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Foreword

Simulation is a powerful tool, that allows domain experts to test their theo-
ries as safe virtual experiments. But as the systems being modeled grow and
become complex, with many interacting elements, the code also becomes ex-
tremely complex. Whether it be modeling an ant colony, or human interactions
in economic systems, these problems not only help the domain experts, but
also require immense effort from computer scientists. A multitude of computer
science techniques are involved such as how to design models, build code, sim-
ulate and analyze data. Agent-based modeling is an example of simulation
technique, which can help researchers deviate from stochastic and differential
equations, to more granular approaches of building models based on interac-
tions.

Agent-based models have shown applications in various fields such as biol-
ogy, economics and social sciences. Over the years, multiple agent-based mod-
eling frameworks have been produced, allowing experts with non-computing
background to easily write and simulate their models. However, most of these
models are limited by the capability of the framework, time it takes for a sim-
ulation to finish, or handling the massive amounts of data produced. FLAME
(Flexible Large-scale Agent-based Modeling Environment) was produced at
the University of Sheffield, and developed through the years, with multiple
grants and projects from biology, sociology and economics. As a challenge, it
was able to produce an economic agent-based model, EURACE, consisting of
three markets integrated together, which had never been done before.

This book contains a comprehensive summary of the field and how con-
cepts of X-machines can be stretched across multiple fields to produce agent
models. It has been written with several audiences in mind. First, it is orga-
nized as a collection of models, with detail descriptions of how models can be
designed, especially for beginners in agent-based models. A number of the-
oretical aspects of software engineering and how they relate to agent-based
models have been discussed for students interested in software engineering
and parallel computing. Finally, it is intended as a guide to developers from
biology, economics and sociologists, who want to explore how to write agent-
based models for their research area. By working through model examples
provided, anyone should be able to design and build their agent-based models
and deploy them on their machines. With FLAME, they can easily increase
the agent number and run models on parallel computers, in order to save on
simulation complexity and waiting time for results.

xiii



xiv Foreword

Because the field is so large and active, this book does not aim to cover all
aspects of agent-based modeling and its research challenges. The models are
presented to aid researchers with capability, on how they can build complex
agent functions for their models. This book will give a good feeling, making
researchers confident on writing their agent-based models and the complexities
which go behind it. Finally, the book should convince anyone of the advantage
of using agent-based models in their simulation experiments, providing the
case to move away from differential equations and build more reliable, close
to real models.

It is important to acknowledge all the people who have contributed to the
book and the FLAME framework, through their models, images and code,
maturing FLAME into an independent toolkit. It is a product of many years
of research, learning, ideas and collective efforts. Many people have come to-
gether to make this book a possibility. The author acknowledges that FLAME
is a product on various developers and researchers, part of the FLAME family
over the years. Developed as part of Simon Coakley’s PhD thesis, the frame-
work has matured into a commercial tool, with very real world applications.
Lastly, I would like to thank Professor Mike Holcombe for his leadership,
imagination and limitless ideas during the years for FLAME’s growth and
also encouragements for putting this book together, for summarizing FLAME
efforts.

About the Author

Dr. Mariam Kiran is a well-recognized researcher in agent-based modeling,
high performance simulations and cloud computing. She has published numer-
ous papers in these fields, both, in theory and practical implementations, ex-
ploiting grid and cloud ecosystems for improving computational performance
for multi-domain research. She has an extensive record of research collabo-
rations across the world, serving as a board member for Complex Systems
research in CoMSES, and several joint projects funded by European Research
and UK Engineering Council. She is also active in education research of soft-
ware engineering in team building and writing software for simulations.

Mariam Kiran received her PhD in Computer Science from University of
Sheffield, Sheffield UK in 2010. She is currently involved in many projects
at Lawrence Berkeley National Labs, California, optimizing high performance
computing problems across various disciplines. Prior to this, she was work-
ing as an Associate Professor at University of Bradford, leading the Cloud
Computing research in the School.

The author’s research focuses on learning and decentralized optimization
of system architectures and algorithms for high performance computing, us-
ing underlying networks and Cloud infrastructures. She has been exploring



Foreword XV

various platforms such as HPC grids, GPUs, Cloud and SDN-related tech-
nologies. Her work optimizes quality of service of applications, parallelization
performance and solves complex data intensive problems such as large-scale
complex simulations.

For the Reader

This book is intended primarily as a textbook for researchers and devel-
opers exploring uses of agent-based modeling and of Flame. Certain aspects
of the book are specifically designed to help researchers:

e Code examples of many agent-based models from different disciplines.
These make arguments that any kind of real-world model can be con-
verted into a simulation model, using the same principles for building
and agent-based model.

e Mathematical use of simulations. The use of maths formulas and data
extraction shows how simulations also follow the same rules of real world
physics and geometry, when real-world problems are being adapted in
simulations. If these are modeled correctly, the model will be an accurate
representation of the problem.

e Using models to test theories in simulation environment. The book gives
examples that any complex system can be modeled as a simulation.
Agent-based models are the best manner to model these, instead of
traditional differential equations, as they allow more complex individual
behavior to be modelled from bottom up rather than top-to-bottom.

The book assumes that the readers have some knowledge of programming
languages such as C, Java, Algorithm design and some knowledge of state
machine models. This is useful to link theory to simulation constructions. The
book explains in detail how X-machines are being adapted for agent design.






Preface

The world seems to be a more and more complex place and trying to un-
derstand this complexity is a serious challenge for the future. Whether it is
the fundamental basis for life or the increasingly global nature of society, the
need to be able to model, predict and explore these phenomena is becoming
increasingly important.

Alongside the massive increases in the data that technology and society
are generating fundamental questions of,

e What do all these data mean?

e How can we understand all the interconnections that underlie the data?

Can we model these systems and predict what they may do in the future?

And build on this knowledge in order to understand and control our
world better?

e And create sensible policies for deciding the future?

For many types of systems, be they molecular process inside a cell or the
manifestations of economic activity, it is being realized that the old ways of
modeling and predicting their behavior are no longer useful. We can no longer
assume that a cell is a bag of randomly moving chemicals (molecules) since
the intimate interactions between individual chemicals and where in the cell
these interactions take place are of fundamental importance. Similarly, the old
assumptions that economics is based on generalized rational behavior and that
markets are inherently stable have been discredited by the recent economic
crises that have beset the world.

A new approach is needed and this is now feasible because technology
now allows for highly detailed modeling of these complex systems. This book
exemplifies one of the most successful approaches to modeling and simulating
this new generation of complex systems.

FLAME was designed to make the building of large-scale complex systems
models straightforward and the simulation code that it generates is highly
efficient and can be run on any modern technology. FLAME was the first such
platform that ran efficiently on high performance parallel computers (or HPC)
and a version for NVidia GPU-technology (Graphical Processing Unit) is also
available.

xXvil



xviii Preface

Writing complex simulation code is an error-prone process and rarely meets
the standards required for best practice software engineering. This is true of
many Agent-based Modeling (ABM) platforms. For people to believe the re-
sults of a simulation model and the model-building process it needs to be
transparent. Journals and others are demanding much more information about
the details of the models. FLAME addresses these issues by providing a basic
notation for describing agents and a robust translation process that automat-
ically generates executable code. FLAME was built using the latest software
engineering approaches.

At its heart, and the reason why it is so efficient and robust, is the use
of a powerful computational model ‘Communicating X-machines’ which is
general enough to cope with most types of modeling problem. As well as being
increasingly important in academic research FLAME is now being applied in
industry in many different application areas.

This book describes the basics of FLAME and is illustrated with numerous
examples.

Professor Mike Holcombe
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COMPLEX SYSTEMS are composed of many interconnected elements, work-
ing individually, but producing an overall global system behavior. The funda-
mental desire to study how these complex systems behave comes from various
multifaceted disciplines such as biology, economics or even social sciences.
Examples include large ant colonies (composed of individual ants cooperat-
ing to exploit available food sources), the human nervous system (composed
of tiny neurons sending and receiving signals in the human body) or social
structures (such as communication networks). Depending on the system be-
ing studied, individuals behave in organized (or disorganized) ways, leading
to unpredictable overall system behavior. This phenomenon, referred to as
emergent behavior, is a direct consequence of individual behaviors inside the
system and their interactions among each other.

Engineering projects have taken inspiration from complex natural systems
to build better and reliable infrastructures. Understanding how cities survive
and how crowds behave are key elements in designing buildings or studying
how economies work.

Agent-based modeling (ABM) is a unique modeling technique that allows
a one-to-one mapping to natural systems. Modelers understand complex sys-
tems, how they are composed of multiple individuals and their interactions
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"The whole"
emergent, global structure

i

"Parts"
Local interaction

FIGURE 1.1: Emergence in complex systems. cf. [116].

among themselves and the environment. Writing agent-based models draws
inspiration from parallel computation, software engineering, data analysis and
simulation, to achieve reliable simulation models as virtual complex systems.
This book aims to study and provide readers with principals involved in build-
ing and writing agent-based models from a software engineering perspective.
Presenting itself primarily as a modeling and simulations tool, the book cov-
ers computational challenges of software engineering, parallelization, verifica-
tion and validation, all of which are issues for computer and other scientists
when developing reliable agent-based models. To explain details from a soft-
ware engineering perspective, we focus on an established agent-based modeling
framework, FLAME, as a guide to understand and build ABM approaches. By
discussing the range of projects and computational complexities it has faced in
the research area, various computational challenges are discussed from model
conception, building, execution and testing, in fields of biology, social networks
and economics.

Complex systems are studied in two ways - either as one collective sys-
tem, or as a collection of individuals interacting with each other to produce
an overall behavior. The dynamic individual behavior can be studied using
mathematical formulas [100] such as differential equations or time-based ac-
tivities. However, using mathematical equations often restricts models to cer-
tain levels of complexity and data being collected. For instance, hierarchical
relationships observed at macro system level, as well as at micro internal level
within individuals cannot be easily studied using equations (Figure 1.1). In
complex systems, local individual interactions cause emergent system quali-
ties at higher levels, allowing emergence to be a consequence of what happens
within these micro levels [114].
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TABLE 1.1: Examples of research carried out in complex
adaptive systems. Adapted from Schuster [171].

Research Area Researchers Year
Darwinian evolution Smith and Szathmary [189] | 1995
Chemical networks Kauffman [103] 1993
Ecological networks Sigmund [177] 1993
Insect colonies Bonabeau and Dorigo [25] | 1999
Immune system Segel and Cohen 2000
Nervous system Kandel [101] 2000
Economic networks Lane and Durlauf [11] 1997
Social networks Frank [67] 1998
Communication networks | Barabasi [4] 2000
Transportation networks | Narguney [137] 2000
Evolutionary games Hofbauer and Sigmund [85] | 1998

1.1 Complex and Adaptive Systems

Multiple disciplines use complex systems to explain unusual phenomena
and systems characteristics by artificially creating large simulated systems
modeling real systems, aiding understanding on how these systems behave.
Table 1.1 discusses some of the early examples in various disciplines and com-
plex system modeling. Some of the common features of these systems are
summarized in Figure 1.2.

Individual elements exist on multiple levels within the system, allowing
hierarchies, and even hierarchies, to develop where two systems are mutually
exclusive and continuously interacting. These elements can act as representa-
tives of either a single performing individual or as a collection of individuals
such as groups of multiple individuals. Each element evaluates its behavior
based on a reward system and adapts to perform better in the current sys-
tem conditions. The reward system is determined by a performance measure,
where individuals use receptors to read signals and functions to assess these
performances.

Adaptiveness of elements is a unique feature that complex systems pos-
sess. Researchers have studied how systems predict and readjust efficiently to
changing conditions. For example, Hopfield [91] showed that system adaptive-
ness is highly influenced by presence of noise and attractors in the system.
Attractors are environmental points that cause elements to deviate from their
ideal paths of behavior, possibly when systems start to show chaotic behaviors.
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Key: Type of complex system The kind of scenarios
(Function of the system) (Agents)
Prebiotic Evolution Chemical Networks
(Emergence of life) (Molecules)
Darwinian Evolution Genetic Algorithms
(Formation of species) (Genes)
Brain Evolution Neural Networks
(Learning, predictions) (Neurons)
Social Evolution Evolutionary Games
(Ecologies, economies) (Players)
~ T
Common Attributes: // ¢ ‘ \
<« 4
Memory, .
Storing Computation Reward system, Noise and
. . input, action Assign credits control
information

FIGURE 1.2: Examples of complex adaptive systems, their models and com-
mon characteristics. cf. [171].

1.2 What Is Chaos?

In mathematics, chaos theory is the description of a dynamic system that
exhibits high sensitivity to initial conditions of the system. Conversely, chaotic
behavior, in common language, also translates into an unpredictable or unper-
ceived behavior. Chaos, thus, has multiple meanings depending in the context
it is used. In this book, a chaotic effect refers to an emergent behavior which
is unpredictable, or otherwise unknown to observer at the beginning of the
simulation. There is a separate research field which involves measuring chaotic
points or attractors in a system during simulations, usually measuring initial
conditions and then comparing them to a series of outputs generated. Testing
these effects of chaos theory is out of the scope of discussions presented here.

Complex systems are known to sometimes go into chaos. Derived from
ancient Greek [145], it describes a state that lacks order or even predictability.
Langton [114] coined the term ‘edge of chaos’, which was used to describe
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the point at which system starts exhibiting chaotic behavior, or the point
at which it becomes extremely sensitive to initial conditions. This sensitivity
sometimes produces bifurcations (or branches into two possible behaviors)
that are difficult to predict (Figure 1.3).

2

X
=

FIGURE 1.3: Bifurcation diagram in a logistic map. Adapted from [122].

1.3 Constructing Artificial Systems

Complex systems can be seen as large problems that can be solved as
collections of smaller problems. For instance, ant colonies and individual ant
behavior are being studied to give possible solutions to computer networking
problems [170], or understanding how prices behave in stock markets.

Large engineering applications, also made up of tiny parts working to-
gether, can have precise predictable behavior. These individual units always
perform as they ought to, unless they fail due to some dependencies which were
difficult to predict. Economic systems also exhibit a wide variety of emergent
behaviors, with humans sometimes not paying their credit bills regularly or
buying houses without paying mortgages, cited as some of the reasons for
2008 credit crunch [33]. This unpredictability and randomness of individu-
als, leads to the failure of large systems performing as predicted. The extent
of failure, having a domino effect on surrounding elements, depends on how
many individuals deviated, allowing complex systems research to become a
multi-dimensional problem with techniques from psychology and behavioral
economics, enhanced by methods in computer science.
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1.4 Importance of Emergence

Goldstein [74] argues that “emergence refers to rising of novel and coher-
ent structured patterns and properties during the process of self-organization
of complex systems”. But Anderson [8] points out that due to scale and com-
plexity, it is not necessary that the built model would always turn out to be
same as its individual real parts. This notion leads to the fact that emergence
itself cannot be defined as a perfect pattern with multiple result possibilities.

“The ability to reduce everything to simple fundamental laws does
not imply the ability to start from those laws and reconstruct the uni-
verse. The constructionist hypothesis breaks down when confronted with
the twin difficulties of scale and complexity. At each level of complexity
entirely new properties appear. Psychology is not applied biology, nor
is biology applied chemistry. We can see that the whole becomes not
merely more, but very different from sum of its parts.” [§]

Modeling a system is the process of creating a replica of the system. This
could be done by considering only a few aspects of what is needed to be ob-
served from that system, or what modelers desire to test. For instance, testing
small gears working together in a clock could either be tested with individual
elements modeled as gears, or whole collection of gears connected to the nee-
dle, taken as one individual. Modeling depends on modeler requirements to
how they want to represent the system.

The model would also be simulated a number of times to understand its
average behavior. Randomness in complex systems can sometimes lead to
unpredictable patterns, which makes testing a concrete part of modeling.

1.5 Dynamic Systems

Complex systems can adapt to changing environmental conditions. Their
ability to cope with changes and their survival makes systems extremely robust
and favorable for inspirations in engineering applications. Traditionally, nu-
merical equations with differentiation are used to represent dynamic systems
as functions with respect to time. Examples of such equations are Newton’s
law of motion for particles and forces, represented as expressions of veloc-
ity, acceleration during movement and direction of travel for particles. The
Navier-Stokes equations are used to describe motion of fluid substances, used



Setting the Stage: Complex Systems, Emergence and Evolution 7

to model behavior of water in pipes. Using these equations can represent the
system as a derivative of time [144],

. dx
X = o = F(x) (1.1)
Equation 1.1 shows change in a system represented with time, where X =
(M, 2@ . 2(®)) and k is the number of states of the system. The system
state is given as a property (for all elements) as a snapshot at the time. This
can include individual element properties, environmental conditions and any
other attributes involved. Basically, it is a snapshot of the system at time ¢,
taken between starting time ¢ = 0 and time ¢t = k. In this way, it is possible to
determine how the system looks at time t = ¢ 4 1, if state at ¢ = ¢ is known.
However, complex systems are emergent systems. This makes it sometimes
difficult to predict or anticipate, how the system would look at ¢t + 1 as there
are too many individual element interactions leading to its snapshot at ¢ + 1
due to randomness in individual behavior. These systems are also irreversible,
which means it is also difficult to work backwards and deduce what the past
state was even if current and future states are known. Researchers can deduce
a number of reasons why the system behaved in the way, by running repeated
simulations and testing the effect of all elements on overall system behavior.

1.6 1Is There Evolution at Work?

Being continually adaptive, systems show continuous dynamic change.
This uses fewer or basic starting conditions and assumptions to grow into
complex system behavior. As time moves forward, certain conditions can be
changed to alter its behavior and future system states. Other components that
play a key role include geography or locations in the system. Geography can
influence in ways such as the following;:

Communication span for each individual. Messages or communication
between individuals, which are limited to particular individuals in an
area. This gives them more information and act accordingly.

Messages influence personal behavior. Received messages can be used
to determine the next strategies to play based on the incoming informa-
tion.

Influence of resource availability. Depending on their locations, each in-
dividual has various levels of resource available, that can affect its behav-
ior. For example, in a ant colony model, if an ant comes across a stream
of water, it can locally change its on-course path, effectively adapting to
the situation and locality. Over time, the system will display a stronger
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ant path being created, that deviates from water. This is an important
ability to ensure survival in changing environments.

1.6.1 Adaptation

Adaptation is the ability of individuals changing their behavior or functions
to survive better in their present conditions. Examples include developing
ability to run faster or hiding from predators. In evolution, organisms with
successful adapting capabilities will grow, improving on their likelihood to
survive.

Karl Sims [181] presented his work on artificial life, where he displayed
evolution in action by creating a computer simulated block creature that had
rectangular blocks hinged together. Each block was flexible and allowed to
move, such that the creature could restructure itself to suit to the environment
it was in.

FIGURE 1.4: Examples of Karl Sims’s creatures. cf. [180].

The creatures were evolving towards a common goal, which was to swim
as fast as they could through a water environment (Figure 1.4). Simulated
results showed that there were no optimum solutions, as creatures could not
understand water mechanics and its behavior. However, the results showed
new designs quickly generated, increasing the rate of survival for creatures in
water. Sim’s experiments showed evolution was at play when performed with
particular goals for survival.

Through various successful adaptations, an emergent behavior can be ob-
served, seen as an outsider view of the system. This is known as evolutionary
drive in the system, as conditions and time force individuals to change.

Evolution is a term borrowed from biology, where organism populations
adapt from one generation to the other. Over time, generations accumulate
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various differences with each other, depending on how they adapt, allowing
new generations to have a gradual divergence from the starting pool of char-
acteristics. These differences are brought about due to locations, limited in-
formation or available resources, allowing emergence of new species that can
better adapt to given situations. Some individuals not well adapted, will grad-
ually die out, leaving only strong ones to multiply.

The term reliability refers to probability of a component operating sat-
isfactorily during a certain time frame. Quantifying reliability requires one
to define, assess and combine probabilities of risk and system behaviors [27].
This may require identifying system variabilities and vulnerabilities, to predict
lifetimes to assess model reliability.

1.7 Distributing Intelligence?

Evolution is learning and not intelligence. Minsky [134] claimed that in-
telligence is used to emphasize swiftness and efficiency of a solution.

“Evolution’s time rate is so slow that we don’t see it as intelligent,
even though it finally produces wonderful things we ourselves cannot yet
make”.

Evolutionary behavior can be observed at multiple levels. Every layer can
be ‘zoomed in’ to see different patterns of behavior emerging. Johnson [98]
discusses an example of a city as a complex system, where the city itself
behaves like one individual system, consisting of a number of thriving neigh-
borhoods within. Each neighborhood consists of a collection of people involved
in complex networks such as traffic networks. Similar to ant colonies, a city
is a system which has decentralized control, learning from local interactions
making a man-made self-organising system using emergence.

However, the beauty of these systems lies in the individual elements. These
units can think, restructure and communicate with other units. Some of these
characteristics are summarized as follows:

System is part of a larger complex system. The systems are connected
to other systems as a hierarchy or using input or output branches.

Systems are open systems. The systems are interacting with other sys-
tems continuously with no bounds. In a closed system, the system exists
as an isolated entity with specific boundaries, like gas molecules con-
tained in a container, where conditions of thermodynamics hold. En-
tropy changes can therefore be predicted. However, some systems are
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a collection of various smaller systems intertwined, have to modeled as
open systems.

Systems are dynamically changing. The environment around the indi-
viduals is constantly changing, influencing their behavior.

Display emergent behavior. The emerging behavior can be studied at
macro levels. For instance, insect colonies achieve their goals quicker
by working collusively among individual ants.

Individuals are adaptive. Depending on the changing environment and
available system resources, individuals adapt their behavior to survive
in given conditions.

Individuals are selfish. All individuals work for their own benefit using
local information.

1.8 Modeling and Simulation

Modeling and Simulation (M&S) is a core research area under scientific
computing, where artificial systems are created as models and simulated in
a virtual environment. Executing them in a virtual environment allows to
safely assume changes, in order, to predict how the system would behave
when certain changes are introduced in real world situations.

However, it is important to note that a model is only an approximate rep-
resentation of the system, showing only basic functionalities being explored.
It is often a very simple representation of the system, with clearly defined
assumptions embed into the model while it is constructed.

A model is a representation of an object, a system or an idea represented
in a form other than that of the entity itself [175]. Simulation allows the model
to be tested in a virtual world to check its reaction to certain conditions. The
model’s design would ensure how reliable it is for making predictions.

There are multiple forms in which models are created, such as physical,
where models are constructed as prototypes, or scale models, where they repre-
sent systems, and mathematical, where models are constructed as analytical
mathematical notations, linear and simulation-based representations. In all
cases, techniques chosen to construct models, depend on the objectives and
aims of the modelers. Model examples include, but are not limited to,

e Engineering applications: Test if certain temperatures will affect smooth
running of the engine. These include examples from designing and ana-
lyzing manufacturing systems or transport systems.
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e Biological models: Of tissues, neurons or cellular models to study effects
of chemicals and drugs on cell behavior.

e Economic models: Of various markets such as stock markets, labor mar-
kets or economic systems to study the introduction of migration, taxes
and money on the overall market behavior.

e Social science models: To study effects of various population dynamics
on areas and resources.

e Evaluating systems: Hardware or software performance for a computer
system or new military weapons system or tactics on enemy forces.

e Designing communications systems and message protocols for commu-
nicating entities.

There are various steps involved in constructing M&S mapping from real
world situations and simulating them in a virtual world. The steps involved
are as follows:

Step 1. Identify problem being investigated in real world: This is
very specific to hypothesis being tested, which can usually not be tested
in real or natural settings due to costs or impacts. This justifies it being
tried out as a virtual experiment first.

Step 2. Formulate model problem: Formulate a model for a system in a
manner by which it is created as a virtual representation. This involves
determining assumptions of the model, hypotheses being tested, kind of
data being collected from real world to test it and, finally determining
which tools to used to create the model. This usually involves talk-
ing to domain experts and collecting relevant data to construct most
accurate system representations. Computer simulations involve multi-
disciplinary approaches, where computer scientists work with biologists
or economists to construct computational models for systems from their
disciplines. A computer scientist has to ensure the model has been cor-
rectly represented and all necessary behaviors are captured by it.

Step 3. Simulate model using relevant software toolkits: Use software
tools to simulate a model.

Step 4. Analyze data collected: The simulation results are collected and
analyzed. The results can be used to find discrepancies and test theory
predictions, allowing modelers to verify their models.

Step 5. Data mining techniques: Data analysis techniques such as ma-
chine learning, pattern findings and data visualizations help determine
the simulation conclusions, in terms of testing the hypothesis.
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Step 6. Validity and verification of model: Involve validating and ver-
ifying results of simulation, to test if they are correct for conclusions
being drawn on hypotheses. At this step, review of the model correct-
ness and result reliability can circle back to step one, by finding issues
or wrong assumptions in the initial model constructed.

It is important for developers and researchers to remember that a model is
not a goal of the experiment, but it is a process by which simulation will find
solution to the hypothesis being tested. Thus the model is only an enabler to
the process being investigated [59]. Figure 1.5 shows a flow chart of processes
involved when creating biological models. The figure highlights how model-
ers sometimes need to rework through initial model descriptions, to correct
models, after expert advice and results are obtained.

DESIGN: Understand model

—> ldentify the memory variables of the agent.
Identify the functions the agent does.
Identify the communication the agent does with other agents.

Simulated

results
invalid IMPLEMENTATION:

Simulate the model to allow the agents

to interact.

TESTING:

Real experimental
data

Observe behavioural data using graphical <——
techniques and tools.

Simulated results
validated

Release model
understanding behaviour.

FIGURE 1.5: Modeling process in biology simulations. cf. [107].

1.8.1 Research Examples
Natural Systems

Falling under area of swarm intelligence, ant colonies are extremely efficient
in finding shortest possible routes to food in minimum time. Proposed in
Dorigo’s PhD work [53], ant colony optimization algorithms can solve complex
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problems like the travelling salesmen problem and network routing problems
for dynamic scenarios (Figure 1.6).
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FIGURE 1.6: Various time steps showing ant colonies finding and forming
routes to food sources. cf. [23].

Biological systems like the human body are extensively studied as complex
systems. The study of NFxB molecule is an example of studying how tran-
scription factors work in cells [149]. Apart from cells, foreign organisms like
bacteria, living in human bodies, have also been subject of much research,
where bacterial behavior is often studied in human stomachs to determine
how they survive in less oxygen levels [125].

Control Engineering

Control systems engineering involves design of robust applications func-
tioning in real world conditions. Research in this area has grown to accom-
modate various aspects like [95]

e Regulating control of systems.

e Building large systems like bridges or computers.

e Dynamic environmental conditions.

e Optimization and distributing data over large systems.

Being treated as complex systems, systems control theory analyzes large
systems as collections of smaller units working together to produce the system
output. For instance, Figure 1.7 shows a system made of three interacting units
A, B and C. These units can be a capacitor, transistor or a memory chip,
working together in the system. The system output produces an effect that
brings change in system input at next time step. This becomes an important
feedback loop, allowing the system to adapt to changing conditions in the
environment (dynamic environments).
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FIGURE 1.7: A system working in the environment. The system is composed
of three elements working together to make the system work efficiently. Output
produces a feedback, that produces change in the system as time progresses.

Cellular Automata

Cellular automata models have stemmed from basics of computational
theory, mathematics and biology. Developed by Ulam and von Neumann [198],
they were able to prove the notion of one robot producing another robot or
also known as ‘the principle of self-replicating systems’. A famous example is
the ‘Game of Life’ by John Conway which uses four simple rules of generations.
Here, every element is treated as a cell that transitions based on strict rules
predefined by life generations [159].

Being used as a more powerful computational model [203], principles of
cellular automata allow individual cells to react and change their states based
on their surrounding neighboring cells. If visualized as a plane of cells, there
can be a pattern that is observed moving across from one point to other, by
subsequent reaction of cells. For example, vibration of molecules in a solid,
when provided with heat, acts as a wave propagating from one point to other.

Agent-Based Models

The word agent has multiple definitions by different modelers. With re-
spect to agent-based models, the following definition is used in this book:

“An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design goals” Wooldridge and Jennings [205]

It does not specify that every gear in a clock be modeled as one agent or
the whole unit to be treated as one agent to reach model goals. This allows
modelers to define their own agents and their behaviors per model.
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Ideologies surrounding cellular automata models gave birth to concepts
of agent-based modeling. Reynolds, in 1985, introduced agent-based models
as a driving force for scientific computing, particularly using powerful par-
allel computers. The computer graphics expert produced the boids example
which depicted flocking of birds. Later, Langton coined the term artificial life
to describe similar simulations [201]. These allow simulations of large agent
populations to be executed in controlled environments, examining affects of
various rules on agent interactions.

Agent-based models encourage bottom-up approaches, allowing research to
focus on individual elements interacting with each other, rather than looking
at complete scenarios. Initially, pattern in models was proved using differential
equations with common examples being found in economic modeling, where
mathematical formulas are still being used to prove behavior of ideas. Miller
and Page [131] and Epstein [56] have favored agent-based approaches by saying
that research should be intensified to focus into agents rather than whole
systems, realistically allowing humans to be modeled as agents rather than
differential equations.

’ Complex system models
(economic, biological, social
networks)
Emergent behaviourusing
agent-based modelling

Scientific Computing

‘ Agent-based modelling |
Distributed and scalable on HPC and GPU

computing (FLAME)
e www.flame.ac.uk

FIGURE 1.8: Research areas of ‘Scientific Computing’ and ‘Distributed
Computing’ have a close relationship in agent-based modeling.

Advances in parallel and distributed computing can help scientific compu-
tation as data and computation grows (Figure 1.8). These can allow data to
be processed quickly and analyzed in real time to test models and make better
predictions of real complex systems. This work is considerably helped by com-
puting experts in parallel architectures to work with multi-domain scientists
to hasten scientific discovery in their fields.
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Engineers and researchers are continually trying to copy or mimic real natu-
ral systems to study how they behave. This can allow the design of efficient
computer networks or simulate robotic teams to help with disaster recovery
in earthquake scenarios. However, studying these real systems is complex and
often prone to error and costly.

Modeling and simulation (M&S) allows information to be extracted from
real systems, simulate these and test hypothesis without actually practising
in the real. Both terms model and simulation are used interchangeably at
times and involve using models, simulators, emulators and toolkits that can
write models, execute them and collect their data. Recognized as a separate
discipline, M&S has been applied to a range of disciplines such as defense,
building and construction, medical sciences and many more.

Figure 2.1 depicts the iterative process of facilitating a scientific method
to model observable environments in real world. Data are collected from pre-
viously known observations and combined with new methods to create an
abstraction of the real world. This scientific method is the process of learning
from the real world.

The process of creating a model hypotheses from the real world uses a
number of different techniques, like differential equations to represent how
system properties change with time, or use Markov models to depict state-
based systems. Evolution can be introduced into models to allow learning,
such that it evolves into an intelligent system to solve its goals. Minsky [133]
has favored use of artificial intelligence techniques to evolve into intelligent
machines.

17
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FIGURE 2.1: Scientific method. cf. [61].

2.1 Intelligent Agents

Evolutionary computation is a sub-field under artificial intelligence (AI)
research area, involving optimization to automatically solve difficult problems.
These contain the following:

e Always include an iterative process where models progressively update
their performance.

e Allow growth of given agent populations such that are internally modi-
fied based on performance.

e Processes can involve parallel processing.
e Mostly all processes are inspired by principles of natural evolution.

Evolutionary computation contains four sub-topics: genetic algorithms,
evolutionary programming, genetic programming and evolutionary strategies.
These are shown in detail in Figure 2.2.

Swarm optimization algorithms do not belong to this group, even if used as
one of the four approaches. Swarm optimization techniques are inspired from
insect colonies and involve large number of individuals working individually
to collectively solve the problem. For example, in Figure 1.6, ants could find
shortest possible routes to food sources by simply working together and leaving
pheromone trails for other ants [37]. These searches are constantly updated
depending on food availability and quality.

The focus of evolutionary computation research is mainly the algorithms
studying real systems, focusing on optimization and search problems. These
problems are difficult to solve and have high complexities, where evolutionary
algorithms can keep efficiency high at lower cost.
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—— Genetic algorithm

Evolutionary —— Evolutionary programming

Algorithms Evolutionary strategies
Evolutionary
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FIGURE 2.2: Separate researches in Al

Most techniques can be used together such as the swarm intelligence and
evolutionary algorithms, each bringing separate characteristics. Some tech-
niques like neural networks and classifier systems can use evolutionary algo-
rithms to improve themselves. Neural networks use evolutionary learning al-
gorithms to allow neural adaptive control in dynamic systems [54]. Classifier
systems is a technique which involves using a database of rules and deducing
which rules best suit the problems.

2.1.1 “Can Machines Think?”

Posing the question in one of his classic papers, Turing [195] laid the
groundwork for Al. He introduced the ‘Turing Test’, a game which determines
if a machine has become as intelligent as a human. The game consists of two
players, one being the human interrogator and the second be a machine or an-
other human. The objective is that the interrogator has to determine whether
the player being questioned is a human or machine.

Turing machines became the base for defining any kind of computing ma-
chine that can solve a given problem. A Turing machine is a machine which
reads input symbols of an infinite length tape, processes it, and writes it back
to the tape, producing an output. The transition function contains information
for machines on what to output and the next position for the tape.
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(a) State machine model.
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(b) X-machine model with added memory.

FIGURE 2.3: State and X-machine diagrams.

Based on the push-down automata theory, a number of computational
methods carry a resemblance to Turing machines. For instance, if there was
no input tape, and number of states was finite, such a machine would become
a finite state machine (Figure 2.3(a)). If the states were added with memory,
the machines would then become an X-machine (Figure 2.3(b)). Each machine
model carries its own properties and varies in computational power by kind
of problems it can solve.

Each of the machine models are useful methods by which behavior can be
defined. Transition functions, from one state to another, define these complex
functions for representing behavior. When self-replicating notions were intro-
duced, Fogel proposed using evolutionary programming techniques to operate
on finite state machines to create new finite state machines. Fogel [64, 65]
proposed a method by which new machines would ‘evolve’ more suited to
environment than initial machine configurations. Fogel’s work concentrated
more on evolution of complete programs, whereas Koza et al. [110] focused on
branches within the program to evolve. The following steps can help develop
new evolving machines:

1. Create a population of finite state machines.
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2. For each machine, observe an input symbol and output produced.

3. Find a method to measure outputs, using a payoff function, known as
utility function.

4. Determine fitness of each machine depending on result of the utility
function.

5. Machines with a higher payoff are retained to be parents for the next
generation of machines. Sometimes half the population is retained until
next iterative step.

6. Offspring or new machines can be produced as combinations of two
parent machines or by mutation (varying an input symbol or a next
state).

Fogel [61] modified complete state machines using evolutionary programs,
such as using state machines to play the prisoner dilemma games. These ma-
chines were represented as string structures, where genetic operations like
crossover and mutation can be applied to modify their structures.

Rechenberg [155] and Schwefel [172] viewed genes as behavioral traits of
individuals. Their evolutionary strategies represented the gene as a vector over
n dimensions, where mutation and crossover can be performed on n dimen-
sions and on the vector. Holland [88] [89] proposed using genetic algorithm
as a search method for adaptive systems. All of these methods use machines
to track a particular fitness landscape in a domain to find how far the ma-
chine is from ideal. Therefore, this highlights that genetic algorithms in agent
architectures would require fitness landscapes to work with.

Put forth as a ‘thought experiment’, von Neumann [198] presented a hy-
pothetical model of a machine that used raw materials from the environment
to produce a second machine by replicating itself. Self-replicating automaton
presented the grounds for building cellular automata experiments triggering
research in AI, where geography and interactions influenced the production
of new machines [105]. Although such a self-replicating robot in the physical
world may still be a budding area of research, the concept was introduced
and tested in a virtual world of simulation, extended using cellular automata,
later giving birth to agent-based modeling methods.

2.2 Engineering Self-Organizing Systems

A model is an approximate representation of a system, showing only ba-
sic functionalities or just parts being investigated. Various systems in nature
are observed and adopted to create self-organizing systems. Insect colonies,
cells and human societies are all examples of these using stigmergy or similar
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communication mechanisms to form patterns. Stigmergy is a communication
mechanism insects use to interact with each other using the environment.
For example, ants use pheromones to communicate pathways with other ants.
Human societies use messages to communicate information to each other.
Similarly, multi-agent systems use communication for coordination in a self-
organizing system.

2.2.1 Bring in the Agents

Modeling of complex system behavior is an emergent science which demon-
strate complex or social behavior of different communities. Agent-based mod-
eling is a technique which best models these systems, an alternative to con-
ventional differential equation methods. This approach allows a bottom-up
procedure, where the focus concentrates on individual interacting units, given
clear defined rules and allowed to simulate. The produced emergent pattern
of system behavior can then be studied to test and understand behavior of
complex systems, otherwise not possible from studying from an outside view.

There are various agent-based environments that can be used to design and
test models. Each of these are based on different computational models, vary-
ing in computational languages used. Grimm et al. [77] discussed a detailed
overview of the problems of verifying models because the tools themselves,
are not being designed on predefined software methodologies. They recognize
a need for rules to creating agent-based models. Generalizing these rules, al-
lows models to be created with formal methods, encouraging credibility of the
results.

Figure 1.5 discussed the process involved in writing an agent-based model.
The model starts with a description about individual elements as agents. These
agents are using a set of memory variables, functions and communication pro-
tocols, that allow them to communicate with each other and the environment.
Agents are implemented as separate pieces of code, which communicate using
messages.

The individual agent interactions allow certain macro variables to emerge
in the system, depicting how whole systems collectively behave. The simulated
model can be tested against real data to check its accuracy and validation.
However, the complexity in agent-based models increases as,

e Agents can travel in space unlike agents or cells represented in layers of
cellular automata.

e Every agent may have limitations in cognitive, physical or temporal
abilities based on the model.

e The interaction dynamics between agents lead to emergent patterns to
mimic natural system behaviors [174].

e Adopting agent-oriented approaches to natural systems involves model-
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ing many multiple agents. These have heterogeneous structures and are
decentralized in nature [207].

2.2.2 Characteristics of Agent-Based Models

Mimicking human societies is a challenge as human behavior varies from
person to person, in character and personality. These use various interaction
rules that are either defined earlier or introduced during simulations.

Techniques such as genetic algorithms or neural networks can be used to
produce agents randomly born with learning or evolutionary capabilities. This
means that the agent would act differently if on its own, than when it grows
in a group. As Ilachinski [94] argues “emergent properties are properties of
‘whole’ that are not possessed by any of individual parts making up that
whole: an air molecule is not a tornado and a neuron is not conscious”.

Figure 2.4 shows a complicated structure of a human agent, modeled by
[184]. Different levels of complexity exist, such as sensors, alarms, long-term
memory and even an action hierarchy based on particular situations with ac-
tion priority. Such a model would be increasingly complex in a computational
perspective. Making assumptions and specifying model objectives can help ab-
stract some of this complexity, making it easy to model humans in controlled
environments.

In terms of intelligent agents, Wooldridge and Jennings [205] have reviewed
various techniques for constructing and understanding these. The authors
point out that while building intelligent agents one should consider,

Agent theory. Implies that human behavior can be specified as a set of
attributes. These attributes can be beliefs, desires or intentions (BDI).
A system which has beliefs and desires is a first-order intentional system,
whereas a system having beliefs and desires about beliefs and desires is
a second-order intentional system. Beliefs are represented as norms in a
system like rules in Prolog.

Believe(Mary, world is flat) — Mary believes the world is flat.

These rules are defined as a collection in possible world semantics as
syntactic representation of languages. It consists of a modal-language
(modal operators) and a meta-language (possible world). The latter
refers to rule beliefs about goals and correspondence theories [204]. Fig-
ure 2.5 describes the various components of strong and weak actions in
agents. These use rules to achieve goals and desires. Agent communi-
cation languages use KQML (Knowledge query and manipulation lan-
guage) and KIF (Knowledge interchange format) for message represen-
tation.

Agent architecture. These can belong to three strands as follows:
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The "CogAff" project at the University of Birmingham has been developing

a framework for characterising a wide variety of types of minds, of humans,
other animals, and possible future robots. The framework incorporates
evolutionarily ancient mechanisms co-existing and co-operating or competing
with new mechanisms capable of doing different tasks (e.g. reasoning about
what might happen). The figure gives an "impressionistic” overview of some of
the complexity. E.g. different sorts of emotions are generated in different levels.
More details including papers, slide presentations and software tools can be
found at our web site: http://www.cs.bham.ac.uk/research/cogaff and talks
directory: http://www.cs.bham.ac.uk/research/cogafi/talks/#talk24

Further information from Aaron Sloman, School of Computer Science

FIGURE 2.4: Your mind designed for CogAff Project. cf. [183].

e Deliberative architecture: Systems can be defined as physical enti-
ties of symbols. Deliberative agents use symbols to symbolize sce-
narios and reason using pattern matching. These agents present
two problems:

— Transduction problem: How to represent real world in symbols.
— Representation/reasoning problem: Uses symbols to represent
real world.

Planning agents take symbolic representation of world, goals and
an action plan to achieve them.

e Reactive architecture: Use of behavior language like symbolic Al
Brooks [32, 31] argued that intelligence is an emergence property of
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agent interaction and can be viewed from particular perspectives,
“lies in the eye of the beholder”.

e Hybrid architecture: Combines two features stated above. Agents
have representation using deliberative architecture but also a reac-

tive part, such that they react to the environment using symbolic
Al

Additonally, Luck [51] presented more general agent attributes.

e Agent beliefs: Knowledge about itself and environment.

e Agent desires: The states the agent wants to achieve in response to
certain actions.

e Agent intentions: Plans adopted by agent.

e Plan library: Agents maintain a repository of available plans.

e Events: Agent actions using beliefs and goals.
Agents may sometimes be required to adopt goals of other agents. This
is argues in Social power theory where there is a dependence among
agents in a network for achieving their own goals. Such a system allows

agents to possess resources, creating the divide between some agents
being better off than others.

Agent language. Shoham [176] proposed agent-oriented programming as

e Logical system for defining a mental state of an agent.
e Interrelated programming language for programming agents.
e Low-level programs to convert agents in programming language.

Agent languages encompass the implementation aspects and techniques
as language representation of agents.

Autonomy Mobility
Social abilit ; Veracity
ocial ability Agent actions
- R —
Reactivity Benevolence
Pro-activeness Rationality
Weak notion Strong notion

FIGURE 2.5: Weak and strong notions of agent actions. Cf. [205].

Learning in system. Most agent-based systems have mechanisms to learn
and adapt their behavior. These agents could be
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e Reactive units. Using evolution or Darwinian system, agents react
to changes in system and adapt their behavior.

e Goal-directed units. A few agents will be working towards achiev-
ing their goals, such as companies taking over other companies for
growth or power.

e Planner units. Agents who are goal-directed but also consider en-
vironment and goods in their strategy planning.

Agents can use built-in tools to perform parameter learning and assess
their actions as they behave in the simulation. This can be achieved
through supervised, unsupervised or reinforcement learning, depending
on scenarios being modeled. This allows agents to change their strategies
or functions depending on personal preferences and information received.

Adaptive agents use multiple methods to learn about the system. Hol-
land and Miller [90] use genetic algorithms to model a population of
solutions, coded as strings of characters. Genetic algorithms learn by a
biased search towards a combination of solutions, using crossover and
mutation. Other methods like classifier systems are an adaptive rule-
based system, where each rule is in condition-action (if-then form). The
condition allows specific actions to take place.

Reinforcement learning determines how agents can maximize their goals.
This differs from supervised learning by finding a balance between ex-
ploration and exploitation. The state of the agent at any given time s; is
chosen from a set of allowable states S. The state also determines which
action will be chosen A(s;).

st € S choose action a € A(s;)

An agent finds a policy 7 : S — A to maximize its reward r = r14+r24r3.
Various kinds of learning include role learning, learning by discovery and
observation through experiments.

Each method is tailored for the problem modeled. Using evolutionary

techniques allows agents to make independent decisions because

Agents are autonomous. Agents can operate without intervention of
other agents.

Agents are reactive. Agents can read the environment and other
agents actions to react accordingly.

Agents are proactive where each agent works to satisfy a specific
goal.

Agents are social where they interact with other agents through com-
munication frameworks and alter behavior accordingly.
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Reinforcement learning can be used to teach agents correct behavior. A
simulation game ‘Black and White’ [191], used reinforcement learning to
teach characters the difference between evil and good. The game allowed
players to act like gods, with the capability of controlling creatures.
Alternately, evolutionary programs in games can also be taught to allow
new state machines to modify or evolve to generate more intelligent
programs (e.g. in a game Rougelike [50]). To achieve this, a reward
structure is used in conjunction with evolutionary algorithms to modify
behavior, with reward acting as a payoff (fitness).

However, reinforcement learning, in itself, is very limited as it focuses
only on agent performance. Agents can use it to choose different behav-
iors and modify a set of allowable actions to optimize behavior, adapting
at t.

Other research in evolutionary concepts in computer science are sum-
marized below,

Turing [195]. Recognized the connection between evolution and ma-
chine learning.

Friedman [69]. Proved thinking machine can be used in playing chess
games.

Friedberg [68]. Improved search space for good programs with given
possible solutions.

Bremermann [30]. Presented a multi-objective solution to a numer-
ous parameters in a function. “to a stable point ... [which] need not
even be a saddle point [of the fitness function].”

Reed [158]. Used evolutionary algorithms in poker games. Presented
use of crossover to find quicker solutions.

Minsky [133]. Objected to Friedberg’s solutions saying that they take
too much of time to compute.

Fogel [62] [63]. Combined finite state machine with payoff function for
producing evolving machines.

Fogel and Burgin [66]. Introduced evolutionary concepts for gaming.

Rechenberg and Schwefel [156] [173]. Produced evolutionary
strategies.

Holland [88] [89]. Worked on genetic algorithms for adaptive system.

Bick and Schwefel [15]. Compared results of experiments for vary-
ing crossover and mutation rates.

Turing [195] showed how evolution can aid machine learning by gener-
ating new state machines through trial and error. While, Friedman [69]
coined term ‘thinking machines’, using mutation and selection methods
in evolutionary processes to give birth to new machines. These efforts
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introduced the criteria of a ‘gene’ in evolutionary terms that can be
modified in computations. Genes can be defined in various ways such
as single alleles, like the ATGC in a human gene with four alleles. For
example, Figure 2.6 depicts a computer program represented as a tree
structure and a string vector.

/ ‘test1‘test2‘test3‘act1‘act2‘act3‘

String structure

‘act1‘ ‘actz‘ ‘acts‘

Tree structure

FIGURE 2.6: Program represented as a tree and a string. cf. [50].

Another view is of Mayr’s [129], where the author describes evolution
as an optimization process, where through learning the system gets pro-
gressively better. However, evolution involves alot of trial and error, with
new generations having better chances of survival in new conditions.

Synchronization and memory. Gilbert and Terna [73] represented object-

oriented languages with efficient memory management and time schedul-
ing to model agents. As stated “with such high-level tools, events are
treated as objects, scheduling them in time-sensitive widgets (such as
action-groups).” Objects can be tagged with time stamps for execution.

Different agent-based modeling frameworks handle synchronization
problems differently. For example, SWARM updates its environment
every time an agent does something. While, FLAME waits until the end
of an iteration to update changes.

Event-driven versus time-driven. Simulation can either be an event-

driven or time-driven. The event-driven approach allows a time step
to be updated after any event is triggered. Event-driven agent-based
model is a model where changes in state of the system is defined by cer-
tain events. For example, an agent becomes active or inactive, depending
on memory variables, denoting a progression in the system.

A time-driven system is determined by specific time lengths, which con-
tain a number of actions performed within a time frame. An agent is
required to finish all actions during that time step for the system to
move forward.
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Swarm is an example modeling framework that works as an event-based
model. In time-driven approach, the system is updated at end of a func-
tion map. FLAME works on a time-driven approach with synchronous
updating where all agents are updated at same time and in parallel.
Asynchronous updates in a model take place when agents are updated
in random order or based on their own internal clocks.

Distributed. Multi-agent systems are concerned with distributed and coor-
dinated problem solving. Bond and Gasser [26] describe distributed Al
in three areas:

e Distributed problem solving (DPS): how a problem is divided
among a number of nodes to be solved in parallel using knowledge
sharing.

e Multi-agent systems (MAS): concerned with ‘coordinating intelli-
gent behavior among a collection of autonomous intelligent agents’.

e Parallel AT (PAI): concerned with performance like different com-
putational speeds and finding new paths for problem solving.

Some agent-based modeling frameworks use CNET protocol, which work
on principle of a manager managing a set of workers. Every task is
decomposed into smaller subtasks and suitable nodes are selected to
work on the sub-task. At the end, the results are then integrated together
for a complete solution.

Decentralized behavior. Complex systems are decentralized and individ-
uals make decisions based on their locations. Each agent evolves de-
pending on information received locally. Whereas, evolution is based
on private memory and messages. Over time niches form, where some
agents do better than others.

Messaging. This is an important aspect of agent-based models allowing com-
munication between agents. These interactions are responsible for emer-
gent behavior. This follows the distributed nature of agent-based mod-
els, where messaging ensures all messages are read before decisions are
made.

Parallelism in agents. Some agent production systems use if-then state-
ments to update rules. These rules determine the next state moved to.
A knowledge database is plugged into resolve and execute the rules.
Various parallel Al languages, like Prolog, can be used to code these
examples. However, it is important to parallelize work and synchronize
among all agents to share information. Example factors considered with
parallelism are

e Task parallelism

e Match parallelism
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e OR parallelism
e AND parallelism

Agents are basically separate modules of code, heterogeneous in nature,
but sometimes similar in activities. They need to communicate and pre-
vent agents from accessing same resources leading to deadlocks in the
system. Some examples of parallelizing algorithms commonly used are
[166],

Algorithms which inhibit dependency. Firing of one rule deletes or
adds new rules to the database. Output dependency causes new
rules to be added to the database.

Algorithms which enable dependency. New rules satisfy one of the
existing rules.

Divide and conquer. Dividing a problem into sub-problems.

Systolic programming. Parallelism with locality and pipelining based
on overlap of communication, mapping of processors is similar to
problem for parallelism of Logo-like turtle program. Each process
has a position and heading. Activation of programs determines po-
sition and heading of new processes.

Lisp small talk. Uses symbolic structures. Lexical scoping and proce-
dural scoping.

Artificial neural networks. Distributed memory, distributed asyn-
chronous control and fault tolerance.

Parallelism in genetic algorithms. Genetic algorithms (GAs) are inher-

ently parallel. The genetic operations of evaluating each strategy to
produce new populations with higher average fitness, can be done in
parallel. However, Holland’s [89] version of genetic algorithms proposed
a need for serial execution of code when using crossover between two
processes.

Haupt and Haupt [82] discussed that using GAs for tackling compli-
cated engineering problems is computational intensive, but can be made
efficient by using the parallel nature of GAs. This results in a speedup
of simulations and reduces communication between population ‘islands’
being evaluated. Islands allows populations to be separated into groups
and then evolved separately.

In the case of agents evolving together, they could all select strategies
from one pool of a strategy population. This would slow simulations
down, as there would be a central agent holding strategies and commu-
nicate these to all agents, like using social boards to communicate ideas.
To reduce this complexity, agents can be equipped with their own strat-
egy populations of a fixed number of ten strategies, as shown in Figure
2.7. Each agent then evolves using these, similar to memetic algorithms
solving an optimization problem.
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FIGURE 2.7: An agent can represent a single strategy or multi-strategies.

Agent migration. Agent migration is one of the strongest advantage offered.
It allows computation to be extended at a level where space and position
are considered, essential in biological and molecular reactions. A few
points are,

e Migration reduces much of the network latency as agents perform
local interactions independent of complicated network structure.

e Each host should have a platform to incorporate a migrant agent.

e Security issues of agents. Moving agents to a new location could
allow access to its internal data easily.

e Agent data should be as minimal as possible to reduce overhead
while moving it to a new position.

Modularization and encapsulation. To improve evolvability of programs,
they have to be made as independent as possible. For instance, in pro-
gramming code if-then-else, do-while or for-loops, cannot be fragmented
into separate branches. This is because restructuring of code would re-
sult in compilation errors. It is essential to make sure the block code
does not change its structure.

Modularization is a method which divides the program into functional
units. Koza et al. [110] describe a module as a logically closed black box,
where only inputs and outputs can be seen, and internal mechanisms are
hidden. Each agent can be a module itself or a collection of modules.

Encapsulation is a complete set of program codes as representation of
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the gene itself. This can be an arithmetic expression represented as string
which can be combined with other expressions to find a solution gene.

Automatically defined functions. These ADFs represent a tree structure
of a program, and can be of two kinds:

e The result-producing branch evaluated using fitness for that
branch.

e Function-defining branch which contains a number of ADFs.

Can represent
a terminal value

Encapsulate

Modules

Library

FIGURE 2.8: Evolvability of programs.

Figure 2.8 represents how a program can be represented as a tree struc-
ture for evolvability of the program. A program can be broken down into
different functions it performs, which can be grouped to form a module.
The modules can be stored in a library of modules that hold the genetic
makeup of the program. The result-producing branch can be a collection
of two ADFs that produce one result that is fed into the program. Koza
et al. [110] describe how genetic programming can be used with ADFs.

1. Choose a number of function-defining branches.
2. Fix number of arguments for each ADF.

3. Determine function and terminal sets.
4

. Define a fitness measure for each.



Artificial Agents 33

2.3 Agent-Based Modeling Frameworks

Over the years, various platforms have been released for agent-based model
(ABM) building, each using different programming languages with their own
characteristics. Xavier [206] and Railsback [153] provide a detailed comparison
between platforms by implementing similar models on them. A comparison of
frameworks is shown in Table 2.1.

TABLE 2.1: Comparison of agent-based modeling frameworks.

SWARM | JADE MASON | RePast FLAME
C, XML
Objective Java. notations
Software C. In(liple— Uses Imple-d ?nd le{
methodol- mented as FIPA mente Java or par§ e
a  nested as a computing.
ogy protocols
class layered Based on
structure structure X-machine
foundation
Needs 1in-
Easy to use tegration
QUl Yes Yes Yes Yes with other
tools
Visualization | 3D [ 3D [ 3D [ 2D | 2D, 3D
Both.
Need to
. Both.
wrap Ob- | Both. Both. Both .
.o Java MPI  li-
Models exe- | jective Java con- | Java con- braries
cuted in Se- | C com- | currency currency coneur= for  mes-
rial/Parallel mands com- com- rency save
in Java | mands mands com- gh
for paral- mands exchanse
lelization
. Virus
Virus . . .
Commonly Sugarscape, i epidemics, | Mostly Skin
known various dzmics Sug- social grafting,
model disci- Sug- ’ arscape, science economic
examples plines arscape traffic projects models
simulation

Each of these platform provide modelers with various features. A detailed
analysis of frameworks is as follows,

SWARM. This toolkit allows researchers to build agents easily. Built on
object-oriented principles, SWARM uses Objective C++ programming
language to develop agents as objects with variables and methods. The
development involves using inheritance concepts, with new agent classes
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inheriting from the environment and having their own functions as well.
This allows agents to easily communicate with the environment as they
inherit variables from the environment.

The interface Probes to control the model

L
/(// Agents

<

Swarm |

=0 g @

Every level has its own clock
which is synchronised

Sub-Swarm —— |

FIGURE 2.9: Nested hierarchy of swarms.

SWARM also supports Java, allowing dynamic functionality by run-
time binding with Objective C++, allowing it to run models on parallel
machines. Figure 2.9 depicts how SWARM allows nested swarm hier-
archies to be developed, with each level to be scheduled with its own
scheduler. Agents can be designed to represent other sub-swarms that
contain their own set of agents and functions for different timescales.
SWARM provides a user-friendly Graphical User Interface (GUI) that
allows individual agents to be selected, new attributes to be added and
methods to be changed during runtime.

FLAME. Coakley [42, 40] introduced FLAME (Flexible Large-scale Agent-

Based Modeling Environment) as an agent-based framework to allow
simulations to run on parallel grid architectures.

Formal X-machines were introduced as agent architectures, which al-
lowed mathematical verification of internal agent states by using transi-
tion functions. Communicating X-machines were used to communicate
using messages as interaction rules as part of agent functions.

FLAME allows deployment of simulations on parallel computers that al-
low simulations of millions of agents to run in finite time using Message
Passing Interface (MPI) libraries for communication messages. MPI is a
programming technique used in parallel programming that allows mes-
sages from different agents to communicate easily across different proces-
sors and platforms. MPI details can be found at www.mcs.anl.gov/mpi/.
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MPT allows the model to be independent of hardware platforms involved
in the implementation, allowing messages to be packed into certain
binders to be sent across nodes easily and independently. A message
board is set up from which all agents can read information and perform
tasks. To ensure that all functions are in order, there are synchronization
points inserted in the model where all data are regulated before moving
into the next block of functions.

The synchronization points ensure all memory is synchronized among
agents before the agents move into the next block of functions. It is
important to synchronize the distributed data so that all agents are
aware of information update.

SOAR. Developed in 1983, SOAR is continually being used as an architec-
ture for developing intelligent systems. SOAR has been developed on
“the hypothesis that all deliberate goal-oriented behavior can be cast
as the selection and application of operators to a state” [111]. A state
is a representation of the problem-solving situation and goal as desired
outcome of the problem.

Based on [112] and [140], intelligence can be functionally described as
goals and realizable fundamentals. Newell described that all problems
can be broken down into smaller units and solutions of smaller units
can be unified for the larger perspective. SOAR allows features like long-
term memory, using different memories for different situations and using
state hierarchy, where states represent a memory situation. SOAR [84] is
being used for military training purposes by the U.S. army, where some
work depicts how emotions affect soldier decisions during warfare with
emotional agents, making them less predictable to study real situations.

SimAgent. SimAgent toolkit produced at the University of Birmingham was
developed as part of the Cognition and Affect project. The project is
specifically targeted to design human-like agents and study effects of
learning, feeling and emotions. The authors [182] argued that the frame-
work was developed to explore the ‘architectural design requirements for
intelligent human-like agents’.
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“We need a facility for rapidly implementing and testing out different
agent architectures, including scenarios where each agent is composed of
several different sorts of concurrent interacting sub-systems, in an envi-
ronment where there are other agents and objects. Some agents should
have sensors and effectors, and some should be allowed to communicate
with others. Some agents should have hybrid architectures including, for
example, symbolic mechanisms communicating with neural nets. We also
wanted to be able to use the toolkit for exploring evolutionary processes,
as in the ‘Blind and Lazy’ scenario.”

SimAgent has been coded using Pop-11 and Poplog. The programming
paradigms [182] use object-oriented programming based on ObjectClass
extension to Pop-11. Rule-based programming and pattern matching
are also based on Pop-11 with a Pop rule base library. The framework is
event-driven, where the toolkit allows events for instance, if the mouse
is used to move an obstacle across the scenario, the agent would dynam-
ically calculate their positions and change their walk direction.

Poplog supports Prolog to allow rules and behavior code for logic pro-
gramming. This allows neural networks to be coded separately and
tested [182]. SimAgent also uses an RCLib package for various tests,
using neural networks to implement how feelings are handled. Figure
2.4 gives a depiction of how an agent with thinking capabilities is visu-
alized.

Netlogo. Netlogo is a multi-agent programmable modeling environment and
is one of the most famous platforms. It allows modelers to give instruc-
tions to hundreds or thousands of ‘agents’ operating independently. This
feature makes it possible to explore the connection between the micro-
level behavior of individuals and the macro-level patterns that emerge
from interactions of many individuals. One of the platform’s most effi-
cient feature is its graphical user interface, which provides users with a
wide variety of options that can be used to manage models. The GUI is
user friendly and very easy to navigate.

Repast. Recursive Porus Agent Simulation Toolkit [7] developed in Java and
exploits all of its functionalities. Supported as an open source project,
new versions of Repast Symphony can handle high performance com-
puting (HPC) grids and have easy-to-use interfaces for building and
modeling agents. The platform can be used to create, run, display and
collect data from agent-based simulations and is fully object oriented.
Repast is a toolkit with a wide variety of tools and structures. Similar to
Netlogo, it also provides an efficient graphical user interface that users
can use to manage models, manipulate parameters, set output data and
show agent interactions in detail.
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JADE. Java Agent DEvelopment framework (JADE) is an agent platform,
developed completely in Java and uses Remote Method Invocation
(RMI) registry for concurrent connection between machines. Every agent
can be defined as a thread, which can simulate as a hierarchy of be-
haviors. All agents inherit from a class of super agents for common
attributes.

JADE is based on standards such as FIPA (Foundation for Intelligent
Physical Agents) protocols, used as standard communications languages
for agent and environment communication.

MASON. MASON is a multi-agent simulation toolkit that allows discrete
events to be simulated. Written in Java, it includes a 2D and 3D library
for visualization. MASON has been used to develop ECJ, as a Java-based
Evolutionary Computation Research System [123]. ECJ is claimed to be
highly flexible with classes dynamically compiled at runtime by a user-
provided parameter file.

TAEMS. TAEMS (Task Analysis, Environmental Modeling and Simulation)
is described as a ‘formal, domain-independent framework’ which at-
tempts to solve problems for intelligent agents in different scenarios.
The language produces a hierarchical structure of tasks the agent has
to perform and assesses them according to goals and deadlines. This
hierarchical structure can be viewed as a distributed goal tree, in which
branches are joined by AND or OR operations, to produce combinations
in scenarios with limited resources and decision-making.

2.4 Adaptive Agent Design

Agents can be designed as either a logical machine with a set of actions
or with artificial intelligence, as a set of controllers associated with actions,
or with psychology, to mimic minds of real people. However, mimicking the
mind of real people is a laborious task and also presents a potential problem
to computational complexities of code. Some reasons for this could be the
vast amount of memory required, or processing time to pool out relevant
information and process it to determine the next action of the agent.

Most researchers have adopted their own methods to achieve the mind
in their models. Dawid [47] and Vriend [200] have explored use of genetic
algorithms for making economic decisions. Sometimes these algorithms can
be calibrated to depict decision-making situations, like in works of LeBaron
[115] and Marks [127]. Duffy [55] used human subjects as experimental data
to calibrate learning in computational agents.

Researchers have often debated that learning architectures in agents can
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be categorized into specific disciplines - deliberative or reactive [205]. Slo-
man’s [182] work supported use of hybrid architectures, with SimAgent us-
ing a detailed agent architecture to encompass most attributes (Figure 2.4).
Wooldridge [204] studied developing computational logics behind architectures
of multi-agent systems.

2.5 Mathematical Foundations

Multi-agent systems are temporal systems that are highly dependent on
time steps. This allows agents to have a set of allowable action set, A;, made
available depending on current time step. Day [49] discussed that these actions
chosen by agents at time ¢ + 1, a;41, are dependent on various stimuli. These
are defined as follows:

A1 = f(otamtvdtvxtaut) (2-1)
where

e Observation of agent at time ¢+ 1, 0,41 = o(ay, s¢), where s; is environ-
ment state at time t.

e Memory of agent at time ¢ + 1, ms 11 = p(0t41, at, St)-

e A process of agent at time t + 1, diy1 = m(misy1, ar, St).

e Plan of agent at time ¢ + 1, 141 = d(di41, at, St).

e Implementation of agent at time ¢ + 1, ugr1 = e(xp41, ag, St).

The action structure is very explicitly produced by modelers or program-
mers, as a step-by-step procedure when creating predictable agents. An aspect
ignored above is the learning capability of the agent. Most actions may not
be chosen during a simulation. The agent should be able to evaluate available
actions and modify them to suit its purpose. This process of learning encour-
ages the agent to optimize its behavior, to better suit the conditions at time
t. To enable this, the agent code needs a feedback to assess its performance.

Machine learning techniques have used various methods to construct opti-
mizing of artificial agents. Reinforcement learning can allow agents to optimize
themselves in dynamic environments. To achieve this, agents have a method
to assess their performance in certain situations using a reward structure.

1. At time ¢, agent sees the environment state, s; € S and set of possible
actions at this state, A(s;). Note, previously a set of allowable actions
were dependent on time A;. Now, this is dependent on the environment’s
state, bringing in awareness of the agent’s surroundings, A(s;).
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Agent chooses an action to perform, a € A(s).

As a consequence of its action, the environment changes its state, s(t-+1),
and receives a reward or payoff, ry.

. Based on inputs, the agent chooses a set of actions to help maximize

reward obtained.

Summarizing above, formally a multi-agent system should consist of the
following, in addition to Equation 2.1:

A set of environment states, s € .S,

A set of actions for agent, a € A,

A set of allowable actions at state s; for agent A(s;) C A,
The action chosen by agent at time ¢, a; € A(s¢),

A set of scalar rewards r; received by agent at time ¢ dependent on how
it performed at time ¢ — 1.

2.6

Objects or Agents?

Code can be objects or agents. The differences are summarized,

An object is a term that accommodates object-oriented programming
principles, which allows objects to relate to other objects, through in-
heritance and attributes. Agents, however, are complete code pieces that
hold all data properties within itself.

An object allows data size to be reduced by inheriting functions and
attributes from parent classes. An agent has a bigger size for an individ-
ual, as they contain data and functions with their memory. As agents
are isolated and work independently, this is a great advantage in paral-
lel computing, when more than thousands of agents are deployed over
processors and minimum communication across processors is preferred.
If there is too much communication across processors, this increases
computational overhead of messages, introducing latency. All communi-
cating agents can be placed on the same processor to reduce overhead.
These are load-balancing issues in parallel computing.

Agents allow experimenting with bounded information principles.

Agents can use machine learning techniques by learning. Multi-agent
learning can be both cooperative and competitive learning.
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“Why can’t we build, once and for all, machines that grow and im-
prove themselves by learning from experience? Why can’t we simply ex-
plain what we want, and then let our machines do experiments or read
some books or go to school, the sort of things people do. Our machines
today do no such things.” [135]

Figure 2.2 depicts different research, stemming from the umbrella of artifi-
cial intelligence. Each method is designed for specific purposes, such as genetic
algorithms are efficient optimization techniques to search in NP-hard problems
or neural networks used to encourage speech and voice recognition in software
and other areas. Researchers [167] compared the efficiency of these techniques,
when applied to similar problems and drawn conclusions for computational
efficiency, resources and time.

Advances in parallel computers and architectures have aided research
in multiple areas of science and engineering, with ABM platforms work-
ing with researchers with less programming experience. Sante Fe has pro-
duced various agent-based models of various kinds like artificial stock market,
molecular structures and more. Details can be found at the main website
(http://www.santefe.edu/).

2.7 Influence of Other Research Areas on ABM

Markov modeling using Markov decision processes. These models are
based on mathematical expressions of Turing machine models. The algo-
rithm involves executing a number of rules, encoded on a symbol string.
Markov models can be expressed as chains containing stochastic pro-
cesses whose states change with time. These state changes carry con-
ditional probabilities associated with them. The future states are inde-
pendent of past states.

Markov decision processes use a reward function attached with Markov
chains. For every transition, the state receives a reward that affects
the transition probability of the state. Using reinforcement learning,
these systems are useful in dynamic programming problems and training
problems such as using unobservable states in hidden Markov models.

Neural networks. These are recreate biological structures of the neuron ac-
tivity in organisms. The various nodes are connected to each other, with
each connection carrying weights for the path to process data. Neural
networks can be trained using real data. The simulated data can then
be verified if it produces similar results.
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Mechanism design (MD). Parkes [146] described mechanism design as a
problem for designing a protocol, distributing and implementing partic-
ular objectives of self-interested individual agents. An agent makes a de-
cision respecting other agents, based on its own private information and
behaves selfishly. The Economics Nobel Prize for 2007 was presented to
the Mechanism Design Theory [93]. It follows the “Hayek theory of catal-
laxy where ‘self-organizing system of voluntary co-operation’ is brought
about as market progress”. However, there is criticism to the theory,
stating that if MD were used to design markets, some agents still end
up monopolizing markets.

Gaussian adaptation. Evolutionary algorithms designed for stochastic
adaptive processes take more than one attribute into consideration. The
number of samples is denoted by N dimensional vectors to represent
multivariate Gaussian distribution.

Learning classifier systems. These LCS use reinforcement learning and
genetic algorithms. The rules can be updated using reinforcement learn-
ing, allowing different strategies to be chosen.

e Pittsburgh-type LCS - population of separate rule set represented
by GA, recombines and produces best of rule sets.

e Michigan-style LCS - focuses on choosing best within a given rule
set.

Reinforcement learning. As described above for optimizing behavior.

Self-organizing map. Similar to Kohonen map, it uses unsupervised learn-
ing to produce low-dimensional representation of training samples, while
keeping the topological properties of input space. Uses a feed forward
network structure with weights to choose neurons and produce Gaussian
functions.

Memetic algorithms. Learning algorithms, a combination of swarm opti-
mization and genetic algorithms. Each individual program is chosen from
a population and allowed to evolve. Each individual uses a learning tech-
nique to evolve either Lamarckian or Baldwinian learning. Lamarckain
[113] theories use environments to change individuals, known as the
adaptive force. Baldwinian [18] uses learning in genetic material of the
individual. These are supported by trial-and-error and social learning
theories. For instance, trait becomes stronger as a consequence of in-
teraction with the environment. Individuals who learn quickly are at
an advantage. Blackmore distinguishes the difference between these two
modes of inheritance in the evolution of memes, characterising the Dar-
winian mode as ‘copying the instructions’ and the Lamarckian as ‘copy-
ing the product’ [24]. Each program is treated as a meme. The next step
involves these memes to coevolve to fit the problem domain.
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The Flexible Large-scale Agent Modeling Environment (FLAME) was devel-
oped through collaboration of the Computer Science Department at University
of Sheffield (UK) and the Software Engineering Group (STFC) at Rutherford
Appleton Laboratory, Didcot (UK).

The framework is a program generator that enables creation of agent-
based model simulations that can easily be ported onto high performance
computing grids (HPCs). The modeler defines models using XML notations
and associated code for agent functions is given in C language. FLAME is
able to use its own templates, to generate serial or parallel code automatically,
allowing complex parallel simulations to execute on available grid machines.

FLAME agent models are based upon extended finite state machines (or
X-machines) that allow complex state machines to be designed and validated.
The tool is being used by modelers from nearly all disciplines - economics,
biology or social sciences to easily write their own agent-based models, run
on parallel computers, without any hindrance to the modelers to learn how
parallel computing works. The toolkit was released as an open source project,
in 2010, via its web page (www.flame.ac.uk).

Agent structure, their messages and functions are defined in the model
description file. The model description file, written in an XML format, is fed
into the FLAME framework to generate a simulation program. The simula-
tion program generator for FLAME is called the Xparser (Figure 3.1), which
is a series of compilation files, compiled with GCC (Gnu Compilers) and ac-
companying files, to produce a simulation package for running simulations.
Various parallel platforms like SCARF, HAPU or IceBerg have been used

43
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FIGURE 3.1: Block diagram of FLAME. cf. [76].

in the development process to test the efficiency of the FLAME framework
[41, 39].

3.1 FLAME and Its X-Machine Methodology

FLAME agents are based on mathematical notation of formal X-machines,
to represent the agent architecture, their memory, messages, states and tran-
sition functions. Compared to traditional state machine models representing
an agent, extended state machines (X-machines) are a powerful model that
can represent complete definitions of agents. With added complexity, memory
and communication protocols, communicating X-machines can easily be used
to mathematically define and verify large complex systems as they interact
through messages.

An X-machine can be formally stated as [104],

X=(I,0,M,S,F,T,1S,IMS) (3.1)
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where
e [ is sequence of inputs to machine X,
e O is sequence of outputs of machine X,
e M is memory of machine X,

e S is sequence of states of machine X,

F is set of functions (F : I x M — O x M) of machine X,

T is set of transitions (T : S x FF — S) of machine X,
e ]S is machine’s initial state X,
e JMS is machine’s initial memory state X.

Figure 3.2 describes a state and a corresponding X-machine state diagram,
for an ant which forages for food and travels back to the nest. Figure 3.2(a)
shows the state machine diagram having more number of states and transition
functions as comapred to the X-machine in Figure 3.2(b). The X-machine
can represent most of the complexity by functions acting to its memory, not
possible as a state model. The transitions between states are a result of these
functions and not conditions (which is seen in state machines).

The transition functions are also dependent on memory of the ant, being
updated whenever there is a change in state. The memory can contain infor-
mation such as variables to ‘stay in nest’ or ‘move’ in ‘Moving Freely’ (Figure
3.2(b)).

Every state in an X-machine diagram shows the state of the memory. For
example, when the ant is ‘at-nest’, in the memory this is represented as the
nest coordinates. In this state, the ant can perform only certain functions
such as staying-at-nest, move, move to food or ignore food. Depending on
these functions, the ant can change its memory state, allowing another set of
functions to become available to the ant. It can decide to ‘look for food’, lift
food or get lost in the surroundings.

X-machines can represent more detailed agent descriptions, memory and
functions, more suitable to design computational agents and also based on
mathematical foundations. A basic definition of an agent A is

1. A finite set of internal states
2. A set of transition functions operating between states
3. An internal memory set which is finite

4. A language for sending and receiving messages between agents

A= (EvraQan(I)aFaqumO) (32)

where
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FIGURE 3.2: State and X-machine diagrams of an ant foraging for food.
[104].
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3 are a set of input alphabets,
e [ are a set of output alphabets,

@ denotes set of states,

e M denotes variables in memory,

® denotes set of partial functions, that map input and memory
variables to output and a change on memory variable. The set
P: X xM-—=T xM,

F is transition function to next state, F: Q x & — Q,

qo is initial state and

e my is initial memory of the machine.

3.1.1 Transition Functions

Transition functions allow agents to change their state to modify their
behavior. These require inputs on their current state s(1), current memory
values m1, and the possible arrival of a message at time ¢;. Depending on these
three variables, the agent changes its state to another sy, updates its memory
to mo and optionally sends another message to. Some transition functions may
only perform a function on the memory, where messages are empty ), or with
some data.

Message = {0}, < data >} (3.3)

Agent transition functions are expressed as a set of stochastic rules with
time.

3.1.2 Memory and States

The differences between internal states and internal memory sets allow a
flexibility in modeling systems. There are situations where agents have only
one internal state and various complex variables defined in memory. Equiva-
lently, agents can have simple memory variables, but a large state space with
multiple memory functions.

Software behavior has traditionally used finite state machines to model
a system as inputs and outputs. More abstract system descriptions have
included UML (Unified Modeling Language) notations [205], but these are
mainly diagrammatic representation, lacking writing and testing simulation
code descriptions.

Testing a system, specified as a finite state machine, allows its behavior,
expressed as a graph, for traversals of all possible and impossible executions
of the system. Testing an X-machine, with memory, follows main stages.

e Identify system functions.
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e Identify states which impose order of function execution. For each state,
identify the memory as a set of variables, accessed by outgoing and
incoming transition functions, similar to the process of branch traversal
used in testing methodologies.

e Identify input and output messages.

As shown in Figure 3.3, FLAME agent architectures contain,
e A finite set of internal states of agent,

e Set of transition functions that operate between states,

e An internal memory set of the agent,

e A language for sending and receiving messages,

X-Machine Agent

Memory
M M
T
= ]
£l =
-] ot
o sl s2 Meszages
=
S3 1 R
L -

FIGURE 3.3: FLAME uses strict X-machine architecture - Memory, Func-
tions, States and Messages.

3.2 Using Agile Methods to Design Agents

Agile software development encourages principles for developing software,
where requirements and solutions evolve through collaboration between clients
and developers. Extensively being used in industrial software engineering prac-
tices, the approach has proven very successful by promoting collaboration,
adaptive planning, early delivery and continuous improvement for the product
being delivered. Figure 3.4 presents a mapping of how agile methods incorpo-
rate agent-based modeling development as a software project.

Incremental software development or agile methods were a reaction to
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FIGURE 3.4: Incorporating agile methodology in agent models. Modified
from [20].

traditional, rigid, micro-managed software deliveries, where customers were
often not happy by the software products received. Agile methods introduced
new ideas with various enhancements to product development cycles using
scrum, extreme programming (XP), adaptive software development or even
feature-driven development. Based on the Agile Manifesto [20], it follows,

1.

® N oo W

Customer satisfaction is achieved early via continuous delivery of the
product.

Remain flexible to change requirements.

Working software is delivered every few weeks.

Nearly everyday cooperation is between developers and clients.
Projects are built via motivated individuals and teams trust each other.
Encourage face-to-face meetings.

Development is maintained at a constant pace.

Attention is given to technical design and excellence for product.
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FIGURE 3.5: Agile agent development process.

9. For simplicity, try not to increase work if not needed.
10. Allow products to emerge from teams.

11. Teams continuously reflect their performance, share ideas and learn,
becoming effective.

Developing agent models, using agile allows multiple domain experts to
work together, to develop software models. It enables computer scientists to
work closely with domain experts, to build a model based on domain require-
ments. Testing of model and verification is also continuously done at every
stage of the release, minimizing risk of wrong assumptions being implemented
in the model.

Agent-based models are difficult to implement due to sheer complexity of
models. Through the process in Figure 3.5, domain experts can interact closely
with modelers, to monitor model development and research hypotheses. How-
ever, with these advantages, the process sometimes slows down development
and introduces the need for continuous client involvement. But at the end of
every cycle, as the model matures, the clients are able to monitor and develop
ideas and test these through their models before releasing them to the research
domain.
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3.2.1 Extension to Extreme Programming

The classic approaches to developing software include following the wa-
terfall or spiral models of development. In general, these include stages of
requirements analysis, developing specifications, design and architecture, cod-
ing, testing, documentation and maintenance. However with their advantages,
there were a number of issues leading to the development of using scrum and
XP approaches.

Agile methodologies involve multiple interactions and software evolves
through different phases. Extreme programming also falls under Agile soft-
ware development methodologies and stresses customer satisfaction. It empow-
ers programmers to respond to the customer changing demands, emphasizing
team work by giving equal opportunities. Eventually teams become productive
and self-organize for efficiently problem solving. It uses five essential building
blocks:

e Communication: within team and with customer.

Simplicity: Change requirements as per customer needs and deliver early.

Feedback: Testing starts from day one.

Respect: within team and customer.

Courage: to rebuild if necessary.

Small and functional releases of code are done regularly, where customers
can evaluate and have visibility at all times. Given the nature of building
agent-based models, XP is an ideal process of developing these. It recognizes
that all requirements will not be known at the beginning of the model and
may change as it develops. The team can plan small releases, accommodating
tools to build communication and continuous development improving design.

Developers can use X-machines and XP approaches together, to help de-
velop list of inputs, processing functions, outputs and encapsulate these as
agents. These can then be extended to test-driven approaches for testing cor-
rect agent behavior with FLAME.

3.3 Overview: FLAME Version 1.0

FLAME can model various levels of complexity - from modeling molecules
to modeling complete human communities. FLAME does this by only changing
agent definitions and functions [42]. An agent architecture with characteristics
is shown in Figure 3.6 (Figure 3.3).

e The simulation contains multiple types and agent concentrations, that
are of similar kind or behave differently across scenarios.
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Structure of an Agent

Memory

Function 1 {....}

uncti )
List of functioi/,/’> Send and receive
to perform Function 2 {....} messages

Function 3 {....}

FIGURE 3.6: Structure of basic agent. Agents represent any individual such
as a household, an ant or a firm.

e Agent memories enable heterogeneity in agent population, representing
unique qualities.

e Agent performs a list of functions as actions in a scenario, depending
on model design.

Memory

«——

Messages out

4><(7

T Messages in
Transition

functions are influenced
by messages and memory

Internal
states

Agent X-machine 1 Agent X-machine 2

Message Board

FIGURE 3.7: Two X-machine agents communicating through a message
board. The message board library (Libmboard) saves current active messages
during the simulation time step.

The X-machine agents communicate through messages, using interaction
rules specified in model description (XML) files. These involve posting to and
reading from message boards, shown in Figure 3.7. FLAME thus follows these
steps:
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Identify agents and their functions.

Identify states which impose some order of function execution within
agents.

Identify input and output messages of each function (including possible
filters on inputs).

Identify memory as a set of variables, accessed by functions (including
possible conditions on variables for functions to occur).

Agent A Agent B
Iteration Starts (/ Start \"‘ ‘/ Start \‘,
Function 1 Function 1
o = ~ /} — "--.\
| | | |
— A
Function 2 Function 2
N T T
Iteration Finishes |L/ End ) ,f/ End )
~ SRR 7

FIGURE 3.8: One iteration with two agents, each with two functions.

Figure 3.8 shows a basic two-agent structure, with two functions, without
any interaction between them. The agents have a start state and traverse
states, until they reach end state. This process runs during one time step
or ‘iteration’. Figure 3.9 shows how transition functions perform on agent
memory, reading and writing to it.

FLAME provides a number of advantages for writing agent-based models:

Ease of programming using C language.

Ease of parallel computing, enabling the possibility of having a large
number of agents on parallel processors.

The agent architecture defined using X-machines. This architecture adds
flexibility as additional memory and functions.

Because the back-end is written in C language, it is easy to allow the
framework to communicate with other languages if required.
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Read Write

Input Output

Read Write

FIGURE 3.9: Transition functions perform on memory variables.

e Further operations such as graphics and genetic operation libraries can
easily be merged into the framework, or adapted with FLAME’s own
libraries added as code extensions.

3.4 Libmboard (FLAME message board library)

Messaging results in the communication overhead when agents send and
receive messages. The Message Board Library, designed by STFC, was built
to handle these communications in an efficient manner. Agents post their mes-
sages to local message boards, where all agents can read, instead of sending
messages individually to agents. These message boards are regularly synchro-
nized to prevent irregular data repetitions.

FLAME uses message passing interface (MPI) to allow platform indepen-
dence in implementation, by allowing the message to be packed into a certain
binder, which can be sent across nodes easily and independently. A message
board is set up from which all agents can read information and according
to their functions perform tasks. The library uses distributed memory model
Single Program Multiple Data (SPMD) paradigm to communicate messages
efficiently (Figure 3.11).

Various experiments were performed to measure how messaging time can
affect simulation time of an experiment [41]. Table 3.1 discusses how simu-
lation times change with number of processors and platforms for the same
EURACE model (Figure 3.13) [39]. The experiments vary simulation times
by varying the message filters, agent partitioning in geometric or round robin
arrangements and various HPC architectures. Varying the agent distribution
across the nodes can affect how many agents have to communicate across
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PARALLEL

FIGURE 3.10: Serial versus parallel execution of agents.
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MESSAGE BOARD SYNCHRONISATION

FIGURE 3.11: Distributed memory and synchronization.

nodes and message filters are embed in XML notations to reduce number of
messages being searched through by agents (Figure 3.12).

3.4.1 Compiling and Installing Libmboard

The version of Libmboard used with FLAME version 1.0 was “libmbord-
0.2.1” built using a Linux instance. Provided with two folders ‘src’ and ‘build’
for compiling, it is linked with FLAME executable files. After building, the
next command extracts the zipped Libmboard folder to an existing folder.
After successfully extracting Libmboard, enter the local Libmboard folder to
build and install it.

> mkdir ~/src ~/build
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FIGURE 3.12: Using filters and iterators to quicken message parsing for
agents.
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TABLE 3.1: Simulation times across multiple processors
in HPC grids [76].

Number of Processors | HAPU | NW-Grid | Hector

2 92.3 43.2 -

4 43.3 324 29.8
6 76.9 29.3 26.2
8 63.6 30.8 24.1
10 72.1 37.3 22.9
12 34.6 36.5 22.0
14 82.5 40.5 22.1
16 45.0 41.0 21.7

Tining results for 16 region nodel, 248 iterations, round-robin, Revision 2754
108

h‘apu, —_—
nu-grid,
hector —+—

Tine per iteration {s}

30 - o

29

2 4 -] 8 18 12 14 16
Hunber of processes

FIGURE 3.13: Simulation times across multiple processor nodes.

> /dev/null
> tar zxvf libmboard-0.2.1.tar.gz C "/src
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> cd “/src/libmbord-0.2.1

> ./configure disable-tests with-mpi=/usr/1ib64/mpich
--prefix=HOME/build/libmboard

> make

> make install

3.4.2 FLAME’s Synchronization Points

FLAME produces a state dependency graph for each model that contains
information on function order executing in one iteration. Common paralleliza-
tion problems occur due to occurrence of deadlocks during execution [43]. A
deadlock occurs when

e A resource is not in mutual exclusion condition, where the resource
cannot be used by more than one process at one time.

e Processes which are holding resources wait for more new resources.

e No resource can be forced to be removed from the process using it, until
released by the process.

e Two or more processes form a circular condition, where one process is
waiting for the second process to release a resource, at the same time
when the second is waiting for the first to finish working with it.

FLAME agents communicate through messages being written and read
via the message board library (Figure 3.11). Using a model description file,
it works out possible synchronization points between functions in both serial
and parallel nodes (Figure 3.10). These points create a function interaction
dependency with the message board library, making sure all information is
homogenized for all agents. This ensures that deadlocks can be prevented
when the model runs on parallel computers.

Figure 3.14 shows how synchronization points are set between messages
being sent and read by functions. At a synchronization point, the message
board for a message list is locked for reading. This allows all agents to send
messages to the message board, before any other agents can start to read
them.

This approach is good for parallel computing, but also prevents agents from
executing any dependent functions until all messages are read. All functions
that involve reading that message board are then scheduled to run after the
function sending the messages has finished. This allows all agents to follow
particular plans and cannot change their behavior during a time step.

If agents need to change their functions, this is done by implementing a rule
database or adding flags to which function to execute. The synchronization
points have to be scheduled around these choice functions. FLAME can also
specify a message range to build local social circles and message filters to
enable neighborhood emergence.
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Timeline

Messages copied to
message board memory
(All agents have done this)

Message board locked
(synchronisation point)

Message board unlocked

Messages copied from
message board to agent
memory

i

Function 1

Message out to message board

>

Function 2

Message in from message board

FIGURE 3.14: Timeline showing when the synchronization point occurs
when messages interact with functions.

3.5 FLAME’s Missing Functionality

Using the X-machine approach provides agents with much needed com-
plexity to model and simulate complex models. However, there are a number
of advantages other frameworks provide, which FLAME currently does not.
This makes it necessary for modelers to add more complex code, embedding
complex behavior into agents.

Static global conditions. Agents behave in a world with no changing con-
ditions, as there is no global environment agent acting as the world.
None of their decisions have any effect ‘on the world’. It only acts as a
space. This requires a central agent to be programmed into the system

if the model needs a world representation.

No learning or adaptation in agent functions. Agents cannot learn about
their performance and adapt to new conditions. This would require ad-
ditional programming to add a reward function and complex function

choices to show adaptation.

Assumption of perfect rationality in agents. Agents have access to
complete message boards and perfect knowledge, unless randomness is

added to the message choice.

e Modelers assume agents have perfect knowledge of the past and the
present, including the model they exist in.
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e Agents are also assumed to have perfect foresight.

e All agents are homogeneous or heterogeneous, represented as dif-
ferent values for the same memory variables.

e All agents have a maximum expected utility in decision-making.

The lack of networks. Most agent communications are based on networks
formed [75]. FLAME models are independent agents with no links be-
tween them. FLAME does not create neighborhoods, unless specified.

There are additional restrictions in FLAME, because of its parallelization
ability and synchronization points in agent functions and messages. These
points ensure that all prior agent functions are finished, before the simulation
progresses. At these points, the message board is locked, until all agents have
finished sending their messages to that particular message board. The board
is only unlocked when it is read by agents. Figure 3.14 depicts this along with
a time line to show when these occur.

Synchronization points are useful to remove deadlocks, but makes agents
wait to finish processing before it can continue. However, this architecture also
makes the system extremely predictable. The agents have pre-knowledge of
what to do and makes it impossible for them to learn and change their behav-
ior. This prevents emergence to occur at lower levels of these systems, only
seen above by predictable behavior below. In order to encourage emergence,
as in real systems, modelers need to overcome these assumptions:

Adaptability of agents is ignored.

Cannot allow agents to think.

Allow emergence in the model at lower levels.

Somehow not to compromise on the parallelism effort of the models, else
it will crash during execution.
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FLAME stands out from other agent-based modeling frameworks, allowing
the parallel deployment of the simulations on large parallel computers using
Message Passing Interface (MPI). MPI is used to send messages between
agents, located on different nodes or processors on various platforms. This
capability allows FLAME to run large simulations (up to 500,000 agents) in a
matter of minutes, enhancing research in time and complexity in the written
models [107]. FLAME reads the model files and automatically generates a
large simulation program in C which can be run in parallel by using the ‘-p’
flag or in serial by default.

The input files defined by the modeler are

e Model.xml - Multiple xml files containing the whole description of the

model such as agent definitions, memory variables, functions and mes-
sages between them.

e Functions.c - Multiple ‘.c’ files contain implementations of agent func-

tions, names of which are specified in the xml files.

61
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X parser make

files
Libmboard

Xparser.exe B Main.exe |l 1-N
Functions.c Xml files
0.xml

Xparser files

FIGURE 4.1: Block diagram of the Xparser, the FLAME simulation com-
ponent. Blocks in blue are files automatically generated. The green blocks are
modeler’s files.

e 0.xml - This contains initial states of memory variables of agents, ini-
tialization of all memory parameters.

The number of the resulting XML files depends on number of iterations
specified in the model run (through Main.exe).Figure 4.1 shows which parts
of the model are written by modelers and which are the code produced by
Xparser. Figure 4.2 shows how the software blocks exists and interact with
the input files in the block diagram.

4.1 Setting Up FLAME

FLAME executes on Windows, MacOS and Linux operating systems. The
list of files required:

e Latest version of the framework (Xparser)
e C compiler such as the GNU compiler

e Libmboard files for parallelization tailored for all windows, macos and
linux users.
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FIGURE 4.2: FLAME software blocks.

4.1.1 MinGW

The recommended C compiler is MinGW, built in Unix. Windows users
can download a copy from the following link: http://sourceforge.net/
project/showfiles.php?group_id=2435&package_id=240780

Configuring MinGW for Windows users:

Computer — Properties — Advanced settings — Environment variables
— System variables

Select ‘Path’ and edit it as follows:
e Add the path of the MinGW after *;’

C:\MinGW\bin
e Rename
C:\MinGW\bin\mingw32-make.exe

to ‘make.exe’

4.1.2 GDB GNU Debugger

For debugging, GDB GNU Debugger is recommended. It is freely available
with how-to-use tutorials. You can get your free copy from the following link:
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http://sourceforge.net/project/showfiles.php?group_id=
2435&package_1d=20507

Note: Windows users are recommended to use the version 5.2.1 (available
at the above link).

4.1.3 Dotty as an Extra Installation

The parser creates diagrams about the function flow in the model. These
are created in an ‘.dot’ format. In order to view these files, download Graphviz
from www.graphviz.org. Grpahviz also allows the files to be converted into
other forms of images or formats like pdf.

4.2 Messaging Library: Libmboard

The Libmboard files help with parallelization of the models. These read
the messages during the simulation and create message boards, to efficiently
manage messages. Working on various platforms, versions of Libmboard have
been created to allow the execution either on Windows, Linux or MacOS
platforms.

For Windows: Download Libmboard for Windows. Unzip and place the
folder where the model is. This is an already precompiled version for Windows
platforms.

For Linux/Mac systems:

1. Download the latest version of Libmboard from ccpforge. Place this
anywhere, and point to it when running the simulation.

2. Go to the folder where Libmboard is to be placed. For example, in
‘Volumes’, use following command to make a directory for Libmboard:

> mkdir libmboard

3. Unzip and access the downloaded Libmboard folder.

>./configure --prefix =/Volumes/libmboard --disable tests
> make

Once successful, move to folder ‘Volumes/libmboard’
> make install

This will compile the Libmboard on the system.
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4.3 How to Run a Model?
Go to the Xparser folder and compile it, ‘make’ (MinGW).

> cd xparser
> make

This compiles the Xparser and generates ‘xparser.exe’. The simulation
program then uses the model XML description to parse the model.

> xparser ..\model\model.xml

The model can then be compiled to generate simulation files and create
the ‘main.exe’.

> cd ..\model
> make

For Mac/Linux users:

For compiling the simulation program on Mac/Linux users, the Libmboard
folder needs to be documented with the Xparser global file. This is done by
compiling the model with specifics on the Libmboard location.

> make LIBMBOARD_DIR= /Volumes/libmboard

The model executes for number of iterations, using the 0.xml file as initial
memory.

> main.exe 100 xml\O.xml

This command runs the model for 100 iterations, generating 100 XML
files.

4.4 Implementation Details

The FLAME Xparser generates compiling files for the model when simu-
lated. Taking inputs - the model XML file, template files and agent function
files the Xparser generates the following files:

e Doxyfile - Generates project-related configuration options such as output
folders, input files specification and path builders.

e Header files for every agent with “.h’ prefix - Generated with a model
xml file as input, with pointers to access the agent memory variables.
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Header.h - Generates specifications for agents as xmachine data struc-
tures and transition functions. Also generates message board-related it-
erators.

Low_primes.h - Defines arrays holding the prime numbers to aid with
partitioning.

Main.c - Holds main functions of the program, how the simulation reads
data, parses and produces simulation code.

Main.exe - Executable file for the simulation.
Main.o - Object file.

Makefile - Contains details of file paths and information needed for ex-
ecuting code.

Memory.c - Holds memory functions on how to read, access and write
to agent memory. Also handles the memory functions of message
boards. Functions allow looping through messages, free message boards
(MB_Clear()), initialize pointers to every state in agents, create message
boards (MB_Create()), get and set functions.

Memory.o - Object file.

Messageboards.c - Holds functions for message board - creating, reading,
iterating and deleting message boards when needed. Example adding a
message:

MB_AddMessage (b_messagename, &msg)
Reading a message:

Inline static message * getInternalMessage(void)
rewind iterator MB_Iterator_Rewind(i_message_to_use);

And accessing messages:
MB_Iterator_GetMessage(i_message_to_use, (void **)&msg);

Messageboards.o - Object file.
‘.0’ files for each agent functions file - Object files.

Partitioning.c - Helps with partitioning of the data, with functions on
geometric and round robin partitioning. Also contains functions on how
to save data to local nodes when simulation is distributed over mul-
tiple nodes. The file does partitioning, cloud data array initialization,
temporary node creation for adding agents. It also creates in-tags to ref-
erence agents and reads its memory values, and eventually creates the
machines.
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e Partitioning.o - Object file.

e Rules.c - Functions created to handle conditions in the model. The file
has been deprecated in FLAME v1.0. Functions can contain conditions
on timings such as

iteration_loop%20 ==6 return 1 else return O;

e Rules.o - Object file.

e Timing.c - Holds functions to handle calling on time to read in calender
time or the day.

e Xml.c - Contains functions on reading and writing to an XML file. In C
language, this is handled by reading the data held by each tag and pars-
ing through them. Same process while writing an xml file. The functions
allow reading of specific data variables like static arrays of int, float and
more, along with writing data structures, defined in the model xml file.

e Xml.o - Object file.

The templates help generate the above files dynamically when the xparser
compiles the model. The parser then reads the model file, and generates the
dependency graph (stategraph of the model) and above files. The graph de-
scribes the layers in which the agent functions will execute and creates state
flow diagrams of the agents. The Make file creates all necessary files that are
linked for execution.

While simulating, the parser reads the 0.xml file in ‘r’ mode, checks parti-
tion method as geometric or round robin and reads the values from 0.xml to
assign agent memory. If partitioning, the agents are allocated according to the
position x and y across the grid (SPINF stands for extreme values of grid).
As the agents are read, they are added to a linked list structure, where the
first state of the agent is used as an argument such as

add_Person_agent_internal (current_Person_agent, Person_00_state);

The memory values are copied into the agent memory, using the in_tags
defined earlier, and functions created for writing values such as

write_int_static_array(*file, temp, size)

During the simulation, the calculated agent values are written to the next
iteration xml files, produced and saved with the last states of the agents.

The main.c file initializes the message board environment (MB_Env_Init()).
This involves initializing pointers, iteration numbers, calling read initial states
and generating partitions (cloud_data, total nodes, partition_method). The
simulated data are saved in an iteration xml file and write log files. If all
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functions are traversed successfully, at the end the x-machine structures are
freed.
Synchronization is handled by the sync code such as

MB_SyncStart (messagename) and MB_SyncComplete(b_messagename)
The iterator for the message board is created and randomized as follows:
MB_Iterator_Create(b_messangename,&i_messagename)

In the end, the iterators are deleted (MB_Iterator_Delete(messagename)) and
agents are freed to transit to the next state. At the end, all message boards
are cleared (MB_Clear(b_messagename)), write data in files, move agents to
their start states and clean up. It is important to randomize iterators here,
to ensure that agents reading the data will eventually not be biased towards
the first few messages in the board, especially if agents make decisions on the
first few messages received.

Further details on the message board can be found at http://www.
softeng.cse.clrc.ac.uk/wiki/EURACE/MessageBoards/
mplementationNotes/API, where messages can be customized to allow
quicker processing and reduce overhead in simulations. These customizations
are of three types:

1. Immediate messages: Messages are read and then deleted. Examples
such as a rabbit is eaten or job filled, where message is read, perform
functions and then delete it.

2. Counter messages: Messages which exist for some time, such as cost or
price message, read by all agents.

3. Handshake: Messages generate new message by reading an old message,
such as a hired message, read by one agent in response to a previous
message.

Customizing messages to ensure quicker processing are subject to further
research in parallel computing, to see how models can be made more efficient
over various machines.

4.5 Using Grids

FLAME was compiled to be executed on the High Performance Computing
(HPC) grid Iceberg (http://shef.ac.uk/wrgrid). The steps involved were

1. Connect to Iceberg grid via a username and password using a terminal
window.

2. Copy files to Iceberg which include xparser and libmboard files.



Getting Started with FLAME 69

3. Copy files from Iceberg which include the resulting xml files.

4. Configure the C++ compiler and MPI libraries on Iceberg. This was
done by creating a symbolic link to all required files like cclplus.

5. Configure Libmboard by running ./configure. The MPI libraries are
linked here.

6. Run a model on Iceberg in parallel by using the following commands:
./xparser path_of_model.xml -p
For example,

./xparser ../model/turningKernel.xml -p

make CC=/usr/local/packages5/openmpi-gnu/bin/mpicc
LIBMBOARD_DIR=/home/acimk/libmboard export
LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/usr/local/packages5/
openmpi-gnu/lib

Run on parallel nodes by submitting a job.sh file which contains the
number of nodes and the time you specify to it.

#!/bin/sh

#\$ -1 h_cpu=0:30:00 (Specifies how long the job is likely
to last}

#$ -cwd

#$ -pe openmpi-ib 8 (Specifies the openmpi-ib

library should be used, with 8 cores)

#\$ -q parallel.q (Specifies the queue to be used)

#\$ -v SGE_HOME=/usr/local/sge6_2 (Specifies the path)
/usr/mpi/gcc/openmpi-1.2.8/bin/mpirun
/home/acimk/trial2/main 100 trial2/output/p8/t100k/0.xml -r

On a Mac system this could be done directly by

mpirun -np numberOfNodes ./main numberOfIterations 0.xml -r

mpirun -np 16 ./main 100 O.xml -r

4.6 Integrating with More Libraries

FLAME uses C, XML and interacts with generated files. The models can
be enhanced by using the same principle and working with additional libraries.
For example,
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More C standard libraries and custom libraries: C Math functions, C
memory accessible variables (include the basic int, char, float) or all C
functions. Custom libraries are user-defined libraries.

MPICH-2 libraries: Implementation of MPI, MPICH2 provides MPI im-
plementations for important platforms and massively parallel processors.
It is open-source and freely available for use in parallel programming en-
vironments. OpenMP can be used with MPI to allow hybrid paralleliza-
tion for loop-level parallelism. More information on integrating MPICH
with Windows and Linux platforms can be found at [78].

OpenGL libraries: Open Graphics Library provides access to functions
for high quality graphical image in 2D or 3D. OpenGL is concerned with
manipulation of frame buffer for drawing and rendering of images. It can
be integrated with C language for its functionality.

Libxml2: With XML input and storage format, Libxml2 is an XML C
parser toolkit that can be used across various platforms. It provides a
variety of language bindings and wrappers making it useful with various
languages. It provides support for Document Object Model as well.

Interfacing with SBML: Libsbml allows manipulation of various SBML
(systems biology markup language) files and data streams. Written in
C and C++, it is used as a library for various programming languages
(like C/C++, Java, Lisp, Perl, Matlab) and makes the code portable to
different platforms of Windows or Linux.

HDF5: Hierarchical Data Format 5 is a library used to store various data.
It can allow data to be stored as dataset or in groups. A dataset is a
multidimensional array of data elements whereas a group is a structure
for organizing objects. Using these two storage mechanisms, one can
generate any kind of required data structure - like images, arrays of
vectors or grid structures.

GraphViz graph library: FLAME is already using GraphViz for gen-
eration of dotty diagrams or graphs showing function dependencies in
parallel activity. It can be used for more outputs on networking struc-
tures, depicting hierarchy, clusters and more.

Sqlite3: A small C library supports the SQL database engine to store
data into a single disk file. These files can be shared as a database
between various machines.
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4.7 Writing a Model - Fox and Rabbit Predator Model

Simple Fox and Rabbit Model Scenario: “Foxes are chasing the rab-
bits, and rabbits are moving around randomly in a 2D scene”.

The above scenario describes a basic predator model, where foxes are chas-
ing rabbits to consume them. The model writing steps include

1. Identify agents in the scenario: Fox Agent and Rabbit Agent.

2. Identify memory of each agent, based on the scenario: (Fox Memory -
x position, y position, Fox agent id), (Rabbit Memory - x position, y
position, Rabbit agent id).

3. Identify functions of agents in the scenario: (Fox function - Chase rab-
bit), (Rabbit function - Move randomly).

4. Identify messages being communicated between various agents: (Rabbit
location message).

5. Using the information above, draw a block representation of how the
agent would perform during one iteration of the simulation (Figure 4.3).

Rabbit Agent

7

Rabbit post
location

Fox Agent
Communication
? Rabbjtt6cation

Look for and
chase Rabbits

& S

FIGURE 4.3: Flow diagram for the simulation describing agents, its func-
tions and communications.

Move randomly
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4.7.1 Adding Complexity to Models

Once an initial specification of the model has been drawn up, modelers can
update the description with more complex behavior for agents (Figure 4.4).
Table 4.1 shows the model details such as agent memory variables, functions
and messages generated.

Updated Scenario: “Foxes are chasing the rabbits, and rabbits are
dodging the foxes. The foxes have a life expectancy of 10 days. Assuming
every iteration is representing a day.”

TABLE 4.1: Model parameters for fox and rabbit example.

Model Definition | Variable

Agents Fox and Rabbit
X poslition, y position,
Fox memory fox agent id, life Ex-
pectancy

X poslition, y position,

rabbit agent id
Chase rabbits, check

life expectancy

Rabbit memory

Fox functions
Rabbit func-

Dodge foxes

tions .
Output: fox location
Messages for fox message; Input: rabbit
agent location message; Out-
put: eaten message
Output: rabbit loca-
Messages for tion message; Input:
rabbit agent fox location message;

Input: eaten message

4.7.2 XML Model Description File

Models descriptions are represented in XML formats, allowing them to
be human and computer readable. The DTD (Document Type Definition) of
the XML document for FLAME has gone through various updates (located at
http://www.flame.ac.uk/docs/), modifying and adding xml tags as the models
became more complex in FLAME simulations. In general, the model file needs
to contain the basic elements:
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Fox Agent
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Fox post location
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Check survival

¢

Look For Rabbits

?

If found eat rabbit

Communication
messages

Rabbit Agent

T

Rabbit post
location

2

Dodge foxes

b
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FIGURE 4.4: Flow diagram for simulation describing agents, their functions
and communications between the agents with complexity.

e Other model files (either enabled or disabled),

e Environment,

e Constant variables,

e Function files or links to them,

e Time units to represent the period of frequency during the simulation,

e Data types or structures,

e Agents with name, description, memory, functions,

e Messages communicated in the model: name, description, variables.

<?7xml version="1.0" encoding="IS0-8859-1"7>

<xmodel version="2">

<name>Predator Model</name>
<author>Authors Name</author>

<date>190207</date>

<!-—-x%% Environment values and functions ***-->

<environment>
<functionFiles>
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<file>functions.c</file>
</functionFiles>
</environment>

<!--x%%* X-machine Agent - Fox skkkkkkk——>
<agents>
<xagent>
<name>Fox</name>
<!-- Variables -->
<!-- All variables used by Fox are declared here
to allocate them in memory -->
<memory>
<variable>
<type>int</type><name>foxID</name>
<description></description>
</variable>
<variable><type>int</type><name>lifeExpectancy</name></variable>
<variable><type>double</type><name>foxX</name></variable>
<variable><type>double</type><name>foxY</name></variable>
</memory>

<functions>

<function>
<name>foxInformation</name>
<description>send location message</description>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>

<output><messageName>foxInformation</messageName></output>

</outputs>

</function>

<function>
<name>foxSurvives</name>
<description>check fox life</description>
<currentState>01</currentState>
<nextState>02</nextState>

</function>

<function>

<name>chaseRabbits</name>

<description>find rabbits</description>

<currentState>02</currentState>

<nextState>03</nextState>

<inputs>
<input><messageName>rabbitInformation</messageName></input>

</inputs>

<outputs>
<output><messageName>rabbitEaten</messageName></output>

</outputs>
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</function>
</functions>
</xagent>
<!--x%*x End of Agent - Fox *¥x-->
<!--x%* X-machine Agent - Rabbit *¥*-->
<xagent>
<name>Rabbit</name>
<!-- Variables for the Rabbit -->
<memory>
<variable>
<type>int</type><name>rabbitID</name>
<description></description>
</variable>
<variable><type>double</type><name>rabbitX</name></variable>
<variable><type>double</type><name>rabbitY¥</name></variable>
</memory>
<functions>
<function>
<name>rabbitInformation</name>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>
<output><messageName>rabbitInformation</messageName></output>
</outputs>
</function>
<function>

<name>dodgeFoxes</name>
<currentState>01</currentState>
<nextState>02</nextState>
<inputs>
<input><messageName>foxInformation</messageName></input>
<input><messageName>rabbitEaten</messageName></input>
</inputs>
</function>
</functions>
</xagent>
<!--x%* End of Agent - Rabbit ***-->
</agents>

<!I--x** Messages being posted by the agents to communicate *¥*-->
<messages>
<!-- Message posted by foxes -->
<message>
<name>foxInformation</name>
<description>Fox location message</description>
<variables>
<variable><type>double</type><name>foxX</name></variable>
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<variable>
<type>double</type><name>foxY</name>
<description></description>
</variable>
</variables>
</message>

<message>
<name>rabbitEaten</name>
<description>Rabbit eaten message</description>
<variables>
<variable><type>int</type><name>rabbitID</name></variable>
</variables>
</message>
<!-- Message posted by rabbits -->
<message>
<name>rabbitInformation</name>
<description>Rabbit information message</description>
<variables>
<variable><type>int</type><name>rabbitID</name></variable>
<variable><type>double</type><name>rabbitX</name></variable>
<variable><type>double</type><name>rabbitY</name></variable>
</variables>
</message>
</messages>
<!I--x%%*k End of Messages ¥¥kxikk——>
</xmodel>

4.7.3 C Function

Function files define the source code for implementing agent functions.
These are included in the compilation script (Make file) of the produced model.

<functionFiles>
<file>agent_1_source.c</file>
<file>agent_2_source.c</file>

</functionFiles>

Modelers can access agent memory variables by using CAPITALS such as
FOXX, FOXY for agent memory variables as defined in the xml file. This file
needs to be included in the functions files by the following command:

<agentname>_agent_header.h
A few rules when writing agent functions involve:

e All agent functions should return ‘0’. If the function returns ‘1’, the
agent dies in the simulation.
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e Agents can create static or dynamic arrays in agent memory or make
some locally, to manipulate within the function.

e Messages can be manipulated, such as by:

— Add message with:
Add_messagename_message(varl,var2)

— Loop through messages with:
START_MESSAGENAME_MESSAGE_LOOP
Messagename_message->variables
FINISH. MESSAGENAME_MESSAGE_LOOP

For example:

while(rabbitInformation_message)

{
/* Access data from message */
rabbit_id_found = rabbitInformation_message->rabbit_id;
if (rabbit_id_found==1)
{
printf ("Rabbit with ID =1 is found!")
}
/* Traverse through next message */
rabbitInformation_message = get_next_rabbitInformation_message
(rabbitInformation_message) ;
}

/* Example Fox functions */
/** \fn Check if fox survives malnutrition
*/
int foxSurvives()
{
/* For each time step lower life expectancy */
LIFEEXPECTANCY = LIFEEXPECTANCY - 1;
/* Check if dead */
if (LIFEEXPECTANCY == 0)
{
printf ("Fox dies of hunger\n");
/* Kill dead fox agent */
return 1;
}

return 0O;

/*x \fn Fox_location()

* \brief Send message with fox location
*/

int foxInformation()

{
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/* Send fox location message */
add_foxInformation_message (FOXX, FOXY);
return O;

}

/*x \fn Chase_rabbits()
* \brief Read rabbit locations and chase
*/
int chaseRabbits()
{
/* Closest rabbit id, default for no rabbits is -1 */
int closest_rabbit_id = -1;
/* Shortest distance, used to find closest rabbit */
double shortest_distance = 9999.0;
/* Current distance squared, holds
distance from current agent to message sending agent */
double current_distance_squared;
/* Holds position of closest rabbit */
double closest_x, closest_y;
/* Angle to closest rabbit */
double theta;

/* Look for nearest rabbit */
/* Get first rabbit location message from list */
rabbitInformation_message = get_first_rabbitInformation_message();
/* Loop through all messages on the list */
while(rabbitInformation_message)
{
/* Calculate distance */
current_distance_squared =
(rabbitInformation_message->rabbitX - FOXX)*
(rabbitInformation_message->rabbitX - FOXX) +
(rabbitInformation_message->rabbitY - FOXY)=*
(rabbitInformation_message->rabbitY FOXY) ;

/* If distance within view distance of the fox */
if (current_distance_squared <= (fox_view_length*fox_view_length))
{
/* If shortest distance then save values */
if (current_distance_squared < shortest_distance)
{
shortest_distance = current_distance_squared;
closest_rabbit_id = rabbitInformation_message->rabbitID;
closest_x = rabbitInformation_message->rabbitX;
closest_y = rabbitInformation_message->rabbitY;
}
}
/* Get next message */
rabbitInformation_message = get_next_rabbitInformation_message
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(rabbitInformation_message) ;

}

/* If there is a rabbit close */
if (closest_rabbit_id != -1)

{

/* Is the closest rabbit in eating distance */
if (shortest_distance <= (fox_eat_length*fox_eat_length))
{
printf ("Eat rabbit %d\n", closest_rabbit_id);
/* Send eaten message to rabbit */
add_rabbitEaten_message(closest_rabbit_id);
/* Move to rabbit position */
FOXX = closest_x;
FOXY = closest_y;
/* Increase life expectancy */
LIFEEXPECTANCY = LIFEEXPECTANCY + 10;
}
else /* Else chase closest rabbit */
{
/* Calculate angle to rabbit */
theta = atan((closest_y - FOXY)/(closest_x - FOXX));
/* Move run length of fox towards rabbit */
FOXX = FOXX + (fox_run_length * cos(theta));
FOXY = FOXY + (fox_run_length * sin(theta));
}
}
else
{
/* Move randomly */
FOXX = FOXX + (fox_run_length - (rand()/(double) (RAND_MAX)
*(fox_run_length*2.0)));
FOXY = FOXY + (fox_run_length - (rand()/(double) (RAND_MAX)
*(fox_run_length*2.0)));

}

/* Mirror location off boundary */
FOXX = handle_boundaryX(FOXX);
FOXY = handle_boundaryY (FOXY);
return 0;

}

/* Example Rabbit functions */

/** \fn Send message with rabbit location

*/

int rabbitInformation()

{
/* Send rabbit location message */
add_rabbitInformation_message (RABBITID, RABBITX, RABBITY);
return 0;

}
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/** \fn Dodge_foxes()

* \brief Read fox locations and dodge

*/

int dodgeFoxes()

{
/* Use idea of force from foxes to move rabbits */
double fox_x_force = RABBITX;
double fox_y_force = RABBITY;
/* Angle to move rabbit, calculated from fox force */
double theta;
/* Distance from current agent to agent sending message */
double current_distance_squared;
/* Fox count */
int foxes = 0;

/* Check if eaten, by reading eaten messages */
rabbitEaten_message = get_first_rabbitEaten_message();
while(rabbitEaten_message)
{
/* If message relates to me then die */
if (rabbitEaten_message->rabbitID == RABBITID)
{
printf ("Rabbit ’%d dies\n", RABBITID);
return 1;
}
rabbitEaten_message = get_next_rabbitEaten_message
(rabbitEaten_message) ;
}
/* Dodge foxes, by reading fox location messages */
foxInformation_message = get_first_foxInformation_message();
while(foxInformation_message)
{

current_distance_squared =

(foxInformation_message->foxX - RABBITX)*
(foxInformation_message->foxX - RABBITX) +
(foxInformation_message->foxY - RABBITY)*
(foxInformation_message->foxY - RABBITY);

/* If distance within rabbit view distance */
if (current_distance_squared
<= (rabbit_view_length*rabbit_view_length))
{
/* Add fox location to fox force */
fox_x_force += foxInformation_message->foxX;
fox_y_force += foxInformation_message->foxY;
/* Increment fox count */
foxes++;
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foxInformation_message = get_next_foxInformation_message
(foxInformation_message) ;
}
/* If foxes in view distance */
if (foxes)
{
/* Use fox force to calculate angle to move */
theta = atan((fox_y_force - RABBITY)/(fox_x_force - RABBITX));
/* Move rabbit run distance along angle */
RABBITX = RABBITX + (rabbit_run_length * cos(theta));
RABBITY = RABBITY + (rabbit_run_length * sin(theta));
}
else
{
/* Else move randomly */
RABBITX = RABBITX + (rabbit_run_length -
(rand () / (double) (RAND_MAX) * (rabbit_run_length*2.0)));
RABBITY = RABBITY + (rabbit_run_length -
(rand () /(double) (RAND_MAX) * (rabbit_run_length*2.0)));

/* Mirror location off boundary */
RABBITX = handle_boundaryX (RABBITX) ;
RABBITY = handle_boundaryY (RABBITY);
return 0;

4.7.4 Additional Files

Additional files can be accompanied by model files. These allow modelers
to organize their code and easily manage complex functions. For instance,

e Modelers can list global values in an additional header file. This allows
modelers to change these values before runtime and maintain one file.

e Modelers can add additional functions used by agents in a separate
functions file, included at runtime.

/**Example Library header filex*/
#include "header.h"

#include "Fox_agent_header.h"
#include "Rabbit_agent_header.h"

/**x \def Distance foxes can see rabbits */
#define fox_view_length 20.0

/**x \def Distance foxes can eat rabbits */



82 X-Machines for Agent-Based Modeling: FLAME Perspectives

#define fox_eat_length 1.0

/**x \def Distance foxes can run */
#define fox_run_length 1.5

/**x \def Distance rabbits can run */
#define rabbit_run_length 1.0

/**x \def Distance rabbits can see foxes */
#define rabbit_view_length 10.0

/**Example Library functions filexx*/

/** \fn Handle agent positions with respect to the boundary
* \param position The current position in one axis
* \return The new position mirrored along the boundary
*/
double handle_boundaryX(double position)
{
double newPosition = position;
if (position < 0.0) {
newPosition = (-1) * position;
position = newPosition;
b
if (position < 20.0) {
newPosition = position + 20;
position = newPosition;
3
if (position > 950.0) {
newPosition = position - (position - 950) + 20;
b
return newPosition;

}

double handle_boundaryY(double position)
{
double newPosition = position;
if (position < 0.0) {
newPosition = (-1) * position;
position = newPosition;
b
if (position < 20.0) {
newPosition = position + 20;
position = newPosition;

}
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if (position > 600.0) {
newPosition = position - (position - 390) + 20;
}

return newPosition;

}

4.7.5 0.xml File

The 0.xml file represents the starting state of the model, which is the
starting memory value of agents at initialization stage. The example shows
that the model starts with two foxes and two rabbits. These values are updated
as the simulation progresses, producing more iteration files. These successive
iteration files contain updated memory values of agents mainly their X and Y

positions (Figure 4.5).
Memory updated:
1.xml 2.xml Memory updated:
\ / *Nxml
*N = total number of iterationsinthe

Perform agent functions
on memory values

Starting file:
0.xml

Memory updated:

v

simulation, specified by modeller

FIGURE 4.5: Iteration files with updated agent memory results.

<!-- Example O0.xml file-->

<states>

<itno>0</itno>

<xagent>
<name>Fox</name>
<lifeExpectancy>20</lifeExpectancy>
<foxX>29.113054</foxX>
<foxY¥>8.329377</foxY>

</xagent>

<xagent>
<name>Fox</name>
<lifeExpectancy>20</lifeExpectancy>
<foxX>83.390059</foxX>
<foxY¥>29.294528</foxY>

</xagent>

<xagent>
<name>Rabbit</name>
<rabbitID>1</rabbitID>
<rabbitX>65.316155</rabbitX>



84 X-Machines for Agent-Based Modeling: FLAME Perspectives

<rabbit¥>13.165019</rabbit¥Y>
</xagent>
<xagent>
<name>Rabbit</name>
<rabbitID>2</rabbitID>
<rabbitX>0.208702</rabbitX>
<rabbit¥>79.911496</rabbit¥Y>
</xagent>
</states>

4.8 Enhancing the Environment

The environment tag in the XML file hosts additional tags for information,
which may be required by the parser for efficient simulation of the model.
Following are tags that can be defined.

4.8.1 Constant Variables

Constant variables refer to global values used in the model. These can
be defined in separate header files which can then be included in one of the
functions. The header would look as follows:

*k
* \file my library header.h
* \brief Header for user created library functions. */

#define fox_location_msg 100.0
#define application_msg 100.0
#define time_msg 100.0

#define message_range 100.0

void bubble_sort(int * id, double * wage, int length);
double random_no();
int calculate_random_agent();

The example header file ‘my_library_header.h’ is included in one of the
function file to compile it. Any global functions used by the model can also
be defined as prototypes here.

4.8.2 Time Rules

Time rules allow restricting functions to act during particular iterations.
An iteration refers to the smallest unit the model runs through in full cycle.
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Most models can represent one day in the calender or one week depending on

how modelers have designed them. The following depicts the use of time units

in a model description file to declare various time periods used in the model,
Within the environment tag:

<timeUnits>
<timeUnit>
<name>daily</name>
<unit>iteration</unit>
<period>1</period>
</timeUnit>
<timeUnit>
<name>population-regenerate</name>
<unit>iteration</unit>
<period>100000</period>
</timeUnit>
</timeUnits>

Time rules are defined by a time period and a phase, defined as a time
unit and an offset from start of a period. These can also be defined using a
value from agent memory:

<condition>
<time>
<period>monthly</period>
<phase>a.day_of_the_month_to_act</phase>
</time>
</condition>

Modelers can define a function to perform at particular iterations (or spe-
cific days of the calender). Time rules are defined as conditions. The parser
places these as rules in rules.c file. Example of a condition in agent function.

<function>
<name>Actor_post_my_location</name>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>
<output><messageName>actor_location</messageName></output>
</outputs>
<condition>
<time>
<period>popBoard_start</period><phase>1</phase>
</time>
</condition>
</function>
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Decentralized control is an important aspect of self-organizing systems. Behav-
ior of insect colonies is studied to deduce how, despite working independently,
a colony can work so efficiently. Termites and ants are examples of this. In ant
colonies, Wilson and Hoélldobler [202] argued that every ant follows a partic-
ular ‘rule of thumb’ while making decisions based on local stimuli. When all
actions are put together, this emerges into complicated but precise execution
plans for the colony. This behavior has evolved over millions of years, driven
by natural selection.

Growing artificial agent societies is a useful technique to study how so-
cieties are created and thrive in changing real world conditions. Computer
simulations can be used to study organisms interacting together in a safe
environment, validated with experimental data.

Social scientists have used agent-based models in various political, eco-
logical and economic scenarios. Here, agent-based models are ideal for un-
derstanding models involving individuals who interact and produce emergent
phenomena. Writing agent-based models begins with assumptions on the in-
teractions among agents. The agents are then simulated, producing and modi-
fying variables depending on these interactions and time. Simulations are used
as an addition to scientific analysis from deductions and inductions. Here sim-
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ulations begin with a rigourous set of assumptions and generate data which
are analyzed via induction.

Tesfatsion and Axelrod [194] discussed specific goals for agent-based re-
searchers to pursue.

Empirical. How will particular large-scale phenomena perform such as emer-
gence of social norms? These are analyzed to see if they pursue with
global irregularities, to find why certain behaviors persist.

Normative. How are agent-based models used to discover good designs? In-
vestigate key issues like efficiency and order.

Heuristic. Can complex behaviors be attained via simple interactions? It is
difficult to predict behavior of large-scale systems with interactions on
smaller scales.

Methodological Advancement. Study models and simulation data are
produced.

Conway’s Game of Life is one of the earliest examples using cellular au-
tomata grids, to display a group of cells interacting with each other [72].
Using only four simple rules, through simulation, the game could present new
patterns depending on neighboring cells. For every cell, the four rules are

1. If current cell is alive and has less than two neighboring cells - die due
to lack of social activity.

2. If current cell is alive and has more than three neighboring cells - die
due to overcrowding.

3. If current cell has two or three live neighbors - survive to next time step.

4. If current cell is a dead cell but has three live neighbors - become alive.

Since this example, computer simulations have taken a long journey to
more complicated computer programs using agent-based modeling and parallel
computing. Figure 5.1 shows a snapshot of a game of life run. The black dots
represent live cells. All cells follow the four simple rules, producing the various
patterns.

Schelling [169] used a segregation model to show that, by adding a small
preference factor, societies can emerge into segregated ones. The model, based
on 2D grid landscape, had individuals represented by different colors. Every
colored individual would check for the following rule:

If more than 33% of adjacent individuals or cells were of different
color, the cell should randomly move to new position.
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FIGURE 5.1: Snapshot of game of life during a simulation. Adapted from
[141].

This model demonstrated that by just adding a small factor of 33% for
neighbor preferences, societies would eventually separate out with time. How-
ever, if the preference factor were increased to 50%, the model would fail.
Individuals would then have a 50-50 preference for neighbors, allowing soci-
eties to accept and consider staying.

One of the famous examples of a social agent-based model was written
by Epstein and Axtell [57]. This model used an extremely simple setting for
an agent society that played also simple rules, but showed complex practices.
The experiment called ‘Sugarscape model” was one of the earliest agent-based
models that allowed researchers to investigate various aspects of society.

The model contained an artificial society of agents, who were allowed to
move around on a 2D grid space to look for sugar. Figure 5.2 depicts screen-
shots of the model, before the simulation begins. The sugar was distributed
in two piles on opposite corners of the grid with agents distributed randomly.

The traditional Sugarscape model allowed agents to see in four directions
to search for sugar. Figure 5.3 shows the viewing distances of the agent. The
agents are laid on a grid structure, using cellular automata. The agents can
look north, south, east and west, ignoring the diagonally positioned cells. The
agents use this rule to look for sugar and move to the sugar-laden square to
eat it. With inclusion of location, the Sugarscape model showed how spatial
distribution or landscape can influence the inhabitant agents and resources
around them. The agents were seen crawling over the landscape, looking for
sugar in Figure 5.4.

The sugar acts as a source of energy, distributed in two piles over the
landscape. The agents also have a metabolism that uses up the sugar each
time they move. The basic rules followed by the agents were

1. Agent looks north, south, east or west for sugar. The agent’s vision was
dependent on the modeler’s code as to how many square lengths of vision
are allowed.

2. If sugar is found, move to sugar location and eat.
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Files of sugar

FIGURE 5.2: Initial distribution of sugar (left) and with agents (right).
Adapted from [21].

Viewing directions

[——Agent

FIGURE 5.3: Agent perception. They can see north, south, east and west.

3. If sugar is not found, randomly move to another square.

Each time the agent moved, a small amount of its stored sugar was used
by metabolism. Eventually, having used up all the sugar, the agents would die
and disappear from the scenario.

Sugarscape allowed multiple research questions to be investigated by
adding simple extensions to the model. This made it an ideal model replicat-

ing complex real societies. Researchers [102, 118] have extended their models
with

Measuring wealth distribution. Sugars collected by agents were assessed

to see what portion of the society was able to capture the most sugar.

Disease propagation. Diseased agents are introduced during the simulation
to see it spread across the landscape.
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FIGURE 5.4: During the simulation, agents move to high sugar concentra-
tion areas. Adapted from [21].

Forming of social networks. Social networks are formed between neigh-
boring agents or with whom they collided.

Migration among agents. Territorial areas are established, with agents
moving to them, similar to how migration works in real world searching
for jobs or resources.

Sexual reproduction. Agents were given certain genetic material. Each
agent could scan neighbors, and choose a neighbor whose genetic mate-
rial would be most similar to itself. Fertile agents were quickly seen to
find each other and mate to produce new agents, sprouting across the
landscape.

Inheritance among family members. With the concept of families, in-



92 X-Machines for Agent-Based Modeling: FLAME Perspectives

heritance of wealth or sugar was programmed. This allowed various so-
ciety classes to be formed.

Combat. Sometimes agents were allowed to combat each other for commodi-
ties.

Life and death. Agents were given life spans, modeling a living society.

Trading between sugar and spice. Wealth was denoted by the amount of
sugar. Spice was an additional commodity, introduced by Epstein et al.
[57]. The agents were told they need specific proportions of both sugar
and spice to survive. During the simulation, if an agent had too much
sugar and bumped into another agent, who had extra spice, the two
agents would agree to trade. Through this model, supply and demand
curves were generated, similar to Figure 6.6, useful for economic models.

Terrains. Some models had mountains, and agents concentrated in areas of
high sugar that were easily accessible. Figure 5.4 shows agent movement
across landscape in a simple Sugarscape model. The agents concentrated
into two areas, where there were sugar piles in the beginning.

5.1 Sugarscape Model

The Sugarscape model proved to be an excellent tool to analyze economic
models in an artificial society. Horres and Gore [92] discussed similarities be-
tween economics in real and artificial societies, using the spice trading facet.
The authors presented the supply-demand curve with the equilibrium chang-
ing with different experimental settings. Gumerman et al. [79] used the model
to produce results, that were later mapped to show how prehistoric American
society settlements were organized in history. Klock [109] presented a detailed
report on Sugarscape model with territory formation. His work investigated
behavior of trade, combat and wealth distribution when factors like migration
and taxes were introduced.

Sugarscape’s key advantage was that it could be tweaked with variables
and methods to allow new behaviors. By introducing authorities or leaders,
governments could be seen emerging. Peterson [148] supported the use of the
model stating that “by providing insights into population growth, resource use,
migration, economic development, conflict, and other global social processes,
games played on the Sugarscape grid, may help shape policies needed to direct
future course of society.”

The Sugarscape model was also used in economics. Al et al. [3] used the
model to study effects of taxing wealth and redistribution when they measured
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collected taxes over a population of 400 agents. Their results showed that
using high tax rates was good for the population to survive, but poor agents
struggled to survive [16, 3].

Buzing et al. [36] showed learning and communication influencing agents.
Only certain agent populations were allowed to learn new strategies from other
agents. The results showed that evolution only influenced those agents who
listened. Increasing the communication among agents increased cooperation
among the population, depicting that societies with no or little communica-
tion find it difficult to survive. These results are similar to those provided by
Noble [142]. Hales [80] used the Sugarscape society with memetic algorithms
to display propagation of cultural information among the population.

The Sugarscape was also heavily criticized in [168] saying that it was too
restrictive to be used as an economic analysis model. This is because some
results of the model showed lack of steady-state behavior in some scenarios.
They claimed that as Sugarscape omitted existing economic theories, it could
not be used for testing. Beinhocker [21] argued that Epstein and Axtell had
not expected that Sugarscape would become a model for economics. Yet it
was able to produce striking results free of unrealistic assumptions found in
traditional economics. It is not based on an equilibrium system and neither
does it go into it. It is a useful model which displays complex structures,
evolving from bottom-up, using simple starting rules at low-level interactions.

Whether Sugarscape is a useful model for testing economic models is a
debatable issue. However, it is a good starting point for modeling economic
activities, where location of agents influences agent behavior. Most economic
models do not have concepts of location to see if this affects agent and resource
distribution.

5.1.1 Evolution from Bottom-Up

Sugarscape is also useful to see how societies develop and evolve. If agents
were equipped with genetic material, this could be inherited by newborn
child agents, allowing best genes to be carried onto new generations. Run-
ning such an experiment, “over a period of time, the characteristics of the
population of agents converge towards certain traits, namely good vision and
a low metabolism” [118].

Similar institutions, like banks show economic trading was an example of
emerging evolution. This was observed, when Epstein and Axtell [57] intro-
duced the following rules:

An agent could be a lender if it is too old to have children or has more
savings than needed for reproductive purposes.

An agent could be a borrower if it has insufficient savings to produce
children, but a sufficient supply of either sugar or spice.

An interest rate could be added on loans which can be collected.
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If agents were credit worthy they can borrow sugar.

When Epstein and Axtell plotted the relationships between the lenders
and borrowers, they were able to trace complex relationships between rich
and poor agents. The relationships showed that rich agents were lending to
poorer agents through middle agents who performed functions similar to banks
behaving in real life (Figure 5.5).

Rich agent 2

Rich agent 1

Rich agent 3

Middle agent 1

Poor agent 3

Poor agent 1

Poor agent 2

FIGURE 5.5: Relationships emerged between rich and poor agents. The
middle agents behaved like banks.

As with the other emergent patterns in Sugarscape, the evolution of
these credit networks was not in any way imposed from the top down
on the model. Rather, these large-scale macro patterns grew from the
bottom up, from the dynamic interplay of the local micro assumptions.
[21]

5.1.2 Distribution of Wealth

Traditional economic theories follow Pareto laws, that markets always lead
to perfect allocation of resources among the population. Beinhocker [21] used
the Sugarscape model to display this pattern in sugar distribution across
agents. Figure 5.6 shows cumulative distribution of sugars across agents. The
figure supports the economic inequality among agents, displaying a right-hand
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tail stretching to have only a few rich agents. The bump formed in the middle
in the beginning of the simulation slowly shrank as time progressed.

The model displayed no relation between the cause and effect, as to why
some agents are poorer than others and what could be the reasons for this
inequality.

Wealth distribution during simulation

140
120
100
80
60
40

Numbers of Wealth

o H = = N . =
27 54 81 106 135 189 216 243 270

People Ranges

FIGURE 5.6: Wealth distribution among agents, with initial random sugar
distribution. cf. [21].

Being an emergent property, these results supported the ‘invisible-hand’
phenomenon of economics. However, it is possible that initial distributions
may affect how agents become wealthy. Agents lying closer to sugar areas
become richer quicker than agents situated far away.

5.1.3 Location Is Important!

The Sugarscape model is a sociological model, where the position hold
great influence on interactions. Each agent (citizen) has an area of vision and
moving distance for capturing sugar. The decisions are made locally depending
on what happens in this area of vision of agents.

Figure 5.7 shows an area of influence of one agent, where agent decisions
are based on local stimuli. Agents make all decisions locally, on what they
see in the circle of influence or bounded view. This makes the society highly
decentralized, similar to ant or termite colonies in nature. The model can be
analyzed, on a larger scale, for patterns emerging from the complete society.
Table 5.1 summarizes the model parameters for distances considered in the
FLAME Sugarscape model.

Table 5.2 describes how the model looks with agents, memory and func-
tions. The citizen and sugar both need x and y coordinates located on a 2D
landscape. The distance will allow closest citizens to eat sugar first. Once
eaten, the sugar will ‘die’ or disappear from the scene. The messages allow
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agents to see or find each other and post information to each other. Figure
5.8 displays the basic functions the agents perform in one iteration. The sug-
ars have to post their location allowing citizens to find them. If the sugar is
eaten by citizens, these disappear from the landscape. Note that the iteration
timeline shown in Figure 5.8 does not consider citizen agents dying or trading
sugar.

X-Machines for Agent-Based Modeling: FLAME Perspectives

Viewing distance e

Moving distance

Another citizen in the area /%’

>~

_

Citizen A

FIGURE 5.7: View of a citizen agent in FLAME Sugarscape.

TABLE 5.1: Global variables used in FLAME Sugarscape.

Viewing distance 200
Eating distance 5

Moving or run distance 5.5
Landscape 200 x 200

<!-- Model file for Sugarscape-->
<xmodel version="1">
<name>Sugarscape Model</name>
<version>1</version>
<author>Mariam Kiran</author>
<date>300809</date>

<environment>

<functionFiles>
<file>my_library_functions.c</file>
<file>citizen.c</file>
<file>sugar.c</file>
</functionFiles>

</environment>
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TABLE 5.2: FLAME Sugarscape model.

Identify Agents Citizen, Sugar

Agent memory Citizen: id, sugars, x, y; Sugar: id, x, y
Citizen functions: Citizen posts location, Cit-
izen look for sugar, Citizen eats sugar, Citi-
Agent functions zen updates its sugar count; Sugar functions:
Sugar posts location, Sugar checks it is eaten

or_uot : : — :
Citizen location: Contains citizen id, x, y;

Sugar location: Contains sugar id, x, y; Eaten:
Contains citizen id, sugar id

Messages  needed
for communications

(For all agents) (In the landscape)

Citizen Sugar

During one time step

Post location
of sugars

Sugar location
messages

Look for sugar
around me

If found, eat sugar
else move randomly

Eat messages

If sugar eaten,
disappear from landscape

FIGURE 5.8: Timeline of the basic FLAME Sugarscape model.

<agents>
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<xagent>

<name>Citizen</name>

<description></description>

<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>sugars</name></variable>
<variable><type>double</type><name>x</name></variable>
<variable><type>double</type><name>y</name></variable>
<variable><type>int</type><name>flag_sugar_found</name></variable>

</memory>

<functions>
<function>
<name>Citizen_post_location</name>
<currentState>01</currentState>
<nextState>02</nextState>
<outputs>
<output><messageName>citizen_location</messageName></output>
</outputs>
</function>

<function>

<name>Citizen_look_for_sugar</name>

<currentState>03</currentState>

<nextState>02a</nextState>

<inputs>
<input><messageName>sugar_location</messageName></input>

</inputs>

</function>

<function>
<name>Citizen_Eaten</name>
<currentState>02a</currentState>
<nextState>06</nextState>
<condition>
<not>
<lhs><value>a.flag_sugar_found</value></lhs>
<op>EQ</op>
<rhs><value>0</value></rhs>
</not>
</condition>
<inputs>
<input><messageName>eaten</messageName></input>
</inputs>
<outputs>
<output><messageName>my_sugar</messageName></output>
</outputs>
</function>
</functions>
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</xagent>

<xagent>

<name>Sugar</name>

<description></description>

<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>double</type><name>x</name></variable>
<variable><type>double</type><name>y</name></variable>

</memory>

<functions>

<function>

<name>Sugar_post_location</name>

<currentState>00</currentState>

<nextState>01</nextState>

<outputs>
<output><messageName>sugar_location</messageName></output>

</outputs>

</function>

<function>

<name>Sugar_check_eaten</name>

<currentState>01</currentState>

<nextState>02</nextState>

<inputs>
<input><messageName>request_sugar</messageName></input>

</inputs>

<outputs>
<output><messageName>eaten</messageName></output>

</outputs>

</function>

</functions>
</xagent>

</agents>

<messages>

<message>
<name>citizen_location</name>
<variables>
<variable><type>int</type><name>citizen_id</name></variable>
<variable><type>double</type><name>x</name></variable>
<variable><type>double</type><name>y</name></variable>
</variables>
</message>
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<message>
<name>sugar_location</name>
<variables>
<variable><type>int</type><name>sugar_id</name></variable>
<variable><type>double</type><name>x</name></variable>
<variable><type>double</type><name>y</name></variable>
</variables>
</message>

<message>
<name>eaten</name>
<variables>
<variable><type>int</type><name>citizen_id</name></variable>
<variable><type>double</type><name>x</name></variable>
<variable><type>double</type><name>y</name></variable>
</variables>
</message>

<message>
<name>my_sugar</name>
<variables>
<variable><type>int</type><name>citizen_id</name></variable>
<variable><type>int</type><name>sugars</name></variable>
</variables>
</message>

</messages>
</xmodel>

//Library file contains the global values used by the C
functions

#define citizen_view_length 200.0

#define citizen_eat_length 5.0

#define citizen_run_length 5.5

#define CitizenBoardSize 10

#define LENGTH 4

#define THRESHOLD 10.0

#define LANDSCAPE 200

double handle_boundary(double position);

//Library functions file contains common functions used by
agents

#include "header.h"

#include "my_library_header.h"

double handle_boundary(double position)
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double new_pos=position;
if (position >= LANDSCAPE)

{
new_pos =LANDSCAPE -(position-LANDSCAPE);
}
else if (position<O0)
{
new_pos=new_pos*(-1);
}
else
{
printf ("value is %f", new_pos);
}

return new_pos;

/**Citizen Agent functions file containing its actions**/
#include "header.h"

#include "my_library_header.h"

#include "Citizen_agent_header.h"

//Function to handle agent placement as a 2x2 Grid
double sec_handle_boundary(double position)

{

}

double new_pos=position;
if (position >= LANDSCAPE)

{
new_pos =LANDSCAPE -(position-LANDSCAPE);
}
else if (position<O0)
{
new_pos=new_pos*(-1);
}
else
{
print ("Possible check");
}

return new_pos;

int Citizen_post_location()

{

}

add_citizen_location_message(ID, X, Y, SCENE_ID);
return O;
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int Citizen_look_for_sugar()
{
int closest_sugar_id=-1;
double shortest_distance=9999.0;
double current_distance_squared;
double current_distance_squared_citizen;
double closest_x,closest_y;
int richest_citizen_id=-1;
int citizen_sugars=0;
int max_sugar=0;//change to 0

FLAG_SUGAR_FOUND=0;

sugar_location_message=get_first_sugar_location_message();
while(sugar_location_message)
{
//Extracting information from message
current_distance_squared=
(sugar_location_message->x-X)*(sugar_location_message->x-X) +
(sugar_location_message->y-Y)*(sugar_location_message->y-Y);

if (current_distance_squared <=
(citizen_view_length* citizen_view_length))
{
if (current_distance_squared<shortest_distance)
{
shortest_distance=current_distance_squared;
closest_sugar_id=sugar_location_message->sugar_id;
closest_x=sugar_location_message->X;
closest_y=sugar_location_message->y;
FLAG_SUGAR_FOUND=closest_sugar_id;
printf("Sugar is found");
}
}
}
sugar_location_message=get_next_sugar_location_message
(sugar_location_message) ;

}

if (FLAG_SUGAR_FOUND!=0)
{
//move randomly in the space
X=X+(citizen_run_length-((double)rand()/(double) (RAND_MAX)*
(citizen_run_length*2.0)));
Y=Y+(citizen_run_length-((double)rand()/(double) (RAND_MAX) *
(citizen_run_length*2.0)));
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X=sec_handle_boundary(X) ;
Y=sec_handle_boundary(Y) ;
return O;

int Citizen_Eaten()

{

}

eaten_message=get_first_eaten_message();
while(eaten_message)

{

if (eaten_message->citizen_id==ID)

{

SUGARS++;

}

eaten_message=get_next_eaten_message(eaten_message) ;
}
return O;

/**Sugar Agent functions file containing its actions**/
#include "header.h"
#include "my_library_header.h"

#include "Sugar_agent_header.h"

int Sugar_post_location()

{

}

add_sugar_location_message(ID, X,Y);
return O;

int Sugar_check_eaten()

{

int citizen_id=-1;
request_sugar_message=get_first_request_sugar_message();
while(request_sugar_message)
{
if (request_sugar_message->sugar_id==ID)
{
citizen_id=request_sugar_message->citizen_id;
b
request_sugar_message=get_next_request_sugar_message
(request_sugar_message) ;

}

if(citizen_id!'=-1)
{

add_eaten_message(citizen_id, X, Y);
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return 1; //returning 1 deletes the agent from the
simulation
b
return O;

}

<!-- Starting conditions with 1 citizen and 1 sugar-->
<states>
<itno>0</itno>
<xagent>
<name>Citizen</name>
<id>50</id>
<sugars>0</sugars>
<x>33.542894</x>
<y>59.733879</y>
<flag_sugar_found>0</flag_sugar_found>
</xagent>
<xagent>
<name>Sugar</name>
<id>1</id>
<x>90.304270</x>
<y>98.867763</y>
</xagent>
</states>

5.1.4 Find Agents around Me

Although sugar is an inactive entity, it had to be located and found by

other agents. The sugar agents perform the following:

e Post their location messages, so they are read by citizen agents.

e Read ‘eat’ messages to determine if they are eaten and should disappear

from landscape.

Agents can parse through messages to work out if there are agents close to
it. The citizen agents read through a list of sugar location messages to collect
their x and y coordinates. These allow a distance to be calculated and then
measure the viewed distance to calculate if the citizen can see these sugars.
If any sugar is found, the ID is recorded and then posted in the next loop to

tell the sugar agent that it was found.

sugar_location_message=get_first_sugar_location_message O;
while(sugar_location_message)
{
//Extracting information from message
current_distance_squared=
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(sugar_location_message->x-X)*(sugar_location_message->x-X) +
(sugar_location_message->y-Y)*(sugar_location_message->y-Y);

if(current_distance_squared <=
(citizen_view_length* citizen_view_length))
{
if (current_distance_squared<shortest_distance)
{
FLAG_SUGAR_FOUND=closest_sugar_id; //Agent memory saves this id
//"Sugar is found"
}
}
}
sugar_location_message=get_next_sugar_location_message
(sugar_location_message) ;

The next function can then use its memory values to determine if it needs
to interact with sugar agents in the iteration.

<condition>
<lhs><value>a.flag_sugar_found</value></lhs>
<op>EQ</op>
<rhs><value>0</value></rhs>

</condition>

5.1.5 Handle Multiple ‘Eaten’ Requests

By recording the ID of the sugar agent closest to the citizen agent, the
citizen can then choose which sugar to interact with. When the sugar agents
then read these ‘request’ messages, they can choose one of the agents and be
‘eaten’ by one.

5.1.6 Change Starting Conditions

The experiment can be repeated with different starting conditions, by
changing values defined in 0.xml. Figure 5.9 displays the three initial settings
of agents, varying x and y positions of agents.

Figure 5.10 represents the sugar distribution captured by citizens in the
simulation. The sugar distribution is shown in Figure 5.11 as frequency logs.

The results display a fairly egalitarian society where the wealth distribu-
tion is a smooth bell-shaped curve. Starting with a small number of rich and
poor agents, a broad middle class emerges, with a small distance between the
rich and the poor in the beginning. However with time, fewer citizen agents
emerge as the super rich and the middle class shrinks, increasing poor agents.
Initial conditions on locations also influenced wealth distribution, with citizen
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distribution of agents agents and sugars. of sugar and agents.
and sugar.

FIGURE 5.9: Three different initial settings for simple Sugarscape experi-
ment. The citizen agents are represented by red dots and green dots represent
sugar agents in the scenario.

agents being quick to grab sugars close to them, displaying a positive skewness
with virtually no poor agents.

Skewness is the measure of asymmetry of data distribution. Kurtosis
is the measure of the bulge or peakedness of data distribution.

Table 5.3 summarizes the skewness and kurtosis of sugars collected at
time ¢ = 500 during the simulation. The higher the kurtosis, the greater the
distribution between the rich and poor. The experiment with separate areas of
location for both citizens and sugars displayed the highest difference between
rich and poor. This was followed by the random distribution and lastly the
overlapping area results.

Figure 5.11 displays a cumulative distribution of the sugars gathered. The
maximum amount of sugar held by anyone of the 50 citizens was 120.

20

100 x 120 =24 (5.1)
Figure 5.11(b) depicts a pattern similar to Pareto layout, with cumulative
distribution displaying an 80% of wealth held by 20% of the population. The
plots for the three experiments showed that most sugar was captured between
the 20-30 agent distribution. However, the experiments for overlapping and
separate areas took longer to achieve this. This shows that the Pareto law
holds for random distributions of agent wealth, but when initial conditions
are varied their distributions changed.
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FIGURE 5.10: Sugar collected for random initial agent distribution.

5.2 Modeling Social Networks

Social networks emerge through local interactions among individuals.
These help form local networks or groups. Agent-based models can be used to
study these social networks by programming and visualizing how bonds are
formed and broken. Emergence of these networks can thus be simulated, to
study why people make and break contacts.

Snijders et al. [190] used actor-oriented models and rules to show networks
forming over time. Different bonds were influenced by actor decision mak-
ing, measuring factors such as number of outdegree, instrumental and social
ties. Prell [151] used FLAME to model social capital and network formation,
forming ties based on gains and job positions. Shown in Figure 5.12, a basic
network was seen to evolve over time. The agent-based model contained a col-
lection of heterogeneous actors, with different memory variables, each making
decisions on a set, of rules to form a tie or not. These rules took into account
the cost of tie formation and eventual gain of forming them.

Table 5.4 describes the model specifics with agents and functions involved.
The model was analyzed to understand the degrees of centrality, star struc-
tures and average wealth gained by agents.

The model involved only one kind of agent, Actor, with different memory
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FIGURE 5.11: Distribution of captured sugar.

TABLE 5.3: Results of skewness and kurtosis measures in three experiments.

In1t.1al Distri- Random Separate Ar- | Overlapping
bution eas Areas
Skewness 1.586 2.418 1.530
Kurtosis 2.047 6.043 1.692

values but same functions. The memory variables included factors like number
of projects, number of ties, who is in my circle and agent interests. These
variables were used in communication with other actors to find similarities
(to make ties) or compete in projects (to break ties). The agent functions,
thus, involved reading the actors close by, and making decisions on whether
to make or break a tie with them. Over time, various relationships were formed
which were either direct, reciprocative or transitive bonds.

The model involved simulations with over 1000 actors, and took about
30,000 iterations to stabilize. The results showed levels of reciprocity, similarity
and transitivity affected the actors leading to higher clustering in the networks.
However, the transitive relationships produced higher effects on the social well-
being of the actors. And open two-star network structures reduced the amount
of clustering, affecting the direct relationship with outdegree tie formations
(Figure 5.13).

Modeling social and economic worlds usually leads to show presence of an
equilibrium, when the society is at a maximum benefit, utilizing all resources
and performing efficiently. Social capital theory can be useful to study how
resources in social networks can be used to study network formation, through
social and instrumental ties [119, 136]. Simulation outputs can be analyzed
for distribution of social resources, money and other actor attractions when
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(¢) Network at Time (t=1000).

FIGURE 5.12: Evolution of networks in a simulation. Adapted from [151].

forming network structure. These can be the base for more complex studies of
how resource is eventually distributed and social inequality emerges. This also
involves cost-benefit calculations bringing back the notion of rational actors,
making correct decisions for maximum gain.

Following code snippets from the model, show how the actors making ties
based on the following information:

e For every actor calculates how many actors are around me within view-
ing distance.

e For every actor I have a tie with, calculate if I have to compete and
break the bond.

e For every actor I do not have a tie with, calculate if I should form one.

<!- In model file, define a data structure to help document ties->
<xmodel>
<functionFiles>
<file>my_library_functions.c</file>
<file>actor.c</file>
</functionFiles>

<timeUnits>
<timeUnit>
<name>daily</name>
<unit>iteration</unit>
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TABLE 5.4: Social network model specifications.

Agents

Actor

Actor memory

Id, number of ties, number of projects,
payoff, pathlengths, degree of central-
ity, clustering and similarity, well-being
factor, cost

Actor functions

e Post my ties and project details
e Calculate total ties I have
e On random, add or drop a tie

e Calculate total connections

Messages for commu-
nication

Actor ties, actor locations, actor wealth

07
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(a) Social centralization.
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(b) Social density.

FIGURE 5.13: Evolved centralization and density in networks. Adapted

from [151].

<period>1</period>
</timeUnit>

<timeUnit>
<name>popBoard_start</name>
<unit>iteration</unit>
<period>100000</period>
</timeUnit>

</timeUnits>

<environment>
<dataType>
<name>bond</name>
<variables>

<variable><type>int</type><name>from</name></variable>
<variable><type>int</type><name>to</name></variable>
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</variables>
</dataType>
</environment>

<!-- The bond data type can be part of the agent memory-->

<xagent>
<name>Actor</name>
<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>int</type><name>perform</name></variable>
<variable><type>int</type><name>project_flag</name></variable>
<variable><type>bond_array</type><name>mybonds</name></variable>
<variable><type>int</type><name>knowledgecategory[10]</name></variable>
<variable><type>int</type><name>money</name></variable>
<variable><type>int</type><name>number_of_transitive_ties</name></variable>
<variable><type>int</type><name>x</name></variable>
<variable><type>int</type><name>y</name></variable>
</memory>

<functions>

<function>

<name>Actor_post_my_location</name>

<currentState>00</currentState>

<nextState>01</nextState>

<outputs>
<output><messageName>actor_location</messageName></output>

</outputs>

<condition>
<time><period>popBoard_start</period><phase>1</phase></time>

</condition>

</function>

<function>
<name>Actor_update_my_bonds</name><description></description>
<currentState>01</currentState>

<nextState>0la</nextState>

</function>

</xagent>
</xmodel>
\*Extract from actor.c file describing the main functions*/

int Actor_post_my_location()

{
add_actor_location_message(ID,X,Y);
return 0;

}

int Actor_update_my_bonds ()

{
bond_array bond_list;
init_bond_array(&bond_list);
int i;
int actor_found =0;
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double rnum;
rnum=(double)rand() / (double) RAND_MAX;

if (rnum<0.5) //break a tie

{
for(i=0,i<MYBONDS.size;i++)//make a local copy of bonds
{
add_bond (&bond_list ,MYBONDS.array[i].from, MYBONDS.array[il.to);
}

random_position=(double)rand()/(double)RAND_MAX*MYBONDS.size;
//remove bond from a random actor
remove_bond (4MYBONDS,random_position) ;

}
else // form a tie with an actor Im not connected to
{
actor_location_message=get_first_actor_location_message();
while(actor_location_message)

{
for(i=0;i<bond_list.size;i++)
{
//check if I already have a bond with another actor
if (bond_list.array[i].from==ID) AND
(bond_list.array[i] .to==actor_message->id)
{ //ignore
actor_found =0;
}
else
{
actor_found =actor_message->id;
}
}//end of for loop
actor_location_message=get_next_actor_location_message
(actor_location_message) ;
}
if (actor_found!=0)
{
add_bond (&MYBONDS, ID, actor_found);
}
return O;
}

5.2.1 Set Up a Recurring Function

Time units can allow functions to run only at certain iteration steps. The
complexity of calculating this is handled by FLAME, but needs to be defined
by modelers in the model XML file. In the example, using popBoard unit and
setting its frequency to 10,000 means that this function will run every 10,000
steps in the simulation. The function Actor_post_location() should then add
this time condition. This function will thus run once in iteration 1, and then
only run every 10,000th iteration.
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5.2.2 Assigning Conditions with Functions

<!-- in the model XML file-->
<function>
<name>Actor_idle</name>
<currentState>04</currentState>
<nextState>04a</nextState>
<condition>
<lhs><value>a.function_perform</value></lhs>
<op>EQ</op>
<rhs><value>0</value></rhs>
</condition>
</function>

<function>
<name>Actor_project_calculation</name>
<currentState>04</currentState>
<nextState>04a</nextState>
<condition>
<lhs><value>a.function_perform</value></lhs>
<op>NEQ</op>
<rhs><value>0</value></rhs>
</condition>
<inputs>
<input><messageName>actor_knowledge_expert</messageName>
</input>
</inputs>
</function>

Further complexity can be added to the XML file by associating conditions
with functions. The above two functions branch from the same point, but run
depending on the value of the memory variable ‘function_perform’. If the value
is equal to zero, the function ‘idle’ is run, else the ‘project_calculation’ runs.
This mechanism can prevent modelers to add conditions in the C functions
by handling them here.

5.2.3 Using Dynamic Arrays and Data Structures

The example also shows data structures defined and used in agent memory.
This allows more complex memory variables to be created, such as to recording
plans or records. The MYBONDS variable allows the actor to record its ties
(from itself, to other actors), in one memory variable. This is defined as a
dynamic array, allowing the number of ties to grow, rather than be a defined
maximum (as when using static arrays).
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5.2.4 Creating Local Dynamic Arrays

//Extract from a function showing a local int dynamic array
int_array actor_view;

//Calculate the actors in my area that I am not connected to
actor_location_message=get_first_actor_location_message();
while(actor_location_message)
{
if (actor_location_message->actor_id!=ID)
{
for (i=0;i<MYBONDS.size;i++)
{
found=0;
if (MYBONDS.array[i] .to==actor_location_message->actor_id)
{
//if I am already connected
found=1;
3
b
if (found==0)
{
//if not found then add to my local list
add_int (&actors_view, actor_location_message—>actor_id);
}
b
actor_location_message=get_next_actor_location_message
(actor_location_message);
}

free_int_array(&actors_view);

The local integer array is created by ‘int_array actor_view’. These arrays
are useful to record information locally, for immediate calculation where total
number of variables is not known. It is important to free all arrays used at
the end of the function, otherwise the memory allocated to them does not
automatically free itself.

5.3 Modeling Pedestrians in Crowds

Crowd modeling can help study crowd behaviors in situations to help con-
struct or plan safe building and pathways, or to include collision avoidance in
panic situations or motion planning for exit planning in crowded venues. Thal-
mann [124] described the difference in individual person behavior as opposed
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to when they are part of a crowd. Sociological and behavioral simulation of
people in closed environments allows studying relationships between different
people from a social perspective. This can often display the existence of hi-
erarchy inside a group, such as leadership and member relations among the
individuals. Most crowd models have investigated behavior of one pedestrian
within a crowd. However, group pattern formation and other types of social
relationships can be extensively studied in crowds using agent-based models.
Early examples can be seen by Reynolds [160], where he presented distributed
behavioral model to produce flocking behavior.

Person agents in crowds can be goal-directed, reactive or opportunistic.
Modelers have to program this preference into agents. Modeling crowd be-
havior requires a large amount of data analysis with different densities, num-
bers and heterogeneous behaviors. Most crowd behavior analysis is done using
video tracking software and hindered by additional entities in scenes such as
loose clothing, carrying umbrellas, bags or packages.

In FLAME, a crowd model was programmed as follows:

1. Initialize agents in scene (such as at entrance of a corridor).

e Initialize 50 agents.

Randomly add people in a group to generate various group sizes.
e Randomly generate families and assign ages between 4 to 100.
e In groups, assign a leader.

e Assign a destination exit for each agent group.
2. Post agent location for other agents to read.
3. Choose one of the following behaviors at random:

e If agent is in group, collision avoidance to mediate movement.

o If the agent is out of the group’s circle, bring agent back towards
group.
e If in a group, the agent follows the leader.

e The agent goes to nearest shop.
4. Walk all agents towards the exit.

The pedestrians are simulated as individual person agents walking in the
crowd.

Person Agent. Contains id, x, y, speed, gender, exit_no, is a leader or not,
which group do I belong to and other variables such as weights associated
to prevent collisions and walk towards goals.

Generator Agent. Contains the total number of persons generated. This
agent is necessary to create agents at corridor entry points in the simu-
lation.
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Corridor Agent. Contains locations of the corridor to allow the people to
walk along the pathways. Sends information to all persons about wall
locations to steer them in the right direction towards exits.

5.3.1 Calculate Movement toward Other Agents

int follow_leader()//calculate force to move towards leader
{

int leader_group_member=-1;

double shortest_distance=99999.0;

double current_distance_squared=0.0;

double leader_x, leader_y;

double leader_velx,leader_vely;
double leader_personx;
double leader_persony;

double myvel,myxy;

double leader_personvel;
double diffxy,diffvel;
double posDiff;

double springForce,dotRoot;
double restLength=0.7;
double strength=0.45;
double damping=0.5;

double dampingForce;

//check all person location messages to find group members
send_person_location_message = get_first_send_person_location_message();
while(send_person_location_message)
{
if (send_person_location_message->group_id==GROUP_ID)
{
if ((send_person_location_message->is_leader==1)
&&(send_person_location_message->id!=ID))
{
current_distance_squared=
(send_person_location_message->x-X)*(send_person_location_message->x-X)+
(send_person_location_message->y-Y)*(send_person_location_message->y-Y);
if (current_distance_squared < shortest_distance)
{
shortest_distance = current_distance_squared;
leader_group_member = send_person_location_message->id;
leader_x =send_person_location_message->x;
leader_y = send_person_location_message->y;
leader_velx = send_person_location_message->velx;
leader_vely = send_person_location_message->vely;
}
}
}
send_person_location_message =
get_next_send_person_location_message(send_person_location_message);

}

if (leader_group_member != -1)



Agents in Social Science 117

diffx=myx-leader_personx;
diffy=myy-leader_persony;

diffvelx=myvelx-leader_velx;
diffvely=myvely-leader_vely;

//using vector equations calculate the dot root function of the difference
dotRoot=sqrt(dot (diffxy,diffxy));

//posDiff is a data structure of two variables x and y
if (dotRoot!=0.0)

{
posDiff=normalize(diffxy); //normalise the difference
springForce=-(dotRoot-restLength)*strength;
dampingForce=-damping*dot (posDiff,diffvel);//add damping to slow down
posDiff*=(springForce+dampingForce) ;
posDiff*=0.1;
X+=posDiff.x;
Y+=posDiff.y;
}
}
return O;

}

The new x and y positions are calculated using principles from vector
transformations and force movements. The dot product between two vectors
A - B calculates the new cartesian positions in the Euclidean vector space.

A-B= ZAiBi,for all iton (5.2)

F, = Feos() F, =
Fsin(#) tan(#) = 3= F =

VEE+F

FIGURE 5.14: Using vector equations to calculate resulting movement.

Figure 5.14 summarizes calculations involved in calculating next positions
x and y for agents. The agent will calculate, based on its own velocity and
its leader’s velocity vector, to get a resulting vector. The goal weights and
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damping force can allow the agent to move towards the leader, in the direction,
giving the impression of a simple walk rather than a jump towards the leader.
Similar mathematical equations can be updated to add more complexity in
person movements, to make them appear more real.

5.3.2 Entering and Exiting Agents

//from the Generate Agent functions

int generate_people()

{
int gnumber=rand () %MAXIMUM_GENERATED_PERSONS;
int i=0;
int leader=0;
NUMBER_GROUP_GENERATE=NUMBER_GROUP_GENERATE+1;

for(i=0; i<gnumber;i++)

{
if (i==0)
{
leader=1;
}
else
{
leader=0;
}

NUMBER_PEOPLE_GENERATE=NUMBER_PEOPLE_GENERATE+1;
add_person_agent (NUMBER_PEOPLE_GENERATE, X, Y, X,Y, 5.0, 1, 0,0,1,
NUMBER_GROUP_GENERATE, leader) ;
}

return 0;

}

The Generate agent can add new Person agents into the scene, using the
function ‘add_person_agent()’. The agent will first have to calculate the vari-
ables for the person memory and declare them as function parameters when
creating agents.

For exiting agents, the person agent needs to have a function which returns
a ‘1’ rather than a ‘0’, to allow it to be removed from the simulation. This
can accompany an ‘if” condition to check, if the exit point is reached, such as

if (current_location==exit_position)
return 1;

else
return O;

Figure 5.15 shows two snapshots from the simulation, where the person
agents are superimposed into a screen to walk around a collection of buildings.
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a) Single agents. b) Agents in groups.
gle ag

FIGURE 5.15: Agents walking in the scene.

Figure 5.15(a) shows single person not associated in groups as compared to
Figure 5.15(b) showing groups represented by different colors.

Various tools now exist that allow crowds to be modeled in different situa-
tions. These include VICrowd, Legion, each allowing multiple rule interactions
and control to be introduced in the model. Designing such models requires
considerable input from modelers, social scientists and crowd researchers to
build believable crowds. The more complexity of lower and higher levels on
interaction, the more believable crowds are.
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Economics, similar to social science, also uses mathematical concepts to help
analyze and predict behavior of its systems. Traditionally, economics used
differential equations, with various assumptions, including arguments of ra-
tional individual behavior and rational decision making. Game theory and
economics, however, work hand-in-hand to help study people behavior and
introduce concepts of payoff and utility when studying economics systems in
research. Figure 6.1 shows economic models often viewed as black boxes, us-
ing inputs to then observe and collect its outputs. Researchers often work
backwards to explain the output behavior using mathematical notations.

Economic agent-based modeling is a separate research area used to explain
the inner workings of economics. Tesfatsion [193] defines agent-based compu-
tational economics (ACE) as “the computational study of economic processes
modeled as dynamic systems of interacting agents. Here ‘agent’ refers broadly
to a bundle of data and behavioral methods representing an entity constituting
part of a computationally constructed world.”

In economics the definition of an agent can vary from representing a group
of agents, such as a firm composed of many individuals, or an individual itself

121
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FIGURE 6.1: A black box represents an economic model where only inputs
and outputs are known and little is known about what goes on inside.
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FIGURE 6.2: Groups in economic systems.

like a customer or a worker (Figure 6.2). Agent-based modeling is solely based
on an emergent pattern of interactions among different agents involved. Simi-
larly, economies are also based on behavior of each member and the interacting
patterns of these members.

The black boxes in economic models can thus be replaced with boxes full
of agents (Figure 6.3). The agents can represent themselves or be used to
represent a group of agents, where the interactions on lower levels affect their
performance in the upper layers. Agent-based models produce output variables
which are a result of interactions between agents within different scenarios
linked up together. The earliest use of agent-based models can be found in
the works of Axelrod [14], where he studied the evolution of cooperation among
agents using the iterated prisoner’s dilemma. Table 6.1 summarizes the main
differences between traditional and complexity economics.

Each economic model is different, based on different perspectives and as-
sumptions of modelers or economists,

Variables. Each model is made up of variables and equations. These models
help understand the economy. If any one of the variables change the
model changes. Examples of changing variables in models are estimating
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FIGURE 6.3: Replacing the black box with agents.

with or without expenditures, floating or fixed exchange rate or even
increases in interest rate.

Limits. Every economic model has limits to what it is modeling.

Different kinds of consumers. Some consumers might be lazy while oth-
ers spend more than required on products. There is heterogeneous mix-
ture of characteristics in the real world.

Testing. Designing a test suite for testing different assumptions. This in-
volves period testing where variables were the same for periods 1 and 2
but changed in period 3. Tesfatsion [193] argues that most models get
rejected due to this.

Rules. Rules are determined out of some formulation of the past. These rules
should be continually updated using learning methods. These learning
methods will be conditional to the agents.

Behavioral uncertainty and learning in agents. Economic analysis how
agents make choices in an evolving world. Holland et al. [90] argued
why most economists turn to game theory to model strategic learning
in games as economic games.

The SanteFe Institute presents their view on economic models [21]:

e Economic models are dispersed with parallel interaction among hetero-
geneous agents. Heterogeneity implies that each individual is different
from the other in terms of memory and characteristics.

e There is no global entity which controls their functions.
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TABLE 6.1: Five big ideas that distinguish complexity economics [21].

Complexity Economics Traditional Economics
. Open, dynamic, nonhl?e.ar Closed, static, linear sys-
Dynamics | systems, far from equilib- . S
’ tems in equilibrium
rium
Modeled collectively; use
Modeled individually; use | complex deductive calcula-
inductive rules of thumb to | tion to make decisions; have
make decisions have incom- | complete information; make
Agents . . .
plete information; are sub- | no errors and have no biases;
ject to errors and biases; | have no need for learning or
learn and adapt over time adaptation (are already per-
fect)
EXphCltly model_ 1%1t‘erac- Assume agents only inter-
tions between individual 1
act indirectly through mar-
Networks | agents; networks of re- :
; . ket mechanisms (e.g. auc-
lationships  change over ti
- ions)
time
No distinction between mi-
cro and macroeconomics; . .
Micro and macro economics
Emergence | macro patterns are emergent . ST
. remain separate disciplines
result of micro level behav-
iors and interactions
The evolutionary process of
differentiation, selection and | No mechanism for endoge-
Evolution amphﬁcat.lon provides thg nously qeatlng novelty or
system with novelty and is | growth in order and com-
responsible for its growth in | plexity
order and complexity
e Sometimes there is a hierarchy among the agents.

There is learning in the agents as time progresses.

Due to certain factors sometimes new market niches are seen developing.

Importantly, economic models try to work away from the optimum or
equilibrium because they are constantly trying to do better and never
know whether they have reached an optimum point.

Dopfer argued that “economics has always been in a crisis since it broke
away from social philosophy in the late eighteenth century” [52]. Since Aristo-
tle’s time, economic theories have changed a number of times, when Aristotle
originally discussed the nature of household and market exchanges which con-
centrates mostly in political economics branch. Adam Smith’s publication of
An Inquiry into the Nature and Causes of the Wealth of Nations contributed



Agents in Economic Markets and Games 125

to the discussion of free market which was much celebrated by economists
thereafter. Smith argued that people’s personal relationships contribute to
the way markets behave [185]. The theory of ‘invisible hand’ encourages the
laissez-faire policy adopted by most governments that allows events to take
their own toll and have less interference with behavior of markets as they
shape themselves.

Similar theories were adopted by neoclassical economics which gave birth
to rational consumers and buyers, assuming every individual is making the
right choice to maximize their own utility or profit. Conventional models of
markets used assumptions of this ‘rational choice’ and ‘efficient market hy-
pothesis’, but were limited to explain real market performance in situations
of trading and volatility as observed in the real world.

6.1 Perfect Rationality versus Bounded Rationality

Friedman [70] presented ideas around how exaggerated assumptions will
not matter in economics when the economic models being written were making
correct predictions. Even if individuals were assumed to be perfectly rational,
it would not make any difference on the results if they were making irrational
decisions. Comparatively, Simon presented a counter argument on bounded
rationality.

“Economics illustrates well how outer and inner environments inter-
act and, in particular, how an intelligent system’s adjustment to its outer
environment (its substantive rationality) is limited by its ability, through
knowledge and computation to discover appropriate adaptive behavior
(its procedural rationality).” [179)]

Every individual is selfish and the information each individual has is differ-
ent. The decisions are made, based on what the individual knows, giving rise
to bounded rationality, where there is rationality depending on the bounds of
the individual’s information space.
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6.2 Modeling Multiple Shopper Behaviors

A simple shop/customer model can be used to depict five different kinds
of customers with different abilities, to study their behavior on the market.
The agent description is as follows:

Agent - Shops. The shop agent sets new selling price of goods and posts
to the message board. The customers would then buy these goods and,
depending on the profit made by the shop, it would either raise or reduce
the selling price in the next iteration. The shop keeps track of the income
it receives after selling goods.

Agent - Customers. There are five different kinds of customers:
e Random shoppers (Type A): This type of customer will buy from
any shop on random, without any previous knowledge.

e Customers who go to a favorite shop (Type B): These customers
depend on old values while buying from one shop. If they are satis-
fied from the shop, they will go to the same shops to buy, else they
choose another shop randomly.

e Customers who go to favorite shops of others (Type C): These
customers depend on messages being posted by other customers.
They then choose those shops and buy from those.

e Shoplifters (Type D): These customers are shoplifters who choose
from any one shop and shoplift products.

e Customers who only buy from cheap shops (Type E): These cus-
tomers will sort the shop list to find the cheapest shops and then
buy from it.

The algorithm of the model during the simulation is:

1. Shop checks profits, sets good’s selling prices and posts message ‘open
for business’. The customers calculate their wages and add these to their
savings.

2. Customers then spend their savings, buying goods based on the shop
price, stock message, and send updated stock message to shops.

3. Shops collect profits and add income on sold goods.
Based on the model description above, functions are as follows:

Function - Shop_1: e Check the amount of stock sold in last iteration.

e If the stock sold is more that 5, increase the selling price by a
random amount; else reduce it, check price does not go below zero.
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e Post message of good’s price.
e Post message of stock left in shop. Stock is by default started from
100.

Function - Customer types (A-E) 1: e Calculate and set random
wage.
Function - CustA_2: e (Calculate a random shop.
e Check if it has savings, buy goods from the shop.
e Post out new stock of the shop.
e Set new satisfied value if more than 0.5, post out message of satis-

faction of the shop bought from.

Function - CustB_2: e Check the satisfying value (past) of this cus-
tomer. If more that 0.5, then the customer will buy from the past
shop. Else calculate a shop on random and buy from that shop.

e Checks if savings exist, buy goods from the shop.
e Post out new stock of the shop.
e Set new satisfied value, if more than 0.5, post out message of sat-
isfaction of shop bought from.
Function - CustC_2: e Check the posted satisfied messages, get the first
message and choose to go to that shop.
e Check if savings, buy goods from the shop.
e Post out new stock of the shop.
e Set new satisfied value if more than 0.5, post out message of satis-
faction of this shop bought from.
Function - CustD_2: e Choose a shop randomly.
e Check if shop has stock. If it does, then shoplift.

e Post out new stock of the shop.

Function - CustE_2: e Choose 5 shops at random.
e Sort the shop list in order of cheapest.
e Check if savings, buy goods from the shop on top (cheapest shop).
e Post out new stock of the shop.
e Set new satisfied value if more than 0.5, post out message of satis-
faction of this shop bought from.
Function - Shop_3: e Find the latest stock message of shop agent and
calculate how much stock was sold in this iteration.

e According to the stock sold and price, calculate income shop col-
lected.
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FIGURE 6.4: Different shoppers in the same simulation.
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Figure 6.4(a) shows the average savings of all customer types. The
shoplifters, since not spending save vast amounts compared to the others. The
customers who keep buying from their favorite shop, despite of price increases,
save the least in all five types. The other three customer types seems to save
equally, even if they buy from cheap shops, randomly or buy from other rec-
ommended shops. Figure 6.4(b) compares the average income of shops with
number of shoplifters in the system. The shops earn and save money with
lesser shoplifters, than with more shoplifters. Figure 6.4(c) compares the av-
erage income of shops with number of random buyers. When there are more
customers who buy at random, the average income of the shops is seen to in-
crease. Figure 6.4(d) compares the average income of shops, if the customers
who buy from their favorite or recommended by others is varied. If customers
keep buying from their favorite shops, the shops are seen to earn more as the
prices increase. But customers who buy on recommendations, seem to be loos-
ing the most. This shows shops profit more by being recommended by other
customers.

6.3 Learning Firms in a Cournot Model

The Cournot model is an economic mathematical model, implies a cen-
tralized model and works similar to the demand and supply curve. All firms
produce a quantity of one type of good, where price is a central variable
which connects all firms. Companies are constantly competing against each
other over product sales and product demands in a market scenario trying
to keep their profits high (Figure 6.5). Thus the price of a product affects
all transactions and can be viewed as a central mediator in market scenarios.
However, this only applies for homogeneous goods, ignoring products with
wide variety and quality that influence market sales.

are

FIGURE 6.5: Five firms producing a particular output of the same product
in the scenario.

Adopting this theory, various mathematical models have been developed
in traditional economics to portray this concept of competition.
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Cournot competition model. Firms make decisions about quantity of a
product at each time step. These decisions are made concurrently and
independent of other firms. Depending on the production and the prod-
uct demand in the system, the price of the product changes over time.

Stackelberg competition model. Each firm takes turns to act as a leader
and makes a decision on its production level. It is similar to playing an
extensive form game with a decision tree in game theory. The strate-
gies can then be represented as a decision flow showing firms making
decisions one after the other [83].

Bertrand competition model. Similar to the Cournot model in assump-
tions and design, Bertrand firms decide how much they want to produce
in the beginning and do not change their production throughout the
simulation. Only the price is changed to adjust the profits collected by
the firms [22].

The models are based on mathematical equations and carry large numbers
of assumptions to work in practise.

e All production is sold even if it is given away for negative prices.

e These models of competition are all theoretical models involving math-
ematical calculations to explain the firm behaviors.

e These models come close to explaining the emergence of monopolies
when one firm dominates the market through changes in supply and
demand in real market behavior.

e All models assume an equilibrium which all firms will strive to achieve.

The Cournot [44] model is a simple economic model involving firms com-
peting against each other for quantities they produce, to achieve high profit.
The firms produce one homogeneous product and based on the demand in the
system the price of the product changes. The characteristics of a supply and
demand curve are shown in Figure 6.6. When the supply of product increases,
it reduces the demand as there is an increase in abundance in the system.

The supply and demand curves have an inverse relationship with each
other. The point ‘E’ at which the two curves intersect is the equilibrium of
the system. At equilibrium, the demand allows the product to cost the opti-
mum market price, known as the market clearing price ‘Pe’, and the optimum
quantity of the product ‘Qe’. Equilibrium in a market scenario is defined as “a
situation in which plans of buyers and sellers exactly mesh, causing the quan-
tity supplied to equal the quantity demanded at price in the market place for
the good (product)” [128].

The Cournot model uses the supply and demand curve, where demand
and quantities of the product determine the price. Figure 6.7 depicts a dia-
grammatic representation of the algorithm as a series of steps followed in the
Cournot model. The model carries a number of assumptions:
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A

Price

(independent
variable)

Pe

Quantity (dependent variable)

FIGURE 6.6: A supply-demand curve.

e All firms can be homogeneous or heterogenous in nature. Homogeneous
means they have the same properties in memory like the same produc-
tion costs, or heterogeneous with different costs.

e All produced goods are sold in the same iteration.

e The market price of the good is determined by the quantity of all other
firms.

e The demand in the system can be static, the same throughout the sim-
ulation, or change dynamically during the simulation.

e The model exhibits an equilibrium which is a particular point at which
the price is such that the quantity demanded is equal to the quantity
supplied.

Figure 6.7 depicts a one iteration plan for the agents in the Cournot simu-
lation. The figure also explains the various functions being performed during
an iteration and how the price is determined.

The firms in a Cournot competition make decisions independent of other
firms in the market. Their decisions can be improved by including learning in
firms, which allows them to learn about their profits at the various outputs
they produced. For instance, if producing high quantities causes high losses
such as less sales, the firms compensate by producing less in the next time
step.

With time, firms can individually find optimum quantity to produce at
which they can all attain highest profits. This would be the equilibrium in the
system, because firms will not have an incentive to move away from the equilib-
rium. This equilibrium is known as the Nash equilibrium or the Cournot-Nash
equilibrium. At this point, none of the firms benefit by having different out-
puts. Sets of equations can be used to predict this behavior and the equilibrium
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M
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!
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on the output produced in the
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. Starting point in an iteration

® Stopping point in an iteration

FIGURE 6.7: Time line of the various activities in a simple Cournot model.

point. For instance, the demand of a product is defined as

Demand = Qmas — Q

(6.1)

where Q4. is the total demand of the product and @ is the total quantity
produced by all firms at the time.

For simplicity all firms in the current experiment were assumed to be
identical, allowing their cost functions to be equal. Each firm would thus have
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a cost of £10 for every good produced. Thus the cost function of the firm i
can be given as

cost; =10 x g; (6.2)

where ¢; is the quantity produced by firm q.
Therefore having established demand and quantities produced by the firms,
the market price is given by

Pmarket - Pzero X (Qmal‘ - Q) (63)

where P.¢., is the starting price of the product, assumed to be £1 in the
experiment.
Given this price, the profit of each firm 7 can be calculated by

Profit; = (Pparker X ¢;) — (cost; x q;) (6.4)
E 72} I s I s s
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FIGURE 6.8: Firm reaction curves in a duopoly model. A duopoly market
is a market with only two acting firms. Adapted from [5].

Using these mathematical notations (Equations 6.1-6.4) graphs can be
plotted to show exactly where the equilibrium will occur. Figure 6.8 depicts
the reaction curves of two firms competing in a duopoly market. If Firm 1’s
production is zero, Firm 2 can dominate the market by producing quantity
equal to the demand. In this case, Firm 1 and 2, the demand in the system
is 72. When Firm 1 starts producing, Firm 2 should reduce its output as
the total quantity being produced becomes more than the demand. If there
is too much of the product, this reduces its sales and Firm 2 will suffer high
loss. Note, that all products have to be sold in the same iteration. If the total
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quantity produced is more than the demand in the system, the product is
given away for free or on negative market prices (Equation 6.3).

Figure 6.8 shows that Nash equilibrium occurs when both firms’ reaction
curves cross at values of x = y = 24. This is when both firms are producing
the same output.

The Cournot model has been used as a basis to test patterns in firm behav-
ior. Alkemade [5] depicted a similar design while writing an evolving Cournot
model where the firms use genetic algorithm operations on the strategy base
to optimize their productions as shown in Figure 6.9.

Learning Rules Model

Strategy
Base !
1
1
1
1
i
| Market
i
1
1
1
1
1
|
Strategy i
Base :

Genetic

Genetic

FIGURE 6.9: An evolutionary model. Each firm has its own strategy base
which after every simulation is updated using genetic algorithms. Adapted
from [5].

Alkemade used the experiment in a smaller duopoly market with only two
firms, investigating use of evolutionary algorithms to study endogenous and
exogenous factors which affected the Cournot equilibria. The study also con-
cluded that simple agents performed well in static conditions, whereas more
sophisticated agents with complex structures, like conditional or autoregres-
sive agents, performed better in dynamic settings.

Vriend et al. [28] analyzed imitation behavior of firms, arguing that learn-
ing about the environment becomes more complex when there are too many
choices. Their results showed that the firms are reluctant to imitate other
firms, because they concluded that imitating a successful player would put
them in a worse situation to begin with. Barr and Saraceno [19] also modeled
a duopoly market framework focusing on how learning affected the equilibria
of the system. The authors characterized firms as an artificial neural network,
estimating outputs depending on signals received from the environment.

Arifovic used genetic algorithms to study adaptive behavior in firms in var-
ious economic models [9, 10]. In addition to using genetic operations, she also
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used an extra variable called election which helped compare results with ra-
tional expectations of firms. This was similar to the expected strategy used in
the coevolutionary approach compared to actual played strategies. Arifovic [9]
argued that the fluctuating behavior eventually converging to the equilibrium
is not possible by standard approaches like least square methods, previously
used in traditional economic theories. Dawid [47] supported the argument by
saying that “genetic algorithm learning yielded qualitatively similar aggregate
behavior than a population of human agents. The match is not perfect since
the amplitude of oscillations decreases faster in genetic algorithms compared
to the other approaches, such as least square learning method, these results
are very satisfying.”

Altavilla et al. [6] experimented with heterogeneous firms and compared
the results to the Bertrand model. Friedman [70] supported the idea that
players in reality behaved as if they have formulas in their heads. “It is only
a short step from these examples to the economic hypothesis that under a
wide range of circumstances individual firms behave as if they were seeking
rationally to expected returns”. Price [152] compared the evolution of price
in Cournot and Bertrand models.

TABLE 6.2: Evolving Cournot characteristics for each firm.

Find the maximum profit that can
Objective be earned when competing with other

firms. _ _
Quantity production represented as bi-

Strategy representation nary string of 9 bits can be converted
_ into a numeric value

Fitness case Profit of the firm.

Selection scheme Fltr}ess proportionate roulette wheel se-

lection

Mutation rate 0.01, 0.03, 0.1

Crossover rate 0.1, 0.5, 0.7

Length of simulation 500

Number of runs averaged | 20

The output the firms produce is represented as a string of binary digits.
This allows the genetic operations, like crossover and mutation, to be per-
formed easily on a numerical value. For example, 000100010 = (0 x 28) + (0 x
27+ (0x 26) 4+ (1 x 2%) + (0 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (0 x 29) = 34.

The crossover and mutation rates help introduce variety in the population
of strategies in the database. These can be introduced with different rates
to allow divergence in the strategy population, at the same time preventing
strategies from converging before all strategies have been tried.

Figure 6.10 depicts each firm having a strategy base which is maintained
in the firm’s memory. The strategy base looks like a database table with the
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ev
Strategy base Market

Firms

FIGURE 6.10: All firms have a strategy base in their memory.

binary string representing the strategy (production) and the profit acting as
the performance of the strategy (Figure 6.11).

(Strategy) (Performance)
Output Profit

100010001 1000.00

100011001 1100.00

Length of
110010001 1110.00 strategy base

101011001 2000.00

FIGURE 6.11: How a strategy base looks in firm’s memory.

The strategy being evolved is represented as a string of bits to allow the
crossover and mutation techniques to be applied. The profit serves as the fit-
ness or the result of applying different productions. This can also be called
the performance or payoff received for the strategy. As there is no optimiza-
tion performed on the profit itself, it is not required to be represented as a
string. Thus using it as a double value variable serves the purpose of a pay-
off in the experiment. Figures 6.12 and 6.13 demonstrate how the crossover
and mutation functions will produce new strategies for the firms during the
simulation.

Three homogeneous firms were modeled in a system and the experiments
were run 20 times and an average collected. Figure 6.14 describes the Cournot
system with three firms and one system demand agent. The system demand
agent acts like the environment, collecting the firm outputs and calculating
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100010011 Strategy A = 275
Crossover at point 2: |

|
100011001 Strategy B = 281

Resulting children 100010001 Strategy C = 273

strategies: 100011011  Strategy D = 283

FIGURE 6.12: How crossover works in Cournot model. Strategy A, B, C
and D represent numerical values of bit strings.

Mutation at point 2: 100010011 Strategy A = 275
Resulting child 100010001

Strategy C = 273
strategy:

FIGURE 6.13: How mutation works in Cournot model.

Firms bid their strategies

|

Agents:

. System Demand

Firm

\

System calculates price
and returns profit of the firms

FIGURE 6.14: The system contains four agents (three firms and one system
demand, responsible for assessing the product price).
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the price in the system. Depending on the price, the firm agents can then
calculate how much profit they have received for each bided strategy.

Using the equations discussed earlier (Equations 6.1 - 6.4) the Nash equilib-
rium was calculated theoretically to compare the experimental results. These
have been listed in Table 6.3.

TABLE 6.3: Numerical values in Cournot experiment.

Variable | Value

OMAX 511. (Assuming all bits in a 9 digit binary
string was 1)

n 3 (Number of firms)

Q* 127.5 (Quantity at equilibrium)

P 128.5 (Price at equilibrium)

Profit* | 15108.75 (Profit at equilibrium)

The steps taken during the Cournot model are as follows:

Step 1: Firm Agent: If the beginning of the simulation, generate strategies
for firm database; else do nothing.

Step 2: Firm Agent: Select an elitist strategy from the memory database
based on roulette wheel selection. Post this as the chosen strategy.

Step 3: Demand Price Agent: Reads in all played strategies by firms and
calculates the price of the product depending on the demand in the
system.

Step 4: Firm Agent: Reads in the price of the product and calculates the
actual profit as a result of playing the strategy.

Step 5: Firm Agent: Choose two elitist strategies from the database using
new fitness. Perform crossover and mutation techniques to find three
child strategies and save them.

Evolution relies on the trial and error process, trying best strategies and
keeping a record of the most successful to produce new strategies. Figure 6.15
displays the results on quantities bid and profits collected. The quantities
(Figure 6.15(a)) depict large variations as the simulation does not stabilize
even after running it for 500 time steps. In Figure 6.15(b), profits were seen
to converge close to the equilibrium value.

Between ¢t = 100 and ¢t = 250 (Figure 6.16(a)), the price comes very close to
the ideal equilibrium price and oscillates about it, until at ¢ = 250, one of the
self-interested firms bids a higher quantity to attain higher profits. Deviation
from the Nash equilibrium produces a loss to the firms, breaking the balance
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FIGURE 6.15: Quantity and profits of three firms.
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FIGURE 6.16: Price and strategy space in evolution.
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attained. Thus, firms try to come closer to equilibrium again which was later
achieved after ¢t = 350.

Figure 6.16(b) illustrates the plots of quantities produced at time ¢ versus
those produced at time ¢ = ¢ + 1. As all three firms were homogeneous, the
strategy space of only one firm (Firm 1) is shown. Here the firm is trying out
every possible strategy, making the strategy space spread across the graph.
Although in the end it does concentrate around the equilibrium, the firm had
to try a large number of possibilities before this was found.

Figures 6.17 and 6.18 depict the variation in prices, when crossover and
mutation probabilities are varied. Price is a central variable, affected by quan-
tities and profits of all firms. The simulations show that by increasing the
crossover rates, the time for the price to find equilibrium increased. For in-
stance, crossover rate 0.1 finds equilibrium at ¢ = 50, 0.5 at ¢ = 100 and 0.7
at t = 200.

Varying the mutation rate also shows similar behavior of extending time
to oscillate about the equilibrium. This is very evident in P.;.ossoper = 0.7 with
the price stretched by increasing the mutation rates.

The model details are as follows:

Memory of Firm Agent. (int) id, (strategy) firm_strategy_map[10], (strat-
egy) current_strategy, (strategy) chosen strategy, (double) profit, (dou-
ble) cost, (int) quantity, (double) avg_fitness.

List of Firm Functions. Firm_generate_strategies, Firm_idle, Firm_select
_and_post_representative, Firm_read_reps_evolve, Firm_generate
_childstrategy, Firm _play_strategy, Firm_collect_actual_fitness, Firm
_post_histogram.

Memory of Demand Price Agent. (int) id, (double) pzero, (double) pt,
(int) gmax.

List of Demand Price Functions. Demand_Price_calculate.

Memory of Averager Agent. (double) profit_firm1, (double) profit_firm2,
(double) profit_firm3, (double)price, (double) quantity_firm1, (double)
quantity_firm2, (double) quantity_firm3.

List of Averager Functions. Averager_collect.

Messages. Current_strategy: Contains firm_id, production, scene_id; pri-
ceP: Contains mprice, scene_id; current_profit: Contains firm_id,
quantity, profit, scene_id; firm_representative: Contains firm_id, cur-
rent_strategy, scene_id; my_chosen_strategy: Contains firm_id, cho-
sen_quantity, scene_id

Datatypes. Strategy: Contains output[9], score, frequency
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FIGURE 6.17: Average price with crossover rate 0.1, 0.5 and multiple mu-

tation rates.
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FIGURE 6.18: Average price with crossover rate 0.7 and multiple mutation

rates.
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6.3.1 Genetic Programming with Agents

<!-- extract from model XML file-->
<dataTypes>
<dataType>
<name>strategy</name>
<variables>
<variable><type>int</type><name>output [9]</name></variable>
<variable><type>double</type><name>score</name></variable>
<variable><type>int</type><name>frequency</name></variable>
</variables>
</dataType>

<xagent>

<name>Firm</name>

<memory>
<variable><type>int</type><name>id</name></variable>
<variable><type>strategy</type><name>firm_strategy_map[5]</name></variable>
<variable><type>strategy</type><name>current_strategy</name></variable>
<variable><type>int</type><name>x</name></variable>
<variable><type>int</type><name>y</name></variable>
<variable><type>double</type><name>profit</name></variable>
<variable><type>double</type><name>cost</name></variable>
<variable><type>int</type><name>quantity</name></variable>
<variable><type>double</type><name>avg_fitness_opt</name></variable>
<variable><type>double</type><name>avg_fitness</name></variable>

</memory>

<functions>
<function>
<name>Firm_select_strategy</name>
<currentState>00</currentState>
<nextState>00a</nextState>
<inputs>
<input><messageName>strategies_for_firm</messageName>
<filter>
<lhs><value>a.id</value></lhs>
<op>EQ</op>
<rhs><value>m.firm_id</value></rhs>
</filter>
</input>
</inputs>
</function>

<function>

<name>Firm_play</name>

<currentState>00a</currentState>

<nextState>01</nextState>

<outputs>
<output><messageName>current_strategy</messageName></output>

</outputs>

</function>

<function>
<name>Firm_calculate_profit</name>
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<currentState>01</currentState>

<nextState>02</nextState>

<inputs>
<input><messageName>priceP</messageName></input>

</inputs>

<outputs>
<output><messageName>current_profit</messageName></output>

</outputs>

</function>

<function>
<name>Firm_optimise</name>
<currentState>02</currentState>
<nextState>03</nextState>
</function>

</functions>

</xagent>

/* The Firm Agent Functions**/

#include
#include
#include
#include

"header.h"
"my_library_header.h"
"Firm_agent_header.h"
<math.h>

int Firm_select_strategy()

{

int counter=0; //to count empty strategies
int counter_j=0;//to count inside strategy
strategy_array temp_good_strategies;

init_strategy_array(&temp_good_strategies);

strategy_array temp_cum_fitness;
init_strategy_array(&temp_cum_fitness);

strategy_array new_strategies;
init_strategy_array(&new_strategies);
int new=0;

double

lowest=0.0;

int pos=0;
int temp_size=0;

double
double

sum=0.0, sum_prob=0.0;
start_ptr=0.0;

int 1,j,1;

int strategy_chosen_flag=0;
strategy received_strategies[5];
int FirmStrategySize=10;

//choose one of the good strategies in my database
//using roulette wheel selection

for(i=0;i<FirmStrategySize;i++)

{

if (FIRM_STRATEGY_MAP[i] .score>0.0)

{

//only consider strategies which have more than O scores
add_strategy (&temp_good_strategies,&FIRM_STRATEGY_MAP[i] .output [0],
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FIRM_STRATEGY_MAP[i].score,0);
}
¥
//output all chosen strategies
for(i=0;i<temp_good_strategies.size;i++)

{
for (j=0; j<LENGTH; j++)
{
printf("%d,", temp_good_strategies.array[il.output[jl);
¥

printf (" score %f\n",temp_good_strategies.array[i].score);

}
//choosing one of these strategies to play
sum=0.0;

sum_prob=0.0;
if (temp_good_strategies.size>0)

{
for(i=0;i<temp_good_strategies.size;i++)
{
sum+=temp_good_strategies.array[i].score;//sum of fitness
}
for(i=0;i<temp_good_strategies.size;i++)
{
sum_prob+=(temp_good_strategies.array[i] .score/sum); //sum of prob
add_strategy(&temp_cum_fitness,
temp_good_strategies.array[i] .output,sum_prob,0);
}

start_ptr=(double)rand()/(double) RAND_MAX;

for (1=0;1<LENGTH;1++)
{
CURRENT_STRATEGY . output [1]=temp_good_strategies.array[0] .output [1];
}
CURRENT_STRATEGY . score=temp_good_strategies.array[0] .score;

for(j=0; j<temp_good_strategies.size;j++)

{
if ((start_ptr>=temp_cum_fitness.array[j].score)&&
(start_ptr<=temp_cum_fitness.array[j+1].score))
{
for (1=0;1<LENGTH;1++)
{
CURRENT_STRATEGY . output [1]=temp_good_strategies.array[j].output[1];
}
CURRENT_STRATEGY . score=temp_good_strategies.array[j].score;
}//end if
}//end for
}//end if
return O;

}

int Firm_play()
{
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int i, j=0;
double total=0.0;

for (i=0;i<LENGTH;i++)
{
j=LENGTH-i-1;
total=total+ (pow(2,j)*CURRENT_STRATEGY.output[i]);
}
QUANTITY=total;
add_current_strategy_message (ID,total);
return O;

}

int Firm_calculate_profit()
{
double price=0.0;
double total_fitness=0.0;
int 1i;
//get profits from the Demand Price agent
priceP_message=get_first_priceP_message();
while(priceP_message)
{
price=priceP_message->mprice;
priceP_message=NULL; //Stop the message loop once value found
}
PROFIT=(price-COST) *QUANTITY ;
CURRENT_STRATEGY .score=PROFIT;

add_current_profit_message (ID,CURRENT_STRATEGY) ;

//add score to current strategy database
for(i=0;i<FirmBoardSize;i++)
{
if (compare_arrays (4)FIRM_STRATEGY_MAP[i] .output,
&CURRENT_STRATEGY . output)==0)
{
FIRM_STRATEGY_MAP[i] .score=CURRENT_STRATEGY.score;
}
}

for(i=0;i<FirmBoardSize;i++)
{
total_fitness+=FIRM_STRATEGY_MAP[i].score;
}
AVG_FITNESS=total_fitness/FirmBoardSize;

return 0;
}
// Performs crossover and mutation
int Firm_optimise()
{
int i=0;
double total_fitness=0.0;
strategy parent;
init_strategy(&parent) ;
strategy_array temp_good_strategies;
init_strategy_array(&temp_good_strategies);
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strategy_array temp_cum_fitness;
init_strategy_array(&temp_cum_fitness);
int j,1;

double sum=0.0;

double sum_prob=0.0;

double start_ptr;

double do_cross=0.0;

double do_mutate=0.0;

int crossover_point=0;

int mutation_point=0;
int pos=0;

double lowest=0.0;
strategy childOne;
strategy childTwo;
strategy mutantChild;

init_strategy(&childOne) ;
init_strategy (&childTwo) ;
init_strategy(&mutantChild);

int newchildOne=0,newchildTwo=0;
int newmutantChild=0;

int found=0;

if (CURRENT_STRATEGY . score>=THRESHOLD)

{
//select two parents via Roulette Wheel Selection
for(i=0;i<FirmBoardSize;i++)

{
if (FIRM_STRATEGY_MAP[i].score>0.0)
{
//prevent choosing the same parent
if (compare_arrays (&FIRM_STRATEGY_MAP[i] .output,
&CURRENT_STRATEGY . output)==1)//false
{
add_strategy (&temp_good_strategies,
&FIRM_STRATEGY_MAP[i].output[0],
FIRM_STRATEGY_MAP[i].score,0);
}
}
}
for(i=0;i<temp_good_strategies.size;i++)
{

sum+=temp_good_strategies.array[i].score;//sum of fitness

¥

for(i=0;i<temp_good_strategies.size;i++)

{
sum_prob+=(temp_good_strategies.array[i] .score/sum); //sum of prob
add_strategy(&temp_cum_fitness,

temp_good_strategies.array[i] .output,sum_prob,0);

}
start_ptr=(double)rand()/(double) RAND_MAX;
for(j=0; j<temp_good_strategies.size;j++)

{

if (start_ptr<temp_cum_fitness.array[0].score)

147
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f for (1=0;1<LENGTH;1++)
¢ parent.output[1]=temp_good_strategies.array[0].output[1];
;arent.score=temp_good_strategies.array[O].score;
1f((start_ptr>=temp_cum_fitness.array[j].score)&&
(start_ptr<=temp_cum_fitness.array[j+1].score))
{ for (1=0;1<LENGTH;1++)
¢ parent.output [1]=temp_good_strategies.array[j].output[1];
;arent.score=temp_good_strategies.array[j].score;

}

//performing crossover
do_cross=(double)rand()/(double) RAND_MAX;
if (do_cross<=CROSSOVER_RATE)

{

crossover_point=rand () %LENGTH;
for(i=0;i<crossover_point;i++)
{
childOne.output [1]=CURRENT_STRATEGY.output[i];
childTwo.output [i]=parent.output[i];
}

for(i=crossover_point;i<LENGTH;i++)
{
childOne.output [i]=parent.output[i];
childTwo.output [i]=CURRENT_STRATEGY.output[i];
}
newchildOne=0;
newchildTwo=0;
for(i=0;i<FirmBoardSize;i++)
{
if (compare_arrays(&childOne.output,
&FIRM_STRATEGY_MAP[i] .output)==0)
{
newchildOne=1;
}
if (compare_arrays(&childTwo.output,
&FIRM_STRATEGY_MAP[i] .output)==0)
{
newchildTwo=1;
}
}

//produce offspring through crossover & mutation
//replace lowest fitness with new offsprings
if (newchildOne==0)

{

for(i=0;i<FirmBoardSize;i++)

{
lowest=FIRM_STRATEGY_MAP[0] .score;
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pos=0;
for(j=0; j<FirmBoardSize; j++)
{
if (lowest>FIRM_STRATEGY_MAP[j].score)
{
lowest=FIRM_STRATEGY_MAP[j] .score;
pos=j;
¥
}
for (1=0;1<LENGTH;1++)
{
FIRM_STRATEGY_MAP [pos] .output [1]=childOne.output [1];
}

FIRM_STRATEGY_MAP [pos] . score=THRESHOLD;

}
//second child
if (newchildTwo==0)
{
for(i=0;i<FirmBoardSize;i++)
{
lowest=FIRM_STRATEGY_MAP[0] .score;
pos=0;
for(j=0; j<FirmBoardSize;j++)
{
if (lowest>FIRM_STRATEGY_MAP[j] .score)

{
lowest=FIRM_STRATEGY_MAP[j].score;
pos=j;

}

}
for (1=0;1<LENGTH;1++)
{
FIRM_STRATEGY_MAP [pos] .output [1]=childTwo.output [1];
}
FIRM_STRATEGY_MAP [pos] .score=THRESHOLD;
}
}
}//end of do_cross loop
if (do_mutate<=MUTATION_RATE)
{
mutation_point=rand()%LENGTH;
for(1=0; 1<LENGTH; 1++)
{
mutantChild.output [1]1=CURRENT_STRATEGY.output [1];
}
mutantChild.score=THRESHOLD;
if (mutantChild.output [mutation_point]==1)
{
mutantChild.output [mutation_point]=0;
}
else if (mutantChild.output[mutation_point]==0)
{
mutantChild.output [mutation_point]=1;
}
else{}
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newmutantChild=0;
for(i=0;i<FirmBoardSize;i++)
{
if (compare_arrays (4)FIRM_STRATEGY_MAP[i] .output,
&mutantChild.output)==0)//true
{
newnutantChild=1;
}
}

if (newmutantChild==0)
{

for(i=0;i<FirmBoardSize;i++)

{
lowest=FIRM_STRATEGY_MAP[0] .score;
pos=0;
for(j=0; j<FirmBoardSize;j++)

if (lowest>FIRM_STRATEGY_MAP[j].score)
{
lowest=FIRM_STRATEGY_MAP[j].score;
pos=j;
}
¥
for (1=0;1<LENGTH;1++)
{
FIRM_STRATEGY_MAP [pos] .output [1]=mutantChild.output [1];
}
FIRM_STRATEGY_MAP [pos] .score=THRESHOLD;
}
}
}//end if mutate
}//end if (CURRENT_STRATEGY.score>=THRESHOLD)
for(i=0;i<FirmBoardSize;i++)
{
total_fitness+=FIRM_STRATEGY_MAP[i].score;
}
AVG_FITNESS_OPT=total_fitness/FirmBoardSize;
return O;

6.3.2 Filtering Messages in Advance

Messages can be filtered in advance at message boards, before functions
start reading them. This is handled by FLAME if defined in the XML descrip-
tion file. The C function stays exactly the same, but speeds up simulation time
in cases where a large number of messages are read to find particular values.

<function>
<name>Firm_select_strategy</name><description></description>
<currentState>00</currentState>
<nextState>00a</nextState>
<inputs>
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<input><messageName>strategies_for_firm</messageName>
<filter>
<lhs><value>a.id</value></lhs>
<op>EQ</op>
<rhs><value>m.firm_id</value></rhs>
</filter>
</input>
</inputs>
</function>

/* Message reading stay exactly the same*/
strategies_for_firm_message=get_first_strategies_for_firm_message();
while(strategies_for_firm_message)
{
if (strategies_for_firm_message->firm_id==ID)
{
for(i=0;i<FirmBoardSize;i++)
{
for(j=0; j<LENGTH; j++)
{
received_strategies[i] .output[j]l=
strategies_for_firm_message->
firm_strategies[i].output[j];
}
received_strategies[i].score=strategies_for_firm_message->
firm_strategies[i].score;
}
}
}
strategies_for_firm_message=get_next_strategies_for_firm_message
(strategies_for_firm_message) ;

}

6.3.3 Comparing Two Data Structures

Two arrays or datatypes can be compared, to see if they carry the same
values or not. This is useful when performing crossover between two parents,
to check if both parents are not the same strategy strings. By using the ‘com-
pare_array’ function, if a zero if returned this is true; else 1 means a false.

if (compare_arrays (&received_strategies[i] . output,
&FIRM_STRATEGY_MAP[j].output)==0)
{
//true they are the same
...//if 1 is returned, they are two different strings

}
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6.4 A Virtual Mall Model: Labor and Goods Market
Combined

The virtual mall model is a simple representation of interactions between
the labor and goods markets. The model uses learning to allow agents to learn
their most profitable strategies in a changing environment. Learning allows
new strategies to be produced in the market, which are not pre-coded at the
start of the experiment. The model involves four agents described below.

Malls. The Mall agents functions on a monthly cycle, at every 20 workable
days. At the start of every month, the malls use a strategy posted to
them by the environment agent and use it for 5 days. At the end of 5
days they assess its performance. The current performance is compared
to the gradient at the end of the previous month, at which point the
mall decides to adapt this new strategy for the rest of the month or
switch to the old one.

Persons. The Person agents possess an extra variable in their memory called
the learning window. If the person strategy proves to be better, the
learning window increases in length, causing the assessment period for
the person to appear at a later stage. Thus the lengths of the windows
can give us insights on whether the people were performing well or not
as well as their gradients.

Environment. This agent is responsible communicating information to the
agents. The strategies are also held in the environment and are posted
at the time the agents need to try out new strategies. This is in contrast
for keeping the strategies in the agent memories. The environment also
holds the messages for the agents which are to be used within the strat-
egy. By keeping them here, we are able to remove the communication
dependency within the strategy gene of every agent allowing free access
for functions to be moved around.

Message counter. This agent is responsible for keeping track of the mes-
sages being sent between agents. This would allow us to see the reasons
for some of the emerging behavior of agents.

The experiment was used to test various hypotheses and understand how
learning and behavior are seen in a labor and goods market model. The sim-
ulation was started with neither the malls nor the people having knowledge
about their previous actions and the results were as follows.

Best performing malls. The malls were told to go bankrupt if their capitals
went below a bankruptcy level. Therefore, whenever this happened, the
malls were removed from the simulation. The list of functions which the
malls could include in their strategies were
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FIGURE 6.19: Mall capitals and worker savings.
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The mall strategy gene is of length seven, as it allowed to perform seven
functions in one iteration. Figure 6.19(a) shows that Mall 1 dominates
the market. Mall 3 tries to compete but is unable to catch up to the
prior mall and Mall 2 goes bankrupt at time ¢t ~ 50. Mall 1 benefits
from the start by using the following gene of functions,

advertise-do nothing-promotions-sell goods-assess goods price-assess

production

Employing this strategy, keeps the mall capital constant and rising. At
periods t2,t3, the mall hires people for work. By periodically hiring
people and selling goods, the mall steadily rises its capital. However,
this strategy is not good for a long time, where the mall switches to
another gene of functions, which consists of varying goods production

depending on sales and advertising.

Mall 2 starts by employing function in its gene, which is
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do nothing-promotions-hire worker-hire worker-make redundant-sell
goods-assess production

Here the mall tries to hire more workers in its strategy, we see a more
sharper fall in capitals. Although the mall switches to selling as the Mall
1 did, it cannot recover most of its losses, and goes bankrupt sharply.

Interestingly, also self-evolving Mall 3 started with Mall 2’s behavior,
but did not adopt it for long. This is probably due to people being
employed by Mall 2 and no more applications were left. Also there are
not many sales for Mall 2. Mall 2 runs before in the agent order during
the simulation. Thus Mall 3 tries out new strategies but keeps closing
down. Because of so many inactive periods, the mall in unable to climb
up in its sales and soon goes bankrupt.

Best performing people groups. There were three groups of people which
have the same information within the group. It was up to the individuals
to use information. The gene length of people functions was five and
included:

Find job.

Buy cheap goods.
Buy advertised.
Buy recommended.
Buy random.

Do nothing.

Quit job.

RN

Figure 6.19(b) shows that Group 1 and 2 are able to compete with each
other, whereas Group 3 can not. Savings are largely influenced by wages
of the people. Figure 6.20(a) shows the different wages of the people.
As the wages of people in Group 2 are higher, they are able to save up
more money than Group 1.

Since Mall 2 goes bankrupt at an early stage, it does not show any
impact on people savings. But when Mall 3 goes bankrupt at ¢t ~ 125,
we see a considerable fall in the gradient of savings. The demand wage
decreases as more and more people become jobless and try to get new
jobs with other existing malls.

Learning windows of the people. In Figures 6.19(b) and 6.20(a), Group
2 is doing better than Group 1. This is due to their learning windows
being smaller, so people in Group 2 are quicker to react and change
behavior and adapt better.
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FIGURE 6.21: Mall strategies and costs.

Figure 6.20(b) shows that Group 3 never gets employed and they never
do well in the system. When the mall goes bankrupt at t=125, there
are large numbers of unemployed people in the system with Group 2
completely out of jobs. Thus Group 2 fails at 200 iterations.

Functions used by the groups. Because every person updates their strate-
gies at different times it is difficult to say which are the most successful
strategy genes used. Figure 6.21(a) shows that groups recognize that
it is more profitable to have functions like looking for jobs and buying
cheaper goods than the rest. Buying goods-advertised, recommended or
random are seen in lower numbers in the strategies used.

Cost price of the malls. Figure 6.21(b) shows that Mall 2 increased the
cost price too much leading to fewer sales. Mall 1, selling goods at cheap
prices, benefitted in the long run.

Model details are as follows, with Figure 6.22 showing the model state
graph:
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e Memory of Mall Agent. (int) id, (mall_strategy) current_mall_function_
map, (mall_strategy) previous_mall function.map, (double) previous_
mall_profit, (int) retailer[25], (int) security, (double) current_mall_profit,
(int) stock, (int)stock_sold, (int) stock_addition, (double) cost_price,
(double) retailer_wage[25], (double) capital, (int) region_id, (int) x,
(int) y, (double) capitalPminusl, (double) capitalP, (double) previ-
ous_capital_gradient, (double) current_capital_gradient.

e Memory of Person Agent. (int) id, (person_strategy) current_person.
function_map, (person_strategy) previous_person_function map, (dou-
ble) previous_performance, (double) current_performance, (double) sav-
ings, (int) employer_mall.id, (double) expenses, (int) goods_bought,
(double) wage, (int) regionid, (int) x, (int) y, (double) savingsPmi-
nusl, (double) savingsP, (double) previous_savings_gradient, (double)
current_savings_gradient, (double) performance_gradient, (int) learn-
ing_window, (int) learning window_assess.

e Memory of Environment Agent. (int) id, (mall_strategy_array) mall_
actions, (person_strategy_array) person_actions, (d_vacancy_message._
array) vacancy_msg, (d_application_message array) application_msg,
(d-offer_message_array) offer_msg, (d-acceptance. message_array) ac-
ceptance_msg, (d_advert_message_array) advert_msg, (d_buying_request_
message_array) buying request_msg, (d_recommended message_ array)
recommended_msg.

e List of Mall Functions:

— Mall_generate_strategies
— Mall_idle

— Mall_post_things

— Mall_select_and_post_representative
— Mall_read_reps_evolve
— Mall_play

— Mall_play_2

— Mall_monthly_functions
— Mall_job_messages

— Mall_job_messages_2

— Mall_collect

— Mall_collect_strategydb
— Mall_post_to_Averager

e List of Person Functions:
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Person_generate_strategies
Person_idle
Person_select_and_post_representative
Person_read_reps_evolve

Person_play

Person_play_2

Person_job_messages
Person_collect_all_information
Person_collect_strategydb

Person_post_to_Averager

o Messages:

mall_representative: Contains mall_id, current_strategy, scene_id
advert_to_person: Contains mall_id, scene_id
vacancy_to_person: Contains mall_id, shop_id, scene_id

buying_request_to_mall: Contains person_id, mall_id, costprice,
scene_id

sold: Contains person_id, mall_id, cost_price, scene_id

fired: Contains person_id, compensation, scene_id

hired: Contains person_id, mall_id, wage, scene_id
recommended_to_person: Contains mall_id, scene_id
wage_increase: Contains mall_id, person_id, wage, scene_id
cost_price: Contains mall_id, price, scene_id
application_to_mall: Contains person_id, mall_id, wage, scene_id
quit: Contains person_id, mall_id, scene_id

offer_to_person: Contains person_id, mall_id, wage, scene_id
acceptance_to_mall: Contains person_id, mall_id, wage, scene_id

person_my _fitness: Contains person_id, score, predicted_score,
scene_id

my_employment: Contains person_id, mall_id, scene_id
my_savings: Contains person_id, savings, scene_id

person_my _strategy: Contains person_id, current_strategy, scene_id
my_wage: Contains person_id, wage, scene_id

mall_my _fitness: Contains mall_id, score, predicted_score, scene_id

my_capital: Contains mall_id, capital, scene_id
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— mall_my_strategy: Contains mall_id, current_strategy, scene_id
— my_goods_sold: Contains mall_id, goods, scene_id

— my_price: Contains mall_id, price, scene_id
e Datatypes:

— mall_strategy: Contains output[7], score, predicted_score

— person_strategy: Contains output[5], score, predicted_score

6.5 Programming Games

Neumann and Morgenstern’s work [199] pioneered interdisciplinary re-
search in game theory, using concepts of expected utility to explain a per-
son’s ‘betting preferences’ with regard to uncertain outcomes in a gaming
situation. The authors also described the concept of rationality by compar-
ing economic situations with the Robinson Crusoe model, where the system’s
complete economy is led by one individual who is responsible for all rules im-
posed in a closed isolated system. The objective of the individual is to perform
tasks and impose rules which would eventually maximize their own benefit.
However, the model ignored factors such as weather, savages or crops which
would eventually influence the decisions made. Weighing these factors can
be introduced through probabilities of their influence on economic decision
outcomes.

Departing from the idea of a single individual is the concept of social econ-
omy, which involves more than one individual interacting with others, in turn
presenting a different sets of challenges to the economy. The social interaction
provides individuals with more or limited information, through their networks,
who can then make decisions based on this for their own benefit. The strate-
gies used in each situation, and by each individual, are different, working to
find a maxima for the individual performing in the situation. This maxima
or maximum value represents the utility or the performance of the variable
being optimized through the strategies. With this argument, each individual
would behave rationally to maximize their utility and choose the most opti-
mum strategy in the situation. However, in reality, recent work has argued
the influence of cognitive psychology, bias and chance on rational decisions in
economic scenarios such as in the works of McFadden [130] and Kahnemann
[99].



160 X-Machines for Agent-Based Modeling: FLAME Perspectives

“Game theory has developed powerful tools for analyzing decision
making in systems with multiple autonomous actors. These tools, when
tailored to computational settings, provide a foundation for building
multi-agent software systems. This tailoring gives rise to the field of
computational mechanism design, which applies economic principles to
computer systems designs.” [46]

Games have been used with economics to explain how individual players
adopt different strategies when trying to constantly outsmart each other [157].
Game theory embodies research as different kinds of games and is essentially
the study of these strategies. Most games have payoff matrices that determine
the profit received by the agent when a certain strategy is played. Economists
widely used game theoretic approaches to model goal-directed behavior in
agents as a way to emulate competitive and collaborative characteristics in
humans.

The utility functions are embeded within players and allow them to assess
their behavior. Each player is a self-interested individual, trying to improve
their behavior by measuring it, using the utility function. However, this ap-
proach is still very limiting assuming all agents behave in predefined ways,
ignoring the varied personalities of humans and other events affecting their
decisions.

Since traditional economic ideologies are based on rational theory, game
theory provides a number of advantages for scientists to view economic and so-
cial systems as game scenarios. These systems contain the following attributes:

e Introduce a rational choice theory for all players.
e The provision of the utility function which is maximized by all players.

e Investigate the concepts of domination using the Nash equilibrium.

6.5.1 Nash Equilibrium

Equilibrium in economics is another important concept, first projected
in Walrasian models, where Walras was convinced that economics could be
made predictable. He was influenced by the physics principles and imported
the concept of equilibrium, laying mathematical foundations in traditional
economics [21]. The theory supports the claim of the invisible hand, stating
that whatever happens in the market, it would eventually reach an equilibrium
which is the best scenario for all players or actors in the system.

In game theory, Nash equilibrium was proposed by John Forbes Nash
[139, 138] in games that involve two or more players. Each player assumes to
play the strategy that lies close to the equilibrium, which is the point when
no player would benefit if it strayed from the current equilibrium strategies,
being the best for all players.
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Let (S, f) be a game of n players where S; is the strategy set for player i.
Thus the set of strategy profiles (Equation 6.5) would have associated payoff
functions (Equation 6.6),

S = Sl X SQ X Sn (65)

f:f1($)7f2(‘r)7fn(‘r) (6'6)

Each player i would then choose a strategy = and obtain a certain payoff
fi(z). In a Nash equilibrium, players will choose a certain strategy z* such
that no player would get a profit if they deviated from this strategy.

Games can have pure or mixed strategies for the players, affecting the Nash
equilibrium reached by the players. Pure strategies are a set of strategies
given to the player with details on when to apply them. In mixed-strategy
games, players have a probability of choosing different strategies from their
strategy set. In these situations, equilibrium is defined as the trembling hand
equilibrium because there is a probability between the strategy choice. Some
mixed-strategy games allow players to have more than one Nash equilibrium.

6.5.2 Evolutionary Game Theory

Recent interest of economists and biologists has moved from traditional
game theory to ewvolutionary game theory as it provides more insights and
analysis of systems, particularly reducing the number of assumptions.

Maynard Smith [186] extended the principle of classical game theory by
applying it to a population dynamical setting. This work focused on the self-
regulation within actual species who are competing together. By introducing
self-regulation using the frequency of the species characteristics, the theory
allows dynamic systems to be expressed mathematically. In his unpublished
thesis work, Smith wrote “it is unnecessary to assume that the participants
have ... the ability to go through any complex reasoning processes. But the
participants are supposed to accumulate empirical information on the various
pure strategies at their disposal... We assume that there is a population ... of
participants... and that there is a stable average frequency with which a pure
strategy is employed by the average member of the appropriate population”
[85]. This work was largely based on principles of ecology.

Smith and Price [188] showed how animals adapted themselves to cope
better with scenarios like territory domination and competing for mates. The
authors presented the Hawk-Dove game where the players had no knowledge
about the optimal strategies. Through Darwinian selection, the hawks and
doves were able to evolve to an evolutionary stable state (ESS), which was
the Nash equilibrium where the populations stabilized. Smith concluded that
Darwinian selection could be substituted for agent rationality where the fitness
of the strategies is determined by the survival of the player in the population.
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6.5.3 Evolutionary Stable State

An important concept here is the ESSs, which differs from the strict defi-
nition of the Nash equilibrium (Table 6.4). ESSs study the strategies adopted
by the players on a population level. This involves studying a large number
of players. The ESS is achieved through the frequency of the players in the
population. Thus ESS is a frequency-dependent concept which has been prop-
agated by the selection mechanisms of evolution [186]. ESS allows for a given
set of behaviors (conserved over time) to determine an optimal strategy for
everyone in the system. At this time no other mutant behavior can enter the
system and survive. This means that behavior is adopted by the individuals
in the population, and no other behavior will invade the population under
natural selection. Suppose the main population plays strategy z € S and mu-
tants can play some strategy y € S. Given that the mutants in the population
are a very small proportion, then the probability a mutant is drawn for the
population is very small probability € by evolutionary selection. The payoff
function for the strategies is determined by u(x). An evolutionary stable state
occurs when no mutant population can invade the main population. This can
be true in the two conditions (Equation 6.8 and 6.9).

u(y, z) < u(z,x) (6.8)

u(y, x) = u(z,z) = u(y,y) < u(z,y)vy # (6.9)

The concepts of ESS favor the analysis of dynamical systems which is why
it is extensively used in biological systems [45].

6.5.4 Game Theory versus Evolutionary Game Theory

An important advantage of using ESS compared to Nash equilibrium is
that Nash equilibrium can only be achieved using rational decisions and dis-
crete payoffs in a game, whereas ESS does not depend on rational decisions. It
is rather based on the behavioral aspects of the individuals. Despite this differ-
ence, there are some games of an altruistic nature in which the two definitions
can be related. Prisoner’s dilemma game is an example in which only when
all players cooperate a Nash equilibrium is reached, benefitting all players in
the game. These games use rational or discrete utilities as payoffs.

Silverberg [178] favors the use of replicator dynamics to model economic
evolution. Replicator dynamics uses frequency-dependent fitness to depict the
most used strategy in an economic scenario. Frequency-dependent fitness is
different from using a payoff function for the fitness because the payoff function
assesses the performance of a strategy and the strategy fitness is based on the
performance rather than its frequency in the population.
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6.5.5 Continuous Strategies

Most theories in game theory and evolutionary game theory are based on
discrete strategies. Contrastingly in economics most strategies are continuous
variables like the prices or the production by a company. In such situations
the population stabilizes in one of the three following conditions [187]:

e There is a unique x, such that if all players play x, no mutant (new) y
can invade the population.

e There is a certain distribution (dz), which states that population lies
between (z) and (dx + x).

e There is no ESS in the population.

6.5.6 Red Queen and Equilibrium

Red Queen Dynamics, a name borrowed from one of Lewis Caroll’s [38]
characters, is the term given to the constant evolutionary arms race between
more than one species evolving together. For instance in the scenario of a
predator-prey model, the predator is continuously searching for the prey and
adapting its path to increase the chances of finding food. At the same time, the
prey would be adapting itself to find new paths to get away from the predator
to prevent being eaten. When put together both predator and prey enter into
the evolutionary arms race, each working for their own benefit, evolving their
behavior constantly.

Valen [196] describes the need for the Red Queen effect saying that “for
an evolutionary system, continuing development is needed just in order to
maintain its fitness relative to the systems it is coevolving with”. However the
Peter principle states “evolution systems tend to develop to the limit of their
adaptive competence” [147]. This shows that at a certain point the system
reaches a maximum, where their adaptiveness is not benefitting the actors
any more. This stage can be referred to as the reaching of an equilibrium,
where evolving further behavior by any of the species will not benefit either
of them. This concept is similar to the Nash equilibrium and the solutions of
Evolutionary Stable States as the populations momentarily stabilize at this
point.

Researchers like Malthus [126] supported the idea that populations would
always grow until there is a limit of resources. Boserup [29] argued that pop-
ulations devise new methods for food production when required instead of
letting it affect them. This supports the theory that if the economy is doing
well the populations would grow and do better. However, this does not seem
to happen in real economics, where the broad middle class depicts the wide
gap between the upper and lower classes.
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TABLE 6.4: Difference between Nash equilibrium and evolutionary stable
state.

Nash Equilibrium

(John Forbes Nash) Game theory, explains a concept in a
game involving more than one player. If players have chosen
a certain strategy and no player will gain anything (in its
payoff) by changing its strategy, the players have attained
Nash equilibrium.

Evolutionary Stable State

(John Maynard Smith) Evolutionary game theory, for a
given set of behaviors (conserved over time), there must be
a profitable action in common, such that no other mutant
(or new) behavior enters the system at the time. In a game
description, if n-players are playing various strategies they
adopt one such strategy which is profitable to everyone,
such that no other new strategy can be adopted by any
player at that time.

6.6 Learning in an Iterated Prisoner’s Dilemma Game

The prisoner’s dilemma (PD) game is being used in game theory to depict
situations of competition or cooperation among players. The game is defined
as a non-zero sum game indicating that whenever one player benefits the other
player suffers penalties. The players do not have any knowledge of what the
other player might play thus this make it a non-cooperative game.

A classical form of the prisoner’s dilemma (PD) game is described.

Two suspects are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated both prisoners, visit
each of them to offer the same deal. If one testifies (defects from the
other) for the prosecution against the other and the other remains silent
(cooperates with the other), the betrayer goes free and the silent ac-
complice receives the full 10-year sentence. If both remain silent, both
prisoners are sentenced to only six months in jail for a minor charge. If
each betrays the other, each receives a five-year sentence. Each prisoner
must choose to betray the other or to remain silent. Each one is assured
that the other would not know about the betrayal before the end of the
investigation. How should the prisoners act? [150]
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The game is essentially a two-player game where each player is trying to
maximize its own payoff without any consideration of what happens to the
other player.

TABLE 6.5: Prisoner sentences in PD game.

Prisoner B Prisoner B

stays silent betrays

Prisoner A: 10 years,
Prisoner B: goes free

Prisoner A stays silent | Each serves 6 months

Prisoner A: goes free,

Prisoner B: 10 years Each serves 5 years

Prisoner A betrays

In a one-shot game, because the players have no knowledge of other player
strategies, the game may not be very useful. But in an iterated prisoner
dilemma game, the game is repeatedly played amongst players. When repeat-
edly playing the game, the players have a chance to punish others, if they have
played a strategy which was unfavorable to them previously. This is similar
to reinforcement learning where, by punishing the player, they can learn the
beneficial strategies to play. The game can be repeated infinitely and eventu-
ally find an equilibrium, where they learn to play the good defect strategy to
prevent being punished in the future. In its classical form, the game presents
a Nash equilibrium when the players both defect.

Conducting the game on a trial-by-trial basis or a series of moves, the play-
ers must choose either to cooperate or defect on each trial. Table 6.6 shows
the numerical payoffs of the strategies played. Table 6.6 depicts a mathemat-
ical representation where T stands for temptation to defect, R for reward for
mutual cooperation, P for punishment for mutual defection and S for sucker’s
payoff. In this situation the following inequality will always hold:

T>R>P>S (6.10)

TABLE 6.6: Payoff matrix in PD game, where R=3, S=0, T=5, P=1.

Cooperate | Defect
Cooperate | R,R (3,3) S,T (0,5)
Defect T,S (5,0) P,P (1,1)

Playing the game repeatedly will eventually lead to an equilibrium, where
all players learn to defect or stay silent to achieve the maximum payoff. This
is maintained at a condition where the following rule is true [154, 48]:

2R>T+8 (6.11)
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The tendency to defect is the dominating move for the players. But when
players jointly defect the payoff returned is less than the payoff returned with
mutual cooperation. Playing the game once, clearly the players would think
of defecting, but playing it with many trials, the players learn that they have
a higher probability of getting a high payoff if they choose to cooperate, even-
tually trusting the other player to cooperate.

Researchers have used the iterated prisoner’s dilemma game to draw im-
portant conclusions on behavior of group selection or mutual altruism in real
individuals. The gaining of trust among individuals when coming together in
groups is often viewed as an evolutionary process which allows evolution of
cooperative behaviors. Politics exhibits a PD scenario, illustrating when the
country has to make decisions in spending money on its military expansion or
reducing weapons. Advertising in economics is viewed as an example of a PD
scenario, where firms are competing against each other for sales. They have to
decide whether they need to advertise or not depending on whether the other
firm has advertised. Their decisions and the times at which they make them
would affect their sales.

Miller [132] used automaton to represent a strategy in a prisoner’s dilemma
game. A player can make only two moves: either to cooperate or defect. A
strategy, however, is a complete plan of the number of times to cooperate or
defect depending on what the other player played. This can be represented as
a sequence of states to determine the next move for each player. For instance,
some of the strategies can be as follows:

Always cooperate. Always cooperate no matter what the other player plays
(Figure 6.23(a)).

Always defect. Always defect no matter what the other player plays, coop-
erates or defects (Figure 6.23(b)).

Tit for tat. Cooperate on the first move. Then mimic whatever the other
player plays (Figure 6.23(c)).

Figure 6.23 depicts examples of automaton being used to represent the
prisoner dilemma strategies. Table 6.7 explains how two players playing an all
defecting strategy against a tit-for-tat strategy progress.

The players have no knowledge of what other players might be playing at
time ¢ = 0. After the players have made their move, they know what the last
played strategy was. When an all defecting strategy plays against a tit-for-tat
strategy, it starts with the first player playing a defect and the second player
cooperating. As a result, the first player benefits getting a better payoff and
Player 2 suffers. But after this time step, Player 2 starts to mimic Player 1’s
last move. Since Player 1 defected in the last time step, it now plays a defect.
Player 1 is playing a strategy to defect. Each of these moves returns certain
payoffs to the players as shown.

Axelrod [14] organized a prisoner’s dilemma tournament where he invited
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C C

(a) Always cooperate. (b) Always defect.
s ‘ G
c

(c) Tit for tat.

FIGURE 6.23: Example automaton for prisoner’s dilemma strategies.

TABLE 6.7: All defect strategy (Player 1) playing against a tit-for-tat strat-
egy (Player 2).

Player 1 (All D) | Player 2 (Tit-for-tat)
At time =1t D C
Payoff returned | (5) (0)
At time=t+1|D D
Payoff returned | (1) (1)
At time=t+2|D D
Payoff returned | (1) (1)

game theorists to submit their own strategies for playing the game. Each
strategy was played against the other about 200 times and their collected
payoffs were collected. The experiment resulted in declaring the ‘Tit-for-Tat’
[154] strategy as the most successful strategy among the pool of strategies
submitted. Jennings et al. [165] introduced an alternate strategy which used a
tell to predict the other players’ strategy because it is being played a number
of times.

In another experiment, Axelrod [12] introduced evolving strategies to play
against each other. The results showed that the most effective strategies prop-
agated through the population, initially moving away from cooperation, but
then slowly moved towards it again. The average score of the population was
also seen to increase as the population evolved to cooperate with each other.
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C,C/D; C,D/D
D,C/D; D,D/D

— > = Start State
C = Cooperate
D = Defect

FIGURE 6.24: Finite state machine of eight states representing a prisoner’s
dilemma strategy. cf. [81].

Fogel [60] implemented a population of coevolving finite state machines
(FSM) each with eight states to represent the various strategies of the PD
game. Each FSM represented a predictive algorithm for a strategy and were
allowed to mutate and evolve in light of the expectation of what the other
state machines played. Figure 6.24 shows an example of a Fogel’s finite state
machine representing a strategy.

In contrast to Axelrod’s results of cooperation, Fogel showed that the level
of cooperation was not complete in most cases of the machines. His results
showed that trials with larger populations, however, did show emergence of
cooperative behavior but with smaller numbers and there was “a repeated
pattern of initial complete mutual cooperation, but this quickly degenerated
into cyclic behavior with moves covering the range from complete cooperation
to complete defection” [81]. These experiments were useful to hint the ability
of how evolutionary computation can be used to perform problem solving and
generate any kind of behavior in simulations [61].

The prisoner’s dilemma game allows players to compete against each other
to win payoffs. Locations can be used to allow closer players to continuously
cooperate or defect to see which strategy wins the most. The players can
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assess their strategies based on the fitness in the prisoner’s dilemma game
(Table 6.5).

The strategy played in the prisoner’s dilemma game was a 16-state strat-
egy. A 16-state strategy had a similar structure to the design of the automaton
discussed by Miller [132].

Table 6.8 represents a three-state automaton represented as a series of
strings showing a three state strategy. Figure 6.25 displays the corresponding
strategy of this automaton. The starting state is State 0. In this state the
player will cooperate. If the other player cooperates the player will move to
the State 1, else it will move to State 2. Depending on the new states its next
moves will depend on what is represented in the state it is currently in.

TABLE 6.8: Example of a three state machine represented by automaton.

State | C/D Next State, if Other | Next State, if Other
Player Cooperates Player Defects

0 C 1 2

1 D 0 2

2 C 2 2

FIGURE 6.25: Example of automaton represented by Table 6.8.

The automaton used in the FLAME iterated prisoner’s dilemma game
uses a 16-state strategy. A 16-state strategy is represented using 4 bits for
each state. Each strategy will contain 16 states; a payoff playing that strategy
is the score. Players maintain a database of these strategies in their memory, to
aid their competition in the simulation. The structure of the strategy database
is pictured in Figure 6.26.

Figure 6.27 shows the structure of one state in this strategy. The state in
the strategy is a string of 9 bits. The first bit represents which strategy to
play when in this state. In Figure 6.27, the player will cooperate in this state.
After doing so, depending on what the other player plays, it will move to a
new state. If the other player cooperates, the player will move to the next
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Strategy 1 ‘ State 1 | State 2 ‘ State 3‘ State 4 ‘ State 5 ‘ ..... ‘ State 16‘ Payoff ‘ Sugars Score

Strategy
database |

Strategy 10‘ State 1 | State 2 ‘ State 3‘ State 4 ‘ State 5 ‘ ----- ‘ State 16‘ Payoff ‘ Sugars Score

FIGURE 6.26: Strategy database of ten strategies in player memory.

Cooperate in this state

State Number 4 ‘ c ‘ 0 ‘ 1 ‘ o ‘ 1 ‘ 1 ‘ 0 ‘ 0 ‘ 1 ‘
State to move to State to move to
if other player cooperates if other player defects

FIGURE 6.27: One state in a strategy.

state which is represented by the next 4 bits in the strings or move to the
state represented by the last 4 bits, if the other player defected.

Because the length of each strategy was 16 states the game was played
16 times between the players. This ensured that all the states in the strategy
were reached during the plays testing the complete strategy.

Using this, ideal payoffs for the players were calculated. If all players
started to cooperate, this would be the maximum payoff they will strive to
achieve. This will be given as

Cooperating equilibrium = Average payoff x 16 = (3+3)/2 x 16 =48
(6.12)
Similarly the other equilibriums for the other situations will be given as

Defecting equilibrium = (1+1)/2 x 16 =16 (6.13)
Mized equilibrium = (0+5)/2+ (0+5)/2 x 16 =2.25 x 16 = 36 (6.14)

Figure 6.28 displays two parents strategies in a three-state automaton. The
parent are performing crossover at a point denoted by state number and the
length in the state. Therefore as depicted in the Figures 6.28(a) and 6.28(b),
the crossover point is at state number = 1 and state length = 4.

Figure 6.29 depicts the two children created by crossing over the two par-
ents. Figure 6.30 depicts a mutant child of Parent 1 which was mutated at
the same position. The diagrams show how through crossover and mutation
techniques, new strategies can be generated by just moving the bits in the
strings. Table 6.9 summarizes the values used during the experiment.

Steps taken in the PD model:

e Step 1: Citizen agent chooses a chosen strategy it might play using the
roulette wheel selection mechanism. Posts the first step which is either
to cooperate (C) or defect (D).
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(a) Parent 1. (b) Parent 2.

FIGURE 6.28: Two strategies acting as parents.
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(a) Child 1. (b) Child 2.

FIGURE 6.29: Two children resulting from crossover of parents, at crossover
point state number 1 and state length 4.

e Step 2: Citizen agent performs crossover and mutation techniques on
the strategy for the PD game.

e Step 3: Solver agent reads in the strategies of the two players and plays
the game between them. Adds the payoffs collected and tells the citizen
about the outcome, who won and who lost.

Figure 6.31 depicts the average score when the payoff of the IPD game
is used as the score of the strategy. The graphs were plotted with their ideal
values, in Equations 6.12 - 6.14. This shows which equilibrium was favorable
for the players. In Figure 6.31, the players were seen to learn the equilibrium
values very quickly in the simulation. The payoffs varied between 40 and 80,
but stabilized above the ideal cooperating equilibrium.
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| | Il
"0 001 0101 001 010 0 010 010

FIGURE 6.30: Mutant child of Parent-1 at mutation point state number 1
and state length 4.

TABLE 6.9: Numerical values in FLAME-IPD experiment.

Variable | Value

Landscape | 200 x 200

n 50 (Number of players)
Coop* 48 (Cooperating equilibrium)
Def* 16 (Defecting equilibrium)
Mized* 36 (Mixed equilibrium)

Payoff returned when playing the PD game

60 | i o foid b f L Al

TR e TR Mu LR LAk o et e

I O N
28 1l \‘| [T 14 J \ s
0O 100 200 300 400 500

Time

Average Payoff

with coevolution
without coevolution
cooperating equilbrium
defecting equilbrium =
mixed equilbrium

FIGURE 6.31: Score is payoff returned playing IPD game.
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6.7 Multi-Agent Systems and Games

Modeling complex system behavior is an emergent science which demon-
strates the complex social behavior of different communities working together.
Multi-agent systems can be used effectively to model this. These systems are
inherently distributed where agents are either spatially spread heterogeneous
in nature and have limited information available to them. Multi-agent systems
are essentially players involved in a non-cooperative game scenario. If all the
individuals tried to optimize their behavior, globally the system may optimize
as well. But there are problems analyzing these optimizations.

1. It is not possible to have a payoff matrix for models which are not games
to begin with. The measurement of the payoff will have to be associated
with a fitness variable U as part of the agent memory.

2. Evolutionary algorithms are used within agents, primarily to allow them
to evolve. Most of these algorithms use a comparison technique to calcu-
late the difference between the actual fitness collected and the expected
fitness of a particular strategy. In multi-agent systems, the expected fit-
ness is difficult to predict until the agent has tried the strategy in the
simulation.

3. Multi-agent systems are sometimes deterministic or stochastic. Agents
can use their memories to save good strategies, making the model de-
terministic by knowing what to play next. However, there is unpre-
dictable behavior in complex systems and agents struggle to find the
better strategies. The system then takes longer to reach global maxima.

4. Agents need to calculate when to change their behavior to reduce com-
plexities in their code.

5. The strategies are sometimes a continuous variable and not a set of
discrete strategies as in traditional game theory.

Importing the principles from game theory into multi-agent systems would
thus require a number of assumptions to be embedded into the agents to test
the theory. The world economy is often referred to as an “evolving game with
nearly four billion players” [49].

Multi-agent systems have a very close relation to the principles of the
games. The works of [13] and [73] are a few examples where game theory
has been used to develop agent-based models of players playing games and
evolving characteristics [132].

The behavior of an agent is programmed by the way it should respond
to signals using rules embedded in the program. Signals are messages coming
from other agents or can be the changes in the environment which affect the
agent’s behavior. The agent’s behavior is termed as the strategies or functions
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the agent can perform. These strategies are specific to certain decisions or
general. Programmatically these strategies are represented as rules and are
converted into functions to calculate the next move of the agent. There are
two research streams intp which similar agent games can be divided:

Competitive Equilibrium Theory. Agents only respond to signals from
the environments, like how the price affects the agent’s buying capability.

Computational Mechanism Design. Assumes agents respond in a game
theoretic manner by modeling the effect of their actions on actions of
other agents in the system.

In multi-agent systems, the two research streams have to be combined into
one, because agents are not only responding to environment conditions but
other agents in the system as well.
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Biological systems are often a collection of multiple complex systems. These
systems range from small bacterial models or large cell tissue models and
their behavior with other organs. Complex systems display adaptive behavior
to continually changing environment, coping to survive. These systems are ex-
tremely robust. Studying these systems is extremely cumbersome, due to their
complexity, size and capability of collecting data at minute scales. Simulation,
however, allows biologists to conceptually visualize how these systems func-
tion and what factors affect them. Having described these system as a series of
steps in models, the biologists can then test the data produced through simu-
lation with real data, inherently matching their predictions and understanding
to the real systems.
Describing a biological system virtually thus involves the following:

e Make design decisions: Identifying the system functions of the model be-
ing simulated. Following agile methods, this process involved repeated
conversations between domain experts (i.e. biologists) and computer sci-
entists (i.e. programmers).

e List agents and functions: Identify agent states and the order in which
they function during one iteration in the simulation.

175
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e Function programming: Develop the agent function code.

e Messages between agents: Through the design phase, the input and out-
put messages involved with the agents need to be identified and then
linked with the functions.

e Determine agent memory: For each agent, identify the memory variables.
These will form part of the function code, being manipulated through
messages and agent functions during the simulation.

e What to measure: Identify the model output variables that will be
recorded as simulation objectives. These output variables can either be
average agent behavior on one variable or a number of variables which
change during the simulation to understand agent behavior against it-
eration time. These outputs can then be compared to real system data
to compare how accurate the model represents the real system.

FLAME has been very successful in modeling a variety of biological exper-
iments. Working with various biologists and involved in their projects, it has
studied systems such as epithelial tissue healing, bacterial concentrations in
oxygen-starved environments, ant and pheromone behavior and even sperm
behavior in reproductive systems. It has aided in unlocking interesting biolog-
ical phenomena, just by the exercise of conceptualizing and writing models,
with comparing simulated to real collected data. Some of these projects, in
collaboration with experimental biologists, are summarized below.

7.1 Example Models
7.1.1 Molecular Systems Models

Innate immune system. NFxB pathways and its relationship with the cy-
toskeleton. Nature is governed by local interactions among lower-level
subunits, whether at the cell, organ, organism or colony level. Adaptive
system behavior emerges via these interactions, which integrate the ac-
tivity of the subunits. To understand the system level it is necessary
to understand the underlying local interactions. Successful models of
local interactions at different levels of biological organisation, includ-
ing epithelial tissue and ant colonies, have demonstrated the benefits
of such ‘agent-based’ modeling. Here, the modelers presented an agent-
based approach to modeling a crucial biological system, the intracellu-
lar NFxB signalling pathway. The pathway is vital to immune response
regulation, and is fundamental to basic survival in a range of species.
Alterations in pathway regulation underlie a variety of diseases, includ-
ing atherosclerosis and arthritis. The modeling of individual molecules,
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receptors and genes provides a more comprehensive outline of regula-
tory network mechanisms than previously possible with equation-based
approaches. The method also permits consideration of structural param-
eters in pathway regulation. The modelers predicted that inhibition of
NFxB is directly affected by actin filaments of the cytoskeleton seques-
tering excess inhibitors, therefore regulating steady-state and feedback
behavior [149].

Computational modeling of NFxB activation using IL-1RI and its co-
receptor TILRR, predicts a role for cytoskeletal sequestration of IkBar in
inflammatory signalling. The transcription factor NFxB is activated by
toll-like receptors and controlled by mechanotransduction and changes
in the cytoskeleton. In this study we combine 3-D predictive protein
modeling and in vitro experiments with in silico simulations to deter-
mine the role of the cytoskeleton in regulation of NFxB. Simulations
used a comprehensive agent-based model of the NFxB pathway, which
includes the type 1 IL-1 receptor (IL-1R1) complex and signalling in-
termediates, as well as cytoskeletal components. Agent-based modeling
relies on in silico reproductions of systems through the interactions of
its components, and provides a reliable tool in investigations of biologi-
cal processes, which require spatial considerations and involve complex
formation and translocation of regulatory components. The modelers
showed that their model faithfully reproduced the multiple steps com-
prising the NFxB pathway, and provided a framework from which they
can explore novel aspects of the system. The initial analysis, using 3D
predictive protein modeling and in vitro assays, demonstrated that the
inhibitor IkBa is sequestered to the actin/spectrin complex within the
cytoskeleton of the resting cell, and released during IL-1 stimulation,
through a process controlled by the IL-1RI co-receptor TILRR. In silico
simulations using the agent-based model predict that the cytoskeletal
pool of IkBa is released to adjust signal amplification in relation to in-
put levels. The results suggest that the process provides a mechanism for
signal calibration and enables efficient, activation-sensitive regulation of
NFxB and inflammatory responses [161].

MapKinase pathways. Signal transduction through the Mitogen Activated
Protein Kinase (MAPK) pathways. Many cells use these pathways to
interpret changes to their environment and respond accordingly. The
pathways are central to triggering diverse cellular responses such as
survival, apoptosis, differentiation and proliferation. Though the inter-
actions between the different MAPK pathways are complex, neverthe-
less, they are capable of maintaining a high level of fidelity and speci-
ficity to the original signal. There are numerous theories explaining
how fidelity and specificity arise within this complex context; spatio-
temporal regulation of the pathways and feedback loops are thought
to be very important. This experiment presents an agent-based com-
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putational model addressing multi-compartmentalization and how this
influences the dynamics of MAPK cascade activation. The model shows
that multi-compartmentalization coupled with periodic MAPK kinase
(MAPKK) activation may be critical factors for the emergence of oscil-
lation and ultrasensitivity in the system. The model establishes a link
between the spatial arrangements of the cascade components and tem-
poral activation mechanisms, and how both contribute to fidelity and
specificity of MAPK-mediated signalling.

Oxidase regulation in anaerobic E. Coli cells. In the presence of oxy-
gen (02) the model bacterium FEscherichia coli can conserve energy by
aerobic respiration. Two major terminal oxidases are involved in this
process, (1) Cyo has a relatively low affinity for O2 but is able to pump
protons and hence is energetically efficient, and (2) Cyd has a high affin-
ity for O2 but does not pump protons.

When E. coli encounters environments with different O2 availabilities,
the expression of the genes encoding the alternative terminal oxidases,
the cydAB and cyoABCDE operons, are regulated by two O2-responsive
transcription factors, ArcA (an indirect O2 sensor) and FNR (a direct
02 sensor). It has been suggested that O2-consumption by the terminal
oxidases located at the cytoplasmic membrane significantly affects the
activities of ArcA and FNR in the bacterial nucleoid. In this study, the
agent-based modeling approach represented spatially the bacterial pro-
cess and simulated the uptake and consumption of O2 by E. coli. It also
presented a consequent modulation of ArcA and FNR activities based on
experimental data obtained from highly controlled chemostat cultures.
The molecules of O2, transcription factors and terminal oxidases were
treated as individual agents and their behaviors with interactions were
imitated in a simulated 3D E. coli cell. The model implied that there
are two barriers that dampen the response of FNR to 02, i.e. consump-
tion of O2 at the membrane by the terminal oxidases and reaction of
02 with cytoplasmic FNR. Analysis of FNR variants suggested that the
monomer-dimer transition is the key step in FNR-mediated repression
of gene expression [17].

Blood-brain barrier and nanoparticles. Blood mediated nanoparticle
delivery is a new and growing field in the development of therapeutics
and diagnostics. Nanoparticle properties such as size, shape and surface
chemistry can be controlled to improve their performance in biologi-
cal systems. This enables modulation of immune system interactions,
blood clearance profile and interaction with target cells, thereby aiding
effective delivery of cargo within cells or tissues. Their ability to target
and enter tissues from the blood is highly dependent on their behavior
under blood flow. Here, the modelers produced an agent-based model
of nanoparticle behavior under blood flow in capillaries. They demon-
strated that red blood cells are highly important for effective nanopar-
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ticle distribution within capillaries. Furthermore, this model demon-
strated how nanoparticle size can selectively target tumor tissue over
normal tissue. The authors showed that the polydispersity of nanoparti-
cle populations is an important consideration in achieving optimal speci-
ficity and to avoid off-target effects. In the future, this model could be
used for informing new nanoparticle design and to predict general and
specific uptake properties under blood flow [71].

7.1.2 Tissue and Organ Models

Epithelial tissue and wound healing. Transforming growth factor (TGF-
B1) is a member of the TGF-beta superfamily ligand-receptor network.
It plays a crucial role in tissue regeneration. The extensive in vitro and in
vivo experimental literature describing its actions nevertheless describe
an apparent paradox in that during re-epithelialization it acts as pro-
liferation inhibitor for keratinocytes. The majority of biological models
focus on certain aspects of TGF-31 behavior and no one model provides
a comprehensive story of this regulatory factor’s action. Accordingly
the model’s aim was to develop a computational model to act as a com-
plementary approach to improve our understanding of TGF-81. In a
previous study, an agent-based model of keratinocyte colony formation
in 2D culture was developed. In this study, the model was extensively
developed into a 3D multiscale model of the human epidermis which is
comprised of three interacting and integrated layers:

e An agent-based model which captures the biological rules governing
the cells in the human epidermis at the cellular level and includes
the rules for injury-induced emergent behaviors.

e A COmplex PAthway SImulator (COPASI) model which simulates
the expression and signalling of TGF-£1 at the sub-cellular level.

e A mechanical layer embodied by a numerical physical solver re-
sponsible for resolving the forces exerted between cells at the multi-
cellular level.

The integrated model was initially validated by using it to grow a piece
of virtual epidermis in 3D and comparing the in virtuo simulations of
keratinocyte behavior and of TGF-/1 signalling, with extensive research
describing the key regulatory protein. This research reinforced the idea
that computational modeling can be an effective additional tool to aid
understanding of complex systems. In the paper produced, the model
was used to explore the hypotheses on functions of TGF-£1 at the cel-
lular and subcellular level on different keratinocyte populations during
epidermal wound healing [2].

Oviduct and sperm motility. The processes by which individual sperm
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cells navigate the length and complexity of the female reproductive
tract, to reach and fertilize the oocyte, are extremely fascinating and
difficult to study. Numerous complex processes can potentially influence
the movement of spermatozoa within the tract, resulting in a regulated
supply of spermatozoa to the oocytes at the site of fertilization. Despite
significant differences between species, breeds and individuals, these pro-
cesses converge, ensuring that an optimal number of high quality sper-
matozoa reach the oocytes, resulting in successful fertilization without a
significant risk of polyspermy. Computational modeling provides a use-
ful method to combine knowledge about the individual processes to help
understand the relative significance of each factor. In this study, the first
agent-based computational model of sperm behavior within an oviductal
environment was created. Firstly, a generic conceptual model of sperm
behavior within the 3D oviduct was presented. Sperms are modeled as
individual cells with a set of behavioral rules defining how they interact
with their local environment and regulate their internal state. Secondly,
a set of 3D models of the mammalian oviduct were constructed. Histol-
ogy images of the mouse oviduct were obtained and the path that the
oviductal tube follows through the tissue was identified using CUDA-
based image analysis (using GPUs). This was used to determine cross-
sectional topology, and measurements from the cross sections were used
to generate a set of accurately scaled 3D models of the oviduct. The
process of constructing and validating the agent-based computational
model of sperm movement and transport within the oviductal environ-
ment was described. The model is grounded in reality, with accurate
space and time scales used throughout, and parameters and mechanisms
from literature where available. Sensitivity analysis was performed on
all parameters, and those most sensitive to variation were identified.
The model was validated against literature, to validate it. However the
model had a few limitations based on the assumptions drawn which were
also presented. The model was used to investigate the significance of the
oviductal environment on the regulation of sperm distribution and their
progression to the site of fertilization. How changes to the the oviduct
environment can alter the sperm distribution was also studied. Finally,
the potential use for the model and how more complex mechanisms could
be integrated in the future were discussed [34].

Blood flow. This work investigated how a specific biological system - heart

cells and tissue - can be studied using computation as a metaphor, and
addressed the question of whether biological behavior can be labelled as
a computation. Clearly, an answer to this question is an ambitious goal
and is yet far off; however, the intent was to take a small step towards it.
As a test-bed, this work aimed to describe and implement a novel com-
putational perspective for modeling cardiac electrophysiology. It aimed
specifically to develop a hybrid, hierarchical, agent-based model of the
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cardiac cell and tissue electrophysiology. The model draws upon and ex-
tends the formal computational paradigms of hierarchy, state machines
and hybrid models to simplify model development; but more impor-
tantly, to accurately simulate, verify and validate the system against
the more traditional models that use numerical methods [197].

Epithelial renewal and long-term survival. Epithelial renewal in skin is
achieved by a constant turnover and differentiation of keratinocytes.
Three popular hypotheses were proposed to explain basal keratinocyte
regeneration and epidermal homeostasis:

e asymmetric division (stem-transit amplifying cell);
e populational asymmetry (progenitor cell with stochastic fate); and

e populational asymmetry with stem cells. In this study, the lineage
dynamics was investigated using these hypotheses with a 3D agent-
based model of the epidermis.

The model simulated the growth and maintenance of the epidermis over
three years. The offspring of each proliferative cell was traced. While all
lineages were preserved in asymmetric division, the vast majority was
lost when assuming populational asymmetry. The third hypothesis pro-
vided the most reliable mechanism for self-renewal by preserving genetic
heterogeneity in quiescent stem cells, and also inherent mechanisms for
skin ageing and the accumulation of genetic mutation [117].

Cell and chemical interactions in 3D using HPC for chemotaxis.
The behavior of biological cells within the body is far from static; they
interact with their environment and each other using chemical secretions
which act as signals. Existing tools allow for complex behavior of cells
to be modeled, but do not provide built-in mechanisms for handling
the chemical communication that occurs. Here, a set of extensions were
made to the FLAME agent-based modeling framework to perform 3D
chemical diffusion within a constrained environment, and allow individ-
ually modeled biological cells to interact with the 3D chemical field by
secreting, detecting and consuming different chemicals. FLAME, which
automatically parallelized agent-based models, was extended to allow
chemical diffusion and automatically performed using an attached GPU.
The framework was enhanced to allow the chemical diffusion to be per-
formed not only on a local computer, but also on the GPU nodes of a
high performance cluster, while the agents themselves were processed on
normal CPU nodes. To validate the technique, two different studies were
performed, one looking at the survival of eosinophil cells in the presence
of (IL5), and the other looking at eosinophil chemotaxis. Both studies
were validated against published experiments.

Modeling the effect of CRTH?2 receptor blocker on eosinophilic inflam-
mation during an asthma attack. Eosinophillic inflammation in the lungs
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is a key symptom of asthma, which occurs in the late phase of an asthma
attack, resulting in more severe airway restriction and long-lasting sec-
ondary effects. This work presented a model of eosinophilic inflamma-
tion, that occurs in lungs during an asthma attack, and the effect that
a proposed treatment (i.e. blocking the CRTH2 receptors on resident
T-cells) can have on the inflammation. The model starts with the mast
cell degranulation associated with initiation of an asthma attack, and the
subsequent release of chemicals (PGD2, IL5) from mast cells. The PGD2
stimulates tissue resident T-Cells via the CRTH2 receptor to produce a
large quantity of IL5, which has been linked to eosinophil survival. After
a few hours, eosinophils, which are produced in large quantities in the
bone marrow, flood into the tissue and are chemotactically attracted to
the lumen by Eotaxin, released from epithelial cells. When the CRTH2
receptor is blocked, the resident T-cells do not produce additional IL5,
therefore reducing the levels of IL5 within the tissue. This influences the
amount of time eosinophils are able to survive within the tissue, thereby
reducing the severity of an eosinophilic inflammation. The results are
validated against experimental data for a related anti-IL5 drug.

7.1.3 Ecological Models

Social insects: foraging in ants. Communication improves decision- mak-
ing for group-living animals, especially during foraging, facilitating ex-
ploitation of resources. Here a model was created of the trail-based forag-
ing strategy of Pharaoh’s ants to understand the limits and constraints of
a specific group foraging strategy. To minimize assumptions, the model
parameters acquired through behavioral study were used. Pharaoh’s ants
(Monomorium pharaonis) exploit the geometry of trail network bifur-
cations to make U-turns if they are walking the wrong way. However,
7% of foragers perform apparently incorrect U-turns. These seemingly
maladaptive U-turns are performed by a consistent minority of specialist
U-turners that make frequent U-turns on trails and lay trail pheromones
much more frequently compared to the rest of the colony. The study
showed a key role for U-turning ants in maintaining the connectivity
of pheromone trails. The authors produced an agent-based model of a
heterogeneous ant community where 7% of agents were specialized fre-
quent U-turners whilst the remaining 93% rarely U-turned. Simulations
showed that heterogeneous colonies enjoyed significantly greater success
at foraging for distant food resources compared to behaviorally homoge-
neous colonies. The presence of a cohort of specialized trail-layers main-
tained a well-connected network of trails that ensured that food discov-
eries are rapidly linked back to the nest. This decentralized information
transfer might ensure that foragers can respond to dynamic changes in



Agents in Biology 183

food distribution, thereby allowing more individuals in a group to benefit
by successfully locating food finds [164, 97, 96].

Social insects: soil disposal organization. Colonies of Pheidole ambigua
ants excavate soil and drop it outside the nest entrance. The deposition
of thousands of loads leads to the formation of regular ring-shaped piles.
But, how is this pattern generated?

This study investigated soil pile formation on level and sloping surfaces,
both empirically and using an agent-based model. The authors found
that ants drop soil preferentially in the direction in which the slope is
least steeply uphill from the nest entrance, both when adding to an ex-
isting pile and when starting a new pile. Ants respond to cues from local
slopes to choose downhill directions. Ants walking on a slope increase
the frequency and magnitude of changes in direction, and more of these
changes of direction take them downhill than uphill. Also, ants carry-
ing soil on a slope wait longer before dropping their soil compared to
ants on a level plane. These mechanisms combine to focus soil dropping
in the downhill direction, without the necessity of a direct relationship
between slope and probability of dropping soil. These empirically deter-
mined rules were used to simulate soil disposal. The slight preference
for turning downhill measured empirically was shown in the model to
be sufficient to generate biologically realistic patterns of soil dumping
when combined with memory of the direction of previous trips. From
simple rules governing individual behavior, an overall pattern emerges,
which is appropriate to the environment and allows a rapid response to
changes [163].

Further general titles and experiments can be found in [86, 87].

7.1.4 Industrial Applications of Agent-Based Modeling with
FLAME

Active management of crowds in airports, stations and shopping malls.
This used the Concoursia software application, based on FLAME-GPU.
This models individual people moving around precisely modeled build-
ings, used for both planning buildings and also for actively managing
crowds when connected to suitable sensor systems. This provides man-
agers with a decision support tool for making decisions about potential
interventions to deal with overcrowding based on predictions provided
by the FLAME model (Figure 7.1(a)).

Managing patient demand in hospital A&E departments. This uses
the application PatientFlow, based on FLAME running on an HPC grid.
In the model, each patient, staff member and ancillary service is modeled
as individuals, to present a detailed representation of how the hospital
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FIGURE 7.1: Industrial applications of FLAME.

operates. The initial model was developed in collaboration with Central
Manchester Foundation Trust and the Science and Technology Facilities
Council. The system can make predictions of where bottlenecks are likely
to occur in the hospital over the next time period of up to 48 hours and
can provide clinicians and managers with advice about how to manage
the demands in order to reduce waiting times and more (Figure 7.1(b)).

7.2 Modeling Epithelial Tissue

Normal human keratinocyte (NHK) cells form over 80% of the outermost
layer of the skin or the epidermis. The epidermis is a fast renewing tissue
which forms a protective barrier between our internal organs and the outside
world. Understanding how cells proliferate and self-organize into layers of skin
tissue is a very important research topic. Such understanding promotes the
development of methods to artificially produce reconstructed human skin for
patients with heavy skin loss, such as chronic burns, wounds or skin disease. As
part of the Epitheliome project, Sun and McMinn used FLAME to develop an
in-virtuo model of skin cell behavior. The interaction of the software agents
in the in-virtuo model described the NHK macroscopic morphogenesis in-
vitro [192]. Figure 7.2 shows a comparison of pictures from real and simulated
images.

In the model of the keratinocyte colony formation, each cell was repre-
sented as an individual agent. The signaling process between the cells was
simulated by reading and writing messages between agents. The model algo-
rithm for the keratinocyte colony formation is given as follows. These func-
tions were performed in one time step but represented 30 minutes of real time
(Figure 7.3).
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@

FIGURE 7.2: Comparing real and simulated data of wound healing in 2D.
Adapted from [192].

1. Cells communicate with each other by exchanging information about
their types and locations. In the X-agent representation, the cell agent
sends a signal message such as cell location.

2. Cells act accordingly and go into or continue a cell cycle which includes
several checkpoints. In the X-agent, the cell performs a function consist-
ing of cell cycles and rules.

3. Cells divide depending on certain conditions (location and calcium con-
centration in the environment). The cell X-agent divides into two by
producing another cell with a unique identifier.

4. Cells differentiate depending on certain conditions (type, location and
calcium concentration in the environment). The cell X-agent performs
differentiation functions.

5. Cells migrate depending on certain conditions. The cell X-agent moves
to a close-by location depending on its calculations.

6. Add a physical solver to prevent cells from overlapping or occupying the
same space.

7.2.1 Merging with Other Toolkits

The FLAME kerotinocyte model involved each agent to read positions of
neighboring cells and perform internal functions based on these. These activ-
ities such as differentiation or complex calculations can sometimes be done in
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(a) At time step 0 (Beginning). (b) At time step 30.

(c) At time step 60. (d) At time step 90.

(e) At time step 130.

FIGURE 7.3: 3D model snapshots of wound healing at different time steps
of the simulation.



Agents in Biology 187

Flame function: Flame function: Flame function:
Reads and collects P Call Copasito process some fmm mm mm == == == == = = Collected results and
messages of the datacollected proceeds with functions
Copasi function:

P Receives the call and runs
calculations.

A

FIGURE 7.4: Calling Copasi from FLAME C code.

other toolkits and languages better than writing them as C functions. For this
purpose, it makes sense for the simulation code in C to halt and call other
toolkits, receive the results and then progress with the results. In this case
COPASI was called through C commands to complete part of the simulation
work (Figure 7.4). This method can also be merged with MATLAB and other
toolkits when doing complex matrix calculations which are cumbersome to do
in the C language.

7.3 Modeling Drosophila Embryo Development

In this experiment, two models of the same phenomenon were compared -
one written using stochastic methodology in MATLAB and other using agent-
based modeling. The Bicoid morphogen gradient establishment takes place
during early embryo development in Drosophila melanogaster, and is a dy-
namic system that allows the Bicoid molecules to diffuse along the embryo
anterior-posterior (A-P) axis in different developmental stages. The protein
concentration gradient is sensed by downstream genes and induces differential
spatial pattern of gene expression. In most analyses of this process, the bicoid
mRNA is thought to supply proteins at a constant rate in the anterior pole of
embryo. Based on these experimental evidences, Liu and Niranjan [120] pro-
posed three Bicoid concentration computational models in which the maternal
bicoid mRNA is regulated by being held constant for 2 hours and followed by
rapid decay. The uncertainty of such source regulation model is also verified
later by Gaussian processing in [121].

In this work, two approaches of modeling Bicoid morphogen concentra-
tion gradient are compared. The first approach, stochastic chemical reaction
system [120, 121], models the propagation of the diffusion rate of changes
using the stochastic modeling in MATLAB software. Another model in agent-
based modeling using FLAME is implemented to compare the results and the
problems faced in both modeling approaches.
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7.3.1 Stochastic Modeling

The stochastic Bicoid protein reaction diffusion system was implemented
as a simulation of 100 compartments along the A-P axis, each with length
h = 5um, which is the average size of one nucleus. The proteins diffuse along
the compartments based on time and concentrations.

Bicoid, = Bicoid; = Bicoid, (7.1)

where = represents the diffusion for i = 1 to n. The Bicoid protein has a life
and degrades in all compartments along the axis, until it translates into bicoid
mRNA in compartment 1 to form the anterior pole of embryo. Details of the
procedure are as follows:

Algorithm: Bicoid reaction-diffusion stochastic simulation
Input: Model parameters; final time.
Output: Bicoid molecular numbers along 100 compartments: m.
Start m = 0; t = 0;
Repeat:

1. Generate two random numbers which are uniformly distributed in
(0,1): 7(1) and 7(2).

2. Calculate propensity functions of all the reactions: a = al + a2 +
a3 + ad.

3. Calculate the time when next reaction occurs: ¢t + 7, where 7 =
1/a in(1/r(1)).

4. Decide which reaction occurs at Pt + 7: find jeR such that
Siai/a <r(2) < X1 aifa,

5. Update numbers of reactants and products in j-th reaction and set
t <t + 7 until time > finaltime.

The diffusion between neighboring compartments takes place in both direc-
tions based on a rate d, related to a diffusion constant of a deterministic model
d = D/h2. The vector m contains a number of molecules along the N = 100
compartments or bins. This is based on the equations in [121].

7.3.2 Converting to an Agent-Based Model

Figure 7.5 shows a structured view of the embryo to understand how a pro-
tein diffuses through the length of the embryo. As assumed with the stochastic
model, the embryo cell is divided into 100 compartments, with the source in
the first compartment. The source produces proteins at a certain rate r, and
depending on a rate d, individual proteins diffuse into the next compartment
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to move forward down the length of the embryo, depending on the concen-
tration gradients across the membranes. Following are the steps to the agent
model.

Algorithm 2: Bicoid reaction-diffusion agent-based simulation

Input: Model parameters (agent memory variable values) at time ¢ = 0; final
time of simulation is equal to number of iterations.

Output: Bicoid molecular numbers along 100 compartments: m.
Start m = 0; t = 0;
Repeat:

1. Generate protein production rate as uniformly distributed in (0, 1).

2. If source not decayed, calculate probability of producing the pro-
tein.

3. Decide which reaction occurs allowing molecules to move to the left
or right.

4. Update numbers of molecules in each compartment.

5. Until time > numberofiterations.

protein diffuse through to other compartments at constant rate

l EMBRYO

Proteins /
produced —— ,_,y.\
Source 2. .
Compartment 1 Compartment 2 Compartment m... Compartment 100

FIGURE 7.5: Movement of proteins within a Drosophila embryo. A struc-
tured view.

In both modeling techniques, it is best to start with the problem, decom-
pose it to simpler sub-problems, and then solve each sub-problem separately.
Therefore rather than using the stochastic model as a starting point, modeling
is easier if we start with the scenario being modeled and then representing this
as agents to compare results later.
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e Source agent. The source agent is producing new protein agents. The
source will also be decaying after a certain time period to reduce its life
and eventually disappear or stop producing proteins.

e Protein agent. The protein agents are diffusing across the compartment
depending on the protein concentration in the compartment it is in.

e Compartment agent. To depict the embryo as a whole, a hundred com-
partment agents can be used to determine the concentration of proteins
within them. This agent can be avoided as the compartments themselves
are not doing any function, but can be used to account for the result
analysis later. Alternatively, one agent representing the environment can
also be used, thus showing that it depends on modeler perspectives on
how the model is written.

Figure 7.6 shows the activities during one iteration of the model. In addi-
tion, messages such as the Protein posts location, which are outputs a protein
location message which is read by other proteins or compartment agents, not
shown. This message would be the input to the functions for Protein agent
to calculate the next move or for the Compartment agent to count how many
proteins it has.

During an iteration .
Source Protein Compartment

J Post my compartment location

If start time to decay =T, so that other proteins can know
Decay life where | am

Count how many protein
v | have in me?

v
Decay my life
Produce protein agents

Depending on the protein concentration
in my compartment, diffuse to the next
possible compartment

e

Ci?

) 5

%Y,

v
End of an iteration

FIGURE 7.6: Agent activities during one iteration.

The model was executed for 12,000 iteration steps, assuming one time step
represents one second of the diffusion model (in the stochastic method), with
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12,000 iteration steps representing two hours of the stochastic equation model.
The other rates used in the model were as follows:

SOURCE DECAY RATE 0.01 - The decay rate of the source.

SOURCE TIME DECAY 8640 - The time step at which source will start
decaying represents 144 minutes of the stochastic simulation.

SOURCE TIME PRODUCE 50 - The time after which the source will
start producing a protein.

SOURCE PRODUCTION PROB 1.0 - The production probability of a
protein

PROTEIN DECAY RATE 0.01 - The decay rate of the protein.
COMPARTMENT DIMENSION X 5 - The dimension width of a com-

partment.

COMPARTMENT DIMENSION Y 15 - The dimension height of a com-

partment.

PROB RIGHT 0.5 - The probability of a protein to move right to the
compartment on the right.

PROB LEFT 0.1 - The probability of a protein to move left to the
compartment of the left. The probability to move right was kept higher
as this would be more favourable.

DIE 0.001 - Numerical value to denote when a life goes below this value,
kill the agent.

The values for probabilities of source production rates, protein decay rates,
right and left movement probability are conditions that will be changed which
each experimental run. Changing these conditions can allow results to be
mapped to the stochastic results, in order to find optimum rates which produce
the same results. The code for the agent functions is as follows:

VAT

Compartment Agent Functions kxkikkxxkx/

int Compartment_calculateproteins()

{

int

protein_ct=0;

protein_location_message=get_first_protein_location_message();
while(protein_location_message)

{

if ((protein_location_message->y>Y0)&& (protein_location_message->y<Y1))

{

}

protein_ct++;

if (protein_location_message->compartment==ID)

{

protein_ct++;
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}
protein_location_message=get_next_protein_location_message
(protein_location_message);

}

NUMBEROFPROTEINS=protein_ct;

printf ("\nMY proteins %d , %d", ID, NUMBEROFPROTEINS);
add_proteinnumber_compartment_message (ID,NUMBEROFPROTEINS) ;
return O;

}

/*x*x Protein Agent Functions*x/
int Protein_post_details()

{
add_protein_location_message(ID, X,Y, COMPARTMENT_ID);
return O;
}
int Protein_decay()//reduce life of protein
{
if (LIFE<=DIE)
{
printf ("KILL PROTEIN*k*kx%") ;
return 1;
}
return 0;
}

int Protein_calculate_movement ()
{
int next_id,before_id;
double temp_prob=0.0;
int temp_time=0;
int now=0;
int protein_next,protein_before;
int flag_before=0;
int flag_next=0;
int my_compartment=0;

temp_prob=random_double(0.0,1.0);
temp_time=random_int(1,10);

now=temp_time+TIME_LAST_MOVE;
protein_before=0;
protein_next=0;

flag_before=0;
flag_next=0;

if (COMPARTMENT_ID==1)
{
flag_before=1;
¥
if (COMPARTMENT_ID==100)
{
flag_next=1;
¥
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my_compartment=0;

proteinnumber_compartment_message=
get_first_proteinnumber_compartment_message() ;

while (proteinnumber_compartment_message)

{

if (proteinnumber_compartment_message->compartment_id==COMPARTMENT_ID)

{
my_compartment=proteinnumber_compartment_message->production;
}
if (flag_before==0)
{
before_id=COMPARTMENT_ID-1;

if (proteinnumber_compartment_message->compartment_id==before_id)

{
protein_before=proteinnumber_compartment_message->production;
}
}

if (flag_next==0)
{
next_id=COMPARTMENT_ID+1;
if (proteinnumber_compartment_message->compartment_id==next_id)
{
protein_next=proteinnumber_compartment_message->production;
}
}
proteinnumber_compartment_message=
get_next_proteinnumber_compartment_message
(proteinnumber_compartment_message) ;

}

if (now<=TIME_COUNTER)
{
if (temp_prob<PROB_LEFT)//check to move left or right
{
if (flag_before==0)
{
if (my_compartment<protein_before)
{
X=X-5;
Y=Y-random_int (1,10);
if (Y>15)
{
Y=Y-5;
}
COMPARTMENT_ID=before_id; // moving left
}
}
}
else if (temp_prob<PROB_RIGHT)
{
if (flag_next==0)
{
if (protein_next<my_compartment)
{
X=X+5;
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Y=Y+random_int (1,10);
if (Y>15)
{
Y=Y-5;
}
COMPARTMENT_ID=next_id;//moving right
}
}
}
TIME_LAST_MOVE=TIME_COUNTER;
}
TIME_COUNTER++;
return O;

}

/*¥** Source Agent Functions¥¥*/
int Source_basic_posts()
{

TIMECOUNTER++;

return O;

}

int Source_idle()
{
return O;

}

int Source_decaying()
{
double temp_double=0.0;
if (TIMECOUNTER>SOURCETIMEDECAY)
{
temp_double=LIFE*SOURCEDECAYRATE;
LIFE=LIFE - temp_double;
}
return O;

}

int Source_producing()
{
double temp=0.0;
double source_production=0.0;
double temp_time=0.0;
int i=0;
if (TIMECOUNTER>SOURCETIMEPRODUCE)
{
temp=random_double(0.0,1.0);
if (TIMECOUNTER>SOURCETIMEDECAY) //OLD case
{
temp_time=TIMECOUNTER-SOURCETIMEDECAY;
temp_time=-1*(temp_time/540) ;
source_production=CONSTANT * exp(temp_time) ;
}
else
{
source_production=SOURCE_PRODUCTION_PROB;
}

: FLAME Perspectives
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if (temp<=source_production)
{
if (LIFE>DIE)
{
// produce 8 proteins at a time
for(i=0;i<8;i++)

NUMBERPROTEINS++;
add_Protein_agent (NUMBERPROTEINS,1000.0,0,0,1,X,Y);
}
}
}
}

return O;

int Source_filewrite()

{

FILE *file;

char data[1000];

char * location="proteindist";
int protein_dist[100];

int i;

int pd=0;

for(i=0;1<100;i++)
{
protein_dist[i]=0;
}
//produce a particular text file
sprintf (data, "%s.txt",location);
if ((file = fopen(data, "a"))==NULL)
{
printf ("Error: cannot open file ’%s’ for writing\n", data);
exit(0);
}

proteinnumber_compartment_message=
get_first_proteinnumber_compartment_message() ;
while (proteinnumber_compartment_message)
{
pd=proteinnumber_compartment_message->compartment_id-1;
protein_dist [pd]=proteinnumber_compartment_message->production;

proteinnumber_compartment_message=
get_next_proteinnumber_compartment_message
(proteinnumber_compartment_message) ;

}

sprintf (data, "%d", TIMECOUNTER);
fputs(data, file);
for(i=0;i<100;i++)
{
fputs(" ", file);
sprintf(data, "%d", protein_dist[il);
fputs(data, file);
}

195
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fputs("\n", file);
(void)fclose(file);
return 0;

}

7.3.3 Find Optimum Model Settings

To ensure a correct comparison of the two techniques, both models were
simulated with identical conditions and data were collected and analyzed. The
experience in both simulation techniques was compared across a number of
factors like simulation time, the memory size needed and tools used (Table
7.1).

Analyzing the time to actually write the models can be arguable, depend-
ing on the experience of the programmers. A programmer with little prior
knowledge of agent-based modeling may take more than a month to get ac-
customed to agents over the platforms. This also includes an installation and
learning time for the actual agent-based platforms. For stochastic simulation,
MATLAB specializes in mathematical function writing, and would be rela-
tively easier to grasp than a different agent-based modeling framework.

Both models produce results in different ways. Agent-based models pro-
duce results as time snapshots for agent conditions at these times. MATLAB
can produce concentration gradients, to see the overall system behavior at
different times.

The global values can be another deciding factor in how the results look
in the end. These need to be tested with multiple runs, to find optimum
conditions for the simulation to give results which match closest to real data.
Agent-based model results can also use averages over a number of simulations
runs, to compensate for the random nature of the agents inherent in the
models.

Figure 7.7 shows the intensity plots of the protein distribution across the
embryo during the simulation. The figure shows plots (from left to right)
deterministic, stochastic and agent-based models. Another representation is
shown in Figure 7.8, where peaks of molecule numbers in compartments are
compared.

The results show the decay rate being too high in the agent model, where
the protein agents die before reaching the last end of the embryo cell (last com-
partment). Therefore this needs to be reduced in order to match the stochas-
tic behavior. Therefore, using the same initial conditions from the stochastic
model, the results are not able to be replicated in the agent-based simulations.
Figure 7.9 shows the missing data points in the resulting figures when both
models use the same initial setting. The agent-based model is then simulated
multiple times with different global conditions to find the best set of values
that will produce results closer to the stochastic model (Table 7.2).
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TABLE 7.1: Comparing building simulations in MATLAB and FLAME.

Objective Stochastic Agents
200 min for one realiza-

Total simula- | tion. Total time step is 12000 time steps

tion time around 3 x 106 (stochas- 1e SLeps.
tically).

Actual simula- | CPU time: 795.02 sec-

. . 5 hours.

tion time onds

Memory usage

Approx 420 MB .

Approx 30 GB.

Results format
produced

3.1 x 106 by 100 matrix in
MATLAB.

120,000 xml files which
are later parsed to pro-
duce excel sheets to plot
graphs.

Model writing
time

1 week. Understanding
Gillespie Algorithm and
implementation in MAT-
LAB.

1 month, involves under-
standing the model de-
scription and converting
to what happens in one it-
eration

Global wvalues
which can eas-
ily be changed

All decay, production and
diffusion rates highlighted
in starting conditions.

All decay, production and
diffusion rates highlighted
in starting conditions.

MATLAB.

FLAME serial version run
on a MAC laptop.

The results have measured
every minute according to
all the compartments as
shown in Figure 7.7. In
Figure 7.8, the protein dis-
tributed at ¢ = 60 min-
utes (9.3 x 10° iteration),
t = 100 min (1.6 x
10%iteration), t = 144
min (2.2 x 10° iteration),
t = 180 min (2.8 x
10%iteration), t = 200
min (3.1 x 10° iteration).

As number of proteins per
time step across compart-
ments, and protein distri-
butions at times 60 min
(3600 iteration step (it)),
100 min (6000 it), 144 min
(8640 it), 180 min (10800
it), 200 min (12000 it).

Simulation
tool used
Results mea-
sured
Average over
runs

One realization was taken.
The averaged stochastic
model is shown by PDE in
[120].

Model was run 20 times
and the average
taken.

was

Due to the large number of cases, a minimum square distance was used
to calculate the error rate between the results of each of the cases with the
stochastic results, shown in Figure 7.10. The best case which was able to
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FIGURE 7.7: Bicoid concentration profiles jointly in A-P axis and devel-
opmental time, shows a deterministic model output as an average value of
stochastic model (A), to one stochastic simulation (B) and the results of one
agent-based model run (C).

TABLE 7.2: Different initial value setting for the Bicoid ABM.

Range of Values, In- | Best-Case  Found

Global Value torval (Case 205)
Source decay rate 0.01-0.05], 0.1 0.03
Protein decay rate 0.01-0.05], 0.1 0.01
Probability of pro-
tein to move right [0.1-0.5], 0.1 0-2
PI:Obablllty of pro- [0.1-0.5], 0.1 0.3
tseln to movedleft_

ource production 0.2-1.0], 0.1 0.7
rate

replicate the stochastic conditions was then chosen and shown in Figure 7.11.
However, the agent results are still not able to produce a one-to-one mapping
of the outputs.

7.4 Output Files for Analysis

To plot the molecule concentration, a particular text file was needed which
documented the protein distribution per time. To prevent further code, C
functions could be added as agent functions to output the memory variable
as a separate text file during the simulation run. This prevents modelers from
analyzing the XML result files, and process only one file.
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FIGURE 7.8: One realization of stochastic simulation using Gillespie Algo-
rithm at different time points: 60 (A), 100 (B), 144 (C) and 180 (D) min. Blue
histograms show number of Bicoid molecules along anterior and posterior axis
in embryo. Red lines show average amount of molecules from deterministic re-
action diffusion model. Bicoid intensity at 144 min (C) is the peak stage and
will degrade after mRNA regulation. Red histograms show number of Bicoid
molecules along anterior and posterior axis in embryo resulting from average
20 runs of the agent-based model simulation.

//create a file for output

sprintf (data, "%s.txt",location);

if ((file = fopen(data, "a"))==NULL)

{
printf ("Error: cannot open file ’%s’ for writing\n", data);
exit (0);

}

//start adding data to file from agent memory
sprintf (data, "%d", TIMECOUNTER);
fputs(data, file);
for(i=0;1<100;i++)
{
fputs(" ", file);
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250 Bicoid intensity from stocastic model 0 ~ 200 min

Time

201 200 o 500
Embrya Length (umj

200 300
compartment

FIGURE 7.9: The agent-based modeling simulation result with stochastic
model. The circle shows missing data points in agent-based results using same
initial settings in both models.
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FIGURE 7.10: Zoom in to find shortest possible error between simulated
results in agent-based, stochastic and original datasets.

sprintf(data, "%d", protein_dist[i]);
fputs(data, file);

}

fputs("\n", file);

//close the file
(void)fclose(file);

Researchers have compared modeling techniques, such as Norling’s tech-
nique [143] comparing a systems dynamics and an agent-based model of a
food web evolution. In this experiment, a few points can be considered.

e Modelers can discover new details about the model. In equation mod-
els, because equations collectively represent agent function as one pro-
gramming code, modeler is robbed with this opportunity to find new
behaviors as a result of this analysis.
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FIGURE 7.11: Using shortest possible error between the simulated results.

e Global values can influence the results produced. Global values can be
changed dynamically during the course of the model simulation. This
can essentially be done in both kinds of models depending on how the
models are written.

e Starting conditions of the model can have an effect on the model results.
This is seen in both approaches.

e Introducing dynamic inputs to the model. In an agent-based model,
dynamic agents can be introduced which get activated or influence the
progression of results. This can easily be programmed by having an
agent added which performs certain activities at certain time steps. This
would however be tedious to be programmed in an equation model as
complicated nested for-loops may need to be added to the model to allow
this. This involves very little changes in an agent-based model.

e Increasing complexity. Further complexity can be easily introduced in
agent-based models by adding agents and new functions. In equation
models, this would require rewriting of the equations and the source
code.

e Directed behavior. Agents are autonomous, goal-directed and sociable
elements. The decisions they make are based on bounded rationality
which means that each agent would have a sphere of influence which al-
lows proximity to be checked before making decisions. In equation mod-
els this concept is not present. Here a list is traversed and everything in
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the list is acted upon in the same manner. In agents, the messages in
the sphere of influence may vary allowing agents to display different be-
haviors depending on where they are located. This is particularly useful
when modeling realistic biological models.

e Heterogeneous populations. Different agents who differ in memory can
be introduced together in the same simulation. This can produce more
interesting results as it brings heterogeneity and how agent internal char-
acteristics can influence results. This cannot be done in equation models
as these assume a homogeneous population.

e Bounded rationality. Agents will act depending on their surroundings
producing emergent phenomena. This cannot be programmed in an
equation model.

e Different scenarios during simulations. Easily different conditions can be
introduced to test the model across various conditions. This would not
require doing any changes to the agent-based models. Simulations can
be stopped halfway, conditions can be changed or new agents can be
introduced at adhoc and then simulations can be preceded.

e Large amount of data produced. This is a problematic task to analyze
large amounts of data being produced by agent-based models as com-
pared to equation models. Sometimes it is good to find patterns which
may not have been thought of previously, but this can be a cumbersome
task and may require additional intelligent data mining algorithms at a
later stage.

However, it largely depends on the research questions being investigated when
a model is being written. In all cases there is a learning curve for biologists
and computer scientists to understand which to use and why.

7.5 Modeling Pharaoh’s Ants (Monomorium pharao-
nis)

Pharaoh’s ant is a 2-mm monomorphic pest ant forming colonies with
less than 2500 workers. These ants have poor vision, making them wholly
reliant on the pheromones deposited for path directions. Unlike any other ant
species, they deposit trail pheromones constitutively when outside the nest,
forming branching networks of pheromone trails even before the food sources
are discovered [23].

In the model, ant agents are characterized by their identity number, nutri-
tional status, current direction and environmental locations. Each ant agent
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possesses internal memory which would guide them between resource and
nest-site locations.

The ant agents exit a nest site when their hunger level drops below a
threshold value and they begin searching for food. Agents deposit pheromones
in the environment as they walk and sense the presence of pheromone nearby.
If a pheromone trail is present they follow the trail, but if multiple pheromones
trails are detected, the ant chooses whcih trail to follow based on concentra-
tions found. Once a food source is located, the ant agent eats 0.02 units of
food and stops movement.

If there are no pheromones nearby to follow, then the ant agents move
randomly, but include a probabilistic turning matrix known as a ‘turning
kernel’. This ‘turning kernel’ is derived from an actual video of Pharaoh’s
ants, where digital analysis or video tracking was used [23].

The body length of a Pharaoh’s ant, 2-mm is represented as 2 units in the
model. This is depicted by a single step that an ant agent takes simulating a
movement of 2-mm. A realistic foraging space for a typical colony was iden-
tified as 25-cm to 150-cm. The models were simulated in an environment of
500-mm by 500-mm.

The environment contains a ‘nest’ agent placed at the centre of the envi-
ronment and two food source agents. FLAME also supports dynamic creation
of agents allowing pheromone agents to be created when required by the ant
agents during the simulation, or when an ant agent takes a step.

Figure 7.12 depict the trials generated by the ant agents during the sim-
ulation when two food sources are available. The blue trail depicts the ant
paths and the yellow depicts the pheromone deposits along the paths.

<xmodel version="2">
<name>Find Nest without Pheromone Smell Model</name>
<version>First version</version>
<description>Probability to leave active trail added 0.001</description>
<author>Mesude Bicak</author>
<date>270110</date>
<environment>

<functionFiles>

<file>noPheromoneSmell.c</file>

</functionFiles>

</environment>

<agents>

<xagent>
<name>Ant</name>
<memory>
<variable><type>int</type><name>antID</name></variable>
<variable><type>double</type><name>antX</name></variable>
<variable><type>double</type><name>antY</name></variable>
<variable><type>double</type><name>foodLevel</name></variable>
<variable><type>int</type><name>isFed</name></variable>
<variable><type>int</type><name>isInNest</name></variable>
<variable><type>int</type><name>antDirection</name></variable>
<variable><type>int</type><name>state</name></variable>
<variable><type>int</type><name>pheroFound</name></variable>
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</memory>

<functions>

<function>

<name>updateState</name><description>random coordinates</description>
<currentState>00</currentState>

<nextState>01</nextState>

</function>

<function>

<name>Ant_idle</name><description>idle</description>
<currentState>01</currentState>

<nextState>0la</nextState>

<condition>
<lhs><value>a.state</value></lhs><op>EQ</op><rhs><value>0</value></rhs>
</condition>

</function>

<function>

<name>Ant_idle</name><description>random coordinates for ant</description>

<currentState>01</currentState>

<nextState>01b</nextState>

<condition>
<lhs><value>a.state</value></lhs><op>NEQ</op><rhs><value>0</value></rhs>

</condition>

</function>

<function>

<name>stayInNest</name><description>random coordinates for ant</description>
<currentState>0la</currentState>

<nextState>04</nextState>

</function>

<function>

<name>walk</name><description>random coordinates for ant</description>

<currentState>01b</currentState>

<nextState>02</nextState>

<condition>
<lhs><value>a.state</value></1lhs><op>NEQ</op><rhs><value>2</value></rhs>

</condition>

<inputs>
<input><messageName>pheromoneInformation</messageName></input>
<input><messageName>foodInformation</messageName></input>

</inputs>

</function>

<function>

<name>reinforce</name><description>deposit a pheromone</description>

<currentState>02</currentState>

<nextState>03a</nextState>

<inputs>
<input><messageName>pheromoneInformation</messageName></input>

</inputs>

<outputs>
<output><messageName>pheromoneIncreased</messageName></output>

</outputs>

</function>
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<function>

<name>depositPheromone</name>

<currentState>03a</currentState>

<nextState>03</nextState>

<condition>
<lhs><value>a.pheroFound</value></1lhs><op>NEQ</op><rhs><value>1</value></rhs>

</condition>

<outputs>

<output><messageName>newPheromoneInput</messageName></output>
</outputs>
</function>

<function>

<name>idle</name>

<currentState>03a</currentState>

<nextState>03</nextState>

<condition>
<lhs><value>a.pheroFound</value></lhs><op>EQ</op><rhs><value>1</value></rhs>

</condition>

</function>

<function>
<name>forage</name><description>find a food source</description>
<currentState>03</currentState>
<nextState>04</nextState>
<condition>
<lhs><value>a.state</value></lhs><op>EQ</op><rhs><value>1</value></rhs>
</condition>
<inputs>
<input><messageName>foodInformation</messageName></input>
</inputs>
<outputs>
<output><messageName>foodEaten</messageName></output>
</outputs>
</function>

<function>

<name>forageIldle</name><description>do nothing</description>

<currentState>03</currentState>

<nextState>04</nextState>

<condition>
<lhs><value>a.state</value></1lhs><op>NEQ</op><rhs><value>1</value></rhs>

</condition>

</function>

<function>

<name>decreaseFoodLevel</name><description>increase hunger</description>
<currentState>04</currentState>

<nextState>05</nextState>

</function>

<function>

<name>findNest</name><description>track nest</description>
<currentState>01b</currentState>

<nextState>02</nextState>

<condition>



Agents in Biology 207

<lhs><value>a.state</value></lhs><op>EQ</op><rhs><value>2</value></rhs>
</condition>
<inputs>
<input><messageName>nestInformation</messageName></input>
<input><messageName>pheromoneInformation</messageName></input>
</inputs>
</function>
</functions>
</xagent>

<xagent>

<name>Pheromone</name>

<memory>
<variable><type>int</type><name>pheromoneID</name></variable>
<variable><type>double</type><name>life</name></variable>
<variable><type>double</type><name>pheromoneX</name></variable>
<variable><type>double</type><name>pheromoneY</name></variable>

</memory>

<functions>

<function>

<name>pheromoneInformation</name>

<currentState>00</currentState>

<nextState>01</nextState>

<outputs>
<output><messageName>pheromoneInformation</messageName></output>

</outputs>

</function>

<function>
<name>decreasePheromonelLife</name>
<currentState>01</currentState>
<nextState>02</nextState>
</function>

<function>
<name>increasePheromonelLife</name><description>reinforce pheromone</description>
<currentState>02</currentState>
<nextState>03</nextState>
<inputs><input><messageName>pheromoneIncreased</messageName></input></inputs>
</function>
</functions>

</xagent>

<xagent>
<name>Generator</name>
<memory>
<variable><type>int</type><name>memoryID</name></variable>
</memory>

<functions>

<function>

<name>produce</name><description></description>

<currentState>00</currentState>

<nextState>01</nextState>

<inputs>
<input><messageName>newPheromoneInput</messageName></input>
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</inputs>

</function>

</functions>
</xagent>

<xagent>
<name>FoodGenerator</name>
<memory>
<variable><type>int</type><name>memoryFoodID</name></variable>
</memory>

<functions>

<function>

<name>produceFood</name><description></description>

<currentState>00</currentState>

<nextState>01</nextState>

<inputs>
<input><messageName>newFood</messageName></input>

</inputs>

</function>

</functions>

</xagent>

<xagent>
<name>Nest</name>
<memory>
<variable><type>double</type><name>nestX</name></variable>
<variable><type>double</type><name>nestY</name></variable>
<variable><type>double</type><name>nestRadius</name></variable>
</memory>

<functions>
<function>
<name>nestInformation</name><description>coordinates of the nest</description>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>
<output><messageName>nestInformation</messageName></output>

</outputs>
</function>
</functions>

</xagent>

<xagent>

<name>Food</name>

<memory>

<variable><type>int</type><name>foodID</name></variable>

<variable><type>double</type><name>size</name></variable>
<variable><type>double</type><name>foodX</name></variable>
<variable><type>double</type><name>foodY</name></variable>
<variable><type>double</type><name>radius</name></variable>

</memory>

<functions>

<function>

<name>foodInformation</name><description>coordinates of the food</description>
<currentState>00</currentState>
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<nextState>01</nextState>

<outputs>
<output><messageName>foodInformation</messageName></output>

</outputs>

</function>

<function>
<name>updateFood</name><description>coordinates of the food</description>
<currentState>01</currentState>
<nextState>02</nextState>
<inputs>
<input><messageName>foodEaten</messageName></input>
</inputs>
<outputs>
<output><messageName>newFood</messageName></output>
</outputs>
</function>
</functions>
</xagent>
</agents>

<messages>
<message>
<name>pheromoneInformation</name>
<description>pheromone deposition</description>
<variables>
<variable><type>int</type><name>pheromoneID</name></variable>
<variable><type>double</type><name>pheromoneX</name></variable>
<variable><type>double</type><name>pheromoneY</name></variable>
<variable><type>double</type><name>life</name></variable>
</variables>
</message>

<message>
<name>newPheromoneInput</name>
<description>pheromone deposition</description>
<variables>
<variable><type>double</type><name>pheromoneX</name></variable>
<variable><type>double</type><name>pheromoneY</name></variable>
</variables>
</message>

<message>

<name>foodInformation</name>

<description>food coordinates</description>

<variables>
<variable><type>int</type><name>foodID</name></variable>
<variable><type>double</type><name>foodX</name></variable>
<variable><type>double</type><name>foodY</name></variable>
<variable><type>double</type><name>size</name></variable>
<variable><type>double</type><name>radius</name></variable>

</variables>
</message>

<message>
<name>foodEaten</name>
<description>food eaten</description>
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<variables>
<variable><type>int</type><name>id</name></variable>
<variable><type>double</type><name>size</name></variable>
</variables>
</message>

<message>
<name>newFood</name>
<description>new food agent</description>
<variables>
<variable><type>double</type><name>size</name></variable>
<variable><type>double</type><name>foodX</name></variable>
<variable><type>double</type><name>foodY</name></variable>
<variable><type>double</type><name>radius</name></variable>
</variables>
</message>

<message>
<name>pheromoneIncreased</name>
<description>new food agent</description>
<variables>
<variable><type>int</type><name>pheromoneID</name></variable>
<variable><type>double</type><name>increase</name></variable>
</variables>
</message>

<message>

<name>nestInformation</name>

<description>nest coordinates</description>

<variables>
<variable><type>double</type><name>nestX</name></variable>
<variable><type>double</type><name>nestY</name></variable>
<variable><type>double</type><name>nestRadius</name></variable>

</variables>
</message>

</messages>

</xmodel>

#include "header.h"

#include "Ant_agent_header.h"

#include "Pheromone_agent_header.h"
#include "Generator_agent_header.h"
#include "Food_agent_header.h"

#include "FoodGenerator_agent_header.h"
#include "Nest_agent_header.h"

//ant size = 2 mm = 6 pixels => 1 mm = 3 pixels
//ant speed = 12.99 pixels/second = 4.33 mm/s
//ant step size = 2 mm = 6 pixels

#define xLeftBorder 20.0

#define xRightBorder 500.0
#define yUpperBorder 20.0
#define yLowerBorder 500.0

#define nestXRightBorder 260.0
#define nestXLeftBorder 240.0
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#define nestYUpperBorder 240.0
#define nestYLowerBorder 260.0

#define antStepSize 2.0

#define antMinPheromoneDetectionUnit 1.0
#define antFoodLevelDecay 0.02

#define antFoodFound 100

#define antPheromoneDepositionUnit 2.0

#define minPheromoneDistance 1.0
#define pheromoneDecay 0.0248

#define stateWalk 1
#define stateFindNest 2
#define stateStayInNest O

struct Data {
int maxIndex;
double information1[1000];
double information2[1000];
};

struct PheromoneData {
double pheromoneX;
double pheromoneY;
double pheromoneLife;
int direction;

s
int getDirection(double, double, double, double);

double getDistance(double x, double y, double tx, double ty) {
return sqrt(pow(tx - x, 2) + pow(ty -y, 2));
}

//Environment: 500, 500
double checkAntPositionY(double antPosition) {
double newPosition = antPosition;

if (antPosition < yUpperBorder) {
newPosition = yUpperBorder;

}

if (antPosition > yLowerBorder) {
newPosition = yLowerBorder;

}

return newPosition;

}

double checkAntPositionX(double antPosition) {
double newPosition = antPosition;

if (antPosition < xLeftBorder) {
newPosition = xLeftBorder;

}

if (antPosition > xRightBorder) {
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newPosition = xRightBorder;
}
return newPosition;

}

int getDirection(double aX, double aY, double tX, double tY) {
double tmp = aY;
aY = tY;
tY = tmp;

double vx = tX - aX;
double vy = tY - a¥;

double length = sqrt((vx * vx) + (vy * vy));
double alpha = acos(vy / length) * (180.0 / 3.142);

if (vx < 0) {
alpha = 360 - alpha;
}

int result = (int) round(alpha / 360 * 8);
if (result == 0) {
return 8;
¥
return result;

}

void updatePosition(double* aX, doublex aY, int direction) {
double b = sqrt(antStepSize * antStepSize / 2.0);
switch (direction) {
case 8:
*aY -= antStepSize;
break;
case 4:
*aY += antStepSize;
break;
case 1:
*aX += b;
*a¥Y -= b;
break;
case 2:
*aX += antStepSize;
break;
case 3:
*aX += b;
*aY += b;
break;
case 5:
*aX -= b;
*aY += b;
break;
case 6:
*aX -= antStepSize;
break;
case 7:
*aX -= b;
*aY -=

o'
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break;
default:
break;
¥
}

int getNewDirection(int currentDir, double angle) {
double vx = 0;
double vy = 0;

switch (currentDir) {
case 8:
vy = 1;
break;
case 4:
vy = -1;
break;
case 1:
vx = 1;
vy = 1;
break;
case 2:
vx = 1;
break;
case 3:
vx = 1;
vy = -1;
break;
case 5:
vx = -1;
vy = -1;
break;
case 6:
vx = -1;
break;
case 7:
vx = -1;
vy = 1;
break;
default:
break;
¥

double length = sqrt((vx * vx) + (vy * vy));
double alpha = acos(vy / length) * (180.0 / 3.142);

if (vx < 0) {
alpha = 360 - alpha;
}

double totalAngle = alpha + angle;
if (totalAngle > 360) {
totalAngle -= 360;
}
if (totalAngle < 0) {
totalAngle += 360;
}
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}

int result = (int) round(totalAngle / 360 * 8);
if (result == 0) {

return 8;
}

return result;

void detectPheromone(double* pheromoneX, double* pheromoneY) {

}

double pheromonelLife = -1;
double currentX = ANTX;
double currentY = ANTY;

int direction = ANTDIRECTION;
int nextdir = (direction + 1) > 8 7 1 : direction + 1;
int prevdir = (direction - 1) < 1 ? 8 : direction - 1;

pheromoneInformation_message = get_first_pheromoneInformation_message();
double distanceToPheromone = 0;
double randomNumberl = ((double) rand() / ((double) RAND_MAX));

//leaving trail probability
if (randomNumberl <= 0.001){

pheromonelLife = -1;
*pheromoneX = -1;
*pheromoneY = -1;
}
else {
while (pheromonelnformation_message) {
double pheromonelLocalX = pheromonelnformation_message->pheromoneX;
double pheromonelocalY = pheromoneInformation_message->pheromoneY;
double pheromonelLocallLife = pheromonelnformation_message->life;
distanceToPheromone = getDistance(pheromoneLocalX,
pheromoneLocalY, currentX, currentY);
if (distanceToPheromone <= antStepSize && pheromoneLocallife >= 0.2
&& distanceToPheromone > minPheromoneDistance)
{
int newDirection = getDirection(ANTX, ANTY,
pheromoneLocalX, pheromoneLocalY);
if (newDirection == direction || newDirection == nextdir ||
newDirection == prevdir) {
if (pheromonelLife <= pheromoneLocalLife) {
pheromonelife = pheromonelLocallife;
*pheromoneX = pheromoneLocalX;
*pheromoneY = pheromoneLocalY;
}
}

pheromoneInformation_message = get_next_pheromoneInformation_message
(pheromoneInformation_message) ;

}
}

int turningKernel() {
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//Check if moving or stationary

double randomNumberl = ((double) rand() / ((double) RAND_MAX));
double currentX = ANTX;

double currentY = ANTY;

double newX = currentX;

double newY = currentY;

int direction = ANTDIRECTION;

int newDirection = ANTDIRECTION;

//Moving: 667
if (randomNumberl <= 0.66) {
double randomNumber2 = ((double) rand() / (double) RAND_MAX);
//DIR 8 = 0 degrees ahead = 41%
if (randomNumber2 <= 0.41) {
newDirection = getNewDirection(direction, 0);
//DIR 1 = 45 degrees clockwise = 27,
}
else if (randomNumber2 <= 0.68) {
newDirection = getNewDirection(direction, 45);
//DIR 7 = 45 degrees anti-clockwise = 19.0%
}
else if (randomNumber2 <= 0.87) {
newDirection = getNewDirection(direction, -45);
//DIR 2 = 90 degrees clockwise = 5.4Y
}
else if (randomNumber2 <= 0.924) {
newDirection = getNewDirection(direction, 90);
//DIR 6 = 90 degrees anti-clockwise = 5.4
} else if (randomNumber2 <= 0.978) {
newDirection = getNewDirection(direction, -90);
//DIR 3 = 135 degrees clockwise = 2.7
}
else {
newDirection = getNewDirection(direction, 135);
}
updatePosition(&newX, &newY, newDirection);
ANTY = checkAntPositionY(newY);
ANTX = checkAntPositionX(newX);
ANTDIRECTION = newDirection;
//checkAntWalkThroughNest (ANTX, ANTY);
}
else {
//Stationary = 33%
}
return 0;

}

int updateState(){
if ((ISINNEST == 1 && FOODLEVEL < 1.0) || (ISFED == 0
&& FOODLEVEL < 1.0)) {
STATE = stateWalk;
//printf ("walk & forage!\n");
¥
else if (ISFED == 1 && ISINNEST != 1) {
STATE = stateFindNest;
//printf("find nest!\n");
¥
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else if (ISINNEST == 1 && FOODLEVEL >= 1.0) {

STATE = stateStayInNest;
//printf ("stay in nest!\n");

}

else {
//printf ("this should never happen!\n");

}

return 0;

}

int stayInNest(){
//printf("stay in nest called: ant %d\n", ANTID);
return O;

}

int forageIdle(){
//printf ("forage idle called: ant %d\n", ANTID);
return O;

}

int depositIdle(){
//printf("deposit idle called: ant %d\n", ANTID);
return O;

}

//Ant agent
//walk based on turning kernel
int walk() {
double pheromoneX -1;
double pheromoneY = -1;
ISINNEST = 0;
detectPheromone (&pheromoneX, &pheromoneY);

//no pheromones nearby
if (pheromoneX == -1 && pheromoneY == -1)
{
turningKernel () ;
} else {
//pheromone found
double currentX = ANTX;
double currentY = ANTY;
int direction = getDirection(ANTX, ANTY, pheromoneX, pheromoneY);
updatePosition(&currentX, &currentY, direction);
ANTX = checkAntPositionX(currentX);
ANTY = checkAntPositionY(currentY);
ANTDIRECTION = direction;
}
return O;

}

//Ant agent
//decrease foodLevel at each iteration
int decreaseFoodLevel() {
//printf("in decrease food level\n");
FOODLEVEL = FOODLEVEL - 0.02;

if (FOODLEVEL <= 0) {
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FOODLEVEL = O;
}

if (FOODLEVEL <1.0 && ISFED!=0){
ISFED = 0;

}

PHEROFQOUND = 0;

return 0;

}

//Ant agent
//find a food source and eat 0.2 units
int forage() {

int localld;

foodInformation_message = get_first_foodInformation_message();

while (foodInformation_message) {
double xFood = foodInformation_message->foodX;
double yFood = foodInformation_message->foodY;
double foodRadius = foodInformation_message->radius;

double distanceToFood = getDistance(xFood, yFood, ANTX, ANTY);

if (distanceToFood <= foodRadius + 2) {
double foodSize = foodInformation_message->size;
localld = foodInformation_message->foodID;
FOODLEVEL = FOODLEVEL + 100;
ISFED = 1;
add_foodEaten_message(localld, (foodSize - 0.2));
int direction = ANTDIRECTION;
ANTDIRECTION = getNewDirection(direction, 180);
return O;

}

foodInformation_message = get_next_foodInformation_message

(foodInformation_message) ;
}
return 0;

}

//FoodGenerator agent

//creates a new food agent dynamically by checking newFood_message

int produceFood() {

newFood_message = get_first_newFood_message();

while (newFood_message) {
double x = newFood_message->foodX;
double y = newFood_message->foodY;
double foodSize = newFood_message->size;
double foodRadius = newFood_message->radius;
MEMORYFOODID++;

add_Food_agent (MEMORYFOODID, foodSize, x, y, foodRadius);
newFood_message = get_next_newFood_message(newFood_message) ;

¥
return 0;

}

//Food agent

//if one of the food sources is depleted, create newFood_message
//which is passed to produceFood() function for FoodGenerator agent

int updateFood() {
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foodEaten_message = get_first_foodEaten_message();
while (foodEaten_message) {
int locallD = foodEaten_message->id;
if (localID == FOODID) {
SIZE = foodEaten_message->size;
if (SIZE <= 0.2) {
//printf ("creating new food\n");
double xPosition = rand() / (double) (RAND_MAX) * 480;
double yPosition = rand() / (double) (RAND_MAX) * 480;
SIZE = (rand() / (double) (RAND_MAX) * 100) + 1;

if (SIZE > 0 && SIZE < 5) {

RADIUS = 5.0;

}

else if (SIZE >= 5 && SIZE < 10) {
RADIUS = 6.0;

}

else if (SIZE >= 10 && SIZE < 20) {
RADIUS = 7.0;

}

else if (SIZE >= 20 && SIZE < 30) {
RADIUS = 8.0;

}

else if (SIZE >= 30 && SIZE < 40) {
RADIUS = 9.0;

} else if (SIZE >= 40 && SIZE < 50) {
RADIUS = 10.0;

} else if (SIZE >= 50 && SIZE < 60) {
RADIUS = 11.0;

} else if (SIZE >= 60 && SIZE < 70) {
RADIUS = 12.0;

} else if (SIZE >= 70 && SIZE < 80) {
RADIUS = 13.0;

} else if (SIZE >= 80 && SIZE < 90) {
RADIUS = 14.0;

} else if (SIZE >= 90) {
RADIUS = 15.0;

}

add_newFood_message (SIZE, xPosition, yPosition, RADIUS);
return 1;

}
}
foodEaten_message = get_next_foodEaten_message(foodEaten_message) ;
¥
return O;

}

//Food agent
//add foodInfo
int foodInformation() {
if (SIZE > O && SIZE < 5) {
RADIUS = 5.0;
} else if (SIZE >= 5 && SIZE < 10) {
RADIUS = 6.0;
} else if (SIZE >= 10 && SIZE < 20) {
RADIUS = 7.0;
} else if (SIZE >= 20 && SIZE < 30) {



}

}

RADIUS = 8.0;
else if (SIZE >=
RADIUS = 9.0;
else if (SIZE >=
RADIUS = 10.0;
else if (SIZE >=
RADIUS = 11.0;
else if (SIZE >=
RADIUS = 12.0;
else if (SIZE >=
RADIUS = 13.0;
else if (SIZE >=
RADIUS = 14.0;
else if (SIZE >=
RADIUS = 15.0;

30 &&

40 &&

50 &&

60 &&

70 &&

80 &&

90) {
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SIZE
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40)
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60)

70)

80)

90)

add_foodInformation_message (FOODID,
return O;

}

//Nest agent
//add nestInfo
int nestInformation() {

add_nestInformation_message (NESTX, NESTY, NESTRADIUS);

return O;

}

//Pheromone agent

//add pheromonelInfo

int pheromonelInformation() {
add_pheromoneInformation_message (PHEROMONEID, PHEROMONEX, PHEROMONEY, LIFE);
return O;

}

int

{

Ant_idle()

return O;

}

//Ant agent

//deposit a pheromone at each step
//if a pheromone was previously deposited at a particular coordinate,

increase pheromone level
//if not create a new one

int

{

reinforce()

double distance=0.0;

pheromoneInformation_message = get_first_pheromoneInformation_message();
while (pheromonelnformation_message)

{

if (PHEROFOUND ==
{

distance = getDistance(ANTX, ANTY, pheromoneInformation_message->
pheromoneX, pheromoneInformation_message->pheromoneY);
if (distance > 0.3 &% distance <= minPheromoneDistance)

{
PHEROFOUND =

0)

1;

FOODX, FOODY, SIZE, RADIUS);
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add_pheromoneIncreased_message (pheromoneInformation_message->
pheromoneID, antPheromoneDepositionUnit); //0.0496
}
}
pheromoneInformation_message = get_next_pheromoneInformation_message
(pheromoneInformation_message) ;

}
return 0;

}

int depositPheromone ()

{
//printf("phero not found, create one at ant coordinates %f %f\n" ,ANTX,ANTY);
add_newPheromoneInput_message (ANTX, ANTY);
return 0;

}

//Pheromone agent
//decrease pheromoneLife at each iteration
int decreasePheromoneLife() {
if (LIFE >= 0.02) {
LIFE = LIFE - (pheromoneDecay * LIFE);
}
if (LIFE < 0.02) { //pheromone evaporated
return 1;
}
return O;

}

//Pheromone agent
//increases the life of a previously deposited pheromone at a specific location
int increasePheromoneLife() {
pheromoneIncreased_message = get_first_pheromonelncreased_message();
while (pheromonelncreased_message) {
int localPheromoneID = pheromonelncreased_message->pheromonelD;
if (localPheromoneID == PHEROMONEID) {
LIFE = LIFE + pheromonelncreased_message->increase;
}
pheromoneIlncreased_message = get_next_pheromonelncreased_message
(pheromoneIncreased_message) ;
}
return 0;

}

//Generator agent
//produces a pheromone agent dynamically
//prevents duplicate deposition
int produce() {
newPheromoneInput_message = get_first_newPheromoneInput_message();
struct Data data;
data.maxIndex = 0;
while (newPheromonelnput_message)
{
double x = newPheromonelnput_message->pheromoneX;
double y = newPheromonelnput_message->pheromoneY;
int found = 0;
for (int i = 0; i < data.maxIndex; i++)
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{
if ((data.information1[i] == x) && (data.information2[i] == y))
{
found = 1;
}
}
if (found == 0)
{
data.informationl[data.maxIndex] = x;
data.information2[data.maxIndex] = y;

data.maxIndex = data.maxIndex + 1;
}
newPheromoneInput_message = get_next_newPheromonelnput_message
(newPheromoneInput_message) ;

}
for (int i = 0; i < data.maxIndex; i++)
{
MEMORYID++;
// printf ("New agent");
add_Pheromone_agent (MEMORYID, antPheromoneDepositionUnit,
data.information1[i], data.information2[i]);
}
return O;

//Ant agent
//after eating food, ant agent goes back to nest
int

findNest () {

int pheromoneFound = 0O;

int epFound = 0;

double currentX = ANTX;
double currentY = ANTY;
struct PheromoneData p;
p.pheromoneX = -1;
p.pheromoneY = -1;
p.pheromonelLife = -1;
p.direction = ANTDIRECTION;
struct PheromoneData ep;

ep.pheromoneX = -1;
ep.pheromoneY = -1;
ep.pheromonelLife = -1;

ep.direction = ANTDIRECTION;
int direction = ANTDIRECTION;
int nextdir = (direction + 1) > 8 ? 1 : direction + 1;
int prevdir = (direction - 1) < 1 7 8 : direction - 1;

int next2dir = (direction + 2) > 8
int prev2dir = (direction - 2) < 1

: direction + 2;

7?1
7 8 : direction - 2;

double distanceToPheromone = 0;

nestInformation_message = get_first_nestInformation_message();

while (nestInformation_message) {
double xNest = nestInformation_message->nestX;
double yNest = nestInformation_message->nestY;
double nestRadius = nestInformation_message->nestRadius;

221

double distanceToNest = getDistance(xNest, yNest, currentX, currentY);

if (distanceToNest <= nestRadius + 2) {
ISINNEST = 1;
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return O;
}
nestInformation_message = get_next_nestInformation_message
(nestInformation_message) ;
}
pheromoneInformation_message = get_first_pheromoneInformation_message();
while (pheromonelnformation_message) {
double pheromoneLocalX = pheromoneInformation_message->pheromoneX;
double pheromoneLocalY = pheromonelnformation_message->pheromoneY;
double pheromoneLocallLife = pheromoneInformation_message->life;
distanceToPheromone = getDistance(pheromoneLocalX, pheromonelLocaly,
currentX, currentY);

if (distanceToPheromone <= antStepSize && pheromoneLocallife > 0.2
&& distanceToPheromone > minPheromoneDistance) {
int newDirection = getDirection(ANTX, ANTY, pheromoneLocalX, pheromoneLocalY);
if (newDirection == direction || newDirection == nextdir
|| newDirection == prevdir) {
if (p.pheromonelife <= pheromoneLocallife) {
p.pheromonelLife = pheromoneLocalLife;
p.pheromoneX = pheromonelLocalX;
p.pheromoneY = pheromoneLocalY;
p.direction = getDirection(ANTX, ANTY, p.pheromoneX, p.pheromoneY);
pheromoneFound = 1;
}
}
else if (newDirection == next2dir || newDirection == prev2dir) {
if (ep.pheromonelLife <= pheromonelLocallife) {
ep.pheromonelife = pheromonelLocallLife;
ep.pheromoneX = pheromoneLocalX;
ep.pheromoneY = pheromonelLocalY;
ep.direction = getDirection(ANTX, ANTY, ep.pheromoneX, ep.pheromoneY);
epFound = 1;
}
}
}
pheromoneInformation_message = get_next_pheromoneIlnformation_message
(pheromoneInformation_message) ;
}
if (pheromoneFound == 1) {
direction = p.direction;
updatePosition(&currentX, &currentY, direction);
ANTX = checkAntPositionX(currentX);
ANTY = checkAntPositionY(currentY);
ANTDIRECTION = direction;
//checkAntWalkThroughNest (ANTX, ANTY);
} else if (epFound == 1) {
direction = ep.direction;
//printf ("after pheromone: direction is %d\n", direction);
updatePosition(&currentX, &currentY, direction);
ANTX = checkAntPositionX(currentX);
ANTY = checkAntPositionY(currentY);
ANTDIRECTION = direction;
//checkAntWalkThroughNest (ANTX, ANTY);
} else {
turningKernel();



Agents in Biology

return 0;

}

<!-- starting file O0.xml-->

<states>

<itno>0</itno>

<xagent>
<name>Ant</name>
<antID>1</antID>
<antX>247.92854316936237</antX>
<antY¥>254.99745892924577</antY>
<foodLevel>0</foodLevel>
<isFed>0</isFed>
<isInNest>1</isInNest>
<antDirection>4</antDirection>
<state>0</state>
<pheroFound>0</pheroFound>

</xagent>

<xagent>
<name>Ant</name>
<antID>2</antID>
<antX>247.71740888841424</antX>
<antY¥>253.6156297463214</antY>
<foodLevel>0</foodLevel>
<isFed>0</isFed>
<isInNest>1</isInNest>
<antDirection>2</antDirection>
<state>0</state>
<pheroFound>0</pheroFound>

</xagent>

<xagent>
<name>Pheromone</name>
<pheromoneID>1</pheromoneID>
<life>0</1life>
<pheromoneX>0</pheromoneX>
<pheromoneY>0</pheromoneY>

</xagent>

<xagent>
<name>Generator</name>
<memoryID>1</memoryID>

</xagent>

<xagent>
<name>FoodGenerator</name>
<memoryFoodID>2</memoryFoodID>

</xagent>

<xagent>
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<name>Nest</name>
<nestX>250</nestX>
<nestY>250</nestY>
<nestRadius>10</nestRadius>

</xagent>

<xagent>
<name>Food</name>
<foodID>1</foodID>
<size>100</size>
<foodX>100</foodX>
<foodY>400</foodY>
<radius>15</radius>

</xagent>

<xagent>
<name>Food</name>
<foodID>2</foodID>
<size>b</size>
<f00dX>300</foodX>
<foodY>200</foodY>
<radius>5</radius>

</xagent>

</states>

7.6 Model Drug Delivery for Cancer Treatment

Curing cancer is a game of time and drugs where drugs are introduced
at specific times to help kill cancer cells before they mutate. Cancer cells
eventually develop resistance to the administered drugs during the treatments.
This is a concrete factor in limiting treatment, causing the patient to move to
a point of no return when no more chemotherapy is effective. Individual cells
develop changes in their DNA (known as ‘mutations’) that change them such
that their growth is left unaffected by specific drugs. Through a computer
model that allows introducing alternative drugs, in a virtual environments on
computer-generated cancer cells, clinicians can find best drug combinations
to reduce the development of drug resistance, increasing the patient chances
to survive. This project involves working with breast cancer patients but can
be extended to other types of cancers in the future.

Drug resistance is the main reason for current failures in cancer treatments
when no more chemotherapy is helpful for the patient. Clinicians use a com-
bination of drugs (drug A and drug B) introducing them at different times
of the treatment in order to help kill all cancer cells in the affected tissues
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ﬁ ﬁ alternating

FIGURE 7.13: Sequential trails for drug therapy.

such as shown in Figure 7.13. There is a need to understand what is the best
cost-affective pattern which can help kill off all cancer cells before they all
mutate to develop resistances to all kinds of drugs. Using agent-based model-
ing and working with clinicians, a simulation was developed to build tools to
allow clinicians to test their theories in controlled virtual environments. These
tools can help save on costs of the drugs and materials and also prevent the
delayed wait times for when the experiments are conducted in petri dishes on
real cancer-affected tissues. By simulating the cell behavior, we can quickly
find approximate best combinations of drugs allowing the clinicians to zero in
on the combinations they can test out in laboratories, testing their simulated
hypothesis saving on time and experiments. Below is the overall simulation
behavior:

e At start of iteration: Generate cells on random with 2 state mutation
categories (0 - neutral, 1 relieves pressure of drug A, 2 relieves pressure
of drug B).

e During simulation:

— Cells continue to divide based on growth rate/division rate.
— Introduce drug A cells into simulation at specified intervals.

— If drug A close by, cells with mutation state 1 will fight and die, or
if neutral: reduce growth rate of cells, or if state 1: kill cell, apply
decaying function for cell to die.

— If drug A Xkills certain cells close by, remove that part of drug A
from scenario.

— Introduce drug B in scenario. Repeat process with drug B.

— Save data at each time step.

The effect of alternating drugs is simple, but judging from the initial mod-
els it can prove highly successful, because the subset of cells that developed
drug resistance to the one drug are destroyed when drugs are alternated, and
vice versa. The alternating drug strategy therefore reduces the risk of the can-
cer developing dual resistance to both drugs, because the effective population
size for this mutation to develop in is smaller. It is this dual (or multiple
resistance to > 2 drugs) resistance that will ultimately render the cancer un-
treatable. The effective population size of cells that have resistance to one of
the drugs is crucial because this determines the chance that dual resistance
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can evolve. With this project, the authors developed the agent-based model to
include competition between cancer cells for resources which will add increased
complexity, using population level modeling. In this model, they showed that
a sequential way of treating cancer is more prone to encourage the develop-
ment of drug resistance. The current clinical strategy is mainly sequential,
first treating with one drug and using sequential drugs to battle any recur-
rence or when treatment on earlier drugs was unsuccessful. Many drugs can
usually not be provided as a cocktail because this will pose severe side effects.
Currently, it is the aim to extend these models to include interactions between
cells in terms of position within the cancer and competition for oxygen and
energy.

<?xml version="1.0" encoding="IS0-8859-1"7>
<xmodel version="1">

<name>Cancer Drug Model</name>
<date>150714</date>

<I-—skkkkokkkkk Environment values and functions s xkskxkkkkx——>
<environment>
<functionFiles>
<file>cell_functions.c</file>
<file>druga_functions.c</file>
<file>drugb_functions.c</file>
<file>generatedrug_functions.c</file>
<file>library_functions.c</file>
</functionFiles>
</environment>

<agents>
<xagent>
<name>Cell</name>
<memory>
<variable><type>int</type><name>myid</name></variable>
<variable><type>int</type><name>mcat</name></variable>
<variable><type>double</type><name>xpos</name></variable>
<variable><type>double</type><name>ypos</name></variable>
<variable><type>double</type><name>zpos</name></variable>
<variable><type>double</type><name>clife</name></variable>
</memory>

<functions>

<function>
<name>cell_here</name>
<currentState>0a</currentState>
<nextState>00</nextState>
<outputs>

<output><messageName>im_here</messageName></output>

</outputs>

</function>

<function>
<name>cell_divide</name><description>divide on division rate</description>
<currentState>00</currentState>
<nextState>01</nextState>
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<inputs>
<input><messageName>cell_tot_msg</messageName></input>
</inputs>
</function>

<function>
<name>cell_check_drugs</name><description>affected by drug</description>
<currentState>01</currentState>
<nextState>02</nextState>
<inputs>
<input><messageName>drug_a_information</messageName></input>
<input><messageName>drug_b_information</messageName></input>
</inputs>
<outputs>
<output><messageName>drug_used</messageName></output>
</outputs>
</function>

<function>
<name>cell_decay</name>
<currentState>02</currentState>
<nextState>03</nextState>
</function>
</functions>
</xagent>

<xagent>

<name>DrugA</name>

<memory>
<variable><type>int</type><name>myid</name></variable>
<variable><type>double</type><name>xpos</name></variable>
<variable><type>double</type><name>ypos</name></variable>
<variable><type>double</type><name>zpos</name></variable>
<variable><type>double</type><name>alife</name></variable>

</memory>

<functions>
<function>
<name>drug_a_location</name>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>
<output><messageName>drug_a_information</messageName></output>
</outputs>
</function>

<function>

<name>drug_a_used</name>

<currentState>01</currentState>

<nextState>02</nextState>
<inputs><input><messageName>drug_used</messageName></input></inputs>
</function>

<function>
<name>drug_a_decay</name>
<currentState>02</currentState>
<nextState>03</nextState>



228 X-Machines for Agent-Based Modeling: FLAME Perspectives

</function>
</functions>
</xagent>

<xagent>

<name>DrugB</name>

<memory>
<variable><type>int</type><name>myid</name></variable>
<variable><type>double</type><name>xpos</name></variable>
<variable><type>double</type><name>ypos</name></variable>
<variable><type>double</type><name>zpos</name></variable>
<variable><type>double</type><name>blife</name></variable>

</memory>

<functions>

<function>
<name>drug_b_location</name>
<currentState>00</currentState>
<nextState>01</nextState>
<outputs>

<output><messageName>drug_b_information</messageName></output>

</outputs>

</function>

<function>
<name>drug_b_used</name>
<currentState>01</currentState>
<nextState>02</nextState>
<inputs>

<input><messageName>drug_used</messageName></input>

</inputs>

</function>

<function>
<name>drug_b_decay</name>
<currentState>02</currentState>
<nextState>03</nextState>
</function>
</functions>
</xagent>

<xagent>

<name>DrugGenerator</name>

<memory>
<variable><type>int</type><name>myid</name></variable>
<variable><type>int</type><name>aid</name></variable>
<variable><type>int</type><name>bid</name></variable>
<variable><type>int</type><name>time_count</name></variable>
<variable><type>int</type><name>total_cells</name></variable>
<variable><type>double</type><name>xpos</name></variable>
<variable><type>double</type><name>ypos</name></variable>
<variable><type>double</type><name>zpos</name></variable>

</memory>

<functions>
<function>
<name>Generate_drug</name>



Agents in Biology

<currentState>00</currentState>
<nextState>01</nextState>
</function>

<function>
<name>Count_cells</name>
<currentState>01</currentState>
<nextState>02</nextState>
<inputs>

<input><messageName>im_here</messageName></input>

</inputs>
<outputs>

<output><messageName>cell_tot_msg</messageName></output>

</outputs>
</function>
</functions>
</xagent>
</agents>

<messages>
<message>
<name>drug_a_information</name>
<variables>
<variable><type>int</type><name>drugid</name></variable>
<variable><type>double</type><name>myx</name></variable>
<variable><type>double</type><name>myy</name></variable>
</variables>
</message>

<message>
<name>drug_b_information</name>
<variables>
<variable><type>int</type><name>drugid</name></variable>
<variable><type>double</type><name>myx</name></variable>
<variable><type>double</type><name>myy</name></variable>
</variables>
</message>

<message>
<name>drug_used</name>
<variables>
<variable><type>int</type><name>drugid</name></variable>
<variable><type>int</type><name>type</name></variable>
<variable><type>double</type><name>myx</name></variable>
<variable><type>double</type><name>myy</name></variable>
</variables>
</message>

<message>
<name>im_here</name>
<variables>
<variable><type>int</type><name>cellid</name></variable>
<variable><type>int</type><name>mcat</name></variable>
<variable><type>double</type><name>myx</name></variable>
<variable><type>double</type><name>myy</name></variable>
</variables>
</message>
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<message>
<name>cell_tot_msg</name>
<variables>
<variable><type>int</type><name>total_cells</name></variable>
</variables>
</message>
</messages>
</xmodel>

#include "header.h"
#include "Cell_agent_header.h"
#include "library_header.h"

/* add a state change
1) normal cells grow set state change quite low for A B any cell
can mutate to a,b,normal, at+b

*/
/* Cell functions */

int cell_here()

{
add_im_here_message (MYID, MCAT, XPOS, YPOS);
return O;

}

int cell_divide()
{
double cells_total=0;
cell_tot_msg_message=get_first_cell_tot_msg_message();
while(cell_tot_msg_message)
{
cells_total=cell_tot_msg_message->total_cells;
cell_tot_msg_message = get_next_cell_tot_msg_message(cell_tot_msg_message);
}
double temp=0.0;
double temp2=0.0;

double ¢ =(double)rand()/(double)RAND_MAX*5;
double d=(double)rand()/(double)RAND_MAX*5;

temp=random_double(0.0,1.0);
double e =(double)rand()/(double)RAND_MAX*100;

double current_population=0.0, pop_max=0.0;
pop_max=2500;

current_population=cells_total;

double fraction=0.0;
fraction=current_population/pop_max;
double fraction2=0.0;
fraction2=(1-fraction)*cell_division_rate;

if (temp<fraction2)
{
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if (e<25)
{
add_Cell_agent (1000,MCAT,XP0S+c,YPOS+d, ZPOS,10);
}
else if(e<50)
{
add_Cell_agent (1000,MCAT,XP0S+c,YP0OS-d, ZP0S,10);
}
else if(e<75)
{
add_Cell_agent (1000,MCAT,XP0S-c,YPOS+d, ZP0S,10);
}
else
{
add_Cell_agent (1000,MCAT,XP0S-c,YPOS-d, ZP0S,10);
}
}

temp=random_double(0.0,1.0);
temp2=random_double(0.0,1.0);
if (temp<0.01)

{
if (MCAT==3)
{
if (temp2<0.01)
{
MCAT=3;
}
else if (temp2<0.51)
{
MCAT=2;
}
else
{
MCAT=1;
}
}
if ((MCAT==1) | | (MCAT==2))
{
if (temp2<0.01)
{
MCAT=0;
printf ("ZERO is PRODUCED!");
}
}
}
return O;
}
int cell_check_drugs()
{
int closest_drug_a_id = -1;
int closest_drug_b_id = -1;

double shortest_distance = 9999.0;
double current_distance_squared;

double drugx, drugy;
double theta;
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drug_a_information_message=get_first_drug_a_information_message();
while(drug_a_information_message)
{

drugx=drug_a_information_message->myx;

drugy=drug_a_information_message->myy;

current_distance_squared = (drugx - XP0S)*(drugx - XPOS) +

(drugy - YPOS)*(drugy - YP0S);
if (current_distance_squared <= (attack_length*attack_length))
{
if (current_distance_squared < shortest_distance)

{

shortest_distance

current_distance_squared;
closest_drug_a_id = drug_a_information_message->drugid;

}
}

drug_a_information_message = get_next_drug_a_information_message
(drug_a_information_message) ;

}

if(closest_drug_a_id != -1)
{
if (shortest_distance <= (attack_length*attack_length))
{
if (MCAT==1)
{
add_drug_used_message(closest_drug_a_id, MCAT, XP0OS, YPOS);
return 1;
}
if (MCAT==3)
{
add_drug_used_message(closest_drug_a_id, MCAT, XPOS, YPOS);
return 1;
}
}
}
drug_b_information_message=get_first_drug_b_information_message();
while(drug_b_information_message)
{
drugx=drug_b_information_message->myx;
drugy=drug_b_information_message->myy;
current_distance_squared = (drugx - XP0S)*(drugx - XPOS) +
(drugy - YPOS)*(drugy - YPOS);
if (current_distance_squared <= (attack_length*attack_length))
{
if (current_distance_squared < shortest_distance)
{

shortest_distance

current_distance_squared;
closest_drug_b_id = drug_b_information_message->drugid;

}
}

drug_b_information_message = get_next_drug_b_information_message
(drug_b_information_message) ;

}
if (closest_drug_b_id != -1)
{

if (shortest_distance <= (attack_length*attack_length))
{
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if (MCAT==2)
{
add_drug_used_message(closest_drug_b_id, MCAT, XPOS,
return 1;
}
if (MCAT==3)
{
add_drug_used_message(closest_drug_b_id, MCAT, XPOS,
return 1;
}
}
}
return O;

}

int cell_decay()
{
CLIFE=CLIFE-(CLIFE*cell_decay_prob) ;
if (CLIFE<=0.1)
{
return 1;
}

return O;

#include "header.h"
#include "DrugA_agent_header.