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Water resources systems provide multiple services and, if managed 
properly, can contribute significantly to social well-being and economic 
growth. However, extreme or unexpected hydroclimatic conditions, such 
as droughts and floods, can adversely affect or even completely interrupt 
these services.  This manual seeks to provide knowledge, resources and 
techniques for water resources professionals to manage the risks and 
opportunities arising from hydroclimatic variability and change.

Managing Climate Risk in Water Supply Systems provides materials and 
tools designed to empower technical professionals to better understand 
the key issues in water supply systems. These materials are part of a 
suite of resources that are developed to share climate risk knowledge 
related to a range of sectors and climate-related problems.

The text motivates students by providing practical exercises and it 
stimulates readers or workshop participants to consider options and 
analyses that will highlight opportunities for better management in the 
water systems in which they are stakeholders.

Managing Climate Risk in Water Supply Systems provides a hands-on 
approach to learning key concepts in hydrology and climate science as 
they relate to climate risk management in water supply systems. 

The primary audience is technical professionals in water resources 
management and provides a practical approach to training.
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About this Manual

A PRACTICAL APPROACH TO TRAINING

This manual has been developed as a learning tool and can be used with a
companion series of practical exercises. They have been developed to provide a
hands-on approach to learning key concepts in hydrology and climate science as
they relate to climate risk management in water supply systems, as introduced in
the text. These exercises are located online, and are available in CD-ROM
format. They are intended for use with Excel 2003 or a later version.

Please go to http://crk.iri.columbia.edu/water/ for complete exercise files.
Theses practical exercises involving quantitative analysis have been developed to

illustrate and teach some of the key concepts introduced in the text. The content of
the exercises is outlined below.

Exercise 1: Sizing a reservoir and constructing
yield-reliability curves using climate information

Exercise 1 provides the information and skills necessary to develop a reservoir
yield-reliability curve and understand how it is affected by changes in water
demand or inflow. After examining how inflows and demand affect storage
requirements for a reservoir, the participant creates a curve that tracks the
reliability based on changing yields for a reservoir with a given capacity. The
exercise also allows the participant to explore the impact of climate conditions on
inflow and reliability. This promotes understanding of how seasonal climate
information can be used to determine the necessary size of a reservoir and the
expected reservoir reliability.
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Exercise 2: Developing a statistical seasonal inflow
forecast model

Exercise 2 allows the participant to create and validate a statistical model to forecast
a three-month seasonal inflow based on hydroclimatic data. The participant uses
relevant climate, inflow and reservoir data for a specific reservoir. The exercise
illustrates how to choose an appropriate predictor variable and determine the level
of skill that can be expected when applying the statistical forecast model. The
participant is able to vary the climate predictor value (antecedent conditions or an
ENSO index) and observe how this affects the model’s forecast output.

Exercise 3: Assessing risk for a multipurpose reservoir
using a water allocation scheme and simulated inflows

Exercise 3 broadens the scope of risk assessment beyond simple reliability analysis
based on the historical record. The participant considers a realistic set of reservoir
operating rules and makes water allocation decisions. The exercise then applies
stochastic modeling to simulate various future seasonal inflow scenarios over a
40-year period. This allows the participant to examine the potential effects of
multidecadal climate variability and/or long-term trends on the system reliability.
The exercise also includes a module that illustrates the possible economic
consequences of water supply shortfalls.

Exercise 4: Integrating seasonal forecast information into
reliability analysis for a multipurpose reservoir

Exercise 4 builds off previous exercises to demonstrate how the probabilistic
seasonal inflow forecast developed in Exercise 2 can be applied to historical
conditions and used to determine expected reliability for a multipurpose reservoir.
The participant is able to construct a seasonal inflow forecast, use it as an input in
a stylized decision support model, and observe how changes in water allocation
can affect the expected reliability. The exercise also provides the observed inflow
from the historical record as a point of comparison for the forecasted inflow.

Exercise 5: Managing risks and opportunities for a
multipurpose reservoir within an institutional context

Exercise 5 is intended to be conducted in groups. It includes a role-playing
component that separates participants into different stakeholder groups and
provides guidance for making decisions within a simulated institutional context.
The exercise allows the participants to make water allocations for a multipurpose
reservoir using a retroactive forecast based on a climate-based probabilistic

Managing Climate Risk in Water Supply Systemsxiv
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seasonal inflow model. The participants can then assume the season elapses and
update the model using observed inflows from the historical record. Participants
are able to both explore the dynamics involved in making decisions using
probabilistic forecasts and recognize the possible consequences of these decisions.

About this Manual xv
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Chapter 1

Introduction

INTRODUCTION
Water resources systems provide multiple services and, if managed properly, can
contribute significantly to social well-being and economic growth. However,
extreme or unexpected hydroclimatic conditions, such as droughts and floods,
can adversely affect or even completely interrupt these services. Severe social,
economic and ecological impacts may result when societies are unable to predict,
adapt to, or respond to these conditions. This manual seeks to provide
knowledge, resources and techniques for water resources professionals to manage
the risks and opportunities arising from hydroclimatic variability and change.

CLIMATE AND WATER RESOURCES MANAGEMENT
A primary objective of this manual is to provide the tools and knowledge necessary
to improve traditional risk management approaches in the water resources sector
by integrating innovations and developments in the understanding of global and
regional climate systems. Traditionally, regulation plans for water resources
systems have been based entirely, or almost entirely, on the historical hydrologic
record. For example, studies continue to rely on critical period hydrology (Hall &
Dracup, 1970), in which managers determine a firm yield of a system based on
system reliability when confronted with the worst drought on record. In general,
decision making during less severe droughts is heuristic (informal) and lacks
explicit consideration of risk, instead depending primarily on past experience,
observation of current conditions, and professional judgment (Lee, 1999).

One of the weaknesses of such traditional approaches is that they do not typically
address changes or variability over longer time scales in the water system. Changes
in population, land use and climate, among others, can result in changes to the
system that lead to outcomes significantly different from the observed historical
record. Additionally, traditional approaches rarely utilize recent advances in the
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understanding of the climate system or the resulting improvements in the ability to
predict climate across various time scales. Importantly, much of hydrologic
variability is driven by dynamics in the climate. Climate variability and
change occurs across multiple time scales (see Figure 1.1) and affects water
resources decision making on a range of decision horizons. For example, a flood
may occur over a period of hours, whereas a drought may unfold over a period of
months or years. The effects of such events can be impacted by decisions made at
both the operational and planning levels.

Figure 1.1 Characteristic time and spatial scales of aspects of the climate system.
Panel (a) illustrates various elements of weather and climate variability, ranging from changes
from day to night (diurnal cycle) to the effects of changes in the orbit of the Earth and other
celestial bodies (orbital forcing). The width of each blue distribution shows the timescale over
which the associated forcing impacts the climate system. The height indicates the degree of
variability (e.g. seasonal changes, or annual solar forcing, are typically much greater than
changes in day-to-day weather within a season). Note that this diagram is intended to be
schematic and should not be interpreted quantitatively. Panel (b) provides some examples of
events or patterns that manifest at each timescale, as well as a generalization of the spatial
scale over which their impacts are felt. For example, droughts occur over multiple months and
generally have physical impacts at a regional scale. Thunderstorms, however, occur at the
timescale of hours and days, and operate at a smaller spatial scale (local level).

Managing Climate Risk in Water Supply Systems2
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As awareness of longer-term climate variability (e.g. decadal variability and
multidecadal variability) and the potential effects of global climate change
increases, water managers are increasingly motivated to implement policies for
risk-based decision making. Fortunately, the growing awareness is accompanied
by improvements in tools for both forecasting climate and using that climate
information in managing water resources.

FORECASTING CLIMATE AND INFLOWS
Climate scientists have made significant progress in the ability to understand and
predict the climate on seasonal to interannual time scales. They are also rapidly
advancing climate models that support projections of long-term anthropogenic
climate change. All of these are relevant to water resources managers. This
manual examines some of the basic science and techniques used in the
predictions. For example, one of the key aspects of seasonal climate variability
for many regions of the world is the El Niño-Southern Oscillation (ENSO)
phenomenon. As explained in more detail in Chapter 3, the ENSO phenomenon
is manifested as phases called El Niño, La Niña or neutral, which are
characterized by different impacts on regional climate (see Figure 1.2).

Forecasts of ENSO conditions and related phenomena can often provide
information on probable precipitation conditions months, or even seasons, in
advance. Given the appropriate tools and information, these precipitation
forecasts may also be able to be translated into streamflow forecasts for certain
water systems. This information can, in turn, enable water resources managers to
better predict reservoir inflows, possibly offering significant improvements over

Figure 1.2 Temperature and rainfall conditions associated with the El Niño-Southern
Oscillation phenomenon during El Niño and La Niña events.
Source: Adapted from NOAA Climate Prediction Center.

Introduction 3
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using only historical inflow records. This manual explores how the appropriate use
of climate forecasts at seasonal and other time scales may be able to improve water
management under current conditions, as well as help systems adapt to changing
conditions.

It is also important to recognize some of the limitations of climate forecasting.
In many cases, the skill of the climate forecast may not be sufficient
for operational use, due to inherent physical predictability limits of regional
climate or limited knowledge of climate processes and modeling capabilities.
Additionally, institutional barriers to the use of climate forecasts may exist, and
water managers may be hesitant to apply new methods that could expose them to
greater liability. Because of the possible benefits from using climate information,
innovative tools and management strategies should be developed to handle the
complexity involved in using forecasts. This manual describes some of these
tools and presents a robust approach to climate risk management.

USING CLIMATE INFORMATION TO MANAGE CLIMATE
RISKS AND OPPORTUNITIES
Climate variability and change can offer an array of both risks and opportunities for
water resources systems. Managers are responsible for minimizing the risks while
maximizing the benefits of a system. The distribution of negative outcomes
relative to opportunities is typically quite uneven, particularly if a system is
managed well (Figure 1.3).

Figure 1.3 Normal distribution of outcomes.
Stylized representation of a range of possible outcomes (such as crop yield) following a normal
distribution (bell curve). There exists an outcome below which the system faces some degree of
harm or, if the outcome is even more extreme, a disaster. The white space to the right of the
‘Harm’ threshold can be considered baseline outcomes (i.e. outcomes that result in neither
harms nor benefits). An individual outcome leading to a harm or disaster has lower probability
than an outcome resulting in baseline conditions. The green area represents possible benefits
from the climate conditions. If a system is managed only to avoid harm or disaster, these
benefits may not be enjoyed and could be considered forfeited opportunities. Source:
Adapted from Brown and Hansen (2008).

Managing Climate Risk in Water Supply Systems4
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Although climate information is only one input in the decision-making process, it
can have a significant effect on the outcomes for a water system. This manual
outlines a three-step approach to using improved climate information and
forecasts to manage climate risks and opportunities. Chapter 5 describes the
recommended process, which begins by assessing the hydroclimatic risk for the
system. This includes examining the existing climate challenges and the system’s
sensitivity to climatic changes and variability. The water manager may collaborate
with relevant climate professionals, national meteorological agencies and other
related institutions as needed, to develop probabilistic climate predictions and
projections across time scales. These predictions can help narrow the range of
likely climate futures. The creation of such information through collaboration
is an important step in the emerging concept of modern climate services
(World Climate Conference 3, 2009). Finally, water resources managers can use
this information to determine a portfolio of options to address the specific
hydroclimatic risks to the system.

Ultimately, successful climate risk management relies on 1) the quality of the
climate information; 2) successful integration of this information into relevant
decision tools (such as reservoir models); and 3) incorporation of the information
into decision making, including relevant policies, regulations, and other
institutional processes. Therefore, it is critical to understand the institutional and
policy context in which climate information is to be used.

INSTITUTIONAL ASPECTS OF MANAGING CLIMATE
RISKS AND OPPORTUNITIES
Water management policies and institutions must address a complex set of
interconnected problems. Water resources are variable across time and space, and
are typically shared across multiple users with differing needs. While agriculture
typically consumes the greatest proportion of water, population growth, urban
development and industrialization are resulting in a steady increase in demand for
municipal and industrial water use. Water use for environmental management has
also emerged as an important consideration in many settings. It is in the context of
these increasing pressures over the past several decades that the integrated water
resources management (IWRM) approach emerged. IWRM recognizes the need
to balance economic efficiency, social equity, and environmental sustainability
in a holistic approach to water resources management (Lenton & Muller, 2009).

Water policies and associated regulations provide formal guidance to water
resources decision making, typically by outlining priorities for water use,
defining criteria for water allocation, and establishing a process for decision
making. In addition to understanding their content, it is also important to
recognize that these policies emerge in a particular historical and socio-economic
context. Policies and regulations are shaped by certain attitudes toward risk and,
quite often, differing degrees of political influence by various users. Competition
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and other conditions within an industry can also, in some instances, provide a
disincentive for acknowledging the use of climate information in water
management practices. Regardless of the quality of climate information, such
factors will continue to play an important role in decision making.

In addition to formal water policies, informal institutional arrangements are
equally crucial. North (1990) defined informal institutions as customary but
unwritten modes of interaction, and he argued that these often play an even more
important role in actual decision outcomes – and eventually, overall economic
performance – than do formal policies. Informal institutions might include
everything from the existence of an informal committee that meets regularly to
discuss water allocation, to cultural norms that lead to hierarchical decision-
making patterns. Whether or not a climate risk management approach is
successfully implemented depends significantly upon whether or not it integrates
well with existing informal institutions.

In the context of a changing climate as well as continuing demographic and land
use changes, anticipatory, risk-based decision making is becoming increasingly
important. Approaches such as integrated water resources management, which
explicitly acknowledge the interconnectedness of problems across multiple
sectors and scales, are generally well-suited to accommodate this. However,
achieving this may require changing institutional arrangements, which are often
better equipped to respond to impacts after they occur than they are to anticipate
and manage risks (Someshwar, 2008). An understanding of current formal and
informal institutional arrangements, including an analysis of relevant stakeholder
institutions, can help identify both attitudes toward risk, needs and priorities of
various water users, as well as key informal institutions that help shape outcomes,
laying the groundwork for effective climate risk management approaches.

CONCLUDING REMARKS
Our intent is to provide a foundation for water resources professionals to understand
how to use climate information and forecasts to manage hydroclimatic risk and take
advantage of opportunities. In practice, this is a dynamic process that must be done in
close collaboration with climate scientists, relevant meteorological agencies, policy
makers and other stakeholders involved inmanaging awater system. Ultimately, this
manual should help guide water resources managers to engage in dialogue with
relevant partners and understand the appropriate questions to ask. Our approach is
to encourage “learning rather than knowing, the difference being that the former
emphasizes the process of exchange between decision makers and scientists,
constantly evolving in an iterative fashion rather than aiming for a one-time-only
completed product and structural permanence” (Feldman & Ingram, 2009). To
facilitate that process, this manual aims to support water resources professionals to:

• Understand limitations of traditional approaches to water management and
opportunities for improvement based on new understanding of climate;
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• Recognize the scales of climate variability and change and their impact on
water systems;

• Understand the basic mechanics of a simple seasonal forecast model;
• Improve operations tools, such as rule curves, by utilizing climate forecasts;
• Evaluate the expected benefits and risks of forecasts, including in the context

of a changing background climate;
• Conduct a basic climate risk assessment;
• Become familiar with market-based tools and other innovative approaches

that can mitigate climate risk; and
• Understand important institutional aspects of climate risk management.

Although the manual focuses primarily on reservoir management, much of the
information and many of the concepts are widely applicable in the broader water
resources field. Managing water supply in reservoir systems provides a context in
which to explain the techniques and knowledge necessary to develop a climate
risk management approach. However, the skills involved in understanding how
climate variability and change affect a system and recognizing how best to
translate that understanding into strategic anticipatory action are transferable
globally and across disciplines.
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Chapter 2

Water resources analysis
and management

INTRODUCTION
Water resources management is centrally concerned with understanding the
variability of water resources and using that knowledge to control water
availability to provide benefits to society. This requires techniques to measure the
various elements (e.g. precipitation, evaporation, runoff) in a hydrologic system
that lead to changes in the water availability across multiple time scales1.
Underlying patterns of climate variability contribute to hydrologic variability,
while longer-term trends can generally be understood as leading to fundamental
changes to the system. Due to limitations in data availability, modeling capability,
and comprehension of physical processes, there remains considerable uncertainty
in understanding and predicting hydrologic variability and change. Thus, while
this chapter presents some techniques for hydrologic analysis, these must be
accompanied by tools to address the possible risks. Chapter 5 builds off these
techniques and climate-related tools to provide a framework for climate risk
management.

A system without any trends or changes to the long-term historical hydrologic
variability is known as exhibiting stationarity. In such systems, statistical tests can
confirm stationarity and historical hydrologic records may be appropriate to use in
planning studies. However, few systems exhibit this trait, and even when the
hydrologic variability appears consistent, this provides no guarantee against
current or future changes which might negate the assumption of stationarity.
Some important factors to consider include land use change, decadal climate
variability not observed in the record, and long-term climate change. As an
example, the number and intensity of tropical storms in the Atlantic Ocean appear
to fluctuate on a cycle of approximately 20–40 years. If one had only a short
record of these storms, the possible multidecadal cycle might not be apparent; the

1It is also critical to understand water demand and how it is expected to change.While that is not the focus
of this manual, Appendix 2 provides a brief introduction to some of the relevant principles and techniques.
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record could appear as stationary (though biased high or low) or exhibiting a
significant upward or downward trend (Goldenberg et al. 2001).

Regardless of the source of cycles or changes, water resources managers
must learn to identify hydrologic variability and change in order to predict future
water availability and develop methods of controlling the flow and availability
to accommodate society’s needs. Storage reservoirs represent one of the most
common and critical methods of managing hydrologic variability. Reservoir
management generally involves two separate, but overlapping, areas of expertise
and decision making: planning and operations. The decisions made by both
planning and operations professionals require detailed knowledge of the given
watershed, which generally includes physical properties as well as historical
streamflow information.

Additionally, while not always adequately considered, climate information,
including both historical records and forecasting techniques, is critical for the
effective management of hydrologic variability and change. This chapter
examines various traditional approaches to predicting and managing water
availability in storage reservoirs. The discussion examines the crucial role of
climate variability in water resources management and the need to explicitly
integrate climate information into management practices.

Section 1: Predicting water availability
In order to manage water availability, we must first understand the variability of the
supply and develop methods for predicting how much water will actually be
available. While the following discussion is not exhaustive, it provides some of
the fundamental methods for predicting water availability along with an
examination of the existing and possible future role of climate information.

Section 1.1: Predicting water availability for unregulated
(natural) flow
To predict future water availability for a given system, it is essential to understand
the behavior of the system in the past and determine the historical streamflow. This
information can then form the foundation for modeling the unregulated system and
making predictions for future flows, provided the assumption of stationarity is
addressed and amended if necessary.

Flow-duration curves
Time series graphs are useful for visualizing the variability of past streamflow. For
example, Figure 2.1 shows monthly flows on the Chagres River in Panama. These
flows are considered “natural”, with no effects of regulation by storage ordiversion.2

2In the case shown, unregulated flows are estimates of “naturalized” flows based on observed, regulated
flows with the effects of storage and diversions removed using a simulation model.
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The time series graph reveals the critical importance of climate variability in
streamflow across multiple scales. There is a distinct seasonal pattern as well as
significant interannual variability. In addition, one can observe persistent drier
periods in the early to mid-1970s and again beginning in 1997–98. Such graphs
help visualize patterns and trends in the streamflow that might be connected with
similar variability in precipitation and the climate. This information is necessary
for understanding possible future scenarios and can help guide prediction of
water availability.

Another useful way to analyze streamflow data is by plotting a flow-duration
curve (or exceedance probability curve) which indicates the probability of the
flow exceeding a given value. This is done by ranking the data from largest to
smallest and assigning an exceedance probability, P, to each value according to
the following formula:

P = m

n+ 1
(Eq. 2.1)

where m is the rank of the data value (m= 1 being the largest), and n is the total
number of data points.

Flow-duration curves can be useful for decision making because they reveal the
likelihood that certain critical threshold flows will be exceeded. Figure 2.2 shows a
flow-duration curve for the unregulated Chagres River flows.

Figure 2.1 Time series of monthly natural (unregulated) flows on the Chagres River,
Panama.
The graph illustrates the significant variability of the flow both within a year and between years.
Units of flow are million cubic meters (mcm) per month. Data source: USACE (2000).
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The nonlinear nature of the flow-duration curve shown in Figure 2.2 is typical
for these graphs since the distribution of possible streamflows often follows a
near-normal pattern, with extreme high and low flows for each system having
very small probabilities.

Flow-duration curves may also be used to understand the results of climate
patterns and trends, such as those possibly observed in the time series analysis.
For example, the El Niño-Sothern Oscillation (ENSO) phenomenon (introduced in
Chapter 1 and described in more detail in Chapter 3) can have significant impacts
on climate conditions in various parts of the world. Using flow-duration curves for
different phases of ENSO can reveal whether a given system is affected by
ENSO-induced changes in the climate conditions (e.g. the cool phase of ENSO
over the equatorial Pacific may result in wetter conditions, increasing flows and
shifting the curve higher). Figure 2.3 demonstrates the impact of ENSO phases on
inflow to a reservoir.

In addition to these types of impacts, Chapters 3 and 4 explore other aspects of
climate variability and methods of using climate information to improve forecasts of
hydrologic variables. The variability in flows also illustrates the need for ways to use
this improved understanding of climate to better manage the risk and opportunities.
These concepts are examined further in Chapters 5 and 6.

Watershed modeling
Time series and flow-duration curves illustrate data from the historical record and
can be useful for understanding the possible range of future flows. However,

Figure 2.2 Flow-duration (exceedance probability) curve for unregulated monthly
flows on the Chagres River, Panama from 1966–1997.
Note that the probability of exceeding a monthly inflow of 400 mcm or more rises steeply,
suggesting that such high inflows are increasingly rare. Units of flow are million cubic meters
(mcm) per month. Data source: USACE (2000).
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predicting future unregulated flows for a watershed or river basin requires the
development of a model and knowledge of relevant indicators. Such prediction
often requires a computer model representing the key hydrologic processes
occurring in the watershed. These models can range from very simple (e.g. a
linear regression between precipitation and streamflow) to very complex (e.g. a
distributed, physically-based watershed model). Most models applied in
practice are fairly simple, due to limited data, and combine empirical methods
with physically-based modeling.

Physically-based models

Almost all physically-based models use all or a sub-set of the hydrologic processes
shown in Figure 2.4.

Physically-based models involve the basic concept of a water budget in relation
to these hydrologic processes. For example, a surface water budget may be
represented by the following equation:

DS=P− I−ET −R (Eq. 2.2)

Figure 2.3 Flow-duration curves for unregulated flows on the Chagres River,
Panama from 1950–1997.
The red curve shows flow following warm conditions in the Equatorial Pacific during July to
September (i.e. El Niño conditions). This is contrasted with the blue curve, which shows flow
following cold conditions in the Equatorial Pacific (La Niña). The figure illustrates that for this
system, El Niño conditions are associated with lower inflows, while La Niña conditions are
associated with higher inflows. Units of flow are million cubic meters (mcm) per month.
Source: Chagres River data, USACE (2000); SST data from NOAA NCDC ERSST v.2 (Smith
& Reynolds, 2004).
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where ΔS is the change in surface storage (amount of ponded water), P is
precipitation, I is infiltration, ET is evapotranspiration (which may also include
“interception” of rainfall by plants), and R is runoff.

While simple in concept, developing an accurate water budget may be difficult in
practice due to uncertainties and impracticalities in measuring each of the water
budget components. In addition to uncertainties surrounding possible land use
changes that affect runoff and infiltration, climate variability and change create
critical uncertainties for these water budgets. Changes in precipitation patterns
and temperature due to climate variability and change must be considered.
Chapters 3 and 4 provide some critical knowledge and techniques to help
understand how best to incorporate climate information in such models.

There may also be challenges in measuring the variables in Equation 2.2. While
precipitation may be measured at multiple gauges throughout the watershed,
precipitation can vary significantly even over short distances. Runoff may be
estimated as the increase in streamflow volume over a base flow, which is the
constant (or nearly constant) flow occurring during dry periods due to surface-
groundwater interactions. Infiltration and evapotranspiration are difficult to
measure directly, however. For even rough estimates of these components of the
hydrologic cycle, simplified methods using tabulated coefficients (standard
values based on soil properties and site location) may be needed. The partitioning

Figure 2.4 Hydrologic processes in a watershed.
Source: US National Weather Service (2005).
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of precipitation into the components of infiltration, evapotranspiration, surface
storage, and runoff depends on a number of factors. These include land use, land
cover, soil type, slope, and climatic variables such as temperature, wind, and
humidity. Accepted methods that incorporate these parameters in watershed
models are discussed in a number of engineering hydrology textbooks (e.g.
Wurbs & James, 2002; Bedient et al. 2008).

Models that incorporate physically-based parameters may be able to simulate the
effects of climate changes on a particular location. Physically-based parameter
estimates (e.g. infiltration rates based on observations of soil type) also provide a
way of making predictions in basins where no streamflow data is available given
the availability of data related to the physical characteristics of the basin.
However, it should be expected that predictions in ungauged basins will have
much more uncertainty than predictions in gauged basins.

Statistical modeling

While the models discussed above utilize physical parameters, some models are
based on empirical data and statistical relationships between chosen parameters
and streamflow. These statistical models can be helpful when the physical
characteristics of the watershed are poorly understood or difficult to measure and
model. They may also offer predictions with longer time horizons, particularly
if patterns in climate variability can be modeled. For example, seasonal
streamflow may be predicted using a statistical model based on ocean-atmosphere
variables such as sea surface temperature (SST). An example would be a linear
regression model between average seasonal SST at a certain location and
streamflow at the location of interest (this will be discussed in more detail in
Chapters 3 and 4).

Statistical models of streamflow are also often used to generate large samples of
plausible streamflow data using the statistics of the historical streamflow data. This
can be useful to test the sensitivity of a water resource system to a larger set of
conditions than the historical record offers. A wide variety of approaches are
available. An introduction is provided in Salas (1993).

Data use

Regardless of whether the model is physically-based, statistical or a combination
of the two, historical data can be critical. Ideally, a basin will have adequate
precipitation and streamflow data to allow for model calibration and verification.
If the model is to be used for flash flood prediction, data for several storm events
will be required at short intervals (daily, hourly, or even less). If the model is to
be used for seasonal streamflow prediction, continuous flow data will be required
at monthly-to-seasonal intervals over a period of 10–20 years or more, since
some patterns and trends may only be detectable over multiple decades. While
changing conditions, particularly in climate and land use, can impact streamflow
and precipitation patterns to the degree that they change significantly from the
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historical record, it is critical to have as much information as possible about
past conditions to provide a baseline and foundation for understanding possible
patterns and relationships (Table 2.1).

Section 1.2: Predicting water availability for regulated flows
in reservoirs
Streamflow variability, particularly extreme high flows and dry periods, can have
significant consequences for those relying on or affected by flows in a watershed.
Storage reservoirs can be used to reduce the variability of streamflows by storing
high flows for release during drier periods. Comparing Figures 2.5 and 2.6 to the
time series and flow-duration graphs of Figures 2.1 and 2.2 reveals the effect of
regulated flows on the Chagres River downstream of Madden Dam.

Table 2.1 Watershed models.

Watershed Model Reference

HEC Hydrologic Modeling System (HEC-HMS) USACE (2000)

Soil Water Assessment Tool (SWAT) Arnold et al. (1998)

Precipitation-Runoff Modeling System (PRMS) Leavesley et al. (1983)

‘abcd’ Model Thomas et al. (1983)

Selection of commonly used physically-based watershed models recommended for seasonal
stream flow prediction. There are many commercial and public domain watershed models
available for seasonal stream flow prediction. Singh and Woolhiser (2002) provide a
comprehensive review of watershed models and modeling techniques.

Figure 2.5 Time series of flows on the Chagres River, Panama.
Natural (unregulated) flows are shown in blue and regulated flows are shown in brown.
Regulated flow is generally less variable. Units of flow are million cubic meters (mcm) per
month. Data source: USACE (2000).

Managing Climate Risk in Water Supply Systems16

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



Figure 2.5 demonstrates the reduced variability, as shown by the reduced peak
flows and increased low flows for the dammed river for each period. The
flow-duration curves shown in Figure 2.6 capture the ability of the storage
reservoir to both increase the flow during dry periods (flows less frequently drop
below very low values) and reduce particularly high flows. These advantages of
storage reservoirs are critical for managing climate variability and may gain in
importance as the climate becomes more variable or experiences long-term
changes. As Section 1.1 demonstrated, flow-duration curves can also be used to
understand the effects of shorter-term climate variability and cycles (such as
ENSO), which can offer critical information for understanding the possible role
of a storage reservoir for a given system. Exercise 1 allows you to explore these
concepts by creating a flow-duration curve and historical data to understand how
ENSO conditions can affect inflow for a reservoir.

Figure 2.6 Flow-duration curves for flows on the Chagres River, Panama from 1966–
1997.
Unregulated flows are shown in blue and regulated flows are shown in red. Regulated flows less
frequently exceed very high levels or drop below very low levels. Units of flow are million cubic
meters (mcm) per month. Data source: USACE (2000).

Exercise 1: Sizing a reservoir and constructing yield-reliability curves
using climate information

Exercise 1 provides the information and skills necessary to develop a reservoir
yield-reliability curve and understand how it is affected by changes in water
demand or inflow. After examining how inflows and demand affect storage
requirements for a reservoir, you will create a curve that tracks the reliability
based on changing yields for a reservoir with a given capacity. The exercise
also allows you to explore the impact of climate conditions on inflow and
reliability. This promotes an understanding of how seasonal climate
information can be used to determine the necessary size of a reservoir and
the expected reservoir reliability.
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Again, while the time series and flow-duration graphs provide information about
the past, prediction of regulated flows requires additional analysis. Predicting
regulated flows involves a two-step process: (1) prediction of unregulated inflow
to the reservoir, and (2) detailed simulation of reservoir performance and other
hydrologic variables such as seepage and evaporation. The section below
explores this second step of the process.

Modeling of storage reservoirs
A similar water budget equation as used for watersheds can be applied to model
storage reservoirs:

DS=Qin +P−E−Qout −G (Eq. 2.3)

where ΔS is the change in storage,Qin is inflow, P is precipitation (onto the reservoir
surface), E is evaporation from the reservoir surface, andQout is the total outflow, or
release. The total outflow is often divided into components such as releases for
hydropower, releases for flood control, and uncontrolled releases (spills). In some
cases, seepage to groundwater or through the dam, G, may also be important.

As with the components of the watershed water balance in Equation 2, several of
the components in Equation 3 are affected by climate variability and change.
Precipitation, inflow and evaporation might all be impacted to some degree by
changes in the climate at different time scales. This influence motivates the need
for a better understanding of the climate system and its predictability, and also
provides the foundation for understanding how climate information can be used
in reservoir operations and management.

To accurately model releases from different outlets (e.g. conduits, gates,
spillway), evaporation (a function of surface area), and hydroelectric power
generation (a function of reservoir elevation and discharge), some basic physical
relationships for the reservoir are required. These include reservoir surface
elevation vs. area, elevation vs. volume, and elevation vs. discharge capacity
curves, as shown in Figure 2.7.

It is important to integrate these physical relationshipswith knowledge of land use
changes, climate variability and longer-term trends in the climate. The interaction
between these factors will affect modeling results for different watersheds and
reservoirs, if appropriately considered. Land use change, climate variability and
long-term changes in climate may affect different reservoir systems at varying
degrees based on their physical characteristics. For example, a reservoir with large
water surface area to watershed area ratio is likely to have levels significantly
affected by changes in the precipitation-evaporation balance. However, other
reservoirs may be more affected by changes in watershed runoff. For example,
deforestation within a watershed may lead to significant sedimentation in the
reservoir, affecting the storage volume. The climate and prediction information
addressed in subsequent chapters can also be combined with the risk management
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techniques discussed in later chapters to understand how best to approach these
possible impacts and their uncertainties.

Section 2: Managing availability with storage
Given that one of the principal goals of water resources management is to control the
availability of water, it is essential to understand how to utilize water availability
information and predictions to appropriately plan for its storage and use. This
information should be used across time scales for both water management
planning and operations purposes. For example, reservoir design requires
knowledge of historical streamflow, current water needs and projections for the
future of both water input and output. Effective reservoir operations also rely on
demand and inflow projections, but on a much shorter time scale.

Section 2.1: Reservoir sizing and design
Once data about streamflow and water availability obtained (through the above
methods, for example), a common problem in reservoir design is determining
the storage capacity required to provide a given yield (or release) with a high

Figure 2.7 Reservoir relationships for Lake Alajuela in Panama.
Panel (a) shows the elevation-area relationship, (b) shows the elevation-volume relationship,
and (c) shows the elevation-discharge relationship. The brown line in Panel (c) reveals the
boundary defining the relationship between threshold levels of elevation and discharge. Data
source: USACE (2000).
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level of reliability. There are a number of methods for calculating the necessary
storage capacity. One technique is to iteratively select different trial capacities
and perform a simulation using the storage accounting equation (Equation 2.3
above).

Alternatively, a graphical approach known as a Rippl Diagram (Hall & Dracup,
1970) can also be used, as shown in Figure 2.8. In this approach, assuming a
constant yield (release from the reservoir), the cumulative inflow curve is plotted
along with the cumulative yield. Tangent lines parallel to the yield curve are then
drawn at inflection points on the inflow curve. These inflection points represent
times when the inflow rate is the same as the yield (release rate), and thus storage
in the reservoir is not changing. Whenever the inflow curve has a greater slope
than yield curve, the storage is increasing; and whenever the inflow curve has a
slope less than the yield curve, the storage is decreasing. The maximum vertical
distance between two successive tangent lines, representing the difference in
volume between a full and empty reservoir, gives the storage capacity required to
provide the specified yield.

Optimization modeling can also be used to determine the minimum storage
capacity required to meet a given yield, or to determine the maximum yield for a
given capacity, or to evaluate the trade-off between storage capacity and yield.

Figure 2.8 Rippl Diagram indicating the storage volume required to meet a given
(constant) yield.
The maximum vertical distance between two successive tangent lines represents the difference
in volume between a full and empty reservoir and provides the storage capacity required to
provide the specified yield. Source: Adapted from Hall and Dracup (1970).
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Below are two related linear programming models for minimizing storage capacity,
K, and maximizing yield

MinK

subject to

St = St−1 + Qin
t − Yield − Qspill

t , ∀t
0 ≤ St ≤ K, ∀t
Qspill

t ≥ 0, ∀t (Eq. 2.4)

Max Yield

subject to

St = St−1 + Qin
t − Yield − Qspill

t , ∀t
0 ≤ St ≤ K, ∀t
Qspill

t ≥ 0, ∀t (Eq. 2.5)

In the first case, capacity K is a variable, and the yield is a constant; in the second
case, yield is a variable, and K is a constant. In both models, precipitation,
evaporation, and seepage are neglected for simplicity, but these could be included
in the water budget constraint. St is storage at time t, St−1 is the storage at
time t−1 (time period before the period being modeled), Qin

t is inflow at time t,
Yield is the amount released from the reservoir, and Qspill

t is the amount spilled at
time t.

These optimization models can only provide approximate solutions due to
the simplifications required. In reality, releases from a storage reservoir will be
based on a set of (possibly complex) operating rules. Thus, accurate assessment
of yield-reliability relationships will require more detailed simulation modeling.
There is the opportunity to work with a simplified optimization model in
Exercise 1.

Importantly, assumptions of stationarity underlie all three of these methods.
Visualization of the storage required in the Rippl Diagram relies solely on the
historical record of inflow. Similarly, the optimization technique both removes
certain components for simplicity and utilizes a historically-based inflow
parameter. As discussed in Section 1, the assumptions of stationarity and the
reliance on historical inflows can undermine the results in these models. If the
historical record does not sufficiently capture climate variability, or the system
faces possible impacts from climate change, these reservoir sizing techniques
might lead to inefficient (if storage needs are overestimated) or inadequate
(if needs are underestimated) reservoir design.
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Section 2.2: Reservoir operations
Once a reservoir has been developed, the next level of management is the actual
operation of the reservoir. Operations typically follow some form of operating
rule. For example, a standard operating policy (SOP), as shown with the solid
line in Figure 2.9, simply releases either the target amount or all the water
available in each time period. If the reservoir is at capacity, the excess must also
be released (spilled).

To demonstrate the use and results of applying such an operating policy, one can
assume that the reservoir inflows are those shown in Figure 2.1, and that there is a
storage capacity of 1234 mcm. The amount of water demanded from the reservoir
(or yield) is varied from 170 to 235 mcm/month to develop a trade-off
curve between the yield and reliability. Reliability is calculated simply as the
fraction of months during which the supply target is met. The results are shown
in Figure 2.10.

Figure 2.9 Standard operating policy and hedging policy.
A standard operating (dark blue line) and a hedging policy (light brown line) show that at low
levels of inflow and available storage, all available water is released, but without meeting the
target demand. Whenever a sufficient amount of water is available to meet the target, the
target amount is released (horizontal segment). At some level, the water in the reservoir is
too high and excess is released or spilled (line with positive slope to the right of the
horizontal segment). Following the hedging policy results in less water being released at
lower available volumes (i.e. for low inflows, an amount less than the target is released even
if there is sufficient water available to meet that demand). This increases the overall
frequency of shortfalls, but reduces frequency of extreme shortfalls. Source: Adapted from
Wurbs (1966).
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The SOP is the policy that maximizes reliability as computed in this simple way.
However, this can actually lead to severe shortfalls of significant magnitude when
they do occur. A hedging policy, as shown with the brown line in Figure 2.9,
can be followed to reduce the magnitude of the shortfalls. A hedging policy
accepts a greater number of small shortfalls in return for fewer severe shortfalls.
The expected severity of a shortfall, given that a shortfall occurs, has been termed
the vulnerability of a system. A related metric is resiliency, which measures
how quickly the system recovers following a shortfall (Hashimoto et al. 1982).
Table 2.2 compares these metrics for the SOP and hedging policy.

Both the SOP and the hedging policy are developed based on historical flow
data and typically assume stationarity when applied. While it may sometimes be
appropriate to select inflow values from the historical record to represent possible
future conditions, it is often advantageous to use inflow forecasts based on
antecedent conditions or climate information. Figure 2.11 reveals the significant
impact ENSO conditions can have on the yield-reliability results for a given
season due to changes in the precipitation and resulting streamflow.

Table 2.2 Performance metrics for standard operating policy (SOP)
and a hedging policy.

Policy Vulnerability Resiliency Reliability

SOP 45.1 0.124 0.757

Hedging 40.4 0.273 0.683

Lower values for Vulnerability and higher values for Resiliency and Reliability are desirable. The
hedging policy offers improved resilience and reduced vulnerability at the expense of decreased
reliability. Data source: USACE (2000).

Figure 2.10 Yield-reliability relationship based on the standard operating policy
(SOP).
Reliability represents the fraction of months during which the supply target is met. A value of .8
means it was met 80% of the time. Data source: USACE (2000).
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Onemethod for addressing the nonstationarity is to use position analysis (Hirsch,
1978), a simulation procedure that can forecast risks associated with a specific
operating policy over a number of months or seasons, conditioned on the current
reservoir storage level. Figure 2.12 shows an example based on 12-month traces
sampled from the historical flow record.

Figure 2.11 Yield-reliability curve conditioned on the Equatorial Pacific SST in July–
September.
The NINO3.4 index is used to define the Equatorial Pacific state as follows: .0.5C=Warm
(El Niño); ,−0.5C=Cold (La Niña); between −0.5C and 0.5C=Neutral. Increased flows
following the cold periods result in increased reliability across all yields. Source: Chagres River
data, USACE (2000); SST data from NOAA NCDC ERSST v.2.

Figure 2.12 Position analysis based on historical inflow traces.
Panel (a) shows traces using the standard operating policy (SOP), and Panel (b) shows traces
using the hedging policy. Each trace represents the storage volume based on the given
operating policy and inflow from a specific year in the historical record. The hedging policy
prevents the storage volume from dropping below a threshold level of around 100 mcm. Data
source: USACE (2000).
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In practice, these flow traces could be selected (or generated) in a way that
incorporates climate forecasts (discussed more in Chapters 3 and 4).

CONCLUDING REMARKS
This chapter has provided some basic background on ways in which climate
information, both forecasts and historical records, can be used and integrated into
the management of water availability. We demonstrate the importance of climate
variability on inflows, with selected illustrations based on the ENSO phenomenon
at the seasonal time scale. The next chapter provides additional information on
climate variability across various time scales, and Chapter 4 introduces basic
methods of forecasting such climate variability and change. It is critical to
remember that while the tools offered above and later in this manual can support
the understanding, modeling and prediction of hydrologic and climatic variables,
there remain significant uncertainties in the information and forecasts. Thus, the
analysis must be combined with an appropriate approach to managing the
resulting risks and possible opportunities (as described in Chapter 5).
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Chapter 3

Climate variability and hydrologic
predictability

INTRODUCTION
Advances in the understanding of climate variability have led to enhanced
capabilities for the provision of hydrologic information, including improved
seasonal streamflow forecasts. These capabilities offer significant opportunities for
improved water resources management in many parts of the world. This chapter
provides a general overview of some key aspects of the climate system and their
relationship to hydrologic predictability. We highlight climate concepts most
relevant for hydrological predictability, including an overview of different time
scales of climate variability; the physical basis for seasonal climate forecasts; El
Niño-Southern Oscillation (ENSO) and the global extent of its effects on seasonal
climate (“teleconnections”)1; and climate variability over longer time scales
and its relevance to water resources management.

Section 1: Time scales of climate variability
The physical attributes of the climate system (e.g. the dynamics and
thermodynamics of the atmosphere and ocean, rate of rotation of the earth, etc.)
determine the times scales of its variability. One key distinction is the difference
between climate and weather. Weather describes conditions on time scales of a
few days or less, while climate refers to aggregates of weather conditions on time
scales of a month or more, and their longer term modulation. Typically, the larger
the spatial scale of a climate phenomenon, the longer its characteristic time scale.
As a hydrologic example, the flow rate of the Amazon River, the world’s largest

1For information on ENSO and current climate conditions, visit http://iri.columbia.edu/climate/ENSO/.
You can also view a free online course regarding the ENSO phenomenon at http://www.meted.ucar.
edu/climate/enso/, hosted by the Cooperative Program for Operational Meteorology, Education and
Training (COMET Program) of the US National Weather Service and the University Corporation for
Atmospheric Research.
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river, would be expected to vary much more slowly than streamflow in a very
small watershed.

The climate is rich in its diversity of physical phenomena, which operate on a
continuum of time scales ranging from seconds to millennia. Figure 1.1 illustrates
some of the key climate phenomena affecting water resources, along with their
associated spatial and temporal scales.

The various time scales of variability overlap and operate simultaneously on a
given system. For example, some form of decadal variability might be affecting
the strength of an interannual pattern, which itself is affecting the aggregate
weather conditions within a season. Conversely, the accumulated result of
random weather fluctuations over time also causes decadal variability in climate
records. Figure 3.1 demonstrates three key timescales through detrending a
precipitation time series.

Figure 3.1 Time-scale elements of a precipitation time series.
The series is separated into three scales that help in thinking about managing climate risk. Panel
(a) at the top shows the raw annual time series, while the bottom figures illustrate the contribution
of each of the three scales of variability. Panel (b) shows the long-term linear trend; (c) shows the
decadal variability based on a running 10-year average; and (d) shows the interannual variabity
obtained by subtracting the decadal and trend anomalies from the annual anomaly. The three
bottom panels are in units of anomaly (mm/month) from the long-term mean, and the solid
horizontal line represents the long-term mean (anomaly value of 0). Note the much larger
scale for the interannual variability shown in Panel (d), illustrating that variability at the
interannual time scale is the dominant element in this time series. Source: Annual
precipitation data from Centro de Ciencias de la Atmósfera (CCA) at the Universidad Nacional
Autónoma de México (UNAM).
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Section 2: Time scales and forecasts
The time scales of different aspects of climate variability play a key role for
hydrologic forecasting. For example, weather forecasts, such as what the
maximum temperature or amount of precipitation is likely to be over the next few
days, are only skillful up to approximately five to ten days into the future due to
the inherent “chaotic” nature of atmospheric variability. These short-term weather
forecasts are sometimes called “deterministic” forecasts because they attempt to
predict the specific value of a given variable. Water resources managers typically
utilize such forecasts for flood prediction and control.

Longer term climate forecasts can also be useful for water resources
management, providing expected precipitation estimates over a season, for
example. The climate and weather forecasts are different in a critical way. Since
individual weather systems cannot be predicted at these longer time scales,
seasonal and longer-term climate forecasts can only indicate a change in the odds
of conditions being higher or lower than some level. For example, a seasonal
precipitation forecast can indicate a change in the probability that the season will
be wetter or drier than some reference amount, such as the 30-year average
precipitation for the season and location considered. As such, seasonal forecasts
are necessarily probabilistic.

A probabilistic climate forecast differs significantly from a deterministic weather
forecast. While a deterministic weather forecast might predict 20 mm of
precipitation for the coming week, for example, a probabilistic seasonal climate
forecast could indicate that there is a 50% probability this season’s precipitation
at a particular location will be among the 10 wettest observed over the past 30
years. Figure 3.2 illustrates the differences between deterministic and
probabilistic forecasts and the information they communicate. Seasonal forecasts
can be tailored2 to be more relevant to water management needs by predicting a
hydrologic variable (e.g. inflow to a reservoir) rather than precipitation, but they
will still remain probabilistic. More sophisticated weather forecasts are also
presented probabilistically, recognizing the inherent limitations of deterministic
weather prediction.

Physical basis for seasonal predictions
Advances in climate science have provided the ability to generate skillful seasonal
climate or climate-based hydrologic forecasts. The physical basis of seasonal
forecasting derives largely from 1) the long “memory” of the upper ocean, whose
thermal capacities and motions are much larger/slower than those of the
atmosphere, together with 2) the sensitivity of the tropical atmosphere to

2Tailoring a forecast is the development of techniques to make seasonal forecasts more applicable and
skillful for a certain sector, such as water resources.
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underlying sea surface temperatures (SSTs). The underlying concepts are simple:
the atmosphere is heated most where the underlying ocean is the warmest,
warm air tends to rise, and rising motion generates clouds and precipitation
(Figure 3.3). This process on seasonal timescales is a key one in the tropics.

The impact of SSTs on precipitation and wind patterns in their local vicinity
influences wind patterns, rain and temperature in regions farther away. In this
way, a very large area of warm tropical SSTs and precipitation can impact wind
patterns and rainfall over a large area of the globe. These remote influences are
sometimes called “teleconnections” meaning “influence at a distance”.

Figure 3.2 Distinguishing between a deterministic and probabilistic forecast.
Panel (a) shows an example of a deterministic forecast that predicts a specific inflow level; (b)
shows a deterministic forecast that predicts a specific inflow category; (c) shows a
probabilistic forecasts that predicts the probability of inflow falling into each category; and (d)
shows a probabilistic forecast that predicts the probability of inflow for each category as well
as cumulative probabilities across categories of increasing inflow. Source: COMET® Website.
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As tropical SSTs tend to change relatively slowly (important patterns of tropical
SSTs often persist for several months or more), this provides the physical basis for
making climate predictions. The most important phenomenon that affects
large-scale patterns of SST, precipitation and winds over much of the tropics and
(through teleconnection mechanisms) into regions outside the tropics is the El
Niño-Southern Oscillation (ENSO) phenomenon.

Section 3: ENSO and its teleconnections
Under average (or “normal”) conditions, winds known as “trade winds” blow
toward the equator from east to west across the tropical Pacific Ocean, from over
the relatively cool waters in the east towards the warmer waters in the west.
Upward motion of the air and heavy rainfall occurs over the western tropical
Pacific where SSTs are comparatively high (Figure 3.4). At higher levels in the
atmosphere, the air tends to flow in the opposite direction of the surface winds
and descend over the cooler waters in the eastern tropical Pacific, tending to
“close the loop” (see Figure 3.4).

The ENSO phenomenon involves the irregular warming or cooling of the tropical
Pacific Ocean (relative to its average state) and the resulting changes in large-scale
patterns of precipitation and wind. During an El Niño event (also known as an
ENSO “warm event”), the trade winds weaken and the warm surface waters of
the western Pacific spread eastward over the cooler waters beneath. This affects
the equatorial thermocline, which is the sharp vertical temperature gradient of
warmer water sitting atop the cooler water below that tilts upward to the east: the

Figure 3.3 A key mechanism for tropical climate on seasonal timescales.
Precipitation and low pressure tend to occur over tropical ocean areas with the highest SSTs
(shown here with redder colors). Winds converge over the area of low pressure and result in
rising motion. The rising warm moist air cools, leading to condensation into clouds and rainfall.
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warm surface waters spread eastward and push down the thermocline in the east.
The atmosphere responds to the changed SST pattern, leading to an increase in
rainfall in the central Pacific and a decrease in the west, further weakening the
trade winds and allowing SSTs to warm further. This air-sea coupling results in a
positive feedback loop that allows the anomalous pattern to grow and persist for
up to six months or more, before ocean dynamics cause the chain of events to
reverse. This leads to the ENSO cycle. The ensuing La Niña conditions (also
known as an ENSO “cold event”) essentially represent an enhancement of the
average conditions, with increased easterly trade winds, reduced SSTs in the
east-central Pacific, and enhanced rainfall in the western Pacific. The reduced
SSTs during a La Niña event tend to decrease rainfall relative to its average value
in the east-central Pacific. The general characteristics of different ENSO phases
are shown in Figure 3.4, although the ENSO cycle is actually far from regular.

Figure 3.4 Ocean, wind and precipitation conditions in the tropical Pacific during (a)
normal conditions, (b) El Niño conditions, and (c) La Niña conditions.
Red colors indicate warmer SSTs, while blue and green indicate cooler SSTs. The images reveal
the westward movement of warm waters and precipitation during the El Niño phase (generally
decreasing precipitation in the tropics and increasing precipitation in the subtropical regions).
Source: NOAA Pacific Marine Environment Laboratory.
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ENSO is among the most predictable components of the climate system on
interannual timescales and plays a significant role in interannual climate
variability in many parts of the world3. As shown in Figures 3.5 and 3.6, the
phase of ENSO can have a significant effect on precipitation and other climate
indicators, depending on the location and other climate system impacts4. The
far-flung remote influences of ENSO can be understood most simply as a
consequence of the vast size of the tropical Pacific ocean: as the tropical Pacific
heats up during an El Niño event (Figure 3.4b), that heat warms the entire
tropical atmosphere. A key mechanism is through this tropical warming that
stabilizes the atmosphere, tending to produce drought conditions over many parts
of the tropics and anomalously wet conditions in some subtropical regions.
Because these teleconnections can significantly impact communities in affected
regions, ENSO prediction is highly valuable.

Figure 3.5 Indian summer monsoon precipitation data and ENSO conditions based
on SSTanomalies for 1856–2004.
Large negative SST anomalies corresponding to La Niña conditions generally result in high
precipitation values, while high positive SST anomalies corresponding to El Niño conditions
generally result in low precipitation values. A threshold of +0.5°C is often used to determine
El Niño/La Niña events. Note: the SST here lags the Indian monsoon. The stronger
relationship with ENSO lagging Indian monsoon (as compared to ENSO leading the Indian
monsoon) has long been known and investigated. Source: Rainfall data, Indian Institute of
Tropical Meteorology (IITM); SST data, Kaplan NINO3 index from Optimal Smoother analysis
of MOHSST5 monthly SST anomalies. See http://iridl.ldeo.columbia.edu/maproom/ENSO/

Climate_Impacts/India_Rainfall.html.

3In some situations, ENSO development itself can be predicted, extending the potential lead-time of
seasonal climate forecasts (e.g. see Cane & Zebiak, 1986; Philander 1990). The use of coupled ocean-
atmosphere models to project forward all aspects of the climate system in a seasonal forecast,
including ENSO, is discussed in Chapter 4, Section 2.2.
4Other climate system impacts are beyond the scope of this discussion. See additional reading at the end of
the chapter. In particular, in many regions it is important to be aware of tropical Atlantic and tropical
Indian Ocean impacts (e.g. see Hurrell et al. 2006; Kushnir et al. 2006; Goddard & Graham, 1999).
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Section 4: Climate variability over longer time scales
While ENSO is the dominant factor influencing interannual variations in rainfall in
much of the tropics, other patterns of SST characterize the variability on time scales
of a decade or more, with expression in many parts of the global ocean. These
phenomena, sometimes known as lower frequency variability because the phase
changes occur less frequently than interannual variability, have been associated
with a number of regional climate variations as well.

The Pacific Decadal Variability (PDV), also known as the Pacific Decadal
Oscillation (PDO), is a phenomenon of SST patterns occurring on decadal time
scales. The pattern of SST departures from average associated with PDV is
shown in Figure 3.7, along with a graph showing its slowly varying evolution.

The SST patterns of PDV resemble those of ENSO, but with more influence from
conditions in the midlatitudes that are consistent with the longer time scales of the
extratropical oceans. However, physical explanations of PDV are still controversial,
and the extent of its predictability has yet to be established. Nonetheless, recognition
that there are clearly identified patterns of variability in the climate (and
hydroclimate) that persist for multiple years can be of practical use in water
management. For example, for river systems that experience such decadal

Figure 3.6 Typical ENSO teleconnections associated with seasonal temperature
and rainfall changes during El Niño and La Niña events.
These maps show regions that, on average, have particularly clear and persistent climate
anomalies during El Niño and La Niña events. They do not represent all ENSO impacts. For
any given region, it is recommended to consult a climate system expert of that region to
appreciate the nature of typical impacts associated with ENSO and other lesser SST
variations, such as in the tropical Atlantic and Indian Oceans. Source: NOAA, Climate
Prediction Center.
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variability, watermanagers can see that in addition to interannual variability of flows,
there may be sequences of several unusually wet or dry years in a row that will
obviously have an effect on the water supply (for more exploration of the impact
of interactions between ENSO and the PDV on streamflow, see Hidalgo &

EXAMPLE 3.1: Early recognition of the role of decadal climate variability
expression in water systems

The Great Salt Lake (GSL) is a closed lake in the arid Western United States
that has experienced dramatic historic volume variations in response to
hydrological fluxes (Mann et al. 1995). After concerns that the GSL was
drying up in the 1970s, it rose to its highest level in one hundred years and
then quickly receded in the period between 1983 and 1986 (Lall & Mann,
1995). Hydrologists and climatologists began to examine whether the GSL
volume variability exhibited any structured pattern, and if this could be
connected to large-scale climate patterns. Some researchers initially
suggested that variability at the decadal time scale might correspond to
sunspot or lunar tide cycles (Labitzke & van Loon, 1988). However, another
group of researchers focused on analyzing climatic factors such as
precipitation, surface temperature, and sea level pressure to show that
changes in climate conditions beyond the local region were connected to
fluctuations in streamflow and the Great Salt Lake volume.

The research revealed significant connections between the GSL volume
variability and indices measuring atmospheric circulation patterns. They
found that atmospheric circulation variations occurring over decadal time
scales appeared to drive precipitation variability that affected the GSL
volume (Lall & Mann, 1995; Mann et al. 1995). At this stage, there was
limited understanding of the physical basis for these atmospheric circulations
or their drivers. Moon and Lall (1996) came to similar conclusions using a
selection of climate indices representing atmospheric circulation patterns
(e.g. ENSO and pressure anomalies in the central North Pacific). They
revealed apparent atmospheric teleconnections at the interannual (2.5 to 4
years, in this case) and interdecadal (12 to 14 year frequency) time scales.

Importantly, the authors of these papers cautioned that the patterns they
identified should be interpreted carefully and without assuming that they
represent strict cycles in the climate system. The complex nature of the
climate system and the interaction of many different processes across time
scales result in variability within identified patterns. Incomplete understanding
of the physical basis for these patterns also made it difficult to characterize
and predict both the climate patterns and the resulting hydrologic changes in
the Great Salt Lake. However, researchers ultimately had the vision that
recognizing the role of decadal climate variability in the rise and fall of the
GSL could improve the management of impacts from regional anomalous wet
periods and droughts (Lall & Mann, 1995).
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Dracup, 2003; Dettinger et al. 2000). In addition, if the current phase of PDV can be
identified, empirical predictions (such as whether it will persist) can be made for the
next fewyears.While factors other than PDVwill still affect climate fromone season,
or year, to the next, this “background” climate state may lead to a shift in the odds for
wetter or drier conditions over the coming few years, as an example.

Over the Atlantic basin, there is a somewhat stronger physical basis for the
analogous Atlantic Multidecadal Oscillation (AMO) due to a better understanding
of the ocean’s thermohaline circulation. Again, though, its predictability has yet
to be reliably demonstrated. Similar to the PDV, slowly varying fluctuations in
SST in the Atlantic have also been associated with low frequency variations in
streamflow in several parts of the world, including across parts of North America,
South America and Africa. The AMO has also been hypothesized to modulate
ENSO on decadal time scales.

Figure 3.7 SSTanomalies and PDV.
Panel (a) illustrates the patterns of SSTanomalies associated with the warm (left) and cool (right)
phase of the Pacific Decadal Variability. The colors show the distribution of average winter SST
anomalies (in degrees Celsius) during each phase. The contour lines represent the sea-level
pressure anomaly patterns, while the arrows show anomaly patterns for surface winds. Panel
(b) provides the time series showing the slowly varying nature of these patterns. Source: Joint
Institute for the Study of the Atmosphere and Ocean, University of Washington.
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EXAMPLE 3.2: Attribution of decadal variability in hydroclimatic
systems to regional-scale climate processes – the case of the Atlantic
Multidecadal Oscillation

Beginning in the mid-1980s, climate scientists started to identify a large-scale
pattern of climate variability associated with fluctuations in the SST in the North
Atlantic occurring over multiple decades (Folland et al. 1986; Schlesinger &
Ramanjkutty, 1994; Mann et al. 1995). Further research and studies have
revealed periods of roughly 40–70 years of North Atlantic SST variability with
a range of 0.4°C that has been labeled the Atlantic Multidecadal Oscillation
(AMO) or Atlantic multidecadal variability (short summary in Meehl et al.
2009; early example of analysis in Enfield et al. 2001). Studies suggest that
recent warm phases occurred during 1860–1880 and 1940–1960, and with a
new warm phase generally recognized as starting in the mid-1990s. Recent
cool phases occurred during 1905–1925 and 1970–1990. Although our
understanding of the physical basis for the phenomenon is still somewhat
limited, scientists have determined that the patterns are most likely driven by
ocean-atmosphere interactions.

While the changes in SST might seem small and are localized in regions of
the North Atlantic, this phenomenon appears to have near-global impacts, with
the most significant effects felt widely across the North Atlantic basin. The
AMO impact has been quantified for multidecadal variations ranging from
droughts in the Sahel and precipitation patterns in India, to sea ice
concentration in the Greenland Sea and sea level pressure over the
southern USA and southern Europe (Trenberth et al. 2007; Zhang &
Delworth, 2006; Mariotto & Dell’Aquila, 2012). The AMO has also been
shown to affect multidecadal variability of river flows and reservoir inflows in
various areas. For example, several studies have revealed the significant
effect of the AMO on inflows in the United States, including a 40% change in
inflows to Lake Okeechobee, Florida based on the AMO phase (Enfield et al.
2001).

The AMO acts as a regional-scale climate phenomenon that interacts with
other climate patterns operating across different time scales. For example,
long-term trends in the global climate may have dampened or accentuated
depending on the phase of the AMO (e.g. see Ting et al. 2009). Additionally,
the AMO appears to interact with interannual impacts from ENSO with
varying levels of intensity depending on the region. Outflow of the Mississippi
River in the United States is strongly correlated with rainfall, which is
connected to ENSO phases. However, the degree to which the rainfall in the
Mississippi River basin is impacted by ENSO is significantly affected by the
AMO phase (Enfield et al. 2001). While El Niño events lead to less rainfall
during the AMO warm phase, the conditions during the AMO cool phase
offset ENSO conditions and mitigate their impact (see Figure 3.8).
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CONCLUDING REMARKS
Seasonal forecasts of both meteorological and hydrologic variables are now possible
because of advances in our understanding of the mechanisms of
seasonal-to-interannual climate variability, particularly ENSO. The physical basis
for such predictions lies, to a large extent, in the coupling between atmosphere
and ocean, and the slower evolution of the latter. Interdecadal variations in SSTs
and hydroclimatic variables such as streamflow are also prominent, although the
underlying mechanisms are less well understood, and their evolution is still
largely unpredictable. However, just recognizing the existence of these low
frequency climate fluctuations is nonetheless of practical use to water managers
as sequences of unusually wet or dry periods can be expected to occur
episodically and can be taken into account when forecasting the range of
expected water availability.
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Chapter 4

Climate predictability
and forecasts

INTRODUCTION
Chapters 1 and 2 introduced the importance of climate variability and change for
water resources management. The tools and models climate scientists develop to
forecast climatic variables across various time scales are thus critically important
to water resources professionals. It is important for water resources professionals
to understand the general procedures for developing these forecasts and
quantifying the limitations resulting from uncertainties1. Some water management
agencies may also be able to use these techniques to develop their own
customized forecast products. This chapter summarizes some of the key
techniques, models and tools used for prediction of hydroclimatic variables,
particularly at the seasonal time scale. It explores a range of forecast models as
well as some online software tools to support using climate data information and
making seasonal forecasts. The chapter is intended as an introduction to the
material, and it is recommended that water resources professionals collaborate
with climate professionals to produce the most appropriate and skillful forecasts
for their systems.

Section 1: Basic hydrologic forecast models
Traditional approaches to hydrologic forecasting have relied on historical or
antecedent observations of hydrologic conditions, typically without consideration
of climate predictors. The following section describes some of these models and
methods of integrating basic climate information.

1The Cooperative Program for Operational Meteorology, Education and Training (COMET Program) of
the US National Weather Service and the University Corporation for Atmospheric Research offer a wide
range of helpful teaching modules including climate and hydrology topics. To access these free online
courses, visit http://www.meted.ucar.edu/.
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Hydrologic persistence
In many locations, observations of antecedent or current watershed conditions can
provide useful information for predicting future conditions. The persistence of
streamflow (i.e. tendency of high flows to follow high flows, and low flows to
follow low flows) is therefore often a useful predictor for lead times of up to 1–3
months or more, depending on the size of river system2 (as well as the nature of
the hydroclimate system). An illustration is provided in Figure 4.1 for the
Chagres River in Panama.

The linear regression shown in Figure 4.1 represents a simple statistical model
that might be used to predict the monthly flow in August based on the flow
observed in July. Since the data do not perfectly follow the regression line,
there is uncertainty in this simple forecast of August flow given the observed
flows in July. As discussed in Chapter 3, seasonal forecasts are probabilistic
and should address and communicate this uncertainty. In this example, the
difference between the observed values and the regression line (the error) can be
used to estimate the probability for a range of flows or likelihood of exceeding a
particular flow.

Ensemble streamflow prediction
Another approach to seasonal streamflow forecasting that utilizes only observations
as input is called the Ensemble Streamflow Prediction (ESP) method, originally
developed at the United States National Weather Service (Day, 1985). ESP
generates probabilistic forecasts by computing multiple streamflow traces (or
scenarios) using a physically based watershed model. The procedure begins with

Figure 4.1 Relationship between July and August flows on the Chagres River,
Panama.
The linear regression illustrates an example of a simple forecast method. Also note that the area
of this watershed is relatively small (approximately 1025 km2), and thus consistent with highly
variable runoff and streamflow. Data source: USACE (2000).

2Persistence is often stronger for larger river systems because flows typically change much more slowly
than in smaller rivers.
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a calibrated and verified watershed model, which is updated to represent current
watershed conditions (e.g. soil moisture, groundwater levels). A set of historical
climate precipitation and temperature time series is then input to the model to
generate an ensemble (or set) of streamflow traces. For example, if historical
climate data is available for the period 1951–2000 (50 years) and it is desired to
make a forecast for the April-May-June period starting from observed conditions
in the month of March in a given year, then the 50 individual years of
precipitation and temperature data will be input to the watershed model to produce
50 traces, or possible outcomes, of streamflow. Figure 4.2 shows an example of
such an ESP forecast.

In this method each climate scenario is considered equally likely. Thus, each
streamflow trace is also considered equally likely. The observed range in climate
conditions over 50 years provides a measure of the possible range in streamflows
for the season being forecast. However, there is no information included in the
model to indicate what past conditions (e.g. unusually wet or dry) are more likely
to occur during the forecast period. Thus, while the ESP approach described
implicitly accounts for hydrologic persistence and historical variability of climate,
it does not explicitly consider forecasted climate information (such as information
based on ENSO) nor account for nonstationarity in the system.

Figure 4.2 Ensemble streamflow and interpretation of a forecast.
Panel (a) shows an Ensemble Streamflow Prediction (ESP) forecast for the Chagres River,
Panama. Each line represents a simulated streamflow projection, or trace. Panel (b) provides
a guide for how to interpret an ESP forecast. Source: Data for (a), USACE (2000); (b)
COMET ® Website.
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Conditional ensemble streamflow prediction
The ESP method can be further modified by considering only those past years that
had climate conditions deemed similar to those in progress when the forecast is
made. In other words each year of this subset of similar past years represents an
analog to the current year. A classic example of determining analog years is to
consider the state of ENSO, as indicated by an index of SST in the tropical
Pacific. The teleconnections described in Chapter 3 suggest that ENSO
conditions can affect seasonal rainfall and, thus, streamflow in many regions
across the globe. The strength of these associations can often be quantified using
historical data3.

If a streamflow forecast is being made for a region which is known to be affected
by ENSO, then one can select analog years from only those past years when an El
Niño or La Niña event occurred. This can be used as a simple ensemble of seasonal
“forecasts”. These climate conditions are then used as inputs to the watershed
model. In this method, the resulting streamflows simply represent a sample (i.e. a
sub-set) from the full range of streamflows determined when using all past years
in the unconditional ESP approach. A danger in the use of analog years is that
there may be only a very few cases (e.g. less than 10) that can be considered
reasonably good analogs, making the resulting streamflow forecasts very
sensitive to sampling error. Nonetheless, the analog method represents a simple
conditional ESP approach to seasonal streamflow forecasting. An example of
such a forecast is shown below in Figure 4.3 for the Chagres River.

Figure 4.3 Example of combining the ESP and analog approaches tomake forecasts
for the Chagres River flow during El Niño events.
Each line represents an analog streamflow projection, or trace, based on similar ENSO
conditions (e.g. all El Niño events). Source: Chagres River data, USACE (2000); ENSO data
accessed from NOAA Climate Prediction Center at http://www.cpc.noaa.gov/products/
analysis_monitoring/ensostuff/ ensoyears.shtml.

3The International Research Institute for Climate and Society provides several resources for exploring
ENSO-related impacts. See http://iri.columbia.edu/climate/ENSO/globalimpact/temp_precip/.
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Section 2: Further climate-based approaches to seasonal
hydroclimatic forecasting
In addition to the simple hydrologic forecast methods described above, water
resources managers can make use of hydroclimatic forecasts based on statistical
(empirical) climate-based models, dynamical atmosphere-ocean general circulation
models (GCMs), regional dynamical climate models (RCMs), or hybrid
approaches involving two or more of these types of models. Since dynamical
models are very resource-intensive, we focus primarily on the development of
relatively simple statistical forecast models that have often been shown to have
skill levels competitive with those of dynamical models. The approaches can also
be integrated to improve skill. For example, statistical models can create forecasts
using either (i) antecedent observed conditions to form statistical predictors of
streamflow or, (ii) the output from GCM forecasts to form statistical predictors of
streamflow (this latter approach is often referred to as model output statistics,
or MOS).

This section begins with an overview of procedures for identifying skillful
hydroclimatic predictors and developing statistical forecast models based on
predictors identified either from slowly-evolving observed climate variables
(primarily SST) or from forecasts made with dynamical models. We then
describe the importance of validating forecast models and illustrate validation
procedures. We also include a brief discussion of dynamical models and their use
in forecasts at seasonal and longer time scales.

Section 2.1: Statistical methods
Statistical climate-based hydroclimatic forecasts require three essential steps. The
first critical step is to identify appropriate climate predictors that are sufficiently
skillful4 and have a physical basis. It is then necessary to choose a modeling
technique and develop the statistical forecast. Finally, the model and its skill
should be validated and evaluated. The following sub-sections explore the key
elements of these steps.

Identifying climate predictors
Purely statistical hydroclimatic forecast models have been developed using many
different oceanic, atmospheric, and hydrologic predictor variables, including SST,
snowpack, and soil moisture. Because of the dangers of overfitting5 that arise
when conducting a random search for predictors, it is advisable to select potential

4In general, skill is a measure of a model’s ability to predict unexpected or unusual conditions. A
well-calibrated model with no skill would create forecasts that are effectively the same as
using climatology.
5Overfitting is a problem in statistical modeling that occurs when the model describes random error or
noise rather than the underlying (repeatable and truly predictive) relationships in the data.
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predictor variables based on previous recognized prediction studies and in
accordance with the current best practices of national or international
meteorological/climate prediction centers. If such studies are not available for
your specific area, consultation and collaboration with experts in the climate
system of the region is encouraged to identify predictors.

There are a large number of statistical methods used to identify and test
potentially skillful predictor variables at different lead times.

Linear regression – One of the most basic approaches is to create a simple
univariate linear regression between the chosen predictor and predictand
(predicted variable). Some sort of screening process can also be used to identify
additional possible predictors in a multiple regression, although step-wise
regression is not recommended due to the dangers of selection bias (a form of
overfitting), especially when the entire dataset is used to select from a pool of
predictors. A good practice is to run the linear regression with the chosen
predictors on two completely separate subsets of years. If the correlations are
not similarly high in both periods, the predictor is not robust.
Partition and compare – The historical record can be partitioned into two or more
discrete sets based on a proposed predictor variable. For example, instead of using
all years, an ENSO index can be used to classify years as El Niño, La Niña, or
neutral. Statistical comparisons can then be run to determine whether the
streamflows in the sets are statistically significantly different.
Nonlinear regression or locally weighted regression –Methods such as fitting a
polynomial function may be applied if the relationship between the predictor
variable and predictand is not expected to be linear.
Principal component analysis – When multiple predictors are to be used in a
statistical forecast model simultaneously, they should be tested to ensure that
they are not substantially cross-correlated. When predictors are correlated with
each other, this introduces problems of multicolinearity when computing the
predictor coefficients. This makes the coefficients much less reliable and the
model much less likely to be effective when applied in real-time. One solution
is to use principal component analysis, since the correlations between the
principal component time series are necessarily zero. Principal components
regression is also recommended when the number of predictors is large (e.g.
when using fields of SSTs) so as to compress the data and avoid problems of
overfitting as well as multicolinearity.
Data mining – A broad class of methods widely known as “data mining” do
not rely on the assumption of linearity. Instead, they identify synergistic, or
strengthening, effects of two or more predictor variables (see Hand et al. 2001).

As a final word of caution, predictor variables should not be selected based on
statistical correlations alone. It is critically important to identify plausible
climate mechanisms (i.e. a theoretical and statistical basis for predictors) that can
explain the relationship between the predictor variable and the predictand
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(predicted variable), and thus provide a physical basis for the forecasts. The
primary reason for this is that screening large numbers of potential predictor
variables can easily identify inauthentic correlations that (i.e. correlations arising
from the chance matching of numbers over the period of correlation calculation),
will not lead to robust forecasts.

Understanding the physical basis for the forecast can also aid the forecaster in
years when unusual conditions occur, and prevent potential over-reliance on the
statistical forecast model. For example, an El Niño event may appear to be
strengthening in July and August, but then weaken suddenly in September.
Understanding the possible implication of this change in the system, the forecaster
may wisely choose to put less weight on the three-month (July–August–September
or JAS) ENSO index in developing a forecast of October–November–December
(OND) streamflows.

Example 4.1: Simple linear regression

Since ENSO has strong teleconnections in many parts of the world, a
predictor variable (or field) that captures ENSO conditions is very often
useful. As an example, seasonal rainfall in the Philippines is known to be
affected by ENSO, with ENSO warm events frequently contributing to dry
conditions in many areas (and cold events leading to wet conditions). It is
important to study the relationship at different times of the year, as the
impact of ENSO may vary through the year. In this case, researchers have
found that the relationship between seasonal rainfall and ENSO reverses
sign during boreal summer (or JAS), relative to the general relationship
mentioned above (Lyon et al. 2006). This indicates that an ENSO index,
such as the NINO3.4 SST index (defined by the spatial average of SSTs
over the region [5S–5N; 170W–120W]), would likely be a good predictor for
streamflow in the Philippines, but models need to note the sensitivity of time
of year for the nature of the relationship. Note that this is a method that can
be used for predicting inflow directly based on ENSO conditions if a long
historical record of streamflows is available for constructing the regression
model. Thus, there is no need to forecast precipitation first and to then
apply a streamflow model.

As an example, we develop a simple linear regression model relating OND
3-month total inflow at the Angat Reservoir to the preceding JAS NINO3.4
SST index, using the period 1968–2007. The results, shown in Figure 4.4,
reveal a significant correlation, which indicates a level of association
potentially useful to water managers and motivates further forecast model
testing (see Chapter 4, Section 2, evaluation of forecast model skill).
Generally speaking, the forecast skill of any model will vary with the lead
time of the forecast, with short lead times typically having greater skill than
longer lead times.
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Developing a statistical forecast model
Once the predictor variables are selected, the next step is to develop a mathematical
(statistical) model relating the predictor variables to the predictands of interest (e.g.
streamflow). In many cases, the forecast model can have a similar form (e.g. a linear
regression model) as the statistical test used to identify the predictor variable,
although this may lead to positive biases in skill as discussed below.

Due to the inherent uncertainty in climate prediction, both an expected (mean)
forecast value and an estimate of uncertainty about the expected value are
desired. Three simple approaches for developing a probabilistic forecast model
with these characteristics are discussed below.

The first approach is to develop a linear regression model of forecasts, as shown
in Figure 4.4. The regression equation for the line in this case is:

yi = axi + b (Eq. 4.1)

where yi is the forecast OND reservoir inflow in year i, xi is the preceding JAS
NINO3.4 index (see Example 4.1), and a and b are model parameters fit to the
data (in this example, a=−255 and b= 864). As an example forecast, let x=+
0.5 C (weak El Niño conditions). This results in an expected (mean) forecast
inflow volume of about 740 mcm. However, note that the observed inflows
corresponding to NINO3.4 values near +0.5 C are highly variable, ranging from
just over 400 mcm to around 1200 mcm Figure 4.4. To include this uncertainty in
the forecast, the assumption can be made that errors in the mean forecast
are normally distributed with a mean of zero and a standard deviation equal
to the standard error of the regression (see discussion in the next section for

Figure 4.4 Linear regression model between Angat Reservoir inflow during
OND and the NINO3.4 index for ENSO during the previous JAS, 1968–2007.
Source: SST data from NOAA NCDC ERSST v.2 (Smith & Reynolds, 2004);
Angat inflow data from Philippines National Power Corporation.
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out-of-sample estimation). Mathematically, the in-sample result is given by,

yi = axi + b+ ei (Eq. 4.2)

where ei is the forecast error in year i, assumed to follow a normal distribution with
mean of zero and standard deviation, σ:

ei [ N(0, s) (Eq. 4.3)

where

s =
���������
1
n

∑
i

e2i

√
. (Eq. 4.4)

By assuming this distribution for the forecast uncertainty, probabilistic forecast
products such as tercile-category6 probability forecasts can easily be derived by
computing the exceedance probabilities of the climatology tercile limit values.
For example, let Q0.33 and Q0.67 be flows corresponding to the terciles boundaries
computed from historical data. The forecast probabilities for flows in each tercile
category would be computed according to the forecast distribution, assumed
normally distributed with a mean of yi (given by Eq. 4.1) and standard deviation

Figure 4.5 Tercile forecast probability density function (PDF).
Historically, the probabilities of above and below normal are 33%. Shifting the mean a half
standard deviation to the right and reducing the variance by 20% (because forecasts have
lower variance than climatology) changes the probability of below normal to 15% and above
normal to 53%. Source: Adapted from a figure developed by Mike Tippett, IRI.

6There are three tercile categories (below-normal, near-normal and above-normal), defined to have equal
likelihood of occurrence in the historical data.
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of σ (Eq. 4). Figure 4.5 provides an example of how a tercile probability forecast can
be represented.

An alternative approach that does not require the assumption of a particular
probability distribution is to sample forecast residual errors using a k-nearest
neighbor sampling procedure. This is illustrated in Figure 4.6 below. Given a
neighborhood of width h that contains the k nearest neighbors to the observed
predictor variable, the residuals are sampled to develop k forecast scenarios:

yi = axi + b+ e j j = 1, . . . , k (Eq. 4.5)

where all terms except ej are those in Eq. 2 for each year i. In this case, however,
the ej is sampled from a distribution defined by the k nearest neighbors (see Lall
and Sharma, 1996). Together, the k forecast scenarios represent an ensemble
probabilistic forecast for each year. Although the same linear regression forecast
model from Eq. 1 is used in this example, the model could instead be based on a
nonlinear or a locally weighted regression model. Also, a probability distribution
could be fit to the sampled residuals, ej, representing a hybrid approach for
representing forecast uncertainty.

As a final example of an empirical forecast model, a simple partitioning approach
can be used. This would require partitioning the predictor variable into two or more
categories (e.g. El Niño, La Niña, neutral), and using the historical observations of
predictand corresponding to each of these categories to define a forecast. The

Figure 4.6 Nearest neighbor sampling method for generating a scenario-based
inflow forecast for Angat Reservoir.
For a NINO3.4 value of x= 0.5, the k= 12 nearest neighbor residuals (ej, j= 1,… , k) are
sampled to represent the uncertainty in the forecast. Source: SST data from NOAA NCDC
ERSST v.2 (Smith & Reynolds, 2004); Angat inflow data from Philippines National Power
Corporation.
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forecast could either be represented as an ensemble (set of discrete scenarios) or as a
continuous probability distribution fit to the observations. Figure 4.7 illustrates this
approach for OND Angat Reservoir inflows based on observed JAS ENSO
conditions.

Evaluation of forecast model skill
Validating a statistical forecast model and estimating its expected performance (or
prediction skill) should involve testing with a set of data that is independent from
the data used to fit the model. Evaluating model performance based on the same
data tends to give an overly optimistic measure of skill, since the model
parameters (e.g. a, b in Eq. 4.1) have been optimized for the training data. If a
long data record (e.g. 100 years) is available, a simple approach would be to use
a portion of the data (maybe 60–70 years) to fit the parameters of the forecast
model, and then use the remainder to validate the model and evaluate its skill.

More systematic approaches involve retroactive forecasting and cross-validation.
The basic idea of retroactive forecasting is to simulate the exact forecast procedure
(so for each forecast, we use a model that includes only data that would have been
available prior to the making of the forecast). This procedure is repeatedly applied to
generate a set of forecasts, that can be evaluated to see how well these simulated
(retroactive) forecasts would have preformed compared to the actual observations.

Figure 4.7 Partitioning approach for identifying relationships.
Shown are the ranges of historical OND Angat Reservoir inflows corresponding to three
categories of ENSO conditions during the preceding JAS. The horizontal bar shows the mean
inflow, while the length of the vertical bars represents the full range of inflow values. Note the
significant difference between inflows during El Niño and La Niña events and the very limited
overlap. Source: SST data from NOAA NCDC ERSST v.2 (Smith & Reynolds, 2004); Angat
inflow data from Philippines National Power Corporation.
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As an example of cross-validation (CV), consider a 50-year period of values,
1951–2000. Begin by using 49 years of data (1952–2000) to develop a forecast
model to ‘forecast’ the 1951 value, f1. This is repeated for 1952, with the data
from 1951 and 1953–2000 used to develop the forecast, f2. The set of
cross-validated forecasts ( fi, i= 1,… , 50) would then be compared to the
corresponding observations (oi, i= 1,… , 50) to evaluate the forecast model
performance. For more information on cross-validation and other evaluation
techniques, see von Storch and Zweirs (1999). Cross-validation could also be
done by holding out more than one year of data at a time. For instance, holding
out 5 years at a time, forecasts for the period 1951–1955 would be generated
based on data from 1956–2000, then forecasts for 1956–1960 would be based on
data from 1951–1955 and 1961–2000, and so on. The standard deviation of the
cross-validated model forecast errors may be considered more reliable and used
in Eq (4.4) for making probability forecasts (this approach is used in Exercise 2).

Various metrics have been proposed for evaluating the quality of climate
forecasts. Perhaps the simplest measure is the coefficient of linear correlation
between the expected (mean) forecast value and the observed value, although it is
sensitive to outliers. The mean square error (MSE) and root mean square error
(RMSE) are other common ways of evaluating forecast quality. A metric that is
closely related to these statistics is the Nash-Sutcliffe efficiency statistic, or
ensemble mean skill score (EMSS). This statistic is called a skill score because
the value of the statistic is scaled by the variance of the observations
(climatology) as follows:

EMSS = 1−
∑

(�f i − Oi)2∑
(Oi − �O)2

(Eq. 4.6)

where �f i is the expected (mean) forecast value in year i, Oi is the corresponding
observed value, and �O is the mean of the observations. An EMSS value of 1

Exercise 2: Developing a statistical seasonal inflow forecast model

Exercise 2 allows you to create and validate a statistical model to forecast a
three-month seasonal inflow based on hydroclimatic data. You will use
relevant climate, inflow and reservoir data for a specific reservoir. The
exercise illustrates how to choose an appropriate predictor variable and
determine the level of skill that can be expected when applying the statistical
forecast model. You will be able to vary the climate predictor value
(antecedent conditions or an ENSO index) and observe how this affects the
model’s forecast output.
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corresponds to perfect forecasts, and a value of 0 indicates no improvement over
climatology, where the climatological forecast consists of forecasting the
climatological mean computed over the training period (with the associated
probability forecasts derived using the climatological standard deviation).
A negative value indicates that the forecasts are actually worse than climatology.

A limitation of the EMSS is that it only considers the mean forecast value. Other
metrics more appropriately consider the range of probabilistic forecasts. For
example, the ranked probability score (RPS) and the ranked probability skill
score (RPSS) are measures of the skill of probabilistic forecasts in the form of
multiple ordered categories, such as tercile forecasts (e.g. see Figure 4.5 for more
information on tercile forecasts). Mathematically, the RPS evaluates the sum of
the squared differences in the cumulative probability distribution, so that

RPS = 1
K − 1

∑K
m=1

∑m
k=1

pk

( )
−

∑m
k=1

OK

( )[ ]2

(Eq. 4.7)

where K is the number of forecast categories (e.g. high, medium and low), pk is the
forecast probability for the kth point, and Ok equals zero or one to indicate whether
or not the observed value is in the kth category. The use of RPS results in higher
penalties for forecasts farther away from actual outcomes, rather than scoring
based on only two categories (hit and miss). The RPS can assume a number
between 0 and 1, with a perfect forecast scoring 0.

The RPSS then measures the relative improvement of using a forecast over using
climatology alone. It is computed as:

RPSS = RPS− RPSclimatology

0− RPSclimatology
= 1− RPS

RPSclimatology
(Eq. 4.8)

A perfect RPSS is 1, while a score of 0 implies no improvement over using
climatology. Negative scores indicate that forecasts performed worse than
using climatology.

Although various skill metrics have different relative benefits, each has its own
value. Regardless of which technique is chosen, it is critical to determine the skill of
any forecast produced. In order to use a forecast model, you should feel comfortable
that it appropriately models your system at a level deemed acceptable. Climate-
related forecasts will always have some degree of uncertainty, and this should be
quantified to the degree possible and taken into account when integrating the
forecast in decision making. This will be discussed in more detail in Chapters 5
and 6.

In recent decades, climate scientists and water resources professionals have been
trying to collaborate to improve climate-based water supply forecasts. While there
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are some technical barriers to integrating climate forecasts into these hydrologic
models, the primary challenges often arise from perceptual barriers (see Pagano
& Garen, 2006 for an exploration of the history of forecast use and challenges in
the water community in the Western United States). There is often significant
misunderstanding of forecast skill and the effective use of probabilistic climate
forecasts.

Lemos et al. (2002) offer lessons for improving the cultural perception of
forecasts based on experiences in the state of Ceará in Northeast Brazil. In
addition to effectively communicating the limitations and skill of the forecast, it
is critical to engage with end-users of forecast information to ensure that the
information being provided is accessible and appropriate. Stakeholders can differ
considerably in their needs for forecast information based on varying
vulnerabilities and risk tolerance. In the case of Ceará, although there were early
failures in the use and communication of forecast information, “forecasts offer a
dramatic opportunity for state and local level bureaucracies responsible for
drought mitigation to embark on a path of proactive drought planning” (Lemos
et al. 2002; p. 503). The regional case below provides an example of climate
scientists working with water resources professionals to develop forecast
evaluation methods that are most appropriate for stakeholders’ needs.

EXAMPLE 4.1: Development of a stakeholder-driven forecast evaluation
tool; working with stakeholders to understand their needs and customize
forecast evaluation tools to address their concerns

A team of researchers at the University of Arizona’s Climate Assessment
Program for the Southwest (CLIMAS) in the United States interviewed
regional decision makers to understand their concerns regarding using
seasonal climate forecasts (Hartmann et al. 2002). The researchers worked
with a range of water resources managers and other stakeholders in the
Southwest U.S. to assess the variety of (i) user needs for seasonal
precipitation and temperature forecast information and, (ii) their
understanding of various methods of communicating forecast information.
One of the key constraints was the perceived lack of forecast credibility and
uncertainty regarding previous forecast accuracy. The team identified a suite
of criteria for evaluating forecasts and developed a tool to allow stakeholders
to choose the forecast evaluation technique most appropriate for their needs.
The Forecast Evaluation Tool (FET) is free and publicly available at http://
fet.hwr.arizona.edu/ForecastEvaluationTool/.

The FET provides a number of different options to evaluate how well a
forecast should be expected to perform, including three types of skill scores
and the following statistics (Figure 4.8):

Probability of Detection (POD) –Howwell has the forecast system been able to
warn about upcoming conditions? This tracks how often the forecasts say
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Section 2.2: Dynamical models
A more sophisticated way to develop seasonal climate forecasts is by using
dynamical (physics-based) general circulation models (GCMs) of the ocean and
atmosphere that are based on fluid-dynamical equations of motion. These are
large, complex numerical models that require significant computational resources.
A number of models and modeling procedures are used by various agencies
around the world. One approach is to first use a model to predict tropical SSTs,
and then incorporate these predicted SSTs into an atmospheric GCM to then
forecast how the SSTs will affect precipitation and temperature. Models with
both ocean and atmospheric components (coupled ocean-atmosphere GCMs) may
also be run to simultaneously predict future SSTs and atmospheric conditions.
Using these models to make forecasts still requires some statistical calibration to

the right category (e.g.warmer or cooler) is most likely, compared to how
often that category has actually occurred.

False Alarm Rate (FAR) – How well can you trust what the forecast says? This
criteria tracks how often the category given the greatest probability has
turned out “wrong”, compared to the how many times that category has
been forecast.

Other options for evaluating the forecast skill vary in the degree of technical
knowledge necessary to interpret them. This offers trade-offs between different
levels of informativeness versus understandability and allows users to explore
a variety of aspects of forecast performance (Hartmann et al. 2002). Ultimately,
the goal is for decision makers and forecasters to “begin to determine essential
forecast attributes, requisite performance thresholds, and relationships among
the quality of forecasts and their usefulness in decision making, and ultimately
their economic value” (Hartmann et al. 2002: 696).

Figure 4.8 Probability of Detection (POD) and False Alarm Rate (FAR) for
seasonal precipitation outlooks.
These correspond to the wettest tercile predictions issued during Dec–Feb and covering
Jan–May. The blue circles indicate climate outlooks are better than using climatology (red
indicates worse). Circle size indicates percent difference relative to potential shown by
outer circle. Source: FET website and Hartmann et al. (2002).
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correct for systematic biases between simulated and observed variables.
Multi-model ensembles that statistically combine forecast values from different
models are employed to further enhance skill. Furthermore, the forecasts from
such models can be used to define predictor variables (such as model forecast
area-average precipitation) that can, in turn, be used as predictors in conjunction
with the regression models discussed above. This is often referred to as a Model
Output Statistics (MOS) approach. An example of a probabilistic seasonal
forecast for precipitation made at the IRI from a multi-model ensemble of GCM
forecasts is shown in Figure 4.9.

Figure 4.9 An example of a probabilistic seasonal forecast for precipitation made at
the IRI.
The probabilities on the map represent the relative likelihood of precipitation falling into three
tercile categories: Above-Normal, Near-Normal and Below-Normal. These three categories
are determined by ranking the seasonal precipitation over the 30-year period 1971–2000.
Source: IRI accessed http://iri.columbia.edu/climate/forecast/net_asmt/2009/oct2009/
NDJ10_SAm_pcp.html.
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In many cases, despite their added complexity, GCM-based approaches do not
provide much more skillful seasonal forecasts than those derived from purely
statistical methods. Furthermore, since GCMs cover the entire globe, practical
computing limitations means that, to date, their resolution (grid size) is often too
coarse to be useful for climate forecasts for many watershed scales. To address
these limitations, forecasters may nest a high-resolution regional climate model
(RCM) within a GCM over the area of interest. This approach can resolve more
local detail, including topography and land surface processes. This technique is
called “dynamical downscaling”. Another approach is to use “statistical
downscaling”, which involves the application of statistical methods (e.g. linear
regression) to relate GCM outputs to weather or climate observations at a smaller
scale. These techniques are very helpful for translating the output from GCMs
into information that can be used to develop forecasts for a specific reservoir or
water system. Figure 4.10 illustrates possible methods for translating GCM-based
dynamical model outputs to streamflow forecast.

Similar to the statistical forecast methods described above, dynamical model
forecasts can be calibrated and refined using statistical methods to provide
information that is relevant specifically for water resources management. For
example, Block et al. (2009) developed multi-model ensemble streamflow
forecasts for a water system in Northeast Brazil. They used regional models to
downscale GCM precipitation hindcasts, and then fed the results into
hydrological models. The researchers found that this technique offers increased
skill over other approaches and provides flexibility for improvements at many

Figure 4.10 Illustration of possible combinations of dynamical and statistical
techniques that result in using SST to develop a streamflow forecast.
The GCM forecast input can come from a single model or multiple GCMs. In practice, statistical
transformation may be used to shorten the sequence of steps shown, for example, in the right
side flow on the diagram, a single statistical transformation may be used to directly translate
GCM output into streamflow. Source: Adapted from Block et al. (2009).
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stages. It is critical to note that experience has shown that enabling real benefits for
managing water systems requires that such “tailoring” of forecasts be designed
in close collaboration between water resources professionals and climate scientists.

Prediction over longer time scales
As introduced in Chapters 1 and 2, longer time scale variability and climate change
can also be very significant for water systems. This chapter has focused on climate
and streamflow prediction at the seasonal time scale because of its importance for
water resources management and the relatively high degree of skill possible for
seasonal forecasts in certain regions. While seasonal forecasts are in principle
able to reflect and therefore track these slower time scales through their initial
conditions and forcings (e.g. Hamlet & Lettenmeier, 1999), there is also a need to
develop longer projections (e.g. decades ahead) of possible future climate
scenarios. Predictions at such a scale typically rely on GCMs and RCMs. The
Intergovernmental Panel on Climate Change (IPCC) coordinates a wide range of
dynamical models to create ensemble projections of possible changes in climate
conditions at the global and regional scales based on various scenarios of
greenhouse gas (GHG) emissions and future aerosol loadings (Figure 4.11). The
IPCC also released a report specifically addressing projections for possible
impacts of longer-term climate change on water (Bates et al. 2008). In addition to
anthropogenic climate change, Chapter 3 (sub-section 4) in this manual also
noted the development of information about natural decadal climate fluctuations.
The potential to merge information about decadal fluctuations and global change
is an active area of research (Meehl et al. 2009).

Figure 4.11 IPCC projections of possible global surface temperature warming based
on emissions scenarios.
The light colors surrounding each bold curve demonstrate the variability between the models
when run with the same emission scenario. This reveals the significant uncertainty arising
from both variability in possible emission scenarios and variability between models within a
given scenario. Source: Adapted from IPCC (2007).
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It is important to keep in mind that the IPCC projections in Figure 4.11 should
be interpreted only as scenarios rather than forecasts of future expected conditions
at any point in time. Although they are not actual forecasts, hypothetical
projections based on different scenarios can be useful in understanding how
systems might respond to various changes. Chapter 5 provides analysis based
on hypothetical synthetic inflow scenarios as a way of assessing how a
reservoir system might be affected by different possible changes in inflow
conditions. In addition, Chapter 6 introduces the idea that managing variability,
including using seasonal forecasts, can introduce additional resilience to water
supply systems in the presence of a changing climate. These aspects of
Chapters 5 and 6 are examples that highlight how the types of climate risk
management approaches discussed in this manual intersect with adaptation to
climate change.

EXAMPLE 4.2: Tailoring seasonal forecasts for streamflow in South
Africa

South Africa is already hydrologically vulnerable and is expected to become
increasingly susceptible to climate-related risks with climate changes and
shifts in demographics and land use (Schulze, 1997). Climate scientists both
in the country and internationally have been working to develop improved
seasonal streamflow forecasts to help water resources managers support
agriculture and sectors. Several years ago, Landman et al. (2001) developed
a real-time operational seasonal forecast using statistical downscaling of a
physically-based GCM. They downscaled to the catchment level and then
used bias-corrected simulations to achieve categorized (above-normal,
near-normal, below-normal) streamflow forecasts that showed skill over short
lead-times.

In addition to developing tools and techniques to improve the streamflow
forecasts, some of the climate scientists studied the perceived impact of
integrating forecasts into decision making on the part of commercial
agriculture users (Klopper et al. 2006). They found that it is critical to
consider the end-user and their needs when developing and disseminating
the forecasts in order to address user frustration with limited knowledge
and resources.

A group of the climate scientists has continued to work with water resources
professionals to improve the forecast models as techniques are improved and
technical capacity increases, Landman et al. (2009) are producing multi-model
ensemble long-range forecasts for the country, working with a multi-model
forecasting system developed at the South African Weather Service to
produce 3-month operational streamflow forecasts, as seen in Figure 4.12.
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Section 3: On-line tools and data
Use of the statistical and dynamical climate modeling approaches described above
requires a significant amount of data, knowledge and training. Collaboration that
includes climate professionals who have expertise in forecasts and associated
tools, can be expected to lead to the application of the new climate forecasting
technologies in the most robust and relevant ways. Both climate science
practitioners and other professionals who rely on climate forecasting can utilize
various tools to analyze climate data and aid forecast development. There are a
number of free tools available online that may be useful for exploring climate
analysis and predictability in various regions. One such resource is the
user-friendly Interactive Plotting and Analysis Pages hosted by the U.S. National
Oceanic and Atmospheric Administration’s Physical Sciences Division (http://
www.esrl.noaa.gov/psd/cgi-bin/data/getpage.pl). This section provides a brief
introduction to two additional software tools with corresponding data libraries.

Section 3.1: KNMI Climate Explorer
The KNMI (Royal Netherlands Meteorological Institute) Climate Explorer is a
freely available web-based software package for climate analysis that includes an
integrated library of climate data available on-line at http://climexp.knmi.nl. In
applying this tool, the user has the choice of a wide range of climate data,
including daily and monthly station data (e.g. precipitation, temperature,
streamflow); daily and monthly climate indices (e.g. NINO3.4); 6-hourly to
monthly gridded observations and reanalysis data (e.g. pressure fields, SSTs); and
monthly seasonal forecasts based on GCMs and historical reconstructions.

Figure 4.12 Forecast probabilities of above-normal and below-normal
streamflow for October-December 2009.
The map on the left shows probabilities for above-normal streamflow, while the map on
the right shows probabilities for below-normal streamflow. Source: Willem Landman,
forecast based on system developed by South African Weather Service.
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The tool includes an option to enter user-defined time series point or field data.
Once the user has selected the time series or fields of interest, there are many options
for investigating the data, correlating it to other data, and generating derived data
from it. While the tool itself is not intended to create forecasts, it offers easy
access to climate information and supports exploratory analysis that can help
identify appropriate climate predictors. Table 4.1 lists some of the available data
that could be useful in water resources management studies.

Figures 4.13, 4.14 and 4.15 illustrate some of the data analysis capabilities of the
Climate Explorer.

Table 4.1 Sample of data available on-line for use with the KNMI Climate Explorer.

• Daily and monthly station data (temperature and precipitation)

• Daily and monthly climate indices (e.g. SOI, PDO index, AMO index)

• Monthly observed fields (e.g. SST, sea level pressure)

• Monthly reanalysis fields

• Monthly seasonal forecasts (GCM outputs)

• Monthly and seasonal historical reconstructions (sea level pressure,
precipitation, temperature)

Source: KNMI Climate Explorer, accessed http://climexp.knmi.nl.

Figure 4.13 Precipitation anlyses using the KNMI Climate Explorer.
Some investigative data analyses using the KNMI Climate Explorer applied to a specific
watershed, the Everglades in the United States. Precipitation shown (a) as raw time series,
and (b) climatology by month, with selected probability curves. These graphs can be used to
illustrate the historical distribution of precipitation for a given system. Source: Everglades data
from the Global Historical Climatology Network (GHCN) database; KNMI Climate Explorer
accessed at http://climexp.knmi.nl/.
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Section 3.2: IRI Climate Predictability Tool
The second software tool is the Climate Predictability Tool (CPT), developed by the
International Research Institute for Climate and Society (IRI). This software
package is designed for assessing predictability and making seasonal climate
forecasts and is available for download, free of charge, from the IRI’s web page:
http://iri.columbia.edu/climate/tools/cpt. This page also has a link to the latest
SST data in a CPT-compatible format. The software allows multivariate
regression models, including multiple linear regression, principal components
regression (PCR), and canonical correlation analysis (CCA), to be easily
constructed and visualized. Both PCR and CCA are designed to minimize the
dangers of overfitting multivariate regression models that arise with short data
time series. CPT uses rigorous cross-validation and retroactive forecast model
validation procedures. Many different output statistics and skill scores are
included to help evaluate the expected performance of the forecast model.
Figure 4.16 illustrates steps in the application of CPT to develop and validate a
forecast model.

Figure 4.14 Correlation analysis of time series data using the KNMI Climate
Explorer.
JFM precipitation (Everglades, United States) and the previous year’s ENSO state. Panels show
(a) scatter plot, (b) tercile plot, and (c) lag-correlation plot with 90% confidence interval. These
curves can help identify the relationship (correlation) between precipitation and climate
indicators such as an ENSO index. This can demonstrate the possible strength of climate
predictors for hydrologic variability within a system. Source: Everglades data from the Global
Historical Climatology Network (GHCN) database; KNMI Climate Explorer accessed at http://
climexp.knmi.nl/.
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Figure 4.15 Correlation analysis of time series and field data using the KNMI Climate
Explorer.
JFM Everglades precipitation index is correlated with OND Pacific SST. Panel (a) shows the
correlation map and Panel (b) shows the statistical significance of correlations. For Panel (a), the
red and purple colors indicate regions where the SSTs during OND have a strong positive
correlation with the Everglades precipitation in the following JFM. For panel (b), all shading is
significant at better than 10%, and the redder colors are very highly significant (on the color key,
for example, 0.01 = 1% statistical significance). Source: Everglades data from the Global
Historical Climatology Network (GHCN) database; KNMI Climate Explorer accessed at http://
climexp.knmi.nl/.
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Figure 4.16 Illustration of the application of CPT.
Panel (a) shows the model construction; (b) performance statistics; and (c) the performance
graph. Panel (a) shows the page in which the user is able to input the datasets and determine
the settings to create the desired statistical model; (b) reveals the statistical output from the
model, including multiple techniques describing the skill of the statistical model in predicting
precipitation based on the SST input; and (c) provides a graph comparing the observation
with the cross-validated forecasts overlaid on colors representing the observed climatological
tercile categories (purple is above normal, green is near normal and pink is below normal).
Source: CPTaccessed at http://iri.columbia.edu/climate/tools/cpt.

Managing Climate Risk in Water Supply Systems64

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019

http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/
http://iridl.ldeo.columbia.edu/


Users must supply their own data for analysis with CPT. However, IRI hosts the
IRI Data Library and provides on-line scripting tools for downloading climate data
from the library and formatting it for use with CPT. The web site also includes
detailed instructions and a tutorial for using the Data Library. Much of the data
available on-line as part of the KNMI Climate Explorer is also available from the
IRI Data Library. Figure 4.17 shows various screens of the IRI Data Library
interface for an example in which the user constructs and visualizes OND
seasonal averages of SST anomalies.

Figure 4.17 IRI Data Library.
Panel (a) shows the scripting interface and Panel (b) demonstrates the visualization of data.
These illustrate the ability of users to, create codes to access and work with selected data
and develop visualizations of the results. The example script shown constructs seasonal
averages of SST anomalies for The script in panel (a) can also be generated automatically
from menus, so knowledge of the scripting language is not required to access data. Source:
IRI Data Library accessed at http://iridl.ldeo.columbia.edu/.
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CONCLUDING REMARKS
The topics covered in this chapter provide some background on the type of methods
and tools available to make climate forecasts. Basic hydrologic forecast models and
those incorporating statistical climate prediction offer simple techniques for
translating climate information into useful hydroclimatic forecasts at the seasonal
time scale. Although they are more complex and resource intensive, dynamical
models are also available and can be used for forecasts at seasonal and longer
time scales. Water resources professionals can also utilize online resources to
access climate data and use it to develop seasonal forecasts. However, as
discussed above, best outcomes are anticipated through collaborations of relevant
expertise, including water resources professionals working with the appropriate
climate and meteorological agencies when attempting to use climate forecasts for
their systems. Climate professionals can help interpret the relevant climate
information and work with water resources professionals to determine the best
and most appropriate techniques. It is hoped that this chapter can serve to provide
a basic foundation to improve that communication.
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Chapter 5

Climate risk management in the
water sector

INTRODUCTION
Water resources managers have the critical responsibility of addressing the
significant impacts of hydroclimatic variability across multiple time scales.
Changes to the climate, demographic trends, land use and water management
goals increasingly necessitate moving from static to dynamic approaches to
hydroclimatic risk management. Climate risk management (CRM) has evolved as
an innovative and effective way to integrate the management of current climate
variability and extremes with adaptation to longer-term climate change. The
central approach of CRM involves the development of proactive strategies aimed
at maximizing positive and minimizing negative outcomes in a given climate-
sensitive sector. It is important to move beyond the traditional focus on only
negative consequences and explore ways of taking advantage of opportunities.
This chapter outlines a CRM-based approach to the assessment and management
of hydroclimatic risk with an emphasis on management of water supply systems.

In order to understand the CRM approach for water resources management, it is
helpful to be aware of some key terms. While there are not universally applicable or
accepted definitions of the terms used in risk management generally, this manual
works from the following definitions:1

Hazard – 1) the source of a negative effect on a community or system, or 2) the
probability of an event that causes failure

Risk – the combination of the probability of a hazardous event occurring and the
impact or consequence of that event; risk can increase if either the probability
increases or the consequences of a hazard become more severe

Vulnerability – the characteristics of a community or system that cause them to be
susceptible to adverse outcomes when exposed to a particular hazard

1Definitions can vary significantly between different professional communities, such as those involved in
disaster risk reduction and social vulnerability research. The definitions used here are adapted from IRI
(2006) and van Aalst et al. (2007). See also Hashimoto et al. (1982).
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Resilience – the capacity of a community or system to recover from an adverse
outcome due to a hazard and obtain an acceptable level of functioning

These definitions can also be applied specifically to the context ofmanagingwater
supply. In this case, a hazard is typically a threat to the water supply system and its
ability to function. Risk is, thus, the combination of the consequences of such a threat
and its probability of occurring. Vulnerability and resilience can be quantified in
terms of whether levels or values over time, Xt, exceed a threshold, XT,
(“satisfactory values”) or fail to meet the threshold (“unsatisfactory values” or a
hazard, in some cases). This understanding can also be applied to the concept of
reliability discussed in Chapter 2 when considered over n total periods.

Vulnerability:

[sum of positive values of (XT − Xt)]
[number of times an unsatisfactory value occurred]

Resilience:

[number of times a satisfactory value follows an unsatisfactory value]
[number of times an unsatisfactory value occurred]

Reliability:

[number of time periods when Xt .= XT ]
n

With an understanding of these key terms, we can begin to discuss the elements
of climate risk management. CRM can essentially be structured as three key
components. The first step is to perform an assessment of the hydroclimatic risks and
opportunities for a given context. Second, relevant water supply projections should
be made by including available climate knowledge and information. The resulting
probabilistic water supply projections will often benefit from discussions and
collaboration between experts in the water and climate operational communities.
Finally, practitioners make management decisions based on the results from the first
two steps while also explicitly considering the role of uncertainty in the system. This
chapter is organized around these three elements; first Section 1 describes the
elements in more detail, then Section 2 explores the application of the CRM
approach to a stylized example based on the management of a multipurpose reservoir.

Section 1: Components of the climate risk management
approach
Step 1: Assess hydroclimatic risk
Chapter 2 described tools and approaches for hydrologic analysis in water resources
management with an emphasis on predicting and managing water supply and
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availability. Chapters 3 and 4 examined climate variability and change and how
understanding both can impact hydrologic supply projections. The first step of
climate risk management is to assess the impacts of changes in climate across all
time scales on water resources. This necessitates knowledge of both historical
climate information and the resulting consequences in the target water system.

Developing the appropriate knowledge requires a dialogue with climate
professionals as well as the stakeholders affected by or engaged in the water
management process. Climate scientists and meteorological agencies can help
supplement and interpret relevant climate information. Engaging stakeholders can
both ensure that relevant impacts are considered and keep stakeholders aware of
the process.2 By gaining a more robust understanding of these hazards and
impacts, you can begin to determine the hydroclimatic risk for a given system.

While this manual focuses on the impacts of climate on the system, with an
emphasis on consequences for water supply, it is important to recognize that
climate is one of many factors affecting the system. When projecting future risk
scenarios for a given system, possible changes in population growth, user demand
and land use should all be considered and integrated into any comprehensive risk
assessment. Although these topics are generally beyond the scope of this manual,
Appendix 2 reviews some basic techniques for forecasting water demand.

Additionally, climate information can sometimes significantly affect users’
decisions and the aggregate demand on a system, depending on the policy
landscape and the extent of climate knowledge. For example, farmers’ decisions
are often strongly affected by risk and may thus change based on whether, for
example, insurance, options contracts or drought-resistant crops are available.
The presence or absence of such mechanisms may largely determine the degree
and distribution of climate-related impacts on a system and its users.

Acknowledging that these demand-side factors are present, you can proceed to
assess the hydroclimatic risk for a system across time scales. Since risk involves both
the impact of a hazard and the probability of the hazard occurring (or the expected
gain from an opportunity and the probability of realizing the opportunity), your
assessment must consider both the impact and probability. The questions below
provide a general guideline for what to consider when performing this assessment.

What key climate-related challenges does the system currently face?

These challenges might include moderate or severe droughts, flood events, variable
flows or others that are particularly disruptive to the system. This assessment is
based on climatology (historical observed variability) and current system

2As an example, the Florida Division of Water Resource Management in the U.S. developed the
“Framework for Action: Water Management and Climate change in Florida” to support the state and
local water management agencies in understanding how to address the likely impacts of climate
change, including references to using seasonal climate information. The report was based on research
and interviews with local water managers. See Bolson and Swihart (2008).
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characteristics, such as land use, population, and economic factors. It is important to
identify the hazards historically associated with climate variability for the system
while also understanding that the same type of climate event might have a more or
less severe impact based on evolving non-climate characteristics of the system over
various time scales.

What damages occur as functions of these events?

Having identified the climate-related hazards, the impacts on the system need to be
addressed. This includes an analysis of the distribution of impacts (e.g. spatial or
sectoral) and a determination of whether there are distributional effects from these
events. Impacts on both the human and environmental systems may be relevant.

The method of valuing consequences may differ. For example, economic
valuation of consequences (e.g. foregone profits, direct costs associated with
switching to another water source) will be appropriate in some cases. However, in
the case of severe consequences (e.g. famine), economic valuation alone may not
be sufficient, as the social consequences may far outweigh direct economic costs.
While we consider this evaluation to be a matter of national and international
policy, and thus focus on the direct economic valuation of consequences, we stress
the importance of designing systems which are resilient to catastrophic failure.

It may be important to determine local thresholds that determine the extent of
climate-related consequences (e.g. see the conceptual Figure 5.1). While some
water users can easily adapt to small reductions in water supply with little or no
adverse effects, others may face significant damages from even the smallest
supply variations. The vulnerability across different users might lead to an
aggregate threshold level and expected reliability for the system.

Figure 5.1 Risk Threshold.
This figure is a stylized representation of a range of possible outcomes following a normal
distribution (bell curve). There exists an outcome below which the system faces a hardship or, if
the outcome is even more extreme, a crisis. This is shown as the ‘Risk Threshold’. The white
space to the right of the Risk Threshold can be considered baseline outcomes (i.e. outcomes
that result in neither harms nor benefits). An individual outcome leading to a hardship or crisis
has lower probability than an outcome resulting in baseline conditions. If the x-axis represents
a measure of societal outcomes, the Risk Threshold might represent a minimum flow
necessary to meet minimum user needs from a reservoir. Less streamflow results in a hardship,
and very low streamflow, while lower in probability, results in more severe crisis conditions.
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Are there potential opportunities due to climate variability and change?

Although a major concern is the possible negative impacts from climate variability
and long-term change, some climate outcomes also bring opportunities for benefits
(see conceptual Figure 5.2). An example where climate has clearly served to provide
an opportunity is where the annual cycle produces distinct rainy seasons (i.e. a lack
of variability in climate between seasons within a year would be disastrous for most
crops). Additionally, a shift in phase in multidecadal variability within a system
could lead to improved average climate conditions for some sectors. For example,
if the current phase was increasing the probability of drought conditions, a phase
shift might reduce drought occurrences on average. It is important to remember
interactions of the various forms of climate variability and also assess the
possible impact of long-term climate change. The latter might also offer some
opportunities (e.g. increased average precipitation in arid regions). Assessments
should take into account the varying opportunities and risks across sectors and
across (or even within) regions, along with their uncertainties.

Are there opportunity losses due to decisions made to avoid current climate
risks?

Water resources managers are typically quite risk averse, meaning that they would
prefer an option with less uncertainty but possibly a lower net benefit over an option

Figure 5.2 Opportunity Threshold.
Similar to Figure 5.1, this figure represents a normal distribution of possible outcomes. Here, the
emphasis is on the outcomes to the right of the baseline outcomes represented by the white
space. These represent opportunities for benefits that result in improved conditions relative to
the baseline. The ‘Opportunity Threshold’ shows the outcome above which benefits can arise.
If the x-axis represents a measure of societal outcome, the Opportunity Threshold might
represent a flow above which hydropower could be generated in a system. Here, the
assumption is that all outcomes above the Opportunity Threshold result in benefits. Based on
this figure, benefits occur with the most probable outcome (i.e. the mean streamflow or the
peak of the distribution).
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with greater uncertainty but a higher possible net benefit. Thus, managing to
minimize climate risks can decrease the net benefit and result in lost opportunities
(e.g. greater release for hydropower generation). Identifying these lost
opportunities reveals increased possible benefits from improved climate forecasts.

Example 5.1: Shortfalls – Costs and lost benefits

In general, the economic costs (or losses) associated with system failure are
simply the benefits lost by not having more water to apply to various uses.
This concept is illustrated in Figure 5.3, which shows a price-quantity demand
curve. Assuming the price of water appropriately reflects the cost of the water
delivery, the shaded area above the price and below the demand curve
represents the net benefits to consumers. If water supplies are restricted from
quantity Q to quantity Q’ due to scarcity, only a modest amount of net benefits
is lost as users will first forego the lowest valued uses. Additional net benefits
would, of course, be lost if the price also increased.

If water users have access to other, typically more costly, water supply
sources, net benefits may be estimated as the cost avoided by not having to
rely on the higher cost source. This concept of “cost avoided” is typically
used to value hydroelectric power generation whenever fossil fuel plants
have excess capacity. A similar approach could be used for agricultural
water use, if the alternative to surface water deliveries is to pump
groundwater, for example. If no alternative irrigation source is available, the
consequences of water delivery shortfalls can be evaluated as reduced
profits, perhaps estimated by a mathematical programming model such as
the example in Appendix 2.

Figure 5.3 Water demand, price and consumer benefits.
Water demand curve and consumer benefits of quantity Q at price P (shaded). If the
quantity is restricted to Q’, and the price remains the same, the benefits lost are
indicated by the hatched area (triangle with diagonal lines).
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Have the occurrences of hazard events over the historical record followed
identifiable patterns?

The initial step is to determine recurrence periods for relevant climate events over
the historical record. For example, analysis might reveal how frequently the
system has experienced severe droughts. It is also important to examine whether
there is a spatial or temporal structure (or pattern) in the historical hazard
occurrence. This might include variability across various time scales
(intraseasonal, interannual, decadal) or longer-term trends.

The main purpose at this point is to recognize variability in the climate system
and how it has affected hazard probabilities in the past. You are not yet making
forecasts or projections about future scenarios. This analysis reveals the
probabilities that have determined system risk up to the current period. The
understanding of historical climate variability at different time scales also
suggests the key components to consider in developing projections in future
steps. This can include identifying appropriate predictors that can help you make
simple forecasts of possible shifts in the probability distribution of supply in the
system (e.g. shifts due to ENSO phases).

How sensitive is the system to hydroclimatic variability and change?

Hydroclimatic conditions affect a water system’s ability to meet user demands.
Climate variability, thus, has a significant impact on whether the system fails or is
able to meet the demand. Different water systems have differing levels of
sensitivity to this climate variability. As discussed in Chapter 2, the expected
reliability of a reservoir system describes the likelihood that it will be able to meet
some level of user demands. Thus, a system’s sensitivity to changes in the climate
can be measured by changes in reliability.

Analysis and answers to the previous questions in this section provide data on
historical climate variability and probabilities associated with various climate
outcomes, viewed as hazards. This information can be translated into reliability
given certain thresholds (e.g. reservoir levels) appropriate for the given system. It
is then possible to calculate how reliability has changed in the past and also
determine how patterns of climate variability affect reliability (e.g. see the
conceptual Figure 5.4).

If climate conditions and the historical variability were expected to continue into
the future without any changes, you could model the expected reliability based on
past experiences. However, this assumes that you are aware of all forms of
variability and have been able to model them with a high degree of accuracy. If
the historical record is too short to capture the full range of climate variability
(and this is not uncommon), the results of the analysis can be significantly biased
due to sampling variability. In addition, this does not take into account the
possible nonstationarity of the system.
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In order to address these concerns and appropriately assess the sensitivity of the
system, it is best to model reliability based on both historical data and scenarios of
possible future climate conditions. These scenarios can include conditions that fall
outside the historical range, since historical knowledge is limited and
nonstationarity might lead to significant hydroclimatic changes. You are not yet
making projections of what climate conditions are actually expected to be – you
are only creating scenarios of possible future conditions to learn about the
sensitivity of the water system. This scenario approach is also discussed by
Dessai et al. (2009). The scenarios can be combined with vulnerability thresholds
determined in previous steps. If the vulnerability thresholds are based on changes
in reliability, the scenario approach can help shape reliability thresholds for
the system.

Step 2: Make probabilistic water supply projections incorporating
climate information
Once you have established various scenarios and assessed historical hydroclimatic
risk for your water supply system, a route to enhanced benefits is to narrow the range
of likely future outcomes. While all outcomes in your full array of scenarios might
be possible, you can use climate forecasts and knowledge as discussed in previous
chapters to assign probabilities to the various outcomes when reliable climate
information is available. The resulting probabilistic forecasts can be combined

Figure 5.4 Managing risks and opportunities.
This figure demonstrates a system’s sensitivity to changes in the distribution of possible
outcomes, based on a system’s risk and opportunity thresholds (as shown in Figures 5.1 and
5.2) and the degree to which the distribution can change. ‘B’ represents the distribution of
outcomes under normal conditions. ‘A’ illustrates a situation in which the likelihood of negative
outcomes increases, while ‘C’ demonstrates a shift toward more probable positive outcomes.
Managing risks and opportunities requires an understanding of the relationship between
thresholds for a system and the shifting outcome probabilities. As an example, these can be
viewed as distributions based on possible inflow forecasts, where ‘A’ is a shift toward drought
conditions and ‘C’ is a shift toward higher inflows (assuming all excess inflows could be used
positively, e.g. to create hydropower). These would result in decreased reliability for
conditions shown in ‘A’ and increased reliability for conditions shown in ‘C’.
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with an understanding of the system sensitivity to improve assessment of possible
future risk and help decision making.

Previous chapters in this manual have explored a variety of approaches to
predicting climate and forecasting water supply. The information on statistical and
dynamical forecast models in Chapter 4 can serve as a foundation for developing
these forecasts. For example, if the system responds somewhat predictably to
ENSO phases, you may be able to use an appropriate SST anomaly index in a
linear regression model to help forecast likely conditions for the coming season.
Depending on the system, available data, and the human and financial resources
available, a dynamical model might also be appropriate. In developing the
forecasts, you should also collaborate with climate scientists and professionals
(e.g. staff from the national meteorological agency) who may be able to help
identify relevant climate predictors and develop appropriate techniques for the
local system. The climate-based forecasts can then be combined with the tools
described in Chapter 2 (e.g. flow-duration analysis and yield-reliability curves) to
develop a range of useful probabilistic water supply projections. The following
considerations should also be taken into account to encourage the most effective
use of climate information.

Consider variability across all time scales

The projections should, as much as possible, span the time scales discussed in
Chapter 3. In addition to seasonal and decadal variability within the climate
system, longer-term trends might have significant consequences for the system.
The collection of tools and models for forecasting climate at various time scales
described in Chapter 4 can be used to identify likely future scenarios and
probabilities associated with each. However, it is critical to supplement the
introductory information in this manual with consultation with climate
professionals and relevant meteorological agencies. There are many variations on
the basic techniques presented for identifying climate variability at various time
scales and translating this information into useful forecasts.

Consider uncertainty

There will always be remaining uncertainty, and this needs to be assessed so that it
can be addressed and integrated appropriately into management options (as
discussed in Step 3). Based on location and climate characteristics, there may be
significant variation in the ability to make climate predictions. For the same
system, forecast skill might vary significantly across time scales. It is critical to
be aware of the predictive capacity for a given system and the uncertainty
associated with any predictions. The probabilistic nature of climate forecasts
reinforces the idea that they are neither guaranteed nor absolute. This uncertainty
plays a significant role when integrating the climate information into decision
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making, and you should explicitly assess the uncertainty of any forecasts
you consult.

The approach to assessing the forecast uncertainty depends on the techniques
used to create the forecast and the projected time scale. For example, if a seasonal
forecast has been developed using a statistical model, a cross-validation technique
(as described in Chapter 4) can be used to understand and quantify the
uncertainty in the model. With complex dynamical and GCM-based models and
projections over longer time scales (Meehl et al. 2009), it is best to consult
climate professionals to determine the uncertainty and errors present in the
model. Some of the key discussion points regarding longer-term climate
projections that include the effects of increasing greenhouse gases and other
anthropogenic influences include,

(1) the climate model’s ability to reproduce climatology in the region;
(2) whether the model captures the observed regional trend in 20th century

climate;
(3) the extent to which there is a well-established physical basis for the model’s

forecasts;
(4) the degree of agreement between different models; and
(5) the extent to which natural multidecadal variability impacts the region.

Discussing these topics and validating forecast models can show where the
model made errors and help understand possible weaknesses in the specific
GCM, contributing to assessments of uncertainty in projections.

Step 3: Determine a portfolio of options to manage hydroclimatic risks
The forecasted hydroclimatic risk determined in the previous two steps serves as the
foundation for developing a portfolio of options to mitigate the risk and take
advantage of possible opportunities. It is critical to realize that, while a
probabilistic forecast provides information about the likelihood of particular
climate events (such as droughts), surprises can still happen, even if they are very
unlikely. For this reason, it is particularly important to consider ways to manage
the impacts of possible climate events that do not necessitate new investments in
infrastructure. The reasoning is as follows: if an event is not very likely to occur,
it is typically not worth making major investments to manage the impact.
However, it still makes sense to try to avoid the negative impacts of that event, if
possible. Thus, finding solutions that can be called upon only when needed is an
efficient way to manage the impacts of unlikely events.

Another consideration in managing hydroclimatic risks is the need for
redundancy. If a water supply system consists of a single source, any impact on
that source leaves the system vulnerable. While it may not be economically
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efficient to build new infrastructure to tap new sources, other opportunities may
exist. The suite of risk management options might include economic instruments
(such as insurance or water banks), infrastructure modifications, or integrating
seasonal forecasts into decision making, among many others. Together, these
approaches are termed a “portfolio” of options because they consist not of a
single solution, but rather a range of possibilities – each of which may be the best
choice in a particular circumstance (conceptually introduced in Figure 5.5).
Chapter 6 provides additional information on some of these techniques for
managing hydroclimatic risk.

Below are some of the key considerations when developing a portfolio and
determining the most appropriate solutions.

Figure 5.5 Establishing a portfolio of options in climate risk management.
Given the normal distribution (bell curve) of possible outcomes shown in Figures 5.1 and 5.2, this
figure demonstrates that differentmanagement or policy options are often designed (or only able)
to address a certain subset of outcomes. Each option represents a different approach to
managing risks and opportunities, and the figure demonstrates the trade-offs associated with
each. For example, ‘Option 1’ focuses on the possible hardship or crisis outcomes, perhaps
ensuring that the system experiences the equivalent of baseline conditions (white space
representing outcomes that are neither harms nor benefits) even if the outcomes are below the
Risk Threshold (see Figure 5.1). ‘Option 2’ is intended only to take advantage of possible
benefits (e.g. a policy that only addresses reservoir releases for hydropower, but does not
account for drought or flood conditions). ‘Option 3’ covers average outcomes and those that
result in baseline conditions, while also addressing some range of both possible negative
outcomes and possible benefits.

Climate risk management in the water sector 79

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



Consider planning and operational approaches

The risk management solutions available depend partly on the timeframe for action.
Near-term operational options will most likely assume fixed infrastructure and some
level of sunk costs (those that have already been allocated and cannot be recovered).
Possible planning solutions, on the other hand, can include decisions regarding
infrastructure and system design. Climate information should be integrated into
decision making at the appropriate time scale to inform options most effectively.
Projections of long-term climate change may have little value at the operational
level for current practices. However, such projections might inform planning
decisions as well as the framework under which operational decisions are made
in the future (i.e. whether expected climate changes will necessitate more flexible
operational policies).

Assess possible trade-offs

Limited human, financial and natural resources lead to trade-offs in almost all
decisions in water resources management. Water managers must seek to
understand and assess possible benefits or consequences of their decisions within
the context of these resource constraints. Uncertainty makes such assessment
even more difficult, but can also increase the importance of decision outcomes.
For example, hedging against a possible drought by maintaining high reservoir
storage levels might result in increased flood risks. At the other end of the
spectrum, managing to avoid floods can increase the possibility of water
shortages. There is also often a trade-off between increasing expected reliability
for a system and increasing possible benefits from water allocation. Improved
climate information and projections of likely futures may help shift the reliability
scenarios. While this does not eliminate the necessity for trade-offs, it can improve
the long-term frequency of achieving positive outcomes. Integrating thresholds of
“acceptable” costs into decision making can help water managers balance
trade-offs. You can explore this concept in Exercise 3.

Exercise 3: Assessing risk for a multipurpose reservoir using a water
allocation scheme and simulated inflows

Exercise 3 broadens the scope of risk assessment beyond simple reliability
analysis based on the historical record. Here you will consider a realistic set
of reservoir operating rules and makes water allocation decisions. You will
then apply stochastic modeling to simulate various future seasonal inflow
scenarios over a 40-year period. This will allow you to examine the potential
effects of multidecadal climate variability and/or long-term trends on the
system reliability. This exercise also includes a module that illustrates the
possible economic consequences of water supply shortfalls.
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Consider the impact of uncertainty

Step 2 included uncertainty assessments for the target water system and any
available hydroclimatic forecasts. It is necessary to understand the uncertain
nature of probabilistic forecasts in order to appropriately assess your suite of
options. Rather than planning for a specific outcome, the most appropriate
approach often requires planning for a set of scenarios. While the likelihood of a
specific outcome might be higher than the likelihood of another, both are possible
and should be considered in decision making. This uncertainty may lead to more
flexible approaches and policies, with less emphasis on rigid options that leave
little room for alternative outcomes. A flexible, adaptive plan might also increase
the capacity to take advantage of possible opportunities from better than expected
outcomes. Of particular importance is to consider the effects of low probability
but high impact events on the system when actions are taken based on a forecast.
For example, if the forecast leads you to expect more water, are there ways to
mitigate the effects of an unlikely severe drought? This is important to consider
because sometimes the anticipatory actions based on a forecast may leave a
system more exposed to the “down-side risk”, or the risk associated with the less
likely, but still possible, climate extreme. Chapter 6 explores some of the
techniques and tools designed to address hydroclimatic uncertainty in water
supply systems.

Section 2: Example application of the climate risk
management approach
To illustrate the main components of the climate risk management approach
presented in this chapter, we perform a risk assessment with synthetic scenarios
for a stylized multipurpose reservoir. The nature of the seasonal predictability as
well as many of the specific management options and variable magnitudes are
informed by the Angat Reservoir in the Philippines. In this example, we focus on
the risks associated with shortfalls in water supply based on hydroclimatic
conditions. While we focus on sensitivity to shortfalls and base the analysis on a
specific type of reservoir, the techniques and approach can be generalized to be
applicable for other contexts, locations and needs.

Step 1: Assess hydroclimatic risk
For this example, we highlight the assessment and management of shortfall risks
that occur when there is inadequate water supply to meet needs. While a shortfall
might occur due to extended drought conditions, it can also occur under other
conditions. We determine that a shortfall occurs if the reservoir level is not above
a given threshold level at a certain point in time. This is the basis for determining
the reliability of the reservoir; reliability measures the expected probability of
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meeting or exceeding the threshold (i.e. reliability measures the likelihood
of avoiding a shortfall). For our assessment, we focus on inflow in a critical
6-month period starting in October and ending at the end of March. The level at
the end of March is used to determine whether a shortfall has occurred.

What key climate-related challenges does the system currently face?

While the system might face a variety of hazards, we focus only on shortfalls in this
stylized example.

What damages occur as functions of these events?

Shortfalls and drought events are often considered most damaging to the system.
In a typical priority-based multipurpose system, agriculture is often given low
priority. For droughts or shortfalls in these systems, irrigation might be
significantly curtailed or stopped. Municipal water may also be rationed and there
would be limited releases for hydropower. These can result in crop losses, loss of
life, and significant economic impacts.

The economic impacts can be complex. If shortfalls in irrigation water allocation
are known in advance, irrigators can plan accordingly by reducing the area planted
or selecting more drought-resistant crops. In this case, reductions in economic
benefits are roughly proportional to the magnitude of the shortfall (i.e. a 10%
reduction in area planted corresponds to a 10% reduction in benefits.) If shortfalls
are not planned for, economic losses occur due to plant stress and reduction in
yield, which typically occurs as a nonlinear function of the shortfall. For
example, a 10% shortfall may lead to a 10% reduction in yield, and a 20%
shortfall may lead to a 30% reduction in yield. In practice, the effects of irrigation
shortfalls also depend on the timing of the shortfalls (e.g. early in the growth
stage or near harvesting), as well as numerous climatic variables, including
precipitation, temperature, and humidity.

Are there potential opportunities due to climate variability and change?

While it is difficult to find opportunities in droughts or shortfalls themselves,
changes in climate variability or longer-term trends might reduce these hazard
occurrences. As suggested earlier, if the current phase of some form of decadal
variability were increasing the probability of drought conditions, a phase shift
might reduce drought occurrences on average. In the case of possible increased
shortfalls, the opportunity arises in the ability to forecast these occurrences in
order to plan and manage for them appropriately. In addition, predictably wet
years might present the opportunity to be more ambitious in terms of water use
(e.g. expanded irrigation, hydropower, etc.).

Are there opportunity losses due to decisions made to avoid shortfalls?

Opportunity losses may occur for both irrigation and hydropower users if decisions
had been made expecting conditions to be drier than actually occurred. Irrigators
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may have unnecessarily reduced the area planted or invested in crops that are more
drought-resistant than necessary. Hydropower generation might have been
needlessly curtailed if water supplies are significantly higher than initially projected.

Have the occurrences of hazard events over the historical record followed
identifiable patterns?

Analysis of climatology and global climate indicators reveals that the monsoon
season in the area of this reservoir tends to be drier than normal during years
exhibiting El Niño conditions, and wetter than normal during years with La Niña
conditions. As shown in Chapter 4, we can create a figure showing the
differences in inflows conditioned on ENSO conditions (Figure 5.6).

Based on this information, we can also generate probabilistic distributions of
inflows for the OND period (Figure 5.7).

At this stage in the analysis, these probability distributions are viewed as
indicating that there can be systematic fluctuations in inflows. As part of the risk
assessment, the sensitivity of the system to such fluctuations can be investigated,
contributing to overall information on the vulnerability of the system to climate
fluctuations (see sub-section 2 of this chapter). Figures 5.6 and 5.7 can also be
used as a simplified forecasting tool if the phase of ENSO is known, as described
in Step 2 below. Although not described here, it would also be important to
assess whether other forms of climate variability affect this system and introduce
other systematic patterns in the flow records.

Figure 5.6 Partitioning approach for identifying relationships.
Shown are the ranges of historical OND Angat Reservoir inflows corresponding to three
categories of ENSO conditions during the preceding JAS. The horizontal bar shows the mean
inflow, while the length of the vertical bars represents the full range of inflow values. Note the
significant difference between inflows during El Niño and La Niña events and the very limited
overlap. Source: SST data from NOAA NCDC ERSST v.2 (Smith & Reynolds, 2004); Angat
inflow data from Philippines National Power Corporation.
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How sensitive is the system to hydroclimatic variability and change?

In order to understand the system’s sensitivity to hydroclimatic changes and
nonstationarity, we can assess the impact of various scenarios on the system
reliability. This approach is aligned with the methodology that is discussed in
detail in Dessai et al. (2009a, b). For these simulations, we assume the monthly
water allocation scheme for this multipurpose reservoir remains constant from
year to year and use a stochastic simulation approach (statistical time series
model) to simulate multiple inflow traces for the six-month period (Oct–Mar)
under various scenarios. Reliability is then calculated based on the percent of
simulated inflows for each scenario that result in reservoir levels at or above a
given threshold at the end of March.

We begin by assessing the changes in the system’s expected reliability based on
different initial storage levels. We can then broaden the analysis to include
simulations of ENSO phases to understand how El Niño or La Niña conditions
might affect reliability. The simulations considering ENSO phases use the
appropriate probability distribution for OND inflow shown in Figure 5.7 above.
The inflow for the JFM period for all simulations is always sampled from a
climatology-based distribution. In other words, ENSO phase is not considered for
the JFM period (this approach may not be appropriate in all systems and is
offered here for simplicity in introducing the concept). The reliability estimates
are given in Table 5.1 and shown graphically in Figure 5.8.

Lower reliability values reveal that the system is expected to suffer from
increased frequency of shortfalls. The above results suggest that the system is
sensitive to initial storage levels and particularly sensitive to changes in the
interannual variability such as ENSO phases.

Figure 5.7 Probabilistic three-month (OND) inflow distribution for the Angat
Reservoir based on mean inflow across all years, in El Niño years, and in La Niña
years.
Each distribution is constructed using the mean across appropriate years and the standard
deviation for the entire historical period. Although there is overlap, the El Niño conditions
result in reduced average precipitation and inflow, while La Niña conditions result in higher
average inflows. Source: SST data from NOAA NCDC ERSST v.2 (Smith & Reynolds, 2004);
Angat inflow data from Philippines National Power Corporation.
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Next, we can consider two additional climate phenomena to illustrate the
potential effects of (i) slowly varying (decadal-to-multidecadal) climate
fluctuations and/or (ii) systematic long-term change in the climate. We use
hypothetical synthetic inflow scenarios. This concept was introduced in Chapter
3, generating inflow scenarios for the remainder of a given season (e.g. see

Figure 5.8 Reliability comparison based on simulations using inflows from the
corresponding ENSO category and initial storage level.
Reliability is based on the percent of simulations in which the reservoir level is above a given
threshold (lower rule curve) at the end of the period over 100 simulations using the
corresponding mean inflow value and initial storage. Source: SST data from NOAA NCDC
ERSST v.2 (Smith & Reynolds, 2004); Angat inflow data from Philippines National Power
Corporation.

Table 5.1 Estimates of water supply reliability based on the inflow across all years, in
El Niño years, and in La Niña years.

Initial
Storage
(mcm)

All Years
(3-month inflow
mean= 850 mcm)

El Niño Years
(3-month inflow
mean= 589 mcm)

La Niña Years
(3-month inflow
mean= 1112 mcm)

190 70% 43% 92%

195 77% 47% 94%

200 84% 57% 97%

205 91% 71% 99%

210 95% 80% 100%

215 97% 89% 100%

Reliability is based on the percent of simulations in which the reservoir level is above a given
threshold (lower rule curve) at the end of the period over 100 simulations using the
corresponding mean inflow value and initial storage. Source: SST data from NOAA NCDC
ERSST v.2 (Smith & Reynolds, 2004); Angat inflow data from Philippines National Power
Corporation.
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Figure 3.2, Chapter 3). Now we generate multiple year inflow scenarios based on
plausible climate changes and multidecadal variability in the climate system (this
statistical approach to scenario creation for risk assessment is discussed in more
detail in Siebert & Ward, 2011). After generating the inflow scenarios, we assess
the sensitivity of the reservoir management system to each scenario. Since
OND dominates the October–March inflow total, the illustrations here apply the
trends and multidecadal variability only to the OND inflow, and unchanged
historical climatological inflow is always assumed for JFM. This allows
illustration of the concepts. In subsequent more detailed assessments the complete
October–March inflow may be modeled. This simplified approach also allows
consistency with the ENSO-based results (which also confined perturbations to
OND inflow).

First, we simulate seasonal inflows assuming a long-term trend in the climate
(e.g. climate change). For the illustration, we first assume a 0.5%/year decrease
in water inflow over a period of 40 years. This creates an aggregate trend of
−20% over the entire 40-year period. Subsequent results consider a range of
trends from −20% to +20%.

Second, we explore water supply reliability in the presence of a multidecadal
climate signal, such as the Pacific Decadal Oscillation discussed in Chapter
3. We simulate the multidecadal variability by introducing an autocorrelation
component into the 40-year time series of seasonal inflows. For this first
illustration, we use a lag 1 autocorrelation coefficient of 0.6 (i.e. constraining
inflow values for year t to be roughly correlated with the value for year t–1 with
a coefficient of r= 0.6). This results in the time series of inflows having
substantial spectral power at decadal-to-multidecadal timescales. This lag 1
correlation magnitude of 0.6 is for illustrative purposes only and will differ based
on the actual system. The higher the value, the larger the fraction of variance in
the multidecadal timescales. Note that systems that are only weakly impacted by
multidecadal climate modes like the Pacific Decadal Oscillation will have lag 1
autocorrelation values that are much lower than the 0.6 value used here. Indeed,
the Angat inflow series has almost zero lag-one autocorrelation. Thus, the results
with the multidecadal traces are intended to illustrate the types of reservoir
management challenges in regions which are impacted by multidecadal climate
variations, such as the Sahel region of West Africa. It should also be noted that
for a given system, other time-series representations may be more appropriate
than the simple lag-one autocorrelation model that is used here.

Third, we also consider a scenario in which both the trend and the multidecadal
variability are present. Effectively we are partitioning the variance into the three
groups described in Figure 3.2b (trend), 3.2c (decadal variability) and 3.2d
(interannual variability) and making assumptions about the magnitude of trend
and magnitude of random decadal variability in the future, while for these
simulations, maintaining a constant magnitude of random interannual variability
(consistent with the historical period).
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Figure 5.9a, b, c below displays a range of the stochastically simulated inflow
traces for each of these approaches. They also provide trend lines to provide a
sense of the possible trends across the simulated traces.

Figure 5.9(a) Projected inflow traces with a long-term trend of −20%, interannual
variability consistent with the historical record, and no systematically imposed
multidecadal variability.
Traces sampled from 100 simulations. Traces were ranked by their 40-year average (which
varies slightly due to random sampling); traces shown are the ones ranking 10th (red), 30th
(red dash), 50th (gray), 70th (blue dash) and 90th (blue). Black solid line is the trendline
average for all inflow traces (4.2 mcm/year decrease). Source: Simulated traces from IRI;
Angat inflow and storage level data from Philippines National Power Corporation.

Figure 5.9(b) Projected inflow traces with no systematically imposed long-term
trend, but with a randomly imposed multidecadal variability (imposed lag 1
autocorrelation, r= 0.6).
Traces sampled from 100 simulations. Traces were ranked according to slope of trendline
(derived using ordinary least squares regression); traces shown are the ones ranking 10th
(red), 30th (red dash), 50th (gray), 70th (blue dash) and 90th (blue). Source: Simulated traces
from IRI; Angat inflow and storage level data from Philippines National Power Corporation.
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Figures 5.9a, b, c illustrate that over a 40-year timeframe, water resources
managers need to be aware of the potential range of trends that can result from
multidecadal variations in the climate system. Consultation with climate experts
for the region of operation should inform the appropriate stochastic time-series
model and magnitude of random variation to assume. In addition to guidance on
the magnitude of random multidecadal fluctuations to plan for, consultation can
also inform whether any tendency for increased or reduced flows is expected in
coming decades (for example, see the discussion of the PDO in Chapter 3, Section
4; Prediction over longer timescales, Chapter 4, Section 2.2, and Meehl et al. 2009).

Table 5.2 illustrates the changes in average reservoir reliability for the different
scenario types. For the simulations with systematic trend (but with no imposed
multidecadal variation), Figure 5.10 shows the evolution of the average reliability
across all 100 simulations for each year.

The simulated long-term trend of −20% clearly results in a significant decrease
in reliability. Assessment of the system’s sensitivity to climate changes in this way
provides insights to vulnerability and can be an important input to risk assessment.
Altering the simulation management strategies (such as allocating less water) can
reveal actions that achieve satisfactory outcomes in the presence of climate
change. It can therefore provide insight into which allocation strategies can be
expected to be more resilient to given magnitudes of climate changes.

Inclusion of a multidecadal signal produces much less impact on the average
reliability, because across the 100 simulations, phases of positive and negative
inflow will on average cancel out. However, the inclusion of the multidecadal
signal has other significant impacts. To illustrate one aspect of this impact that is

Figure 5.9(c) Projected inflow traces with a long-term trend of−20% and a randomly
imposed multidecadal variability (imposed lag 1 autocorrelation, r= 0.6).
Traces sampled from 100 simulations. Traces were ranked according to slope of trendline
(derived using ordinary least squares regression); traces shown are the ones ranking 10th
(red), 30th (red dash), 50th (gray), 70th (blue dash) and 90th (blue). Source: Simulated traces
from IRI; Angat inflow and storage level data from Philippines National Power Corporation.
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important for water management, we have developed an indicator we call the
cumulative deficit statistic.

The cumulative deficit statistic is calculated in a two-step process (see Figure
5.11). First, we calculate the maximum cumulative short-fall during the last 10
years of each simulation. We rank these short-falls (from 1 to 100) and take the
90th percentile of the ranked distribution. This indicator provides a value for the
90th percentile of the maximum shortfall volume (mcm) that accumulates over
consecutive years within the last ten years of the period (2037–2047). In other
words, the cumulative deficit statistic value is the maximum cumulative shortfall
(over the last ten years) that would be expected to be exceeded 10% of the time.
The shortfall (deficit) is the difference between the threshold level and the
simulated reservoir level at the end of March. The maximum cumulative deficit is
the highest cumulative shortfall attained when summing consecutive shortfall
years. If the reservoir level meets or exceeds the lower rule curve at the end of
March, no shortfall is experienced.

Table 5.2 Sensitivity metrics for reservoir system based on simulated climate
scenarios.

Inflow scenario

Trend
2008–2047
(%)

AR process
lag 1
correlation

Cumulative
Deficit Statistic
2038–2047 (mcm)

Reliability
2008–2017
(%)

Reliability
2038–2047
(%)

0 0.0 59 64 65

+20 0.0 33 68 82

−20 0.0 94 65 49

+20 0.4 46 66 77

+20 0.8 64 70 79

−20 0.4 139 62 44

−20 0.8 198 65 46

0 0.4 73 64 64

0 0.8 145 64 62

Reliability estimates are based on the average of 100 simulated projections of inflow traces for
each of the scenarios given by columns 1 and 2 in the table. So, for example, with a downward
inflow trend of 20% and multidecadal variability imposed through an autoregressive process
with lag 1 correlation of 0.8, average reliability falls from 65% in 2008–2017 to 46% in 2038–
2047. The cumulative deficit statistic (defined in the text and see Figure 5.11) is calculated for the
last 10 years of the simulation. It represents the maximum cumulative deficit during 2038–2047
that would be expected to be exceeded on 10% of occasions under the given inflow scenario.
The results reveal the significant effect of systematic trend andmultidecadal variability on the risk
of a large cumulative deficit that must be planned for. Source: Simulated traces from IRI; Angat
inflow and storage level data from Philippines National Power Corporation.
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A higher cumulative deficit statistic means typically that the reservoir is facing
increased severity of persistent shortfalls. This statistic provides a measure of the
severity of shortfalls combined with the persistence of shortfalls, which might
have serious economic consequences. For example, a farmer may be able to
survive a shortfall in one year but not if there is a shortfall in two consecutive
years. Table 5.2 is provided for illustrative purposes and describes the sensitivity
of the water system to aspects of multidecadal variability and climate change. It
includes the 10-year reliability averages as well as the cumulative deficit statistic
for a range of scenarios (including positive trends to demonstrate the range of
outcomes).

The results in Table 5.2 reveal the significance of the multidecadal signal.
Because a certain phase of a multidecadal signal might lead to dry conditions
over several years, this will increase the likelihood of consecutive shortfalls and
shortfalls of greater severity. This will not usually be captured in changes in
simulated average reliability, so it is important to develop metrics that capture
such sensitivity in the system and provide a comprehensive risk assessment.

In the results in Table 5.2, the imposed trend may be viewed as representing
potential global change (GC) effects, while the imposed AR process may be
viewed as representing potential decadal-to-multidecadal variability (MDV)
timescales, as generated by mechanisms internal to the climate system (such as
the PDO or AMO discussed in Chapter 3, Section 4). Inspection of the
cumulative deficit statistic in Table 5.2 provides an example of a relation between

Figure 5.10 Evolution of reliability based on average of 100 simulated projections of
inflow traces with a long-term inflow trend ranging from −20% to +20%, and no
multidecadal variability (the type illustrated in Figure 5.9a).
The reliability is calculated as the percent of simulations in which the reservoir level is above a
given threshold (lower rule curve) at the end of March each year. Source: Simulated traces from
IRI; Angat inflow and storage level data from Philippines National Power Corporation.
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risk (as quantified by the statistic) and varying combinations of GC and MDV. By
undertaking further simulations for multiple combination of GC and MDV (all
combinations of trends covering 0%, +5%, 10%, 15%, 20% and AR process
with r1= 0, 0.2, 0.4, 0.6 and 0.8), a surface of risk can be constructed
(Figure 5.12). The surface illustrates how, in this modeled system, risk varies as a
function of MDV and GC, for this particular time-frame of 2038–2047.

It can be envisioned how the surface would look different depending on the
choice of lead-time into the future (here 2038–2047) and averaging window (here
10 years), since the relative variance of GC and MDV will alter, with GC
generally having a stronger more systematic signal for longer time-frames and
averaging windows. In such cases, the gradient in Figure 5.12 would be amplified
on the y-axis, and reduced on the x-axis (less sensitivity to MDV). For given
assumptions about GC and MDV, the framework here is well-suited to explore

Figure 5.11 Calculating the cumulative deficit statistic.
This table demonstrates how the cumulative deficit statistic is calculated. The “Max cumulative
deficit” column shows the maximum sum across consecutive deficit years for each simulation.
The light blue cells indicate years with deficits, while the dark blue cells show the year(s) that
make up the maximum cumulative deficit for each simulation. For example, while there are
two separate 2-year consecutive deficit years for Simulation 5, the cumulative deficit in Years 1
and 2 is greater than in Years 4 and 5. The max cumulative deficit for Simulation 4 is
highlighted because this represents the 90th percentile (the deficit higher than 9 of the 10
simulations).
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how such surfaces of risk are modified, both with reservoir system changes and as
the time-frame of concern changes. Furthermore, specific projections of GC and
MDV could be mapped to such surfaces producing informed estimates of future
risk, within a context of the expanded GC and MDV outcomes that are contained
across the complete surface.

Step 2: Make probabilistic water supply projections incorporating
climate information
Taken together, the results in the previous section demonstrate that shortfalls are a
key hazard for the system and that the system is quite sensitive to hydroclimatic
variability and change across multiple time scales. It is, thus, very important to
take advantage of climate information and forecasting techniques to make climate
projections and determine the likelihood of possible future scenarios.

For example, we could apply the seasonal forecast techniques described in
Chapter 4 and Exercise 2 to develop an ENSO-based probabilistic forecast. This
information would narrow the range of probable inflow levels and inform our

Figure 5.12 Variation of the cumulative deficit statistic (in mcm) for 2038–2047
across different inflow scenario combinations (40-year trends, given on the y-axis;
and random multidecadal variability imposed as an AR process, with lag 1
autocorrelation given on the x-axis). For the given combination of AR process and
trend, there is a 10% risk of a cumulative water deficit (during 2038–2047) of at
least the value shown on the contour map
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expectations for reservoir reliability in the coming months. Additionally, Chapter 4
provides a general sense of how to construct possible future scenarios given
indicators of multidecadal signals and possible long-term climate change.

It is important to remember that projections into the future will have great
uncertainty, even with today’s most powerful science and tools. Both the
significant variability in the simulated inflow traces and the probability
distribution within various scenarios (as shown in the ENSO-based forecast
distributions in Figure 5.7) suggest the wide range of possibilities. Figure 5.13(a)
illustrates this concept by presenting three simulated PDFs created using the
SST-based inflow forecast model. These are based on historical SST conditions
for three contrasting years and they demonstrate the wide range of projected
mean inflows. Figure 5.13(b) then demonstrates probabilistic forecasts for each
year of the 40-year period.

Figure 5.13 Seasonal inflow projections based on an SST-based forecast model
simulated using data from the Angat Reservoir, Philippines.
Panel (a) provides the probability density function (PDF) for the years 1968, 1972 and 1998 and
shows selected percentile inflow values (highlighted by the vertical lines) based on the
forecasted mean and standard deviation. Panel (b) provides a time series of probabilistic
inflow forecast for each year over the period 1968–2007. The 10th, 25th, 50th, 75th and 90th
percentile forecast inflow values are shown along with the observed inflow for each year. The
modeled inflow is constrained to not drop below 0 mcm. Source: Simulated data from IRI;
Angat inflow and storage level data from Philippines National Power Corporation.
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As Figure 5.13 reveals, the forecast model, while not perfect, is able to provide a
quantifiable estimate of most likely inflows that generally captures observed values.
The probabilistic forecasts thus achieve the goal of effectively applying relevant
climate information to help narrow the range of possible scenarios.

Step 3: Determine a portfolio of options to manage hydroclimatic risks
A number of options exist to help address the impact of shortfalls on this system. At
the planning level, water managers can consider improving the water supply system
(e.g. reducing leaks) and developing additional infrastructure, such as connections
to other reservoirs or water sources. Such solutions may require significant
investment of financial and human resources. Policy options, such as discouraging
water use through regulation, may be less expensive but may also be politically
challenging.

When making the choices between such options, it is important to be aware of the
likelihood of future climate scenarios that would result in decreased reliability. This
information can help inform an assessment of possible trade-offs that might be
necessary. Of course, the uncertainty of the projections must also be considered.
This will likely encourage flexible approaches that can respond to a possible
decrease in reliability without causing difficulties if, for example, shortfalls do
not occur, for whatever reason. In one example, the forecast of an increased
likelihood of continued multi-year drought in Ceará, Brazil in 1997 led local
officials to prioritize previously identified infrastructure maintenance and
construction needs to increase resilience of the water supply system (Lemos et al.
2002). The forecast did not result in entirely new policy, rather it shifted priorities
for investments that had already been planned.

Even with the best forecast, many outcome are possible, even if some are very
unlikely. Thus, even with a favorable forecast, shortfalls may still occur and this
must be considered. One way of addressing these possible low probability
occurrences is to introduce a mechanism for financially compensating lower
priority users that experience a reduction in allocated water. While this method of
essentially substituting money for water might not always be effective, there is
emerging theoretical evidence that such mechanisms could offer significant
benefits to users (see Example 5.2).

Figure 5.14 illustrates the possible financial benefit based on simulations for the
shared agriculture-urban system in Metro Manila, Philippines. The figure shows the
costs to the urban sector of water supply when using contracts alone (“Contract”
time series) or contracts along with insurance (“Insured” time series). The figure
also demonstrates the simulated agriculture losses when no contracts are used
(“Current Ag Loss” time serried). As Brown and Carriquiry (2007) note,
“hydrologic variability has been transformed into financial variability”. The model
uses an in-season price of water that is approximately double the preseason water
price using the option contract, meaning that it is much more costly to purchase
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additional water when facing scarcity during the season. The results shown reveal
that the insurance mechanism smoothes the highly variable costs of supplying
water using the contract arrangement.

Example 5.2: Managing risks through financial mechanisms

Brown and Carriquiry (2007) undertake a simulation to demonstrate the
potential for a combined option contract – reservoir index insurance system
to effectively smooth water supply costs of hydroclimatic variability for both
agricultural and municipal (urban) users (see also Chapter 6). If water scarcity
is expected to occur, a bulk water option contract allows the urban water
supplier to take some portion of the agricultural water allocation in exchange
for previously agreed financial compensation. To help cover the urban
supplier’s compensation costs, index insurance can be developed. The index
insurance is triggered based on reservoir level and can be designed to cover
the costs necessary to exercise the option.

Figure 5.14 Costs to urban water agency with option contracts in place, considering
outcome with and without insurance.
This figure uses an in-season water price approximately double the pre-season price. Insurance
payouts to the urban supplier exceed total costs, resulting in negative costs in years when
options are exercised correctly. Simulated agricultural losses without contracts in place are
also shown. In the four years in which the urban sector would exercise options and the
insurance does not payout, the total costs are small. Overall, the insurance effectively
smoothes the costs of supply under the contract system. In seven of the years, the insurance
payout exceeds the cost faced by the urban sector for purchasing water. This is due to the
design of the insurance, which was formulated to cover the maximum costs. Maximum costs
only occur when preseason options are not exercised. Therefore when options are correctly
exercised, the payout to the insurance holder exceeds the costs, which is the case in each of
these years. This excess payout could be eliminated by decreasing the insurance coverage,
resulting in lower premiums. Source: Adapted from Brown and Carriquiry (2007).
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Sensitivity to hydroclimatic changes can also be addressed at the operational
level. Decision support tools that integrate climate information, particularly at the
seasonal scale, may be able to help water managers improve allocation decisions
with a better understanding of expected reliability. Chapter 6 explores techniques
for designing, supporting, and evaluating alternate reservoir allocation strategies
based on climate information, as well as other ways of incorporating climate
information into operations planning for water supply systems.

CONCLUDING REMARKS
The 3-step climate risk management approach outlined in this chapter is not the only
method for managing hydroclimatic risks and opportunities. However, in order for
any approach to be successful, all of the key concepts captured in these three steps
are necessary. It is critical to assess the historical hydroclimatic risk based on both
hazard occurrences and their consequences. Such an assessment requires a dialogue
with relevant stakeholders in addition to climate professionals who can locate and
interpret data. Managing risks must also involve engaging with colleagues in
climate science to develop a shared understanding of how hydroclimatic risk is
likely to change in the future (across all time scales). Ultimately, this knowledge
must be translated into anticipatory action through some balance of operational
decision making and planning. Chapter 6 explores some of the practical details
involved in implementing and improving the final step.
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Chapter 6

Techniques for using climate
information in planning and
operations

INTRODUCTION
The climate risk management framework described in Chapter 5 identifies the steps
for characterizing the hydroclimatic risks facing a water supply system and
determining how climate information can reduce the uncertainty contributing to
these risks. This facilitates anticipatory actions in order to manage hydroclimatic
risks and mitigate the possible negative consequences of climate variability.
There are a variety of techniques for taking advantage of climate information in
developing these anticipatory actions. This chapter outlines some of the
innovations in this field and demonstrates some key techniques. After focusing
exclusively on integrating climate information in reservoir operations and
management in the first part of the chapter, the second part considers other
techniques with broader applications.

Section 1: Reservoir management
We focus our discussion in this section on using climate information in multipurpose
reservoir operations balancing the water supply needs of multiple user groups (e.g.
municipal, industrial, agricultural and hydropower users). By addressing these more
complex situations requiring balancing multiple objectives, the principles and
techniques described below can easily be applied to reservoirs with single or
many users. The discussion is focused on operating decisions made on a monthly
or seasonal basis (as opposed to hourly or daily operations, such as flood control).
While we primarily discuss single reservoirs, all the concepts can be applied to
more complex multi-reservoir systems. The section begins with a discussion of
integrating climate information in reservoir rule curves. This also provides a basis
for understanding how climate information can be used in broader decision
support systems. We then examine the importance of evaluating outcomes from
these techniques and explore this in the context of a stylized example.

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



Section 1.1: Storage rule curves
The operation of many reservoirs is guided by storage rule curves, which specify
target storage levels for different times of the year. The goal is to provide
sufficient water during dryer periods and provide reservoir space for refill during
wetter periods by maintaining the target storage elevations. Historically, rule
curves have been developed through trial-and-error simulation of the reservoir
system (accounting for inflows, releases, evaporative losses, etc.). However,
water managers can also use optimization methods similar to those described in
section 2.1 of Chapter 2. Most methods determine the storage level requirements
based on a targeted reservoir reliability. Figure 6.1 shows an example of a storage
rule curve, along with the average monthly inflows to the reservoir. As shown in
this figure, the reservoir is drawn down during the dry season and is expected to
refill during the wet season each year.

If storage levels drop (or are projected to drop) below the rule curve, water
releases may be curtailed. The amount of the curtailment or hedging, and the
trigger levels for initiating various levels of curtailment, are important
components of a reservoir operating policy. A storage rule curve alone does not
provide a complete set of rules for operating a reservoir because there is no
specification of how much releases can (or should) be increased or decreased if
the storage deviates from the target levels. Thus, some combination of a storage
rule curve and a hedging rule with specified rationing factors is typically applied
in practice. For example, if the storage drops below a given rule curve, releases to
meet various user demands are not completely shut off, but rather are curtailed by
some amount in accordance with the storage deficit.

Figure 6.1 Storage rulecurveandaveragemonthly inflows toLakeMadden,Panama.
Reservoir level is drawn down during dry season with the expectation that higher flows in the wet
season will refill it each year. Source: Adapted from inflow data, USACE (2000).
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Even though conditions such as initial storage level, inflows and user demands
can vary significantly, reservoir operators generally use static rule curves that
remain the same from year to year. Since rule curves are generally developed to
avoid shortfalls during a worst case scenario, water managers often feel
comfortable relying on them to support decisions. However, the worst case
scenario is drawn from historical experiences and likely does not capture
nonstationarity in the system. In addition, managing only to avoid a worst case
scenario limits the ability to take advantage of possible opportunities from
available water under conditions that prevail in most years. These concerns can
be partly addressed by updating rule curves and developing multiple rule curves
that take into account relevant conditions, as described in the next section.

Conditional storage rule curves
Although rule curves are generally static and based on current storage in the
reservoir, they can also be derived from other quantities or indicators. For

Figure 6.2 Example of a conditional (adaptive) flood storage rule curve set, based on
conditions at the Libby Dam in Montana, United States.
With increasing snowpack, flows are expected to be higher, resulting in the need for increased
flood control storage. The rules indicate that increased snowpack conditions up to January
should lead to drawdown of the reservoir to allow for increased flows from the snowpack melt.
Units are in acre-feet, where 1 acre-foot= .001233 mcm. Source: Hamlet et al. (2002).

Techniques for using climate information in planning 101

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



example, sets of rule curves may be developed to account for antecedent conditions
(e.g. precipitation in the last 15 days), or projected inflows to the reservoir. The
water manager can use multiple rule curves: one for dry antecedent conditions
(based on historical record), another for wet conditions, and a final one for
average conditions. Figure 6.2 shows an example of a flood storage rule curve set
with rule curves conditioned on snowpack-based runoff forecasts. Hydrologists
have integrated such snowpack run-off considerations into operation rules for
decades (Beard, 1963). These are sometimes referred to as conditional or adaptive
rule curves.

In Figure 6.2, rule-based release decisions starting in January rely on antecedent
conditions affecting snowpack. If antecedent conditions up to January had resulted
in relatively high snowpack, the water manager can use this rule curve to suggest
that reservoir levels can be drawn down to allow for sufficient flood control
storage in April. While the goal in this case is to reserve adequate flood control
storage, a similar approach could be used for water supply. In the case of
multi-reservoir systems, the combined storage of the reservoirs may be considered.

Water resources managers can apply the basic concept of conditional or adaptive
storage rule curves to information based on seasonal climate forecasts. Assume we

EXAMPLE 6.1: Developing streamflow forecasts for use in water
resources management that integrate interannual climate variability
(ENSO), decadal climate variability (PDO), and snowpack

The Climate Impacts Group at the University of Washington has been working
on streamflow forecasts for rivers in the Pacific Northwest region of the United
States for over a decade. They have identified three types of rivers in the
region: snowmelt dominated, rain dominated, and mixed (transient snow).
The snowmelt dominated rivers have the most significant seasonal
hydrologic response, indicating that the streamflow is most variable and
dependent on seasonal conditions. Additionally, the team found that both
ENSO conditions and the phase of the Pacific Decadal Oscillation (PDO)
impact streamflow for the 26 rivers they studied in the region (Figures 6.3
and 6.4), with the greatest effect on snowmelt dominated rivers. (For a
further example of the interaction of snowmelt, ENSO and PDO, see Hidalgo
& Dracup (2003), which focuses on the Upper Colorado River Basin in the
United States).

Based on these findings, members of the team developed hydrological
forecast models for specific rivers based partly on initial snow conditions,
and integrating the ENSO climate signal and the existing phase of the PDO.
For the Columbia River, the forecasts provide much greater skill and
increase the lead-time by about six months compared to existing statistical
forecasts based on observations of snowpack (Hamlet & Lettenmaier, 1999).
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The Climate Impacts Group has continued to develop experimental,
real-time twelve month forecasts for hydrologic conditions in the Western
United States (see http://cses.washington.edu/cig/fpt/waterfc/weststream
flowfc.shtml). They also share these forecasts and other information
regarding ENSO conditions, the PDO status and streamflow forecasts via
their Climate Outlook website and workshops with utilities, water managers,

Figure 6.3 Probability of flooding and average historical inflow for the
Columbia River based on ENSO and PDO.
Panel (a) shows the probability of flooding for snowmelt dominated rivers based on
ENSO/PDO phase. A value of .8 is equal to an 80% probability of flooding during
spring and summer periods. La Niña conditions and the cool PDO phase increase
flooding probability relative to opposite phases. Panel (b) shows the average historical
inflow for Columbia River based on ENSO and PDO phase. Units are in cubic feet per
second (cfs), where 1 cfs= .0283 cubic meters per second (cms). Source: (a) Climate
Impacts Group, Center for Science in the Earth System at University of Washington.
Accessed at http://cses.washington.edu/cig/res/ hwr/deadendfigure4.shtml (b)
Hamlet and Lettenmaier (1999).
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have an initial static rule curve that was developed based on the climatological
record, with the goal of ensuring reservoir refill with a high degree of reliability.
We can then create a conditional rule curve that can be adjusted up or down to
maintain the same level of reliability based on the forecasted reservoir inflows.
For example, if the forecast indicates that wet season inflows will likely be higher
than the climatological average, the reservoir may be drawn down further during
the dry season to maximize beneficial uses. However, if the forecast indicates
inflows will likely be less than average, the reservoir may be kept higher to
ensure refill. Figure 6.5 shows an example for the Madden Reservoir in Panama,
with separate rule curves based on the observed ENSO state.

This is a very simple example, and in practice a more detailed study would likely
be needed to account for the consequences of shortfalls in water allocations and
carry-over storage, the reliability of the forecasts, and the ability to update
forecasts or mitigate consequences over time. The simulation and optimization
methods discussed in Chapter 2 and Appendix 1 may prove useful in such a
study. Taken together, these methods demonstrate how seasonal climate forecasts
might be used to guide decisions so that anticipatory actions can be taken to
improve management outcomes based on the available climate information. The
following section explores how such conditional rule curves and other climate
forecast-based tools can support water allocation.

forecasting agencies and the general public in the region (see http://cses.
washington.edu/cig/fpt/cloutlook.shtml).

Figure 6.4 Streamflow forecast for the Columbia River for 1999.
This graph is based on resampling from the historical record using analog conditions to
predicted ENSO and PDO phase, as well as snowpack conditions produced. Produced
in June and offering a six month lead-time. Source: Hamlet and Lettenmaier (2000).
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Section 1.2: Integrated forecast-decision support models
In order for climate information to improve water resources management, it must
somehow be integrated into decision making. One technique for achieving this is
to implement a water allocation decision support model that uses climate-based
forecasts as inputs. Following the discussion in Chapter 5, the basic idea is to use
climate information to narrow the range of likely reservoir inflows in order to
support improved water allocation decisions (i.e. avoid decisions that lead to
shortfalls or fail to take advantage of available water). One way to proceed is
to explore how forecasts can be integrated into existing models and approaches in
a variety of ways, often using simulation, optimization or some combination
of the two.

Conventional water allocation models have typically been deterministic (i.e.
based on a single expected streamflow sequence), as described by Yeh (1985) and
Lall and Miller (1988). More recently, water managers and researchers have
started to focus on the probabilistic nature of streamflow and streamflow forecasts.
These inputs are often represented in the form of ensembles, or sets of possible
streamflow sequences representing the range of future values. As suggested in
Chapter 5, it is critical to consider a range of possible scenarios informed by
forecasts and associated uncertainty. Conventional water allocation models can

Figure 6.5 Storage rule curves and average monthly inflows to Lake Madden,
Panama, for El Niño events, La Niño events and across all years.
Rule curves are adjusted in May to reflect the reservoir drawdown suggested based on expected
inflows the rest of the year to ensure approximately the same reliability of refill by the end of the
year. Since La Niño events lead to higher average inflows for this system, the rule curve
decreases to recommend drawdown and allow for increased inflows to refill the reservoir. El
Niño events lead to drier than average conditions and are accompanied by a higher rule
curve. The model assumes perfect foresight of ENSO conditions (i.e. perfect knowledge of
whether one is entering an El Niño or La Niña event). Source: Adapted from inflow data,
USACE (2000); ENSO data accessed from NOAA Climate Prediction Center at http://www.
cpc.noaa.gov/products/analysis_monitoring/ensostuff/ ensoyears.shtml.
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often be adapted to utilize ensemble inflow forecasts. Below we present some
examples of possible methods for achieving this for seasonal inflow forecasts.

Kracman et al. (2006) describes a probabilistic optimization model of the
Highland Lakes system in Texas, USA. The model receives ensemble reservoir
inflow forecasts and determines water management decisions that maximize the
expected value of an economic objective function. In this initial study, the
ensemble flow forecasts are based on climatology, with each sequence sampled
from the historical record and assumed equally likely. Thus, this approach does
not actually consider conditional seasonal forecasts.

However, several procedures have been developed to allow consideration of
seasonal forecasts in probabilistic optimization models. One approach is to use
sequences from the historical record, but adjust the conditional probability of
each sequence to match the probabilistic forecast (Croley, 2000). Another
approach is to sample sequences from the historical record according to the
conditional probability forecast. This can be performed using a method such as
the nearest-neighbor bootstrap (Lall & Sharma, 1996; Grantz et al. 2005), as
illustrated in Figure 4.6 of Chapter 4.

EXAMPLE 6.2: Integrating climate information into decision support
for agriculture

Highly variable climate and impending threats from climate change are
intensifying concerns over water allocation for agricultural needs in Australia.
There is a wide range of climatic phenomena affecting rainfall variability
across various time scales over the continent (e.g. a phenomenon called the
Madden-Julian Oscillation (MJO) at the intra-seasonal time scale, ENSO
operating at seasonal to interannual time scales, and the Pacific Decadal
Variability). Decisions in the agricultural sector also occur at similar time
scales as these climatic patterns, including logistics and crop management
within the season, crop sequencing and rotations at the interannual time
scale, and crop industry investments made at a decadal scale (Meinke &
Stone, 2005). The ability to forecast rainfall and climate conditions thus has
significant implications for agricultural and irrigation-related decision making
in Australian.

While not all of the climatic phenomena can be adequately modeled or
skillfully forecasted, seasonal climate models are particularly promising for
the Australian context. A variety of operational seasonal forecast approaches
have been developed to serve as inputs to crop models and irrigation
allocation models, including both analog statistical approaches based on
historical conditions related to ENSO phases and GCM-based approaches,
which appear to offer increased skill during a critical cropping period in April
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when ENSO conditions are a less reliable predictor (Stone & Meinke, 2005).
There is increasing emphasis on building collaborative relationships between
climate professionals and agricultural decision makers and institutions.

One example of an outcome from these collaborations is the development
of the WaterWorks decision support tool that supports Australian irrigators in
making long- and short-term irrigation infrastructure investment decisions at
the farm level (Khan et al. 2009). The tool uses simulation and optimization
techniques to model costs and benefits of cropping, management,
investment and water allocation decisions. Climate-based seasonal water
forecast models can serve as an input to predict water availability and
simulate allocation, which can then be used to optimize water trading prices.

The tool has been validated and accepted by a community of irrigators and
researchers in New South Wales, Australia, showing possible economic
benefits (Khan et al. 2009). In a separate study, researchers have estimated
that improved seasonal allocation forecasts could produce significant
economic benefits for irrigators, particularly when water scarcity is expected
to results in lower than average allocations (Mushtaq et al. 2009).

Figure 6.6 WaterWorks seasonal investment decision tool.
Climate-based seasonal forecasts can provide the input for the surface water allocation.
Source: Khan et al. (2009).
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Sankarasubramanian et al. (2009) describe a simulation model of the Angat
Reservoir in the Philippines, which provides water supplies to the City of Manila.
The model receives probabilistic reservoir inflow forecasts for the October-
February season based on a GCM model that is run with persisted SSTs
(Figure 6.7). The probabilistic reservoir inflow forecasts are represented as
ensembles of monthly inflows (N= 500), which are generated based on the
conditional mean and point forecast error of the forecast model (in this case a
principal components regression model). It is assumed that the monthly flows
follow a multivariate normal distribution and that the month-to-month correlation
of the forecasted flows is the same as climatology.

The reservoir model uses the probabilistic inflow forecasts to determine the water
allocation for municipal, agricultural and hydropower uses. Sankarasubramanian
et al. (2009) modify the conventional allocation model to accept forecast
ensembles in the form of climate-conditioned streamflow distributions. Water
allocation is simulated by following a storage rule curve, requiring a specified
reliability of being above the curve at the end of the season, and assuming a
simple priority-based rule which allocates water first to municipal users, then
agricultural, and finally hydropower.

Sankarasubramanian et al. (2009) present their allocation model as a “dynamic
allocation framework”. A slightly different approach builds off the concept of

Figure 6.7 Conditional distributions of seasonal streamflow forecasts based on
precipitation forecasts from a downscaled GCM using previous season SST.
The updated seasonal streamflow forecasts are issued in the beginning of October for the
remaining months in the October-February season for the period 1987–2001. Source:
Sankarasubramanian et al. (2009).
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conditional rule curves described above. Brown et al. (2009) run simulations of the
same system, the Angat Reservoir, that utilize rule curves that are updated each year
based on climate-based inflow forecasts. Such “dynamic rule curves” are an
emerging technique for integrating inflow forecasts directly into storage rule
curves, which can then be imbedded in a full decision support system, in order to
support allocation decision making.

Section 1.3: Evaluation of outcomes from using climate-based
forecasts
When developing and implementing decision support tools that rely on climate
forecasts, it is essential to evaluate their possible benefits and assess possible
disadvantages. Chapter 4 describes techniques for validating the climate forecasts
and determining their skill. Water resources managers can work with climate
scientists to develop “hindcasts”, which are simulated forecasts for some period in
the past that can be compared to actual observed values (e.g. for inflow) to help
evaluate skill. The specific hindcast procedure depends on the method being used
to generate the forecasts. For example, while you might test a dynamical forecast
model by comparing observed values to those predicted from initializing the
model with historical conditions, you could evaluate a statistical forecast model
using cross-validation techniques similar to those explored in Chapter 4 and
Exercise 2. A set of hindcasts can also serve as an input to a water allocation
model (e.g. storage rule curve or decision support system) to determine whether or
not using the hindcasts would have led to increased benefits.

To demonstrate some more detailed methods for evaluating benefits, we provide
an assessment of a stylized decision support tool based on a combination of
historical and synthetic data for the multipurpose Angat Reservoir in the
Philippines. For this example, we simulate a simple seasonal climate forecast
based on a linear regression between historical SST anomalies (using the Nino3.4
index) and Angat reservoir inflows (see Chapter 4 and Exercise 2 for details on

Exercise 4: Integrating seasonal forecast information into reliability
analysis for a multipurpose reservoir

Exercise 4 builds off previous exercises to demonstrate how the probabilistic
seasonal inflow forecast developed in Exercise 3 can be applied to historical
conditions and used to determine expected reliability for a multipurpose
reservoir. Here you will be able to construct a seasonal inflow forecast, use it
as an input in a stylized decision support model, and observe how changes
in water allocation can affect the expected reliability. The exercise also
provides the observed inflow from the historical record as a point of
comparison for the forecasted inflow.
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this approach). We then apply the model with historical values of SST anomalies to
create a series of forecasts for the system.

We also developed a stylized decision support tool that determines an allocation
scheme betweenmunicipal, agriculture and hydropower users. The stylized decision
support tool in Exercise 4 allows exploration of expected reliability for alternate
water allocation choices. The expected reliability for each choice of allocation is
based on the available seasonal forecast of inflow. This is valuable to see the
implications of using the forecast in specific years. However, this does not
provide the user with an estimate of expected long-term benefits of adopting
water allocations that are responsive to the seasonal inflow forecasts. We can add
a further sophistication to the decision support tool to enable such estimates of
long-term benefit. In doing so, allocations can be determined to achieve a desired
reliability. For the illustrative results presented in the remainder of this section,
the desired reliability is set to 90%. This then allows comparisons of the statistics
of reservoir performance (long-term average, number of failures, etc.).
Comparisons may be made for a system that is optimized for the (climatological)
inflows of the last 30 years versus a system that is optimized using a seasonal
forecast of inflow in each year. We can also use this tool to compare the
performance of the reservoir in the presence of imposed trends in the inflows, and
explore which strategies are most robust – a valuable insight in the presence of
the global environmental changes that are underway.

In estimating the water allocation that corresponds to 90% reliability, the standard
error on the seasonal forecast plays a critical role. The standard error determines the
distribution of inflows, which is needed to find the allocation that corresponds to a
90% probability of successful delivery. If the standard error is underestimated,
forecasts will be too confident, and allocations will respond too strongly to the
forecast. Therefore, we make a conservative estimate of the standard error as the
standard deviation of forecast errors, after the application of a cross-validation
procedure (see Chapter 4, Section 2.1, evaluation of forecast model skill).

The stylized reservoir model assumes that the allocation schemes are determined
at the beginning of the season and are not updated as the season progresses.
Although this is not a fully realistic assumption, it allows us to simplify the
model while still demonstrating possible outcomes from using climate-based
forecasts. Additionally, the evaluation only considers the hydrologic impact on
the reservoir and does not translate this into economic losses or benefits. A cost
function could be applied to the findings to estimate the economic impacts. While
this is a stylized example, the methods and concepts can easily be applied to
many other contexts and systems.

General results
Table 6.1 and Figure 6.8 reveal the modeled frequency and average value of
surpluses, shortfalls and spills. For this example, a surplus occurs whenever the
amount of water allocated is less than the amount available based on observed
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inflows. This can be considered a lost opportunity because more water could have
been allocated to water users. A spill occurs whenever the surplus is so large that it
exceeds the reservoir storage capacity and must be released (spilled). Finally, a
shortfall occurs whenever the amount of water allocated due to the forecast
exceeds the amount of water available based on observed inflows. For this
example, it is assumed that there is always sufficient water in the reservoir to
meet total allocations. However, the reservoir may need to be drawn down below
the lower threshold to meet the demand, resulting in a shortfall. Thus, a shortfall
is the difference between the end-of-season volume and the lower threshold level
when this value is negative.

The results above illustrate that the SST-based forecast offers benefits over using
climatology to make allocation decisions. While there are certain years in which
using the SST-based forecast inflows does not result in an improved outcome (i.e.
results in an even worse outcome than using climatology), using the forecast
inflows reduces both the average and maximum shortfalls, surpluses and spills.

Table 6.1 Differences between end-of-season reservoir volume and desired
minimum threshold (based on the lower rule curve).

Climatology Forecast

Average difference (mcm) 478 421

Average surplus (mcm) 564 478

Surplus frequency 35 36

Max surplus (mcm) 1380 1103

Average spill volume (mcm) 254 215

Spill frequency 13 9

Max spill volume (mcm) 718 440

Average shortfall volume (mcm) −122 −99

Shortfall frequency 5 4

Max shortfall volume (mcm) −281 −194

The data here take into account observed inflow from the historical record and total amount
allocated to municipal and agriculture users (i.e. difference= end-of-season volume minus
threshold level). Period of analysis is 1968–2007. For “Climatology”, amount allocated is based
on 3-month inflow projection using the distribution from historical climatology. For “Forecast”,
allocated amount is based on a distribution from an SST-based inflow forecast. Positive
difference values (surplus) indicate amount of water in excess of lower threshold volume, while
negative difference values (shortfall) indicate amount of water less than lower threshold volume.
Spill volume indicates amount of water in excess of upper threshold volume that must be release
to protect the reservoir. Source: Simulated data from IRI; Angat inflow and storage level data
from Philippines National Power Corporation.
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These represent lost opportunities to the system through either lost revenues or costs
due to shortfalls.

Another way of considering the benefit is to compare the end-of-season
reservoir level (relative to the critical threshold) using climatological information
(478.0 mcm) and climate forecast information (421.7 mcm) (see Table 6.1). This
indicates that the reservoir is, on average, drawn down an extra 56.3 mcm each
year when using the climate forecasts, while nonetheless maintaining the same
reliability. The extra draw-down represents the additional water that it is possible
to allocate to users, which over the 40-year simulation period, amounts to
56.3 * 40= 2252 mcm.

Results by sector
We can also separate the analysis by sector to understand how managing with the
SST-based inflow forecast might affect the agriculture, municipal and
hydropower users. Table 6.2 and Figure 6.9 demonstrate the results of this
analysis. For these results we use the terms lost opportunity and shortfall to more
appropriately reflect how the conditions are experienced by each sector. As
described above, a lost opportunity occurs due to a surplus of available water. A
shortfall, on the other hand, means that meeting the requested allocation required
reducing the reservoir storage below the lower threshold level. Since this is a
priority system with municipal users having highest priority, it is assumed that

Figure 6.8 Time series of differences between end-of-season reservoir volume and
desired minimum threshold (based on the lower rule curve).
Please see Table 6.1 for more details. Source: Simulated data from IRI; Angat inflow and storage
level data from Philippines National Power Corporation.
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the shortfall losses will be borne fully by agriculture (in the form of future reductions
to address the reservoir deficit). In these results, each occurrence of a spill is
considered as a lost opportunity for hydropower, since the allocation rules for the
model indicate that water above a given threshold (the spill level) can be released
for hydropower generation.

The results illustrated above reveal how the benefits of using a seasonal forecast
rather than climatology are distributed across sectors. With the exception of lost
opportunities for municipal users, the forecast consistently reduces the frequency
and magnitude of negative outcomes across sectors. A lost opportunity for
municipal can occur in years forecast to have very low inflows, such that overall
allocation is made below the fixed municipal demand, yet the actual outcome is
for inflow that is greater than the amount allocated. A lost opportunity for
municipal users could cause significant policy difficulties and would cause
significant difficulties and would need to be addressed before implementing an
actual seasonal forecast model. In addition to illustrating possible benefits,
performing evaluations such as this one are also helpful for identifying these
kinds of concerns.

Table 6.2 Differences between amount of water allocated to different users and
amount of water actually available above lower threshold based on historical
observed inflows.

Climatology Forecast

Lost opportunity frequency for agriculture 35 33

Average lost opportunity for agriculture (mcm) 428 383

Shortfall frequency for agriculture 5 5

Average shortfall for agriculture (mcm) −113 −50

Lost opportunity frequency for municipal 0 3

Average lost opportunity for municipal (mcm) 0 111

Lost opportunity frequency for hydropower 9 5

Average lost opportunity for hydropower (mcm) 186 124

The period of analysis is 1968–2007. For “Climatology”, the amount allocated is based on a
3-month inflow projection using the distribution from historical climatology. For “Forecast”, the
allocated amount is based on a distribution from an SST-based inflow forecast. Positive values
(lost opportunity) indicate the amount of water in excess of lower threshold volume that could
have been allocated to the user but was not. Negative values (shortfall) indicate the amount of
water less than the lower threshold (i.e. the amount that should not have been allocated and
resulted in a shortfall). Since hydropower can only operate if other users receive their requested
allocation, shortfalls do not occur for hydropower generation. Source: Simulated data from IRI;
Angat inflow and storage level data from Philippines National Power Corporation.
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Figure 6.9 Lost opportunities and shortfalls by sector (a) based on climatology, (b)
based on forecast, (c) contrasting climatology with forecast.
This is a time series of differences between the amount of water allocated to different users and
the amount of water actually available above the lower threshold based on historical observed
inflows from 1968–2007.
The averages shown in Panels (a) and (b) are calculated across all years and include both
shortfalls and surpluses. Source: Simulated data from IRI; Angat inflow and storage level data
from Philippines National Power Corporation.
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Results with consideration of a long-term trend
We are also able to use the stylized decision support model to assess how different
year-on-year management strategies alter reservoir performance in the presence of
long-term trends. One management strategy that we explore is the use of the
seasonal forecast (as discussed above). Now the question is the extent to which
benefits from seasonal forecasts are altered by the presence of a trend, as well as
the extent to which using seasonal forecasts may damp system sensitivity to
climate trends. Actions that reduce sensitivity to climate are recognized as a
potential component of adaptation (Mastrandrea et al. 2010). By having in place
systems that are flexible and able to respond to real-time monitoring over weeks
to months, and/or short-term seasonal forecasts, society can take on actions that,
over time, are better able to cope with the new emerging climate patterns. While
such enhanced management of climate variability is now widely acknowledged to
be a contributor to adaptation (e.g. UNDP 2002; Meinke & Stone 2005; Klopper
et al. 2006; Ziervogel et al. 2010), the extent of the contribution remains to be
proven (Someshwar 2008). There are well-documented constraints to establishing
flexible risk management systems for climate variability, including in the water
sector (Lemos et al. 2002; Rayner et al. 2005), but also examples of progress
(Pagano & Garen 2006; Feldman & Ingram 2009).

A further source of information that may be drawn upon to adjust management
strategy each year is updates of the best estimate of the low-frequency climate
state (i.e. an attempt to track any emerging trends and use this to estimate the
expected climate for the coming year) (e.g. Livezey et al. 2007; Arguez & Vose
2011; and application example discussed in Siebert & Ward 2011). We illustrate
incorporation of both seasonal predictions and updated climate normals, as
options to potentially increase resilience in the presence of climate change.

Since this is a more complex system to construct and envision, we illustrate
reservoir performance for one realization of interannual variability over the 2008–
2047, and for two climate scenarios: no trend and a 20% downward trend. One
approach to managing the reservoir is to make the same allocation each year,
targeting 90% reliability, based on the historical climatology information (1968–
2007). This can be termed static allocation (SA), since allocation is fixed to be
the same each year. When management of the reservoir allows allocation to
change each year based on available climate information, this can be termed
dynamic allocation (DA); this is an example of dynamic management. The
dynamic approach may contribute to making the reservoir more robust in the
presence of climate variability and change.

To generate inflow forecast-observed pairs for 2008–2047, the forecast-observed
pairs for 1968–2007 are randomly rearranged*. Therefore, there is no change in the

*For the illustration here, we assume no change in seasonal forecast skill due to global change processes.
Generally, Greenhouse Gas forcing is considered to likely have most impact on the pattern of seasonal
prediction skill in mid-latitudes (e.g. Sterl et al. 2007; Meehl et al. 2006) with many of the
teleconnections that give rise to seasonal prediction skill in the tropics expected to remain relatively robust.
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correlation skill of the forecasts, which is the same as for 1968–2007 (r= 0.55). The
40-year rearrangement used (thick lines, Figure 6.10) was chosen from a large
sample of random rearrangements, based on having smallest (near-zero) trends
over 2008–2047 (to enable the impact of the addition of a trend to be clearly
seen). To generate scenarios with a 20% downward trend, the same adjustment
procedure is applied as in Chapter 5 (leading to the thin lines on Figure 6.10).

In the presence of climate change, for risk management applications, it makes
sense in principle to update the estimate of the background climate state each
year, based on the recent period that is judged representative. The size and shape
of averaging window to use for risk management problems in the presence of
varying magnitudes of GC and MDV could be explored within the modeling
framework used here. For illustrative purposes, we demonstrate a first order
assessment following the standard WMO 30-year averaging window (discussion
in Arguez & Vose 2011). The 1968–2007 period is assumed to be stationary, so
this is incorporated in performing a 30-year updating procedure in which 1968–
2007 values are set to the mean for that period. The updated climate normal for
year i (as shown on Figure 6.10, green line) is based only on information
available up to year i–1 (i.e. the average of the previous 30 years), thereby
representing an operationally implementable option.

Figure 6.10 Creating forecast-observed inflow scenarios for 2008–2047.
The thick solid lines are a random rearrangement of the forecast-observed pairs for 1968–2007
(therefore correlation is the same, r= 0.55). The thin observed line adjusts the observed series to
have a downward trend of 20%over 2008–2047. The sameadjustment is applied to the forecasts
to generate the thin forecast line. Based on the inflow scenario with 20% downward trend,
the updated climate normal (i.e. updated climatology) in each year is given by the green line.
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Figure 6.10 showed seasonal forecasts with no trend, and seasonal forecasts with
an adjustment that matches the 20% downward trend of the observed trace. While
assuming that seasonal forecasts will be able to perfectly track a trend seems
overly-optimistic, assuming zero trend seems overly-pessimistic, especially given
examples of seasonal forecast systems that have some ability to track trends in
seasonal rainfall and inflows.2 An intermediate assumption for seasonal forecast
trend is to assume that the seasonal forecasts could at least be adjusted by the
updated climate normal estimate, such that

F′
i = Fi + Q

′
i

where F
′
i is the adjusted inflow forecast for year i (now representing a combination

of seasonal forecast and updated climate normal), Fi is the original seasonal inflow
forecast,Q

′
i is the updated climate normal for year i, expressed as the departure from

the 1968–2007 climatological inflow.
The various combinations of observed, seasonal forecast and updated climate

normal estimates (Figure 6.10) were submitted to the reservoir management
model to reveal the implications of the different management practices in the
presence of zero trend and 20% downward trend in observed inflow. First, a
baseline static allocation result is produced for comparison with dynamic
allocation approaches. Holding allocation constant in the presence of a 20%
downward inflow trend results in a gradual decline in end-of-season reservoir
volume (Figure 6.11a, blue line). This finds expression in the summary statistics
such as deficit frequency (increasing from 5/40 to 7/40) and maximum deficit
(increasing from 281 mcm to 406 mc) (Table 6.3). The following results provide
an illustration of the extent to which dynamic allocation might alter such
sensitivity to climate trends.

In the presence of the downward 20% inflow trend, water allocation based on
updated climatology leads to much less downward trend in end-of-season volume
(Figure 6.11a, green line). The water allocation process gradually recognizes the
downward trend in inflow and therefore learns to manage the reservoir more
conservatively. The overall impression in Figure 6.11a is that responding to
updated climate normals can substantially contribute toward making the reservoir
sustainable in the presence of an inflow trend of this magnitude (at least in terms
of allocations to avoid growing deficit problems).

Next, reservoir sensitivity to the two inflow scenarios is explored when seasonal
forecasts are used to inform water allocation. Firstly, the best case scenario is
considered, when seasonal forecasts fully track the observed trend. For this case
study, the performance is almost unaltered in terms of deficit and spill (compare
columns 2 and columns 5 in Table 6.3). The reservoir is able to maintain its

2While a GCM-based forecast would likely better capture such trends, there is evidence that statistical
seasonal forecasts are able to track trends and longer term variability well (e.g. Ward, 1998; Hamlet &
Lettenmeier, 1999), though this should be assessed on a case by case basis.
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productivity and reliability, through a gradual adjustment in the allocation,
responding to the downward trend in seasonal forecasts (Figure 6.10, thin blue
line). The gradual adjustment is small compared to the allocation adjustments that
are applied each year to manage the interannual climate variability and which
deliver the improved performance of the reservoir through the use of seasonal
forecasts.

Figure 6.11 End of March deficit/surplus (reservoir volume relative to the critical
threshold, the lower rule curve). (a) Management using historical climatology
information (for observed of no trend and observed of 20% downward trend), and
management using updated climate normals (for observed of 20% downward
trend), (b) Management using seasonal forecasts in the presence of a 20%
downward trend in the observed inflow. The seasonal forecasts are constructed to
track the observed trend to varying degrees. Upper horizontal line is the spill level.
Note how generally the use of seasonal forecasts (as seen in (b)) reduces the
large spills and large deficits (as seen in (a)), and this benefit is maintained in the
presence of a 20% downward inflow trend.

Managing Climate Risk in Water Supply Systems118

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



Ta
b
le

6
.3

R
e
se

rv
o
ir
p
e
rf
o
rm

a
n
ce

u
n
d
e
r
d
iff
e
re
n
tc

lim
a
te

sc
e
n
a
rio

s
(n
o
tr
e
n
d
co

m
p
a
re
d
to

2
0
%

d
o
w
n
w
a
rd

tr
e
n
d
)
a
n
d
d
iff
e
re
nt

re
se

rv
o
ir
m
a
n
a
ge

m
e
n
t.

In
fl
o
w

s
c
e
n
a
ri
o
:

2
0
0
8–

2
0
4
7
,n

o
tr
e
n
d
in

o
b
s
e
rv
e
d
in
fl
o
w

2
0
0
8–

2
0
4
7
,d

o
w
n
w
a
rd

in
fl
o
w

tr
e
n
d
o
f
2
0
%

is
im

p
o
s
e
d
o
n
o
b
s
e
rv
e
d

B
a
s
is

fo
r
re
s
e
rv
o
ir

m
a
n
a
g
e
m
e
n
t:

H
is
to
ri
c
a
l

c
lim

a
te

S
e
a
s
o
n
a
l

fo
re
c
a
s
t

H
is
to
ri
c
a
l

c
lim

a
te

U
p
d
a
te
d

c
lim

a
te

S
e
a
s
o
n
al

fo
re
c
a
s
t
(1
)

S
e
a
s
o
n
a
l

fo
re
c
a
s
t
(2
)

S
e
a
s
o
n
a
l

fo
re
c
a
s
t
(3
)

A
ve

ra
g
e
e
n
d
-o
f-
se

a
so

n
vo

lu
m
e
(m

cm
)

4
7
8

4
2
1

3
9
6

4
3
9

4
1
3

3
3
0

3
7
7

D
e
fic
it
fr
e
q
u
e
n
cy

(y
e
a
rs
)

5
4

7
7

4
8

6

A
ve

ra
g
e
d
e
fic
it
(m

cm
)

−1
2
2

−9
9

−1
3
5

−1
1
6

−1
0
0

−1
0
8

−9
4

M
a
xi
m
u
m

d
e
fic
it
(m

cm
)

−2
8
1

−1
9
4

−4
0
6

−3
2
0

−1
8
5

−2
1
4

−2
0
3

S
p
ill
fr
e
q
u
e
n
cy

(y
e
a
rs
)

1
3

9
1
0

1
3

9
9

9

A
ve

ra
g
e
sp

ill
(m

cm
)

2
5
4

2
1
5

2
5
4

2
2
6

2
0
7

1
5
9

1
8
7

M
a
xi
m
u
m

sp
ill
(m

cm
)

7
1
8

4
4
0

6
9
7

7
0
8

4
3
6

4
0
9

4
3
0

In
co

lu
m
n
s
5
to

7
,m

a
n
a
g
e
m
e
n
ti
s
b
a
se

d
o
n
se

a
so

n
al
fo
re
ca

st
s
th
at

tr
a
ck

th
e
o
b
se

rv
e
d
tr
e
n
d
to

va
ry
in
g
d
e
g
re
e
s:
(1
)f
o
re
ca

st
s
h
a
ve

th
e
sa

m
e
tr
e
n
d
a
s

o
b
se

rv
e
d
,(
2
)
fo
re
ca

st
s
h
a
ve

n
o
tr
e
n
d
,(
3
)
fo
re
ca

st
s
a
re

co
m
b
in
e
d
w
ith

u
p
d
a
te
d
cl
im

a
to
lo
g
y.
A
ll
m
cm

va
lu
es

a
re

d
e
p
ar
tu
re
s
fr
o
m

th
e
lo
w
e
r
ru
le

cu
rv
e

va
lu
e
(3
4
8
m
cm

).

Techniques for using climate information in planning 119

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



When the seasonal forecasts are not adjusted to track the trend, while many of the
benefits do remain (such as the general increase in water allocated, and early warning
ofmany of the drought years through low allocation and therefore avoiding the worst
deficits), there are nonetheless problems of a gradually declining end-of-season
volume and an increasing deficit frequency. For example, the deficit frequency
(8/40) for this case study is actually higher than using historical climatology
(7/40) (Table 6.3). The downward trend in end-of-season volume is clearly
present (Figure 6.11b, blue line; compare to the red line when seasonal forecasts
do track the trend). However, it is reasonable to assume that in many cases,
seasonal forecasts could at least contain trend information from an updated climate
normals approach. Using such seasonal forecasts to manage the reservoir gives a
better performance in terms of deficit frequency and average deficit (Table 6.3,
and visually apparent in Figure 6.11b, green line, where the downward trend in
end-of-season volume is substantially reduced). This suggests that such an
approach is quite effective in managing the 20% downward trend while
continuing to extract the benefits from seasonal forecasts, especially in avoiding
theworst deficits, and continuing to increase the overall productivity of the reservoir.

To make the best estimates, the results should be averaged over multiple
realizations, regenerating the series in Figure 6.10 multiple times and producing
averaged results for this Table. While most tendencies appear robust and patterns
clear (such as can be seen graphically in Figure 6.11 and Figure 6.12, and in
most of the statistics in the Table), measures relying on thresholds such as deficit
frequency can be especially sensitive to the particular realization. For example,
for the realization presented here, and under a 20% downward trend, compare the
Historical Climate results (column 3) and Updated Climate results (column 4).
While using Updated Climate gives noticeable improvement in average and
maximum deficit, there is actually no improvement in the deficit frequency (7 out
of 40 years whether historical climate or updated climate information is used for
the water allocation). This is because the marginal deficit years in this particular
realization have tended to occur in the first part of the series, when the
improvements from updated climate normals are yet to become clearly established.

An additional aspect in these adaptive management experiments is the resulting
changes in allocation characteristics. The nature of such changes can contribute to
stakeholder dialogues. To illustrate the type of insights that could emerge, we
focus on the amount of water allocated to the secondary user (agriculture) in this
system. This is the water delivery that is most variable and so is most sensitive to
management effects. Based on updated climatology, the amount of water
allocated to agriculture is gradually being squeezed to a very small amount by the
end of the simulation period (Figure 6.12). The allocations based on the seasonal
forecast have a very different character (Figure 6.12). When seasonal forecasts do
not track the trend, the allocations gradually become over-aggressive (leading to
the increases in deficit frequency). When allocations are based on seasonal
forecasts combined with updated climatology, the allocations still vary greatly
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from year-to-year, but now also gradually become more conservative (Figure 6.12,
blue line), leading to a better performance in terms of deficit frequency, while
maintaining a higher average allocation to agriculture. The average increase in
allocation to agriculture is clearly visible in Figure 6.12, and amounts to 232
mcm (average of blue line) compared to 154 mcm (average of green line).
However, years with low expected inflow can lead to very low or zero allocation
to agriculture. We advocate this kind of result be considered a contribution to
stakeholder dialogue, rather than seeking to promote any specific rigid
management system. In practice, very low allocation to agriculture may be
viewed as an early warning of increased risk of seriously low inflow levels. This
may trigger drought management agricultural practices, and/or flexible strategies
able to utilize inflow should it materialize, such as option contracts or reservoir
insurance (Brown & Carriquiry 2007). The latter can be an important component
of a dynamic water allocation system. This is because with a target reliability of
90%, the water available in the reservoir at the end of March will be greater than
that allocated on 90% of occasions. Capacity to respond to allocations revised
upwards as the season unfolds can substantially increase system productivity
(Sankarasubramanian et al. 2009).

Nonetheless, low allocation based on a seasonal forecast is rooted in probabilistic
information that genuinely indicates increased risk of low inflow. In the simulation,
2038 provides a case study (see the allocations for this year in Table 6.4) of a very
low inflow toward the end of the period when the systematic trend has substantial

Figure 6.12 Water allocation to user 2 (agriculture) in the presence of a 20%
downward trend in inflow. Allocations are based on seasonal forecasts with no
trend (red line), seasonal forecasts combined with updated climatology (blue line)
and updated climatology alone (green line). All allocations target 90% reservoir
reliability for the given year.
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expression. The allocations based on historical climatology lead to a total deficit of
406 mcm, including a deficit of 209 mcm for the primary priority user (municipal).
Using updated climatology provides some softening of the impact, leading to less
overall deficit, less of a shock for agriculture, but still the same deficit for
municipal. The seasonal forecast combined with updated climatology
communicates the increased risk of low inflow by cutting allocation back to zero
for agriculture and even substantially below the demand level for municipal. The
outcome actually produces slightly more inflow than is allocated, leading to a
small surplus of 24 mcm under this management strategy. An accurate seasonal
forecast therefore provides the potential to better manage a year like 2038,
avoiding sudden onset of severe water shortage as the extreme season unfolds,
carrying with it the potential for major impact and lasting damage. In this light,
the adaptation benefits of seasonal forecasts in the current model system can be
considered conservative estimates, since multi-year impacts of extreme droughts
are not explicitly modeled (e.g. see discussion of multi-year impacts of extreme
events in Carter et al. 2007). In summary, the analysis approach was designed to
reveal contrasting sensitivities and system properties during a 20% decline in
inflow over a 40-year period. The results have shown that system sensitivity to a
20% downward trend can be influenced substantially through adaptive
management, and contrasting options for flexible adaptation can emerge (e.g. as
implied by the blue and green lines on Figure 6.12).

Taken together, the findings from our evaluation using a synthetic decision
support tool illustrate the nuanced benefits possible from using climate-based
seasonal inflow forecasts and updated climate normals. In the explicit presence of
trends, it is important to remember that these kinds of evaluations are relatively
new and further experiments are needed to see more clearly the outcome patterns,
and adaptation benefits, of different management approaches during a climate
trend. Results can be hindered by short record lengths, which can lead to small

Table 6.4 Management case study: The low inflow year of 2038 in the
random simulation.

Basis for reservoir
management:

Historical
climate

Updated
climate

Forecast+ updated
climate

Allocation to municipal 722 722 485

Allocation to agriculture 197 111 0

Total allocation 919 833 485

Total deficit −406 −320 +24

Municipal deficit −209 −209 0

All values are in mcm.
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sample sizes unable to provide adequate characterization of the range of climate
variability, and uncertainty in future conditions. Additionally, the significant
year-to-year variability in the forecast benefits demonstrated above suggests that
forecasts alone cannot resolve all climate-related challenges in a reservoir system.
The following section offers some possible complementary techniques for
making the most of forecasts and mitigating possible risks, particularly in an
institutional context.

Section 2: Other techniques for managing climate risks
and opportunities in water supply systems
Adjusting decisions related to reservoir releases is a very straightforward and direct
approach to the use of forecasts. This section offers other techniques for using
climate information to improve the resilience of water supply systems. In general,
these are based on good practices from water resources management. These
techniques can facilitate integration of climate information (and the advance
warning that often results) to support proactive decision making. They can help
manage hydroclimatic challenges, such as droughts or floods. Various approaches
and some example applications are provided below.

Section 2.1: Managing drought risks to water supply through
redundancy (multiple and on-demand sources)
A water system that is dependent on a single source of water is vulnerable to any
interruptions to that source. For a surface water system, drought is a primary risk
to the ability to supply needed water. If a drought affects a single supply system,
there are limited options for providing water. In most cases, the water authority is
forced to impose water use restrictions or ration water supplies. This causes
hardship on the water users and can impose economic losses on low priority water
users, such as in agriculture in many systems. Identifying and accessing multiple
sources of water is a way to manage the threat of drought to a single source
system. Climate information is useful for designing and managing a multi-source
system, and the use of climate information is described in each of the topics below.

Conjunctive use of surface and groundwater
The operation of groundwater and surface water sources together to provide reliable
water supply is called conjunctive use. Groundwater is commonly exploited as awater
supply source and, in some parts of the world where there is little surface water, it
represents the only available water source. In many parts of the world, however,
surface and groundwater are both available. Surface water tends to be more
variable and subject to the occurrence of droughts, while groundwater tends to be
relatively stable and subject only to very long-lasting droughts that persist over
several years to decades and beyond. However, groundwater is also prone to
overuse and, when used exclusively, can result in groundwater mining, which
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occurs when the extraction rates exceed recharge rates and groundwater levels drop.
The different temporal characteristics of these two water sources can be exploited to
providemore reliablewater supply.Groundwater represents an excellent complement
to a surface water system. Groundwater is able to supply water when surface water
sources are deficient. In addition, groundwater can serve as water storage when
there is excess surface water. In a process called “artificial recharge” the excess
surface water can be pumped into existing groundwater aquifers. Used together,
these sources can provide reliable water supply that is more resilient in the face of
droughts and can help prevent falling groundwater levels. Climate information
can help guide decisions regarding when groundwater sources should be utilized
and when surface water is expected to be sufficient to allow for artificial recharge.

System connectivity and multiple scale structure
The reliability of a water supply system can be enhanced by increasing the
connectivity of the system to other systems. This is typically achieved through
the construction of infrastructure, such as canals, aqueducts and pipes so that a
system can be supplied by multiple sources. Climate information can be used to
choose where to make connections. For example, connections that provide access
to water supply sources with different drought regimes will provide added
reliability compared to a connection to sources with the same drought regime.
Climate information provides the understanding of where drought typically hits
and its spatial pattern and extent, so that connections can be made to provide the
most reliability. Real options is a planning approach that may be applied in this
manner, where small upfront infrastructure investments allow the option to
connect systems in the future (Steinschneider & Brown, 2012).

Reliability of water supply and equity in its distribution for agricultural or other
uses may also be able to be improved through combining large-scale infrastructure
investment with decentralized, small-scale surface storage management. The
balance of investment between such large-scale and small-scale storage solutions
is a choice that can form part of a climate risk management strategy. Simulation
models can be developed to investigate how performance measures (e.g.
economic equity and efficiency, resilience, etc.)3 for different approaches respond
to climate change scenarios and varying system management parameters, such as
crop choice (e.g. see Lall & Kaheil, 2009). This type of assessment represents an
emerging contribution to the field of climate risk management.

Portfolio of water sources
In many cases it will not be possible to identify and make the ideal infrastructure
investments necessary to develop additional water sources for single-source water

3For more information on criteria and indicators that can help policymakers determine the appropriate
scale of water storage projects, see van der Zaag and Gupta (2008).
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supply systems. The water may not be available because it is owned by another
system or is too expensive to tap. Or additional water may only be needed for a
limited amount of time, making it uneconomical to invest in new infrastructure.
In such cases it may be possible to build a portfolio of water sources by making
agreements or contracts with other water suppliers to be able to purchase their
water in times of need. In some river basins, water markets have been established
and, these can be exploited to provide additional water sources in times of need.
An understanding of a system’s vulnerability to drought and the temporal and
spatial characteristics of drought are particularly important when designing a
portfolio of water supply sources. For example, if the different water supply
sources are all affected by the same drought, they will provide little redundancy.
It is better, when possible, to design the sources so that they access different river
basins, different climate zones and also groundwater, when possible.

Section 2.2: Climate-informed water pricing
The standard approach to managing water supply drought is to curtail water
deliveries to the water users. Due to the inconveniences and potential economic
losses that may result, this is a situation that is best avoided. Still, on occasion
there will not be sufficient water supplies and the delivery of water to users will
be curtailed. The manner in which this is done has a large effect on the impacts
of the water shortage. The typical approach is to enact uniform cuts on water use
and to restrict certain uses, such as outdoor uses. This has the advantage of
attempting to provide equity in the availability of water. However, this does not
entail equity in the economic damage that is done by the water shortage. A water
restriction on outdoor water use, for example, might have little or no impact on a
homeowner who can forgo watering the lawn, but may have a very large impact
on a business owner whose orchard trees may not survive without watering. For
this reason it may be advantageous to adjust the price of water when water is
scarce, instead of restricting certain uses of water. Price adjustments can provide
incentives for conservative water use.

Water prices can be adjusted to be more expensive during a time of drought,
which would provide a disincentive to water use and decrease the actual amount
of water used. This allows the water user to decide if a particular use of water is
valuable enough to justify water use even in a time of drought. A baseline level
of water use should be exempted from the drought pricing so that all water users
have access to basic water services without regard to their ability to pay.

Forecasts of drought may be used to adjust prices before the drought occurs.
This would be particularly advantageous where agriculture is a major water
user and the prices could be adjusted prior to farmers’ planting decisions. If the
farmer faces high water prices due to increased likelihood of an impending
drought, he or she would have an incentive to plant crops that require less
water, or to plant a smaller area. Thus, the water demand of agriculture would
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be consistent with the expected scarcity of water and help the water system
manage the drought.

Section 2.3: Other economic mechanisms for drought risk
management
The temporary nature of drought means that the responses to drought also can be
temporary. Economic mechanisms provide several alternatives for temporary
responses to water shortages. Some of these, such as water pricing, have been
mentioned above. Another source of water reliability is through water rights
transfers. The general concept is that a water supply authority could purchase the
rights to a quantity of water for use during a shortage. This might be
accomplished through a formal water market for temporary water transfers.
Although water markets are gaining in popularity, many systems continue to rely
on administrative water allocation mechanisms such as priority allocation and
participatory negotiation. Research results from the state of Ceará in Northeast
Brazil suggest that these mechanisms likely result in decreased economic
efficiency relative to well-designed water markets, with disparities varying based
on the degree of water scarcity (Souza Filho & Brown, 2009).

Rather than operating through a formal water market, a water supply authority
might arrange with specific water suppliers individually for the temporary rights
to their water. In such a case, an option contract might be utilized. An option
contract is a contract that gives the buyer of the water the option to buy the water
under specific circumstances that are agreed upon in the contract. Often, the
buyer pays the water seller for the rights to the option over a long time period,
and then pays again for the purchase of the water when the option is exercised.
For the option seller, selling the option provides consistent supplemental income
in addition to the agreed upon price for exchanging water when the option
is exercised.

Option contracts have great potential where agriculture and domestic water
supply are both major water users in a region. Since water represents the income
and livelihood of agricultural water users, they are often able to accept
compensation in exchange for their water rights on a temporary basis. For
example, an agricultural water user could forgo planting crops or decide to plant
crops that consume less water, and then lease their right to water to a domestic
water supply during drought. Typically, the value of water for domestic use is
higher than the value of water in agricultural use, which, in principle, makes such
exchanges sensible and possible.

There are some examples of the use of options and similar mechanisms within
water markets. For example, water options were incorporated with the California
Drought Water Bank of 1995, and in agreements between the irrigation districts
and the Metropolitan Water District of Los Angeles, California (Jercich, 1997;
Howitt, 1998). Michelsen and Young (1993) calculate significant potential gains
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for water options sold by agriculture to urban water agencies in lieu of purchasing
permanent water rights for Fort Collins, Colorado. The Northern Colorado Water
Conservancy District is implementing options within their contract system
(Kemper & Simpson, 1999). In Camp de Tarragona, Spain, the City of Reus has
negotiated to buy water from farmers in times of need, though no option
payments are exchanged (Tarrech et al. 1999). In general, however, water options
have not yet been fully utilized in water market exchanges.

Climate information can improve the economic efficiency of option contracts.
For example, a water supplier could use a seasonal climate forecast of impending
drought to exercise their water options and purchase water rights before the
drought occurs. If an agricultural water user holds the options and the options are
exercised prior to the investment in crops, the water can often be purchased more
cheaply.

EXAMPLE 6.3: Managing risk of uncertain water supply through water
markets and incentive systems

There is a long history of innovative water management in Spain. A group of
researchers has been studying how various economic mechanisms could be
used to address drought and rainfall patterns in the Guadalquivir River Basin
in southern Spain. Water in the basin is used for both irrigation and urban
water supply systems, including for the city of Seville. When modeling
irrigation decisions for the region, the researchers found that drought
conditions imposed significant costs on farmers, and that the costs were
exacerbated by over-allocation by water managers during periods of abundant
water supply (Iglesias et al. 2003). If the users had access to perfect water
supply forecasts for an entire year in advance, they could increase gross
revenues marginally (around 5%). Introducing a voluntary banking system (i.e.
farmers can voluntarily store part of their allocation in the reservoir for use in
future seasons) could allow farmers to increase benefits by 32–82%,
depending on the supply system (Iglesias et al. 2003).

The researchers then explored the development of a spot water market
to allow the voluntary temporary exchange of water use among irrigation
users. Again, the goal was to use more flexible instruments to reduce risk
exposure due to climate variability and highly unreliable water supplies.
While allowing limited simple water exchanges between local irrigators was
shown to reduce economic costs, extending the market to multiple districts
and across users facing varying hydroclimatic risk exposure increased
benefits (Calatrava & Garrido, 2005). Specifically, extreme events with the
lowest economics benefits were less likely to occur. Thus, the modeled
water market for this region allowed farmers to respond to water supply
variability across irrigation seasons and reduce overall economic
vulnerability (Figure 6.13).
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While these water markets were constructed to benefit the farmers relying
on irrigation, the modeled systems did not consider urban water needs. In
order to account for these competing user demands, Gómez Ramos and
Garrido (2004) examined the use of options contracts to transparently
transfer risk and compensation between irrigation and urban water users.
They found that options contracts represent “a midpoint between permanent
right sales and spot water markets, with two additional advantages … on the
one hand, option contracts ensure a transparent risk transfer mechanism for
a number of years (4–6 may be advisable) … on the other hand, they
provide assurance to the farming communities that their livelihoods can
coexist with urban demand pressure” (Gómez Ramos & Garrido, 2004; p. 9).
In essence, the market is based on a compensating premium applied to the
contracts that ensures that a seller is compensated for both the water
allocated and the additional risk due to the contract. The researchers
recognize that the option pricing remains particularly challenging, and it is
this area that could benefit significantly from improved climate forecasting
and quantification of the resulting hydroclimatic risk.

Figure 6.13 Profit probability distributions with and without voluntary water
market.
Panels (a) and (b) show the distributions for different farm types, revealing that the benefit
of a water market depends on specific irrigation conditions. Panel (c) shows the
distribution across the entire irrigation district, demonstrating that net benefits are fairly
significant. Source: Calatrava and Garrido, 2005.

Managing Climate Risk in Water Supply Systems128

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



Section 3: Challenges to the use of forecasts by water
managers
Certain types of CRM innovations are being adopted at slower paces, despite
simulation of expected benefits. A specific case is the use of seasonal climate
forecasts. Foundational studies have identified a variety of causes that contribute
to the apparent disconnect between climate information providers and those who
would use the information (see World Climate Conference 3, 2009, and the
emerging concept of reinvigorated climate services). One major component relates
to the “supply side”, or the provision of climate information itself. We have
learned that stakeholders often find climate information, as currently provided, to
be difficult to interpret, of insufficient skill, or on an inappropriate spatial or
temporal scale for their decision making needs (Yarnal et al. 2006; Hartmann
et al. 2002; Pagano et al. 2002; Rayner et al. 2005; Lemos et al. 2002). Another
major component relates to the demand side, or the decision processes used by
stakeholders. There are several institutional obstacles that limit the likelihood that
water managers would use climate information even if the information was
relevant and sufficiently skillful. These obstacles include a traditional reliance on
infrastructure, a lack of knowledge regarding how to incorporate new water
management methodologies, organizational conservatism, political disincentives
to innovation within water management institutions and, in some cases, regulatory
constraints on how decisions must be made (Rayner et al. 2005).

These challenges make clear some necessary and practical actions needed to
ensure that forecasts are more effectively used by the water sector. The primary
lesson is the need for close collaboration and trust-building between the forecast
provider and the forecast user. Collaboration across these organizational
boundaries can lead to co-learning and co-production of climate and risk
management knowledge, resulting in the tailoring of climate information to be
relevant to user needs and the demonstration of skill in transparent, understandable
ways. In addition, it is clear that the fear of unintended consequences of forecast
use is a major disincentive. Water managers are fearful that a forecast will be
“wrong” and expose the system to additional risk. This can be reduced by the
methods of redundancy in water supply and others described above.

The building of knowledge networks has been identified as a key method for
improving the uptake of scientific information by stakeholders (e.g. Feldman &
Ingram, 2009). Knowledge networks may be described as systems organized to
link science and technology to agents who act to attain social goals (NRC, 2005).
Sustained interactions between scientists and practitioners provide the opportunity
for mutual learning and the understanding needed to produce climate information
that is useful (NRC, 2008). Knowledge networks provide conditions that enhance
the innovation adoption process, described as a “diffusion of innovations
framework”. These networks promote awareness and interest and provide
opportunities for trial and experimentation. They can serve to reduce complexity
and increase the compatibility of climate information. The establishment and
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sustainability of a knowledge network of water managers and forecast providers may
be considered one of the most powerful ingredients for the successful development
and provision of useful climate information.

CONCLUDING REMARKS
There are many ways of taking the climate information discussed in this manual and
applying it to help manage the hydroclimatic risk and opportunities in a given water
supply system. The most appropriate and successful suite of options will depend on
the landscape of institutional, physical and financial conditions specific to the
system. Whether water managers act directly based on climate information or
institutions integrate climate information into the development of economic
mechanisms to combat drought, the key outcome is the effective use of the
information to inform action that is as anticipatory as possible. Evaluating the
possible benefits and consequences of integrating climate information into
decision making is critical. Ultimately, the goal is for increased understanding
and collaboration between water resources professionals, policy makers and
climate science professionals to result in improved climate risk management.
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Appendix 1

Planning and decision making

INTRODUCTION
Managing climate risks in a water supply system is a process that requires planning
and decision making at multiple scales. This appendix reviews some key concepts
and approaches in planning and decision making that are relevant when determining
how to integrate climate information.

Because water is a public good, water resources planning is a complex process
requiring consideration of multiple and often conflicting objectives. Due to
climate variability, as well as uncertainty in future demographics which drive
water demand, good planning also requires consideration of risk and uncertainty.
Although many of the objectives of water resources systems cannot be quantified
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Figure A.1.1 General applicability of decision support techniques for problems with
uncertainty and multiple objectives.
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in economic or other quantitative terms, and risks themselves have to be estimated
(e.g. based on expert judgment), there are a number of analytical methods that can
support decision making and improve the planning process. Several of these are
discussed here, including economic benefit analysis, decision analysis,
simulation, optimization modeling, and multiobjective trade-off analysis.

Section 1: Economic benefit analysis
Economic benefit (or cost-benefit) analysis is a standard procedure used in planning
when the primary benefits (and costs) of alternative designs or plans can be
evaluated in economic terms. Examples include revenues from hydroelectric
power generation, profits from irrigated agriculture, and reduction in economic
damages from flooding. Since benefits and costs accrue over time, a means of
converting time series of benefits and costs (or net benefits) to comparable terms
is needed. This is conventionally done through the use of a discount rate.
Analogous to the interest rate on a loan, the discount accounts for the time value
of money, inflation, and any risk associated with future payback. An example
calculation is shown in Figure A.1.2.

NPV = −1000

1+ .07( )0+
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1+ .07( )1+
250

1+ .07( )2+
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1+ .07( )3
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NPV =−1000+233.64+218.36+408.15+381.45+356.49= $598.09
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Figure A.1.2 Calculating the net present value (NPV) of a time series of costs and
benefits (i= 7% assuming a discount rate (e.g. inflation rate) of 7% per year).
For each time period, t, the value is calculated by dividing the current cost or benefit by (1+ i)t.
The NPV is then calculated by summing the value across all time periods.
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A related approach is called cost-effectiveness analysis. This approach is used
when the primary benefits of an alternative plan cannot easily be quantified in
economic terms, but can be quantified in other terms. For example, alternative
reservoir operating plans may be evaluated based on the reliability of meeting a
particular water demand or release target. In this case, an explicit economic value
may not be placed on the water use, but benefits are still measured directly in a
quantitative way (e.g. the fraction of time the target is met, or the inverse of the
expected consequences when the target is not met). Many social and
environmental objectives can be quantified in ways other than explicit monetary
units. Examples include hectares of habitat restored, in-stream flow rates for
environmental purposes, and the number of jobs created.

In applying economic benefit or cost-effectiveness analysis, care must be taken to
address equity concerns—that the costs and benefits of the selected plan are “fair” to
all stakeholder groups. For example, a plan that ensures nearly 100% reliability for
one user group, while providing only “surplus” water to a second group, might be
considered “unfair.” In some cases, politics may ensure that such inequitable
plans or policies are not implemented; however, unequal power among
stakeholder groups may prevent this.

There are other limitations and pitfalls of economic benefit analysis. For
example, pitfalls can occur in attempting to assign economic value to benefits
that are not directly measurable in economic terms, for example, environmental
benefits, through survey techniques or various indirect methods. (For details, the
reader is referred to texts on environmental economics). Furthermore, traditional
cost-benefit or cost-effectiveness analysis has quantified benefits only in terms of
expected values, without due consideration of risk and uncertainty. In many
cases, risk averse decision makers will sacrifice some expected net benefits in
order to reduce the risk of negative consequences.

Section 2: Decision analysis
For cases in which the consequences of various alternatives are highly uncertain, a
more general approach known as decision analysis may be applied. Conducting a
systematic decision analysis requires the following elements (Ang & Tang, 1990):

(1) A list of all feasible alternatives, including conducting experiments or
waiting for additional information, if appropriate;

(2) A list of all possible outcomes associated with each alternative;
(3) An estimate of the probability of each outcome;
(4) An evaluation of the consequences of each alternative under each outcome;
(5) The criterion for decision; and
(6) The systematic evaluation of all alternatives.

These elements can be integrated into a visual decision model known as a decision
tree ( e.g. Figure A.1.3). The decision tree begins with a decision node (square)

Appendix 1 137

Downloaded from https://iwaponline.com/ebooks/book-pdf/521251/wio9781780400594.pdf
by IWA Publishing user
on 04 February 2019



which represents the decision to be made. From this node, each alternative is
represented by a branch. At the end of each branch, there is a chance node
(circular) with branches that represent the uncertain outcomes. A probability must
be assigned to each outcome, and the outcomes emanating from a single chance
node are considered mutually exclusive and span the entire range of possibilities.
Thus, their probabilities sum to unity. Multiple stages of decisions and uncertain
outcomes may be represented in the decision tree, but typically only one or
two stages are considered in order to keep the computations manageable.
Example A.1.1 illustrates a decision analysis problem and its solution using a
decision tree.

Example A.1.1: Decision analysis example

A water manager must decide how much water to promise to the Dry Gulch
Irrigation District for the coming growing season. River inflows to the
reservoir cannot be forecast perfectly, but the following probabilities
(Table A.1.1) are estimated:

Table A.1.1 Inflow scenarios.

Hydrologic
scenario

Probability

High inflow 0.3

Average inflow 0.4

Low inflow 0.3

Three standard contract amounts can be chosen for the coming growing
season: A (500 Mm3), B (300 Mm3), and C (100 Mm3). The value of each of
these alternatives under each outcome is given in Table A.1.2. Additionally,
the water manager can wait a few months (once inflows are essentially
known with certainty) to sign a contract with the irrigation district, but the
value of each contract decreases by $1 million due to the inability of the
irrigators to plan properly.

Table A.1.2 Outcome Values ($ million).

Inflow scenario

Contract High Average Low

A 5.0 2.0 −5.0

B 1.5 3.5 −1.0

C 0.5 1.0 1.5
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Section 3: Simulation and optimization modeling
For many complex problems, evaluating or predicting the consequences of
alternatives is best done using a computer (numerical) simulation model. To be
useful, such a model must adequately represent the key physical features of the
problem and the decisions to be made, and then predict the outcomes of the
decisions in quantitative terms that can be used for evaluation. Simulation models
can represent complex physical, chemical, and biological relationships, and they
can utilize large amounts of data covering a range spatial and/or temporal scales
(Figure A.1.4). Through simulation modeling it is also relatively easy to represent
uncertainty in the data or underlying physical relationships. However, when using
a complex simulation model, evaluation of decisions requires a trial and error

Figure A.1.3 is the decision tree used to determine the alternative with the
maximum expected value. In this case, due to the large uncertainty in flows,
the optimal strategy is to wait and see whether the inflow will be high, low, or
about average.

 Contract A 

 Contract B 

Contract C 

Wait and See 

High (5.0) 

Avg. (2.0) 

Low (–5.0) 

High (1.5) 

Avg. (3.5) 

Low (–1.0) 

High (0.5) 

Avg. (1.0) 

Low (1.5) 

High (4.0) 

Avg. (2.5) 

Low (0.5) 

 p = 0.4

 p = 0.3

 p = 0.3

 p = 0.4

 p = 0.3

 p = 0.3

 p = 0.4

 p = 0.3

 p = 0.3

 p = 0.4

 p = 0.3

 p = 0.3

0.8

1.55

1.0

2.35

Figure A.1.3 Decision tree for selecting the optimal water contract.
Expected value of each alternative is shown in the box. The decision tree begins with a
decision node (square) which represents the decision to be made. From this node,
each alternative is represented by a branch. At the end of each branch, there is a
chance node (circular) with branches that represent the uncertain outcomes. A
probability (p) is assigned to each outcome, and the outcomes emanating from a single
chance node are mutually exclusive and sum to 100%.
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process, which can be time-consuming. In such cases, a simplified optimization
model may be a useful complement to simulation as a means of identifying
promising alternatives.

Optimization modeling is useful when there are so many alternatives that it is not
possible to analyze all of the outcomes, or even identify all of the potentially good
alternatives, through simulation or decision tree modeling. Formulating an
optimization (mathematical programming) model requires the definition of
decision variables, which represent the decisions to be made, and an objective
function, which represents the criterion for solution. For many problems it is also
necessary or convenient to define one or more constraints, which represent either
laws of the natural world which cannot be violated, resource constraints, or goals
which have very high priority. (Typically, the constraints are the same as, or very
similar to, the physical relationships embedded in the simulation model.)

Shown below is a simple linear programming (LP) model, defined as an
optimization model in which the objective function and constraints are all linear.
LP models can be solved using an algorithm known as the simplex method (e.g.
Hillier and Lieberman, 2005). Optimization models may also be formulated with
nonlinear objectives and constraints, as well as discrete decision variables. (As an
example, consider the problem of scheduling hydroelectric power generation,
which is a function of both discharge and reservoir levels and involves switching
discrete generator units on and off.) Such problems may be much more
computationally demanding than LP models, and thus simplifications are often
required. Below is an example of a linear program with the solution shown
graphically in Figure A.1.5.

Max Z = 3x1 + 5x2
subject to

3x1 + 2x2 ≤ 18

x1 ≤ 5

2x2 ≤ 12

x1, x2 ≥ 0

Decisions/Policies

Inputs
Physical, chemical, 

biological 
relationships 

Outputs
OtIt

Figure A.1.4 Conceptual diagram of a water resources simulation model.
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Section 4: Multiobjective decision making
Since water resources systems provide multiple benefits, which are valued
differently by different stakeholders, some trade-offs must always be made.
Although final decision making is often a political process, there are a number of
analytical methods available for identifying efficient trade-offs. The goal of
efficient trade-off analysis is to identify feasible solutions that cannot be
improved with respect to one objective without harming another objective. Such
solutions can be represented on a graph as an “efficient frontier,” as shown in
Figure A.1.6.

A

Feasible
Region

2x1 = 12

x1 = 5

Z = 3x1 = 5x2

3x1 + 2x2 = 18

x1

x2

Figure A.1.5 Simple linear programming model with graphical solution (Point A).
Source: Adapted from example in Hillier & Lieberman (2005).

Figure A.1.6 Trade-off analysis for two objectives.
Solutions A, B, and C represent efficient solutions. Solution D represents an inefficient, or
dominated, solution.
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Several methods are available for generating efficient frontiers using
optimization models (e.g, Loucks et al. 2005). One approach is to apply weights
to the terms in the objective function representing the multiple objectives, and
then adjust the weights to generate multiple efficient solutions. For example, a
weighted objective function for irrigation and hydropower benefits would be
formulated as follows:

Max Z = w1firr(X)+ w2fhp(X)

where firr(X) is a function defining irrigation benefits, fhp(X) is a function defining
hydropower benefits, andw1 andw2 are weights placed on the two benefit functions.
Alternatively, an approach known as the constraint method may be used to generate
trade-offs. With this approach, one objective is formulated as a constraint, and the
right-hand-side value of the constraint is varied in order to generate multiple
efficient solutions. For example, hydropower benefits may be formulated in a
constraint as follows:

Max Z = firr(X)

subject to

fhp(X) ≥ fmin
hp

where fmin
hp is the minimum desired hydropower benefit, which is varied to generate

trade-offs.
In cases where there are more than two objectives, or it is not possible (or desired)

to define a mathematical objective function, various performance measures
associated with the objectives may simply be presented in a matrix format. An
example is Table A.1.3, showing preliminary results from three proposed plans
for managing the Lake Ontario-St. Lawrence River system in the United States
and Canada (International Study Board, 2006). Economic benefits are relative to
the expected benefits under the current operating plan. Environmental benefits are
not quantified economically, but are scaled to the benefits under the current plan,
which has an environmental index of 1.0.

Table A.1.3 Summary of plan results in a matrix format. Red values indicate
net losses.

(Average Annual benefits in millions of dollars) Plan A Plan B Plan D

Environment Index 1.13 1.41 1.03

Shoreline Property −$1.10 −$2.88 $.13

Commercial Navigation $2.27 $1.96 $1.95

Recreational Boating $3.18 −$0.87 $1.95

Hydroelectric $5.21 $6.11 $1.02

Source: International Study Board (2006).
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Based on results such as these, individual decision makers will form their own
criterion for decision. Some may choose to weight the objectives, while others
may seek a solution which provides some minimum level of benefits for all
objectives. For instance, placing equal weights on all objectives would lead to
selection of Plan A, while a large weight on the environment would lead to
selection of Plan B. Some decision makers may prefer Plan D, however, since it
increases benefits in all areas in a more equitable manner.

Example A.1.2: Example of multiobjective decision making

An optimization model is applied to help develop monthly operating rules for a
reservoir with two main benefits: irrigation supply and hydroelectric power
generation. Inflows to the reservoir are highly variable, with a distinct rainy
season and dry season occurring in most years. Hydroelectric energy can be
generated throughout the year by releasing water through the turbines, up to
80 Mm3/mon, with the following function approximating the amount of
energy generated in each month:

P = 0.01 ∗ QS0.7

where Q is the hydropower release (Mm3/month) and S is the storage in the
reservoir (Mm3).

Irrigation occurs only in the dry season, January-April, with the following
function defining agricultural production in a given year, y :

A = 100 [min (R1, R2, R3, R4)]
0.5

where R1,… , R4 are the monthly dry-season releases for irrigation demands.
Releases for irrigation demands occur through a separate outlet and cannot be
used for hydroelectric power generation.

To evaluate trade-offs between agricultural production and power
generation, the following optimization model is solved with a range of
weights placed on the two benefit functions:

Max Z = w1

∑
m[M

Pm + w2

∑
y[Y

Ay

subject to

Sm−1 + Im − Rm = Sm

Qm ≤ Qmax

S ≤ Smax

Qm, Rm, Sm ≥ 0

where Im are the monthly inflows to the reservoir, and Sm is the reservoir storage at the
end of period m.
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Some results of the multiobjective trade-off analysis are shown in
Figure A.1.7. This shows that the maximum hydropower benefits are
approximately 4400 MWh, though any generation greater than 4300 MWh
results in a significant decrease in irrigation benefits. Similarly, agricultural
yields of greater than 4000 tons can be achieved, but at the expense of large
losses in hydropower benefits. Based on these results, it appears that a
reasonable multiobjective solution is to generate approximately 4300 MWh
of electricity and irrigate to achieve a total yield of approximately 3800 tons
(Point A).
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Figure A.1.7 Efficient frontier for irrigation and hydropower benefits from a
multipurpose reservoir.
Point A illustrates the most appropriate multiobjective solution.
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Appendix 2

Assessing water demand

Sound management of climate risks is dependent on an awareness of water demand
realities. This appendix offers a brief review of some of the important concepts
regarding forecasting water demand.

Most empirical models for water demand forecasting have been developed for
metered municipal and industrial (M&I) water systems, with variables such as
population (or number of households), price, income, and climatic variables
(precipitation and temperature) used to predict water use (e.g. Mays and Tung,
1992). A simple example of such a model is a linear regression model of the form:

Q = a0 + a1x1 + . . .+ amxm + 1 (A.2.1)

where Q is the predicted water use, xi are the explanatory variables (population,
price, etc.), ai are the fitted coefficients, and ε is the error in the forecast.
Assumptions of this approach include the following: (1) the explanatory variables
are determined independently of water use (the dependent variable); (2) the
explanatory variables are not strongly correlated with each other; and (3) the
errors have an expected value of zero, constant variance, and are uncorrelated. An
example is shown in Figure A.2.1.

Since water use often has a seasonal component, coefficients as in (1) may be
estimated for each month or season. Alternatively, more complex statistical
models including harmonic (sinusoidal) functions may be used. If the price of
water is determined by market conditions, that is, it is a function of demand, then
a system of simultaneous equations is more appropriate than a single regression
equation, which assumes one-way causality. For more details on M&I water
demand modeling the reader is referred to Mays and Tung (1992).

Agricultural water demand may also be estimated using a statistical model such
as Equation (1). However, a more common approach is to use a mathematical
programming approach which attempts to model farmers’ desire to maximize
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production, or profits. In this approach, the selection of crops, the area to allocate to
each crop, and the amount of water to apply are considered the decision variables,
and mathematical functions are developed to relate water application to production
(e.g. Griffin, 2006). A general form of a mathematical programming model for
agricultural water demand is as follows:

Max Z =
∑
i

pixi − c0Q (A.2.2)

subject to
Production functions: xi = f (qi)× Ai ∀i
Total water use:

∑
i
qi = Q

Total water available: Q ≤ Qmax

Total land available:
∑
i
Ai = Amax

Non-negativity: qi, xi ≥ 0.

where Z is the total profit, xi is the production of crop i, pi is the market price of crop
i,Q is the total water use, c0 is the unit cost of water, Ai is the land allocated to crop i,
Qmax is the total water available, and Amax is the total land available.

The model given by (A.2.2) is a short-term water demand model, based on fixed
technology and assuming water is the primary input for production. In the
long-term, farmers can invest in more efficient irrigation technologies, essentially

y = 0.3421x –25.219
R2 = 0.9631
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Figure A.2.1 Linear regression water demandmodel using annual water use data for
Austin, Texas, for the years 1965–1985. Source: Adapted from Mays and Tung
(1992).
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changing the production function f (q). Another limitation of this model is that it
assumes precipitation and water availability are known, and thus it does not
account for hydroclimatic risk. In reality, farmers’ decisions are often strongly
affected by risk, and thus the decision making framework is broadened to include
alternatives such as purchasing insurance or options contracts, and giving up
some expected profit in order to reduce risk (e.g. through selection of drought-
resistant crops).

In many water systems, the “demands” for water include environmental
purposes, such as maintaining stream habitat or adjacent wetlands functions.
Traditionally, environmental flow objectives have been specified simply as
minimum flow targets or “requirements.” Scientists have learned, however, that
maintaining ecosystem functions actually requires much more complex patterns
of flow, including seasonally varying flows and some extreme high flows. Due to
the complexity of ecosystems, a management goal for some systems is to
reproduce natural flow patterns, assuming that these will be optimal for
protecting the current ecosystem. Although economic valuation techniques do
exist for environmental benefits, these are beyond the scope covered here. The
interested reader is referred to Griffin (2006) or a text on environmental economics.
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