the Hilbert function of 2X . Pictorially
we have the following two possibilities:

�1 � � � � � �
�2 � � �

X2

X1

�1 � � � � � �

�
�

�
�

�
�

�
�
�

�2

X2

X1

Combining Lemma 2.2 with the fact that 2X contains a subscheme of degree 12
on a line, we get that the difference function of 2X ends in degree exactly 11. Using
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Bézout it is not hard to check that

5l l lh0.I2X / D h0.I2X .1// D h0.I2X .2// D h0.I2X .3// D 0
h0.I2X .4// D 1
h0.I2X .5// D h0.I2X2

.3// D h0.IX2
.2// D 3

h0.I2X .6// D h0.I2X2
.4// D h0.IX2

.3// D 7:
This means that the difference function of 2X begins 1 2 3 4 4 4 3 ... and argu-
ing as in Case 3 gives the result.

Case 5: 1 2 2 2 2. This case corresponds to nine points on a reduced conic curve.
There are three possibilities. If the conic is smooth then the nine points are arbitrary.
If the conic consists of two lines then this case takes the form of five points on one
line and four points on the other line. Here we can have (i) none of the nine points is
the point of intersection of the two lines, or (ii) one of the five points is the point of
intersection. All of these cases have been studied in [7], and we omit the details.

Case 6: 1 2 3 1 1 1. NowX consists of six point on a line plus three non-collinear
points off the line. It is easy to check, using the same methods, that there is only one
possibility for the Hilbert function of 2X , independent of whether the line through two
of the non-collinear points meets one of the six collinear points or not. We omit the
details.

Case 7: 1 2 3 2 1. By Lemma 2.2, the difference function for 2X ends in degree
� 9 and the entries again add up to 27. Furthermore, it is not hard to see that X has at
most 5 points on a line, and X has at most one set of 5 collinear points.

The first main step in the proof is the following assertion:

Claim 2.6. h0.I2X .5// D 0.
Note that this implies that h0.I2X .t// D 0 for t � 5. Suppose that there is a curve

F , of degree 5 containing 2X . There are several possibilities. By abuse of notation we
will denote by F also a form defining this curve.

� F is reduced. Then F has to contain 9 singular points, which form the points of
X (and hence have the difference function 1 2 3 2 1). This can happen in one
of two ways:

– F consists of the union of five lines, and X consists of nine of the resulting
ten double points. But from Bézout we note that the 10 double points do not
lie on a cubic curve (since each of the five lines would have to be a compo-
nent of the cubic), so the ten points have difference function 1 2 3 4, and
hence X cannot have difference function 1 2 3 2 1.
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– F consists of the union of three lines and a smooth conic, and X consists of
all nine resulting double points. Now the three lines have to be components
of any cubic containing X , so there is a unique such cubic, and again X
does not have difference function 1 2 3 2 1.

� F has a double conic. Then all the singular points of F must lie on this conic.
But, X does not lie on a conic, so this is impossible.

� F has a double line, i.e. F D L2G, degG D 3. Then G contains at most 3
singular points of F . This forces the remaining 6 singular points to be on the
line, contradicting the fact that at most 5 points of X can lie on a line.

This concludes the proof of Claim 2.6.

Thanks to Claim 2.6, we now know that the difference function for 2X has the form

1 2 3 4 5 6

where the last four spaces correspond to entries that are� 0 and add up to 27�21 D 6.
Now notice that there is an irreducible flat family of subschemes of degree 9 with
difference function 1 2 3 2 1 [6], and the general such is a complete intersection
of two cubics. The difference function for the corresponding scheme 2X is easily
checked to be 1 2 3 4 5 6 4 2. It follows that not only does this difference function
exist, but in fact it corresponds to hmax. (See also [9, Remark 7.4].) In particular,
1 2 3 4 5 6 6 and 1 2 3 4 5 6 5 1 do not occur. The following, then, are the
remaining possibilities for the difference function of 2X :

(i) 1 2 3 4 5 6 4 2

(ii) 1 2 3 4 5 6 4 1 1

(iii) 1 2 3 4 5 6 3 3

(iv) 1 2 3 4 5 6 3 2 1

(v) 1 2 3 4 5 6 3 1 1 1

(vi) 1 2 3 4 5 6 2 2 2

(vii) 1 2 3 4 5 6 2 2 1 1

For each of these we will either give a specific example (that the reader can verify
directly, either by hand or on a computer program) or a proof of non-existence.

(i) 1 2 3 4 5 6 4 2. As we saw above, this occurs when X is the complete inter-
section of two cubics, and this corresponds to hmax.

(ii) 1 2 3 4 5 6 4 1 1. This does not exist. Indeed, this difference function forces
the existence of a line 
 that contains a subscheme of 2X of degree 9, which is
impossible. (Any such subscheme must have even degree.)
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(iii) 1 2 3 4 5 6 3 3. This does not exist in our context. Note that it does exist
whenX has difference function 1 2 3 3, as we will verify below. To see that this
does not exist, note that by Theorem 2.3, the 3 3 at the end forces the existence
of a cubic curve C that cuts out from 2X a subscheme W of degree 21 with
difference function 1 2 3 3 3 3 3 3. Observe that if P is a point of X which
is a smooth point of C , then C cuts out a non-reduced point of degree 2 at P . If
P is a point ofX which is a singular point of C , then C contains the fat point 2P
(which has degree 3). Note also that our h-vector does not permit the existence
of a subscheme of degree more than 8 on a line.

Suppose first that C is reduced. Since we only have the nine points of X to
work with, it is not hard to check, using the above observation, that the only way
that C can cut out from 2X a subscheme of degree 21 is if X has the following
configuration:

�
�

�
�

�
��

�
�

�
�

�
��

� � � �
�
�
�
�
�

But this uses all nine points, and its support lies on a unique cubic, contradicting
the fact that X has difference function 1 2 3 2 1. This configuration provides
one of the correct difference functions for 1 2 3 3 below.

Now suppose that C is not reduced. Without loss of generality, C has a double
line. The difference function for X would, in principle, allow five points of X to
lie on a line, but because the hypothetical difference function for the subscheme
W ends in degree 7, in fact at most four points of X can lie on a line. So the
double line contains at most four fat points of 2X , which have degree 12. In
order for C to cut out a subscheme of degree 21, then, we must have a reduced
line that cuts out an additional subscheme of degree at least 9. This forces at least
five points of X to be collinear, which again is impossible.

(iv) 1 2 3 4 5 6 3 2 1. This difference function does exist. It occurs when X
is the union of one point and the complete intersection of a conic and a general
quartic curve.

(v) 1 2 3 4 5 6 3 1 1 1. This difference function does exist. It occurs when X
is the union of five general points on a line, three general points on a second line,
and one additional general point off both lines.

(vi) 1 2 3 4 5 6 2 2 2. This difference function does not exist. Indeed, suppose
that it did exist. Because of the 2 2 2, there must be a curve C of degree 2
that cuts out on 2X a subscheme W of degree 17 having difference function
1 2 2 2 2 2 2 2 2.
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First note that X cannot contain five points on a line (and hence a subscheme of
W of degree at least 10) since the hypothetical difference function ends in degree
8. Now consider cases.

(a) C is smooth: then it cannot cut out a subscheme of odd degree.

(b) C is reduced and reducible: then we cannot obtain the desired subscheme
W of degree 17 unless X contains 5 points on a line, in which case W
contains a subscheme of degree at least 10 on that line.

(c) C non-reduced: then we cannot have a subscheme of degree 17 supported
on that line.

(vii) 1 2 3 4 5 6 2 2 1 1. This difference function does exist. It occurs when X
has the following configuration:

�
�

�
�

�
��

�
�

�
�

�
�

��

�
�

�
�
�
�
�
�

�

Case 8: 1 2 3 3. This is the difference function for a general set of nine points in
P2. We know (from [12], for example) that the “generic” difference function for nine
general double points is 1 2 3 4 5 6 6. Hence this occurs and corresponds to the
maximum possible Hilbert function. Clearly all other possibilities will end in degree
� 7. On the other hand, Lemma 2.2 guarantees that all other examples end in degree
� 7. Note that again, X can have at most four points on a line.

Claim 8.1. h0.I2X .5// � 1.
Notice that as a consequence of this claim we also obtain h0.I2X .4// D 0. Keeping

in mind that it is possible that h0.I2X .5// D 0 (e.g. the generic case), we will assume
that h0.I2X .5// ¤ 0 and deduce that then it must beD 1. So letC be a curve of degree
5 containing the scheme 2X . As before (Claim 2.6) there are a few possibilities.

� If C is reduced then since it must have nine double points, it must consist of
either the union of five lines, no three through a point, or the union of three lines
and a smooth conic, with no three components meeting in a point. By Bézout,
each component of C is then a fixed component of the linear system j.I2X /5j, so
the claim follows.

� If C contains a double line then at most four (fat) points of 2X lie on this line,
so we must have a cubic curve that contains the remaining five double points.
Consider the support, X1, of these five double points. The points of X1 are not
collinear, and they do not have four collinear points since X lies on only one
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cubic. With these restrictions, clearly there is no cubic curve double at such a set
of five points.

� If C contains a double conic (smooth or not), this conic contains at most seven
points of X , because of the Hilbert function of X . Hence C must have a line that
contains two double points, which is impossible.

This concludes the proof of Claim 8.1.

It follows that the possibilities for the difference function of 2X are the following:

(i) 1 2 3 4 5 6 6

(ii) 1 2 3 4 5 6 5 1

(iii) 1 2 3 4 5 6 4 2

(iv) 1 2 3 4 5 6 3 3

(v) 1 2 3 4 5 5 5 2

(vi) 1 2 3 4 5 5 4 3

As before, we examine these each in turn.

(i) 1 2 3 4 5 6 6. We have seen that this occurs generically.

(ii) 1 2 3 4 5 6 5 1. This exists, for instance from the following configuration:

� �

� �� �

� � �

(That is, seven points on a conic, three points on a line, with one point in com-
mon.)

(iii) 1 2 3 4 5 6 4 2. This exists, for instance from the following configuration:

� �
�

�� �

� � �
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(iv) 1 2 3 4 5 6 3 3. This exists, for instance from the configuration mentioned
earlier:

�
�

�
�

�
��

�
�

�
�

�
��

� � � �
�
�
�
�
�

(v) 1 2 3 4 5 5 5 2. We claim that this does not exist. The key is that such a
double point scheme, 2X , would have to lie on a unique quintic curve, say C .
To see that this is impossible, the argument is very similar to that of Claim 2.6,
but with a small difference. One checks as before that C must consist either of
five lines or the union of three lines and a conic, and in both cases we must have
that no three components share a common point. In the first case, X consists of
nine of the ten double points of C (it does not matter which nine), and in the
second case X consists of all nine double points of C . But in both of these cases
one can check geometrically or on a computer that h0.I2X .6// D 4, while the
hypothetical difference function would require this dimension to be 3.

(vi) 1 2 3 4 5 5 4 3. This exists, and can be achieved by the configuration men-
tioned above: it is supported on nine of the ten intersection points of five general
lines in P2.

3 Approach I: Points on Cubics

For this section we will always let C � P2 be an irreducible cubic curve defined by
a polynomial F of degree 3. Let X be a reduced set of n D 3t C ı points on C ,
where 0 � ı � 2. Let Z D 2X be the double point scheme in P2 supported on
X . The object of this section is to describe the possible Hilbert functions of X and of
the corresponding Z. In some instances we assume that t is “big enough” (with mild
bounds), and in one instance (Theorem 3.4 (ii)) we assume that the points are not too
special and that C is smooth.

Proposition 3.1. Assume that ı D 0, t � 3, and the Hilbert function of X has first
difference

deg 0 1 2 : : : t � 1 t t C 1 t C 2
hX 1 2 3 : : : 3 2 1 0

(3.1)

(where the values between 2 and t � 1, if any, are all 3). Then X is a complete
intersection with ideal .F;G/, where degF D 3 and degG D t . Furthermore, if C
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is singular then the singular point is not a point of X . Assume that t > 3, so that
t C 3 > 6 and 2t > t C 3. Then we have the first difference of the Hilbert function of
Z is
(t D 3) 1 2 3 4 5 6 4 2 0;
(t D 4) 1 2 3 4 5 6 6 5 3 1 0;
(t D 5) 1 2 3 4 5 6 6 6 5 4 2 1 0;
(t � 6)

deg 0 1 2 3 4 5 6 : : : t C 2 t C 3
hZ 1 2 3 4 5 6 6 : : : 6 5

deg t C 4 t C 5 : : : 2t � 1 2t 2t C 1 2t C 2
hZ 4 3 : : : 3 2 1 0

Proof. We first show that X must be a complete intersection. From the Hilbert differ-
ence function (3.1), it is clear that F is a factor of every form in IX up to degree t � 1,
and that in fact it generates the ideal up to this point. In degree t there is exactly one
new form,G, in the ideal, and since F is irreducible, F andG have no common factor.
But .F;G/ is a saturated ideal that is contained in IX and defines a zero-dimensional
scheme of the same degree as X , hence IX D .F;G/.

Since X is a complete intersection, if C is singular and P 2 X is the singular point
of C , then X must be non-reduced at P , contradicting our assumption.

Now, it is a simple (and standard) argument that IZ D .F 2; FG;G2/, and one can
verify the claimed Hilbert function of R=IZ , for instance by using the fact that .F;G/
is directly linked to the ideal of Z by the complete intersection .F 2; G2/, and using
the formula for the behavior of Hilbert functions under linkage [5] (see also [15]). We
omit the details. See also [3, pages 176, 177], and [2, Remark 4.9].

Because the form F of least degree is irreducible, the Hilbert function of X has
first difference that is strictly decreasing from the first degree where it has value < 3

until it reaches 0. Having proved Proposition 3.1, we can now assume without loss of
generality that the Hilbert function of X has first difference

deg 0 1 2 3 : : : t t C 1 t C 2
hX 1 2 3 3 : : : 3 ı 0

(3.2)

where 0 � ı � 2.
Theorem 3.4. Assume that eitherC is smooth, or else that no point ofX is the singular
point of C . Assume further that t > 5 � ı. Then the Hilbert difference function of the
double point scheme Z supported on X is

deg 0 1 2 3 4 5 : : : t C 3 t C 4 t C 5 : : : 2t C ı � 1 2t C ı
hZ 1 2 3 4 5 6 : : : 6 3C ı 3 : : : 3 ‹‹
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For the behavior in degree � 2t C ı, we have the following conclusions.

(i) If ı D 1 or ı D 2 then hZ.2t C ı/ D 3 � ı and hZ.k/ D 0 for k > 2t C ı.
(ii) If ı D 0, there are two possible Hilbert functions, these being determined by

(a) hZ.2t/ D 3 and hZ.k/ D 0 for k > 2t , and

(b) hZ.2t/ D 2;hZ.2t C 1/ D 1;hZ.2t C 2/ D 0.

Moreover, if the points pi are sufficiently general and C is smooth, then the
Hilbert function is given by the first of these two.

Proof. A complete analysis of all cases with ı D 0, where C is a reduced cubic and
the points pi either are arbitrary smooth points of C or they are completely arbitrary
and C is also irreducible, is given in the next section using the Second Way. The
interested reader can complete the current proof to those cases using the techniques of
this section, as a further comparison of the methods.

First note that the condition t > 5 � ı implies 2t C ı > t C 5. We proceed via a
number of claims.

Claim 1. For ` < 2t C ı, .IZ/` has the cubic form F as a common factor (i.e. C is
part of the base locus).

Suppose that G 2 .IZ/` does not have F as a factor. Then at each point of X ,
the intersection multiplicity of F and G is at least 2 since G is double at each point.
Hence by Bézout’s theorem, 3` � 2n D 2.3t C ı/ D 6t C 2ı. Hence ` � 2t C 2

3
ı,

and the claim follows.

Claim 2. For ` � t C 3, .IZ/` has F 2 as a common factor.

By Claim 1, since F is not double at any point of X , for ` < 2t C ı we have an
isomorphism

.IX /`�3 Š .IZ/` (3.3)

where the isomorphism is given by multiplication by F . But from (3.2), we see that F
is a common factor for .IX /k for all k � t . Hence .IZ/` has F 2 as a factor whenever
` � 3 � t , as claimed.

This verifies the claimed first difference of the Hilbert function up to degree t C 3.
Note that the Hilbert function, in degree t C 3, has value equal to

1C 2C 3C 4C 5C 6 � Œ.t C 3/ � 4� D 6t C 9:
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We now compute the value in degree t C 4 < 2t . Using the isomorphism (3.3), we
have

hZ.t C 4/ D
 

t C 6
2

!

� h0.IZ.t C 4//

D
 

t C 6
2

!

� h0.IX .t C 1//

D
 

t C 6
2

!

�
" 

t C 3
2

!

� hX .t C 1/
#

D
 

t C 6
2

!

�
" 

t C 3
2

!

� .3t C ı/
#

D 6t C 12C ı:
Then we easily see that hZ.t C 4/ D 3C ı as claimed.

Next we compute the value in degree t C 5. We have 2t C ı > t C 5, so we can use
Claim 1. Then a similar computation gives

hZ.t C 5/ D 6t C 15C ı:

From this we immediately confirm hZ.t C 5/ D 3.
Since F is a common factor in all components < 2t C ı, and since hZ takes the

value 3 already in degree t C 5, it repeats this value until F is no longer a common
factor. In particular, it takes the value 3 up to degree 2t C ı � 1.

We now have to see what happens past degree 2tC ı�1. Note that using our above
calculations, it follows that

hZ.2t C ı � 1/ D 6t C 12C ı C 3Œ2t C ı � 1 � .t C 4/�
D 3.3t C ı/ � 3C ı:

Since degZ D 3.3tCı/, we have reached the multiplicity minus .3�ı/. We consider
these cases separately. When ı D 1 or ı D 2, we are adding only 2 or 1, respectively,
and since the first difference of the Hilbert function cannot be flat at this point, hZ

must be as claimed in (a). This completes (a). Since the sum of the values of hZ up
to degree 2t � 1 is 9t � 3, this observation that hZ cannot be flat at this point also
proves that the possibilities listed in (b) are the only ones possible.

If ı D 0, though, hZ can either end : : : 3; 3; 0 or : : : 3; 2; 1. We now consider
these two possibilities. The former means that also in degree 2t C ı D 2t , all forms in
IZ have F as a factor. The latter means that there is a form, G, of degree 2t C ı D 2t
in IZ that does not have F as a factor, and hence .F;G/ is a regular sequence (since
F is irreducible).
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Suppose that the latter holds. Note that the complete intersection defined by .F;G/
has degree 3 � 2t D 6t D 2n. As in Claim 1, G cuts out on C a divisor of degree
at least 2n, so in fact G cuts out exactly the divisor 2XC on C (where by 2XC we
mean the subscheme 2X \ C , which is a divisor on C ). So X itself is not a complete
intersection (since it has the Hilbert difference function given by (3.2)), but the divisor
2XC (as a subscheme of P2) is a complete intersection, namely of type .3; 2t/. Note
that 2XC , which is curvilinear, is not the same as Z.

Now suppose thatC is smooth. We know that then two effective divisors of the same
degree are linearly equivalent if and only if they have the same sum in the group of C .
The condition described in the previous paragraph implies that the divisor XC � nQ,
where Q is a point of inflection for C , is a 2-torsion element in the Picard group of
C but is not zero. Since there are at most three 2-torsion elements in the Picard group
of C , for general choices we have a contradiction, and so such a G cannot exist (in
general), and we have proved the assertion about the general choice of the points.

Finally, we show that the Hilbert difference function (b) of (ii) also occurs. We begin
with four general lines, 
1; 
2; 
3; 
4 � P2 and let P1; P2; P3; P4; P5; P6 be the six
points of pairwise intersection of these lines. Let G1 be the form defining the union of
these four lines. LetX1 DS1�i�6 Pi . Notice thatX1 does not lie on any conic, since
by Bézout any conic containingX1 has to contain all four lines 
1; : : : ; 
4, hence must
have G1 as a factor. Thus the Hilbert function of X1 has first difference .1; 2; 3/, and
X1 is not a complete intersection.

Let C be a general cubic curve containing X1 (hence C is smooth), and let F be
the defining polynomial of C . Notice that the degree of the complete intersection of
F and G1 is 12, and this complete intersection is at least double at each Pi , so in fact
it is exactly double at each Pi . In particular, there is no additional multiplicity at any
of the Pi coming from tangency. As a divisor on C , note that X1 is not cut out by any
conic, since it is not a complete intersection. However, the divisor 2X1 is cut out by a
quartic, namely G1.

Now let X be the union of X1 with a general hypersurface section,W1, of C cut out
by a curve of degree t � 2. Note that W1 is a complete intersection defined by .F;H/
for some formH of degree t � 2. We first claim that X is not a complete intersection.
Indeed, suppose that X were a complete intersection defined by .F;H 0/ for some H 0
of degree t . Then IX links W1 to X1. But W1 and X are both complete intersections
sharing a generator, so by liaison theory the residual is also a complete intersection.
But we have seen that X1 is not a complete intersection. Contradiction. In particular,
hX is given by (3.2).

Now let Z be the fat point scheme supported on X , and consider the form G1H
2.

This has degree 2t , and cuts out the divisor 2X on C . Even more,G1H
2 is an element

of IZ in degree 2t that does not have F as a factor. As we saw above, this gives the
values hZ.2t/ D 2 and hZ.2t C 1/ D 1 as desired. This completes the proof of
Theorem 3.4.
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Now we wish to explore the possibilities when C is singular and one point, P , of
X is the singular point of C . The arguments are very similar, and we will primarily
highlight the differences. The main observation is that C is already double at P so we
have to focus on the remaining n � 1 points.

Lemma 3.6. Assume that C is singular, that P 2 X � C is the singular point of C ,
and that n � 5. Then X is not a complete intersection.

Proof. More precisely, we will show that if P 2 X � C with X a complete inter-
section, and if P is the singular point of C , then X has one of the following types:
CI.1; 1/; CI.1; 2/; CI.2; 2/.

First note that if X is a complete intersection defined by forms .F;G/, where F is
the defining polynomial for C , then X has multiplicity � 2 at P , so X is not reduced.
Hence we have to determine all the possibilities for reduced complete intersections on
C that do not use F as a minimal generator. The listed possibilities are clear: one
point, two points, four points, and these all exist even including P as one of the points.
Using the irreducibility of F , it is not hard to show that these are the only possibilities,
and we omit the details.

Theorem 3.7. Assume that C is an irreducible singular cubic with singular point P ,
and assume thatP 2 X , whereX is a reduced set of 3tCı points ofC , with 0 � ı � 2.
Assume further that t > 3. Then the Hilbert difference function of the double point
scheme Z supported on X is as follows.

(i) If ı D 0 then

deg 0 1 2 3 4 5 : : : t C 2 t C 3 t C 4 t C 5 : : : 2t 2t C 1 2t C 2
hZ 1 2 3 4 5 6 : : : 6 5 3 3 : : : 3 1 0

(ii) If ı D 1 then either

deg 0 1 2 3 4 5 : : : t C 2 t C 3 t C 4 t C 5 : : : 2t 2t C 1 2t C 2
hZ 1 2 3 4 5 6 : : : 6 6 3 3 : : : 3 3 0

or

deg 0 1 2 3 4 5 : : : t C 2 t C 3 t C 4 t C 5 : : : 2t 2t C 1 2t C 2
hZ 1 2 3 4 5 6 : : : 6 5 4 3 : : : 3 3 0

(iii) If ı D 2 then

deg 0 1 2 3 4 5 : : : t C 2 t C 3 t C 4 t C 5 : : : 2t 2t C 1 2t C 2 2t C 3
hZ 1 2 3 4 5 6 : : : 6 6 4 3 : : : 3 3 2 0
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Proof. The bound t > 3 is simply to ensure that in each case, some value of the Hilbert
difference function hZ takes the value 3. For instance, in the case ı D 0, we have
2t > t C 3. As a consequence of Lemma 3.6, when n D 3t C ı � 5 the Hilbert
function of X must have first difference

deg 0 1 2 3 : : : t t C 1 t C 2
hX 1 2 3 3 : : : 3 ı 0

(3.4)

In analogy with Theorem 3.4, we first have

Claim 1. Assume that

` �
´

2t if ı D 0
2t C 1 if ı D 1; 2

Then F is a common factor of .IZ/`.

The proof is the same as that of Claim 1 in Theorem 3.4, except that the intersection
multiplicity of F and G at P is now at least 4.

Claim 2. For ` � t C 2, .IZ/` has F 2 as a common factor. Furthermore,

� If ı D 0 then F 2 is not a common factor of .IZ/tC3.

� If ı D 2 then F 2 is a common factor of .IZ/tC3.

� If ı D 1 then F 2 may or may not be a common factor of .IZ/tC3 (examples
exist for either option).

The proof of Claim 2 hinges on the possible Hilbert functions for X � ¹P º. In
particular, we show that .IX�¹P º/t�1 always has F as a common factor, and the dif-
ferences in the three cases rest with the possibilities for .IX�¹P º/t , which we get by
comparing to those for IX , obtained using Lemma 3.6.

� If ı D 0 then X has Hilbert function with first difference

deg 0 1 2 3 : : : t t C 1
hX 1 2 3 3 : : : 3 0

so clearly the only possibility for hX�¹P º is

deg 0 1 2 3 : : : t � 1 t t C 1
hX�¹P º 1 2 3 3 : : : 3 2 0

Hence there is a form G of degree t vanishing on X � ¹P º but not containing F
as a factor, so FG 2 .IZ/tC3 does not have F 2 as a factor.
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� If ı D 2 then X has Hilbert function with first difference

deg 0 1 2 3 : : : t � 1 t t C 1 t C 2
hX�¹P º 1 2 3 3 : : : 3 3 2 0

so hX�¹P º is

deg 0 1 2 3 : : : t � 1 t t C 1 t C 2
hX�¹P º 1 2 3 3 : : : 3 3 1 0

We know that .IZ/` Š .IX�¹P º/`�3 for ` satisfying the bounds of Claim 1, and as a
result of the above observations we know when .IX�¹P º/`�3 is forced to have F as a
common factor, so the claim follows.

If ı D 1 then X has Hilbert function with first difference

deg 0 1 2 3 : : : t t C 1 t C 2
hX 1 2 3 3 : : : 3 1 0

so hX�¹P º is either

deg 0 1 2 3 : : : t � 1 t t C 1
hX�¹P º 1 2 3 3 : : : 3 3 0

or
deg 0 1 2 3 : : : t � 1 t t C 1 t C 2
hX�¹P º 1 2 3 3 : : : 3 2 1 0

Since we have removed P , the remaining points could be a complete intersection,
so F 2 is a common factor of .IZ/tC3 if and only if the points of X � ¹P º are not
a complete intersection of a curve of degree t with F . This completes the proof of
Claim 2.

The rest of the proof is very similar to that of Theorem 3.4 and we omit the details.

4 Approach II: Points on Cubics

Let Z D m1p1 C � � � C mnpn � P2, where the points p1; : : : ; pn are distinct and
arbitrary. When n < 9, a complete determination of hZ is given in [7], but the case
of n � 9 remains of interest. Giving a complete determination of hZ for all n � 9

arbitrary distinct points p1; : : : ; pn would involve solving some extremely hard open
problems. For example, it is even an open problem to determine hZ for n > 9 when
the points p1; : : : ; pn are general and m1 D � � � D mn. So here, as in Section 3,
we consider the case of n � 9 points pi in special cases. These cases include those
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considered in Section 3. We recover and in some cases extend the results of Section 3,
but the methods we use here are different. To start, let p1; : : : ; pn be n � 9 distinct
points on a reduced plane cubic C . If C is not irreducible, we assume further that all
the points are smooth points of C . If D is a component of C , let nD be the number
of these points on D. We will say that the points are evenly distributed if nD D
n.deg.D//=3 for every reduced irreducible componentD of C . Note that for n points
to be evenly distributed, it is necessary either that 3 divide n or that C be irreducible.

We will use some facts about surfaces obtained by blowing up points in the plane,
in particular we’ll make use of the intersection form on such surfaces, which we now
briefly recall. Given distinct points p1; : : : ; pn 2 P2, let � W Y ! P2 be the morphism
obtained by blowing up the points pi . The divisor class group Cl.Y / of divisors mod-
ulo linear equivalence is a free Abelian group with basis ŒL�; ŒE1�; : : : ; ŒEn�, where L
is the pullback to Y of a general line, and Ei D ��1.pi /. There is a bilinear form,
called the intersection form, defined on the group of divisors, which descends to Cl.Y /.
It is uniquely determined by the fact that L;E1; � � � ; En are orthogonal with respect
to the intersection form, with L � L D L2 D 1 and E2

i D �1 for i D 1; : : : ; n. For
two distinct, reduced, irreducible curves C1 and C2 on Y , C1 � C2 is just the number
of points of intersection of the two curves, counted with multiplicity. We recall that
a divisor F is nef if F � C � 0 for every effective divisor C . A useful criterion for
nefness is that if F is an effective divisor such that F � C � 0 for every component C
of F , then F is nef.

In preparation for stating Theorem 4.2, our main result in this section, we set some
additional notation. Let Z D m.p1 C � � � C pn/. When t satisfies 3t D mn, the value
of hZ.t/ is influenced by torsion in the group Pic.C /. Our formula for hZ as given in
Theorem 4.2 accounts for this influence via an integer-valued function we will denote
by s. In fact, s depends on the points pi , on m and on t , but for a fixed set of points
pi it is convenient to mostly suppress the dependence on the points and denote s as
s.t; n;m/, where the parameter n is a reminder of the dependence on the n points. To
define s.t; n;m/, let L be a general line in the plane and fix evenly distributed smooth
points p1; : : : ; pn of a reduced cubic C . Since Theorem 4.2 applies only for n � 9 and
we need s.t; n;m/ only when t � nm=3, we define s.t; n;m/ only for n � 9 when
t � nm=3:
(i) If t > nm=3, we set s.t; n;m/ D 0.
(ii) If n D 9 and t D 3m, let 
 be the order (possibly infinite) of OC .3L/ ˝

OC .�p1 � � � � � p9/ in Pic.C /. We then set s.t; n;m/ D bm=
c.
(iii) If n > 9 and t D nm=3, we set s.t; n;m/ D 1 if OC .tL/˝ OC .�mp1 � � � � �

mpn/ D OC in Pic.C /, and we set s.t; n;m/ D 0 otherwise.
The value of s.t; n;m/ depends on whether OC .tL/ ˝ OC .�mp1 � � � � � mpn/

is trivial. Note that triviality of this line bundle is equivalent to the divisor mp1 C
� � � C mpn on C being the intersection of C with a curve H , necessarily of degree
t D mn=3. Of course it can happen that OC .tL/˝OC .�p1 � � � � �pn/ is non-trivial
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even though OC .tmL/ ˝ OC .�mp1 � � � � � mpn/ is trivial. For example, if p1; p2

and p3 are flexes on C but not collinear, then OC .L/ ˝ OC .�p1 � p2 � p3/ is not
trivial, but OC .3L/ ˝ OC .�3p1 � 3p2 � 3p3/ is trivial, and H in this case is the
union of the lines tangent to C at the points p1, p2 and p3. When C is a smooth
cubic curve, triviality of OC .tL/˝ OC .�mp1 � � � � �mpn/ is equivalent to the sum
mp1 C � � � C mpn being trivial in the group law on the cubic (with respect to a flex
being taken as the identity element). (The divisor X1 given in the proof of part (ii) of
Theorem 3.4 gives another example, and shows that this issue arose also with the first
approach.)

Remark 4.1. When n D 9, the values of 
 that can occur depend on the torsion
in Pic.C /, and this depends on C and on the characteristic of the ground field; see
Remark 4.4. Thus knowing something about C tells us something about what Hilbert
functions can occur for points on C , but the Hilbert functions themselves depend only
on 
, and already for a smooth irreducible non-supersingular cubic C , there is torsion
of all orders.

Theorem 4.2. LetX D p1C� � �Cpn be a set of n � 9 evenly distributed smooth points
on a reduced plane cubic C . Let Z D mX . The value hZ.t/ D dim.kŒP2�=.I.Z///t
of the Hilbert function in degree t is:

(i)
�

tC2
2

�

if t < 3m;

(ii) n
�

mC1
2

� � s.t; n;m/ if t � nm=3; and

(iii)
�

tC2
2

���t�3rC2
2

�Cn�m�rC1
2

��s.t�3r; n;m�r/ if n > 9 and 3m � t < mn=3,
where r D d.mn � 3t/=.n � 9/e.

Proof. This result is a corollary of the main result of [12]. Let F D tL�mE1� � � � �
mEn with respect to the morphism � W Y ! P2 obtained by blowing up the points pi .

Let C 0 � Y be the proper transform of C with respect to � . Since the points pi

blown up are smooth points on C , we see ŒC 0� D Œ3L�E1 � � � � �En� (and hence C 0
is an anticanonical divisor). Moreover, each component of C 0 is the proper transform
D0 of a component D of C , and each of the components of C (and hence of C 0) is
reduced. (To see this note that nD > 0 for each component D of C since the points
pi are evenly distributed, but the number of points pi which lie on D is nD and all of
the points pi are smooth points of C , so each component of C has a smooth point and
hence must be reduced.)

In addition, the following statements are equivalent:

(a) F �D0 � 0 for every irreducible componentD0 of C 0;
(b) F � C 0 � 0; and
(c) F �D0 � 0 for some irreducible componentD0 of C 0.
Clearly, (a) implies (b), and (b) implies (c). We now show that (c) implies (a). If
C 0 has only one component, then (c) and (a) are trivially equivalent, so suppose D0

1

and D0
2 are distinct components of C 0. In order to show that F � D0

1 � 0 implies
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F � D0
2 � 0, we will use the assumption that the points pi are evenly distributed

smooth points of C . Let Dj D �.D0
j /, so D

0
j is the proper transform of Dj . Because

the points are evenly distributed, we have nDj
D n.deg.Dj //=3. Thus nDj

of the
n points pi lie on Dj . Because the points are smooth points of C , we have ŒD0

j � D
Œdeg.Dj /L �Ppi 2Dj

Ei �, where the sum involves nDj
terms. Thus F �D0

j � 0 can
be rewritten as t deg.Dj / � mnDj

� 0. Substituting n.deg.Dj //=3 for nDj
gives

t deg.Dj / �mn.deg.Dj //=3 � 0 which is equivalent to 3t �mn � 0, which is itself
just F � C 0 � 0. Thus F �D0

1 � 0 and F �D0
2 � 0 are both equivalent to F � C 0 � 0,

and hence F �D0
1 � 0 if and only if F �D0

2 � 0. This shows (c) implies (a).
We now show that h0.Y;OY .F // D 0 if and only if t < 3m. For t � 3m, we have

OY .F / D OY ..t�3m/LCmC 0/, and hence h0.Y;OY .F // > 0. If, however, t < 3m,
then 3t < 9m � nm so F � C 0 < 0, and hence, as we saw above, F �D0 < 0 for each
componentD0 of C 0, in which case each componentD0 of C 0 is a fixed component of
jF j so h0.Y;OY .F // D h0.Y;OY .F � C 0// D h0.Y;OY ..t � 3/L � .m � 1/E1 �
� � � � .m � 1/En//. But t � 3 < 3.m � 1/, so, by the same argument, we can again
subtract off C 0 without changing h0. Continuing in this way we eventually obtain
h0.Y;OY .F // D h0.Y;OY ..t�3m/L// D h0.P2;OP2.t�3m//, but h0.P2;OP2.t�
3m// D 0 since t � 3m < 0. Thus hZ.t/ D

�

tC2
2

�

for t < 3m, which proves (i).
Next consider (ii). If t � nm=3, i.e., if F �C 0 � 0, then as we saw above F �D0 � 0

for every component D0 of C 0. But as we also saw above, .t � 3m/LC mC 0 2 jF j,
hence F is nef. If t > nm=3 (in which case s.t; n;m/ D 0), then F � C 0 > 0, so by
[12, Theorem III.1 (a,b)], h1.Y;OY .F // D 0. Thus (1.2) gives hZ.t/ D n

�

mC1
2

� D
n
�

mC1
2

� � s.t; n;m/ as claimed. We are left with the case that t D nm=3.
Suppose t D nm=3 and n D 9. Thus F D mC 0 and F �C 0 D 0 (because n D 9 and

t D 3m), so .C 0/2 D 0. By duality we have h2.Y;OY .mC
0// D h0.Y;OY .�.m C

1/C 0// D 0, so by Riemann–Roch we have h0.Y;OY .F // � h1.Y;OY .F // D 1 C
.F 2CC 0 �F /=2 D 1. Since F is nef, so is iC 0 for all i � 0. Since F �C 0 D 0, either
jF j has an element disjoint from C 0 or F and C 0 share a common component.

If jF j has an element disjoint fromC 0, then OC 0.F / is trivial, so h0.C 0;OC 0.F // D
1 since C (and hence C 0) is connected and reduced. Suppose F and C 0 share a
common component. Then C 0 is in the base locus of jF j by [12, Corollary III.2],
and hence h0.Y;OY .F // D h0.Y;OY .F � C 0//. Let � be the least i > 0 (pos-
sibly infinite) such that C 0 is not in the base locus of jiC 0j. Then we have that
h0.Y;OY .jC

0// D h0.Y;OY ..j C 1/C 0// for 0 � j < � � 1, so by induction (using
the base case h0.Y;OY / D 1 and the fact h0.Y;OY .jC

0// � h1.Y;OY .jC
0// D 1)

we have h0.Y;OY .jC
0// D 1 and h1.Y;OY .jC

0// D 0 for all 0 � j < �. It follows
that

0! OY ..s � 1/C 0/! OY .sC
0/! OC 0.sC 0/! 0 .?/

is exact on global sections for 1 � s � �, and that h0.C 0;OC 0.sC 0// D 0 and
h1.C 0;OC 0.sC 0// D 0 for 0 < s < �. Thus OC 0.sC 0/ is nontrivial for 0 < s < �.
Since for allm, jmC 0j either has an element disjoint from C 0 or C 0 is in the base locus
of jmC 0j, we see that OC 0.�C 0/ is trivial, and hence � is the order of OC 0.C 0/ in
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Pic.C 0/. But since the points pi blown up are smooth points of C , the morphism � W
Y ! P2 induces an isomorphism C ! C 0, and under this isomorphism, OC .3L/˝
OC .�p1 � � � � � pn/ corresponds to OC 0.C 0/, so we see � D 
. It follows that
h0.C 0;OC 0.sC 0// D h1.C 0;OC 0.sC 0// for all s � 0, and these are both 1 ifOC 0.sC 0/
is trivial (i.e., if s is a multiple of 
) and they are 0 otherwise.

We now claim that .?/ is exact on global sections for all s � 1. It is enough to show
this when s is a multiple of 
, because otherwise, as we noted above, h0.C 0;OC 0.sC 0//
equals 0 and hence .?/ is automatically exact on global sections. But j
C 0j (and hence
also ji
C 0j for all i � 1) has an element disjoint from C 0, so H 0.Y;OY .i
C

0// !
H 0.C 0;OC 0.i
C 0// is onto, which shows that .?/ is exact on global sections when s
is a multiple of 
.

It follows that .?/ is also exact on h1’s (since as above h2.Y;OY .iC
0// D 0 for all

i � 0), and hence that h1.Y;OY .mC
0// D h1.Y;OY /C

P

1�i�m h
1.C 0;OC 0.iC 0//.

Now h1.Y;OY / D h1.P2;OP2/ D 0 and h1.C 0;OC 0.iC 0// is 1 if and only if i is a
multiple of 
 and it is 0 otherwise. Thus h1.Y;OY .mC

0// is the number of summands
h1.C 0;OC 0.iC 0// for which i is a multiple of 
; i.e., h1.Y;OY .mC

0// D bm=
c,
which is just s.t; n;m/. This implies that hZ.t/ D n

�

mC1
2

� � s.t; n;m/, as claimed.
If t D nm=3 but n > 9, then F 2 > 0 so by [12, Theorem III.1 (c)] either OC 0.F /

is trivial (in which case s.t; n;m/ D 1) and h1.Y;OY .F // D 1 (and hence hZ.t/ D
n
�

mC1
2

� � 1 D n
�

mC1
2

� � s.t; n;m/), or C 0 is in the base locus of jF j. If C 0 is in
the base locus, then by [12, Theorem III.1 (d)] and the fact that F 2 > 0 we have
OC 0.F / is not trivial (in which case s.t; n;m/ D 0) and h1.Y;OY .F // D 0, and
hence hZ.t/ D n

�

mC1
2

� � s.t; n;m/, as claimed.
Now consider case (iii); i.e., 3m � t < nm=3 and n > 9. Then F � D0 < 0

for each component D0 of C 0 (since the points are evenly distributed), in which case
h0.Y;OY .F // D h0.Y;OY .F � C 0// D h0.Y;OY ..t � 3/L � .m � 1/E1 � � � � �
.m � 1/En//. If t � 3 < n.m � 1/=3, we can subtract C 0 off again. This continues
until we have subtracted C 0 off r D d.mn � 3t/=.n � 9/e times, at which point
we have that F � rC 0 is nef (and hence t � 3r � n.m � r/=3) and effective and
h0.Y;OY .F // D h0.Y;OY .F � rC 0//. Applying (ii) to F � rC 0 gives

�

t�3rC2
2

� �
h0.Y;OY .F � rC 0// D h.m�r/X .t � 3r/ D n

�

m�rC1
2

� � s.t � 3r; n;m � r/ or
h0.Y;OY .F � rC 0// D �

t�3rC2
2

� � .n�m�rC1
2

� � s.t � 3r; n;m � r//. Substituting
this in for h0.Y;OY .F // in hZ.t/ D

�

tC2
2

� � h0.Y;OY .F // gives (iii).

Remark 4.3. We can now write down all possible Hilbert functions for n � 9 points
of multiplicity m for each possible choice of Hilbert function for the reduced scheme
given by the points, if the points are smooth points of a reduced cubic curve and evenly
distributed. Suppose X D p1C � � � C pn and m D 1. If 3 does not divide n, or it does
but s.n=3; n; 1/ D 0, then the difference function for the Hilbert function of X is the
same as given in (3.2), but if 3 divides n and s.n=3; n; 1/ D 1, then X is a complete
intersection and the difference function for the Hilbert function of X is the same as
given in (3.1).
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We now compare our results for Z D 2X D 2.p1 C � � � C pn/ with those obtained
in Proposition 3.1 and Theorem 3.4, and we explicitly list those cases skipped there
(because there we assumed n D 3t with t � 3 in Proposition 3.1 and n D 3t C ı with
t > 5 � ı in Theorem 3.4).

Say n  1 mod 3. Then the difference function for the Hilbert function is:
n D 10: 1 2 3 4 5 6 6 3 0
n D 13: 1 2 3 4 5 6 6 6 4 2 0, and for
n D 10C 3x for x > 1: the result is the same as given in Theorem 3.4(i).
Next, say n  2 mod 3. Then the difference function for the Hilbert function is:
n D 11: 1 2 3 4 5 6 6 5 1 0, and for
n D 11C 3x for x > 0: the result is the same as given in Theorem 3.4(i).
If n D 3x, there are two possibilities. If s.2x; n; 2/ D 0 for the given points (i.e.,

the divisor 2p1C� � �C2pn on C is not cut out by a curve of degree 2x, or equivalently
OC .2xL� 2E1� � � �� 2En/ is not trivial), then the difference function for the Hilbert
function is:
n D 9: 1 2 3 4 5 6 6 0, and
n D 3x: 1 2 3 4 5 6 : : : 6 3 : : : 3 0 for x � 4, where the number of 6’s is x � 1 and

the number of trailing 3’s is x � 3. For x > 5, this is the same as the result given in
Theorem 3.4 (ii).

If s.2x; n; 2/ D 1 for the given points (i.e., the divisor 2p1C � � � C 2pn on C is cut
out by a curve of degree 2x, or equivalently OC .2xL � 2E1 � � � � � 2En/ is trivial),
but s.n=3; n; 1/ D 0 (so p1 C � � � C pn is not cut out by a curve of degree x, which is
equivalent to saying that OC .xL � E1 � � � � � En/ is not trivial), then the difference
function for the Hilbert function is:
n D 9: 1 2 3 4 5 6 5 1 0,
n D 12: 1 2 3 4 5 6 6 6 2 1 0, and
n D 3x: 1 2 3 4 5 6 : : : 6 3 : : : 3 2 1 0 for x > 4, where the number of 6’s is x � 1

and the number of trailing 3’s is x � 4. For x > 5, this is the same as the result given
in Theorem 3.4 (ii).

Now say n D 3x and s.x; n; 1/ D 1. In this case, X is the complete intersection of
C and a form of degree t , and the difference function for the Hilbert function of 2X
is:
n D 9: 1 2 3 4 5 6 4 2 0
n D 12: 1 2 3 4 5 6 6 5 3 1 0 and
n D 3x for x > 4: the result is the same as given in Proposition 3.1.

Remark 4.4. The possible values of the Hilbert functions as given in Theorem 4.2
depend partly on what torsion occurs in Pic.C /, and this in turn is affected by the
characteristic of k. When C is smooth, see [14, Example IV.4.8.1] for a discussion
of the torsion. When C is reduced but not smooth, the torsion is easy to understand
since it is all contained in the identity component Pic0.C / of Pic.C /, whose group
structure is isomorphic either to the additive or multiplicative groups of the ground
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field. (See for example [13, Proposition 5.2], which states a result for curves of so-
called canonical type. But for any reduced cubic C , one can always find a set of
9 evenly distributed smooth points of C , and the proper transform C 0 with respect to
blowing those points up is a curve of canonical type, meaning thatC 0 �D D KX �D D 0
for every component D of C 0. Since the points blown up are smooth on C , C and
C 0 are isomorphic and thus so are Pic.C / and Pic.C 0/, hence the conclusion of [13,
Proposition 5.2] applies to C , even though C is not itself of canonical type.) When
C is reduced and irreducible but singular, for example, the result is that Pic0.C / is
the additive group of the ground field when C is cuspidal and it is the multiplicative
group of the field when C is nodal [14, Exercise II.6.9]. In particular, if C is an
irreducible cuspidal cubic curve over a field of characteristic zero, then Pic0.C / is
torsion free, so h2X cannot be .1; 2; 3; 4; 5; 6; 6; 6; 2; 1/; indeed, this follows, after
a simple calculation, because if OC .2xL � 2p1 � � � � � 2pn/ is trivial, then so is
OC .xL�p1�� � ��pn/. On the other hand, OC .xL�p1�� � ��pn/ can be nontrivial
even if OC .2xL� 2p1 � � � � � 2pn/ is trivial if the characteristic is 2 or if the singular
point is a node but the characteristic is not 2, since in those cases Pic.C / has elements
of order 2.

Remark 4.5. We can also use the method of proof of Theorem 4.2 to recover the result
of Theorem 3.7 for the Hilbert function of mX D m.p1 C � � � C pn/ for n � 9 points
on a reduced, irreducible cubic curve C where p1, say, is the singular point and m is
1 or 2. As is now clear, the approach of Theorem 4.2 is to determine h0.Y;OY .tL �
mE1 � � � � � mEn// for all t , and then translate this into the Hilbert function or the
difference function for mX .

This translation is purely mechanical and the resulting Hilbert functions in the case
that n � 12 are already given in Theorem 3.7 (we leave writing down the Hilbert
functions for 9 � n � 11 using the results that follow as an exercise for the reader).
Thus it is the calculation of h0.Y;OY .tL�mE1�� � ��mEn// that is of most interest,
and it is on this that we now focus.

Let Y be the blow up of the points, let C 0 be the proper transform of C , and let
Ft D tL � E1 � � � � � En and Gt D tL � 2.E1 C � � � C En/, where we denote by L
both a general line in the plane and its pullback to Y . Up to linear equivalence, note
that C 0 D 3L � 2E1 �E2 � � � � �En.

The goal here is to compute the values of h0.Y;OY .Ft // and h0.Y;OY .Gt //. For
t < 3, Bézout tells us that h0.X;OY .Ft // D 0, sinceFt �C 0 < 0 (hence h0.Y;OY .Ft //

equals h0.Y;OY .Ft � C 0// and .Ft � C 0/ � L < 0 (hence h0.Y;OY .Ft � C 0// D 0).
If t � 3, then certainly h0.Y;OY .Ft // > 0, since Ft D .t � 3/L C C 0 C E1. We
consider three cases, according to whether Ft � C 0 < 0, Ft � C 0 > 0 or Ft � C 0 D 0.

If 0 > Ft �C 0 D 3t �2� .n�1/ (i.e., if 3 � t < .nC1/=3), then h0.Y;OY .Ft // D
h0.Y;OY .Ft � C 0// D h0.Y;OY ..t � 3/L C E1// D h0.Y;OY ..t � 3/L// D
h0.P2;OP2..t�3/L// D �t�3C2

2

�

, since Ft�C 0 D .t�3/LCE1. If Ft �C 0 > 0 (i.e.,
t > .nC1/=3), then h0.Y;OY .Ft // D

�

tC2
2

��n (since Ft , meeting both components
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of �KY D C 0CE1 positively, is nef and hence h1.Y;OY .Ft // D 0 by [12, Theorem
III.1 (a,b)]).

This leaves the case that t D .n C 1/=3. This means that OC 0.Ft / has degree 0.
Consider the exact sequence

0! OY ..t � 3/LCE1/! OY .Ft /! OC 0.Ft /! 0:

By an analogous argument to the one used to show h1.Y;OY .Ft // D 0 when t >
.nC 1/=3, we obtain that h1.OY ..t � 3/LC E1// D 0. But C 0 is a smooth rational
curve, so also the third sheaf in the sequence has vanishing first cohomology. Thus
we obtain h1.Y;OY .Ft // D 0, hence the points impose independent conditions. It
follows that h0.Y;OY .Ft // D

�

tC2
2

� � n also for t D .nC 1/=3.
We thus have: h0.Y;OY .Ft // D 0 for 0 � t < 3; h0.Y;OY .Ft // D

�

t�1
2

�

for
3 � t < .nC 1/=3; and h0.Y;OY .Ft // D

�

tC2
2

� � n for t � .nC 1/=3.
A similar analysis works for 2X . There are now four ranges of degrees. The first

range is t < 6, in which case h0.Y;OY .Gt // D 0 by Bézout, arguing as above.
For t � 6, we have h0.Y;OY .Gt // > 0, since up to linear equivalence we have
Gt D .t�6/LC2.C 0CE1/. The second range is now 6 � t < .nC8/=3; in this case
2C 0 is, by Bézout, a fixed component of jGt j, so h0.Y;OY .Gt // D h0.Y;OY ..t �
6/L C 2E1// D

�

t�4
2

�

. The third range is .n C 8/=3 � t < .2=3/.n C 1/, for
which C 0 is a fixed component of jGt j (and Gt � C 0 D .t � 6/L C C 0 C 2E1 is
nef) so h0.Y;OY .Gt // D h0.Y;OY .Gt �C 0// and we know h0.Y;OY .Gt �C 0// by
Theorem 4.2 (ii) if n > 9, while h1.Y;OY .Gt�C 0// D 0 by [12, Theorem III.1 (a,b)])
if n D 9, so again we know h0.Y;OY .Gt � C 0//. The last range is t � .2=3/.nC 1/,
in which case Gt is nef. If t > .2=3/.n C 1/, then Gt meets �KY positively, so
h1.Y;OY .Gt // D 0 [12, Theorem III.1 (a,b)]), and h0.Y;OY .Gt // D

�

tC2
2

�� 3n. We
are left with the case that t D .2=3/.nC 1/. Consider the exact sequence

0! OY ..t � 3/L �E2 � � � � �En/! OY .Gt /! OC 0.Gt /! 0:

Since Gt � C 0 � 0 and C 0 is smooth and rational, we have h1.C 0;OC 0.Gt // D 0, and
since OY ..t�3/L�E2�� � ��En/ D OY ..t�6/LCC 0C2E1/ and .t�6/LCC 0C2E1

is nef (as observed above) with .Gt �C 0/ �C 0 > 0, we have h1.Y;OY .Gt �C 0// D 0
[12, Theorem III.1 (a,b)]) and hence h1.Y;OY .Gt // D 0, so in fact h0.Y;OY .Gt // D
�

tC2
2

� � 3n.

Remark 4.6. Here we comment on what is left to do if one wants to recover the results
of Section 2 using the methods of Section 4. So consider n D 9 points on a given
cubic C (but note that there may be more than one cubic through the points), either all
of multiplicity 1 or all of multiplicity 2. The case that the points are evenly distributed
smooth points of C is done above, as is the case that the curve C is reduced and
irreducible. The case that the points all lie on a conic follows from the known result
for configuration types of points on a conic [7]. What is left is that the points do not all
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lie on any given conic (and hence C is reduced) and either: one or more of the points
is not a smooth point of C and C is not irreducible, or the points are not distributed
evenly (and hence again C is not irreducible). The four reducible cubics that arise are:
a conic and a line tangent to the conic; a conic and a transverse line; three lines passing
through a point; and three lines with no point common to all three. Each of these cases
leads to a number of cases depending on how the points are placed (such as how many
are on each component and whether one or more is a singular point of the cubic, but
also depending on the group law of the cubic). Analyzing these cases would give a
complete result of the Hilbert functions of the form hX and h2X for a reduced scheme
X consisting of 9 distinct points of the plane.

Acknowledgments. We thank Z. Teitler for helpful comments and the referee for a
careful reading of the paper.
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Abstract. Let C be a clutter and let I.C/ � R be its edge ideal. This is a survey paper on the
algebraic and combinatorial properties of R=I.C/ and C , respectively. We give a criterion to
estimate the regularity ofR=I.C/ and apply this criterion to give new proofs of some formulas
for the regularity. If R=I.C/ is sequentially Cohen–Macaulay, we present a formula for the
regularity of the ideal of vertex covers of C and give a formula for the projective dimension of
R=I.C/. We also examine the associated primes of powers of edge ideals, and show that for a
graph with a leaf, these sets form an ascending chain.
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1 Introduction

A clutter C is a finite ground set X together with a family E of subsets of X such that
if f1; f2 2 E, then f1 6� f2. The ground set X is called the vertex set of C and E is
called the edge set of C , denoted by V.C/ and E.C/ respectively. Clutters are simple
hypergraphs and are sometimes called Sperner families in the literature. We can also
think of a clutter as the maximal faces of a simplicial complex over a ground set. One
example of a clutter is a graph with the vertices and edges defined in the usual way.

LetC be a clutter with vertex setX D ¹x1; : : : ; xnº and with edge setE.C/. Permit-
ting an abuse of notation, we will also denote by xi the i th variable in the polynomial
ring R D KŒx1; : : : ; xn� over a field K. The edge ideal of C , denoted by I.C/, is
the ideal of R generated by all monomials xe D Q

xi 2e xi such that e 2 E.C/. Edge
ideals of graphs and clutters were introduced in [109] and [39, 47, 53], respectively.
The assignment C 7! I.C/ establishes a natural one-to-one correspondence between
the family of clutters and the family of square-free monomial ideals. Edge ideals of
clutters are also called facet ideals [39].

This is a survey paper on edge ideals, which includes some new proofs of known
results and some new results. The study of algebraic and combinatorial properties
of edge ideals and clutters (e.g., Cohen–Macaulayness, unmixedness, normality, nor-
mally torsion-freeness, shellability, vertex decomposability, stability of associated
primes) is of current interest, see [22, 24, 25, 32, 39, 41, 42, 45, 51, 61, 62, 89, 116] and

The second author was partially supported by CONACyT grant 49251-F and SNI.
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the references there. In this paper we will focus on the following algebraic properties:
the sequentially Cohen–Macaulay property, the stability of associated primes, and the
connection between torsion-freeness and combinatorial problems.

The numerical invariants of edge ideals have attracted a great deal of interest [1,46,
53,77,87,90,91,106,110,117,118]. In this paper we focus on the following invariants:
projective dimension, regularity, depth and Krull dimension.

We present a few new results on edge ideals. We give a criterion to estimate the
regularity of edge ideals (see Theorem 3.14). We apply this criterion to give new
proofs of some formulas for the regularity of edge ideals (see Corollary 3.15). If C is
a clutter and R=I.C/ is sequentially Cohen–Macaulay, we present a formula for the
regularity of the ideal of vertex covers of C (see Theorem 3.31) and give a formula for
the projective dimension of R=I.C/ (see Corollary 3.33). We also give a new class of
monomial ideals for which the sets of associate primes of powers are known to form
ascending chains (Proposition 4.23).

For undefined terminology on commutative algebra, edge ideals, graph theory, and
the theory of clutters and hypergraphs we refer to [10, 28, 102], [38, 110], [7, 54],
[17, 97], respectively.

2 Algebraic and Combinatorial Properties of Edge Ideals

Let C be a clutter with vertex set X D ¹x1; : : : ; xnº and let I D I.C/ � R be its edge
ideal. A subset F ofX is called independent or stable if e 6� F for any e 2 E.C/. The
dual concept of a stable vertex set is a vertex cover, i.e., a subset C of X is a vertex
cover of C if and only if X nC is a stable vertex set. A first hint of the rich interaction
between the combinatorics of C and the algebra of I.C/ is that the number of vertices
in a minimum vertex cover of C (the covering number ˛0.C/ of C ) coincides with the
height ht I.C/ of the ideal I.C/. The number of vertices in a maximum stable set (the
stability number of C ) is denoted by ˇ0.C/. Notice that n D ˛0.C/C ˇ0.C/.

A less immediate interaction between the two fields comes from passing to a simpli-
cial complex and relating combinatorial properties of the complex to algebraic prop-
erties of the ideal. The Stanley–Reisner complex of I.C/, denoted by C , is the
simplicial complex whose faces are the independent vertex sets of C . The complex
C is also called the independence complex of C . Recall that C is called pure if all
maximal independent vertex sets of C , with respect to inclusion, have the same number
of elements. If C is pure (resp. Cohen–Macaulay, shellable, vertex decomposable),
we say that C is unmixed (resp. Cohen–Macaulay, shellable, vertex decomposable).
Since minor variations of the definition of shellability exist in the literature, we state
here the definition used throughout this article.

Definition 2.1. A simplicial complex  is shellable if the facets (maximal faces) of
 can be ordered F1; : : : ; Fs such that for all 1 � i < j � s, there exists some
v 2 Fj n Fi and some ` 2 ¹1; : : : ; j � 1º with Fj n F` D ¹vº.



Edge Ideals: Algebraic and Combinatorial Properties 87

We are interested in determining which families of clutters have the property that
C is pure, Cohen–Macaulay, or shellable. These properties have been extensively
studied, see [10, 89, 92–94,100,102,110,111] and the references there.

The above definition of shellable is due to Björner and Wachs [6] and is usually
referred to as nonpure shellable, although here we will drop the adjective “nonpure”.
Originally, the definition of shellable also required that the simplicial complex be pure,
that is, all facets have the same dimension. We will say  is pure shellable if it also
satisfies this hypothesis. These properties are related to other important properties
[10, 102,110]:

pure shellable H) constructible H) Cohen–Macaulay (H Gorenstein:

If a shellable complex is not pure, an implication similar to that above holds when
Cohen–Macaulay is replaced by sequentially Cohen–Macaulay.

Definition 2.2. Let R D KŒx1; : : : ; xn�. A graded R-moduleM is called sequentially
Cohen–Macaulay (over K) if there exists a finite filtration of graded R-modules

.0/ DM0 �M1 � � � � �Mr DM
such that each Mi=Mi�1 is Cohen–Macaulay, and the Krull dimensions of the quo-
tients are increasing:

dim.M1=M0/ < dim.M2=M1/ < � � � < dim.Mr=Mr�1/:

We call a clutter C sequentially Cohen–Macaulay ifR=I.C/ is sequentially Cohen–
Macaulay. As first shown by Stanley [102], shellable implies sequentially Cohen–
Macaulay.

A related notion for a simplicial complex is that of vertex decomposability [5]. If
is a simplicial complex and v is a vertex of, then the subcomplex formed by deleting
v is the simplicial complex consisting of the faces of  that do not contain v, and the
link of v is

lk.v/ D ¹F 2 jv … F andF [ ¹vº 2 º:
Suppose  is a (not necessarily pure) simplicial complex. We say that  is vertex-
decomposable if either is a simplex, or contains a vertex v such that both the link
of v and the subcomplex formed by deleting v are vertex-decomposable, and such that
every facet of the deletion is a facet of . If C is vertex decomposable, i.e., C is
vertex decomposable, then C is shellable and sequentially Cohen–Macaulay [5, 116].
Thus, we have:

vertex decomposable H) shellable H) sequentially Cohen–Macaulay.

Two additional properties related to the properties above are also of interest in this
area. One is the unmixed property, which is implied by the Cohen–Macaulay property.
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The other is balanced. To define balanced, it is useful to have a matrix that encodes
the edges of a graph or clutter.

Definition 2.3. Let f1; : : : ; fq be the edges of a clutter C . The incidence matrix or
clutter matrix of C is the n � q matrix A D .aij / given by aij D 1 if xi 2 fj and
aij D 0 otherwise. We say that C is a totally balanced clutter (resp. balanced clutter)
if A has no square submatrix of order at least 3 (resp. of odd order) with exactly two
1’s in each row and column.

If G is a graph, then G is balanced if and only if G is bipartite and G is totally
balanced if and only if G is a forest [96, 97].

While the implications between the properties mentioned above are interesting in
their own right, it is useful to identify classes of ideals that satisfy the various proper-
ties. We begin with the Cohen–Macaulay and unmixed properties. There are classifi-
cations of the following families in terms of combinatorial properties of the graph or
clutter:

(c1) [94, 111] unmixed bipartite graphs,

(c2) [36, 60] Cohen–Macaulay bipartite graphs,

(c3) [109] Cohen–Macaulay trees,

(c4) [38] totally balanced unmixed clutters,

(c5) [89] unmixed clutters with the König property without cycles of length 3 or 4,

(c6) [89] unmixed balanced clutters.

We now focus on the sequentially Cohen–Macaulay property.

Proposition 2.4 ([43]). The only sequentially Cohen–Macaulay cycles are C3 and C5.

The next theorem generalizes a result of [36] (see .c2/ above) which shows that a
bipartite graph G is Cohen–Macaulay if and only if G has a pure shelling.

Theorem 2.5 ([107]). Let G be a bipartite graph. Then G is shellable if and only if G
is sequentially Cohen–Macaulay.

Recently Van Tuyl [106] has shown that Theorem 2.5 remains valid if we replace
shellable by vertex decomposable.

Additional examples of sequentially Cohen–Macaulay ideals depend on the chordal
structure of the graph. A graph G is said to be chordal if every cycle of G of length
at least 4 has a chord. A chord of a cycle is an edge joining two non-adjacent ver-
tices of the cycle. Chordal graphs have been extensively studied, and they can be
constructed according to a result of G.A. Dirac, see [21, 63, 104]. A chordal graph
is called strongly chordal if every cycle C of even length at least six has a chord that
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divides C into two odd length paths. A clique of a graph is a set of mutually adja-
cent vertices. Totally balanced clutters are precisely the clutters of maximal cliques of
strongly chordal graphs by a result of Farber [37]. Faridi [39] introduced the notion of
a simplicial forest. In [62, Theorem 3.2] it is shown that C is the clutter of the facets of
a simplicial forest if and only if C is a totally balanced clutter. Additionally, a clutter
C is called d -uniform if all its edges have size d .

Theorem 2.6. Any of the following clutters is sequentially Cohen–Macaulay:

(i) [116] graphs with no chordless cycles of length other than 3 or 5,

(ii) [43] chordal graphs,

(iii) [63] clutters whose ideal of covers has linear quotients (see Definitions 2.7
and 3.1),

(iv) [55] clutters of paths of length t of directed rooted trees,

(v) [39] simplicial forests, i.e., totally balanced clutters,

(vi) [52] uniform admissible clutters whose covering number is 3.

The clutters of parts (i)–(v) are in fact shellable, and the clutters of parts (i)–(ii) are
in fact vertex decomposable, see [22, 63, 106, 107, 115, 116]. The family of graphs in
part (ii) is contained in the family of graphs of part (i) because the only induced cycles
of a chordal graph are 3-cycles.

A useful tool in examining invariants related to resolutions comes from a carefully
chosen ordering of the generators.

Definition 2.7. Amonomial ideal I has linear quotients if the monomials that generate
I can be ordered g1; : : : ; gq such that for all 1 � i � q � 1, ..g1; : : : ; gi / W giC1/ is
generated by linear forms.

If an edge ideal I is generated in a single degree and I has linear quotients, then I
has a linear resolution (cf. [39, Lemma 5.2]). If I is the edge ideal of a graph, then I
has linear quotients if and only if I has a linear resolution if and only if each power of
I has a linear resolution [64].

Let G be a graph. Given a subset A � V.G/, by G nA, we mean the graph formed
from G by deleting all the vertices in A, and all edges incident to a vertex in A. A
graph G is called vertex-critical if ˛0.G n ¹vº/ < ˛0.G/ for all v 2 V.G/. An edge
critical graph is defined similarly. The final property introduced in this section is a
combinatorial decomposition of the vertex set of a graph.

Definition 2.8 ( [2]). A graph G without isolated vertices is called a B-graph if there
is a family G consisting of independent sets of G such that V.G/ D S

C 2G C and
jC j D ˇ0.G/ for all C 2 G .
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The notion of a B-graph is at the center of several interesting families of graphs.
One has the following implications for any graph G without isolated vertices [2, 110]:

edge-critical H)
B-graph H) vertex-critical

Cohen–Macaulay H) unmixed H)

In [2] the integer ˛0.G/ is called the transversal number of G.

Theorem 2.9 ([34, 46]). If G is a B-graph, then ˇ0.G/ � ˛0.G/.

3 Invariants of Edge Ideals: Regularity, Projective
Dimension, Depth

Let C be a clutter and let I D I.C/ be its edge ideal. In this section we study the
regularity, depth, projective dimension, and Krull dimension of R=I.C/. There are
several well-known results relating these invariants that will prove useful. We collect
some of them here for ease of reference.

The first result is a basic relation between the dimension and the depth (see for
example [28, Proposition 18.2]):

depthR=I.C/ � dimR=I.C/: (3.1)

The deviation from equality in the above relationship can be quantified using the pro-
jective dimension, as is seen in a formula discovered by Auslander and Buchsbaum
(see [28, Theorem 19.9]):

pdR.R=I.C//C depthR=I.C/ D depth.R/: (3.2)

Notice that since in the setting of this article R is a polynomial ring in n variables,
depth.R/ D n.

Another invariant of interest also follows from a closer inspection of a minimal
projective resolution of R=I . Consider the minimal graded free resolution of M D
R=I as an R-module:

F? W 0!
M

j

R.�j /bgj ! � � � !
M

j

R.�j /b1j ! R! R=I ! 0:

The Castelnuovo–Mumford regularity or simply the regularity ofM is defined as

reg.M/ D max¹j � i j bij ¤ 0º:

An excellent reference for the regularity is the book of Eisenbud [29]. There are
methods to compute the regularity of R=I avoiding the construction of a minimal
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graded free resolution, see [3] and [50, page 614]. These methods work for any homo-
geneous ideal over an arbitrary field.

We are interested in finding good bounds for the regularity. Of particular interest is
to be able to express reg.R=I.C// in terms of the combinatorics of C , at least for some
special families of clutters. Several authors have studied the regularity of edge ideals
of graphs and clutters [18, 20, 53, 74, 75, 77, 81, 90, 103, 106, 114]. The main results
are general bounds for the regularity and combinatorial formulas for the regularity of
special families of clutters. The estimates for the regularity are in terms of matching
numbers and the number of cliques needed to cover the vertex set. Covers will play a
particularly important role since they form the basis for a duality.

Definition 3.1. The ideal of covers of I.C/, denoted by Ic.C/, is the ideal of R gen-
erated by all the monomials xi1

� � � xik
such that ¹xi1

; : : : ; xik
º is a vertex cover of

C . The ideal Ic.C/ is also called the Alexander dual of I.C/ and is also denoted
by I.C/_. The clutter of minimal vertex covers of C , denoted by C_, is called the
Alexander dual clutter or blocker of C .

To better understand the Alexander dual, let e 2 E.C/ and consider the monomial
prime ideal .e/ D .¹xi jxi 2 eº/. Then the duality is given by:

I.C/ D .xe1
; xe2

; : : : ; xeq
/ D p1 \ p2 \ � � � \ ps

l l
Ic.C/D .e1/ \ .e2/ \ � � � \ .eq/D .xp1

; xp2
; : : : ; xps

/;

(3.3)

where p1; : : : ; ps are the associated primes of I.C/ and xpk
D Q

xi 2pk
xi for 1 �

k � s. Notice the equality Ic.C/ D I.C_/. Since .C_/_ D C , we have Ic.C
_/ D

I.C/. In many cases I.C/ reflects properties of Ic.C/ and viceversa [27, 58, 86]. The
following result illustrates this interaction.

Theorem 3.2 ([103]). Let C be a clutter. If ht.I.C// � 2, then

reg I.C/ D 1C regR=I.C/ D pdR=Ic.C/;

where Ic.C/ is the ideal of minimal vertex covers of C .

If jej � 2 for all e 2 E.C/, then this formula says that the regularity of R=I.C/
equals 1 if and only if Ic.C/ is a Cohen–Macaulay ideal of height 2. This formula
will be used to show that regularity behaves well when working with edge ideals with
disjoint sets of variables (see Proposition 3.4). This formula also holds for edge ideals
of height one [61, Proposition 8.1.10].

Corollary 3.3. If ht.I.C// D 1, then regR=I.C/ D pdR=Ic.C/ � 1.
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Proof. We set I D I.C/. The formula clearly holds if I D .x1 � � � xr/ is a principal
ideal. Assume that I is not principal. Consider the primary decomposition of I

I D .x1/ \ � � � \ .xr/ \ p1 \ � � � \ pm;

where L D p1 \ � � � \ pm is an edge ideal of height at least 2. Notice that I D fL,
where f D x1 � � � xr . Then the Alexander dual of I is

I_ D .x1; : : : ; xr ; xp1
; xp2

; : : : ; xpm
/ D .x1; : : : ; xr/C L_:

The multiplication map LŒ�r� f! fL induces an isomorphism of graded R-modules.
Thus reg.LŒ�r�/ D r C reg.L/ D reg.I /. By the Auslander–Buchsbaum formula,
one has the equality pd.R=I_/ D r C pd.R=L_/. Therefore, using Theorem 3.2, we
get

reg.R=I / D reg.R=L/C r 3:2D .pd.R=L_/ � 1/C r D pd.R=I_/ � 1:

Thus reg.R=I / D pd.R=I_/ � 1, as required.

Next we show some basic properties of regularity. The first such property is that
regularity behaves well when working with the edge ideal of a graph with multiple
disjoint components or with isolated vertices, as can be seen by the following propo-
sition.

Proposition 3.4 ([117, Lemma 7]). LetR1 D KŒx� andR2 D KŒy� be two polynomial
rings over a field K and let R D KŒx; y�. If I1 and I2 are edge ideals of R1 and R2

respectively, then

regR=.I1RC I2R/ D reg.R1=I1/C reg.R2=I2/:

Proof. By abuse of notation, we will write Ii in place of IiR for i D 1; 2 when it is
clear from context that we are using the generators of Ii but extending to an ideal of
the larger ring. Let x D ¹x1; : : : ; xnº and y D ¹y1; : : : ; ymº be two disjoint sets of
variables. Notice that .I1CI2/

_ D I_
1 I

_
2 D I_

1 \I_
2 where I_

i is the Alexander dual
of Ii (see Definition 3.1). Hence by Theorem 3.2 and using the Auslander–Buchsbaum
formula, we get

reg.R=.I1 C I2// D nCm � depth.R=.I_
1 \ I_

2 // � 1;
reg.R1=I1/C reg.R2=I2/ D n � depth.R1=I

_
1 / � 1Cm � depth.R2=I

_
2 / � 1:

Therefore we need only show the equality

depth.R=.I_
1 \ I_

2 // D depth.R1=I
_
1 /C depth.R2=I

_
2 /C 1:
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Since depth.R=.I_
1 C I_

2 // D depth.R1=I
_
1 /C depth.R2=I

_
2 /, the proof reduces to

showing the equality

depth.R=.I_
1 \ I_

2 // D depth.R=.I_
1 C I_

2 //C 1: (3.4)

We may assume that depth.R=I_
1 / � depth.R=I_

2 /. There is an exact sequence of
graded R-modules:

0 �! R=.I_
1 \ I_

2 /
'�! R=I_

1 ˚R=I_
2

��! R=.I_
1 C I_

2 / �! 0; (3.5)

where '.r/ D .r;�r/ and �.r1; r2/ D r1 C r2. From the inequality

depth.R=I_
1 ˚R=I_

2 / D max¹depth.R=I_
i /º2iD1 D depth.R=I_

1 /

D depth.R1=I
_
1 /Cm

> depth.R1=I
_
1 /C depth.R2=I

_
2 / D depth.R=.I_

1 C I_
2 //

and applying the depth lemma (see [10, Proposition 1.2.9] for example) to (3.5), we
obtain (3.4).

Another useful property of regularity is that one can delete isolated vertices of a
graph without changing the regularity of the edge ideal. The following lemma shows
that this can be done without significant changes to the projective dimension as well.

Lemma 3.5. Let R D KŒx1; : : : ; xn� and I be an ideal of R. If I � .x1; : : : ; xn�1/,
and R0DR=.xn/ Š KŒx1; : : : ; xn�1�, then reg.R=I /D reg.R0=I / and pdR.R=I / D
pdR0.R0=I /. Similarly, if xn 2 I and I 0 D I=.xn/, then reg.R=I / D reg.R0=I 0/ and
pdR.R=I / D pdR0.R0=I 0/C 1.

Proof. The first projective dimension result follows from the Auslander–Buchsbaum
formula since depth.R=I / D depth.R0=I /C 1 and depth.R/ D depth.R0/C 1. Since
depth.R=I / D depth.R0=I 0/ the second result for projective dimension holds as well.
The results for regularity follow from Proposition 3.4 by noting that the regularity of
a polynomial ring KŒx� is 0, as is the regularity of the field K D KŒx�=.x/.

While adding variables to the ring will preserve the regularity, other changes to the
base ring, such as changing the characteristic, will affect this invariant. The following
example shows that, even for graphs, a purely combinatorial description of the regu-
larity might not be possible. Results regarding the role the characteristic of the field
plays in the resolution of the ideal appear in [19, 74].

Example 3.6. Consider the edge ideal I � R D KŒx1; : : : ; x10� generated by the
monomials

x1x3; x1x4; x1x7; x1x10; x1x11; x2x4; x2x5; x2x8; x2x10;

x2x11; x3x5; x3x6; x3x8; x3x11; x4x6; x4x9; x4x11; x5x7;

x5x9; x5x11; x6x8; x6x9; x7x9; x7x10; x8x10:
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Using Macaulay2 [49] we get that reg.R=I / D 3 if char.K/ D 2, and reg.R=I / D 2
if char.K/ D 3.

As mentioned in Theorem 2.6 (ii), chordal graphs provide a key example of a class
of clutters whose edge ideals are sequentially Cohen–Macaulay. Much work has been
done toward finding hypergraph generalizations of chordal graphs, typically by look-
ing at cycles of edges or at tree hypergraphs [32, 53, 113]. The papers [53, 113, 115]
contribute to the algebraic approach that is largely motivated by finding hypergraph
generalizations that have edge ideals with linear resolutions.

It is useful to consider the homogeneous components of the ideals when using linear
resolutions. Let .Id / denote the ideal generated by all degree d elements of a homo-
geneous ideal I . Then I is called componentwise linear if .Id / has a linear resolution
for all d . If I is the edge ideal of a clutter, we write IŒd� for the ideal generated by all
the squarefree monomials of degree d in I .

Theorem 3.7. Let K be a field and C be a clutter. Then

(i) [27] R=I.C/ is Cohen–Macaulay if and only if Ic.C/ has a linear resolution.

(ii) [58] R=I.C/ is sequentially Cohen–Macaulay if and only if Ic.C/ is componen-
twise linear.

(iii) [58] I.C/ is componentwise linear if and only if I.C/Œd� has a linear resolution
for d � 0.

(iv) [44] If G is a graph, then I.G/ has a linear resolution if and only if Gc is
chordal.

(v) [103] If G is a graph, then reg.R=I.G// D 1 if and only if Ic.G/ is Cohen–
Macaulay.

A graph whose complement is chordal is called co-chordal. A consequence of this
result and Theorem 3.2 is that an edge ideal I.C/ has regularity 2 if and only if C is
the independence complex of a co-chordal graph. In this case the complex C turns
out to be a quasi-forest in the sense of Zheng [118]. In [61, Theorem 9.2.12] it is
shown that a complex  is a quasi-forest if and only if  is the clique complex of a
chordal graph.

Information about the regularity of a clutter can also be found by examining smaller,
closely related clutters. Let S be a set of vertices of a clutter C . The induced subclutter
on S , denoted by C ŒS�, is the maximal subclutter of C with vertex set S . Thus the
vertex set of C ŒS� is S and the edges of C ŒS� are exactly the edges of C contained in
S . Notice that C ŒS� may have isolated vertices, i.e., vertices that do not belong to any
edge of C ŒS�. If C is a discrete clutter, i.e., all the vertices of C are isolated, we set
I.C/ D 0 and ˛0.C/ D 0. A clutter of the form C ŒS� for some S � V.C/ is called an
induced subclutter of C .
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Proposition 3.8. Suppose D is an induced subclutter of C . Then reg.R=I.D// �
reg.R=I.C//.

Proof. There is S � V.C/ such that D D C ŒS�. Let p be the prime ideal of R
generated by the variables in S . By duality, we have

Ic.C/ D
\

e2E.C/

.e/ H) Ic.C/p D
\

e2E.C/

.e/p D
\

e2E.D/

.e/p D Ic.D/p:

Therefore, using Theorem 3.2 and Lemma 3.5, we get

reg.R=I.C// D pd.R=Ic.C// � 1
� pd.Rp=Ic.C/p/ � 1 D pd.Rp=Ic.D/p/ � 1
D pd.R0=Ic.D// � 1 D pd.R=Ic.D// � 1 D reg.R=I.D//;

where R0 is the polynomial ring KŒS�. Thus, reg.R=I.C// � reg.R=I.D//.

Several combinatorially defined invariants that bound the regularity or other invari-
ants of a clutter are given in terms of subsets of the edge set of the clutter. An induced
matching in a clutter C is a set of pairwise disjoint edges f1; : : : ; fr such that the only
edges of C contained in

Sr
iD1 fi are f1; : : : ; fr . We let im.C/ be the number of edges

in the largest induced matching.
The next result was shown in [53, Theorem 6.5] for the family of uniform properly-

connected hypergraphs.

Corollary 3.9. Let C be a clutter and let f1; : : : ; fr be an induced matching of C with
di D jfi j for i D 1; : : : ; r . Then

(i) .
Pr

iD1 di / � r � reg.R=I.C//.

(ii) [74, Lemma 2.2] im.G/ � reg.R=I.G// for any graph G.

Proof. Let D D C Œ[r
iD1fi �. Notice that I.D/ D .xf1

; : : : ; xfr
/. Thus I.D/ is a

complete intersection and the regularity of R=I.D/ is the degree of its h-polynomial.
The Hilbert series of R=I.D/ is given by

HSD.t/ D
Qr

iD1.1C t C � � � C tdi �1/

.1 � t /n�r
:

Thus, the degree of the h-polynomial equals .
Pr

iD1 di /�r . Therefore, part (i) follows
from Proposition 3.8. Part (ii) follows from part (i).

Corollary 3.10. If C is a clutter and R=Ic.C/ is Cohen–Macaulay, then im.C/ D 1.

Proof. Let r be the induced matching number of C and let d be the cardinality of any
edge of C . Using Theorem 3.2 and Corollary 3.9, we obtain d � 1 � r.d � 1/. Thus
r D 1, as required.
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The following example shows that the inequality obtained in Corollary 3.9 (ii) can
be strict.

Example 3.11. Let G be the complement of a cycle C6 D ¹x1; : : : ; x6º of length six.
The edge ideal of G is

I.G/ D .x1x3; x1x5; x1x4; x2x6; x2x4; x2x5; x3x5; x3x6; x4x6/:

Using Macaulay2 [49], we get reg.R=I.G// D 2 and im.G/ D 1.

Lemma 3.12 ( [28, Corollary 20.19]). If 0 ! N ! M ! L ! 0 is a short exact
sequence of graded finitely generated R-modules, then

(i) reg.N / � max.reg.M/; reg.L/C 1/.
(ii) reg.M/ � max.reg.N /; reg.L//.

(iii) reg.L/ � max.reg.N / � 1; reg.M//.

Definition 3.13. If x is a vertex of a graphG, then its neighbor set, denoted byNG.x/,
is the set of vertices of G adjacent to x.

The following theorem gives a precise sense in which passing to induced subgraphs
can be used to bound the regularity. Recall that a discrete graph is one in which all the
vertices are isolated.

Theorem 3.14. Let F be a family of graphs containing any discrete graph and let
ˇWF ! N be a function satisfying that ˇ.G/ D 0 for any discrete graph G, and such
that given G 2 F , with E.G/ ¤ ;, there is x 2 V.G/ such that the following two
conditions hold:

(i) G n ¹xº and G n .¹xº [NG.x// are in F .

(ii) ˇ.G n .¹xº [NG.x/// < ˇ.G/ and ˇ.G n ¹xº/ � ˇ.G/.
Then reg.R=I.G// � ˇ.G/ for any G 2 F .

Proof. The proof is by induction on the number of vertices. Let G be a graph in F .
If G is a discrete graph, then I.G/ D .0/ and reg.R/ D ˇ.G/ D 0. Assume that G
has at least one edge. There is a vertex x 2 V.G/ such that the induced subgraphs
G1 D G n ¹xº and G2 D G n .¹xº [ NG.x// satisfy (i) and (ii). There is an exact
sequence of graded R-modules

0 �! R=.I.G/W x/Œ�1� x�! R=I.G/ �! R=.x; I.G// �! 0:

Notice that .I.G/W x/ D .NG.x/; I.G2// and .x; I.G// D .x; I.G1//. The graphsG1

and G2 have fewer vertices than G. It follows directly from the definition of regularity
that reg.MŒ�1�/ D 1C reg.M/ for any graded R-moduleM . Therefore applying the
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induction hypothesis to G1 and G2, and using conditions (i) and (ii) and Lemma 3.5,
we get

reg.R=.I.G/W x/Œ�1�/ D reg.R=.I.G/W x//C 1 D reg.R0=I.G2//C 1
� ˇ.G2/C 1 � ˇ.G/;

reg.R=.x; I.G/// � ˇ.G1/ � ˇ.G/

where R0 is the ring in the variables V.G2/. Therefore from Lemma 3.12, the regu-
larity of R=I.G/ is bounded by the maximum of the regularities of R=.I.G/W x/Œ�1�
and R=.x; I.G//. Thus reg.R=I.G// � ˇ.G/, as required.

As an example of how Theorem 3.14 can be applied to obtain combinatorial bounds
for the regularity, we provide new proofs for several previously known results. Let G
be a graph. We let ˇ0.G/ be the cardinality of any smallest maximal matching of G.
HJa and Van Tuyl proved that the regularity of R=I.G/ is bounded from above by the
matching number of G and Woodroofe improved this result showing that ˇ0.G/ is an
upper bound for the regularity.

Corollary 3.15. Let G be a graph and let R D KŒV.G/�. Then

(i) [53, Corollary 6.9] reg.R=I.G// D im.G/ for any chordal graph G.

(ii) [53, Theorem 6.7; 117] reg.R=I.G// � ˇ0.G/.
(iii) [106, Theorem 3.3] reg.R=I.G// D im.G/ if G is bipartite and R=I.G/ is

sequentially Cohen–Macaulay.

Proof. (i) Let F be the family of chordal graphs and let G be a chordal graph with
E.G/ ¤ ;. By Corollary 3.9 and Theorem 3.14 it suffices to prove that there is
x 2 V.G/ such that im.G1/ � im.G/ and im.G2/ < im.G/, where G1 and G2 are
the subgraphs G n ¹xº and G n .¹xº[NG.x//, respectively. The inequality im.G1/ �
im.G/ is clear because any induced matching of G1 is an induced matching of G.
We now show the other inequality. By [104, Theorem 8.3], there is y 2 V.G/ such
that GŒNG.y/ [ ¹yº� is a complete subgraph. Pick x 2 NG.y/ and set f0 D ¹x; yº.
Consider an induced matching f1; : : : ; fr of G2 with r D im.G2/. We claim that
f0; f1; : : : ; fr is an induced matching of G. Let e be an edge of G contained in
Sr

iD0 fi . We may assume that e \ f0 ¤ ; and e \ fi ¤ ; for some i � 1, otherwise
e D f0 or e D fi for some i � 1. Then e D ¹y; zº or e D ¹x; zº for some z 2 fi . If
e D ¹y; zº, then z 2 NG.y/ and x 2 NG.y/. Hence ¹z; xº 2 E.G/ and z 2 NG.x/, a
contradiction because the vertex set ofG2 is disjoint fromNG.x/[¹xº. If e D ¹x; zº,
then z 2 NG.x/, a contradiction. This completes the proof of the claim. Hence
im.G2/ < im.G/.

(ii) Let F be the family of all graphs and let G be a graph with E.G/ ¤ ;. By
Theorem 3.14 it suffices to prove that there is x 2 V.G/ such that ˇ0.G1/ � ˇ0.G/ and
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ˇ0.G2/ < ˇ
0.G/, whereG1 andG2 are the subgraphsG n¹xº andG n .¹xº[NG.x//,

respectively.
Let f1; : : : ; fr be a maximal matching of G with r D ˇ0.G/ and let x; y be the

vertices of f1. Clearly f2; : : : ; fr is a matching of G1. Thus we can extend it to a
maximal matching f2; : : : ; fr ; h1; : : : ; hs of G1. Notice that s � 1. Indeed if s � 2,
then hi \ f1 D ; for some i 2 ¹1; 2º (otherwise y 2 h1 \ h2, which is impossi-
ble). Hence f1; : : : ; fr ; hi is a matching of G, a contradiction because f1; : : : ; fr is
maximal. Therefore ˇ0.G1/ � r � 1C s � ˇ0.G/.

The set f2; : : : ; fr contains a matching of G2, namely those edges fi that do not
degenerate. Reorder the edges so that f2; : : : ; fm are the edges that do not degenerate.
Then this set can be extended to a maximal matching f2; : : : ; fm; f

0
mC1; : : : ; f

0
k
of

G2. Now consider f 0
mC1. Since f1; : : : ; fr is a maximal matching of G, f 0

mC1 has
a nontrivial intersection with fi for some i . Note that i 6D 1 since f 0

mC1 is an edge
of G2, and i � m C 1 since f2; : : : ; fm and f 0

mC1 are all part of a matching of G2.
Reorder so that i D m C 1. Repeat the process with f 0

mC2. As before, f 0
mC2 has

a nontrivial intersection with fi for some i � m C 1. If i D m C 1, then since
f 0

mC1 and f 0
mC2 are disjoint, each must share a different vertex with fmC1. But fmC1

degenerated when passing to G2, and G2 is induced on the remaining vertices, so this
is a contradiction. Thus we may reorder so that f 0

mC2 nontrivially intersects fmC2.
Repeating this process, we see that f 0

j nontrivially intersects fj for allmC1 � j � k.
Thus k � r . Now ˇ0.G2/ � k � 1 � r � 1 < ˇ0.G/.

(iii) Let F be the family of all bipartite graphs G such that R=I.G/ is sequentially
Cohen–Macaulay, and let ˇWF ! N be the function ˇ.G/ D im.G/. Let G be
a graph in F with E.G/ ¤ ;. By Corollary 3.9 and Theorem 3.14 it suffices to
observe that, according to [107, Corollary 2.10], there are adjacent vertices x and y
with deg.y/ D 1 such that the bipartite graphsGn.¹xº[NG.x// andGn.¹yº[NG.y//

are sequentially Cohen–Macaulay. Thus conditions (i) and (ii) of Theorem 3.14 are
satisfied.

Corollary 3.15 shows that the regularity of R=I.G/ equals im.G/ for any forest
G, which was first proved by Zheng [118]. If G is an unmixed graph, Kummini [77]
showed that reg.R=I.G// equals the induced matching number ofG. IfG is claw-free
and its complement has no induced 4-cycles, then reg.R=I.G// � 2 with equality if
its complement is not chordal [90] (note that in this case reg.R=I.G// D im.G/C 1).
Formulas for the regularity of ideals of mixed products are given in [71]. The regularity
and depth of lex segment edge ideals are computed in [33]. The regularity and other
algebraic properties of the edge ideal I.G/ associated to a Ferrers graph G are studied
in detail in [18]. If R=I.G/ is Cohen–Macaulay, then a formula for reg.R=I.G//
follows from [95, Corollary 4.2].

The following result about regularity was shown by Kalai and Meshulam for square-
free monomial ideals and by Herzog for arbitrary monomial ideals. Similar inequali-
ties hold for the projective dimension.
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Proposition 3.16 ([57, 73]). Let I1 and I2 be monomial ideals of R. Then

(i) regR=.I1 C I2/ � reg.R=I1/C reg.R=I2/,

(ii) regR=.I1 \ I2/ � reg.R=I1/C reg.R=I2/C 1.

Corollary 3.17. If C1; : : : ;Cs are clutters on the vertex set X , then

reg
�

R=I
�

s
[

iD1

Ci

��

� reg.R=I.C1//C � � � C reg.R=I.Cs//:

Proof. The set of edges of C DSs
iD1 Ci equals

Ss
iD1E.Ci /. By Proposition 3.16, it

suffices to notice the equality I.
Ss

iD1 Ci / DPs
iD1 I.Ci /.

A clutter C is called co-CM if Ic.C/ is Cohen–Macaulay. A co-CM clutter is uni-
form because Cohen–Macaulay clutters are unmixed.

Corollary 3.18. If C1; : : : ;Cs are co-CM clutters on the vertex set X , then

reg.R=I.[s
iD1Ci // � .d1 � 1/C � � � C .ds � 1/;

where di is the number of elements in any edge of Ci .

Proof. By Theorem 3.2, we get that regR=I.Ci / D di � 1 for all i . Thus the result
follows from Corollary 3.17.

This result is especially useful for graphs. A graph G is weakly chordal if every
induced cycle in both G andGc has length at most 4. It was pointed out in [117] that a
weakly chordal graph G can be covered by im.G/ co-CM graphs (this fact was shown
in [13]). Thus we have:

Theorem 3.19 ([117]). If G is a weakly chordal graph, then reg.R=I.G// D im.G/.

There are bounds for the regularity of R=I in terms of some other algebraic invari-
ants of R=I . Recall that the a-invariant of R=I , denoted by a.R=I /, is the degree
(as a rational function) of the Hilbert series of R=I . Also recall that the indepen-
dence complex of I.C/, denoted by C , is the simplicial complex whose faces are
the independent vertex sets of C . The arithmetic degree of I D I.C/, denoted by
arith-deg.I /, is the number of facets (maximal faces with respect to inclusion) of C .
The arithmetical rank of I , denoted by ara.I /, is the least number of elements of R
which generate the ideal I up to radical.

Theorem 3.20 ([108, Corollary B.4.1]). a.R=I / � reg.R=I / � depth.R=I /, with
equality if R=I is Cohen–Macaulay.

Theorem 3.21 ([79; 80, Proposition 3]). reg.R=I_/ D pd.R=I / � 1 � ara.I / � 1.
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The equality reg.R=I_/ D pd.R=I / � 1 was pointed out earlier in Theorem 3.2.
There are many instances where the equality pd.R=I / D ara.I / holds, see [1, 33, 76]
and the references there. For example, for paths, one has pd.R=I / D ara.I / [1]. Barile
[1] has conjectured that the equality holds for edge ideals of forests. We also have that
n � mini¹depth.R=I .i//º is an upper bound for ara.I /, see [80]. This upper bound
tends to be very loose. If I is the edge ideal of a tree, then I is normally torsion free
(see Section 4 together with Theorems 4.34 and 4.8). Then mini¹depth.R=I .i//º D 1
by [87, Lemma 2.6]. But when I is the edge ideal of a path with 8 vertices, then the
actual value of ara.I / is 5.

Theorem 3.22 ([103, Theorem 3.1]). If ht.I / � 2, then reg.I / � arith-deg.I /.

The next open problem is known as the Eisenbud–Goto regularity conjecture [30].

Conjecture 3.23. If p � .x1; : : : ; xn/
2 is a prime graded ideal, then

reg.R=p/ � deg.R=p/ � codim.R=p/:

A pure d -dimensional complex  is called connected in codimension 1 if each pair
of facets F;G can be connected by a sequence of facets F D F0; F1; : : : ; Fs D G,
such that dim.Fi�1 \ Fi / D d � 1 for 1 � i � s. According to [5, Proposition 11.7],
every Cohen–Macaulay complex is connected in codimension 1.

The following gives a partial answer to the monomial version of the Eisenbud–Goto
regularity conjecture.

Theorem 3.24 ( [103]). Let I D I.C/ be an edge ideal. If C is connected in codi-
mension 1, then

reg.R=I / � deg.R=I / � codim.R=I /:

The dual notion to the independence complex of I.C/ is to start with a complex 
and associate to it an ideal whose independence complex is .

Definition 3.25. Given a simplicial complex  with vertex set X D ¹x1; : : : ; xnº, the
Stanley–Reisner ideal of  is defined as

I
 D .¹xi1
� � � xir

j i1 < � � � < ir ; ¹xi1
; : : : ; xir

º … º/ ;
and its Stanley–Reisner ring KŒ� is defined as the quotient ring R=I
.

A simple proof the next result is given in [44].

Theorem 3.26 ([101]). Let C be a clutter and let  D C be its independence com-
plex. Then

depthR=I.C/ D 1Cmax¹i jKŒi � is Cohen–Macaulayº;
where i D ¹F 2  j dim.F / � iº is the i -skeleton of  and �1 � i � dim./.
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A variation on the concept of the i -skeleton will facilitate an extension of the result
above to the sequentially Cohen–Macaulay case.

Definition 3.27. Let  be a simplicial complex. The pure i -skeleton of  is defined
as:

Œi� D h¹F 2 j dim.F / D iºiI �1 � i � dim./;

where hF i denotes the subcomplex generated by F .

Note that Œi� is always pure of dimension i . We say that a simplicial complex 
is sequentially Cohen–Macaulay if its Stanley–Reisner ring has this property. The fol-
lowing results link the sequentially Cohen–Macaulay property to the Cohen–Macaulay
property and to the regularity and projective dimension. The first is an interesting re-
sult of Duval.

Theorem 3.28 ([26, Theorem 3.3]). Let be a simplicial complex. Then is sequen-
tially Cohen–Macaulay if and only if the pure i -skeleton Œi� is Cohen–Macaulay for
�1 � i � dim./.

Corollary 3.29. R=I.C/ is Cohen–Macaulay if and only if R=I.C/ is sequentially
Cohen–Macaulay and C is unmixed.

Lemma 3.30. Let C be a clutter and let  D C be its independence complex. If
ˇ0

0.C/ is the cardinality of a smallest maximal independent set of C , then Œi� D i

for i � ˇ0
0.C/ � 1.

Proof. First we prove the inclusion Œi� � i . Let F be a face of Œi�. Then F is
contained in a face of of dimension i , and so F is ini . Conversely, let F be a face
of i . Then

dim.F / � i � ˇ0
0.C/ � 1 H) jF j � i C 1 � ˇ0

0.C/:

Since ˇ0
0.C/ is the cardinality of any smallest maximal independent set of C , we can

extend F to an independent set of C with i C 1 vertices. Thus F is in Œi�.

While ˇ0
0 regulates the equality of the i -skeleton and the pure i -skeleton of the

independence complex, its complement provides a lower bound for the regularity of
the ideal of covers.

Theorem 3.31. Let C be a clutter, let Ic.C/ be its ideal of vertex covers, and let ˛0
0.C/

be the cardinality of a largest minimal vertex cover of C . Then

regR=Ic.C/ � ˛0
0.C/ � 1;

with equality if R=I.C/ is sequentially Cohen–Macaulay.
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Proof. We set ˇ0
0.C/ D n�˛0

0.C/. Using Theorem 3.2 and the Auslander–Buchsbaum
formula (see (3.2)), the proof reduces to showing: depthR=I.C/ � ˇ0

0.C/, with equal-
ity if R=I.C/ is sequentially Cohen–Macaulay.

First we show that depthR=I.C/ � ˇ0
0.C/. Assume i is Cohen–Macaulay for

some �1 � i � dim./, where  is the independence complex of C . According to
Theorem 3.26, it suffices to prove that 1C i � ˇ0

0.C/. Notice that ˇ
0
0.C/ is the car-

dinality of any smallest maximal independent set of C . Thus, we can pick a maximal
independent set F of C with ˇ0

0.C/ vertices. Since 
i is Cohen–Macaulay, the com-

plex i is pure, that is, all maximal faces of  have dimension i . If 1C i > ˇ0
0.C/,

then F is a maximal face of i of dimension ˇ0
0.C/ � 1, a contradiction to the purity

of i .
Assume that R=I.C/ is sequentially Cohen–Macaulay. By Lemma 3.30 Œi� D i

for i � ˇ0
0.C/ � 1. Then by Theorem 3.28, the ring KŒi � is Cohen–Macaulay for

i � ˇ0
0.C/ � 1. Therefore, applying Theorem 3.26, we get that the depth of R=I.C/

is at least ˇ0
0.C/. Consequently, in this case one has the equality depthR=I.C/ D

ˇ0
0.C/.

The inequality in Theorem 3.31 also follows directly from the definition of regular-
ity because reg.Ic.C// is an upper bound for the largest degree of a minimal generator
of Ic.C/.

Remark 3.32. ˛0
0.C/ is max¹jejW e 2 E.C_/º and ˛0

0.C
_/ is max¹jejW e 2 E.C/º.

This follows by Alexander duality, see (3.3).

Corollary 3.33. If I.C/ is an edge ideal, then pdR.R=I.C// � ˛0
0.C/, with equality

if R=I.C/ is sequentially Cohen–Macaulay.

Proof. It follows from the proof of Theorem 3.31.

There are many interesting classes of sequentially Cohen–Macaulay clutters where
this formula for the projective dimension applies (see Theorem 2.6). The projective
dimension of edge ideals of forests was studied in [22, 53], where some recursive for-
mulas are presented. Explicit formulas for the projective dimension for some path
ideals of directed rooted trees can be found in [55, Theorem 1.2]. Path ideals of di-
rected graphs were introduced by Conca and De Negri [15]. Fix an integer t � 2, and
suppose that D is a directed graph, i.e., each edge has been assigned a direction. A
sequence of t vertices xi1

; : : : ; xit
is said to be a path of length t if there are t � 1

distinct edges e1; : : : ; et�1 such that ej D .xij ; xij C1
/ is a directed edge from xij to

xij C1
. The path ideal of D of length t , denoted by It .D/, is the ideal generated by all

monomials xi1
� � � xit

such that xi1
; : : : ; xit

is a path of length t in D . Note that when
t D 2, then I2.D/ is simply the edge ideal of D .
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Example 3.34. Let K be any field and let G be the following chordal graph
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x15
x16

x6

x7
x8

Then, by Theorem 2.6 and Corollary 3.31, pdR.R=I.G// D 6 and depthR=I.G/ D
10.

Corollary 3.35. Let C be a clutter. If I.C/ has linear quotients, then

regR=I.C/ D max¹jejW e 2 E.C/º � 1:
Proof. The ideal of covers Ic.C/ is sequentially Cohen–Macaulay by Theorem 2.6 (iv).
Hence, using Theorem 3.31, we get reg.R=I.C// D ˛0

0.C
_/ � 1. To complete the

proof notice that ˛0
0.C

_/ D max¹jejW e 2 E.C/º (see Remark 3.32).

The converse of Theorem 3.33 is not true.

Example 3.36. Let C6 be a cycle of length 6. Then R=I.C6/ is not sequentially
Cohen–Macaulay by Proposition 2.4. Using Macaulay2, we get pd.R=I.C6// D
˛0

0.C6/ D 4.
When R=I is not known to be Cohen–Macaulay, it can prove useful to have effec-

tive bounds on the depth of R=I .

Theorem 3.37. Let G be a bipartite graph without isolated vertices. If G has n ver-
tices, then

depthR=I.G/ �
jn

2

k

:

Proof. Let .V1; V2/ be a bipartition of G with jV1j � jV2j. Note 2jV1j � n because
jV1j C jV2j D n. Since V1 is a maximal independent set of vertices one has ˇ0

0.G/ �
jV1j � n=2. Therefore, using Corollary 3.33 and the Auslander–Buchsbaum formula,
we get depthR=I.G/ � n=2.

Corollary 3.38. If G is a B-graph with n vertices, then

depthR=I.G/ � dimR=I.G/ �
jn

2

k

:

Proof. Recall that n D ˛0.G/ C ˇ0.G/. By Theorem 2.9, ˇ0.G/ � ˛0.G/, and so
ˇ0.G/ �

�

n
2

˘

. The result now follows because ˇ0.G/ D dimR=I.C/.
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Lower bounds are given in [87] for the depths of R=I.G/t for t � 1 when I.G/
is the edge ideal of a tree or forest. Upper bounds for the depth of R=I.G/ are given
in [46, Corollary 4.15] when G is any graph without isolated vertices. The depth and
the Cohen–Macaulay property of ideals of mixed products is studied in [71].

We close this section with an upper bound for the multiplicity of edge rings. Let C

be a clutter. The multiplicity of the edge-ring R=I.C/, denoted by e.R=I.C//, equals
the number of faces of maximum dimension of the independence complex C , i.e.,
the multiplicity of R=I.C/ equals the number of independent sets of C with ˇ0.C/

vertices. A related invariant that was considered earlier is arith-deg.I.C//, the number
of maximal independent sets of C .

Proposition 3.39 ( [46]). If C is a d -uniform clutter and I D I.C/, then e.R=I / �
d˛0.C/.

4 Stability of Associated Primes

One method of gathering information about an ideal is through its associated primes.
Let I be an ideal of a ring R. In this section, we will examine the sets of associated
primes of powers of I , that is, the sets

Ass.R=I t / D ¹p � R j p is prime and p D .I t W c/ for some c 2 Rº:
When I is a monomial ideal of a polynomial ring R D KŒx1; : : : ; xn�, the associ-
ated primes will be monomial ideals, that is, prime ideals which are generated by a
subset of the variables. When I is a square-free monomial ideal, the minimal primes
of I , Min.R=I /, correspond to minimal vertex covers of the clutter C associated to
I . In general Min.R=I / � Ass.R=I t / for all positive integers t . For a square-free
monomial ideal, in the case where equality holds for all t , the ideal I is said to be
normally torsion-free. More generally, an ideal I � R is called normally torsion-free
if Ass.R=I i / is contained in Ass.R=I / for all i � 1 and I ¤ R.

In [9], Brodmann showed that when R is a Noetherian ring and I is an ideal of R,
the sets Ass.R=I t / stabilize for large t . That is, there exists a positive integer N such
that Ass.R=I t / D Ass.R=IN / for all t � N . We will refer to a minimal such N as
the index of stability of I . There are two natural questions following from this result.
In this article, we will focus on the monomial versions of the questions.

Question 4.1. Given a monomial ideal I , what is an effective upper bound on the index
of stability for a given class of monomial ideals?

Question 4.2. Given a monomial ideal I , which primes are in Ass.R=I t / for all suffi-
ciently large t?

An interesting variation on Questions 4.1 and 4.2 was posed in [99].
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Question 4.3. Suppose that N is the index of stability of an ideal I . Given a prime
p 2 Ass.R=IN /, can you find an integer Np for which p 2 Ass.R=I t / for t � Np?

Brodmann also showed that the sets Ass.I t�1=I t / stabilize. Thus in the general
setting, one could ask similar questions about these sets. However, for monomial
ideals the following lemma shows that in order to find information about Ass.R=I t /,
one may instead study Ass.I t�1=I t /.

Lemma 4.4. Let I be a monomial ideal. Then Ass.I t�1=I t / D Ass.R=I t /.

Proof. Suppose that p 2 Ass.R=I t /. Then p D .I t W c/ for some monomial c 2 R.
But since p is necessarily a monomial prime, generated by a subset of the variables,
then if xc 2 I t for a variable x 2 p, then c 2 I t�1 and so p 2 Ass.I t�1=I t /. The
other inclusion is automatic.

Note that this method was used in [105] to show that the corresponding equality
also holds for the integral closures of the powers of I .

For special classes of ideals, there have been some results that use properties of the
ideals to find bounds on N . For example, if I is generated by a regular sequence, then
by [67], I is normally torsion-free, or Ass.R=I t / D Min.R=I / for all t , and thus
N D 1. If instead I is generated by a d -sequence and is strongly Cohen–Macaulay,
then it was shown in [88] that N is bounded above by the dimension of the ring. In
particular,N � n�gC1where n is the dimension of the ring and g is the height of the
ideal. We are particularly interested in finding similar bounds for classes of monomial
ideals.

In [65], Hoa used integer programming techniques to give an upper bound on N for
general monomial ideals. Let n be the number of variables, s the number of generators
of I , and d the maximal degree of a generator.

Theorem 4.5 ([65, Theorem 2.12]). If I is a monomial ideal, then the index of stability
is bounded above by

max
®

d.ns C s C d/.pn/nC1.
p
2d/.nC1/.s�1/; s.s C n/4snC2d2.2d2/s

2�sC1
¯

:

Notice that this bound can be extremely large. For general monomial ideals, exam-
ples are given in [65] to show that the bound should depend on d and n. However, if
we restrict to special classes of monomial ideals, much smaller bounds can be found.
For example, an alternate bound has been shown to hold for integral closures of powers
of monomial ideals.

Theorem 4.6 ([105, Theorem 16]). If I is a monomial ideal, and N0 D n2n�1dn�2,
then Ass.R=I t / D Ass.R=IN0/ for t � N0 when n � 2.
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Here again n is the number of variables and d is the maximal degree of a generator.
For the class of normal monomial ideals, this bound on the index of stability can be
significantly lower than the general bound given above. When n D 2, the index of
stability of the integral closures is lower still.

Lemma 4.7 ([85]). If n � 2, then Ass.R=I t / D Ass.R=I / for all t � 1.

Note that this result is of interest for general monomial ideals; however, when n D 2
a square-free monomial ideal will be a complete intersection. Of particular interest for
this article are results that use combinatorial and graph-theoretic properties to yield
insights into the associated primes and index of stability of monomial ideals. One
pivotal result in this area establishes a classification of all graphs for which N D 1.

Theorem 4.8 ([100, Theorem 5.9]). Let G be a graph and I its edge ideal. Then G is
bipartite if and only if I is normally torsion-free.

The result above shows that N D 1 for the edge ideal of a graph if and only if the
graph is bipartite. Since minimal primes correspond to minimal vertex covers, this
completely answers Questions 4.1 and 4.2 for bipartite graphs. In addition if I is the
edge ideal of a balanced clutter, then N D 1 [45].

Suppose now that G is a graph that is not bipartite. Then G contains at least one
odd cycle. For such graphs, a method of describing embedded associated primes, and
a bound on where the stability occurs, were given in [14]. The method of building
embedded primes centered around the odd cycles, so we first give an alternate proof
of the description of the associated primes for this base case.

Lemma 4.9. Suppose G is a cycle of length n D 2k C 1 and I is the edge ideal of
G. Then Ass.R=I t / D Min.R=I / if t � k and Ass.R=I t / D Min.R=I / [ ¹mº if
t � k C 1. Moreover, when t � k C 1, m D .I t W c/ for a monomial c of degree
2t � 1.

Proof. If p 6D m is a prime ideal, then Ip is the edge ideal of a bipartite graph, and thus
by Theorem 4.8 p 2 Ass.R=I t / (for any t � 1) if and only if p is a minimal prime of
I . Notice also that the deletion of any vertex xi (which corresponds to passing to the
quotient ring R=.xi /) results in a bipartite graph as well. Thus by [51, Corollary 3.6],
m … Ass.R=I t / for t � k since a maximal matching has k edges. For t � k C 1,
define b D �

Qn
iD1 xi

�

and c D b.x1x2/
t�k�1 where x1x2 is any edge of G. Then

since c has degree 2t � 1, c … I t , but G is a cycle, xib 2 I kC1 and xic 2 I t . Thus
m D .I t W c/ and so m 2 Ass.R=I t / for t � k C 1.

Corollary 4.10. Suppose G is a connected graph containing an odd cycle of length
2k C 1 and suppose that every vertex of G that is not in the cycle is a leaf. Then
Ass.R=I t / D Min.R=I /[¹mº if t � kC1. Moreover, when t � kC1, m D .I t W c/
for a monomial c of degree 2t � 1.
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Proof. Let b and c be defined as in the proof of Lemma 4.9. Notice that if x is a leaf,
then x is connected to a unique vertex in the cycle and that xb 2 I kC1. The remainder
of the proof follows as in Lemma 4.9.

If G is a more general graph, the embedded associated primes of I D I.G/ are
formed by working outward from the odd cycles. This was done in [14], including a
detailed explanation of how to work outward from multiple odd cycles. Before pro-
viding more concise proofs of the process, we first give an informal, but illustrative,
description. Suppose C is a cycle with 2k C 1 vertices x1; : : : ; x2kC1. Color the ver-
tices of C red and color any noncolored vertex that is adjacent to a red vertex blue.
The set of colored vertices, together with a minimal vertex cover of the set of edges
neither of whose vertices is colored, will be an embedded associated prime of I t for
all t � k C 1. To find additional embedded primes of higher powers, select any blue
vertex to turn red and turn any uncolored neighbors of this vertex blue. The set of
colored vertices, together with a minimal vertex cover of the noncolored edges, will
be an embedded associated prime of I t for all t � kC 2. This process continues until
all vertices are colored red or blue.

The method of building new associated primes for a power of I from primes asso-
ciated to lower powers relies on localization. Since localization will generally cause
the graph (or clutter) to become disconnected, we first need the following lemma.

Lemma 4.11 ([51, Lemma 3.4], see also [14, Lemma 2.1]). Suppose I is a square-free
monomial ideal in S D KŒx1; : : : ; xr ; y1; : : : ; ys� such that I D I1S C I2S , where
I1 � S1 D KŒx1; : : : ; xr � and I2 � S2 D KŒy1; : : : ; ys�. Then p 2 Ass.S=I t / if
and only if p D p1S C p2S , where p1 2 Ass.S1=I

t1

1 / and p2 2 Ass.S2=I
t2

2 / with
.t1 � 1/C .t2 � 1/ D t � 1.

Note that this lemma easily generalizes to an ideal I D .I1; I2; : : : ; Is/ where
the Ii are edge ideals of disjoint clutters. Then p 2 Ass.R=I t / if and only if p D
.p1; : : : ; ps/ with pi 2 Ass.R=I ti

i / where .t1�1/C .t2�1/C� � �C .ts�1/ D .t �1/.
We now fix a notation to show how to build embedded associated primes. Con-

sider p 2 Ass.R=I t / for I the edge ideal of a graph G. Without loss of generality,
Lemma 4.11 allows us to assume G does not have isolated vertices. If p 6D m, then
since p 2 Ass.R=I t / , pRp 2 Ass.Rp=.Ip/

t /, consider Ip. Write Ip D .Ia; Ib/

where Ia is generated by all generators of Ip of degree two and Ib is the prime ideal
generated by the degree one generators of Ip, which correspond to the isolated vertices
of the graph associated to Ip. Note that the graph corresponding to Ia need not be con-
nected. If Ia D .0/, then p is a minimal prime of I , so assume Ia 6D .0/. Define pa

to be the monomial prime generated by variables of Ia. Define N1 D S

x2pa
N.x/,

where N.x/ is the neighbor set of x in G, and let p1 D pa [ N1. Notice that if
x 2 pa, then x is not isolated in Ip, so N1 � p and thus N1 � pa [ Ib . Define
p2 D pnp1 D IbnN1, and N2 DSx2p1

N.x/np. If G1 is the induced subgraph of G
on the vertices in p1 [N2, G2 is the induced subgraph of G on vertices in V np1, and
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Ii D I.Gi / for i D 1; 2, then Ip D ..I1/p1
; .I2/p2

/ and p2 is a minimal vertex cover
of I2. By design, any vertex appearing in both G1 and G2 is not in p, and thus .I1/p1

and .I2/p2
do not share a vertex. Thus by Lemma 4.11 and the fact that associated

primes localize, p 2 Ass.Rp=.Ip/
t / if and only if p1 2 Ass.R1=.I1/

t / and p1 is the
maximal ideal of R1 D KŒx j x 2 p1�. For convenience, define Ra D KŒx j x 2 pa�.

Proposition 4.12. Let p 2 Ass.R=I t /. Using the notation from above, assume p1 D
.I t

1 W c/ for some monomial c 2 Ra of degree at most 2t � 1. Let x 2 p1. Let
p0

1 D p1 [N.x/, and let p0
2 be any minimal vertex cover of the edges of G0

2 where G0
2

is the induced subgraph ofG on the vertices V np0
1. LetN 0

2 D
S

x2p0
1
N.x/n.p0

1[p0
2/.

Let G0
1 be the induced subgraph of G with vertices in p0

1 [N 0
2. Then p0 D .p0

1; p
0
2/ 2

Ass.R=I tC1/.

Proof. If v is an isolated vertex of G0
2 then N.v/ � p0

1 and thus every edge of G
containing v is covered by p0

1. Hence p0 is a vertex cover of G. Since x 2 p1, there is
an edge xy 2 G1 with y 2 pa. Consider c0 D cxy. Then the degree of c0 is at most
2t C 1, so c0 … .I1/

tC1. If I 0
1 D I.G0

1/, then c
0 … .I 0

1/
tC1 as well. If z 2 p1, then

z.cxy/ D .zc/.xy/ 2 .I 0
1/

tC1. If z 2 N.x/, then z.cxy/ D .cy/.zx/ 2 .I 0
1/

tC1

since y 2 p1. Thus p0
1 � ..I 0

1/
tC1 W c0/. Suppose z … p0

1 is a vertex of G0
1. Then

z 2 N 0
2. Then z … N.x/ and z … N.y/ since y 2 pa, so zx and zy are not edges

of G0
1. Also z … p1 and c 2 Ra, so zc … .I 0

1/
tC1. Thus the inclusion must be an

equality.
Since p0

2 is a minimal vertex cover of the edges of G0
2, then p0

2 2 Ass.R=I 0
2/ where

I 0
2 is the edge ideal of G0

2 (where isolated vertices of G0
2 are not included in I 0

2). Note
that Ip0 D ..I 0

1/p0
1
; .I 0

2/p0
2
/ and so the result follows from Lemma 4.11.

Note that if G contains an odd cycle of length 2k C 1, then embedded associated
primes satisfying the hypotheses of Proposition 4.12 exist for t � kC1 by Lemma 4.9
and Corollary 4.10. Starting with an induced odd cycle C one can now recover all the
primes described in [14, Theorem 3.3]. In addition, combining Corollary 4.10 with
Lemma 4.11 as a starting place for Proposition 4.12 recovers the result from [14, The-
orem 3.7] as well. Define Ass.R=I t /� to be the set of embedded associated primes
of I t produced in Proposition 4.12 by starting from any odd cycle, or collection of odd
cycles, of the graph. Then Ass.R=I t /� � Ass.R=I s/ for all s � t . To see this, recall
that if p is not a minimal prime, then there is a vertex x such that x[N.x/ � p. Choos-
ing such an x results in p1 D p0

1 and the process shows that p 2 Ass.R=I tC1/. Notice
also that the sets Ass.R=I t /� stabilize. In particular, Ass.R=I t /� D Ass.R=In/� for
all t � n where n is the number of variables. Notice that choosing x 2 N1 each time
will eventually result in m 2 Ass.R=I t /� for some t . Counting the maximal num-
ber of steps this could take provides a bound on the index of stability. Following the
process above for a particular graph can often yield a significantly lower powerM for
which Ass.R=I t /� stabilize. These results are collected below.
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Theorem 4.13. Let I be the edge ideal of a connected graph G that is not bipartite.
Suppose G has n vertices and s leaves, and N is the index of stability of I .

(i) [14, Theorem 4.1] The process used in Proposition 4.12 produces all embed-
ded associated primes in the stable set. That is, Ass.R=IN / D Min.R=I / [
Ass.R=IN /�.

(ii) [14, Corollary 4.3], (Proposition 4.12) If the smallest odd cycle of G has length
2k C 1, then N � n � k � s.

(iii) [14, Theorem 5.6, Corollary 5.7] IfG has a unique odd cycle, then Ass.R=I t / D
Min.R=I / [ Ass.R=I t /� for all t . Moreover, the sets Ass.R=I t / form an as-
cending chain.

(iv) Suppose p 2 Ass.R=IN /, and N0 is the smallest positive integer for which
p 2 Ass.R=IN0/�. Then p 2 Ass.R=I t / for all t � N0.

To interpret Theorem 4.13 in light of our earlier questions, notice that (i) answers
Question 4.2, (ii) answers Question 4.1, and (iv) provides a good upper bound for Np

in Question 4.3. The significance of (iii) is to answer a fourth question of interest.
Before presenting that question, we first discuss some extensions of the above results
to graphs containing loops.

Corollary 4.14. Let I be a monomial ideal, not necessarily square-free, such that the
generators of I have degree at most two. Define Ass.R=I t /� to be the set of embedded
associate primes of I t produced in Proposition 4.12 by starting from any odd cycle, or
collection of odd cycles where generators of I that are not square-free are considered
to be cycles of length one. Then the results of Theorem 4.13 hold for I .

Proof. If I has generators of degree one, then write I D .I1; I2/where I2 is generated
in degree one. Then I2 is a complete intersection, so by using Lemma 4.11 we may
replace I by I1 and assume I is generated in degree two. If I is not square-free,
consider a generator x2 2 I . This generator can be represented as a loop (cycle
of length one) in the graph. Define pa D .x/ and N1 D N.x/. Note that p1 D
pa [ N1 D .I1 W c/ where I1 is the induced graph on x [ N.x/ and c D x. Then p1

satisfies the hypotheses of Proposition 4.12. The results now follow from the proof of
Proposition 4.12.

Notice that ideals that are not square-free will generally have embedded primes
starting with t D 1 since the smallest odd cycle has length 1 D 2.0/C1, so kC1 D 1.
The above corollary can be extended to allow for any pure powers of variables to be
generators of the ideal I .

Corollary 4.15. Let I D .I1; I2/ where I2 is the edge ideal of a graph G and I1 D
.x

s1

i1
; : : : ; x

sr

ir
/ for any powers sj � 1. Then the results of Theorem 4.13 hold for I

with Ass.R=I t /� defined as in Corollary 4.14.
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Proof. As before, we may assume xj � 2 for all j . Let K D .x2
i1
; : : : ; x2

ir
/ and let

J D .K; I2/. Then J satisfies the hypotheses of Corollary 4.14. Let p 2 Ass.R=J t /�
be formed by starting with pa D .xi1

/ and let p1 D .J t
1 W c/ where J1 and c are

defined as in Corollary 4.14. Suppose xi1
; : : : ; xiv

2 p1. Let qj � 0 be the least
integers such that c0 D x

q1

i1
� � � xqv

iv
� c … I t

1. Then it is straightforward to check that
p1 D .I t

1 W c0/ and so p 2 Ass.R=I t /�. Thus higher powers of variables can also be
treated as loops and the results of Theorem 4.13 hold.

We now return to Theorem 4.13 (iii). In general, the sets Ass.R=I t /� form an
ascending chain. Theorem 4.13 (iii) gives a class of graphs for which Ass.R=I t /�
describe every embedded prime of a power of I t optimally. Thus Ass.R=I t / will
form a chain. This happens for many classes of monomial ideals, and leads to the
fourth question.

Question 4.16. If I is a square-free monomial ideal, is Ass.R=I t / � Ass.R=I tC1/

for all t?

For monomial ideals, Question 4.16 is of interest for low powers of I . For suffi-
ciently large powers, the sets of associated primes are known to form an ascending
chain, and a bound beyond which the sets Ass.I t=I tC1/ form a chain has been shown
by multiple authors (see [85, 99]). This bound depends on two graded algebras which
encode information on the powers of I , and which will prove useful in other results.
The first is the Rees algebra RŒI t� of I , which is defined by

RŒI t� D R˚ I t ˚ I 2t2 ˚ I 3t3 ˚ � � �

and the second is the associated graded ring of I ,

grI .R/ D R=I ˚ I=I 2 ˚ I 2=I 3 ˚ � � � :

Notice that while the result is for Ass.I t=I tC1/, for monomial ideals Ass.R=I tC1/

will also form a chain.

Theorem 4.17 ([85, 99]). Ass.I t=I tC1/ is increasing for t > a0
RŒI t�C

.grI .R//.

Note that square-free is essential in Question 4.16. Examples of monomial ideals
for which the associated primes do not form an ascending chain have been given in
[59, 65]. Those examples were designed for other purposes and so are more complex
than what is needed here. A simple example can be found by taking the product of
consecutive edges of an odd cycle.

Example 4.18. Let I D .x1x
2
2x3; x2x

2
3x4; x3x

2
4x5; x4x

2
5x1; x5x

2
1x2/, and let m D

.x1; x2; x3; x4; x5/. Then m 2 Ass.R=I t / for t D 1; 4, but m … Ass.R=I t / for
t D 2; 3.
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The ideal in Example 4.18 can be viewed as multiplying adjacent edges in a 5-cycle
to form generators of I , and so has a simple combinatorial realization. A similar result
holds for longer odd cycles, where the maximal ideal is not the only associate prime
to appear and disappear. However, if instead

I D .x1x2x3; x2x3x4; x3x4x5; x4x5x1; x5x1x2/

is the path ideal of the pentagon, then Ass.R=I t / D Min.R=I / [ ¹mº for t � 2 and
thus Ass.R=I t / form an ascending chain (see [51, Example 3.14]).

There are some interesting cases where associated primes are known to form as-
cending chains. The first listed is quite general, but has applications to square-free
monomial ideals.

Theorem 4.19 ( [84, Proposition 3.9], see also [56, Proposition 16.3]). If R is a Noe-
therian ring, then Ass.R=I t / form an ascending chain.

In order to present the next class of ideals for which the associated primes are known
to form ascending chains, we first need some some background definitions.

Definition 4.20. Let G be a graph. A colouring of the vertices of G is an assignment
of colours to the vertices of G such that adjacent vertices have distinct colours. The
chromatic number ofG is the minimal number of colours in a colouring ofG. A graph
is called perfect if for every induced subgraph H , the chromatic number of H equals
the size of the largest complete subgraph ofH .

An excellent reference for the theory of perfect graphs is the book of Golumbic [48].
Using perfect graphs, we now give an example to show how Theorem 4.19 can be
applied to classes of square-free monomial ideals. An alternate proof appears in [42,
Corollary 5.11].

Example 4.21. If I is the ideal of minimal vertex covers of a perfect graph, then
Ass.R=I t / form an ascending chain.

Proof. By [112, Theorem 2.10], RŒI t� is normal. Thus I t D I t for all t , so by
Theorem 4.19, Ass.R=I t / form an ascending chain.

Similar results hold for other classes of monomial ideals for which RŒI t� is known
to be normal. For example, in [15, Corollary 4.2] it is shown that a path ideal of a
rooted tree has a normal Rees algebra. Thus by Theorem 4.19, Ass.R=I t / form an
ascending chain for such ideals. Note that a path ideal can be viewed as the edge ideal
of a carefully chosen uniform clutter.
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It is interesting to compare the result of Example 4.21 to [42, Theorem 5.9], where
it is shown that if I is the ideal of minimal vertex covers of a perfect graph, then the
set of primes associated to any fixed power has the saturated chain property. Here
Ass.R=I t / has the saturated chain property if for every p 2 Ass.R=I t /, either p is
minimal or there is aQ ¨ p withQ 2 Ass.R=I t / and heightQ D height p � 1.

Notice that Theorem 4.13 shows that in the case of a graph with a unique odd cycle,
Question 4.16 has an affirmative answer. This result can be generalized to any graph
containing a leaf. First we need a slight variation of a previously known result.

Lemma 4.22 ([88, Lemma 2.3]). Suppose I D I.G/ is the edge ideal of a graph and
a 2 I=I 2 is a regular element of the associated graded ring grI .R/. Then the sets
Ass.R=I t / form an ascending chain. Moreover, Ass.R=I t / D Ass.I t�1=I t / for all
t � 1.

Proof. Let a 2 I=I 2 be a regular element of grI .R/. Assume p 2 Ass.I t=I tC1/.
Then there is a c 2 I t=I tC1 with p D .0 WR=I c/. But then p D .0 WR=I ac/, and a
lives in degree one, so p 2 Ass.I tC1=I tC2/. So these sets form an ascending chain.
Now the standard short exact sequence

0! I t=I tC1 ! R=I tC1 ! R=I t ! 0

gives

Ass.I t=I tC1/ � Ass.R=I tC1/ � Ass.R=I t / [ Ass.I t=I tC1/

and the result follows by induction.

Proposition 4.23. Let G be a graph containing a leaf x and let I D I.G/ be its edge
ideal. Then Ass.R=I t / � Ass.R=I tC1/ for all t . That is, the sets of associated
primes of the powers of I form an ascending chain.

Proof. Since x is a leaf of G, there is a unique generator e D xy 2 I divisible by x.
Let a denote the image of e in I=I 2. We claim a is a regular element of grI .R/. To
see this, it suffices to show that if fe 2 I tC1 for some t , then f 2 I t . Since I is a
monomial ideal and e is a monomial, fe 2 I tC1 if and only if every term of fe is
in I tC1. Thus we may assume f is a monomial and f xy D e1e2 � � � etC1h for some
edges ei of G and some monomial h. Suppose f … I t . Then x divides ei for some i ,
say i D t C 1. Since x is a leaf, ei D xy and by cancellation f D e1 � � � eth 2 I t .
Thus a is a regular element of grI .R/ and by Lemma 4.22 the result follows.

When extending the above results to more general square-free monomial ideals, one
needs to pass from graphs to clutters. An obstruction to extending the results is the



Edge Ideals: Algebraic and Combinatorial Properties 113

lack of an analog to Theorem 4.8 [100, Theorem 5.9]. One possible analog appears as a
conjecture of Conforti and Cornuéjols, see [17, Conjecture 1.6], which we discuss later
in this section. This conjecture is stated in the language of combinatorial optimization.
It says that a clutter C has the max-flow min-cut (MFMC, see Definition 4.30) property
if and only if C has the packing property. These criterion for clutters have been shown
in recent years to have algebraic translations [45] which will be discussed in greater
detail later in the section. An ideal satisfies the packing property if the monomial grade
of I (see Definition 4.29) is equal to the height of I and this same equality holds for
every minor of I [17, 45]. Here a minor is formed by either localizing at a collection
of variables, passing to the image of I in a quotient ring R=.xi1

; xi2
; : : : ; xis

/, or a
combination of the two. In [47, Corollary 3.14] and [62, Corollary 1.6], it was shown
that C satisfies MFMC if and only if the corresponding edge ideal I.C/ is normally
torsion-free. This allows the conjecture to be restated (cf. [45, Conjecture 4.18]) as: if
C has the packing property, then I.C/ is normally torsion-free.

Since a proof of this conjecture does not yet exist, the techniques used to describe
the embedded associated primes, the stable set of associated primes, and the index of
stability for graphs are difficult to extend. However some partial results are known.
The first gives some conditions under which it is known that the maximal ideal is, or
is not, an associated prime. In special cases, this can provide a seed for additional
embedded associated primes using techniques such as those in Proposition 4.12.

Theorem 4.24. If I is a square-free monomial ideal, every proper minor of I is nor-
mally torsion-free, and ˇ1 is the monomial grade of I , then

(i) [51, Corollary 3.6] m … Ass.R=I t / for t � ˇ1.

(ii) [51, Theorem 4.6] If I fails the packing property, then m 2 Ass.R=Iˇ1C1/.

(iii) [51, Proposition 3.9] If I is unmixed and satisfies the packing property, then I
is normally torsion-free.

Other recent results have taken a different approach. Instead of working directly
with the edge ideal of a clutter C , one can work with its Alexander dual, which is
again the edge ideal of a clutter. Using this approach, the embedded associated primes
of the Alexander dual have been linked to colorings of a clutter. Recall that �.C/ is
the minimal number d for which there is a partition X1; : : : ; Xd of the vertices of C

for which for all edges f of C , f 6� Xi for every i . A clutter is critically d -chromatic
if �.C/ D d but �.Cn¹xº/ < d for every vertex x.

Theorem 4.25. (i) [42, Corollary 4.6] If I is the ideal of covers of a clutter C , and
if the induced subclutter Cp on the vertices in p is critically .d C 1/-chromatic,
then p 2 Ass.R=Id / but p … Ass.R=I t / for any t � d � 1.
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(ii) [42, Theorem 5.9] If I is the ideal of covers of a perfect graph G, then p 2
Ass.R=I t / if and only if the induced graph on the vertices in p is a clique of size
at most t C 1.

If one restricts to a particular power, then additional results on embedded associate
primes are known. For example, in [41, Corollary 3.4] it is shown that if I is the edge
ideal of the Alexander dual of a graph G, then embedded primes of R=I 2 are in one-
to-one correspondence with induced odd cycles ofG. More precisely, p 2 Ass.R=I 2/

is an embedded prime if and only if the induced subgraph of G on the vertices in p is
an induced odd cycle of G.

An interesting class of ideals, which is in a sense dual to the edge ideals of graphs,
is unmixed square-free monomial ideals of height two. These are the Alexander duals
of edge ideals of graphs, which can be viewed as edge ideals of clutters where, instead
of requiring that each edge has two vertices, it is instead required that each minimal
vertex cover has two vertices. For such ideals it has been shown in [40, Theorem
1.2] that an affirmative answer to a conjecture on graph colorings, [40, Conjecture
1.1], would imply an affirmative answer to Question 4.16. In [40, Corollary 3.11] it
is shown that this conjecture holds for cliques, odd holes, and odd antiholes. Thus the
Alexander duals of these special classes of graphs provide additional examples where
Question 4.16 has an affirmative answer.

We now provide a more detailed discussion of the Conforti–Cornuéjols conjecture,
followed by a collection of results which provide families of clutters where the conjec-
ture is known to be true (such a family was already given in Theorem 4.24 (iii)). We
also discuss some algebraic versions of this conjecture and how it relates to the depth
of powers of edge ideals and to normality and torsion-freeness.

Having defined the notion of a minor for edge ideals, using the correpondence be-
tween clutters and square-free monomias ideals, we also have the notion of a minor of
a clutter. We say that C has the packing property if I.C/ has this property.

Definition 4.26. Let A be the incidence matrix of a clutter C . The set covering poly-
hedron is the rational polyhedron:

Q.A/ D ¹x 2 Rn j x � 0; xA � 1º;

where 0 and 1 are vectors whose entries are equal to 0 and 1 respectively. Often we
denote the vectors 0, 1 simply by 0, 1. We say that Q.A/ is integral if it has only
integral vertices.

Theorem 4.27 (A. Lehman [78; 17, Theorem 1.8]). If a clutter C has the packing
property, then Q.A/ is integral.

The converse is not true. A famous example is the clutter Q6, given below. It does
not pack andQ.A/ is integral.
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Example 4.28. Let I D .x1x2x5; x1x3x4; x2x3x6; x4x5x6/. The figure:
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corresponds to the clutter associated to I . This clutter will be denoted by Q6. Using
Normaliz [11] we obtain that RŒI t� D RŒI t�Œx1 � � � x6t

2�. Thus RŒI t� is not normal.
An interesting property of this example is that Ass.R=I i / D Ass.R=I / for all i (see
[45]).

Definition 4.29. A set of edges of a clutter C is independent if no two of them have
a common vertex. We denote the maximum number of independent edges of C by
ˇ1.C/. We call ˇ1.C/ the edge independence number of C or the monomial grade
of I .

Let A be the incidence matrix of C . The edge independence number and the cover-
ing number are related to min-max problems because they satisfy:

˛0.C/ � min¹h1; xij x � 0I xA � 1º
D max¹hy; 1ij y � 0IAy � 1º � ˇ1.C/:

Notice that ˛0.C/ D ˇ1.C/ if and only if both sides of the equality have integral
optimum solutions.

Definition 4.30. A clutter C , with incidence matrix A, satisfies the max-flow min-cut
(MFMC) property if both sides of the LP-duality equation

min¹h˛; xij x � 0I xA � 1º D max¹hy; 1ij y � 0IAy � ˛º (4.1)

have integral optimum solutions x and y for each non-negative integral vector ˛. The
system x � 0I xA � 1 is called totally dual integral (TDI) if the maximum in (4.1)
has an integral optimum solution y for each integral vector ˛ with finite maximum.

Definition 4.31. If ˛0.C/ D ˇ1.C/ we say that the clutter C (or the ideal I ) has the
König property.
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Note that C has the packing property if and only if every minor of C satisfies the
König property. This leads to the following well-known result.

Corollary 4.32 ( [17]). If a clutter C has the max-flow min-cut property, then C has
the packing property.

Proof. Assume that the clutter C has the max-flow min-cut property. This property is
closed under taking minors. Thus it suffices to prove that C has the König property.
We denote the incidence matrix of C by A. By hypothesis the LP-duality equation

min¹h1; xij x � 0I xA � 1º D max¹hy; 1ij y � 0IAy � 1º

has optimum integral solutions x, y. To complete the proof notice that the left hand
side of this equality is ˛0.C/ and the right-hand side is ˇ1.C/.

Conforti and Cornuéjols [16] conjecture that the converse is also true.

Conjecture 4.33 (Conforti–Cornuéjols). If a clutter C has the packing property, then
C has the max-flow min-cut property.

An algebraic description of the packing property has already been given. In or-
der to use algebraic techniques to attack this combinatorial conjecture, an algebraic
translation is needed for the max-flow min-cut property. There are several equiva-
lent algebraic descriptions of the max-flow min-cut property, as seen in the following
result.

Theorem 4.34 ([35,47,69]). Let C be a clutter and let I be its edge ideal. The follow-
ing conditions are equivalent:

(i) grI .R/ is reduced.

(ii) RŒI t� is normal and Q.A/ is an integral polyhedron.

(iii) x � 0I xA � 1 is a TDI system.

(iv) C has the max-flow min-cut property.

(v) I i D I .i/ for i � 1, where I .i/ is the i th symbolic power.

(vi) I is normally torsion-free.

By Theorems 4.34 and 4.27, Conjecture 4.33 reduces to:

Conjecture 4.35 ([45]). If I has the packing property, then RŒI t� is normal.

Several variations of condition (ii) of Theorem 4.34 are possible. In particular, there
are combinatorial conditions on the clutter that can be used to replace the normality of
the Rees algebra. One such condition is defined below.
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Definition 4.36. Let C_ be the clutter of minimal vertex covers of C . The clutter C is
called diadic if je \ e0j � 2 for e 2 E.C/ and e0 2 E.C_/

Proposition 4.37 ( [45]). If Q.A/ is integral and C is diadic, then I is normally tor-
sion-free.

Theorem 4.34 can be used to exhibit families of normally torsion-free ideals. Recall
that a matrix A is called totally unimodular if each i � i subdeterminant of A is 0 or
˙1 for all i � 1.

Corollary 4.38. If A is totally unimodular, then I and I_ are normally torsion-free.

Proof. By [97] the linear system x � 0I xA � 1 is TDI. Hence I is normally torsion-
free by Theorem 4.34. Let C_ be the blocker (or Alexander dual) of C . By [97, Corol-
lary 83.1a (v), page 1441], we get that C_ satisfies the max-flow min-cut property.
Hence I.C_/ is normally torsion-free by Theorem 4.34. Thus I_ is normally torsion-
free because I.C_/ D I_.

In particular if I is the edge ideal of a bipartite graph, then I and I_ are normally
torsion-free.

Theorem 4.34 shows that the Rees algebra and the associated graded ring play an
important role in the study of the max-flow min-cut property. An invariant related to
the blowup algebras will also be useful. The analytic spread of an edge ideal I is
given by `.I / D dimRŒI t�=mRŒI t�. If C is uniform, the analytic spread of I is the
rank of the incidence matrix of C . The analytic spread of a monomial ideal can be
computed in terms of the Newton polyhedron of I , see [4]. The next result follows
directly from [83, Theorem 3].

Proposition 4.39. If Q.A/ is integral, then `.I / < n D dim.R/.

To relate this result on `.I / to Conjecture 4.33 (or equivalently to Conjecture 4.35)
we first need to recall the following bound on the depths of the powers of an ideal I .

Theorem 4.40. infi¹depth.R=I i /º � dim.R/ � `.I /. If grI .R/ is Cohen–Macaulay,
then the equality holds.

This inequality is due to Burch [12] (cf. [70, Theorem 5.4.7]), while the equality
comes from [31]. By a result of Brodmann [8], depthR=I k is constant for k � 0.
Broadmann improved Burch’s inequality by showing that the constant value is bounded
by dim.R/� `.I /. For a study of the initial and limit behaviour of the numerical func-
tion f .k/ D depthR=I k see [59].

Theorem 4.41 ( [68]). Let R be a Cohen–Macaulay ring and let I be an ideal of R
containing regular elements. If RŒI t� is Cohen–Macaulay, then grI .R/ is Cohen–
Macaulay.
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Proposition 4.42. Let C be a clutter and let I be its edge ideal. Let Ji be the ideal
obtained from I by making xi D 1. If Q.A/ is integral, then I is normal if and only if
Ji is normal for all i and depth.R=I k/ � 1 for all k � 1.

Proof. Assume that I is normal. The normality of an edge ideal is closed under taking
minors [35], hence Ji is normal for all i . By hypothesis the Rees algebra RŒI t� is
normal. Then RŒI t� is Cohen–Macaulay by a theorem of Hochster [66]. Then the
ring grI .R/ is Cohen–Macaulay by Theorem 4.41. Hence using Theorem 4.40 and
Proposition 4.39 we get that depth.R=I i / � 1 for all i . The converse follows readily
adapting the arguments given in the proof of the normality criterion presented in [35].

By Proposition 4.42 and Theorem 4.27, we get that Conjecture 4.33 also reduces to:

Conjecture 4.43. If I has the packing property, then depth.R=I i / � 1 for all i � 1.

We conclude this section with a collection of results giving conditions under which
Conjecture 4.33, or its equivalent statements mentioned above, is known to hold. For
uniform clutters it suffices to prove Conjecture 4.33 for Cohen–Macaulay clutters [23].

Proposition 4.44 ( [45]). Let C be the collection of bases of a matroid. If C satisfies
the packing property, then C satisfies the max-flow min-cut property.

When G is a graph, integrality of Q.A/ is sufficient in condition (ii) of Theo-
rem 4.34, and the packing property is sufficient to imply the max-flow min-cut prop-
erty, thus providing another class of examples for which Conjecture 4.33 holds.

Proposition 4.45 ( [17, 45]). If G is a graph and I D I.G/, then the following are
equivalent:

(i) grI .R/ is reduced.

(ii) G is bipartite.

(iii) Q.A/ is integral.

(iv) G has the packing property.

(v) G has the max-flow min-cut property.

(vi) I i D I .i/ for i � 1.

Definition 4.46. A clutter is binary if its edges and its minimal vertex covers intersect
in an odd number of vertices.

Theorem 4.47 ([98]). A binary clutter C has the max-flow min-cut property if and only
if Q6 is not a minor of C .
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Corollary 4.48. If C is a binary clutter with the packing property, then C has the
max-flow min-cut property.

Proposition 4.49 ([112]). Let C be a uniform clutter and let A be its incidence matrix.
If the polyhedra

P.A/ D ¹xj x � 0I xA � 1º and Q.A/ D ¹xj x � 0I xA � 1º
are integral, then C has the max-flow min-cut property.

In light of Theorem 4.27, this result implies that if P.A/ is integral and C has the
packing property, then C has the max-flow min-cut property. An open problem is to
show that this result holds for non-uniform clutters (see [82, Conjecture 1.1]).

A Meyniel graph is a simple graph in which every odd cycle of length at least five
has at least two chords. The following gives some support to [82, Conjecture 1.1]
because Meyniel graphs are perfect [97, Theorem 66.6].

Theorem 4.50 ( [82]). Let C be the clutter of maximal cliques of a Meyniel graph. If
C has the packing property, then C has the max-flow min-cut property.

Let P D .X;�/ be a partially ordered set (poset for short) on the finite vertex setX
and let G be its comparability graph. Recall that the vertex set of G is X and the edge
set of G is the set of all unordered pairs ¹xi ; xj º such that xi and xj are comparable.

Theorem 4.51 ( [25]). If G is a comparability graph and C is the clutter of maximal
cliques of G, then the edge ideal I.C/ is normally torsion free.

Theorem 4.52 ([24]). Let C be a uniform clutter with a perfect matching such that C

has the packing property and ˛0.C/ D 2. If the columns of the incidence matrix of C

are linearly independent, then C has the max-flow min-cut property.
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1 Introduction

Let S D kŒx1; : : : ; xn�, and let I � S be a monomial ideal. An important object in
the study of I is its minimal free resolution, which encodes essentially all information
about I . For example, the Betti numbers of I can be read off as the ranks of the
modules in its minimal resolution.

There are computationally intensive algorithms to compute the minimal resolution
of an arbitrary ideal (for example, in Macaulay 2 [5], the command res I returns the
minimal resolution of S=I ), but no general description is known, even for monomial
ideals. Thus, it is an ongoing problem of considerable interest to find classes of ideals
whose minimal resolutions can be described easily. A related problem is to describe
non-minimal resolutions which apply to large classes of monomial ideals.

The most general answer to the latter question is Taylor’s resolution, a (usually
highly non-minimal) resolution which resolves an arbitrary monomial ideal; it is dis-
cussed in Section 3.

A very successful approach to both problems in the last decade has been to find
combinatorial or topological objects whose structures encode resolutions in some way.
This approach began with simplicial resolutions [1], and has expanded to involve
polytopal complexes [8, 13], cellular complexes [2], CW complexes [3, 15], lattices
[7, 12, 11], posets [4], matroids [14], and discrete Morse theory [6].

Resolutions associated to combinatorial objects have distinguished bases, and re-
lationships between the objects lead to relationships between these bases. It thus be-
comes possible to compare and combine resolutions in all the ways that we can com-
pare or combine combinatorial structures. For example, most of these resolutions turn
out to be subcomplexes of the Taylor resolution in a very natural way. The only new
result in the paper is Theorem 7.1, which describes the intersection of all the simplicial
resolutions of an ideal.
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In Section 2, we describe some background material and introduce notation used
throughout the paper.

Section 3 introduces the Taylor resolution in a way intended to motivate simplicial
resolutions, which are introduced in Section 4.

Section 5 describes the Scarf complex, a simplicial complex which often supports
the minimal resolution of a monomial ideal, and otherwise does not support any reso-
lution.

Section 6 defines the family of Lyubeznik resolutions. This section is essentially a
special case of an excellent paper of Novik [9], which describes a more general class
of resolutions based on so-called “rooting maps”.

Section 7 uses the Lyubeznik resolutions to prove Theorem 7.1, that the Scarf com-
plex of an ideal is equal to the intersection of all its simplicial resolutions.

2 Background and Notation

Throughout the paper S D kŒx1; : : : ; xn� is a polynomial ring over an arbitrary field
k. In the examples, we use the variables a; b; c; : : : instead of x1; x2; x3; : : : .

We depart from the standard notation in two ways, each designed to privilege mono-
mials. First, we write the standard or “fine” multigrading multiplicatively, indexed by
monomials, rather than additively, indexed by n-tuples. Second, we index our sim-
plices by monomials rather than natural numbers. Details of both departures, as well
as some background on resolutions, are below.

2.1 Algebra

If I � S is an ideal, then a free resolution of S=I is an exact sequence

F W � � � �n�! Fn

�n�1���! Fn�1 ! � � � �0�! F0 ! S=I ! 0

where each of the Fi is a free S-module.
We say that F is minimal if each of the modules Fi has minimum possible rank; in

this case the ranks are the Betti numbers of S=I .
It is not at all obvious a priori that minimal resolutions should exist. For this reason,

when I is homogeneous, most standard treatments take the following theorem as the
definition instead:

Theorem 2.1. Let I be a homogeneous ideal, and let F be a resolution of S=I . Write
m D .x1; : : : ; xn/. Then F is minimal if and only if �i .FiC1/ � mFi for all i .

The proof of Theorem 2.1 is technical; see, for example, [10, Section 9].
All the ideals we consider are homogeneous; in fact, they are monomial ideals,

which is a considerably stronger property.



Three Simplicial Resolutions 129

Definition 2.2. An ideal I is a monomial ideal if it has a generating set consisting of
monomials. There exists a unique minimal such generating set; we write gens.I / and
call its elements the generators of I .

Monomial ideals respect a “multigrading” which refines the usual grading.

Notation 2.3. We write the multigrading multiplicatively. That is, for each monomial
m of S , set Sm equal to the k-vector space spanned by m. Then S D L

Sm, and
Sm � Sn D Smn, so this decomposition is a grading. We say that the monomial m has
multidegree m. We allow multidegrees to have negative exponents, so, for example,
the twisted module S.m�1/ is a free module with generator in multidegree m, and
S.m�1/n Š Sm�1n as a vector space; this is one-dimensional if no exponent of m�1n

is negative, and trivial otherwise. Note that S D S.1/.

If N and P are multigraded modules, we say that a map � W N ! P is homoge-
neous of degreem if �.Nn/ � Pmn for all n, and that � is simply homogeneous if it is
homogeneous of degree 1. We say that a resolution (or, more generally, an algebraic
chain complex) is homogeneous if all its maps are homogeneous.

The minimal resolution of S=I can be made homogeneous in a unique way by as-
signing appropriate multidegrees to the generators of its free modules; counting these
generators by multidegree yields the multigraded Betti numbers of S=I .

2.2 Combinatorics

LetM be a set of monomials (typically, M will be the generators of I ). The simplex
on M is the set of all subsets ofM ; we denote this by M . We will sometimes refer
to the elements ofM as vertices of M .

A simplicial complex on M is a subset of M which is closed under the taking of
subsets. If � is a simplicial complex onM and F 2 � , we say that F is a face of � .
Observe that if F is a face of � and G � F , then G is also a face of � . We require
that simplicial complexes be nonempty; that is, the empty set must always be a face.
(In fact, for our purposes, we may as well assume that every vertex must be a face.)

If F is a face of � , we assign F the multidegree lcm.m W m 2 F /. Note that
the vertex m has multidegree m, and that the empty set has multidegree 1. The order
of a face F , written jF j, is the number of vertices in F ; this is one larger than its
dimension. If G � F and jGj D jF j � 1, we say that G is a facet of F .

We adopt the convention that the unmodified word “complex” will always mean
an algebraic chain complex; simplicial complexes will be referred to with the phrase
“simplicial complex”. However, recall that every simplicial complex is naturally as-
sociated to a chain complex by the following standard construction from algebraic
topology:
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Construction 2.4. Let � be a simplicial complex on M , and impose an order on the
monomials of M by writing M D ¹m1; : : : ; mrº. Then we associate to � the chain
complex C� as follows:

For every face F 2 � , we create a formal symbol ŒF �. Write F D ¹mi1
; : : : ; mis

º
with increasing indices ij ; then for each facet G of F we may write G D F X ¹mij º
for some j . We define an orientation by setting "F

G equal to 1 if j is odd and to �1 if
j is even. For each s, let Cs be the k-vector space spanned by the symbols ŒF � such
that jF j D s, and define the map

�s�1 W Cs ! Cs�1

ŒF � 7!
X

G is a facet of F

"F
G ŒG�:

Then we set C� equal to the complex of vector spaces

C� W 0! Cr

�r�1���! � � � �1�! C1

�0�! C0 ! 0:

The proof that C� is a chain complex involves a straightforward computation of
�2.Œmi1

; : : : ; mis
�/. The (reduced) homology of � is defined to be the homology of

this complex.
In Section 4, we will replace this complex with a homogeneous complex of free

S -modules.

3 The Taylor Resolution

Let I D .m1; : : : ; ms/ be a monomial ideal. The Taylor resolution of I is constructed
as follows:

Construction 3.1. For a subset F of ¹m1; : : : ; mrº, set lcm.F / D lcm¹mi W mi 2
F º. For each such F , we define a formal symbol ŒF �, called a Taylor symbol, with
multidegree equal to lcm.F /. For each i , set Ti equal to the free S-module with basis
¹ŒF � W jF j D iº given by the symbols corresponding to subsets of size i . Note that
T0 D SŒ¿� is a free module of rank one, and that all other Ti are multigraded modules
with generators in multiple multidegrees depending on the symbols ŒF �.

Define ��1 W T0 ! S=I by ��1.f Œ¿�/ D f . Otherwise, we construct �i W
TiC1 ! Ti as follows.

Given F D ¹mj1
; : : : ; mji

º, written with the indices in increasing order, and G D
F X ¹mjk

º, we set the sign "F
G equal to 1 if k is odd and to �1 if k is even. Finally, we

set

�F D
X

GDF X¹mi º; some i

"F
G

lcm.F /

lcm.G/
ŒG�;
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and define �i W TiC1 ! Ti by extending the various �F . Observe that all of the �i are
homogeneous with multidegree 1.

The Taylor resolution of I is the complex

TI W 0! Tr

�r�1���! � � � �1�! T1

�0�! T0 ! S=I ! 0:

It is straightforward to show that the Taylor resolution is a homogeneous chain com-
plex.

The construction of the Taylor resolution is very similar to Construction 2.4; in fact,
if � is the complete simplex, the only difference is the presence of the lcms in the
boundary maps. We will explore this connection in the next section.

Example 3.2. Let I D .a; b2; c3/. Then the Taylor resolution of I is

TI W 0! SŒa; b2; c3�

	

a
�b2

c3




�����!

SŒb2; c3�

˚
SŒa; c3�

˚
SŒa; b2�

	

0 �c3 �b2

�c3 0 a
b2 a 0




�����������!

SŒa�

˚
SŒb2�

˚
SŒc3�

. a b2 c3 /������! SŒ¿�! S=I ! 0:

Observe that I is a complete intersection and TI is its Koszul complex. In fact,
these two complexes coincide for all monomial complete intersections.

Example 3.3. Let I D .a2; ab; b3/. Then the Taylor resolution of I is

TI W 0! SŒa2; ab; b3�

	

a�1
b2




����!

SŒab; b3�

˚
SŒa2; b3�

˚
SŒa2; ab�

	

0 �b3 �b
�b2 0 a
a2 a 0




����������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /�������! SŒ¿�! S=I ! 0:

This is not a minimal resolution; the Taylor resolution is very rarely minimal.

Theorem 3.4. The Taylor resolution of I is a resolution of I .

It is not too difficult to show that �2 D 0 in the Taylor complex, but it is not at all
clear from the construction that the complex is exact. This seems to be most easily
established indirectly by showing that the Taylor resolution is a special case of some
more general phenomenon. We will prove Theorem 3.4 in the next section, using the
language of simplicial resolutions. Traditionally, one builds the Taylor resolution as
an iterated mapping cone; we sketch that argument below.



132 Jeff Mermin

Sketch of Theorem 3.4. Write I D .m1; : : : ; mr/, and let J D .m1; : : : ; mr�1/. Con-
sider the short exact sequence

0! S

.J W mr/

mr��! S

J
! S

I
! 0:

If .A; ˛/ and .B; ˇ/ are free resolutions of S=.J W mr/ and S=J , respectively, then
multiplication bymr induces a map of complexes .mr /� W A! B. The mapping cone
complex .T ; �/ is defined by setting Ti D Bi˚Ai�1 and � jB D ˇ, � jA D .mr /��˛;
it is a free resolution of S=I (see, for example, [10, Section 27]).

Inducting on r , S=.J W mr/ is resolved by the Taylor resolution on its (possibly
redundant) generating set ¹ lcm.m1;mr /

mr
; : : : ; lcm.mr�1;mr /

mr
º, and S=J is resolved by the

Taylor resolution on its generators ¹m1; : : : ; mr�1º. The resulting mapping cone is the
Taylor resolution of I .

4 Simplicial Resolutions

If � D , the construction of the Taylor resolution differs from the classical topo-
logical construction of the chain complex associated to � only by the presence of the
monomials lcm.F /

lcm.G/
in its differential maps. This observation leads naturally to the ques-

tion of what other simplicial complexes give rise to resolutions in the same way. The
resulting resolutions are called simplicial. Simplicial resolutions and, more generally,
resolutions arising from other topological structures (it seems that the main results
can be tweaked to work for anything defined in terms of skeletons and boundaries)
have proved to be an instrumental tool in the understanding of monomial ideals. We
describe only the foundations of the theory here; for a more detailed treatment, the
original paper of Bayer, Peeva, and Sturmfels [1] is a very readable introduction.

Construction 4.1. Let M be a set of monomials, and let � be a simplicial complex
on M (recall that this means that the vertices of � are the monomials in M ). Fix an
ordering on the elements of M ; this induces an orientation " on � . Recall that "F

G is
either 1 or �1 if G is a facet of F (see Construction 2.4 for the details); it is often
convenient to formally set "F

G equal to zero when G is not a facet of F .
We assign a multidegree to each face F 2 � by the rule mdeg.F / D lcm.m W m 2

F / (recall that F is a subset ofM , so its elements are monomials).
Now for each face F we create a formal symbol ŒF � with multidegree mdeg.F /.

LetHs be the free module with basis ¹ŒF � W jF j D sº, and define the differential

�s�1 W Hs ! Hs�1

ŒF � 7!
X

G is a facet of F

"F
G

mdeg.F /

mdeg.G/
ŒG�:
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The complex associated to � is then the algebraic chain complex

H� W 0! Hr

�r�1���! � � � �1�! H1

�0�! H0 ! S=I ! 0:

Construction 4.1 differs from Construction 2.4 in that it is a complex of free S -
modules rather than vector spaces. The boundary maps are identical except for the
monomial coefficients, which are necessary to make the complex homogeneous.

Example 4.2. Let I be generated by M , and let  be the simplex with vertices M .
Then the Taylor resolution of I is the complex associated to .

Example 4.3. Let I be generated byM D ¹a2; ab; b3º, and let  be the full simplex
on M , � the simplicial complex with facets ¹a2; abº and ¹ab; b3º, and ‚ the zero-
skeleton of . These simplicial complexes, with their faces labeled by multidegree,
are pictured in Figure 1.

a2 a2 a2b3 b3 b3
a2b3

a2b3

a
2 b

a
2 b

ab 3

ab 3

ab ab ab

Δ Γ Θ
Figure 1. The simplicial complexes , � , and ‚ of Example 4.3.

The algebraic complex associated to is the Taylor resolution of Example 3.3. The
other two associated complexes are

H� W 0!
SŒa2; ab�

˚
SŒab; b3�

	

�b 0
a �b2

0 a




�������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /��������! SŒ¿�! S=I ! 0

and

H‚ W 0! SŒa2�˚ SŒab�˚ SŒb3�
. a2 ab b3 /��������! SŒ¿�! S=I ! 0:

H� is a resolution (in fact, the minimal resolution) of S=I , and H‚ is not a resolu-
tion of I .

The algebraic complex associated to � is not always exact; that is, it does not always
give rise to a resolution of I . When this complex is exact, we call it a simplicial
resolution, or the (simplicial) resolution supported on � . It turns out that there is a
topological condition describing whether � supports a resolution.
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Definition 4.4. Let � be a simplicial complex onM , and let	 be a multidegree. We set
��� equal to the simplicial subcomplex of � consisting of the faces with multidegree
divisible by 	,

��� D ¹F 2 � W deg.F / divides 	º:
Observe that ��� is precisely the faces of � whose vertices all divide 	.

Theorem 4.5 (Bayer–Peeva–Sturmfels). Let � be a simplicial complex supported on
M , and set I D .M/. Then � supports a resolution of S=I if and only if, for all 	,
the simplicial complex ��� has no homology over k.

Proof. Since H� is homogeneous, it is exact if and only if it is exact (as a complex of
vector spaces) in every multidegree. Thus, it suffices to examine the restriction of H�

to each multidegree 	.
Observe that .SŒF �/� Š S. 1

mdeg.F /
/� Š S �

mdeg.F /
is a one-dimensional vector space

with basis �
mdeg.F /

if mdeg.F / divides 	, and is zero otherwise. Furthermore, since
the differential maps � are homogeneous, the monomials appearing in their definition
are precisely those which map these basis elements to one another. Thus .H�/� is,
with minor abuse of notation, precisely the complex of vector spaces which arises
when computing (via Construction 2.4) the homology of the simplicial complex ¹F 2
� W mdeg.F / divides 	º, and this complex is ���.

We conclude that � supports a resolution of I if and only if .H�/� is exact for
every 	, if and only if .H�/� has no homology for every 	, if and only if ��� has no
homology for every 	.

Example 4.6. The simplicial complexes ��� depend on the underlying monomialsM ,
so it is possible for a simplicial complex to support a resolution of some monomial
ideals but not others. For example, the simplicial complex � in Example 4.3 supports
a resolution of I D .a2; ab; b3/ because no monomial is divisible by a2 and b3 with-
out also being divisible by ab. However, if we were to relabel the vertices with the
monomials a, b, and c, the resulting simplicial complex � 0 would not support a reso-
lution of .a; b; c/ because � 0�ac would consist of two points; this simplicial complex
has nontrivial zeroeth homology.

Remark 4.7. Note that the homology of a simplicial complex can depend on the choice
of field, so some simplicial complexes support resolutions over some fields but not
others. For example, if � is a triangulation of a torus, it may support a resolution if the
field has characteristic zero, but will not support a resolution in characteristic two. In
particular, resolutions of monomial ideals can be characteristic-dependent.

Theorem 4.5 allows us to give a short proof that the Taylor resolution is in fact a
resolution.
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Proof of Theorem 3.4. Let 	 be given. Then �� is the simplex with vertices ¹m 2
M W m divides 	º, which is either empty or contractible.

5 The Scarf Complex

Unfortunately, the Taylor resolution is usually not minimal. The nonminimality is
visible in the nonzero scalars in the differential maps, which occur whenever there
exist faces F and G with the same multidegree such that G is in the boundary of F . It
is tempting to try to simply remove the nonminimality by removing all such faces; the
result is the Scarf complex.

Construction 5.1. Let I be a monomial ideal with generating set M . Let I be the
full simplex on M , and let †I be the simplicial subcomplex of I consisting of the
faces with unique multidegree,

†I D ¹F 2 I W mdeg.G/ D mdeg.F / H) G D F º:
We say that †I is the Scarf simplicial complex of I ; the associated algebraic chain
complex SI is called the Scarf complex of I . The multidegrees of the faces of †I are
called the Scarf multidegrees of I .

Remark 5.2. It is not obvious that †I is a simplicial complex. Let F 2 †I ; we will
show that every subset of F is also in †I . Suppose not; then there exists a minimal
G � F which shares a multidegree with some otherH 2 I . LetE be the symmetric
difference of G and H . Then the symmetric difference of E and F has the same
multidegree as F .

Example 5.3. Let I D .a2; ab; b3/. Then the Scarf simplicial complex of I is the
complex � in Figure 1. The Scarf complex of I is the minimal resolution

SI W 0!
SŒa2; ab�

˚
SŒab; b3�

 �b 0
a �b2

0 a

!

��������!

SŒa2�

˚
SŒab�

˚
SŒb3�

. a2 ab b3 /��������! SŒ¿�! S=I ! 0:

Example 5.4. Let I D .ab; ac; bc/. The Scarf simplicial complex of I consists of
three disjoint vertices. The Scarf complex of I is the complex

SI W 0!

SŒab�

˚
SŒac�

˚
SŒbc�

. ab ac bc /��������! SŒ¿�! S=I ! 0:

It is not a resolution.
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Example 5.4 shows that not every monomial ideal is resolved by its Scarf complex.
We say that a monomial ideal is Scarf if its Scarf complex is a resolution.

Theorem 5.5. If the Scarf complex of I is a resolution, then it is minimal.

Proof. By construction, no nonzero scalars can occur in the differential matrices.

Bayer, Peeva and Sturmfels [1] call an ideal generic if no variable appears with the
same nonzero exponent in more than one generator. They show that these “generic”
ideals are Scarf.

Unfortunately, most interesting monomial ideals are not Scarf. However, Scarf com-
plexes have proved an important tool in constructing ideals whose resolutions misbe-
have in various ways [15].

Theorem 5.6. Let F be a minimal resolution of I . Then the Scarf complex of I is a
subcomplex of F .

Proof. This is [10, Proposition 59.2]. The proof requires a couple of standard facts
about resolutions, but is otherwise sufficiently reliant on the underlying simplicial
complexes that we reproduce it anyway.

We know (see, for example, [10, Section 9]) that there is a homogeneous inclusion
of complexes from F to the Taylor complex T . We also know that the multigraded
Betti numbers of I , which count the generators of F , can be computed from the ho-
mology of the simplicial complexesˆm [10, Section 57]. Ifm D mdeg.G/ is a Scarf
multidegree, then bjGj;m.S=I / D 1 and bi;m.S=I / D 0 for all other i . If m divides
a Scarf multidegree but is not itself a Scarf multidegree, then bi;m.S=I / D 0 for all
i . In particular, when m is a Scarf multidegree, the Betti numbers of multidegree m
also count the number of faces of multidegree m in both I and †I ; these numbers
are never greater than one.

By induction on multidegrees, each generator of F with a Scarf multidegree must
(up to a scalar) be mapped under the inclusion to the unique generator of the Taylor
resolution with the same multidegree. However, these are exactly the generators of the
Scarf complex. Thus, the inclusion from F to T induces an inclusion from S to F .

6 The Lyubeznik Resolutions

If the Taylor resolution is too large, and the Scarf complex is too small, we might still
hope to construct simplicial resolutions somewhere in between. Velasco [15] shows
that it is impossible to get the minimal resolution of every ideal in this way, even if we
replace simplicial complexes with much more general topological objects. However,
there are still classes of simplicial resolutions which are in general much smaller than
the Taylor resolution, yet still manage to always be resolutions. One such class is the
class of Lyubeznik resolutions, introduced below.
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Our construction follows the treatment in an excellent paper of Novik [9], which
presents the Lyubeznik resolutions as special cases of resolutions arising from “root-
ing maps”. The only difference between the following construction and Novik’s paper
is that the extra generality has been removed, and the notation is correspondingly sim-
plified.

Construction 6.1. Let I be a monomial ideal with generating setM , and fix an order-
ing � on the monomials appearing inM . (We do not require that � have any special
property, such as a term order; any total ordering will do.) WriteM D ¹m1; : : : ; msº
with mi � mj whenever i < j .

Let I be the full simplex onM ; for a monomial 	 2 I , set min.	/ D min�¹mi W
mi divides 	º. For a face F 2 I , set min.F / D min.mdeg.F //. Thus min.F / is
a monomial. We expect that in fact min.F / is a vertex of F , but this need not be the
case: for example, if F D ¹a2; b2º, we could have min.F / D ab.

We say that a face F is rooted if every nonempty subfaceG � F satisfies min.G/ 2
G. (Note that in particular min.F / 2 F .) By construction, the set ƒI;� D ¹F 2 I W
F is rootedº is a simplicial complex; we call it the Lyubeznik simplicial complex asso-
ciated to I and �. The associated algebraic chain complex LI;� is called a Lyubeznik
resolution of I .

Example 6.2. Let I D .ab; ac; bc/. Then there are three distinct Lyubeznik resolu-
tions of I , corresponding to the simplicial complexes pictured in Figure 2: ƒab arises

ab

ac

Λ ac

ab

bcac

Λab

ab

bcac

Λ bc

bc

Figure 2. The Lyubeznik resolutions of I D .ab; ac; bc/.

from the orders ab � ac � bc and ab � bc � ac,ƒac arises from the orders with ac
first, andƒbc arises from the orders with bc first. Each of these resolutions is minimal.

Example 6.3. Let I D .a2; ab; b3/. There are two Lyubeznik resolutions of I : the
Scarf complex, arising from the two orders with ab first, and the Taylor resolution,
arising from the other four orders. The corresponding simplicial complexes are pic-
tured in Figure 3.

Remark 6.4. It is unclear how to choose a total ordering on the generators of I which
produces a smaller Lyubeznik resolution. Example 6.3 suggests that the obvious
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a2 a2b3 b3
a2b3

a2b3

a
2 b

a
2 b

ab 3

ab 3

ab ab

Λ Λ1 2

Figure 3. The Lyubeznik resolutions of I D .a2; ab; b3/.

choice of a term order is a bad one: the lex and graded (reverse) lex orderings all
yield the Taylor resolution, while the minimal resolution arises from orderings which
cannot be term orders.

We still need to show that, unlike the Scarf complex, the Lyubeznik resolution is
actually a resolution.

Theorem 6.5. The Lyubeznik resolutions of I are resolutions.

Proof. Let M D ¹m1; : : : ; msº be the generators of I and fix an order � on M .
For each multidegree 	, we need to show that the simplicial subcomplex .ƒI;�/��,
consisting of the rooted faces with multidegree dividing 	, has no homology.

If 	 62 I , this is the empty complex. If 	 2 I , we claim that .ƒI;�/�� is a cone.
Suppose without loss of generality that m1 D min.	/. We claim that, if F is a

face of .ƒI;�/��, then F [ ¹m1º is a face as well. First, note that mdeg.F [ ¹m1º/
divides 	 because bothm1 and mdeg.F / do. Thus it suffices to show that F [¹m1º is
rooted. Observe that min.F [ ¹m1º/ D m1 because mdeg.F [ ¹m1º/ divides 	 and
m1 divides mdeg.F [ ¹m1º/. If G � F , then min.G/ 2 G because F is rooted, and
min.G [ ¹m1º/ D m1. Thus F [ ¹m1º is rooted.

Hence .ƒI;�/�� is a simplicial cone on m1 and is contractible.

7 Intersections

The only new result of this paper is that the Scarf complex of an ideal I is the inter-
section of all its minimal resolutions. To make this statement precise, we need to refer
to some ambient space that contains all the minimal resolutions; the natural choice is
the Taylor resolution.

Theorem 7.1. Let I be a monomial ideal. Let DI be the intersection of all isomorphic
embeddings of the minimal resolution of I in its Taylor resolution. Then DI D SI is
the Scarf complex of I .
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Proof. We showed in Theorem 5.6 that the Scarf complex is contained in this intersec-
tion. It suffices to show that the intersection of all minimal resolutions lies inside the
Scarf complex. We will show that in fact the intersection of all the Lyubeznik resolu-
tions is the Scarf complex. The result will follow because each Lyubeznik resolution
contains a copy of its minimal resolution; if the Scarf complex contains the inter-
section of these embeddings of the minimal resolution, it must contain the (smaller)
intersection of all embeddings.

Suppose that F is a face of every Lyubeznik simplicial complex. This means that,
regardless of the ordering of the monomial generators of I , the first generator dividing
mdeg.F / appears in F . Equivalently, every generator which divides mdeg.F / appears
as a vertex of F . Thus, F is the complete simplex on the vertices with multidegree
dividing mdeg.F /.

Now suppose that there exists another face G with the same multidegree as F .
Every vertex of G divides mdeg.G/ D mdeg.F /, so in particular G � F . But this
means that G is also a face of every Lyubeznik simplicial complex, so every generator
dividing mdeg.G/ is a vertex of G by the above argument. In particular, F D G.
This proves that F is the unique face with multidegree mdeg.F /, i.e., F is in the Scarf
complex.

8 Questions

The viewpoint that allows us to discuss Theorem 7.1 as we have, without reference to
the gigantic index set in its statement, requires that we consider a resolution together
with its basis, so resolutions which are isomorphic as algebraic chain complexes can
still be viewed as different objects. The common use of the phrase “the minimal res-
olution” (instead of “a minimal resolution”) suggests that this this point of view is
relatively new, or at any rate has not been deemed significant. In any event, there are
some natural questions which would not make sense from a more traditional point of
view.

Question 8.1. Let I be a monomial ideal. Are there (interesting) resolutions of I
which are not subcomplexes of the Taylor resolution?

It is simple enough to construct uninteresting resolutions which are not subcom-
plexes of T ; for example, one may take the direct sum of T with a trivial complex
0 ! S ! S ! 0. (This is only uninteresting when the basis is distinguished, as
all non-minimal resolutions are isomorphic to a direct sum of a minimal resolution
with trivial complexes. Actually finding the bases for these summands seems to be an
intractable problem.) However, all the interesting resolutions I understand are subcom-
plexes of the Taylor complex in a natural way: their basis elements can be expressed
with relative ease as linear combinations of Taylor symbols. Consider for example the
edge ideal of a four-cycle, I D .ab; bc; cd; ad/. Its minimal resolution occurs inside
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the Taylor resolution as the subcomplex

0!
*

Œab; bc; cd �

CŒab; cd; ad �

+

!
*

Œab; bc�; Œbc; cd �;

Œcd; ad �; Œab; ad �

+

!
*

Œab�; Œbc�;

Œcd �; Œad �

+

! SŒ¿�! 0:

The generators and first syzygies have bases of pure Taylor symbols, and the second
syzygies involve a sparse mixed term. In general, if a resolution is constructed in
terms of a topological or combinatorial object, one can find a basis inside the Taylor
resolution by triangulating that object.

If we restrict our attention to simplicial resolutions, we can restate Question 8.1
slightly. Supposing that a resolution is a subcomplex of the Taylor resolution, it is
simplicial if and only if all its basis elements are Taylor symbols. For a simplicial
resolution to fail to be a subcomplex of the Taylor complex, the set of vertices of its
underlying simplicial complex must not be a subset of the generators – in other words,
the underlying presentation must not be minimal. Generalizing back to arbitrary reso-
lutions, we may ask the following question.

Question 8.2. Let I be a monomial ideal. Are there (interesting) resolutions of I with
repeated or non-minimal generators?

My suspicion is that such resolutions may exist, at least for special classes of ideals,
and may be useful in the study of homological invariants such as regularity which are
interested in the degree, rather than the number, of generators.

Acknowledgments. I thank Ananth Hariharan, Manoj Kummini, Steve Sinnott, and
the algebra groups at Cornell and Kansas for inspiration and helpful discussions.
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A Minimal Poset Resolution of Stable Ideals

Timothy B. P. Clark

Abstract. We give a brief survey of the various topological and combinatorial techniques
which have been used to construct the minimal free resolution of a stable monomial ideal
in a polynomial ring over a field. The new results appearing in this paper describe a connec-
tion between certain topological and combinatorial methods for the description of said minimal
resolutions. In particular, we construct a minimal poset resolution of an arbitrary stable mono-
mial ideal by using a poset of Eliahou–Kervaire admissible symbols associated to a stable
ideal. The structure of the poset under consideration is quite rich and in related analysis, we
exhibit a regular CW complex which supports this resolution.
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Shellability.
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1 Introduction

Let R D kŒx1; : : : ; xd �, where k is a field and R is considered with its standard Zd

grading (multigrading). For a monomial ideal N of R, the minimal free resolution of
the module R=N is a well-studied invariant whose non-recursive construction using
only the field k and the unique monomial generators of the ideal is an open problem.

Precisely, a minimal free resolution is an exact sequence of multigraded R-modules
connected by multigraded morphisms which encodes the minimal relations between
generators of the syzygy modules of R=N . We denote a minimal free resolution of
R=N as

F W � � � �!
M

˛2Zn

Fi;˛
@i�!

M

˛2Zn

Fi�1;˛ �! � � � �!
M

˛2Zn

F1;˛
@1�!

M

˛2Zn

F0;˛

where the free module Fi;˛ D R.�˛/ˇi;˛ is of rank ˇi;˛, the map @i is degree pre-
serving for all i and Coker.@1/ Š R=N .

Structure theorems for the minimal free resolution of several classes of monomial
ideals have been developed in the last 20 years, although no technique has proven to
be general enough to describe the minimal resolution of an arbitrary monomial ideal.
Many of the approaches appearing in the literature associate to an ideal a topological
or combinatorial object whose structure is shown to mirror the algebraic structure of
a (minimal) resolution. Computationally speaking, a minimal free resolution of R=N
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may be constructed recursively by hand or using a computer algebra system such as
Macaulay2 [16].

The earliest study of resolutions of monomial ideals was described in the thesis [23]
of Diana Taylor, a student of Kaplansky. For a monomial ideal with minimal generat-
ing set ¹m1; : : : ; mrº, Taylor’s resolution consists of a free module of rank

�

r
k

�

appear-
ing in homological degree k whose basis elements are in one-to-one correspondence
with the cardinality k subsets I D ¹i1; � � � ; ikº � ¹1; : : : ; rº and have multidegree
matching the monomialmI D lcm.mi W i 2 I /. The differential in Taylor’s resolution
takes the unique basis element eI to

r
X

j D1

.�1/j C1 mI

mIn¹ij º
� eIn¹ij º:

If one changes perspective of the Taylor resolution only slightly, the underlying
vector space structure is easily recognized as the simplicial chain complex of an r-
dimensional simplex. This re-interpretation of the Taylor resolution as an object from
algebraic topology serves as an organizing example for the use of topological tech-
niques which link the incidence structure of a regular CW complex with the syzygy
structure of a monomial ideal.

Bayer and Sturmfels in [3] develop a program for this approach by first establishing
a Zn grading on a regular CW complex X whose r vertices are each associated with a
generator of N . Indeed, for e, a nonempty cell of X , identify e with the set of vertices
it contains and label e with the monomial me WD lcm¹mj W j 2 eº. Algebraically, the
vertices contained in the cell are viewed as a finite subset of the minimal generating
set of N .

A complex of multigraded R-modules, FN , is said to be a cellular resolution of
R=N if the following three properties are satisfied: for all i � 0 the free module
.FN /i has as its basis the i � 1 dimensional cells of X , a basis element e 2 .FN /i
has multidegree equal to that of the monomialme and the differential @ of FN acts on
e 2 .FN /i as

@.e/ D
X

e0�e�X
dim.e/Ddim.e0/C1

ce;e0 � me

me0

� e0

where ce;e0 is the coefficient of the cell e0 in the differential of e in the cellular chain
complex of X . Bayer and Sturmfels further show that the complex FN is a free reso-
lution of N if and only if the subcomplex of X on the vertices whose monomial labels
divide m is empty or acyclic over k for all m 2 R.

Although this general approach is elegant, the task of determining an appropriate
cell complex that supports a minimal free resolution for a monomial ideal is difficult.
Moreover, Velasco [24] has constructed a class of monomial ideals whose minimal
free resolution cannot be supported on any CW complex. In what follows, we there-
fore restrict attention to the so-called stable ideals, whose minimal resolution was first
constructed explicitly by Eliahou and Kervaire [15] using combinatorial methods. Re-
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cently, these ideals were shown to have a minimal cellular resolution separately by
Batzies and Welker [1] and Mermin [19]. The connections between the combinato-
rial technique of Eliahou and Kervaire and these two recent topological approaches
comprise the original results appearing in this paper.

Eliahou and Kervaire [15] call a monomial ideal N stable if for every monomial
m 2 N , the monomial m � xi=xr 2 N for each 1 � i < r , where r D max¹k W
xk divides mº. They provide a construction of the minimal free resolution of a stable
monomial ideal by identifying basis elements of the free modules (called admissible
symbols) and describing how the maps within the resolution act on these symbols. The
class of stable ideals has been extensively studied, and several of its subclasses have
been shown to have relevant applications, submit to novel analytical techniques, or
both.

We recall two refinements of the definition of stability. An ideal is said to be strongly
stable if whenever i < j and m is a monomial such that mxj 2 N , it follows that
mxi 2 N . Clearly, the stable ideals contain the strongly stable ideals as a subclass.
When the characteristic of k is zero, strongly stable ideals are referred to as Borel ide-
als. The class of Borel ideals have been given much attention due to their importance
in Gröbner Basis Theory [13].

Turning to the topological methods which have been used to describe the minimal
free resolution of a stable ideal, we focus on the most general constructions appearing
in the literature.

Batzies and Welker in [1] develop an application of discrete Morse theory to the
reduced cellular chain complex of a Zd graded regular CW complex. This technique
reduces the length of and number of free modules appearing in a nonminimal cellular
resolution by collapsing certain cells of the given CW complex. The (not necessarily
regular) CW complex which results from this collapsing procedure is homotopy equiv-
alent to the original regular CW complex but has fewer cells. For the class of stable
monomial ideals, this approach results in the reduction of the Taylor resolution of a
stable monomial ideal to a minimal cellular resolution which matches the construction
of Lyubeznik [18].

Mermin in [19] studies the minimal free resolution of an arbitrary stable ideal by
defining a regular CW complex whose cells are built using the variable exchange prop-
erty which characterizes a stable ideal. This regular CW complex is shown to support
the original minimal resolution of Eliahou and Kervaire. Furthermore, the regular CW
complex construction of Mermin seems to match that of Batzies and Welker, although
the precise connections between these methods have not been studied.

In addition to these general techniques, topological approaches for constructing a
minimal resolution of ideals in certain subclasses of the stable ideals are also present
in the literature.

Sinefakopoulos in [22] defines a Borel principal ideal as the smallest Borel-fixed
monomial ideal having a fixed monomial m in its generating set. The inductive con-
struction which he describes results in a shellable, polyhedral cell complex that sup-
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ports the minimal free resolution of an arbitrary ideal from this subclass. The cellular
incidence structure of this polyhedral complex is significantly different from the CW
complexes appearing in [1] and [19].

In [17] Horwitz constructs the minimal free resolution of a Borel ideal which is
generated by squarefree quadratic monomials. By reinterpreting said Borel ideal as
an edge ideal, the algebraic analogues of certain graph-theoretic techniques prove to
be useful in the construction of a minimal resolution. This resolution in fact has a
regular cellular structure and has differential maps which coincide with those of the
Eliahou–Kervaire resolution.

Using techniques which they first developed in [11], Corso and Nagel [12] recover
the result of Horwitz and provide a more explicit construction for the minimal cel-
lular resolution of an arbitrary strongly stable ideal generated in degree two. Their
construction associates a strongly stable ideal to a Ferrers tableau which in turn gives
rise to an associated polyhedral cell complex. This cell complex is shown to support
the minimal free resolution of the strongly stable ideal in question. This technique is
generalized to the class of squarefree strongly stable ideals generated in a fixed degree
further by Nagel and Reiner in [21].

In this paper, we begin with a combinatorial perspective of stable ideals, whereby
we construct a minimal poset resolution of an arbitrary stable ideal N . Precisely, we
define a poset .PN ; </ on the admissible symbols of Eliahou and Kervaire by taking
advantage of a decomposition property unique to the monomials contained in stable
ideals.

In Section 2, we review the fundamentals of poset resolutions and define the poset of
admissible symbolsPN . In our first main result, Theorem 2.4, we recover the Eliahou–
Kervaire resolution of a stable ideal as a poset resolution. The value of this technique
lies in the structural fact that the maps in the resolution act on the basis elements of
the free modules in a way that mirrors the covering relations in PN . Considering the
lattice-linear ideals of [9], poset resolutions provide a common perspective from which
to view the minimal resolutions of three large and well-studied classes of monomial
ideals; stable ideals, Scarf ideals [2] and ideals having a linear resolution [14].

An advantage of the method described herein is that for a fixed stable ideal, the
combinatorial information contained in the poset of admissible symbols can be trans-
formed into the topological incidence structure of a regular CW complex. Specifically,
the poset of admissible symbols PN is a CW poset in the sense of Björner [5], so that
it is the face poset of a regular CW complex XN .

In our second main result, Theorem 6.4, we show that XN supports a minimal cel-
lular resolution of the stable ideal N . By using this combinatorial connection, we
recover a minimal cellular resolution of N in a manner distinct from two of the pre-
viously described methods. Indeed, the cell complex that comes as a consequence of
Björner’s correspondence coincides with the one produced in the work of Mermin [19]
and appears to match the cell complex of Batzies and Welker [1]. The details of these
connections are the subject of future research.
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2 Poset Resolutions and Stable Ideals

Let .P;</ be a finite poset with set of atoms A and write ˇ É ˛ if ˇ < ˛ and there is
no � 2 P such that ˇ < � < ˛. We say that ˇ is covered by ˛ in this situation. For
˛ 2 P , write the order complex of the associated open interval as ˛ D .O0; ˛/. In
[9], the collection of simplicial complexes

¹˛ W ˛ 2 P º
is used to construct a sequence of vector spaces and vector space maps

D.P / W � � � �! Di

'i�! Di�1 �! � � � �! D1

'1�! D0:

For i � 1, the vector space Di is defined as

Di D
M

˛2P n¹O0º
Di;˛;

where Di;˛ D eH i�2.˛;k/. In particular, the vector space D1 has its basis indexed
by the set of atoms A in P . For notational simplicity, when 
 É ˛ let D� D .O0; 
�
and

˛;� D D� \
�

[

ˇÉ˛

�¤ˇ

Dˇ

�

:

When i � 2, the maps 'i are defined using the maps in the Mayer–Vietoris long
exact sequence in reduced homology associated to the short exact sequence of reduced
simplicial chain complexes

0! eC i .˛;�/ ! eC i .D�/˚ eCn

�

[

ˇÉ˛

�¤ˇ

Dˇ

�

! eC i .˛/! 0

where the triple under consideration is
�

D�;
[

ˇÉ˛

�¤ˇ

Dˇ ; ˛

�

: (2.1)

For i � 2 we write � W eH i�3.˛;�;k/ ! eH i�3.�;k/ for the map induced in
homology by the inclusion map and

ı
˛;�
i�2 W eH i�2.˛;k/! eH i�3.˛;�;k/

for the connecting homomorphism from the Mayer–Vietoris sequence in homology of
(2.1). Set

'
˛;�
i W Di;˛ ! Di�1;�
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as the composition '˛;�
i D � ı ı˛;�

i�2. The map 'i W Di ! Di�1 is then defined
componentwise by

'i jDi;˛
D
X

�É˛

'
˛;�
i

For i D 0, we define a one-dimensional vector space as D0 D eH�1.¹¿º;k/ and
define '1 W D1 ! D0 componentwise as '1jD1;˛

D id
eH �1.¹¿º;k/

.
We now describe the process by which the sequence of vector spaces D.P / is trans-

formed into a sequence of multigraded modules. For a monomialm D xa1

1 � � � xad

d
2 R

we write mdeg.m/ D .a1; : : : ; ad / and degx`
.m/ D a` for 1 � ` � d . Assuming

the existence of a map of partially ordered sets � W P �! Nn, the sequence of vector
spaces D.P / is homogenized to produce

F .�/ W � � � �! Ft
@t�! Ft�1 �! � � � �! F1

@1�! F0;

a sequence of free multigraded R-modules and multigraded R-module homomor-
phisms.

For i � 1, we set

Fi D
M

O0¤�2P

Fi;� D
M

O0¤�2P

R˝k Di;�

where the grading is defined as mdeg.xa ˝ v/ D aC �.
/ for each v 2 Di;�.
The differential @i W Fi �! Fi�1 in this sequence of multigraded modules is

defined as
@i jFi;˛

D
X

�É˛

@
˛;�
i

where @˛;�
i W Fi;˛ �! Fi�1;� takes the form @

˛;�
i D x�.˛/��.�/ ˝ '˛;�

i for 
É ˛.
We set F0 D R˝k D0 and multigrade the result with mdeg.xa ˝ v/ D a for each

v 2 D0. The differential @
˛;�
1 W F1;˛ �! F0;� is defined componentwise as

@1jF1;�
D x�.�/ ˝ '1jD1;�

:

The sequence F .�/ approximates a free resolution of the multigraded moduleR=M
whereM is the ideal in R generated by the monomials

¹x�.a/ W a 2 Aº

whose multidegrees are given by the images of the atoms of P .

Definition 2.1 ([9]). If F .�/ is an acyclic complex of multigraded modules, then we
say that it is a poset resolution of the idealM .
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Throughout the remainder of the paper, N will denote a stable monomial ideal in
R and we write G.N/ as the unique minimal generating set of N . For a monomial
m 2 R set

max.m/ D max¹k j xk divides mº
and

min.m/ D min¹k j xk divides mº:
To describe further the class of stable ideals, let Œd�1� D ¹1; : : : ; d�1º, for I � Œd�1�
let max.I / D max¹i j i 2 I º and write xI D

Q

i2I xi .
In Lemma 1.2 of [15], Eliahou and Kervaire prove that a monomial ideal N is

stable if and only if for each monomial m 2 N there exists a unique n 2 G.N/

with the property that m D n � y and max.n/ � min.y/. We adopt the language
and notation introduced in the paper of Eliahou and Kervaire, and refer to n as the
unique decomposition of the monomialm. Following their convention, we encode this
property in a decomposition map g WM.N/ �! G.N/ whereM.N/ is the collection
of monomials of N and g.m/ D n.

Definition 2.2 ([15]). An admissible symbol is an ordered pair .I;m/ which satisfies
max.I / < max.m/, where m 2 G.N/ and I � Œd � 1�.

Definition 2.3. The poset of admissible symbols is the setPN of all admissible symbols
associated toN , along with the symbol O0 D .¿; 1/which is defined to be the minimum
element of PN . The partial ordering on PN is

.J; n/ � .I;m/ ” J � I and there exists

C � I n J so that n D g.xCm/

when both symbols are admissible.

In the case when .J; n/ < .I;m/ and I D J [ ¹`º for some `, then we write
.J; n/ É .I;m/ to describe the covering that occurs in PN . As constructed, we have
O0É.¿; m/ for everym 2 G.N/. We are now in a position to state our first main result.

Theorem 2.4. Suppose that N is a stable monomial ideal with poset of admissible
symbols PN and define the map � W PN �! Nn so that .I;m/ 7! mdeg.xIm/. Then
the complex F .�/ is a minimal poset resolution of R=N .

In order to prove Theorem 2.4, we first describe the combinatorial structure of PN

and then exhibit the connection between the complex F .�/ and the minimal free res-
olution of the stable ideal N constructed by Eliahou and Kervaire in [15].
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3 The Shellability of PN

We begin this section by recalling some general facts regarding the shellability of
partially ordered sets. Recall that a poset P is called shellable if the facets of its order
complex .P / can be arranged in a linear order F1; F2; : : : ; Ft in such a way that the
subcomplex

�

k�1
[

iD1

Fi

�

\ Fk

is a nonempty union of maximal proper faces of Fk for k D 2; : : : ; t . Such an ordering
of facets is called a shelling.

Definition 3.1. Let E.P / denote the collection of edges in the Hasse diagram of a
poset P . An edge labeling of P is a map 
 W E.P / �! ƒ where ƒ is some poset.

For � D a1 É � � � É ak , a maximal chain of P , the edge label of � is the sequence
of labels 
.�/ D .
.a1 É a2/; : : : ; 
.ak�1 É ak//.

Definition 3.2. An edge labeling 
 is called an EL-labeling (edge lexicographical la-
beling) if for every interval Œx; y� in P ,

(i) there is a unique maximal chain � in Œx; y�, such that the labels of � form an
increasing sequence in ƒ. We call � the unique increasing maximal chain in
Œx; y�.

(ii) 
.�/ < 
.� 0/ under the lexicographic partial ordering inƒ for all other maximal
chains � 0 in Œx; y�.

A graded poset that admits an EL-labeling is said to be EL-shellable (edge lexico-
graphically shellable).

We further recall the following fundamental result of Björner and Wachs.

Theorem 3.3 ([7]). EL-shellable posets are shellable.

We now define an edge labeling of the poset of admissible symbols PN .

Definition 3.4. Let 
 W PN ! Z take the form


 ..J; n/É .I;m// D

8

ˆ

<

ˆ

:

0 if n D 1
�` if n D m
` if n ¤ m,

where ¹`º D I n J .

Example 3.5. The labeled Hasse diagram for the poset of admissible symbols, PN , of
the stable ideal N D ha; b; ci2 D ha2; ab; ac; b2; bc; c2i is
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.¿; 1/

.¿; a2/ .¿; ac/ .¿; c2/ .¿; ab/ .¿; bc/ .¿; b2/

.¹1º; ac/ .¹1º; ab/ .¹2º; ac/ .¹1º; c2/ .¹2º; c2/ .¹1º; bc/ .¹2º; bc/ .¹1º; b2/

.¹1; 2º; ac/ .¹1; 2º; c2/ .¹1; 2º; bc/

0

0 0 0 0

0

1

�1 1 �1
�2

2 �11

2
�2 1 �1

2

�2 1
�1

2 �2 �1 �21 2�1 �2 �1 2

Recall that given a poset P , the dual poset P � has an underlying set identical to
that of P , with x < y in P � if and only if y < x in P . Further, an edge labeling of a
poset P may also be viewed as an edge labeling of its dual poset and P is said to be
dual shellable if P � is a shellable poset.

Theorem 3.6. The poset PN is dual EL-shellable with 
 defined as above.

Before turning to the proof of Theorem 3.6, we discuss some properties of the de-
composition map g and the edge labeling 
.

Remarks 3.1.
(i) [15, Lemma 1.3] For any monomial w and any monomial m 2 N , we have

g.wg.m// D g.wm/ and max.g.wm// � max.g.m//. We refer to the first
property as the associativity of g.

(ii) Suppose that Œ.I;m/; .J; n/� is a closed interval in the dual poset P �
N . Given a

sequence of labels
.l1; : : : ; lk/

there is at most one maximal chain � in the closed interval such that


.�/ D .l1; : : : ; lk/ :
When it exists, this chain must be equal to

.I;m/É .I n ¹`1º; n1/É � � �É .I n ¹`1; : : : ; `k�1º; nk�1/É .J; n/

where `i D jli j, the set I n J D ¹`1; : : : ; `kº and

ni D
´

g.x`i
ni�1/ if li > 0

ni�1 if li < 0

for 1 � i � k with n0 D m and nk D n.
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Suppose that .J; n/ < .I;m/ is a pair of comparable admissible symbols. Then n D
g.xC 0m/ for someC 0 � I nJ . LetC D ¹c 2 C 0 j c � max.n/º. Then by associativity
and [15, Lemma 1.2] we have n D g.xC 0m/ D g.xC 0nC g.xCm// D g.xCm/. In this
way, any representation of n D g.xC 0m/ may be reduced to n D g.xCm/ under the
conditions above.

Notation 3.2. Implicit in all subsequent arguments is the convention that a representa-
tion n D g.xCm/ is written in reduced form.

Lemma 3.7. For a reduced representation of n D g.xCm/ the set C is the unique
subset of minimum cardinality among all C 0 � I n J for which n D g.xC 0m/.

Proof. Suppose that C is not the subset of I nJ with smallest cardinality, namely that
there exists D � I n J with jDj < jC j and n D g.xDm/. By definition, xC � m D
n � y and xD � m D n � u where max.n/ � min.y/ and max.n/ � min.u/. The
assumption of jDj < jC j implies that there exists c 2 C such that c … D. Rearranging
and combining the two equations above, we arrive at the equality xC � u D xD � y.
This equality allows us to conclude that xc divides y since it cannot divide xD . By
definition, max.n/ � min.y/ and therefore max.n/ � c. Further, since we assumed
that n D g.xCm/ possessed the property that c � max.n/ we have c � max.n/ � c
so that max.n/ D c. This equality also has implications for xD and u, namely that
c � min.u/ and max.D/ � max.n/ D c so that max.D/ < c since c … D. However,
c < max.D/ � max.n/ D c is a contradiction, and our original supposition that such
a D exists is false. If C and D are distinct subsets of I n J with jC j D jDj and
n D g.xCm/ D g.xDm/ then there is a c 2 C and d 2 D for which c … D and
d … C . As before, we use the equality xC � u D xD � y and now conclude that xc

divides y and xd divides u. Therefore, c � max.C / � max.n/ � min.y/ � c and
similarly d � max.D/ � max.n/ � min.u/ � d so that max.n/ D c D d ,
Proof of Theorem 3.6. To prove the dual EL-Shellability of PN , recall that for the
poset of admissible symbols PN , we have comparability in the dual poset given by
.I;m/ < .J; n/ 2 P �

N if and only if .J; n/ < .I;m/ 2 PN . We proceed with the
proof by considering the various types of closed intervals that appear in the dual poset
P �

N .
Case 1: Consider the closed interval Œ.I;m/; O0�. Write I D ¹d1; : : : ; dtº so that

dj < dj C1, for every j D 1; : : : ; t . The maximal chain

� D .I;m/É .I n ¹dtº; m/É .I n ¹dt ; dt�1º; m/É � � �É .¿; m/É O0
has the increasing label

.�dt ;�dt�1; : : : ;�d1; 0/ :

Consider a maximal chain � 2 Œ.I;m/; O0� where � ¤ � . If each label in the se-
quence 
.�/ (except the label of coverings of the form .¿; n/É O0) is negative, then the
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sequence 
.�/ cannot be increasing, for it must be a permutation of the sequence 
.�/
where the rightmost label 0 is fixed. If any label within the sequence 
.�/ is positive,
then again 
.�/ cannot be increasing since every maximal chain contains the labeled
subchain

.¿; n/ 0É O0
for every .I;m/ < .¿; n/. Therefore, � is the unique rising chain in the interval
Œ.I;m/; O0�. Further, 
.�/ is lexicographically first among all chains in Œ.I;m/; O0� since
�dt < � � � < �d1 < 0.

Case 2: Consider the closed interval Œ.I;m/; .J; n/� of P �
N where .J; n/ ¤ O0 and

n D m. Again write I n J D ¹d1; : : : ; dtº such that d1 < � � � < dt . Every maximal
chain � in Œ.I;m/; .J;m/� has a label of the form

��d�.t/; : : : ;�d�.1/

�

where � 2 †t is a permutation of the set ¹1; : : : ; tº. Therefore, the label
.�dt ; : : : ;�d1/

corresponding to the identity permutation is the unique increasing label in the interval
Œ.I;m/; .J;m/� and is lexicographically first among all such labels.

Case 3: Consider the closed interval Œ.I;m/; .J; n/� of P �
N where .J; n/ ¤ O0 and

m ¤ n. By Lemma 3.7, n D g.xCm/ for a unique C � I n J where max.C / �
max.n/ and the set C is of minimum cardinality. Writing the set C D ¹c1; : : : ; cqº
and .I n J / n C D ¹`1; : : : ; `tº where `1 < � � � < `t and c1 < � � � < cq , it follows
that the sequence of edge labels

��`t ; : : : ;�`1; c1; : : : ; cq

�

is the increasing label of a
maximal chain � in Œ.I;m/; .J; n/�.

Turning to uniqueness, suppose that � ¤ � is also a chain which has a rising edge
label. Then


.�/ D ��dp; : : : ;�d1; s1; : : : ; sj
�

(3.3)

where

¹s1; : : : ; sj º [ ¹d1; : : : ; dpº D ¹c1; : : : ; cqº [ ¹`1; : : : ; `tº D I n J;
and �dp < : : : < �d1 < 0 < s1 < : : : < sj . Since � ¤ � , then 
.�/ ¤ 
.�/ and in
particular, ¹d1; : : : ; dpº ¤ ¹`1; : : : ; `tº.

If there exists ` 2 ¹`1; : : : ; `tº with the property that ` … ¹d1; : : : ; dpº, we must
have ` 2 ¹s1; : : : ; sj º so that ` D si for some i < j and the label 
.�/ has the form

��dp; : : : ;�d1; s1; : : : ; `; : : : ; sj
�

: (3.4)

By the definition of g, we have the equalities xC � m D n � y and xS � m D n � u,
which may be combined and simplified to arrive at the equation xC � u D xS � y.
The assumption that ` 2 S and ` … C implies that x` divides u so that max.n/ � `.
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It therefore follows that max.n/ � ` < siC1 < � � � < sj when ` ¤ sj so that
max.I n ¹s1; : : : ; `º/ D sj > max.n/, which contradicts the admissibility of the
symbol .I n ¹d1; : : : ; dp; s1; : : : ; `º; n/. If ` D sj then max.n/ � sj and there-
fore n D g.xs1

� � � xjm/ D g.xs1
� � � xj �1m/ which implies that the symbol .I n

¹s1; : : : ; sj �1º; g.xs1
� � � xj �1m//, preceding .J; n/ in the chain is not admissible. If

there exists dg 2 ¹d1; : : : ; dpº with dg … ¹`1; : : : ; `tº then a similar argument again
provides a contradiction to admissibility.

We now prove that 
.�/ is lexicographically smallest among all chains. Aiming for
a contradiction, suppose that the label 
.�/ is not lexicographically smallest so that
there exists a maximal dual chain � with 
.�/ < 
.�/. Without loss of generality, we
may assume that 
.�/ and 
.�/ differ at their leftmost label �c, where �c < �`t .
Such a c must be an element of the set C since �`t < � � � < �`1 is inherent in the
structure of 
.�/. By construction, c 2 C implies that c � max.n/ and utilizing the
equations xC � m D n � y and xS � m D n � u, to produce xC � u D xS � y, it follows
that xc divides y and therefore c � max.n/ � min.y/ � c so that max.n/ D c.
This forces the element c D cq for otherwise, the chain � would contain the subchain
.I n ¹`1; : : : ; `t ; c1; : : : ; cº; n/ < .I n J; n/ where .I n ¹`1; : : : ; `t ; c1; : : : ; cº; n/ is
not an admissible symbol.

The desired contradiction will be obtained within an investigation of each of the
three possibilities for the relationship between degxc

.n/ and degxc
.m/.

Suppose degxc
.n/ > degxc

.m/ so that degxc
.n/ D degxc

.m/C 1, based upon the
structure of the set I and the definition of the decomposition map g. In this case,
the chain � cannot end in .J; n/ since �c, the leftmost label of � , labels the subchain
.I;m/ É .I n ¹cº; m/ and the xc degree of every monomial appearing in the chain �
may not increase.

If degxc
.n/ < degxc

.m/ then the unique decomposition xC � m D n � u implies
that xc divides u , for otherwise c 2 C implies that degxc

.n/ D degxc
.m/ C 1, a

contradiction. The conclusion that xc divides u allows xC �m D n � u to be simplified
to xC 0 �m D n �u0 where C 0 D C n ¹cº and u0 D u=xc . This contradicts the condition
that C is the set of smallest cardinality for which g.xCm/ D n.

Lastly, if degxc
.n/ D degxc

.m/ we turn to the chain � , whose rightmost label is c.
The subchain with this label is .I n ¹`1; : : : ; `t ; c1; : : : ; cj �1º; n0/ < .I n J; n/ where
xc � n0 D n � y where n does not contain this new factor of xc . The monomial xc

therefore divides y and we can reduce xc � n0 D n � y to n0 D n � u0 where u0 D u=xc ,
a contradiction to n0 2 G.N/. This completes the proof.

With Theorem 3.6 established, we immediately have the following corollary.

Corollary 3.8. Every interval of PN which is of the form ŒO0; .I;m/� is finite, dual
EL-shellable and therefore shellable.
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4 The topology of PN and properties of D.PN /

To establish the connection between the poset PN and the sequence D.PN /, we recall
the definition of CW poset, due to Björner [5].

Definition 4.1 ([5]). A poset P is called a CW poset if

(i) P has a least element O0,
(ii) P is nontrivial (has more than one element),

(iii) For all x 2 P n ¹O0º, the open interval .O0; x/ is homeomorphic to a sphere.

After establishing this definition, Björner describes sufficient conditions for a poset
to be a CW poset.

Proposition 4.2 ([5, Proposition 2.2]). Suppose that P is a nontrivial poset such that

(i) P has a least element O0,

(ii) every interval Œx; y� of length two has cardinality four,

(iii) For every x 2 P the interval ŒO0; x� is finite and shellable.

Then P is a CW poset.

With this proposition in hand, we now may conclude the following about the struc-
ture of PN , the poset of admissible symbols.

Theorem 4.3. The poset of admissible symbols PN is a CW poset.

Proof. The poset PN has a least element by construction and each of its intervals
ŒO0; .I;m/� is finite and shellable by Corollary 3.8. Thus, it remains to show that every
closed interval in PN of length two has cardinality four.

Case 1: Let .J; n/ D O0 so that the set I is a singleton. It follows that the only poset
elements in the open interior of the interval are .¿; m/ and .¿; g.xIm//.

Case 2: Let .J; n/ ¤ O0 and suppose that Œ.J; n/; .I;m/� is a closed interval of length
two in the poset of admissible symbols, PN . Since the interval is of length two, the
set J has the form I n ¹i0; i1º for some i0 < i1 2 I . Further, any poset element in the
interval must have either I n ¹i0º or I n ¹i1º as its first coordinate, for these sets are
the only subsets of I which contain I n ¹i0; i1º.

Write m D m0xi2
xi3

where max.m0/ � i2 � i3. We must now consider each of
the possible orderings for the elements of the (multi) set ¹i0; i1; i2; i3º to ascertain the
choices available for the monomial n. Our assumptions of the inequalities i0 < i1 and
i2 � i3 together with the admissibility of the symbol .I;m/ imply that i1 � max.I / <
max.m/ � i3. Hence, determining the number of orderings amounts to producing a
count of the number of orderings for elements of the set ¹i0; i1; i2º, of which there are
three, since i0 < i1.
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Subcase 2.1: Suppose that i0 < i1 < i2 � i3.
If n D m, then the poset elements which are contained in the open interior of the

interval are forced to be .I n ¹i0º; m/ and .I n ¹i1º; m/.
If n D g.xi0

m/ and max.I n ¹i0º/ < max.g.xi0
m// then the symbol .I n ¹i0º;

g.xi0
m// is admissible, so that it is in the open interior of the interval along with

the admissible symbol .I n ¹i1º; m/. The symbol .I n ¹i0º; m/ is not comparable to
.I n ¹i0º; g.xi0

m// due to the absence of the value i0. The symbol .I n ¹i1º; g.xi1
m//

is also not comparable to .I n ¹i0º; g.xi0
m//, for if it were then either g.xi0

m/ D
g.x¿g.xi1

m// D g.xi1
m/ or g.xi0

xi1
m/ D n D g.xi0

m/. The first equality is
impossible since Lemma 3.7 guarantees that ¹i0º is the unique set containing one
element for which n D g.xi0

m/. The second equality also can not occur since
Lemma 1.2 of [15] guarantees monomial equality g.xi0

xi1
m/ D g.xi0

m/ if and only
if max.n/ � min.xi1

/ D i1, which would contradict the assumption that .I n ¹i0º; n/
is an admissible symbol.

If n D g.xi0
m/ and max.I n ¹i0º/ � max.g.xi0

m// then the symbol .I n ¹i0º;
g.xi0

m// is not admissible and is not an element of PN . However, we are assuming
that the symbol .I n¹i0; i1º; g.xi0

m// is admissible, so that i1 is the element preventing
.I n ¹i0º; g.xi0

m// from being admissible and max.g.xi0
m// � i1. Lemma 1.2 of

[15] therefore guarantees the monomial equality g.xi0
g.xi1

m// D g.xi1
m/ so that

.I n ¹i0º; g.xi0
m// D .I n ¹i0º; g.xi0

xi1
m// and the symbols .I n ¹i1º; m/ and .I n

¹i1º; g.xi1
m// are each contained in the interval. Since n D g.xi0

m/, the symbol
.I n ¹i0º; m/ is not comparable to .I n ¹i0º; g.xi0

m//.
If n D g.xi1

m/ and max.I n ¹i1º/ � max.g.xi1
m// then the symbol .I n ¹i1º;

g.xi1
m// is not admissible and is not an element of PN . However, we are assuming the

admissibility of the symbol .I n ¹i0; i1º; g.xi1
m// and it follows that the element i0 is

preventing the admissibility of .I n¹i1º; g.xi1
m//. We therefore have max.g.xi1

m// �
i0 < i1 and via Lemma 1.2 of [15], the monomial equality g.xi1

m// D g.m/ D m.
However, max.m/ � i0 < i1 is a contradiction to the admissibility of the symbol
.I;m/. Hence, .I n ¹i1º; g.xi1

m// must be admissible and contained in the open in-
terior of the interval along with the admissible symbol .I n ¹i0º; m/. The symbol
.I n ¹i1º; m/ is not comparable to .I n ¹i1º; g.xi1

m// due to the absence of the value
i1. The symbol .I n ¹i0º; g.xi0

m// is also not comparable to .I n ¹i1º; g.xi1
m//, for

if it were then either g.xi1
m/ D g.x¿g.xi0

m// D g.xi0
m/ or g.xi0

xi1
m/ D n D

g.xi1
m/. The first equality is impossible since Lemma 3.7 guarantees that ¹i1º is

the unique set containing one element for which n D g.xi1
m/. The second equal-

ity also can not occur since Lemma 1.2 of [15] guarantees the monomial equality
g.xi0

xi1
m/ D g.xi1

m/ if and only if max.n/ � min.xi0
/ D i0, which would contra-

dict the assumption that .I n ¹i1º; n/ is an admissible symbol.
If n D g.xi0

xi1
m/ ¤ g.xi0

m/ then the symbols .I n ¹i0º; g.xi0
m// and .I n

¹i1º; g.xi1
m// are admissible and are contained in the open interior of the interval.

Clearly, the symbols .I n ¹i0º; m/ and .I n ¹i1º; m/ are not comparable to .I n ¹i0; i1º;
g.xi0

xi1
m// in this instance.
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For each of these four choices of n, the interval Œ.J; n/; .I;m/� has four elements.
Subcase 2.2: We now consider the two remaining orderings i0 < i2 � i1 < i3 and

i2 � i0 < i1 < i3. Under each of these orderings, we have degxi3
.m/ D 1 and in

light of Lemma 1.3 of [15] if n ¤ m we have max.n/ < max.m/ D i3 and in turn that
max.n/ � i1.

If n D m, then the poset elements which are contained in the open interior of the
interval are forced to be .I n ¹i0º; m/ and .I n ¹i1º; m/.

If n D g.xi0
m/ then max.n/ � i1 implies that the symbol .I n ¹i0º; g.xi0

m//

is not admissible and is not an element of PN . However, we are assuming that
the symbol .I n ¹i0; i1º; g.xi0

m// is admissible, so that max.g.xi0
m// � i1 and

again using Lemma 1.2 of [15], we have g.xi0
g.xi1

m// D g.xi0
m/. Therefore,

.I n ¹i0º; g.xi0
m// D .I n ¹i0º; g.xi0

xi1
m// and the symbols .I n ¹i1º; m/ and .I n

¹i1º; g.xi1
m// are each contained in the interval. Since n D g.xi0

m/, the symbol
.I n ¹i0º; m/ is not comparable to .I n ¹i0º; g.xi0

m//.
If n D g.xi1

m/ then the symbol .I n ¹i0º; m/ is certainly contained in the closed
interval. Further, .I n ¹i1º; g.xi1

m// must be admissible for were it not, then the
assumption of admissibility for .I n ¹i0; i1º; g.xi1

m// implies that

i0 � max.g.xi1
m// � min..g.xi1

m/// � i1;
a contradiction to the initial stipulation that i0 < i1. The symbol .I n ¹i1º; m/ is in-
comparable to .I n ¹i0; i1º; g.xi1

m// and were .I n ¹i0º; g.xi0
m// comparable to .I n

¹i0; i1º; g.xi1
m//, then either g.xi1m/ D g.x¿g.xi0

m// D g.xi0m/ or g.xi0
xi1
m/ D

n D g.xi0
m/. The first equality contradicts Lemma 3.7 and the second may be used

to arrive at a contradiction to the admissibility of .I n ¹i1º; g.xi1
m//. These argu-

ments are similar to those used in the case when n D g.xi0
m/ and max.I n ¹i0º/ <

max.g.xi0
m//.

Again, for each of these three choices of n, the interval has four elements.

We now analyze the vector spaces which are present in the sequence D.PN / at the
level of individual poset elements. In order to do so, we recall the following combina-
torial results. As is standard, we write NP D P n ¹O0; O1º.

Theorem 4.4 ([4, 8]). If a bounded poset P is EL-shellable, then the lexicographic
order of the maximal chains of P is a shelling of .P /. Moreover, the corresponding
order of the maximal chains of NP is a shelling of . NP /.

Theorem 4.5 ([8]). Suppose that P is a poset for which OP D P [ ¹O0; O1º admits an
EL-labeling. Then P has the homotopy type of a wedge of spheres. Furthermore, for
any fixed EL-labeling:

(i) eH i ..P /;Z/ Š Z#falling chains of length iC2,

(ii) bases for i -dimensional homology (and cohomology) are induced by the falling
chains of length i C 2.
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In the analysis that follows, we again examine the dual poset P �
N and focus our

attention on the collection of closed intervals of the form Œ.I;m/; O0�, to each of which
we apply Theorem 4.5. Indeed, for each admissible symbol .I;m/ 2 P �

N where jI j D
q, the open interval ..I;m/; O0/ is homeomorphic to a sphere of dimension q � 1 since
PN is a CW poset. Further, the EL-labeling of Œ.I;m/; O0� guarantees that the unique
generator of eH q�1.I;m;k/ is induced by a unique falling chain of length q C 1.
In the discussion that follows, we use the EL-shelling of Definition 3.4 to produce a
canonical generator of eH q�1.I;m;k/ as a linear combination in which each facet of
I;m occurs with coefficient C1 or �1.

To begin, consider a maximal chain .I;m/ É � É O0 which is of length q C 1 and
appears in the dual closed interval Œ.I;m/; O0� and write the label of this chain as

�

l1 ; : : : ; l

q ; 0

�

: (4.1)

We note that I D ¹jl1 j; : : : ; jlq jº and write

" D sgn.� / � sgn
�

q
Y

tD1

lq

�

(4.2)

where � 2 †q is the permutation arranging the sequence

jl1 j; : : : ; jlq j

in increasing order. We endow the corresponding chain � in ..I;m/; O0/ with this sign
" and refer to it as the sign of � .

The unique maximal chain � in Œ.I;m/; O0� which has a decreasing label is the chain
consisting of admissible symbols having at each stage a different monomial as their
second coordinate and the sequence of sets

I; I n ¹iqº; I n ¹iq�1; iqº; : : : ; ¹i1; i2º; ¹i1º;¿

as their first coordinate. The unique falling chain � 2 Œ.I;m/; O0� is therefore

.I;m/É .Iq; mq/É .Iq�1;q; mq�1;q/É � � �É .I2;:::;q; m2;:::;q/É .¿; m1;:::;q/É O0

where I D ¹i1; : : : ; iqº with i1 < : : : < iq and for j D 1; : : : ; q, the set Ij;:::;q D
I n ¹ij ; : : : ; iqº and the monomial mj;:::;q D g.xij � � � xiq

m/. The label of the chain �
is therefore

�

iq; : : : ; i1; 0
�

and is decreasing. If there were another such chain with decreasing label, then such a
chain would be counted by Theorem 4.5 and .O0; .I;m// would not have the homotopy
type of a sphere, a contradiction to the fact that PN is a CW poset. In the context of
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the shelling order produced by the EL-shelling above, the chain � appears lexicograph-
ically last among all maximal chains in the dual interval and is therefore the unique
homology facet of I;m.

Definition 4.6. For an admissible symbol .I;m/, set

f .I;m/ D
X

2..I;m/; O0/
" � �;

the linear combination of all maximal chains of the open interval ..I;m/; O0/ with co-
efficients given by (4.2).

Viewing the maximal chains of ..I;m/; O0/ as facets in the order complex I;m we
now establish the following.

Lemma 4.7. The sum f .I;m/ is a .q�1/-dimensional cycle in eH q�1.I;m;k/ which
is not the boundary of any q-dimensional face.

Proof. The maximal chains in the open interval ..I;m/; O0/ are each of length q � 1,
so that no q-dimensional faces are present in I;m. Thus, f .I;m/ cannot be the
boundary of a q-dimensional face of I;m.

We now show that f .I;m/ is a .q � 1/-dimensional cycle. Suppose that � is a
maximal chain in ..I;m/; O0/ and let .J; n/ be an element of said chain. We exhibit a
unique chain � 0 which also appears in f .I;m/ and differs from � only at the element
.J; n/.

Indeed, consider the chain .I;m/É�É O0 along with its subchain .J1; n1/É.J; n/É
.J2; n2/. In the proof of Theorem 4.3, each closed interval of length two was shown to
be of cardinality four, and therefore there exists a unique .J 0; n0/ 2 Œ.J1; n1/; .J2; n2/�

which is not equal to .J; n/. Defining � 0 by removing .J; n/ and replacing it with
.J 0; n0/, we have constructed the desired chain.

We claim that for the chains � and � 0, the associated signs " and " 0 are opposite
to one another.

If .J2; n2/ D O0 then .J1; n1/ D .¹j º; n1/ for some j . Thus, .J; n/ D .¿; n/ and
.J 0; n0/ D .¿; n0/ so that the chains � and � 0 have the same corresponding permutation
�. Since either n1 D n or n1 D n0, without loss of generality we assume that n1 D n
so that n0 D g.xjn/. Therefore, the subchain .¹j º; n/É .¿; n/É O0 has �j as its label,
while .¹j º; n/É .¿; n0/É O0 has j as its label. This is the only difference in the labels

.�/ and 
.� 0/ and " ¤ " 0 is forced.

If .J2; n2/ ¤ O0 then for each case that appears in the classification of intervals of
length two described in the proof of Theorem 4.3, we can compute " ¤ " 0 .

When the differential d in the reduced chain complex eC�.I;m/ is applied to the
sum f .I;m/, each term appears twice with opposite signs, so that d.f .I;m// D 0

making f .I;m/ a .q � 1/-dimensional cycle in eH q�1.I;m;k/ as claimed.
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5 Proof of Theorem 2.4

With the choice for the bases of the vector spaces in D.PN / established, we now turn
to the proof that the poset PN supports the minimal free resolution of R=N . We first
analyze the action of the differential of D.PN / when it is applied to an arbitrary basis
element f .I;m/.

Lemma 5.1. The map '.I;m/;.J;n/
qC1 sends a basic cycle f .I;m/ to .�1/pCım;n �f .J; n/,

where I D ¹i1; : : : ; iqº, the relationship I n J D ¹ipº holds and

ım;n D
´

1 if m ¤ n
0 otherwise.

Proof. Write d for the simplicial differential in the reduced chain complex eC�.I;m/.
The open interval ..I;m/; O0/ may be realized as the union of half-closed intervals
Œ.J; n/; O0/, so that the order complex of each half-closed interval is a cone with apex
.J; n/. Applying the differential to the sum of all facets contained in the interval pro-
duces the boundary of the cone, which in this case is the order complex of ..J; n/; O0/.
Indeed, when d is applied to the sum

� D
X

2Œ.J;n/; O0/

" � �;

the faces in which the element .J; n/ remains appear twice and have opposite signs as
described in the proof of Lemma 4.7. Thus, the only faces that remain in the expansion
of d.�/ are of the form N� D � n ¹.J; n/º.

Precisely,

'
.I;m/;.J;n/
qC1 .f .I;m// D

h

d
�

X

2Œ.J;n/; O0/

" � �
�i

(5.1)

D
h

X

2
h

.J;n/; O0
�

" � N�
i

D
h

X

N2..J;n/; O0/

" � N�
i

:

The facet N� has an associated permutation � N 2 †q�1, and using elementary prop-
erties of permutation signs, we have sgn.� / D .�1/pC1�sgn.� N /, where InJ D ¹ipº.
Considering the definition of " , for each .J; n/ for which .I;m/ É .J; n/ 2 P �

N we
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now have

" D sgn.� / � sgn
�

q
Y

tD1

lq

�

D .�1/pC1 � sgn.� N / � sgn
�

q
Y

tD2

lq

�

� sgn.l1/

D .�1/pC1 � sgn.l1/ � " N
D .�1/pCım;n � " N

since sgn.l1/ D 1 if n ¤ m and sgn.l1/ D �1 if n D m.
Therefore, (5.1) becomes

'
.I;m/;.J;n/
qC1 .f .I;m// D

h

X

N2..J;n/; O0/

" � N�
i

D
h

X

N2..J;n/; O0/

.�1/pCım;n � " N � N�
i

D .�1/pCım;n �
h

X

N2..J;n/; O0/

" N � N�
i

D .�1/pCım;n � f .J; n/

which proves the lemma.

As described in Section 2, the map 'qC1 is defined componentwise on the one-
dimensional k-vectorspace DqC1;.I;m/ for each poset element .I;m/. Using the con-
clusion of Lemma 5.1, we immediately have

'qC1jDqC1;.I;m/
D 'qC1;.I;m/.f .I;m// D

X

.J;n/É.I;m/

.�1/pCım;nf .J; n/ (5.2)

where I D ¹i1; : : : ; iqº and i1 < � � � < iq and J D I n ¹ipº.
Recall that the poset map � W PN �! Nn is defined as .I;m/ 7! mdeg.xIm/, so

that we can homogenize the sequence of vector spaces D.PN / to produce

F .�/ W 0 �! Fd

@
F .�/

d�! Fd�1 �! � � � �! F1

@
F .�/
1�! F0;
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a sequence of multigraded modules. More precisely, for q � 0 and a poset element
.I;m/ ¤ O0 where I D ¹i1; : : : ; iqº and i1 < � � � < iq , the differential @F .�/ acts on a
basis element f .I;m/ of the free module FqC1 via the formula

@
F .�/
qC1 .f .I;m// D

X

.J;n0/É.I;m/

.�1/pCım;n0x�.I;m/��.J;n0/ � f .J; n0/

D
X

.J;m/É.I;m/

.�1/pxip � f .J;m/ �
X

.J;n/É.I;m/

.�1/p xipm

g.xipm/
� f .J; n/

(5.3)

where p takes the same value as in (5.2), so that I n ¹ipº D J .
It remains to show that F .�/ is a minimal exact complex, and to do so we identify

it as the Eliahou–Kervaire resolution.

Definition 5.2. The Eliahou–Kervaire minimal free resolution [15] of a stable ideal N
is

E W 0 �! Ed

@E
d�! Ed�1 �! � � � �! E1

@E
1�! E0

where E0 D R is the free module of rank one with basis 1 and for q � 0, EqC1 has
as basis the admissible symbols

®

e.I;m/ W I D ¹i1; : : : ; iqº;max.I / < max.m/
¯

:

When applied to a basis element, the differential of E takes the form

@E
qC1 .e.I;m// D

q
X

pD1

.�1/pxip � e
�

I n ¹ipº; m
�

�
q
X

pD1

.�1/p xipm

g.xipm/
� e �I n ¹ipº; g.xipm/

�

where we define e.I n ¹ipº; g.xpm// D 0 when max.I n ¹ipº/ � max.g.xpm// (i.e.
the symbol is inadmissible).

We now are in a position to prove the main result of this paper.

Proof of Theorem 2.4. The Eliahou–Kervaire symbols that are admissible index the
multigraded free modules in the complexes E and F .�/ and therefore the generators of
these modules are in one to one correspondence with one another. Further, comparing
Definition 5.2 and (5.3), @E and @F .�/ have identical behavior on basis elements. The
minimality and exactness of E implies the minimality and exactness of F .�/ so that
F .�/ is a minimal poset resoution of R=N .
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6 A Minimal Cellular Resolution of R=N

The technique which follows is an example of a general approach which interprets
cellular resolutions of monomial ideals through the theory of poset resolutions. This
approach is described in [10], and is distinct from both the method of [1] concerning
stable modules and the method of [19] which is specific to stable ideals. We begin by
recalling a fundamental result due to Björner.

Proposition 6.1 ([5, Proposition 3.1]). A poset P is a CW poset if and only if it is
isomorphic to the face poset of a regular CW complex.

In the case of the poset of admissible symbols PN , we interpret Björner’s proof ex-
plicitly to produce the corresponding regular CW complex XN . On the level of cells,
O0 2 PN corresponds to the empty cell and each admissible symbol .I;m/ of PN cor-
responds to a closed cell XI;m of dimension jI j for which P.XI;m/ D ŒO0; .I;m/�.
Taking XN D

S

XI;m we have an isomorphism of posets P.XN / Š PN . The
regular CW complex XN also comes equipped with a Zn grading by realizing the
map � W PN �! Nn of Theorem 2.4 as a map � W XN �! Nn where a cell
XI;m 7! �.I;m/ D mdeg.xIm/.

Example 6.2. The stable ideal N D ha; b; ci2 D ha2; ab; ac; b2; bc; c2i has minimal
resolution supported by XN , the regular CW complex depicted below, which has six
0-cells, eight 1-cells and three 2-cells. The face poset of this cell complex P.XN / is
isomorphic to the poset of admissible symbols PN given in Example 3.5.

a2

ab
b2

ac bc

c2

We recall the following well-known definition to which we incorporate the infor-
mation given by the poset map �. For a more comprehensive view of cellular and CW
resolutions, see [1, 3, 24].

Definition 6.3. A complex of multigraded R-modules, FN , is said to be a cellular
resolution of R=N if there exists an Nn-graded regular CW complex X such that:

(i) For all i � 0, the free module .FN /i has as its basis the i � 1 dimensional cells
of X .
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(ii) For a basis element e 2 .FN /i , one has mdeg.e/ D �.e/,
(iii) The differential @ of FN acts on a basis element e 2 .FN /i as

@.e/ D
X

e0�e�X
dim.e/Ddim.e0/C1

ce;e0 � x�.e/��.e0/ � e0

where ce;e0 is the coefficient of the cell e0 in the differential of e in the cellular
chain complex of X .

With this definition in hand, we are now able to reinterpret Theorem 2.4 in our final
result.

Theorem 6.4. Suppose that N is a stable monomial ideal. Then the minimal free
resolution F .�/ is a minimal cellular resolution of R=N .

Proof. Conditions 1 and 2 of Definition 6.3 are clear from the structure of XN , its
correspondence to the poset PN and the construction of the resolution F .�/. It there-
fore remains to verify that condition 3 is satisfied. The main result in [10] provides a
canonical isomorphism between the complex D.PN / and C.XN /, the cellular chain
complex of XN . Therefore, the differential of F .�/ satisfies condition 3.

Acknowledgments. I am grateful to Amanda Beecher and Alexandre Tchernev for
helpful questions and discussions during this project. Thanks to Jeff Mermin for care-
ful reading of an early version of this document.
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Subsets of Complete Intersections
and the EGH Conjecture

Susan M. Cooper

Abstract. We give a “Macaulay-type” characterization of the Hilbert functions of finite sets of
distinct points which are subsets of complete intersections in projective space P 2 and a family
of complete intersections in P 3. Doing so, we prove that the Hilbert functions of subsets of
complete intersections of type ¹d1; d2º; ¹2; d; dº and ¹3; d; dº are the same as those for rect-
angular complete intersections of the same type. This verifies special cases of the Eisenbud–
Green–Harris Conjecture, which is a statement that lex-plus-powers ideals exhibit extremal
conditions among all homogeneous ideals containing a homogeneous regular sequence in fixed
degrees. The characterization is then applied to give a family of points which has the Cayley–
Bacharach Property.

Keywords. Hilbert Functions, O-sequences, Regular Sequences, Cayley–Bacharach Property.
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1 Introduction

A finite set X of distinct, reduced points in projective space Pn is contained in some
(in fact, many) complete intersections, if we have the freedom to pick the degrees of
the defining polynomials. This paper focuses on the following natural question which
arises by fixing the degrees which define the complete intersection:

Question 1.1. Fix integers 1 � d1 � d2 � � � � � dn and let H be the Hilbert function
of some finite set of distinct points in Pn. Do there exist finite sets of distinct, reduced
points X and Y such that: (i) X � Y ; (ii) the Hilbert function of X is H ; and (iii) Y is
a complete intersection of type ¹d1; : : : ; dnº?

In a purely algebraic sense, Question 1.1 is connected to the Eisenbud–Green–Harris
Conjecture (denoted EGH Conjecture) in the following way. Let S D kŒx1; : : : ; xn�,
where k is an algebraically closed field of characteristic zero and each variable xi

has degree 1. F. S. Macaulay characterized the sequences (called O-sequences) which
occur as the Hilbert function of any quotient S=I , where I � S is a homogeneous
ideal (for details see [2, 19, 23]). Clements–Lindström [4], Greene–Kleitman [16],

The author acknowledges funding from the Natural Sciences and Engineering Research Council of
Canada during parts of this project.
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Kruskal [18], and Katona [17] give combinatorial results which can be used to general-
ize Macaulay’s Theorem to Hilbert functions of quotients T=J where J is a monomial
ideal in the ring T D S=.x

dn

1 ; x
dn�1

2 ; : : : ; x
d1
n /. Cooper and Roberts [5] extend the

work of Clements–Lindström to include non-monomial ideals in T . It is natural to try
to extend this to obtain a “Macaulay-type” characterization for the Hilbert functions
of standard graded k-algebras S=I where I is any homogeneous ideal containing a
regular sequence in fixed degrees. If true, the EGH Conjecture implies that the growth
bounds of Clements–Lindström also characterize such Hilbert functions, and hence
Hilbert functions of subsets of complete intersections in projective space.

Unfortunately, the EGH Conjecture is only known to be true in some exceptional
cases (see Section 2.1). When n D 3 the outstanding cases for the EGH Conjecture
are the “tight degrees” D D ¹d1; d2; d3º where d1 � d2 � d3 � d1 C d2 � 2. These
remaining cases have proven to be very difficult to verify. In this paper, we study the
cases D D ¹2; d2; d3º and D D ¹3; d2; d3º where d3 D d2 in a geometric setting by
exploiting the idea of O-sequences.

This paper is organized as follows. Section 2 extracts work from [5] which applies
the results of Clements–Lindström and Greene–Kleitman to achieve bounds for Hilbert
functions of quotients of S=.xdn

1 ; x
dn�1

2 ; : : : ; x
d1
n /. In Section 3 we define rectangular

complete intersections and characterize the Hilbert functions of subsets of these point
sets. This naturally leads to the conjecture that the Hilbert functions of subsets of
complete intersections are completely characterized by the Hilbert functions of subsets
of rectangular complete intersections. In Section 4 we give a brief overview of the tools
which will be applied in later sections. Sections 5, 6 and 7 are dedicated to answering
Question 1.1 for a family of complete intersections. Finally, we conclude in Section 8
with an application to the open problem of characterizing the Hilbert functions of
points having the Cayley-Bacharach Property.

The proofs in this paper are done in a geometric setting. However, many of the
details also work in a purely algebraic setting by replacing Theorem 4.1 with linkage
of Artinian complete intersections (see [6, Theorem 3]).

2 Preliminary Definitions and Results

From now on we fix k to be an algebraically closed field of characteristic zero. We also
let S D kŒx1; : : : ; xn� and R D kŒx0; x1; : : : ; xn� with the standard grading. Let >lex

denote the degree-lexicographic order with x0 >lex x1 >lex � � � >lex xn. In addition,
we fix integers 1 � d1 � d2 � � � � � dn and let D D ¹d1; d2; : : : ; dnº.

2.1 The Eisenbud–Green–Harris Conjecture and Complete Intersections

Let St denote the k-vector space spanned by the monomials of degree t in S . If I � S
is a homogeneous ideal then A D S=I has an obvious gradation A D L

t	0At ,
where At D St=It is a finite-dimensional vector space. The Hilbert function of A is
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the functionH.A/ W Z	0 ! Z	0 defined by

H.A; t/ D dimk.At /:

It is often convenient to record the integers H.A; t/ in a sequence and write H.A/ D
¹H.A; t/ºt	0.

Hilbert functions have been extensively studied. The most celebrated result is
Macaulay’s Theorem which implies that H.A/ can be described using lex ideals. Re-
call that a monomial ideal L � S is said to be a lex ideal if for all monomials u 2 L
and v >lex u with deg.u/ D deg.v/ one has v 2 L.

Theorem 2.1 (Macaulay’s Theorem [19, 23]). Let I � S be a homogeneous ideal.
Then there exists a lex ideal L such that H.S=I / D H.S=L/.

The Eisenbud–Green–Harris Conjecture is an attempt to generalizeMacaulay’s The-
orem to ideals containing regular sequences. Indeed, this conjecture has gained much
recent attention. In this generalization, lex-plus-powers ideals play the analogous role
of the lex-ideals.

Definition 2.2. A monomial ideal L � S is said to be a lex-plus-powers ideal with
respect to D if there is a lex ideal L0 � S such that L D L0 C .xd1

1 ; : : : ; x
dn
n /.

For example, let D D ¹2; 3; 3º. Then L D .x2
1 ; x

3
2 ; x

3
3 ; x1x

2
2 ; x1x2x3/ is a lex-plus-

powers ideal with respect to D, but QL D .x2
1 ; x

3
2 ; x

3
3 ; x1x

2
2 ; x1x2x3; x

2
2x3/ is not since

x1x
2
3 >lex x

2
2x3 and x1x

2
3 is not in QL. We have the following natural conjecture:

Conjecture 2.3 ([3]). Let I � S be a homogeneous ideal containing a regular se-
quence F1; : : : ; Fn of degrees deg.Fi / D di . Then there exists a homogeneous ideal
J containing ¹xd1

1 ; x
d2

2 ; : : : ; x
dn
n º such thatH.S=I / D H.S=J /.

Clements–Lindström [4] show (in a combinatorial fashion) that for any monomial
ideal M � S containing ¹xd1

1 ; x
d2

2 ; : : : ; x
dn
n º there is a lex-plus-powers ideal L with

respect to D withH.S=M/ D H.S=L/. This generalizes to non-monomial ideals.

Lemma 2.4 ([5]). If I � S is any homogeneous ideal containing ¹xd1

1 ; x
d2

2 ; : : : ; x
dn
n º,

then there is a lex-plus-powers idealLwith respect to D such thatH.S=I /DH.S=L/.
Thus, Conjecture 2.3 can be restated as follows.

Conjecture 2.5 (Eisenbud–Green–Harris (EGH) Conjecture [3, 8, 9, 11]). If I �
S is a homogeneous ideal containing a regular sequence F1; F2; : : : ; Fn of degrees
deg.Fi / D di , then there is a lex-plus-powers ideal L with respect to D such that
H.S=I / D H.S=L/.
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Despite much effort, the EGH Conjecture is known to be true only in some excep-
tional cases. It was originally stated in the case when each di D 2. The conjecture
has been proven in the cases where L is an almost complete intersection [10], and
when n D 2 [22]. Mermin–Murai [20] and Mermin–Peeva–Stillman [21] have in-
teresting results related to the conjecture for ideals containing a monomial regular
sequence. Recently, Caviglia–Maclagan [3] have proven that the EGH Conjecture is
true if dj >

Pj �1
iD1 .di � 1/ for j D 1; : : : ; n. Thus, when n D 3 the outstand-

ing cases for the EGH Conjecture are the “tight degrees” D D ¹d1; d2; d3º where
d1 � d2 � d3 � d1 C d2 � 2.

In this paper we focus on the geometric side of the EGH Conjecture. If X is a
finite set of distinct points in Pn, then the Hilbert function of X is simply the sequence
H.X/ D H.R=I.X//, where I.X/ � R D kŒx0; x1; : : : ; xn� is the homogeneous ideal
of X. Hilbert functions of ideals of finite sets of distinct points are well-studied. We
will see a “Macaulay-type” characterization in the next section. This characterization
uses the first difference operator . Let P D ¹ciºi	0 be a sequence of non-negative
integers. We define the first difference sequence of P to be the sequence P D
¹eiºi	0 where P .0/ D e0 D c0 D P .0/ and P .i/ D ei D ci � ci�1 for i � 1.

The main object of our study are complete intersections.

Definition 2.6. Let Y be a finite set of distinct points in Pn. Then Y is a complete
intersection of type ¹d1; : : : ; dnº if I.Y / can be generated by exactly n homogeneous
polynomials F1; : : : ; Fn 2 R D kŒx0; : : : ; xn�, where F1; : : : ; Fn is a regular se-
quence and deg.Fi / D di .

Notation 2.7. We denote by C.I..d1; : : : ; dn/ all the finite sets in Pn of d1d2 � � � dn

distinct points which are complete intersections of type ¹d1; : : : ; dnº.
Hilbert functions of complete intersections have especially nice properties and are

well-known.

Facts 2.8. Let Y 2 C.I..d1; : : : ; dn/ � Pn. Then the following hold:

(i) H.Y / is the Hilbert functionH.kŒx1; : : : ; xn�=.x
d1

1 ; : : : ; x
dn
n //;

(ii) The least integer t for which H.Y ; t / D 0 is d1 C d2 C � � � C dn � .n � 1/;
(iii) H.Y ; t / is symmetric, i.e. H.Y ; t / D H.Y ; d1 C d2 C � � � C dn � n � t /

(where H.Y ; s/ D 0 for all negative s).
Notation 2.9. (i) By Facts 2.8, sets in C.I..d1; : : : ; dn/ have Hilbert functions which

depend on the degrees d1; : : : ; dn, rather than on the location of the points. That
is, all sets in C.I..d1; : : : ; dn/ have the same Hilbert function. From this point on
we will denote this special Hilbert function byHC:I:.d1;:::;dn/.

(ii) We will often compare Hilbert functions of finite sets X � Y � Pn. Given two
sequences P D ¹ciºi	0 and P 0 D ¹eiºi	0, we will write P � P 0 if ci � ei for
each i .
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2.2 Some Enumeration

It will be useful to consider Macaulay’s Theorem in a combinatorial setting. Let I be
a homogeneous ideal in S D kŒx1; : : : ; xn�. The growth from one degree to the next
of H.S=I / can be explicitly described using the well-known Macaulay’s function
<i> W Z	0 ! Z	0.

Definitions-Proposition 2.10 ([2, Lemma 4.2.6]). Let h and i be positive integers.
Then h can be written uniquely in the form

h D
 

mi

i

!

C
 

mi�1

i � 1

!

C � � � C
 

mj

j

!

;

where mi > mi�1 > � � � > mj � j � 1. We call this expression for h the i -binomial
expansion of h and define

h<i> D
 

mi C 1
i C 1

!

C
 

mi�1 C 1
i

!

C � � � C
 

mj C 1
j C 1

!

:

By convention, we define 0<i> D 0.
For example, the 3-binomial expansion of 16 is 16 D �

5
3

� C �4
2

�

and so 16<3> D
�

6
4

�C �5
3

� D 25. We will often use the fact that if h and i are positive integers such that
i � h, then h<i> D h.
Definitions 2.11. Let P WD ¹ciºi	0 be a sequence of non-negative integers.

(i) P is called an O-sequence if c0 D 1 and ciC1 � c<i>
i for all i � 1.

(ii) P is called a differentiable O-sequence if P is an O-sequence (in which case,
P is also an O-sequence).

Macaulay’s description of the Hilbert functions of quotients S=I can be stated al-
ternatively as follows.

Theorem 2.12 (Macaulay’s Theorem [19, 23]). Let H D ¹ciºi	0 be a sequence of
non-negative integers. The following are equivalent:

(i) H is an O-sequence;

(ii) H is the Hilbert function of some quotient S=I where I is a homogeneous ideal.

This has been generalized to Hilbert functions of points as follows.

Theorem 2.13 ([14]). Let H D ¹ciºi	0 be a sequence of non-negative integers. The
following are equivalent:

(i) H is a differentiable O-sequence, c1 � nC 1, and ci D s for i � 0;

(ii) H is the Hilbert function of some s distinct points in Pn.
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The idea of O-sequences has been extended to the setting of complete intersections.
We state the main results here; for full details see [4, 5, 16]. We begin with the analog
to Macaulay’s function.

Definitions-Proposition 2.14. Fix D D ¹d1; : : : ; dnº where the di are integers such
that 1 � d1 � d2 � � � � � dn. Let t; h � 1 be fixed integers with the property that
h � HC:I:.d1;:::;dn/.t/. Then h can be written uniquely in the form

h D HC:I:.dbt
;:::;dn/.t/CHC:I:.dbt�1

;:::;dn/.t � 1/C � � � CHC:I:.dbi
;:::;dn/.i/

where 1 � bt � bt�1 � � � � � bi � n, terms of the form HC:I:.d1;:::;dn/.j / appear
at most once, and terms of the form HC:I:.di ;:::;dn/.j / appear at most di�1 � 1 times
for 2 � i � n. In addition, if t 6D 0 then i > 0. We call such a decomposition the
t -D-binomial expansion of h. With this expansion, we define h.t/ to be the number

h.t/ D HC:I:.dbt
;:::;dn/.tC1/CHC:I:.dbt�1

;:::;dn/.t/C� � �CHC:I:.dbi
;:::;dn/.iC1/:

By convention, we define 0.t/ D 0.
The function h.t/ depends on h; t , and ¹d1; : : : ; dnº. Our notation does not imply

the dependence on ¹d1; : : : ; dnº. However, it will be implicit in our discussions what
d1; : : : ; dn are (see Example 2.16).

Below is the “Macaulay-type” characterization for the Hilbert functions of graded
quotients of kŒx1; : : : ; xn�=.x

dn

1 ; : : : ; x
d1
n / Š kŒx1; : : : ; xn�=.x

d1

1 ; : : : ; x
dn
n /. Note

that the proof requires the highest degree to be on the variable x1 in order to work
with order ideals; see [5, Remark 3.18] for a concrete example.

Theorem 2.15 ([5]). Let I be a homogeneous ideal of SD D S=.xdn

1 ; : : : ; x
d1
n / where

H.SD=I; t/ D ht . Then htC1 � h.t/
t for all t � 1.

The following computational scheme can be used to find the bound described in
Theorem 2.15. Fix a degree t and let h be a positive integer such that h � H.SD; t /.
In order to find the t -D-binomial expansion of h we construct “Pascal’s Table” whose
i th row is

HC:I:.dn�iC1;:::;dn/ D H.kŒx1; : : : ; xi �=.x
dn

1 ; : : : ; x
dn�iC1

i //

D H.kŒx1; : : : ; xi �=.x
dn�iC1

1 ; : : : ; x
dn

i //:

Number the columns starting from 0. Decompose h as follows: select the largest
number in column t which does not exceed h, call this number ˛1. If ˛1 D h then we
are done. If ˛1 < h then select the largest number in column .t � 1/ which does not
exceed h� ˛1, call this number ˛2. If ˛1C ˛2 D h then we are done. If ˛1C ˛2 < h

then we repeat by decomposing h�˛1�˛2, starting in column .t�2/. Continue in this
fashion. It turns out that h.t/ is the number obtained by shifting each entry obtained in
decomposing h one unit to the right in the table.
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Example 2.16. Let d1 D d2 D 4; d3 D 7 and SD D kŒx1; x2; x3�=.x
7
1 ; x

4
2 ; x

4
3/. We

use the “Pascal’s Table”:

degree: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � � �
HC:I:.7/: 1 1 1 1 1 1 1 0 0 0 0 0 0 0 !
HC:I:.4;7/: 1 2 3 4 4 4 4 3 2 1 0 0 0 0 !
HC:I:.4;4;7/: 1 3 6 10 13 15 16 15 13 10 6 3 1 0 !

Suppose that I � SD is a homogeneous ideal with H.SD=I; 3/ D 8. The 3-
¹4; 4; 7º-binomial expansion of 8 is

8 D HC:I:.4;7/.3/CHC:I:.4;7/.2/CHC:I:.7/.1/ D 4C 3C 1:

Hence,

8.3/ D HC:I:.4;7/.4/CHC:I:.4;7/.3/CHC:I:.7/.2/ D 4C 4C 1 D 9:

We conclude thatH.SD=I; 4/ � 8.3/ D 9.

If we extend the definition of the di to be “1” then Definitions-Proposition 2.10
coincides with Definitions-Proposition 2.14. In this case, the “Pascal’s Table” con-
structed is simply Pascal’s Triangle and the decompositions are the usual binomial
expansions.

Theorem 2.15 allows us to restate the EGH Conjecture in a combinatorial fashion.

Conjecture 2.17 (Eisenbud–Green–Harris (EGH) Conjecture II [3, 8, 9, 11]). Let 1 �
d1 � d2 � � � � � dn be integers. Suppose that I � S D kŒx1; : : : ; xn� is a homoge-
neous ideal which contains a regular sequence F1; F2; : : : ; Fn of degrees deg.Fi / D
di . IfH.S=I; t/ D ht , then htC1 � h.t/

t for all t � 1.

3 Rectangular Complete Intersections

We now study rectangular complete intersections. These special sets play the anal-
ogous role to lex-plus-powers ideals in the algebraic setting of the EGH Conjecture,
and hence play a crucial role in classifying the Hilbert functions of subsets of arbitrary
complete intersections.

Assumption 3.1. Fix integers d1 � d2 � � � � � dn. From now on we assume that all
elements of C.I..d1; : : : ; dn/ are in Pn and no smaller projective space, i.e. we assume
that d1 � 2. We will label the coordinates of points in Pn as Œx0 W x1 W : : : W xn�.



174 S.M. Cooper

Definitions-Proposition 3.2. Fix positive integers 2 � d1 � d2 � � � � � dn. Let
Y � Pn be the following set of d1d2 � � � dn distinct points with integer coordinates:

¹Œ1 W b1 W : : : W bn� j bi 2Z; 0 � b1 � dn�1; 0 � b2 � dn�1�1; : : : ; 0 � bn � d1�1º:

Then Y 2 C.I..d1; : : : ; dn/. The set Y is called the rectangular complete intersection
of type ¹d1; : : : ; dnº, and is denoted Y D Rect.C.I..d1; : : : ; dn/ (see Example 3.3).

One can verify that Rect.C.I..d1; : : : ; dn/ is the intersection of the hypersurfaces
H1; : : : ;Hn, where Hi is the zero set of hi with:

h1 D x1.x1 � 1x0/ � � � .x1 � .dn � 1/x0/

h2 D x2.x2 � 1x0/ � � � .x2 � .dn�1 � 1/x0/

:::

hn D xn.xn � 1x0/ � � � .xn � .d1 � 1/x0/:

Although the inequalities b1 � dn � 1; b2 � dn�1 � 1; : : : ; bn � d1 � 1 seem
backwards and awkward, the definition of a rectangular complete intersection is made
in this fashion for the following important reason: it has become the standard in the
literature to use the assumed ordering d1 � d2 � � � � � dn when dealing with the EGH
Conjecture yet in order to apply the proof of Theorem 2.15 we need to work with order
ideals in which the lowest indexed variables have the largest exponents. As the next
example demonstrates, using b1 � dn � 1; b2 � dn�1 � 1; : : : ; bn � d1 � 1 gives a
convenient bijection between the points in Rect.C.I..d1; : : : ; dn/ and the desired order
ideals.

Example 3.3. Rect.C.I..2; 3; 4/ can be visualized as the 24 dots .�/ in the following
rectangle. Starting from the origin, we use 4 units in the x1-direction, 3 units in the
x2-direction, and 2 units in the x3-direction, i.e. Rect.C.I..2; 3; 4/ is visualized as a
3 � 4 block on two levels.
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The points in the bottom layer of Rect.C.I..2; 3; 4/ are:

¹Œ1 W b1 W b2 W 0� j b1; b2 2 Z; 0 � b1 � 3; 0 � b2 � 2º
and the points in the top layer of Rect.C.I..2; 3; 4/ are:

¹Œ1 W b1 W b2 W 1� j b1; b2 2 Z; 0 � b1 � 3; 0 � b2 � 2º:
Note that we have the bijections

Rect.C.I..2; 3; 4/$ ¹.b1; b2; b3/ 2 Z3 j 0 � bi � 4 � iº
$ ¹xb1

1 x
b2

2 x
b3

3 2 kŒx1; x2; x3� j 0 � bi � 4 � iº;
by

Œ1 W b1 W b2 W b3�$ .b1; b2; b3/$ x
b1

1 x
b2

2 x
b3

3 :

Theorem 3.4. Let H D ¹htºt	0 be the first difference Hilbert function for some
finite set of distinct points in Pn such that H � HC:I:.d1;:::;dn/, where 2 � d1 �
� � � � dn. Then H is the first difference Hilbert function for some subset of
Rect.C.I..d1; : : : ; dn/ if and only if htC1 � h.t/

t for all t � 1.

Proof. By [14, Lemma 2.3], if there is a subset of Rect.C.I..d1; : : : ; dn/ with first
difference Hilbert functionH then we must haveH � HC:I:.d1;:::;dn/. First sup-

pose that htC1 � h.t/
t for all t � 1. We construct a subset X of Rect.C.I..d1; : : : ; dn/

such that H.X/ D H . Let

T D ¹xb1

1 x
b2

2 � � � xbn
n j bi 2 Z; 0 � bi � dn�iC1 � 1º

and

Ti D ¹xb1

1 x
b2

2 � � � xbn
n 2 T j deg.xb1

1 � � � xbn
n / D b1 C b2 C � � � C bn D iº:

For each i , we also letKi be the hi largest monomials of Ti with respect to the degree-
reverse-lexicographic ordering and K D [iD1Ki .

Since htC1 � h.t/
t for all t � 1, the setK is an order ideal of monomials (see [5] for

complete details). Now let M denote the set of all monomials in S D kŒx1; : : : ; xn�.
Then M n K generates a monomial ideal J of S . Suppose J is minimally generated
by the monomials fl D x

a1l

1 x
a2l

2 � � � xanl
n . Let I � R D kŒx0; : : : ; xn� be the ideal

generated by the homogeneous polynomials

fl D
n
Y

j D1

�

ajl �1
Y

iD0

.xj � ix0/
�

:

By [12, Theorem 2.2], J lifts to I . By definition, this means that I is a radical ideal
of R; x0 is not a zero-divisor on R=I ; and .I; x0/=.x0/ is isomorphic to J . One of



176 S.M. Cooper

the main steps in the verification that J lifts to I (as described in the proof of [12,
Theorem 2.2]) is to show that I D I.X/ where

X D ¹Œ1 W c1 W : : : W cn� j xc1

1 x
c2

2 � � � xcn
n 2 Kº � Pn

(the reader is encouraged to see [12] for more details). We see immediately that X �
Rect.C.I..d1; : : : ; dn/ and H.X/ D H .

Conversely, now suppose there is a subset X of Rect.C.I..d1; : : : ; dn/ with first dif-
ference Hilbert function H . Let I � S D kŒx1; : : : ; xn� be the ideal obtained from
I.X/ after moding out by x0. Then H.S=I / D H . Using the 1-1 correspondence
between the points of Rect.C.I..d1; : : : ; dn/ and the monomials of S , Theorem 2.15 is
applied to obtain htC1 � h.t/

t for all t � 1.
Example 3.5. Consider Rect.C.I.(3,4,4). Our “Pascal’s Table” is:

degree: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 � � �
HC:I:.4/: 1 1 1 1 0 0 0 0 0 0 0 0 0 0 !
HC:I:.4;4/: 1 2 3 4 3 2 1 0 0 0 0 0 0 0 !
HC:I:.3;4;4/: 1 3 6 9 10 9 6 3 1 0 0 0 0 0 !

Let H D .1; 3; 6; 8; 7; 1; 0; 0; : : :/. Clearly H � HC:I:.3;4;4/. It is easy to
verify thatH .tC1/ � H .t/.t/ for all t � 1. For example, the 5-¹3; 4; 4º-binomial
expansion for H .5/ is

H .5/ D 1 D HC:I:.4/.5/CHC:I:.4/.4/CHC:I:.4/.3/ D 0C 0C 1 and
H .6/ D 0 � 1.5/ D HC:I:.4/.6/CHC:I:.4/.5/CHC:I:.4/.4/ D 0:
We see that the order ideal K from the proof of Theorem 3.4 has pieces:

K0 D ¹x0
1x

0
2x

0
3º

K1 D ¹x1; x2; x3º
K2 D ¹x2

1 ; x1x2; x1x3; x
2
2 ; x2x3; x

2
3º

K3 D ¹x3
1 ; x

2
1x2; x

2
1x3; x1x

2
2 ; x1x2x3; x1x

2
3 ; x

3
2 ; x

2
2x3º

K4 D ¹x3
1x2; x

3
1x3; x

2
1x

2
2 ; x

2
1x2x3; x1x

3
2 ; x1x

2
2x3; x

3
2x3º

K5 D ¹x3
1x

2
2º

and the set X constructed consists of the points with integer coordinates:

¹Œ1 W i W j W k� j 0 � i; j; k � 1; i C j C k D 1º;
¹Œ1 W i W j W k� j 0 � i; j; k � 2; i C j C k D 2º;
¹Œ1 W i W j W k� j 0 � i; j � 3; 0 � k � 1; i C j C k D 3º;
¹Œ1 W i W j W k� j 0 � i; j � 3; 0 � k � 1; i C j C k D 4º;
Œ1 W 0 W 0 W 0�; Œ1 W 1 W 0 W 2�; Œ1 W 3 W 2 W 0�:
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Theorem 3.4 naturally leads to the following conjecture:

Conjecture 3.6. The sets

¹H j there exist sets X � Y 2 C:I:.d1; : : : ; dn/ such thatH.X/ D Hº
and

¹H j there exist sets X � Y 2 Rect:C:I:.d1; : : : ; dn/ such thatH.X/ D Hº
are equal. Equivalently, if H D ¹htºt	0 is the first difference Hilbert function of
some finite set of distinct points, then there exist sets X � Y 2 C:I:.d1; : : : ; dn/ with
H.X/ D H if and only if htC1 � h.t/

t for all t � 1.

4 Some Key Tools

In this section we briefly collect some of the tools which will be used in later sec-
tions when proving special cases of Conjecture 3.6. Unless otherwise stated, we will
continue to let R D kŒx0; : : : ; xn� and S D kŒx1; : : : ; xn�. We also fix integers
2 � d1 � d2 � � � � � dn.

4.1 Pairs of Hilbert Functions and Maximal Growth

When characterizing Hilbert functions of subsets of complete intersections, we can
apply results coming from linkage theory. In particular, the Generalized Cayley–
Bacharach Theorem below gives a formula relating the Hilbert functions of subsets
of complete intersections. That is, Hilbert functions of subsets of complete intersec-
tions come in pairs.

Theorem 4.1 ([6, Theorem 3]). Let Y 2 C.I..d1; : : : ; dn/ � Pn and let X � Y . Then

H.Y ; t / D H.X; t /CH.Y nX; d1 C d2 C � � � C dn � n � t /:
In addition to the Cayley–Bacharach Theorem, we have a collection of powerful

results involving extremal behavior of Hilbert functions. Gotzmann [15] considers the
situation when a Hilbert function attains the maximal growth permitted by Macaulay’s
Theorem. Also, Bigatti–Geramita–Migliore [1] study algebraic and geometric con-
sequences of Hilbert functions attaining maximal growth as described by Macaulay’s
function.

Definition 4.2. Let I be a homogeneous ideal in the polynomial ring R. We say that
H.R=I/ has maximal growth in degree d ifH.R=I; d C 1/ D H.R=I; d/<d>.

Remark 4.3. If H.R=I/ has maximal growth in degree d then I has a minimal gen-
erating set which has no element in degree d C 1.
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Using maximal growth, Bigatti–Geramita–Migliore gave situations in which homo-
geneous ideals are guaranteed to have a greatest common divisor (GCD) in certain
degrees. We will apply these results and refer the reader to [1] for the full details.

4.2 Ideals Containing Regular Sequences

In this section we present two useful facts of ideals containing regular sequences. Our
first fact concerns regular sequences and minimal generating sets.

Proposition 4.4. Let I � S be a proper, non-zero homogeneous ideal generated in
degrees less than or equal to d . Suppose that I contains a homogeneous regular
sequence of length r . Then there exists a minimal generating set for I containing
r homogeneous polynomials in degrees less than or equal to d which are a regular
sequence.

Proof. We begin by listing a minimal set of generators of I in order of increasing
degree, say F1; F2; F3; : : : ; Fx , where Fi is a homogeneous polynomial of degree di .
Fix Ji D .F1; F2; : : : ; Fi / for all i � 1. Then clearly ht.J1/ � ht.J2/ � � � � � ht.Jx/

and ht.Jx/ � r .
We start our regular sequence with F1. If r D 1 then we are done. So we may as

well suppose r � 2. Let }1; : : : ; }l be the associated prime ideals of .F1/. Then each
}i is a minimal associated prime ideal of .F1/ and has height 1. Let s be the smallest
integer i such that ht.Ji / � 2. Now if .Js/ds

� .}1/ds
[ .}2/ds

[ � � � [ .}l/ds
[

.Js�1/ds
then either .Js/ds

� .}i /ds
for some i , or .Js/ds

� .Js�1/ds
. (In general,

if V and W1; : : : ; Wg are finite-dimensional vector spaces over an infinite field such
that V � W1 [ � � � [Wg , then it follows from elementary properties that V � Wj for
some 1 � j � g.) But since Js�1 D .F1; : : : ; Fs�1/ and Js D .F1; : : : ; Fs�1; Fs/,
we see that .Js�1/ds

is a proper vector subspace of .Js/ds
. In addition, ht.Js/ � 2

but for each i we have that ht.}i / D 1, and so .Js/ds
6� .}i /ds

for any i . Therefore,
.Js/ds

6� .}1/ds
[ .}2/ds

[ � � � [ .}l /ds
[ .Js�1/ds

, and so there existsH1 2 .Js/ds

such that H1 … }1 [ }2 [ � � � [ }l [ Js�1. Since H1 is not in the union of the
associated prime ideals of .F1/, we see that F1;H1 is a regular sequence. Further,
since H1 … Js�1, we must have that F1;H1 is part of a minimal generating set of I .
We are done if r D 2.

The proof is completed by repeatedly applying the above argument. For exam-
ple, if r D 3 we work with a minimal generating set which includes F1;H1, say
F1;H1; T1; : : : ; Tl , where F1 is a form of degree d1,H1 is a form of degree ds and Ti

is a form of degree di � ds .

Our second fact involves building regular sequences in certain degrees.

Lemma 4.5. Let I � S be a homogeneous ideal containing a homogeneous regular
sequence F1; : : : ; Fn. There exist general linear forms L1; L2; : : : ; Ln 2 S such that
F1L

e1

1 ; : : : ; FnL
en
n is a regular sequence for any integers e1; : : : ; en � 0.
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We will only use Lemma 4.5 in the case of three variables. For concreteness we
prove the lemma in this special case; the proof for the general case follows the same
outline.

Proof. Let e1; e2; e3 � 0 be integers. Since F1; F2; F3 is a regular sequence, we
know that S=.F1; F2/ has a non-zero-divisor. Hence, there exists a general linear form
L3 2 S such that L3 is a non-zero-divisor on S=.F1; F2/. By assumption, F3 is also a
non-zero-divisor on S=.F1; F2/. So F3L

e3

3 is a non-zero-divisor on S=.F1; F2/. That
is, F1; F2; F3L

e3

3 is a regular sequence. We can repeat this argument on the regular
sequence F3L

e3

3 ; F1; F2 to obtain a regular sequence F3L
e3

3 ; F1; F2L
e2

2 where L2 is
a non-zero-divisor on S=.F3L

e3

3 ; F1/. Repeating the argument a third time gives the
desired regular sequence F1L

e1

1 ; F2L
e2

2 ; F3L
e3

3 .

5 Subsets of Complete Intersections in P 2

We begin our study of Conjecture 3.6 in P2. We provide a self-contained proof here,
but remark that the result also follows from the known case of the EGH Conjecture
when n D 2. The following proposition describes the desired bounds.

Proposition 5.1. Let c and t be positive integers such that c < HC:I:.d1;d2/.t/, where
d1 � 2.

(i) If t � d2 � 2, then c.t/ D c.

(ii) If t � d2 � 1, then c.t/ D c � 1.

Proof. Let D D ¹d1; d2º. In order to calculate the t -D-binomial expansion of c we
use the “Pascal’s Table”:

degree: 0 1 � � � d1 � 1 � � � d2 � 1 d2 � � � d1 C d2 � 1 � � �
HC:I:.d2/: 1 1 � � � 1 � � � 1 0 � � � 0 !
HC:I:.d1;d2/: 1 2 � � � d1 � � � d1 d1 � 1 � � � 0 !

Since c < HC:I:.d1;d2/.t/, note that when finding the t -D-binomial expansion of c
we will only use entries from the row labeled HC:I:.d2/. If the expansion uses terms
from degrees � d2 � 1 then, after shifting each entry one unit to the right in the table,
the resulting number c.t/ will equal c � 1; otherwise, c.t/ D c.

Notation 5.2. Let H be the Hilbert function of some finite set of distinct points in Pn.
We let �.H / D min¹t � 1 j H .t/ D 0º.

Our next proposition is a key fact in verifying Conjecture 3.6 for P2.
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Proposition 5.3. If there exist finite sets of distinct points X � Y 2 C.I..d1; d2/ such
that �.H.X// > d2 � d1 � 2, then H.X; l/ 6D H.X; l C 1/ for any degree
l 2 ¹d2 � 1; : : : ; �.H.X// � 2º.
Proof. SupposeH.X; l/ D H.X; lC1/ for some l 2 ¹d2�1; : : : ; �.H.X//�2º.
Let j , where d2� 1 � j � �.H.X//� 2, be the least degree s such thatH.X; s/ D
H.X; s C 1/. Fix W D Y nX. Then, by Facts 2.8 and Theorem 4.1, we have

H.W ; t / D H.Y ; t / �H.X; d1 C d2 � 2 � t /
D H.Y ; d1 C d2 � 2 � t / �H.X; d1 C d2 � 2 � t /:

Fix � D �.H.Y // � �.H.X// D d1 C d2 � 1 � �.H.X//. If � D 0 then
H.W ; 0/ D 0, and so H.W / is not an O-sequence, a contradiction. So we may
as well assume that � 6D 0. Then

H.W ; t / D H.Y ; d1 C d2 � 2 � t /; for 0 � t � � � 1
H.W ; t / � H.Y ; d1 C d2 � 2 � t / � 1 � t; for � � t � d1 C d2 � 2:

SinceH.Y ; t / D H.Y ; tC1/C1 for d2�1 � t � �.H.Y //�1 andH.X; j / D
H.X; j C 1/, we have

H.W ; d1 C d2 � 2 � j / D H.W ; d1 C d2 � 2 � .j C 1//C 1:
In addition, we have

d1 C d2 � 2 � .j C 1/ D d1 C d2 � 3 � j
� d1 C d2 � 3 � .�.H.X// � 2/
D d1 C d2 � 1 � �.H.X//
D �:

Hence c D H.W ; d1 C d2 � 2 � .j C 1// � d1 C d2 � 2 � .j C 1/, implying
c<d1Cd2�2�.j C1/> D c. But

H.W ; d1 C d2 � 2 � j / D c C 1 > c D c<d1Cd2�2�.j C1/>:

We conclude that H.W / is not an O-sequence, a contradiction.

We are now in a situation to prove Conjecture 3.6 for P2.

Theorem 5.4. LetH D ¹htºt	0 be the first difference Hilbert function of some finite
set of distinct points in P2 such that H � HC:I:.d1;d2/, where d1 � 2. Then there
exist finite sets of distinct points X � Y 2 C.I..d1; d2/ such that H.X/ D H if
and only if htC1 � h.t/

t for all t � 1.
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Proof. If htC1 � h.t/
t for all t � 1, then Theorem 3.4 gives that there exists a subset

X of Rect.C.I..d1; d2/ with H.X/ D H .
Now suppose there exist finite sets of distinct points X � Y 2 C.I..d1; d2/ such that

H.X/ D H . We may as well assume 1 � ht < HC:I:.d1;d2/.t/ and htC1 6D 0,

otherwise the inequality htC1 � h.t/
t is trivially satisfied.

Assume t � d2 � 2. Then ht � t , and hence h<t>
t D ht . Macaulay’s Theorem

implies htC1 � h<t>
t D ht . By Proposition 5.1, h.t/

t D ht , and so htC1 � h.t/
t .

Now let t � d2� 1. Then ht � d1� 1 � d2� 1 � t , and so h<t>
t D ht . As above,

htC1 � h<t>
t D ht . If htC1 D ht then we have a contradiction to Proposition 5.3. So

htC1 � ht � 1 and we are done by Proposition 5.1.

6 Subsets of C.I..2 ; d2; d3/ with d2 D d3

Recall that when n D 3 the outstanding cases for the EGH Conjecture are the “tight
degrees” D D ¹d1; d2; d3º where d1 � d2 � d3 � d1 C d2 � 2. In the geometric
setting of Conjecture 3.6, we now focus our attention on the cases when d1 D 2 and
d2 D d3. For ease of notation, in this section we set d2 D d3 D d � 2.

We first describe the necessary bounds of Clements–Lindström. In the following
arguments, we use the summation notation

P

where, by convention, if j > c then we
set
Pc

j D 0.

Proposition 6.1. Let b and t be positive integers such that b < HC:I:.2;d;d/.t/.

(i) Assume t � d � 2.

(a) If 1 � b � t , then b.t/ D b.

(b) If b � .t C 1/, then b.t/ D b C 1.

(ii) If t D d � 1, then b.d�1/ D b � 1.

(iii) Assume d � t � 2d � 3.

(a) If b � 2d � t � 1, then b.t/ D b � 1.

(b) If b > 2d � t � 1, then b.t/ D b � 2.

Proof. Let D D ¹2; d; dº. To calculate the t -D-binomial expansion of b we use the
“Pascal’s Table”:

degree: 0 1 � � � d � 1 d d C 1 d C 2 � � � 2d � 2 2d � 1 � � �
HC:I:.d/: 1 1 � � � 1 0 0 0 � � � 0 0 !
HC:I:.d;d/: 1 2 � � � d d � 1 d � 2 d � 3 � � � 1 0 !
HC:I:.2;d;d/: 1 3 � � � 2d � 1 2d � 1 2d � 3 2d � 5 � � � � � � � � � � � �
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Since b < HC:I:.2;d;d/.t/, note that when finding the t -D-binomial expansion of b
we will only use entries from the rows labeled HC:I:.d/ and HC:I:.d;d/. Moreover,
the expansion can involve at most one entry from the row labeledHC:I:.d;d/. Observe
that when we shift each summand x in the binomial expansion of b one place to the
right in the table, the resulting corresponding summand for b.t/ is either x � 1 or x or
xC1 depending on the degree x is associated to. We discuss each assertion separately.

(i) Note that HC:I:.d;d/.i/ D i C 1 for 1 � i � d � 1.
(a) Suppose that 1 � b � t � d � 2. Then the t -D-binomial expansion of

b involves only entries from the row labeled HC:I:.d/. Since t � d � 2,
when a number x D 1 in the expansion is shifted one place to the right in
the table the resulting number is x D 1. Thus, b.t/ equals b.

(b) Assume that b � t C 1. Then the t -D-binomial expansion of b involves
exactlyHC:I:.d;d/.t/ D tC1 and entries from the row labeledHC:I:.d/.
When the entry HC:I:.d;d/.t/ D t C 1 is shifted one place to the right in
the table one obtains t C 2. Since t � d � 2, the shifting of the remaining
entries in the expansion results in the same number of 1’s as there were to
begin with. Thus, b.t/ D b C 1.

(ii) Suppose that t D d � 1. If b < d then the .d � 1/-D-binomial expansion of b is

b D HC:I:.d/.d � 1/CHC:I:.d/.d � 2/C � � � CHC:I:.d/.d � b/ D
b
X

iD1

1:

If b � d , then we can write b D d C a where 0 � a < HC:I:.d;d/.d � 2/ D
d � 1 (since the expansion can involve at most one entry from the row labeled
HC:I:.d;d/). Thus the .d � 1/- D-binomial expansion of b is

b D HC:I:.d;d/.d � 1/C
aC1
X

iD2

.HC:I:.d/.d � i// D d C
a
X

iD1

1:

When shifting the entries in the expansion of b one place to the right in the table,
we see that shifting the number x from the degree d � 1 column results in x � 1
and shifting the other entries results in the same numbers as before shifting. Thus,
b.d�1/ D b � 1.

(iii) Suppose d � t � 2d � 3.
(a) If b D 2d � t � 1, then the t -D-binomial expansion of b is

b D HC:I:.d;d/.t/ D 2d � t � 1
giving

b.t/ D HC:I:.d;d/.t C 1/ D 2d � t � 2 D b � 1:
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If b < 2d � t � 1, then the t -D-binomial expansion of b involves only
entries from the row labeled HC:I:.d/. Since d � t � 2d � 3, the shifting
of the entry in the degree d �1 column to the right guarantees b.t/ D b�1.

(b) If b > 2d � t � 1, then the t -D-binomial expansion of b involves exactly
HC:I:.d;d/.t/ and a sum of entries from the row labeled HC:I:.d/. Since
d � t � 2d � 3, the shifting of the entries HC:I:.d;d/.t/ D 2d � t � 1
and HC:I:.d/.d � 1/ D 1 to the right results in b.t/ D b � 2.

We now verify the desired Hilbert function bounds of Conjecture 3.6 degree-by-
degree.

Lemma 6.2. Suppose that X � Y 2 C.I..2; d; d/ are finite sets of distinct points
where H.X/ D ¹htºt	0. Then htC1 � h.t/

t for 1 � t � d � 2.

Proof. As argued in Theorem 5.4, we can assume 0 < ht < HC:I:.2;d;d/.t/.

Case 1: Assume 1 � ht � t . By Proposition 6.1, h.t/
t D ht . But we have h<t>

t D ht

and so, since H.X/ is an O-sequence, htC1 � h<t>
t D ht D h.t/

t .

Case 2: Now assume ht D .tC1/Ca for some non-negative integer a. By Proposition
6.1 and its proof we can assume 0 � a < HC:I:.d;d/.t � 1/ D t and have h.t/

t D
ht C 1. Note that the t -binomial expansion of ht is

ht D
 

t C 1
t

!

C
 

t � 1
t � 1

!

C � � � C
 

t � a
t � a

!

:

So h<t>
t D ht C 1. By Macaulay’s Theorem, htC1 � ht C 1 D h.t/

t .

The next lemma will be helpful in verifying Conjecture 3.6 for degree t D d � 1
both for complete intersections of type ¹2; d; dº and ¹3; d; dº.

Lemma 6.3. If T is a finite set of distinct points in P3 such that H.T ; d � 1/ D
H.T ; d / and H.T ; d � 1/ � d � 1, then T cannot be contained in any complete
intersection of type ¹2; d; dº or ¹3; d; dº.

Proof. Assume T � K 2 C.I..2; d; d/. Without loss of generality, we can assume
that no point of T lies on the hyperplane x0 D 0. Let I � kŒx1; x2; x3� be the image
of I.T / obtained by moding out by x0. Then I contains a regular sequence F;G;H
where deg.F / D 2 and deg.G/ D deg.H/ D d , and H.kŒx1; x2; x3�=I / D H.T /.
SinceH.T / has maximal growth in degree .d �1/, I.T / has no generator of degree
d and I.K/ � .I.T /�d�1/. This implies that I has a regular sequence of length 3
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in degrees � d � 1. Further, if we let H.T ; d � 1/ D hd�1 then observe that the
.d � 1/-binomial expansion of hd�1 is

hd�1 D
 

d � 1
d � 1

!

C
 

d � 2
d � 2

!

C � � � C
 

d � hd�1

d � hd�1

!

:

Thus, by Gotzmann’s Persistence Theorem [15], the Hilbert polynomial of the quotient
kŒx1; x2; x3�=.I�d�1/ is

P.t/ D
 

t

0

!

C
 

t � 1
0

!

C � � � C
 

t C 1 � hd�1

0

!

:

We see that .I�d�1/ defines a scheme of dimension 0 in P2. Thus, the length of the
maximal regular sequence contained in I using elements of degree� d�1 is exactly 2,
a contradiction. The same argument holds if T is contained in a complete intersection
of type ¹3; d; dº.

We can now prove Conjecture 3.6 in the case of complete intersections of type
¹2; d; dº in degree t D d � 1.

Lemma 6.4. Suppose that X � Y 2 C.I..2; d; d/ are finite sets of distinct points
where H.X/ D ¹htºt	0. Then hd � h.d�1/

d�1
.

Proof. As in Lemma 6.2, we can assume 0 < hd�1 < HC:I:.2;d;d/.d �1/ D 2d �1.
By Proposition 6.1, we need to show hd � h.d�1/

d�1
D hd�1 � 1.

Case 1: Assume first that hd�1 � d � 1. Since H.X/ is an O-sequence, hd �
h<d�1>

d�1
D hd�1. The inequality hd � hd�1 � 1 now follows immediately from

Lemma 6.3.

Case 2: Suppose now that d � hd�1 � 2d � 2. We assume that hd D hd�1 C i ,
where i � 0. By Theorem 4.1,

H.Y nX; d � 1/ D 2d � 1 � hd�1 � i
H.Y nX; d / D 2d � 1 � hd�1:

Since 2d � 1 � i � hd�1 � d � 1, we have .2d � 1 � hd�1 � i/<d�1> D
2d � 1 � hd�1 � i . But if i � 1, then 2d � 1 � hd�1 > 2d � 1 � hd�1 � i
contradicting the fact thatH.Y nX/ is an O-sequence. Thus i D 0, and the argument
used in Case 1 but applied to H.Y nX/ completes the proof.

The next lemma verifies Conjecture 3.6 for the tail-end degrees. It takes advantage
of the fact that Hilbert functions of subsets of complete intersections come in pairs by
reducing the situation to the beginning degrees in the complementary Hilbert function.
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Lemma 6.5. Suppose that X � Y 2 C.I..2; d; d/ are finite sets of distinct points where
H.X/ D ¹htºt	0. Then htC1 � h.t/

t for d � t < 2d � 2.

Proof. As in Lemma 6.2, we can assume that 0 < ht < HC:I:.2;d;d/.t/. By Propo-

sition 6.1, if ht � 2d � t � 1 then h.t/
t D ht � 1, otherwise h.t/

t D ht � 2.
We work with H.Y nX/. Note that (by Theorem 4.1)

H.Y nX; 2d � t � 2/ D 4d � 2t � 3 � htC1

H.Y nX; 2d � t � 1/ D 4d � 2t � 1 � ht :

Since d � t < 2d � 2, we must have 0 < 2d � t � 2 � d � 2 and thus H.Y n X/
satisfies the hypotheses of Lemma 6.2. Further, we can assume 1 � H.Y nX; 2d �
t � 2/ < HC:I:.2;d;d/.2d � t � 2/.
Case 1: Assume htC1 > 2d � t � 2. Then H.Y nX; 2d � t � 2/ < 2d � t � 1. By
Proposition 6.1 and Lemma 6.2, H.Y n X; 2d � t � 1/ � H.Y n X; 2d � t � 2/
and hence htC1 � ht � 2 < ht � 1. We conclude that htC1 � h.t/

t .

Case 2: Assume htC1 � 2d � t � 2. Then H.Y nX; 2d � t � 2/ � 2d � t � 1. By
Proposition 6.1 and Lemma 6.2,H.Y nX; 2d � t�1/ � H.Y nX; 2d � t�2/C1,
and so htC1 � ht � 1. If ht � 2d � t � 1, then htC1 � ht � 1 D h

.t/
t and we are

done.
In the case that ht � 2d � t , assume htC1 D ht � 1. Then

H.Y nX; 2d�t�1/ > H.Y nX; 2d�t�2/ D .H.Y nX; 2d�t�2//<2d�t�2>;

a contradiction. Thus, if ht � 2d � t , we must have htC1 � ht � 2 D h.t/
t .

Remark 6.6. As noted by an anonymous referee, one can in spirit simplify Lemma
6.5 with the more general statement: Suppose X � Y 2 C.I..d1; : : : ; dn/ where
H.X/ D ¹hlºl	0. Let s D d1 C � � � C dn � n and t be a non-negative integer such

that t � s. Then if the inequality htC1 � h
.t/
t holds we have that hs�t � h

.s�t�1/
s�t�1

also holds. In order to rigorously prove this statement for complete intersections of
type ¹2; d; dº, for example, one would have to work out the details from the proof of
part (iii) Proposition 6.1 and Lemma 6.5.

We are now ready to prove the main theorem of this section. That is, we now prove
Conjecture 3.6 for complete intersections of type ¹2; d2; d3º.

Theorem 6.7. Let H D ¹hiºi	0 be the first difference Hilbert function for some
finite set of distinct points in P3 such that H � HC:I:.2;d2;d3/. Then there exist
finite sets of distinct points X � Y 2 C.I..2; d2; d3/ such that H.X/ D H if and
only if htC1 � h.t/

t for all t � 1.
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Proof. Using the results of Caviglia–Maclagan [3], the only case remaining to con-
sider is: C.I..2; d2; d3/ where d2 D d3. Let d D d2 D d3. Suppose that htC1 � h.t/

t

for all t � 1. By Theorem 3.4 there exists a subset X of Rect.C.I..2; d; d/ such that
H.X/ D H .

Conversely, suppose X � Y 2 C.I..2; d; d/ such that H.X/ D H . The asser-
tion is obviously true if the subset X is of cardinality 1, 2, or 2d2. Using the symmetry
of Theorem 4.1, the assertion is also obviously true if X is of cardinality 2d2 � 1
or 2d2 � 2. Thus we can assume that the cardinality of X is strictly between 2 and
2d2 � 2.

The inequality htC1 � h.t/
t is clearly satisfied if htC1 D 0. Since we have at least

3 points in our subset X, in order for H.Y n X/ to be an O-sequence, Theorem 4.1
guarantees that H .s/ D 0 for s � 2d � 1. Thus we need only verify htC1 � h.t/

t

for t � 2d � 3. All of these cases are verified in Lemmas 6.2, 6.4, and 6.5.

7 Subsets of C.I..3; d2; d3/ with d3 D d2

In this section we prove Conjecture 3.6 for complete intersections of type ¹3; d2; d3º
where d2 D d3. As before, for ease of notation, we set d2 D d3 D d .

Proposition 7.1. Let b and t be positive integers such that b < HC:I:.3;d;d/.t/.

(i) Assume t � d � 2.

(a) If 1 � b � t , then b.t/ D b.

(b) If t C 1 � b � 2t , then b.t/ D b C 1.

(c) If b � 2t C 1, then b.t/ D b C 2.

(ii) Assume t D d � 1.

(a) If b � 2d � 2, then b.d�1/ D b � 1.

(b) If b � 2d � 1, then b.d�1/ D b.

(iii) Assume t D d .

(a) If b � d � 1, then b.d/ D b � 1.

(b) If b � d , then b.d/ D b � 2.

(iv) Assume d C 1 � t � 2d � 2.

(a) If b � 2d � t � 1, then b.t/ D b � 1.

(b) If 2d � t � b � 4d � 2t � 1, then b.t/ D b � 2.

(c) If b � 4d � 2t , then b.t/ D b � 3.
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Proof. Let D D ¹3; d; dº. The “Pascal’s Table” used to find the t -D-binomial expan-
sion of b is:

degree: 0 1 � � � d � 1 d d C 1 d C 2 � � � 2d � 2 2d � 1 � � �
HC:I:.d/: 1 1 � � � 1 0 0 0 � � � 0 0 !
HC:I:.d;d/: 1 2 � � � d d � 1 d � 2 d � 3 � � � 1 0 !
HC:I:.3;d;d/: 1 3 � � � 3d � 3 3d � 2 3d � 3 3d � 6 � � � � � � � � � � � �

Since b < HC:I:.3;d;d/.t/, note that when finding the t -D-binomial expansion of b
we will only use entries from the rows labeled HC:I:.d/ and HC:I:.d;d/. Moreover,
the expansion can involve at most two entries from the row labeled HC:I:.d;d/. As
with Proposition 6.1, observe that when we shift each summand x in the binomial
expansion of b one place to the right in the table, the resulting corresponding summand
for b.t/ is either x � 1 or x or x C 1 depending on the degree x is associated to.

(i) Note that HC:I:.d;d/.i/ D i C 1 for 1 � i � d � 1.
(a) The proof is identical to that of Case (i) (a) of Proposition 6.1.

(b) This proof is identical to that of Case (ii) (b) of Proposition 6.1.

(c) If b � 2t C 1, then the t -D-binomial expansion of b involves

HC:I:.d;d/.t/ D t C 1;HC:I:.d;d/.t � 1/ D t
and entries from the row labeled HC:I:.d/. When the entry

HC:I:.d;d/.t/ D t C 1
is shifted one place to the right in the table one obtains t C 2, and when
HC:I:.d;d/.t � 1/ D t is shifted one obtains t C 1. Since t � d � 2,
the shifting of the remaining entries in the expansion results in the same
number of 1’s as there were to begin with. Thus, b.t/ D b C 2.

(ii) Suppose that t D d � 1.
(a) Suppose b � 2d � 2. The proof of this case is identical to that of Case 2 of

Proposition 6.1.

(b) Suppose b � 2d � 1. Write b D d C .d � 1/C a for some non-negative
integer a. Since the expansion can involve at most two entries from the
row labeled HC:I:.d;d/, we can assume 0 � a < HC:I:.d;d/.d � 3/ D
d � 2. In this case the .d � 1/-D-binomial expansion of b involves exactly
HC:I:.d;d/.d � 1/ D d and HC:I:.d;d/.d � 2/ D d � 1 and entries
from the row labeled HC:I:.d/. When the entry HC:I:.d;d/.d � 1/ D d

is shifted one place to the right in the table one obtains d � 1, and when
the entry HC:I:.d;d/.d � 2/ D d � 1 is shifted one obtains d . Since
t D d � 1, the shifting of the remaining entries in the expansion results in
the same number of 1’s as there were to begin with. Thus, b.t/ D b.
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(iii) Assume t D d .
(a) Assume b � d � 1. If b D d � 1, then the d -D-binomial expansion of b is

b D HC:I:.d;d/.d/ giving b.d/ D HC:I:.d;d/.d C 1/ D d � 2 D b � 1.
Otherwise, if b < d � 1, then the d -D-binomial expansion of b involves
only entries from the row labeled HC:I:.d/. Since t D d , the shifting of
the entry HC:I:.d/.d � 1/ one place to the right results in b.t/ D b � 1.

(b) Assume b � d . We have two cases to consider.

Case A: Suppose b < 2d � 1. Then the d -D-binomial expansion of b in-
volvesHC:I:.d;d/.d/ D d �1 and entries from the row labeledHC:I:.d/.
When we shift the entries one place to the right, the entryHC:I:.d;d/.d/ D
d � 1 results in d � 2, the entry HC:I:.d/.d � 1/ D 1 results in 0 and the
remaining entries produce no change. So, b.d/ D b � 2.
Case B: Suppose b � 2d � 1. In this case the d -D-binomial expansion of
b involves exactly HC:I:.d;d/.d/ D d � 1 and HC:I:.d;d/.d � 1/ D d

and entries from the row labeled HC:I:.d/. When we shift the entries one
place to the right, the entry HC:I:.d;d/.d/ D d � 1 results in d � 2, the
entry HC:I:.d;d/.d � 1/ D d results in d � 1 and the remaining entries
produce no change. So, b.d/ D b � 2.

(iv) Assume d C 1 � t � 2d � 2.
(a) Suppose b � 2d�t�1. If b D 2d�t�1, then the t -D-binomial expansion

of b is b D HC:I:.d;d/.t/ D 2d�t�1 and so b.t/ D HC:I:.d;d/.tC1/ D
2d � t � 2 D b � 1. Otherwise, if b < 2d � t � 1 then the t -D-binomial
expansion of b involves only entries from the row labeled HC:I:.d/. Since
d C 1 � t � 2d � 2, the shifting of the entry from the column d � 1
guarantees b.t/ D b � 1.

(b) Suppose 2d � t � b � 4d � 2t � 1. First note that if b D 4d � 2t � 1,
then the t -D-binomial expansion of b is

b D HC:I:.d;d/.t/CHC:I:.d;d/.t � 1/ D .2d � t � 1/C .2d � t /
and so

b.t/ D HC:I:.d;d/.t C 1/CHC:I:.d;d/.t/

D .2d � t � 2/C .2d � t � 1/ D b � 2:

Otherwise, if b < 4d�2t�1, then the t -D-binomial expansion of b involves
exactly HC:I:.d;d/.t/ and entries from the row labeled HC:I:.d/. In this
case, the shifting of the entries HC:I:.d;d/.t/ and HC:I:.d/.d � 1/ gives
b.t/ D b � 2.
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(c) Assume b � 4d�2t . In this case the t -D-binomial expansion of b involves
HC:I:.d;d/.t/ D 2d�t�1;HC:I:.d;d/.t�1/ D 2d�t�2 and a sum of en-
tries from the row labeledHC:I:.d/. Since dC1 � t � 2d�2, the shifting
of the entriesHC:I:.d;d/.t/;HC:I:.d;d/.t�1/, andHC:I:.d/.d �1/ D 1
one place to the right results in b.t/ D b � 3.

We can now verify Conjecture 3.6 in the case of d1 D 3 � d2 D d3. As in
Section 6, we proceed with a series of lemmas that argue degree-by-degree.

Lemma 7.2. Suppose that X � Y 2 C.I..3; d; d/ are finite sets of distinct points where
H.X/ D ¹htºt	0. Then htC1 � h.t/

t for 1 � t � d � 2.

Proof. As argued in Theorem 5.4, we can assume 0 < ht < HC:I:.3;d;d/.t/. If
ht � 2t then the argument is identical to that seen for Lemma 6.2. So we may as well
assume ht � 2t C 1 and write ht D .t C 1/C t C a for some non-negative integer a.
By Proposition 7.1 and its proof we can assume 0 � a < HC:I:.d;d/.t � 2/ D t � 1
and have h.t/

t D ht C 2. Note that the t -binomial expansion of ht is

ht D
 

t C 1
t

!

C
 

t

t � 1

!

C
 

t � 2
t � 2

!

C � � � C
 

t � .aC 1/
t � .aC 1/

!

:

So h<t>
t D ht C 2. By Macaulay’s Theorem, htC1 � ht C 2 D h.t/

t as desired.

Lemma 7.3. Suppose that X � Y 2 C.I..3; d; d/ are finite sets of distinct points where
H.X/ D ¹htºt	0. Then hd � h.d�1/

d�1
.

Proof. As in Lemma 6.2, we can assume 0 < hd�1 < HC:I:.3;d;d/.d �1/ D 3d �3.
Case 1: Suppose hd�1 � 2d � 2 D 2.d � 1/. We are claiming that hd � h.d�1/

d�1
D

hd�1 � 1. Suppose, on the contrary, hd D hd�1 � 1C i where i � 1.
Case 1a: Assume hd�1 � d � 1. Then hd�1 � 1 C i D hd � h<d�1>

d�1
D hd�1.

Thus, i D 1 and so hd D hd�1, a contradiction to Lemma 6.3 which implies that
hd 6D hd�1. We conclude that hd � hd�1 � 1 as desired.
Case 1b: We now assume d � hd�1 � 2.d�1/. Then the .d�1/-binomial expansion
of hd�1 is

hd�1 D
 

d

d � 1

!

C
 

d � 2
d � 2

!

C
 

d � 3
d � 3

!

C � � � C
 

d � .hd�1 � d/ � 1
d � .hd�1 � d/ � 1

!

:

Thus hd�1 � 1C i D hd � h<d�1>
d�1

D hd�1 C 1. Since i � 1, we have that either
hd D hd�1 or hd D hd�1 C 1. Now, by [14, Theorem 2.5], there exists a subset
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W � X � Y such that

H.W ; j / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

hj ; for j � d � 2;
hd�1; for j D d � 1;
hd�1; for j D d ;
0; for j � d C 1.

Note that I.W /�d�1 D I.X/�d�1, but that H.W ; d / and H.X; d /, and hence
I.W /d and I.X/d , may not be equal. However, working with W will lead to the
desired contradiction.

We can assume that no point of Y lies on the hyperplane x0 D 0. Let I �
kŒx1; x2; x3� be the image of I.W / obtained by moding out by x0. Then I con-
tains a regular sequence F;G;H 2 kŒx1; x2; x3�, where deg.F / D 3 � deg.G/ D
d D deg.H/, and H.kŒx1; x2; x3�=I / D H.W /. Further, by assumption,
H.W ; d � 1/ D hd�1 D H.W ; d /. Since H.W / has maximal growth off
by one in degree .d � 1/, I.W / (and hence I ) has at most one generator of degree d .

Claim 1: We can assume that dimk.I.W /1/ D dimk.I.W /2/ D 0.
Proof of Claim 1: If dimk.I.W /1/ 6D 0 then W is contained in a complete intersection
of type ¹1;m; n/ where 1 � m � n � d . But HC:I:.1;m;n/ reaches the value d at
most once while H.W ; d � 1/ D H.W ; d / D hd�1 � d , a contradiction. Thus
we assume dimk.I.W /1/ D 0.

If dimk.I.W /2/ 6D 0 then W � Y 00 2 C.I..2;m; n/ where 2 � m � n � d . By
adding points to Y 00, we see that W is contained in a complete intersection of type
¹2;m;mº. Proposition 6.1 and Theorem 6.7 imply that this is impossible. Hence we
also can assume that dimk.I.W /2/ D 0.

This finishes the proof of Claim 1.

Claim 2: I.W / has exactly one generator of degree d .

Proof of Claim 2: Since we know that I.W / has at most one generator of degree d ,
it suffices to show that I.W / has at least one generator of degree d . Suppose, on the
contrary, that I.W / has no generator of degree d . Then I.Y / � .I.W /�d�1/, and so
W � Y 0 2 C.I..l; m; n/ where 1 � l � m � n � d � 1 and l � 3. If l D 1 or 2
we obtain a contradiction from Claim 1. Thus we assume that l D 3. First suppose
that m D n D d � 1 and let I.Y 0/ D .F1; F2; F3/ where deg.F1/ D 3 � deg.F2/ D
deg.F3/ D d � 1. By Theorem 4.1, H.Y 0 nW / is an O-sequence and

H.Y 0 nW ; d � 2/ D 3d � hd�1 � 6
H.Y 0 nW ; d � 1/ D 3d � hd�1 � 5:

Now if 3d � 6 � hd�1 � d � 2, then 3d � hd�1 � 5 > .3d � 6 � hd�1/
<d�2> D

3d�6�hd�1, a contradiction. So, we assume that 3d�6�hd�1 > d�2. In this case,
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3d�6�hd�1 � 2d�6 and so the .d�2/-binomial expansion ofH.Y 0nW ; d�2/ D
3d � 6 � hd�1 is

3d � 6 � hd�1 D
 

d � 1
d � 2

!

C
 

d � 3
d � 3

!

C
 

d � 4
d � 4

!

C � � � C
 

r

r

!

;

where there are 2d � hd�1 � 5 terms of the form
�

j
j

�

. Thus,

.3d � 6 � hd�1/
<d�2> D

 

d

d � 1

!

C .2d � hd�1 � 5/ D 3d � hd�1 � 5:

We see that H.Y 0 n W / has maximal growth in degree d � 2. Thus I.Y 0 n W /

has no generators of degree .d � 1/, and so .F1; F2; F3/ � .I.Y 0 nW /�d�2/. By
Proposition 4.4, .I.Y 0 n W /�d�2/ contains a regular sequence G1; G2; G3, where
deg.G1/ � deg.G2/ � deg.G3/ � d � 2. We can assume, without loss of generality,
that no point of Y 0 lies on the hypersurface V.x0/. Let J � R=.x0/ be the canonical
image of I.Y 0nW /. ThenH.Y 0nW / D H.kŒx1; x2; x3�=J / and J contains 3 forms
in degrees� d�2which are a regular sequence. By Lemma 4.5, J contains 3 forms in
degree d�2which are a regular sequence. ButH.kŒx1; x2; x3�=J ; d�2/ � d�1 and
H.kŒx1; x2; x3�=J / has maximal growth in degree d � 2. Hence, by [1, Proposition
2.7], J d�2 and J d�1 have a greatest common divisor (GCD) of positive degree, a
contradiction.

If m or n is strictly less than d � 1 we can add points to Y 0 so that W is contained
in a complete intersection of type ¹3; d � 1; d � 1º. By above, we see that this leads to
a contradiction. Therefore, I.W / must have a generator of degree d , completing the
proof of Claim 2.

By Proposition 4.4, we know that I contains a regular sequence F;G where 3 D
deg.F / � e D deg.G/ � d � 1. By Lemma 4.5, there exist linear forms L1; L2 2
kŒx1; x2; x3� such that FLd�3

1 ; GLd�e
2 2 kŒx1; x2; x3� are again a regular sequence.

ConsiderN D .I�d�1/ � A D kŒx1; x2; x3�. Then, since I has exactly one generator
of degree d ,H.A=N; d �1/ D hd�1 andH.A=N; d/ D hd�1C1, which is maximal
growth in degree .d � 1/. Further, by Gotzmann’s Persistence Theorem [15], the
Hilbert polynomial of A=N is

P.t/ D
 

t C 1
t

!

C .lower terms/

which has degree 1. Thus,N has height 1, a contradiction since FLd�3
1 ; GLd�e

2 2 Nd

is a regular sequence.

Case 2: Now suppose that 2d � 1 � hd�1 < 3d � 3. We are claiming that hd �
h

.d�1/

d�1
D hd�1. Suppose that hd D hd�1Ci where i � 1. We work withH.Y nX/



192 S.M. Cooper

to arrive at a contradiction. By Theorem 4.1,

H.Y nX; d / D 3d � 2 � hd�1 � i
H.Y nX; d C 1/ D 3d � 3 � hd�1:

We have 3d � 2 � hd�1 � i � d � 1 � i < d . Thus .3d � 2 � hd�1 � i/<d> D
3d � 2 � hd�1 � i . We see that if i > 1, then 3d � 3 � hd�1 > 3d � 2 � hd�1 � i
which implies thatH.Y nX/ is not an O-sequence. So from this point on we may as
well assume i D 1. The argument is now completed as in Case 1a but with replacing
H.X/ with H.Y n X/ and using degrees � d when defining the ideal J (i.e.,
H.Y nX/ has maximal growth in degree d ).

Lemma 7.4. Suppose that X � Y 2 C.I..3; d; d/ are finite sets of distinct points where
H.X/ D ¹htºt	0. Then hdC1 � h.d/

d
.

Proof. As in past cases, we can assume 0 < hd < HC:I:.3;d;d/.d/. By Propo-

sition 7.1, if hd � d � 1, then h.d/

d
D hd � 1; and if d � hd � 3d � 3, then

h
.d/

d
D hd � 2.

Now, by Theorem 4.1,

H.Y nX; d � 1/ D 3d � 3 � hdC1

H.Y nX; d / D 3d � 2 � hd :

In what follows we apply Lemma 7.3 to H.Y n X/. Without loss of generality we
may as well assume 1 � H.Y nX; d � 1/ < 3d � 3 D HC:I:.3;d;d/.d � 1/.
Case 1: Assume 3d � 3 � hdC1 � 2d � 1. By Proposition 7.1 and Lemma 7.3, we
must have

3d � 2 � hd � .3d � 3 � hdC1/
.d�1/ D 3d � 3 � hdC1;

and so hdC1 � hd � 1. Thus we are done if hd � d � 1.
If d � hd � 3d � 3, then we need only rule out the case where hdC1 D hd � 1.

Assuming we are in this case, we see that hdC1 D hd�1 � d�1. But, by assumption,
3d � 3 � hdC1 � 2d � 1, and so hdC1 � d � 2, a contradiction.
Case 2: Now suppose that 1 � 3d � 3 � hdC1 � 2d � 2. Then, by Proposition 7.1
and Lemma 7.3,

3d � 2 � hd � .3d � 3 � hdC1/
.d�1/ D 3d � 4 � hdC1

and so hdC1 � hd � 2 < hd � 1, as desired.
As in Lemma 6.5, the following lemma takes advantage of the fact that Hilbert

functions of subsets of complete intersections come in pairs by reducing the situation
of the tail-end-degrees to the beginning degrees in the complementary Hilbert function.
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Lemma 7.5. Suppose X � Y 2 C.I..3; d; d/ are finite sets of distinct points where
H.X/ D ¹htºt	0. Then htC1 � h.t/

t for d C 1 � t � 2d � 2.

Proof. As argued in Lemma 6.2, we can assume 1 � ht < HC:I:.3;d;d/.t/. We show
that we can apply Lemma 7.2 toH.Y nX/ to obtain the desired inequality. We know
that H.Y nX/ is an O-sequence and

H.Y nX; 2d � t � 1/ D 6d � 3t � 3 � htC1

H.Y nX; 2d � t / D 6d � 3t � ht :

Note that since d C1 � t � 2d �2, we have 1 � 2d � t �1 � d �2. We may as well
assume that 1 � H.Y nX; 2d � t � 1/ < HC:I:.3;d;d/.2d � t � 1/ D 6d � 3t � 3.
Case 1: Suppose first that 1 � htC1 � mC n � t � 2. Then

2.mC n � t � 1/C 1 � 3mC 3n � 3t � 3 � htC1 < 3.mC n � t � 1/:
So, by Proposition 7.1 and Lemma 7.2,H.YnX; 2d�t / � H.YnX; 2d�t�1/C2.
Thus htC1 � ht � 1. By Proposition 7.1, if 1 � ht � 2d � t � 1, then h.t/

t D ht � 1
and we are done. We consider two possible cases.

Case 1a: Assume that 2d � t � ht � 4d � 2t � 1. By Proposition 7.1, h.t/
t D ht � 2.

Since htC1 � ht � 1, we need only consider the situation where htC1 D ht � 1.
Assume htC1 D ht � 1. Then

2d � t � 1 � H.Y nX; 2d � t � 1/ D 6d � 3t � 2 � ht � 2.2d � t � 1/:
Thus the .2d � t � 1/-binomial expansion of 6d � 3t � ht � 2 can take one of two
forms: if 6d � 3t � ht � 2 6D 2d � t � 1, then

6d � 3t � ht � 2 D
 

2d � t
2d � t � 1

!

C
 

2d � t � 2
2d � t � 2

!

C � � � C
 

r

r

!

;

with 4d �2t�ht �2 terms
�

l
l

�

and so .6d �3t�ht �2/<2d�t�1> D 6d �3t�ht�1;
if 6d�3t�ht�2 D 2d�t�1, then .6d�3t�ht�2/<2d�t�1> D 6d�3t�ht�2 D
2d � t � 1.

For either of the expansions, H.Y n X; 2d � t / > .6d � 3t � ht � 2/<2d�t�1>

and so H.Y nX/ is not an O-sequence, a contradiction. Therefore, htC1 � ht � 2.
Case 1b: Now assume that 4d � 2t � ht < 6d � 3t D HC:I:.3;d;d/.t/. By Propo-

sition 7.1, h.t/
t D ht � 3. Since htC1 � ht � 1, we need only consider the situa-

tions where htC1 D ht � 1 or htC1 D ht � 2. If htC1 D ht � 1 or ht � 2 then
H.Y nX; 2d � t � 1/ � 2d � t � 1, and so .H.Y nX; 2d � t � 1//<2d�t�1> D
H.Y n X; 2d � t � 1/. But H.Y n X; 2d � t / > H.Y n X; 2d � t � 1/,
a contradiction to the fact that H.Y nX/ is an O-sequence.
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Case 2: Now suppose 2d � t � 1 � htC1 � 4d � 2t � 3. Then
2d � t � H.Y nX; 2d � t � 1/ D 6d � 3t � 3 � htC1 � 2.2d � t � 1/:

By Proposition 7.1 and Lemma 7.2,H.Y nX; 2d � t / � H.Y nX; 2d � t�1/C1.
As a consequence we see that htC1 � ht �2. By Proposition 7.1, if ht � 4d �2t �1,
then h.t/

t D ht � 2 and we are done. So assume that 4d � 2t � ht < 6d � 3t D
HC:I:.3;d;d/.t/. By Proposition 7.1, h.t/

t D ht � 3. Since htC1 � ht � 2, we need
only rule out the case where htC1 D ht � 2. In this case the same argument used as in
Case 1b gives a contradiction.

Case 3: If htC1 � 4d � 2t � 2, then Proposition 7.1 says that h.t/
t D ht � 3. In

this case we have H.Y n X; 2d � t � 1/ � 2d � t � 1. By Proposition 7.1 and
Lemma 7.2, H.Y nX; 2d � t / � H.Y nX; 2d � t � 1/ and hence htC1 � ht � 3
as claimed.

We can now prove Conjecture 3.6 for complete intersections of type ¹3; d; dº.

Theorem 7.6. Let H D ¹hiºi	0 be the first difference Hilbert function for some
finite set of distinct points in P3 such thatH � HC:I:.3;d;d/. Then there exist finite
sets of distinct points X � Y 2 C.I..3; d; d/ such that H.X/ D H if and only if
htC1 � h.t/

t for all t � 1.

Proof. Suppose that htC1 � h.t/
t for all t � 1. By Theorem 3.4 there exists a subset

X of Rect.C.I..3; d; d/ such that H.X/ D H .
Conversely, suppose X � Y 2 C.I..3; d; d/ such that H.X/ D H . The asser-

tion is obviously true if the subset X is of cardinality 1, 2, or 3d2. Using the symmetry
of Theorem 4.1, the assertion is also obviously true if X is of cardinality 3d2 � 1
or 3d2 � 2. Thus we can assume that the cardinality of X is strictly between 2 and
3d2 � 2.

The inequality htC1 � h.t/
t is clearly satisfied if htC1 D 0. Since we have at least

3 points in our subset X, in order for H.Y n X/ to be an O-sequence, Theorem 4.1
guarantees that H .s/ D 0 for s � 2d . Thus we need only verify htC1 � h.t/

t for
t � 2d � 2. All of these cases are verified in Lemmas 7.2, 7.3, 7.4, and 7.5.

8 An Application: The Cayley–Bacharach Property

Under the hypothesis that Conjecture 3.6 is true, we conclude by presenting a family
of point sets which are guaranteed to have the Cayley–Bacharach Property.

Definition 8.1. Let X be a finite set of r distinct points in Pn. X is said to have the
Cayley–Bacharach Property, denoted CBP, if every subset of .r � 1/ points of X has
the same Hilbert function.
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We have the following fact:

Lemma 8.2 ([14, Theorem 2.5]). Let X D ¹P1; : : : ; Prº be a finite set of distinct points
in Pn. Fix an integer s; 1 � s < r . Then there exists a subset W of X of exactly s
points such that H.W ; t / D min¹H.X; t /; sº for all t � 0.

We refer toH.W / in Lemma 8.2 as the truncated Hilbert function ofH.X/ at s. For
example, if X � P2 has Hilbert functionH.X/ D .1; 3; 6; 9; 9; : : :/, then the truncated
Hilbert function ofH.X/ at s D 5 is .1; 3; 5; 5; : : :/. Using Theorem 2.13, we see that
if X is a set of r distinct points in Pn with H.X/ D .1; h1; h2; : : : ; hl�1; r; r; r; : : :/

where l�1 is the largest degree t withH.X; t / 6D r , then the truncated Hilbert function
ofH.X/ at .r � 1/ is .1; h1; h2; : : : ; hl�1; r � 1; r � 1; : : :/. Lemma 8.2 immediately
gives:

Lemma 8.3. A set X D ¹P1; : : : ; Prº � Pn of r distinct points has the CBP if and only
if the Hilbert function of every subset of .r � 1/ points of X is precisely the truncated
Hilbert function of H.X/ at .r � 1/.

Much effort has been put into characterizing the Hilbert functions of sets with the
Cayley–Bacharach Property. We now present a special family of subsets of com-
plete intersections which have the CBP. We first need to define minimal ¹d1; : : : ; dnº-
functions.

Definition 8.4. Fix integers t; h � 1 and 1 � d1 � d2 � � � � � dn with the property
that h � HC:I:.d1;:::;dn/.t/. Let D D ¹d1; : : : ; dnº and suppose that the t -D-binomial
expansion of h is

h D HC:I:.dat ;:::;dn/.t/CHC:I:.dat�1
;:::;dn/.t � 1/C � � � CHC:I:.dai

;:::;dn/.i/:

We define h.t/ to be the number

h.t/ D HC:I:.dat ;:::;dn/.t � 1/CHC:I:.dat�1
;:::;dn/.t � 2/

C � � � CHC:I:.dai
;:::;dn/.i � 1/:

Remarks 8.5. Let h; t; d1; : : : ; dn be as in Definition 8.4. The following assertions are
straightforward to verify.

(i) h.t/ depends on h; t , and ¹d1; : : : ; dnº. It will be clear from our discussions what
d1; : : : ; dn are.

(ii) The decomposition for h.t/ is the .t � 1/-D-binomial expansion of h.t/.

(iii) h.t�1/

.t/
D h.

(iv) Note that h.t/ is the least integer g, 1 � g � HC:I:.d1;:::;dn/.t � 1/, such that
h � g.t�1/.
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Definition 8.6. Let ¹hiºi	0 � HC:I:.d1;:::;dn/ be an O-sequence and D D
¹d1; : : : ; dnº. We say that ¹hiºi	0 is a minimal D-function if ht�1 D .ht /.t/ for
all t � 1 such that ht 6D 0.

Proposition 8.7. Assume that Conjecture 3.6 is true for the integers D D ¹d1; : : : ; dnº
and let X be a subset of a complete intersection of type ¹d1; : : : ; dnº. If H.X/ is a
minimal D-function, then X has the CBP.

Proof. Suppose X D ¹P1; : : : ; Prº � Y where Y is a complete intersection as in the
hypothesis. Using Lemma 8.3, we need to show that the Hilbert function of every
subset of .r � 1/ points of X is the truncated Hilbert function of H.X/ at .r � 1/.
Since H.X/ D ¹htºt	0 is assumed to be a minimal D-function, ht�1 D .ht /.t/ for
all t � 1.

Let W be a subset of .r � 1/ points of X. Then W � Y . Let H.W / D ¹gtºt	0.
Since W and X are subsets of a complete intersection of type ¹d1; : : : ; dnº, the as-
sumption that Conjecture 3.6 holds true gives that htC1 � h.t/

t and gtC1 � g.t/
t for

all t � 1.
By [13, Theorem 3.4] and [14, Lemma 2.3], gt � ht for all t � 0. Since W is a

subset of .r�1/ points of X, there is a positive integer e such that gt D ht for t � e�1
and ge < he . Let �.H.X// be the least degree t for which ht D 0. Clearly 1 � e �
�.H.X//�1. Suppose for a moment that e < �.H.X//�1. Then, taking Remarks 8.5
into account, we see that gt < ht for all e � t � �.H.X//�1. ButP1

j D1 gj D .r�1/
and

P1
j D1 hj D r , a contradiction. We conclude e D �.H.X// � 1, and so H.W /

must indeed be the truncated Hilbert function ofH.X/ at .r � 1/. Therefore X has the
CBP.

It is well-known [7, 6] that a finite set of points X � P2 is a complete intersection if
and only if X has the CBP andH.X/ is symmetric, i.e. H.X; t / D H.X; N � t /
for 0 � t � N , where N D (the least integer where H.X/ D 0/ � 1. Thus, when
n D 2 we can use Proposition 8.7 to guarantee that certain sets of points are complete
intersections.

Lemma 8.8. Let X be a subset of a complete intersection of type ¹d1; d2º, where
d1 � 2. Suppose t � 1 is the least degree in which H.X/ is non-zero. If H.X/
is a minimal D-function, where D D ¹d1; d2º, such that ht D 1, then H.X/ is
symmetric.

Proof. Let H.X/ D ¹hsºs	0. If ht D HC:I:.d1;d2/.t/, then we must have
H.X/ D HC:I:.d1;d2/.

If s � t and hs < HC:I:.d1;d2/.t/, then the s-D-binomial expansion of hs has the
form

hs D HC:I:.d2/.s/CHC:I:.d2/.s � 1/C � � � CHC:I:.d2/.s � hs C 1/:
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Thus,

.hs/.s/ D HC:I:.d2/.s � 1/CHC:I:.d2/.s � 2/C � � � CHC:I:.d2/.s � hs/:

Observe that if t < d2, then this means hs D 1 for all s � t . Further, if t � d2, then
we must have hsC1 D hs � 1 for s � d2 � 1, hs D hd2�1 for d1 � 1 � s � hd2�1

and hs D hs�1 C 1 for s � hd2�1 � 1.

Corollary 8.9. Let X be a subset of a complete intersection ¹d1; d2º, where d1 � 2,
such that H.X/ satisfies the hypotheses of Lemma 8.8. Then X is a complete inter-
section in P2.
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1 Introduction

The term “Homological Conjectures” is used here to refer to a certain set of related
conjectures about homological properties of commutative rings. While there are nu-
merous conjectures in this area, the ones discussed here are those collected in a mono-
graph of Mel Hochster in 1975 entitled “Topics in the homological theory of modules
over commutative rings” [24], as well as several ones that have developed out of them.
In this monograph Hochster stated a number of earlier conjectures, added a few of his
own, and solved several of them. Since then new ones have been added and some of
them have been settled. It is the aim of this article to outline this history, starting at
the beginning and ending by giving an idea of the present situation. We will attempt
to give some idea of the methods and concepts behind the various advances, and give
references to more complete accounts.

The article is organized as follows. In each of the first few sections we discuss a set
of related conjectures on Hochster’s diagram and follow their development up to the
present. These sections follow a roughly chronological order as far as the origins of the
conjectures are concerned, beginning with Serre’s multiplicity conjectures which were
one of the major influences behind the whole subject. However, there has been recent
progress even on some of the earliest conjectures, and we will discuss, for example,
recent developments on Serre’s original conjectures before getting to generalizations
of these conjectures which came much earlier. In addition to the major advances, we
will mention many other developments, but there are a lot of them and we have not
attempted to cover them all.

This research was supported by NSF grant 0500588.



200 P. C. Roberts

We give Hochster’s 1975 diagram below. The conjectures appearing in the diagram
will then be stated in the following sections. We give a table of contents below, includ-
ing the numbers from the diagram that are defined in each section. Those denoted M0,
M1, and M2 are parts of (8), the Serre Multiplicity Conjectures, and (9), the Strong
Multiplicity Conjectures.

Here is the outline.

(i) The Serre Multiplicity Conjectures ((1), (8)).

(ii) The Peskine–Szpiro Intersection Conjecture ((2), (3), (4), (5)).

(iii) Generalizations of the Multiplicity Conjectures ((9), (12), (13)).

(iv) The Monomial, Direct Summand, and Canonical Element Conjectures ((10),
(11))

(v) Cohen–Macaulay Modules and Algebras ((6), (7)).

(vi) The Syzygy Conjecture and the Improved New Intersection Conjecture.

(vii) Tight Closure Theory

(viii) The Strong Direct Summand Conjecture.

(ix) Almost Cohen–Macaulay Algebras.

(x) A Summary of Open Questions.

There have been several summaries of progress on these conjectures over the years,
including two in the last decade. Jan Strooker [63] has an book on the state of the
Homological Conjectures in 1990; it also includes a lot of the necessary background
in Commutative Algebra. There is also a set of notes coming from a Minicourse on
Classical Questions in Commutative Algebra at the University of Utah which covered
many aspects of the subject. These notes can be found at the University of Utah web-
site at http://www.math.utah.edu/vigre/minicourses/2004.html#b. Hochster also has a
summary from the conference in honor of Phil Griffith which talks about some of the
recent developments [30].

We next give the diagram of implications between various conjectures from
Hochster’s monograph from 1975. The conjectures will be stated in detail in subse-
quent sections. Implications are indicated in the diagram by arrows, and the diagram
is set up so that, for the most part, the stronger conjectures are toward the top and the
left side. Since 1975 some of the conjectures have been proven or counterexamples
have been found, and in addition some new implications have been found and new
conjectures added to the list. We will give a more recent version, with conjectures
which have been settled taken off the list and new ones added, later in the paper.
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(1) Rigidity

(10) Direct Summand (2) Zero Divisor

(11) Monomial (3) Intersection

(6) Small C–M
Modules

(7) Big C–M Modules (5) Bass

(4) Homological
Height

(12) Strong Intersection

M0 of (9)C(13)
Codimension

(M1 )M2),
regular case

M0 of (9)

(9) Strong Multiplicities (8) Serre

Figure 1. Hochster’s diagram of homological conjectures in 1975.

2 The Serre Multiplicity Conjectures

Among the earliest conjectures in this subject were those of Jean-Pierre Serre which
arose from his theory of intersection multiplicities using homological methods. The
idea was to extend the algebraic theory from classical methods that worked, say, for
intersections of curves in the plane, to a more general situation.

We look briefly at the case of the intersection of two curves in the affine plane over
an algebraically closed field k. In this case each curve is defined by one polynomial
in two variables, say x and y, so we have polynomials f and g defining the two
curves. The condition that a point p in the plane corresponding to a maximal ideal m



202 P. C. Roberts

of A D kŒx; y� is an isolated point of intersection means that the ideal .f; g/ generated
by f and g is primary to the maximal ideal of the local ring Am. The intersection
multiplicity is then defined simply to be the length of the quotient Am=.f; g/, or,
equivalently, its dimension over the field k.

There is more than one way to generalize this to an arbitrary dimension d . First,
one can take the intersection of d hyperplanes; in the case of affine space, for exam-
ple, this can be done in the same way as curves in the plane. One can also define the
intersection of two subvarieties (or subschemes). These subvarieties will be defined
locally by ideals I and J at a point of intersection corresponding to a maximal ideal
m. However, in this case, defining the intersection multiplicity to be the length of
Am=.I; J / does not work; for example, Bézout’s Theorem in projective space would
not hold with this definition. What Serre did was to correct this definition by taking an
Euler characteristic involving higher Tor modules. He defined the intersection multi-
plicity for any pair of modulesM and N over a regular local ring A such thatM ˝N
has finite length as follows.

�.M;N/ D
d
X

iD0

.�1/i length.TorRi .M;N //:

The case of subvarieties above is whereM D Am=I and N D Am=J . In this case,
letting Am D R, we have TorR0 .M;N / D TorR0 .R=I;R=J / D R=I ˝R R=J D
R=.I; J /, so that the previous definition appears as the first term in this alternating
sum. Serre’s definition has many nice properties, such as additivity in each variable,
but now some conditions which were clear before, such as the fact that it is nonneg-
ative, are not so clear. Serre stated three conjectures which are equivalent to the four
we give here. The notation Mi refers to Hochster’s diagram.

Conjecture 1. (i) (M0) dim.M/C dim.N / � dim.R/.

(ii) (M1: Vanishing) If dim.M/C dim.N / < dim.R/, then �.M;N/ D 0.
(iii) (Nonnegativity) �.M;N/ � 0.
(iv) (M2: Positivity) If dim.M/C dim.N / D dim.R/, then �.M;N/ > 0.

Serre’s original conjectures, as stated in Serre [62], V.B.3 and V.B.4, were nonneg-
ativity, M0, and that dim.M/C dim.N / D dim.R/ if and only if �.M;N/ > 0. The
reason for stating them the way we did comes from later developments.

Before continuing, it will be good to go over some of the issues that arose in study-
ing these questions, since they have been part of this subject ever since. First, there
are three basic cases. Since R is a regular local ring it is an integral domain and has a
maximal ideal m and residue field k. The cases are
(i) Characteristic zero: R contains a field of characteristic zero.

(ii) Positive characteristic: R contains a field of positive characteristic p for some p.

(iii) Mixed characteristic: R has characteristic zero but k has positive characteristic
p for some p.
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The first two cases are called the equicharacteristic case. The mixed characteristic
case can be further divided into the unramified case, in which the prime p is not in m2,
and the ramified case, in which it is in m2. The most difficult case for these conjectures
and many others is the ramified case in mixed characteristic.

The method of proof used by Serre in the equicharacteristic case, called “reduction
to the diagonal”, goes roughly as follows. First, one shows that the statments hold
if one of the modules, say M , is of the form R=I , where I is an ideal generated
by a regular sequence (see Serre [62, Section IV.A.3]). If R is a complete equichar-
acteristic regular local ring, the Cohen structure theorem says that it is a power se-
ries ring over a field. If we now have arbitrary modules M and N over a power
series ring kŒŒX1; : : : ; Xd ��, we think of N as being a module over another power
series ring kŒŒY1; : : : ; Yd �� and consider the “complete tensor product” M Ő kN as a
module over kŒŒX1; : : : ; Xd ; Y1; : : : ; Yd ��; notice that the tensor product is taken over
the subfield k. Let I denote the ideal of kŒŒX1; : : : ; Xd ; Y1; : : : ; Yd �� generated by
.X1 � Y1; : : : ; Xd � Yd /; these elements form a regular sequence and define the diag-
onal subscheme in Spec.kŒŒXi ; Yi ��/. Then one shows that

M ˝R N Š .M Ő kN/˝kŒŒXi ;Yi �� .kŒŒXi ; Yi ��=I /

and similarly for higher Tors. This reduces the question to one of the form a regular
ring modulo a regular sequence, where it all works. Needless to say there are a lot of
details omitted here; the complete story can be found in Serre [62].

In addition to the equicharacteristic case, Serre proved these results in the case of an
unramified ring of mixed characteristic, and he proved the first statement for general
regular local rings.

Serre also stated conjectures about partial Euler characteristics; that is, sums of the
form

�i .M;N / D
d
X

j Di

.�1/j �i length.Tori .M;N //:

We note that this gives the alternating sum of lengths of Tor, starting now with the term
Tori .M;N / with a positive sign instead of Tor0.M;N / D M ˝R N . Serre proved
that in the equicharacteristic case, we have �i .M;N / � 0 for all i � 0, and, in fact,
if Tori .M;N / 6D 0 and i > 0, then �i .M;N / > 0. This implies in particular the
following for equicharacteristic rings in the case whereM ˝R N has finite length. In
fact, this was a result of Auslander [1] for all pairs of modules over unramified regular
local rings, and it was conjectured to be true in general.

Conjecture 2 (The Rigidity of Tor (1)). Let M and N be finitely generated modules
over a regular local ring. Then if Tori .M;N / D 0 for some i > 0, then Torj .M;N / D
0 for all j � i .

The general case of Rigidity (R is still assumed regular) was proven by Lichten-
baum in [43]. He also extended Serre’s results on partial Euler characteristics to the
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unramified case for i � 2 or whenM andN are torsion-free; Hochster [26] completed
the proof in the unramified case. The conjecture on partial Euler characteristics is still
open for ramified regular local rings of mixed characteristic.

In the remainder of this section we discuss later developments on these conjectures.
R is always assumed to be a regular local ring.

2.1 The Vanishing Conjecture

The first of the multiplicity conjectures to be proven was the Vanishing Conjecture.
This was proven independently in Roberts [51] (see also [53]) and by Gillet and Soulé
in [18] (see also [19]). Both of the proofs involved new machinery in either Algebraic
Geometry orK-theory. Before discussing these developments we put them into a more
recent context.

Let A be a local ring, and let M be a module of finite projective dimension. Then
M has a finite free resolution

0! Fk ! Fk�1 ! � � � ! F0 !M ! 0:

It is often more convenient to replaceM with its resolution

0! Fk ! Fk�1 ! � � � ! F0 ! 0:

This is a perfect complex, which means a bounded complex of finitely generated
free modules. IfM and N are both modules of finite projective dimension, and

0! Gt ! Gt�1 ! � � � ! G0 ! N ! 0

is a free resolution of N , then the tensor product of complexes F� ˝ G� gives a com-
plex with homology Tori .M;N /. Since all modules over a regular local ring have
finite projective dimension, this means that Serre’s multiplicity conjectures can be for-
mulated in terms of perfect complexes.

We now let K0.A/ denote the K-group of perfect complexes over a local ring A.
K0.A/ is defined to be the free abelian group with generators isomorphism classes
ŒF�� of perfect complexes with relations given by

(i) ŒF�� D ŒF 0��C ŒF 00� � if there is a short exact sequence of complexes

0! F 0� ! F� ! F 00� ! 0:

(ii) ŒF�� D ŒG�� if there exists a map of complexes F� ! G� that induces an isomor-
phism on homology modules.

A map of complexes that induces an isomorphism on homology modules is called a
quasi-isomorphism.

In addition to its structure as an abelian group, K0.A/ has a product defined by
the tensor product of complexes, which we have already seen is related to intersection
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multiplicities. We define the support of a complex to be the union of the supports
of its homology modules, or, equivalently, the set of prime ideals p for which the
localization of the complex at p is not exact. If F� is a perfect complex with support
W and G� one with support Z, then it is not hard to show that the support of F�˝G�
is W \Z. Putting this together, we can see that K0.A/ has a filtration by support and
this filtration is compatible with the product structure.

As mentioned above, the Vanishing Conjecture for regular rings was proven around
1985; there were two independent proofs using different methods. However, in both
cases the main idea was to replace the above filtration by a grading with good prop-
erties. Suppose that we could give K0.R/, for a regular local ring R, a grading by
codimension, so that we hadK0.R/ D ˚d

iD0Gi , where Gi gave the component repre-
senting elements with support of codimension i , and satisfying the condition that the
intersection pairing mapped Gi � Gj to GiCj

L

GiCj C1 ˚ � � � : Then if M and N
were modules (or perfect complexes) with dimM C dimN < dimR, they would be
represented by sums of elements of Gi and Gj respectively with i C j > d , so the
intersection product would be zero. This, roughly, is what each of the proofs did.

In the proof be Gillet and Soulé the grading was given by eigenspaces of Adams
operations on K0.R/; see [19] for details.

In Roberts [51] the grading was given by a map to the rational Chow group, which
we define briefly. For a Noetherian ring A, we define the i th graded piece of the ratio-
nal Chow group, denoted CHi .A/Q, to be the Q vector space on generators Œp�, where
p is a prime ideal such that the dimension of A=p is i modulo an equivalence rela-
tion called rational equivalence. Rational equivalence is defined by setting div.q; x/
to zero in CHi .A/, where q is a prime ideal such that A=q has dimension i C 1, x is
an element of A not in q, and, letting B D A=q,

div.q; x/ D
X

p

length.Bp=xBp/Œp�;

where the sum is over p with dim.A=p/ D i . There is then a map � from K0.A/

to operators on CHi .A/Q. If A is a regular local ring, we can replace dimension by
codimension and obtain a grading with the properties above. For details see Fulton
[16] and Roberts [53] and [56].

These techniques allowed one to prove the Vanishing Conjecture also in the case in
whichM and N are modules of finite projective dimension over a complete intersec-
tion. We will discuss other generalizations in a later section.

2.2 Gabber’s Proof of the Nonnegativity Conjecture

The third of Serre’s conjectures, Nonnegativity, was proven by Gabber around 1996.
Gabber never published the proof, but a brief summary appears in Berthelot [3], and
more extensive versions can be found in Hochster [27] and Roberts [57]. Again there
was a new ingredient; this time it was a theorem of de Jong on the existence of regular
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alterations [39]. We give here a special case of this theorem which applies to this
problem.

Theorem 1 (A. J. de Jong). Let A be a local integral domain which is essentially of fi-
nite type over a discrete valuation ring. Then there exists a schemeX with a projective
map X ! Spec.A/ such that

(i) X is an integral regular scheme (that is, all the local rings of X are regular).

(ii) The field of rational functions k.X/ is a finite extension of the field of fractions
of A.

There is some work involved in reducing to the case in which A is essentially of
finite type over a discrete valuation ring, and even in this case the proof is quite non-
trivial. We mention briefly where de Jong’s theorem is applied. It suffices to show that
�.A=p; A=q/ � 0 for prime ideals p and q such that .p;q/ is primary to the maximal
ideal. The theorem is applied to one of the quotients, say A=p. The machinery of
intersection theory must be extended to perfect complexes on schemes and projective
morphisms as well as over commutative rings. One curious feature of the proof is that
at one point it is necessary to assume that the original local ring is ramified; it is easy to
reduce to this case but unexpected that it would be useful. The proof also gives a new
proof of the Vanishing Conjecture. We refer to the references above for descriptions
of the proof.

2.3 The Positivity Conjecture

The positivity conjecture remains open. There have been several approaches to it, and
we mention two.

One approach is based on the following. Let M and N be two modules over a
regular local ring R such that dimM C dimN D dimR. IfM is Cohen–Macaulay, its
minimal free resolution has length dimR � dimM , and if N is also Cohen–Macaulay,
then the condition on the length of the resolution ofM implies that Tori .M;N / D 0

for i > 0. Thus �.M;N/ is the length ofM ˝R N , which is clearly positive. Hence
if we can reduce to the case in whichM and N are Cohen–Macaulay, we are done.

A method for reducing to this case is, first, to reduce to the case where M and
N are of the form A=p by taking filtrations with quotients of this form; since the
Vanishing Conjecture holds, we can reduce to modules of this form. If we could now
find an A=p-module of the dimension of A=p which was Cohen–Macaulay for any p,
we could, again using vanishing, reduce to the case in which M and N are Cohen–
Macaulay and complete the proof. The missing fact is the existence of what are called
“small Cohen-Macauly modules”; these will be discussed in a later section. (What we
have just described is the arrow from “Small C–M Modules” to “(M1 )M2), regular
case” in Hochster’s diagram.)

The other, more recent, attempts to prove the Positivity Conjecture use Gabber’s
construction. Kurano and Roberts [42] give a criterion for positivity to hold using this
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construction. Dutta [10] gives a formula for intersection multiplicities using the blow-
up of the maximal ideal of a regular local ring, again using Gabber’s ideas. It is not
clear whether any of these methods will lead to a proof of positivity, however, and that
conjecture remains open.

3 The Peskine–Szpiro Intersection Conjecture

Serre’s introduction of homological methods into intersection theory created much
more interest in questions on homological algebra, and, in particular, properties of
modules of finite projective dimension. The Auslander–Buchsbaum–Serre theorem
states that every R-module has finite projective dimension if and only if the ring R
is regular, so one point of view is that properties of modules over regular local rings
should extend to properties of modules of finite projective dimension over arbitrary
local rings. One direction was to generalize the multiplicity properties themselves;
this will be considered in the next section. A different direction was started by Peskine
and Szpiro with their “Intersection Theorem”. This was a main theorem of their paper
Dimension projective finie et cohomologie locale, which was one of the most important
papers in the development of the Homological Conjectures.

The Peskine–Szpiro Intersection Conjecture states:

Conjecture 3. Let A be a local ring, let M be an A-module of finite projective di-
mension, and let N be a module such that M ˝ N has finite length. Then the Krull
dimension of N is less than or equal to the projective dimension ofM .

They stated this result as a theorem rather than a conjecture, since it was a theorem
for rings of positive characteristic and rings essentially of finite type over a field of
characteristic zero. We discuss this in more detail below.

In some ways this conjecture is analogous to Serre’s conjectures. By the Auslander-
Buchsbaum Theorem, the depth of a module is related to the projective dimension (if
finite) by

projdimM C depthM D depthA:

or

projdimM D depthA � depthM:

Thus the Peskine–Szpiro Theorem can be stated that

dimN C depthM � depthA:

This is analogous, but certainly not equivalent, to the Serre theorem. Its interest lies
in the fact that it implies several other conjectures from that time, of which we state
two.
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Conjecture 4 (Bass). If a ring A has a finitely generated nonzero module of finite
injective dimension, then A is Cohen–Macaulay.

Conjecture 5 (Auslander). Let M be a finitely generated module of finite projective
dimension. If a 2 A is a nonzerodivisor onM , then a is a nonzerodivisor on A.

We refer to the paper of Peskine and Szpiro [47] for proofs that these conjectures
are implied by the Intersection Conjecture.

A newer version of the Intersection Conjecture was introduced shortly thereafter; it
is in the spirit of generalizing from modules to complexes referred to in the previous
section.

Conjecture 6 (The New Intersection Conjecture). Let A be a local ring of dimension
d . If

0! Fk ! Fk�1 ! � � � ! F0 ! 0

is a complex of finitely generated free modules such that Hi .F�/ has finite length for
each i andH0.F�/ 6D 0, then k � d .

That this implies the original conjecture can be seen by applying the New Intersec-
tion Conjecture to a projective resolution ofM tensored with a suitable module of the
form A=p for p a prime ideal of A in the support of N .

In addition to stating this conjecture and several others, Peskine and Szpiro intro-
duced two methods that are still very much in use in this area. Perhaps the most
important is the use of the Frobenius map and reduction to positive characteristic. We
briefly recall how this works.

Let A be a ring of positive characteristic p. Then the Frobenius map, which we de-
note F , is the ring homomorphism defined by F.a/ D ap; it is a ring homomorphism
since p D 0 on A so .a C b/p D ap C bp for all a and b in A. The basic idea of
using this map to prove conjectures is to assume that there is a counterexample, and
then to take a limit over powers of the Frobenius map to obtain a contradiction. A
simpler method, which works sometimes, is to show that a high enough power of the
Frobenius map produces an example that can be shown not to exist.

The second step in this process is to reduce the characteristic zero case to the case
of positive characteristic. Peskine and Szpiro introduced this method for this kind of
problem, and it was completed by Hochster.

The procedure is fairly complicated, but one step, reduction from finitely generated
over a field to positive characteristic, goes something like this. Given a counterexample
over a ring that is a finitely generated ring over a field of characteristic zero, one first,
using the fact that there are only finitely many elements to consider, reduces to the
case of a ring that is finitely generated over the rational numbers, and then one reduces
further to an example over a ring finitely generated over the integers. Finally, one
shows that for all but finitely many primes p, the reduction modulo p and gives a
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counterexample in characteristic p. Peskine and Szpiro used this method to prove the
Intersection Conjecture in the case of a local ring essentially of finite type over a field
of characteristic zero, and they also used the Artin approximation Theorem to extend
this to the case of a ring whose completion was the completion of a ring essentially of
finite type over a field of characteristic zero. Shortly thereafter Hochster was able to
extend this method to the general equicharacteristic case.

3.1 Hochster’s Metatheorem

One of the main results of Hochster [24] was the following.

Theorem 2. Let � be a system of polynomial equations in d Cq variables X1; : : : ; Xd

and Y1; : : : ; Yq over Z, say

F1.X1; : : : ; Xd ; Y1; : : : ; Yq/ D 0
:::

Ft .X1; : : : ; Xd ; Y1; : : : ; Yq/ D 0:
Suppose that � has a solution in a local ring R which contains a field of charac-

teristic zero such that dim.R/ D d and the values x1; : : : ; xd for X1; : : : ; Xd form a
system of parameters for R.

Then there exists a local ring S containing a field of characteristic p > 0 such
that dim.S/ D d and there is a solution of � such that the values x0

1; : : : ; x
0
d

for
X1; : : : ; Xd form a system of parameters for S .

The proof of this theorem used Artin Approximation, and it finished the character-
istic zero case of several of the conjectures, including the Intersection Conjecture and
various others that we will discuss below.

The case of mixed characteristic was proven in Roberts [52]. Like the Serre vanish-
ing theorem, this used the theory of local Chern characters. Another essential ingredi-
ent was a theorem relating Chern characters in positive characteristic to limits over the
Frobenius map. Details of this and more can be found in Roberts [53].

The other main technique introduced in the paper of Peskine and Szpiro was local
cohomology. As this is a topic that is still extremely important in this area, we will
review some of the important points. For more complete introductions to the subject
we refer to Brodman and Sharp [5] and Twenty-Four Hours of Local Cohomology [38].

Let A be, as usual, a commutative Noetherian ring, and let I be an ideal of A. For
any A-module M , we define the submodule �I .M/ to be the set of m 2 M that are
annihilated by a power of I . It is easy to see that this is indeed a submodule of M
and that �I defines a left exact functor from the category of A-modules to itself. The
functor is not right exact, however, and the right derived functors of �I applied to a
module M , denoted H i

I .M/, are the local cohomology modules of M with support
in I .
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The most important case as far as the Homological Conjectures are concerned is
the case in which A is local and I is the maximal ideal m. We note that if I and J
are ideals with the same support, so that we have J n � I and Im � J for some m
and n, then it is clear that �I .M/ D �J .M/ for all modules M , and thus the local
cohomology modules with supports in I and J are the same. If m is the maximal ideal
of a local ring A of dimension d , we can thus replace m by an ideal I generated by a
system of parameters .x1; : : : ; xd /. Now given a set of generators for I , there are two
standard methods for computing the local cohomology modules.

First, we let C � denote the complex

0! A!
Y

i

Axi
!
Y

i<j

Axi xj
! � � � ! Ax1x2���xd

! 0;

where theA at the left has degree zero and theAx1x2���xd
at the right has degree d . The

maps are given by the inclusions with appropriate signs. Then it can be shown that

H i
I .M/ D H i .M ˝A C

�/

for any A-moduleM .
The second method is as a direct limit. For each n we take the Koszul complex

K�.xn
1 ; : : : ; x

n
d
/. For m > n there is a map of complexes from K�.xn

1 ; : : : ; x
n
d
/ to

K�.xm
1 ; : : : x

m
d
/. The limit of these is, in fact the above complex and tensoring with

M again gives local cohomology.
For a ring of positive characteristic one can also define local cohomology as a limit

over powers of the Frobenius map, and this was one of the methods introduced by
Peskine and Szpiro. We will not discuss this further here, but we will return to the
topic of local cohomology in later sections.

One of the facts that is used over and over in studying these conjectures is the
following. If we assume that A is a complete domain of dimension d , then there
is an element c 6D 0 that annihilates the local cohomology modulesH i

m.A/ for i < d .
This was proven in Roberts [50], where the element c was taken to be in a product of
annihilators of the cohomology of a dualizing complex, and in Hochster and Huneke
[31], where c was taken to be an element such that the localization Ac D AŒ1=c� is
Cohen–Macaulay. Keeping in mind that the ring A is Cohen–Macaulay if and only if
the local cohomology modules H i

m are zero for i < d , it is not surprising that this
fact is useful for approaching these conjectures in the non-Cohen–Macaulay case; this
method works especially well when combined with the use of the Frobenius map.

To conclude this section we note that Avramov, Buchweitz, and Iyengar have formu-
lated a generalization of the New Intersection Conjecture, called the “Class Inequal-
ity”, to differential modules. A complex is a special case of a differential module; the
differential module is the direct sum of the modules in the complex with differential
given by the sum of the boundary maps. They prove this inequality in the equicharac-
teristic case; the case of mixed characteristic is still open. We refer to [2] for details.
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4 Generalizations of the Multiplicity Conjectures

As has already been mentioned, one direction of research on these conjectures was to
generalize Serre’s conjectures to nonregular rings. We recall that we had defined the
intersection multiplicity �.M;N/, whereM andN are two finitely generated modules
over a regular local ring R withM ˝R N of finite length to be

�.M;N/ D
d
X

iD0

.�1/i length.Tori .M;N //:

As stated, this would be defined over any local ring; however, the fact that R is regular
implies that higher Tors are zero, which, using the long exact sequence of Tors, implies
that �.M;N/ is additive in M and in N . Over a nonregular ring we need an extra
condition, and the weakest condition which makes this work is that one of the modules,
sayM , has finite projective dimension; its projective dimension will still be at most d .
We now restate the conjectures with this assumption.

Conjecture 7. Let A be a local ring, and let M and N be finitely generated modules
such thatM has finite projective dimension andM ˝A N has finite length. Then
(i) (M0) dim.M/C dim.N / � dim.A/.

(ii) (M1: Vanishing) If dim.M/C dim.N / < dim.A/, then �.M;N/ D 0.
(iii) (M2: Positivity) If dim.M/C dim.N / D dim.A/, then �.M;N/ > 0.

It is a rather remarkable fact that the first of these conjectures, which appears to be
the most basic, is still open in this generality. It holds for many examples of modules
of finite projective dimension, and there are many easy counterexamples if neither
module has finite projective dimension, but it is not known in the case stated here, in
spite of the fact that it is a rather simple statement about the nature of the support of a
module of finite projective dimension.

4.1 The Graded Case

One of the remarkable results of Peskine and Szpiro was a Comptes Rendus article
[48] in which they proved some of the conjectures for the graded case. More precisely,
they assumed that A is a standard graded ring over an Artinian local ring (such as a
field), M is a graded module of finite projective dimension, and N is another graded
module. In this case,M has a finite free resolution by modules that are direct sums of
A.nij /, the graded module A with grading shifted by nij , for various nij . They gave
a formula which allows one to compute the intersection multiplicities in terms of the
nij in such a way that they could prove all three parts of this conjecture.

In addition, they proved the following conjecture in the graded case:

Conjecture 8. LetM be an A-module of finite projective dimension. Then

grade.M/ D dim.A/ � dim.M/:
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We recall that the grade of a module is the longest possible length of a regular
sequence contained in the annihilator ofM . This is the Codimension Conjecture (13)
of Hochster’s 1975 diagram; the word codimension was once used for what we now
call grade. This conjecture is a statement about the prime ideals in the support of a
module of finite projective dimension and holds, for example, for an equidimensional
ring, but it is still open in general. For a discussion of this conjecture we refer to [55].

We make one final remark about the methods of this paper on the graded case.
The authors said at the time that their method of computing intersection multiplicities
through numerical invariants was a kind of “Riemann–Roch Theorem”. This was in
fact one of the main inspirations for later work on finding a Riemann–Roch Theorem
in general. On the other hand, the question of whether this is really a version of the
Riemann–Roch Theorem of Hirzebruch was not raised until later, and a direct proof
that they agree was only given recently (see [58]).

We now return to the main topic of the Strong Multiplicity Conjectures.
As mentioned above, the first of these conjectures is still open. The second two,

however, are false. This was an example of Dutta, Hochster, and McLaughlin [11]
which was one of the turning points in research in this area. We present an outline of
this example, leaving out the details.

Let k be a field, and let A be kŒX; Y;Z; Y �=.XY � ZW / localized at the maxi-
mal ideal .X; Y;Z;W / (or kŒŒX; Y;Z;W ��=.XY � ZW / if you prefer). Let N D
A=.X;Z/. We note that since .X;Z/ contains XY � ZW , N has dimension 2. The
problem is to construct a module of finite length and finite projective dimension such
that �.M;N/ 6D 0. This is carried out by a detailed computation of a set of matrices
representing the action of X; Y;Z; and W on a finite dimensional vector space; the
authors determine the precise conditions these matrices must satisfy and produce a set
of large matrices satisfying them.

This counterexample also had influence on the theory of local Chern characters,
showing that they did not vanish where predicted. More on this approach to the ques-
tion can be found in Szpiro [65] and Roberts [53] and [56].

We mention a result of Sather-Wagstaff [61] which is similar to statement M0 above
but where the hypothesis of finite projective dimension is replaced by a condition on
multiplicity.

Theorem 3. Let A be an excellent quasi-unmixed Cohen–Macaulay local ring that
contains a field. Let p and q be prime ideals such thatA=p˝AA=q has finite length and
the multiplicity of Ap is equal to the multiplicity of A. Then dim.A=p/C dim.A=q/ �
dim.A/.

The interesting point here is that the condition on multiplicities is automatic for
regular local rings, since the localization of a regular local ring is regular so both
multiplicities are one, like the condition inM0 thatM have finite projective dimension.

We now return to a discussion of further developments on counterexamples to this
generalization of the Vanishing Conjecture. As mentioned above, the example of
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Dutta, Hochster, and McLaughlin had implications for local Chern characters. Let
A be a local domain of dimension d which is either complete or essentially of finite
type over a field (this is sufficient so that Chow groups and local Chern characters are
defined). Associated to A are two elements of the Chow group of CH�.A/. The first
is the class ŒA�; since A is a domain, 0 is a prime ideal and this defines an element of
CHd .A/. The second is the local Todd class, denote �.A/, which is equal to ŒA� up
to elements of lower dimension, and which is what is used in formulas for multiplic-
ities. If A is a complete intersection, it can be shown that �.A/ D ŒA�; there are no
lower terms. The counterexample to vanishing enables one to construct an example of
a Cohen–Macaulay domain A of dimension 3 for which the dimension 2 component
of �.A/, denoted �2.A/, is not zero and (more important), there is a module of finite
length and finite projective dimension whose local Chern character does not vanish on
�2.A/. This left open the question of whether there was a similar example where A is
Gorenstein. IfA is Gorenstein of dimension d , then it can be shown that �d�1.A/ D 0,
so any nonvanishing component would have to be of higher codimension.

First Kurano [41] provided an example of a Gorenstein ring of dimension 5 for
which �3.A/ 6D 0. C. Miller and Singh [46] then gave an example, also Gorenstein
of dimension 5, for which there exists a module of finite length and finite projective
dimension whose local Chern character does not vanish on �3.A/. In Roberts and
Srinivas [60], a general theorem was proven for local ringsAwhich are localizations at
the maximal ideal of a standard graded ring such that the associated projective scheme
X is smooth (this includes all the above examples). In the nice case in which the Chow
group of X is essentially the same as the cohomology of X (which is also true in the
above examples), the main theorem states that if � is any cohomology class that is zero
when intersected with the hyperplane section, intersection with � can be represented
by a module of finite length and finite projective dimension. This implies in particular
that there is such a module for Kurano’s example. It also means that counterexamples
of this sort are quite natural when seen from the point of view of intersection theory in
Algebraic Geometry.

In all of the discussion in this section, we have only assumed that one of the mod-
ules M and N has finite projective dimension. If we assume that both modules have
finite projective dimension, the conjectures are still open. If the ring is a complete
intersection, then the Vanishing Conjecture is known in this case. There is an exam-
ple in Roberts [54] of two perfect complexes which define positive cycles for which
the intersection multiplicity is negative (this cannot happen over regular local rings),
which may suggest that the Positivity Conjecture does not hold in this generality.

However, there are no indications that the Vanishing Conjecture for two modules of
finite projective dimension is not true, and this is one of the main open questions in
this area at the present time. In the counterexamples described above, the moduleM
of finite projective dimension has finite length and the module N has dimension less
than the dimension of the ring. If N also has finite projective dimension, the fact that
its dimension is less than that of the ring implies that the alternating sum of ranks of
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modules in its resolution is zero, and it follows that �.M;N/ D 0. Thus one must
look elsewhere if one hopes to find a counterexample to vanishing with both modules
of finite projective dimension.

4.2 The Generalized Rigidity Conjecture

The conjecture on the Rigidity of Tor was also generalized from the regular case to
the case in which one module had finite projective dimension. This was disproven by
Heitmann in [20].

It could be thought that with the regular case proven and the generalized case false,
that would be the end of the story for the question of Rigidity of Tor. However, there
have been several further results in this area, particularly for modules over hypersur-
faces. We give two examples.

First, we have the following theorem due to Huneke and R. Wiegand [37] (their
actual theorem is a little stronger than this).

Theorem 4. Let A D R=.f / be a hypersurface of dimension d , where R is an un-
ramified regular local ring of dimension d C 1. Let M and N be A-modules such
that

(i) M ˝A N has finite length.

(ii) dim.M/C dim.N / � d .

Then if Tori .M;N / D 0 for some i � 0, then Torj .M;N / D 0 for j � i .
A more recent result on this topic is due to Hailong Dao [6]. This uses a construc-

tion of Hochster for hypersurfaces which had been introduced earlier to study these
conjectures. Let A D R=.f / be a hypersurface, and suppose also that A is an isolated
singuarity. Then a resolution of a finitely generate module is eventually periodic of pe-
riod 2 by results of Eisenbud [12], and the Tori .M;N / are eventually of finite length
since A has an isolated singularity. Hochster defined

�.M;N / D length.Tor2i .M;N // � length.Tor2iC1.M;N //:

Dao proved the following theorem. Here A is a hypersurface of the form R=.f /,
but in addition to R being regular, it must also be a power series ring over a field or a
discrete valuation ring, so that in particular all of Serre’s multiplicity conjectures hold.

Theorem 5. LetA be as above, and letM andN be two finitely generated A-modules.
Assume that �.M;N / D 0. If Tori .M;N / D 0 for some i � 0, then Torj .M;N / D 0
for j � i .

We also want to mention an example of Dutta [9], which shows that the partial
Euler characteristic �2.M;N / can be negative for two modules of finite projective
dimension over a Gorenstein ring. While the original counterexample to vanishing
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shows that Serre’s conjectures on partial Euler characteristics cannot be extended in
general, Dutta’s example is interesting in that it shows that they can fail even in a case
where vanishing holds.

5 The Monomial, Direct Summand, and Canonical Element
Conjectures

The first two of these conjectures, the Monomial and Direct Summand Conjectures,
were introduced by Hochster and are listed in his diagram as consequences of the
existence of big Cohen–Macaulay modules (which we will discuss below). They can
all be proven in the equicharacteristic case by reduction to positive characteristic as
outlined in the previous section.

The Direct Summand Conjecture states:

Conjecture 9 (Direct Summand Conjecture). If R is a regular local ring and S is a
module-finite extension of R, then R is a direct summand of S as an R-module.

The Monomial Conjecture states:

Conjecture 10 (Monomial Conjecture). If x1; : : : ; xd is a system of parameters for a
local ring R, then

xt
1x

t
2 � � � xt

d … .xtC1
1 ; : : : ; xtC1

d
/:

It is not too difficult to show that these two conjectures are equivalent. Shortly
thereafter Hochster formulated the Canonical Element Conjecture. There are several
versions of this conjecture, and we state three. The first shows why it is called the
“Canonical Element” conjecture, and the second and third are easier to compute. In
all three statements we let A be a local ring of dimension d with maximal ideal m and
residue field k.

Conjecture 11. Canonical Element Conjecture I: Let syzd .k/ be the d th syzygy mod-
ule of k, so that there is an exact sequence

0! syzd .k/! Fd�1 ! � � � ! F0 ! k ! 0;

where the Fi are free modules. Using the Yoneda definition of Ext, this d -fold ex-
tension defines an element of Extd .k; syzd .k//, and hence, mapping to the limit, an
element � of

lim
!
n

Extd .A=mn; syzd .k// D Hd
m.syz

d .k//:

Then � 6D 0. (� is the “canonical element”).
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Canonical Element Conjecture II: Let x1; : : : ; xd be a system of parameters for A.
Let K� be the Koszul complex on x1; : : : ; xd and let F� be a free resolution of k.
Suppose we have

K� ����! A=.x1; : : : ; xd /
?

?

y

��

?

?

y

F� ����! k:

Then �d 6D 0:
Canonical Element Conjecture III: Let x1; : : : ; xd be a system of parameters for

A. Let K� be the Koszul complex on x1; : : : ; xd and let F� be a free resolution of
A=.x1; : : : ; xd /. Suppose we have

K� ����! A=.x1; : : : ; xd /
?

?

y

��

?

?

y

F� ����! A=.x1; : : : ; xd /:

Then the image of �d is not contained in mFd .

These three are not obviously equivalent, and proofs of their equivalence and the
fact that they are also equivalent to the Direct Summand and Monomial Conjectures
can be found in Hochster [25] and Dutta [7]. It should be pointed out that the fact
that the Monomial Conjecture or Direct Summand Conjecture implies the Canonical
Element Conjecture is quite nontrivial for rings of positive or mixed characteristic; in
characteristic zero the Direct Summand Conjecture is trivial and holds for any normal
domain since the trace map can be divided by the degree of the extension of quotient
fields. It is equivalent to the Canonical Element Conjecture in characteristic zero only
in the sense that both are known to be true.

These three conjectures have been among the most seriously studied during the
years since their formulation. They follow from the existence of big Cohen–Macaulay
modules, and they can be proven directly by the method of reduction to positive charac-
teristic outlined above in the equicharacteristic case. Since Cohen–Macaulay modules
exist in dimension at most two, the conjectures have been known since the beginning
in any characteristic in dimension less than three. The reference Hochster [25] also
contains many more interesting results on this topic, and it includes the fact that to
prove the direct summand conjecture it suffices to prove it in the case in which R
is an unramified regular local ring, a condition that is often assumed in studying the
problem.

Although the canonical element of the conjecture looks somewhat mysterious, there
are a number of conjectures similar to the ones we are discussing that involve the
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canonical module or, more generally, the dualizing complex of a local ring. For ex-
amples, we refer to Strooker and Stückrad [64] and Dutta [8], where the Monomial
Conjecture is related to properties of a dualizing module.

A major breakthrough on these conjectures came in 2003, when Heitmann [22]
proved the Direct Summand Conjecture (and therefore several others) in dimension
three in mixed characteristic. This proof did not involve new machinery, but rather it
showed, by prodigious computations, that if one had a non-Cohen–Macaulay ring of
mixed characteristic of dimension three for which p; x; y is a system of parameters,
and if we have a relation apN 2 .x; y/, then for any integer n, in some finite exten-
sion we have that ap1=n 2 .x; y/. Thus we do not get a 2 .x; y/ (which would of
course be true in a Cohen–Macaulay ring), but something close, and Heitmann proved
that this is enough to prove the Direct Summand Conjecture. A little later Heitmann
[23] showed that the system of parameters p; x; y can be replaced by any system of
parameters; it is not necessary to assume that one of them is p. We will discuss this
further below.

6 Cohen–Macaulay Modules and Algebras

The importance of finding Cohen–Macaulay modules was clear from the beginnings
of this subject. Serre had already shown, as we mentioned above, that ifM and N are
Cohen–Macaulay in the situation of his positivity conjecture, then Tori .M;N / D 0

for all i > 0, so that �.M;N/ is simply the length ofM˝N , which is clearly positive.
It is also not difficult to show that most of the conjectures we have discussed over a
ring A of dimension d will follow if there exists a finitely generated Cohen–Macaulay
module of dimension d . Such a module is called a “small Cohen–Macaulay module”
(it is also sometimes called a “maximal Cohen–Macaulay module”, which admittedly
is not terribly consistent terminology).

There are rings which cannot have small Cohen–Macaulay modules, such as non-
catenary rings, but these can be considered pathological. In addition, most of the
conjectures we have been discussing can be reduced to the complete case, and it would
suffice to show that small Cohen–Macaulay modules exist for complete domains.

Conjecture 12. Every complete local domain has a small Cohen–Macaulay module.

This conjecture is easy if the dimension of A is at most two, since in dimension
one any domain is Cohen–Macaulay, and in dimension two one can take the normal-
ization, which is Cohen–Macaulay. However, very little is known beyond that case.
There is an example for graded rings attributed independently to Peskine and Szpiro,
Hartshorne, and Hochster; they showed that small Cohen–Macaulay modules exist for
graded domains of positive characteristic in dimension three (for a proof see Hochster
[29]). Dan Katz [40] proved that there is such a module for extensions obtained by
adjoining a pth root to an unramified regular local ring. On the other hand, there are
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non-Cohen–Macaulay unique factorization domains, which cannot have small Cohen–
Macaulay modules of rank one [4]. But basically this question is completely open.

One of the new developments in Hochster’s 1975 paper was to introduce a weaker
version of Cohen–Macaulay modules, called “big” Cohen–Macaulay modules. Their
existence does not imply the implication in Serre’s conjecture, but it does imply the
Intersection Conjecture, the Canonical Element Conjecture, and several others.

LetA be a local ring with system of parameters x1; : : : ; xd . A big Cohen–Macaulay
module is an A-moduleM such that

(i) x1; : : : ; xd form a regular sequence onM .

(ii) M=.x1; : : : ; xd /M 6D 0:
The second condition is crucial; there are numerous infinitely generated modules

that satisfy the first condition but not the second, and without this condition none
of the stated implications hold. If M is a small Cohen–Macaulay module, however,
Nakayama’s Lemma implies that condition 2 holds.

Conjecture 13. Every local ring has a big Cohen–Macaulay module.

Like the conjectures in the previous section, this conjecture is known in the equi-
characteristic case and for rings of dimension at most 3. The basic method used by
Hochster in [24] was to kill any bad relations as follows. IfM is not Cohen–Macaulay,
there exists an m 2 M such that xim 2 .x1; : : : ; xi�1/ but m … .x1; : : : ; xi�1/ for
some i . We then extendM toM 0 DM˚Ai�1 modulo the relation .m; x1; : : : ; xi�1/;
this puts the image of m into the submodule .x1; : : : ; xi�1/M

0. We then take a huge
and carefully constructed limit, and it is then easy to see that the limit will satisfy
the first condition. The problem is to show that the second condition also holds. The
original proof in the equicharacteristic case involves the Frobenius map and Hochster’s
Metatheorem. The proof in dimension 3 uses Heitmann’s results.

6.1 Weakly Functorial Big Cohen–Macaulay Algebras

A further development in this area was the introduction of big Cohen–Macaulay al-
gebras. One method for construction such an algebra is similar to that of big Cohen–
Macaulay modules mentioned earlier, but instead of taking a free module in the exten-
sion and dividing by the relation as above, one takes a free commutative algebra; that
is, a polynomial ring and again divides by an appropriate relation and takes a limit.
For the applications one would like it to be functorial; this does not seem possible,
but when they exist they can be made “weakly functorial”, which is enough for many
applications. We give the definitions.

LetR be a local ring with system of parameters x1; : : : ; xd . A big Cohen–Macaulay
algebra is an algebra A over R such that

(i) x1; : : : ; xd form a regular sequence on A.

(ii) A=.x1; : : : ; xd /A 6D 0:
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“Weakly Functorial” means that given R ! S , one can find Cohen–Macaulay al-
gebras A and B and a diagram

R ����! S
?

?

y

?

?

y

A ����! B

Conjecture 14. Every local ring has a big Cohen–Macaulay algebra, and for any map
of local rings they can be chosen to be weakly functorial in the sense given above.

It can be seen that this is a considerably stronger conjecture than the existence of
big Cohen–Macaulay modules, which in turn is stronger than the conjectures of the
previous section. However, it has so far been the case that once methods had been
developed to prove one of these conjectures, it can be applied to prove the existence
of weakly functorial big Cohen–Macaulay algebras. An example is the case of di-
mension 3 in mixed characteristic, where the results of Heitmann’s proof of the Direct
Summand conjecture were used by Hochster to prove this conjecture as well [28].

A remarkable theorem appeared in 1990, with the proof by Hochster and Huneke
that RC is Cohen–Macaulay for R a domain of positive characteristic [33]. Here RC
is the absolute integral closure of R, which means the integral closure in the algebraic
closure of its quotient field. This was later given a much simpler proof by Huneke
and Lyubeznik [36]. This is better than just the existence, since it gives a specific
construction in the positive characteristic case.

The existence of weakly functorial big Cohen–Macaulay algebras has many appli-
cations; for example, they imply the conjectures on the vanishing of maps of Tor and
that direct summands of regular local rings are Cohen–Macaulay that we will state
below. For more details on the existence and applications of such algebras we refer to
Hochster and Huneke [34].

7 The Syzygy Conjecture and the Improved New
Intersection Conjecture

Evans and Griffiths proved the following theorem for rings containing a field [13].

Theorem 6. Let A be a Cohen–Macaulay local ring containing a field, and let M be
a finitely generated kth module of syzygies that has finite projective dimension. If M
is not free, then M has rank at least k.

In proving this conjecture it turned out that a stronger version of the Intersection
Conjecture was one of the key points in the proof. This was named the “Improved
New Intersection Conjecture”.



220 P. C. Roberts

Conjecture 15. Let A be a local ring of dimension d , and let

0! Fk ! � � � ! F1 ! F0 ! 0

be a complex of finitely generated free modules such that Hi .F�/ has finite length for
i � 1 and the cokernel of F1 ! F0 has a minimal generator annihilated by a power
of the maximal ideal. Then k � d .

The original New Intersection Conjecture is the case where the cokernel of F1 !
F0 is itself of finite length (and nonzero). While this is a version of the Intersection
Conjecture, it is in fact stronger, and is equivalent to the Canonical Element Conjecture
and the others in that group. Thus it is now known in the equicharacteristic case and
in dimension at most 3.

Recently Evans and Griffith have proven their Syzygy Theorem for certain graded
modules of mixed characteristic [15]. They also have a more extensive account of
problems concerning syzygies in [14].

8 Tight Closure Theory

In 1985 Hochster and Huneke introduced the concept of tight closure. It is defined for
equicharacteristic rings; to keep the discussion simple we will give the definition for
integral domains of positive characteristic.

Definition 1. Let I be an ideal of an integral domain A of positive characteristic p.
The tight closure of I , denoted I�, is the set of a 2 A for which there is an element
c 6D 0 in A such that cape 2 I Œpe� for all e � 0.

Here I Œpe� is the ideal generated by ip
e

for all i 2 I . Tight closure is also defined
for rings of characteristic zero using a method of reduction to positive characteristic.
We refer to Huneke’s notes from the Fargo conference [35] and its bibliography for
much more information about tight closure. We will mention some connections to the
problems we have been discussing here.

First of all, tight closure made it possible to give nicer proofs of some of the Ho-
mological Conjectures, such as the Monomial Conjecture and the existence of big
Cohen–Macaulay modules, in the equicharacteristic case, although the basic idea, re-
duction to positive characteristic and the use of the Frobenius map, was similar to
methods used earlier. One of the first ideas that arose from this was to attempt to find a
similar closure operation that would work in mixed characteristic. A list of the desired
properties of such a closure operation can be found, for example, in the Introduction
of the notes of Huneke cited above; for the purposes of these conjectures, one of the
main ones is “colon-capturing”, which states that if x1; : : : ; xd is a system of parame-
ters, and if axi 2 .x1; : : : ; xi�1/ for some i , then a is in the closure of .x1; : : : ; xi�1/.
A closure operation with all the right properties has not been found; however, this
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did inspire some new methods; in particular, Heitmann’s proof of the Direct Sum-
mand Conjecture in dimension three was motivated in part by an attempt to show that
“full extended plus closure” satisfies the colon-capturing condition in mixed charac-
teristic. In this part of the discussion we assume that A is a complete local domain
and recall that AC is the integral closure of A in the algebraic closure of its quotient
field.

Definition 2. If x 2 A, then x is in the full extended plus closure of I if there exists
c 6D 0 2 A such that for every positive integer n, c1=nx 2 .I; pn/AC. We write
x 2 I epf .

A similar closure operation had been defined by Hochster and Huneke in [32]. They
defined the “dagger closure” to as follows (with the same assumptions on A). In this
definition we fix a valuation v on AC with values in Q [ ¹1º which is nonnegative
on AC and positive on the maximal ideal of AC.

Definition 3. If x 2 A, then x is in the dagger closure of I if there exist elements
u 2 AC of arbitrarily small positive order with ux 2 IAC. We write x 2 I �.

It is easy to see that I epf � I �. The main result of Hochster and Huneke was that
dagger closure and tight closure are the same in positive characteristic, so it made sense
to try to show that dagger closure satisfies the colon-capturing property. Heitmann’s
results show that this is true in dimension three.

In addition to leading to these developments on the original homological conjec-
tures, the connections that tight closure demonstrated with other areas inspired some
new conjectures.

Conjecture 16 (Vanishing of Maps of Tors). LetR be a regular ring, A a module finite
torsion-free extension ofR, and T a regular local ring with a map � fromA to T . Then
for every R-module M and every i � 1, the map induced by � from TorRi .M;A/ to
TorRi .M; T / is zero.

This conjecture has a similar flavor to some of the previous ones, particularly in the
case where T is a finite A-module, and it implies several of them. However, this one
is much more general; T could be an infinite extension, or on the other hand it could
be the residue field of A if A is a local ring. It is known in the equicharacteristic case.
We refer to Hochster [30] for a more complete discussion of this conjecture and its
relation to other ones.

Another result of tight closure was to give a simple proof in characteristic zero
that invariants of certain group actions on regular rings are Cohen–Macaulay. They
proved, in fact, that a direct summand of a regular ring in equal characteristic is Cohen–
Macaulay; it is a conjecture in mixed characteristic.
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Conjecture 17. A direct summand of a regular ring is Cohen–Macaulay.

If we apply this to the R-module M D R=.xtC1
1 ; : : : ; xtC1

d
; xt

1x
t
2 � � � xt

d
/ where

R is (regular) local of dimension d and x1; : : : ; xd is a system of parameters, it is
not hard to see that this conjecture implies the Monomial Conjecture and hence also
the Direct Summand Conjecture. In fact, it is equivalent to a stronger version of this
conjecture.

9 The Strong Direct Summand Conjecture

In this section we discuss several recent variations on conjectures related to Direct
Summands.

Conjecture 18 (Strong Direct Summand Conjecture). Let R be a regular local ring
and let A be a finite extension of R. LetQ be a height one prime ideal of A containing
xR, where x is a minimal generator of the maximal ideal of R. Then xR is a direct
summand ofQ.

At first sight this appears to be a rather gratuitous generalization of the Direct Sum-
mand Conjecture. It is indeed a generalization, since if this holds, then since xA is
contained in Q, the splitting map from Q to xR induces one from xA to xR, and di-
viding by x we obtain one from A to R. Its importance comes from the surprising fact
that it is equivalent to the Vanishing Conjecture for maps of Tors. This was proven by
N. Ranganathan in [49].

She also had a strong version of the Monomial Conjecture:

Conjecture 19 (Strong Monomial Conjecture). Let A be a local domain with system
of parameters .x1; : : : ; xd /. LetQ be a height one prime of A containing x1. Then

x1.x1x2 � � � xd /
t … .xtC1

1 ; : : : ; xtC1
d

/Q

for all t > 0.

A much more complete discussion of the conjectures of the last two sections and
relations between them can be found in Hochster [29] and [30].

Recent work on the Strong Monomial Conjecture can be found in McCullough [45].
We include here the updated version of Hochster’s diagram from the 2004 Mini-

course at the University of Utah. For the most part, the conjectures in the new diagram
have been stated since the earlier diagram; the main exceptions are some of those in
the lower right. Even here some of the implications are new (since 1975). Also, the
Intersection and New Intersection conjectures have actually been proven, but they are
included here to show how they fit with some of the more recent conjectures.
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A Good Tight Closure Theory Weakly Functorial
Big C–M Algebras

Strong Direct
Summand

Vanishing for Maps of Tor Big C–M Algebras Small C–M
Algebras

Direct Summands of
Regular Rings are C–M

Big C–M Modules � > 0

Direct Summand Monomial

Improved New Intersection Canonical Element

Syzygy New Intersection

Intersection

Figure 2. Hochster’s diagram of homological conjectures in 2004.

10 Almost Cohen–Macaulay Algebras

As outlined above, Heitmann’s proof of the Direct Summand Conjecture in dimension
three introduced a new method for attacking many of the Homological Conjectures in
mixed characteristic. In this section we will go into more detail about this method and
questions that it raised.

What Heitmann showed originally was that if A is a complete normal local domain
of dimension 3 and of mixed characteristic, if p; x; y is a system of parameters, and if
apN 2 .x; y/ for some a 2 A, then for any integer n > 0, there is a finite extension
B of A such that ap1=n 2 .x; y/B . This implies that the local cohomology H 2

m.A
C/

is annihilated by p1=n for all n > 0, where, as usual, AC is the integral closure of A
in the algebraic closure of its quotient field. In a later paper ([23]) he extended this to
show that p can be replaced by any u in the maximal ideal of A, and, using the fact
that the condition that A is a normal domain of dimension 3, so thatH 2

m.A/ has finite
length, it is easy to see that this implies that H 2

m.A
C/ is annihilated by the maximal

ideal of AC. Thus it is a vector space over the field AC=mAC . It is still an open
question whether it is actually zero.
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As we also described earlier, the result, for example, that if apN 2 .x; y/ in A then
ap1=n 2 .x; y/ in AC can be stated by the fact that certain closure operations have the
colon-capturing property in this case. The closure operations are full extended plus
closure of Heitmann [23] and dagger closure of Hochster and Huneke [32]. While
the fact that full extended plus closure has this property is a stronger result, for the
remainder of this section we will only consider dagger closure, since the fact that it
has the colon-capturing property is enough to prove, for example, the Direct Summand
Conjecture. We describe this in more detail.

Let A be a ring as above; we take a valuation v on A with values in the ordered
abelian group R of real numbers, Then v is a function from A to R [ ¹1º satisfying
(i) v.ab/ D v.a/C v.b/ for a; b 2 A.
(ii) v.aC b/ � min¹v.a/; v.b/º for a; b 2 A.
(iii) v.a/ D1 if and only if a D 0.
We will assume also that v.a/ � 0 for a 2 A and that v.a/ > 0 for a in the maximal

ideal ofA. The existence of such a valuation follows from standard facts on extensions
of valuations, see for example Zariski–Samuel [66], Chapter VI.

If I is an ideal of a local domainAwith a valuation v satisfying the above properties,
then a is in the dagger closure I � of I if there exist elements u 2 AC of arbitrarily
small positive order, with ux 2 aAC. It follows from Heitmann’s result that in mixed
characteristic in dimension three dagger closure has the colon-capturing property. It
also follows that, still in dimension three, the local cohomology module H 2

m.A
C/ is

annihilated by arbitrarily small elements. To generalize this we make the following
definitions.

We say that an A-moduleM is almost zero with respect to v if for all m 2 M and
for all � > 0, there exists an a 2 A with v.a/ < � and am D 0.

This terminology comes from a paper of Faltings [16], where he proves that certain
local cohomology groups are almost zero. The topic of almost zero modules was
developed in much more detail by Gabber and Ramero [17].

Definition 4. An A-algebra B is almost Cohen–Macaulay if

(i) H i
.x/
.B/ is almost zero for i D 0; : : : ; d � 1.

(ii) B=.x1; : : : ; xd /B is not almost zero.

An alternative definition of almost Cohen–Macaulay can be obtained by defining a
sequence x1; : : : ; xd to be almost regular if ¹ajaxi 2 .x1; : : : ; xi�1/º=.x1; : : : ; xi�1/

is almost zero for i D 1; : : : ; d and defining A to be almost Cohen–Macaulay if a
system of parameters is almost regular (together with condition (2)). Standard methods
show that this definition implies the former one (see for example Matsumura [44],
Theorem 16.5 (i)).
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Question 1. Let A be a complete Noetherian local domain. Is AC almost Cohen–
Macaulay?

Of course, the result of Hochster–Huneke and Huneke–Lyubeznik that we referred
to above says that if A has positive characteristic, then AC is actually Cohen–
Macaulay. However, this is not true in characteristic zero, since if we have a normal
non-Cohen–Macaulay domain A, since A is a direct summand of every finite exten-
sion using the trace map, a nontrivial element of local cohomology cannot go to zero
inAC. There is little evidence that this would be true in general, but there are some ex-
amples in characteristic zero in dimension 3 by Roberts, Singh, and Srinivas [59], and
Heitmann, as we have seen, showed that it is true in mixed characteristic in dimension
3. As we have said, it is still open whether AC is Cohen–Macaulay in that case.

This question can also be generalized further. Instead of the class of almost zero
modules defined above, we can take other classes. To make the theory work we should
take a class C of almost zero modules satisfying the following conditions.
(i) If 0 ! M 0 ! M ! M 00 ! 0 is a short exact sequence, then M 2 C if and

only ifM 0 andM 00 are in C .

(ii) C is closed under direct limits.

Question 2. LetA be a local ring. Does there exist an almost Cohen–Macaulay algebra
over A for some class of almost zero modules?

11 A Summary of Open Questions

We summarize some of the main questions which remain open. Since they have vary-
ing degrees of likelihood of being true, we simply label them all as “Questions”.

11.1 The Serre Positivity Conjecture

Question 3. Let R be a ramified regular local ring of mixed characteristic, and letM
andN beR-modules such thatM˝RN has finite length. If dimMCdimN D dimR,
is �.M;N/ > 0‹

This conjecture would follow from the existence of small Cohen–Macaulay mod-
ules. There has been some recent work to attempt to use Gabber’s proof of the Non-
negativity Conjecture to prove this, but so far it has not been successful.

11.2 Partial Euler Characteristics

Question 4. If R is a ramified regular local ring of mixed characteristic of dimension
d andM and N are R-modules such thatM ˝R N has finite length, is

�i .M;N / D
d
X

j Di

.�1/iCj length.Tor.M;N // � 0‹
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11.3 Strong Multiplicity Conjectures

Question 5. Let A be a local ring, and letM and N be A-modules such thatM ˝A N

has finite length and M has finite projective dimension. Is dim.M/ C dim.N / �
dim.A/‹

Question 6. Let A be a local ring, and letM and N be A-modules such thatM ˝A N

has finite length and bothM and N have finite projective dimension.

(i) If dim.M/C dim.N / < dimA, is �.M;N/ D 0‹
(ii) If dim.M/C dim.N / D dimA, is �.M;N/ > 0‹

This question has been studied over the years, although it is still very much open.
There are complexes which define positive cycles for which the positivity part fails,
which may be a sign that the positivity is not true in this generality.

11.4 Cohen–Macaulay Modules and Related Conjectures

Question 7 (Small Cohen–Macaulay modules). Let A be a complete local domain of
dimension d . Does there exist a finitely generated A-module of depth d?

No one has yet succeeded in coming up with a way to approach this question in
dimension 3 or greater.

Question 8 (Big Cohen–Macaulay modules). Let A be a local domain of mixed char-
acteristic of dimension d with system of parameters x1; : : : ; xd . Does there exist an
A-moduleM for which

(i) x1; : : : ; xd is a regular sequence onM .

(ii) M=.x1; : : : ; xd /M 6D 0.

As discussed at length, there are numerous conjectures which follow from this one,
many of which are equivalent. Out of these we will state two, one because it is quite
concrete, and the other because it is the strongest of these conjectures. Both of these
are open in the case where A has mixed characteristic and dimension greater than
three.

Question 9 (Monomial Conjecture). Let A be a local ring with system of parameters
x1; : : : ; xd . Is x

t
1x

t
2 � � � xt

d
in the ideal .xtC1

1 ; xtC1
2 ; : : : ; xtC1

d
/?

Question 10. Can one construct weakly functorial big Cohen–Macaulay algebras?

We refer to Section 6.1 for a precise statement of what this means.
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11.5 Almost Cohen–Macaulay Algebras

Question 11. Let A be a local ring. Does A have an almost Cohen–Macaulay algebra?

We refer to the previous section for a precise statement of this question.
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The Compatibility, Independence, and
Linear Growth Properties
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Abstract. The first part is about primary decomposition. After reviewing the basic definitions,
we survey the compatibility, independence, and linear growth properties that have been known.
Then, we prove the linear growth property of primary decomposition for a new family of
modules.

In the remaining sections, we study secondary representation, which can be viewed as a
dual of primary decomposition. Correspondingly, we study the compatibility, independence,
and linear growth properties of secondary representations.
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1 Introduction

Throughout this paper, all rings are assumed to be commutative with one; and they are
not necessarily Noetherian unless we state so explicitly.

Sections 2–6 are dedicated to the theory of primary decomposition. In its classic
form, it states that every ideal in a Noetherian ring can be expressed as an intersection
of finitely many primary ideals. Later, the theory of primary decomposition was de-
veloped for modules. In particular, if a module is Noetherian, then every submodule is
decomposable.

Although the primary decompositions are not unique in general, there are certain
uniqueness properties governing the primary decompositions.

In Section 2, basic definitions and properties in the theory of primary decomposition
are reviewed. In Section 3, we go over the compatibility property, which says that
primary components from different primary decompositions of a fixed submodule can
be put together and the resulting intersection is still a primary decomposition of the
submodule. Maximal primary components are studied in Section 4. In Section 5, the
linear growth property of primary decomposition is reviewed. We establish the linear
growth property for a new family of modules in Section 6.

In Sections 7–12, we study the secondary representation theory. This can be viewed
as a dual of the primary decomposition theory. In this theory, a module is representable

The author was partially supported by the National Science Foundation (DMS-0700554).
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if it can be expressed as a finite sum of secondary submodules. It turns out that every
Artinian module has a secondary representation.

Many of the results in the theory of secondary representation have their dual forms
in the theory of primary decomposition. Because of this, one often draws inspiration
from one theory and then applies it to the other. In this note, the theory of secondary
representation is presented in a way that would make the duality between the two
theories evident.

In Section 7, we go over the fundamentals of the theory of secondary representation.
In the subsequent sections, we study and prove the compatibility, minimal components,
independence, and linear growth properties of secondary representation. In Section 9,
we discuss a result of Sharp [9] that makes the classic Matlis duality applicable to Ar-
tinian modules even if the ring is not Noetherian. This allows us to establish results on
secondary representation by reducing them to the dual results in the theory of primary
decomposition.

Many of the results in Sections 8–12 were obtained in [18].

2 Primary decomposition

In this section, we give a brief introduction to the notions of associated prime and
primary decomposition. Systematic treatments of primary decomposition can be found
in many textbooks, for example, [1], [2], [3] or [7].

Let R be a ring (not necessarily Noetherian) andM an R-module.
We say that a prime ideal P 2 Spec.R/ is associated to M if there exists x 2 M

such that .0 WR x/ D P . The set of all primes associated toM is denoted AssR.M/,
or simply Ass.M/ when R is understood from the context.

Following [1], we say that a prime ideal P 2 Spec.R/ belongs toM if there exists
x 2 M such that

p

.0 WR x/ D P . (In fact, the terminology “P belongs to 0 in M ”
was used in [1].) The set of all primes belonging toM is denoted Ass0

R.M/, or simply
Ass0.M/ when R is understood from the context.

We say that M is coprimary (over R) if, for every r 2 R, either r is M -regular
(i.e., .0 WM r/ D 0) or r 2 p

Ann.M/. (Under this definition, 0 is a coprimary
module.) It turns out that, ifM ¤ 0 is coprimary and if we let P D p

Ann.M/, then
P 2 Spec.R/; in this case, we say M is P -coprimary. (This definition recovers the
definition of primary ideals in that an idealQ is P -primary (in R) if and only if R=Q
is P -coprimary as an R-module.)

We also define Ass00
R.M/ WD ¹P 2 Spec.R/ j 9K � M; K is P -coprimaryº; or,

equivalently, Ass00
R.M/ WD ¹P 2 Spec.R/ j 9 x 2 M; R=.0 WR x/ is P -coprimaryº.

This notion Ass00 and the notion Att (to be defined in Section 7) are dual to each other.
Quite generally, ifM is P -coprimary, then Ass0

R.M/ D ¹P º D Ass00.M/.
For R-modules Q � M , we say that Q is (P -)primary ifM=Q is (P -)coprimary.

For R-modules N ¨ M , we say that N is decomposable inM (over R) if there exist
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R-submodulesQi that are Pi -primary inM , for i D 1; : : : ; s, such that

N D Q1 \ � � � \Qs:

This intersection is called a primary decomposition of N in M (over R). One can
always convert a primary decomposition to a minimal one in the sense that Pi ¤ Pj

for all i ¤ j andN ¤Ti¤k Qi for every k D 1; : : : ; s. So from now on, as a general
rule, all primary decompositions are assumed to be minimal unless stated otherwise
explicitly.

For every R-module M , we agree that M is decomposable in M with M D M

being the unique primary decomposition ofM inM .
Given R-modules N � M , N is decomposable in M if and only if 0 is decom-

posable inM=N ; and the primary decompositions of N inM are in one-to-one corre-
spondence with the primary decompositions of 0 inM=N .

Similarly, let N � M be R-modules and let I be an ideal of R such that I �
Ann.M/, so that N � M can be naturally viewed as modules over R=I . Then N is
decomposable inM as R-modules if and only if N is decomposable inM as .R=I /-
modules.

Next, we list some properties of primary decomposition. We need to introduce some
notation that will be used in the sequel: Given an R-module M , we use Min.M/ to
denote the set of all the minimal primes over Ann.M/. For a multiplicative subset
U � R, we use MŒU�1� to denote the module of fractions after inverting all the
elements in U , so thatMŒU�1� ŠM ˝R RŒU

�1�.

Theorem 2.1. Let N � M be R-modules and suppose N D Q1 \ � � � \ Qs is a
(minimal) primary decomposition of N in M in which Qi is Pi -primary.

(i) We have ¹P1; : : : ; Psº D Ass0
R.M=N/ D Ass00

R.M=N/, which is independent of
the particular (minimal) primary decompositions in M .

(i0) We have Min.M=N/ � ¹P1; : : : ; Psº. In fact, Min.M=N/ equals the set of the
minimal members of ¹P1; : : : ; Psº (under inclusion).

(ii) If Pi is minimal in Ass0
R.M=N/, then Qi is uniquely determined as Qi D

Ker
�

M ! .M=N/Pi

�

. See (iv) below.

(iii) Let hWA ! R be a ring homomorphism, so that N � M may be viewed as
A-modules. Let K be an A-submodule of M such that N � K (e.g., K D M ).
Then N is decomposable in K as A-modules. If N ¨ K, then

N D
\

Qi «K

.Qi \K/

is a (not necessarily minimal) primary decomposition ofN inK overA, in which
Qi \K is h�1.Pi /-primary in K provided that Qi « K.

(iii0) In particular, Ass0
A.M/ D h�.Ass0

R.M//, in which h�WSpec.R/ ! Spec.A/ is
the continuous map naturally induced by h.
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(iv) Let U � R be a multiplicative set. Then NŒU�1� D T

U \Pi D¿Qi ŒU
�1� is a

primary decomposition in MŒU�1�, in which Qi ŒU
�1� is Pi ŒU

�1�-primary in
MŒU�1�; and Ker.M ! .M=N/ŒU�1�/ DTU \Pi D¿Qi .

(v) For any finitely generated ideal I of R,
T

IªPi
Qi D .N WM In/ for n� 0.

(v0) For any non-empty subset I of R,
T

I 6
Pi
Qi DTr2I .

S

n2N.N WM rn//.

Remark 2.2. In [2, Chapter IV], the notion of primary decomposition is generalized
to weak primary decomposition. (This was simply called primary decomposition in
[2]. We add the word “weak” into the terminology in order to distinguish it from the
notion of (ordinary) primary decomposition.) For an R-moduleM and P 2 Spec.R/,
we say that P is weakly associated toM if P is minimal over the ideal AnnR.x/ (i.e.,
P 2 Min.Rx/) for some x 2 M . Denote by Assf.RM/, or simply Assf.M/, the
set of all the prime ideals weakly associated to M (cf. [2, page 289, Chapter IV, �1,
Exercise 17]). It is clearM D 0 ” Assf.M/ D ¿.

We say that M is weakly coprimary if, for all r 2 R, either .0 WM r/ D 0 or
S

n	0.0 WM rn/ D M . If M ¤ 0 is coprimary, it follows that ¹r 2 R j .0 WM r/ ¤
0º DW P is prime, and we say that M is weakly P -coprimary. It turns out that M is
weakly P -coprimary if and only if Assf.M/ D ¹P º. See [2, page 292, Chapter IV, �2,
Exercises 11, 12].

Given R-modules Q � M , we say that Q is weakly P -primary in M if M=Q is
weakly P -coprimary, i.e., Assf.M=Q/ D ¹P º. Now, for N � M , we say that N is
weakly decomposable in M if there exist weakly Pi -primary submodules Qi in M ,
i D 1; : : : ; s, such thatN D Q1\� � �\Qs . If such decompositions exist, we can make
them minimal. Weak primary decompositions enjoy many of the properties of primary
decompositions; see [2, page 294, Chapter IV, �2, Exercise 20] and Theorem 2.3 below.
Conversely, if Q is P -primary in M then Q is weakly P -primary in M ; thus every
primary decomposition is a weak primary decomposition.

In [13], some of the basic properties of Assf and weak primary decomposition were
worked out in detail via elementary techniques.

We state the following weak-primary-decomposition analogue of Theorem 2.1.

Theorem 2.3. SupposeN D Q1\� � �\Qs is a minimal weak primary decomposition
of N in M , in which Qi is weakly Pi -primary.

(i) We have ¹P1; : : : ; Psº D Ass0.M=N/ D Ass00.M=N/ D Assf.M=N/, which is
independent of the particular (minimal) primary decompositions in M .

(i0) We have Min.K=N/ � ¹P1; : : : ; Psº for all R-submodule K satisfying N �
K �M and K=N is finitely generated.

(ii) If Pi is minimal in ¹P1; : : : ; Psº D Assf.M=N/ (under inclusion), then Qi is
uniquely determined as Qi D Ker

�

M ! .M=N/Pi

�

. See (iv) below.
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(iii) Let hWA ! R be a ring homomorphism, so that N � M may be viewed as
A-modules. Let K be an A-submodule of M such that N � K (e.g., K D M ).
Then N is weakly decomposable in K as A-modules. If N ¨ K, then

N D
\

Qi «K

.Qi \K/

is a (not necessarily minimal) weak primary decomposition of N inK over A, in
which Qi \K is weakly h�1.Pi /-primary in K provided that Qi « K.

(iii0) In particular, Assf.AM/ D h�.Assf.RM//, in which h�WSpec.R/ ! Spec.A/
is the continuous map naturally induced by h.

(iv) Let U � R be a multiplicative set. Then NŒU�1� D T

U \Pi D¿Qi ŒU
�1� is a

weak primary decomposition inMŒU�1�, in whichQi ŒU
�1� isPi ŒU

�1�-primary
in MŒU�1�; and Ker.M ! .M=N/ŒU�1�/ DTU \Pi D¿Qi .

(v) For any finitely generated ideal I of R,
T

IªPi
Qi DSn2N.N WM In/.

(v0) For any non-empty subset I of R,
T

I 6
Pi
Qi DTr2I .

S

n2N.N WM rn//.

It is well known that if 0 ! M1 ! M2 ! M3 is an exact sequence of R-
modules then Ass.M1/ � Ass.M2/ � Ass.M1/ [ Ass.M3/; and Ass.

L

i2
Ki / D
S

i2
 Ass.Ki / for any family ¹Kiºi2
 of R-modules. The analogue also holds if we
replace Ass with Ass0, Ass00 or Assf. (See [2, page 289, Chapter IV, Section 1, Ex-
ample 17 (c)] for the Assf-analogue.) Here we present the Ass0-analogue, as it will be
referred to in the proof of Lemma 3.2.

Lemma 2.4. Let 0!M1 !M2 !M3 be an exact sequence of modules over a ring
R. Then Ass0.M1/ � Ass0.M2/ � Ass0.M1/ [ Ass0.M3/.

Moreover, Ass0.
L

i2
Ki / D S

i2
 Ass0.Ki / for any family ¹Kiºi2
 of R-mod-
ules.

Proof. We sketch a proof of the first claim. Without loss of generality, assumeM1 �
M2 and M2=M1 � M3. As Ass0.M1/ � Ass0.M2/ is clear, it remains to show
Ass0.M2/ � Ass0.M1/ [ Ass0.M2=M1/. Let P 2 Ass0.M2/, so that P D p.0 WR x/

for some x 2 M2. If there exists r 2 R n P such that rx 2 M1, then it is straight-
forward to see that P D p

.0 WR rx/ and hence P 2 Ass0.M1/. If rx … M1 for all
r 2 R n P , then it follows that P D p

.0 WR x/, where x D x CM1 2 M2=M1, and
hence P 2 Ass0.M2=M1.

The second claim follows from the first when  is finite. In the general case, it is
easy to see Ass0.

L

i2
Ki / � Si2
 Ass0.Ki /. Conversely, if P 2 Ass0.
L

i2
Ki /,
then there exists a finite subset0 �  such thatP 2 Ass0.

L

i2
0 Ki /. It then follows
that P 2Si2
0 Ass0.Ki / �Si2
 Ass0.Ki /.
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We end this section with some basic facts concerning various kinds of associated
prime ideals as well as decomposability. Let M be an R-module. It is clear that
Ass.M/ � Ass00.M/ � Ass0.M/ � Assf.M/ � Spec.R/. Consequently, as there
is the Zariski topology on Spec.R/, all the others are topological (sub)spaces. Quite
generally, for any subset X of Spec.R/, the Zariski topology on Spec.R/ induces a
topological structure on X in such a way that the closed sets of X are of the form
VX .I / WD ¹P 2 X jP � I º with I � R.

If R is Noetherian or M is Noetherian over R, then AssR.M/ D Ass0
R.M/ D

Ass00.M/ D Assf.M/, and AssR.M/ D ¿ ” M D 0.
IfM is Noetherian, thenM is P -coprimary ” AssR.M/ D ¹P º.
If N � M are R-modules such that the quotientM=N is Noetherian over R, then

N is decomposable inM . This is a classic result due to E. Noether.
There are more definitions of associated primes in the literature. See a list of these

definitions in [15, Remark 3.11].

3 Compatibility of Primary Components

Throughout this section, let R be a (not necessarily Noetherian) ring and let N � M
be R-modules such that N is decomposable inM .

Notation 3.1. Let X � Ass0.M=N/. Say

X D ¹P1; : : : ; Prº � ¹P1; : : : ; Pr ; : : : ; Psº D Ass0.M=N/:

(i) If N D Q1 \ � � � \Qr \ � � � \Qs is a primary decomposition of N inM with
Qi being Pi -primary, then we say Q D Q1 \Q2 \ � � � \Qr is an X -primary
component (or a primary component over X ) of N � M . If X D ¿, then we
agree thatM is the only X -primary component of N �M .

(ii) We call an X -primary component of N � M maximal if it is not properly con-
tained in any X -primary component of N �M .

(iii) We use ƒX .N � M/ to denote the set of all possible X -primary components of
N inM .

(iv) We use VƒX .N �M/ to denote the set of all maximal X -primary components of
N inM . (Note that VƒX .N �M/ ¤ ¿ ifM=N is Noetherian.)

(v) In case X D ¹P º � Ass.M=N/, we may simply write ƒP and VƒP instead of
ƒ¹P º and Vƒ¹P º respectively.

Note that, for P 2 Ass0.M=N/, the P -primary components are not necessarily
unique in general (cf. Corollary 4.4). The compatibility property (see Theorem 3.3)
says that if one takes a P -primary component of N � M for each P 2 Ass0.M=N/
(from possibly different decompositions), then they are “compatible” in the sense that
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their intersection is exactly N , thus producing a primary decomposition of N in M .
This was proved in [16] and [17] under the Noetherian assumption (but see [16, Re-
mark 1.2]). Here we state the results more generally.

Lemma 3.2 (Cf. [17, Lemma 1.1]). Let N �M be R-modules such that N is decom-
posable in M , and X � Ass0.M=N/. For an R-module Q such that N � Q � M ,
the following are equivalent:

(i) Q is an X -primary component of N �M , i.e., Q 2 ƒX .N �M/.

(ii) Q is decomposable in M , Ass0 �M
Q

� � X and Ass0 �Q
N

� � Ass0 �M
N

� nX .

(iii) Q is decomposable in M , Ass0 �M
Q

� D X and Ass0 �Q
N

� D Ass0 �M
N

� nX .

Proof. The proof of [17, Lemma 1.1], with Ass0 instead of Ass, should work here, in
light of Lemma 2.4 and the fact that N is automatically decomposable inQ.

Theorem 3.3 (Compatibility). Let N � M be R-modules such that N is decompos-
able in M . Let Xi � Ass0.M=N/ and QXi

2 ƒXi
.N �M/ for 1 � i � n.

(i) Then
Tn

iD1QXi
2 ƒX .N �M/, where X DSn

iD1Xi .

(ii) In particular, suppose Ass0.M=N/ D ¹P1; : : : ; Psº and Qi 2 ƒPi
.N �M/ for

each i D 1; 2; : : : ; s. Then N D Q1 \ Q2 \ � � � \ Qs , which is necessarily a
minimal primary decomposition of N �M .

Proof. The proof of [17, Corollary 1.2], with Ass0 instead of Ass, should work here.
Note that, by construction,

Tn
iD1QXi

is decomposable inM .

Remark 3.4. As noted in [16, Remark 1.2], the compatibility property is also shared
by weak primary decompositions (cf. Remark 2.2). In fact, the analogues of Lem-
mas 2.4, 3.2 and Theorem 3.3 hold after every Ass0 is replaced with Assf, “decompos-
able” with “weakly decomposable”, and afterƒX .N �M/ is interpreted accordingly.
In [13], Stalvey presented a detailed proof of the compatibility for weak primary de-
composition, following the proof given in [16, Theorem 1.1].

4 Maximal Primary Components, Independence

In this section, let N � M be R-modules such that N is decomposable in M and
X � Ass0.M=N/. Note that Ass0.M=N/ is a topological space in Zariski topology.

Notation 4.1. Let N �M be as above. Since Ass0.M=N/ is finite, every subset X �
Ass0.M=N/ has a unique minimal open superset in Ass0.M=N/, which we denote by
o.X/. (Although this notation does not reflect the ambient space Ass0.M=N/, there
should be no danger of ambiguity.) For any P 2 Ass0.M=N/, we may simply write
o.¹P º/ as o.P /. In fact, o.X/ D ¹P 2 Ass0.M=N/ jP � S

P 02X P
0º, by prime

avoidance.
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Note that, if X is open in Ass0.M=N/ (i.e., X D o.X/), then there is a unique
X -primary component of N � M , which is determined as Ker.M ! .M=N/ŒU�1�/

withU D Rn.SP 2X P / (cf. Theorem 2.1 (iv)). This inspires the following definition.

Definition 4.2. Let R be a ring, N � M be R-modules such that N is decomposable
in M , and X � Ass0

R.M=N/. We say that the primary decompositions of N in M
are independent over X , or X -independent, if ƒX .N � M/ consists of exactly one
component, i.e., jƒ�

X .M/j D 1.
Now assume that M=N is Noetherian over R. Thus, for any X � Ass.M=N/ D

Ass0.M=N/, maximal X -primary components exist. (When studying primary decom-
positions of N inM , we may simply study the primary decompositions of 0 inM=N
as modules over R=Ann.M=N/. Note that R=Ann.M=N/ is Noetherian under the
current assumption.)

In case .R;m/ is local, maximal m-primary components were studied in [4]. In [17,
Theorem 1.3], maximal X -primary components of N � M were studied for general
X � Ass.M=N/. This is stated below.

Theorem 4.3. Let N � M be R-modules such that M=N is Noetherian over R, and
X � Ass.M=N/. Say X D ¹P1; P2; : : : ; Prº and set U D R n .Sr

iD1 Pi /. Then

(i) VƒX .N �M/ D ¹Tr
iD1Qi jQi 2 VƒPi

.N �M/; 1 � i � rº.
Consequently, we also have the following:

(i) For every Q 2 ƒX .N � M/, Q D T¹Q0 jQ0 2 VƒX .N � M/; Q � Q0º. In

fact, every Q 2 ƒX .N � M/ is an intersection of finitely many Q0 2 VƒX .N �
M/.

(ii) The intersection
T¹Q jQ 2 VƒX .N � M/º D T¹Q jQ 2 ƒX .N � M/º is

equal to Ker
�

M ! .M=N/ŒU�1�
�

, which is the unique o.X/-primary compo-
nent in ƒo.X/.N �M/.

Proof. We may assume N D 0. Then M=N can be viewed as a finitely generated
module over the Noetherian ring R=Ann.M=N/; and the same proof of [17, Theo-
rem 1.3] works here.

Now we study the property of X -independence. Quite generally, X -independence
holds whenX is open in Ass0.M=N/ by Theorem 4.3 (iii) (also see [1, Theorem 4.10]).
In fact, Theorem 4.3 implies that the primary decompositions of N � M are inde-
pendent over X if and only if X is open in Ass0.M=N/ D Ass.M=N/ under the
assumption thatM=N/ is Noetherian.

Theorem 4.4 ([17, Corollary 1.5]). Let N � M be R-modules such that M=N is
Noetherian over R, and X � Ass.M=N/. The following are equivalent:

(i) X is open in Ass.M=N/.

(ii) ƒX .N �M/ consists of only one X -primary component.
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(iii) ƒX .N �M/ is finite.

(iv) VƒX .N �M/ is finite.

Proof. This follows from Theorem 4.3; or see the proof of [17, Corollary 1.5].

Remark 4.5. As above, assume that M=N is Noetherian over R. By Theorem 4.4,
there are infinitely many P -primary components of N inM if P 2 Ass.M=N/ is an
embedded prime.

5 Linear growth of primary components

Swanson showed the following linear growth property concerning the primary decom-
positions of In in R:

Theorem 5.1 ([14]). Let R be a Noetherian ring and I an ideal of R. Then there
exists k 2 N WD ¹0; 1; 2; : : : º such that, for every n 2 N, there exists a primary
decomposition (of In in R)

In D Qn;1 \Qn;2 \ � � � \Qn;s.n/ (with Qn;i being Pn;i -primary in R)

such that .Pn;i /
kn � Qn;i for all i D 1; 2; : : : ; s.n/.

This was later generalized to any Noetherian R-module M together with several
ideals in [12] via a study of injective modules. The same result was also later obtained
in [16, 17] via different methods. In [17], this kind of property was also proved for
families of Tor and Ext modules. (See Theorem 5.4 for the precise statements.)

Inspired by the above, we formulate the following definition of the linear growth
property of primary decomposition.

Definition 5.2. Given a family F D ¹Ma j a D .a1; a2; : : : ; ar/ 2 Nrº consisting of
R-modules, we say F satisfies the linear growth property of primary decomposition
(over R) if there exists k 2 N such that, for every a D .a1; a2; : : : ; ar/ 2 Nr such
thatMa ¤ 0, there exists a primary decomposition of 0 inMa,

0 D Qa;1 \Qa;2 \ � � � \Qa;s.a/ (withQa;i being Pa;i -primary inMa)

such that .Pa;i /
kjajMa � Qa;i for all i D 1; 2; : : : ; s.a/, where jaj D a1C� � �Car .

When the above occurs, we refer to k as a slope of F . (Clearly, if k is a slope of F ,
then all the integers greater than k are also slopes of F .)

The linear growth property is a measure of the ‘sizes’ of the primary components
as a 2 Nr varies. Roughly speaking, it says that there are primary decompositions in
which the primary components are “not too small”.

Next, we set up some notation, which will also be used in Section 6 and Section 12.
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Notation 5.3. Let R be a ring, Ii ; Jj ideals of R and Xi ; Yj indeterminates, for i 2
¹1; : : : ; sº and j 2 ¹1; : : : ; tº with s and t positive integers.

(i) By m 2 Zs , we mean m WD .m1; : : : ; ms/ 2 Zs; similarly for n 2 Zt .

(ii) For m 2 Zs and n 2 Zt , denote .m; n/ WD .m1; : : : ; ms; n1; : : : ; nt / 2 ZsCt .

(iii) For any ideal I of R, I e D R if e � 0.
(iv) For m 2 Zs and n 2 Zt , denote Im WD Im1

1 � � � Ims
s and J n WD J n1

1 � � �J nt

t .

(v) For m 2 Zs and n 2 Zt , denote Xm WD Xm1

1 � � �Xms
s and Y n WD Y n1

1 � � �Y nt

t .

(vi) Denote N D ¹i j i 2 Z; i � 0º D ¹0; 1; 2; : : : º.
(vii) For all m 2 Ns and n 2 Nt (so that .m; n/ 2 NsCt ), denote jmj D Ps

iD1mi ,
jnj DPt

j D1 nj and j.m; n/j D jmj C jnj.
(viii) By 0 2 Zs , we mean 0 WD .0; : : : ; 0/ 2 Zs; similarly for 0 2 Zt .

(ix) Denote ei WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Zs , with the i -th component 1.

(x) Denote fj WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Zt , with the j -th component 1.

We list some results on the linear growth property, including [14], as follows:

Theorem 5.4. Let A be a Noetherian ring, M a finitely generated A-module, R an
A-algebra, N a Noetherian R-module, and J1; : : : ; Jt ideals of R. Then each of the
following families of R-modules has the linear growth property for primary decompo-
sition (over R):

(i) The family ¹N=J nN jn 2 Ntº; see [14, 12, 16, 17].

(ii) The family ¹R=J n jn 2 Ntº if R is Noetherian; see [11].

(iii) The family ¹TorAc .M;N=J nN/ jn 2 Ntº; see [17].

(iv) The family ¹ExtcA.M;N=J nN/ jn 2 Ntº; see [17].

Note that, in Theorem 5.4, N is a finitely generated module over R=AnnR.N /,
which is a Noetherian A-algebra. Also note that each of (iii) and (iv) recovers (i) as a
special case. In fact, both (iii) and (iv) are direct consequences of the following:

Theorem 5.5 ([17, Theorem 3.2]). Let A be a ring and R an A-algebra. Let N be any
Noetherian R-module, J1; : : : ; Jt fixed ideals of R, and c 2 Z. Fix any complex

F� W � � � �! FcC1 �! Fc �! Fc�1 �! � � �
of finitely generated flat A-modules. For any n 2 Nt , denote

En D Hc
�

HomA.F�; N
J nN

/
�

and Tn D Hc

�

F� ˝A
N

J nN

�

;

the c-th cohomology and homology of the respective complexes. Then the family
¹En jn 2 Ntº and the family ¹Tn jn 2 Ntº, both consisting of finitely generated
R-modules, satisfy the linear growth property of primary decomposition over R.
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Proof. This was essentially proved in [17, Theorem 3.2]: By replacing R with
R=AnnR.N /, we may assume R is Noetherian. Then, for each i , Fi ˝A R is flat
and finitely presented over R. Hence F� ˝A R is a complex of finitely generated
projective modules over R. By Hom-˝ adjointness and associativity of tensor,

En Š Hc
�

HomR.F� ˝A R;
N

J nN
/
�

and Tn Š Hc

�

.F� ˝A R/˝R
N

J nN

�

:

Now [17, Theorem 3.2] applies, which completes the proof.

Theorem 5.5 will be used to prove the linear growth property of primary decompo-
sitions for ¹TorRc . M

I mM
; N

J nN
/ j .m; n/ 2 Ns �Ntº in the next Section 6.

We end this section with an easy fact concerning the linear growth property of pri-
mary decomposition.

Lemma 5.6. Let hWA ! R be a ring homomorphism, ¹Mn jn 2 Ntº a family of R-
modules, ¹Kn jn 2 Ntº a family of A-modules such that Kn � Mn as A-modules for
all n 2 Nt , and U a multiplicative subset of R.

If ¹Mn jn 2 Ntº satisfies the linear growth property of primary decomposition over
R with a slope k, then ¹Kn jn 2 Ntº and ¹MnŒU

�1� jn 2 Ntº satisfy the linear
growth property of primary decomposition over A and RŒU�1� respectively with the
same slope k.

Proof. This follows (almost immediately) from Theorem 2.1 (iii) and (iv).

6 Linear Growth of ¹TorR
c . M

ImM
; N

J nN
/º

Assume that R is a Noetherian ring, I1; : : : ; Is; J1; : : : ; Jt are ideals of R, M and
N are finitely generated R-modules, and c 2 Z. For all m 2 Ns and all n 2 Nt ,
denote (cf. Notation 5.3)

T.m;n/ WD TorRc

	

M

ImM
;
N

J nN




and E.m;n/ WD ExtcR

	

M

ImM
;
N

J nN




:

The families ¹T.m;n/ j .m; n/ 2 Ns �Ntº and ¹E.m;n/ j .m; n/ 2 Ns �Ntº consist of
finitely generated R-modules indexed by Ns �Nt D NsCt .

In [17], the author asked whether the family ¹T.m;n/º or ¹E.m;n/º could satisfy
the linear growth property of primary decomposition. Although this is still open for
¹E.m;n/ j .m; n/ 2 Ns � Ntº (see Question 6.6), we are going to establish this for
¹T.m;n/ j .m; n/ 2 Ns �Ntº in this section. In fact, it is a corollary of the following
theorem.

Theorem 6.1. Let R be a ring, A and B flat R-algebras such that A, B and A˝R B

are all Noetherian rings. Let A0 and B 0 be homomorphic images (i.e., quotient rings)
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of A and B respectively, M a finitely generated A0-module, I1; : : : ; Is ideals of A0,
N a finitely generated B 0-module, and J1; : : : ; Jt ideals of B 0. Fix any c 2 Z.

Then ¹TorRc . M
I mM

; N
J nN

/ j .m; n/ 2 Ns �Nt D NsCtº satisfies the linear growth
property of primary decomposition over (the Noetherian ring) A0 ˝R B

0.

Proof. It suffices to prove the linear growth property over A˝R B , which maps onto
A0 ˝R B

0. Thus, without loss of generality, we may assume A D A0 and B D B 0.
There exists g 2 N, large enough, such that

Ii D .xi1; : : : ; xig/A and Jj D .yj1; : : : ; yjg/B

in which xik 2 A and yjk 2 B for all i 2 ¹1; : : : ; sº, all j 2 ¹1; : : : ; tº and all
k 2 ¹1; : : : ; gº. (We pick a uniform g only to make the notation simpler.)

Define the following (Zs-graded) rings and module (cf. Notation 5.3):

A WD AŒXik; Xi j 1 � k � g; 1 � i � s�;
A WD

M

m2Zs

ImX�m D AŒIiX
�1
i ; Xi j 1 � i � s� � AŒX�1

i ; Xi j 1 � i � s�;

M WD
M

m2Zs

ImMX�m;

in which Xik and Xi are (independent) variables. Both A and A are naturally rings
via the polynomial operations, and M is naturally an A-module, which is finitely
generated. Moreover, we make all of them Zs-graded by assigning degrees as follows
(cf. Notation 5.3):

deg.A/ D deg.M/ D 0 WD .0; : : : ; 0/ 2 Zs;

deg.Xik/ D deg.X�1
i / D ei WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Zs;

deg.Xi / D �ei D .0; : : : ; 0;�1; 0; : : : ; 0/ 2 Zs:

Under the gradings, M is a graded A-module. There is a surjective homogeneous
A-algebra homomorphism �WA � A determined by

Xik 7�! xikX
�1
i ; Xi 7�! Xi :

This makes M a finitely generated graded module over A . (Clearly, both A and A

are finitely generated A-algebras and hence Noetherian.)
Similarly, we define the following Zt -graded rings and module (cf. Notation 5.3):

B WD BŒYjk; Yj j 1 � k � g; 1 � j � t �;
B WD

M

n2Zt

J nY �n D BŒJjY
�1

j ; Yj j 1 � j � t � � BŒY �1
j ; Yj j 1 � j � t �;

N WD
M

n2Zt

J nNY �n;
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with Yjk and Yj variables and with the gradings given by (cf. Notation 5.3)

deg.B/ D deg.N / D 0 WD .0; : : : ; 0/ 2 Zt ;

deg.Yjk/ D deg.Y �1
j / D fj WD .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Zt ;

deg.Yj / D �fj D .0; : : : ; 0;�1; 0; : : : ; 0/ 2 Zt :

There is a surjective homogeneous B-algebra homomorphism  WB � B given by

Yjk 7�! yjkY
�1

j ; Yj 7�! Yj :

This makes N a finitely generated graded module over B, since N is (naturally) a
finitely generated graded module over B. (Clearly, both B and B are finitely gener-
ated B-algebras and hence Noetherian.)

We now consider C WD A ˝R B and C WD A˝R B, which are clearly Noetherian
(since they are finitely generated algebras over A ˝R B). In the sequel, we use Œ��h
to denote the h-th homogeneous component of a graded module. (For example, ŒA �˛
stands for the homogeneous component of A of degree ˛ with the understanding that
˛ D .˛1; : : : ; ˛s/ 2 Zs , since A is Zs-graded.) Keeping this in mind, we observe that
both C and C are naturally ZsCt -graded rings with

ŒC �.˛;ˇ/ D ŒA ˝R B�.˛;ˇ/ D ŒA �˛ ˝R ŒB�ˇ and

ŒC �.˛;ˇ/ D ŒA˝R B�.˛;ˇ/ D ŒA�˛ ˝R ŒB�ˇ

for all .˛; ˇ/ 2 Zs � Zt D ZsCt . In particular, for .0; 0/ 2 Zs �Nt , we have

ŒC �.0;0/ D ŒA ˝R B�.0;0/ D ŒA �0 ˝R ŒB�0 D A˝R B and

ŒC �.0;0/ D ŒA˝R B�.0;0/ D ŒA�0 ˝R ŒB�0 D A˝R B:

Moreover, the surjective homogeneous R-algebra homomorphisms �WA � A and
 WB � B induce an surjective homogeneous R-algebra homomorphism

� ˝  WC � C :

Write down graded free resolutions of M over A and of N over B respectively by
(free) modules of finite ranks (over A and over B respectively)

F� W � � � �! Fi �! Fi�1 �! � � � �! F1 �! F0 .�!M/ �! 0;

G� W � � � �! Gj �! Gj �1 �! � � � �! G1 �! G0 .�! N / �! 0:

Then F� ˝R G� is (naturally) a ZsCt -graded complex composed of finitely gener-
ated free C -modules over the ZsCt -graded ring A ˝R B DW C .

By abuse of notation, we useXmY n to denote .Xm˝1/.1˝Y n/ D Xm˝Y n 2 C .
By Theorem 5.5, the following family (of C -modules)

²

Hc

	

.F� ˝R G�/˝C
C

.XmY n/




ˇ

ˇ

ˇ

.m; n/ 2 Ns �Nt D NsCt

³

has the linear growth property of primary decomposition over C D A ˝R B.
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We are going to show that the above linear growth property implies the linear growth
property of ¹TorRc . M

I mM
; N

J nN
/ j .m; n/ 2 Ns �Nt D NsCtº over A˝R B .

Firstly, for all .m; n/ 2 Ns�Nt , the modules Hc..F�˝RG�/˝C
C

.XmY n/
/ are anni-

hilated by Ker.� ˝ /; so, naturally, they are all graded modules over C D A˝R B.
(This follows directly from how M, N , F� and G� are constructed: Multiplication
by every element in Ker.�/ (resp. Ker. /) is homotopic to 0 on F� (resp. G�); and
Ker.� ˝  / is generated by Ker.�/ and Ker. / since both � and  are surjective.)
Hence ¹Hc..F� ˝R G�/ ˝C

C
.XmY n/

/ j .m; n/ 2 Ns � Nt D NsCtº has the linear
growth property of primary decomposition over C .

Secondly, for everym 2 Ns and n 2 Nt , there is a canonical homogeneous isomor-
phism of .A ˝R B/-complexes

.F� ˝R G�/˝C
C

.XmY n/
Š
	

F� ˝A
A

.Xm/




˝R

	

G� ˝B
B

.Y n/




:

Therefore, for each .˛; ˇ/ 2 Zs � Zt , there is an isomorphism between the following
.A0 ˝R B0/-complexes

�

.F� ˝R G�/˝C
C

.XmY n/

�

.˛;ˇ/

Š
�	

F� ˝A
A

.Xm/


�

˛

˝R

�	

G� ˝B
B

.Y n/


�

ˇ

:

Thirdly, observe that Xi is regular on both M and A for every i 2 ¹1; : : : ; sº while
Yj is regular on both N and B for every j 2 ¹1; : : : ; tº. Thus Xm is regular on both
M and A while Y n is regular on both N and B for every m 2 Ns and n 2 Nt .
Consequently,

(a) F� ˝A
A

.Xm/
is a graded free resolution of M

XmM
over graded ring A

.Xm/
;

(b) G� ˝B
B

.Y n/
is a graded free resolution of N

Y nN
over graded ring B

.Y n/
.

Moreover, by the construction of A and B, all of their homogeneous components
are free A-modules and free B-modules respectively; so they are all flat R-modules. It
follows that all of the homogeneous components of A

.Xm/
and B

.Y n/
are free A-modules

and free B-modules respectively and hence flat over R, for allm 2 Ns and n 2 Nt . In
light of this, statements (a) and (b) above imply the following (for allm 2 Ns , n 2 Nt ,
˛ 2 Zs and ˇ 2 Zt ):

(Œa�˛) ŒF� ˝A
A

.Xm/
�˛ is a flat resolution of Œ M

XmM
�˛ D I ˛M

I ˛CmM
over R;

(Œb�ˇ ) ŒG� ˝B
B

.Y n/
�ˇ is a flat resolution of Œ N

Y nN
�ˇ D J ˇN

J ˇCnN
over R.

In particular, for ˛ D 0 2 Zs and ˇ D 0 2 Zt , we have (for all m 2 Ns and n 2 Nt )

(Œa�0) ŒF� ˝A
A

.Xm/
�0 is a flat resolution of Œ M

XmM
�0 D M

I mM
over R;

(Œb�0) ŒG� ˝B
B

.Y n/
�0 is a flat resolution of Œ N

Y nN
�0 D N

J nN
over R.
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Now we study Hc..F� ˝R G�/ ˝C
C

.XmY n/
/, which is a ZsCt -graded module, in

terms of its homogeneous components. Recall that ŒC �.0;0/ D A ˝R B D ŒC �.0;0/.
Combining the three paragraphs above, we obtain the following isomorphisms over
A˝R B:

Hc

	

.F� ˝R G�/˝C
C

.XmY n/




D
M

.˛;ˇ/2Zs�Zt

�

Hc

	

.F� ˝R G�/˝C
C

.XmY n/


�

.˛;ˇ/

D
M

.˛;ˇ/2Zs�Zt

Hc

 

�

.F� ˝R G�/˝C
C

.XmY n/

�

.˛;ˇ/

!

Š
M

.˛;ˇ/2Zs�Zt

Hc

 

�

F� ˝A
A

.Xm/

�

˛

˝R

�

G� ˝B
B

.Y n/

�

ˇ

!

D
M

.˛;ˇ/2Zs�Zt

TorRc

 

I˛M

I˛CmM
;
J ˇN

J ˇCnN

!

for all .m; n/ 2 Ns �Nt . In particular, for all .m; n/ 2 Ns �Nt ,

TorRc

	

M

ImM
;
N

J nN




Š
�

Hc

	

.F� ˝R G�/˝C
C

.XmY n/


�

.0;0/

� Hc

	

.F� ˝R G�/˝C
C

.XmY n/




as .A˝R B/-modules.
In summary, the family ¹Hc..F� ˝R G�/ ˝C

C
.XmY n/

/ j .m; n/ 2 Ns � Ntº sat-
isfies the linear growth property of primary decomposition over the graded ring C

with ŒC �.0;0/� D A ˝R B; and for each .m; n/ 2 Ns � Nt , TorRc .
M

I mM
; N

J nN
/ is an

.A˝R B/-submodule of Hc..F� ˝R G�/˝C
C

.XmY n/
/ up to isomorphism.

Finally, by Lemma 5.6, the family

²

TorRc

	

M

ImM
;
N

J nN




ˇ

ˇ

ˇ

.m; n/ 2 Ns �Nt D NsCt

³

satisfies the linear growth of primary decomposition over A˝R B .

In fact, the proof of Theorem 6.1 implies the following (apparently) stronger result
concerning infinitely many families and a uniform slope (cf. Definition 5.2).
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Theorem 6.2. Keep the notation and the assumptions in Theorem 6.1.
Then there exists k such that for all .˛; ˇ/ 2 Zs � Zt , the family

T .˛;ˇ/ WD
´

TorRc

 

I˛M

I˛CmM
;
J ˇN

J ˇCnN

!

ˇ

ˇ

ˇ

.m; n/ 2 Ns �Nt D NsCt

μ

satisfies the linear growth property of primary decomposition over A0 ˝R B 0 with
the uniform slope k. More explicitly, for every .˛; ˇ/ 2 ZsCt and .m; n/ 2 NsCt

such that TorRc
�

I ˛M
I ˛CmM

; J ˇN
J ˇCnN

� ¤ 0, there exists a primary decomposition of 0 in

TorRc
�

I ˛M
I ˛CmM

; J ˇN
J ˇCnN

�

over A0 ˝R B
0,

0 D Q˛;ˇ;m;n;1 \Q˛;ˇ;m;n;2 \ � � � \Q˛;ˇ;m;n;s.˛;ˇ;m;n/;

with Q˛;ˇ;m;n;i being P˛;ˇ;m;n;i -primary in TorRc
�

I ˛M
I ˛CmM

; J ˇN
J ˇCnN

�

, such that

.P˛;ˇ;m;n;i /
kj.m;n/j TorRc

�

I ˛M
I ˛CmM

; J ˇN
J ˇCnN

� � Q˛;ˇ;m;n;i

for all i D 1; 2; : : : ; s.˛; ˇ;m; n/.
Proof. As seen in the proof of Theorem 6.1, for all .m; n/ 2 Ns � Nt and for all
.˛; ˇ/ 2 Zs � Zt , we have

TorRc

 

I˛M

I˛CmM
;
J ˇN

J ˇCnN

!

Š
�

Hc

	

.F� ˝R G�/˝C
C

.XmY n/


�

.˛;ˇ/

� Hc

	

.F� ˝R G�/˝C
C

.XmY n/




as .A˝R B/-modules.
Say k is a slope for ¹Hc..F� ˝R G�/˝C

C
.XmY n/

/ j .m; n/ 2 Ns �Nt D NsCtº
over C . By Lemma 5.6, all the families T .˛;ˇ/, .˛; ˇ/ 2 Zs � Zt , satisfy the linear
growth property of primary decomposition over A˝R B with the same slope k.

Remark 6.3. Recall that an R-algebra S is said to be essentially of finite type over R
if S Š T ŒU�1� with T a finitely generated R-algebra and U a multiplicative subset of
T . We remark that Theorems 6.1 and 6.2 apply whenA0 and B 0 are essentially of finite
type over R. This is because one can then let A and B be of the form T ŒU�1� with T
being a polynomial ring over R (hence flat over R) with finitely many variables.

Remark 6.4. Note that Theorems 6.1 and 6.2 include the case of s D 0 or t D 0. For
example, when s D 0, Theorem 6.1 states that the family ¹TorRc .M; N

J nN
/ j n 2 Ntº

satisfies the linear growth property of primary decomposition over A0˝R B
0, which is

slightly different from Theorem 5.4 (iii); and Theorem 6.2 says that, for all ˇ 2 Zt , the
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families ¹TorRc .M; J ˇN
J ˇCnN

/ j n 2 Ntº satisfy the linear growth property of primary
decomposition over A0 ˝R B

0 with a uniform slope.
In fact, if s D 0, we can relax the condition on A andM by assuming that A is any

R-algebra such that A˝R B is Noetherian andM is any finitely generated A-module,
while the other assumptions remain the same. The proof is similar, but we construct
G� only. By Theorem 5.5, the family ¹Hc..A˝R G�/˝A˝RB

M ˝RB
Y n.M ˝RB/

/ jn 2 Ntº
has linear growth property of primary decomposition over A˝R B. The rest follows
in a similar way, by considering the homogeneous components graded by Zt . It might
be helpful to note the natural homogeneous .A˝R B/-isomorphisms

.A˝R G�/˝A˝RB
M ˝R B

Y n.M ˝R B/
ŠM ˝R

	

G� ˝B
B

.Y n/




and

�

Hc

	

M ˝R

	

G� ˝B
B

.Y n/



�

ˇ

D Hc

 

M ˝R

�

G� ˝B
B

.Y n/

�

ˇ

!

Š TorRc

 

M;
J ˇN

J ˇCnN

!

over A˝R B D ŒA˝R B�0.

As promised, we state the following corollary (when A D R D B).
Corollary 6.5. Let R be a Noetherian ring, M and N finitely generated R-modules,
I1; : : : ; Is; J1; : : : ; Jt ideals of R, and c 2 Z.

Then ¹TorRc . M
I mM

; N
J nN

/ j .m; n/ 2 Ns �Nt D NsCtº satisfies the linear growth
property of primary decomposition over R.

More generally, the families ¹TorRc . I ˛M
I ˛CmM

; J ˇN
J ˇCnN

/ j .m; n/ 2 Ns �Ntº, for all
.˛; ˇ/ 2 Zs �Zt , satisfy the linear growth property of primary decomposition over R
with a uniform slope.

Question 6.6. Keep the notation and the assumptions in Corollary 6.5. Does the family
¹ExtcR. M

I mM
; N

J nN
/ j .m; n/ 2 Ns �Ntº satisfy the linear growth property?

When c � 0, the linear growth property of primary decomposition can be easily
established for ¹ExtcR. M

I mM
; N

J nN
/ j .m; n/ 2 Ns �Ntº. For general c, the question is

open even for the family ¹ExtcR. M
I mM

; N / jm 2 Nsº.

7 Secondary Representation

Secondary representations were first studied by I. G. Macdonald [6] and D. Kirby [5].
The theory can be viewed as a dual of the theory of primary decomposition. (See
Theorem 9.2 and Observation 9.4 for example, where this duality is demonstrated
explicitly.) For this reason, it was called coprimary decomposition in [5]. Systematic
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treatment of secondary representation can be found in many sources, for example,
see [5], [6], [7], and [8] as well as many other papers authored or co-authored by
R.Y. Sharp.

Assume that R is a ring (not necessarily Noetherian) andM is an R-module. In this
section, we briefly review some of the basic definitions and properties.

We say thatM is secondary if, for all r 2 R, either rM D M or r 2 pAnn.M/.
(Note that, under this definition, 0 is a secondary module.) If M ¤ 0 is secondary,
then P WD pAnn.M/ is a prime ideal; and we sayM is P -secondary in this case.

It is easy to see that ifM is P -secondary then, for any multiplicatively closed subset
U of R and any finitely generated ideal I of R, we have

ŒU �M D
´

M if P \ U D ¿
0 if P \ U ¤ ¿

and
\

i2N

.I iM/ D
´

M if I 6� P
0 if I � P

in which ŒU �M WDTu2U .uM/.
For a general R-module M and a prime ideal P , we say that P is attached to

M if there is an R-submodule N of M such that M=N is P -secondary, that is, a
homomorphic image ofM is P -secondary. The set of all the primes attached toM is
denoted AttR.M/, or simply Att.M/ if R is understood. (Note that Att and Ass00 are
dual to each other.)

As Att.M/ � Spec.R/, there is a topology on Att.M/ that is induced by the Zariski
topology on Spec.R/.

IfM is P -secondary, then Att.M/ D ¹P º. IfM is an Artinian R-module, thenM
is P -secondary ” Att.M/ D ¹P º, andM D 0 ” Att.M/ D ¿.

Example 7.1. Let .R;m/ be any Noetherian local domain, not necessarily complete.
Then ER.R=m/, the injective hull of the residue field R=m, is 0-secondary; so that
AttR.ER.R=m// D ¹0º. Note that ER.R=m/ is Artinian, and the zero ideal 0 is not
the maximal ideal m if dim.R/ > 0. (However, AssR.ER.R=m// D ¹mº.)

We also note thatR=m is both m-secondary and m-coprimary as anR-module with
AttR.R=m/ D ¹mº D AssR.R=m/.

For an R-module M ¤ 0, we say M is representable (over R) if there exist sub-
modulesQi that are Pi -secondary, for i D 1; : : : ; s, such that

M D Q1 C � � � CQs:

This summation is called a secondary representation of M . One can always convert
a secondary representation to a minimal one in the sense that Pi ¤ Pj for all i ¤
j and M ¤ P

i¤k Qi for every k D 1; : : : ; s. So from now on and as a general
rule, all secondary representations are assumed to be minimal unless stated otherwise
explicitly.

By convention, the zero R-module 0 is representable with 0 D 0 being the unique
secondary representation.
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For concrete examples of secondary representation, see Examples 10.4 and 10.5.
Here is a theorem on the existence of secondary representation, cf. [6].

Theorem 7.2. Every Artinian R-module is representable (over R).

For any R-module M and any ideal I � Ann.M/, the following is clear: M is
representable over R if and only ifM is representable over R=I .

Next, we state some useful results about secondary representations; compare with
Theorem 2.1. We do not need to assumeM is Artinian in Theorem 7.3, as long asM
is representable. In case U D R n P with P 2 Spec.R/, we writeMP WD ŒU �M .

Theorem 7.3 (Cf. [6]; compare with Theorem 2.1). Let M D Q1 C � � � C Qs be a
(minimal) secondary representation of an R-module M in which Qi is Pi -secondary
for each i D 1; : : : ; s. Then the following hold

(i) ¹P1; : : : ; Psº D Att.M/, which is independent of the particular (minimal) sec-
ondary representation (cf. [6, Theorem 2.2]).

i0 We have Min.M/ � ¹P1; : : : ; Psº. In fact, Min.M/ consists of the minimal
members of ¹P1; : : : ; Psº (under inclusion) precisely.

(ii) If Pi is minimal in Att.M/ (i.e., Pi 2 Min.M/), then Qi DMPi . See (iv).

(iii) Let hWA ! R be a ring homomorphism, so that M is naturally an A-module.
Let K be an A-submodule of M (e.g., K D 0). Then M=K is representable over
A. In fact, if M=K ¤ 0, then

M=K D
X

Qi ªK

.Qi CK/=K

is a (not necessarily minimal) secondary representation ofM=K overA, in which
.Qi CK/=K is h�1.Pi /-secondary provided that Qi ª K.

iii0 In particular, AttA.M/ D h�.AttR.M//, in which h�WSpec.R/ ! Spec.A/ is
the continuous map naturally induced by h.

(iv) For any multiplicative subset U of R, ŒU �M D P

Pi \U D¿Qi is a secondary
representation over R (cf. [6, Theorem 3.1]).

(v) For any finitely generated ideal I of R,
T

j 2N.I
jM/ DPI 6
Pi

Qi D InM for
all n� 0 (cf. [6, Theorem 3.3]).

v0 For any non-empty subset I of R,
S

r2I .
T

n2N.r
nM// DPI 6
Pi

Qi .

Very much like Ass.�/ (as well as Ass0, Ass00 and Assf), the sets of attached primes
are relatively well-behaved with exact sequences, as stated in the following well-
known lemma. This will be referred to in the proof of Lemma 8.2.

Lemma 7.4 (Compare with Lemma 2.4). Let M1 ! M2 ! M3 ! 0 be an exact
sequence of R-modules. Then Att.M3/ � Att.M2/ � Att.M1/ [ Att.M3/.

Moreover, Att.
Ln

iD1Ki / DSn
iD1 Att.Ki / forR-modulesK1; : : : ; Kn with n 2 N.
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8 Compatibility of Secondary Components

Throughout this section, we assume that R is a (not necessarily Noetherian) ring and
M a (not necessarily Artinian) R-module. The reader should observe the similarity
(or rather, “duality”) between this section and Section 3.

The results in this section were obtained in [18].

Notation 8.1. Let M be a representable R-module and X � Att.M/. Say X D
¹P1; : : : ; Prº � ¹P1; : : : ; Pr ; : : : ; Psº D Att.M/.

(i) If M D Q1 C � � � C Qr C � � � C Qs is a secondary representation of M with
Qi being Pi -secondary, then we say Q D Q1 C � � � C Qr is an X -secondary
component (or a secondary component over X ) ofM . If X D ¿, then we agree
that 0 is the only ¿-secondary component.

(ii) We call an X -secondary component ofM minimal if it does not properly contain
any X -secondary component ofM .

(iii) Denote by ƒ�
X .M/ the set of all possible X -secondary components ofM .

(iv) We useƒı
�
X .M/ to denote the set of all minimal X -secondary components ofM .

(Note that ƒı
�
X .M/ ¤ ¿ ifM is Artinian.)

(v) In case X D ¹P º � Att.M/, we may simply write ƒ�
P and ƒı

�
P instead of ƒ�

¹P º
and ƒı

�¹P º respectively.

Lemma 8.2 (Compare with Lemma 3.2). Let M be a representable R-module and
X � Att.M/. For an R-module Q such that Q �M , the following are equivalent:

(i) Q is an X -secondary component of M , i.e., Q 2 ƒ�
X .M/.

(ii) Q is representable, Att.Q/ � X and Att.M=Q/ � Att.M/ nX .

(iii) Q is representable, Att.Q/ D X and Att.M=Q/ D Att.M/ nX .

Proof. Say X D ¹P1; : : : ; Prº � ¹P1; : : : ; Pr ; PrC1; : : : ; Psº D Att.M/.
.i/ ) .ii/: Condition (i) means that there is a secondary representation M D

Q1C� � �CQrC� � �CQs withQi being Pi -secondary such thatQ D Q1C� � �CQr .
Then evidently Att.Q/ � X (since they are equal, see Theorem 7.3 (i)). Also, we have
an R-linear isomorphism

M

Q
D QCPs

iDrC1Qi

Q
Š

Ps
iDrC1Qi

Q \Ps
iDrC1Qi

;

which implies that Att.M=Q/ � Att.
Ps

iDrC1Qi / D ¹PrC1; : : : ; Psº D Att.M/nX .
.ii/) .iii/: This is evident, since Att.M/ � Att.M=Q/ [ Att.Q/ by Lemma 7.4.
.iii/) .i/: AsQ is representable and Att.Q/ D ¹P1; : : : ; Prº, we fix a secondary

representationQ D Q1C� � �CQr in whichQi is thePi -secondary component for i D
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1; : : : ; r . Next, we fix a secondary representationM D Q0
1C� � �CQ0

rC� � �CQ0
s ofM

withQ0
i being Pi -secondary and letQ0 D Ts

iDrC1Q
0
i , so thatQ0 2 ƒ�

Att.M /nX
.M/.

By the argument .i/) .ii/, Att.M=Q0/ � X . Since M
QCQ0 is a homomorphic image

of bothM=Q andM=Q0, we know that Att. M
QCQ0 / � Att.M=Q/\Att.M=Q0/ D ¿.

Note that M
QCQ0 is representable sinceM is so (cf. Theorem 7.3 (iii)). In light of this,

the fact that Att. M
QCQ0 / D ¿ necessarily implies M

QCQ0 D 0 (cf. Theorem 7.3 (i)), and
henceM D QCQ0. That is,

M D QCQ0 D Q1 C � � � CQr CQ0
rC1 C � � �Q0

s;

which is necessarily a (minimal) secondary representation of M . This implies that
Q D Q1 C � � � CQr is an X -secondary component ofM , i.e.,Q 2 ƒ�

X .M/.

As a consequence, we establish the following ‘compatibility’ property of secondary
representation, as follows.

Theorem 8.3 (Compatibility). Let M be a representable R-module. Then

(i) If Xi � Att.M/ and QXi
2 ƒ�

Xi
.M/ for 1 � i � n. Then

Pn
iD1QXi

2
ƒ�

X .M/, where X DSn
iD1Xi .

(ii) In particular, suppose Att.M/ D ¹P1; : : : ; Psº and Qi 2 ƒ�
Pi
.M/ for each

i D 1; : : : ; s. Then M D Q1 C � � � C Qs , which is necessarily a minimal
secondary representation of M .

Proof. (i) By Lemma 8.2, we see Att.QXi
/ D Xi and Att.M=QXi

/ D Att.M/ n Xi

for 1 � i � n. Therefore

Att
�

M=
�

n
X

iD1

QXi

�

�
n
\

iD1

Att.M=QXi

�

D Att.M/ nX

because of the natural surjections from M=QXi
onto M=.

Pn
iD1QXi

/. Also observe
that Att.

Pn
iD1QXi

/ � [n
iD1 Att.QXi

/ D X (since there is an obvious surjection
from ˚n

iD1QXi
to
Pn

iD1QXi
). Now Lemma 8.2 gives the desired result.

(ii) This is a special case of (i). By definition,M is the only Att.M/-secondary com-
ponent ofM . (This can also be proved by “dualizing” the proof in [16, Theorem 1.1];
see [18, Theorem 4.1.2] for details.)

9 Applying a Result of Sharp on Artinian Modules

Throughout this section, R is a ring and M is an Artinian R-module. Although R is
not necessarily Noetherian, we are going to see that M can be naturally realized as
an Artinian module over a Noetherian complete semi-local ring, thanks to a theorem
of R.Y. Sharp in [9] (cf. Theorem 9.3). This would make the classic Matlis duality
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applicable, which then allows us to transform secondary representations to primary
decompositions, as we are going to see in Observation 9.4. (Also see [10] for another
result on Artinian modules.)

Notation 9.1. We will use the following notation in the sequel.

(i) Let MSpec.R/ WD ¹m 2 Spec.R/ jm is maximal in Rº.
(ii) For every m 2 MSpec.R/, denote �m.M/ WD S

n	0.0 WM mn/, which is
isomorphic toMm sinceM is Artinian.

(iii) For every m 2 MSpec.R/, let bRm be the m-adic completion of Rm (or R),
which is a quasi-local ring (i.e., a ring, not necessarily Noetherian, with a unique
maximal ideal).

(iv) Let bR WDQm2MSpec.R/
bRm, which is a ring (not necessarily Noetherian).

(v) Let �WR! bR be the natural ring homomorphism.

(vi) Let ��WSpec.bR/ ! Spec.R/ denote the induced continuous map, that is,
��.P / D ��1.P / for all P 2 Spec.bR/.

(vii) Let ��
M denote the resulting map if we restrict �� to Att

bR
.M/ ! AttR.M/.

Thus, for X � AttR.M/, ��
M

�1.X/ D ¹P 2 Att
bR
.M/ j��1.P / 2 Xº.

(viii) For each m 2 MSpec.R/, let E
bR
.R=m/ denote the injective hull of R=m over

bR (which is canonically isomorphic to its injective hull over bRm).

(ix) Let E WDQm E
bR
.R=m/, which is injective over bR.

(x) Define the Matlis dualizing functor, denoted D.�/, as follows: for every bR-
module N (e.g., N is an Artinian R-module), let D.N / WD Hom

bR
.N;E/.

Let us recall the classic Matlis duality (over a Noetherian complete semi-local ring)
and some consequences.

Theorem 9.2 (Matlis duality). Let R be a Noetherian semi-local ring that is com-
plete (with respect to its Jacobson radical) and M be an R-module that is Artinian
or Noetherian. Say MSpec.R/ D ¹m1; : : : ;mnº, so that R D bR D Qn

iD1
bRmi

and
E DLn

iD1 ERmi
.R=mi /. Then

(i) If M is Artinian (resp. Noetherian), then D.M/ is Noetherian (resp. Artinian).

(ii) D.D.M// DM and (hence) D.D.D.M/// D D.M/.
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(iii) If ¹Niºi2
 is a family of (possibly infinitely many) R-submodules of M , then

D
�

M=
X

i2


Ni

�

D
\

i2


D.M=Ni /;

X

i2


Ni D D
�

D.M/=
\

i2


D.M=Ni /
�

;

D

 

M=
\

i2


Ni

!

D
X

i2


D.M=Ni /;

\

i2


Ni D D
�

D.M/=
X

i2


D.M=Ni /
�

;

Ni � Nj ” D.M=Ni / � D.M=Nj /:

(iv) For any R-submodule Q of M and P 2 Spec.R/, Q is P -secondary if and only
if D.Q/ is P -coprimary if and only if D.M=Q/ is P -primary in D.M/.

(iv0) For any submodule Q0 of M and P 2 Spec.R/, Q0 is P -primary in M if and
only if D.M=Q0/ is P -secondary.

(v) M D Ps
iD1Qi is a (minimal) secondary representation of M if and only if

0 DTs
iD1 D.M=Qi / is a (minimal) primary decomposition of 0 in D.M/.

(v0) 0 D Ts
iD1Q

0
i is a (minimal) primary decomposition of 0 in M if and only if

D.M/ DPs
iD1 D.M=Q

0
i / is a (minimal) secondary representation of D.M/.

(vi) AttR.M/ D AssR.D.M// and AssR.M/ D AttR.D.M//.

(By abuse of notation, we use “D” to denote natural isomorphisms, and also re-
gard D.M=Ni /, D.M=Q/ and D.M=Qi / as R-submodules of D.M/ via the natural
injections.)

Proof. Statements (i), (ii) and (iii) are standard results of the classic Matlis duality.
(iv) It is clear that Q ¤ 0 ” D.Q/ ¤ 0 ” D.M=Q/ ¨ D.M/. So we

assumeQ ¤ 0. Then we have that

Q is P -secondary ” f WQ r ��! Q is

´

surjective if r 2 R n P
nilpotent if r 2 P

” gWD.Q/ r ��! D.Q/ is

´

injective if r 2 R n P
nilpotent if r 2 P

” D.Q/ is P -coprimary

” D.M/=D.M=Q/ is P -coprimary

” D.M=Q/ is P -primary in D.M/:
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(iv0) This can be proved in a similar way. (This also follows from (iv) in light of the
duality results (i) and (ii).)

Finally, (v), (v0) and (vi) all follow from (i), (ii), (iii), (iv) and (iv0) directly.

Let R be a general commutative ring (not necessarily Noetherian). Since M is
Artinian, we see thatM DLm2MSpec.R/ �m.M/ and �m.M/ D 0 for all but finitely
many m. For each m 2 MSpec.R/, �m.M/ D Mm is naturally a module over
bRm. ThusM can be naturally viewed as a module over bR (via component-wise scalar
multiplications). If we compose this derived bR-module structure of M with �, we
recover the original R-module structure of M . Moreover, for a subset N of M , it is
straightforward to see that

N is an R-submodule ofM ” N is an bR-submodule ofM .

So M must be Artinian over bR, since M is Artinian over R. To study the R-module
structure ofM , one approach would be to study its bR-module structure.

Let us study Ann
bR
.M/, the annihilator ofM over bR. By the above, we see that

Ann
bR
.M/ D

Y

m2MSpec.R/

Ann
cRm
.�m.M//:

ThusM is naturally an Artinian module over the following quotient ring

bR

Ann
bR
.M/

D
Q

m2MSpec.R/
bRm

Q

m2MSpec.R/ Ann
cRm
.�m.M//

Š
Y

m2MSpec.R/

bRm

Ann
cRm
.�m.M//

:

As �m.M/ D 0 for all but finitely many m, say ¹m 2 MSpec.R/ j�m.M/ ¤ 0º D
¹m1; : : : ;mnº. ThenM DLn

iD1 �mi
.M/ is naturally an Artinian module over

Y

m2MSpec.R/

bRm

Ann
cRm
.�m.M//

D
n
Y

iD1

bRmi

Ann
bRmi

.�mi
.M//

:

So we study �mi
.M/ over

bRmi

Ann
bRmi

.�mi
.M//

for i D 1; : : : ; n. By construction, �mi
.M/ is Artinian over the quasi-local ring

bRmi

Ann
bRmi

.�mi
.M//

I

moreover, if we compose this module structure with the natural map R ! bRmi
, we

recover the original R-module structure of �mi
.M/.

Therefore, to study the secondary representations of an Artinian R-module M , it
(usually) suffices to study them over bR (as secondary representations behave well
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under scalar restriction, see Theorem 7.3 (iii)). Then it suffices to regard M as an
(Artinian) module over

bR

Ann
bR
.M/

D
n
Y

iD1

bRmi

Ann
bRmi

.�mi
.M//

:

The following theorem of R. Y. Sharp verifies that each of the rings
bRmi

Ann
bRmi

.�mi
.M //

is actually Noetherian. In the sequel, we say a ring is local if it is Noetherian with a
unique maximal ideal. We say a ring is semi-local if it is Noetherian with finitely many
maximal ideals.

Theorem 9.3 ([9]). Let M be an Artinian R-module as above. Then for each m 2
MSpec.R/, cRm

.0W
cRm

�m.M //
is (either the zero ring or) a local (Noetherian) ring that is

complete with respect to its maximal ideal. Therefore bR
Ann
bR

.M /
is a complete semi-

local (Noetherian) ring (i.e., a direct product of finitely many complete local rings).

Since each
bRmi

Ann
bRmi

.�mi
.M //

is complete local (Noetherian), the classic Matlis dual-

ity (Theorem 9.2) applies. It then follows that the functor D.�/, which is defined over
bR, enjoys many of the properties of the classic Matlis duality, even though bR may not
be Noetherian. Consequently, secondary representations of Artinian R-modules are in
one-to-one correspondence with primary decompositions of Noetherian bR-modules.
(This is demonstrated in Observation 9.4 next.)

The following observations would show how the classic Matlis duality is applied,
thanks to Theorem 9.3. This duality allows us to make a connection between the theory
of secondary representation and the theory of primary decomposition.

Observation 9.4. LetR be a ring andM be an Artinian R-module. Keep all the above
notation in this section. By abuse of notation, we may use “D” to denote natural
isomorphisms. To further simplify the notation, let

Tm WD
bRm

Ann
cRm
.�m.M//

D
bRm

Im
; 8m and T WD

Y

m2MSpec.R/

Tm D
n
Y

iD1

Tmi
D
bR

I

with I WD Ann
bR
.M/ and Im WD Ann

cRm
.�m.M//. ThenM is an Artinian T -module;

and Theorem 9.3 says that T is a complete semi-local (Noetherian) ring. We make the
following observations (many of them obvious):

(i) Although D.M/ is defined as Hom
bR
.M;E/ overbR, D.M/ is the same as taking

the Matlis dual over the complete semi-local ring T , and it is also the same as
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taking the Matlis dual of each �mi
.M/ individually over the complete local ring

Tmi
and then taking their direct sum. This is because, by Hom-˝ adjointness,

Hom
bR
.M;E/ D

n
M

iD1

Hom
bRmi

�

�mi
.M/;E

bRmi

.R=mi /
�

D
n
M

iD1

HomTmi

�

�mi
.M/;Hom

bRmi

�

Tmi
;E

bRmi

.R=mi /
�

�

D
n
M

iD1

HomTmi

�

�mi
.M/;ETmi

.R=mi /
�

D HomT

�

M;

n
M

iD1

ETmi
.R=mi /

�

;

in which ETmi
.R=mi / denotes the injective hull of R=mi over the ring Tmi

.

(ii) Thus D.M/ is a Noetherian T -module, and hence a Noetherian bR-module.

(iii) Therefore, D.D.M// D M and D.D.D.M/// D D.M/ (up to the canonical
isomorphisms) as T -modules and hence as bR-modules. This follows from the
classic Matlis duality (cf. Theorem 9.2) over T .

(iv) If ¹Niºi2
 is a family of (possibly infinitely many) bR-submodules of M and
¹Kiºi2
 is a family of bR-submodules of D.M/, then

D.M=
X

i2


Ni / D
\

i2


D.M=Ni /;

X

i2


Ni D D
�

D.M/=
\

i2


D.M=Ni /
�

;

Ni � Nj ” D.M=Ni / � D.M=Nj /;

Ni D Nj ” D.M=Ni / D D.M=Nj /;

D
�

D.M/=
\

i2


Ki

�

D
X

i2


D.D.M/=Ki /;

\

i2


Ki D D.M=
X

i2


D.D.M/=Ki //;

Ki � Kj ” D.D.M/=Ki / � D.D.M/=Kj /;

Ki D Kj ” D.D.M/=Ki / D D.D.M/=Kj /:

(Indeed, the above equations and equivalences hold over T (cf. Theorem 9.2);
hence they also hold over bR.)
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(v) For Q � M , Q is P -secondary if and only if D.Q/ is P -coprimary if and
only if D.M=Q/ is P -primary in D.M/ (over T or over bR, no difference). This
follows immediately from Theorem 9.2 over T (and hence over bR).

(vi) M D Ps
iD1Qi is a (minimal) secondary representation of M over T (hence

over bR) if and only if 0 D Ts
iD1 D.M=Qi / is a (minimal) primary decompo-

sition of 0 in D.M/ over T (hence over bR). Thus Att
bR
.M/ D Ass

bR
.D.M//.

Since every bR-submodule of D.M/ is of the form D.M=Q/, the above is also
a criterion of primary decompositions of 0 in D.M/. Put directly, over T (and
bR), 0 D Ts

iD1Q
0
i is a primary decomposition of 0 in D.M/ if and only if

M D Ps
iD1 D.D.M/=Q0

i / is a secondary representation of M . All these fol-
low from Theorem 9.2 over T .

(vii) Thus, for any Y � Att
bR
.M/ and bR-submodulesQ �M andQ0 � D.M/,

Q 2 ƒ�
Y .M/ ” D.M=Q/ 2 ƒY .0 � D.M//;

Q 2 ƒı
�
Y .M/ ” D.M=Q/ 2 VƒY .0 � D.M//;

D.D.M/=Q0/ 2 ƒ�
Y .M/ ” Q0 2 ƒY .0 � D.M//;

D.D.M/=Q0/ 2 ƒı
�
Y .M/ ” Q0 2 VƒY .0 � D.M//:

Note that an R-submodule ofM is the same as an bR-submodule ofM .

(viii) D.0 WM J / D D.M/=J D.M/ for every ideal J of T . This remains true if J is
an ideal of R or bR (because of the natural maps R! bR! T ).

(ix) For convenience, we usually state the above results over bR rather than T , even
though T (being Noetherian complete semi-local) is the reason why the results
hold. This is because bR does not depend on the Artinian module M while T
does, and sometimes we study several Artinian R-modules.

(x) Lastly, we make a summary as follows: For any Artinian R-moduleM , apply-
ing D.�/ toM (over bR by construction) is the same as taking the Matlis dual of

M over the complete semi-local (Noetherian) ring T D bR
Ann
bR

.M /
. As a result,

D.M/ is a Noetherian module, D.D.M// D M and D.D.D.M/// D D.M/

over bR; and studying the secondary representations of M over bR is equivalent
to studying the primary decompositions of 0 in D.M/ over bR. All the above
hold for every Artinian R-module M over bR. In this sense, we (essentially)
have the classic Matlis duality over bR for Artinian R-modules even though bR
may not be Noetherian. For this reason, we also refer to D.�/ (over bR) as the
Matlis functor.

(Again, the reader please be reminded that, by abuse of notation, we used “D” to
denote natural isomorphisms in the above statements.)
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In light of the above, we will frequently employ the following strategy in the remain-
ing sections: To study the secondary representations of a given Artinian R-moduleM ,
we instead study the secondary representations ofM over bR or, equivalently, over the

complete semi-local ring T D bR
Ann
bR

.M /
. Applying Matlis duality D.�/, we obtain

a Noetherian module D.M/ (over the complete semi-local ring T ). If we can show
(or if we already know) certain properties of the primary decompositions of D.M/,
then, after applying Matlis duality D.�/ again, we get corresponding properties of
the secondary representations for D.D.M// D M (over the complete semi-local ring
T ). This in turn should reveal properties of secondary representation of the original
Artinian R-moduleM that we intend to study (via the map R! bR! T ).

Next, we state a lemma concerning relations between the secondary representations
of M as an R-module and the secondary representations of M as an bR-module. To
avoid confusion, we may use RM to indicate that the R-module structure of M is
being considered; similarly,

bR
M indicates the bR-module structure.

Lemma 9.5. Let R be a ring and M an Artinian R-module. Then the following hold:

(i) ƒ�
��

M

�1
.X/
.
bR
M/ � ƒ�

X .RM/ for all X � AttR.M/.

(ii) For every X � AttR.M/ and every QX 2 ƒ�
X .RM/, there exists Q

��
M

�1
.X/
2

ƒ�
��

M

�1
.X/
.
bR
M/ such that Q

��
M

�1
.X/
� QX .

(iii) ƒı
�
X .RM/ D ƒı

�
��

M

�1
.X/
.
bR
M/ for all X � AttR.M/.

Proof. Say AttR.M/D¹p1; : : : ; psº. By Theorem 7.3 (iii0), we may write Att
bR
.M/ D

¹Pi;j j 1 � i � sI 1 � j � n.i/º such that ��
M

�1.pi /D ¹Pi;j j 1 � j � n.i/º.
(i) Let Qi 2 ƒ�

��
M

�1
.pi /

.
bR
M/. Then there is a secondary representation M D

P

i;j Qi;j of M with Qi;j being Pi;j -secondary such that Qi D Pn.i/
j D1Qi;j . Note

thatM DPi .
Pn.i/

j D1Qi;j / is a secondary representation ofM overRwith
Pn.i/

j D1Qi;j

being the pi -secondary component. Hence Qi D Pn.i/
j D1Qi;j 2 ƒ�

pi
.RM/. This

verifies the claim for X D ¹piº. The general claim follows, cf. Theorem 8.3 (1).
(ii) LetM D P

i Qi be any secondary representation ofM over R with Qi being
the pi -secondary component, so that Qi 2 ƒ�

pi
.RM/. Since each Qi is Artinian,

it is representable over bR. Say Qi D Pm.i/
j D1 Qi;j is a secondary representation of

Qi over bR with Qi;j being P 0
i;j -secondary (over bR). After rearrangement, there is

k.i/, 0 � k.i/ � min¹m.i/; n.i/º, such that P 0
i;j D Pi;j for 1 � j � k.i/ but

P 0
i;j … ¹Pi;1; : : : ; Pi;n.i/º for all j > k.i/. Then we have

M D
s
X

iD1

m.i/
X

j D1

Qi;j D Q1;1 C � � � CQ1;m.1/ C � � � CQs;1 C � � � CQs;m.s/; (�)
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which is a not necessarily minimal secondary representation ofM over bR. We claim
that, if we make .�/ minimal, then Qi;j must be redundant for all j > k.i/. (Here
is why: Suppose, for some j > k.i/, Qi;j remains in the minimized form of the
above summation .�/. Then we must have P 0

i;j 2 Att
bR
.M/, cf. Theorem 7.3 (i).

Because j > k.i/, we must have P 0
i;j D Pa;b 2 Att

bR
.M/ for some a ¤ i . But

��.P 0
i;j / D pi ¤ pa D ��.Pa;b/, which is a contradiction.) Thus, we can throw out

all the componentsQi;j with j > k.i/, so that we get

M D
s
X

iD1

k.i/
X

j D1

Qi;j D Q1;1 C � � � CQ1;k.1/ C � � � CQs;1 C � � � CQs;k.s/: (�)

But this implies Att
bR
.M/ � ¹Pi;j j 1 � i � sI 1 � j � k.i/º, which forces

k.i/ D n.i/ for all i in light of Theorem 7.3 (i). Consequently, .�/ must be a min-
imal secondary representation of M over bR. Therefore, for each i D 1; : : : ; s, we
see

ƒ�
pi
.RM/ 3 Qi �

k.i/
X

j D1

Qi;j 2 ƒ�
��

M

�1
.pi /

.
bR
M/:

This verifies the claim for X D ¹piº. The general claim follows, cf. Theorem 8.3 (i).
(iii) This follows from (i) and (ii).

Thus, when we study the minimal secondary components of an Artinian R-module,
it suffices to do so over bR, where Matlis duality applies.

We will frequently use Matlis duality to go between secondary representations of
Artinian R-modules and primary decompositions of Noetherian bR-modules. Most of
the results in the following sections were obtained in [18].

10 Independence

Let R be a ring andM be a representable R-module. Note that Att.M/ is finite, and
Att.M/ is a topological space because of the Zariski topology on Spec.R/. As in
Notation 4.1, for every Y � Att.M/, we use o.Y / to denote the smallest superset of
Y that is open in Att.M/. The notation o.Y / depends on the ambient space, which
should be made clear in the context.

If Y is an open subset of Att.M/, then there is only one Y -secondary component in
ƒ�

Y .M/, and it is ŒU �M where U D R nSP 2Y P ; see Theorem 7.3 (iv).

Definition 10.1. Let M be an R-module and X � AttR.M/. We say that the sec-
ondary representations of M are independent over X , or X -independent, if ƒ�

X .M/

consists of exactly one component, i.e., jƒ�
X .M/j D 1.
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Obviously, this definition is parallel to the definition of independence of primary
decompositions (cf. Definition 4.2). In Theorem 4.4, it was shown that if K is a
Noetherian R-module and X � Ass.K/, then the primary decompositions of 0 in
K are independent over X if and only if X is open in Ass.K/.

Naturally, we ask the following question.

Question 10.2. Let R be a ring, M an Artinian R-module, and X � AttR.M/ such
that the secondary representations of M are independent over X . Then is X an open
subset of AttR.M/?

The next theorem indicates an answer of ‘almost yes’. (The answer to the question
is actually ‘no’, as explained in Example 10.4.)

Theorem 10.3. Let M be an Artinian R-module and X � AttR.M/. Denote by ��
M

the natural map from Att
bR
.M/ to AttR.M/. If the secondary representations of M

are independent over X , then ��
M

�1.X/ is open in Att
bR
.M/.

Proof. As ƒ�
��

M

�1
.X/
.
bR
M/ � ƒ�

X .RM/ (by Lemma 9.5 (i)) and jƒ�
X .RM/j D 1,

we see jƒ�
��

M

�1
.X/
.
bR
M/j D 1. Now let us apply Matlis duality to M (over bR).

We see jƒ
��

M

�1
.X/
.0 � D.M//j D 1 in light of the one-to-one correspondence in

Observation 9.4 (vii). That is, the primary decompositions of 0 in D.M/ over bR are
independent over ƒ

��
M

�1.X/. Since D.M/ is Noetherian over bR, we conclude that

ƒ
��

M

�1.X/ is open in Ass
bR
.D.R// by Theorem 4.4. Now the proof is complete since

Ass
bR
.D.R// D Att

bR
.M/, by Observation 9.4 (vi).

The following example provides a negative answer to Question 10.2. (The ring in
the example, i.e., Z, is actually Noetherian.)

Example 10.4. Let R D Z and let p ¤ q be primes. LetM WD �p.
Q
Z /˚ Z

.q/
, which

is Artinian over Z. (Note that �p.
Q
Z / is the injective hull of Z=.p/.) It is not hard

to verify that the above direct sum is actually the unique secondary representation of
M and AttR.M/ D ¹.0/; .q/º. In particular, the secondary representation of M is
independent over ¹.q/º, but ¹.q/º is not open in AttR.M/.

One might wonder whether the converse of Theorem 10.3 holds. It turns out that it
fails, as shown in the following example.

Example 10.5. Let .R;m/ be a Noetherian local ring that satisfies all the following
conditions in relation with its completion bR:
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� There exist incomparable prime ideals P1; P2 2 Spec.bR/ such that

P1 \R DW p1 ¨ p2 WD P2 \R:

It follows that ¹P2º is an open subset of ¹P1; P2º.
� There are infinitely many (distinct) bR-submodules Kn

P1
of bR

P1
, n � 1, such that

bR
Kn

are p2-coprimary. (Thus, Kn are ideals of bR, containing P1.)

(Such a ring exists. For example, letR WD QŒX; Y;Z�.X;Y;Z/, so thatbRDQŒŒX; Y;Z��.

Let eY WD P1
kD0

Y k

kŠ
, P1 WD .X � eY C 1/bR and P2 WD ZbR. Then p1 D 0 ¨

ZR D p2; and .
bR

P1CZbR
/p2
¤ 0. Let Kn WD Ker.bR ! .

bR

P1CZn
bR
/p2
/, so that

bR
Kn

are p2-coprimary as R-modules for all n � 1. Note that Kn © KnC1, since

. Kn

KnC1
/p2
Š . P1CZn

bR

P1CZnC1
bR
/p2
Š . bR

P1CZbR
/p2
¤ 0, for all n � 0.)

It is straightforward to see that both

0 D
 

0˚
bR

P2

!

\
 

bR

P1
˚ 0

!

and 0 D
 

0˚
bR

P2

!

\
	

Kn

P1
˚ 0




; n � 1;

are (minimal) primary decompositions of 0 in bR
P1
˚ bR

P2
over R. Let E be the injective

hull of residue field R=m, and letM WD .0 WE P1/˚ .0 WE P2/.
Applying Matlis duality Hom

bR
.�; E/ to the above primary decompositions, we see

that both

M D �.0 WE P1/˚ 0
�C �0˚ .0 WE P2/

�

and

M D �.0 WE P1/˚ 0
�C �.0 WE Kn/˚ .0 WE P2/

�

; n � 1;

are (minimal) secondary representations of M over R. In the above, 0 ˚ .0 WE P2/

and .0 WE Kn/˚ .0 WE P2/, n � 1, give rise to infinitely many (distinct) p2-secondary
components of RM . Note that M is Artinian over R and over bR, and the above
secondary representations (over R) show that AttR.M/ D ¹p1; p2º. It is also easy to
see that

M D �.0 WE P1/˚ 0
�C �0˚ .0 WE P2/

�

(�)

is a (minimal) secondary representation of M over bR and Att
bR
.M/ D ¹P1; P2º.

(Thus .�/ is the unique secondary representation ofM over bR by the choice of Pi .)
In summary, .��

M /
�1.¹p2º/ D ¹P2º is open in Att

bR
.M/, but the secondary repre-

sentations of RM are not independent over ¹p2º. In fact, jƒ�
p2
.RM/j D 1.
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11 Minimal Secondary Components

Let M be an Artinian R-module. Using the notation introduced in Section 9, we
present the following theorem about minimal secondary components. (The result was
first obtained in [18].)

Theorem 11.1. Let M be an Artinian R-module and X � AttR.M/. Say X D
¹P1; : : : ; Prº. Then the following hold

(i) ƒı
�
X .M/ D ¹Pr

iD1Qi jQi 2 ƒı
�
Pi
.M/; 1 � i � rº.

(i0) ƒı
�
X .RM/ D ƒı

�
��

M

�1
.X/
.
bR
M/ D ¹P

P 2��
M

�1
.X/

QP jQP 2 ƒı
�
P .
bR
M/º.

(ii) For all Q 2 ƒ�
��

M

�1
.X/
.
bR
M/, Q D P¹Q0 jQ0 2 ƒı

�
��

M

�1
.X/
.
bR
M/; Q0 � Qº.

In fact, every such Q is a sum of finitely many Q0 2 ƒı
�
��

M

�1
.X/
.
bR
M/.

(iii)
P¹Q jQ 2 ƒı

�
X .RM/º D P¹Q jQ 2 ƒı

�
��

M

�1
.X/
.
bR
M/º equals the unique

o.��
M

�1.X//-secondary component of M over bR, in which o.��
M

�1.X// is the

smallest open superset of ��
M

�1.X/ in Att
bR
.M/.

Proof. (i) and (i0): A direct proof will be given in Remark 11.2. But here we present a
proof by the duality method described in Section 9. For (i0), the first equality follows
from Lemma 9.5 (iii). To show the second equality, we regard M as an bR-module.
Then by Observation 9.4, it suffice to show

Vƒ
��

M

�1
.X/
.0 � D.M// D

°

\

P 2��
M

�1
.X/

D. M
QP
/ j D. M

QP
/ 2 VƒP .0 � D.M//

±

:

But this holds by the virtue of Theorem 4.3 (i). Then (i) follows from (i0).
(ii) By Observation 9.4, it suffices to show that D.M=Q/ equals the following

\

¹D.M=Q0/ j D.M=Q0/ 2 Vƒ
��

M

�1
.X/
.0 � D.M//; D.M=Q0/ � D.M=Q/º:

But this follows from Theorem 4.3 (ii). The finiteness claim follows similarly.
(iii) The first equality follows from Lemma 9.5 (iii). To show the remaining claim,

we use Matlis duality D.�/. By Observation 9.4, it suffices to show that

\

¹D.M=Q/ j D.M=Q/ 2 Vƒ
��

M

�1
.X/
.0 � D.M//º

is the unique o.��
M

�1.X//-primary component of 0 in D.M/ as an bR-module. But

this follows from Theorem 4.3 (iii) as D.M/ is a Noetherian bR-module.
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Remark 11.2. We would like to present the following direct proofs of (i) and (i0) of
Theorem 11.1 without using Matlis duality:

For (i), it is easy to show ƒı
�
X .M/ � ¹Pr

iD1Qi jQi 2 ƒı
�
Pi
.M/; 1 � i � rº:

For any Q 2 ƒı
�
X .M/, write Q D Q0

1 C � � � C Q0
r , where Q

0
i 2 ƒ�

Pi
for each 1 �

i � r . There exists Qi 2 ƒı
�
Pi

such that Q0
i � Qi for each i D 1; : : : ; r , so that

Q D Q0
1C� � �CQ0

r � Q1C� � �CQr . ButQ1C� � �CQr 2 ƒ�
X by the compatibility

property (Theorem 8.3), which showsQ D Q1 C � � � CQr .
We show ƒı

�
X .M/ � ¹Pr

iD1Qi jQi 2 ƒı
�
Pi
.M/; 1 � i � rº by induction on jX j,

the cardinality of X . If jX j D 1, there is nothing to prove. Assuming the containment
holds for jX j D r � 1, we show the containment for X D ¹P1; P2; : : : ; Prº. After
rearrangement if necessary, we may assume that Pr 6� Pi for 1 � i � r � 1. Set
U D R nSr�1

iD1 Pi . Let Q D Pr
iD1Qi such that Qi 2 ƒı

�
Pi
.M/ for 1 � i � r . For

any Q0 2 ƒ�
X such that Q � Q0, we need to show Q D Q0. Write Q0 D Pr

iD1Q
0
i

such thatQ0
i 2 ƒı

�
Pi

for 1 � i � r . Then we have

r�1
X

iD1

Qi D ŒU �Q � ŒU �Q0 D
r�1
X

iD1

Q0
i ;

which forces
Pr�1

iD1Qi DPr�1
iD1Q

0
i by the induction hypothesis. Therefore

r�1
X

iD1

Qi C
�

Q0 \Qr

� D Q0 \
r
X

iD1

Qi D Q0 .since
r�1
X

iD1

Qi D
r�1
X

iD1

Q0
i � Q0/:

Hence we can derive a secondary representation Q0 D Pr
iD1Q

00
i by putting together

Pr�1
iD1Qi and any secondary representation of .Q0\Qr / (and then make it minimal).

In this derived secondary representation Q0 D Pr
iD1Q

00
i , the Pr -secondary compo-

nent, Q00
r , must come from the Pr -secondary component of .Q0 \Qr/, hence is con-

tained in Q0 \Qr . Since Q00
r 2 ƒ�

Pr
.Q0/ and Q0 2 ƒ�

X .M/, we see Q00
r 2 ƒ�

Pr
.M/

(by compatibility, for example). This forces Q00
r D Qr sinceQr is already a minimal

Pr -secondary component ofM . HenceQ0 � Q00
r D Qr , which gives

Q D
r
X

iD1

Qi D
r�1
X

iD1

Qi CQr D
r�1
X

iD1

Q0
i CQr �

r�1
X

iD1

Q0
i CQ0

r D Q0:

ThereforeQ D Q0, and the proof is complete.
Finally, the first equality of (i0) was done in Lemma 9.5 (iii); and the last equality

follows from (i) applied toM as an Artinian module over bR.

Because of Theorem 11.1, we can fine-tune Theorem 10.3 as follows.
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Theorem 11.3. Let M be an Artinian R-module and X � AttR.M/. Consider the
following statements:

(i) X is open in AttR.M/. (i0) ��
M

�1
.X/ is open in Att

bR
.M/.

(ii) jƒ�
X .M/j D 1. (ii0) jƒ�

��
M

�1
.X/
.
bR
M/j D 1.

(iii) ƒ�
X .M/ is finite. (iii0) ƒ�

��
M

�1
.X/
.
bR
M/ is finite.

(iv) ƒı
�
X .M/ is finite. (iv0) ƒı

�
��

M

�1
.X/
.
bR
M/ is finite.

(v) jƒı
�
X .M/j D 1. (v0) jƒı

�
��

M

�1
.X/
.
bR
M/j D 1.

Then (i)) (ii)) (iii)) (iv), (v), (i0), (ii0), (iii0), (iv0), (v0).

Proof. The implications .i/) .ii/) .iii/) .iv/ are clear.
The implications (i0)) (ii0)) (iii0)) (iv0) are clear.
The implications (ii0)) (v0)) (iv0) are clear.
(iv), (iv0) follows from Lemma 9.5 (iii), so does (v), (v0).
(iv)) (i0): Say ƒı

�
X .M/ D ¹Q1; : : : ;Qtº, so ƒı

�
��

M

�1
.X/
.
bR
M/ D ¹Q1; : : : ;Qtº.

LetQ DPt
iD1Qi . ThenQ 2 ƒ�

��
M

�1
.X/
.
bR
M/ by Theorem 8.3. On the other hand,

Theorem 11.1 (iii) implies Q 2 ƒ�
o.��

M

�1
.X//

.
bR
M/, in which o.��

M
�1.X// denotes

the smallest open superset of ��
M

�1.X/ in Att
bR
.M/. By Lemma 8.2, we must have

��
M

�1.X/ D o.��
M

�1.X//, which is open in Att
bR
.M/.

By Examples 10.4, 10.5, implications .i/ ( .ii/ and .iii/ ( .iv/ are false in gen-
eral.

12 Linear Growth of Secondary Components

Inspired by the linear growth of primary decomposition, and taking in account the
duality between primary decomposition and secondary representation, we formulate
a definition of the linear growth property of secondary representation as follows. We
use the notation introduced in Notation 5.3. Let R be a ring.

Definition 12.1. Given a family F D ¹Ma j a D .a1; : : : ; ar/ 2 Nrº of R-modules,
we say that F satisfies the linear growth property of secondary representation over R
if there exists k 2 N such that, for every a D .a1; : : : ; ar/ 2 Nr such thatMa ¤ 0,
there exists a secondary representation ofMa

Ma D Qa;1 C � � � CQa;s.a/ (withQa;i being Pa;i -secondary)

such thatQa;i � .0 WMa
.Pa;i /

kjaj/ for all i D 1; : : : ; s.a/, where jaj D a1C� � �Car .
When the above occurs, we refer to k as a slope of F .
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Lemma 12.2. Let hWA ! R be a ring homomorphism, ¹Mn jn 2 Ntº a family of
R-modules, ¹Kn jn 2 Ntº a family of A-modules such that Kn � Mn as A-modules
for all n 2 Nt .

If ¹Mn jn 2 Ntº satisfies the linear growth property of secondary representation
over R with a slope k, then ¹Mn=Kn jn 2 Ntº satisfies the linear growth property of
secondary representation over A with the same slope k.

Proof. This follows (almost immediately) from Theorem 7.3 (iii).

The next result is dual to Theorem 5.4.

Theorem 12.3. Let A be a Noetherian ring, R an A-algebra, M a finitely generated
A-module, N an Artinian R-module, and J1; : : : ; Jt ideals of R. Then each of the
following families of R-modules has the linear growth property of secondary repre-
sentation (over R):

(i) The family ¹.0 WN J n/ jn 2 Ntº.
(ii) The family ¹ExtcA.M; .0 WN J n// jn 2 Ntº.
(iii) The family ¹TorAc .M; .0 WN J n// jn 2 Ntº.
Proof. Note that all the modules in all the families are Artinian R-modules. Apply the
Matlis duality functor D.�/ to the modules. By Observation 9.4 and Lemma 12.2, we
only need to prove the linear growth property of primary decomposition for each of
the following families over bR:

.i�/ The family ¹D.N /=J n D.N / jn 2 Ntº.
.ii�/ The family ¹TorAc .M; D.N /=J n D.N // jn 2 Ntº.
.iii�/ The family ¹ExtcA.M; D.N /=J n D.N // jn 2 Ntº.

Since D.N / is a Noetherian bR-module and bR is clearly an A-algebra, the desired
linear growth property of primary decomposition of the three families follows imme-
diately from Theorem 5.4.

Theorem 12.3 is a special case of the following dual statement of Theorem 5.5.

Theorem 12.4. Let A be a ring and R an A-algebra. Let J1; J2; : : : ; Jt be fixed ideals
of R, N an Artinian R-module and c 2 Z. Fix a complex

F� W � � � ! FcC1 ! Fc ! Fc�1 ! � � � ! Fi ! Fi�1 ! � � �
of finitely generated flat A-modules. For any n 2 Nt , let

Tn D Hc.F� ˝A .0 WN J n// and En D Hc.HomA.F�; .0 WN J n///:

Then the families ¹Tn jn 2 Ntº and ¹En jn 2 Ntº, both consisting of Artinian R-
modules, satisfy the linear growth property of secondary representation (over R).
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Proof. By Observation 9.4 and Lemma 12.2, it suffices to show the linear growth
property of primary decomposition for ¹D.Tn/ jn 2 Ntº and ¹D.En/ jn 2 Ntº over
bR. By Matlis duality, we have

D.Tn/ Š Hc

	

HomA

	

F�;
D.N /

J n D.N /





and D.En/ Š Hc

	

F� ˝A
D.N /

J n D.N /




:

As D.N / is Noetherian over bR, both ¹D.Tn/ jn 2 Ntº and ¹D.En/ jn 2 Ntº satisfy
the linear growth property of primary decomposition by Theorem 5.5.

The following may also be viewed as a dual of Theorem 5.5.

Theorem 12.5. Let A be a ring, J1; J2; : : : ; Jt fixed ideals of A, and M a finitely
generated A-module. Let R be an A-algebra and c 2 Z. Fix a complex

F � W � � � ! F i ! F iC1 ! � � � ! F c�1 ! F c ! F cC1 ! � � �
of injective Artinian R-modules. Denote En D Hc.HomA.

M
J nM

; F �//, the c-th co-
homology, for all n 2 Nt . Then the family ¹En jn 2 Ntº, consisting of Artinian
R-modules, satisfies the linear growth property of secondary representation over R.

Proof. Without affecting the claim, we assume F i D 0 if i … ¹c � 1; c; c C 1º.
Denote I D Ann

bR
.F c�1 ˚ F c ˚ F cC1/. Then F � is naturally a complex over

the complete semi-local Noetherian ring bR=I (cf. Observation 9.4). Clearly, each Fj

remains injective and Artinian over bR=I . Thus, replacingR with bR=I , we may simply
assume that R is Noetherian semi-local with R D bR (cf. Lemma 12.2).

Now the classic Matlis duality applies, which is still denoted D.�/. What we ob-
served in Observation 9.4 still holds (of course). For each n 2 Nt ,

En Š Hc

	

HomA

	

M

J nM
;D.D.F �//





Š Hc

	

D

	

M

J nM
˝A D.F �/





Š D

	

Hc

	

M

J nM
˝A D.F �/





Š D

	

Hc

	

M ˝A R

J n.M ˝A R/
˝R D.F �/





:

By Observation 9.4, it suffices to show that the family
²

D.En/ Š Hc

	

M ˝A R

J n.M ˝A R/
˝R D.F �/




ˇ

ˇ

ˇ

n 2 Nt

³

has linear growth property of primary decomposition over R D bR. Note that D.F �/ is
a complex of finitely generated projective R-modules; andM˝AR is Noetherian over
R. By Theorem 5.5, ¹D.En/ jn 2 Ntº satisfies the linear growth property of primary
decomposition over R D bR, which completes the proof.

Now we prove the linear growth property of secondary representation for another
family of Ext modules; compare with Theorem 12.3 (ii).
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Theorem 12.6. Let R be a Noetherian ring, I1; I2; : : : ; Is ideals of R, M a finitely
generated R-module, N an Artinian R-module, and c 2 Z.

Then the family ¹ExtcR. M
I mM

; N / jm 2 Nsº, which consists of Artinian R-modules,
satisfies the linear growth property of secondary representation over R.

Proof. SinceR is Noetherian andN is Artinian, the minimal injective resolution ofN
consists of Artinian R-modules. Then the result follows from Theorem 12.5.

Finally, we state a result (partially) dual to Theorem 6.2 and Corollary 6.5. It also
contains Theorem 12.6 as a particular case.

Theorem 12.7. Let R be a Noetherian ring, I1; : : : ; Is; J1; : : : ; Jt ideals of R, M a
finitely generated R-module, N an Artinian R-module, and c 2 Z. For every .˛; ˇ/ 2
Zs � Zt , consider the following family (of Artinian R-modules)

E.˛;ˇ/ WD
°

ExtcR

 

I˛M

I˛CmM
;
.0 WN J ˇCn/

.0 WN J ˇ /

!

ˇ

ˇ

ˇ

.m; n/ 2 Ns �Nt D NsCt
±

:

Then there exists k such that for all .˛; ˇ/ 2 Zs � Zt , the family E.˛;ˇ/ satisfies
the linear growth property for secondary representation over R with the uniform
slope k. That is, for every .˛; ˇ/ 2 ZsCt and for every .m; n/ 2 NsCt such that

ExtcR.
I ˛M

I ˛CmM
; .0WN J ˇCn/

.0WN J ˇ/
/ ¤ 0, there exists a secondary representation

ExtcR

 

I˛M

I˛CmM
;
.0 WN J ˇCn/

.0 WN J ˇ /

!

D Q˛;ˇ;m;n;1 CQ˛;ˇ;m;n;2

C � � � CQ˛;ˇ;m;n;s.˛;ˇ;m;n/;

with Q˛;ˇ;m;n;i being P˛;ˇ;m;n;i -secondary, such that

Q˛;ˇ;m;n;i �
�

0 W
ExtcR

�

I ˛M
I ˛CmM

;
.0WN J ˇCn/

.0WN J ˇ/

� .P˛;ˇ;m;n;i /
kj.m;n/j�

for all i D 1; 2; : : : ; s.˛; ˇ;m; n/.
In particular, ¹ExtcR. M

I mM
; .0 WN J n// j .m; n/ 2 Ns �Nt D NsCtº satisfies the

linear growth property of secondary representation over R.

Proof. As R is Noetherian, the minimal injective resolution of an Artinian R-module
consists of Artinian R-modules. For the Artinian R-module N , there are only finitely
many maximal ideals m such that �m.N / ¤ 0; say m1; : : : ;mr 2 MSpec.R/ are all
such maximal ideals. Let B DQr

i�1
bRmi

, which is a Noetherian flat R-algebra. Note
that N , naturally a B-module, is Artinian over B .

Moreover, .0WN J ˇCn/

.0WN J ˇ/
are all naturally Artinian B-modules for all ˇ 2 Zt and all

n 2 Nt . Therefore, ExtcR.
I ˛M

I ˛CmM
; .0 WN J ˇCn/.0 WN J ˇ // are (naturally) Artinian
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B-module for all .˛; ˇ/ 2 Zs � Zt and .m; n/ 2 Ns � Nt . By Lemma 12.2, it suf-
fices to prove that the families E.˛;ˇ/ satisfy the linear growth property for secondary
representation over B with a uniform slope. Note that B is a complete semi-local ring.

Next, we apply the Matlis duality functor D.�/ (over B) to the modules in the
families E.˛;ˇ/. By Observation 9.4, we only need to prove the linear growth property
of primary decomposition, with a uniform slope, for the following families over B:

DE.˛;ˇ/ D
°

TorRc

 

I˛M

I˛CmM
;
J ˇ D.N /

J ˇCn D.N /

!

ˇ

ˇ

ˇ

.m; n/ 2 Ns �Nt D NsCt
±

:

Note that D.N / is Noetherian over B , while B DQr
i�1

bRmi
is a Noetherian ring that

is flat over R.
Now, by Theorem 6.2, all the families DE.˛;ˇ/ satisfy the linear growth property of

primary decomposition over B with a uniform slope. The proof is complete.
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a Homological Perspective
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Abstract. Theories of coherent Cohen–Macaulay and Gorenstein rings have recently been
developed by Hamilton and Marley, and Hummel and Marley, respectively. This work sum-
marizes these theories after introducing the homological framework upon which they are built.
We also explore recent developments in the theory of homological dimensions. These de-
velopments may provide further insight into the properties of coherent Cohen–Macaulay and
Gorenstein rings, in addition to insight into the development of a characterization for coherent
complete intersection rings.

Keywords. Gorenstein Dimension, FP-Injective Dimension, Coherent Ring, Gorenstein,
Cohen–Macaulay, Complete Intersection.
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1 Introduction

Homological dimensions have been studied by Auslander and Bridger [4], Gerko [23],
Avramov, Gasharov and Peeva [6], as well as many others, to create dimensions char-
acterizing local Noetherian regular, complete intersection, Gorenstein, and Cohen–
Macaulay rings. Others, including Bennis and Mahdou [9, 10], and Mao and Ding
[37, 39], explored (global) Gorenstein dimensions in the coherent and Noetherian con-
texts. Through these explorations, a homological dimension introduced by Stenström
[46] has been connected to flat and Gorenstein dimensions.

Concurrent with these activities is the exploration of the meaning of regular, com-
plete intersection, Gorenstein and Cohen–Macaulay in the coherent context. A co-
herent ring is regular if every finitely generated ideal of the ring has finite projective
dimension [11]. Glaz posed the question of whether there existed a theory of coher-
ent Cohen Macaulay rings such that coherent regular rings are Cohen–Macaulay (see
[26] and [27]). Hamilton and Marley [32] provided a positive answer to this ques-
tion through homological methods. Hummel and Marley [34] extended the notion of
Gorenstein dimension to lay the foundation for a theory of non-Noetherian, and even
non-coherent, Gorenstein rings. This foundation has played a part in creating a rich
theory of coherent rings where coherent regular, Gorenstein, and Cohen–Macaulay
rings behave (mostly) like their Noetherian counterparts. Complete intersections are

This work was completed during a Triennial release granted by the University of Indianapolis.
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thus far the missing character in this theory; their foundations likely still lie within the
realm of homological dimensions.

The groundwork for the coherent theory comes from both homological dimensions
and local cohomology. This work describes how the ever growing homological theory
impacts the theory of coherent rings, and explores the homological methods that may
lead to the expansion of this theory.

2 Coherent Rings and Grade

We say .R;m/ is a local ring if it has a unique maximal ideal m. In this work all rings
will be commutative, unless otherwise noted.

2.1 Coherent Rings and .FP/R
1 Modules

A finitely generated module M of a ring R is coherent if every finitely generated
submodule of M is finitely presented. A ring R is coherent if it is coherent as an
R-module. Additional characterizations of coherent rings can be found in [25].

One important characterization of coherent rings is that any finitely presented mod-
uleM over a coherent ring has an infinite resolution by finite free modules [25]. More-
over, M � D HomR.M;R/ has the same property. This property of modules in a
coherent ring is denoted .FP/R1 by Bieri.

Definition 2.1 ([12]). Let R be a ring and let M be an R-module. M is .FP/R1 if M
admits an infinite resolution of finitely generated free modules. If, instead,M admits
a finite free resolution of length n, we sayM is .FP/Rn .

It follows that for any finitely presented R-module M over a coherent ring R, M
andM � are .FP/R1. Many of the properties of .FP/R1 modules have been explored in
[12], [42], and [34]. Most of the interesting properties of .FP/R1 modules usually occur
in the case where both the module and its dual are .FP/R1, that is, in the coherent-like
case [34]. The assumption of M and M � being in .FP/R1 carries the full force of
coherence, without additional restrictions associated with the coherence assumption
(see [34] and Section 4.2).

2.2 Non-Noetherian Grade

In the Noetherian case, the classical Noetherian notion of the Depth, or grade, of a
module over an ideal I is defined as DepthI M D sup¹njx1; : : : ; xn 2 I is an M -
regular sequenceº. In the Noetherian case, Depth exhibits the following property.

Proposition 2.2 ([43]). Let R be a local Noetherian ring, and let M be a finitely
generated R-module. Then DepthI M > 0 if and only if .0 WM I / D 0.
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However, there are examples of non-Noetherian rings where Proposition 2.2 does
not hold (see, for instance [32]). To rectify this incongruity, Hochster extended Depth
to non-Noetherian rings.

Definition 2.3 ([33]). Let R be a ring, letM be an R-module, and let I be an ideal of
R. The depth ofM with respect to I is defined as

depthI M D sup¹DepthIS .M ˝R S/jS faithfully flat extension of Rº:
If .R;m/ is a local ring and I D m, then denote depthmM D depthRM , or depthM
when the ring is unambiguous.

In the literature, depth has also been called polynomial, or p-depth (see [32, 42]).
This definition of depth has most of the expected properties, which are summarized
below.

Proposition 2.4 ([8; 33; 25, Chapter 7; 43, Chapter 5; 13, Section 9]). Let M be an
R-module and let I be an ideal of R such that IM ¤M .

(i) depthI M D sup¹depthJ M jJ � I; J finitely generated idealº.
(ii) Let I D .x1; : : : ; xn/ and Hj .x;M/ denote the jth Koszul homology of x D

x1; : : : ; xn on M , then depthI M D inf¹i � 0jHn�i .x;M/ ¤ 0º.
(iii) depthI M D depthIS .M ˝R S/ for any faithfully flat R-algebra S .

(iv) If depthI M > 0, then DepthIS .M˝RS/ > 0where S D RŒX� is a polynomial
ring in one variable over R.

(v) If I is generated by n elements, then depthI M D DepthIS .M ˝R S/ where
S D RŒX1; : : : Xn�.

(vi) depthI M D depthp
I
M .

(vii) If x 2 I is M -regular, then depthI M D depthI M=xM C 1.

(viii) Let 0�!L�!M �!N �! 0 be a short exact sequence of R-modules such
that IL ¤ L and IN ¤ N . If depthI M > depthI N , then depthI L D
depthI N C 1:

If in addition one assumes that R=I is .FP/R1, Hummel and Marley obtain the
following homological characterization of depth for coherent rings.

Proposition 2.5 ([34]). Let R be a ring, let M be an R-module, and let I be an ideal
such that IM ¤M . If R=I is .FP/Rn , then the following conditions are equivalent.

(i) depthI M � n:
(ii) ExtiR.R=I;M/ D 0; for 0 � i < n:

In particular, if .R;m/ is a local coherent ring andM ¤ 0 such that mM ¤M , then

depthM D sup¹n � 0jExtiR.R=I;M/ D 0 for all i < n for some f.g. ideal I � mº:
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This result connects the polynomial depth to the r-depth (as denoted by Barger [8])
based upon the vanishing of Ext.R=I;�/-modules.

There are other notions of grade in the non-Noetherian case, based on the vanish-
ing of the homology of the Hom of a Koszul a complex, of the Čech cohomology
of a module, of the local cohomology of a module, of the Ext.R=In;�/-modules, or
of chain maps between complexes. Asgharzadeh and Tousi [3] explore the connec-
tions between these different grades to create additional characterizations of coherent
Cohen–Macaulay modules (see Section 3).

3 Cohen–Macaulay Rings

Non-Noetherian Cohen–Macaulay rings were defined by Hamilton and Marley in [32].
Their homological approach to this question uses Schenzel’s [45] notion of parameter
sequences. Over non-Noetherian rings, parameter sequences play the role of systems
of parameters over Noetherian rings. However parameter sequences are defined ho-
mologically rather than by height conditions.

Let x D x1; : : : ; xn be a finite sequence of elements in R. Given an R-moduleM ,
let MH i

x .M/ be the i th Čech cohomology ofM with respect to x andH i
x .M/ be the i th

local cohomology ofM . Schenzel gives the following definitions.

Definition 3.1 ([45]). Let R be a ring.

(i) The sequence x is weakly proregular if for all i � 0 and all R-modules M the
natural mapH i

x .M/�! MH i
x .M/ is an isomorphism.

(ii) The sequence x D x1; : : : ; xn is a parameter sequence if x is weakly proregular,
.x/R ¤ R; andHn

x .R/p ¤ 0 for all prime ideals p containing x:

(iii) The sequence x is a strong parameter sequence if x1; : : : ; xi is a parameter se-
quence for all 1 � i � n:

Using these definitions, Hamilton and Marley define Cohen–Macaulay.

Definition 3.2 ([32]). A ringR is Cohen–Macaulay if every strong parameter sequence
of R is a regular sequence.

Hamilton and Marley show that Cohen–Macaulay rings have the following proper-
ties.

Proposition 3.3 ([32]). The following conditions are equivalent for a ring R.

(i) R is Cohen–Macaulay.

(ii) Depth.x/R D `.x/ for every strong parameter sequence x of R:

(iii) depth.x/R D `.x/ for every strong parameter sequence x of R:
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(iv) Hi .xIR/ D 0 for all i � 1 and every strong parameter sequence x of R:

(v) H i
x .R/ D 0 for all i < `.x/ and every strong parameter sequence x of R:

The following results of Hamilton and Marley show the extent to which the Cohen–
Macaulay property coincides with the Noetherian case.

Proposition 3.4 ([32]). Let R be a ring.
(i) Let f W R�!S be a faithfully flat ring homomorphism, if S is Cohen–Macaulay

then so is R.

(ii) If RŒx� is Cohen–Macaulay, then so is R.

(iii) If Rm is Cohen–Macaulay for all maximal ideals m of R, then so is R.

It is unknown whether the converse of the statements above are true. In particu-
lar, since it is not known that the Cohen–Macaulay property localizes, Hamilton and
Marley introduce the following modified definition of Cohen–Macaulay.

Definition 3.5 ([32]). A ring R is locally Cohen–Macaulay if Rp is Cohen–Macaulay
for all p 2 Spec R.

Thus coherent regular and locally Cohen–Macaulay rings are related in the same
way as their Noetherian counterparts.

Theorem 3.6 ([32]). Coherent regular rings are locally Cohen–Macaulay.

On the other hand, with the removal of the Noetherian assumption, the Cohen–
Macaulay property is not retained after reduction by a non-zerodivisor, as seen in the
following example.

Example 3.7 ([32, Example 4.9]). Let S D CŒŒx; y�� be the ring of formal power
series in x and y over the field of complex numbers. Let R D C C xCŒŒx; y�� � S .
R is a local Cohen–Macaulay domain, but R=xyR is not Cohen–Macaulay.

Towards the conclusion of their work, Hamilton andMarley [32] consider additional
characterizations of Cohen–Macaulay rings. We begin with a few additional defini-
tions. A prime ideal P is weakly associated to M if P is minimal over .0 WR x/ for
some x 2 R. The set of weakly associated primes ofM is denoted wAssRM . An ideal
I of a ring is said to be unmixed if wAssRR=I D MinRR=I , the minimal primes of
R=I over R. Using these definitions, additional properties of Cohen–Macaulay rings
include the following.

Theorem 3.8 ([32]). Let R be a ring.
(i) If every ideal of R generated by a strong parameter sequence is unmixed, then R

is Cohen–Macaulay.

(ii) If R is an excellent Noetherian domain of characteristic p > 0, then RC is
Cohen–Macaulay.
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(iii) Let R be a coherent ring with dimR � 2, and let G be a finite group of automor-
phisms of R with jGj a unit in R. Let RG be the subring of invariants of R under
the action of G and assume R is a finite RG-module. Then RG is a coherent
locally Cohen–Macaulay module.

Asgharzadeh and Tousi [3] also look at other characterization of Cohen–Macaulay
rings in this context. However they use an approach used by Hamilton [31] to explore
the question of coherent Cohen–Macaulay rings. Their work [3] compares charac-
terizations of Cohen–Macaulay based upon height conditions of prime ideals to the
definition of Hamilton and Marley. These other characterizations of Cohen–Macaulay
use the notion of Koszul grade introduced by Alfonsi.

Definition 3.9 ([1]). Let R be a ring, let I D .x/ D .x1; : : : ; xr/ be an ideal of R, and
let M be an R-module. If K�.x/ is the Koszul complex of .x/, the Koszul grade is
given by K.grade R.I;M/ D inf¹i 2 N [ ¹0ºjH i .HomR.K�.x/;M// ¤ 0º.

In the following definition, let 	.I / denote the minimal number of elements of a
ring R needed to generate an ideal I of R. Denote the support of an R-moduleM by
SuppR.M/ and let Max.R/ denote the set of maximal ideals of the ring R.

Definition 3.10 ([3]). Let R be a ring and letM be an R-module.

(i) Hamilton–Marley Cohen–Macaulay [32]: R is Hamilton–Marley
Cohen–Macaulay if R satisfies Definition 3.2.

(ii) Glaz Cohen–Macaulay [28]: M is Glaz Cohen–Macaulay if

heightR.p/ D K.gradeRp
.pRp;Mp/:

(iii) WB Cohen–Macaulay [31]: R is WB Cohen–Macaulay if for each ideal I with
height I � 	.I /, then I is unmixed (also known as weak Bourbaki unmixed).

(iv) Spec Cohen–Macaulay [3]: M is Spec Cohen–Macaulay if

heightM .I / D K.gradeR.I;M/ for all ideals I 2 SuppR.M/:

(v) Max ideals Cohen–Macaulay [3]: M is Max ideals Cohen–Macaulay if

heightM .I / D K.gradeR.I;M/ for all ideals I 2 SuppR.M/ \Max.R/:

(vi) f.g ideals Cohen–Macaulay [3]: M is f.g. ideals Cohen–Macaulay if

heightM .I / D K.gradeR.I;M/ for all finitely generated ideals I of R:

(vii) ideals Cohen–Macaulay [3]: M is ideals Cohen–Macaulay if

heightM .I / D K.gradeR.I;M/ for all ideals I of R:
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Asgharzadeh and Tousi [3] show the following relations between these definitions
of Cohen–Macaulay

Max ideals( Spec, ideals) Glaz) f.g ideals) Hamilton-Marley(WB,

and provide examples of the non-existence of some of the missing implications above.
See [3] for additional details.

4 Gorenstein Dimensions and the Auslander–Bridger
Property

4.1 Gorenstein Dimensions

In [23], Gerko lists several properties that any generalized homological dimension
should naturally fulfill. These are listed below for later reference.

Remark 4.1 ([23]). LetR be a ring, let HR be a class of modules, and let H -dimR be a
homological dimension such that H -dimR maps HR into Z. The following properties
should hold for H -dim.

(i) IfM 2 HR then H -dimRM C depthM D depthR:

(ii) Let x be an R- andM -regular element. IfM 2 HR, thenM=xM 2 HR=xR and
H dimRM D H -dimR=xRM=xM:

(iii) IfM 2 HR, thenMp 2 HRp
and H -dimRM � H � dimRp

Mp:

(iv) Given an exact sequence 0�!L�!M �!N �! 0 of R-modules, if any two
of the modules belongs to HR then the third does as well.

If R is Noetherian, the following condition also holds.

(v) k D R=m 2 HR if and only ifM 2 HR for all R-modules.

In this section, as well as in Sections 5 and 6, we discuss homological dimensions
that have been explored in the coherent context. We begin the discussion with Goren-
stein dimensions.

Definition 4.2 ([4]). Let R be a ring and letM be a finitely generated R-module.

(i) M is in the class G.R/ if

(a) ExtiR.M;R/ D ExtiR.M
�; R/ D 0 for all i � 0.

(b) M ŠM ��.
(ii) M has Gorenstein dimension n, denoted GdimM D n, if there exists a minimal

length exact resolution 0�!Gn�! � � � �!G0�!M �! 0 such that Gi 2
G.R/ for each i . If no finite resolution exists, then GdimM D1.
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Projective modules are in G.R/, and have Gorenstein dimension zero; modules
with finite projective dimension thus have finite Gorenstein dimension. Gorenstein
dimension satisfies the properties of Remark 4.1 as shown in [4] and is thoroughly
summarized by Christensen in [14] and extended to the finitely presented modules
over a coherent ring by [41], [19], and [34].

McDowell [41] extends most of the results of Gorenstein dimensions to finitely
generated modules over local coherent rings. Taking a different approach, Hummel
and Marley [34] simply modify the assumption on the module, providing the following
definition of Gorenstein dimension for coherent-like modules.

Definition 4.3 ([34]). Let R be a ring and letM be an R-module.

(i) M is in the class QG.R/ if
(a) M andM � are .FP/R1:
(b) ExtiR.M;R/ D ExtiR.M

�; R/ D 0 for all i � 0:
(c) M ŠM ��:

(ii) M has QG-dimension n, denoted QGdimM D n, if there exists an exact resolution
0�!Gn�!� � � �!G0�!M�!0 of minimal length such that Gi 2 QG.R/ for
each i . If no finite resolution exists, QGdimM D1:

The characteristics of modules in coherent rings leads to the following result.

Proposition 4.4 ([34]). If .R;m/ is a local coherent ring, then GdimM D QGdimM
for every finitely presented R-module M .

The properties of QGdim, explored in [34] and [42], satisfy the first four properties
of Remark 4.1 and are analogous to Gorenstein dimension.

Taking a different approach to generalizing Gorenstein dimension over finitely pre-
sented modules, Enochs and Jenda developed Gorenstein projective dimension.

Definition 4.5 ([19]). A complex E W � � � �!P1�!P0�!P 0�!P 1�!� � � of mod-
ules is called acyclic ifHi .E/ D 0, whereHi .E/ is the ith homology module of E.

Definition 4.6 ([19]). Let R be a ring.

(i) An R-module M is Gorenstein projective if there is an acyclic complex P of
projective R-modules with Coker P 0�!P 1 Š M and Hom.P;Q/ D 0 for
every projective R-moduleQ.

(ii) The Gorenstein projective dimension of a moduleM , denoted GpdM , is n if

0�!Gn�!Gn�1�!� � � �!G1�!G0�!M�!0

is an exact resolution of minimal length such that Gi is Gorenstein projective.
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Again, projective modules are Gorenstein projective, and modules with finite pro-
jective dimension have finite Gorenstein projective dimension. Gorenstein projec-
tive dimensions also satisfy the properties of Remark 4.1. Over Noetherian rings
GdimM D GpdM [7]; Hummel and Marley [34] show the equality holds in the
coherent case for finitely presented modules. Analogous definitions can be given for
Gorenstein injective and Gorenstein flat modules.

Definition 4.7 ([19]). Let R be a ring.

(i) An R-moduleM is Gorenstein injective if there is an acyclic complex

E W � � � �!E1�!E0�!E0�!E1�!� � �
of injective R-modules with

Coker.E0�!E1/ ŠM and Hom.N;E/ D 0
for every injective R-module N .

(ii) An R-moduleM is Gorenstein flat if there is an acyclic complex

F W � � � �!F 1�!F 0�!F0�!F1�!� � �
of flat R-modules with

Coker.F 0�!F 1/ ŠM and N ˝ F D 0
for every injective R-module N .

Gorenstein flat and injective dimensions are defined analogously to Gorenstein pro-
jective dimension. All three Gorenstein dimensions are being actively studied by many
authors including Bennis and Mahdou [9, 10], and Mao and Ding [37, 39], among oth-
ers.

More recently Iyengar and Krause [35], Christensen and Veliche [16], Sather–-
Wagstaff, Sharif and White [44], and others have studied Gorenstein projective, in-
jective, and flat modules in the context of totally acyclic complexes. A totally acyclic
complex M is an acyclic complex that satisfies the following equivalent conditions.

Proposition 4.8 ([14, 15]). Let R be a ring, and let M be an acyclic complex of finitely
generated projective R-modules. Then the following conditions are equivalent.

(i) HomR.M; R/ is acyclic.

(ii) HomR.M; F / is acyclic for every flat R-module F .

(iii) E ˝R M is acyclic for every injective R-module E.

Using the definition above, we see that Gorenstein projective, injective and flat mod-
ules are kernels of totally acyclic complexes.

In any ring R, these three homological dimensions are related in the following way
for any R-moduleM

GdimRM � GpdM � pdRM;
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where equality holds in the first spot ifR is coherent andM finitely presented; equality
holds in the second spot ifM has finite projective dimension.

4.2 The Auslander–Bridger Formula

This section explores the several iterations of Remark 4.1(i) for Gorenstein dimension.
We start with the Auslander–Buchsbaum formula, which relates projective dimension
to Depth.

Theorem 4.9 ([5]). Let R be a local Noetherian ring and let M be an R-module with
pdM <1. Then

pdM C DepthM D DepthR:

The Auslander–Bridger formula provides a link between Depth and Gorenstein di-
mension.

Theorem 4.10 ([4]). Let R be a local Noetherian ring and letM be an R-module with
GdimM <1. Then

GdimM C DepthM D DepthR:

The Auslander–Bridger formula was first extended to coherent rings by McDowell
[41], who considered a subclass of coherent rings called pseudo-Noetherian rings.

Definition 4.11 ([41]). LetR be a ring and letM be a nonzeroR-module. R is pseudo-
Noetherian if

(i) R is coherent, and

(ii) if for any finitely generated ideal I contained in set of zero-divisors ofM , there
exists a nonzero m inM with Im D 0.

Any R-moduleM satisfying the second condition is called pseudo-Noetherian.

Note that the property held by pseudo-Noetherian modules is a characteristic of
modules over Noetherian rings (see [36]). However, not all coherent rings are pseudo-
Noetherian, as seen in the following example.

Example 4.12 ([41]). Let K be the quotient field of ZŒx�.2;z/, and let R be the power
series ring KŒŒt ��. R is a coherent domain, but R=tR is not a pseudo-Noetherian R-
module.

On the other hand, a ring whose modules are all pseudo-Noetherian may not be
coherent; this is the case for any non-coherent generalized valuation ring [41].

McDowell [41] used the characterization of depth over coherent local rings from
Proposition 2.5 as the definition of depth over pseudo-Noetherian rings. Over local
pseudo-Noetherian rings, if M is a finitely presented module, depthM is the length
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of a maximalM -regular sequence [41]. In conjunction with McDowell’s extension of
Gorenstein dimension to coherent rings, the Auslander–Bridger formula can be gener-
alized to pseudo-Noetherian rings.

Theorem 4.13 ([41]). Let R be a local pseudo-Noetherian ring, and let M be a non-
zero finitely presented R-module with GdimM <1. Then,

GdimM C depthM D depthR:

Generalizing the Auslander–Bridger formula to any coherent rings is problematic.
A key step in the proof of the coherent result requires both Gorenstein dimension and
coherence to pass through faithfully flat extensions. However it is well known that
coherence is not maintained under faithfully flat extensions; for instance RŒx� is not
necessarily coherent even if R is coherent. In fact, much attention has been concen-
trated on the question of what conditions guarantee that coherence is maintained under
faithfully flat extensions, and requires the assumption that the ring has finite weak di-
mension. The weak dimension of a ring R is defined as sup¹fdM jM an R-moduleº
(see [25] and [1]). As shown in [34], .FP/R1 is preserved under faithfully flat exten-
sions. Thus the .FP/R1 assumption in the next result serves as a stepping stone to the
coherent result desired.

Theorem 4.14 (Generalized Auslander–Bridger Formula [34]). Let R be a local ring
and let M be an R-module with QGdimM <1. Then

QGdimM C depthM D depthR:

As finitely presented modules over a coherent ring are .FP/R1, the coherent case
follows easily.

Corollary 4.15 ([34]). Let R be a local coherent ring and let M be an R-module with
GdimM <1. Then

GdimM C depthM D depthR:

5 Gorenstein Rings and Injective Dimensions

Recall that over Noetherian and coherent rings, Gorenstein dimension and Gorenstein
projective dimension coincide. Over Noetherian rings, Gorenstein rings have been
characterized via Gorenstein dimensions.

Proposition 5.1 ([4, 19]). Let .R;m; k/ be a Noetherian ring. The following condi-
tions are equivalent.

(i) R is Gorenstein.

(ii) GdimM <1 for all R-modules M .
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(iii) Gdim k <1.

(iv) GpdM <1 for all R-modules M .

(v) Gpd k <1.

In light of the above characterization, Hummel and Marley [34] define Gorenstein
as follows.

Definition 5.2 ([34]). A local ringR is Gorenstein if GdimR=I <1 for every finitely
generated ideal I . An arbitrary ring R is Gorenstein if Rm is Gorenstein for every
maximal ideal m.

While Gorenstein projective dimension and G-dimension are equivalent in coherent
rings, note that all the (coherent) Gorenstein results below were first proved in the
context of .FP/1-modules and QG-dimensions. Since these results make use of the
defining characteristics of G-dimension, they will be stated in those terms instead of
Gorenstein projective dimension.

By the inequality GdimM � pdM , it follows immediately that

Theorem 5.3 ([34]). Coherent regular rings are Gorenstein.

Using Corollary 4.15, it follows that

Theorem 5.4 ([34]). A coherent Gorenstein ring is locally Cohen–Macaulay.

While most Gorenstein results focus on coherent Gorenstein rings, the following
example from [34] constructs a non-coherent Gorenstein ring. For the following ex-
ample we define anR-moduleM to be linearly compact if every collection ¹Ni ji 2 Iº
of cosets of M having the finite intersection property satisfies

T

i2I Ni ¤ ; [22]. A
valuation ring R is almost maximal if for every ideal I ¤ 0, R=I is linearly compact
in the discrete topology.

Example 5.5 ([34, Example 5.2]). Let V be an almost maximal valuation domain with
value group R (see Section II.6 of [22] for details). Let m be the maximal ideal of V
and let a 2 m be a nonzero element. Then R D V=am is a non-coherent Gorenstein
ring.

Additional characterizations of Gorenstein rings include the following.

Proposition 5.6 ([34]). Let R be a ring.

(i) If R is Gorenstein, then Rp is Gorenstein for any prime ideal p.

(ii) R is a local coherent Gorenstein ring if and only if R=.x/ is Gorenstein for any
R-regular element x.
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(iii) R is Gorenstein if and only if RŒx� is coherent and Gorenstein.

(iv) If ¹Riº is a family of coherent Gorenstein rings, then R D lim�!Ri is coherent
Gorenstein.

While the definition of Gorenstein rings rests upon a characterization using G-
dimension, one may ask how well this definition behaves in light the following char-
acterization of Gorenstein rings:

Proposition 5.7 ([40]). Let .R;m; k/ be an n-dimensional Noetherian local ring. The
following conditions are equivalent.

(i) R is Gorenstein.

(ii) idR � n.

(iii) ExtiR.k; R/ D 0 for i < n and ExtnR.k; R/ Š k.

(iv) R is a Cohen–Macaulay ring and ExtnR.k; R/ Š k.

(v) R is a Cohen–Macaulay ring and every parameter ideal is irreducible.

(vi) R is a Cohen–Macaulay ring and there exists an irreducible parameter ideal.

Hummel and Marley [34] provide a one-directional analogy of Proposition 5.7(v)
and (vi) over coherent rings.

Proposition 5.8 ([34]). If R is a local coherent Gorenstein ring with depthR D n <

1, then every n-generated ideal generated by a regular sequence is irreducible.

Notice that while regular sequences of length depthR may not exist, if coherence
can be preserved one may pass to a faithfully flat ring to obtain the necessary regular
sequence [34]. It is currently unknown whether the reverse of Proposition 5.8 is true.

Hummel and Marley [34] have also made connections with characterization (ii), re-
placing injective dimension with FP-injective dimension. FP-injective modules, intro-
duced by Stenström arises from a modification of the definition of injective modules.

Definition 5.9 ([46]). Let R be a ring and letM be an R-module.

(i) M is called FP-injective if Ext1R.F;M/ D 0 for all finitely presented modules
F .

(ii) The FP-injective dimension ofM is defined as

FP-idRM D inf¹n � 0jExtnC1
R .F;M/ D 08 finitely presented R-module F º:

FP-injective modules have also appeared in the literature as absolutely pure modules
(for instance see [25] and [22]). FP-injective modules were connected to other homo-
logical dimensions by Ding and Chen [18] who explored FP-injectivity in conjunction
with coherent rings. Below, some of the more salient properties of FP-injective dimen-
sion from Lemma 3.1 of [46] are summarized in the context of coherent rings.
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Proposition 5.10 ([46]). Let R be a coherent ring, let M be an R-module, and let n
be a non-negative integer. The following conditions are equivalent.

(i) FP-idRM � n.

(ii) ExtiR.F;M/ D 0 for all i > n and all finitely presented R-modules F .

(iii) ExtnC1
R .R=I;M/ D 0 for all finitely generated ideals I of R.

(iv) Given an exact sequence 0�!M�!E0�!E1�!� � � �!En�1�!En�!0
with Ei an FP-injective module for 0 � i � n � 1, then En is FP-injective.

Additional details on FP-injective modules and coherent rings can be found in [34],
[46], and [18].

The first characterization of Gorenstein rings via FP-injective dimension was by
Ding and Chen in [18], who characterized local coherent rings of finite self-FP-injec-
tive dimension. They called local coherent rings with FP-idR � n n-FC rings, later
denoted Ding–Chen rings by Gillespie in [24]. The following theorem of Ding and
Chen makes the initial connection between Gorenstein and n-FC rings.

Theorem 5.11 ([18]). Let R be a local coherent ring. The following conditions are
equivalent for n � 1:
(i) R is n-FC.

(ii) GpdM � n for all finitely presented R-modules M , that is, R is Gorenstein.

However, there is an example of a local coherent Gorenstein ring with infinite FP-
injective dimension.

Example 5.12 ([41]). Let k be a field, and let R D kŒŒ.xn/n2N �� be the power series
ring in a countable infinite number of indeterminates over k such that only a finite
number of indeterminates occur in the expansion of any element of R. R is a local
coherent regular ring (and hence Gorenstein), but FP-idR D1.

Thus additional assumptions are needed for a Gorenstein ring to have finite FP-
injective dimension. In light of the bound

depthR � sup¹Gdim.R=I /jI finitely generated idealº
D sup¹njExtiR.R=I;R/ D 0; i � n; I finitely generated idealº;

for any ring R, the work of Hummel and Marley and Theorem 5.11 leads to the fol-
lowing result.

Theorem 5.13 ([34]). Let R be a local coherent ring. The following conditions are
equivalent for n � 0.

(i) R is n-FC.

(ii) R is Gorenstein with depthR D n.
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Rings satisfying this theorem will be denoted n-FC Gorenstein rings. In the case of
n-FC Gorenstein rings, a result of Ding and Chen also provides a coherent equivalent
to the following Noetherian result.

Proposition 5.14 ([13, Exercise 3.1.25]). A Noetherian ring R is Gorenstein if and
only if the set of modules with finite projective dimension is equal to the set of modules
with finite injective dimension.

In the coherent case, flat modules play the role of projective modules.

Proposition 5.15 ([17]). Let R be a coherent ring with FP-idR � n. The following
conditions are equivalent.
(i) fdM <1.

(ii) fdM � n.

(iii) FP-idM <1.

(iv) FP-idM � n.

Thus, the following unpublished generalization of Proposition 5.14 follows easily.

Proposition 5.16. Let R be a local coherent ring; the following conditions are equiv-
alent.
(i) R is Gorenstein with depthR <1.

(ii) For any module M , fdM <1 if and only if FP-idM <1.

Proof. The forward direction holds by Proposition 5.15. The reverse direction holds
trivially, as R is flat, and hence FP-idR <1.

Note that Foxby [21] extended Proposition 5.14 by showing that a Noetherian ring
with a single module of both finite projective and injective dimension is Gorenstein. It
is unknown whether this result carries over to coherent rings.

The connection between FP-injective and flat modules is natural in light of the fol-
lowing duality between FP-injective dimension and flat dimension. In the following,
the character module ofM is denotedMC D HomR.M;Q=Z/.

Lemma 5.17 ([20]). Let R be a ring and let M be an R-module.
(i) fdM D idMC D FP-idMC.

(ii) If R is right coherent and M is a right R-module then fdMC D FP-idM .

This relation is analogous to the relation between injective and flat modules over
Noetherian rings.

Recall that an R-module M has weak dimension n, denoted w: dimRM D n; if
there is a minimal length exact resolution of M , 0�!Fn�!� � � �!F0�!M�!0;
consisting of flat modules. The weak dimension of a ring R is defined w: dimR D
sup¹w: dimM jM an R-moduleº. By [29], coherent rings of finite weak dimension are
regular coherent rings. One may ask whether there are Gorenstein rings with infinite
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weak dimension. The following result of Gillespie [24] yields a positive answer by
providing examples of n-FC Gorenstein rings with infinite weak dimension.

Proposition 5.18 ([24]). If R is an n-FC Gorenstein ring, then the group ring RŒG� is
an n-FC Gorenstein ring for any finite group G.

More work has been done recently with FP-injective dimension that has lead to
further characterizations of n-FC, and hence coherent Gorenstein, rings. Mao and Ding
[37–39] explore the existence of FP-injective (pre-) covers and flat (pre-)envelopes.
Yang and Liu [48] extend the notion of FP-injectivity to complexes.

Given the connection between Gorenstein dimension and FP-injective dimension,
and the fact that Gorenstein projective, injective and flat modules are kernels of totally
acyclic complexes, a natural question arises of whether FP-injective dimension can
also be viewed in terms of totally acyclic complexes. Mao and Ding [39] do this
through the following definition of Gorenstein FP-injective modules, which are FP-
injective modules that approximate the properties of Gorenstein injective modules.

Definition 5.19 ([39]). LetR be a ring, and letM be a leftR-module. M is Gorenstein
FP-injective if there is an exact sequence

E W � � � �!E1�!E0�!E0�!E1�!� � �
of injective left R-modules withM D ker.E0�!E1/ and Hom.F;E/ exact for every
FP-injective module F .

Clearly any kernel or cokernel of the sequence E above is Gorenstein FP-injective.
Gorenstein FP-injectives are also closed under direct products [39]. In particular,
Gorenstein FP-injective modules satisfy the properties of homological dimensions in
Remark 4.1; see [39] for details. In addition, Gorenstein FP-injective and Goren-
stein flat modules are related in the same way as FP-injective and flat modules are in
Lemma 5.17.

Proposition 5.20 ([39]). Let R be a coherent ring and let M be a right R-module.
Then M is Gorenstein flat if and only if MC is Gorenstein FP-injective.

Note that [39] shows the forward direction of this result holds for any ring.
Another variation on FP-injective and flat modules are FI-injective and FI-flat mod-

ules introduced by Mao and Ding.

Definition 5.21 ([38]). Let R be a ring.
(i) A left R-module is FI-injective if Ext1R.F;M/ D 0 for any FP-injective left R-

module F .

(ii) A right R-module is FI-flat if TorR1 .N; F / D 0 for any FP-injective left R-mod-
ule F .

Note that Gorenstein FP-injective modules are also FI-injective.
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Gorenstein FP-injective modules fit between injective and Gorenstein injective mod-
ules. Over a Noetherian ring, the classes of Gorenstein FP-injective and Gorenstein in-
jective modules are identical. The following result illuminates the link between Goren-
stein FP-injective and FP-injective modules.

Proposition 5.22 ([38]). Let R be a coherent ring.

(i) R is left Noetherian if and only if every FP-injective left R-module is Gorenstein
FP-injective.

(ii) If the class of Gorenstein FP-injective leftR-modules is closed under direct sums,
then R is left Noetherian.

(iii) If FP-idR � n <1 the following conditions are equivalent.

(a) w: dimR � n.

(b) Every Gorenstein flat right R-module is flat.

(c) Every Gorenstein FP-injective left R-module is FP-injective.

(d) Every Gorenstein FP-injective left F -module is injective.

The relation between these modules can be summarized as follows with the arrows
indicating containment under the indicated conditions:

FI -injective

Gorenstein
injective

left
Noetherian �� Gorenstein FP-injective��

��

FP-idR�n ����
���

���
���

���
��

injective��

��
FP -injective

FP-idR�n

��

Using Gorenstein FP-injective dimension, Theorem 3.4 in [39] provides an addi-
tional characterization of Gorenstein n-FC rings over perfect rings.

Theorem 5.23 ([39]). Let R be a coherent perfect ring. The following conditions are
equivalent.

(i) R is an n-FC ring.

(ii) For every exact sequence 0�!M�!F 0�!� � � �!F n�1�!F n�!0 with F i

Gorenstein FP-injective for 0 � i � n � 1, then F n is Gorenstein FP-injective.

(iii) For every exact sequence 0�!Fn�!Fn�1�!� � � �!F0�!M�!0 with each
Fi Gorenstein flat for 0 � i � n � 1, then Fn is Gorenstein flat.

With multiple characterizations of Gorenstein rings that are compatible with the
Noetherian case, we move on to a discussion of potential candidates for a theory of
coherent complete intersection rings.
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6 Foundations for Coherent Complete Intersections

Let .R;m; k/ be a local ring, and letM be any R-module. Define the i th Betti num-
ber of R to be ˇi .R/ D dimR TorRi .k; k/, and the i th Betti number of M to be
ˇi .M/ D dimk TorRi .M; k/. The first formal definition of non-Noetherian complete
intersections found by this author is by André [2]. This definition uses André–Quillen
homology theory to extend the following “well-known” characterization of Noetherian
complete intersection rings given by André.

Proposition 6.1 ([2]). A local Noetherian ring is a complete intersection if its Poincaré
series has the following form

X

ˇix
i D .1C x/r

.1 � x2/s

with the integer r � s D dimR > 0.

In [2], André characterizes the rings satisfying the Poincaré equality given above
without the restrictions on r and s, and defines rings satisfying this equality to be com-
plete intersections. Since then, several authors have worked to characterize complete
intersections via homological dimensions. The work of Avramov, Vesselin, Gasharov,
and Peeva introduced complete intersection dimension.

Definition 6.2 ([6]). Let R and R0 be local rings, and letM be an R-module.

(i) The map R�!R0 is a (codimension c) deformation if it is a surjective local ho-
momorphism with kernel generated by a (length c) regular sequence.

(ii) A quasi-deformation of R is a diagram of local homomorphisms R�!R0  Q,
withR�!R0 a flat extension andR0  Q a (codimension c) deformation. Given
a quasi-deformation R�!R0  Q and an R-moduleM , setM 0 DM ˝R R

0:

(iii) For a nonzeroR-moduleM , denote the complete intersection dimension ofM to
be CI-dimRM D inf¹pdQM

0� pdQ R
0jR�!R0  Q is a quasi-deformationº:

For a moduleM over a Noetherian ring R,

CI-dimRM D sup¹CI-dimRm
Mmjm a maximal ideal of Rº:

Complete intersection dimension characterizes Noetherian complete intersection
rings.

Theorem 6.3 ([6]). Let .R;m; k/ be a local Noetherian ring. If R is a complete inter-
section, then every R-module has finite CI-dimension. If CI-dimR k <1, then R is a
complete intersection.
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Gerko [23] uses Gorenstein dimension and complexity to characterize Noetherian
complete intersection rings. The complexity of an R-module is defined as cxRM D
sup¹njˇR

i .M/ � ˛xn�1º:
In the Noetherian case, Gulliksen provides the following connection between com-

plexity and complete intersection rings.

Proposition 6.4 ([30]). If R is a local Noetherian complete intersection ring, then
cxM <1 for every R-module M .

Gerko’s investigation in [23] with PCI-dimension, also denoted lower CI dimension
(CI�-dimension), yields an easy definition of coherent complete intersection rings.

Definition 6.5 ([23]). Let R be a ring and letM be an R-module.

(i) Define PCI-dimM D 0 if GdimM D 0 and cxM <1.

(ii) Define

PCI- dimM D inf¹nj0�!Pn�!� � � �!P0�!M�!0; PCI- dimPi D 08iº:

With this definition Gerko makes the following connection, which mirrors Theorem
6.3.

Proposition 6.6 ([23]). If R is a Noetherian complete intersection, PCI-dimM < 1
for every R-module M . Conversely, if PCI-dim k <1 then R is a complete intersec-
tion.

Gerko also shows that PCI-dimension is related to CI-dimension.

Proposition 6.7 ([23]). Let R be a ring, and let M be an R-module. Then PCI-
dimM � CI-dimM , with equality if and only if CI-dimM <1.

However, Veliche showed the classes of modules with finite PCI-dimension and
finite CI-dimension are not the same.

Proposition 6.8 ([47]). Let R be a local Noetherian ring containing a field, with
depthR � 4. Then there exists a perfect ideal I in R with grade I D 4, and a
module M over R=I such that PCI-dimR=I M D 0, but CI-dimR=I M D1.

Hence, using the following definition of complete intersection would allow com-
plete intersections to be immediately Gorenstein.

Definition 6.9. Let .R;m/ be a local ring. Define R to be a complete intersection if
PCI-dimR=I <1 for all finitely generated ideals I . If R is a local coherent ring, R
is a complete intersection if PCI-dimM <1 for all finitely presented modulesM .
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However this definition is unsatisfying in that it a priori assumes finite Gorenstein
dimension, in particular that the ring is Gorenstein. Instead, via a suggestion to the
author by Avramov, a preferable definition for coherent complete intersections may be
the following.

Definition 6.10. A local coherent ring R is a complete intersection if cxM < 1 for
every finitely presented R-module.

While .FP/1-modules certainly have finite complexity, it is unclear whether finite
complexity is sufficient to imply finite Gorenstein dimension. More work needs to be
done to discover if complexity is a sufficient condition for finite Gorenstein dimension.
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Abstract. Non-commutative crepant resolutions are algebraic objects defined by Van den
Bergh to realize an equivalence of derived categories in birational geometry. They are mo-
tivated by tilting theory, the McKay correspondence, and the minimal model program, and
have applications to string theory and representation theory. In this expository article I situate
Van den Bergh’s definition within these contexts and describe some of the current research in
the area.
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1 Introduction

A resolution of singularities replaces a singular algebraic variety by a non-singular
one that is isomorphic on a dense open set. As such, it is a great boon to the algebraic
geometer, allowing the reduction of many calculations and constructions to the case
of a smooth variety. To the pure commutative algebraist, however, this process can
seem like the end of a story rather than the beginning: it replaces a well-understood
thing, the spectrum of a ring, with a much more mysterious thing glued together out
of other spaces. Put simply, a resolution of singularities of an affine scheme SpecR is
almost never another affine scheme (but see Section 13). One cannot in general resolve
singularities and stay within the categories familiar to commutative algebraists.

The usual solution, of course, is to expand one’s landscape on the geometric side to
include more complicated schemes. There are plenty of good reasons to do this other
than resolving singularities, and it has worked well for a century. Locally, the more
convoluted objects are built out of affine schemes/commutative algebra, so one has not
strayed too far.

Here is another alternative: expand the landscape on the algebraic side instead, to
include non-commutative rings as well as commutative ones. This suggestion goes
by the name “non-commutative algebraic geometry” or, my preference, “categorical
geometry”. For some thoughts on the terminology, see Section 7. Whatever the name,
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the idea is to treat algebraic objects, usually derived categories, as coming from geo-
metric objects even when no such geometric things exist. Since one trend in algebraic
geometry in the last forty years has been to study algebraic varieties indirectly, by
studying their (derived) categories of quasicoherent sheaves, one can try to get along
without the variety at all. Given a category of interest C, one can postulate a “non-
commutative” space X such that the (derived) category of quasicoherent sheaves on
X is C, and write C D Db.QchX/. In this game, the derived category is the geometry
and the symbol X simply stands in as a grammatical placeholder; the mathematical
object in play is C.

Of course, such linguistic acrobatics can only take you so far. The bonds between
algebra and geometry cannot be completely severed: the “non-commutative spaces”
must be close enough to the familiar commutative ones to allow information to pass
back and forth. This article is about a particular attempt to make this program work.

The idea of non-commutative resolutions of singularities appeared around the same
time in physics [42, 27, 30, 69] and in pure mathematics, notably in [40, 50]. In 2002,
inspired by Bridgeland’s proof [56] of a conjecture due to Bondal and Orlov, Van den
Bergh [205] proposed a definition for a non-commutative crepant resolution of a ring
R. This is an R-algebra ƒ which is (i) finitely generated as an R-module, (ii) gener-
ically Morita equivalent to R, and (iii) has finite global dimension. These three at-
tributes are supposed to stand in for the components of the definition of a resolution
of singularities: it is (i) proper, (ii) birational, and (iii) non-singular. The additional
“crepancy” condition is a certain symmetry hypothesis onƒwhich is intended to stand
in for the condition that the resolution of singularities not affect the canonical sheaf.
See Section 12 for details.

My main goal for this article is to motivate the definition of a non-commutative
crepant resolution (Definition 12.4). In order to do that effectively, I will attempt to
describe the contexts out of which it arose. These are several, including Morita theory
and tilting, the McKay correspondence, the minimal model program of Mori and Reid,
and especially work of Bondal and Orlov on derived categories of coherent sheaves.
Of course, the best motivation for a new definition is the proof of a new result, and I
will indicate where the new concepts have been applied to problems in “commutative”
geometry. Finally, the article contains a healthy number of examples, both of existence
and of non-existence of non-commutative crepant resolutions. Since it is not at all clear
yet that the definitions given below are the last word, we can hope that reasoning by
example will point the way forward.

As Miles Reid writes in [174],

It is widely appreciated that mathematicians usually treat history in a curi-
ously dishonest way, rewriting the history of the subject as it should have
been discovered [. . . ] The essential difficulty seems to be that the story in
strictly chronological order will not make sense to anyone; the writer wants
to give an explanation based on the logical layout of the subject, whatever
violence it does to historical truth.
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This article will be guilty of the dishonesty Reid suggests, intentionally in some places
and, I fear, unintentionally in others. I do intend to build a certain logical layout around
the ideas below, and I sincerely apologize to any who feel that violence has been done
to their ideas.

Here is a thumbnail sketch of the contents. The first few sections consider, on
both the algebraic side and the geometric, the reconstruction of the underlying ring
or space from certain associated categories. The obstructions to this reconstruction
– and even to reconstruction of the commutative property – are explained by Morita
equivalence (Section 2) and tilting theory (Sections 4–5). Section 6 contains a central
example: Beilinson’s “tilting description” of the derived category of coherent sheaves
on projective space.

This is not intended to be a comprehensive introduction to non-commutative alge-
braic geometry; for one thing, I am nowise competent to write such a thing. What I
cannot avoid saying is in Section 7.

The next two sections give synopses of what I need from the geometric theory of
resolutions of singularities and the minimal model program, followed in Section 10 by
some remarks on purely category-theoretic replacements for resolutions of singulari-
ties. Another key example, the McKay correspondence, appears in Section 11.

At last in Section 12 I define non-commutative crepant resolutions. The definition
I give is slightly different from Van den Bergh’s original, but agrees with his in the
main case of interest. The next few sections, 13–16, focus on particular aspects of
the definition, recapping some related research and focusing on obstructions to ex-
istence. In particular I give several more examples of existence and non-existence
of non-commutative crepant resolutions. Two more families of examples take up Sec-
tion 17 and Section 18: rings of finite representation type and the generic determinantal
hypersurface. Here tilting returns, now as a source of non-commutative crepant reso-
lutions. I investigate a potential theory of “non-commutative blowups” in Section 19,
and give very quick indications of some other examples in Section 20. That section
also lists a few open questions and gestures at some topics that were omitted for lack
of space, energy, or expertise.

Some results are simplified from their published versions for expository reasons. In
particular I focus mostly on local rings, allowing some cleaner statements at the cost
of generality, even though such generality is in some cases necessary for the proofs. In
any case I give very few proofs, and sketchy ones at that. The only novel contribution
is a relatively simple proof, in Section 18, of the m D n case of the main theorem
of [44].

The reader I have in mind has a good background in commutative algebra, but per-
haps less in non-commutative algebra, algebraic geometry, and category theory. Thus
I spend more time on trivialities in these latter areas than in the first. I have tried to
make the references section comprehensive, though it surely is out of date already.

Conventions. All modules will be left modules, so for a ringƒ I will denote byƒ-mod
the category of finitely generated left ƒ-modules, and by mod-ƒ D ƒop-mod the
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category of finitely generated left ƒop-modules. Other categories of modules will be
defined on the fly. Capitalized versions of names, namely ƒ-Mod, etc., will denote the
same categories without any hypothesis of finite generation.

Throughout R and S will be commutative Noetherian rings, usually local, while ƒ
and its Greek-alphabet kin will not necessarily be commutative.

2 Morita Equivalence

To take a representation-theoretic view is to replace the study of a ring by the study
of its (Abelian category of) modules. Among other advantages, this allows to exploit
the tools of homological algebra. A basic question is: How much information do
we lose by becoming representation theorists? In other words, when are two rings
indistinguishable by their module categories, so that ƒ-mod and �-mod are the same
Abelian category for different rings ƒ and �?

To fix terminology, recall that a functor FWA �! B between Abelian categories is
fully faithful if it induces an isomorphism on Hom-sets, and dense if it is surjective on
objects up to isomorphism. If F is both fully faithful and dense, then it is an equiva-
lence [153, Section IV.4], that is, there is a functor GWB �! A such that both composi-
tions are isomorphic to the respective identities. In this case write A ' B. Equivalences
preserve and reflect essentially all “categorical” properties and attributes: mono- and
epimorphisms, projectives, injectives, etc. Thus the question above asks when two
module categories are equivalent.

Morita’s theorem on equivalences of module categories [157, Section 3] completely
characterizes the contexts in which ƒ-mod ' �-mod for rings ƒ and � . First I define
some of the necessary terms.

Definition 2.1. Let ƒ be a ring andM 2 ƒ-Mod.
(i) Denote by addM the full subcategory ofƒ-Mod containing all direct summands

of finite direct sums of copies ofM .

(ii) Say M is a generator (for ƒ-mod) if every finitely generated left ƒ-module is
a homomorphic image of a finite direct sum of copies of M . Equivalently, ƒ 2
addM .

(iii) Say M is a progenerator if M is a finitely generated projective module and a
generator. Equivalently, addƒ D addM .

Theorem 2.2 (Morita equivalence, see e.g. [78, Chapter V]). The following are equiv-
alent for rings ƒ and � .
(i) There is an equivalence of Abelian categories ƒ-mod ' �-mod.

(ii) There exists a progenerator P 2 ƒ-mod such that � Š Endƒ.P /
op.

(iii) There exists a .ƒ-�/-bimodule ƒP� such that Homƒ.P;�/Wƒ-mod �! �-mod
is an equivalence.

In this case, say that ƒ and � are Morita equivalent.
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Interesting bits of the history of Morita’s theorem, as well as his other work, can be
found in [3].

An immediate corollary of Morita’s theorem will be useful later.

Corollary 2.3. Let ƒ be a ring and M , N two ƒ-modules such that addM D addN ,
equivalently M is a direct summand of N s for some s and N is a direct summand of
M t for some t . Then Endƒ.M/ and Endƒ.N / are Morita equivalent via the functors
Homƒ.M;N /˝Endƒ.M / � and Homƒ.N;M/˝Endƒ.N / �.

Among the consequences of Theorem 2.2, the most immediately relevant to our
purposes are those related to commutativity. One can show [143, Corollary 18.42] that
if ƒ and � are Morita equivalent, then the centers Z.ƒ/ and Z.�/ are isomorphic.
It follows that two commutative rings R and S are Morita equivalent if and only if
they are isomorphic. On the other hand, in general Morita equivalence is blind to the
commutative property. Indeed, the free module ƒn is a progenerator for any n � 1, so
that ƒ and the matrix ring Endƒ.ƒ

n/ Š Matn.ƒ/ are Morita equivalent. Even if ƒ is
commutative, Matn.ƒ/ will not be for n � 2.

The fact that commutativity is invisible to the module category is a key motiva-
tion for categorical geometry. It is interesting to observe that this idea, and even the
connection with endomorphism rings, is already present in the Freyd–Mitchell Theo-
rem [77, Theorem 7.34] classifying Abelian categories as categories of modules. In
detail, the Freyd–Mitchell Theorem says that if C is a category whose objects form a
set (as opposed to a proper class) which is closed under all set-indexed direct sums,
and C has a progenerator P such that HomC.P;�/ commutes with all set-indexed
direct sums, then C ' ƒ-Mod for ƒ D EndC.P /. Different choices of P obviously
give potentially non-commutative rings ƒ, even if C D R-mod for some commutative
ring R.

The property of P referred to above will recur later: say that P is compact if
HomC.P;�/ commutes with all (set-indexed) direct sums.

The following cousin of Morita equivalence will be essential later on.

Proposition 2.4 (Projectivization [7, Proposition II.2.1]). Let ƒ be a ring and M a
finitely generated ƒ-module which is a generator. Set � D Endƒ.M/op. Then the
functor

Homƒ.M;�/Wƒ-mod �! �-mod

is fully faithful, and restricts to an equivalence

Homƒ.M;�/W addM �! add� :

In particular, the indecomposable projective �-modules are precisely the modules of
the form Homƒ.M;N / for N an indecomposable module in addM .
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3 (Quasi)coherent Sheaves

On the geometric side, it has also long been standard operating procedure to study a
variety or scheme X in a representation-theoretic mode by investigating the sheaves
on X , particularly those of algebraic origin, the quasicoherent sheaves.

Let X be a Noetherian scheme. Recall that an OX -module is quasicoherent if it
locally can be represented as the cokernel of a homomorphism between direct sums
of copies of OX . A quasicoherent sheaf is coherent if those direct sums can be cho-
sen to be finite. Write QchX for the category of quasicoherent sheaves and cohX
for that of coherent sheaves. Since X is assumed to be Noetherian, these are both
Abelian categories (for the quasicoherent sheaves, quasi-compact and quasi-separated
is enough [59]).

The category QchX is a natural environment for homological algebra over schemes;
for example, computations of cohomology naturally take place in QchX . Now one
may ask the same question as in the previous section: What information, if any, is
lost in passage from the geometric object X to the category cohX or QchX? In this
case, the kernel is even smaller: we lose essentially nothing. Indeed, it is not hard to
show that for arbitrary complex varieties X and Y , the categories cohX and cohY are
equivalent if and only if X and Y are isomorphic. The key idea is to associate to a
coherent sheaf the closed subset of X on which it is supported; for example, the points
ofX correspond to the simple objects in cohX . See for example [41, Section 8]. More
generally, Gabriel [78] taught us how to associate to any Abelian category A a geomet-
ric realization: a topological space SpecA, together with a sheaf of rings OA. (In fact,
the sheaf OA is the endomorphism sheaf of the identity functor on A, reminiscent of the
Freyd–Mitchell theorem mentioned in the previous section. The space SpecA is noth-
ing but the set of isomorphism classes of indecomposable injective objects of A, with
a base for the topology given by SuppM D ¹ŒI � j there is a nonzero arrowM �! I º
for Noetherian objects M .) In the case A D QchX for a Noetherian scheme X , the
pair .SpecA; OA/ is naturally isomorphic to .X; OX /. This construction has been
generalized to arbitrary schemes by Rosenberg [181, 182], giving the following theo-
rem.

Theorem 3.1 (Gabriel–Rosenberg Reconstruction). A scheme X can be reconstructed
up to isomorphism from the Abelian category QchX .

Theorem 3.1 implies that there is no interesting Morita theory for (quasi)coherent
sheaves. This is not all that surprising, given that Morita-equivalent commutative rings
are necessarily isomorphic. The well-known equivalence between modules over a ring
R and quasicoherent sheaves over the affine scheme SpecR strongly suggests the same
sort of uniqueness on the geometric side as on the algebraic.

For projective schemes, Serre’s fundamental construction [188] describes the qua-
sicoherent sheaves on X in terms of the graded modules over the homogeneous coor-
dinate ring. Explicitly, let A be a finitely generated graded algebra over a field, and
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set X D ProjA, the associated projective scheme. Let GrModA, resp. grmodA, de-
note the category of graded, resp. finitely generated graded, A-modules. The graded
modules annihilated by A	n for n� 0 form a subcategory TorsA, resp. torsA, and

TailsA D GrModA=TorsA and tailsA D grmodA= torsA

are defined to be the quotient categories. This means that two graded modulesM and
N are isomorphic in TailsA if and only if M	n Š N	n as graded modules for large
enough n.

Theorem 3.2 (Serre). Let A be a commutative graded algebra generated in degree one
over A0 D k, a field, and set X D ProjA. Then the functor ��W cohX �! tailsA,
which sends a coherent sheaf F to the image in tailsA of

L1
nD�1H 0.X;F .n//,

defines an equivalence of categories cohX ' tailsA.

Serre’s theorem is the starting point for “non-commutative projective geometry,” as
we shall see in Section 7 below. From the point of view of categorical geometry, it
is the first instance of a purely algebraic description of the (quasi)coherent sheaves on
a space, and thus opens the possibility of “doing geometry” with only a category in
hand.

4 Derived Categories of Modules

Originally introduced as technical tools for organizing homological (or “hyperhomo-
logical” [208]) information, derived categories have in the last 30 years been increas-
ingly viewed as a basic invariant of a ring or variety. Passing from an Abelian category
to an associated derived category not only tidies the workspace by incorporating the
non-exactness of various natural functors directly into the notation, but in some cases
it allows a “truer description” [57] of the underlying algebra or geometry than the
Abelian category does. For example, there are varieties with non-trivial derived auto-
equivalences Db.X/ ' Db.X/ that do not arise from automorphisms; one might think
of these as additional symmetries that were invisible from the geometric point of view.
Another example is Kontsevich’s Homological Mirror Symmetry conjecture [139],
which proposes an equivalence of certain derived categories related to “mirror pairs”
of Calabi–Yau manifolds.

Let us fix some notation. Let A be an Abelian category. The homotopy category
K.A/ has for objects the complexes over A, and for morphisms homotopy-equivalence
classes of chain maps. The derived category D.A/ is obtained by formally inverting
those morphisms in K.A/ which induce isomorphisms on cohomology, i.e. the quasi-
isomorphisms.

We decorate K.A/ and D.A/ in various ways to denote full subcategories. For the
moment I need only Kb.A/, the full subcategory composed of complexes C having
only finitely many non-zero components, and Db.A/, the corresponding bounded de-
rived category of A.
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The homotopy category K.A/, the derived category D.A/ and their kin are no longer
Abelian categories, but they have a triangulated structure, consisting of a shift functor
.�/Œ1� shifting a complex one step against its differential and changing the sign of
that differential, and a collection of distinguished triangles taking the place occupied
by the short exact sequences in Abelian categories. A functor between triangulated
categories is said to be a triangulated functor if it preserves distinguished triangles
and intertwines the shift operators.

Homomorphisms 'WM �! N in D.A/ are diagramsM
f �� P g��! N of homo-

topy classes of chain maps, where f WP �! M is a quasi-isomorphism and we think
of ' as f �1g. Much more usefully,

HomD.A/.M;N Œi �/ D ExtiA.M;N /

for all i 2 Z and allM , N in D.A/.
Let us say that two rings ƒ and � are derived equivalent if there is an equivalence

of triangulated categories Db.ƒ-Mod/ �! Db.�-Mod/.
It is nearly obvious that a Morita equivalence between rings ƒ and � gives rise to

a derived equivalence Db.ƒ-Mod/ ' Db.�-Mod/. (Any equivalence between Abelian
categories preserves short exact sequences.) In general, derived equivalence is a much
weaker notion. It does, however, preserve some essential structural information. For
example, if ƒ and � are derived equivalent, then their Grothendieck groups K0.ƒ/

andK0.�/ are isomorphic [177, Proposition 9.3], as are the Hochschild homology and
cohomology groups [178] and the cyclic cohomologies [93]. If ƒ and � are derived-
equivalent finite-dimensional algebras over a field k, then they have the same number
of simple modules, and simultaneously have finite global dimension [91, 92].

Most importantly for this article, derived-equivalent rings have isomorphic cen-
ters [177, Proposition 9.2]. In particular, if R and S are commutative rings, then
Db.R-Mod/ ' Db.S -Mod/ if and only if R Š S . Thus there is at most one comm-
utative ring in any derived-equivalence class, another sign that one should look at
non-commutative rings for non-trivial derived equivalences.

All these facts follow from Rickard’s Morita theory of derived equivalences, in
which the progenerator of Theorem 2.2 is replaced by a tilting object. Here is the
main result of Rickard’s theory.

Theorem 4.1 (Rickard [177]). Let ƒ and � be rings. The following conditions are
equivalent.

(i) Db.ƒ-Mod/ and Db.�-Mod/ are equivalent as triangulated categories.

(ii) Kb.addƒ/ and Kb.add�/ are equivalent as triangulated categories.

(iii) There is an object T 2 Kb.addƒ/ satisfying

(a) Extiƒ.T; T / D 0 for all i > 0, and

(b) addT generates Kb.addƒ/ as a triangulated category,

such that � Š Endƒ.T /.
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Ifƒ and � are finite dimensional algebras over a field, then these are all equivalent to
Db.ƒ-mod/ ' Db.�-mod/.

A complex T as in condition (iii) is called a tilting complex for ƒ, and � is tilted
from ƒ. Tilting complexes appeared first in the form of tilting modules, as part of
Brenner and Butler’s [26] study of the reflection functors of Bernšteı̆n, Gelfand, and
Ponomarev [33]. (The word was chosen to illustrate their effect on the vectors in a root
system, namely a change of basis that tilts the axes relative to the positive roots.) Their
properties were generalized, formalized, and investigated subsequently by Happel and
Ringel [103], Bongartz [52], Cline–Parshall–Scott [64], Miyashita [152], and others.
Happel seems to have been the first to realize [92] that if T is a ƒ-module of finite
projective dimension, having no higher self-extensions Ext>0

ƒ .T; T / D 0, and ƒ has
a finite co-resolution 0 �! ƒ �! T1 �! � � � �! Tr �! 0 with each Ti 2 addT ,
then the functor Homƒ.T;�/WDb.ƒ-Mod/ �! Db.Endƒ.T /-Mod/ is an equivalence.
In their earliest incarnation, tilting modules were defined to have projective dimension
one, but this more general version has become standard.

Morita equivalence is a special case of tilting. Indeed, any progenerator is a tilting
module. However, see Section 6 below for a pair of derived-equivalent algebras which
are not Morita equivalent.

5 Derived Categories of Sheaves

The first real triumphs of the derived category came in the geometric arena: the con-
struction by Grothendieck and coauthors of a global intersection theory and the theo-
rem of Riemann–Roch [32] are the standard examples [60]. The idea of the (bounded)
derived category of a scheme as a geometric invariant first emerged around 1980 in
the work of Beilinson, Mukai, and others. I will describe some of Beilinson’s ob-
servations in the next section. Mukai found the first example of non-isomorphic va-
rieties which are derived equivalent [160]; he showed that an Abelian variety X and
its dual X_ always have equivalent derived categories of quasicoherent sheaves. His
construction is modeled on a Fourier transform and is now called a Fourier–Mukai
transform [105, 106]. It would draw us too far afield from our subject to discuss
Fourier–Mukai transforms in any depth here. Several examples will appear later in the
text: see the end of Section 6 and Theorems 9.4, 11.7, and 11.8. It is an important
result of Orlov [162] that any equivalence Db.cohX/ �! Db.cohY /, for X and Y
connected smooth projective varieties, is given by a Fourier–Mukai transform.

The existence of non-trivial derived equivalences for categories of sheaves means
that one cannot hope for a general reconstruction theorem, even for smooth varieties.
However, under an assumption on the canonical sheaf !X , the varietyX can be recon-
structed from its derived category. Recall that for X a smooth complex variety over
C, !X D

VdimX
�X=C is the sheaf of top differential forms on X where �X=C is the

cotangent bundle, a.k.a. the sheaf of 1-forms on X . It is an invertible sheaf. Recall
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further [94, Section II.7] that an invertible sheaf L is ample if for every coherent sheaf
F , F ˝Ln is generated by global sections for n� 0.

Theorem 5.1 (Bondal–Orlov [49]). Let X and Y be smooth connected projective va-
rieties over C. Assume that either the canonical sheaf !X or the anticanonical sheaf
!�1

X is ample. If Db.cohX/ ' Db.cohY /, then X is isomorphic to Y .

Note that the result is definitely false for Abelian varieties by the result of Mukai
mentioned above; in this case !X Š OX is trivial, so not ample. Calabi–Yau varieties
are another example where !X Š OX is not ample, and the conclusion does not hold.

One consequence of this theorem is that, under the same hypotheses, the group

of auto-equivalences Db.cohX/
'��! Db.cohX/ of X is generated by the obvious

suspects: Aut.X/, the shift .�/Œ1�, and the tensor products � ˝OX
L with fixed line

bundles L.
Triangulated categories arising in nature like Db.cohX/ generally have a lot of ad-

ditional structure: there is a tensor (symmetric monoidal) structure induced from the
derived tensor product, among other things. Taking this into account gives stronger
results. To give an example, recall that a perfect complex on a scheme X is one
which locally is isomorphic in the derived category to a bounded complex of lo-
cally free sheaves of finite rank. Perfect complexes form a subcategory Dperf.QchX/.
As long as X is quasi-compact and separated (Noetherian is enough), Dperf.QchX/
contains precisely the compact objects of D.QchX/, that is, the complexes C such
that HomOX

.C;�/ commutes with set-indexed direct sums. See [59, Theorem 3.1.1].
Balmer [23, 24] shows that a Noetherian schemeX can be reconstructed up to isomor-
phism from Dperf.QchX/, as long as the natural tensor structure is taken into account,
and that two reduced Noetherian schemes X and X 0 are isomorphic if and only if
Dperf.QchX/ and Dperf.QchX 0/ are equivalent as tensor triangulated categories.

The theory of tilting sketched in the previous section has a geometric incarnation
as well, which signals the first appearance of non-commutative rings on the geometric
side of our story.

Definition 5.2. Let X be a Noetherian scheme and T an object of D.QchX/. Say that
T is a tilting object if it is compact, is a classical generator for Dperf.QchX/, and has
no non-trivial self-extensions. Explicitly, this is to say:

(i) T is a perfect complex;

(ii) The smallest triangulated subcategory of D.QchX/ containing T and closed un-
der direct summands is Dperf.QchX/; and

(iii) ExtiOX
.T; T / D 0 for i > 0.

If T is quasi-isomorphic to a complex consisting of a locally free sheaf in a single
degree, it is sometimes called a tilting bundle.
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The generating condition (ii) is sometimes replaced by the requirement that T gen-
erates D.QchX/, i.e. that if an object N in D.QchX/ satisfies ExtiOX

.T;N / D 0 for

all i 2 Z, then N D 0. If an object T classically generates Dperf.QchX/ as in the
definition, then it generates D.QchX/; the converse holds in the presence of the as-
sumption (i) that T is compact. This is a theorem due to Ravenel and Neeman [59,
Theorem 2.1.2].

A class of schemes particularly well-suited for geometric tilting theory consists of
those which are projective over a scheme Z, which in turn is affine of finite type over
an algebraically closed field k. This generality allows a wide range of interesting
examples, but also ensures, by [87, Théorème 2.4.1(i)], that if T is a tilting object on
X then the endomorphism ring ƒ D EndOX

.T / is a finitely generated algebra over
the field k. In particular, ƒ is finitely generated as a module over its center.

The next result is fundamental for everything that follows. It has origins in the work
of Beilinson presented in the next section, with further refinements in [22, 53, 59].

Theorem 5.3 (Geometric Tilting Theory [106, Theorem 7.6]). Let X be a scheme,
projective over a finite-type affine scheme over an algebraically closed field k. Let T
be a tilting object in D.QchX/, and set ƒ D EndOX

.T /. Then

(i) The functor RHomOX
.T;�/ induces an equivalence of triangulated categories

between D.QchX/ and D.ƒ-Mod/, with inverse � L˝ƒ T .

(ii) If T is in Db.cohX/, then this equivalence restricts to give an equivalence be-
tween Db.cohX/ and Db.ƒ-mod/.

(iii) If X is smooth, then ƒ has finite global dimension.

It is not at all clear from this result when tilting objects exist, though it does im-
pose some necessary conditions on X . For example, assume that in addition X is
projective over k and T is a tilting object in D.QchX/. Then ƒ D EndOX

.T / is
a finite-dimensional algebra over k. The Grothendieck group K0.ƒ/ is thus a free
Abelian group of finite rank, equal to the number of simple ƒ-modules. This implies
that K0.X/ is free Abelian as well. Thus any torsion in K0 rules out the existence of
a tilting object.

6 Example: Tilting on Projective Space

In this section I illustrate Theorem 5.3 via Beilinson’s tilting description of the de-
rived category of projective space. The techniques have been refined and are now
standard; they have been used, most notably by Kapranov, to construct explicit de-
scriptions of the derived category of coherent sheaves on several classes of varieties.
For example, there are tilting bundles on smooth projective quadrics [127], on Grass-
mannians [43, 126], on flag manifolds [128], on various toric varieties [101, 102, 131],
and on weighted projective spaces [22, 81]. Here we stick to projective space.
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Let k be a field, V a k-vector space of dimension n � 2, and P D Pn�1 D P .V /
the projective space on V . We consider two families of n locally free sheaves on P .
First let

E1 D ¹O;O.�1/; : : : ;O.�nC 1/º
where O D OP is the structure sheaf. Also let � D �P be the cotangent sheaf, so
that �i DVi

� is the O-module of differential i -forms on P , and set

E2 D
®

�0.1/ D O.1/;�1.2/; : : : ; �n�1.n/
¯

:

Let T1 and T2 be the corresponding direct sums,

T1 D
n�1
M

aD0

O.�a/ and T2 D
n
M

aD1

�a�1.a/ :

The constituent sheaves of E1 and E2 are related by the tautological Koszul complex on
P . Indeed, the Euler derivation eWV ˝k O.�1/ �! O, which corresponds to the iden-
tity on V under HomO.V ˝k O.�1/;O/ Š HomO.V ˝k O;O.1// Š Homk.V; V /,
gives rise to a complex

0 �!Vn
V ˝k O.�n/ �! � � � �!V1

V ˝k O.�1/ �! O �! 0 (6.1)

on P . In fact it is acyclic [74, Example 17.20], and the cokernels are exactly the
sheaves �i , which decompose the Koszul complex into short exact sequences

0 �! �a �!Va
V ˝k O.�a/ �! �a�1 �! 0 :

Together with the well-known calculation of the cohomologies of the O.�a/ [94, The-
orem III.5.1], the identification HomO.O.�a/;O.�b// D O.a� b/, and the fact that
ExtiO.�;�/ D H i .HomO.�;�// on vector bundles, this produces the following data.
(See [44] for a jazzed-up version which holds over any base ring k.)

Lemma 6.1. Keep the notation established so far in this section.

(i) We have ExtiO.O.�a/;O.�b// D 0 for all i > 0, and

HomO.O.�a/;O.�b// Š Syma�b.V /

for 0 � a; b � n � 1.

(ii) We have ExtiO.�
a�1.a/;�b�1.b// D 0 for all i > 0, and

HomO.�
a�1.a/;�b�1.b// ŠVa�b

.V �/

for 1 � a; b � n, where V � is the dual of V .
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The lemma in particular implies that the endomorphism rings of T1 and T2,

ƒ1 D EndO

�

n�1
M

aD0

O.�a/
�

Š
n�1
M

a;bD0

Syma�b.V /

and

ƒ2 D EndO

�

n
M

aD1

�a�1.a/
�

Š
n�1
M

a;bD0

Va�b
.V �/

are “spread out” versions of the truncated symmetric and exterior algebras, respec-
tively. This can be made more precise by viewing ƒ1 and ƒ2 as quiver algebras.
Consider a quiver on n vertices labeled, say, 0; 1; : : : ; n � 1, and having n arrows
from each vertex to its successor, corresponding to a basis of V , resp. of V �. Intro-
duce quadratic relations vivj D vj vi corresponding to the kernel of the natural map
V ˝k V �! Sym2.V /, respectively vivj D �vj vi corresponding to the kernel of
V � ˝k V

� �! V2
.V �/. The resulting path algebras with relations are isomorphic

to ƒ1 and ƒ2, respectively. In [44] we call these “quiverized” symmetric and exterior
algebras.

I have not yet proven thatƒ1 andƒ2 are derived equivalent to P . For this, it remains
to show that the collections E1 and E2 generate the derived category Db.coh P /. This
is accomplished via Beilinson’s “resolution of the diagonal” argument. Let � P�P
denote the diagonal, and p1; p2WP � P �! P the projections onto the factors. For
sheaves F and G on P , set

F � G D p�
1 F ˝P�P p

�
2 G ;

a sheaf on P �P . One can show that the structure sheaf of the diagonal O
 is resolved
over OP�P by a Koszul-type resolution

0 �! O.�n/��n.n/ �! � � � �! O.�1/��1.1/ �! OP�P �! O
 �! 0 :

In particular, O
 is in the triangulated subcategory of Db.coh.P � P // generated by
sheaves of the form O.�i/� Y for Y in Db.coh P /. The same goes for any object of
the form O
 �Lp�

1X withX in Db.coh P / as well. Push down now by p2 and use the

projection formula to see that X D Rp2�.O


L˝ Lp�
1X/ belongs to the triangulated

subcategory of Db.coh P / generated by O.�i/˝Rp2�p�
1Y . The factor Rp2�p�

1Y is
represented by the complex of k-vector spaces with zero differential R�.Y /, and hence
E1 D ¹O;O.�1/; : : : ;O.�nC 1/º generates Db.coh P /. On the other hand, reversing
the roles of p1 and p2 gives the result for E2 D

®

O.1/;�1.2/; : : : ; �n�1.n/
¯

as well.
This discussion proves the following theorem.
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Theorem 6.2 (Beilinson). Let k be a field, V a vector space of dimension n � 2 over
k, and P D P .V /. The vector bundles

T1 D
n�1
M

aD0

OP .�a/ and T2 D
n
M

aD1

�a�1
P .a/

are tilting bundles on P . In particular, there are equivalences of triangulated cate-
gories

Db.ƒ1-mod/ ' Db.coh P / ' Db.ƒ2-mod/

defined by RHomOP
.Ti ;�/ for i D 1; 2, where ƒi D EndOP

.Ti /.

By the way, the construction Rp2�.O


L˝OP
Lp�

1 .�//, which accepts sheaves on P
and returns sheaves on P , is an example of a Fourier–Mukai transform, the definition of
which was gracefully avoided in Section 5. Replacing O
 by any other fixed complex
in Db.coh.P � P // would give another.

7 The Non-existence of Non-commutative Spaces

As mentioned in the Introduction, I personally am reluctant to use the phrase “non-
commutative algebraic geometry” to describe results like Beilinson’s in Section 6.
While the phrase is certainly apposite on a word-by-word basis, given that the ideas
are a natural blend of algebraic geometry and non-commutative algebra, I find that
using it in public leads immediately to being asked awkward questions like, “What
on earth is non-commutative geometry?” While many people have offered thoughtful,
informed answers to this question – [79, 121, 124, 125, 130, 144, 158, 189, 192, 210]
are some of my personal favorites – I find the whole conversation distracting from
the more concrete problems at hand. I propose instead that results like Beilinson’s and
those to follow in later sections should be considered as part of “categorical geometry”.
The name seems unclaimed, apart from an online book from 1998.

In this section I say a few words about a couple of approaches to building a field
called non-commutative algebraic geometry. I have chosen a deliberately provocative
title for the section, so that there can be no question that these are opinionated com-
ments. The reader who is intrigued by the ideas mentioned here would do well to seek
out a less idiosyncratic, more comprehensive introduction such as those cited in the
previous paragraph.

One potential pitfall for the prospective student of non-commutative geometry is
that there are several disparate approaches. For one thing, the approach of Connes and
his collaborators [120], which some hope will explain aspects of the Standard Model
of particle physics or even prove the Riemann Hypothesis, is based on differential
geometry andC �-algebras, and is, as far as I can tell, completely separate frommost of
the considerations in this article. More subtly, even within non-commutative algebraic
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geometry, there are a few different points of view. I do not consider myself competent
even to give references, for fear of giving offense by omission.

So what is the problem here? Why cannot one simply do algebraic geometry, say at
the level of [94], over non-commutative rings [156]? There have been several sustained
attempts to do exactly this, starting in the 1970s. There are a couple of immediate
obstacles to a naïve approach.

The first problem is to mimic the fact that a ring R can be recovered from the
Zariski topology on the prime spectrum SpecR and the structure sheaf OSpecR. (One
finds, of course,H 0.SpecR;OSpecR/ D R.) Both of these sets of information depend
essentially on localization. For non-commutative rings, the prime spectrum is rather
impoverished; for example, the Weyl algebra Chx; yi=.yx � xy � 1/ has trivial two-
sided prime spectrum. Even ignoring this difficulty, localization for non-commutative
rings [118, 172] only functions well for Øre sets, and the complement of a prime ideal
need not be an Øre set.

One possible resolution of the problem would be to focus on the quotient modules
ƒ=p instead of the prime ideals p. The points of a commutative affine variety X (over
C, say) are in one-one correspondence with the simple modules over the coordinate
ring CŒX�. Furthermore, a point x 2 X is a non-singular point if and only if the
corresponding simple module CŒX�=mx has finite projective dimension.

Unfortunately, here there is a second problem: finite projective dimension, even
finite global dimension, is a very weak property for non-commutative rings. For ex-
ample, there is no Auslander–Buchsbaum Theorem giving a uniform upper bound on
finite projective dimensions over a given ring; the existence of such a bound over an
Artin algebra is called the finitistic dimension conjecture, and has been open since at
least 1960 [25, 107]. There are a host of additional technical problems to be over-
come. It’s unknown, for instance, whether finite global dimension implies primeness
(as regularity implies domain for a commutative local ring); the Jacobson radical might
fail to satisfy the Artin–Rees property [36], derailing the standard proof. Pathologies
abound: for example, there is a local Noetherian domain ƒ of global dimension 3
such that every quotient ring other than ƒ itself, 0, and ƒ= rad.ƒ/ has infinite global
dimension [36, Example 7.3].

Restricting to a smaller class of rings solves some of these problems. For example,
the class of rings ƒ which are finitely generated modules over their center Z.ƒ/ are
much better-behaved than the norm. For example, ƒ is left and right Noetherian if
Z.ƒ/ is, so that gldimƒ D gldimƒop. The “lying over”, “incomparability”, and “go-
ing up” properties hold for prime ideals along the extension Z.ƒ/,!ƒ [168, Theorem
16.9]. Furthermore, the following reassuring results hold [110, Section 2].

Proposition 7.1. Let .R;m/ be a local ring and ƒ a module-finite R-algebra. Let M
be a finitely generated ƒ-module.

(i) The dimension of M , defined by dimM D dim.R=AnnR.M//, is independent
of the choice of central subring R over which ƒ is a finitely generated module.
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(ii) The depth of M , defined by depthM D inf¹i j ExtiR.R=m;M/ ¤ 0º, is also
independent of the choice of R.

(iii) (Ramras [171]) We have

depthM � dimM � injdimƒM :

If in particularƒ is a torsion-freeR-module and gldimƒ<1, then injdimƒƒD
gldimƒ [17, Lemma 1.3], so that

depthRƒ � dimR � gldimƒ :

(iv) ([170] or [83]) The global dimension of ƒ is the supremum of pdƒL over all
ƒ-modules L of finite length.

Restricting still further, one arrives at a very satisfactory class of rings. Recall that
for .R;m/ a local ring, a finitely generatedR-moduleM is maximal Cohen–Macaulay
(MCM) if depthM D dimR. Equivalently, there is a system of parameters x1; : : : ; xd ,
with d D dimR, which is an M -regular sequence. In the special case where R is
Gorenstein, this condition is equivalent to ExtiR.M;R/ D 0 for all i > 0.

Definition 7.2. Let .R;m/ be a local ring and ƒ a module-finite R-algebra. Say that
ƒ is an R-order if ƒ is maximal Cohen–Macaulay as an R-module.

The terminology is imperfect: there are several other definitions of the word “order”
in the literature, going back decades. Here we follow [16]. See Section 12 for a
connection to the classical theory of hereditary and classical orders over Dedekind
domains.

Localization is still problematic, even for orders. In order to get a workable theory,
a condition stronger than finite global dimension is sometimes needed.

Definition 7.3. Let R be a commutative ring and let ƒ be a module-finite R-algebra.
Say that ƒ is non-singular if gldimƒp D dimRp for every prime ideal p of R.

Non-singular orders have a very satisfactory homological theory, especially over
Gorenstein local rings. A non-singular order over a local ring satisfies a version of
the Auslander–Buchsbaum Theorem [110, Proposition 2.3]: If ƒ is an R-order with
gldimƒ D d < 1, then for any ƒ-moduleM the equality pdƒM C depthM D d

holds. Furthermore, the following characterization of non-singularity holds for or-
ders [113, Proposition 2.13].

Proposition 7.4. Let R be a CM ring with a canonical module !, and let ƒ be an
R-order. Then the following are equivalent.

(i) ƒ is non-singular.

(ii) gldimƒm D dimRm for all maximal ideals m of R.
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(iii) The finitely generated ƒ-modules which are MCM as R-modules are precisely
the finitely generated projective ƒ-modules.

(iv) HomR.ƒ; !/ is a projective ƒ-module and gldimƒ <1.

The definitions above represent an attempt to force classical algebraic geometry,
or equivalently commutative algebra, to work over a class of non-commutative rings.
Here is a different approach, more consonant with the idea of “categorical geometry.”
Rather than focusing attention on the rings, concentrate on an Abelian or triangulated
category C, which we choose to think of as QchX or Db.QchX/ for some space X
about which we say nothing further. In this approach, the space X is nothing but a
notational placeholder, and the geometric object is the category C.

This idea has had particular success in taking Serre’s Theorem 3.2 as a template and
writing Db.QchX/ for a quotient category of the form tailsƒ D grmodƒ= torsƒ.
One thus obtains what is called non-commutative projective geometry. To describe
these successes, let us make the following definition, which is based on the work of
Geigle–Lenzing [81], Verëvkin [207, 206], Artin–Zhang [21] and Van den Bergh [203].

Definition 7.5. A quasi-scheme (over a field k) is a pair X D .X -mod;OX / where
X -mod is a (k-linear) Abelian category and OX 2 X -mod is an object. Two quasi-
schemes X and Y are isomorphic (over k) if there exists a (k-linear) equivalence
FWX -mod �! Y -mod such that F.OX / Š OY .

The obvious first example is that a (usual, commutative) scheme X is a quasi-
scheme .cohX;OX /. For any ring ƒ, commutative or not, one can define the affine
quasi-scheme associated to ƒ to be Specƒ WD .ƒ-mod; ƒ/. One checks that if R
is commutative and X D SpecR is the usual prime spectrum, then the global sec-
tion functor �.X;�/W cohX �! R-mod induces an isomorphism of quasi-schemes
.cohX;OX / �! .R-mod; R/.

The basic example of a quasi-scheme in non-commutative projective geometry is
the following, which mimics the definition of tails from Section 3 precisely. Let ƒ be
a Noetherian graded algebra over a field k. For simplicity, assume that A0 D k. Let
GrModƒ and grmodƒ be the categories of gradedƒ-modules, resp. finitely generated
graded ƒ-modules. Let Torsƒ, resp. torsƒ, be the subcategory of graded modules
annihilated by ƒ	n for n� 0. Then define the quotient categories

Tailsƒ D GrModƒ=Torsƒ and tailsƒ D grmodƒ= torsƒ ;

and set
Projƒ D .Tailsƒ;O/ and projƒ D .tailsƒ;O/

where O is the image of ƒ in tailsƒ. Call Projƒ and projƒ the (Noetherian) pro-
jective quasi-scheme determined by ƒ. The dimension of the projective quasi-scheme
is GKdimƒ � 1, where GKdimƒ is the Gelfand–Kirillov dimension; this means that
dim projƒ is the polynomial rate of growth of ¹dimk ƒnºn	0.
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One can define sheaf cohomology H j .Tailsƒ;�/ in Tailsƒ to directly general-
ize the commutative definition. In particular the global sections functor is �.�/ D
HomTails ƒ.O;�/. ForM in Tailsƒ, then, one would like versions of two basic results
in algebraic geometry: Serre-finiteness (H j .Tailsƒ;M/ D 0 for j � 0) and Serre-
vanishing (H j .Tailsƒ;M.i// D 0 for all j � 1 and i � 0). These results turn out
only to be true under a technical condition called � (see [21]), which is automatic in
the commutative case. There is also an analogue of Serre’s Theorem 3.2 due to Artin
and Van den Bergh [20], which gives the same sort of purely algebraic description of
QchX as Tailsƒ, where ƒ is defined to be a twisted homogeneous coordinate ring.
For details, see [192].

The classification of projective quasi-schemes of small dimension, i.e. categories of
the form tailsƒ where ƒ is a graded algebra with small rate of growth, is an ongoing
program. The case of non-commutative curves (where dimk An grows linearly) was
completed by Artin and Stafford [10]. There is a conjectural classification of non-
commutative surfaces due to Artin, but it is still open. The important special case
of non-commutative projective planes, that is, tailsƒ where ƒ is a so-called Artin–
Schelter regular algebra of Gelfand–Kirillov dimension 3with Hilbert series .1� t /�3,
has been completely understood [9, 12, 13, 54, 202].

8 Resolutions of Singularities

So far I have considered only “absolute” situations, that is, constructions applied to
individual rings or categories in isolation. In the sections to come, I will want to under-
stand certain relative situations, particularly analogues of resolutions of singularities.
In this section I collect a few definitions and facts about resolutions of singularities,
for easy reference later. Begin with the definition.

Definition 8.1. Let X be an algebraic variety over a field k. A resolution of singu-
larities of X is a proper, birational morphism � W eX �! X with eX a non-singular
algebraic variety.

Resolutions of singularities are also sometimes called “smooth models,” indicating
that the non-singular variety eX is not too different fromX : the map is an isomorphism
on a dense open set and is proper, hence surjective. For curves, construction of resolu-
tion of singularities is easy, as every irreducible curve is birational to a unique smooth
projective curve, namely the normalization (see Section 13). For surfaces, resolutions
of singularities still exist in any characteristic, but now an irreducible surface is bi-
rational to infinitely many smooth surfaces. This observation is the beginning of the
minimal model program, cf. Section 9.

Of course existence of resolutions of singularities in any dimension is a theorem
due to Hironaka for k an algebraically closed field of characteristic zero; in this case
the morphism � W eX �! X can be taken to be an isomorphism over the smooth locus
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of X , and even to be obtained as a sequence of blowups of non-singular subvarieties
of the singular locus followed by normalizations. We will not need this.

As an aside, I mention here that a proper map between affine schemes is necessarily
finite [94, Example II.4.6]. It follows immediately that a resolution of singularities of
a singular normal affine scheme is never an affine scheme.

Our other definitions require the canonical sheaf of a singular variety. The canonical
sheaf !Y of a smooth variety Y has already appeared, as the sheaf of top differential
forms

VdimY
�Y (see the discussion before Theorem 5.1). If Y is merely normal, then

define !Y to be j�!Yreg , where j is the open immersion Yreg,!Y of the smooth locus.
When Y is Cohen–Macaulay, !Y is also a dualizing sheaf [94, Section III.7]; in other
words, if the local rings of Y are CM, then the stalks of !Y are canonical modules in
the sense of [98]. Similarly, !Y is an invertible sheaf (line bundle) if and only if Y
is Gorenstein. The Weil divisor KY such that !Y D OY .KY / is called the canonical
divisor.

The behavior of the canonical sheaf/divisor under certain morphisms is of central
interest. For example, the Grauert–Riemenschneider Vanishing theorem describes the
higher direct images of !.

Theorem 8.2 (GR Vanishing [84]). Let � W eX �! X be a resolution of singularities of
a variety X over C. Then Ri��!

eX
D 0 for all i > 0.

Now I come to a pair of words which will be central for the rest of the article.

Definition 8.3. Let � W eX �! X be a resolution of singularities of a normal variety X .

(i) Say that � is a rational resolution if Ri��O
eX
D 0 for i > 0. Equivalently, since

X is normal, R��O
eX
D OX . In this caseX is said to have rational singularities.

(ii) Say that � is a crepant1 resolution if ��!X D !
eX
.

Crepancy is a condition relating the two ways of getting a sheaf on eX from one on
X , namely via Hom and via˝. To get an idea what this condition is, consider a homo-
morphism of CM local rings R �! S such that S is a finitely generated R-module.
Let !R be a canonical module for R. Then one knows that the “co-induced” module
ExttR.S; !R/, where t D dimR � dimS , is a canonical module for S [35, Theo-
rem 3.3.7]. The “induced” module S ˝R !R is not necessarily a canonical module.
Back in the geometric world, ��!SpecR corresponds to S ˝R !R, so the assumption
that this is equal to !S is locally a condition of the form ExttR.S; !R/ Š S ˝R !R.
When X is Gorenstein, i.e. !X Š OX , a crepant resolution eX is also Gorenstein.

One of the main motivations for considering crepant resolutions of singularities
comes from the study of Calabi–Yau varieties, which in particular have trivial canon-

1 Obligatory comment on the terminology: the word “crepant” is due to Miles Reid. He describes
it [174, page 330] as a pun meaning “non-discrepant”, in that the discrepancy divisor K

eX
� ��KX

vanishes.
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ical sheaves. In this case, if one wants a resolution � W eX �! X in which eX is also
Calabi–Yau, then � needs to be crepant.

A small resolution, that is, one for which the exceptional locus has codimension at
least two, is automatically crepant. This is a very useful sufficient condition.

The next proposition follows from GR vanishing [132, page 50].

Proposition 8.4. Let X be a complex algebraic variety and let � W eX �! X be a
resolution of singularities.

(i) X has rational singularities if and only if X is CM and ��!
eX
D !X .

(ii) If X is Gorenstein and has a crepant resolution of singularities, then X has
rational singularities.

Not every rational singularity has a crepant resolution. Here are two examples.

Example 8.5. Let R be the diagonal hypersurface ring CŒx; y; z; t �=.x3C y3C z3C
t2/. ThenR is quasi-homogeneous with the variables given weights 2, 2, 2, and 3. The
a-invariant of R is thus 6� .2C2C2C3/ D �3 < 0, and R has rational singularities
by Fedder’s criterion [104, Example 3.9]. However, Lin [146] shows that a diagonal
hypersurface defined by xr

0 C xd
1 C � � � C xd

d
has a crepant resolution of singularities

if and only if r is congruent to 0 or 1 mod d .

Example 8.6. Quotient singularities X D Y=G, where Y is smooth and G is a finite
group of automorphisms, have rational singularities [209]. Consider quotient singular-
ities Cn=G, whereG � SL.n;C/ is finite. These are by [211] the Gorenstein quotient
singularities.

If n D 2, the results are the rational double points, also known as Kleinian singu-
larities or Du Val singularities, which are the quotient singularities X D C2=G D
Spec.CŒu; v�G/, where G � SL.2;C/ is a finite subgroup. These are also described
as ADE hypersurface rings CŒx; y; z�=.f .x; y; z// with explicit equations as follows.

.An/ W x2 C ynC1 C z2 ; n � 1
.Dn/ W x2y C yn�1 C z2 ; n � 4
.E6/ W x3 C y4 C z2

.E7/ W x3 C xy3 C z2

.E8/ W x3 C y5 C z2

(8.1)

For these singularities, a crepant resolution always exists and is unique. In fact, a
normal affine surface singularity R over C admits a crepant resolution if and only if
every local ring of R is (at worst) a rational double point. I will return to the rational
double points in Section 11 below.

If n D 3, C3=G always has a crepant resolution as well, though they are no longer
unique, thanks to the existence of flops (see the next section). There is a classification
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of the finite subgroups of SL.3;C/ up to conjugacy, and existence of crepant resolu-
tions was verified on a case-by-case basis by Markushevich [150], Roan [179, 180],
Ito [111, 112], and Ito–Reid [109]. See Theorem 11.8 below for a unified statement.

For n � 4, quotient singularities need not have crepant resolutions of singularities.
For example, the quotient of C4 by the involution .x; y; z; w/ 7! .�x;�y;�z;�w/
admits no crepant resolution [175, Example 5.4].

9 The Minimal Model Program

A key motivation for categorical desingularizations in general, and non-commutative
crepant resolutions in particular, is the minimal model program of Mori and Reid. This
is an attempt to find a unique “best” representative for the birational equivalence class
of any algebraic variety. For curves, this is obvious, since there is in each equivalence
class a unique smooth projective representative.

It is also the case that every surface is birationally equivalent to a smooth projective
surface, but now matters are complicated by the fact that the blowup of a smooth
surface at a point is again smooth. However, every birational morphism of surfaces
factors as a sequence of blowups, so must have a .�1/-curve, that is, a rational curve
C Š P1 with self-intersection �1, lying over a smooth point. One can compute that
if C is a .�1/-curve on a surface X , then KX � C D �1, where KX is the canonical
divisor.

By Castelnuovo’s criterion, a .�1/-curve can always be blown down, essentially un-
doing the blowup. The algorithm for obtaining a minimal model is thus to contract all
the .�1/-curves, and one obtains the classification of minimal models for surfaces [94,
Section V.5]: the result of the algorithm is a smooth projective surface S which is ei-
ther P2, a ruled surface over a curve (the “Fano” case), or such that KS � C � 0 for
every curve C in S . In this last case say that KS is nef.

The minimal model program is a framework for extending this simple-minded algo-
rithm to one that will work for threefolds and higher-dimensional varieties. The theory
turns out to be much richer, in part because it turns out that one must allow minimal
models to be a little bit singular. Here “a little bit” means in codimension � 2. Pre-
cisely, a projective variety X is a minimal model if every birational map Y Ü X is
either a contraction of a divisor to a set of codimension at least two, or is an isomor-
phism outside sets of codimension at least two [138]. There are compelling reasons to
allow singular minimal models; for example, there exists a three-dimensional smooth
variety which is not birational to any smooth variety with nef canonical divisor [155].
Mori and Reid realized that this meant minimal models need not be smooth; they can
be taken to be terminal instead.

I will not worry about the technical definitions of terminal and canonical singu-
larities here, but only illustrate with a class of examples. A diagonal hypersurface
singularity defined by xa0

0 C xa1

1 C � � � C xad

d
is
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(i) canonical if and only if a1 C � � � C ad > 1, and

(ii) terminal if and only if a1 C � � � C ad > 1C 1
lcm.ai /

.

For Gorenstein singularities, canonical singularities are the same as rational singu-
larities, so Proposition 8.4 (ii) says that the existence of a crepant resolution implies
canonical singularities.

In this language, a projective variety X is a minimal model if and only if it is Q-
factorial (i.e. the divisor class group of every local ring is torsion), has nef canonical
divisor, and has terminal singularities.

In dimension two, minimal models are unique up to isomorphism by definition.
Terminal surface singularities are smooth, and the canonical surface singularities are
the rational double points of Example 8.6 [137, (2.6.2)].

In dimension three, terminal singularities are well-understood, cf. [137, 2.7] or
[173]. The Gorenstein ones are precisely the isolated compound Du Val (cDV) sin-
gularities. (Recall that a cDV singularity is a hypersurface defined by f .x; y; z/ C
tg.x; y; z; t/, where f is a simple singularity as in (8.1) and g is arbitrary.) However,
minimal models of threefolds are no longer unique [63]. Here is the simplest example.

Example 9.1 (The “classic flop”). Let X be the three-dimensional (A1) singularity
over C, so X D SpecCŒu; v; x; y�=.uv � xy/. Consider the blowup f WY �! X

of the plane u D x D 0. It’s easy to check that Y is smooth, and that f WY �! X

is a birational map which contracts a line L Š P1 to the origin. Thus f is a small
resolution, whence crepant. Furthermore Y is a minimal model.

One could also have considered the plane u D y D 0 and its blowup f 0WY 0 �! X .
Symmetrically, Y 0 is smooth, f 0 contracts a line L0 Š P1 and is crepant, and Y 0 is a
minimal model.

The resolutions Y and Y 0 are almost indistinguishable, but they are not isomorphic
over X . One can check that the birational transforms of the plane u D x D 0 to Y and
Y 0 have intersection numberC1 with L and �1 with L0.

On the other hand, the induced birational map 'WY Ü Y 0 is an isomorphism once
one removes L from Y and L0 from Y 0. This ' is called a (or “the classic”) flop. It is
also sometimes called the “Atiyah flop” after [11], though Reid traces it back through
work of Zariski in the 1930s, and assigns it a birthdate of around 1870.

Let Z be the blowup of the origin of X . Then Z is in fact the closed graph of ' and
there is a diagram

Z

����
��
��
��

���
��

��
��

Y

f 		�
��

��
��

�

'
��������� Y 0

f 0

��
��
��
��

X
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The exceptional surface of Z �! X is the quadric Q D P1 � P1, which is cut out
by two families of lines. The lines L and L0 are the contractions ofQ along these two
rulings, and converselyQ is the blowup of L � Y , resp. L0 � Y 0.

The next definition is a special case of the usual definition of a flop [134, Defi-
nition 6.10] (in general, one need not assume Y and Y 0 are smooth, nor that X is
Gorenstein).

Definition 9.2. Let Y and Y 0 be smooth projective varieties. Say that a birational map
'WY Ü Y 0 is a flop if there is a diagram

Y
'

���������

f 		�
��

��
��

� Y 0

f 0

��
��
��
��

X

where X is a normal projective Gorenstein variety, f and f 0 are small resolutions of
singularities, and there is a divisorD on Y such that, ifD0 is the strict transform ofD
on Y 0, then �D0 is ample.

Say 'WY Ü Y 0 is a generalized flop if for some (equivalently, for every) diagram

Z

�

����
��
��
�� � 0

���
��

��
��

Y
'

��������� Y 0

with Z smooth, there is an equality ��KY D � 0�KY 0 .

It is known that the existence of a crepant resolution forces canonical singularities,
so that in particular if X participates in a flop as above, it has canonical singularities.
On the other hand, if X is Q-factorial and has terminal singularities, then it can have
no crepant resolution of singularities [136, Corollary 4.11] (this is one explanation of
the name “terminal”).

Bondal and Orlov [50] observed that one ingredient of the minimal model program,
namely the blowup eX of a smooth varietyX at a smooth center, induces a fully faithful
functor on derived categories Db.cohX/ �! Db.coh eX/. They propose that each
of the operations of the program should induce such fully faithful embeddings. In
particular, they make the following conjecture.

Conjecture 9.3 (Bondal–Orlov). For a generalized flop 'WY Ü Y 0 between smooth
varieties, there is an induced exact equivalence FWDb.cohY 0/ �! Db.cohY /.
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Notice that even though there always exists a natural Fourier–Mukai type functor
R��L� 0�.�/WDb.cohY 0/ �! Db.cohY /, this is known not to be fully faithful in
general, so some new idea is needed.

Bondal and Orlov proved Conjecture 9.3 in some special cases in dimension three,
and Bridgeland [56] gave a complete proof for threefolds. Here is Bridgeland’s result.

Theorem 9.4 (Bridgeland). Let X be a projective complex threefold with terminal sin-
gularities. Let f WY �! X and f 0WY 0 �! X be crepant resolutions of X . Then
Db.cohY / ' Db.cohY 0/.

The equivalence in this theorem is a Fourier–Mukai type functor Rf�.P
L˝f 0�.�//,

where P is a well-chosen object of Db.coh.Y �X Y 0//. In fact the construction of P

is very difficult and is the heart of the proof.

10 Categorical Desingularizations

Now let us combine the philosophical ramblings of Section 7 with the concrete prob-
lems of Sections 8 and 9. Treating commutative and non-commutative varieties –
in the form of their derived categories – on equal footing, one can entertain the no-
tion of a resolution of a commutative algebraic variety by a non-commutative one.
Bondal and Orlov [50] seem to have been the first to articulate such a possibility in
pure mathematics. Other authors have considered modified or specialized versions,
e.g. [31, 141, 147].

To begin, let us consider resolutions of singularities from a categorical point of
view. Let X be a normal algebraic variety, and let � W eX �! X be a resolution
of singularities. There are two natural functors between derived categories, namely
the derived pushforward R��WDb.coh eX/ �! Db.cohX/ and the derived pullback
L��WD.cohX/ �! D.coh eX/. The derived pullback may not take bounded com-
plexes to right-bounded ones, so does not generally give a functor on Db . One could
restrict L�� to the perfect complexes overX and write instead L��WDperf.cohX/ �!
Dperf.coh eX/ D Db.cohX/.

The pullback and pushforward form an adjoint pair. IfX is assumed to have rational
singularities, much more can be said. For an object E in Db.coh eX/ and a perfect
complex P over X , the derived projection formula gives

R��.E
L˝O
eX

L��P / D R��E
L˝OX

P :

In particular, setting E D O
eX

and taking into account R��O
eX
D OX , this yields

R��L��P D P

for every perfect complex P in Db.cohX/. Otherwise said, R��WDb.coh eX/ �!
Db.cohX/ identifies the target with the quotient of the source by the kernel of R��.
Bondal and Orlov propose to take this as a template:
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Definition 10.1 (Bondal–Orlov). A categorical desingularization of a triangulated cat-
egory D is an Abelian category C of finite homological dimension and a triangulated
subcategory K of Db.C/, closed under direct summands, such that Db.C/=K ' D.

One problem with this definition is the assumption that C have finite homological
dimension. As observed in Section 7, this is a very weak condition when C is the
category of modules over a non-commutative ring. There are a number of proposals for
a better – that is, more restrictive – notion of smoothness for a (triangulated) category,
but as far as I can tell, no consensus on a best candidate [140, 141, 147, 198].

As an aside, I note here that the condition for � W eX �! X to be crepant can be
translated into categorical language as “the right adjoint functor � Š, which is locally
represented by HomOX

.O
eX
;�/, is isomorphic to ��.” We will not need this.

Let us reconsider Example 9.1 from the point of view of categorical geometry. This
can be thought of as a warmup for Section 18.

Example 10.2. Set R D CŒu; v; x; y�=.uv � xy/, so that X D SpecR is the three-
dimensional ordinary double point as in Example 9.1. Let I D .u; x/ and I 0 D .u; y/.
Then in fact I 0 D I�1 D I� D HomR.I; R/ is the dual of I . Notice too that
EndR.I / D R, either by direct computation or by Theorem 13.1 below.

Let f WY �! X and f 0WY 0 �! X be the blowups of I and I 0 as before. On Y , con-
sider the locally free sheaf E D OY ˚OY .1/, which is the pullback of OX ˚I, where
I is the ideal sheaf of I . Straightforward calculations (or see Section 18) show that E

is a tilting bundle on Y (Definition 5.2), and hence RHomOY
.E;�/WDb.cohY / �!

Db.ƒ-mod/ is an equivalence, where ƒ D EndOY
.E/. Furthermore, we have

ƒ Š f�End OY
.E/ D EndR.R˚ I / ;

which can also be written as a block-matrix ring

ƒ D
 

R I

I�1 EndR.I / D R

!

:

The induced functor Db.ƒ-mod/ �! Db.cohX/ is then obviously a categorical de-
singularization.

Repeating the construction above with E 0 D OY 0 ˚ OY 0.1/ on Y 0, one obtains
ƒ0 D EndR.R ˚ I 0/. But since I 0 D I�1, ƒ0 is isomorphic to ƒ. This implies
equivalences

Db.cohY / ' Db.ƒ-mod/ ' Db.cohY 0/ :

Inspired by the example above and others from the minimal model program, Bon-
dal and Orlov expect that for a singular variety X , the category Db.cohX/ should
have a minimal categorical desingularization, i.e. one embedding in any other. Such
a category would be unique up to derived equivalence. They propose in particular the
following conjecture.
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Conjecture 10.3 (Bondal–Orlov [50]). Let X be a complex algebraic variety with ca-
nonical singularities and let f WY �! X be a finite morphism with Y smooth. Then
A D End OX

.f�OY / gives a minimal categorical desingularization, in the sense that
A-mod has finite global dimension and if eX �! X is any other resolution of singu-
larities of X , then there exists a fully faithful embedding Db.A-mod/ �! Db.coh eX/.
Moreover, if eX �! X is crepant, then the embedding is an equivalence.

In the next section I will consider another family of examples providing strong evi-
dence for this conjecture.

11 Example: the McKay Correspondence

In this section I sketch a main motivating example, already foreshadowed in Exam-
ple 8.6. The finite subgroups of SL.2;C/were carefully studied by Klein in the 1880s,
and the resolutions of the corresponding singularities C2=G D SpecCŒu; v�G were
understood by Du Val in the 1930s. The structure of the resolution faithfully reflects
the representation theory of the group G, as observed by McKay [151], and the cor-
respondence naturally extends to the reflexive modules over the (completed) coordi-
nate ring CŒŒu; v��G . Even more, there is a natural resolution of singularities of the
quotient singularity, built from the group G, which is derived equivalent to a certain
non-commutative ring built from these reflexive modules. Thus the group G already
knows the geometry of C2=G and its resolution of singularities.

This section is about this circle of ideas, which together go by the name “McKay
correspondence.” I consider first, more generally, finite subgroups G � GL.n; k/ with
n � 2 and k a field of characteristic relatively prime to jGj. Then I specialize to n D 2
and subgroups of SL, where the strongest results hold. See [148] or [218] for proofs.

Let S D kŒŒx1; : : : ; xn�� be a power series ring over an algebraically closed field k
with n � 2. Let G � GL.n; k/ be a finite subgroup with order invertible in k. Make
G act on S by linear changes of variables, and set R D SG , the ring of invariants.
The ring R is Noetherian, local, and complete, of dimension n. It is even CM by the
Hochster–Eagon theorem [95]. Furthermore, S is a module-finite R-algebra, and is a
maximal Cohen–Macaulay R-module.

The central character in the story is the skew, or twisted, group algebra S#G. As an
S -module, S#G is free on the elements of G, and the product of two elements s � �
and t � � , with s; t 2 S and �; � 2 G, is defined by .s � �/.t � �/ D s�.t/ � �� : Thus
moving � past t “twists” the ring element.

Left modules over S#G are precisely S-modules with a compatible action of G,
and one computes that HomS#G.M;N / D HomS .M;N /

G for S#G-modulesM and
N . Since the order of G is invertible, taking invariants is an exact functor, whence
ExtiS#G.M;N / D ExtiS .M;N /

G for all i > 0 as well. It follows that an S#G-
module P is projective if and only if it is free over S . This, together with a moment’s
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contemplation of the (G-equivariant) Koszul complex over S on x1; : : : ; xn, gives the
following observation.

Proposition 11.1. The twisted group ring S#G, where S D kŒŒx1; : : : ; xn�� and G is a
finite group of linear automorphisms of S with order invertible in k, has finite global
dimension equal to n.

The “skew” multiplication rule in S#G is cooked up precisely so that the homomor-
phism � WS#G �! EndR.S/, defined by �.s ��/.t/ D s�.t/, is a ring homomorphism
extending the group homomorphism G �! EndR.S/ defining the action of G on S .
In general, � is neither injective nor surjective, but under an additional assumption on
G, it is both. Recall that a pseudo-reflection is an element � 2 GL.n; k/ of finite order
which fixes a hyperplane.

Theorem 11.2 (Auslander [14, 18]). Let S D kŒŒx1; : : : ; xn��, n � 2, letG � GL.n; k/
be a finite group acting on S , and assume jGj is invertible in S . Set R D SG . If
G contains no non-trivial pseudo-reflections then the homomorphism � WS#G �!
EndR.S/ is an isomorphism.

Consequently, in this case EndR.S/ has finite global dimension and as anR-module
is isomorphic to a direct sum of copies of S , so in particular is a MCM R-module.

The condition that G contain no non-trivial pseudo-reflections is equivalent to the
extension R,!S being unramified in codimension one [218, Lemma 10.7].

Let %WG �! GL.W / be a representation of G on the finite-dimensional k-vector
space W . Then S ˝k W , with the diagonal action of G, is a finitely generated S#G-
module. It is free over S , whence projective over S#G. The submodule of fixed
points, M% D .S ˝k W /

G , is naturally an R-module. If % is irreducible, then one
can show that M% is a direct summand of S as an R-module. Conversely, given any
R-direct summand of S , the corresponding idempotent in EndR.S/ defines an S#G-
direct summand P of S#G, whence a representation P=.x1; : : : ; xn/P of G.

Corollary 11.3. These operations induce equivalences between the categories
addR.S/ of R-direct summands of S , addEndR.S/ of finitely generated projective
EndR.S/-modules, and addS#G of finitely generated projective S#G-modules, and
a 1 � 1 correspondence with the objects of the category repk G of finite-dimensional
representations of G.

As a final ingredient, define a quiver from the data of the representation theory ofG,
or equivalently – given the correspondences above – of the R-module structure of S .

Definition 11.4 (McKay [151]). The McKay quiver of G � GL.n; k/ has vertices
%0; : : : ; %d , a complete set of the non-isomorphic irreducible k-representations of G,
with %0 the trivial irrep. Denote by$ the given n-dimensional representation of G as
a subgroup of GL.n; k/. Then draw mij arrows %i �! %j if the multiplicity of %i in
$ ˝k %j is equal to mij .
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Now let us specialize to the case n D 2. Here the MCM R-modules are precisely
the reflexive ones. This case is unique thanks to the following result, which fails badly
for n � 3.

Lemma 11.5 (Herzog [96]). Let S D kŒŒu; v��, let G � GL.2; k/ be a finite group
of order invertible in k, and let R D SG . Then every finitely generated reflexive
R-module is a direct summand of a direct sum of copies of S as an R-module. In
particular, the MCM R-modules coincide with addR.S/, and there are only finitely
many indecomposable ones.

The one-one correspondences that hold for arbitrary n can thus be augmented in
dimension two, giving a correspondence between the irreducible representations of G
and the indecomposable MCM R-modules.

Specialize one last time, to assume now that G � SL.2; k/. Note that then G
automatically contains no non-trivial pseudo-reflections. Furthermore, R D SG is
Gorenstein by a result of Watanabe [211]; in fact, it is classical [133] that SpecR
embeds as a hypersurface in k3, so R Š kŒŒx; y; z��=f .x; y; z/ for some polynomial
f . As long as k has characteristic not equal to 2, 3, or 5, the polynomials arising are
precisely the ADE polynomials of (8.1) defining the rational double points.

The rational double points are distinguished among normal surface singularities by
the fact that their local rings have unique crepant resolutions of singularities, which
are the minimal resolutions of singularities. They are particularly easy to compute,
being achieved by a sequence of blowups of points (no normalization required). The
preimage of the singular point is a bunch of rational curves E1; : : : ; En on the resolu-
tion. These curves define the dual graph of the desingularization: it has for vertices
the irreducible componentsE1; : : : ; En, with an edge joiningEi toEj ifEi\Ej ¤ 0.
This graph is related to the other data as follows.

Theorem 11.6 (Classical McKay Correspondence). Let k be an algebraically closed
field of characteristic not 2, 3, or 5, and letG � SL.2; k/ be a finite subgroup of order
invertible in k. Set S D kŒŒu; v��, with a natural linear action of G, set R D SG , and
let � W eX �! SpecR be the minimal resolution of singularities with exceptional curves
E1; : : : ; En. Then

(i) There is a one-one correspondence between

(a) the exceptional curves Ei ;

(b) the irreducible representations of G; and

(c) the indecomposable MCM R-modules.

(ii) (McKay) The dual graph of the desingularization is isomorphic to the McKay
quiver after deleting the trivial vertex and replacing pairs of opposed arrows by
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edges. It is an ADE Coxeter–Dynkin diagram.

AnW ı ı � � � ı ı E6W ı ı ı ı ı
ıı

DnW ı ı � � � ı ı
���

���

ı
E7W ı ı ı ı ı ı

ı
E8W ı ı ı ı ı ı ı

ı
Shortly after McKay’s original observation [151] of the isomorphism of graphs

above, Gonzalez-Sprinberg and Verdier [90] gave, in characteristic zero, a geometric
construction linking the representation theory of G and the resolution of singularities
eX . Later constructions by Artin–Verdier [19], Esnault [75], and Knörrer [135] made
explicit the correspondences between the exceptional curves Ei , the indecomposable
reflexive R-modules, and the irreducible representations of G.

The first intimation of a “higher geometric McKay correspondence” appeared in
string theory in the mid-1980s. Dixon, Harvey, Vafa, and Witten [71] observed that
for certain G � SL.3;C/, and a certain crepant resolution eX �! C3=G, there is an
equality between the Euler characteristic �.eX/ and the number of conjugacy classes
(D number of irreducible representations) of G. There followed a great deal of work
on the existence of crepant resolutions of singularities for quotient singularities of
the form Y=G, where Y is an arbitrary smooth variety of dimension two or more.
Specifically, one can ask for the existence of a crepant resolution eX �! Y=G and
a derived equivalence between eX and the G-equivariant coherent sheaves on Y . Let
Db

G.Y / denote the bounded derived category of the latter.
Such an equivalence was first constructed by Kapranov and Vasserot in the setting of

Theorem 11.6. In this case, the minimal resolution of singularities eX has an alternative
construction, as Nakamura’s G-Hilbert scheme HilbG.C2/ [108, 161]. This is an
irreducible component of the subspace of the Hilbert scheme of points in C2 given by
the ideal sheaves I � OC2 such that the OC2=I Š CŒG� as G-modules.

Theorem 11.7 (Kapranov–Vasserot [142]). Let G � SL.2;C/ be a finite group, S D
CŒu; v�, R D SG , and X D SpecR. Set H D HilbG.C2/. Then there is a commuta-
tive triangle

Db.S#G-mod/ D Db
G.coh C2/

ˆ ��

�����
����

����
����

����
Db.cohH/

��			
			

			
	

Db.cohX/

in which ˆ is an equivalence of triangulated categories.



322 G. J. Leuschke

The equivalenceˆ is given by an explicit “equivariant” Fourier–Mukai type functor,
ˆ.�/ D .Rp�Lq�.�//G , where Z � X � C2 is the incidence variety and p; q are
the projections onto the factors.

In dimension greater than two, there is no minimal resolution of singularities. How-
ever, Nakamura’s G-Hilbert scheme is still a candidate for a crepant resolution of
singularities in dimension three. Bridgeland, King, and Reid proved the following
general result about the G-Hilbert scheme.

Theorem 11.8 (Bridgeland–King–Reid [40]). Suppose that Y is a smooth and quasi-
projective complex variety, and that G � AutY is a finite group of automorphisms
such that the quotient Y=G has Gorenstein singularities. Let H D HilbG.Y /. If

dim.H �Y=G H/ � dimH C 1 ;
thenH is a crepant resolution of singularities of Y=G and there is an equivalence (ex-
plicitly given by a Fourier–Mukai functor) of derived categories Db.HilbG.Y // �!
Db

G.Y /, where Db
G.Y / is the bounded derived category of G-equivariant coherent

sheaves on Y .

The assumption on the fiber product H �Y=G H is automatic if dimY � 3, so
this result implies a derived McKay correspondence for three-dimensional quotient
singularities C3=G withG � SL.3;C/. In particular, such singularities have a crepant
resolution, which had been verified on a case-by-case basis using the classification of
finite subgroups of SL.3;C/. The full details of the correspondences in dimension
three are still being worked out [62].

In dimension four, the hypothesis on H �Y=G H need not hold if H �! Y=G

contracts a divisor to a point. Indeed, we have seen in Example 8.6 that some quotients
C4=G have no crepant resolutions of singularities. Furthermore, even when a crepant
resolution exists, the G-Hilbert scheme may be singular, or non-crepant, or both [175,
Example 5.4]. In general, the following conjecture is due to Reid.

Conjecture 11.9 (Derived McKay Correspondence Conjecture). For a crepant resolu-
tion of singularities eX �! Cn=G, should one exist, there is an equivalence between
Db.coh eX/ and Db

G.C
n/.

Compare with Conjecture 9.3 above. The derived McKay correspondence conjec-
ture is known when G preserves a complex symplectic form on Cn [39], and when G
is Abelian [129].

Notice, for a last comment, that the “resolution” S#G Š EndR.S/ of Theorem 11.2
exists in any dimension for G � GL.n; k/ having no non-trivial pseudo-reflections,
and delivers a derived equivalence Db.S#G/ ' Db

G.C
n/ by definition. In dimension

two, it is even derived equivalent to the “preferred” desingularization HilbG.C2/. As
we shall see in the next section, it is even in a certain sense “crepant,” so represents a
potential improvement on the geometric situation.
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12 Non-commutative Crepant Resolutions

Now I come to the title character of this article. It is an attempt, due to Van den Bergh,
to define a concrete algebraic object whose derived category will realize a categorical
desingularization in the sense of Definition 10.1, and which will also verify Conjec-
ture 10.3. The main motivations are Examples 9.1 and 10.2, and Section 11.

Let R be a commutative ring. Recall from Definitions 7.2 and 7.3 that a ring ƒ is
an R-order if it is finitely generated and MCM as an R-module, and is non-singular if
gldimƒp D dimRp for all p 2 SpecR. Let us also agree that a module-finite algebra
ƒ over a domain R is birational to R if ƒ ˝R K Š Mn.K/ for some n, where K
is the quotient field. If ƒ is torsion-free as an R-module, this is equivalent to asking
that ƒ � Mn.K/ and that ƒ spans Mn.K/ when scalars are extended to K. The
terminology is consistent with our determination to identify objects that are Morita
equivalent; the birationality ofƒ should mean thatƒ˝RK is Morita equivalent toK,
and the only candidates are the matrix ringsMn.K/.

Here is a provisional definition, to be improved shortly.

Provisional Definition 12.1. Let R be a CM normal domain with quotient field K. A
non-commutative desingularization of R is a non-singular birational R-order ƒ.

There is also a natural candidate for a “crepancy” condition.

Definition 12.2. Let R be a local ring, and let ƒ be a module-finite R-algebra. Let us
say that ƒ is a symmetric R-algebra if HomR.ƒ;R/ Š ƒ as a .ƒ-ƒ/-bimodule.

Notice immediately that if ƒ is a symmetric R-algebra, then for any left ƒ-module
M , there are natural isomorphisms

Homƒ.M;ƒ/ Š Homƒ.M;HomR.ƒ;R// Š HomR.ƒ˝ƒM;R/ Š HomR.M;R/ :

We also have the following direct consequence of Proposition 7.4:

Corollary 12.3. LetR be a Gorenstein local ring. Ifƒ is a symmetricR-order of finite
global dimension, then gldimƒ D dimR. In particular, ƒ is non-singular.

Notice that this corollary fails badly for non-Gorenstein R; a counterexample is
Example 17.3 below.

Here finally is the definition [205].

Definition 12.4. Let .R;m/ be a CM local normal domain with quotient field K. A
non-commutative crepant resolution of R (or of SpecR) is a symmetric, birational,
R-order ƒ having finite global dimension.

I first observe that the definition is Morita-invariant, i.e. if ƒ and � are Morita-
equivalent R-algebras and ƒ is a symmetric birational R-order of finite global dimen-
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sion, then so is � . Indeed, global dimension is known to pass across Morita equiva-
lence. Suppose ƒ is MCM over R and � D Endƒ.P / for some ƒ-progenerator P .
Since P is a progenerator, P is a direct summand ofƒn for some n, and it follows that
� is a direct summand of Endƒ.ƒ

n/ Š Mn.ƒ/ as an R-module. Thus � is a MCM
R-module as well. Symmetry is similarly easy to verify.

Before considering other possible definitions and addressing the examples from pre-
vious sections, I point out a connection with the classical theory of orders [2, 176],
following [110]. Let R be a domain with quotient field K. Recall that a module-finite
R-algebra ƒ, contained in a finite-dimensional division algebra D over K, is called a
classical order in D if ƒ spans D over K, and is called maximal in D if it is max-
imal among classical orders in D with respect to containment. Maximal orders over
Dedekind domains have been completely understood for many years; the following
facts are well-known.

� Every finite-dimensional division K-algebraD contains a unique maximal order
D .

� A classical order is maximal if and only if it is Morita equivalent to D1
� � � � �

Dk
for finite-dimensional division algebrasD1; : : : ;Dk over K.

� A classical order is hereditary, that is, has global dimension at most one, if and
only if it is Morita equivalent to a ring of the form Tn1

.D1
/ � � � � � Tnk

.Dk
/,

where Tn./ denotes the subring ofMn./ containing matrices .aij / with aij 2
rad./ for i > j .

With these facts in mind, let R be a complete discrete valuation ring and ƒ a module-
finite R-algebra. If ƒ is a symmetric R-algebra of global dimension 1, then it follows
thatƒ is a maximal order. Indeed,ƒ is hereditary, so Morita equivalent to Tn1

.D1
/�

� � � � Tnk
.Dk

/ as above. One can check, however, that Tn./ is symmetric only for
n D 1. Thus ƒ is maximal.

Now, a classical order ƒ over a normal domain R is maximal if and only if ƒ is
reflexive as an R-module and ƒp is a maximal order for all primes p of height one in
R [2, Theorem 1.5] and [176, 11.5]. Combining this with the discussion above gives
the following result.

Proposition 12.5. LetR be a normal domain with quotient fieldK, andƒ a symmetric
birational R-order of finite global dimension. Then ƒ is a maximal order.

The connection with the classical theory of orders gives a structure theorem for
symmetric non-singular orders, via the following results of Auslander–Goldman [2,
Lemma 4.2] and Auslander [18, Lemma 5.4].

Theorem 12.6. Let R be a normal domain with quotient field K.

(i) Let ƒ be a classical order over R in Mn.K/. Then ƒ is a maximal order if
and only if there exists a finitely generated reflexive R-module M such that ƒ Š
EndR.M/.



Non-commutative Crepant Resolutions 325

(ii) Let M be a reflexive R-module, and set ƒ D EndR.M/. Then ƒ is reflexive
as an R-module and the map ˛Wƒ �! HomR.ƒ;R/ defined by ˛.f /.g/ D
tr.fg/, where trWEndK.K ˝R M/ �! EndR.M/ is the usual trace map, is an
isomorphism of .ƒ-ƒ/-bimodules. Hence ƒ is a symmetric R-algebra.

Here are a few definitions which, at least under certain hypotheses, are equiva-
lent to Definition 12.4. Part (ii) of the next proposition is the original definition of
a non-commutative crepant resolution [204, 205]. For that definition, say that ƒ is
homologically homogeneous over the central subring R if it is finitely generated as
an R-module and every simple ƒ-module has the same projective dimension, equal
to dimR [34, 36]. This condition seems first to have been introduced by Vasconce-
los [201] under the name “moderated algebras.” If R is equidimensional, it is equiva-
lent to asking that for every p 2 SpecR the localization ƒp is MCM as an Rp-module
and gldimƒp D dimRp [37].

Proposition 12.7. Let R be a Gorenstein local normal domain and letƒ be a module-
finite R-algebra. Then the following sets of conditions on ƒ are equivalent.

(i) ƒ is a symmetric birational R-order and has finite global dimension.

(ii) ƒ Š EndR.M/ for some reflexive R-module M , and ƒ is homologically homo-
geneous.

(iii) ƒ Š EndR.M/ for some reflexive R-module M , ƒ is MCM as an R-module,
and gldimƒ <1.

Proof. Assume first that ƒ satisfies (i). Then ƒ is MCM over R by definition, and
this localizes well. By Theorem 12.6 (i), ƒ is an endomorphism ring of a reflexive
module M , and by Corollary 12.3 ƒ is non-singular, giving (ii). Clearly (ii) implies
(iii). Finally, ifƒ Š EndR.M/ for a reflexive R-moduleM , thenƒ is birational to R,
and is symmetric by Theorem 12.6 (ii).

The implication (iii) H) (ii) fails if R is not Gorenstein. Again see Example 17.3
below.

Now it is clear that Auslander’s Theorem 11.2 proves that, for any n � 2 and any
finite group G � SL.n; k/ with order invertible in k, the ring of invariants R D
kŒŒx1; : : : ; xn��

G has a non-commutative crepant resolution. Namely, with S denoting
the power series ring, the endomorphism ring EndR.S/ has finite global dimension
and, since S is a MCM R-module, is an R-order. Thus EndR.S/ Š S#G is a non-
commutative crepant resolution. One can also prove directly that the twisted group
ring S#G is symmetric over R.

Similarly, the three-dimensional ordinary double point in Example 10.2 admits the
non-commutative crepant resolution ƒ D EndR.R ˚ I /, which is derived equivalent
to the resolutions of singularities Y and Y 0.
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For the next equivalent definition we need the notion of a d -Calabi–Yau alge-
bra. There are a few approaches to topics with this name. I follow [55, 110]; see
also [51, 80]. I will always assume that the base ring is local, which eases the exposi-
tion considerably.

Definition 12.8. Let R be a local ring and let ƒ be a module-finite R-algebra. Write
D.�/ D HomR.�; E/ for Matlis duality over R, where E is the injective hull of the
residue field. Say that ƒ is d -Calabi–Yau (d -CY) if there is a functorial isomorphism

HomD.ƒ-Mod/.X; Y Œd �/ Š DHomD.ƒ-Mod/.Y;X/

for all X and Y in Db.ƒ-fl/, the bounded derived category of finite-lengthƒ-modules.
Similarly, ƒ is d -CY� if an isomorphism as above holds for all X in Db.ƒ-fl/ and all
Y in Kb.addƒ/.

These definitions are perhaps a bit much to swallow all at once. Here are some
basic facts about the Calabi–Yau conditions. Let R be a local ring and ƒ a module-
finite R-algebra. Then ƒ is n-CY for some integer n if and only if ƒ is n-CY� and
has finite global dimension. Indeed, if gldimƒ <1 then Db.ƒ-fl/ � Db.ƒ-mod/ D
Kb.addƒ/. The “only if” part is proved by completing and considering the finite-
length ƒ-module Y= rad.ƒ/nY for Y in Kb.addƒ/.

Calabi–Yau algebras are best-behaved when R is Gorenstein. In that case [110,
Theorem 3.2], ifƒ is n-CY or n-CY� for some n, then n D dimR. Furthermore,ƒ is
d -CY� if and only if ƒ is a symmetric R-order. (This is one point where life is easier
becauseR is local. Iyama and Reiten give an example, which they credit to J. Miyachi,
of a d -CY� algebra over a non-local Gorenstein ring which is not symmetric, even
though R �! ƒ is injective. It is locally symmetric.) More precisely, the following
equivalent conditions hold.

Proposition 12.9 ([110]). Let .R;m; k/ be a Gorenstein local ring with dimR D d ,
and ƒ a module-finite R-algebra. The following are equivalent for any integer n.

(i) ƒ is n-CY�.

(ii) As functors on ƒ-fl, Extnƒ.�; ƒ/ is isomorphic to the Matlis duality D.�/ D
HomR.�; E/, and Extiƒ.�; ƒ/ D 0 for i ¤ n.

(iii) RHomR.ƒ;R/ Š ƒŒn�d� in the bounded derived category of .ƒ-ƒ/-bimodules.

(iv) ƒ is a CM R-module of dimension n and Extd�n
R .ƒ;R/ Š ƒ as .ƒ-ƒ/-bimod-

ules.

In particular, a birational module-finite algebraƒ is d -CY if and only if it is symmetric
and has finite global dimension.

Of course the value of a definition, even one as motivated as this one has been, is in
the theorems. Here is the main result of [205].
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Theorem 12.10. Let R be a Gorenstein normal C-algebra, set X D SpecR, and let
� W eX �! X be a crepant resolution of singularities. Assume that the fibers of �
have dimension at most one. Then there exists a MCM R-module M such that the
endomorphism ring ƒ D EndR.M/ is homologically homogeneous. In particular, ƒ
is a non-commutative crepant resolution of R. Furthermore, eX and ƒ are derived
equivalent: Db.coh eX/ ' Db.ƒ-mod/.

Here is a sketch of the proof of Theorem 12.10. We know that existence of a crepant
resolution implies that X has rational singularities. Let L be an ample line bundle
on the smooth variety eX generated by global sections. Then by the hypothesis on
the fibers of � ([59, Lemma 4.2.4]), O

eX
˚ L generates D.Qch eX/, that is, if N in

D.QcheX/ satisfies HomD.QcheX/
.O
eX
˚L;N Œi �/ D 0 for i ¤ 0, then N D 0 (see the

discussion after Definition 5.2). Take an extension 0 �! Or
eX
�! M0 �! L �! 0

corresponding to a set of r generators for Ext1O
eX

.L;O
eX
/ as an R-module. Set M D

M0 ˚O
eX
. Then M also generates D.Qch eX/. One can show that ExtiO

eX

.M;M/ D 0
for i > 0 (this takes a good bit of work). Thus M is a tilting bundle on eX . Set ƒ D
EndO

eX
.M/; then the vanishing of the derived pushforwards Ri��End O

eX
.M/ D

ExtiO
eX

.M;M/ implies that ƒ Š EndR.M/, where M D �.eX;M/. The proofs that

ƒ andM are both MCM are more involved.
Van den Bergh also proves a converse to Theorem 12.10, constructing a geomet-

ric crepant resolution � W eX �! SpecR from a non-commutative one under cer-
tain assumptions [204, §6]. The method is roughly as follows: let ƒ be a non-
commutative crepant resolution of R, and take for eX a moduli space of certain stable
representations of ƒ. Then he proves that if dim.eX �SpecR

eX/ � dimR C 1, then
eX �! SpecR is a crepant resolution and there is an equivalence of derived categories
Db.coh eX/ ' Db.ƒ-mod/. Observe that the hypothesis is exactly similar to that of
Theorem 11.8. In particular, the hypothesis holds if dimR � 3, giving the following
theorem.

Theorem 12.11. Let R be a three-dimensional Gorenstein normal C-algebra with ter-
minal singularities.

(i) There is a non-commutative crepant resolution of R if and only if X D SpecR
has a crepant resolution of singularities.

(ii) All crepant resolutions of R – geometric as well as non-commutative – are de-
rived equivalent.

The second statement verifies Conjecture 9.3 of Bondal and Orlov in this case.
Iyama and Reiten [110] have recently shown that, even without the assumption on
the singularities of R being terminal, all non-commutative crepant resolutions of R
are derived equivalent. Even more recently, Iyama and Wemyss [114] have announced
a sufficient criterion for the existence of a derived equivalence between the non-com-
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mutative crepant resolutions of R. When d � 3 this criterion is always satisfied,
recovering the Iyama–Reiten result.

Van den Bergh suggests the following extension of Theorem 12.11(ii).

Conjecture 12.12 (Van den Bergh). LetR be a Gorenstein normal C-algebra andX D
SpecR. Then all crepant resolutions of R – geometric as well as non-commutative –
are derived equivalent.

13 Example: Normalization

The appearance of endomorphism rings as ersatz resolutions of singularities may ini-
tially be unsettling. It does, however, have a precedent. One can think of the nor-
malization R of an integral domain R, i.e. the integral closure in its quotient field, as
a partial resolution of singularities, one that is especially tractable since it does not
leave the category of Noetherian rings. This result of Grauert and Remmert [85, 86]
interprets the normalization as an endomorphism ring.

Theorem 13.1 (Grauert–Remmert). Let R be an integral domain and I a non-zero
integrally closed ideal ofR such thatRp is normal for every p 6� I . Then the following
are equivalent.

(i) R is normal;

(ii) For all non-zero fractional ideals J of R, HomR.J; J / D R;

(iii) For all non-zero ideals J of R, HomR.J; J / D R;

(iv) HomR.I; I / D R.

For any fractional ideal J , the containments R � HomR.J; J / � R always hold.
The latter inclusion sends 'WJ �! J to the fraction '.r/=r for any fixed non-
zerodivisor r 2 J ; this is well-defined. In particular, HomR.J; J / is a commutative(!)
ring.

Theorem 13.1 was used by de Jong [72] to give an algorithm for computing the nor-
malization R of an affine domain over a perfect field, or slightly more generally. Let
R be a local domain such that its normalization R is a finitely generated R-module;
equivalently, the completion bR is reduced. One needs to determine a non-zero inte-
grally closed ideal I such that V.I / contains the non-normal locus of R. If R is affine
over a perfect field, then the Jacobian criterion implies that the radical of the Jaco-
bian ideal will work; there are other choices in other cases. Set R0 D HomR.I; I /.
If R0 D R, then R is normal, so stop. Otherwise, replace R by R0 and repeat. The
algorithm has been refined and extended since [68, 82].

It follows from Serre’s criterion for normality that if R is the coordinate ring of an
irreducible curve singularity, then the normalization R is regular, whence is the coor-
dinate ring of a resolution of singularities of SpecR. Thus in this situation, desingu-
larization can be achieved as an iterated endomorphism ring. In fact, as long as R is
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affine over a perfect field, one actually has R D HomR.R;R/, a single endomorphism
ring of a finitely generated module giving resolution of singularities.

14 MCM Endomorphism Rings

The requirement that a non-commutative crepant resolution of singularities should be
an order, i.e. a MCMmodule, raises a basic question: Does the depth of HomR.M;M/

depend in any predictable way on the depth of M ? The short answer is No. In this
section we look at some examples.

First, observe that there is at least a lower bound on the depth of a Hom module:
If R is any local ring and M , N are finitely generated modules with depthN � 2,
then HomR.M;N / has depth � 2 as well. Indeed, applying HomR.�; N / to a free
presentation ofM displays HomR.M;N / as the kernel of a map between direct sums
of copies of N , so the Depth Lemma gives the conclusion. That’s about the end of the
good news.

Next notice that the depth of HomR.M;M/ can be strictly greater than that ofM .
Indeed, let R be a CM normal domain and let J be any non-zero ideal of R. Then
HomR.J; J / D R by Theorem 13.1, even though depthR J can take any value be-
tween 1 (if, say, J is a maximal ideal) and d (if for example J is principal). Further-
more, R can be taken to be Gorenstein, or even a hypersurface ring, so finding a class
of rings that avoids this problem seems hopeless.

One might hope at least that if M is MCM then HomR.M;M/ is MCM as well.
This question was raised by Vasconcelos [200] for R a Gorenstein local ring. It also
has a negative answer, though it is at least harder. A counterexample is given by
Jinnah [119], based on [100, Example 5.9].

Example 14.1. Let k be a field and set A D kŒx; y; z�=.x3 C y3 C z3/, B D kŒu; v�.
Let R be the Segre product of A and B , the graded ring defined by Rn D An ˝k Bn.
Then R is the subring of AŒu; v� generated by xu; xv; yu; yv; zu; zv, a three-dimen-
sional normal domain of depth 2. The ideal I D vAŒu; v� \R has depth 3 over R.

WriteR as a quotient of a graded complete intersection ring S of dimension 3. Then
I has depth 3 over S as well, but HomS .I; I / D HomR.I; I / D R has depth two as
an S -module. Localizing S at its irrelevant ideal gives a local example.

Here is a useful characterization of the depth of HomR.M;N /.

Lemma 14.2 ([117, 66]). Let R be a CM local ring and let M and N be finitely
generated R-modules. Fix n � 2 and consider the following properties.

(i) HomR.M;N / satisfies (SnC1); and

(ii) ExtiR.M;N / D 0 for i D 1; : : : ; n � 1.
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If M is locally free in codimension n and N satisfies (Sn), then (i) H) (ii). If N
satisfies (SnC1) then (ii) H) (i).

Since this result is used in some later sections, I’ll sketch the proof. First assume
that M is locally free in codimension n and that N satisfies (Sn). If n � dimR
then M is free and there is nothing to prove, so one may localize at a prime ideal of
height nC 1 to assume by induction thatM is locally free on the punctured spectrum,
and so ExtiR.M;N / has finite length for i � 1. Take a free resolution P� of M
and consider the first n terms of the complex HomR.P�; N /. Since the cohomologies
of this complex, namely ExtiR.M;N / for i D 1; : : : ; n � 1, all have finite length,
HomR.P�; N / is exact by the Acyclicity Lemma [35, Example 1.4.23]. For the second
statement, take once again the free resolution P� ofM and consider the first n terms of
HomR.P�; N /, which form an exact sequence by the assumption. The Depth Lemma
then implies depthHomR.M;N /p � min¹n C 1; depthNpº for every p 2 SpecR,
which gives the conclusion.

The homological consequences of Lemma 14.2 are even stronger than is immedi-
ately apparent. To describe these, recall that module N over a commutative ring R is
called Tor-rigid if whenever TorRi .M;N / D 0 for some i � 0 and some finitely gen-
erated R-moduleM , necessarily TorRj .M;N / D 0 for all j � i . Deciding whether a
given module is Tor-rigid is generally a delicate problem, as Dao observes [66]. The
following result of Jothilingam [123] (see also [122]) gives a very useful necessary
condition.

Proposition 14.3 (Jothilingam). Let R be a local ring and let M , N be finitely gen-
erated R-modules. Assume that N is Tor-rigid. If Ext1R.M;N / D 0, then the nat-
ural map ˆM;N WM � ˝R N �! HomR.M;N / is an isomorphism. In particular, if
Ext1R.N;N / D 0 then N is free.

It follows immediately that if R is a local ring satisfying (R2) and (S3), and M
is a reflexive R-module with a non-free direct summand which is Tor-rigid, then
ƒ D EndR.M/ is not MCM, whence is not a non-commutative crepant resolution.
Indeed, let N be a Tor-rigid summand ofM which is not free. Then N is reflexive, so
satisfies (S2), and is free in codimension two as R is regular on that locus. Moreover,
HomR.N;N / is a direct summand of HomR.M;M/. If HomR.M;M/ were MCM,
then HomR.N;N / would also be, so would satisfy (S3). But then Ext1R.N;N / D 0

by Lemma 14.2, contradicting Proposition 14.3.
It is now easy to bolster Example 14.1 by constructing, over any CM local ring

.R;m; k/ of dimension 3 or more, a MCM moduleM such that HomR.M;M/ is not
MCM2. Indeed, take M to be a high enough syzygy of the residue field k; since k is
Tor-rigid, the same is true ofM , and it is locally free on the punctured spectrum. By
Lemma 14.2 and Proposition 14.3, then, HomR.M;M/ has depth at most 2.

2 I’m grateful to Hailong Dao for pointing this out to me.
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From Proposition 14.3 and progress on understanding Tor-rigid modules over hy-
persurface rings, Dao derives the next theorem, which identifies obstructions to the
existence of non-commutative crepant resolutions.

Theorem 14.4 ([65, 66, 67]). Let R D S=.f / be a local hypersurface ring with S an
equicharacteristic or unramified regular local ring and f 2 S a non-zero non-unit.
Assume that R is regular in codimension two.
(i) If dimR D 3 and R is Q-factorial, then every finitely generated R-module is

Tor-rigid, so R admits no non-commutative crepant resolution.

(ii) IfR has an isolated singularity and dimR is an even number greater than 3, then
HomR.M;M/ satisfies (S3) only if M is free, so R admits no non-commutative
crepant resolution.

Recall from Example 8.5 that the isolated hypersurface singularity defined by xr
0 C

xd
1 C � � � C xd

d
D 0 has a crepant resolution of singularities only if r  0 or 1

modulo d . Part (ii) of Dao’s theorem thus implies that the extension of Van den Bergh’s
Theorem 12.11(i) to higher dimensions has a negative answer, at least without some
further assumptions.

Example 14.5 ([66, Example 3.6; 38, §2]). Theorem 14.4 allows some progress to-
ward deciding which of the three-dimensional ADE singularities (see (8.1)) have non-
commutative crepant resolutions. Let k be an algebraically closed field of characteris-
tic zero. The 3-dimensional versions of (A2`), (E6), and (E8) are factorial, so do not
admit a non-commutative crepant resolution at all.

Let R D kŒŒx; y; z; w��=.xy C z2 � w2`C2/, an (A2`C1) singularity, with ` � 1.
(Observe that the case ` D 0 is the ordinary double point of Example 9.1.) Then I
claim that R has a non-commutative crepant resolution ƒ D EndR.M/ in which M
is MCM. Indeed, the indecomposable MCM R-modules are completely known [218,
Example 5.12]; they are the free module R, the ideal I D .x; z C w`C1/, the dual
ideal I� D .y; z � w`C1/, and ` indecomposablesM1; : : : ;M` of rank two.

Each Mi is its own Auslander–Reiten translate, so in particular Ext1R.Mi ;Mi / ¤
0 for each i D 1; : : : ; `. By Lemma 14.2, no Mi can be a constituent in a non-
commutative crepant resolution. On the other hand, I and I� satisfy HomR.I; I / Š
HomR.I

�; I�/ Š R by Theorem 13.1. Thus at least EndR.R˚I / and EndR.R˚I�/
are symmetric R-orders; it will follow from the results in the next section that since
R˚I andR˚I� are cluster tilting modules (Theorem 15.5), the endomorphism rings
have global dimension equal to 3, so are non-commutative crepant resolutions.

15 Global Dimension of Endomorphism Rings

The tendency for endomorphism rings to have finite global dimension was first ob-
served by Auslander [15, §III.3]. Recall that ƒ is an Artin algebra if the center of ƒ
is a commutative Artin ring and ƒ is a finitely generated module over its center.
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Theorem 15.1 (Auslander). Let ƒ be an Artin algebra with radical r and assume that
rn D 0, rn�1 ¤ 0. Set M D Ln

iD0ƒ=r
i . Then � D Endƒ.M/ is a coherent Artin

algebra of global dimension at most nC 1.

Based on this result Auslander was led to define the representation dimension of an
Artin algebra ƒ as the least value of gldimEndƒ.M/ as M runs through all finitely
generated ƒ-modules which are generators-cogenerators for ƒ, that is,M contains as
direct summands all indecomposable projective and injectiveƒ-modules. Observe that
Theorem 15.1 does not prove finiteness of the representation dimension; whileM has
a non-zero free direct summand, it need not be a cogenerator unlessƒ is self-injective.

Auslander proved in [15] that repdimƒ � 2 if and only ifƒ has finite representation
type (see Section 17), but it was not until 2003 that Rouquier constructed the first
examples with representation dimension greater than 3 [184]. Incidentally, Rouquier’s
proof uses the notion of the dimension [59, 185] of the derived category Db.ƒ-mod/.
The dimension of a triangulated category is a measure of how many steps are required
to obtain it starting from a single object and inductively taking the closure under shifts,
direct sums and summands, and distinguished triangles. Rouquier proved that if ƒ is
a finite-dimensional algebra over a perfect field k, then dimDb.ƒ-mod/ � repdimƒ.

Iyama showed in 2003 that the representation dimension of a finite-dimensional
algebra is always finite [115]. He also extended the definition of representation di-
mension to CM local rings of positive Krull dimension.

Definition 15.2. Let R be a complete CM local ring with canonical module !. Set

repdimR D inf
M
¹gldimEndR.R˚ ! ˚M/º ;

where the infimum is taken over all MCM R-modulesM .

Iyama’s techniques involved maximal n-orthogonal modules, now called cluster
tilting modules [117]. Here I will not say anything about cluster algebras or cluster
categories; see [46] for an exposition. Here is a direct definition of cluster tilting
modules [38].

Definition 15.3. Let R be a CM local ring andM a MCM R-module. Fix n � 1.
(i) Set

M?n D ¹X j X is MCM and ExtiR.M;X/ D 0 for 1 � i � nº
and symmetrically

?nM D ¹X j X is MCM and ExtiR.X;M/ D 0 for 1 � i � nº:

(ii) Say thatM is cluster tilting if

M?1 D addM D ?1M :
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There are some isolated results about cluster tilting in small dimension. For exam-
ple, [38] constructs and classifies cluster tilting modules for the one-dimensional ADE
hypersurface singularities. WhenR is two-dimensional and Gorenstein the Auslander–
Reiten translate � is the identity, so Ext1R.M;M/ is never zero for MCMM ; this rules
out cluster tilting in this case.

To describe the connection between cluster tilting modules and non-commutative
crepant resolutions, let’s consider the following theorem of Dao–Huneke [70, Theo-
rem 3.2].

Theorem 15.4. Let R be a CM local ring of dimension d � 3. Let M be a MCM
R-module with a non-zero free direct summand, and set ƒ D EndR.M/. Assume that
ƒ is MCM as an R-module. Consider the following conditions.

(i) M?d�2 D addM .

(ii) There exists an integer n with 1 � n � d � 2 such that M?n D addM .

(iii) gldimƒ � d .

(iv) gldimƒ D d .

Then (i) H) (ii) H) (iii) ” (iv). If R has an isolated singularity, then all four
are equivalent.

The main assertion here is (ii) H) (iii). Everything else is relatively straightfor-
ward or follows from Lemma 14.2. To prove (ii) H) (iii), Dao and Huneke use
Proposition 2.4 to get, for any R-module N satisfying (S2), a long exact sequence

� W � � � �!M nj C1 �!M nj �! � � � �!M n0 �! N �! 0

such that HomR.M; �/ is exact. Let Nj be the kernel at the j th spot; then one shows
by induction on j that Ext1R.M;Nj / � Ext1R.M;M/nj C1 , so that Nd�2 2M?d�2 D
addM . It follows that HomR.M;Nd�2/ isƒ-projective. Thus everyƒ-module of the
form HomR.M;N / has projective dimension at most d � 2, so that gldimƒ � d .

As a corollary of Theorem 15.4, Dao and Huneke obtained another proof of the
following result of Iyama, which nicely encapsulates the significance of cluster tilting
modules to non-commutative crepant resolutions.

Theorem 15.5 (Iyama [116, Theorem 5.2.1]). Let R be a CM local ring of dimension
d � 3 and with canonical module !. Assume that R has an isolated singularity.
Let M be a MCM R-module and set ƒ D EndR.M/. The following conditions are
equivalent.

(i) M contains R and ! as direct summands, ƒ is MCM, and gldimƒ D d .

(ii) M?d�2 D addM D ?d�2M .
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In particular, if d D 3 and R is a Gorenstein isolated singularity, then a MCM R-
module M gives a non-commutative crepant resolution if and only if it is a cluster
tilting module.

For dimension 3, this result gives a very clear picture of the landscape of non-
commutative crepant resolutions. In higher dimension, however, the assumption of
isolated singularity becomes more restrictive. Moreover, as Dao and Huneke observe,
for d � 4 the condition addM DM?d�2 rules out a large class of examples. Specif-
ically, if Ext2R.M;M/ D 0 for a MCM module M over a complete intersection ring
R, then M is necessarily free, since one can complete and lift M to a regular local
ring [1].

Back in dimension 3, one can obtain even stronger results, and address possible
extensions of Theorem 12.11 (i), by imposing geometric hypotheses. Recall that a cDV
singularity (see Section 9) is a three-dimensional hypersurface singularity defined by
a polynomial f .x; y; z/ C tg.x; y; z; t/, where f is ADE and g is arbitrary. A cDV
singularity is called cAn if the generic hyperplane section is a surface singularity of
type (An).

Theorem 15.6 ([38, Theorem 5.5]). Let .R;m/ be a local isolated cDV singularity.
Then SpecR has a crepant resolution of singularities if and only if R has a non-
commutative crepant resolution, and these both occur if and only if there is a cluster
tilting module in the stable category CM.R/. If R is a cAn singularity defined by
g.x; y/C zt , then these are equivalent to the number of irreducible power series in a
prime decomposition of g.x; y/ being nC 1.

16 Rational Singularities

As we saw in Proposition 8.4, GR Vanishing implies that any complex algebraic va-
riety with a crepant resolution of singularities has rational singularities. Furthermore,
the idea of a categorical, or non-commutative, desingularization is really only well-
behaved for rational singularities. It would therefore be most satisfactory if existence
of a non-commutative crepant resolution – a symmetric birational order of finite global
dimension – implied rational singularities. This is true by work of Stafford and Van
den Bergh [193]. Their result is somewhat more general. Recall from the discus-
sion preceding Proposition 12.7 thatƒ is homologically homogeneous if every simple
ƒ-module has the same projective dimension.

Theorem 16.1 (Stafford–Van den Bergh). Let k be an algebraically closed field of
characteristic zero, and let ƒ be a prime affine k-algebra which is finitely generated
as a module over its center R. If ƒ is homologically homogeneous then the center
R has rational singularities. In particular, if R is a Gorenstein normal affine domain
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and has a non-commutative crepant resolution of singularities, then it has rational
singularities.

Van den Bergh gave a proof of the final sentence in case R is graded in [204, Propo-
sition 3.3]. (This argument in the published version of [204] is not quite correct; see
the updated version online for a corrected proof.)

Here are a few brief comments on the proof, only in the case where ƒ is a non-
commutative crepant resolution of its Gorenstein center R, so is symmetric, birational
and of finite global dimension. The first step is a criterion for rational singularities,
which is an algebraicization of the criterion ��!

eX
D !X of Proposition 8.4.

Lemma 16.2. Let R be a CM normal affine k-algebra, where k is an algebra-
ically closed field of characteristic zero. Let K be the quotient field of R and let
!R be the canonical module for R. Then R has rational singularities if and only if
for every regular affine S with R � S � K, one has !R � HomR.S; !R/ inside
HomR.K; !R/.

Given the lemma, the derivation of the theorem is somewhat technical. Here I sim-
ply note that one key idea is to show ([193, Proposition 2.6]) that ifƒ is homologically
homogeneous of dimension d then !ƒ D HomR.ƒ;R/ is an invertible ƒ-module,
and furthermore the shift !ƒŒd � is a dualizing complex for ƒ in the sense of Yeku-
tieli [217]. This result has been extended [149, Theorem 5.1.12] to remove the hypoth-
esis of finite global dimension (soƒ is assumed to be “injectively homogeneous”) and
the hypotheses on the field k.

The theorem of Stafford and Van den Bergh does require an assumption on the char-
acteristic of k, as they observe [193, page 671]: there is a homologically homogeneous
ring in characteristic 2 with CM center R for which R fails to have rational singular-
ities (in any reasonable sense). The root cause of this bad behavior seems to be the
failure of a fixed ring SG to be a direct summand of S in bad characteristic. It is rea-
sonable to ask, then, as Stafford and Van den Bergh do: Supposeƒ is a homologically
homogeneous ring whose center R is an affine k-algebra for a field k of characteristic
p > 0, and assume that R is anR-module direct summand ofƒ. MustR have rational
singularities?

One application of Theorem 16.1 is to rule out overly optimistic thoughts on the
existence of “generalized” non-commutative desingularizations. For example, one
might remove the assumption that ƒ be an R-order and simply say that a weak non-
commutative desingularization is an R-algebra ƒ D EndR.M/, where M is a re-
flexive R-module, such that gldimƒ < 1. One might then hope that such things
exist quite generally, for, say, every Gorenstein normal domain [154]. However, in
dimension two this definition would coincide with that of a non-commutative crepant
resolution since endomorphism rings of reflexive R-modules have depth at least two,
so would only exist for rational singularities by Theorem 16.1. Therefore a counterex-
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ample to the hope would be something like CŒx; y; z�=.x3 C y3 C z3/, which is a
Gorenstein normal domain but does not have rational singularities.

17 Examples: Finite Representation Type

Let ƒ be an Artin algebra of finite representation type, i.e. there are only a finite num-
ber of non-isomorphic indecomposable finitely generated ƒ-modules. Auslander de-
fined what is now called the Auslander algebra ofƒ to be � D Endƒ.M1˚� � �˚Mt /,
whereM1; : : : ;Mt is a complete set of non-isomorphic indecomposable finitely gen-
eratedƒ-modules. By Corollary 2.3, � is Morita equivalent to any other algebra of the
form Endƒ.N /, where N is a representation generator for ƒ, that is, contains every
indecomposable finitely generatedƒ-module as a direct summand. These algebras are
distinguished by the following result.

Theorem 17.1 (Auslander [15]). Let ƒ be an Artin algebra of finite representation
type with representation generator M . Assume that ƒ is not semisimple. Set � D
Endƒ.M/. Then gldim� D 2.

The proof of this theorem is quite direct from proposition 2.4 and the left-exactness
of Homƒ.M;�/. Indeed, assume that ƒ is not semisimple and let X be a finitely

generated �-module, with projective presentation P1

'��! P0 �! X �! 0. The
projective modules Pi are each of the form Homƒ.M;Mi / for ƒ-modules M1 and
M0, both in addM . Similarly, ' D Homƒ.M; f / for some f WM1 �! M0. Put
M2 D ker f . Then

0 �! Homƒ.M;M2/ �! Homƒ.M;M1/
Homƒ.M;f /��������! Homƒ.M;M0/ �!X�! 0

is a projective resolution of X of length two.
Auslander and Roggenkamp [5] proved a version of this theorem in Krull dimension

one, specifically for (classical) orders over complete discrete valuation rings. For their
result, define an order ƒ over a complete DVR T to have finite representation type if
there are only a finite number of non-isomorphic indecomposable finitely generated
ƒ-modules which are free over T ; these are called ƒ-lattices. If M contains all in-
decomposable ƒ-lattices as direct summands, then � D Endƒ.M/ is proven to have
global dimension at most two; the proof is nearly identical to the one sketched above.
One need only observe that the kernel M2 of a homomorphism between ƒ-lattices
f WM1 �!M0 is again a ƒ-lattice.

In general, say that a (commutative) local ring R has finite representation type,
or finite Cohen–Macaulay type, if there are only a finite number of non-isomorphic
indecomposable maximal Cohen–Macaulay (MCM) R-modules. Recall that when R
is complete, a finitely generated R-module M is MCM if and only if it is free over a
Noether normalization of R.
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We have already met, in Section 11, the two-dimensional complete local rings of fi-
nite representation type, at least over C. By results of Auslander and Esnault [18, 75],
they are precisely the quotient singularities R D CŒŒu; v��G , where G � GL.2;C/ is
a finite group. Moreover, Herzog’s Lemma 11.5 implies that in that case the power
series ring S D CŒŒu; v�� is a representation generator for (the MCM modules over) R.
Once again the proof above applies nearly verbatim to show (redundantly, cf. Proposi-
tion 11.1) that EndR.S/ has global dimension two.

In dimension three or greater, the kernel M2 D ker.M1 �! M0/ is no longer a
MCM module. When the ring R is CM, however, one can replace it by a high syzygy
to obtain the following result.

Theorem 17.2 (Iyama [116], Leuschke [145], Quarles [169]). Let R be a CM local
ring of finite representation type and let M be a representation generator for R. Set
ƒ D EndR.M/. Then ƒ has global dimension at most max ¹2; dimRº, and equality
holds if dimR � 2. More precisely, pdƒ S D 2 for every simple ƒ-module S except
the one corresponding to R, which has projective dimension equal to dimR.

Recall that the projective module corresponding to an indecomposable direct sum-
mand N of M is PN D HomR.M;N /, and the corresponding simple module is
SN D PN = radPN .

The proof of the assertion gldimƒ � max ¹2; dimRº is exactly similar to the
argument sketched above.3 For the more precise statement about the projective di-
mensions of the simple modules, recall that over a CM local ring of finite repre-
sentation type, every non-free indecomposable MCM module X has an AR (or al-
most split) sequence. This is a non-split short exact sequence of MCM modules,
0 �! Y �! E �! X �! 0, such that every homomorphism Z �! X from a
MCM module Z to X , which is not a split surjection, factors through E. In particular,
one can show that if M is a representation generator, then applying HomR.M;�/ to
the AR sequence ending in X yields the exact sequence

0 �! HomR.M; Y / �! HomR.M;E/ �! HomR.M;X/ �! SX �! 0 ;

where SX is the simple EndR.M/-module corresponding to X . In particular, this dis-
plays a projective resolution of SX for every non-free indecomposable MCM module
X . The simple SR corresponding to R is thus very special, and has projective dimen-
sion equal to dimR by Proposition 7.1 (iii). Observe that this argument relies essen-
tially on the fact that R has a representation generator; below is an example where
pdƒ S > dimR for a simple S even though ƒ has finite global dimension.

3 In the published version of [145], I gave an incorrect argument for the equality gldimƒ D dimR if
dimR � 2, pointed out to me by C. Quarles and I. Burban. I claimed that if S is a simpleƒ-module,
then a ƒ-projective resolution of S consists of MCM R-modules, so has length at least dimR by
the depth lemma. That’s not true, since ƒ is not MCM. The equality can be rescued by appealing
to Proposition 7.1 (iii).
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Among other things, the statement about simple modules implies that when dimR is
at least 3, the endomorphism ring of a representation generator is never homologically
homogeneous, so is never a non-commutative crepant resolution. A concrete example
of this failure has already appeared in Example 14.5. Here is another example in the
non-Gorenstein case.

Example 17.3 ([144, Example 12; 189]). Let k be an infinite field and let R be the
complete scroll of type .2; 1/, that is, R D kŒŒx; y; z; u; v��=I , where I is generated
by the 2 � 2 minors of the matrix

� x y u
y z v

�

. Then R is a three-dimensional CM normal
domain which is not Gorenstein, and has finite representation type [6]. The only non-
free indecomposable MCM modules are, up to isomorphism,

� the canonical module ! Š .u; v/R;
� the first syzygy of !, isomorphic to !� D HomR.!;R/ and to .x; y; u/R;
� the second syzygy N of !, rank two and 6-generated; and
� the dual L D HomR.!

�; !/ of !�, isomorphic to .x; y; z/R.
By Theorem 17.2,ƒ D EndR.R˚!˚!�˚N˚L/ has global dimension 3. However,
ƒ is not MCM as an R-module, since none of L�, N �, and HomR.!; !

�/ is MCM.
One can check with, say, Macaulay2 [88] that EndR.R˚ !/ and EndR.R˚ !�/ are
up to Morita equivalence the only endomorphism rings of the form EndR.D/, withD
non-free MCM, that are themselves MCM. In fact EndR.R ˚ !/ Š EndR.R ˚ !�/
as rings.

Set � D EndR.R ˚ !/. Then � has two simple modules S! and SR. Using
Lemma 14.2 and the known structure of the AR sequences over R, Smith and Quar-
les [190] show that pd� S! D 4 and pd� SR D 3. Thus � has global dimension equal
to 4 by Proposition 7.1 (iii), but is not a non-commutative crepant resolution of R.

Example 17.4. There is only one other known example of a non-Gorenstein CM com-
plete local ring of finite representation type in dimension three or more. It is the
(completion of the) homogeneous coordinate ring of the cone over the Veronese em-
bedding P2,!P5. Explicitly, set R D CŒŒx2; xy; xz; y2; yz; z2�� � CŒŒx; y; z�� D
S . Then the indecomposable non-free MCM R-modules are the canonical module
! D .x2; xy; xz/R and its first syzygy N . Observe that S Š R ˚ ! as R-modules,
so by Theorem 11.2, EndR.R ˚ !/ Š S#.Z2/ has finite global dimension. Since
EndR.S/ Š S ˚ S , ƒ D EndR.S/ is a non-commutative crepant resolution for R.

By Theorem 17.2, � D EndR.R ˚ ! ˚ N/ has global dimension 3. But
HomR.N;R/ and HomR.N;N / have depth 2, so � is not a non-commutative crepant
resolution.

18 Example: the Generic Determinant

The most common technique thus far for constructing non-commutative crepant reso-
lutions has been to exploit a known (generally crepant) resolution of singularities and
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a tilting object on it. In fact, the basic technique is already present in Van den Bergh’s
proof of Theorem 12.11. This has been used in several other families of examples.
This section is devoted to describing a particular example of this technique in action,
namely the generic determinantal hypersurface ring.

Let k be a field and X D .xij / the generic square matrix of size n � 2, whose
entries xij are thus a family of n2 indeterminates over k. Set S D kŒX� D kŒ¹xij º�
and let R be the hypersurface ring S=.detX/ defined by the determinant of X . Then
R is a normal Gorenstein domain of dimension n2 � 1.

Fix a free S -module F of rank n. Left-multiplication with the matrix X naturally
defines the generic S -linear map F �! F . The exterior powers

Va
X WVaF �!

VaF define natural S -modules

Ma D cok
Va

X

for a D 1; : : : ; n. In fact eachMa is annihilated by detX , so is naturally anR-module.
The pair .

Va
X;
Vn�a

XT / forming a matrix factorization of detX , theMa are even
MCM modules over R [73]. They are in particular reflexive, of rank

�

n�1
a�1

�

.
SetM DLn

aD1Ma and ƒ D EndR.M/. The crucial result of [44], in this case, is
then

Theorem 18.1. TheR-algebraƒ provides a non-commutative crepant resolution ofR.

The proof in [44] proceeds by identifying theMa as geometric objects with tilting
in their ancestries, as follows. Let F be a k-vector space of dimension n, and set
P D P .F _/ Š Pn�1

k
be the projective space over R, viewed as equivalence classes

Œ
� of linear forms 
WF �! k. Put

Y D P � SpecS ;

with canonical projections epWY �! P and eqWY �! SpecS . Identify SpecS with
the space of .n � n/ matrices A over the field k, with coordinate functions given by
the indeterminates xij . Then the incidence variety

Z D ¹.Œ
�; A/ j imageA � ker
º

is a resolution of singularities of SpecR. (Compare with Example 9.1, which is the
case n D 2.) Indeed, the image of Z under eqWY �! SpecS is precisely the locus
of matrices A with rankA < n, that is, SpecR. Furthermore, the singular locus of
SpecR consists of the matrices of rank < n � 1, and q WD eqjZ WZ �! SpecR is
an isomorphism away from these points. One can explicitly write down the equations
cutting Z out of Y , and verify that Z is smooth, and is a complete intersection in Y ; if
in particular j WZ �! Y is the inclusion, then this implies that j�OZ is resolved over
OY by a Koszul complex on the Euler form F ˝k OY .�1/ �! OY .
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Here is a pictorial description of the situation.

Z

j


























 p

��
q

��

Y
ep

��

eq

��

P

SpecR � � �� SpecS

(18.1)

Recall from Section 6 that T DLn
aD1�

a�1.a/, where� D �P=k is the sheaf of dif-

ferential forms on P and�j DVj
�, is a tilting bundle on P . Set Ma D p��a�1.a/

for a D 1; : : : ; n, a locally free sheaf on the resolution Z. As the typography hints,
Ma is a geometric version ofMa, in the following sense.

Proposition 18.2. As R-modules, Rq�Ma D Ma : More precisely, Rj q�Ma D 0 for
j > 0 and q�Ma DMa for all a.

The proof of the proposition involves juggling two Koszul complexes. Tensor-
ing (6.1) with OP .a/ and truncating gives an exact sequence

0 �!�a�1.a/ �!Va�1
F˝kOP .1/ �! � � � �! F˝kOP .a�1/ �! OP .a/ �! 0:

The projection p being flat, the pullback p� is exact, yielding

0 �!Ma �!Va�1
F ˝OZ

.1/ �! � � � �! F ˝k OZ.a � 1/ �! OZ.a/ �! 0 :

Compute Rq� as Req�j�. As j�OZ is resolved over OY by a Koszul complex, we may
replace the former with the latter and obtain a double complex in the fourth quadrant,
with

Va�1
F ˝k OY .1/ at the origin and

Va�iC1
F ˝k

V�j
F ˝k OY .i C j C 1/ in

the .i; j / position. Now apply Rq�. By [94, Example III.8.4], the higher direct images
of the projective bundle qWY �! SpecS are completely known,

Rj
eq�OY .t/ D

8

ˆ

<

ˆ

:

0 if t < 0 or 1 < j < n � 1;
Symt .F /˝k S D Symt .F / for j D 0; and
0 for j D n � 1 if t � �n.
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This already proves Rj q�Ma D 0 for j > 0, and allows one to represent q�Ma by the
homology of the total complex of the following double complex of free S -modules.
(For notational simplicity write

Vi and Symj instead of
ViF and Symj F .)

0 0 0

0 ��
Va�1 ˝ Sym1

��

��

� � � ��
V1 ˝ Syma�1

��

��

Syma
��

��

0

0 ��
Va�1 ˝V1 ��

��

� � � ��
V1 ˝V1 ˝ Syma�2

��

��

V1 ˝ Syma�1
��

��

0

0 ��

��

� � � ��
V1 ˝V2 ˝ Syma�3

��

��

V2 ˝ Syma�2
��

��

0

:::

��

:::

��

0 ��
V1 ˝Va�1 ��

��

Va�1 ˝ Sym1
��

��

0

0

��

Va

��

0

��

Here the j th column is obtained by tensoring the strand of degree j in the Koszul
complex with

Va�j �1F , so is acyclic [74, Theorem A2.10]. Similarly, the .�i/th
row is the degree a strand in a Koszul complex tensored with

ViF , and so is exact
with the exceptions of the top and bottom rows. The top row has homology equal to
VaF at the leftmost end, while the bottom row has homology

VaF on the right. One
checks from the explicit nature of the maps that the total complex is thus reducible to
Va

X WVaF �!VaF , whence q�Ma DMa, as claimed.
Now it is relatively easy to prove that

Rj q�HomOZ
.Mb;Ma/ D

´

HomR.Mb;Ma/ if j D 0, and
0 otherwise,

and to establish the rest of the assertions in the next theorem.
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Theorem 18.3. The object Rq�HomOZ
.Mb;Ma/ is isomorphic in the bounded de-

rived category Db.S -mod/ to a single morphism between free S-modules situated in
(cohomological) degrees �1 and 0. Therefore the R-module q�HomOZ

.Mb;Ma/ D
HomR.Mb;Ma/ is a MCM R-module and the higher direct images vanish, so that in
particular

R1q�HomOZ
.Mb;Ma/ D Ext1R.Mb;Ma/ D 0 :

It remains to see that
Ln

aD1 Ma is a tilting object on the resolution Z, so that ƒ D
EndR.

L

aMa/ D q�End OZ
.
L

a Ma/ has finite global dimension, whence is a non-
commutative crepant resolution of R. It suffices for this to compute the cohomology

H i .P ;HomOP
.�b�1.b/;�a�1.a//.c// I

since p is flat, this will compute ExtiOZ
.Mb;Ma/ as well. In [44] we gave a charac-

teristic-free proof of this vanishing, and another appears in the appendix by Weyman
to [76]. In characteristic 0, one can compute the cohomology with Bott vanishing [215,
Chapter 4]. This allows the following proposition and theorem.

Proposition 18.4. The OZ-module M D L

a Ma D Ln
aD1 p

��a�1.a/ is a tilting
bundle in Db.cohZ/. In detail, with A D EndDb.coh Z/

.M/,

(i) ExtiOZ
.M;M/ WD HomDb.coh Z/

.M;MŒi �/ D 0 for i > 0;

(ii) RHomOZ
.M;�/WDb.cohZ/ �! Db.A-mod/ is an equivalence of triangulated

categories, with � L˝A M as inverse;

(iii) A has finite global dimension.

(iv) A Š ƒ D EndR.M/.

Theorem 18.5. Let k be a field, X an .n � n/ matrix of indeterminates, n � 2, and
R D kŒX�=.detX/ the generic determinantal hypersurface ring. LetMa D cok

Va
X

for a D 1; : : : ; n, and put M D L

aMa. Then the R-algebra ƒ D EndR.M/

has finite global dimension and is MCM as an R-module. It is in particular a non-
commutative crepant resolution of R.

In [44] we replace the square matrix X by an .m � n/ matrix with n � m and
R with the quotient by the maximal minors kŒX�=Im.X/, which defines the locus
in Spec kŒX� of matrices with non-maximal rank. The same construction Ma D
cok

Va
X yields an algebra ƒ D EndR.

Lm
aD1Ma/ which is still MCM as an R-

module and still has finite global dimension. In this case, however, ƒ is not a non-
singular R-algebra, so not a non-commutative crepant resolution according to our def-
inition. This is directly attributable to the fact that quotients by minors are Gorenstein
if and only if n D m, so that Corollary 12.3 fails for non-square matrices. In a forth-
coming paper [45], we establish the same result for the quotient by arbitrary minors
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kŒX�=It .X/, with 1 � t � m, using a tilting bundle on the Grassmannian [43]. In
particular we obtain non-commutative crepant resolutions when the matrix is square.

Similar techniques, i.e. constructions using tilting objects on known resolutions of
singularities, are used by Kuznetsov [141] to give non-commutative desingularizations
for several more classes of examples, including cones over Veronese/Segre embed-
dings and Grassmannians, as well as Pfaffian varieties.

19 Non-commutative Blowups

It was clear from early on in the development of non-commutative (projective) geom-
etry that it would be most desirable to have a non-commutative analogue of the most
basic birational transformation, the blowup. This section sketches a few approaches to
the problem.

First recall that ifR is a commutative ring and I is an ideal ofR, the blowup BI .X/

of X D SpecR at (the closed subscheme defined by) I is ProjRŒI t�, where RŒI t� is
the Rees algebra R ˚ I ˚ I 2 ˚ � � � . The exceptional locus of the blowup is the fiber
cone ProjRŒI t�=IRŒI t � D R=I ˚ I=I 2 ˚ � � � .

One might hope to mimic this definition for sufficiently nice non-commutative rings.
This turns out to give unsatisfactory results. For example ([8; 203, page 2]) set ƒ D
khx; yi=.yx � xy � y/, and consider the ideal m D .x; y/ “corresponding” to the
origin of this non-commutative surface. Then mn D .xn; y/ for all y, so the fiber
cone RŒmt �=mRŒmt � is one-dimensional in each degree, and is isomorphic to kŒz�.
This means that the exceptional locus is in some sense zero-dimensional, whereas
one should expect the exceptional divisor of a blowup of a point in a surface to have
dimension 1.

Van den Bergh [203] constructs an analogue of the Rees algebra directly over pro-
jective quasi-schemes Projƒ (see Section 7). Specifically, if X D Projƒ is a quasi-
scheme, he gives a construction of the blowup of a smooth point p in a commu-
tative curve Y contained in X . (This means that QchY ' Proj.ƒ=xƒ/ for some
x 2 ƒ.) Using this construction, Van den Bergh considers blowups of quantum pro-
jective planes at small numbers of points, in particular non-commutative deformations
of the del Pezzo surfaces obtained by blowing up in � 8 points. I will not go into the
details of the construction or the applications here.

There is a more recent proposal for a definition of the phrase “non-commutative
blowup,” which is inspired by the classic flop of Example 10.2 and by Theorem 13.1.
In general, the idea is that for an ideal I of a ring ƒ, the non-commutative blowup of
ƒ in I is the ring

Bnc
I .ƒ/ D Endƒ.ƒ˚ I / :

In the situation of Example 10.2, we saw that Bnc
I .R/ was derived equivalent to the

usual blowup BI .SpecR/. Thus suggests the following question, a version of which
I first heard from R.-O. Buchweitz.
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Question 19.1. Can one generalize or imitate the normalization algorithm of Sec-
tion 13 to show that there is a sequence of non-commutative blowups starting with
ƒ D ƒ0 and continuing with ƒiC1 D Bnc

Ii
.ƒi / D Endƒi

.ƒi ˚ Ii / for some ideals
Ii � ƒi , such that ƒi eventually has finite global dimension?

One might try to follow Hironaka and blow up only in “smooth centers,” i.e. assume
that ƒi=Ii is non-singular, as is the case in Example 10.2.

Very recent work of Burban–Drozd [28] confirms that the non-commutative blowup
as above is a sort of categorical desingularization whenever X is a reduced alge-
braic curve singularity having only nodes and cusps for singular points, and I is
the conductor ideal. They observe that A D End OX

.OX ˚ I / has global dimen-
sion equal to 2, that .OX ˚ I / ˝OX

�W cohX �! A-mod is fully faithful, and that
HomA.OX ˚ I;�/WA-mod �! cohX is exact.

In his Master’s thesis, Quarles constructs a direct connection between blowups and
non-commutative blowups, the only one I know of. Let .R;m; k/ be a Henselian local
k-algebra, with k an algebraically closed field. Let I be an ideal of R which is MCM
and reflexive as an R-module, and set ƒ D Bnc

I �.R/ D EndR.R ˚ I�/. Then Quar-
les defines [169, Section 7] a bijection between the closed points of BI .SpecR/ D
ProjRŒI t� and the set of indecomposable ƒ-modules X arising as extensions 0 �!
SR �! X �! SI � �! 0 of the two simple modules SR and SI . The bijection is just
as sets, and carries no known algebraic information; in particular, it is not known to be
a moduli space.

There are some immediate problems. For example, in Example 17.3 EndR.R ˚
!/ Š EndR.R ˚ !�/, but RŒ!t� 6Š RŒ!�t �, since one is regular and the other is not.
The associated projective schemes are isomorphic, of course. It is not clear how to
reconcile this.

A similar approach has been suggested in prime characteristic [195–197, 199, 216].
For the rest of this section let k be an algebraically closed field of characteristic p >
0. Let X and Y be normal algebraic schemes over k, and let f WY �! X be a
finite dominant morphism. Then Yasuda [216] proposes to call the endomorphism
ring End OX

.f�OY / the non-commutative blowup attached to f .
In particular, consider the non-commutative blowup of the Frobenius. For every

e � 1, setXe D X and let F e
X WXe �! X be the eth iterate of the Frobenius morphism.

Assume that FX is finite. Then the non-commutative blowup of the eth Frobenius,
End OX

.F e
X �OXe

/ is locally given by EndR.R
1=pe

/, whereR1=pe

is the ring of .pe/th

roots of elements of R. It is isomorphic to EndRpe .R/, where now Rpe

is the subring
of .pe/th powers. The ring EndRpe .R/ consists of differential operators on R [191]
and is sometimes a non-commutative crepant resolution of R.

Theorem 19.2 (Toda–Yasuda [199]). Let R be a complete local ring of characteristic
p which is one of the following.
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(i) a one-dimensional domain;

(ii) the ADE hypersurface singularity of type (A1) (and p ¤ 2); or

(iii) a ring of invariants kŒŒx1; : : : ; xn��
G , where G � GL.n; k/ is a finite subgroup

with order invertible in k.

Then for e � 0, EndR.R
1=pe

/ has finite global dimension. However it is not generally
MCM as an R-module, so is not a non-commutative crepant resolution.

Let me make a few comments on the proofs. For (i), consider the integral closure
S Š kŒŒx�� ofR. Then for any e � 1, one checks that EndRpe .Spe

/D EndSpe .Spe

/D
Spe

. Take e large enough that Spe � R. Then R is free over Spe

of rank pe ,
so EndRpe .R/ Š Mpe .EndRpe .Spe

// D Mpe .Spe

/. This is Morita equivalent to
Spe Š S , so has global dimension equal to 1. It is also clearly MCM.

For (ii), assume p ¤ 2 and set R D kŒŒx1; : : : ; xd ��=.x
2
1 C � � � C x2

d
/. Then one

can show that for all e � 1, R is a representation generator for Rpe

. (This requires
separate arguments for d odd/even.) By Theorem 17.2, EndRpe .R/ has finite global
dimension. It is not a non-commutative crepant resolution by Theorem 14.4.

Finally, for (iii), Toda and Yasuda use results of Smith and Van den Bergh to show
that if S D kŒŒx1; : : : ; xd �� and R D SG as in the statement, then for e � 0 every
module of covariants .S ˝k W /

G appears as an Rpe

-direct summand in R, in S ,
and in Spe

. Thus EndRpe .Spe

/ Š Spe

#G (Theorem 11.2) is Morita equivalent to
EndRpe .R/ by Corollary 2.3, and they simultaneously have finite global dimension.

In general there are known non-trivial obstructions to EndR.R
1=pe

/ being a non-
commutative crepant resolution. For example, Dao points out [66] that when R is a
complete intersection ring, R1=pe

is known to be Tor-rigid [4], so if R satisfies (R2)
then EndR.R

1=pe

/ is not MCM for any e � 1 by the discussion following Proposi-
tion 14.3.

20 Omissions and Open Questions

In addition to the examples already mentioned in previous section, there is a large
and growing array of examples of non-commutative crepant resolutions and related
constructions. Lack of space and expertise prevent me from describing them in full,
but here are a few references and comments.

Deformations of the Kleinian singularities C2=G, with G � SL.2;C/, have non-
commutative crepant resolutions [89], which are identified as deformed preprojective
algebras in the sense of [61].

In a different direction, Wemyss has considered the non-Gorenstein case of the clas-
sical McKay correspondence, whereG 6� SL.2;C/ [212–214]; much of Theorem 11.6
breaks down, but much can be recovered by restricting to the so-called “special” repre-
sentations. This leads to the reconstruction algebra, which is the endomorphism ring
of the special MCM modules.
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Beil [29] shows that square superpotential algebras, which are certain quiver al-
gebras with relations coming from cyclic derivatives of a superpotential, are non-
commutative crepant resolutions of their centers (which are three-dimensional toric
Gorenstein normal domains). In fact, Broomhead gives a construction of a non-
commutative crepant resolution for every Gorenstein affine toric threefold, from su-
perpotential algebras called dimer models [58]. Similar algebras associated to brane
tilings have non-commutative crepant resolutions as well [47, 159].

Finally, in [31] Bezrukavnikov constructs a non-commutative version of the
Springer resolution Z from (18.1), which is different from that in [44].

Many other topics have been omitted that could have played a role. For example, I
have said nothing about (semi-)orthogonal decompositions of triangulated categories
and exceptional sequences. These grew out of Beilinson’s result in Section 6, via the
Rudakov seminar [186]. See [105, Chapter 1] or [48].

Connections of this material with string theory appear at every turn [194]. For
example, the derived category D.X/ appears in string theory as the category of branes
propagating on the space X . Non-commutativity arises naturally in this context from
the fact that open strings can be glued together in two different ways, unlike closed
strings [42]. Furthermore, the Calabi–Yau condition of Section 12 is essential to the
string-theoretic description of spacetime [58, 167]. Most obviously, the field of high
energy physics has been a driving force in non-commutative desingularizations and the
higher geometric McKay correspondence. I am not competent to do more than gesture
at these connections.

I end the article with a partial list of open problems. Some of these are mentioned
in the text, while others are implicit.

(i) Conjecture 9.3 of Bondal and Orlov, that a generalized flop between smooth
varieties induces a derived equivalence, is still largely open outside of dimension three.
The related Conjecture 12.12 of Van den Bergh, which asks for derived equivalence of
both geometric and non-commutative crepant resolutions, is similarly open. See [114]
for some very recent progress on the non-commutative side.

(ii) Existence of a non-commutative crepant resolution is not equivalent to exis-
tence of a crepant resolution of singularities in dimension four or higher. See the
end of Example 8.6 for examples with non-commutative resolutions but no geometric
ones, and Example 14.5 for failure of the other direction. However, it still may hold
in general in dimension three. One might also be optimistic and ask for additional
hypotheses to rescue the case of dimension four.

(iii) Various results in the text fail for rings that are not Gorenstein, notably Corol-
lary 12.3 and Proposition 12.7. Is there a better definition of non-commutative crepant
resolutions which would satisfy these statements over non-Gorenstein Cohen–Macau-
lay rings? Perhaps we should not expect one, since crepant resolutions of singularities
exist only in the Gorenstein case.
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On a related note, is symmetry (Definition 12.2) too strong a condition? The relevant
property in [193] is that HomR.ƒ;R/ is an invertible .ƒ-ƒ/-bimodule, rather than in-
sisting that HomR.ƒ;R/ Š ƒ. This would, unfortunately, rule out endomorphism
rings EndR.M/, since they are automatically symmetric by Theorem 12.6 (ii). Or per-
haps the appropriate generalization to non-Gorenstein rings is that HomR.ƒ; !R/Dƒ.

(iv) Crepant resolutions of singularities are very special: they exist only for canon-
ical singularities, not in general for terminal singularities. The non-commutative ver-
sion is more general. One might therefore hope that Theorem 12.11 is true for canon-
ical threefolds as well. Van den Bergh’s proof of Theorem 12.11 applies verbatim
for any canonical threefold admitting a crepant resolution of singularities with one-
dimensional fibers.

(v) In nearly all of the examples of non-commutative crepant resolutions, the mod-
ule M such that ƒ D EndR.M/ can be taken maximal Cohen–Macaulay. Lemma
14.2 indicates one obstruction to M having high depth. Are there general situations
where a non-commutative crepant resolution exists, but no MCM module will suffice?
Or situations (other than surfaces) where every non-commutative crepant resolution is
given by a MCM module? See [113, Proposition 5.11] for one result in this direction.

(vi) Van den Bergh points out in [204] that one might try to build a theory of ra-
tional singularities for non-commutative rings, extending the results of Section 16.
It would be essential to have a non-commutative analogue of the Grauert–Riemen-
schneider Vanishing theorem (8.2), but none seems to be known. There is an algebraic
reformulation of GR Vanishing due to Sancho de Salas [187], cf. [104, Chapter 5]: Let
R be a reduced CM local ring essentially of finite type over an algebraically closed
field of characteristic zero, and let I be an ideal of R such that ProjRŒI t� is smooth;
then the associated graded ring grI n.R/ is Cohen–Macaulay for n � 0. It would be
very interesting to have a purely algebraic proof of this result, particularly if it en-
compassed some non-commutative rings. The proof of Sancho de Salas uses results
from [84], so relies on complex analysis; see [99] for some progress toward an alge-
braic proof in dimension two.

(vii) In a similar direction, Question 19.1 asks for an algorithm to resolve singu-
larities via a sequence of “non-commutative blowups.” For a start, one needs any
non-trivial connection between Db.cohProjRŒI t�/ and Db.EndR.R˚ I /-mod/; other
than Quarles’ bijection, none seems to be known.

(viii) Even given a very strong result along the lines of (vii), an enormous amount
of work would still be needed to obtain applications of non-commutative desingular-
izations analogous to those of resolutions of singularities. For example, can one define
an “arithmetic genus” in a non-commutative context, and show, as Hironaka does, that
it is a “birational” invariant?
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