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Preface

Causality is a fascinating topic of research. Its mathematization has only relatively
recently started, and many conceptual problems are still being debated — often
with considerable intensity.

While this book summarizes the results of spending a decade assaying causality,
others have studied this problem much longer than we have, and there already exist
books about causality, including the comprehensive treatments of Pearl [2009],
Spirtes et al. [2000], and Imbens and Rubin [2015]. We hope that our book is able
to complement existing work in two ways.

First, the present book represents a bias toward a subproblem of causality that
may be considered both the most fundamental and the least realistic. This is the
cause-effect problem, where the system under analysis contains only two observ-
ables. We have studied this problem in some detail during the last decade. We
report much of this work, and try to embed it into a larger context of what we con-
sider fundamental for gaining a selective but profound understanding of the issues
of causality. Although it might be instructive to study the bivariate case first, fol-
lowing the sequential chapter order, it is also possible to directly start reading the
multivariate chapters; see Figure I.

And second, our treatment is motivated and influenced by the fields of machine
learning and computational statistics. We are interested in how methods thereof
can help with the inference of causal structures, and even more so whether causal
reasoning can inform the way we should be doing machine learning. Indeed, we
feel that some of the most profound open issues of machine learning are best under-
stood if we do not take a random experiment described by a probability distribution
as our starting point, but instead we consider causal structures underlying the dis-
tribution.

We try to provide a systematic introduction into the topic that is accessible to
readers familiar with the basics of probability theory and statistics or machine
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learning (for completeness, the most important concepts are summarized in Ap-
pendices A.1 and A.2).

While we build on the graphical approach to causality as represented by the work
of Pearl [2009] and Spirtes et al. [2000], our personal taste influenced the choice
of topics. To keep the book accessible and focus on the conceptual issues, we were
forced to devote regrettably little space to a number of significant issues in causal-
ity, be it advanced theoretical insights for particular settings or various methods of
practical importance. We have tried to include references to the literature for some
of the most glaring omissions, but we may have missed important topics.

Our book has a number of shortcomings. Some of them are inherited from the
field, such as the tendency that theoretical results are often restricted to the case
where we have infinite amounts of data. Although we do provide algorithms and
methodology for the finite data case, we do not discuss statistical properties of such
methods. Additionally, at some places we neglect measure theoretic issues, often
by assuming the existence of densities. We find all of these questions both relevant
and interesting but made these choices to keep the book short and accessible to a
broad audience.

Another disclaimer is in order. Computational causality methods are still in their
infancy, and in particular, learning causal structures from data is only doable in
rather limited situations. We have tried to include concrete algorithms wherever
possible, but we are acutely aware that many of the problems of causal inference
are harder than typical machine learning problems, and we thus make no promises
as to whether the algorithms will work on the reader’s problems. Please do not feel
discouraged by this remark — causal learning is a fascinating topic and we hope
that reading this book may convince you to start working on it.

We would have not been able to finish this book without the support of various
people.

We gratefully acknowledge support for a Research in Pairs stay of the three au-
thors at the Mathematisches Forschungsinstitut Oberwolfach, during which a sub-
stantial part of this book was written.

We thank Michel Besserve, Peter Bühlmann, Rune Christiansen, Frederick Eber-
hardt, Jan Ernest, Philipp Geiger, Niels Richard Hansen, Alain Hauser, Biwei
Huang, Marek Kaluba, Hansruedi Künsch, Steffen Lauritzen, Jan Lemeire, David
Lopez-Paz, Marloes Maathuis, Nicolai Meinshausen, Søren Wengel Mogensen,
Joris Mooij, Krikamol Muandet, Judea Pearl, Niklas Pfister, Thomas Richardson,
Mateo Rojas-Carulla, Eleni Sgouritsa, Carl Johann Simon-Gabriel, Xiaohai Sun,
Ilya Tolstikhin, Kun Zhang, and Jakob Zscheischler for many helpful comments
and interesting discussions during the time this book was written. In particular,
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København and Tübingen, August 2017

Jonas Peters
Dominik Janzing

Bernhard Schölkopf



Notation and Terminology

X ,Y,Z random variable; for noise variables, we use N, NX , N j, . . .

x value of a random variable X
P probability measure
PX probability distribution of X

X1, . . . ,Xn iid∼ PX an i.i.d. sample of size n; sample index is usually i
PY |X=x conditional distribution of Y given X = x
PY |X collection of PY |X=x for all x; for short: conditional of Y

given X
p density (either probability mass function or probability

density function)
pX density of PX

p(x) density of PX evaluated at the point x
p(y|x) (conditional) density of PY |X=x evaluated at y
E[X ] expectation of X
var[X ] variance of X
cov[X ,Y ] covariance of X ,Y
X ⊥⊥ Y independence between random variables X and Y
X ⊥⊥ Y |Z conditional independence
X = (X1, . . . ,Xd) random vector of length d; dimension index is usually j
C structural causal model
PC;do(X :=3)

Y intervention distribution
PC|Z=2,X=1;do(X :=3)

Y counterfactual distribution
G graph
PAG

X , DEG
X , ANG

X parents, descendants, and ancestors of node X in graph G





1

Statistical and Causal Models

Using statistical learning, we try to infer properties of the dependence among ran-
dom variables from observational data. For instance, based on a joint sample of
observations of two random variables, we might build a predictor that, given new
values of only one of them, will provide a good estimate of the other one. The
theory underlying such predictions is well developed, and — although it applies to
simple settings — already provides profound insights into learning from data. For
two reasons, we will describe some of these insights in the present chapter. First,
this will help us appreciate how much harder the problems of causal inference
are, where the underlying model is no longer a fixed joint distribution of random
variables, but a structure that implies multiple such distributions. Second, although
finite sample results for causal estimation are scarce, it is important to keep in mind
that the basic statistical estimation problems do not go away when moving to the
more complex causal setting, even if they seem small compared to the causal prob-
lems that do not appear in purely statistical learning. Building on the preceding
groundwork, the chapter also provides a gentle introduction to the basic notions of
causality, using two examples, one of which is well known from machine learning.

1.1 Probability Theory and Statistics

Probability theory and statistics are based on the model of a random experiment or
probability space (Ω,F ,P). Here, Ω is a set (containing all possible outcomes),
F is a collection of events A ⊆ Ω, and P is a measure assigning a probability to
each event. Probability theory allows us to reason about the outcomes of random
experiments, given the preceding mathematical structure. Statistical learning, on
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the other hand, essentially deals with the inverse problem: We are given the out-
comes of experiments, and from this we want to infer properties of the underlying
mathematical structure. For instance, suppose that we have observed data

(x1,y1), . . . ,(xn,yn), (1.1)

where xi ∈ X are inputs (sometimes called covariates or cases) and yi ∈ Y are
outputs (sometimes called targets or labels). We may now assume that each
(xi,yi), i = 1, . . . ,n, has been generated independently by the same unknown ran-
dom experiment. More precisely, such a model assumes that the observations
(x1,y1), . . . ,(xn,yn) are realizations of random variables (X1,Y1), . . . ,(Xn,Yn) that
are i.i.d. (independent and identically distributed) with joint distribution PX ,Y .
Here, X and Y are random variables taking values in metric spaces X and Y .1 Al-
most all of statistics and machine learning builds on i.i.d. data. In practice, the i.i.d.
assumption can be violated in various ways, for instance if distributions shift or in-
terventions in a system occur. As we shall see later, some of these are intricately
linked to causality.

We may now be interested in certain properties of PX ,Y , such as:

(i) the expectation of the output given the input, f (x) = E[Y |X = x], called
regression, where often Y = R,

(ii) a binary classifier assigning each x to the class that is more likely, f (x) =
argmaxy∈Y P(Y = y |X = x), where Y = {±1},

(iii) the density pX ,Y of PX ,Y (assuming it exists).

In practice, we seek to estimate these properties from finite data sets, that is, based
on the sample (1.1), or equivalently an empirical distribution Pn

X ,Y that puts a point
mass of equal weight on each observation.

This constitutes an inverse problem: We want to estimate a property of an object
we cannot observe (the underlying distribution), based on observations that are
obtained by applying an operation (in the present case: sampling from the unknown
distribution) to the underlying object.

1A random variable X is a measurable function Ω→ X , where the metric space X is equipped
with the Borel σ -algebra. Its distribution PX on X can be obtained from the measure P of the under-
lying probability space (Ω,F ,P). We need not worry about this underlying space, and instead we
generally start directly with the distribution of the random variables, assuming the random experi-
ment directly provides us with values sampled from that distribution.
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1.2 Learning Theory

Now suppose that just like we can obtain f from PX ,Y , we use the empirical distri-
bution to infer empirical estimates f n. This turns out to be an ill-posed problem
[e.g., Vapnik, 1998], since for any values of x that we have not seen in the sample
(x1,y1), . . . ,(xn,yn), the conditional expectation is undefined. We may, however,
define the function f on the observed sample and extend it according to any fixed
rule (e.g., setting f to +1 outside the sample or by choosing a continuous piecewise
linear f ). But for any such choice, small changes in the input, that is, in the em-
pirical distribution, can lead to large changes in the output. No matter how many
observations we have, the empirical distribution will usually not perfectly approx-
imate the true distribution, and small errors in this approximation can then lead
to large errors in the estimates. This implies that without additional assumptions
about the class of functions from which we choose our empirical estimates f n, we
cannot guarantee that the estimates will approximate the optimal quantities f in a
suitable sense. In statistical learning theory, these assumptions are formalized in
terms of capacity measures. If we work with a function class that is so rich that
it can fit most conceivable data sets, then it is not surprising if we can fit the data
at hand. If, however, the function class is a priori restricted to have small capacity,
then there are only a few data sets (out of the space of all possible data sets) that
we can explain using a function from that class. If it turns out that nevertheless we
can explain the data at hand, then we have reason to believe that we have found a
regularity underlying the data. In that case, we can give probabilistic guarantees
for the solution’s accuracy on future data sampled from the same distribution PX ,Y .

Another way to think of this is that our function class has incorporated a priori
knowledge (such as smoothness of functions) consistent with the regularity un-
derlying the observed data. Such knowledge can be incorporated in various ways,
and different approaches to machine learning differ in how they handle the issue. In
Bayesian approaches, we specify prior distributions over function classes and noise
models. In regularization theory, we construct suitable regularizers and incorporate
them into optimization problems to bias our solutions.

The complexity of statistical learning arises primarily from the fact that we are
trying to solve an inverse problem based on empirical data — if we were given
the full probabilistic model, then all these problems go away. When we discuss
causal models, we will see that in a sense, the causal learning problem is harder
in that it is ill-posed on two levels. In addition to the statistical ill-posed-ness,
which is essentially because a finite sample of arbitrary size will never contain all
information about the underlying distribution, there is an ill-posed-ness due to the
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fact that even complete knowledge of an observational distribution usually does
not determine the underlying causal model.

Let us look at the statistical learning problem in more detail, focusing on the
case of binary pattern recognition or classification [e.g., Vapnik, 1998], where
Y = {±1}. We seek to learn f : X → Y based on observations (1.1), generated
i.i.d. from an unknown PX ,Y . Our goal is to minimize the expected error or risk2

R[ f ] =
∫ 1

2
| f (x)− y| dPX ,Y (x,y) (1.2)

over some class of functions F . Note that this is an integral with respect to the
measure PX ,Y ; however, if PX ,Y allows for a density p(x,y) with respect to Lebesgue
measure, the integral reduces to

∫ 1
2 | f (x)− y| p(x,y)dxdy.

Since PX ,Y is unknown, we cannot compute (1.2), let alone minimize it. Instead,
we appeal to an induction principle, such as empirical risk minimization. We
return the function minimizing the training error or empirical risk

Rn
emp[ f ] =

1
n

n

∑
i=1

1
2
| f (xi)− yi| (1.3)

over f ∈ F . From the asymptotic point of view, it is important to ask whether
such a procedure is consistent, which essentially means that it produces a se-
quence of functions whose risk converges towards the minimal possible within
the given function class F (in probability) as n tends to infinity. In Appendix A.3,
we show that this can only be the case if the function class is “small.” The Vapnik-
Chervonenkis (VC) dimension [Vapnik, 1998] is one possibility of measuring the
capacity or size of a function class. It also allows us to derive finite sample guaran-
tees, stating that with high probability, the risk (1.2) is not larger than the empirical
risk plus a term that grows with the size of the function class F .

Such a theory does not contradict the existing results on universal consistency,
which refers to convergence of a learning algorithm to the lowest achievable risk
with any function. There are learning algorithms that are universally consistent,
for instance nearest neighbor classifiers and Support Vector Machines [Devroye
et al., 1996, Vapnik, 1998, Schölkopf and Smola, 2002, Steinwart and Christmann,
2008]. While universal consistency essentially tells us everything can be learned in

2This notion of risk, which does not always coincide with its colloquial use, is taken from sta-
tistical learning theory [Vapnik, 1998] and has its roots in statistical decision theory [Wald, 1950,
Ferguson, 1967, Berger, 1985]. In that context, f (x) is thought of as an action taken upon observing
x, and the loss function measures the loss incurred when the state of nature is y.
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the limit of infinite data, it does not imply that every problem is learnable well from
finite data, due to the phenomenon of slow rates. For any learning algorithm, there
exist problems for which the learning rates are arbitrarily slow [Devroye et al.,
1996]. It does tell us, however, that if we fix the distribution, and gather enough
data, then we can get arbitrarily close to the lowest risk eventually.

In practice, recent successes of machine learning systems seem to suggest that
we are indeed sometimes already in this asymptotic regime, often with spectacular
results. A lot of thought has gone into designing the most data-efficient methods
to obtain the best possible results from a given data set, and a lot of effort goes
into building large data sets that enable us to train these methods. However, in all
these settings, it is crucial that the underlying distribution does not differ between
training and testing, be it by interventions or other changes. As we shall argue in
this book, describing the underlying regularity as a probability distribution, without
additional structure, does not provide us with the right means to describe what
might change.

1.3 Causal Modeling and Learning

Causal modeling starts from another, arguably more fundamental, structure. A
causal structure entails a probability model, but it contains additional information
not contained in the latter (see the examples in Section 1.4). Causal reasoning,
according to the terminology used in this book, denotes the process of drawing
conclusions from a causal model, similar to the way probability theory allows us to
reason about the outcomes of random experiments. However, since causal models
contain more information than probabilistic ones do, causal reasoning is more pow-
erful than probabilistic reasoning, because causal reasoning allows us to analyze
the effect of interventions or distribution changes.

Just like statistical learning denotes the inverse problem to probability theory, we
can think about how to infer causal structures from its empirical implications. The
empirical implications can be purely observational, but they can also include data
under interventions (e.g., randomized trials) or distribution changes. Researchers
use various terms to refer to these problems, including structure learning and
causal discovery. We refer to the closely related question of which parts of the
causal structure can in principle be inferred from the joint distribution as struc-
ture identifiability. Unlike the standard problems of statistical learning described
in Section 1.2, even full knowledge of P does not make the solution trivial, and
we need additional assumptions (see Chapters 2, 4, and 7). This difficulty should
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probabilistic model observations
& outcomes

causal model

observations &
outcomes incl.
changes &
interventions

subsumes

probabilistic reasoning

statistical learning

causal reasoning

causal learning

subsume

Figure 1.1: Terminology used by the present book for various probabilistic inference
problems (bottom) and causal inference problems (top); see Section 1.3. Note that we use
the term “inference” to include both learning and reasoning.

not distract us from the fact, however, that the ill-posed-ness of the usual statisti-
cal problems is still there (and thus it is important to worry about the capacity of
function classes also in causality, such as by using additive noise models — see
Section 4.1.4 below), only confounded by an additional difficulty arising from the
fact that we are trying to estimate a richer structure than just a probabilistic one.
We will refer to this overall problem as causal learning. Figure 1.1 summarizes
the relationships between the preceding problems and models.

To learn causal structures from observational distributions, we need to understand
how causal models and statistical models relate to each other. We will come back
to this issue in Chapters 4 and 7 but provide an example now. A well-known topos
holds that correlation does not imply causation; in other words, statistical proper-
ties alone do not determine causal structures. It is less well known that one may
postulate that while we cannot infer a concrete causal structure, we may at least in-
fer the existence of causal links from statistical dependences. This was first under-
stood by Reichenbach [1956]; we now formulate his insight (see also Figure 1.2).3

3For clarity, we formulate some important assumptions as principles. We do not take them for
granted throughout the book; in this sense, they are not axioms.
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X Y

Z

X Y X Y

Figure 1.2: Reichenbach’s common cause principle establishes a link between statistical
properties and causal structures. A statistical dependence between two observables X and
Y indicates that they are caused by a variable Z, often referred to as a confounder (left).
Here, Z may coincide with either X or Y , in which case the figure simplifies (middle/right).
The principle further argues that X and Y are statistically independent, conditional on Z.
In this figure, direct causation is indicated by arrows; see Chapters 3 and 6.

Principle 1.1 (Reichenbach’s common cause principle) If two random vari-
ables X and Y are statistically dependent (X 6⊥⊥ Y ), then there exists a third variable
Z that causally influences both. (As a special case, Z may coincide with either X
or Y .) Furthermore, this variable Z screens X and Y from each other in the sense
that given Z, they become independent, X ⊥⊥ Y |Z.

In practice, dependences may also arise for a reason different from the ones men-
tioned in the common cause principle, for instance: (1) The random variables we
observe are conditioned on others (often implicitly by a selection bias). We shall
return to this issue; see Remark 6.29. (2) The random variables only appear to
be dependent. For example, they may be the result of a search procedure over a
large number of pairs of random variables that was run without a multiple testing
correction. In this case, inferring a dependence between the variables does not sat-
isfy the desired type I error control; see Appendix A.2. (3) Similarly, both random
variables may inherit a time dependence and follow a simple physical law, such
as exponential growth. The variables then look as if they depend on each other,
but because the i.i.d. assumption is violated, there is no justification of applying
a standard independence test. In particular, arguments (2) and (3) should be kept
in mind when reporting “spurious correlations” between random variables, as it is
done on many popular websites.

1.4 Two Examples

1.4.1 Pattern Recognition

As the first example, we consider optical character recognition, a well-studied
problem in machine learning. This is not a run-of-the-mill example of a causal
structure, but it may be instructive for readers familiar with machine learning. We
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describe two causal models giving rise to a dependence between two random vari-
ables, which we will assume to be handwritten digits X and class labels Y . The two
models will lead to the same statistical structure, using distinct underlying causal
structures.

Model (i) assumes we generate each pair of observations by providing a sequence
of class labels y to a human writer, with the instruction to always produce a corre-
sponding handwritten digit image x. We assume that the writer tries to do a good
job, but there may be noise in perceiving the class label and executing the motor
program to draw the image. We can model this process by writing the image X as a
function (or mechanism) f of the class label Y (modeled as a random variable) and
some independent noise NX (see Figure 1.3, left). We can then compute PX ,Y from
PY , PNX , and f . This is referred to as the observational distribution, where the
word “observational” refers to the fact that we are passively observing the system
without intervening. X and Y will be dependent random variables, and we will be
able to learn the mapping from x to y from observations and predict the correct
label y from an image x better than chance.

There are two possible interventions in this causal structure, which lead to inter-
vention distributions.4 If we intervene on the resulting image X (by manipulating
it, or exchanging it for another image after it has been produced), then this has no
effect on the class labels that were provided to the writer and recorded in the data
set. Formally, changing X has no effect on Y since Y := NY . Intervening on Y , on
the other hand, amounts to changing the class labels provided to the writer. This
will obviously have a strong effect on the produced images. Formally, changing Y
has an effect on X since X := f (Y,NX). This directionality is visible in the arrow
in the figure, and we think of this arrow as representing direct causation.

In alternative model (ii), we assume that we do not provide class labels to the
writer. Rather, the writer is asked to decide himself or herself which digits to write,
and to record the class labels alongside. In this case, both the image X and the
recorded class label Y are functions of the writer’s intention (call it Z and think
of it as a random variable). For generality, we assume that not only the process
generating the image is noisy but also the one recording the class label, again with
independent noise terms (see Figure 1.3, right). Note that if the functions and noise
terms are chosen suitably, we can ensure that this model entails an observational
distribution PX ,Y that is identical to the one entailed by model (i).5

4We shall see in Section 6.3 that a more general way to think of interventions is that they change
functions and random variables.

5Indeed, Proposition 4.1 implies that any joint distribution PX ,Y can be entailed by both models.
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X Y

“2”

X := f (Y,NX )

Model (i); Y,NX independent

X Y

“2”

Z
X := g(Z,MX ) Y := h(Z,MY )

intention

Model (ii); Z,MX ,MY independent

Figure 1.3: Two structural causal models of handwritten digit data sets. In the left
model (i), a human is provided with class labels Y and produces images X . In the right
model (ii), the human decides which class to write (Z) and produces both images and class
labels. For suitable functions f ,g,h and noise variables NX ,MX ,MY ,Z, the two models
produce the same observable distribution PX ,Y , yet they are interventionally different; see
Section 1.4.1.

Let us now discuss possible interventions in model (ii). If we intervene on the
image X , then things are as we just discussed and the class label Y is not affected.
However, if we intervene on the class label Y (i.e., we change what the writer has
recorded as the class label), then unlike before this will not affect the image.

In summary, without restricting the class of involved functions and distributions,
the causal models described in (i) and (ii) induce the same observational distribu-
tion over X and Y , but different intervention distributions. This difference is not
visible in a purely probabilistic description (where everything derives from PX ,Y ).
However, we were able to discuss it by incorporating structural knowledge about
how PX ,Y comes about, in particular graph structure, functions, and noise terms.

Models (i) and (ii) are examples of structural causal models (SCMs), some-
times referred to as structural equation models [e.g., Aldrich, 1989, Hoover,
2008, Pearl, 2009, Pearl et al., 2016]. In an SCM, all dependences are generated by
functions that compute variables from other variables. Crucially, these functions
are to be read as assignments, that is, as functions as in computer science rather
than as mathematical equations. We usually think of them as modeling physical
mechanisms. An SCM entails a joint distribution over all observables. We have
seen that the same distribution can be generated by different SCMs, and thus in-
formation about the effect of interventions (and, as we shall see in Section 6.4,
information about counterfactuals) may be lost when we make the transition from
an SCM to the corresponding probability model. In this book, we take SCMs as
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our starting point and try to develop everything from there.
We conclude with two points connected to our example:
First, Figure 1.3 nicely illustrates Reichenbach’s common cause principle. The

dependence between X and Y admits several causal explanations, and X and Y
become independent if we condition on Z in the right-hand figure: The image and
the label share no information that is not contained in the intention.

Second, it is sometimes said that causality can only be discussed when taking
into account the notion of time. Indeed, time does play a role in the preceding
example, for instance by ruling out that an intervention on X will affect the class
label. However, this is perfectly fine, and indeed it is quite common that a sta-
tistical data set is generated by a process taking place in time. For instance, in
model (i), the underlying reason for the statistical dependence between X and Y
is a dynamical process. The writer reads the label and plans a movement, entail-
ing complicated processes in the brain, and finally executes the movement using
muscles and a pen. This process is only partly understood, but it is a physical,
dynamical process taking place in time whose end result leads to a non-trivial joint
distribution of X and Y . When we perform statistical learning, we only care about
the end result. Thus, not only causal structures, but also purely probabilistic struc-
tures may arise through processes taking place in time — indeed, one could hold
that this is ultimately the only way they can come about. However, in both cases,
it is often instructive to disregard time. In statistics, time is often not necessary
to discuss concepts such as statistical dependence. In causal models, time is often
not necessary to discuss the effect of interventions. But both levels of description
can be thought of as abstractions of an underlying more accurate physical model
that describes reality more fully than either; see Table 1.1. Moreover, note that
variables in a model may not necessarily refer to well-defined time instances. If,
for instance, a psychologist investigates the statistical or causal relation between
the motivation and the performance of students, both variables cannot easily be
assigned to specific time instances. Measurements that refer to well-defined time
instances are rather typical for “hard” sciences like physics and chemistry.

1.4.2 Gene Perturbation

We have seen in Section 1.4.1 that different causal structures lead to different in-
tervention distributions. Sometimes, we are indeed interested in predicting the
outcome of a random variable under such an intervention. Consider the following,
in some ways oversimplified, example from genetics. Assume that we are given
activity data from gene A and, correspondingly, measurements of a phenotype; see
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Model
Predict
in i.i.d.
setting

Predict under
changing distr.
or intervention

Answer
counterfactual

questions

Obtain
physical
insight

Learn
from
data

Mechanistic/
physical, e.g.,
Sec. 2.3

yes yes yes yes ?

Structural
causal model,
e.g., Sec. 6.2

yes yes yes ? ?

Causal graphi-
cal model,
e.g., Sec. 6.5.2

yes yes no ? ?

Statistical
model, e.g.,
Sec. 1.2

yes no no no yes

Table 1.1: A simple taxonomy of models. The most detailed model (top) is a mechanis-
tic or physical one, usually involving sets of differential equations. At the other end of the
spectrum (bottom), we have a purely statistical model; this model can be learned from data,
but it often provides little insight beyond modeling associations between epiphenomena.
Causal models can be seen as descriptions that lie in between, abstracting away from phys-
ical realism while retaining the power to answer certain interventional or counterfactual
questions. See Mooij et al. [2013] for a discussion of the link between physical models
and structural causal models, and Section 6.3 for a discussion of interventions.

Figure 1.4 (top left) for a toy data set. Clearly, both variables are strongly corre-
lated. This correlation can be exploited for classical prediction: If we observe that
the activity of gene A lies around 6, we expect the phenotype to lie between 12 and
16 with high probability. Similarly, for a gene B (bottom left). On the other hand,
we may also be interested in predicting the phenotype after deleting gene A, that
is, after setting its activity to 0.6 Without any knowledge of the causal structure,
however, it is impossible to provide a non-trivial answer. If gene A has a causal
influence on the phenotype, we expect to see a drastic change after the intervention
(see top right). In fact, we may still be able to use the same linear model that we
have learned from the observational data. If, alternatively, there is a common cause,
possibly a third gene C, influencing both the activity of gene B and the phenotype,
the intervention on gene B will have no effect on the phenotype (see bottom right).

6Let us for simplicity assume that we have access to the true activity of the gene without mea-
surement noise.
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As in the pattern recognition example, the models are again chosen such that
the joint distribution over gene A and the phenotype equals the joint distribution
over gene B and the phenotype. Therefore, there is no way of telling between the
top and bottom situation from just observational data, even if sample size goes to
infinity. Summarizing, if we are not willing to employ concepts from causality,
we have to answer “I do not know” to the question of predicting a phenotype after
deletion of a gene.
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Figure 1.4: The activity of two genes (top: gene A; bottom: gene B) is strongly correlated
with the phenotype (black dots). However, the best prediction for the phenotype when
deleting the gene, that is, setting its activity to 0 (left), depends on the causal structure
(right). If a common cause is responsible for the correlation between gene and pheno-
type, we expect the phenotype to behave under the intervention as it usually does (bottom
right), whereas the intervention clearly changes the value of the phenotype if it is causally
influenced by the gene (top right). The idea of this figure is based on Peters et al. [2016].





2

Assumptions for Causal Inference

Now that we have encountered the basic components of SCMs, it is a good time to
pause and consider some of the assumptions we have seen, as well as what these
assumptions imply for the purpose of causal reasoning and learning.

A crucial notion in our discussion will be a form of independence, and we can
informally introduce it using an optical illusion known as the Beuchet chair. When
we see an object such as the one on the left of Figure 2.1, our brain makes the
assumption that the object and the mechanism by which the information contained
in its light reaches our brain are independent. We can violate this assumption by
looking at the object from a very specific viewpoint. If we do that, perception goes
wrong: We perceive the three-dimensional structure of a chair, which in reality is
not there. Most of the time, however, the independence assumption does hold. If
we look at an object, our brain assumes that the object is independent from our
vantage point and the illumination. So there should be no unlikely coincidences,
no separate 3D structures lining up in two dimensions, or shadow boundaries coin-
ciding with texture boundaries. This is called the generic viewpoint assumption in
vision [Freeman, 1994].

The independence assumption is more general than this, though. We will see in
Section 2.1 below that the causal generative process is composed of autonomous
modules that do not inform or influence each other. As we shall describe below,
this means that while one module’s output may influence another module’s input,
the modules themselves are independent of each other.

In the preceding example, while the overall percept is a function of object, light-
ing, and viewpoint, the object and the lighting are not affected by us moving about
— in other words, some components of the overall causal generative model remain
invariant, and we can infer three-dimensional information from this invariance.
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Figure 2.1: The left panel shows a generic view of the (separate) parts comprising a
Beuchet chair. The right panel shows the illusory percept of a chair if the parts are viewed
from a single, very special vantage point. From this accidental viewpoint, we perceive a
chair. (Image courtesy of Markus Elsholz.)

This is the basic idea of structure from motion [Ullman, 1979], which plays a cen-
tral role in both biological vision and computer vision.

2.1 The Principle of Independent Mechanisms

We now describe a simple cause-effect problem and point out several observations.
Subsequently, we shall try to provide a unified view of how these observation relate
to each other, arguing that they derive from a common independence principle.

Suppose we have estimated the joint density p(a, t) of the altitude A and the
average annual temperature T of a sample of cities in some country (see Figure 4.6
on page 65). Consider the following ways of expressing p(a, t):

p(a, t) = p(a|t) p(t)

= p(t|a) p(a) (2.1)

The first decomposition describes T and the conditional A|T . It corresponds to a
factorization of p(a, t) according to the graph T → A.1 The second decomposition
corresponds to a factorization according to A→ T (cf. Definition 6.21). Can we

1Note that the conditional density p(a|t) allows us to compute p(a, t) (and thus also p(a)) from
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decide which of the two structures is the causal one (i.e., in which case would we
be able to think of the arrow as causal)?

A first idea (see Figure 2.2, left) is to consider the effect of interventions. Imag-
ine we could change the altitude A of a city by some hypothetical mechanism that
raises the grounds on which the city is built. Suppose that we find that the average
temperature decreases. Let us next imagine that we devise another intervention ex-
periment. This time, we do not change the altitude, but instead we build a massive
heating system around the city that raises the average temperature by a few de-
grees. Suppose we find that the altitude of the city is unaffected. Intervening on A
has changed T , but intervening on T has not changed A. We would thus reasonably
prefer A→ T as a description of the causal structure.

Why do we find this description of the effect of interventions plausible, even
though the hypothetical intervention is hard or impossible to carry out in practice?

If we change the altitude A, then we assume that the physical mechanism p(t|a)
responsible for producing an average temperature (e.g., the chemical composition
of the atmosphere, the physics of how pressure decreases with altitude, the mete-
orological mechanisms of winds) is still in place and leads to a changed T . This
would hold true independent of the distribution from which we have sampled the
cities, and thus independent of p(a). Austrians may have founded their cities in
locations subtly different from those of the Swiss, but the mechanism p(t|a) would
apply in both cases.2

If, on the other hand, we change T , then we have a hard time thinking of p(a|t)
as a mechanism that is still in place — we probably do not believe that such a
mechanism exists in the first place. Given a set of different city distributions p(a, t),
while we could write them all as p(a|t) p(t), we would find that it is impossible to
explain them all using an invariant p(a|t).

Our intuition can be rephrased and postulated in two ways: If A→ T is the correct
causal structure, then

(i) it is in principle possible to perform a localized intervention on A, in other
words, to change p(a) without changing p(t|a), and

(ii) p(a) and p(t|a) are autonomous, modular, or invariant mechanisms or
objects in the world.

p(t), which may serve to motivate the direction of the arrow in T → A for the time being. This will
be made precise in Definition 6.21.

2This is an idealized setting — no doubt counterexamples to these general remarks can be con-
structed.
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Interestingly, while we started off with a hypothetical intervention experiment to
arrive at the causal structure, our reasoning ends up suggesting that actual interven-
tions may not be the only way to arrive at causal structures. We may also be able
to identify the causal structure by checking, for data sources p(a, t), which of the
two decompositions (2.1) leads to autonomous or invariant terms. Sticking with
the preceding example, let us denote the joint distributions of altitude and temper-
ature in Austria and Switzerland by pö(a, t) and ps(a, t), respectively. These may
be distinct since Austrians and Swiss founded their cities in different places (i.e.,
pö(a) and ps(a) are distinct). The causal factorizations, however, may still use the
same conditional, i.e. pö(a, t) = p(t|a) pö(a) and ps(a, t) = p(t|a) ps(a).

We next describe an idea (see Figure 2.2, middle), closely related to the previous
example, but different in that it also applies for individual distributions. In the
causal factorization p(a, t) = p(t|a) p(a), we would expect that the conditional
density p(t|a) (viewed as a function of t and a) provides no information about the
marginal density function p(a). This holds true if p(t|a) is a model of a physical
mechanism that does not care about what distribution p(a) we feed into it. In other
words, the mechanism is not influenced by the ensemble of cities to which we
apply it.

If, on the other hand, we write p(a, t) = p(a|t)p(t), then the preceding indepen-
dence of cause and mechanism does not apply. Instead, we will notice that to
connect the observed p(t) and p(a, t), the mechanism p(a|t) would need to take a
rather peculiar shape constrained by the equation p(a, t) = p(a|t)p(t). This could
be empirically checked, given an ensemble of cities and temperatures.3

We have already seen several ideas connected to independence, autonomy, and
invariance, all of which can inform causal inference. We now turn to a final one
(see Figure 2.2, right), related to the independence of noise terms and thus best
explained when rewriting (2.1) as a distribution entailed by an SCM with graph
A→ T , realizing the effect T as a noisy function of the cause A,

A := NA,

T := fT (A,NT ),

where NT and NA are statistically independent noises NT ⊥⊥ NA. Making suitable
restrictions on the functional form of fT (see Sections 4.1.3–4.1.6 and 7.1.2) al-
lows us to identify which of two causal structures (A→ T or T → A) has entailed
the observed p(a, t) (without such restrictions though, we can always realize both

3We shall formalize this idea in Section 4.1.7.
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(physical) independence of mechanisms
Principle 2.1

intervenability,
autonomy,
modularity,
invariance,
transfer
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of information
contained
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conditional
independence
of structures

Figure 2.2: The principle of independent mechanisms and its implications for causal infer-
ence (Principle 2.1).

decompositions (2.1)). Furthermore, in the multivariate setting and under suitable
conditions, the assumption of jointly independent noises allows the identification
of causal structures by conditional independence testing (see Section 7.1.1).

We like to view all these observations as closely connected instantiations of a
general principle of (physically) independent mechanisms.

Principle 2.1 (Independent mechanisms) The causal generative process of a
system’s variables is composed of autonomous modules that do not inform or in-
fluence each other.

In the probabilistic case, this means that the conditional distribution of each
variable given its causes (i.e., its mechanism) does not inform or influence the
other conditional distributions. In case we have only two variables, this reduces to
an independence between the cause distribution and the mechanism producing the
effect distribution.

The principle is plausible if we conceive our system as being composed of mod-
ules comprising (sets of) variables such that the modules represent physically in-
dependent mechanisms of the world. The special case of two variables has been
referred to as independence of cause and mechanism (ICM) [Daniušis et al., 2010,
Shajarisales et al., 2015]. It is obtained by thinking of the input as the result of a
preparation that is done by a mechanism that is independent of the mechanism that
turns the input into the output.

Before we discuss the principle in depth, we should state that not all systems will
satisfy it. For instance, if the mechanisms that an overall system is composed of
have been tuned to each other by design or evolution, this independence may be
violated.
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We will presently argue that the principle is sufficiently broad to cover the main
aspects of causal reasoning and causal learning (see Figure 2.2). Let us address
three aspects, corresponding, from left to right, to the three branches of the tree in
Figure 2.2.

1. One way to think of these modules is as physical machines that incorporate
an input-output behavior. This assumption implies that we can change one
mechanism without affecting the others — or, in causal terminology, we
can intervene on one mechanism without affecting the others. Changing a
mechanism will change its input-output behavior, and thus the inputs other
mechanisms downstream might receive, but we are assuming that the phys-
ical mechanisms themselves are unaffected by this change. An assumption
such as this one is often implicit to justify the possibility of interventions in
the first place, but one can also view it as a more general basis for causal rea-
soning and causal learning. If a system allows such localized interventions,
there is no physical pathway that would connect the mechanisms to each
other in a directed way by “meta-mechanisms.” The latter makes it plausi-
ble that we can also expect a tendency for mechanisms to remain invariant
with respect to changes within the system under consideration and possibly
also to some changes stemming from outside the system (see Section 7.1.6).
This kind of autonomy of mechanisms can be expected to help with trans-
fer of knowledge learned in one domain to a related one where some of the
modules coincide with the source domain (see Sections 5.2 and 8.3).

2. While the discussion of the first aspect focused on the physical aspect of
independence and its ramifications, there is also an information theoretic as-
pect that is implied by the above. A time evolution involving several coupled
objects and mechanisms can generate statistical dependence. This is related
to our discussion from page 10, where we considered the dependence be-
tween the class label and the image of a handwritten digit. Similarly, mech-
anisms that are physically coupled will tend to generate information that can
be quantified in terms of statistical or algorithmic information measures (see
Sections 4.1.9 and 6.10 below).

Here, it is important to distinguish between two levels of information: ob-
viously, an effect contains information about its cause, but — according to
the independence principle — the mechanism that generates the effect from
its cause contains no information about the mechanism generating the cause.
For a causal structure with more than two nodes, the independence princi-
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ple states that the mechanism generating every node from its direct causes
contain no information about each other.4

3. Finally, we should discuss how the assumption of independent noise terms,
commonly made in structural equation modeling, is connected to the princi-
ple of independent mechanism. This connection is less obvious. To this end,
consider a variable E := f (C,N) where the noise N is discrete. For each
value s taken by N, the assignment E := f (C,N) reduces to a deterministic
mechanism E := f s(C) that turns an input C into an output E. Effectively,
this means that the noise randomly chooses between a number of mecha-
nisms f s (where the number equals the cardinality of the range of the noise
variable N). Now suppose the noise variables for two mechanisms at the
vertices X j and Xk were statistically dependent.5 Such a dependence could
ensure, for instance, that whenever one mechanism f s

j is active at node j,
we know which mechanism f t

k is active at node k. This would violate our
principle of independent mechanisms.

The preceding paragraph uses the somewhat extreme view of noise vari-
ables as selectors between mechanisms (see also Section 3.4). In practice,
the role of the noise might be less pronounced. For instance, if the noise
is additive (i.e., E := f (C)+N), then its influence on the mechanism is re-
stricted. In this case, it can only shift the output of the mechanism up or
down, so it selects between a set of mechanisms that are very similar to each
other. This is consistent with a view of the noise variables as variables out-
side the system that we are trying to describe, representing the fact that a
system can never be totally isolated from its environment. In such a view,
one would think that a weak dependence of noises may be possible without
invalidating the principle of independent mechanisms.

All of the above-mentioned aspects of Principle 2.1 may help for the problem of
causal learning, in other words, they may provide information about causal struc-
tures. It is conceivable, however, that this information may in cases be conflicting,
depending on which assumptions hold true in any given situation.

4There is an intuitive relation between this aspect of independence and the one described under 1.:
whenever the mechanisms change independently, the change of one mechanism does not provide
information on how the others have changed. Despite this overlap, the second independence contains
an aspect that is not strictly contained in the first one because it is also applicable to a scenario in
which none of the mechanisms has changed; for example, it refers also to homogeneous data sets.

5Although we have so far focused on the two-variable case, we phrase this argument such that it
also applies for causal structures with more than two variables.
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Figure 2.3: Early path diagram; dam and sire are the female and male parents of a guinea
pig, respectively. The path coefficients capture the importance of a given path, defined as
the ratio of the variability of the effect to be found when all causes are constant except
the one in question, the variability of which is kept unchanged, to the total variability.
(Reproduced from Wright [1920].)

2.2 Historical Notes

The idea of autonomy and invariance is deeply engrained in the concept of struc-
tural equation models (SEMs) or SCMs. We prefer the latter term, since the term
SEM has been used in a number of contexts where the structural assignments are
used as algebraic equations rather than assignments. The literature is wide ranging,
with overviews provided by Aldrich [1989], Hoover [2008], and Pearl [2009].

An intellectual antecedent to SEMs is the concept of a path model pioneered
by Wright [1918, 1920, 1921] (see Figure 2.3). Although Wright was a biolo-
gist, SEMs are nowadays most strongly associated with econometrics. Following
Hoover [2008], pioneering work on structural econometric models was done in the
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1930s by Jan Tinbergen, and the conceptual foundations of probabilistic econo-
metrics were laid in Trgyve Haavelmo’s work [Haavelmo, 1944]. Early economists
were trying to conceptualize the fact that unlike correlation, regression has a nat-
ural direction. The regression of Y on X leads to a solution that usually is not the
inverse of the regression of X on Y .6 But how would the data then tell us in which
direction we should perform the regression? This is a problem of observational
equivalence, and it is closely related to a problem econometricians call identifica-
tion.

A number of early works saw a connection between what made a set of equations
or relations structural [Frisch and Waugh, 1933], and properties of invariance and
autonomy — according to Aldrich [1989], indeed the central notion in the pioneer-
ing work of Frisch et al. [1948]. Here, a structural relation was aiming for more
than merely modeling an observed distribution of data — it was trying to capture
an underlying structure connecting the variables of the model.

At the time, the Cowles Commission was a major economic research institute,
instrumental in creating the field of econometrics. Its work related causality to the
invariance properties of the structural econometric model [Hoover, 2008]. Pearl
[2009] credits Marschak’s opening chapter of a 1950 Cowles monograph with the
idea that structural equations remain invariant to certain changes in the system
[Marschak, 1950]. A crucial distinction emphasized by the Cowles work was the
one between endogenous and exogenous variables. Endogeneous variables are
those that the modeler tries to understand, while exogenous ones are determined
by factors outside the model, and are taken as given. Koopmans [1950] assayed
two principles for determining what should be treated as exogeneous. The de-
partmental principle considers variables outside of the scope of the discipline as
exogeneous (e.g., weather is exogeneous to economics). The (preferred) causal
principle calls those variables exogenous that influence the remaining (endoge-
neous) variables, but are (almost) not influenced thereby.

Haavelmo [1943] interpreted structural equations as statements about hypothet-
ical controlled experiments. He considered cyclic stochastic equation models and
discussed the role of invariance as well as policy interventions. Pearl [2015] gives
an appraisal of Haavelmo’s role in the study of policy intervention questions and
the development of the field of causal inference. In an account of causality in

6As an aside, while most of the early works were using linear equations only, there have also been
attempts to generalize to nonlinear SEMs [Hoover, 2008].
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economics and econometrics, Hoover [2008] discusses a system of the form

X i := Ni
X

Y i := θ X i +Ni
Y ,

where the errors Ni
X ,N

i
Y are i.i.d., and θ is a parameter. He attributes to Simon

[1953] the view (which does not require any temporal order) that X i may be re-
ferred to as causing Y i since one knows all about X i without knowing about Y i, but
not vice versa. The equations also allow us to predict the effect of interventions.
Hoover goes on to argue that one can rewrite the system reversing the roles of X i

and Y i while retaining the property that the error terms are uncorrelated.7 He thus
points out that we cannot infer the correct causal direction on the basis of a single
set of data (“observational equivalence”). Experiments, either controlled or natu-
ral, could help us decide. If, for example, an experiment can change the conditional
distribution of Y i given X i, without altering the marginal distribution of X i, then it
must be that X i causes Y i. Hoover refers to this as Simon’s invariance criterion:
the true causal order is the one that is invariant under the right sort of intervention.8

Hurwicz [1962] argues that an equation system becomes structural by virtue of in-
variance to a domain of modifications. Such a system then bears resemblance to a
natural law. Hurwicz recognized that one can use such modifications to determine
structure, and that while structure is necessary for causality, it is not for prediction.

Aldrich [1989] provides an account of the role of autonomy in structural equation
modeling. He argues that autonomous relations are likely to be more stable than
others. He equates Haavelmo’s autonomous variables with what subsequently be-
came known as exogeneous variables. Autonomous variables are parameters fixed
by external forces, or treated as stochastically independent.9 Following Aldrich
[1989, page 30], “the use of the qualifier autonomous and the phrase forces exter-
nal to the sector under consideration suggest that ... the parameters of that model
would be invariant to changes in the sectoral parameters.” He also relates invari-
ance to a notion termed super-exogeneity [Engle et al., 1983].

While the early proponents of structural equation modeling already had some
profound insights in their causal underpinnings, the developments in computer sci-

7We shall revisit this topic in more detail in Section 4.1.3.
8We would argue that this may not hold true if interventions are coupled to each other, for exam-

ple, to keep the anticausal conditional (which describes the cause, given its effect) invariant. This
could be seen as a violation of Principle 2.1 on the level of interventions. We return to this point in
Section 2.3.4.

9This is akin to the independence of noise terms we use in SCMs.
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ence initially happened separately. Pearl [2009, p. 104] relates how he and his
coworkers started connecting Bayesian networks and structural equation modeling:
“It suddenly hit me that the century-old tension between economists and statisti-
cians stems from simple semantic confusion: statisticians read structural equa-
tions as statements about E[Y |x] while economists read them as E[Y |do(x)]. This
would explain why statisticians claim that structural equations have no meaning
and economists retort that statistics has no substance.” Pearl [2009, p. 22] formu-
lates the independence principle as follows: “that each parent-child relationship in
the network represents a stable and autonomous physical mechanism — in other
words, that it is conceivable to change one such relationship without changing the
others.”

It is noteworthy, and indeed a motivation for writing the present book, that among
the different implications of Principle 2.1, shown in Figure 2.2, most of the work
using causal Bayesian networks only exploits the independence of noise terms.10

It leads to a rich structure of conditional independences [Pearl, 2009, Spirtes et al.,
2000, Dawid, 1979, Spohn, 1980], ultimately deriving from Reichenbach’s Prin-
ciple 1.1. The other aspects of independence received significantly less attention
[Hausman and Woodward, 1999, Lemeire and Dirkx, 2006], but there is a recent
thread of work aiming at formalizing and using them. A major motivation for this
has been the cause-effect problem where conditional independence is useless since
we have only two variables (see Sections 4.1.2 and 6.10). Janzing and Schölkopf
[2010] formalize independence of mechanism in terms of algorithmic information
theory (Section 4.1.9). They view the functions in an SCM as representing in-
dependent causal mechanisms that persist after manipulating the distribution of
inputs or other mechanisms. More specifically, in the context of causal Bayesian
networks, they postulate that the conditional distributions of all nodes given their
parents are algorithmically independent. In particular, for the causal Bayesian net-
work X → Y , PX and PY |X contain no algorithmic information about each other —
meaning that knowledge of one does not admit a shorter description of the other.
The idea that unrelated mechanisms are algorithmically independent follows from
the generalization of SCMs from random variables to individual objects where sta-
tistical dependences are replaced with algorithmic dependences.

Schölkopf et al. [2012, e.g., Section 2.1.1.] discuss the question of robustness
with respect to changes in the distribution of the cause (in the two-variable set-

10Certain Bayesian structure learning methods [Heckerman et al., 1999] can be viewed as imple-
menting the independence principle by assigning independent priors to the conditional probabilities
of each variable given its causes.
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ting), and connect it to problems of machine learning; see also Chapter 5. Within
an SCM, they analyze invariance of either the function or of the noises, for differ-
ent learning scenarios (e.g., transfer learning, concept drift). They employ a notion
of independence of mechanism and input that subsumes both independence un-
der changes and information-theoretic independence (we called this the “overlap”
between the first and second independence in Figure 2.2 in the discussion of the
boxes): “PE|C contains no information about PC and vice versa; in particular, if PE|C
changes at some point in time, there is no reason to believe that PC changes at the
same time.”

Further links to transfer and related machine learning problems are discussed
by Bareinboim and Pearl [2016], Rojas-Carulla et al. [2016], Zhang et al. [2013]
and Zhang et al. [2015]. Peters et al. [2016] exploited invariance across envi-
ronments for learning parts of the graph structure underlying a multivariate SCM
(Section 7.1.6).

2.3 Physical Structure Underlying Causal Models

We conclude this chapter with some notes on connections to physics. Readers
whose interests are limited to mathematical and statistical structures may prefer to
skip this part.

2.3.1 The Role of Time

An aspect that is conspicuously missing in Section 2.1 is the role of time. Indeed,
physics incorporates causality into its basic laws by excluding causation from fu-
ture to past.11 This does not do away with all problems of causal inference, though.
Already Simon [1953] recognized that while time ordering can provide a useful
asymmetry, it is asymmetry that is important, not the temporal sequence.

Microscopically, the time evolution of both classical systems and quantum me-
chanical systems is widely believed to be invertible. This seems to contradict our
intuition that the world evolves in a directed way — we believe we would be able
to tell if time were to flow backward. The contradiction can be resolved in two
ways. In one of them, suppose we have a complexity measure for states [Bennett,
1982, Zurek, 1989], and we start with a state whose complexity is very low. In that

11More precisely, an event can only influence events lying in its light cone since no signal can
travel faster than the speed of light in a vacuum, according to the theory of relativity.
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case, time evolution (assuming it is sufficiently ergodic) will tend to increase com-
plexity. In the other way, we assume that we are considering open systems. Even
if the time evolution for a closed system is invertible (e.g., in quantum mechanics,
a unitary time evolution), the time evolution of an open subsystem (which interacts
with its environment) in the generic case need not be invertible.

2.3.2 Physical Laws

An often discussed causal question can be addressed with the following example.
The ideal gas law stipulates that pressure p, volume V , amount of substance n, and
absolute temperature T satisfy the equation

p ·V = n ·R ·T, (2.2)

where R is the ideal gas constant. If we, for instance, change the volume V allo-
cated to a given amount of gas, then pressure p and/or temperature T will change,
and the specifics will depend on the exact setup of the intervention. If, on the other
hand, we change T , then V and/or p will change. If we keep p constant, then we
can, at least approximately, construct a cycle involving T and V . So what causes
what? It is sometimes argued that such laws show that it does not make sense to
talk about causality unless the system is temporal. In the next paragraph, we ar-
gue that this is misleading. The gas law (2.2) refers to an equilibrium state of an
underlying dynamical system, and writing it as a simple equation does not provide
enough information about what interventions are in principle possible and what is
their effect. SCMs and their corresponding directed acyclic graphs do provide us
with this information, but in the general case of non-equilibrium systems, it is a
hard problem whether and how a given dynamical systems leads to an SCM.

2.3.3 Cyclic Assignments

We think of SCMs as abstractions of underlying processes that take place in time.
For these underlying processes, there is no problem with feedback loops, since at
a sufficiently fast time scale, those loops will be unfolded in time, assuming there
are no instantaneous interactions, which are arguably excluded by the finiteness of
the speed of light.

Even though the time-dependent processes do not have cycles, it is possible that
an SCM derived from such processes (for instance, by methods mentioned below
in Remarks 6.5 and 6.7), involving only quantities that no longer depend on time,
does have cycles. It becomes a little harder to define general interventions in such
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systems, but certain types of interventions should still be doable. For instance,
a hard intervention where we set the value of one variable to a fixed value may
be possible (and realizable physically by a forcing term in an underlying set of
differential equations; see Remark 6.7). This cuts the cycle, and we can then derive
the entailed intervention distribution.

However, it may be impossible to derive an entailed observational distribution
from a cyclic set of structural assignments. Let us consider the two assignments

X := fX(Y,NX)

Y := fY (X ,NY )

and noise variables NX ⊥⊥ NY . Just like in the case of acyclic models, we consider
the noises and functions as given and seek to compute the entailed joint distribution
of X and Y . To this end, let us start with the first assignment X := fX(Y,NX), and
substitute some initial Y into it. This yields an X , which we can then substitute
into the other assignment. Suppose we iterate the two assignments and converge
to some fixed point. This point would then correspond to a joint distribution of
X ,Y simultaneously satisfying both structural assignments as equalities of random
variables.12 Note that we have here assumed that the same NX ,NY are used at every
step, rather than independent copies thereof.

However, such an equilibrium for X ,Y need not always exist, and even if it does,
it need not be the case that it can be found using the iteration. In the linear case,
this has been analyzed by Lacerda et al. [2008] and Hyttinen et al. [2012]; see also
Lauritzen and Richardson [2002]. For further details see Remark 6.5.

This observation that one may not always be able to get an entailed distribution
satisfying two cyclic structural assignments is consistent with the view of SCMs as
abstractions of underlying physical processes — abstractions whose domain of va-
lidity as causal models is limited. If we want to understand general cyclic systems,
it may be unavoidable to study systems of differential equations rather than SCMs.
For certain restricted settings, on the other hand, it can still make sense to stay on
the phenomenologically more superficial level of SCMs; see, for example, Mooij
et al. [2013]. One may speculate that this difficulty inherent to SCMs (or SEMs) is
part of the reason why the econometrics community started off viewing SEMs as

12The fact that the assignments are satisfied as equalities of random variables means that we are
considering an ensemble of systems that differ in the realizations of the noise variables. Each realiza-
tion leads to a (possibly different) realization for X ,Y , and thus the distribution of the noises implies
a distribution over X ,Y .
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causal models, but later on parts of the community decided to forgo this interpre-
tation in favor of a view of structural equations as purely algebraic equations.

2.3.4 Feasibility of Interventions

We have used the principle of independent mechanisms to motivate interventions
that only affect one mechanism (or structural assignment) at a time. While real
systems may admit such kind of interventions, there will also be interventions that
replace several assignments at the same time. The former type of interventions
may be considered more elementary in an intuitive physical sense. If multiple
elementary interventions are combined, then this may in principle happen in a way
such that they tuned to each other, and we would view this as violating a form of
our independence Principle 2.1; see footnote 8 on page 24. One may hope that
combined interventions that are “natural” will not violate independence. However,
to tell whether an intervention is “natural” in this sense requires knowledge of
the causal structure, which we do not have when trying to use such principles
to perform causal learning in the first place. Ultimately, one can try to resort to
physics to assay what is elementary or natural.

The questions of which operations on a physical system are elementary plays a
crucial role in modern quantum information theory. There, the question is closely
related to analyzing the structure of physical interactions.13 Likewise, we believe
that understanding physical mechanisms underlying causal relations may some-
times explain why some interventions are natural and others are complex, which
essentially defines the “modules” given by the different structural equations.

2.3.5 Independence of Cause and Mechanism and the
Thermodynamic Arrow of Time

We provide a discussion as well as a toy model illustrating how the principle of
independent mechanisms can be viewed as a principle of physics. To this end, we

13For the interested reader: A system consisting of n two-level quantum systems is described by
the 2n-dimensional Hilbert space C2⊗·· ·⊗C2. Unitary operators acting on this Hilbert space cor-
respond to physical processes. For several such systems, researchers have shown how to implement
“basic” unitaries that act on at most two of the n tensor components [Nielsen and Chuang, 2000] and
act trivially on the remaining n−2 ones. Then one can generate any other unitary [DiVincenzo, 1995]
approximately by concatenation. Although this is by no means the only possible choice for the set
of “basic” unitary operations, the choice seems natural given the structure of physical interactions.
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Figure 2.4: Simple example of the independence of initial state and dynamical law: beam
of particles that are scattered at an object. The outgoing particles contain information about
the object while the incoming do not.

consider the special case of two variables and postulate the following as a special-
ization of Principle 2.1:

Principle 2.2 (Initial state and dynamical law) If s is the initial state of a phys-
ical system and M a map describing the effect of applying the system dynamics for
some fixed time, then s and M are independent. Here, we assume that the initial
state, by definition, is a state that has not interacted with the dynamics before.

Here, the “initial” state s and “final” state M(s) are considered as “cause” and
“effect.” Accordingly, M is the mechanism relating cause and effect. The last sen-
tence of Principle 2.2 requires some explanation to avoid erroneous conclusions.
We now discuss its meaning for an intuitive example.

Figure 2.4 shows a scenario where the independence of initial state and dynamics
is so natural that we take it for granted: a beam of n particles propagating in exactly
the same direction are approaching some object, where they are scattered in various
directions. The directions of the outgoing particles contain information about the
object, while the beam of incoming particles does not contain information about it.
The assumption that the particles initially propagate exactly in the same direction
can certainly be weakened. Even if there is some disorder in the incoming beam,
the outgoing beam can still contain information about the object. Indeed, vision
and photography are only possible because photons contain information about the
objects at which they were scattered.

We can easily time-reverse the scenario by “hand-designing” an incoming beam
for which all particles propagate in the same direction after the scattering process.
We now argue how to make sense of Principle 2.2 in this case. Certainly, such a
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beam can only be prepared by a machine or a subject that is aware of the object’s
shape and then directs the particles accordingly. As a matter of fact, particles that
have never been in contact with the object cannot a priori contain information about
it. Then, Principle 2.2 can be maintained if we consider the process of directing
the particles as part of the mechanism and reject the idea of calling the state of the
hand-designed beam an initial state. Instead, the initial state then refers to the time
instant before the particles have been given the fine-tuned momenta.

The fact that photographic images show what has happened in the past and not
what will happen in the future is among the most evident asymmetries between past
and future. The preceding discussion shows that this asymmetry can be seen as an
implication of Principle 2.2. The principle thus links asymmetries between cause
and effect with asymmetries between past and future that we take for granted.

After having explained the relation between Principle 2.1 and the asymmetry
between past and future in physics on an informal level, we briefly mention that
this link has been made more formally by Janzing et al. [2016] using algorithmic
information theory. In the same way as Principle 4.13 formalizes independence
of PC and PE|C as algorithmic independence, Principle 2.2 can also be interpreted
as algorithmic independence of s and M. Janzing et al. [2016, Theorem 1] show
that for any bijective M, Principle 2.2 then implies that the physical entropy of
M(s) cannot be smaller than the entropy of s (up to an additive constant) provided
that one is willing to accept Kolmogorov complexity (see Section 4.1.9) as the
right formalization of physical entropy, as proposed by Bennett [1982] and Zurek
[1989]. Principle 2.2 thus implies non-decrease of entropy in the sense of the
standard arrow of time in physics.
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Cause-Effect Models

The present chapter formalizes some basic concepts of causality for the case where
the causal models contain only two variables. Assuming, these two variables are
non-trivially related and their dependence is not solely due to a common cause,
this constitutes a cause-effect model. We briefly introduce SCMs, interventions,
and counterfactuals. All of these concepts are defined again in the context of mul-
tivariate causal models (Chapter 6) and we hope that encountering them for two
variables first makes the ideas more easily accessible.

3.1 Structural Causal Models

SCMs constitute an important tool to relate causal and probabilistic statements.

Definition 3.1 (Structural causal models) An SCM C with graph C→ E consists
of two assignments

C := NC, (3.1)

E := fE(C,NE), (3.2)

where NE ⊥⊥ NC, that is, NE is independent of NC.

In this model, we call the random variables C the cause and E the effect. Fur-
thermore, we call C a direct cause of E, and we refer to C→ E as a causal graph.
This notation hopefully clarifies and coincides with the reader’s intuition when we
talk about interventions, for example, in Example 3.2.

If we are given both the function fE and the noise distributions PNC and PNE , we
can sample data from such a model in the following way: We sample noise values
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NE , NC and then evaluate (3.1) followed by (3.2). The SCM thus entails a joint
distribution PC,E over C and E (for a formal proof see Proposition 6.3).

3.2 Interventions

As discussed in Section 1.4.2, we are often interested in the system’s behavior
under an intervention. The intervened system induces another distribution, which
usually differs from the observational distribution. If any type of intervention can
lead to an arbitrary change of the system, these two distributions become unrelated
and instead of studying the two systems jointly we may consider them as two sep-
arate systems. This motivates the idea that after an intervention only parts of the
data-generating process change. For example, we may be interested in a situation in
which variable E is set to the value 4 (irrespective of the value of C) without chang-
ing the mechanism (3.1) that generates C. That is, we replace the assignment (3.2)
by E := 4. This is called a (hard) intervention and is denoted by do(E := 4). The
modified SCM, where (3.2) is replaced, entails a distribution over C that we denote
by Pdo(E:=4)

C or PC;do(E:=4)
C , where the latter makes explicit that the SCM C was

our starting point. The corresponding density is denoted by c 7→ pdo(E:=4)(c) or, in
slight abuse of notation, pdo(E:=4)(c).1 However, manipulations can be much more
general. For example, the intervention do

(
E := gE(C)+ ÑE

)
keeps a functional

dependence on C but changes the noise distribution. This is an example of a soft
intervention. We can replace either of the two equations.

The following example motivates the namings “cause” and “effect”:

Example 3.2 (Cause-effect interventions) Suppose that the distribution PC,E is
entailed by an SCM C

C := NC

E := 4 ·C+NE , (3.3)

with NC,NE
iid∼N (0,1), and graph C→ E. Then,

PC
E =N (0,17) 6=N (8,1) = PC;do(C:=2)

E = PC
E |C=2

6=N (12,1) = PC;do(C:=3)
E = PC

E |C=3.

1In the literature, the notation p(c |do(E := 4)) is also commonly used. We prefer pdo(E:=4) since
interventions are conceptually different from conditioning, and p(c |do(E := 4)) resembles the usual
notation for the latter, p(c |E = 4).
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Intervening on C changes the distribution of E. But on the other hand,

PC;do(E:=2)
C =N (0,1) = PC

C = PC;do(E:=314159265)
C

(
6= PC

C |E=2

)
. (3.4)

No matter how strongly we intervene on E, the distribution of C remains what it
was before. This model behavior corresponds well to our intuition of C “caus-
ing” E: for example, no matter how much we whiten someone’s teeth, this will not
have any effect on this person’s smoking habits. (Importantly, the conditional dis-
tribution of C given E = 2 is different from the distribution of C after intervening
and setting E to 2.)

The asymmetry between cause and effect can also be formulated as an indepen-
dence statement. When we replace the assignment (3.3) with E := ÑE (think about
randomizing E), we break the dependence between C and E. In

P
C;do(E:=ÑE)
C,E

we find C ⊥⊥ E. This independence does not hold when randomizing C. As long as
var[ÑC] 6= 0, we find C 6⊥⊥ E in

P
C;do(C:=ÑC)
C,E ;

the correlation between C and E remains non-zero.

Code Snippet 3.3 The code samples from the SCM described in Example 3.2.

1 set.seed(1)

2 # generates a sample from the distribution entailed by the SCM

3 C <- rnorm(300)

4 E <- 4*C + rnorm(300)

5 c(mean(E), var(E))

6 # [1] 0.1236532 16.1386767

7 #

8 # generates a sample from the intervention distribution do(C:=2);

9 # this changes the distribution of E

10 C <- rep(2,300)

11 E <- 4*C + rnorm(300)

12 c(mean(E), var(E))

13 # [1] 7.936917 1.187035

14 #

15 # generates a sample from the intervention distribution do(E:=N~);

16 # this breaks the dependence between C and E

17 C <- rnorm(300)

18 E <- rnorm(300)

19 cor.test(C,E)$p.value

20 # [1] 0.2114492
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3.3 Counterfactuals

Another possible modification of an SCM changes all of its noise distributions.
Such a change can be induced by observations and allows us to answer counter-
factual questions. To illustrate this, imagine the following hypothetical scenario:

Example 3.4 (Eye disease) There exists a rather effective treatment for an eye
disease. For 99% of all patients, the treatment works and the patient gets cured (B=
0); if untreated, these patients turn blind within a day (B = 1). For the remaining
1%, the treatment has the opposite effect and they turn blind (B = 1) within a day.
If untreated, they regain normal vision (B = 0).

Which category a patient belongs to is controlled by a rare condition (NB = 1)
that is unknown to the doctor, whose decision whether to administer the treatment
(T = 1) is thus independent of NB. We write it as a noise variable NT .

Assume the underlying SCM

C :
T := NT

B := T ·NB +(1−T ) · (1−NB)
(3.5)

with Bernoulli distributed NB ∼ Ber(0.01); note that the corresponding causal
graph is T → B.

Now imagine a specific patient with poor eyesight comes to the hospital and goes
blind (B = 1) after the doctor administers the treatment (T = 1). We can now ask
the counterfactual question “What would have happened had the doctor admin-
istered treatment T = 0?” Surprisingly, this can be answered. The observation
B = T = 1 implies with (3.5) that for the given patient, we had NB = 1. This, in
turn, lets us calculate the effect of do(T := 0).

To this end, we first condition on our observation to update the distribution over
the noise variables. As we have seen, conditioned on B = T = 1, the distribution
for NB and the one for NT collapses to a point mass on 1, that is, δ1. This leads to
a modified SCM:

C|B = 1,T = 1 :
T := 1
B := T ·1+(1−T ) · (1−1) = T

(3.6)

Note that we only update the noise distributions; conditioning does not change the
structure of the assignments themselves. The idea is that the physical mechanisms
are unchanged (in our case, what leads to a cure and what leads to blindness), but
we have gleaned knowledge about the previously unknown noise variables for the
given patient.
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Next, we calculate the effect of do(T = 0) for this patient:

C|B = 1,T = 1; do(T := 0) :
T := 0
B := T

(3.7)

Clearly, the entailed distribution puts all mass on (0,0), and hence

PC|B=1,T=1;do(T :=0)(B = 0) = 1 .

This means that the patient would thus have been cured (B = 0) if the doctor had
not given him treatment, in other words, do(T := 0). Because of

PC;do(T :=1)(B = 0) = 0.99 and

PC;do(T :=0)(B = 0) = 0.01,

however, we can still argue that the doctor acted optimally (according to the avail-
able knowledge).

Interestingly, Example 3.4 shows that we can use counterfactual statements to
falsify the underlying causal model (see Section 6.8). Imagine that the rare con-
dition NB can be tested, but the test results take longer than a day. In this case,
it is possible that we observe a counterfactual statement that contradicts the mea-
surement result for NB. The same argument is given by Pearl [2009, p.220, point
(2)]. Since the scientific content of counterfactuals has been debated extensively, it
should be emphasized that the counterfactual statement here is falsifiable because
the noise variable is not unobservable in principle but only at the moment when the
decision of the doctor has to be made.

3.4 Canonical Representation of Structural Causal
Models

We have discussed two types of causal statements both entailed by SCMs: first,
the behavior of the system under potential interventions, and second, counterfac-
tual statements. To further understand the difference between them, we introduce
the following “canonical representation” of an SCM.2 According to the structural
assignment

E = fE(C,NE),

2This representation has been used in the literature in various places, for example, [Pearl, 2009]
although we have not found the term “canonical representation.”
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for each fixed value nE of the noise NE , E is a deterministic function of C:

E = fE(C,nE). (3.8)

In order words, if C and E attain values in C and E , respectively, then the noise NE

switches between different functions from C to E . Without loss of generality, we
may therefore assume that NE attains values in the set of functions from C to E ,
denoted by EC . Using this convention, we can also rewrite (3.8) as

E = nE(C), (3.9)

and call this the canonical representation of the structural equation relating C and E.
Let us now explain why two SCMs with different canonical representations may

induce the same interventional probabilities, although they differ in their counter-
factual statements. To this end, we restrict the attention to the case where C attains
values in the finite set C = {1, . . . ,k}. Then the set of functions from C to E is given
by the k-fold Cartesian product

Ek := E ×·· ·×E︸ ︷︷ ︸
k times

,

where the jth component describes which value E attains for C = j. Accordingly,
the distribution PNE is given by a joint distribution on Ek whose marginal distri-
bution of the jth component determines the conditional PE|C= j. Since C is the

cause and E the effect, we have Pdo(C:= j)
E = PE|C= j; in other words, here interven-

tional probabilities and observational conditional probabilities coincide. Thus, the
interventional causal implications of the SCM are completely determined by the
marginal distributions of each component of the vector-valued noise variable NE

even though the SCM includes a precise specification of PNE , that is, the joint dis-
tribution of all components. While the statistical dependences between the compo-
nents of the noise variable NE referring to the effect are irrelevant for interventional
causal statements, they do matter for counterfactual statements. To see this, let C
and E be binary, that is, C = E = {0,1}. The set of functions from {0,1} to {0,1}
reads EC = {0,1, ID,NOT} where 0,1 denote the constant functions attaining 0
and 1, respectively, and ID and NOT denote identity and negation, respectively.
To construct two different distributions P1

NE
and P2

NE
inducing the same conditional

PE|C=0, PE|C=1, first choose the uniform mixture of 0 and 1 and second the uniform
mixture of ID and NOT. In both cases, C and E are statistically independent and
the distribution of E is unaffected by interventions on C because E remains an un-
biased coin toss regardless of C. In the Cartesian product representation, the four
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functions read EC = {(0,0),(1,1),(0,1),(1,0)}, the first and the second compo-
nent denote the images of C = 0 and C = 1, respectively. Obviously, the uniform
mixture of (0,0) and (1,1) and the uniform mixture of (0,1) and (1,0) both in-
duce the same marginal distributions on the first and the second component of the
Cartesian product — in agreement with our remark that they induce the same in-
tervention distributions. The counterfactual statement “E would have attained a
different value if C had been set to a different one,” however, is true only for the
mixture of ID and NOT, but not for the mixture of 0 and 1. Hence, counterfactual
statements depend not only on the marginal distributions of the components of the
noise variable NE , but also on the statistical dependences between the Cartesian
product components.

Note that two formally different SCMs may induce not only the same interven-
tional distribution but even imply the same counterfactual statements: Given the
assignment

E := fE(C,NE),

reparameterizations of NE are obviously irrelevant. More explicitly, we may set

E := f̃E(C, ÑE) = fE(C,g−1(ÑE)),

for some bijection g on the range of NE and redefine the noise variable by ÑE :=
g(NE). Using the canonical representation (3.9), we got rid of this additional degree
of freedom that would have confused this discussion of counterfactuals.

3.5 Problems

Problem 3.5 (Sampling from an SCM) Consider the SCM

X := Y 2 +NX (3.10)

Y := NY (3.11)

with NX ,NY
iid∼N (0,1). Generate an i.i.d. sample of size 200 from the joint distri-

bution (X ,Y ).

Problem 3.6 (Conditional distributions) Show that PC
C |E=2 in Equation (3.4) is

a Gaussian distribution:

C |E = 2 ∼ N
(

8
17

,σ2 =
1
17

)
.
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Problem 3.7 (Interventions) Assume that we know that a process either follows
the SCM

X := Y +NX

Y := NY ,

where NX ∼N (µX ,σ
2
X) and NY ∼N (µX ,σ

2
Y ) with unknown µX ,µY and σX ,σY >

0, or it follows the SCM

X := MX

Y := X +MY ,

where MX ∼N (νX ,τ
2
X) and MY ∼N (νY ,τ

2
Y ) with unknown νX ,νY and τX ,τY > 0.

Is there a single intervention distribution that lets you distinguish between the two
SCMs?

Problem 3.8 (Cyclic SCMs) We have mentioned that if the assignments inherit
a cyclic structure, the SCM does not necessarily induce a unique distribution over
the observed variables. Sometimes there is no solution and sometimes it is not
unique.

a) We first look at an example that induces a unique solution. Consider the
SCM

X := 2 ·Y +NX (3.12)

Y := 2 ·X +NY (3.13)

with (NX ,NY ) ∼ P for an arbitrary distribution P. Compute α,β ,γ,δ such
that

X := αNX +βNY

Y := γNX +δNY

yields a solution (X ,Y,NX ,NY ) of the SCM; that is, the vector satisfies Equa-
tions (3.12) and (3.13). The solution can be seen as a special case of Equa-
tion (6.2).

b) Consider the SCM

X := Y +NX

Y := X +NY
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with (NX ,NY ) ∼ P. Show that if P allows for a density with respect to
Lebesgue measure and factorizes, that is, NX ⊥⊥ NY , then there is no solu-
tion (X ,Y,NX ,NY ) of the SCM.

Furthermore, construct a distribution P, and a vector (X ,Y,NX ,NY ) that
solves the SCM.





4

Learning Cause-Effect Models

Readers who are familiar with the conditional statistical independence-based ap-
proach to causal discovery from observational data [Pearl, 2009, Spirtes et al.,
2000] may be surprised by a chapter discussing causal inference for the case of
only two observed variables, that is, a case where no non-trivial conditional in-
dependences can hold. This chapter introduces assumptions under which causal
inference with just two observed variables is possible.

Some of these assumptions may seem too strong to be realistic, but one should
keep in mind that empirical inference, even if it is not concerned with causal prob-
lems, requires strong assumptions. This is true in particular when it deals with
high-dimensional data and low sample sizes. Therefore, oversimplified models are
ubiquitous and they have been proven helpful in many learning scenarios.

The list of assumptions is diverse and we are certain that it is incomplete, too.
Current research is still in a phase of exploring the enormous space of assump-
tions that yield identifiability between cause and effect. We hope that this chapter
inspires the reader who may then add other — hopefully realistic — assumptions
that can be used for learning causal structures.

We provide the assumptions and theoretical identifiability results in Section 4.1;
Section 4.2 shows how these results can be used for structure identification in the
case of a finite amount of data.
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4.1 Structure Identifiability

4.1.1 Why Additional Assumptions Are Required

In Chapter 3, we introduced SCMs where the effect E is computed from the cause C
using a function assignment. One may wonder whether this asymmetry of the data-
generating process (i.e., that E is computed from C and not vice versa) becomes
apparent from looking at PC,E alone. That is, does the joint distribution PX ,Y of two
variables X ,Y tell us whether it has been induced by an SCM from X to Y or from
Y to X? In other words, is the structure identifiable from the joint distribution?
The following known result shows that the answer is “no” if one allows for general
SCMs.

Proposition 4.1 (Non-uniqueness of graph structures) For every joint distribu-
tion PX ,Y of two real-valued variables, there is an SCM

Y = fY (X ,NY ), X ⊥⊥ NY ,

where fY is a measurable function and NY is a real-valued noise variable.

Proof. Analogously to Peters [2012, Proof of Proposition 2.6], define the condi-
tional cumulative distribution function

FY |x(y) := P(Y ≤ y |X = x).

Then define
fY (x,nY ) := F−1

Y |x (nY ),

where F−1
Y |x (nY ) := inf{x∈R : FY |x(x)≥ nY}. Then, let NY be uniformly distributed

on [0,1] and independent of X . �

The result can be applied to the case X = C and Y = E as well as to the case
X = E and Y = C, thus every joint distribution PX ,Y admits SCMs in both direc-
tions. For this reason, it is often thought that the causal direction between just two
observed variables cannot be inferred from passive observations alone. We will
see in Chapter 7 that this claim fits into a framework in which causal inference is
based on (conditional) statistical independences only [Spirtes et al., 2000, Pearl,
2009]. Then, the causal structures X → Y and Y → X are indistinguishable. For
just two variables, the only possible (conditional) independence would condition
on the empty set, which does not render X and Y independent unless the causal
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influence is non-generic.1 More recently, this perspective has been challenged by
approaches that also use information about the joint distribution other than condi-
tional independences. These approaches rely on additional assumptions about the
relations between probability distributions and causality.

The remaining part of Section 4.1 discusses under which assumptions the graph
structure can be recovered from the joint distribution (structure identifiability).
Section 4.2 then describes methods that estimate the graph from a finite data set
(structure identification). These statistical methods do not need to be motivated by
the proofs of the identifiability results. Methods that follow the proofs closely are
often inefficient in making use of the data.

4.1.2 Overview of the Type of Assumptions

A Priori Restriction of the Model Class One possible approach to distinguish
cause and effect is to define a class of “particularly natural” conditionals2 PE|C
and marginals PC. For several such classes, there are theoretical results showing
that “generic” combinations of marginals PX and conditionals PY |X induce joint
distributions that cannot be described by the same class when X and Y are swapped.
Statements of this kind are also called identifiability results and we will see such
examples in the remainder of Section 4.1.

For example, one may define classes of conditionals PE|C and marginals PC by
restricting the class of functions fE ; see (3.2), and/or the class of noise distribu-
tions in (3.1) and (3.2), as will be discussed in Sections 4.1.3–4.1.6. This approach
seems particularly natural from a machine learning perspective, where restricting
the complexity of functions appears everywhere in standard tasks such as regres-
sion and classification. Note that inferring causal directions via restricted function
classes implicitly assumes that the noise variables are still independent, in agree-
ment with the definition of an SCM (see Definition 3.1). In this sense, one could
say that these methods employ the independence of noise according to Figure 2.2,
but keep in mind that independence of noise renders causal directions only identi-
fiable after restricting the function class (see Proposition 4.1).

Another option of classes can be found in Sun et al. [2006], Janzing et al. [2009b],

1Note that this non-generic case should not be called “trivial” because non-trivial counterfactual
influence can be consistent with X ⊥⊥ Y (see Section 3.4).

2We use the notation PE|C as a shorthand for the collection (PE|C=c)c of conditional distributions
and implicitly assume the existence of a density, in other words, that PE,C is absolutely continuous
with respect to a product measure.
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and Comley and Dowe [2003]. Sun et al. [2006] and Janzing et al. [2009b], for in-
stance, consider second-order exponential models, for which the logarithmic den-
sities of PE|C and PC are second order polynomials in e and c (up to a partition
function), or in c, respectively.

We conclude this part with two questions: First, how should one define model
classes that describe a reasonable fraction of empirical data in real life? Second,
given that an empirical distribution admits such a model in exactly one direction,
why should this be the causal one? The first question is actually not specific to the
problem of causal inference; constructing functions that describe relations between
observed variables always requires us to fit functions from a “reasonable” class.
The second question appears to be among the deepest problems concerning the
relation between probability and causality. We are only able to give some intuitive
and vague ideas, which now follow.

We start by providing an intuitive motivation that is related to the reason why
usual machine learning relies on restricted model classes. Whenever we find a
model from a small function class that fits our limited number of data, we expect
that the model will also fit future observations, as argued in Chapter 1. Hence,
finding models from a small class that fit data is crucial for the ability to gen-
eralize to future observations. Formally, learning causal models is substantially
different from the usual learning scenario because it aims at inferring a model that
describes the behavior of the system under interventions and not just observations
taken from the same distribution. Therefore, there is no straightforward way to
adopt arguments from statistical learning theory, to obtain a learning theory for
causal relations. Nevertheless, we believe that finding a model from a small class
suggests — up to some error probability — that the model will also hold under
different background conditions. We further believe that models that hold under
many different background conditions are more likely to be causal than models
that just fit observations from a single data set (see “Different Environments” in
Section 7.1.6). This way, cause-effect inference via restricting the model class is
vaguely related to ideas from statistical learning theory although drawing the exact
link has to be left to the future. The preceding informal arguments for using causal
models from small classes should not be mistaken as stating that causal relations
in nature are indeed simple. The question whether or not we will often succeed
in fitting data with simple functions, is a completely different question. We only
argue for the belief that if there is a simple function that fits the data, it is more
likely to also describe a causal relation. Furthermore, we will draw one connection
between restricted model classes and the independence of cause and mechanism
in Section 4.1.9. To be prepared for those quite formal derivations, we first pro-
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vide a rather unrealistic toy model that we consider more a metaphor than a serious
example.

Independence of Cause and Mechanism Section 2.1 describes the idea that PC

and PE|C correspond to two independent mechanisms of nature. Therefore, they
typically contain no information about each other (cf. Principle 2.1 and the middle
box in Figure 2.2). Naturally, postulating that PC and PE|C are independent in the
sense that they do not contain information about each other raises the question
of what type of information is meant. There is no obvious sense in which the
postulate can be formalized by a condition that could be checked by a statistical
independence test. This is because we are talking about a scenario where one fixed
joint distribution PC,E is visible and not a collection of distributions in which we
could check whether the distribution of the hypothetical cause and the distribution
of the hypothetical effect, given the cause, change in a dependent way (this is
essentially the difference between the left and the middle boxes in Figure 2.2). To
translate the independence of cause and mechanism into the language of SCMs, we
assume that the distribution of the cause should be independent of the function and
the noise distribution representing the causal mechanism. Note that this is, again,
a priori, not a statement about statistical independence. Instead, it states that fE

and PNE contain no information about PC and vice versa. This fact can only be used
for causal inference if the independence is violated for all structural models that
describe PC,E from E to C.

Sections 4.1.7 and 4.1.8 describe two toy scenarios for which well-defined no-
tions of independence versus dependence can be given. Finally, in Section 4.1.9,
we describe a formalization of independence of PC and PE|C that is applicable to
more general scenarios rather than being restricted to the simple toy scenarios in
Sections 4.1.7 and 4.1.8. Here, dependence is measured by means of algorithmic
mutual information, a concept that is based on description length in the sense of
Kolmogorov complexity. Since the latter is uncomputable, it should be consid-
ered as a philosophical principle rather than a method. Its practical relevance is
two-fold. First, it may inspire the development of new methods and, second, jus-
tifications of existing methods can be based on it. For instance, the independence
principle can justify inference methods based on an a priori restriction of the model
class; see Section 4.1.9 for a specific example. To get a rough intuition about how
independence is related to restricted model classes, consider a thought experiment
where PC is randomly chosen from a class of k different marginal distributions.
Likewise, assume that PE|C is chosen from another class of ` different conditional
distributions. This induces k ·` different joint distributions PC,E . In the generic case
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(unless the classes are defined in a rather special way), this yields k ·` > k different
marginals PE and k · ` > ` different conditionals PC|E . Hence, typical combinations
of PC and PE|C induce joint distributions PE,C for which the “backward marginal
and conditional” PE and PC|E will not be in the original classes and would require
larger model classes instead. In other words, no matter how large one chooses the
set of possible PC and PE|C, the set of induced PC|E and PE is even larger. This
thought experiment is more like a metaphor because it is based on the naive picture
of randomly choosing from a finite set. Nevertheless, it motivates the belief that in
the causal direction, marginals and conditionals are more likely to admit a descrip-
tion from an a priori chosen small set provided that the latter has been constructed
in a reasonable way.

Sections 4.1.3 to 4.1.6 describe model assumptions with a priori restriction of
the model class, while Sections 4.1.7 to 4.1.9 formalize an independence assump-
tion. Section 4.1.9, however, plays a special role because it should be considered a
foundational principle rather than an inference method in its own right.

4.1.3 Linear Models with Non-Gaussian Additive Noise

While linear structural equations with Gaussian noise have been extensively stud-
ied, it has been observed more recently [Kano and Shimizu, 2003, Shimizu et al.,
2006, Hoyer et al., 2008a] that linear non-Gaussian acyclic models (LiNGAMs)
allow for new approaches to causal inference. In particular, the distinction be-
tween X causes Y and Y causes X from observational data becomes feasible. The
assumption is that the effect E is a linear function of the cause C up to an additive
noise term:

E = αC+NE , NE ⊥⊥C,

with α ∈ R (which is a special case of additive noise models introduced in Sec-
tion 4.1.4). The following result shows that this assumption is sufficient for identi-
fying cause and effect.

Theorem 4.2 (Identifiability of linear non-Gaussian models) Assume that PX ,Y

admits the linear model

Y = αX +NY , NY ⊥⊥ X , (4.1)

with continuous random variables X, NY , and Y . Then there exist β ∈ R and a
random variable NX such that

X = βY +NX , NX ⊥⊥ Y, (4.2)

if and only if NY and X are Gaussian.
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Figure 4.1: Joint density over X and Y for an identifiable example. The blue line is the
function corresponding to the forward model Y := 0.5 ·X +NY , with uniformly distributed
X and NY ; the gray area indicates the support of the density of (X ,Y ). Theorem 4.2 states
that there cannot be any valid backward model since the distribution of (X ,NY ) is non-
Gaussian. The red line characterized by (b,c) is the least square fit minimizing E[X −
bY − c]2. This is not a valid backward model X = bY + c+NX since the resulting noise
NX would not be independent of Y (the size of the support of NX would differ for different
values of Y ).

Hence, it is sufficient that C or NE are non-Gaussian to render the causal direction
identifiable; see Figure 4.1 for an example.

Let us look into slightly more details on how this result is proved. Theorem 4.2
is the bivariate case of the model class LiNGAM introduced by Shimizu et al.
[2006], who prove a multivariate version of Theorem 4.2 using independent com-
ponent analysis (ICA) [Comon, 1994, Theorem 11]. The proof of ICA is based
on a characterization of the Gaussian distribution that was proved independently
by Skitovič and Darmois [Skitovič, 1954, 1962, Darmois, 1953] and that we now
state.

Theorem 4.3 (Darmois-Skitovič) Let X1, . . . ,Xd be independent, non-degenerate
random variables (see Appendix A.1). If there exist non-vanishing coefficients
a1, . . . ,ad and b1, . . . ,bd (that is, for all i, ai 6= 0 6= bi) such that the two linear
combinations

l1 = a1X1 + . . .+adXd ,

l2 = b1X1 + . . .+bdXd

are independent, then each Xi is normally distributed.
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It turns out that one can prove the bivariate version stated in Theorem 4.2 as a
short and direct consequence from the theorem of Darmois-Skitovič; for illustra-
tion purposes we attach this proof in Appendix C.1. Furthermore, it can be shown
that the identifiability of bivariate SCMs generalizes to identifiability of multivari-
ate SCMs [Peters et al., 2011b]. With this result, the multivariate identifiability of
LiNGAM then follows from Theorem 4.2.

Linear models with non-Gaussian additive noise can also be applied to a prob-
lem that sounds uncommon from the perspective of machine learning but that is in-
teresting from the perspective of theoretical physics: estimating the arrow of time
from data. Peters et al. [2009b] show that autoregressive models are time-reversible
if and only if the noise variables are normally distributed. To explore asymmetries
of empirical time series, they infer the time direction by fitting two autoregressive
models, one from the past to the future, as standard, and one from the future to
the past. In their experiments, the noise variables for the former direction indeed
tend to be more independent than in the inverted time direction (cf. Section 4.2.1).
Bauer et al. [2016] extend the idea to multivariate time series. Janzing [2010] links
this observed asymmetry to the thermodynamic arrow of time, which suggests that
asymmetries between cause and effect discussed in this book are also related to
fundamental questions in statistical physics.

4.1.4 Nonlinear Additive Noise Models

We now describe additive noise models (ANMs), a less extreme restriction of the
class of SCMs that is still strong enough to render cause-effect inference feasible.

Definition 4.4 (ANMs) The joint distribution PX ,Y is said to admit an ANM from
X to Y if there is a measurable function fY and a noise variable NY such that

Y = fY (X)+NY , NY ⊥⊥ X . (4.3)

By overloading terminology, we say that PY |X admits an ANM if (4.3) holds.

The following theorem shows that “generically,” a distribution does not admit an
ANM in both directions at the same time.

Theorem 4.5 (Identifiability of ANMs) For the purpose of this theorem, let us
call the ANM (4.3) smooth if NY and X have strictly positive densities pNY and pX ,
and fY , pNY , and pX are three times differentiable.

Assume that PY |X admits a smooth ANM from X to Y , and there exists a y ∈ R
such that

(log pNY )
′′(y− fY (x)) f ′Y (x) 6= 0 (4.4)
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for all but countably many values x. Then, the set of log densities log pX for which
the obtained joint distribution PX ,Y admits a smooth ANM from Y to X is contained
in a 3-dimensional affine space.

Proof. (Sketch of the idea. For details, see Hoyer et al. [2009]) The ANM from
Y to X , given by

p(x,y) = pY (y)pNX (x− fX(y)), (4.5)

implies
log p(x,y) = log pY (y)+ log pNX (x− fX(y)).

One can show that log p(x,y) then satisfies the following differential equation:

∂

∂x

(
∂ 2 log p(x,y)/∂x2

∂ 2 log p(x,y)/(∂x∂y)

)
= 0. (4.6)

On the other hand, the ANM from X to Y reads

p(x,y) = pNX (x)pNY (y− fY (x)). (4.7)

Taking the logarithm of (4.7) yields

log p(x,y) = log pX(x)+ log pNY (y− fY (x)). (4.8)

Applying (4.6) to (4.8) yields a differential equation for the third derivative of
log pX in terms of (first, second, and third) derivatives of fX and log pNY . Thus, fX

and pNE (which are properties of the conditional PY |X ) determine log pX up to the
three free parameters log pNX (ν), (log pNX )

′(ν), and (log pNX )
′′(ν) for an arbitrary

point ν . �

Theorem 4.5 states identifiability in the “generic” case, where “generic” is char-
acterized by complicated conditions such as (4.4) and the three-dimensional sub-
space. For the case where pX and pNY is Gaussian, there is a much simpler iden-
tifiability statement saying that only linear functions f generate distributions that
admit an ANM in backward direction [see Hoyer et al., 2009, Corollary 1]. Fig-
ure 4.2 visualizes two “non-generic” examples of bivariate distributions that admit
additive noise models in both directions. First, the obvious case of a bivariate Gaus-
sian and, second, a sophisticated one that requires fine-tuning between pX and NX

[Mooij et al., 2016].
To relate Theorem 4.5 to causal semantics, assume first that we know a priori that

the joint distribution PX ,Y of cause and effect admits an ANM from C to E, but we
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Figure 4.2: Joint density over X and Y for two non-identifiable examples. The left panel
shows the linear Gaussian case and the right panel shows a slightly more complicated
example, with “fine-tuned” parameters for function, input, and noise distribution (the latter
plot is based on kernel density estimation). The blue function fY corresponds to the forward
model Y := fY (X)+NY , and the red function fX to the backward model X := fX (Y )+NX .

do not know whether X =C and Y = E or vice versa. Theorem 4.5 then states that
generically there will not be an ANM from E to C, and we can thus easily decide
which one of the variables is the cause C.

In general, however, conditionals PE|C in nature are not so strongly restricted that
they necessarily admit an ANM. But is it possible that PC and PE|C then induce a
joint distribution PC,E that admits an ANM from E to C? (In this case, we would
infer the wrong causal direction.) We argue in Section 4.1.9 that this is unlikely if
PC and PE|C are independently chosen.

4.1.5 Discrete Additive Noise Models

Additive noise can be defined not solely for real-valued variables, but for any vari-
able that attains values in a ring. Peters et al. [2010, 2011a] introduce ANMs for
the rings3 Z and Z/mZ. That is, the set of integers and the set of integers modulo
m ∈ Z. In the latter ring, we identify numbers that have the same remainder after
division by m. For example, both integers 132 and 4 have the remainder (namely 4)
after dividing by 8 and we write 132 ≡ 4 mod 8. Such a modular arithmetic may
be appropriate when one of the domains inherits a cyclic structure. If we consider
the day of the year, for example, we may want the days December 31 and January
1 to have the same distance as August 25 and August 26.

3In a ring, we can perform addition and multiplication. The latter operation does not necessarily
have an inverse, though.
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As in the continuous case, we can show that in the generic case, a joint distribu-
tion admits an ANM in at most one direction. The following result considers the
example of the ring Z.

Theorem 4.6 (Identifiability of discrete ANMs) Assume that a distribution PX ,Y

allows for an ANM Y = f (X)+NY from X to Y and that either X or Y has finite
support. PX ,Y allows for an ANM from Y to X if and only if there exists a disjoint
decomposition

⋃l
i=0Ci = suppX, such that the following conditions a), b), and c)

are satisfied:

a) The Ci’s are shifted versions of each other

∀i∃di ≥ 0 : Ci =C0 +di

and f is piecewise constant: f |Ci≡ ci ∀i.
b) The probability distributions on the Cis are shifted and scaled versions of

each other with the same shift constant as above: For x ∈ Ci, P(X = x)
satisfies

P(X = x) = P(X = x−di) ·
P(X ∈Ci)

P(X ∈C0)
.

c) The sets ci + suppNY := {ci +h : P(NY = h)> 0} are disjoint sets.

(By symmetry, such a decomposition satisfying the same criteria also exists for
the support of Y .) Figure 4.3 shows an example that allows an ANM in both direc-
tions [Peters et al., 2011a].

There are similar results available for discrete ANMs modulo m. We refer to
Peters et al. [2011a] for all details; we would like to mention, however, that the
uniform noise distribution plays a special role: Y ≡ f (X) + NY mod m with a
noise variable that is uniformly distributed on {0, . . . ,m−1} leads to independent
X and Y and therefore allows an ANM from Y to X , too.

A discrete ANM imposes strong assumptions on the underlying process that are
often violated in practice. As in the continuous case, we want to argue that if the
process allows for a discrete ANM in one direction, it might be reasonable to infer
that direction as causal (see also Section 4.1.9).

4.1.6 Post-nonlinear Models

A more general model class than the one presented in Section 4.1.4 has been an-
alyzed by Zhang and Hyvärinen [2009]; see also Zhang and Chan [2006] for an
early reference.
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Figure 4.3: Only carefully chosen parameters allow ANMs in both directions (radii cor-
respond to probability values); see Theorem 4.6. The sets described by the theorem are
C0 = {a1,a2, . . . ,a8} and C1 = {b1,b2, . . . ,b8}. The function f takes the values c0 and c1
on C0 and C1, respectively.

Definition 4.7 (Post-nonlinear models) The distribution PX ,Y is said to admit a
post-nonlinear model if there are functions fY ,gY and a noise variable NY such
that

Y = gY ( fY (X)+NY ), NY ⊥⊥ X . (4.9)

The following result essentially shows that a post-nonlinear model exists at most
in one direction except for some “rare” non-generic cases.4

Theorem 4.8 (Identifiability of post-nonlinear models) Let PX ,Y admit a post-
nonlinear model from X to Y as in (4.9) such that pX , fY ,gY are three-times differ-
entiable. Then it admits a post-nonlinear model from Y to X only if pX , fY ,gY are
adjusted to each other in the sense that they satisfy a differential equation described
in Zhang and Hyvärinen [2009].

4.1.7 Information-Geometric Causal Inference

To provide an idea of how independence between PE|C and PC can be formalized,
this section describes information-geometric causal inference (IGCI). IGCI, in par-
ticular the simple version described here, is a highly idealized toy scenario that
nicely illustrates how independence in one direction implies dependence in the

4Here, “rare” should not be mistaken as saying that there are only finitely many exceptions.
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other direction [Daniušis et al., 2010, Janzing et al., 2012]. It relies on the (ad-
mittedly strong) assumption of a deterministic relation between X and Y in both
directions; that is,

Y = f (X) and X = f−1(Y ).

In other words, the noise variable in (3.2) is constant. Then the principle of in-
dependence of cause and mechanism described in Section 4.1.2 reduces to the
independence of PX and f . Remarkably, this independence implies dependence
between PY and f−1. To show this, we consider the following special case of the
more general setting of Daniušis et al. [2010].

Definition 4.9 (IGCI model) Here, PX ,Y is said to satisfy an IGCI model from X to
Y if the following conditions hold: Y = f (X) for some diffeomorphism5 f of [0,1]
that is strictly monotonic and satisfies f (0) = 0 and f (1) = 1. Moreover, PX has
the strictly positive continuous density pX , such that the following “independence
condition” holds:

cov[log f ′, pX ] = 0, (4.10)

where log f ′ and pX are considered as random variables on the probability space
[0,1] endowed with the uniform distribution.6

Note that the covariance in (4.10) is explicitly given by

cov[log f ′, pX ] =
∫ 1

0
log f ′(x)pX(x)dx−

∫ 1

0
log f ′(x)dx

∫ 1

0
pX(x)dx

=
∫ 1

0
log f ′(x)pX(x)dx−

∫ 1

0
log f ′(x)dx.

The following result is shown in Daniušis et al. [2010] and Janzing et al. [2012].

Theorem 4.10 (Identifiability of IGCI models) Assume the distribution PX ,Y

admits an IGCI model from X to Y . Then the inverse function f−1 satisfies

cov[log f−1′ , pY ]≥ 0, (4.11)

with equality if and only if f is the identity.

5A function is called a diffeomorphism if it is differentiable and bijective and it has a differentiable
inverse.

6This view may be unexpected, but recall that random variables are defined as measurable func-
tions on a probability space. Here, both log f ′ and pX are functions of x∈ [0,1], thus they are random
variables on the common probability space [0,1]. Therefore, any distribution on [0,1] defines a joint
distribution of these random variables.
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Figure 4.4: Visualization of the idea of IGCI: Peaks of pY tend to occur in regions where f
has small slope and f−1 has large slope (provided that pX has been chosen independently of
f ). Thus pY contains information about f−1. IGCI can be generalized to non-differentiable
functions f [Janzing et al., 2015].

In other words, uncorrelatedness of log f ′ and pX implies positive correlation be-
tween log f−1′ and pY except for the trivial case f = id. This is illustrated in Fig-
ure 4.4. It can be shown [Janzing and Schölkopf, 2015] that uncorrelatedness of f ′

and pX (i.e., the analogue of (4.10) without logarithm) implies positive correlations
between f−1′ and pY , but IGCI uses logarithmic derivatives because this admits
various information-theoretic interpretations [Janzing et al., 2012]. As justification
of (4.10), Janzing et al. [2012] describe a model where f is randomly generated
independently of PX and shows that (4.10) then holds approximately with high
probability. It should be emphasized, however, that such justifications always refer
to oversimplified models that are unlikely to describe realistic situations. Note that
IGCI can easily be extended to bijective relations between vector-valued variables
(as already described by Daniušis et al. [2010, Section 3]), but bijective determin-
istic relations are rare for empirical data. Therefore, IGCI only provides a toy
scenario for which cause-effect inference is possible by virtue of an approximate
independence assumption. The assumptions of IGCI have also been used [Janzing
and Schölkopf, 2015] to explain why the performance of semi-supervised learning
depends on the causal direction as stated in Section 5.1. By no means, is (4.10)
meant to be the correct formalization of independence of cause and mechanism,
nor do we believe that a unique formalization exists. Sgouritsa et al. [2015], for in-
stance, propose an “unsupervised inverse regression” technique that tries to predict
PY |X from PX and PX |Y from PY ; they then suggest that the direction with the poorer
performance is the causal one. Hence, this approach interprets “independence” as
making such kind of unsupervised prediction impossible.
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4.1.8 Trace Method

Janzing et al. [2010] and Zscheischler et al. [2011] describe an IGCI-related inde-
pendence between PC and PE|C for the case where C and E are high-dimensional
variables coupled by a linear SCM:

Definition 4.11 (Trace condition) Let X and Y be variables with values in Rd

and Re, respectively, satisfying the linear model

Y = AX+NX, NX ⊥⊥ X, (4.12)

where A is an e×d matrix of structure coefficients. Then PX,Y is said to satisfy the
trace condition from X to Y if the covariance matrix ΣXX and A are “independent”
in the sense that

τe(AΣXXAT ) = τd(ΣXX)τe(AAT ), (4.13)

where τk(B) := tr(B)/k denotes the renormalized trace of a matrix B.

A simple case that violates the trace condition would be given by a matrix A that
shrinks all eigenvectors of ΣXX corresponding to large eigenvalues and stretches
those with small eigenvalues. This would certainly suggest that A has not been
chosen independently of ΣXX. Roughly speaking, (4.13) describes an uncorrelat-
edness between the eigenvalues of ΣXX and the factor by which A changes the
length of the corresponding eigenvectors. More formally, (4.13) can be justified by
a generating model with large d,e in which ΣXX and A are independently chosen at
random according to an appropriate (rotation invariant) prior probability. Then they
satisfy (4.13) approximately with high probability [Besserve et al., in preparation].

For deterministic invertible relations, the causal direction is identifiable.

Theorem 4.12 (Identifiability via the trace condition) Let both variables X and
Y be d-dimensional with Y = AX, where A is invertible. If the trace condition
(4.13) from X to Y is fulfilled, then the backward model

X = A−1Y

satisfies
τd(A−1

ΣYYA−T )≤ τd(ΣYY)τd(A−1A−T ),

with equality if and only if all singular values of A have the same absolute value.

Proof. The proof follows by applying Theorem 2 in Janzing et al. [2010] to the
case n :=m := d and observing that cov[Z,1/Z] is negative whenever Z is a strictly
positive random variable that is almost surely not constant. �
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Hence, in the generic case, the trace condition is violated in backward direction
and the violation of the equality has always the same sign.

For noisy relations, no statement like Theorem 4.12 is known. One can still check
whether (4.13) approximately holds in one of the directions and infer this to be the
causal one. Then the structure matrix for the causal model from Y to X is no longer
given by A−1. In this case, we introduce the notation AX for the model from X to Y
and AY for the model from Y to X. What makes the deterministic case particularly
nice is the fact that the quotient

τ(AXΣYYAT
X)

τ(AXAT
X)τ(ΣYY)

is known to be smaller than 1 because AX = A−1
Y .

The theoretical justification of independence conditions like (4.10), (4.13), and
others mentioned in this book rely on highly idealized generating models (for in-
stance, (4.13) has been justified by a model where the covariance matrix of the
cause is generated from a rotation invariant prior [Janzing et al., 2010]). There is
some hope, however, that violations of the idealized assumptions do not necessar-
ily spoil the causal inference methods. The metaphor with the Beuchet chair may
help to make this point. First, consider a scenario where the observational vantage
point is chosen uniformly on a sphere. Clearly, this would contain no information
about the orientation of the object. In this sense, the uniform prior formalizes an
“independence” assumption. Then the chair illusion only happens for a negligible
fraction of angles. It is easy to see that strict uniformity for the choice of the van-
tage point is not needed to come to this conclusion. Instead, any random choice
from a prior that is not concentrated within this small fraction of special angles will
yield the same result. In other words, the conclusion about what a typical subject
would see is robust with respect to violations of the underlying independence as-
sumption. For this reason, discussions about the idealized assumptions of causal
inference should focus on the question to what extent violations spoil the inference
methods rather than explaining why they are too idealized.

4.1.9 Algorithmic Information Theory as Possible Foundation

This section describes an independence principle of which it is unclear how to
apply it in practice although it relies on a well-defined mathematical formalism.
It thus plays an intermediate role between the informal philosophical discussion
about foundations of causal inference in Section 2.1 on the one hand and the con-
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crete results of Sections 4.1.3 to 4.1.8 on possible asymmetries between cause and
effect that rely on rather specific model assumptions on the other hand.

To formalize that PE and PC|E contain no information about each other for more
general models than the ones considered in Sections 4.1.7 and 4.1.8 is challenging.
It requires a notion of information that refers to objects other than random vari-
ables. This is because PE and PC|E are not random variables themselves but they
describe distributions of random variables. One interesting notion of information
is given by Kolmogorov complexity, which we briefly explain now.

Notions of Algorithmic Information Theory We first introduce Kolmogorov
complexity: Consider a universal Turing machine T , that is, an abstraction of a
computer that is ideal in the sense of having access to infinite memory space. For
any binary string s, we define KT (s) as the length of the shortest program,7 denoted
by s∗, for which T outputs s and then stops [Solomonoff, 1964, Kolmogorov, 1965,
Chaitin, 1966, Li and Vitányi, 1997]. One may call s∗ the shortest compression of s,
but keep in mind that s∗ contains all the information that T needs for running the
decompression. Hence,

KT (s) := |s∗|,
where | · | denotes the number of digits of a binary word. This defines a probability-
free notion of information content with respect to the given Turing machine T . In
the following, we will refer to some fixed T and therefore drop the index. Although
K(s) is uncomputable, that is, there is no algorithm that computes K(s) from s [Li
and Vitányi, 1997], it can be useful to formalize conceptual ideas as it is done in
this section.

The conditional algorithmic information of s, given t, is denoted by K(s|t) and
defined as the length of the shortest program that generates the output s from the
input string t and then stops. One can then define the mutual information as8

I(s : t) := K(s)−K(s|t∗).

In particular, we have [Chaitin, 1966]:

I(s : t) +
= K(s)+K(t)−K(s, t), (4.14)

7The program is given by a binary word using prefix-free encoding; that is, no program code is
the prefix of another one. Otherwise one would need an extra symbol indicating the end of the code.

8Note that conditioning on t∗ instead of t makes a difference since there is no algorithm that
computes t∗ from t (but vice versa); t∗ can thus be more valuable as input than t. It turns out that
K(s|t∗) shows closer analogies to conditional Shannon entropy than K(s|t).



60 Chapter 4. Learning Cause-Effect Models

where the symbol +
= indicates that the equation only holds up to constants; that is,

there is an error term whose length can be bounded independently of the lengths
of s and t. To define Kolmogorov complexity K(s, t) for the pair (s, t), one con-
structs a simple bijection between strings and pairs of strings by first using some
enumeration of strings and then using a standard bijection between N and N×N.

A simple interpretation of (4.14) is that algorithmic mutual information thus
quantifies the amount of memory space saved when compressing s, t jointly in-
stead of compressing them independently. Janzing and Schölkopf [2010] argue
that two objects whose binary descriptions s, t have a significant amount of mu-
tual information are likely to be causally related. In other words, in the same
way as statistical dependences between random variables indicate causal relations
(see Principle 1.1), algorithmic dependences between objects indicate causal rela-
tions between objects. Observing, for instance, two T-shirts with similar designs
produced by different companies may indicate that one company copied from the
other. Indeed, similarity of patterns in real life may be described by algorithmic
mutual information provided that one has first agreed on an “appropriate” way to
encode the pattern into a binary word and then on an “appropriate” Turing ma-
chine. For the difficult question of what “appropriate” means, see also the brief
discussion of “relative causality” in the introduction of Janzing et al. [2016].

Algorithmic Independence of Conditionals The principle of algorithmically
independent conditionals has been stated by Janzing and Schölkopf [2010] and
Lemeire and Janzing [2013] for multivariate causal structures, but it yields non-
trivial implications already for the bivariate case.

For two variables C and E being cause and effect, we assume that PC and PE|C
admit finite descriptions by binary strings s and t, respectively. In a parametric
setting, s and t may describe points in the corresponding parameter spaces. Alter-
natively, one may think of s and t as being programs that compute p(c) and p(e|c)
for all values c,e having finite description length. Then we use I(PC : PE|C) for
I(s : t) and postulate:

Principle 4.13 (Algorithmically independent conditionals) PC and PE|C are al-
gorithmically independent, that is,

I(PC : PE|C)
+
= 0, (4.15)

or, equivalently,
K(PC,E)

+
= K(PC)+K(PE|C). (4.16)
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The equivalence of (4.15) and (4.16) is immediate because describing the pair
(PC,PE|C) is equivalent to describing the joint PC,E . The idea of Principle 4.13
is that PC and PE|C are causally unrelated objects of nature. This is certainly an
idealized assumption, but for a setting where X causes Y or Y causes X it suggests
to infer X → Y whenever the algorithmic dependences between PX and PY |X are
weaker than for PX |Y and PY . To apply this to empirical data, however, raises the
problem that PX ,Y cannot be determined from finite data on top of the problem that
algorithmic mutual information is uncomputable.

Despite these issues, Principle 4.13 is helpful to justify practical causal infer-
ence methods as we describe now for the example of ANMs. Janzing and Steudel
[2010] argue that the SCM Y := fY (X)+NY implies that the second derivative of
y 7→ log p(y) is determined by partial derivatives of (x,y) 7→ log p(x|y). Hence,
knowing PX |Y admits a short description of PY (up to some accuracy). Whenever
K(PY ) is larger than this small amount of information, Janzing and Steudel [2010]
conclude that Y → X should be rejected because PY and PX |Y are algorithmically
dependent. For any given data set we cannot guarantee that K(PY ) is large enough
to reject Y → X just because there is an ANM from Y to X . However, when ap-
plying inference that is based on the principle of ANMs to a large set of different
distributions, we know that most of the distributions PY are complex enough (since
the set of distributions with low complexity is small) to justify rejecting causal
models that induce ANMs in the opposite direction. Moreover, Figure 5.4, left and
right, shows two simple toy examples where looking at PX alone suggests a simple
guess for the joint distribution PX ,Y . Indeed, one can show that this amounts to al-
gorithmic dependence between PX and PY |X , as shown for the left case by Janzing
and Schölkopf [2010, remarks after Equation (27)].

We should also point out that (4.15) implies

K(PC)+K(PE|C)
+
= K(PC,E)

+
≤ K(PE)+K(PC|E). (4.17)

The equality follows because describing PC,E is equivalent to describing the pair
(PC,PE|C), which is not shorter than describing marginal and conditional separately.
The inequality follows because PE and PC|E also determine PC,E . In other words,
independence of conditionals implies that the joint distribution has a shorter de-
scription in the causal direction than in the anticausal direction.9

9Checking whether the left-hand side of inequality (4.17) is smaller than the right-hand side is not
the only option to test independence: whenever two strings are algorithmically independent, applying
functions of complexity O(1) to each of them generates again two (possibly simpler) algorithmically
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This implication also sounds natural from the perspective of the minimum de-
scription length principle [Grünwald, 2007] and in the spirit of Occam’s razor.

Note, however, that the condition K(PC)+K(PE|C)
+
≤ K(PE)+K(PC|E) is strictly

weaker than (4.15) since the shortest description of PC,E may not use either of the
two possible factorizations, which can happen, for instance, when there is a hidden
common cause [Janzing and Schölkopf, 2010, p. 16].

Principle 6.53 generalizes Principle 4.13 to the multivariate setting.

4.2 Methods for Structure Identification

We now present different ideas about how the identifiability results obtained in
Section 4.1 can be exploited for causal discovery. That is, the methods estimate a
graph from a finite data set. These are challenging statistical problems, which can
be approached in many different ways. We try to focus on methodological ideas
and do not claim that the methods we present make the most efficient use of the
data. It is very well possible that future research will yield novel and successful
methods. We restrict the attention to a few examples, mainly to those for which we
have reasonable experience regarding their performance.

4.2.1 Additive Noise Models

For causal learning methods based on the identifiability of ANMs according to
Theorem 4.5, we mainly refer to the multivariate chapter (Section 7.2). Here, we
sketch two methods without claiming their optimality. The first method tests the
independence of residuals and is a special case of the regression with subsequent
independence test (RESIT) algorithm (see Section 7.2).

1. Regress Y on X ; that is, use some regression technique to write Y as a func-
tion f̂Y of X plus some noise.

2. Test whether Y − f̂Y (X) is independent of X .
3. Repeat the procedure with exchanging the roles of X and Y .
4. If the independence is accepted for one direction and rejected for the other,

infer the former one as the causal direction.
Figure 4.5 shows the procedure on a simulated data set; see Figure 4.1 for the un-
derlying distribution. At least in the continuous setting, the first two steps are stan-

independent strings [Janzing and Schölkopf, 2010, Lemma 6]. This way, one can in principle reject
algorithmic independence without knowing the complexities of the strings to start with.
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Figure 4.5: We are given a sample from the underlying distribution and perform a linear
regression in the directions X→Y (left) and Y → X (right). The fitted functions are shown
in the top row, the corresponding residuals are shown in the bottom row. Only the direction
X → Y yields independent residuals; see also Figure 4.1.

dard problems of machine learning and statistics (see Appendices A.1 and A.2),
with the additional challenge that they are coupled: f̂Y deviating from fY may hide
or create dependences between noise and input variable. In general, any test based
on the estimated residuals may lose its type I error control. As a possible solution
one may use sample splitting [Kpotufe et al., 2014]. Moreover, it is important to
choose an independence test that accounts for higher order statistics rather than
testing correlations only. Any regression technique minimizing quadratic error that
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includes linear components and an intercept yields uncorrelated noise.10 In prac-
tice, one may use the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton
et al., 2008], for example, which we briefly introduce in Appendix A.2. Mooij
et al. [2016, Theorem 20] use a continuity property of HSIC to show that even
without sample splitting, one obtains the correct value of HSIC in the limit of infi-
nite data (there are no claims about the p-values of the test, however). Finally, the
last step deserves our particular attention because it refers to the relation between
probability and causality. Depending on the significance levels for rejecting and
accepting independence, one may get an ANM in both directions, in no direction,
or in one direction. To enforce decisions, one just infers the direction to be the
causal one, for which the p-value for rejecting independence is higher.

Recent studies provide some evidence that this procedure yields success rates on
real data above chance level [Mooij et al., 2016]. Figure 4.6 shows the scatter plot
of real-world data11 for which an ANM holds reasonably well only in the causal
direction. For modifications regarding discrete data, we refer to the correspond-
ing literature [Peters et al., 2011a]. Note that the post-nonlinear model (4.9) is
considerably harder to fit in practice than the more standard nonlinear regression
model (4.3).

As an alternative to the preceding approach, one may also use a maximum
likelihood-based approach. Consider a nonlinear SCM with additive Gaussian er-
ror terms, for example. One may then distinguish between X → Y and X ← Y
by comparing the likelihood scores of both models. To do so, we first perform a
nonlinear regression from Y on X to obtain residuals RY := Y − f̂Y (X). We then
compare

LX→Y =− log v̂ar[X ]− log v̂ar[RY ] (4.18)

with the analogous version

LX←Y =− log v̂ar[RX ]− log v̂ar[Y ] (4.19)

that we obtain when interchanging the roles of X and Y . It is not difficult to
show (see Problem 4.16) that this indeed corresponds to a comparison of likeli-
hoods when instead of performing the regression, we use the true conditional mean

10This can easily be seen using the following standard geometric picture: cov[., .] defines an inner
product in the space of centred random variables with finite variance. Then the length of the vector
Y −αX is minimal when it is orthogonal to X .

11This is pair001 in the database of cause-effect pairs https://webdav.tuebingen.mpg.de/
cause-effect/; see also [Mooij et al., 2016].

https://webdav.tuebingen.mpg.de/cause-effect
https://webdav.tuebingen.mpg.de/cause-effect
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Figure 4.6: Relation between average temperature in degrees Celsius (Y ) and altitude in
meters (X) of places in Germany. The data are taken from “Deutscher Wetterdienst,” see
also Mooij et al. [2016]. A nonlinear function (which is close to linear in the regime far
away from sea level) with additive noise fits these empirical observations reasonably well.

f̂Y (x) = E[Y |X = x] (and similarly for f̂X ). As before, however, this two-step
procedure of first performing regression and then computing sample variances re-
quires justification. Bühlmann et al. [2014] use empirical process theory [van de
Geer, 2009] to prove consistency. If the noise does not necessarily follow a Gaus-
sian distribution, we have to adapt the score functions by replacing the logarithm of
the empirical variance of the residuals with an estimate of the differential entropy
of the error term [Nowzohour and Bühlmann, 2016].

Code Snippet 4.14 The following code shows an example with a finite data set.
It makes use of the code packages dHSIC [Pfister et al., 2017] and mgcv [Wood,
2006]. The former package contains the function dhsic.test, an implementation
of the independence test proposed by [Gretton et al., 2008], and the latter package
contains the function gam that we use as a nonlinear regression method in lines
10 and 11 (see Section A.1). Only in the backward direction is the independence
between residuals and input rejected, see lines 15 and 17. In lines 21 and 23,
we see that a Gaussian likelihood score favors the forward direction, too; see also
Equations (4.18) and (4.19).
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1 library(dHSIC)

2 library(mgcv)

3 #

4 # generate data set

5 set.seed(1)

6 X <- rnorm(200)

7 Y <- X^3 + rnorm(200)

8 #

9 # fit models

10 modelforw <- gam(Y ~ s(X))

11 modelbackw <- gam(X ~ s(Y))

12 #

13 # independence tests

14 dhsic.test(modelforw$residuals, X)$p.value

15 # [1] 0.7628932

16 dhsic.test(modelbackw$residuals, Y)$p.value

17 # [1] 0.004221031

18 #

19 # computing likelihoods

20 - log(var(X)) - log(var(modelforw$residuals))

21 # [1] 0.1420063

22 - log(var(modelbackw$residuals)) - log(var(Y))

23 # [1] -1.014013

4.2.2 Information-Geometric Causal Inference

We sketch the implementation of IGCI briefly and refer to Mooij et al. [2016] for
details. The theoretical basis is given by the identifiability result in Theorem 4.10
and some simple conclusions thereof. One can show that the independence condi-
tion (4.10) implies

CX→Y ≤CY→X

if one defines

CX→Y :=
∫ 1

0
log f ′(x)p(x)dx,

and CY→X similarly. Here, the following straightforward estimators are used:

ĈX→Y :=
1

N−1

N−1

∑
j=1

log
|y j+1− y j|
|x j+1− x j|

,

where the x1 < x2 < · · ·< xN are the observed x-values in increasing order. If Y is
an increasing function of X , the y-values are also ordered, but for real data this will
usually not be the case. The estimator ĈY→X is defined accordingly and X → Y is
inferred whenever ĈX→Y < ĈY→X . Apart from the so-called slope-based approach,



4.2. Methods for Structure Identification 67

there is also an entropy-based approach. One can show that (4.10) also implies

H(X)≤ H(Y ),

where H denotes the differential Shannon entropy

H(X) :=−
∫ 1

0
p(x) log p(x)dx.

Intuitively, the reason is that applying a nonlinear function f to pX generates ad-
ditional irregularities (unless the nonlinearity of f is tuned relative to pX ) and thus
makes pY even less uniform than pX . Accordingly, the variable with the larger en-
tropy is assumed to be the cause. To estimate H, one can use any standard entropy
estimator from the literature.

4.2.3 Trace Method

Recall that this method relies on linear relations between high-dimensional vari-
ables X and Y. First assume that the sample size is sufficiently large (compared
to the dimensions of X and Y) to estimate the covariance matrices ΣXX and ΣYY
and the structure matrices AY and AX by standard linear regression. To employ
the identifiability result in Theorem 4.12, one can compute the tracial dependency
ratio

rX→Y :=
τ(AYΣXXAT

Y)

τ(AYAT
Y)τ(ΣXX)

,

and likewise rY→X (via swapping the roles of X and Y) and infer that the one that
is closer to 1 corresponds to the causal direction [Janzing et al., 2010].

Zscheischler et al. [2011] describe a method to assess whether the deviation
from 1 is significant, subject to a generating model where independence of the two
matrices A and ΣXX is simulated by some random orthogonal map rotating them
against each other. Using ideas from free probability theory [Voiculescu, 1997],
a mathematical framework that describes asymptotic behavior of large random ma-
trices, Zscheischler et al. [2011] construct an implementation of the trace condition
for the regime where the dimension is larger than the sample size. They show that,
in the noiseless case, rX→Y can still be estimated (although there is not enough data
to estimate ΣXX and A) subject to an additional independence assumption for A
and the empirical covariance matrix of X. Therefore, one can reject the hypothesis
X→ Y whenever the estimator deviates significantly from 1. Then, either the ad-
ditional independence assumption is wrong or rX→Y deviates significantly from 1.
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4.2.4 Supervised Learning Methods

Finally, we describe a method that approaches causal learning from a more ma-
chine learning point of view. It has, in principle, the ability to make use of either
restricted function classes or an independence condition. Suppose, we are given
labeled training data of the form (D1,A1), . . . ,(Dn,An). Here, each Di is a data set

Di = {(X1,Y1), . . . ,(Xni ,Yni)}

containing realizations (X1,Y1), . . . ,(Xni ,Yni)
iid∼ Pi

X ,Y , and each label Ai ∈ {→,←}
describes whether data setDi corresponds to X→Y or X←Y . Then, causal learn-
ing becomes a classical prediction problem, and one may train classifiers hoping
that they generalize well from the data set with known ground-truth to unseen test
data sets.

To the best of our knowledge, Guyon [2013] was the first one who systematically
investigated such an approach in the form of a challenge (providing a mix of syn-
thetic and real data sets as known ground truth data). It is clear that the method
will not succeed by exploiting symmetric features as correlation or covariance.

Many of the competitive classifiers in the challenge were based on hand-crafted
features; examples include entropy estimates of the marginal distributions or en-
tropy estimates of the distribution of the residuals that resulted from regressing
either X on Y or Y from X . Interestingly, such features can be related to the con-
cept of ANMs. For Gaussian distributed variables, for example, the entropy is a
linear function of the logarithm of the variance and, therefore, the features are ex-
pressive enough to reconstruct the scores (4.18) and (4.19). Considering entropies
instead of logarithm of variances corresponds to relaxing the Gaussianity assump-
tion [Nowzohour and Bühlmann, 2016].

Lopez-Paz et al. [2015] aims at an automatic construction of such features. The
idea is to map the joint distributions Pi

X ,Y , i = 1, . . . ,n into a reproducing kernel
Hilbert space (see Appendix A.2) and perform a classification in this space. In
practice, one does not have access to the full distribution Pi

X ,Y and rather uses the
empirical distribution as an approximation. (A similar approach has been used to
distinguish time series that are reversed in time from their original version [Peters
et al., 2009a].) Because the classification into cause and effect seems to rely on
relatively complex properties of the joint distribution, one requires a large sample
size n for the training set. To add useful simulated data sets, these must be gener-
ated from identifiable cases. Lopez-Paz et al. [2015] use additional samples from
ANMs, for example.

Supervised learning methods do not yet work as stand-alone methods for causal
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learning. They may prove to be useful, however, as statistical tools that can make
efficient use of known identifiability properties or combinations of those.

4.3 Problems

Problem 4.15 (ANMs) a) Consider the SCM

X := NX

Y := 2X +NY

with NX uniformly distributed between 1 and 3 and NY uniformly distributed
between −0.5 and 0.5 and independent of NX . The distribution PX ,Y admits
an ANM from X to Y . Draw the support of the joint distribution of X ,Y and
convince yourself that PX ,Y does not admit an ANM from Y to X, that is there
is no function g and independent noise variables MX and MY such that

X = g(Y )+MX

Y = MY

with MX independent of MY .

b) Similarly as in part a), consider the SCM

X := NX

Y := X2 +NY

with NX uniformly distributed between 1 and 3 and NY uniformly distributed
between −0.5 and 0.5 and independent of NX . Again, draw the support of
PX ,Y and convince yourself that there is no ANM from Y to X.

Problem 4.16 (Maximum likelihood) Assume that we are given an i.i.d. data set
(X1,Y1), . . . ,(Xn,Yn) from the model

Y = f (X)+NY , with X ∼N (µX ,σ
2
X), and NY ∼N (µNY ,σ

2
NY
) independent,

where the function f is supposed to be known.

a) Prove that f (x) = E[Y |X = x].
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b) Write x := (x1, . . . ,xn), y := (y1, . . . ,yn) and consider the log-likelihood func-
tion

`θ (x,y) = `θ ((x1,y1), . . . ,(xn,yn)) =
n

∑
i=1

log pθ (xi,yi),

where pθ is the joint density over (X ,Y ) and θ := (µX ,µNY ,σ
2
X ,σ

2
NY
). Prove

that for some c1,c2 ∈ R with c2 > 0

max
θ

`θ (x,y) = c2 · (c1− log v̂ar[x]− log v̂ar [y− f (x)]) , (4.20)

where v̂ar[z] := 1
n ∑

n
i=1(zi− 1

n ∑
n
k=1 zk)

2 estimates the variance.

Equation (4.20) motivates the comparison of expressions (4.18) and (4.19). The
main difference is that in this exercise, we have used the conditional mean and not
the outcome of the regression method. One can show that, asymptotically, the latter
still produces correct results [Bühlmann et al., 2014].



5

Connections to Machine Learning, I

As argued in Chapter 1, standard machine learning rests on the same basis as statis-
tics: we use data sampled i.i.d. from some unknown underlying distribution, and
seek to infer properties of that distribution. In contrast, causal inference assumes
a stronger underlying structure, including directed dependences. This makes it
harder to learn about the structure from data, but it also allows novel statements
once this is done, including statements about the effect of distribution shifts and
interventions. If we view machine learning as the process of inferring regularities
(or “laws of nature”) that go beyond pure statistical associations, then causality
plays a crucial role. The present chapter presents some thoughts on this, focusing
on the case of two variables only. Chapter 8 will revisit this topic and look at the
multivariate case.

5.1 Semi-Supervised Learning

Let us consider a regression task, in which our goal is to predict a target variable
Y from a d-dimensional predictor variable X. For many loss functions, knowing
the conditional distribution PY |X suffices to solve the problem. For instance, the
regression function

f 0(x) := E[Y |X = x]

minimizes the L2 loss,

f 0 ∈ argmin
f :Rd→R

E
[
(Y − f (X))2

]
.
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In supervised learning , we receive n i.i.d. data points from the joint distribution:
(X1,Y1), . . . ,(Xn,Yn)

iid∼ PX,Y . Regression estimation (with L2 loss) thus amounts
to estimating the conditional mean from n data points of the joint distribution. In
(inductive) semi-supervised learning (SSL), however, we receive m additional
unlabeled data points Xn+1, . . . ,Xn+m

iid∼ PX. The hope is that these additional data
points provide information about PX, which itself tells us something about E[Y |X]
or more generally about PY |X.1 Many assumptions underlying SSL techniques [see
Chapelle et al., 2006, for an overview] concern relations between PX and PY |X. The
cluster assumption, for instance, stipulates that points lying in the same cluster
of PX have the same or a similar Y ; this is similar to the low-density separation
assumption that states that the decision boundary of a classifier (i.e., points x where
P(Y = 1|X = x) crosses 0.5) should lie in a region where PX is small. The semi-
supervised smoothness assumption says that the conditional mean x 7→ E[Y |X = x]
should be smooth in areas where PX is large.

5.1.1 SSL and Causal Direction

In the simplest setting, where the causal graph has only two variables (cause and
effect), a machine learning problem can either be causal (if we predict effect from
cause) or anticausal (if we predict cause from effect). Practitioners usually do
not care about the causal structure underlying a given learning problem (see Fig-
ure 5.1). However, as we argue herein, the structure has implications for machine
learning.

In Section 2.1, we have hypothesized that causal conditionals are independent
of each other (Principle 2.1 and subsequent discussion). Schölkopf et al. [2012]
realize that this principle has a direct implication for SSL. Since the latter relies on
the relation between PX and PY |X and the principle claims that Pcause and Peffect|cause
do not contain information about one another, we can conclude that SSL will not
work if X corresponds to the cause and Y corresponds to the effect (i.e., for a
causal learning problem). In this case, additional x-values only tell us more about
PX — which is irrelevant because the prediction requires information about the
independent object PY |X. On the other hand, if X is the effect and Y is the cause,
information on PX may tell us something about PY |X.

A meta-study that analyzed results in SSL supports our hypothesis. All cases

1Again, we use the notation PY |X as a shorthand for the collection (PY |X=x)x of conditional dis-
tributions.
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NX NY

ϕ

id

X Y

NX NY

ϕ

id

X Y

Figure 5.1: Top: a complicated mechanism ϕ called the ribosome translates mRNA infor-
mation X into a protein chain Y .2 Predicting the protein from the mRNA is an example of
a causal learning problem, where the direction of prediction (green arrow) is aligned with
the direction of causation (red). Bottom: In handwritten digit recognition, we try to infer
the class label Y (i.e., the writer’s intention) from an image X produced by a writer. This
is an anticausal problem.

where SSL helped were anticausal, or confounded, or examples where the causal
structure was unclear (see Figure 5.2).

Within the toy scenario of a bijective deterministic causal relation (see Sec-
tion 4.1.7), Janzing and Schölkopf [2015] prove that whenever Pcause and Peffect|cause
are independent in the sense of (4.10), then SSL indeed outperforms supervised
learning in the anticausal direction but not in the causal direction. The idea is that
SSL employs the dependence (4.11) for an improved interpolation algorithm.

Sgouritsa et al. [2015] have developed a causal learning method that exploits the
fact that SSL can only work in the anti-causal direction.

Finally, note that SSL contains some versions of unsupervised learning as a spe-
cial case (with no labeled data). In clustering, for example, Y is often a discrete
value indicating the cluster index. Similarly to the preceding reasoning, we can
argue that if X is the cause and Y the effect, clustering should not work well. In

2By user “Boumphreyfr”, https://commons.wikimedia.org/wiki/File:Peptide_syn.

png, [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http:
//www.gnu.org/copyleft/fdl.html)]

https://commons.wikimedia.org/wiki/File:Peptide_syn.png
https://commons.wikimedia.org/wiki/File:Peptide_syn.png
http://creativecommons.org/licenses/by-sa/3.0
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
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Figure 5.2: The benefit of SSL depends on the causal structure. Each column of points
corresponds to a benchmark data set from the UCI repository and shows the performance
of six different base classifiers augmented with self-training, a generic method for SSL.
Performance is measured by percentage decrease of error relative to the base classifier,
that is, (error(base)− error(self-train))/error(base). Self-training overall does not help for
the causal data sets, but it does help for some of the anticausal/confounded data sets [from
Schölkopf et al., 2012].

many applications of clustering on real data, however, the cluster index is rather
the cause than the effect of the features.

While the empirical results in Figure 5.2 are promising, the statement that SSL
does not work in the causal direction (always assuming independence of cause and
mechanism, cf. Principle 2.1) needs to be made more precise. This will be done
in the following section; it may be of interest to readers interested in SSL and
covariate shift, but could be skipped at first reading by others.

5.1.2 A Remark on SSL in the Causal Direction

A more precise form of our prediction regarding SSL reads as follows: if the task
is to predict y for some specific x, knowledge of PX does not help when X → Y is
the causal direction. However, even if PX does not tell us anything about PY |X (due
to X→Y ), knowing PX can still help us for better estimating Y in the sense that we
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1 2 3 4
0

1

y

x

x
PX

f3

Figure 5.3: In this example, SSL reduces the loss even in the causal direction. Since for
every x, the label zero is a priori more likely than the label one, the expected number of
errors is minimized when a function is chosen that attains one at a point x where p(x) is
minimal (here: x = 3).

obtain lower risk in a learning scenario.
To see this, consider a toy example where the relation between X and Y is given

by a deterministic function, that is, Y = f (X), where f is known to be from some
class F of functions. Let X take values in {1, . . . ,m} with m≥ 3 and let Y be a bi-
nary label attaining values in {0,1}. We define the function classF := { f1, . . . , fm}
by f j( j) = 1 and f j(k) = 0 for k 6= j. In other words, F consists of the set of func-
tions that attain the value one at exactly one point. Figure 5.3, top, shows the
function f3 for m = 4. Suppose that our learning algorithm infers f j while the
true function is fi. For i 6= j, the risk, that is, the expected number of errors (see
Equation (1.2)), equals

Ri( f j) :=
m

∑
x=1
| f j(x)− fi(x)|p(x) = p( j)+ p(i), (5.1)

where p denotes the probability mass function for X . We now average Ri( f j) over
the set F and assume that each fi is equally likely. This yields the expected risk
(where the expectation is taken with respect to a uniform prior over F)

E[Ri( f j)] =
1
m

m

∑
i=1

m

∑
x=1
| f j(x)− fi(x)|p(x) (5.2)

=
1
m ∑

i6= j
(p( j)+ p(i)) =

m−2
m

p( j)+
1
m
. (5.3)
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To minimize (5.3), we should thus choose fk such that k minimizes the function p.
This makes sense because for any point x = 1, . . . ,m, the label y = 0 is more likely
than y = 1 (probability (m−1)/m versus 1/m). Therefore, we would actually like
to infer zero everywhere, but since the zero function is not contained in F , we
are forced to select one x-value to which we assign the label zero. Hence, we
choose one of the least likely x-values to obtain minimal expected loss (which is
x = 3 for the distribution in Figure 5.3, bottom). Clearly, unlabeled observations
help identify the least likely x-values, hence SSL can help. This example does not
require any (x,y)-pairs (labeled instances); unlabeled data x suffices. It is thus actu-
ally an example of unsupervised learning rather than being a typical SSL scenario.
However, accounting for a small number of labeled instances in addition does not
change the essential idea. Generically, these few instances will not contain any
instance with y = 1 if m is large enough. Hence, the observed (x,y)-pairs only help
because they slightly reduce F to a smaller class F ′ for which the analysis remains
basically the same, and we still conclude that the unlabeled instances help.

Although we have not specified a supervised learning scenario as baseline (that
is, one that does not employ knowledge of PX ), we know that it must be worse than
the best semi-supervised scenario because the optimal estimation depends on PX ,
as we have just argued.

Here, the independence of mechanisms is not violated (and thus, X can be con-
sidered as a cause for Y ): f is assumed to be chosen uniformly among F , and
knowing PX does not tell us anything about f . Knowing PX is only helpful for
minimizing the loss because p(x) appears in (5.2) as a weighting factor.

The preceding example is close in spirit to a Bayesian analysis because it in-
volved an average over functions in F . It can be modified, however, to apply to
a worst case analysis, in which the true function f is chosen by an adversarial to
maximize (5.1) [see also Kääriäinen, 2005]. Given a function f j, the adversarial
chooses fi with i an x-value different from j with maximal probability mass. The
worst case risk thus reads maxx 6= j{p(x)}+ p( j), which is, again, minimized when
j is chosen to be an x-value that minimizes the probability mass function p(x).
Therefore, we conclude that optimal performance is attained only when PX is taken
into account.

Another example can be constructed on the basis of an argument that is given in
a non-causality context by Urner et al. [2011, proof of Theorem 4]. They construct
a case of model misspecification; where the true function f0 is not contained in the
class F that is optimized over. In their example, additional information about the
marginal PX helps for reducing the risk, even though the conditional PY |X can be
considered as being independent of the marginal. Our example above is not based
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on the same kind of model misspecification. Each possible (unknown) ground truth
fi is indeed contained in the class of functions; however, we would like to minimize
the expectation of the risk over a prior, and our function class does not contain a
function that has zero expected risk. Therefore, for the expected risk, this is akin
to a situation of model misspecification.

Finally, we try to give some further intuition about the example by Urner et al.
[2011]. Since f0 is not contained in the function class F , we need to find a function
f̂ ∈ F that minimizes the distance d( f , f0), defined as the risk of f , over f ∈ F ;
we say f0 is projected onto F . Roughly speaking, additional information about PX

provides us with a better understanding of this projection.3

5.2 Covariate Shift

As explained in Section 2.1, the independence between Pcause and Peffect|cause (Prin-
ciple 2.1) can be interpreted in two different ways: in Section 5.1 above, we argued
that given a fixed joint distribution, these two objects contain no information about
each other (see the middle box in Figure 2.2). Alternatively, suppose the joint dis-
tribution Pcause,effect changes across different data sets; then the change of Pcause
does not tell us anything about the change of Peffect|cause (this corresponds to the
left box in Figure 2.2). Knowing that X is the cause and Y the effect thus has
important consequences for a prediction scenario where Y is predicted from X .
Assume we have learned the statistical relation between X and Y using examples
from one data set and we are supposed to employ this knowledge for predicting Y
from X for a second data set. Further, assume that we observe that the x-values
in the second data set follow a distribution P′X that differs from the distribution PX

of the first data set. How would we make use of this information? By the inde-
pendence of mechanisms, the fact that P′X differs from PX does not tell us anything
about whether PY |X also changed across the data sets. Therefore, it might be the
case that the conditional PY |X still holds true for the second data set. Second, even
if the conditional did change to P′Y |X 6= PY |X , it is natural to still use PY |X for our
prediction. After all, the independence principle states that the new change of the
marginal distribution from PX to P′X does not tell us anything about how the con-
ditional has changed. Therefore, we use PY |X in absence of any better candidate.
Using the same conditional PY |X although PX has changed is usually referred to as

3We are grateful to several people who contributed to this discussion: Sebastian Nowozin, Ilya
Tolstikhin, and Ruth Urner.
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Figure 5.4: Example where PX changes to P′X in a way that suggests that PY has changed
and PX |Y remained the same. When Y is binary and known to be the cause of X , observing
that PX is a mixture of two Gaussians makes it plausible that the two modes correspond to
the two different labels y = 0,1. Then, the influence of Y on X consists just in shifting the
mean of the Gaussian (which amounts to an ANM — see Section 4.1.4), which is certainly
a simple explanation for the joint distribution. Observing furthermore that the weights of
the mixture changed from one data set to another one makes it likely that this change is
due to the change of PY .

covariate shift. Meanwhile, this is a well-studied assumption in machine learning
[Sugiyama and Kawanabe, 2012]. The argument that this is only justified in the
causal scenario, in other words, if X is the cause and Y the effect, has been made
by Schölkopf et al. [2012].

To further illustrate this point, consider the following toy example of an anti-
causal scenario where X is the effect. Let Y be a binary variable influencing the
real-valued variable X in an additive way:

X = Y +NX , (5.4)

where we assume NX to be Gaussian noise, independent of Y . Figure 5.4, left,
shows the corresponding probability density pX .

If its width is sufficiently small, the distribution PX is bimodal. Even if one does
not know anything about the generating model, PX can be recognized as a mixture
of two Gaussian distributions with equal width. In this case, one can therefore
guess the joint distribution PX ,Y from PX alone because it is natural to assume that
the influence of Y consists only in shifting the mean of X . Under this assumption,
we do not need any (x,y)-pairs to learn the relation between X and Y . Assume now
that in a second data set we observe the same mixture of two Gaussian distributions
but with different weights (see Figure 5.4, right). Then, the most natural conclusion
reads that the weights have changed because the same equation (5.4) still holds but
only PY has changed. Accordingly, we would no longer use the same PY |X for
our prediction and reconstruct P′Y |X from P′X . The example illustrates that in the
anticausal scenario the changes of PX and PY |X may be related and that this relation
may be due to the fact that PY has changed and PX |Y remained the same. In other
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Figure 5.5: Example where X causes Y and, as a result, PY and PX |Y contain information
about each other. Left: PX is a mixture of sharp peaks at the positions s1,s2,s3. Right: PY is
obtained from PX by convolution with Gaussian noise with zero mean and thus consists of
less sharp peaks at the same positions s1,s2,s3. Then PX |Y also contains information about
s1,s2,s3 (see Problem 5.1).

words, Peffect and Pcause|effect often change in a dependent way because Pcause and
Peffect|cause change independently.

The previous example elicits a specific scenario. Conceiving of general methods
exploiting the fact that Peffect and Pcause|effect change in a dependent way is a hard
problem. This may be an interesting avenue for further research, and we believe
that causality could play a major role in domain adaptation and transfer problems;
see also Bareinboim and Pearl [2016], Rojas-Carulla et al. [2016], Zhang et al.
[2013], and Zhang et al. [2015].

5.3 Problems

Problem 5.1 (Independence of mechanisms) Let PX be the mixture of k sharp
Gaussian peaks at positions s1, . . . ,sk as shown in Figure 5.5, left. Let Y be ob-
tained from X by adding some Gaussian noise N with zero mean and a width σN

such that the separate peaks remain visible as in Figure 5.5, right.

a) Argue intuitively why PX |Y also contains information about the positions
s1, . . . ,sk of the peaks and thus PX |Y and PY share this information.

b) The transition between PX and PY can be described by convolution (from PX

to PY ) and deconvolution (from PY to PX ). If PY |X is considered as the linear
map converting the input PX to the output PY then PY |X coincides with the
convolution map. Argue why PX |Y does not coincide with the deconvolution
map (as one may think at first glance).





6

Multivariate Causal Models

In Chapter 3, we discussed causal models for two variables. While some of the
basic notions can be more easily explained in the bivariate case, a lot of the struc-
ture of causal inference derives from multivariate relations, which involve at least
three variables. We now consider causal models in the more general case of d ≥ 2
variables.

Many of the concepts carry over directly and we hope that the reader, equipped
with the intuition gained in Chapter 3, can easily follow the definitions of SCMs
(Section 6.2), interventions (Section 6.3), and counterfactuals (Section 6.4). But
there are fundamental differences to the bivariate case, too. In Section 6.5, we
will see that the graph structure implies conditional independence statements that
have been trivial in the bivariate case. Also, computing intervention distributions
requires more thought in the multivariate setting: We will discuss adjustment for-
mulas and do-calculus [Pearl, 2009] in Section 6.6.

We first introduce some graphical terminology. Most of the definitions are self-
explanatory and can be found in Spirtes et al. [2000], Koller and Friedman [2009],
and Lauritzen [1996], for example. The reader who is already familiar with graph-
ical models may want to skip this section. The most important terms for this book
are directed acyclic graphs (DAGs), v-structures, and d-separation.

6.1 Graph Terminology

Consider finitely many random variables X = (X1, . . . ,Xd) with index set V :=
{1, . . . ,d}, joint distribution PX, and density p(x). A graph G = (V,E) consists
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of (finitely many) nodes or vertices V and edges E ⊆ V2 with (v,v) 6∈ E for any
v ∈ V. We further have the following definitions:

Let G = (V,E) be a graph with V := {1, . . . ,d} and corresponding random vari-
ables X = (X1, . . . ,Xd). A graph G1 = (V1,E1) is called a subgraph of G if V1 = V
and E1 ⊆ E ; we then write G1 ≤ G. If additionally, E1 6= E , then G1 is a proper
subgraph of G.

A node i is called a parent of j if (i, j) ∈ E and ( j, i) /∈ E and a child if ( j, i) ∈ E
and (i, j) /∈ E . The set of parents of j is denoted by PAG

j , and the set of its children
by CHG

j . Two nodes i and j are adjacent if either (i, j) ∈ E or ( j, i) ∈ E . We
call G fully connected if all pairs of nodes are adjacent. We say that there is an
undirected edge between two adjacent nodes i and j if (i, j)∈ E and ( j, i)∈ E . An
edge between two adjacent nodes is directed if it is not undirected. We then write
i→ j for (i, j) ∈ E . We call G directed if all its edges are directed.1 Three nodes
are called an immorality or a v-structure if one node is a child of the two others
that themselves are not adjacent. The skeleton of G does not take the directions
of the edges into account. It is the graph (V, Ẽ) with (i, j) ∈ Ẽ , if (i, j) ∈ E or
( j, i) ∈ E .

A path in G is a sequence of (at least two) distinct vertices i1, . . . , im, such that
there is an edge between ik and ik+1 for all k = 1, . . . ,m− 1. If ik−1 → ik and
ik+1 → ik, ik is called a collider relative to this path. If ik → ik+1 for all k, we
speak of a directed path from i1 to im and call i1 an ancestor of im and im a
descendant of i1. In this work, all ancestors of i are denoted by ANG

i and i is not
an ancestor of itself. Furthermore, i is neither a descendant nor a non-descendant
of itself. We denote all descendants of i by DEG

i and all non-descendants of i,
excluding i, by NDG

i . In this book, NDG
i include the parents of i in graph G. A

node without parents is called a source node, a node without children a sink node.
A permutation π , that is a bijective function π : {1, . . . ,d} → {1, . . . ,d} is called
a topological or causal ordering if it satisfies π(i) < π( j) if j ∈ DEG

i (see also
Appendix B).

A graph G is called a partially directed acyclic graph (PDAG) if there is no
directed cycle, that is, if there is no pair ( j, k) with directed paths from j to k and
from k to j. G is called a directed acyclic graph (DAG) if it is a PDAG and all
edges are directed.

Since we will use it at many places herein, we formulate the graphical concept of
d-separation [Pearl, 1985, 1988] as a definition.

1Note that this excludes cycles of length 2, but it does not excludes longer cycles.
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Definition 6.1 (Pearl’s d-separation) In a DAG G, a path between nodes i1 and im
is blocked by a set S (with neither i1 nor im in S) whenever there is a node ik, such
that one of the following two possibilities holds:

(i) ik ∈ S and

ik−1→ ik→ ik+1

or ik−1← ik← ik+1

or ik−1← ik→ ik+1

(ii) neither ik nor any of its descendants is in S and

ik−1→ ik← ik+1.

Furthermore, in a DAG G, we say that two disjoint subsets of vertices A and B are
d-separated by a third (also disjoint) subset S if every path between nodes in A
and B is blocked by S. We then write

A⊥⊥G B |S.

The reader may have a look at Figure 6.5 and be convinced that for this DAG, we
have C ⊥⊥G G |X but C 6⊥⊥G G |(X ,H).

6.2 Structural Causal Models

SCMs have been used for a long time in fields such as agriculture, social sciences,
and econometrics [Wright, 1921, Haavelmo, 1944, Bollen, 1989]; see also Chap-
ter 2. Model selection, for example, was done by fitting different structures that
were considered as reasonable given the prior knowledge about the system. These
candidate structures were then compared using goodness of fit tests. In this chap-
ter, we introduce the semantics of SCMs and learn how to use them for computing
intervention distributions, for example. Throughout the whole chapter we will as-
sume that the SCM or at least its structure is given. We discuss the question of
identifying the structure in Chapter 7.

Definition 6.2 (Structural causal models) A structural causal model (SCM)
C := (S,PN) consists of a collection S of d (structural) assignments

X j := f j(PA j,N j), j = 1, . . . ,d, (6.1)
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X1 := f1(X3,N1)

X2 := f2(X1,N2)

X3 := f3(N3)

X4 := f4(X2,X3,N4)

• N1, . . . ,N4 jointly independent
• G is acyclic

X4

X2 X3

X1G

Figure 6.1: Example of an SCM (left) with corresponding graph (right). There is only one
causal ordering π (that satisfies 3 7→ 1, 1 7→ 2, 2 7→ 3, 4 7→ 4).

where PA j ⊆ {X1, . . . ,Xd}\{X j} are called parents of X j; and a joint distribution
PN = PN1,...,Nd over the noise variables, which we require to be jointly independent;
that is, PN is a product distribution.

The graph G of an SCM is obtained by creating one vertex for each X j and draw-
ing directed edges from each parent in PA j to X j, that is, from each variable Xk
occurring on the right-hand side of equation (6.1) to X j (see Figure 6.1). We hence-
forth assume this graph to be acyclic.

We sometimes call the elements of PA j not only parents but also direct causes
of X j, and we call X j a direct effect of each of its direct causes. SCMs are also
called (nonlinear) SEMs.

Although some of the terminology is causal (“direct cause” and “direct effect”),
Definition 6.2 is purely mathematical. We discuss its role as a model for a real
system in Section 6.8.

SCMs are the key for formalizing causal reasoning and causal learning. We first
show that an SCM entails an observational distribution. But unlike usual proba-
bilistic models, they additionally entail intervention distributions (Section 6.3) and
counterfactuals (Section 6.4); see Figure 6.2.

Proposition 6.3 (Entailed distributions) An SCM C defines a unique distribution
over the variables X = (X1, . . . ,Xd) such that X j = f j(PA j,N j), in distribution, for
j = 1, . . . ,d. We refer to it as the entailed distribution PC

X and sometimes write PX.

The proof can be found in Appendix C.2. It formalizes the procedure for how
we sample n data points from the joint distribution (“ancestral sampling”): We first
generate an i.i.d. sample N1, . . . ,Nn ∼ PN and then subsequently use the structural
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observational distribution

PC
X

causal graph

G

intervention distributions

PC;do(...)
X , . . .

causal model
e.g., SCM C

counterfactuals

PC|X=x;do(...)
X , . . .

Figure 6.2: Causal models as SCMs do not only model an observational distribution P
(Proposition 6.3) but also intervention distributions (Section 6.3) and counterfactuals (Sec-
tion 6.4).

assignments (starting from source nodes, then nodes with at most one parent and
so on) to generate i.i.d data points X1, . . . ,Xn ∼ PX. Structural assignments (6.1)
should be thought of as a set of assignments or functions (rather than a set of math-
ematical equations) that tells us how certain variables determine others. This is the
reason why we prefer to avoid the term structural equations, which is commonly
used in the literature.

Code Snippet 6.4 The following code generates an i.i.d. sample from an SCM
with the form shown in Figure 6.1: structural assignments f1(x3,n) = 2x3 + n,
f2(x1,n) = (0.5x1)

2+n, f3(n) = n, and f4(x2,x3,n) = x2+2sin(x3+n), and jointly
independent noise variables with a normal, chi squared, uniform, and normal dis-
tribution, respectively.

1 # generate a sample from the distribution entailed by the SCM

2 set.seed(1)

3 X3 <- runif(100)-0.5

4 X1 <- 2*X3 + rnorm(100)

5 X2 <- (0.5*X1)^2 + rnorm(100)^2

6 X4 <- X2 + 2*sin(X3 + rnorm(100))

Remark 6.5 (Linear cyclic assignments) In this book we focus mainly on acyclic
structures. We now briefly discuss linear SCMs with assignments that lead to a
cyclic structure; these are well understood [Lauritzen and Richardson, 2002, Lac-
erda et al., 2008, Hyttinen et al., 2012]. We focus on the intuition and do not pro-
vide a formal treatment. More details for the linear case are provided by Hyttinen
et al. [2012], and the nonlinear case is discussed by Mooij et al. [2011] and Bongers
et al. [2016].
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Let us denote X = (X1, . . . ,Xd) and consider the assignment

X := BX+N,

with a d × d matrix B that allows for a cyclic structure and some noise vector
N = (N1, . . . ,Nd) ∼ PN. Formally, if I−B is invertible, for each value of N, the
preceding equation induces a unique solution for X, namely

X = (I−B)−1N (6.2)

(see also Problem 3.8). Equation (6.2) clearly defines a joint distribution over X.
But what is its (causal) interpretation?

One possibility is to interpret it as a result of an equilibration process. Consider
a sequence of random variables Xt that occur as solutions to the iteration

Xt := BXt−1 +N, t = 1,2, . . . . (6.3)

The sequence Xt converges if Bt→ 0 as t→∞, which is equivalent to the eigenval-
ues of B lying within the unit circle. This is a strictly stronger condition than the
invertibility of I−B (see Problem 6.60). If satisfied, the distribution of the limit is
identical to the distribution induced by Equation (6.2); see Problem 6.61.

In (6.3), we have added the same noise realization in each time step. The limiting
distribution of Xt changes if we instead update the noise in each step:

Xt := BXt−1 +Nt−1, t = 1,2, . . . (6.4)

with N1,N2, . . . being i.i.d. copies of Nt . This can be regarded as a time series
setting and will be discussed in Section 10.2.

Proposition 6.3 shows that each SCM entails a distribution. What about the other
direction? Is any distribution entailed by an SCM? Indeed, we will see later (Propo-
sition 7.1) that each distribution can be induced by any SCM whose graph structure
is a complete DAG (a DAG is called complete if any pair of vertices is connected).
This means that the (observational) model class of SCMs, that is, the set of distri-
butions that can be induced by an SCM, is the set of all distributions.

The definition of SCMs allows for the possibility that a variable appears on the
right-hand side of the structural assignment without affecting the variable on the
left-hand side. Even though such a parent-child relation is in some sense “inactive,”
it still appears as an edge in the corresponding graph. Formally, we exclude this by
the following remark:
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Remark 6.6 (Structural minimality of SCMs) Definition 6.2 can be read such
that one distinguishes between the two SCMs

S1 : X := NX , Y := 0 ·X +NY and

S2 : X := NX , Y := NY ,

even though clearly 0 ·X = 0. This contradicts our intuition. We therefore add the
requirement that the functions f j depend on all of their input arguments. Mathe-
matically speaking, whenever there is a k ∈ {1, . . . ,d} and a function g such that

fk(pak,nk) = g(pa∗k ,nk), ∀pak,∀nk with p(nk)> 0, (6.5)

where PA∗k ( PAk, we choose the latter representation. In the preceding example,
we would therefore choose the representation S2 over S1. We will see later that
these two SCMs can indeed be identified in that they entail the same observational
distribution, intervention distribution,2 and counterfactuals (see Section 6.8).

Furthermore, there is a unique representation in which each function has a mini-
mal number of inputs. Although this statement seems plausible, we formally prove
it in Appendix C.3. We say that such an (least) SCM satisfies structural minimal-
ity.3 From now on, we assume that structural minimality holds. As opposed to
faithfulness (Section 6.5), for example, this is not an assumption about the under-
lying world. It is a convention to avoid redundant descriptions.

Remark 6.7 (Relationship to ordinary differential equations) In Remark 6.5,
we have already seen a relation between SCMs and discrete time models, and we
would now like to comment on continuous time models. In physical systems, we
would often expect that causal relationships are governed by sets of coupled dif-
ferential equations. A differential equation system Ẋ = f (X) can be represented
approximately as an assignment Xt+∆t := Xt +∆t · f (Xt) with small ∆t > 0, and
it thus contains information about the causal structure at a fine-grained time scale.
An intervention can be implemented physically as a forcing term pulling a variable
toward a desired value. Under certain stability assumptions, we can assay the ef-
fect of interventions in a time-independent manner by analyzing the behavior of the
equilibrium state. This entails an SCM that describes how the equilibrium states

2We do not allow for interventions that keep the function in the structural assignment fixed and
change only the noise distribution; see (6.5).

3This term does not coincide with causal minimality (Definition 6.33). Causal minimality implies
structural minimality (Proposition 6.49) but not vice versa; see Problem 6.57.
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of such a dynamical system will react to physical interventions on the observables
[Mooij et al., 2013]. In the SCM, the variables no longer describe measurements at
specific points in time. On this phenomenological level, the original time structure
disappears. The framework is in principle also applicable to cyclic structures, but
it does not yet address the stochastic case; the theory is restricted to determinis-
tic relations. This shortcoming is significant, since uncertainty can arise from a
number of sources, including incomplete knowledge of the parameters of the dif-
ferential equations or of initial conditions, and — as always — confounding. We
will not discuss further details on deriving phenomenological structural equations
from differential equations and refer to some literature instead [see, e.g., Dash,
2005, Hansen and Sokol, 2014].

Our main motivation for this remark is to avoid a common misconception. It
is sometimes argued that part of the task of causal inference becomes obsolete
by specifying the exact time to which a variable refers. This view is particularly
supported by physics where it is common that every measurement can be uniquely
assigned to a point in space-time where it has been performed. These arguments
show, however, that even variables in physics do not always refer to observations
that are well-defined in time — for example, because they arise from an equilibrium
scenario.

6.3 Interventions

We are now ready to model interventions in a system. Intuitively, when we inter-
vene on variable X2, say, and set it to the binary outcome of a coin flip, we expect
that this intervention changes the distribution of the system compared to its earlier
behavior without intervention. Furthermore, even if the variable X2 was causally
influenced by other variables before, it is now influenced by nothing else than the
coin flip: its causal parents have changed.

Formally, we construct intervention distributions from an SCM C. They are ob-
tained by making modifications to C and considering the new entailed distribution.
In general, intervention distributions differ from the observational distribution.

Definition 6.8 (Intervention distribution) Consider an SCM C := (S,PN) and its
entailed distribution PC

X . We replace one (or several) of the structural assignments
to obtain a new SCM C̃. Assume that we replace the assignment for Xk by

Xk := f̃ ( P̃Ak, Ñk).

We then call the entailed distribution of the new SCM an intervention distribution
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and say that the variables whose structural assignment we have replaced have been
intervened on. We denote the new distribution by4

PC̃
X =: P

C;do(Xk:= f̃ ( P̃Ak,Ñk))
X .

The set of noise variables in C̃ now contains both some “new” Ñ’s and some “old”
N’s, all of which are required to be jointly independent.

When f̃ ( P̃Ak, Ñk) puts a point mass on a real value a, we simply write PC;do(Xk:=a)
X

and call this an atomic intervention.5 An intervention with P̃Ak = PAk, that is,
where direct causes remain direct causes, is called imperfect.6 This is a special
case of a stochastic intervention [Korb et al., 2004], in which the marginal distri-
bution of the intervened variable has positive variance.

We require that the new SCM C̃ have an acyclic graph; the set of allowed inter-
ventions thus depends on the graph induced by C.

Code Snippet 6.9 The following code samples from an intervention distribu-
tion. We consider the SCM C from Code Snippet 6.4 and perform the intervention
do(X2 := 3); that is, we generate an i.i.d. sample from the distribution PC;do(X2:=3)

X .

1 # generate a sample from the intervention distribution

2 set.seed(1)

3 X3 <- runif(100)-0.5

4 X1 <- 2*X3 + rnorm(100)

5 # old:

6 # X2 <- (0.5*X1)^2 + rnorm(100)^2

7 X2 <- rep(3,100)

8 X4 <- X2 + 2*sin(X3 + rnorm(100))

It turns out that the concept of interventions is a powerful tool to model differ-
ences in distributions and to understand causal relationships. We try to illustrate
this with some examples.

4Although the set of parents can change arbitrarily as long as they are not introducing cycles, we
mainly consider interventions, for which the new set of parents P̃Ak is either empty or equals PAk.

5This is also referred to as an ideal, structural [Eberhardt and Scheines, 2007], surgical [Pearl,
2009], independent, or deterministic [Korb et al., 2004] intervention.

6 This is also referred to as a parametric [Eberhardt and Scheines, 2007] or dependent interven-
tion [Korb et al., 2004] or simply as a mechanism change [Tian and Pearl, 2001]. For the term soft
intervention, see Eberhardt and Scheines [2007] , Eaton and Murphy [2007], and Markowetz et al.
[2005].
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Example 6.10 (Predictors and intervention targets) This example considers
prediction. It shows that even though some variables may be good predictors for
a target variable Y , intervening on them may leave the target variable unaffected.
Consider the SCM C

X1 := NX1

Y := X1 +NY

X2 := Y +NX2

X1 Y X2

with NX1 ,NY
iid∼ N (0,1) and NX2 ∼ N (0,0.1) being jointly independent. Assume

that we are interested in predicting Y from X1 and X2. Clearly, X2 is a better predic-
tor for Y than X1 is; for example, a linear model without X2 leads to a (significantly)
larger mean squared error than a linear model without X1 would. If we want to
change Y , however, interventions on X2 are useless:

P
C;do(X2:=Ñ)
Y = PC

Y for all variables Ñ;

in other words, no matter how strongly we intervene on X2, the distribution of Y
remains unaffected. An intervention on X1, however, does change the distribution
of Y :

P
C;do(X1:=Ñ)
Y =N

(
E[NY ]+E[Ñ],var[NY ]+var[Ñ]

)
6= PC

Y

if PÑ 6= PNX1
.

This example can also be used to show that intervening is usually different from
conditioning:

pC;do(X2:=x)
Y (y) = pCY (y) 6= pCY (y|X2 = x).

Example 6.11 (Myopia) The following case study is one example (out of many),
in which a statistical dependence is mistakenly interpreted as a direct causal re-
lationship. Humans seem to be particularly susceptible for such a false causal
conclusion when little background knowledge is available. A study established a
dependence between the usage of a night light in a child’s room and the occurrence
of myopia [Quinn et al., 1999, page 113]. While the authors are cautious enough
to say that the study “does not establish a causal link,” they add that “the statistical
strength of the association . . . does suggest that the absence of a daily period of
darkness during early childhood is a potential precipitating factor in the develop-
ment of myopia.” Based on these findings, a patent was filed [Peterson, 2005]. It
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suggests that if we intervene on the variable night light, this changes the probability
to develop myopia.

Subsequently, Gwiazda et al. [2000] and Zadnik et al. [2000] found that the cor-
relation is due to whether the child’s parents have myopia. They argue that myopic
parents are more likely to put a night light in their child’s room, and at the same
time, the child has an increased risk of inheriting the condition. Therefore, assume
that the underlying (“correct”) SCM is of the form

S :
PM := NPM

NL := f (PM,NNL)
CM := g(PM,NCM)

where PM stands for parent myopia, NL for night light, and CM for child myopia.
The corresponding graph is

NL CM

PM

In their paper, Quinn et al. [1999] found that NL 6⊥⊥CM, consistent with the model
(assuming faithfulness — see Definition 6.33). Now we replace the structural as-
signment of NL with NL := ÑNL, where ÑNL could randomly assign one out of
the three night light conditions (“darkness,” “night light,” “room light”) with equal
probability. In the corresponding intervention distribution

P
C;do(NL:=ÑNL)
NL,CM ,

we would find NL⊥⊥CM since CM := g(NPM,NCM). This holds independently of
the distribution of ÑNL. We say there is no causal effect from NL to CM.

Motivated by the last statement in Example 6.11, we define the existence of a
total causal effect [cf. Pearl, 2009, “total causal effect”].

Definition 6.12 (Total causal effect) Given an SCM C, there is a total causal
effect from X to Y if and only if

X 6⊥⊥ Y in P
C;do(X :=ÑX)
X

for some random variable ÑX .
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There are concepts other than the one from Definition 6.12 that intuitively de-
scribe the existence of a total causal effect. It turns out, however, that most of the
statements one may have thought about are equivalent. The following proposition
is proved in Appendix C.4.

Proposition 6.13 (Total causal effects) Given an SCM C, the following statements
are equivalent:

(i) There is a total causal effect from X to Y .

(ii) There are x4 and x� such that P
C;do(X :=x4)
Y 6= P

C;do(X :=x�)
Y .

(iii) There is x4 such that P
C;do(X :=x4)
Y 6= PC

Y .

(iv) X 6⊥⊥ Y in P
C;do(X :=ÑX)
X ,Y for any ÑX whose distribution has full support.

Not surprisingly, the existence of a total causal effect is related to the existence
of a directed path in the corresponding graph. The correspondence, however, is
not one-to-one. While a directed path is necessary for a total causal effect, it is not
sufficient.

Proposition 6.14 (Graphical criteria for total causal effects) Assume we are
given an SCM C with corresponding graph G.

(i) If there is no directed path from X to Y , then there is no total causal effect.

(ii) Sometimes there is a directed path but no total causal effect.

The proof can be found in Appendix C.5.

Example 6.15 (Randomized trials) The definition of a causal effect is imple-
mented in randomized trials. In those studies, one randomly assigns the treatment
T according to ÑT to a patient and, for example, observes the (binary) recovery
variable R. Assume that T takes three possible values (T = 0: no medication,
T = 1: placebo, and T = 2: drug of interest) and that ÑT randomly chooses one
of these three possibilities: P(ÑT = 0) = P(ÑT = 1) = P(ÑT = 2) = 1/3. In the
SCM, such a randomization is modeled with observing data from the distribution

P
C;do(T :=ÑT)
X .

(Here, C denotes the original SCM without randomization.) If we then still find
a dependence between the treatment and recovery, we conclude that T has a total
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T

P

B

R

placebo effect

biochemical effect

Figure 6.3: Simplified description of randomized studies. T denotes the treatment, P and
B the patient’s psychology and some biochemical state, and R indicates whether the patient
recovers. The randomization over T removes the influence of any other variable on T , and
thus there cannot be any hidden common cause between T and R. We distinguish between
two different effects: the placebo effect via P and the biochemical effect via B.

causal effect on the recovery. It may turn out, however, that there is a total causal
effect independently of the type of drug. A simplified description can be found in
Figure 6.3. A patient’s psychology (P) changes, when taking a pill independently
of its content, which then affects the recovery. Let us assume that this placebo
effect is the same for the placebo and the drug of interest. That is, the structural
assignment for P satisfies

fP(T = 0,NP) 6= fP(T = 1,NP) = fP(T = 2,NP).

In pharmaceutical studies, we are more interested in the biochemical effect than the
placebo effect. We therefore restrict the randomization to be supported on placebo
and drug of interest, that is, P(ÑT = 0) = 0. If we then still see a dependence
between treatment T and recovery R, this must be due to a biochemical effect.

The idea of using randomized trials for causal learning was described (using
different mathematical language) by Peirce [1883] and Peirce and Jastrow [1885],
and later by Neyman [see Splawa-Neyman et al., 1990, for a translated and edited
version of the original article] and Fisher [1925]. Most of this work dealt with
applications in agriculture.

An early example of a randomized trial was performed by James Lind. During
the eighteenth century, Great Britain lost more soldiers from scurvy than from
enemy action; vitamin C and its relation to scurvy was still unknown. The Scottish
physician James Lind (1716–1794) worked as a surgeon on a ship and reports the
trial as follows [cited after Bhatt, 2010]:

On the 20th of May 1747, I selected twelve patients in the scurvy,
on board the Salisbury at sea. Their cases were as similar as I could
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have them. They all in general had putrid gums, the spots and lassi-
tude, with weakness of the knees.... Two were ordered each a quart of
cyder a day. Two others took twenty-five drops of elixir vitriol three
times a day.... Two others took two spoonfuls of vinegar three times a
day.... Two of the worst patients were put on a course of sea-water....
Two others had each two oranges and one lemon given them every
day.... The two remaining patients, took ... an electary recommended
by a hospital surgeon.... The consequence was, that the most sudden
and visible good effects were perceived from the use of oranges and
lemons; one of those who had taken them, being at the end of six days
fit for duty.

The reader will notice that the trial was not fully randomized, but the historical
curiosity makes up for it.

Example 6.16 (Kidney stones) Table 6.1 shows a famous data set from kidney
stone recovery [Charig et al., 1986]. Out of 700 patients, one half was treated
with open surgery (treatment T = a, 78% recovery rate) and the other half with
percutaneous nephrolithotomy (T = b, 83% recovery rate), a surgical procedure to
remove kidney stones by a small puncture wound. If we do not know anything
else than the overall recovery rates, and neglect side effects, for example, many
people would prefer treatment b if they had to decide. Observing the data in more
detail, we can categorize kidney stones into small and large stones. We realize
that the open surgery performs better in both categories. How do we deal with this
inversion of conclusion?

We first give an intuitive explanation. Larger stones are more severe than small
stones (see Table 6.1), and treatment a had to deal with many more of these difficult
cases (even though the total number of patients assigned to a and b are equal). This
is why treatment a can look worse than b on the full population but better in both
subgroups. The imbalance in assignment could, for example, arise if the medical
doctors expect treatment a to be better than treatment b and therefore assign the
difficult cases to treatment a with higher probability.

As an alternative point of view, we propose to use the language of interventions
to formulate the precise question we are interested in. And this is not whether
treatment T = a or treatment T = b was more successful in this particular study
but how the treatments compare when we force all patients to take treatment a
or treatment b, respectively, or we compare the recovery rates, when each patient
is assigned randomly to one of the treatments. These three situations concern an
intervention distribution that is different from the observational distribution PX. In
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Overall Patients with
small stones

Patients with
large stones

Treatment a:
Open surgery

78% (273/350) 93% (81/87) 73% (192/263)

Treatment b:
Percutaneous
nephrolithotomy

83% (289/350) 87% (234/270) 69% (55/80)

Table 6.1: A classic example of Simpson’s paradox. The table reports the success rates of
two treatments for kidney stones [Bottou et al., 2013, Charig et al., 1986, tables I and II].
Although the overall success rate of treatment b seems better (any bold number is largest
in its column), treatment b performs worse than treatment a on both patients with small
kidney stones and patients with large kidney stones (see Examples 6.37 and Section 9.2).

particular, they correspond to PC;do(T :=a), PC;do(T :=b), or PC;do(T :=ÑT). We will
compute these intervention distributions in Example 6.37, and we will see why we
should prefer treatment a over treatment b. This data set is a famous example of
Simpson’s paradox [Simpson, 1951] (Section 9.2). In fact, it is much less a paradox
than the result of the influence of confounding, that is, a hidden common cause.

If you perform a significance test on the data (e.g., using a proportion test or χ2

independence test), it turns out that the difference in methods is not significant at
5% significance level. Note, however, this is not the point of this example. By
multiplying each entry in Table 6.1 by a factor of 10, the results would become
statistically significant. Also, we concentrate on the recovery R and ignore possible
side effects that might influence our decision of treatment, too.

Intervention variables We now describe an alternative approach to formalize
interventions; see, for example, Dawid [2015] or Pearl [2009, Chapter 3.2.2]. One
augments the SCM C and therefore its DAG with parentless nodes I1, I2, . . . , Id ,
called “intervention variables,” pointing at X1, . . . ,Xd , respectively. For simplicity,
we only discuss interventions on single nodes here. Every I j attains either the value
idle or one of the possible values x j that X j can attain. Then I j = x j means that X j

is set to the value x j, while I j = idle denotes that X j has not been intervened on.
Accordingly, one replaces the structural assignments

X j := f j(PA j,N j)

with

X j :=
{

f j(PA j,N j) if I j = idle

I j otherwise
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and adds assignments for I1, . . . , Id , all of which are determined only by noise vari-
ables. After assigning non-zero probability (or probability density) to all possible
values of I j, the intervention probabilities entailed by the original SCM C turn into
usual conditional probabilities in the augmented SCM C∗:

P
C;do(X j:=x j)
Y = PC∗

Y | I j=x j
,

see Remark 6.40. Moreover, the statement on whether an intervention on a variable
changes the distribution of a certain target variable turns into a usual statistical
independence statement.

6.4 Counterfactuals

The definition and interpretation of counterfactuals has received a lot of attention
in the literature. They deal with the following situation: Assume you are playing
poker and as a starting hand you have♣J and♣3 (sometimes called a “lumberjack”
— tree and a jack); you stop playing (“fold”) because you estimate the probability
of winning to be too small and you do not want to lose even more money. Three
more cards are dealt face-up to the board (“flop”). They are ♣4, ♣Q, and ♣2.
The reaction is a typical counterfactual statement: “If I had stayed in the game,
my chances would have been good.” (Five cards of the same suit is the fifth-
highest hand and is called a “flush,” there are even chances for a “straight flush,”
the second-highest hand.) This statement incorporates the observed data (cards
in hand and flop) into the model and then analyzes an intervention distribution
(stay in the game), in which the rest of the environment remains unchanged (same
cards). Formally, this corresponds to updating the noise distributions of an SCM
(by conditioning) and then performing an intervention.

Definition 6.17 (Counterfactuals) Consider an SCM C := (S,PN) over nodes
X. Given some observations x, we define a counterfactual SCM by replacing the
distribution of noise variables:

CX=x :=
(

S, PC|X=x
N

)
,

where PC|X=x
N := PN |X=x.7 The new set of noise variables need not be jointly inde-

pendent anymore. Counterfactual statements can now be seen as do-statements in
the new counterfactual SCM.

7In the continuous case, this definition comes with measure theoretic problems since usually the
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This definition can be generalized such that we observe not the full vector X = x
but only some of the variables.

Example 6.18 (Computing counterfactuals) Consider the following SCM:

X := NX

Y := X2 +NY

Z := 2 ·Y +X +NZ

with NX ,NY ,NZ
iid∼U({−5,−4, . . . ,4,5}) that are uniformly distributed on the inte-

gers between −5 and 5. Now, assume that we observe (X ,Y,Z) = (1,2,4). Then
PC|X=x

N puts a point mass on (NX ,NY ,NZ) = (1,1,−1) because here all noise terms
can be uniquely reconstructed from the observations. We therefore have the coun-
terfactual statement (in the context of (X ,Y,Z) = (1,2,4)): “Z would have been
11 had X been 2.” In this book, such a sentence is interpreted as: “Z would have
been 11 had X been set to 2.” Mathematically, this means that PC|X=x;do(X :=2)

Z has
a point mass on 11. In the same way, we obtain “Y would have been 5, had X been
2,” and “Z would have been 10, had Y been 5.”

Since the construction of counterfactuals involves several steps, its notation looks
quite complicated.8 We hope that the following image provides further clarifica-
tion.

PC|X=x;do(Y :=2)
Z

3. the intervention do(Y := 2)

2. the observed data X = x

1. the SCM C we start with

4. the variable Z we are interested in

conditional distribution is only defined up to null sets. To make our life easier, we restrict counterfac-
tuals to the discrete case, that is, when the noise distribution has a probability mass function. In the
case of continuous variables with density, we condition not on X = x but on X∈ A with P(X∈ A)> 0
instead.

8Pearl [2009] uses the somewhat simpler notation Zy(u), where the subscript y denotes the in-
tervention do(Y := y) and u represents the additional information about the error terms, which he
calls u, that may be implied by X = x, for example.
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Counterfactual statements depend strongly on the structure of the SCM. Exam-
ple 6.19 shows two SCMs that induce the same graph, observational distributions,
and intervention distributions but entail different counterfactual statements. Later,
we will call those SCMs “probabilistically and interventionally equivalent” but not
“counterfactually equivalent” (see Definition 6.47).

Example 6.19 Let N1,N2 ∼ Ber(0.5), and N3 ∼ U({0,1,2}), such that the three
variables are jointly independent. That is, N1,N2 have a Bernoulli distribution with
parameter 0.5 and N3 is uniformly distributed on {0,1,2}. We define two different
SCMs. First consider CA:

X1 := N1

X2 := N2

X3 := (1N3>0 ·X1 +1N3=0 ·X2) ·1X1 6=X2 +N3 ·1X1=X2 .

If X1 and X2 have different values, depending on N3 we either choose X3 = X1 or
X3 = X2. Otherwise X3 = N3. Now, CB differs from CA only in the latter case:

X1 := N1

X2 := N2

X3 := (1N3>0 ·X1 +1N3=0 ·X2) ·1X1 6=X2 +(2−N3) ·1X1=X2 .

Both SCMs entail the same observational distribution; and for any possible inter-
vention they entail the same intervention distributions, too.9 But the two mod-
els differ in a counterfactual statement. Suppose, we have made an observation
(X1,X2,X3) = (1,0,0) and we are interested in the counterfactual question “what
would X3 have been if X1 had been 0?” From both SCMs, it follows that N3 = 0,
and thus the two SCMs CA and CB “predict” different values for X3 under a coun-
terfactual change of X1 (namely 0 and 2, respectively).

The implications from the preceding example are twofold: (1) Both SCMs cor-
respond to the same causal graphical model (see Section 6.5.2), and in this sense,
causal graphical models are not rich enough to predict counterfactuals. (2) In Sec-
tion 6.8, we relate intervention distributions to real-world randomized experiments.

9In this example, the observational distribution satisfies causal minimality with respect to the
underlying graph (here X1 → X3 ← X2); see Definition 6.33. Another example can be found in
Section 3.4; it is less complex but violates causal minimality.
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For this example, we cannot use randomized trials or observational data to distin-
guish between CA or CB. Thus, if we are interested in counterfactual statements,
we require additional assumptions that let us distinguish between CA or CB.

We now summarize some properties of counterfactuals.

Remark 6.20 (i) Counterfactual statements are not transitive. In Example 6.18
we found that given the observation (X ,Y,Z) = (1,2,4),

“Y would have been 5, had X been 2,”
“Z would have been 10, had Y been 5,” and
“Z would have not been 10, had X been 2.”

Therefore, we cannot simply introduce new variables X̃ and Ỹ , say, and in-
terpret the statement “Y would have been 5, had X been 2” as a logical
implication of the form “X̃ = 2 ⇒ Ỹ = 5.” In the preceding example, the
non-transitivity is due to the direct link from X to Z, that is, the existence of
a path from X to Z that does not pass Y . A similar counterexample holds for
intervention distributions.

(ii) Humans often think in counterfactuals: “I should have taken the train.”, “Do
you remember our flight to New York on September 11, 2000? Imagine if
we would have taken the flight one year later!” or “We should have invested
in CHF in December 2014!” are only a few examples. Interestingly, this
sometimes even concerns situations in which we made optimal decisions —
based on the available information. Assume someone offers you $10,000 if
you predict the result of a coin flip; you guess “heads” and lose. Some people
may then think, “Why did I not say ‘tails’?” even though there was no way
they could have possibly known the outcome. Roese [1997], Byrne [2007],
and others provide the psychological implications of counterfactual thinking.
Discussing whether counterfactual statements contain any information that
can help us make better decisions in the future is interesting but lies beyond
this work; see also Pearl [2009, Chapter 4].

(iii) We do not discuss the role of counterfactuals in our legal system either; it is
an interesting question whether and how counterfactuals should be taken as
a basis of verdicts (see Example 3.4).

(iv) People have been thinking about counterfactuals for a long time; it is a pop-
ular tool of historians. Titus Livius, for example, discusses in 25 BC what
would have happened if Alexander the Great had not died in Asia and had
attacked Rome [Geradin and Girgenson, 2011]. Paul’s First Epistle to the
Corinthians (7:29–7:31) states: “But I say this, brothers: the time is short,
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that from now on, both those who have wives may be as though they had
none; / and those who weep, as though they didn’t weep; and those who re-
joice, as though they didn’t rejoice; and those who buy, as though they didn’t
possess; / and those who use the world, as not using it to the fullest.”

(v) We can think of interventional statements as a mathematical construct for
(randomized) experiments. For counterfactual statements, there is no compa-
rable correspondence in the real world. One may speculate that many coun-
terfactual statements cannot be falsified and should therefore not be used
in scientific inquiry [cf. Popper, 2002]. Note, however, that sometimes we
can make falsifiable counterfactual statements (for example, when the actual
value of the noise terms for the respective instance in the sample becomes
apparent in retrospect; see Example 3.4). Moreover, the counterfactuals we
described above are consequences of positing an SCM. Another target of fal-
sification can therefore also be the SCM rather than a given counterfactual
statement. This may or may not be possible, for example, using methods
from a scientific domain that the SCM refers to.10

These remarks can be considered as food for thought. We do not go into further
depth regarding the interpretation of counterfactual statements and how they should
or can be used in court cases, for example. Many of these deliberations lie outside
our field of expertise. Instead, we refer to Halpern [2016] who discusses what it
means that some event was an “actual cause” of some other event.

6.5 Markov Property, Faithfulness, and Causal
Minimality

6.5.1 Markov Property

The Markov property is a commonly used assumption that forms the basis of
graphical models. When a distribution is Markovian with respect to a graph, this
graph encodes certain independences in the distribution that we can exploit for ef-
ficient computation or data storage. The Markov property exists for both directed
and undirected graphs, and the two classes encode different sets of independences

10Note that the freedom of reparametrization, as described in Section 3.4, always remains.
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[Koller and Friedman, 2009]. In causal inference, however, we are mainly inter-
ested in directed graphs. Many introductions to causal inference start by postu-
lating the Markov property. Instead, in this book, we assume the existence of an
underlying SCM. We will see in Proposition 6.31 that this is sufficient for proving
the Markov property. But first, let us define it.

Definition 6.21 (Markov property) Given a DAG G and a joint distribution PX,
this distribution is said to satisfy

(i) the global Markov property with respect to the DAG G if

A⊥⊥G B |C ⇒ A⊥⊥ B |C

for all disjoint vertex sets A,B,C (the symbol ⊥⊥G denotes d-separation —
see Definition 6.1),

(ii) the local Markov property with respect to the DAG G if each variable is
independent of its non-descendants given its parents, and

(iii) the Markov factorization property with respect to the DAG G if

p(x) = p(x1, . . . ,xd) =
d

∏
j=1

p(x j |paGj ).

For this last property, we have to assume that PX has a density p; the fac-
tors in the product are referred to as causal Markov kernels describing the
conditional distributions PX j|PAG

j
.

It turns out that as long as the joint distribution has a density,11 these three defi-
nitions are equivalent.

Theorem 6.22 (Equivalence of Markov properties) If PX has a density p, then
all Markov properties in Definition 6.21 are equivalent.

The proof can be found as Theorem 3.27 in Lauritzen [1996], for example.

Example 6.23 A distribution PX1,X2,X3,X4 is Markovian with respect to the graph G
shown in Figure 6.1 on page 84 if, according to (i) or (ii),

X2 ⊥⊥ X3 |X1 and X1 ⊥⊥ X4 |X2,X3,

11In this book, we always consider densities with respect to a product measure.
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or, according to (iii),

p(x1,x2,x3,x4) = p(x3)p(x1 |x3)p(x2 |x1)p(x4 |x2,x3).

We will see later in Proposition 6.31 that a distribution entailed from an SCM is
Markovian with respect to the graph of the SCM. Therefore, these conditions are
indeed satisfied for a distribution PX1,X2,X3,X4 entailed by the SCM as in Figure 6.1,
left. Intuitively, the statement X2 ⊥⊥ X3 |X1 is reasonable. Considering the path
X2 ← X1 ← X3, we have that X3 does not provide any new information about X2
if we already know X1. In this sense, the graph structure of an SCM leaves some
“traces” in the joint distribution.

The Markov condition relates statements about graph separation to conditional
independences. It is possible, however, that different graphs encode the exact same
set of conditional independences.

Definition 6.24 (Markov equivalence of graphs) We denote byM(G) the set of
distributions that are Markovian with respect to G:

M(G) := {P : P satisfies the global (or local) Markov property with respect to G}.

Two DAGs G1 and G2 are Markov equivalent ifM(G1) =M(G2). This is the case
if and only if G1 and G2 satisfy the same set of d-separations, which means the
Markov condition entails the same set of (conditional) independence conditions.

The set of all DAGs that are Markov equivalent to some DAG is called Markov
equivalence class of G. It can be represented by a completed PDAG that is denoted
by CPDAG(G) = (V,E); it contains the (directed) edge (i, j) ∈ E if and only if one
member of the Markov equivalence class does; see Figure 6.4.

From this definition, determining whether two DAGs are Markov equivalent ap-
pears a non-trivial problem. Fortunately, Verma and Pearl [1991] provide a concise
characterization, see also Frydenberg [1990].

Lemma 6.25 (Graphical criteria for Markov equivalence) Two DAGs G1 and G2
are Markov equivalent if and only if they have the same skeleton and the same
immoralities.

Here, three nodes A, B, and C in a DAG form an immorality or v-structure if
A→ B←C and A and C are not directly connected (see Section 6.1).

Figure 6.4 shows an example of two Markov equivalent graphs (center and left).
The graphs share the same skeleton and both of them have only one immorality:



6.5. Markov Property, Faithfulness, and Causal Minimality 103

X

Y Z U

V X

UY Z

V X

UY Z

V

Figure 6.4: Two Markov equivalent DAGs (left and center); these are the only two DAGs
in the corresponding Markov equivalence class that can be represented by the CPDAG on
the right-hand side.

X → Z←V . In the corresponding CPDAG (see Figure 6.4, right), not all directed
edges are part of an immorality. The edge Z→Y , for example, is required to avoid
a v-structure Y → Z←V . Furthermore, X→Y prevents the existence of a directed
cycle.

We now introduce the graphical concept of a Markov blanket [Pearl, 1988] that
becomes relevant when one tries to predict the value of a target variable Y from the
observed values of all the other variables. One may then wonder what would be the
smallest set of variables whose knowledge renders the remaining ones irrelevant for
the prediction task.

Definition 6.26 (Markov blanket) Consider a DAG G = (V,E) and a target node
Y . The Markov blanket of Y is the smallest set M such that

Y ⊥⊥G V\ ({Y}∪M) given M.

If PX is Markovian with respect to G, then

Y ⊥⊥ V\ ({Y}∪M) given M.

In other words, given M, the other variables do not provide any further informa-
tion about Y . In an idealized regression setting, we thus only need to include the
variables in M for predicting Y . This does not imply that in a finite sample setting,
the other variables are useless. If the dependence from Y on its Markov blanket
M is not well aligned with the prior or function class used by the given regression
method, adding variables outside M may improve the prediction of Y .

For DAGs, we know what the Markov blanket looks like. It contains not only the
parents, but also children and parents of children [Pearl, 1988].

Proposition 6.27 (Markov blanket) Consider a DAG G and a target node Y .
Then, the Markov blanket M of Y includes its parents, its children, and the parents
of its children

M = PAY ∪CHY ∪PACHY
.
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So far, we have discussed the Markov property as relating distributions and
graphs. Now, we would like to discuss some of its causal implications. The Markov
property can be used to justify Reichenbach’s common cause principle (Princi-
ple 1.1). Recall that it states that when the random variables X and Y are dependent,
there must be a “causal explanation” for this dependence:

(i) X is (possibly indirectly) causing Y , or
(ii) Y is (possibly indirectly) causing X , or

(iii) there is a (possibly unobserved) common cause Z that (possibly indirectly)
causes both X and Y .

Here, we have not further specified the meaning of the word “causing.” The fol-
lowing proposition justifies Reichenbach’s principle with respect to a weak notion
of “causing,” namely the existence of a directed path.

Proposition 6.28 (Reichenbach’s common cause principle) Assume that any
pair of variables X and Y can be embedded into a larger system in the following
sense. There exists a correct SCM over the collection X of random variables that
contains X and Y with graph G. Then Reichenbach’s common cause principle
follows from the Markov property. If X and Y are (unconditionally) dependent,
then there is

(i) either a directed path from X to Y , or
(ii) from Y to X, or

(iii) there is a node Z with a directed path from Z to X and from Z to Y .

Proof. Due to the Markov property, the dependence implies that G contains an
unblocked path between X and Y . This path cannot contain a collider, for other-
wise it would be blocked by the empty set. The statement follows since any path
between X and Y without collider must be of the form X → . . .→Y , X ← . . .←Y ,
or X ← . . .← Z→ . . .→ Y . �

Remark 6.29 (Selection bias) In Reichenbach’s principle, we start with two de-
pendent random variables and obtain a valid statement. In real applications, how-
ever, it might be that we have implicitly conditioned on a third variable (selection
bias). As Example 6.30 shows, this may lead to a dependence between X and
Y , although none of the three conditions hold (see also the discussion in the last
paragraph of Section 1.3).

Example 6.30 (Berkson’s paradox) The following example “Why are handsome
men such jerks?” is taken from Ellenberg [2014] and is an instance of Berkson’s
paradox [Berkson, 1946]. Let us assume that whether men are in a relationship
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(R= 1) is determined only by whether they are handsome (H = 1) and whether they
are friendly (F = 1). More precisely, assume that the correct SCM has the form:

H := NH ,

F := NF ,

R := min(H,F)⊕NR,

H F

R

where NH ,NF
iid∼Ber(0.5) and NR∼Ber(0.1). The symbol⊕ denotes addition mod-

ulo 2. In this model, a man is very likely to be in a relationship if he is handsome
and friendly. Otherwise, he is likely to be single. As we can see from the SCM,
H and F are assumed to be independent. If you consider men, however, that are
not in a relationship, that is, you condition on R = 0, the characteristics, whether a
man is friendly or handsome, become anti-correlated. If someone is handsome, he
is more likely to be unfriendly (otherwise he would be in a relationship). We have
that

F 6⊥⊥ H |R = 0

and therefore F is not independent of H given R.

As we have mentioned before, Pearl [2009] shows in Theorem 1.4.1 that the law
PX induced by an SCM is Markovian with respect to its graph [see also Verma and
Pearl, 1988].

Proposition 6.31 (SCMs imply Markov property) Assume that PX is induced by
an SCM with graph G. Then, PX is Markovian with respect to G.

The assumption that a distribution is Markovian with respect to the causal graph
is sometimes called the causal Markov condition; this requires the notion of a
causal graph. For us, causal graphs are induced by the underlying SCM. The con-
cept of causal graphical models, on the other hand, uses them as a starting point
for causal inference.

6.5.2 Causal Graphical Models

We will see in Section 6.6 that for defining intervention distributions, it usually suf-
fices to have knowledge of the observational distribution and the graph structure.
We therefore define a causal graphical model as a pair that consists of a graph and
an observational distribution such that the distribution is Markovian with respect to



106 Chapter 6. Multivariate Causal Models

the graph (causal Markov condition). There is a subtle technicality, however. For-
mally, we need to have access to the full conditionals. If p(x2|x1 = 3) is not defined,
for example, because p(x1 = 3) = 0, we may not be able to define pdo(X1:=3)(x2).
This motivates the following definition:

Definition 6.32 (Causal graphical model) A causal graphical model over ran-
dom variables X = (X1, . . . ,Xd) contains a graph G and a collection of functions
f j(x j,xPAG

j
) that integrate to 1:

∫
f j(x j,xPAG

j
)dx j = 1.

These functions induce a distribution PX over X via

p(x1, . . . ,xd) =
d

∏
j=1

f j(x j,xPAG
j
),

and thus play the role of conditionals: f j(x j,xPAG
j
) = p(x j|xPAG

j
). A causal graphi-

cal model induces intervention distribution according to Equations (6.8) and (6.9)
in Section 6.6. In the most general form, we can define

pdo
(

Xk:=q(· |xP̃Ak
)
)
(x1, . . . ,xd) = ∏

j 6=k
f j(x j,xPAG

j
) q(· |xP̃Ak

),

with q(· |xP̃Ak
) integrating to 1 and the new parents not leading to a cycle.

If a distribution PX over X is Markovian with respect to a graph G and allows for
a strictly positive, continuous density p, the pair (PX,G) defines a causal graphical
model by f j(x j,xPAG

j
) := p(x j|xPAG

j
).

Why do we primarily work with SCMs and not just with graphs and the Markov
condition, that is, causal graphical models? Formally, SCMs contain strictly more
information than their corresponding graph and law (e.g., counterfactual state-
ments) and hence also more information than the family of all intervention dis-
tributions together with the observational distribution. It is debatable, though,
whether this additional information is useful. Maybe more importantly, restrict-
ing the function class in SCMs can lead to identifiability of the causal structure
(see Sections 4.1.3–4.1.6 and 7.1.2). Those assumptions are easier to phrase in the
language of SCMs than in the language of graphical models.



6.5. Markov Property, Faithfulness, and Causal Minimality 107

6.5.3 Faithfulness and Causal Minimality

In the previous subsection, we discussed the Markov assumption, which enables us
to read off independences from the graph structure. Faithfulness allows us to infer
dependences from the graph structure.

Definition 6.33 (Faithfulness and causal minimality) Consider a distribution
PX and a DAG G.

(i) PX is faithful to the DAG G if

A⊥⊥ B |C ⇒ A⊥⊥G B |C

for all disjoint vertex sets A,B,C.

(ii) A distribution satisfies causal minimality with respect to G if it is Markovian
with respect to G, but not to any proper subgraph of G.

Part (i) posits an implication that is the opposite of the global Markov condition

A⊥⊥G B |C ⇒ A⊥⊥ B |C,

see Definition 6.21. Faithfulness is not very intuitive at first glance. We now give an
example of a distribution that is Markovian but not faithful with respect to a given
DAG G1. This is achieved by making two paths cancel each other and creating an
independence that is not implied by the graph structure.

Example 6.34 (Violation of faithfulness) Consider the following figure.

X

Z

Yc

a

b

G1

X

Z

Y

ã

b̃

G2

X

Z

Y

H

We first look at a linear Gaussian SCM that corresponds to the left graph G1.

X := NX ,

Y := aX +NY ,

Z := bY + cX +NZ,
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with normally distributed noise variables NX ∼ N (0,σ2
X), NY ∼ N (0,σ2

Y ), and
NZ ∼ N (0,σ2

Z) that are jointly independent. This is an example of a linear Gaus-
sian SCM with graph G1 (see Definition 6.2). Now, if

a ·b+ c = 0, (6.6)

the distribution is not faithful with respect to G1 since we obtain X ⊥⊥ Z, which is
not implied by the graph structure.12 The reader can easily verify that there is an
SCM with DAG G2 inducing the same distribution.

To obtain the extra independence in the preceding example, we had to “tune”
the coefficients such that the two paths cancel each other out in (6.6). Spirtes et al.
[2000, Theorem 3.2] show for linear models that this happens with zero probability
if we assume that the coefficients are drawn randomly from positive densities.

The distribution from Example 6.34 is faithful with respect to G2, but not with
respect to G1. Nevertheless, for both models, causal minimality is satisfied if none
of the parameters vanishes. In other words, the distribution is not Markovian to any
proper subgraph of G1 or G2 since removing any edge would correspond to a new
(conditional) independence that does not hold in the distribution; note that G2 is
not a proper subgraph of G1. It is a proper subgraph of H, however, and therefore,
the distribution does not satisfy causal minimality with respect to H. In general,
causal minimality is weaker than faithfulness.

Proposition 6.35 (Faithfulness implies causal minimality) If PX is faithful and
Markovian with respect to G, then causal minimality is satisfied.

Proof. The argument is as follows: If PX is Markovian with respect to a proper
subgraph G̃ of G, there are two nodes that are directly connected in G but not in G̃.
Thus, they can be d-separated in G̃ but not in G (see Problem 6.62). The Markov
condition implies the corresponding conditional independence statement in PX, and
thus PX cannot be faithful with respect to G. �

The following formulation is equivalent to causal minimality and hopefully is of
further help to understand the condition. A distribution is minimal with respect
to G if and only if there is no node that is conditionally independent of any of its
parents, given the remaining parents. In some sense, all the parents are “active.”

12More precisely, it is not triangle-faithful [Zhang and Spirtes, 2008].
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Proposition 6.36 (Equivalence of causal minimality) Consider the random vec-
tor X = (X1, . . . ,Xd) and assume that the joint distribution has a density with re-
spect to a product measure. Suppose that PX is Markovian with respect to G. Then
PX satisfies causal minimality with respect to G if and only if ∀X j ∀Y ∈ PAG

j we
have that X j 6⊥⊥ Y |PAG

j \{Y}.

Proof. See Appendix C.6. �

We have seen that while faithfulness is a strong assumption that links condi-
tional independence statements with causal semantics, causal minimality is a much
weaker condition. Suppose we are given a causal graphical model, for example, in
which causal minimality is violated. Then, one of the edges is “inactive” in the
notion of Proposition 6.36. If we remove this edge, the two models do not need to
be counterfactually or interventionally equivalent in the sense of Definition 6.47.
They are interventionally equivalent, however, if all densities are strictly positive
(or if we only allow for interventions on Xk that are supported on a subset of the
support of Xk); see Problem 6.58. Then, causal minimality could be interpreted as
the convention to avoid redundancies in the description of an interventional model.
In most model classes, identifiability from observational data is impossible to ob-
tain without causal minimality. We cannot distinguish between Y := f (X)+NY

and Y := c+NY , for example, if f is allowed to differ from c only outside the
support of X ; see also Remark 6.6 and Proposition 6.49.

6.6 Calculating Intervention Distributions by Covariate
Adjustment

In this section we will make use of a somewhat trivial but very powerful invariance
statement. Given an SCM C, and writing pa( j) := PAG

j , we have

pC̃(x j |xpa( j)) = pC(x j |xpa( j)) (6.7)

for any SCM C̃ that is constructed from C by intervening on (some) Xk but not
on X j. Equation (6.7) shows that causal relationships are autonomous under inter-
ventions; this property is therefore sometimes called “autonomy.” If we intervene
on a variable, then the other mechanisms remain invariant (see the left box in Fig-
ure 2.2).

We deduce a formula from (6.7) that became known under three different names:
truncated factorization [Pearl, 1993], G-computation formula [Robins, 1986],
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and manipulation theorem [Spirtes et al., 2000]. Its importance stems from the
fact that it allows us to compute statements about intervention distributions even
though we have never seen data from it.

Consider an SCM C with structural assignments

X j := f j(Xpa( j),N j), j = 1, . . . ,d,

and density pC. Because of the Markov property, we have13

pC(x1, . . . ,xd) =
d

∏
j=1

pC(x j |xpa( j)).

Now consider the SCM C̃ that evolves from C after do
(
Xk := Ñk

)
, where Ñk allows

for the density p̃. Again, it follows from the Markov assumption that

pC;do(Xk:=Ñk)(x1, . . . ,xd) = ∏
j 6=k

pC;do(Xk:=Ñk)(x j |xpa( j)) · pC;do(Xk:=Ñk)(xk)

= ∏
j 6=k

pC(x j |xpa( j))p̃(xk). (6.8)

In the last step, we make use of the powerful invariance (6.7). Equation (6.8) al-
lows us to compute an interventional statement (left-hand side) from observational
quantities (right-hand side). As a special case, we obtain

pC;do(Xk:=a)(x1, . . . ,xd) =

{
∏ j 6=k pC(x j |xpa( j)) if xk = a

0 otherwise.
(6.9)

Usually, conditioning and intervening with do() are different operations (see the
discussion after Example 6.10). We are now able to show that these operations
become identical for variables that do not have any parents. Without loss of gener-
ality, let us assume that X1 is such a source node. We then have

pC(x2, . . . ,xd |x1 = a) =
p(x1 = a)∏

d
j=2 pC(x j |xpa( j))

p(x1 = a)

= pC;do(X1:=a)(x2, . . . ,xd). (6.10)

Equations (6.8) and (6.9) are widely applicable but sometimes a bit cumbersome
to use. We will now learn about some practical alternatives. Therefore, we first
recall Example 6.16 (kidney stones) that we will then be able to generalize.

13Note that the conditionals pC(x j |xpa( j)) can be defined even for values xpa( j) s.t. pC(xpa( j)) = 0.
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Example 6.37 (Kidney stones, continued) Assume that the true underlying SCM
allows for the graph

T R

Z

Here, Z is the size of the stone, T the treatment, and R the recovery (all binary).
We see that the recovery is influenced by the treatment and the size of the stone.
The treatment itself depends on the size, too. A large proportion of difficult cases
was assigned to treatment A. Consider further the two SCMs CA and CB that we
obtain after replacing the structural assignment for T with T := A and T := B,
respectively. Let us call the corresponding resulting probability distributions PCA

and PCB . Given that we are diagnosed with a kidney stone without knowing its size,
we should base our choice of treatment on a comparison between

ECAR = PCA(R = 1) = PC;do(T :=A)(R = 1)

and
ECBR = PCB(R = 1) = PC;do(T :=B)(R = 1).

Given that we have observed data from C, how can we estimate these quantities?
Consider the following computation:

PCA(R = 1) =
1

∑
z=0

PCA(R = 1,T = A,Z = z)

=
1

∑
z=0

PCA(R = 1 |T = A,Z = z) PCA(T = A,Z = z)

=
1

∑
z=0

PCA(R = 1 |T = A,Z = z) PCA(Z = z)

(6.7)
=

1

∑
z=0

PC(R = 1 |T = A,Z = z) PC(Z = z). (6.11)

The last step contains the key idea. Again, we have made use of the invari-
ance (6.7). We can estimate PCA(R = 1) from the empirical data shown in Table 6.1
and obtain

PCA(R = 1)≈ 0.93 · 357
700

+0.73 · 343
700

= 0.832.
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Analogously, we obtain

PCB(R = 1)≈ 0.87 · 357
700

+0.69 · 343
700
≈ 0.782,

and we conclude that we would rather go for treatment A. (As stated before, we
ignore the question of statistical significance, which seems justified if we need to
decide between A and B.) The quantity

PCA(R = 1)−PCB(R = 1)≈ 0.832−0.782 (6.12)

is sometimes called the average causal effect (ACE) for binary treatments. It is
important to realize that this is different from simple conditioning:

PC(R = 1 |T = A)−PC(R = 1 |T = B) = 0.78−0.83,

which, in this example, has even the opposite sign of the ACE.

This three-node example nicely highlights the difference between intervening
and conditioning. In terms of densities, it reads:

pC;do(T :=t)(r) = ∑
z

pC(r|z, t)pC(z) 6= ∑
z

pC(r|z, t)pC(z|t) = pC(r|t).

Equation (6.11) is called “adjusting” for the variable Z. It denotes an important
concept that is often used in practice and that we formally define in Definition 6.38.
It once more allows us to compute intervention statements from observed quanti-
ties. Note that the derivation of the adjustment formula (6.11) is sometimes based
on the truncated factorization (6.9), but we will see in Proposition 6.41 that the al-
ternative computation using the invariance (6.11) nicely carries over to more com-
plicated settings.

Definition 6.38 (Valid adjustment set) Consider an SCM C over nodes V and let
Y /∈ PAX (otherwise we have pC;do(X :=x)(y) = pC(y)). We call a set Z⊆V\{X ,Y}
a valid adjustment set for the ordered pair (X ,Y ) if

pC;do(X :=x)(y) = ∑
z

pC(y |x,z) pC(z). (6.13)

Here, the sum (could also be an integral) is over the range of Z, that is, over all
values z that Z can take.
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In Example 6.37, Z = {Z} is a valid adjustment set for (T,R). Adjusting for
Z was necessary to compute the average causal effect. We have seen that simple
conditioning led to false conclusions. In other words, the empty set was not a
valid adjustment set. In such a case, we say that the causal effect from T to R is
confounded.

Definition 6.39 (Confounding) Consider an SCM C over nodes V with a directed
path from X to Y , X ,Y ∈ V. The causal effect from X to Y is called confounded if

pC;do(X :=x)(y) 6= pC(y |x). (6.14)

Otherwise, the causal effect is called “unconfounded.”

It is sometimes believed that one should make the adjustment set as large as
possible to reduce the influence of potential confounders. This is, however, not
always a good idea as demonstrated by Berkson’s paradox [Berkson, 1946] in Ex-
ample 6.30. It shows that not all sets are valid adjustment sets and that sometimes
it is better to not include a covariate in the adjustment set. Let us try to investigate
which sets we can use for adjusting. We use the same idea as in Example 6.37 and
write (for any set Z)

pC;do(X :=x)(y) = ∑
z

pC;do(X :=x)(y,z)

= ∑
z

pC;do(X :=x)(y |x,z) pC;do(X :=x)(z).

If we have

pC;do(X :=x)(y |x,z) = pC(y |x,z) and pC;do(X :=x)(z) = pC(z), (6.15)

it follows (as before) that Z is a valid adjustment set. Property (6.15) states that
the conditionals remain the same even after intervening on X ; we say that they
are invariant. We thus need to address the question of which conditionals remain
invariant under the intervention do(X := x).

Remark 6.40 (Characterization of invariant conditionals) Consider an SCM C
with structural assignments

X j := f j(PA j,N j)

and an intervention do(Xk := xk). Analogously to what is done in Pearl [2009,
Chapter 3.2.2], for example, we can now construct a new SCM C∗ that equals C
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but has one more variable I that indicates whether the intervention took place or
not (see also the paragraph “Intervention Variables” in Section 6.3 on page 95).
More precisely, I is a parent of Xk and does not have any other neighbors. The
corresponding structural assignments are

I := NI

X j := f j(PA j,N j) for j 6= k

Xk :=
{

fk(PAk,Nk) if I = 0
xk otherwise

,

where NI has a Bernoulli distribution with P(I = 0) = P(I = 1) = 0.5, for example
(other distributions work, too). Thus, I = 0 corresponds to the observational setting
and I = 1 to the interventional setting. More precisely, using Equation (6.10), we
obtain

pC
∗
(x1, . . . ,xd | I = 0) = pC

∗;do(I:=0)(x1, . . . ,xd)

= pC(x1, . . . ,xd)

and similarly

pC
∗
(x1, . . . ,xd | I = 1) = pC;do(Xk:=xk)(x1, . . . ,xd). (6.16)

Using the Markov condition for C∗, it thus follows for variables A and a set of
variables B that

A⊥⊥G∗ I |B =⇒ pC
∗
(a |b, I = 0) = pC

∗
(a |b, I = 1)

=⇒ pC(a |b) = pC;do(Xk:=xk)(a |b).

The right-hand side states that the distribution PA |B of the conditional A given B
remains invariant under an intervention on Xk.

We are now able to continue the argument from before. Equation (6.15) is satis-
fied for sets Z, for which we have

Y ⊥⊥G∗ I |X ,Z and Z⊥⊥G∗ I. (6.17)

The subscript G∗ means that the d-separation statement is required to hold in G∗.
Our deliberation immediately implies the first two statements of the following
proposition:
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A KC

X D Y

F G H

Figure 6.5: Only the path X ← A→ K → Y is a “backdoor path” from X to Y . The set
Z = {K} satisfies the backdoor criterion (see Proposition 6.41 (ii)); but Z = {F,C,K} is
also a valid adjustment set for (X ,Y ); see Proposition 6.41 (iii).

Proposition 6.41 (Valid adjustment sets) Consider an SCM over variables X
with X ,Y ∈ X and Y /∈ PAX . Then, the following three statements are true.

(i) “parent adjustment”:
Z := PAX

is a valid adjustment set for (X ,Y ).

(ii) “backdoor criterion”: Any Z⊆ X\{X ,Y} with

• Z contains no descendant of X AND
• Z blocks all paths from X to Y entering X through the backdoor

(X ← . . . , see Figure 6.5)

is a valid adjustment set for (X ,Y ).

(iii) “toward necessity”: Any Z⊆ X\{X ,Y} with

• Z contains no descendant of any node on a directed path from
X to Y (except for descendants of X that are not on a directed
path from X to Y ) AND

• Z blocks all non-directed paths from X to Y

is a valid adjustment set for (X ,Y ).

Only the third statement [Shpitser et al., 2010, Perkovic et al., 2015] requires
some explanation. Let us start with a valid adjustment set Z, for example, ob-
tained via the backdoor criterion. We can then add any node Z0 to Z that satisfies
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Z0 ⊥⊥ Y |X ,Z because then

∑
z,z0

p(y |x,z,z0)p(z,z0) = ∑
z

p(y |x,z)∑
z0

p(z,z0)

= ∑
z

p(y |x,z)p(z).

In fact, Proposition 6.41 (iii) characterizes all valid adjustment sets [Shpitser et al.,
2010].

Example 6.42 (Adjustment in linear Gaussian systems) Consider an SCM C
over variables V with {X ,Y},Z ⊆ V. Sometimes, we want to summarize a causal
effect from X to Y by a single real number instead of looking at pC;do(X :=x)(y)
for all x. We have seen an example in the case of binary treatments X (see Equa-
tion (6.12)). But what can be done in the case of continuous random variables? As
a first approximation we may look at the expectation of this distribution and then
take the derivative with respect to x:

∂

∂x
EC;do(X :=x)[Y ]. (6.18)

In general, this is still a function of x. In linear Gaussian systems, however, this
function turns out to be constant. Assume that Z is a valid adjustment set for (X ,Y ).
If V has a Gaussian distribution, then the conditional Y |X = x,Z = z follows a
Gaussian distribution, too; its mean is

E[Y |X = x,Z = z] = ax+btz (6.19)

for some a and b. It follows from (6.13) (see Problem 6.63) that

∂

∂x
EC;do(X :=x)[Y ] = a. (6.20)

It is possible to obtain the value of a in (6.19) in two different ways. (1) One can
use the method of path coefficients: if there is exactly one directed path from X to
Y , then a equals the product of the path coefficients. If there is no directed path,
then a = 0 and if there are different paths, a can be computed using Wright’s for-
mula [Wright, 1934]. (2) One can directly compute the conditional mean (6.19).
If we are not given the joint distribution but rather a sample from it, we can esti-
mate (6.20) by regressing Y on X and Z and then reading off the regression coeffi-
cient for X (see also Code Snippet 6.43).
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Code Snippet 6.43 The following code generates an i.i.d. sample of size n =
100 from an SCM with the structure shown in Figure 6.5 (see the code for the
coefficients). Since we know the underlying SCM, the true value of quantity (6.20)
can be obtained by multiplying the path coefficients of the path X → D→ Y ; in
our example, it equals (−2) · (−1) = 2 (see lines 8 and 10 in the code). We can
now pretend that the precise form of the structural assignments; that is, the set of
coefficients is unknown but we are given the data sample and the graph structure
of the SCM (see Figure 6.5) instead. We can then estimate the value (6.20) by
regressing Y on X and an adjustment set Z. If Z is a valid adjustment set, we
obtain an unbiased estimator. In the code, the adjustment set Z = /0 leads to a
biased estimator (see line 15); only the adjustment sets Z = {K} and Z = {F,C,K}
are valid (see lines 19 and 23, respectively).

1 # generate a sample from the distribution entailed by the SCM

2 set.seed(1); n <- 100

3 C <- rnorm(n)

4 A <- 0.8*rnorm(n)

5 K <- A + 0.1*rnorm(n)

6 X <- C - 2*A + 0.2*rnorm(n)

7 F <- 3*X + 0.8*rnorm(n)

8 D <- -2*X + 0.5*rnorm(n)

9 G <- D + 0.5*rnorm(n)

10 Y <- 2*K - D + 0.2*rnorm(n)

11 H <- 0.5*Y + 0.1*rnorm(n)

12 #

13 lm(Y~X)$coefficients

14 # (Intercept)---------X

15 # 0.09724282 1.27941073

16 #

17 lm(Y~X+K)$coefficients

18 # (Intercept)---------X----------K

19 # 0.01428974 2.07038809 2.16964827

20 #

21 lm(Y~X+F+C+K)$coefficients

22 # (Intercept)---------X----------F-----------C----------K

23 # 0.01687018 1.90495456 0.05901385 -0.02260164 2.18276488

We now briefly comment on propensity score matching [Rosenbaum and Rubin,
1983]. The following remark repeats the argument given by Pearl [2009, 11.3.5].

Remark 6.44 (Propensity score matching) Consider an SCM over variables X=
(X ,Y,Z), with Z = (Z1,Z2,Z3) and the following graph.
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Z1 Z2 Z3

X Y

One can see that the set {Z1,Z2,Z3} is a valid adjustment set, for example, by
parent adjustment (see Proposition 6.41). That is,

pC;do(X :=x)(y) = ∑
z1,z2,z3

pC(y |x,z1,z2,z3) pC(z1,z2,z3). (6.21)

Sometimes, however, the value of X does not depend on Z “directly” but only
through a (real-valued) propensity score L := L(Z) = L(Z1,Z2,Z3). This means
“X ⊥⊥ Z |L(Z),” or, more formally, s we have for all z,x and `= L(z) that

p(z |`,x) = p(z |`).

If X is a binary choice that indicates treatment or no treatment, one may choose
L(z) = p(x = 1 |Z = z), for example. But then, it follows with (6.21)

pC;do(X :=x)(y) = ∑
z

pC(y |x,z) pC(z) = ∑
z

∑
`

pC(y |x,z) pC(`)pC(z |`)

= ∑
z

∑
`

pC(y |`,x,z) pC(`)pC(z |`,x)

= ∑
`

pC(y |`,x) pC(`). (6.22)

In the population setting, both computations (6.21) and (6.22) of the intervention
distribution are correct. The point is, however, that for finite data, (6.22) may lead
to a better estimate than (6.21) would: although one needs to estimate the func-
tion L, the resulting conditional pC(y |x, `) is potentially lower dimensional than
pC(y |x,z). In practice, one often matches realizations with a “similar” value of `
to compute (6.22). Important practical details include estimating of the function L
and the matching procedure. The idea works for any number of covariates.

In this sense, propensity score matching can be a nice and useful trick to gain
statistical performance. It is irrelevant for population considerations.

6.7 Do-Calculus

Again, consider an SCM over variables V. Sometimes, we can compute interven-
tion distributions pC;do(X :=x) in other ways than the adjustment formula (6.13). Let
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us therefore call an intervention distribution pC;do(X :=x)(y) identifiable if it can be
computed from the observational distribution and the graph structure. If there is a
valid adjustment set for (X ,Y ), for example, pC;do(X :=x)(y) is certainly identifiable.
Pearl [2009, Theorem 3.4.1] has developed the so-called do-calculus that consists
of three rules. Given a graph G and disjoint subsets X,Y,Z, and W, we have

1. “Insertion/deletion of observations”:

pC;do(X:=x)(y |z,w) = pC;do(X:=x)(y |w)

if Y and Z are d-separated by X,W in a graph where incoming edges in X
have been removed.

2. “Action/observation exchange”:

pC;do(X:=x,Z=z)(y |w) = pC;do(X:=x)(y |z,w)

if Y and Z are d-separated by X,W in a graph where incoming edges in X
and outgoing edges from Z have been removed.

3. “Insertion/deletion of actions”:

pC;do(X:=x,Z=z)(y |w) = pC;do(X:=x)(y |w)

if Y and Z are d-separated by X,W in a graph where incoming edges in X
and Z(W) have been removed. Here, Z(W) is the subset of nodes in Z that
are not ancestors of any node in W in a graph that is obtained from G after
removing all edges into X.

Theorem 6.45 (Do-calculus) The following statements hold.

(i) The rules are complete; that is, all identifiable intervention distributions can
be computed by an iterative application of these three rules [Huang and
Valtorta, 2006, Shpitser and Pearl, 2006].

(ii) In fact, there is an algorithm, proposed by Tian [2002] that is guaranteed
[Huang and Valtorta, 2006, Shpitser and Pearl, 2006] to find all identifiable
intervention distributions.

(iii) There is a necessary and sufficient graphical criterion for identifiability of
intervention distributions [Shpitser and Pearl, 2006, Corollary 3], based on
so-called hedges [see also Huang and Valtorta, 2006].

As a corollary of the do-calculus, we obtain the front-door adjustment (see Prob-
lem 6.65).
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Example 6.46 (Front-door adjustment) Let C be an SCM with corresponding
graph

X Z Y

U

If we do not observe U , we cannot apply the backdoor criterion. In fact, there is no
valid adjustment set. But still, provided that pC(x,z)> 0, the do-calculus provides
us with

pC;do(X :=x)(y) = ∑
z

pC(z |x) ∑
x̃

pC(y | x̃,z) pC(x̃). (6.23)

The fact that observing Z in addition to X and Y here reveals causal information
nicely shows that causal relations can also be explored by observing the “channel”
(here Z) that carries the “signal” from X to Y .

Bareinboim and Pearl [2014] consider the problem of transportability. They are
also interested in intervention distributions, but they allow for the possibility to
include knowledge (i.e., observational distributions and intervention distributions)
that has been gained in SCMs that coincide with the target SCM in some structural
assignments and differ in others.

6.8 Equivalence and Falsifiability of Causal Models

So far, SCMs have been mathematical objects. To link them to reality, we regard
them as models for a data-generating process. It can be a complicated class of
models, though. Instead of modeling “just” a joint distribution (as we can model
a physical process with a Poisson process, for example), we can now model the
system in an observational state and under perturbations at the same time. We
have seen that it is even possible to regard SCMs as models for counterfactual
statements.

More formally, consider a vector X = (X1, . . . ,Xd) of random variables. A prob-
abilistic model for X predicts an observational distribution PX. We call such a
model an interventional model if it additionally predicts intervention distributions
in which some variables X j have been set to (independent) variables Ñ j. Finally, a
counterfactual model additionally predicts the result of counterfactual statements.
Traditional machine learning methods, for example, build probabilistic models;
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causal graphical models (Definition 6.32) can be used as interventional models,
and SCMs can be used as counterfactual models. We call two models equivalent if
they agree on the corresponding predictions [see Bongers et al., 2016] for a similar
construction.

Definition 6.47 (Equivalence of causal models) Two models are called

{probabilistically/ interventionally/counterfactually} equivalent

if they entail the same {obs./obs. and int./obs., int., and counterf.} distributions.

It is apparent that the notion of interventional equivalence applies only to inter-
ventional and counterfactual models, for example. Proposition 7.1 implies that for
each probabilistic model, there is an observationally equivalent SCM.

If X has a strictly positive density, Proposition 6.48 shows that we can restrict the
notion to interventions on single nodes, that is, interventions in which a variable X j

has been set to a variable Ñ j where the distribution of Ñ j has full support. If two
models agree on this subclass of interventions, they agree on all other interventions,
too. The rationale is that interventions on single nodes, correspond to the standard
version of randomized experiments.

For a given data-generating process, we can now falsify a probabilistic or in-
terventional model if the corresponding distributions do not agree with the data
observed from the process. That is, if an interventional model predicts the obser-
vational distribution correctly but does not predict what happens in a randomized
experiment, the model is still considered to be falsified. This notion includes the
assumption that there is an agreement about what a randomized experiment should
look like. One should be careful about writing down an SCM when it is unclear
how to randomize over the involved variables in reality (or perform interventions
on them). The notion of falsifiability further requires the concept of (statistical)
significance, which is not discussed here. We do not include counterfactual mod-
els, since they are hard to falsify in general. We could falsify them based on their
implications on observational distributions and intervention distributions (see Sh-
pitser and Pearl [2008a] and references therein). In some specific experimental
setups, it is furthermore possible to construct counterfactual statements that are
falsifiable (see Example 3.4). Example 6.19, however, shows two SCMs that entail
the same observational and intervention distributions but entail different counter-
factual statements.

The above-mentioned restriction to a subclass of interventions (single variables
are set to a noise variable) serves a practical purpose. To check the validity of
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the model we have to compare the outcome of randomized experiments with the
model’s predictions. For more complex interventions, the corresponding experi-
ments in reality seem more complicated to implement. The following proposition
states that this comes without loss of generality: if causal models agree on all
single-node interventions, they are interventionally equivalent. The proof can be
found in Appendix C.7.

Proposition 6.48 (Interventional equivalence) Assume that two SCMs (or causal
graphical models) C1 and C2 induce strictly positive, continuous conditional den-
sities p(x j|xpa( j)), where pa( j) := PAX j

, and satisfy causal minimality. Assume
further that they entail the same intervention distributions, in which some variable
X j has been set to a variable Ñ j with full support:

P
C1;do(X j:=Ñ j)
X = P

C2;do(X j:=Ñ j)
X ∀ j ∀Ñ j with full support.

Then, C1 and C2 are interventionally equivalent; that is, they agree on any possible
intervention, including atomic interventions or interventions in which the set of
parents is altered (without creating a cycle).

If the density is not strictly positive, this is not necessarily the case. One may
then have to consider simultaneous interventions on several nodes (e.g., double
knockout gene experiments); see Problem 6.59.

Furthermore, we are now able to justify the notion of structural minimality of
SCMs (see Remark 6.6). We have argued that if the function in a structural assign-
ment of an SCM does not depend on one of the inputs, we can choose a sparser
representation. The following proposition formalizes in what sense these represen-
tations are equivalent.

Proposition 6.49 (Counterfactual equivalence) Consider two SCMs C and C∗

that share the same noise distribution PN and that differ only in the kth structural
assignment:

fk(pak,nk) = f ∗k (pa∗k ,nk), ∀pak,∀nk with p(nk)> 0, (6.24)

with PA∗k ( PAk. Then, both SCMs are counterfactually equivalent.

The proof is provided in Appendix C.8.

6.9 Potential Outcomes

We now introduce an alternative approach to causal inference that is not based on
SCMs. The framework is often referred to as potential outcomes or the Rubin
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causal model and is widely used in the social sciences. The ideas date back to
Neyman [1923] and Fisher [1925] who mainly discussed randomized experiments.
Rubin [1974] extended the ideas to observational studies. Rubin [2005], Morgan
and Winship [2007], and Imbens and Rubin [2015] provide more elaborate intro-
ductions into the topic.

6.9.1 Definitions and Example

To explain potential outcomes, we revisit Example 3.4 (the eye doctor) and refor-
mulate it in this framework. Rather than with random variables, we now start with
a group of n patients (or units) u = 1, . . . ,n, each of which may or may not receive
the treatment. We assign two potential outcomes to each patient u: Bu(t = 1)
indicates whether the patient would go blind (B = 1) or get cured (B = 0) if she
receives treatment (T = 1). Analogously, Bu(t = 0) encodes what happens without
treatment (T = 0). Both of these potential outcomes are assumed to be determin-
istic. For each patient the treatment either helps or it does not help: there is no
randomness involved. If Bu(t = 1) = 0 and Bu(t = 0) = 1, we say that the treat-
ment has a positive effect for unit u.

In practice, however, we are not able to check these conditions. The “fundamen-
tal problem of causal inference” [Holland, 1986] states that for each unit u we can
observe either Bu(t = 1) or Bu(t = 0) and never both of them at the same time. The
reason is that after we have chosen to treat a person, we cannot go back in time and
undo the treatment. This even holds the other way around. If we decide to not give
a treatment, we can still apply the treatment later in time but this cannot be inter-
preted as an outcome of the variable Bu(t = 1) anymore. The patient might have
recovered in the meantime by herself, for example. Thus, we can observe only one
of the potential outcomes; the unobserved quantity becomes a counterfactual.

Table 6.2 shows a (hypothetical) data set for the previous example. In fact, the
data points are sampled according to the model described in Example 3.4. To
justify the presentation in Table 6.2, we often implicitly assume the stable unit
treatment value assumption (SUTVA) [Rubin, 2005]. It states that the units do
not interfere (e.g., the potential outcome of a unit does not depend on which treat-
ment any other unit received) [Cox, 1958]; furthermore it requires that the potential
outcomes do not depend on how or why the treatment has been received. We will
see in Section 6.9.2 that SUTVA is satisfied when the data are generated from an
SCM (as was done for this example).

The potential outcomes tell us the effect of a treatment on an individual basis; we
define the unit-level causal effect as Bu(t = 1)−Bu(t = 0) and an average causal
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Unit Treatment Pot. Outcome Pot. Outcome Unit-Level Causal Effect
u T Bu(t = 0) Bu(t = 1) Bu(t = 1)−Bu(t = 0)
1 1 1 0 -1
2 0 1 0 -1
3 1 1 0 -1
...

43 1 1 0 -1
44 0 0 1 1
45 0 1 0 -1
...

119 1 1 0 -1
120 1 0 1 1
121 0 1 0 -1

...
200 0 1 0 -1

Table 6.2: This table presents Example 3.4 using potential outcomes. For each patient (or
unit), we observe only one of the two potential outcomes. The observed information has a
gray background. The treatment T is helpful for almost all patients. Only in 2 of 200 cases,
the treatment harms the patient and blinds him B = 1. Although assigning the treatment
(T = 1) is a good idea in most cases, for patient u = 120 it was exactly the wrong decision.

effect

CE =
1
n

n

∑
u=1

Bu(t = 1)−Bu(t = 0). (6.25)

The “fundamental problem of causal inference” prevents us from computing (6.25)
directly. Assume that in a completely randomized experiment, units u ∈ U0 ⊂
{1, . . . ,n} received treatment T = 0 and units u ∈U1 =UC

0 treatment T = 1. Ney-
man [1923] shows that

ĈE :=
1

#U0
∑

u∈U0

Bu(t = 1) − 1
#U1

∑
u∈U1

Bu(t = 0) (6.26)

is an unbiased estimator for (6.25). Here, the randomness in ĈE comes from the
random assignments that determine, which of the unit’s two potential outcomes
we observe; the outcomes themselves are considered hidden, not random. Note
that (6.26) contains only observed quantities and can therefore be computed after
the study has been conducted.

There is an extensive debate about which of the two approaches is better suited
for practical applications [see, e.g., Pearl, 1995, Imbens and Rubin, 1995, Rubin,
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2004, Lauritzen, 2004]. We do not plan to take an active part in this discussion
but rather mention the following three results: (1) We describe how to represent
potential outcomes as counterfactuals [Pearl, 2009, Section 3.6.3]; (2) there is a
logical equivalence between both frameworks [Galles and Pearl, 1998, Halpern,
2000]; and (3), we comment on a recently proposed framework [Richardson and
Robins, 2013] that brings both worlds closer together.

6.9.2 Relation between Potential Outcomes and SCMs

In SCMs, we can represent potential outcomes using the language of counterfac-
tuals (Section 6.4). In the eye doctor example, the SCM C satisfies T = NT and
B = T ·NB+(1−T ) · (1−NB). We can therefore represent each patient by specific
values for NB and NT . In Table 6.2, for example, patient 43 is characterized by
NT = 1,NB = 0, while patient 44 satisfies NT = 0,NB = 1. The two terms t = 0 and
t = 1 then correspond to interventions on T . Summarizing, we have that

Bu(t = t̃)︸ ︷︷ ︸
potential outcome

= B in the SCM C|N = nu; do(T := t̃)︸ ︷︷ ︸
counterfactual SCM

, (6.27)

where nu characterizes unit u [Pearl, 2009, Equation (3.51)]. Since in the coun-
terfactual SCM all noise terms are deterministic, the entailed distribution of B is
degenerate, too, and B is deterministic (as required). In the example shown in
Table 6.2, we have sampled 200 i.i.d. units using Bernoulli distributions NT ∼
Ber(0.6) and NB ∼ Ber(0.01). In this case, SUTVA is satisfied. The i.i.d. as-
sumption implies that the units do not interfere with each other and modularity
(intervening on T changes only the structural assignment for T ) yields that the way
the treatment is taken does not influence the result.

We now discuss a result that shows in what sense both representations in (6.27)
are equivalent. For this, we mainly follow the presentation in Pearl [2009, 7.3.1]
and Halpern [2000]. The main argumentation is based on the following steps:

1. Define the properties (axioms): (C0)–(C5) and (MP) [Halpern, 2000, Sec-
tion 3]. Property (C4), for example, states that

Tu(t = t̃,w = w̃) = t;

it postulates that setting variable T for unit u to t is “effective.”
2. These axioms are satisfied in both representations (“soundness”).
3. It can be shown that these properties are complete for counterfactual SCMs.

Any counterfactual statement follows from one of these axioms.
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4. We can conclude that any theorem that holds for counterfactual SCMs holds
in the world of potential outcomes and vice versa.14 Also, it follows from
step 3. that any data set (like that in Table 6.2) satisfying the three axioms
could be modeled with a counterfactual SCM.15

The two worlds differ, however, in their language. Even if every theorem holds
true in both frameworks, some theorems might be “easier” to prove in one world
than in the other. Similarly, any assumption that appears in a theorem imposes re-
strictions on the underlying data-generating process; depending on the application,
one formulation might simplify the assessment of these restrictions. Working with
settings, in which the average causal effect is zero but the individual causal effects
are non-zero, seems to be easier for potential outcomes. The graphical representa-
tion of SCMs, on the other hand, might be beneficial to exploit assumptions on the
causal relations between random variables.

Richardson and Robins [2013] propose to use single world intervention graphs.
These graphs allow us to set variables to certain values and therefore construct
graphical correspondences to counterfactual variables. These modified graphs al-
low us to read off conditional independence statements that involve both factual
and counterfactual variables. We can therefore see these graphs as a useful tool to
translate graphical assumptions into counterfactual statements that are often used
by potential outcomes analysts.

6.10 Generalized Structural Causal Models Relating
Single Objects

So far, we have studied causal relations among random variables X1, . . . ,Xd and
focused only on a scenario where the data are i.i.d. observations drawn from PX.
We now consider a set v = {x1, . . . ,xd} of nodes of the causal DAG that consists
of any mathematical objects x1, . . . ,xd formalizing the idea of observations. For
instance, after observing similarities among the texts x1, . . . ,xd written by different
authors, one may be interested in the causal relation in the sense of which author
has been influenced by which one. Following Steudel et al. [2010], we now de-

14Strictly speaking, the “vice versa” requires that the potential outcome framework does not as-
sume more than the axioms mentioned.

15If no SCM could possibly generate this data set, this would mean that counterfactuals from
SCMs would satisfy another property not implied by the three axioms, namely the property that this
data set cannot be generated.
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scribe in which sense the underlying DAG also entails conditional independence
statements, given an appropriate notion of information, without referring to statisti-
cal sampling. To this end, we assume that we are given some information function

R : 2V→ R+
0 ,

which is monotone in the sense that a set of nodes cannot contain more information
than any of its supersets. Then, for any two sets x,y ⊆ v of nodes, the expression
R(x,y)−R(y) is non-negative and can be interpreted as measuring the conditional
information of x, given y. Moreover, we assume that R is such that for any three
disjoint sets x,y,z of nodes, the expression

I(x : y |z) := R(x,z)+R(y,z)−R(x,y,z)−R(z) (6.28)

is non-negative, which is the case if and only if R is submodular (see Section 9.5.2).
Then, we can interpret (6.28) as generalized conditional mutual information be-
tween x and y, given z because R(x,z)−R(z) measures the information of x, given
z while R(x,y,z)−R(y,z) is the information of x, given y and z. In the same way,
conditional mutual information among random variables can be written as a differ-
ence of Shannon entropies [Cover and Thomas, 1991]. If (6.28) vanishes, we call
x and y conditionally independent, given z.

To define generalized SCMs, one introduces unobserved noise objects n j for each
observed node x j and postulates the following statement.

Principle 6.50 (No additional information) A node x j contains no additional
information on top of the information contained in its parent nodes pa j and the
unobserved node n j, that is,

R(x j,pa j,n j) = R(pa j,n j).

This generalizes the assumption that every random variable X j is determined by
its parents and its noise variable, which for discrete random variables amounts to
saying that the Shannon entropy of X j,PA j,N j is the same as the one of PA j,N j.

The second crucial assumption of an SCM is the statistical independence of noise
terms. The generalized version of this assumption reads as follows:

Principle 6.51 (Independence of unobserved objects) The unobserved nodes n j

do not contain information about each other, that is,

R(n1, . . . ,nd) =
d

∑
j=1

R(n j).



128 Chapter 6. Multivariate Causal Models

Steudel et al. [2010] prove the following theorem.

Theorem 6.52 (Generalized causal Markov condition) If both Principles 6.50
and 6.51 hold, then x and y are conditionally independent, given z for any three
set of nodes for which x and y are d-separated by z.

To apply these concepts to the text example, let us consider a text as a collec-
tion of its meaningful words and let its information R be the number of different
words. Assume that the influence among d texts x1, . . . ,xd is given by the following
simplified mechanism: the author of x j takes some of the words from the parent
texts of x j and adds some words from his own ideas. These additional words are
given by n j. Then, Principle 6.50 is satisfied by definition of n j. According to
Principle 6.51, the words added by different authors are assumed to be different.
Two texts are conditionally independent, given a third one, if they only have words
in common that already appear in the latter. The example shows that reasonable
notions of conditional independence can be defined for a much broader class of ob-
jects than random variables. To ensure that the causal Markov condition holds with
respect to that particular notion of independence, the underlying information mea-
sure needs to be appropriate for the respective class of causal mechanisms under
consideration in the sense of Principles 6.50 and 6.51.

Janzing and Schölkopf [2010] quantify the information between binary strings
using Kolmogorov complexity K with respect to some fixed Turing machine T
(see Section 4.1.9). The function K is approximately submodular up to terms of
O(1), that is, an error that does not grow with the size of the considered strings.
Then, Janzing and Schölkopf [2010] define an “algorithmic model of causality”
where T computes each x j from its parents and a noise string n j, which ensures
Principle 6.50. Each n j can also be interpreted as the program that computes x j

from its parents, that is, the mechanism that generates x j from its direct causes.
Then, Principle 6.51 amounts to the independence of the mechanisms (see Prin-
ciple 2.1).16 Applying Theorem 6.52 to R = K yields the “algorithmic Markov
condition” [Janzing and Schölkopf, 2010]: whenever x and y are d-separated by
z, knowing y does not admit a shorter description of x with respect to a Turing
machine that gets z as free background information.

On a higher level, this addresses a deep problem of causal reasoning: the state-
ment “dependences between observations only occur if they are causally related”

16This way, the second and the third branch of Figure 2.2 can be seen to coincide. The string n j
encodes the mechanism (i.e., the program running on the Turing machine), and at the same time it is
the analog of the noise term in the statistical setting.
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(a generalization of Principle 1.1) only holds if the dependence measure is appro-
priate for the class of observations and the class of potential causal mechanisms
under consideration. For instance, after observing that the height of a child has
increased during the past decade, and, at the same time, the value of some stock
has increased, one would not infer them to be causally related because growth is
a property that many time series share without being causally related. Only if two
time series share more sophisticated patterns of different growth (and/or decrease),
do we ask for the common reason behind the similarity. Since non-stationary time
series are ubiquitous, it would be interesting to find information measures for which
we believe dependences to indicate causal relations (after sufficiently accounting
for multiple testing issues if the time series were found by searching over large
databases). Speaking from a more applied machine learning perspective, the prob-
lem leads us to construct appropriate features for which similarities in feature space
indicate causal relations.

6.11 Algorithmic Independence of Conditionals

Section 6.10 shows that causal structures not only imply statistical (conditional)
independences, but also independences with respect to other (non-statistical) in-
formation measures. We have further seen that the Markov condition can also be
stated for algorithmic information. Then the most elementary implication of the
algorithmic Markov condition is an analogy of Reichenbach’s principle for algo-
rithmic dependences. Two objects can only be algorithmically dependent when
they have a common cause or when one of it influences the other [Janzing and
Schölkopf, 2010]. This is because they are otherwise d-separated by the empty set
and thus independent. Likewise, d objects x1, . . . ,xd that are causally unrelated are
jointly algorithmically independent, that is,

K(x1, . . . ,xd)
+
=

d

∑
j=1

K(x j). (6.29)

One can also call the difference between the left- and right-hand sides multi-
information (in analogy to the corresponding terminology in statistical information
theory) and write the joint independence as

I(x1,x2, · · · ,xd)
+
= 0. (6.30)

Then, joint independence implies also independence of every subset. For instance,
if the joint description of x1,x2 is shorter than the separate description of x1 and
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x2, then the joint description of x1, . . . ,xd is automatically shorter than the separate
descriptions of all x j and thus (6.30) implies

I(x1 : x2)
+
= 0.

If we assume now that the conditionals17 PX j|PA j
in a causal graphical model are

“independently chosen by nature,” then we conclude that they are jointly algorith-
mically independent [Janzing and Schölkopf, 2010, Lemeire and Janzing, 2013]
and state the multivariate version of Principle 4.13.

Principle 6.53 (Algorithmic independence of conditionals (AIC)) The causal
conditionals described by the Markov kernels in a causal Bayesian network as in
Definition 6.21 (iii) are algorithmically independent, that is,

I(PX1|PA1
,PX2|PA2

, · · · ,PXd |PAd
)
+
= 0, (6.31)

or equivalently,

K(PX1,...,Xd )
+
=

d

∑
j=1

K(PX j|PA j). (6.32)

Note that Principle 6.53 must not be confused with the algorithmic Markov con-
dition discussed in Section 6.10. While the latter refers to causal relations among n
single objects without referring to statistical sampling, the former still assumes
the traditional i.i.d. setting with n random variables and only states an additional
inference principle.

As for the bivariate case, the equivalence of (6.31) and (6.32) is immediate be-
cause describing the joint distribution is equivalent to describing all the causal
Markov kernels. In other words, AIC states that the shortest description of the
joint distribution is given by separate descriptions of the causal Markov kernels.

Causal faithfulness and AIC are related in spirit and often yield similar conclu-
sions. To discuss similarities and differences, we revisit Example 6.34. Since
the parameter a describes PY |X and the parameters (b,c) describe the conditionals
PZ|X ,Y , we have

I(PY |X : PZ|X ,Y )
+
≥ I(a : (b,c)). (6.33)

This is because the algorithmic mutual information between two objects cannot be
increased by restricting the attention to some of their “aspects;” see, for example,

17As stated before, we use the notation PY |X as a shorthand for the collection (PY |X=x)x of condi-
tional distributions.
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Janzing and Schölkopf [2010, Lemma 6]. The “non-generic” independence X ⊥⊥ Z
occurs when the structure coefficients of the linear model satisfy

a ·b+ c = 0. (6.34)

Then K(a|b,c) +
= 0 because a can be computed from b,c via a program of length

O(1). Thus,
I(a : (b,c)) +

= K(a)−K(a|(b,c)∗) +
= K(a).

We conclude that AIC is violated whenever K(a) is significantly larger than 0.
For a generic real number a, K(a) grows logarithmically with the desired (rela-
tive) accuracy. Then AIC rejects the corresponding causal DAG because (6.34) is
considered an unlikely coincidence.

We have to explain the phrase “whenever K(a) is significantly larger than 0” be-
cause it amounts to a conceptual difference between AIC and faithfulness. Assume,
for instance, that b = c and a =−1. Then (6.34) is satisfied, yet the description of
a does not get shorter when b and c are known because K(a) is already negligible.
Therefore, that AIC is not violated despite (6.34) seems to indicate fine-tuning of
parameters. Following Lemeire and Janzing [2013], we now argue why we con-
sider not rejecting this kind of tuning as a feature of AIC rather than as a flaw. The
idea is that structure coefficients±1 (up to some given precision) occur much more
often in nature than some “more generic” value such as 2.36724 . . . . For instance,
spending some money S decreases the amount A of available money by −S. The
causal relation between S and A is thus described by18 the structure coefficient −1.
Implicitly, AIC and our argument are based on a prior that considers values with
short description length as more likely (in agreement with Solomonoff’s theory of
inductive inference [Solomonoff, 1964]).

Another feature of AIC is that it also rejects almost cancellation of different
paths: assume, for instance, that a is very close to −c/b. To estimate I(a : (b,c))
in this case, we observe

I(a : (b,c))
+
≥ I(a : (c/b))

and use the following idea. The algorithmic mutual information of two integers
n,m that are close to each other is typically about logn/|m−n| because describing

18The example suggests that structure coefficients being simple is often a result of how we define
variables rather than being a property of “nature.” In general, one may wonder to what extent we
define variables in a way that yields simple causal relations.
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n after m is known requires about log |n−m| bits, while it requires about logn bits
otherwise. After arbitrarily fine discretization, we may then represent a and c/b by
integers and take log[a/(a+c/b)] as a rough estimation for the algorithmic mutual
information between PY |X and PZ|X ,Y .

6.12 Problems

Problem 6.54 (DAGs) Table B.1 on page 223 states that for three nodes there are
25 DAGs. Why is this the case?

Problem 6.55 (Multivariate SCMs) Consider the following SCM C

V := NV

W :=−2V +3Y +5Z +NW

X := 2V +NX

Y :=−X +NY

Z := αX +NZ

with NV ,NW ,NX ,NY ,NZ
iid∼N (0,1).

a) Draw the graph corresponding to the SCM.

b) Set α = 2 and simulate 200 i.i.d. data points from the joint distribution; plot
the values of X and W to visualize the distribution PC

X ,W .

c) Again, set α = 2 and sample 200 i.i.d. data points from the intervention
distribution

PC;do(X :=3)
X ,W

in which we have intervened on X. Again, plot the sample and compare with
the plot from part b.

d) A directed path from one node to another does not necessarily imply that the
former node has a causal effect on the latter. Choose a value of α and prove
that for this value X, has no causal effect on W.

e) For any given α , compute

∂

∂x
EC;do(X :=x)[W ].
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Problem 6.56 (Interventions) Consider the SCM

X := NX

Y := (X−4)2 +NY

Z := X2 +Y 2 +NZ

with NX ,NY ,NZ
iid∼ N (0,1). You may intervene on either X or Y . Which hard

intervention yields the smallest expected value of Z?

Problem 6.57 (Minimality) We have stated in Remark 6.6 that causal minimality
(Definition 6.33) implies structural minimality.

a) Convince yourself that this is shown by Proposition 6.49.

b) Provide an example of an SCM that satisfies structural minimality but vio-
lates causal minimality.

Problem 6.58 (Causal Minimality) Consider a causal graphical model with a
distribution that has a strictly positive, continuous density and for which causal
minimality is violated. According to Proposition 6.36, we can then remove an
“inactive” edge from the graph and obtain a new causal graphical model. Prove
that the two models are interventionally equivalent.

Problem 6.59 (Interventional equivalence) Consider two SCMs C1 and C2 of
the form

X := NX

Y := X +NY

Z := f j(X ,Y )+NZ

with NX ,NY ,NZ
iid∼ U(−1,1), a continuous uniform distribution between −1 and 1.

Choose the functions f1 and f2 such that C1 and C2 are observationally equivalent,
and agree on all single node interventions, but disagree on simultaneous interven-
tions on several nodes. This problem shows that Proposition 6.48 does not need to
be true if the density is not strictly positive.

Problem 6.60 (Cyclic SCMs) Prove that whenever the absolute values of the
eigenvalues of a square matrix B are strictly smaller than 1 (i.e., the spectral radius
of B is strictly smaller than 1), then I−B is invertible.
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Problem 6.61 (Cyclic SCMs) Consider the assignment X := BX + N, as de-
scribed in Remark 6.5. Prove that if the spectral radius of B is strictly smaller than
1, then Xt defined by Xt := BXt−1 +N in Equation (6.3) converges in distribution
against X := (I−B)−1N as defined in Equation (6.2).

Problem 6.62 (d-separation) Prove that one can d-separate any two nodes in
a DAG G that are not directly connected by an edge. Use this statement to prove
Proposition 6.35.

Problem 6.63 (Covariate adjustment) Assume that Z is a valid adjustment set
for the causal effect from X to Y and that (Y,X,Z) has a (zero mean) Gaussian
distribution with

E[Y |X = x,Z = z] = ax+btz.

Prove that
∂

∂x
EC;do(X :=x)[Y ] = a;

in other words, prove Equation (6.20) using Equations (6.19) and (6.13). This
result allows us to consistently estimate the causal effect a by regressing Y on X
and Z.

Problem 6.64 (Covariate adjustment) Prove the parent adjustment and the back-
door criterion Proposition 6.41 (i) and (ii) using Equation (6.17).

Problem 6.65 (Covariate adjustment) Prove the frontdoor criterion (6.23) start-
ing with

pC;do(X :=x)(y) = ∑
z

pC;do(X :=x)(y |z,x)pC;do(X :=x)(z)

and then using rules 2 and 3 from do-calculus (Section 6.7).
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Learning Multivariate Causal Models

As in Chapter 4, we now turn to the problem of learning causal models. We first
discuss different assumptions under which (parts of) the graph structure can be re-
covered from the joint distribution in Section 7.1 (“structure identifiability”). Some
of these results carry over from the bivariate setting discussed earlier. As in the bi-
variate case, there is no complete characterization of identifiability assumptions,
and future research may reveal promising alternatives. In Section 7.2, we then
introduce methods and algorithms, such as independence-based and score-based
methods, that estimate the graph from a finite data set (“structure identification”).

As in the bivariate setting, we are again facing the problem that the class of SCMs
is too flexible. Given a distribution PX over random variables X = (X1, . . . ,Xd), can
different SCMs entail this distribution? This question is answered by the following
proposition: indeed, usually for many different graph structures, there is an SCM
that induces the distribution PX.1

Proposition 7.1 (Non-uniqueness of graph structures) Consider a random vec-
tor X=(X1, . . . ,Xd) with distribution PX that has a density with respect to Lebesgue
measure and assume it is Markovian with respect to G. Then there exists an SCM
C= (S,PN) with graph G that entails the distribution PX.

Proof. See Appendix C.9. �

In particular, given any complete DAG, we can find a corresponding SCM that
entails the distribution at hand. As in the bivariate case, it is therefore apparent

1Statements similar to Proposition 7.1 can be found in Druzdzel and Simon [1993] and Druzdzel
and van Leijen [2001].
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that we require further assumptions to obtain identifiability results. The following
section discusses some of those assumptions.

7.1 Structure Identifiability

7.1.1 Faithfulness

If the distribution PX is Markovian and faithful with respect to the underlying DAG
G0, we have a one-to-one correspondence between d-separation statements in the
graph G0 and the corresponding conditional independence statements in the distri-
bution. All graphs outside the correct Markov equivalence class of G0 can therefore
be rejected because they impose a set of d-separations that does not equal the set
of conditional independences in PX. Since both the Markov condition and faithful-
ness put restrictions only on the conditional independences in the joint distribution,
it is also clear that we are not able to distinguish between two Markov equivalent
graphs, that is, between two graphs that entail exactly the same set of conditional
independences (see for example Figure 6.4 on page 103). Summarizing, under
the Markov condition and faithfulness, the Markov equivalence class of G0, repre-
sented by CPDAG(G0), is identifiable from PX [e.g., Spirtes et al., 2000].

Lemma 7.2 (Identifiability of Markov equivalence class) Assume that PX is
Markovian and faithful with respect to G0. Then, for each graph G ∈ CPDAG(G0),
we find an SCM that entails the distribution PX. Furthermore, there is no graph G
with G /∈ CPDAG(G0), such that PX is Markovian and faithful with respect to G.

Proof. The first statement is a direct implication from Proposition 7.1, and the
second statement follows from the definitions of Markov equivalence, seen in Def-
inition 6.24. �

Independence-based methods (also called constraint-based methods) assume that
the distribution is Markovian and faithful with respect to the underlying graph and
then estimate the correct Markov equivalence class; see Section 7.2.1.

We have seen in Example 6.42 that for Gaussian distributions the causal effect
can be summarized by a single number (6.20). If instead of the correct graph,
we only know the Markov equivalence class of that graph, this quantity is not
identifiable anymore. It is possible, however, to provide bounds [Maathuis et al.,
2009].
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7.1.2 Additive Noise Models

Proposition 7.1 shows that a given distribution could have been entailed from sev-
eral SCMs with different graphs. For many of these graph structures, however, the
functions f j appearing in the structural assignments are rather complicated. It turns
out that we obtain non-trivial identifiability results if we do not allow for arbitrar-
ily complex functions, that is, if we restrict the function class. As we have already
seen in Chapter 4, we will assume in the following Sections 7.1.4 and 7.1.5 that the
noise acts in an additive way.

Definition 7.3 (ANMs) We call an SCM C an ANM if the structural assignments
are of the form

X j := f j(PA j)+N j, j = 1, . . . ,d, (7.1)

that is, if the noise is additive. For simplicity, we further assume that the functions
f j are differentiable and the noise variables N j have a strictly positive density.2

Some of the following identifiability results assume causal minimality (Defini-
tion 6.33). For ANMs, this means that each function f j is not constant in any of its
arguments. Intuitively, the function should really “depend” on its arguments. The
proof of the following proposition is provided in Appendix C.10.

Proposition 7.4 (Causal minimality and ANMs) Consider a distribution in-
duced by a model (7.1) and assume that the functions f j are not constant in any
of its arguments, that is, for all j and i ∈ PA j there is some value pa j,−i of the
variables PA j \{i} and some xi 6= x′i such that

f j(pa j,−i,xi) 6= f j(pa j,−i,x
′
i).

Then the joint distribution satisfies causal minimality with respect to the corre-
sponding graph. Conversely, if there are nodes j and i such that for all pa j,−i the
function f j(pa j,−i, ·) is constant, causal minimality is violated.

We have argued in Remark 6.6 that we can restrict ourselves to functions that are
not constant in one of their arguments; see Proposition 6.49. We have now seen that
for ANMs with fully supported noise, this restriction implies causal minimality.

Given the restricted class of SCMs described in (7.1), do we obtain full structure
identifiability? Again, the answer is negative. Theorem 4.2 and Problem 7.13

2These two conditions guarantee that the joint distribution over X1, . . . ,Xd allows for a strictly
positive density, for example.
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Type of structural assignment Condition DAG Seeon funct. identif.
(General) SCM: X j := f j(XPA j

,N j) — 7 Prop. 7.1
ANM: X j := f j(XPA j

)+N j nonlinear 3 Thm. 7.7(i)
CAM: X j := ∑k∈PA j

f jk(Xk)+N j nonlinear 3 Thm. 7.7(ii)
Linear Gaussian: X j := ∑k∈PA j

β jkXk +N j linear 7 Problem 7.13
Lin. G., eq. error var.: X j := ∑k∈PA j

β jkXk +N j linear 3 Prop. 7.5

Table 7.1: Summary of some known identifiability results for Gaussian noise. Results for
non-Gaussian noise identifiability results are available, too, but they are more technical.

show that if the distribution is induced by a linear Gaussian SCM, for example,
we cannot necessarily recover the correct graph. It turns out, however, that this
case is exceptional in the following sense. For almost all other combinations of
functions and distributions, we obtain identifiability. All the nonidentifiable cases
have been characterized [Zhang and Hyvärinen, 2009, Peters et al., 2014]. Another
non-identifiable example different from the linear Gaussian case is shown in the
right plot in Figure 4.2. Its details can be found in Peters et al. [2014, Example 25].
Table 7.1 shows some of the known identifiability results.

Let us mention again that there are several extensions to the framework of ANMs.
For example, Zhang and Hyvärinen [2009] allow for a post-nonlinear transforma-
tion of the variables and Peters et al. [2011a] consider ANMs for discrete variables.

In general, nonlinear ANMs are not closed under marginalization. That is, if
PX ,Y,Z allows for ANMs from X to Y and from Y to Z, PX ,Z does not necessarily
allow for an ANM from X to Z. This may restrict the applicability of ANMs
in practice, since one may not observe intermediate variables on a causal path.
For experiments in physics, one could argue that every influence is propagated via
infinitely many intermediate variables. Thus, there is no absolute notion of direct
or indirect effect (instead, it must always be relative to the observed set). In this
sense, ANMs can only be taken as good approximations.

In the following three subsections, we will look at three specific identifiable ex-
amples in more detail: the linear Gaussian case with equal error variances (Sec-
tion 7.1.3), the linear non-Gaussian case (Section 7.1.4), and the nonlinear Gaus-
sian case (Section 7.1.5). Although more general results are available [Peters et al.,
2014], we concentrate on those two examples because for them precise conditions
can be stated easily. We omit proofs and concentrate on the statements. Most of
the proofs can be based on the techniques developed in Peters et al. [2011b]. They
allow many of the bivariate identifiability results that we developed in Chapter 4 to
carry over to the multivariate setting.
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7.1.3 Linear Gaussian Models with Equal Error Variances

There is another deviation from linear Gaussian SEMs that makes the graph iden-
tifiable. Peters and Bühlmann [2014] show that restricting the noise variables to
have the same variance is sufficient to recover the graph structure. The proof can
be found in Peters and Bühlmann [2014].

Proposition 7.5 (Identifiability with equal error variances) Consider an SCM
with graph G0 and assignments

X j := ∑
k∈PAG0

j

β jkXk +N j, j = 1, . . . ,d,

where all N j are i.i.d. and follow a Gaussian distribution. In particular, the noise
variance σ2 does not depend on j. Additionally, for each j ∈ {1, . . . , p} we re-
quire β jk 6= 0 for all k ∈ PAG0

j . Then, the graph G0 is identifiable from the joint
distribution.

For estimating the coefficients β jk (and therefore the graph structure) Peters and
Bühlmann [2014] propose to use a penalized maximum likelihood score based
on the Bayesian information criterion (BIC); see also Section 7.2.2, and a greedy
search algorithm in the space of DAGs. Rescaling the variables changes the vari-
ance of the error terms. Therefore, in many applications, model (7.2) cannot be
sensibly applied. The BIC, however, allows us to compare the method’s score with
the score of a linear Gaussian SCM that uses more parameters and does not make
the assumption of equal error variances.

7.1.4 Linear Non-Gaussian Acyclic Models

Shimizu et al. [2006] prove the following statement using independent compo-
nent analysis (ICA) [Comon, 1994, Theorem 11], which itself is proved using the
Darmois-Skitovič theorem.

Theorem 7.6 (Identifiability of LiNGAMs) Consider an SCM with graph G0 and
assignments

X j := ∑
k∈PAG0

j

β jkXk +N j, j = 1, . . . ,d, (7.2)

where all N j are jointly independent and non-Gaussian distributed with strictly
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positive density.3 Additionally, for each j ∈ {1, . . . , p}, we require β jk 6= 0 for all
k ∈ PAG0

j . Then, the graph G0 is identifiable from the joint distribution.

The authors call this model a LiNGAM. As mentioned in Section 4.1.3, there is
an alternative proof for Theorem 7.6: Theorem 28 in Peters et al. [2014] extends
bivariate identifiability results such as Theorem 4.2 to the multivariate case. This
trick is also used for nonlinear additive models (by extending Theorem 4.5).

7.1.5 Nonlinear Gaussian Additive Noise Models

We have seen that the graph structure of an ANM becomes identifiable if the as-
signments are linear and the noise variables are non-Gaussian. Alternatively, we
can also exploit nonlinearity. The result is easiest to state with Gaussian noise:

Theorem 7.7 (Identifiability of nonlinear Gaussian ANMs)

(i) Let PX = PX1,...,Xd be induced by an SCM with

X j := f j(PA j)+N j,

with normally distributed noise variables N j ∼ N (0,σ2
j ) and three times

differentiable functions f j that are not linear in any component in the fol-
lowing sense. Denote the parents PA j of X j by Xk1 , . . . ,Xk` , then the function
f j(xk1 , . . . ,xka−1 , ·,xka+1 , . . . ,xk`) is assumed to be nonlinear for all a and some
xk1 , . . . ,xka−1 , xka+1 , . . . ,xk` ∈ R`−1.

(ii) As a special case, let PX = PX1,...,Xd be induced by an SCM with

X j := ∑
k∈PA j

f j,k(Xk)+N j, (7.3)

with normally distributed noise variables N j ∼ N (0,σ2
j ) and three times

differentiable, nonlinear functions f j,k. This model is known as a causal
additive model (CAM).

In both cases (i) and (ii), we can identify the corresponding graph G0 from the
distribution PX. The statements remain true if the noise distributions for source
nodes, that is, nodes without parents, are allowed to have a non-Gaussian density
with full support on the real line R (the proof remains identical).

The proof can be found in Peters et al. [2014, Corollary 31].

3The condition of a strictly positive density can be weakened (see details of the proof of ICA),
but it is certainly necessary to assume that the noise variables are non-degenerate, for example.
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7.1.6 Observational and Experimental Data

We have already seen in Section 6.3 that knowing causal relations can help improve
predictions when the underlying distribution changes. We will now turn this idea
around and show how observing the system in different environments can be used
to learn causal relations. We therefore turn to the following setup, in which we
observe data from different environments e ∈ E . The corresponding model reads

Xe = (Xe
1 , . . . ,X

e
d )∼ Pe,

where each variable Xe
j denotes the same (physical) quantity, measured in environ-

ment e ∈ E . We will talk about a variable X j in different environments, which is a
slight abuse of notation.

Known Intervention Targets A first type of method assumes that the differ-
ent environments stem from different interventional settings. In the case that the
intervention targets Ie ⊆ {1, . . . ,d} are known, several methods have been pro-
posed. Tian and Pearl [2001] and Hauser and Bühlmann [2012], for example,
assume faithfulness and consider mechanism changes and stochastic interventions,
respectively. They define and characterize the interventional equivalence classes
of graphs: that is, the class of graphs that can explain the given distributions. For
mechanism changes, for example, we can include an intervention node into the
model whose children are the variables that are intervened on. This way we in-
crease the number of v-structures and two graphs become intervention equivalent
(with respect to the given distributions) if they have the same skeletons and v-
structures, and the nodes that are intervened on have the same parents [cf. Tian
and Pearl, 2001, Theorem 2]. Eberhardt et al. [2010] allow for hard and stochastic
interventions even in the presence of cycles.

Hyttinen et al. [2012] analyze conditions on the interventions under which the
graph becomes identifiable. Eberhardt et al. [2005] and Hauser and Bühlmann
[2014] investigate how many intervention experiments are necessary in the worst
case to identify the graph.

Different Environments Let us now turn to a slightly different setting, in which
we do not try to learn the whole causal structure. Instead, we consider a target
variable Y with a set of d predictors X and try to learn which of the predictors are
the causal parents of Y . Both X and Y are observed in different environments e ∈ E
(which could be intervention settings with unknown targets). That is, we have

(Xe,Y e)∼ PXe,Y e =: Pe
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for e∈ E . The key assumption is the existence of an unknown set PAY ⊆ {1, . . . ,d}
(one may think of the direct causes of Y ) such that the conditional Y given PAY is
invariant over all environments, that is, for all e, f ∈ E we have

PY e |PAe
Y
= PY f |PA f

Y
.

This assumption is satisfied if the distributions are induced by an underlying SCM
and the different environments correspond to different intervention distributions,
for which Y has not been intervened on [Peters et al., 2016] (see Code Snippet 7.11
for an example). Having said that, the setting is more general and the environments
do not need to correspond to interventions; one does not even require an underlying
SCM. One can consider the collection S of all sets S⊆ {1, . . . ,d} of variables that
lead to “invariant prediction,” that is, for all e, f ∈ E and for all S ∈ S, we have

PY e |Se = PY f |S f . (7.4)

Here, Y e |Se is shorthand notation for Y e |Xe
S. It is not difficult to see (Problem 7.15)

that the variables appearing in all those sets S ∈ S must be direct causes of Y :⋂
S∈S

S ⊆ PAY , (7.5)

where we define the intersection over an empty index set as the empty set. Peters
et al. [2016] consider the left-hand side of (7.5) as an estimate for PAY . (7.5) then
guarantees that any variable contained in the output of this method is indeed in
PAY . In the special case of SCMs and interventions, there are sufficient conditions
[Peters et al., 2016] under which PAY becomes identifiable, in other words, (7.5) is
an equality. Interestingly, the method we present in Section 7.2.5 realizes whether
the data come from such an identifiable case, it does not need to assume it.

Tian and Pearl [2001] also address the question of identifiability with unknown
intervention targets. They do not specify a target variable and focus on changes in
marginal distributions rather than conditionals.

7.2 Methods for Structure Identification

We have seen several assumptions that lead to (partial) identifiability of the causal
structure. The purpose of this section is to show how these assumptions can be
exploited to provide estimators of the underlying graph from a finite amount of
data (see Figure 7.1 for two examples). We provide an overview of methods and
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try to focus on their ideas. There is a large pool of methods, and we believe that
future research needs to show which of these methods will prove to be most useful
in practice. We nevertheless try to highlight some of the methods’ potential prob-
lems and most crucial assumptions. Although some papers study the consistency
of the presented methodology, we omit most of those results and present ideas
only. Subtleties of algorithmic implementation will not be discussed either, and we
would like to refer the interested reader to the references we provide. Kalisch et al.
[2012] maintain the software package pcalg for R [R Core Team, 2016] that con-
tains code not only for the PC (for the inventors Peter Spirtes and Clark Glymour)
algorithm (see Section 7.2.1), but also for many of the described methods.

Before providing more details about the existing methodology, we would like to
add two comments first: (1) While there are several simulation studies available, a
topic that receives little attention is the question of a loss function. Given the true
underlying causal structure, how “good” is an estimated causal graph? In practice,
one often uses variants of the structural Hamming distance [Acid and de Campos,
2003, Tsamardinos et al., 2006], which counts the number of misspecified edges.
As an alternative, Peters and Bühlmann [2015] suggest evaluating the graph based
on its ability to predict intervention distributions. (2) Some of the methods that we
present assume that the structural assignments (6.1) and the corresponding func-
tions f j in particular are simple. Often, those methods do provide estimates not
only for the causal structure but also for the corresponding assignments, which can
usually be used to compute residuals, too. In principle, and under this model, we
can then test the strong assumption of mutually independent noise variables (Defi-
nition 3.1), for example, by applying a mutual independence test [e.g., Pfister et al.,
2017]; see Section 4.2.1 for statistical subtleties of such a procedure.

7.2.1 Independence-Based Methods

Independence-based methods such as the inductive causation (IC) algorithm, the
SGS (for the inventors Spirtes, Glymour, and Scheines) algorithm, and the PC
algorithm assume that the distribution is faithful to the underlying DAG. This ren-
ders the Markov equivalence class, that is, the corresponding CPDAG, identifiable
(see Section 7.1.1). There is a one-to-one correspondence between d-separations
in the graph and conditional independences in PX. Any query of a d-separation
statement can therefore be answered by checking the corresponding conditional
independence test. We first assume that an oracle provides us with the correct an-
swers to the conditional independence questions and discuss some finite sample
issues in the paragraph “Conditional Independence Tests.”
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i.i.d. sample
from PX1,...,X4

X1 := f1(N1)

X2 := f2(N2)

X3 := f3(X1,N3)

X4 := f4(X2,X3,N4)

N1, . . . ,N4 independent

X2 ⊥⊥ (X1,X3)

X1 ⊥⊥ X4 |X3

X1 ⊥⊥ X2 |X3

X2 ⊥⊥ X3 |X1

. . .

X4

X2 X3

X1G

G′
faithfulness and

Markov

read off

fit restricted
model class

independence

tests

Figure 7.1: The figure summarizes two approaches for the identification of causal struc-
tures. Independence-based methods (top) test for conditional independences in the data;
these properties are related to the graph structure by the Markov condition and faithfulness.
Often, the graph is not uniquely identifiable; the method may therefore output different
graphs G and G′. Alternatively, one may restrict the model class and fit the SCM directly
(bottom).

Estimation of Skeleton Most independence-based methods first estimate the
skeleton, that is, the undirected edges, and orient as many edges as possible after-
ward. For the skeleton search, the following lemma is useful to know [see Verma
and Pearl, 1991, Lemma 1].

Lemma 7.8 The following two statements hold.

(i) Two nodes X ,Y in a DAG (X,E) are adjacent if and only if they cannot be
d-separated by any subset S⊆ V\{X ,Y}.

(ii) If two nodes X ,Y in a DAG (X,E) are not adjacent, then they are d-separated
by either PAX or PAY .

Using Lemma 7.8(i), we have that if two variables are always dependent, no mat-
ter what other variables one conditions on, these two variables must be adjacent.
This result is used in the IC algorithm [Pearl, 2009] and in the SGS algorithm
[Spirtes et al., 2000]. For each pair of nodes (X ,Y ), these methods search through
all possible subsets A ⊆ X \ {X ,Y} of variables neither containing X nor Y and
check whether X and Y are d-separated given A. After all those tests, X and Y are
adjacent if and only if no set A was found that d-separates X and Y .
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Searching through all possible subsets A does not seem optimal, especially if
the graph is sparse. The PC algorithm [Spirtes et al., 2000] starts with a fully
connected undirected graph and step-by-step increases the size of the conditioning
set A, starting with #A = 0. At iteration k, it considers sets A of size #A = k,
using the following neat trick: to test whether X and Y can be d-separated, one
only has to go through sets A that are subsets either of the neighbors of X or of
the neighbors of Y ; this idea is based on Lemma 7.8(ii) and clearly improves the
computation time, especially for sparse graphs.

Orientation of Edges Lemma 6.25 suggests that we should be able to orient the
immoralities (or v-structures) in the graph. If two nodes are not directly connected
in the obtained skeleton, there is a set that d-separates these nodes. Suppose that
the skeleton contains the structure X −Z−Y with no direct edge between X and
Y ; further, let A be a set that d-separates X and Y . The structure X − Z−Y is
an immorality and can therefore be oriented as X → Z← Y if and only if Z /∈ A.
After the orientation of immoralities, we may be able to orient some further edges
in order to avoid cycles, for example. There is a set of such orientation rules that
has been shown to be complete and is known as Meek’s orientation rules [Meek,
1995].

Satisfiability Methods An alternative to the graphical approach just described is
to formulate causal learning as a satisfiability (SAT) problem [Triantafillou et al.,
2010]. First, one formulates graphical relations as Boolean variables, such as A :=
“There is a direct edge from X to Y .” The non-trivial part is then to translate the in-
dependence statements (we still assume that they are provided by an independence
oracle), as d-separation statements into “formulas” that involve Boolean variables
and the operators “and” and “or.” The SAT question then asks whether we can as-
sign a value “true” or “false” to each of the Boolean variables to make the overall
formula true. SAT solvers not only check whether this is the case but also pro-
vide us with the information as to whether in all of the assignments that make the
overall formula true, certain variables are always assigned to the same value. For
example, the d-separation statements may be satisfied by different graph structures
that correspond to different assignments, but if in all such assignments the Boolean
variable A from above takes the value “true,” we can infer that in the underlying
graph, X must be a parent of Y . Even though the Boolean SAT problem is known
to be nondeterministic polynomial time (NP)-complete [Cook, 1971, Levin, 1973],
that is, it is NP and NP-hard, there are heuristic algorithms that can solve instances
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of large problems, involving millions of variables. SAT methods in causal learning
allow us to query specific statements as an ancestral relation rather than estimat-
ing the full graph. They let us incorporate different kinds of prior knowledge and
furthermore, we can put weights on the independence constraints if we believe
that some of the (statistical) findings contradict each other. These approaches have
been extended to cycles, latent variables, and overlapping data sets [Hyttinen et al.,
2013, Triantafillou and Tsamardinos, 2015].

Conditional Independence Tests In the three preceding paragraphs we have as-
sumed the existence of an independence oracle that tells us whether a specific (con-
ditional) independence is or is not present in the distribution. In practice, however,
we have to infer this statement from a finite amount of data. This comes with two
major challenges: (1) All causal discovery methods that are based on conditional
independence tests draw conclusions both from dependences and independences.
In practice, however, one most often uses statistical significance tests, which are
inherently asymmetric. One therefore usually forgets about the original meaning of
the significance level and treats it as a tuning parameter. Furthermore, due to finite
samples, the testing results might even contradict each other in the sense that there
is no graph structure that encodes the exact set of inferred conditional indepen-
dences. (2) Although there is some recent work on kernel-based tests [Fukumizu
et al., 2008, Tillman et al., 2009, Zhang et al., 2011], nonparametric conditional
independence tests are difficult to perform with a finite amount of data. One there-
fore often restricts oneself to a subclass of possible dependences, some of which
we now briefly review.

If the variables are assumed to follow a Gaussian distribution, we can test for
vanishing partial correlation (see Appendices A.1 and A.2). Under faithful-
ness, the Markov equivalence class of the underlying DAG becomes identifiable
(Lemma 7.2) and indeed, in the Gaussian setting, the PC algorithm with a test for
vanishing partial correlation provides a consistent estimator for the correct CPDAG
[Kalisch and Bühlmann, 2007]. Additionally assuming a condition called strong
faithfulness [Zhang and Spirtes, 2003, Uhler et al., 2013] even yields uniform con-
sistency [Kalisch and Bühlmann, 2007]; see also the discussion in Robins et al.
[2003].

Non-parametric conditional independence testing is a difficult problem in the-
ory and practice. For non-Gaussian distributions, vanishing partial correlation is
neither necessary nor sufficient for conditional independence, as shown by the fol-
lowing example.
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Example 7.9 (Conditional independence and partial correlation)

(i) If the distribution PX ,Y,Z is entailed by the SCM

Z := NZ, X := Z2 +NX , Y := Z2 +NY ,

where NX ,NY ,NZ
iid∼N (0,1), it satisfies

X ⊥⊥ Y |Z and ρX ,Y |Z 6= 0.

The partial correlation coefficient ρX ,Y |Z equals the correlation of X −αZ
and Y −βZ where α and β are the regression coefficients when regressing
X and Y on Z, respectively. In this example, α = β = 0 because X and Y do
not correlate with Z.

(ii) The distribution PX ,Y,Z entailed by the SCM

Z := NZ, X := Z +NX , Y := Z +NY ,

where (NX ,NY )⊥⊥ NZ and (NX ,NY ) are uncorrelated but not independent,
satisfies

X 6⊥⊥ Y |Z and ρX ,Y |Z = 0

since here, ρX ,Y |Z is the correlation between NX and NY .

Therefore, vanishing partial correlation does not imply and is not implied by con-
ditional independence.

The following procedure for testing whether X and Y are conditionally indepen-
dent given Z provides a natural nonlinear extension of partial correlation [e.g.,
Ramsey, 2014]: (1) (nonlinearly) regress X on Z and test whether the residuals are
independent of Y ; (2) (nonlinearly) regress Y on Z and test whether the residuals
are independent of X ; (3) if one of those two independences hold, conclude that
X ⊥⊥ Y |Z. This seems to be the correct test in the case of ANMs; see Section 7.1.2.
For three variables, for example, we have the following result.

Proposition 7.10 Consider a distribution PX ,Y,Z induced by an ANM (Defini-
tion 7.3) with all variables having strictly positive densities. If X and Y are d-
separated given Z, then the procedure just described outputs the corresponding
conditional independence in the sense that either X −E[X |Z] is independent of Y
or Y −E[Y |Z] is independent of X.
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Proof. Assume that X := h(Z)+NX and Y := f (Z)+NY , with Z, NX , and NY

being mutually independent. Then, X −E[X |Z] = NX is independent of Y . The
statement follows analogously for the other possible structures, for example, X →
Z→ Y or X ← Z← Y . �

The proposition shows that (in a population sense) the test described is appro-
priate for ANMs with three variables. Considering four variables X ,Y,Z,V , how-
ever, may already lead to problems. Clearly, the graphs X ← Z →W → Y and
X → Z→W → Y are Markov equivalent. But while the test outputs X ⊥⊥ Y |Z for
the first graph, there is no such guarantee for the second graph. Thus, the above-
mentioned restriction of the dependence model between random variables that can
be used to construct feasible conditional independence tests leads to asymmetric
treatment of graphs within a Markov equivalence class. This effect may be the
same for many other types of methods for conditional independence testing. This
asymmetry does not necessarily need to be a drawback since, as we have seen, re-
stricted function classes may lead to identifiability within the Markov equivalence
class (see Section 7.1). It certainly requires consideration, though.

7.2.2 Score-Based Methods

In the preceding section we have directly used the independence statements to in-
fer the graph. Alternatively, we can test different graph structures in their ability to
fit the data. The rationale is that graph structures encoding the wrong conditional
independences, for example, will yield bad model fits. Although the roots for
score-based methods for causal learning may date back even further, we mainly re-
fer to Geiger and Heckerman [1994a], Heckerman et al. [1999], Chickering [2002],
and references therein. The Max-Min Hill-Climbing algorithm [Tsamardinos et al.,
2006] combines score-based and independence-based techniques.

Best Scoring Graph Given data D = (X1, . . . ,Xn) from a vector X of variables,
that is, a sample containing n i.i.d. observations, the idea is to assign a score
S(D,G) to each graph G and search over the space of DAGs to find the graph
with the highest score:

Ĝ := argmax
G DAG over X

S(D,G). (7.6)

There are several possibilities to define such a scoring function S. Often a paramet-
ric model is assumed (e.g., linear Gaussian equations or multinomial distributions),
which introduces a set of parameters θ ∈Θ.
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(Penalized) Likelihood For each graph we may consider the maximum likeli-
hood estimator θ̂ for θ and then define a score function by the BIC

S(D,G) = log p(D|θ̂ ,G)− #parameters
2

logn, (7.7)

where log p(D|θ̂ ,G) is the log likelihood and n is the sample size. Estimators that
output the graph with the largest (penalized) likelihood are often consistent. This
follows from the consistency of BIC [Haughton, 1988], and identifiability of the
model class. To guarantee rates of convergence, however, one usually relies on a
“degree of identifiability” [e.g., Bühlmann et al., 2014]. In practice, finding the best
scoring graph among all possible graphs may not be feasible and search techniques
over the space of graphs are required (e.g., see the paragraph “Greedy Search Tech-
niques”). Regularization different from BIC is possible, too. Roos et al. [2008]
base their score on the minimum description length principle [Grünwald, 2007],
for example. Using work by Haughton [1988], Chickering [2002] discusses how
the BIC approach relates to a Bayesian formulation that we discuss next.

Bayesian Scoring Functions We define priors ppr(G) and ppr(θ) over DAGs
and parameters, respectively, and consider the log posterior as a score function
(note that p(D) is constant over all DAGs):

S(D,G) := log p(G |D) ∝ log ppr(G)+ log p(D|G),

where p(D|G) is the marginal likelihood

p(D|G) =
∫

θ∈Θ

p(D|G,θ) ppr(θ |G)dθ .

Here, the resulting estimator Ĝ from Equation (7.6) is the mode of the posterior
distribution, which is usually called a maximum a posteriori (MAP) estimator. Al-
ternatively, one may output the full posterior distribution over DAGs, and, in prin-
ciple, even more detailed information is available. For instance, one can average
over all graphs to get a posterior probability of the existence of a specific edge.

As an example, consider random variables that take only finitely many values.
For a given structure G, one may then assume that for each parent configuration the
probability distribution of a random variable X j follows a multinomial distribution.
If we put a Dirichlet prior on its parameters (together with some further conditions
on parameter independence and modularity), this leads to the Bayesian Dirichlet
(BD) score [Geiger and Heckerman, 1994b].
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In the case of parametric models, we call two graphs G1 and G2 distribution
equivalent if for each parameter θ1 there is a corresponding parameter θ2, such
that the distribution obtained from G1 in combination with θ1 is the same as the
distribution obtained from graph G2 with θ2, and vice versa. It can be shown (see
Problem 7.12) that in the linear Gaussian case, for example, two graphs are dis-
tribution equivalent if and only if they are Markov equivalent. It has therefore
been argued that p(D|G1) and p(D|G2) should be the same for Markov equiva-
lent graphs G1 and G2. The BD score can be adapted to satisfy this property. It is
usually referred to as the Bayesian Dirichlet equivalence (BDe) score [Geiger and
Heckerman, 1994b]. Buntine [1991] proposes a specific version of this score with
even fewer hyperparameters.

Greedy Search Techniques The search space of all DAGs is growing super-
exponentially in the number of variables [e.g., Chickering, 2002], the numbers of
DAGs for 2, 3, 4, and 10 variables are 3, 25, 543, and 4175098976430598143,
respectively (see Table B.1). Therefore, computing a solution to Equation (7.6)
by searching over all graphs is often infeasible. Instead, greedy search algorithms
can be applied to solve (7.6). At each step there is a candidate graph and a set of
neighboring graphs. For all these neighbors, one computes the score and considers
the best-scoring graph as the new candidate. If none of the neighbors obtains a
better score, the search procedure terminates (not knowing whether one obtained
only a local optimum). Clearly, one therefore has to define a neighborhood relation.
Starting from a graph G, we may define all graphs as neighbors from G that can be
obtained by removing, adding, or reversing one edge, for example.

In the case of a linear Gaussian SCM, one cannot distinguish between Markov
equivalent graphs. It turns out that then it is beneficial to change the search space
to Markov equivalence classes instead of DAGs. The greedy equivalence search
(GES) [Chickering, 2002] optimizes the BIC criterion (7.7) and starts with the
empty graph. It consists of two-phases: in the first phase, edges are added until a
local maximum is reached; in the second phase, edges are removed until a local
maximum is reached, which is then given as an output of the algorithm.

Exact Methods In general, finding the optimal scoring DAG is NP-hard [Chick-
ering, 1996] but still there is a lot of interesting research that tries to scale up exact
methods. Here, “exact” means that they aim at finding (one of) the best scoring
graphs for a given finite data set. Greedy search techniques are often heuristic and
have guarantees — if at all — only in the limit of infinite data.
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One line of research is based on dynamic programming [Silander and Mylly-
mak, 2006, Koivisto and Sood, 2004, Koivisto, 2006]. These approaches exploit
the decomposability of many scores that are used in practice: due to the Markov
factorization, we have for D = (X1, . . . ,Xn) that

log p(D|θ̂ ,G) =
d

∑
j=1

n

∑
i=1

log p(X i
j |X i

PAG
j
, θ̂),

which is a sum of d “local” scores. Methods based on dynamic programming
exploit this decomposability, and despite their exponential complexity they can
find the best scoring graph for ≥ 30 variables, even if one does not restrict the
number of parents. This is a remarkable result given the enormous number of
different DAGs over this number of variables (see Table B.1).

The integer linear programming (ILP) framework assumes not only decompos-
ability but also that the scoring function gives the same score to Markov equivalent
graphs. The idea is then to represent graphical structures as vectors, such that the
scoring function becomes an affine function in this vector representation. Studený
and Haws [2014] describe how Hemmecke et al. [2012] base their representation
on characteristic imsets, while Jaakkola et al. [2010] and Cussens [2011] use (ex-
ponentially long) zero-one codes instead that indicate parent-child-relationships
between nodes and reduce the search space exploiting work by De Campos and Ji
[2011]. Having formulated the problem as an ILP problem, the problem is still NP-
hard, but one may now use off-the-shelf methods for ILP. Restricting the number
of parents leads to further advances, for example, in “pedigree learning” each node
has at most two parents [Sheehan et al., 2014].

7.2.3 Additive Noise Models

ANMs can be learned with score-based methods that are combined with a greedy
search technique. This has been proposed for linear Gaussian models with equal
error variances (Section 7.1.3) or nonlinear Gaussian ANMs (Section 7.1.5) [see
Peters and Bühlmann, 2014, Bühlmann et al., 2014]. In the nonlinear Gaussian
case, for example, we can proceed analogously to the bivariate case (see Equa-
tions (4.18) and (4.19)). For a given graph structure G, we regress each variable on
its parents and obtain the score

log p(D|G) =
d

∑
j=1
− log v̂ar[R j];
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here, v̂ar[R j] is the empirical variance of the residuals R j obtained from the regres-
sion of variable X j on its parents. Intuitively, the better the model fits the data, the
smaller the variance of the residuals and thus the larger our score. Formally, the
procedure is an instance of maximum likelihood and can be shown to be consis-
tent [Bühlmann et al., 2014]. Computationally, we can again exploit the property
that the score decomposes over the different nodes. When computing the score
for a neighboring graph that changes the parent set of only one variable, we need
to update only the corresponding summand. If the noise cannot be assumed to
have a Gaussian distribution, for example, one can estimate the noise distribution
[Nowzohour and Bühlmann, 2016] and obtain an entropy-like score.

Alternatively, one can estimate the structure in an iterative way using indepen-
dence tests. Mooij et al. [2009] and Peters et al. [2014] propose a regression with
subsequent independence test (RESIT). The method is based on the property that
the noise variables are independent of all preceding variables. For linear non-
Gaussian models (Section 7.1.4), Shimizu et al. [2006] provide a practical method
based on ICA [Comon, 1994, Hyvärinen et al., 2001] that can be applied to a finite
amount of data. Later, an improved version of this method has been proposed in
Shimizu et al. [2011].

7.2.4 Known Causal Ordering

It is often difficult to find the causal ordering (see Appendix B) of the underlying
causal model. Given the causal ordering, however, estimating the graph reduces to
“classical” variable selection. Assume, for example, that

X := NX

Y := f (X ,NY )

Z := g(X ,Y,NZ)

with unknown f ,g,NX ,NY ,NZ . Deciding whether f depends on X , and g depends
on X and/or Y (see the assumption of structural minimality in Remark 6.6) is then
a well-studied significance problem in “traditional” statistics. Standard methods
can be used, especially if further structural assumptions are made, such as linearity
[e.g., Hastie et al., 2009, Bühlmann and van de Geer, 2011]. This observation
has been made before [e.g., Teyssier and Koller, 2005, Shojaie and Michailidis,
2010] and it has been suggested that instead of searching over the space of directed
acyclic graphs, it might be beneficial to search over the causal order first and then
perform variable selection [e.g., Teyssier and Koller, 2005, Bühlmann et al., 2014].
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7.2.5 Observational and Experimental Data

Section 7.1.6 describes how causal structures may become identifiable when we
observe the system under different conditions (“environments”). We now discuss
how these results can be exploited in practice, that is, given only finitely many data.
Let us therefore assume that we obtain one sample Xe

ne
for each environment e∈ E ;

that is, for each of the environments, we observe ne i.i.d. data points.

Known Intervention Targets Here, each setting corresponds to an interven-
tional experiment, and we have additional knowledge of the intervention targets
Ie ⊆ {1, . . . , p}. Cooper and Yoo [1999] incorporate the intervention effects as
mechanism changes into a Bayesian framework. For perfect interventions, Hauser
and Bühlmann [2015] consider linear Gaussian SCMs and propose a greedy inter-
ventional equivalence search (GIES), a modified version of the GES algorithm that
we briefly described in Section 7.2.2.

Sometimes, one is not able to measure all variables in each experiment (this can
even be the case when all experiments are observational) but nevertheless wants to
combine the information from the available data; this problem has been addressed
by SAT-based approaches [see, e.g., Triantafillou and Tsamardinos, 2015, Tillman
and Eberhardt, 2014, references therein].

Unknown Intervention Targets Eaton and Murphy [2007] do not assume that
the targets of the different interventions are known. Instead, they introduce for
each environment e ∈ E an intervention node Ie with no incoming edges (see “In-
tervention Variables” on page 95); for each data point only one intervention node
is active. Then, they apply standard methods to the enlarged model with d + #E
variables, subject to the constraint that intervention nodes do not have any parents.

Tian and Pearl [2001] propose to test whether the marginal distributions change
in the different settings and use this information to infer parts of the graph structure.
They even combine this method with an independence-based method.

Different Environments In Section 7.1.6, we have also considered the problem
of estimating the causal parents of a target variable Y among the set X of d predic-
tors. Therefore, we have defined the set S as the collection of all sets S⊆{1, . . . ,d}
that satisfy invariant prediction, that is, for which PY e |Se remains invariant over all
environments e ∈ E ; see (7.4). In practice, we can test the hypothesis of invariant
prediction at level α and collect all sets S that pass the test as an estimate Ŝ for
the set S. Because the true set of parents PAY ⊆ X is a member of Ŝ with high
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probability (1−α), we obtain the coverage statement⋂
S∈Ŝ

S ⊆ PAY (7.8)

with high probability (1−α). The left-hand side of (7.8) is the output of a method
called “invariant causal prediction” [Peters et al., 2016]. Code Snippet 7.11 shows
an example for which the environments correspond to different interventions (this
is not required by the method). To obtain correct coverage in the sense of (7.8),
one only needs to model the conditional Y given PAY ; in particular, one does not
assume anything on the distribution of the d predictors X. This is different for
the method proposed by Eaton and Murphy [2007] (see the paragraph “Unknown
Intervention Targets”), which additionally tries to estimate the full causal structure.

Code Snippet 7.11 The following code shows an example of a causal system in
two environments. In the true underlying structure we have that X1 and X2 are
causing Y , which itself is causing X3. In a linear model on the pooled data (line
13), all variables X1, X2, and X3 are highly significant since all of them are good
predictors for Y . Such a model is not invariant, however. In the two environments a
regression from Y on X1, X2, X3 yields coefficients−0.15, 1.09,−0.39, and−0.32,
1.62, −0.54, respectively. The method of invariant causal prediction outputs only
the causal parents of Y , that is, X1 and X2. In this example, {1,2} is the only set
yielding an invariant model, that is, Ŝ = {{1,2}}.

1 library(InvariantCausalPrediction)

2 #

3 # generate data from two environments

4 env <- c(rep(1,400),rep(2,700))

5 n <- length(env)

6 set.seed(1)

7 X1 <- rnorm(n)

8 X2 <- 1*X1 + c(rep(0.1,400), rep(1.0,700))*rnorm(n)

9 Y <- -0.7*X1 + 0.6*X2 + 0.1*rnorm(n)

10 X3 <- c(rep(-2,400),rep(-1,700))*Y + 2.5*X2 + 0.1*rnorm(n)

11 #

12 summary(lm(Y~-1+X1+X2+X3))

13 # Coefficients:

14 # ----Estimate Std.Error t.val. Pr(>|t|)

15 # X1 -0.396212 0.008667 -45.71 <2e-16 ***

16 # X2 +1.381497 0.021377 +64.63 <2e-16 ***

17 # X3 -0.410647 0.011152 -36.82 <2e-16 ***

18 #

19 ICP(cbind(X1,X2,X3),Y,env)

20 #lower bd upper bd p-value

21 # X1 -0.71 -0.68 3.7e-06 ***

22 # X2 +0.59 +0.61 0.0092 **

23 # X3 -0.00 +0.00 0.2972
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7.3 Problems

Problem 7.12 (Gaussian SCMs) Prove that for linear Gaussian SCMs, two
graphs G1 and G2 are distribution equivalent if and only if they are Markov equiv-
alent. Here, we allow for zero coefficients.

Problem 7.13 (Gaussian SCMs) Consider a distribution PX of X = (X1, . . . ,Xd)
with density p induced from a linear Gaussian SCM C. Prove that for any DAG
G such that PX is Markovian with respect to G, there is a corresponding linear
Gaussian SCM CG entailing PX.

Problem 7.14 (ANMs) Prove that ANMs over X = (X1, . . . ,Xd) with differen-
tiable functions f j and noise variables that have a strictly positive density entail a
distribution over X that has a strictly positive density, too (see Definition 7.3).

Problem 7.15 (Invariant causal prediction) Prove Equation (7.5).





8

Connections to Machine Learning, II

As argued in Chapter 5, the causal structure that underlies a statistical model can
have strong implications for machine learning tasks such as semi-supervised learn-
ing or domain adaptation. We now revisit this general topic, focusing on the multi-
variate case. We begin with a method that uses machine learning to model system-
atic errors for a given causal structure, followed by some thoughts on reinforce-
ment learning (with an application in computational advertising), and finally we
comment on the topic of domain adaptation.

8.1 Half-Sibling Regression

This method exploits a given causal structure (see Figure 8.1) to reduce system-
atic noise in a prediction task. The goal is to reconstruct the unobserved signal Q.
Schölkopf et al. [2015] suggest that we can denoise the signal Y by removing all in-
formation that can be explained by other measurements X that have been corrupted
with the same source of noise. Here, X are measurements of some signals R that
are independent of Q. Intuitively, everything in Y that can be explained by X must
be due to the systematic noise N and should therefore be removed. More precisely,
we consider

Q̂ := Y −E[Y |X ]

as an estimate for Q. Here, E[Y |X ] is the regression of Y on its half-siblings X
(note that X and Y share the parent N; see Figure 8.1).

One can show that for any random variables Q,X ,Y that satisfy Q⊥⊥ X , we have
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unobserved
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NQ R

measurement of interest other measurements

systematic noisetrue signal other signal

Figure 8.1: The causal structure that applies to the exoplanet search problem. The underly-
ing signal of interest Q can only be measured as a noisy version Y . If the same noise source
also corrupts measurements of other signals that are independent of Q, those measurements
can be used for denoising. In our example, the telescope N constitutes systematic noise that
affects measurements X and Y of independent light curves.

[Schölkopf et al., 2016, Proposition 1]:

E
[(

Q−E[Q]− Q̂
)2
]
≤ E

[(
Q−E[Q]− (Y −E[Y ])

)2
]
,

that is, the method is never worse than taking the measurement Y . If, moreover,
the systematic noise acts in an additive manner, that is, Y = Q+ f (N) for some
(unknown) function f , we have [Schölkopf et al., 2016, Proposition 3]:

E
[(

Q−E[Q]− Q̂
)2
]
= E[var[ f (N)|X ]]. (8.1)

If the additive noise is a function of X , that is, f (N) = ψ(X) for some (unknown)
function ψ , then the right-hand side of (8.1) vanishes and hence Q̂ recovers Q up
to an additive shift; see Schölkopf et al. [2016] for other sufficient conditions.

As an example, consider the search for exoplanets. The Kepler space observatory,
launched in 2009, observed a small fraction of the Milky Way during its search for
exoplanets, monitoring the brightness of approximately 150,000 stars.1 Those stars
that are surrounded by a planet with a suitable orbit to allow for partial occlusions
of the star will exhibit light curves that show a periodic decrease of light intensity;
see Figure 8.2. These measurements are corrupted with systematic noise that is
due to the telescope and that makes the signal from possible planets hard to detect.

Fortunately, the telescope measures many stars at the same time. These stars can
be assumed to be causally and therefore statistically independent since they are
light-years apart from each other. Thus, the causal structure depicted in Figure 8.1
fits very well to this problem and we may apply the half-sibling regression. This
simple method performs surprisingly well [Schölkopf et al., 2015].

1https://en.wikipedia.org/wiki/Kepler_(spacecraft), accessed 13.07.2016.

1https://en.wikipedia.org/wiki/Kepler_(spacecraft)
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Figure 8.2: Every time a planet occludes a part of the star, the light intensity decreases.
If the planet orbits the star, this phenomenon occurs periodically. (Image courtesy of
Nikola Smolenski, https://en.wikipedia.org/wiki/File:Planetary_transit.

svg, [CC BY-SA 3.0]. Image has been edited for clarity and style.)

Related approaches have been used in other application fields without reference
to causal modeling [Gagnon-Bartsch and Speed, 2012, Jacob et al., 2016]. Con-
sidering the causal structure of the problem (Figure 8.1) immediately suggests the
proposed methodology and leads to theoretical arguments justifying the approach.

8.2 Causal Inference and Episodic Reinforcement
Learning

We now describe a class of problems in reinforcement learning from a causal per-
spective. Roughly speaking, in reinforcement learning, an agent is embedded in
a world and chooses among a set of different actions. Depending on the current
state of the world, these actions yield some reward and change the state of the
world. The goal of the agent is to maximize the expected cumulated reward (see
Section 8.2.2 for more details). We first introduce the concept of inverse prob-
ability weighting that has been applied in different contexts throughout machine
learning and statistics and then relate it to episodic reinforcement learning. Draw-
ing this connection is a first small step toward relating causality and reinforcement
learning. The causal point of view enables us to exploit conditional independences
that directly follow from the causal structure. We briefly mention two applications
— blackjack and the placement of advertisement — and show how they benefit
from causal knowledge. The causal formulation leads to these improvements of
methodology very naturally but it is certainly possible to formulate these problems
and corresponding algorithms without causal language. This section does not prove
that reinforcement learning benefits from causality. Instead, we regard it as a step

https://en.wikipedia.org/wiki/File:Planetary_transit.svg
https://en.wikipedia.org/wiki/File:Planetary_transit.svg
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toward establishing a formal link between these two fields that may lead to fruitful
research in future [see also Bareinboim et al., 2015, for example]. More concretely,
we believe that causality could play a role when transferring knowledge between
different tasks in reinforcement learning (e.g., when progressing to the next level
in a computer game or when changing the opponent in table tennis); however, we
are not aware of any such result.

8.2.1 Inverse Probability Weighting

Inverse probability weighting is a well-known technique that is used to estimate
properties of a distribution from a sample that follows a different distribution. It
therefore naturally relates to causal inference. Consider the kidney stone example
(Example 6.37). We defined the binary variables size S, treatment T , and recov-
ery R, and after obtaining observational data, we were interested in the expected
recovery rate Ẽ[R] in a hypothetical study in which everyone received treatment
A, that is under a different distribution. Formally, consider an SCM C entailing
the distribution PC

X over variables X = (X1, . . . ,Xd). We have argued that one often
observes a sample from the observational distribution PC

X , but one is interested in
some intervention distribution PC̃

X . Here, the new SCM C̃ is constructed from the
original C by intervening on a node Xk, say,

do
(

Xk := f̃ (XP̃Ak,Ñk
)
)

;

see Section 6.3. In particular, we might want to estimate a certain property

Ẽ `(X) := EPC̃
X
`(X)

of the new distribution PC̃
X (in the kidney stone example, this is Ẽ[R]). If densities

exist, we have seen in Section 6.3 that the densities of C and C̃ factorize in a similar
way:

p(x1, . . . ,xd) := pC(x1, . . . ,xd) =
d

∏
j=1

pC
(
x j |xpa( j)

)
and

p̃(x1, . . . ,xd) := pC̃(x1, . . . ,xd) = ∏
j 6=k

pC
(
x j |xpa( j)

)
p̃
(
xk |xp̃a(k)

)
.
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The factorizations agree except for the term of the intervened variable. We there-
fore have

ξ := Ẽ `(X) =
∫

`(x) p̃(x) dx =
∫

`(x)
p̃(x)
p(x)

p(x) dx

=
∫

`(x)
p̃
(
xk |xp̃a(k)

)
p
(
xk |xpa(k)

) p(x) dx.

(For simplicity, we assume throughout the whole section that the densities are
strictly positive.) Given a sample X1, . . . ,Xn drawn from the distribution PC

X , we
can thus construct an estimator

ξ̂n :=
1
n

n

∑
i=1

`(Xi)
p̃
(

X i
k |Xi

p̃a(k)

)
p
(

X i
k |Xi

pa(k)

) =
1
n

n

∑
i=1

`(Xi)wi (8.2)

for ξ = Ẽ`(X) by reweighting the observations; here, the weights wi are defined as
the ratio of the conditional densities. The data points, that have a high likelihood
under PC̃

X (they “could have been drawn” from the new distribution of interest)
receive a large weight and contribute more to the estimate ξ̂n than those with a
small weight. This kind of estimator appears in the following three situations, for
example.

(i) Suppose that X=(Y,Z) contains only a target variable Y and a causal covari-
ate Z, that is, Z→ Y . Let us consider an intervention in Z and the function
`(X) = `((Z,Y )) = Y . Then, the estimator (8.2) reduces to

ξ̂n :=
1
n

n

∑
i=1

Y i p̃(Zi)

p(Zi)
, (8.3)

which is known as the Horvitz-Thompson estimator [Horvitz and Thomp-
son, 1952]. This setting corresponds to the assumption of covariate shift
[e.g., Shimodaira, 2000, Quionero-Candela et al., 2009, Ben-David et al.,
2010]; see also Sections 5.2 and 8.3. The estimator (8.3) is an example of a
weighted likelihood estimator.

(ii) For X = Z, we may estimate the expectation Ẽ [`(Z)] under p̃ using data
sampled from p. Thus, Equation (8.2) reduces to

ξ̂n :=
1
n

n

∑
i=1

`(Zi)
p̃(Zi)

p(Zi)
,
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a formula that is known as importance sampling [e.g., MacKay, 2002,
Chapter 29.2]. The formula can be adapted if p and p̃ are known only up
to constants.

(iii) We will make use of Equation (8.2) in the context of episodic reinforcement
learning. We describe this application in a bit more detail next.

8.2.2 Episodic Reinforcement Learning

Reinforcement learning [e.g Sutton and Barto, 2015] models the behavior of
agents taking actions in a world. Depending on the current state St of the world
and the action At , the state of the world changes according to a Markov decision
process, for example [e.g., Bellman, 1957]; that is, the probability P(St+1 = s) of
entering a new state s depends only on the current state St and action At . Further-
more, the agent will receive some reward Rt+1 that depends on St , At , and St+1; the
sum over all rewards is sometimes called the return, which we write as Y := ∑t Rt .
The way the return Y depends on states and action is unknown to the agent who
tries to improve his strategy (a,s) 7→ π(a |s) := P(At = a |St = s), that is, the con-
ditional of the action he chooses depending on the observational part of the state
of the world. In episodic reinforcement learning, the state is reset after a finite
number of actions (see Figure 8.3). In Section 8.2.3, we consider the example of

S1 S2 S3 S4

A1 A2 A3

H Y

Figure 8.3: The graph describes an episodic reinforcement learning problem. The action
variables Ai influence the system’s next state Si+1. The variable Y describes the output
or return that we receive after one episode. This return Y may depend on the actions,
too (edges omitted for clarity); it is often modelled as the (possibly weighted) sum of
rewards that are received after each decision; see Section 8.2.3. The whole system can be
confounded by an unobserved variable H. The bold, red edges indicate the conditionals
that the player can influence, that is, the strategy. Equation (8.4) estimates the expected
outcome Ẽ[Y ] under a strategy π̃ from data obtained using strategy π . The equation still
holds, when there are additional edges from the actions A to H and/or Y .
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blackjack. In the example of Figure 8.3, the player makes K = 3 decisions, after
which the cards are reshuffled. Then, a new episode starts.

Suppose that we play n games under a certain strategy (a,s) 7→ π(a |s), and each
game is an episode. This function π does not depend on the number of “moves”
we have played so far but just on the value of the state. As long as this strategy
assigns a positive probability to any action, Equation (8.2) allows us to estimate
the performance of a different strategy (a,s) 7→ π̃(a |s).

ξ̂n,ERL :=
1
n

n

∑
i=1

Y i ∏
K
j=1 π̃(Ai

j |Si
j)

∏
K
j=1 π(Ai

j |Si
j)
. (8.4)

This can be seen as a Monte Carlo method for off-policy evaluation [Sutton and
Barto, 2015, Chapter 5.5]. In practice, the estimator (8.4) often has large variance;
in continuous settings the variance may even be infinite. It has been suggested to
reweight [Sutton and Barto, 2015] or to disregard the (five) largest weights [Bottou
et al., 2013] to trade off variance for bias. Bottou et al. [2013] additionally compute
confidence intervals and gradients in the case of parametrized densities. The latter
are important if one wants to search for optimal strategies.

We now briefly discuss two examples, in which exploiting the causal structure
leads to an improved statistical performance of the learning procedure. We re-
gard them as interesting examples that shed some light on the relationship between
reinforcement learning and causality.

8.2.3 State Simplification in Blackjack

The methodology proposed in Section 8.2.2 can be used to learn how to play black-
jack (a card game). We pretend that a player enters a casino and starts playing
blackjack knowing neither the objective of the game nor the optimal strategy; in-
stead, he applies a random strategy. At each point in the game, the player is asked
which of the legal actions he wants to take, and after the game has finished the
dealer reveals how much money the player won or lost. After a while the player
may update his strategy toward decisions that proved to be successful and continue
playing. From a mathematical point of view, blackjack is solved. The optimal
strategy (for infinitely many decks) was discovered by Baldwin et al. [1956] and
leads to an expectation of E[Y ]≈−0.006e for a player betting 1e.

How does causality come into play? We have assumed that the player is unaware
of the precise rules of blackjack; maybe he knows, however, that the win or loss
is determined only by the values of the cards and not their suits; that is, the rules
do not distinguish between a queen of clubs and a queen of hearts. The player can
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S1 S2 S3 S4

F1 F2 F3 F4

R1 R2 R3 R4

A1 A2 A3

Y

Figure 8.4: Here, there exist variables F1, . . . ,F4 that contain all relevant information about
the states S1, . . . ,S4 in the sense that Equations (8.5) and (8.6) hold. Equation (8.6) is not
represented in the graph. Then, it suffices if the actions A j depend on Fj−1 (red, solid lines)
rather than S j−1 (red, dashed lines). In the blackjack example, the S j’s encode the dealer’s
hand and player’s hand including suits, while the Fj encode the same information except
for suits (suits do not have an influence on the outcome of blackjack). Since Fj take fewer
values than S j, the optimal strategy becomes easier to learn.

then immediately conclude that the optimal strategy does not depend on the suit.
This comes with an obvious advantage when searching for the optimal strategy:
the number of relevant state spaces and therefore the space of possible strategies
reduces significantly. Figure 8.4 depicts this argument: the variables St contain all
information, whereas the variables Ft do not contain suits. For example,

S3 = (Player: ♥K,♠5,♦4; Dealer: ♦K)

F3 = (Player: K, 5, 4; Dealer: K).

Since the final result Y depends only on (F1, . . . ,F4) and not on the “full state”
(S1, . . . ,S4), the actions may be chosen to depend on the F variables. Similarly,
one may exploit that the order of the cards does not matter either. More formally,
we have the following result:

Proposition 8.1 (State simplification) Suppose that we are interested in the re-
turn Y := ∑ j R j, and all variables are discrete. Assume that there is a function f
such that for all j and for Fj := f (S j), we have

R j ⊥⊥ S j |Fj,A j, (8.5)
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and the full states do not matter for the change of states in the following sense: for
all s j and for all s j−1, s◦j−1 with f (s j−1) = f (s◦j−1)

p( f (s j) |s j−1) = p( f (s j) |s◦j−1). (8.6)

Then the optimal strategy (a,s) 7→ πopt(a |s) depends only on Fj and not on S j.
There exists

πopt ∈ argmax
π

E[Y ],

such that

πopt(a j |s j−1) = πopt(a j |s◦j−1) ∀s j−1,s◦j−1 : f (s j−1) = f (s◦j−1).

This result is particularly helpful if Fj takes fewer values than S j. The proof is
provided in Appendix C.11. In the blackjack example, Equation (8.6) states that
the probability of drawing another king depends only on the values of the cards
drawn before (the number of kings in particular), not their suits.

8.2.4 Improved Weighting in Advertisement Placement

A related argument is used by Bottou et al. [2013] for the optimal placement of
advertisements. Consider the following simplified description of the system. A
company, which we will refer to as the publisher, runs a search engine and may
want to display advertisements in the space above the search results, the main-
line. Only if a user clicks on an ad does the publisher receive money from the
corresponding company. Before displaying the ads, the publisher sets the mainline
reserve A, a real-valued parameter that determines how many ads are shown in the
mainline. In most systems, the number of mainline ads F varies between 0 and 4,
that is, F ∈ {0,1,2,3,4}. The mainline reserve A usually depends on many vari-
ables (e.g., search query, date and time of the query, location), that we call the state
S. If the search query indicates that the user intends to buy new shoes, for example,
one may want to show more ads compared to when a user is looking for the time
of the next service at church. We can model the system as episodic reinforcement
learning with episodes of length 1.2 The return Y equals the number of clicks per
episode; its value is either 0 or 1. The question how to choose an optimal mainline
reserve A then corresponds to finding the optimal strategy (a,s) 7→ πopt(a|s). Fig-
ure 8.5 shows a picture of the simplified problem. The state S contains information

2In reality, the systems are usually more complicated. For example, in an auction-like procedure,
the advertisers place bids on certain search queries, which then influence the price for a click.
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S F

A

H Y

Figure 8.5: Example for the placement of advertisements. The target variable Y indicates
whether a user has clicked on one of the shown ads. H (unknown) and S (known) are state
variables and the action A corresponds to the mainline reserve, a real-valued parameter that
determines how many ads are shown in the mainline. F is a discrete variable indicating
the (known) number of ads placed in the mainline. Although the conditional p(a |s) is
randomized over, we may use p( f |s) for the reweighting (see Proposition 8.2).

about the user that is available to the publisher. The hidden variable H contains
unknown user information (e.g., his intention), the action A is the mainline reserve,
and Y is the event whether or not a person clicks on one of the ads. Finally, F is
the discrete variable that says, how many ads are shown. Evaluating new strategies
(a,s) 7→ p̃(a |s), corresponds to applying Equation (8.4):

ξ̂n,ERL :=
1
n

n

∑
i=1

Y i p̃(Ai |Si)

p(Ai |Si)
.

(Here, we write p(a |s) rather than π(a |s) for notational convenience.) We can
now benefit from the following key insight. Whether a person clicks on an ad
depends on the mainline reserve A but only via the value of F . The user never
sees the real-valued parameter A. This is a somewhat trivial observation, when we
think about the causal structure of the system (see Figure 8.5). Exploiting this fact,
however, we can use a different estimator

1
n

n

∑
i=1

Y i p̃(F i |Si)

p(F i |Si)
;

see Proposition 8.2. And since F is a discrete variable taking values between 0
and 4, say, this usually leads to weights that are much better behaved. In practice,
the modification may reduce the size of confidence intervals considerably [Bottou
et al., 2013, Section 5.1]. As in Section 8.1, we can exploit our knowledge of the
causal structure to improve statistical performance. More formally, the procedure
is justified by the following proposition:
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Method Training data from Test domain
Domain generalization (X1,Y 1), . . . ,(XD,Y D) T := D+1
Multi-task learning (X1,Y 1), . . . ,(XD,Y D) T ∈ {1, . . . ,D}
Asymmetric multi-task learning (X1,Y 1), . . . ,(XD,Y D) T := D

Table 8.1: In domain generalization, the test data come from an unseen domain, whereas
in multi-task learning, some data in the test domain(s) are available.

Proposition 8.2 (Improved weighting) Suppose there is a density p over X =
(A,F,H,S,Y ) that is entailed by an SCM C with graph shown in Figure 8.5. Assume
further that the density p̃ is entailed by an SCM C̃ that corresponds to an interven-
tion in A of the form do

(
A := f̃ (S, ÑA)

)
and satisfies p̃( f |s) = 0 if p( f |s) = 0 and

p̃(a |s) = 0 if p(a |s) = 0. We then have

ẼY =
∫

y
p̃(a |s)
p(a |s)

p(x) dx =
∫

y
p̃( f |s)
p( f |s)

p(x) dx.

The proof can be found in Appendix C.12. In general, the condition of the non-
vanishing densities is indeed necessary: if there is a set of a and s values (with
non-vanishing Lebesgue measure) that belong to the support of p̃ and contribute to
the expectation of Y , there must be a non-vanishing probability under p to sample
data in this area.

8.3 Domain Adaptation

Domain adaptation is another machine learning problem that is naturally related to
causality [Schölkopf et al., 2012]. Here, we will relate domain adapation to what
we called invariant prediction in “Different Environments” in Section 7.2.5. We do
not claim that this connection, in its current form, yields major improvements, but
we believe that it could prove to be useful for developing a novel methodology in
domain adaptation.

Let us assume that we obtain data from a target variable Y e and d possible pre-
dictors Xe = (Xe

1 , . . . ,X
e
d ) in different domains e ∈ E = {1, . . . ,D} and that we are

interested in predicting Y . Adapting to widely used notation, we use the terms
“domain” or “task.” Table 8.1 describes a taxonomy of three problems in domain
adaptation that we consider here.

Our main assumption is that there exists a set S∗ ⊆ {1, . . . ,d} such that the con-
ditional Y e |Xe

S∗ is the same for all domains e ∈ E , including the test domain, that
is, for all e, f ∈ E and for all xS∗

Y e |Xe
S∗ = xS∗ and Y f |X f

S∗ = xS∗ have the same distribution. (8.7)
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In Sections 7.1.6 and 7.2.5 we have considered a similar setup, where we used the
term “environments” rather than “domains” and called the property (8.7) “invariant
prediction.” We have argued that if there is an underlying SCM and if the environ-
ments correspond to interventions on nodes other than the target Y , property (8.7)
is satisfied for S∗ = PAY (cf. also our discussion of Simon’s invariance criterion
in Section 2.2). Property (8.7) may also hold, however, for sets other than the
causal parents. Since our goal is prediction, we are most interested in sets S∗ that
satisfy (8.7) and additionally predict Y as accurately as possible. Let us for now
assume, that we are given such a set S∗ (we will return to this issue later) and point
at how the assumption (8.7) relates to domain adaptation.

In settings of covariate shift [e.g., Shimodaira, 2000, Quionero-Candela et al.,
2009, Ben-David et al., 2010], one usually assumes that the conditional Y e |Xe = x
remains invariant over all tasks e. Assumption (8.7) means that covariate shift
holds for some subset S∗ of the variables and thus constitutes a generalization of
the covariate shift assumption.

For domain generalization, and if the set S∗ is known, we can then apply tradi-
tional methods for covariate shift for this subset S∗. For example, if the supports
of the data in input space are overlapping (or the system is linear), we may use the
estimator fS∗(XT

S∗) with fS∗(x) :=E
[
Y 1 |X1

S∗ = x
]

in test domain T . One can prove
that this approach is optimal in an adversarial setting, where the distributions in
the test domain may be arbitrarily different from the training domains, except for
the conditional distribution (8.7) that we require to remain invariant [Rojas-Carulla
et al., 2016, Theorem 1]. In multi-task learning, it is less obvious how to exploit
the knowledge of such a set S∗. In practice, one needs to combine information
gained from pooling the tasks and regressing Y on S∗ with knowledge obtained
from considering the test task separately [Rojas-Carulla et al., 2016].

If the set S∗ is unknown, we again propose to search for sets S that satisfy (8.7)
over available domains. When learning the causal predictors, one prefers to stay
conservative, and the method of invariant causal prediction [Peters et al., 2016]
therefore outputs the intersection of all sets S satisfying (8.7); see Equation (7.5).
Here, we are interested in prediction instead. Among all sets that lead to invariant
prediction, one may therefore choose the set S that leads to the best predictive
performance, which is usually one of the larger of those sets. The same applies if
there are different known sets S that all satisfy (8.7). If the data are generated by
an SCM and the domains correspond to different interventions, the set S with the
best predictive power that satisfies (8.7) can, in the limit of infinite data, be shown
to be a subset of the Markov blanket of Y (see Problem 8.5).
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8.4 Problems

Problem 8.3 (Half-sibling regression) Consider the DAG in Figure 8.1. The fact
that X provides additional information about Q on top of the one provided by Y
follows from causal faithfulness. Why?

Problem 8.4 (Inverse probability weighting) Consider an SCM C of the form

Z := NZ

Y := Z2 +NY ,

with NY ,NZ
iid∼N (0,1) and an intervened version C̃ with

do
(
Z := ÑZ

)
,

where ÑZ ∼N (2,1).

a) (optional) Compute E[Y ] := EPC [Y ] and Ẽ[Y ] := EPC̃ [Y ].

b) Draw n = 200 i.i.d. data points from the SCM C and implement the estima-
tor (8.3) for estimating Ẽ[Y ].

c) Compute the estimate in b) and the empirical variance of the weights ap-
pearing in (8.3) for increasing sample size n between n = 5 and n = 50,000.
What do you conclude?

Problem 8.5 (Invariant predictors) We want to justify the last sentence in Sec-
tion 8.3. Consider a DAG over variables Y , E, and X1, . . . ,Xd , in which E (for
“environment”) is not a parent of Y and does not have any parents itself. Denote
the Markov blanket of Y by M. Prove that for any set S⊆ {X1, . . . ,Xd} with

Y ⊥⊥ E |S

there is another set Snew ⊆M such that

Y ⊥⊥ E |Snew and Y ⊥⊥ (S\Snew) |Snew.





9

Hidden Variables

So far, we assumed that all variables from the model have been measured (except
for the noises). Since in practice, we are choosing the set of random variables
ourselves, we need to define a concept of “causally relevant” variables. In Sec-
tion 9.1 we therefore introduce the terms “causal sufficiency” and “interventional
sufficiency.” But even if we leave aside the details of the precise definition, it is
apparent that in most practical applications many causally relevant variables will
be unobserved. Simpson’s paradox (Section 9.2) describes how ignoring hidden
confounding can lead to wrong causal conclusions. In linear settings, a structure
that is often referred to as an instrumental variable can make the regression co-
efficient, which corresponds to the causal effect (see Example 6.42), identifiable
(Section 9.3). It is an active field of research to find good graphical representations
for SCMs with hidden variables, in particular those that encode the conditional in-
dependence structure; we will present some of the solutions in Section 9.4. Finally,
hidden variables lead to constraints appearing in the observed distribution that go
beyond conditional independences (Section 9.5). We briefly discuss how these con-
straints could be used for structure learning but do not provide any methodological
details. For more historical notes on the treatment of hidden variables, we refer to
Spirtes et al. [2000, Section 6.1].

9.1 Interventional Sufficiency

A set of variables X is usually said to be causally sufficient if there is no hidden
common cause C /∈ X that is causing more than one variable in X [e.g., Spirtes,
2010]. While this definition matches the intuitive meaning of the set of “relevant”
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variables, it uses the concept of a “common cause” and should therefore be under-
stood relative to a larger set of variables X̃ ⊇ X (for which, again, we might want
to define causal sufficiency). In the structural causal model corresponding to this
larger set X̃, a variable C is a common cause of X and Y if there is a directed path
from C to X and Y that does not include Y and X , respectively. Common causes
are also called confounders and we use these terms interchangeably.

We propose a small modification of causal sufficiency that we call interventional
sufficiency, a concept that is based on falsifiability of SCMs; see Section 6.8.

Definition 9.1 (Interventional sufficiency) We call a set X of variables inter-
ventionally sufficient if there exists an SCM over X that cannot be falsified as an
interventional model; that is, it induces observational and intervention distribu-
tions that coincide with what we observe in practice.

We believe that this concept is intuitively appealing since it describes when a set
of variables is large enough to perform causal reasoning, in the sense of computing
observational and intervention distributions.

It should be intuitive that considering two variables is usually not sufficient if
there exists a latent common cause. The two variables are causally insufficient by
definition, and Simpson’s paradox in Section 9.2 (see also Example 6.37) shows
that in general these two variables are not interventionally sufficient either. In fact,
the paradox drives the statement to an extreme: an SCM over the two observed
variables that ignores confounding does not only entail the wrong intervention dis-
tributions, it can even reverse the sign of the causal effect: a treatment can look
beneficial although it is harmful; see (9.2).

Sometimes, however, we can still compute the correct intervention distributions
even in the presence of latent confounding. The set of variables in the following
example is interventionally sufficient but causally insufficient.

Example 9.2 Consider the following SCM

Z := NZ

X := 1Z≥2 +NX

Y := Z mod2+X +NY

with NZ ∼U({0,1,2,3}) being uniformly distributed over {0,1,2,3} and NX ,NY
iid∼

N (0,1); see Figure 9.1 (left). While variables X and Y are clearly causally insuffi-
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Z

X Y

Z1 Z2

X Y

Figure 9.1: Both graphs represent interventionally equivalent SCMs for the model de-
scribed in Example 9.2. While only the second representation renders X and Y causally
sufficient, X and Y are interventionally sufficient independently of the representation.

cient,1 one can show that the two variables X and Y are interventionally sufficient.
The reason is that the “confounder” Z consists of two independent parts: Z1 := 1Z≥2
is the first bit of the binary representation of Z, and Z2 := Z mod2 is the second bit.
In this sense, we can separate the “confounder” into the independent variables Z1
and Z2, with Z1 influencing X , and Z2 influencing Y ; see Figure 9.1.

In general, we have the following relationship between causal and interventional
sufficiency (see Appendix C.13 for a proof):

Proposition 9.3 (Interventional sufficiency and causal sufficiency) Let C be an
SCM for the variables X that cannot be falsified as an interventional model.

(i) If a subset O⊆ X is causally sufficient, then it is interventionally sufficient.

(ii) In general, the converse is false; that is, there are examples of intervention-
ally sufficient sets O⊆ X that are not causally sufficient.

Furthermore, Example 9.2 shows that there cannot be a solely graphical criterion
for determining whether a subset of the variables are interventionally sufficient.
For many SCMs with a structure similar to Figure 9.1 (left), X and Y are inter-
ventionally insufficient. However, the following remark shows that omitting an
“intermediate” variable preserves interventional sufficiency.

Remark 9.4 We have the following three statements.

(i) Assume that there is an SCM over X ,Y,Z with graph X→Y → Z and X 6⊥⊥ Z
that induces the correct interventions. Then X and Z are interventionally
sufficient due to the SCM over X ,Z satisfying X → Z.

1Here, the hidden common cause Z not only points into X and Y but also has a total causal effect
on both of them; see Definition 6.12.
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(ii) Assume that there is an SCM C over X ,Y,Z that induces the correct interven-
tions with graph X → Y → Z and additional X → Z and assume further that
PC

X ,Y,Z is faithful with respect to this graph; see also (iii). Then, again, X and
Z are interventionally sufficient due to the SCM over X ,Z satisfying X → Z.

(iii) If the situation is the same as in (ii) with the difference that

PC
Z |X=x = PC;do(X :=x)

Z = PC
Z

for all x (in particular, PC
X ,Y,Z is not faithful with respect to the graph). Then,

X and Z are interventionally sufficient due to the SCM over X ,Z with the
empty graph. Note that the counterfactuals may not be represented correctly.

The proof of these statements is left to the reader (see Problem 9.10).

Whenever we find an SCM over the observed variables that is interventionally
equivalent to the original SCM over all variables, we may want to call the former
one a marginalized SCM. We have seen that there is no solely graphical criteria for
determining the structure of a marginalized SCM. Instead, some information about
the causal mechanisms, that is, the specific form of the assignments, is needed.
Bongers et al. [2016] studies marginalizations of SCMs in more detail. The key
idea is to start with the original SCM and to consider only the structural assign-
ments of the observed variables. One then repeatedly plugs in the assignments of
the hidden variables whenever they appear on the right-hand side. This yields an
SCM with multivariate, possibly dependent noise variables. In some cases, it is
then possible to choose an interventionally equivalent SCM with univariate noise
variables.

9.2 Simpson’s Paradox

The kidney stone data set in Example 6.16 is well known for the following reason.
We have

PC(R = 1 |T = A)< PC(R = 1 |T = B) but

PC;do(T :=A)(R = 1)> PC;do(T :=B)(R = 1); (9.1)

see Example 6.37. Suppose that we have not measured the variable Z (size of the
stone) and furthermore that we do not even know about its existence. We might
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then hypothesize that T → R is the correct graph. If we denote this (wrong) SCM
by C̃, we can rewrite (9.1) as

PC̃;do(T :=A)(R = 1)< PC̃;do(T :=B)(R = 1) but

PC;do(T :=A)(R = 1)> PC;do(T :=B)(R = 1). (9.2)

Due to the model misspecification, the causal statement gets reversed. Although
A is the more effective drug, we propose to use B. But even if we knew about
the common cause Z, is it possible that there is yet another confounding variable
that we did not correct for? If we are unlucky, this is indeed the case and we
have to reverse the conclusion once more if we include this variable. In principle,
this could lead to an arbitrarily long sequence of reversed causal conclusions (see
Problem 9.11).

This example shows how careful we have to be when writing down the under-
lying causal graph. In some situations, we can infer the DAG from the protocol
describing the acquisition of the data. If the medical doctors assigning the treat-
ments, for example, did not have any knowledge about the patient other than the
size of the kidney stone, there cannot be any confounding factor other than the size
of the stone.

Summarizing, the Simpson’s paradox is not so much of a paradox but rather a
warning of how sensitive causal reasoning can be with respect to model misspec-
ifications. Although we have phrased the example in a setting with confounding,
it can also occur as a result of selection bias (Example 6.30) that has not been
accounted for.

9.3 Instrumental Variables

Instrumental variables date back to the 1920s [Wright, 1928] and are widely used
in practice [see, e.g., Imbens and Angrist, 1994, Bowden and Turkington, 1990,
Didelez et al., 2010]. There exist numerous extensions and alternative methods;
we focus on the essential idea. Consider a linear Gaussian SCM with the graph
shown in Figure 9.2 (left). Here, the coefficient α in the structural assignment

Y := αX +δH +NY

is the quantity of interest (see Equation (6.18) in Example 6.42); it is sometimes
called the average causal effect (ACE). It is not directly accessible, however, be-
cause of the hidden common cause H. Simply regressing Y on X and taking the
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regression coefficient generally results in a biased estimator for α:

cov[X ,Y ]
var[X ]

=
α var[X ]+δγ var[H]

var[X ]
= α +

δγ var[H]

var[X ]
.

Instead, we may be able to exploit an instrumental variable — if it exists. For-
mally, we call a variable Z in an SCM an instrumental variable for (X ,Y ) if (a)
Z is independent of H, (b) Z is not independent of X (“relevance”), and (c) Z ef-
fects Y only through X (“exclusion restriction”). For our purposes, it suffices to
consider the example graph shown in Figure 9.2 (left) that satisfies all of these
assumptions. Note, however, that other structures do, too. For example, one can
allow for a hidden common cause between Z and X . In practice, one usually uses
domain knowledge to argue why conditions (a), (b), and (c) hold.

In the linear case, we can exploit the existence of Z in the following way. Because
(H,NX) is independent of Z, we can regard γH +NX in

X := βZ + γH +NX

as noise. It becomes apparent that we can therefore consistently estimate the coef-
ficient β and therefore have access to βZ (which, in the case of finitely many data,
is approximated by fitted values of Z). Because of

Y := αX +δH +NY = α (βZ)+(αγ +δ )H +NY ,

we can then consistently estimate α by regressing Y on βZ. Summarizing, we first
regress X on Z and then regress Y on the predicted values β̂Z (predicted from the
first regression). The average causal effect α becomes identifiable in the limit of
infinite data. This method is commonly referred to as “two-stage least squares.”
It makes use of linear SCMs, and the above-mentioned assumptions: (a) indepen-
dence between H and Z, (b) non-zero β (in the case of small or vanishing β , Z is
called a “weak instrument”), and (c) the absence of a direct influence from Z to Y .

Identifiability is not restricted to the linear setting, however. We now mention
only four such results, even though there are many more [e.g., Hernán and Robins,
2006].

(i) It is not difficult to see that the method of two-stage least squares still works
if X depends on Z and H in a nonlinear but additive way; see Problem 9.12.

(ii) If the variables Z, X , and Y are binary, the ACE is defined as

PC;do(X :=1)(Y = 1)−PC;do(X :=0)(Y = 1).
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Z X Y

H

αβ
δγ

Z1

X

Z2

Y

Figure 9.2: Left: setting of an instrumental variable (Section 9.3). A famous example
is a randomized clinical trial with non-compliance: Z is the treatment assignment, X the
treatment and Y the outcome. Right: Y-structure; see Section 9.4.1.

Balke and Pearl [1997] provide (tight) lower and upper bounds for the ACE
without further assumptions on the relation between Y on X and H, for ex-
ample. These bounds can be rather uninformative or they can collapse to a
single point. In the latter case, we call the ACE identifiable.

(iii) Wang and Tchetgen Tchetgen [2016] show that, still in the case of binary
treatment, the ACE becomes identifiable if the structural assignment for Y is
additive in X and H [Wang and Tchetgen Tchetgen, 2016, Theorem 1].

(iv) For identifiability in the continuous case, see Newey [2013] and references
therein.

Most concepts involving instrumental variables, such as the linear setting described
previously, extend to situations, in which observed covariates W cause some (or all)
relevant variables. For example, in Figure 9.2 (left) we can allow for a variable W
pointing at Z, X , and Y . The assumptions (a), (b), and (c), as well as the procedures,
are then modified and always include conditioning on W . Brito and Pearl [2002b]
extend the idea to multivariate Z and X (“generalized instrumental variables”).

9.4 Conditional Independences and Graphical
Representations

In causal learning, we are trying to reconstruct the causal model from observational
data. We have seen several identifiability results that allow us to identify the graph
structure of an SCM over variables X from the observational distribution PX. Let
us now turn to an SCM C over variables X = (O,H) that includes observed vari-
ables O and hidden variables H. We may then still ask whether the graph structure
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of C becomes identifiable from the distribution PO over the observed variables, and
if so, how we can identify it.

In the case without hidden variables, we discussed in Section 7.2.1 how one
can learn (parts of) the causal structure under the Markov condition and faith-
fulness. These assumptions guarantee a one-to-one correspondence between d-
separation and conditional independence, and we can therefore test for conditional
independence in PX and reconstruct properties of the underlying graph. Recall
that independence-based methods, in principle, search over the space of DAGs and
output a graph (or an equivalence class of graphs) representing exactly the set of
conditional independences found in the data.

For causal learning with hidden variables, we would in principle like to search
over the space of DAGs with latent variables. This comes with additional difficul-
ties, however. We do not know the size of H and if we therefore do not restrict
the number of hidden variables, there is an infinite number of graphical candidates
that we have to search over. Furthermore, there is a statistical argument against this
approach: the set of distributions that are Markovian and faithful with respect to
a DAG forms a curved exponential family, which justifies the use of the BIC, for
example [Haughton, 1988]; the set of distributions that are Markovian and faithful
with respect to a DAG with latent variables, however, does not [Geiger and Meek,
1998]. If searching over DAGs with latent variables is infeasible, can we instead
represent each DAG with latent variables by a marginalized graph over the ob-
served variables, possibly using more than one type of edge, and then search over
those structures? We have seen in Section 9.1 that such an approach also comes
with a difficulty: the marginalized graph should depend on the original underlying
SCM, and it is not sufficient to consider the information contained in the original
graph. As mentioned previously, Bongers et al. [2016] studies marginalizations of
SCMs in more detail.

For these reasons, we consider in the remainder of this section a slightly shifted
problem: instead of checking whether a full distribution could have been induced
by a certain DAG structure with latent variables, we restrict ourselves on certain
types of constraints. For example, we consider all distributions that satisfy the
same set of conditional independence statements over the observed variables O
(implicitly assuming the Markov condition and faithfulness). We then ask how we
can represent this set of conditional independences.

A straightforward solution would be to assume that the entailed distribution PO
is Markovian and faithful with respect to a DAG without hidden variables, and,
similarly as before, then output a class of DAGs that represents the conditional
independence in the distribution of the observed variables. Representing the con-
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A B C

H

true DAG

A B C

DAG
(PC output)

A B C

MAG

A B C

PAG (mod. PC/
FCI output)

Figure 9.3: Starting with an SCM on the left-hand side, the three graphs on the right encode
the set of conditional independences (A⊥⊥C). Due to an erroneous causal interpretation,
the DAG is not desirable as an output of a causal learning method. In this example, the
IPG and the latent projection (ADMG) are equal to the MAG.

A B C D

H

Figure 9.4: This example is taken from Richardson and Spirtes [2002, Figure 2(i)]. It
shows that DAGs are not closed under marginalization. There is no DAG over nodes
O = {A,B,C,D} that encodes all conditional independences from the graph including H.

ditional independence structure PO with a DAG has two well-known drawbacks:
(1) Representing the set of conditional independences with a DAG over the ob-
served variables can lead to causal misinterpretations, and (2), the set of distribu-
tions whose pattern of independences correspond to the d-separation statements in
a DAG is not closed under marginalization [Richardson and Spirtes, 2002].

For (1), consider an SCM that entails a distribution PA,B,C,H that is Markovian and
faithful with respect to the corresponding DAG shown in Figure 9.3 (left). The only
(conditional) independence relation that can be found in the observed distribution
PA,B,C is A⊥⊥C and therefore the DAG in Figure 9.3 (second from left) represents
this conditional independence perfectly; in this sense, it could be seen as the output
of PC. The causal interpretation, however, is erroneous. While in the original SCM
an intervention on C does not have any effect on B, the output of PC suggests
that there is a causal effect from C to B. Regarding (2), Figure 9.4 (it shows a
graph that is taken from Richardson and Spirtes [2002]) shows the structure of an
SCM over variables X = (O,H) whose distribution is Markovian and faithful with
respect to a DAG G (G represents all conditional independences in X), that satisfies
the following property. There are no DAGs over O representing the conditional
independences that can be found in PO. In this sense, DAGs are not closed under
marginalization.
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The following subsection discusses some ideas that suggest graphs (over O) for
representing conditional independences. Note, however, that they do not necessar-
ily come with an intuitive causal meaning. It may be difficult to infer properties
of the structure of the underlying SCM over X = (O,H) from the graphical ob-
jects. Graphical criteria for adjustment, as in Section 6.6, for example, need to be
developed and proved for each type of graph again.

9.4.1 Graphs

Before, we have used graphs to represent the structural relationships of SCMs; see
Definitions 3.1 and 6.2. The goal of this section is different: here, the aim is to
use graphs to represent constraints in the distribution induced by the SCM. In this
Section 9.4, we mainly consider conditional independence relations and discuss
other constraints in more detail in Section 9.5. We have seen that in the presence
of hidden variables, DAGs are a poor choice for representing conditional indepen-
dences. These shortcomings of DAGs initiated the development of new graphical
representations in causal inference. Richardson and Spirtes [2002] introduce max-
imal ancestral graphs (MAGs), for example, and show that they form the smallest
superclass of DAGs that is closed under marginalization (see the preceding discus-
sion). These are mixed graphs and contain directed and bidirected edges.2 MAGs
come with a slightly different separation criterion: instead of d-separation, one now
looks at m-separation [Richardson and Spirtes, 2002]. Then, for each DAG with
hidden variables there is a unique MAG over the observed variables that represents
the same set of conditional independences (by m-separation); a simple construction
protocol is provided in Richardson and Spirtes [2002, Section 4.2.1], for an exam-
ple see Figure 9.3. This mapping is not one-to-one. Each MAG can be constructed
by infinitely many different DAGs (containing an arbitrary number of hidden vari-
ables). As for DAGs, the Markov condition relates graphical separation statements
in a MAG with conditional independences. Different MAGs representing the same
set of m-separation, are summarized within a Markov equivalence class [Zhang,
2008b]; this equivalence class itself is often represented by a partially ancestral
graph (PAG); see Table 9.1 for an overview. In PAGs, edges can end with a cir-
cle, which represents both possibilities of an arrow’s head and tail; see Figure 9.3.
Ali et al. [2009] provide graphical criteria that determine whether two MAGs are
Markov equivalent.

2In fact, they may even contain undirected edges and can therefore model selection bias. We refer
to Richardson and Spirtes [2002] for details.
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Example 9.5 (Y-structure) Given that even a single MAG can represent an ar-
bitrary number of hidden variables, one may be wondering, whether a PAG, con-
structed from a DAG with hidden variables, ever contains non-trivial causal infor-
mation. In Figure 9.3, for example, the PAG does not specify whether there is a
directed path between C and B or a hidden variable with directed path both into
C and B. Figure 9.2 (right) shows the example of a Y-structure (Z1, Z2, and Y are
not directly connected). Consider now an SCM over an arbitrary number of vari-
ables that contains four variables X , Z1, Z2, and Y over which it induces the same
conditional independences as the Y-structure does. We can then conclude that the
corresponding PAG contains a directed edge from X → Y . In addition, the causal
relation between X and Y has to be unconfounded [e.g., Mani et al., 2006, Spirtes
et al., 2000, Figure 7.23]. Any SCM, in which X and Y are confounded or in which
X is not an ancestor of Y , leads to a different set of conditional independences.

We have mentioned that graphical objects such as MAGs are primarily con-
structed to represent conditional independences and not to visualize SCMs (this
is how we have introduced graphs in Definition 3.1). Thus, causal semantics be-
comes more complicated. In a MAG, for example, an edge A→ B means that in
the underlying DAG (including the hidden variables), A is an ancestor of B and B
is not an ancestor of A; that is, the ancestral relationships are preserved. The PAG
in Figure 9.3, for example, should be interpreted as follows: “In the underlying
DAG, there could be a directed path from C to B, a hidden common cause, or a
combination of both.” As a consequence, causal reasoning in such graphs, that
is, computing intervention distribution, becomes more involved, too [e.g., Spirtes
et al., 2000, Zhang, 2008b]. Perkovic et al. [2015] characterize valid adjustment
sets (Section 6.6) that work not only for DAGs but also for MAGs.

As an alternative to MAGs and PAGs, one may consider induced path graphs
(IPGs) and (completed) partially oriented induced path graphs (POIPGs) that
can be used for representing sets of IPGs [Spirtes et al., 2000, Section 6.6]. These
graphs have initially been used to represent the output of the fast causal inference
(FCI) algorithm; see Section 9.4.2. Consider a distribution that is Markovian and
faithful with respect to a MAG. Since every MAG is an IPG but not vice versa, the
Markov equivalence class of the MAG is contained in the Markov equivalence class
of the corresponding IPG, and thus a PAG usually contains more causal information
than a POIPG [Zhang, 2008b, Appendix A].

Even yet another possibility is to start with the original DAG containing hidden
variables and then apply a latent projection [see Pearl, 2009, Verma and Pearl,
1991, Definition 2.6.1 and “embedded patterns”, respectively]. This operation
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takes a graph G with observed and hidden variables and constructs a new graph-
ical object G̃ over the observed variables. The precise definition can be found in
Shpitser et al. [2014, Definition 4], for example. The resulting graph structure is
called an acyclic directed mixed graph (ADMG) and contains both directed and
bidirected edges. Again, the m-separation leads to a Markov property [Richardson,
2003]. Instead of searching over DAGs with latent variables, we may now search
over ADMGs.

We will see in Section 9.5 that distributions over the observed variables from a
DAG with latent variables satisfy constraints other than conditional independences.
ADMGs obey the possibility to take some of those constraints into account in the
following way. The idea is to define a nested Markov property [Richardson et al.,
2012, 2017, Shpitser et al., 2014], such that a distribution is nested Markovian
with respect to an ADMG if not only some conditional independences hold that
are implied by the graph structure but also other constraints; see Section 9.5.1,
for example. It turns out that even the nested Markov property does not encode
all constraints (in the discrete case they do encode all equality constraints, though
[Evans, 2015]). We therefore have [Shpitser et al., 2014]:

{PO : PO,V induced by a DAG G with latent variables}
⊆ {PO : PO is nested Markovian with respect to corresponding ADMG}
⊆ {PO : PO is Markovian with respect to corresponding ADMG}.

For ADMGs with discrete data and the ordinary Markov property, Evans and
Richardson [2014] provide a parametrization. This parametrization can be ex-
tended to nested Markov models and it can be used to compute (constraint) max-
imum likelihood estimators [Shpitser et al., 2012]. ADMGs are called bow-free
if between each pair of nodes there is only one kind of edge. For linear Gaus-
sian models, this subclass of models allows for parameter identifiability [Brito and
Pearl, 2002a]; additionally, there are algorithms that compute maximum likelihood
estimates [Drton et al., 2009a] or perform causal learning [Nowzohour et al., 2015].

Chain graphs consist of directed and undirected edges and do not allow for
partially directed cycles [Lauritzen, 1996, Section 2.1.1]. There is an extensive
body of work on chain graphs; see, for example, Lauritzen [1996] for an overview
and Lauritzen and Richardson [2002] for a causal interpretation. Note that for chain
graphs, different Markov properties have been suggested [Lauritzen and Wermuth,
1989, Frydenberg, 1990, Andersson et al., 2001].

Summarizing, the representation of constraints (so far, we have mainly talked
about conditional independences) using graphs, in particular in the case of hidden
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variables, is a non-trivial task that is still an active field of research; Sadeghi and
Lauritzen [2014] relate several types of mixed graphs and discuss their Markov
properties. Usually, the graphical objects and their corresponding separation crite-
ria are complicated, and it is not trivial to relate the edges to the existence of causal
effects (one may argue that nested Markov models are a step toward simplification
though). It is surprising that despite all the difficulties in some situations (see the
Y-structure in Example 9.5) we are still able to learn causal ancestral relationships.

9.4.2 Fast Causal Inference

We have seen that for structure learning a PAG might be a more sensible output than
a CPDAG. Indeed, it is possible to modify the PC algorithm such that it outputs
a PAG [Spirtes et al., 2000, Section 6.2]. While this simple modification of PC
works fine for many examples, it is not correct in general. At each iteration, the PC
algorithm considers a pair of (currently) adjacent nodes A and B, say, and searches
for a set that d-separates them. To achieve considerable speedups, it searches only
through subsets of the current neighbors of nodes A and B, based on Lemma 7.8(ii)
in Section 7.2.1. In the presence of hidden variables, however, restricting the search
space to subsets of the set of neighbors is not sufficient anymore [Verma and Pearl,
1991, Lemma 3]; Spirtes et al. [2000, Section 6.3] provide an example, for which
the modified PC algorithm fails to find a d-separating set.

The FCI algorithm [Spirtes et al., 2000] resolves this issue. It outputs a PAG rep-
resenting several MAGs. Zhang and Spirtes [2005] and Zhang [2008a] prove that
a slight modification of the original FCI algorithm is complete. That is, its output
is maximally informative. If the conditional independences originate from a DAG
with hidden variables, the output indeed represents the correct corresponding PAG.

Several modifications of FCI lead to significant speedups. Spirtes [2001] sug-
gests to restrict the size of the conditioning set (anytime FCI), and Colombo et al.
[2012] reduce both the number of conditional independence tests and the size of
the conditioning sets (really fast causal inference). Both algorithms can be slightly
less informative than FCI. They are succeeded by FCI+, which is fast and complete
[Claassen et al., 2013].

As an alternative, one might consider to score MAGs or equivalence classes of
MAGs. Such scoring functions exist only for some classes of SCMs, such as linear
SCMs [Richardson and Spirtes, 2002]; also, we are not aware of any efficient way
of searching over this space of MAGs [Mani et al., 2006]. Silva and Ghahramani
[2009] discuss a Bayesian approach for learning mixed graphs.
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A B C D

H

Figure 9.5: Any distribution that is Markovian with respect to this graph satisfies the
Verma constraint (9.3), a non-independence constraint that appears in the marginal distri-
bution over A, B, C, and D; the dashed variable H is unobserved [Verma and Pearl, 1991].

9.5 Constraints beyond Conditional Independence

We have mentioned that models with hidden variables can lead to constraints that
are different from conditional independence constraints. We will mention a few of
them to develop an intuition what kind of constraints we can expect, but we mainly
point to the literature for details; see also Kela et al. [2017] for recent work and
references to much of the earlier work.

9.5.1 Verma Constraints

Verma and Pearl [1991] provide the example shown in Figure 9.5. Any distribution
that is Markovian with respect to the corresponding graph allows for the following
Verma constraint [e.g., Spirtes et al., 2000, Chapter 6.9]. For some function f we
have

∑
b

p(b |a)p(d |a,b,c) = f (c,d). (9.3)

Unlike conditional independence constraints, (9.3) lets us decide whether or not
there is a directed edge from A to D (note that in Figure 9.5 A and D cannot be
d-separated). Although many open questions regarding those algebraic constraints
remain, there has been progress in understanding when such constraints appear
[Tian and Pearl, 2002]. Shpitser and Pearl [2008b] investigate the special subclass
of dormant independences; these are constraints that appear as indepedendence
constraints in intervention distributions.

The question remains how one can exploit those constraints for causal learning.
In the case of binary variables, for example, Richardson et al. [2012, 2017] and
Shpitser et al. [2012] use nested Markov models for the parametrization of such
models and provide a method for computing (constraint) maximum likelihood es-
timators; see also Section 9.4.1. However, nested Markov models do not include
all inequality constraints, which we discuss in the following section.
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XZ Y

H

(a) Causal structure where Z is called an
instrument for X and enables some causal
statements about the effect of X on Y .

X Y

HS T

(b) Causal structure of a famous experi-
ment used by quantum physicists to falsify
assumptions of classical physics; see Sec-
tion 9.5.2.

Figure 9.6: Two important examples of latent structures that entail inequality constraints.

9.5.2 Inequality Constraints

Marginalizing a graphical model over some of its variables induces a large set of
inequality constraints [see, e.g., Kang and Tian, 2006, Evans, 2012, and references
therein]. It would go beyond the scope of this book to mention all the known ones.
Instead, we would like to point out the diversity of fields in which they have been
applied. To this end, we consider two example DAGs containing observed and
unobserved variables that appear in completely different contexts. Note that this
section discusses only inequalities that refer to the observational distributions of
observable variables while the literature contains also inequalities that relate ob-
servational and intervention distribution of observable variables [see, e.g., Balke,
1995, Pearl, 2009, Chapter 8], sometimes also under additional assumptions [Silva
and Evans, 2014, Geiger et al., 2014]. While the former task aims at falsifying a
hypothetical latent structure, the latter one admits statements about interventions
given that the respective DAG is true. To show some inequalities concerning only
observational probabilities, the causal structure in Figure 9.6(a) with binary vari-
ables entails, for instance, that

P(X = 0,Y = 0|Z = 0)+P(X = 1,Y = 1|Z = 1)≤ 1. (9.4)

Inequalities like this have been provided in the literature [Bonet, 2001, eq. (3)] to
test whether a variable is instrumental. This DAG plays a crucial role in analyzing
randomized clinical trials with imperfect compliance, where Z is the instruction to
take a medical drug, X describes whether the patient takes the drug (assume this
can be inferred from a blood test, for example), and Y whether the patient recovers
[see, e.g., Pearl, 2009].

The causal structure shown in Figure 9.6(b) is known to entail, for instance, the
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Clauser-Horne-Shimony-Holt (CHSH) inequality [Clauser et al., 1969]:

E[XY |S =−1,T =−1]+E[XY |S =−1,T = 1]

+E[XY |S = 1,T =−1]+E[XY |S = 1,T = 1]≤ 2 (9.5)

if X ,Y,S,T take values in {−1,1}. Equation (9.5) is a generalization of Bell’s
inequality [Bell, 1964]. The latent common cause may attain arbitrarily many
values, just as the existence of a variable that d-separates {X ,S} from {Y,T} im-
plies (9.5). Remarkably, the CHSH inequality is violated in quantum physics in a
scenario where one would intuitively agree that the underlying causal structure is
the one in Figure 9.6(b). Two physicists A and B at different locations receive parti-
cles from a common source described by H. Variables X and Y describe the results
of dichotomous measurements performed on the particles received by A and B, re-
spectively. S is a coin flip that determines which measurement out of two possible
options is performed by A. Likewise, T is a coin flip determining the measurement
performed by B. The unobserved common cause of X and Y is the common source
of the particles received by A and B. According to a widely accepted interpreta-
tion, the violation of (9.5) observed in experiments [Aspect et al., 1981], shows that
there is no classical random variable H describing the joint state of the incoming
particles such that {S,X} and {T,Y} are conditionally independent, given H. This
is because the state of quantum physical systems cannot be described by values of
random variables. Instead, they are density operators on a Hilbert space.

Information-theoretic inequalities for latent structures have gained interest since
they are sometimes easier to handle than inequalities that refer directly to proba-
bilities [see, e.g., Steudel and Ay, 2015]. Chaves et al. [2014] describe a family
of inequalities for the case of discrete variables that is not complete but can be
generated by the following systematic approach.

First, one starts with a distribution entailed by an SCM over d discrete variables
X := (X1, . . . ,Xd). For a given joint distribution PX1,...,Xd we can define a function

H : 2X→ R+
0

such that H(X j1 , . . . ,X jk) is the Shannon entropy3 of (X j1 , . . . ,X jk). Well-known

3We write H(X j1 , . . . ,X jk ) instead of H
(
(X j1 , . . . ,X jk )

)
for notational convenience and again per-

form set operations on vectors.
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properties of H are the elementary inequalities

H(S∪{X j}) ≥ H(S) (9.6)

H(S∪{X j,Xk}) ≤ H(S∪{X j})+H(S∪{Xk}) (9.7)

H( /0) = 0, (9.8)

where S denotes a subset of X. Inequalities (9.6) and (9.7) are known as mono-
tonicity and submodularity conditions, respectively; see also Section 6.10. Further-
more, inequalities (9.6)–(9.8) are known as polymatroid axioms in combinatorial
optimization, too.

To employ the causal structure, we now recall that S⊥⊥ T |R for all three disjoint
subsets S, T , and R of nodes, for which S and T are d-separated by R. This can be
rephrased in terms of Shannon mutual information [Cover and Thomas, 1991] by

I(S : T |R) = 0, (9.9)

which is equivalent to

H(S∪R)+H(T ∪R) = H(S∪T ∪R)+H(R). (9.10)

Remarkably, (9.10) is a linear equation. Since conditional independences define
nonlinear constraints on the space of probability vectors, it is more convenient to
consider the constraints on the space of entropy vectors.

These elementary inequalities together with Equation (9.9) imply further inequal-
ities. To derive them in an algorithmic way, Chaves et al. [2014] use a technique
from linear programing, the Fourier-Motzkin elimination [Williams, 1986]. Given
some subset O ⊂ X of observed variables, this procedure often yields inequalities
containing only entropies of variables in O although there may be no conditional
independence constraints that contain only the observed ones. One example is
given in Figure 9.7, for which Chaves et al. [2014, Theorem 1] obtain

I(X : Z)+ I(Y : Z)≤ H(Z), (9.11)

and likewise for cyclic permutations of the variable names. A joint distribution
violating (9.11) is, for instance, the one where all observed variables are 0 or all
variables are 1 with probability 1/2 each because then H(Z) = 1bit and I(X : Z) =
I(Y : Z) = 1bit. To understand this intuitively, note that in this example, we require
for each observed node, say Z, a deterministic relationship with both X and Y and
therefore with U and V . But there is a trade-off between the extent to which Z can
be determined by its unobserved cause U or by V . Z cannot perfectly follow the
“instructions” of both U and V simultaneously (which, themselves, are indepen-
dent).
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Y U Z

W

X

V

Figure 9.7: DAG that is not able to generate a joint distribution over X ,Y , and Z, for which
all three observed variables attain simultaneously 0 or 1 with probability 1/2 each.

A B C D

H J
α

β γ

δ

η

Figure 9.8: If the graph corresponds to a linear SCM, the entailed distribution will satisfy
the tetrad constraints (9.12)–(9.14).

9.5.3 Covariance-Based Constraints

Another type of constraint appears in linear models with hidden variables. For ex-
ample, in Figure 9.8 we obtain the tetrad constraints [Spirtes et al., 2000, Spear-
man, 1904]:

ρACρBD−ρADρBC = 0 (9.12)

ρABρCD−ρADρBC = 0 (9.13)

ρACρBD−ρABρCD = 0, (9.14)

where ρAC is the correlation coefficient between variables A and C. The first con-
straint (9.12), for example, can be verified easily from Figure 9.8:

cov[A,C] · cov[B,D] = αγη var[H] ·βδη var[H]

= αδη var[H] ·βγη var[H] = cov[A,D] · cov[B,C].

It is possible to characterize the occurrence of vanishing tetrad constraints graph-
ically using the language of treks and choke points [Spirtes et al., 2000, Theorem
6.10]. Again, these constraints allow us to distinguish between different causal
structures, just from observational data. Bollen [1989] and Wishart [1928] con-
structed statistical tests to test for vanishing tetrad differences. These can be turned
into a score that can be exploited for causal learning; this has been investigated by
Spirtes et al. [2000, Chapter 11.2] and Silva et al. [2006], for example.
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Kela et al. [2017] consider latent structures where all dependences between ob-
served variables are due to a collection of independent common causes and de-
scribe constraints on the possible covariance matrix of the observed variables. They
emphasize that resorting to covariance matrices instead of the full distribution is
advantageous both regarding statistical feasibility and computational tractability.
Using functions of the observed variables (i.e., by mapping them into a feature
space like in methods based on reproducing kernel Hilbert spaces), the method is
also able to account for higher-order dependences.

9.5.4 Additive Noise Models

We have mentioned in Section 7.2.3 that learning the structure of LiNGAMs can
be based on ICA. Hoyer et al. [2008b] show that both identifiability statements and
methods can be extended to linear non-Gaussian structures with hidden variables
by exploiting what is known under overcomplete ICA.

For nonlinear ANMs (Section 4.1.4), we have seen that in the generic case, we
cannot have both Y = f (X)+NY with NY ⊥⊥ X and X = g(Y )+MX with MX ⊥⊥ Y .
We expect that a similar identifiability holds for hidden variables. The following
ANM describes the influence of a hidden variable H on the observables X and Y :

H := NH (9.15)

X := f (H)+NX (9.16)

Y := g(H)+NY . (9.17)

For the regime of sufficiently low noise, Janzing et al. [2009a] prove that the joint
distribution PH,X ,Y can be reconstructed from PX ,Y up to reparametrizations of H.
It is plausible that the restriction to low noise is not necessary but just a weakness
of the proof. Setting f (H) = H and NX = 0 yields an ANM from X to Y (and
likewise, we can obtain an ANM from Y to X); this suggests that the additive noise
assumption renders the three cases X→Y , X←Y , and X←∗→ Y distinguishable
from PX ,Y alone. A relation to dimensionality reduction helps us to understand how
we can fit the model (9.15)–(9.17) from data: data points (x,y) from the distribu-
tion PX ,Y can be drawn using the following procedure (see Figure 9.9):

1. Draw h according to PH .
2. Consider the corresponding point

(
f (h),g(h)

)
on the manifold

M :=
{(

f (h),g(h)
)
∈ R2 : h ∈ R

}
. (9.18)

3. Add some independent noise (nX ,nY ) in each dimension.
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X

Y

Figure 9.9: The figure shows a scatter plot for PX ,Y . The red line describes the manifold
M; see Equation (9.18).

To fit model (9.15)–(9.17) to a data sample from PX ,Y , we may therefore apply a
dimensionality reduction technique to the sample to obtain the estimate M̂. For
recovering the corresponding value of h from a given point (x,y), this point (x,y)
should not be projected onto the manifold M because this usually leads to residuals
that will be dependent on H. Instead of small residuals (nX ,nY ), we require the
residuals to be as independent as possible from H [Janzing et al., 2009a].

There are many remaining open questions regarding the identifiability of ANMs
with hidden variables. Such results could have an important implication, however:
whenever we find an ANM from X to Y but not from Y to X , these identifiability
results would show that the effect is not confounded (within the model class of
additive noise).

9.5.5 Detecting Low-Complexity Confounders

Here we explain two methods by Janzing et al. [2011] that infer whether the path
between two observed variables X and Y is intermediated by some variable that
attains only a few values; see Figure 9.10. The scenario is the following: X is
causally linked to Y via a DAG that has an arrowhead at Y . The question is whether
the path between X and Y is intermediated by a variable U that has only a few
values. Here, the direction of the arrow that connects X and U does not matter,
but the typical application of the method would be to detect confounding if the
confounding path is intermediated by a variable U of this simple type. Janzing
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X U Y X U Y

Figure 9.10: Detecting low-complexity intermediate variables: if the path between X and
Y is blocked by some variable U that attains only a few values, PY |X often shows typically
properties as a “fingerprint” of U .

et al. [2011] consider, for instance, two binary variables X and U describing genetic
variants (single-nucleotide polymorphisms) of an animal or plant and a variable Y
corresponding to some phenotype. Whenever the statistical dependence between
X and Y is only due to the fact that U has an influence on Y and U is statistically
related to X , then U would play the role of such an intermediate variable. Here,
neither U nor X is a cause of the other, but there are variables like “ethnic group”
that influence both. Therefore, U is not the common cause itself, but it lies on the
confounding path.

The idea of detecting this type of confounding is that U changes the conditional
PY |X in a characteristic way. To discuss this, we first define a class of conditionals
of which we will later show that it will usually occur only if the path between X
and Y is not intermediated by such a U .

Definition 9.6 (Pairwise pure conditionals) The conditional distribution PY |X is
said to be pairwise pure if for any two x1,x2 ∈ X the following condition holds.
There is no λ < 0 or λ > 1 for which

λPY |X=x1 +(1−λ )PY |X=x2 (9.19)

is a probability distribution.

To understand Definition 9.6, note that (9.19) is always a probability distribution
for λ ∈ [0,1] because it is then a convex sum of two distributions. On the other
hand, for λ 6∈ [0,1], (9.19) may no longer be a non-negative measure: consider
the case where Y attains finitely many values Y := {y1, . . . ,yk}. Then the space
of distributions of Y is the simplex whose k vertices are given by the point masses
on y1, . . . ,yk. Figure 9.11 shows this for the case k = 3, where the space of prob-
ability distributions on Y is a triangle. Figure 9.11(a) shows an example of a pure
conditional: extending the connecting line between PY |X=x1 and PY |X=x2 leaves the
triangle, while such an extension within the space of distributions is possible in
Figure 9.11(b). Figure 9.12 shows, however, that purity is stronger than the condi-
tion that the points PY |X=x lie in the interior of the simplex. Here, they are on the
edges of the triangle and yet allow for an extension within the triangle.
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PY |X=x2

PY |X=x1

(a) Example of a pure conditional: ex-
tending the line connecting the two points
PY |X=x1 and PY |X=x2 would leave the sim-
plex of probability distributions.

PY |X=x2

PY |X=x1

(b) Example of a non-pure conditional: the
line connecting PY |X=x1 and PY |X=x2 can be
slightly extended without leaving the sim-
plex.

Figure 9.11: Visualization of a pure and a non-pure conditional.

If PY |X has a density (x,y) 7→ p(y|x) purity can be defined by the following intu-
itive condition:

inf
y∈Y

p(y|x1)

p(y|x2)
= 0 ∀x1,x2 ∈ X .

To explore to what extent causal conditionals corresponding to X → Y in nature
are pure has to be left to future research. To give an example of an interesting class
of pure conditionals, we want to mention that PY |X is pairwise pure if it admits an
ANM with bijective function fY [Janzing et al., 2011, Lemma 4] and the density of
the noise satisfies a certain decay condition.

The following result shows that a pure conditional strongly suggests that the
causal path between X and Y is not intermediated by a variable that attains only
a few values.

Theorem 9.7 (Strictly positive conditionals and non-purity) Assume there is a
variable U such that X ⊥⊥ Y |U. Further, assume that the range U of U is finite
and that the conditional density p(u|x) is strictly positive for all u ∈ U and for all
x such that PY |X=x is defined. Then, PY |X is not pairwise pure.

Proof. It is easy to see that the conditional PU |X is not pairwise pure because
infu∈U p(u|x1)/p(u|x2) 6= 0 for all x1,x2 for which PY |X=xi is defined. Due to
p(y|x) = ∑u p(y|u)p(u|x), the conditional PY |X is a concatenation of PY |U and PU |X
and therefore also not pure because PU |X is not pure [see Janzing et al., 2011,
Lemma 8]. �

Although the theorem holds for all finite variables, the second assumption of
strict positivity of the conditional PU |X is much more plausible if U attains only a



194 Chapter 9. Hidden Variables

PY |X=x2

PY |X=x1

Figure 9.12: Another example of a non-pure conditional: the line connecting PY |X=x1 and
PY |X=x2 can be extended without leaving the simplex.

few values. Otherwise, it may happen that there exist values u for which p(u|x) is
so close to 0 that this may result in PY |X being almost pure.

To see an instructive example showing how the intermediate node typically spoils
purity, assume that U and X are binary with p(u|x) = 1−ε for u = x. We then have

PY |X=0 = P(U = 0|X = 0)PY |U=0 +P(U = 1|X = 0)PY |U=1

= (1− ε)PY |U=0 + εPY |U=1.

Hence, PY |X=0 lies on the interior of the line connecting PY |U=0 and PY |U=1 (and
likewise for PY |X=1). Thus, PY |X is not pure.

Another example of how intermediate variables can leave characteristic “finger-
prints” in the distribution of PX ,Y will be formulated using the following property
of a conditional [Allman et al., 2009, Janzing et al., 2011]:

Definition 9.8 (Rank of a conditional) The rank of PY |X is the dimension of the
vector space spanned by all vectors PY |X∈A in the space of measures, whereA runs
over all measurable subsets of the range of X with non-zero probability.

Janzing et al. [2011] does not provide an algorithm for estimating the rank, how-
ever. If Y has finite range, PY |X defines a stochastic matrix whose rank coincides
with the rank of PY |X . The following result is a simple observation [Allman et al.,
2009]:

Theorem 9.9 (Rank and the range of U) If X ⊥⊥ Y |U and U attains k values,
then the rank of PY |X is at most k.

It is easy to show that under the conditions of Theorem 9.9, PX ,Y can be decom-
posed into a mixture of k product distributions. This observation generalizes to the
multivariate case: whenever there is a variable U attaining k values such that con-
ditioning on U renders X1, . . . ,Xd jointly independent, then PX1,...,Xd decomposes
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into a mixture of d product distributions. Sgouritsa et al. [2013] and Levine et al.
[2011] describe methods to find this decomposition with the goal of detecting the
“confounder” U via identifying the product distributions.

9.5.6 Different Environments

The invariant causal prediction approach we describe in Sections 7.1.6 and 7.2.5
can be modified to deal with hidden variables [Peters et al., 2016, Section 5.2],
as long as the hidden variables are not affected by interventions. Furthermore,
Rothenhäusler et al. [2015, “backShift”] consider the special case of linear SCMs.
Assume that we observe a vector Xe of d random variables in different environ-
ments e ∈ E . Here, the environments are generated by (unknown) shift variables
Ce = (Ce

1, . . . ,C
e
d) that are required to be independent of each other and of the noise

variables. That is, for each environment e we have

Xe = BXe +Ce +Ne,

where the distribution of Ne does not depend on e. We can allow for hidden vari-
ables by assuming non-zero covariance between the different components of the
noise variables. It still follows that

(I−B)ΣX,e(I−B)T = ΣC,e +ΣN

with ΣX,e, ΣC,e, and ΣN being the covariance matrices of Xe, Ce, and Ne, respec-
tively. Ergo,

(I−B) (ΣX,e−ΣX, f ) (I−B)T = ΣC,e−ΣC, f . (9.20)

(Note that for each environment e, one may pool all other environments to obtain
the “environment” f .) By assumption, for all choices of e and f , the right-hand side
of Equation (9.20) is diagonal, which allows us to reconstruct the causal structure B
by joint diagonalization of ΣX,e−ΣX, f . If there are at least three environments, this
procedure allows us to identify B under weak assumptions [Rothenhäusler et al.,
2015, Theorem 1].

The latter example shows how imposing regularity conditions (as linear models
and independent shift interventions) among different environments, allows us to
reconstruct the underlying causal structure even in the presence of hidden variables.

9.6 Problems

Problem 9.10 (Sufficiency) Prove Remark 9.4.
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Problem 9.11 (Simpson’s paradox) Construct an SCM C with binary random
variables X, Y and a sequence Z1,Z2, . . . of variables, such that for all even d ≥ 0
and all z1, . . . ,zd+1,

PC(Y = 1 |X = 1,Z1 = z1, . . . ,Zd = zd)

> PC(Y = 1 |X = 0,Z1 = z1, . . . ,Zd = zd)

but

PC(Y = 1 |X = 1,Z1 = z1, . . . ,Zd = zd ,Zd+1 = zd+1)

< PC(Y = 1 |X = 0,Z1 = z1, . . . ,Zd = zd ,Zd+1 = zd+1).

This example drives the Simpson’s paradox to an extreme. If X indicates treatment,
Y recovery, and Z1,Z2, . . . some confounding factors, then, by the adjustment for-
mula (6.13), adjusting for more and more variables always turns around the causal
conclusion whether the treatment is helpful or harmful.

Problem 9.12 (Instrumental variables) Consider the SCM

H := NH

Z := NZ

X := f (Z)+g(H)+NX

Y := αX + j(H)+NY

and assume that we observe the joint distribution over Z, X, and Y . Given the dis-
tribution rather than a finite sample, regressing X on Z non-parametrically yields
the conditional mean E[X |Z = z] as regression function. Write down the two-stage
least square method and prove that it identifies α .
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Time Series

Reasoning about causal relations among variables that refer to different time in-
stances is easier than causal reasoning without time structure. Causal structures
have to be consistent with the time order. We have seen in Section 7.2.4 that, after
knowing a causal ordering of nodes and assuming that there are no hidden vari-
ables, finding the causal DAG does not require assumptions other than the Markov
condition and minimality (more debatable conditions such as faithfulness or re-
stricted function classes, for instance, are not necessary). Given the time order,
three main issues remain. First, the set of variables under consideration may not
be causally sufficient; second, there may be variables that refer to the same time
instant (within the given measurement accuracy) that cannot be causally ordered a
priori; third, in practice, we are often given only one repetition of the time series —
this differs from the usual i.i.d. setting, in which we observe every variable several
times. Accordingly, all these issues play a crucial role for causal reasoning in time
series.

10.1 Preliminaries and Terminology

So far, we have considered a setting where samples are i.i.d. drawn from the joint
distribution PX1,...,Xd . Here, we discuss causal inference in time series, that is,
we have a d-variate time series (Xt)t∈Z, where each Xt for fixed t is the vector
(X1

t , . . . ,X
d
t ). We assume that it describes a strictly stationary stochastic process

[e.g., Brockwell and Davis, 1991]. Each variable X j
t represents a measurement of

the jth observable of some system at time t. Since causal influence can never go
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Figure 10.1: Example of a time series with no instantaneous effects.
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Figure 10.2: Example of a time series with instantaneous effects.

from the future to the past, we distinguish between two types of causal relations in
multivariate time series.

First, the causal graph1 with nodes X j
t for ( j, t) ∈ {1, . . . ,d}×Z contains only

arrows from X j
t to Xk

s for t < s but not for t = s; see Figure 10.1. Then we say there
are no instantaneous effects. Second, the causal graph contains instantaneous
effects, that is, arrows from X j

t to Xk
t for some j and k in addition to arrows going

from Xm
t to X `

s for t < s and some m and `, as shown in Figure 10.2. We call the
causal structure purely instantaneous if for any j 6= k and h > 0 the variable X j

t
may influence Xk

t and X j
t+h but not Xk

t+h; see Figures 10.5(a) and 10.5(b). The case
where each X j

t is not influenced by any previous variable (including its own past),
can be ignored because it need not be described as time series. Instead, the index t
may then be considered as labeling indices of independent instances of a statistical
sample in the i.i.d. setting of previous chapters.

We define the full time graph as the DAG having X i
t as nodes, as visualized in

1Strictly speaking, we have introduced the causal DAG only for finitely many nodes so far. Here,
however, we need infinite graphs and neglect this technical subtlety [see, e.g., Peters et al., 2013].
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X3 X1 X2

Figure 10.3: Summary graph of the full time graphs shown in Figures 10.1 and 10.2.

Figures 10.1 and 10.2. In contrast to previous chapters, the full time graph is a
DAG with infinitely many nodes. The summary graph is the directed graph with
nodes X1, . . . ,Xd containing an arrow from X j to Xk for j 6= k whenever there is an
arrow from X j

t to Xk
s for some t ≤ s ∈ Z. Note that the summary graph is a directed

graph that may contain cycles, although we will assume that the full time graph
is acyclic. Figure 10.3 shows the summary graph corresponding to the full time
graphs depicted in Figures 10.1 and 10.2. For any t ∈ Z, we denote by Xpast(t) the
set of of all Xs with s < t and use X j

past(t) for the past of a specific component X j.

We also write X j
past if t is some fixed time instant of reference. Moreover, (X− j

t )t∈Z
denotes the collection of time series (Xk

t )t∈Z for all k 6= j.

10.2 Structural Causal Models and Interventions

We assume that the stochastic process (Xt)t∈Z admits a description by an SCM in
which at most the past q values (for some q) of all variables occur:

X j
t := f j

(
(PA j

q)t−q, . . . ,(PA j
1)t−1,(PA j

0)t ,N
j

t

)
, (10.1)

where
. . . ,N1

t−1, . . . ,N
d
t−1,N

1
t , . . . ,N

d
t ,N

1
t+1, . . . ,N

d
t+1, . . .

are jointly independent noise terms. Here, for each s ∈ Z, the symbol (PA j
s)t−s

denotes the set of variables Xk
t−s, k = 1, . . . ,d, that influence X j

t . Note that PA j
t−s

may contain X j
t−s for all s > 0, but not for s = 0. We assume the corresponding full

time graph to be acyclic.
A popular special case of (10.1) is the class of vector autoregressive models

(VAR) [Lütkepohl, 2007]:

X j
t :=

q

∑
i=1

A j
i Xt−i +N j

t , (10.2)

where each A j
i is a 1× d-matrix; see also Remark 6.5 on linear cyclic models,

especially Equation (6.4).
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Figure 10.4: Example of a subsampled time series: only the variables in the shaded areas
are observed.

As in the i.i.d. setting, SCMs formalize the effect of interventions; more pre-
cisely, an intervention corresponds to replacing some of the structural assignments.
Interventions may, for instance, consist in setting all values {X j

t }t∈Z for some j to
certain values. Alternatively, one could also intervene on X j

t only at one specific
time instant t.

10.2.1 Subsampling

In many applications, the sampling process may be slower than the time scale of
the causal processes. Figure 10.4 shows an example, in which only every second
time instance is observed. The summary graph of the original full system contains
the edges X1→ X2→ X3. We may now want to construct a causal model for the
observed, subsampled processes. It is therefore important to define which inter-
ventions we want to allow for. First, if we constrain ourselves to interventions on
observed time points, there should be no causal influence from X1 to X2. Interven-
ing on an observed instance of X1 does not have any effect on the observable part
of X2 (note that the time series X1 has only lag two effects X1

t → X1
t+2). Further-

more, in this setting, subsampling cannot create spurious instantaneous effects if
these have not been there before. For the case of an SCM, Bongers et al. [2016,
Chapter 3] describe a formal process of how to marginalize the model by substi-
tuting the causal mechanisms of the hidden time steps into the other mechanisms.
The resulting model describes the effect of interventions correctly if these are re-
stricted to the observed time points. Second, if we do consider interventions on
hidden variables, however, we may be interested in recovering the original sum-
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mary graph, a problem that is addressed by Danks and Plis [2013] and Hyttinen
et al. [2016], for example.

There are situations in which subsampling is not a good model for the data-
generating process. For many physical measurements, for example, one may want
to model the observations as averages of consecutive time points rather than as a
sparse subset of those. The former is a useful but also complicated model assump-
tion: the averaging process might change the model class, and one furthermore
needs to be careful about modeling interventions.

10.3 Learning Causal Time Series Models

Currently, Granger causality and its variations is among the most popular ap-
proaches to causal time series analysis. To provide a better link among the chapters,
we nevertheless first explain the conclusions that can be drawn using a conditional
independence-based approach. The order should by no means be mistaken as a
judgment about the approaches.

Sections 10.3.1 and 10.3.2 contain mostly identifiability results. The remaining
three Sections, 10.3.3, 10.3.4, and 10.3.5, contain more concrete causal learning
methods for time series. They can be applied if the multivariate time series has been
sampled once, at finitely many time points. Most of the ideas, however, transfer to
situations, where we receive several i.i.d. repetitions of the same time series.

10.3.1 Markov Condition and Faithfulness

Lemma 6.25 states that two DAGs are Markov equivalent if and only if their skele-
ton and their set of v-structures coincide. If there are no instantaneous effects, the
full time graph is therefore already determined by knowing its skeleton. The arrow
can only be directed forward in time. We thus conclude [Peters et al., 2013, Proof
of Theorem 1]:

Theorem 10.1 (Identifiabilty in absence of instantaneous effects) Assume that
two full time graphs are induced by SCMs without instantaneous effects. If the full
time graphs are Markov equivalent, then they are equal.

Hence, we can uniquely identify the full time graph from conditional indepen-
dences provided that Markov condition and faithfulness holds (to deal with in-
finitely large DAGs, one sometimes assumes that the time series start at t = 0).

In the presence of instantaneous effects, Markov equivalent graphs can at most
differ by the direction of those effects. However, there are many cases where even
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(Yt)t∈Z.
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(b) There are v-structures at all nodes of
(Xt)t∈Z.

Figure 10.5: Two DAGs that are not Markov equivalent although they coincide up to
instantaneous effects.

that direction can be identified because different directions of instantaneous effects
induce different sets of v-structures. A simple example is shown in Figure 10.5.
The direction of the instantaneous effect can still be inferred even if arrows from
Xt to Yt+1 for all t ∈ Z are added to Figure 10.5, and likewise if arrows from Yt to
Xt+1 are added; we cannot add both, however, because this would remove all v-
structures. The following sufficient condition for the identifiability of the direction
of instantaneous effects has been given by Peters et al. [2013, Theorem 1]:

Theorem 10.2 (Identifiability for acyclic summary graphs) Assume that two
full time graphs are induced by SCMs, and that in both cases for each j, X j

t is
influenced by X j

t−s for some s ≥ 1. Assume further that the summary graphs are
acyclic. If the full time graphs are Markov equivalent, then they are equal.

The following result shows that the presence of any arrow in the summary graph
can in principle be decided from a single conditional independence test.

Theorem 10.3 (Justification of Granger causality) Consider an SCM without
instantaneous effects for the time series (Xt)t∈Z such that the induced joint dis-
tribution is faithful with respect to the corresponding full time graph. Then the
summary graph has an arrow from X j to Xk if and only if there exists a t ∈ Z such
that

Xk
t 6⊥⊥ X j

past(t) |X
− j
past(t). (10.3)

For completeness, we have included the proof in Appendix C.14. Similar results
can be found in White and Lu [2010] and Eichler [2011, 2012]. As already sug-
gested by the headline of Theorem 10.3, this is the basis of Granger causality that
we discuss in more detail in Section 10.3.3.
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10.3.2 Some Causal Conclusions Do Not Require Faithfulness

Remarkably, interesting causal conclusions can even be made from conditional
dependences without using faithfulness. This is in contrast to the i.i.d. case where
any distribution is Markovian with respect to the complete DAG for any ordering
of nodes. Since there are no arrows backward in time, the Markov condition for
time series is sufficient to infer whether the summary graph is X → Y or Y → X ,
given that one of the two alternatives is true.

Theorem 10.4 (Detection of arrow X → Y ) Consider an SCM for the bivariate
time series (Xt ,Yt)t∈Z.

(i) If there is a t ∈ Z such that

Yt 6⊥⊥ Xpast(t) |Ypast(t), (10.4)

then the summary graph contains an arrow from X to Y .

(ii) Assume further that there are no instantaneous effects and the joint density
of any finite subset of variables is strictly positive. If for all t ∈ Z, we have

Yt ⊥⊥ Xpast(t) |Ypast(t), (10.5)

then the summary graph contains no arrow from X to Y .

Again, this proof may have appeared elsewhere, but we include it for complete-
ness in Appendix C.15. Proving (ii) requires causal minimality, which is strictly
weaker than faithfulness.

In the next subsection we will see that Theorem 10.4 and various variations [e.g.,
White and Lu, 2010, Eichler, 2011, 2012] link conditional independence-based
approaches to causal discovery to Granger causality.

10.3.3 Granger Causality

For simplicity, we start with the bivariate version of Granger causality.

Bivariate Granger Causality Theorem 10.4 shows (subject to excluding instan-
taneous effects together with mild technical conditions) that the presence or ab-
sence of an arrow in the summary graph can be inferred by testing (10.5) and the
analogous statement when exchanging the roles of X and Y . We can then distin-
guish between the possible summary graphs X Y , X → Y , X ← Y , X � Y . One
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Yt−6 Yt−5 Yt−4 Yt−3 Yt−2 Yt−1 Yt

Xt−6 Xt−5 Xt−4 Xt−3 Xt−2 Xt−1 Xt

Figure 10.6: Typical scenario, in which Granger causality works: if all arrows from X
to Y were missing, Yt would be conditionally independent of the past values of X , given
its own past. Here, Yt does depend on the past values of X , given its own past. Thus,
condition (10.4) proves the existence of an influence from X to Y .

infers that X influences Y whenever the past values of X help in predicting Y from
its own past. Formally, we write

X Granger-causes Y :⇐⇒ Yt 6⊥⊥ Xpast(t) |Ypast(t). (10.6)

This idea already goes back to Wiener [1956, pages 189–190], who argued that X
has a causal influence on Y if the prediction of Y from its own past is improved by
additionally accounting for X . The typical scenario, in which Theorem 10.4 holds
is depicted in Figure 10.6.

Often Granger causality refers to linear prediction. Then, one compares the fol-
lowing two linear regression models:

Yt =
q

∑
i=1

aiYt−i +Nt (10.7)

Yt =
q

∑
i=1

aiYt−i +
q

∑
i=1

biXt−i + Ñt , (10.8)

where (Nt)t∈Z and (Ñt)t∈Z are assumed to be i.i.d. time series, respectively. X is
inferred to Granger-cause Y whenever the noise term Ñt (for predictions includ-
ing X) has significantly smaller variance than the noise term Nt obtained without
X . This amounts to saying that Yt has non-vanishing partial correlations to Xpast(t),
given Ypast(t). For multivariate Gaussian distributions, this is equivalent to the de-
pendence statement (10.4). Modifications of this idea that use nonlinear regression
have been extensively studied, too [e.g., Ancona et al., 2004, Marinazzo et al.,
2008]. For non-parametric testing of (10.5) see, for instance, Diks and Panchenko
[2006] and references therein.

An information theoretic quantity measuring the dependence between Yt and the
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past of X , given the past of Y , is given by transfer entropy [Schreiber, 2000]:

T E(X → Y ) := I(Yt : Xpast(t)|Ypast(t)), (10.9)

where I(A : B |C) denotes the conditional mutual information [Cover and Thomas,
1991] for any three sets A, B, C of variables; see also Appendix A. Estimat-
ing transfer entropy and inferring that X causes Y whenever it is significantly
greater than 0 can thus be considered as an information theoretic implementation
of Granger causality that accounts for arbitrary nonlinear influences. It is therefore
tempting to consider transfer entropy as a measure of the strength of the influence
of X on Y , but “Limitations of Granger Causality” will explain why this is not
appropriate.

Multivariate Granger Causality The assumption of causal sufficiency of a bi-
variate time series as in Theorem 10.4 is often inappropriate. This has already been
addressed by Granger [1980]. We therefore say X j Granger causes Xk if

Xk
t 6⊥⊥ X j

past(t) |X
− j
past(t).

Granger already emphasized that proper use of Granger causality would actually
require to condition on all relevant variables in the world. Nevertheless, Granger
causality is often used in its bivariate version or in situations, in which clearly
important variables are unobserved. Such a use can yield misleading statements
when interpreting the results causally.

Limitations of Granger Causality Violation of causal sufficiency is — as in
the i.i.d. scenario of the previous chapters — a serious issue in causal time series
analysis. To explain why Granger causality is misleading in a causally insuffi-
cient multivariate time series, we restrict the attention to the case where only a
bivariate time series (Xt ,Yt)t∈Z is observed. Assume that both Xt and Yt are influ-
enced by previous instances of a hidden time series (Zt)t∈Z. This is depicted in
Figure 10.7(a) where Z influences X with a delay of 1, and Y with a delay of 2.
Assuming faithfulness, the d-separation criterion tells us

Yt 6⊥⊥ Xpast(t) |Ypast(t),

while we have
Xt ⊥⊥ Ypast(t) |Xpast(t).
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Yt−3 Yt−2 Yt−1 Yt

Zt−3 Zt−2 Zt−1 Zt

Xt−3 Xt−2 Xt−1 Xt

(a) Due to the hidden common cause Z,
Granger causality erroneously infers causal
influence from X to Y .

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

(b) Granger causality erroneously infers
neither causal influence from X to Y nor
from Y to X if the influence from Xt on Yt+1
and the one from Yt to Xt+1 are determinis-
tic.

Figure 10.7: In these examples, Granger causality infers an incorrect graph structure.

Thus, naive application of Granger causality infers that X causes Y and Y does not
cause X . This effect has been observed, for instance, for the relation between the
price of butter and the price of cheese. Both prices are strongly influenced by the
price of milk, but the production of cheese takes much longer than the production of
butter, which causes a larger delay between the prices of milk and cheese [Peters
et al., 2013, Experiment 10]. This failure of Granger causality, however, is only
possible because not all relevant variables are observed, which was stated as a
requirement by Granger himself.

A second example for a scenario where Granger fails has been provided by Ay
and Polani [2008] and is depicted in Figure 10.7(b). Assume that Xt−1 influences
Yt deterministically via a copy operation, that is, Yt := Xt−1. Likewise, the value
of Yt−1 is copied to Xt . Then it is intuitively obvious that X and Y strongly influ-
ence each other in the sense that intervening on the value Xt changes all the values
Yt+1+2k for k ∈ N0. Likewise, intervening on Yt changes all values Xt+1+2k. Nev-
ertheless, the past of X is useless for predicting Yt from its past, because Yt can
already be predicted perfectly from its own past. Certainly, deterministic relations
are in general problematic for conditional independence-based causal inference
since determinism induces additional independences. For instance, if Y is a func-
tion of X in the causal chain X → Y → Z, we get Y ⊥⊥ Z |X , which is not typical
for this causal structure. One may therefore argue that this example is artificial and
a more natural version would be a noisy copy operation. For the case where Xt

and Yt are binary variables, Janzing et al. [2013, Example 7] show that the transfer
entropy converges to 0 when the noise level of the copy operation tends to 0. Then,
Granger causality would indeed infer that X causes Y and Y causes X , but for small
noise the tiny amount by which the past of X improves the prediction of Yt does not



10.3. Learning Causal Time Series Models 207

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

(a) Granger causality cannot detect the in-
fluence of X on Y because the past of X in-
fluences Yt only via the past of Y .

Yt−3 Yt−2 Yt−1 Yt

Xt−3 Xt−2 Xt−1 Xt

(b) Here, the past of X is still helpful for
predicting Yt since Xt−1 influences Yt indi-
rectly via Xt . Thus, Granger causality is
still able to detect the influence of X on Y .

Figure 10.8: Two scenarios with instantaneous effects, one where Granger causality fails
to detect them (a) and one where it does not (b).

properly account for the mutual influence between the time series (which is still
strong in an intuitive sense). In this sense, transfer entropy is not an adequate mea-
sure for the strength of causal influence of one time series on another one. Janzing
et al. [2013] discuss the limitations of different proposals to quantify causal influ-
ence (both for time series and the i.i.d. setting) and propose another information
theoretic measure of causal strength. To summarize this paragraph, we emphasize
that the qualitative statement about presence or absence of causal influence in the
case of two causally sufficient time series only fails for a rather artificial scenario,
while quantifying the causal influence via transfer entropy (which is suggested by
interpreting “improvement of prediction” in information theoretic terms) can be
problematic also in less artificial scenarios.

There is another scenario where Granger causality is quantitatively misleading
but its qualitative statement remains correct unless faithfulness is violated (it uses,
however, instantaneous effects, for which one may argue that they disappear for
sufficiently fine time resolution [Granger, 1988]). For Figure 10.8(a), d-separation
yields

Yt ⊥⊥ Xpast(t) |Ypast(t).

Intuitively speaking, only the present value Xt would help for better predicting
Yt , but the past values Xt−1,Xt−2, . . . are useless and thus, Granger causality does
not propose a link from X to Y . In Figure 10.8(b), however, Granger causality
does detect the influence of X on Y (if we assume faithfulness) although it is still
purely instantaneous, but the slight amount of improvement of the prediction does
not properly account for the potentially strong influence of Xt on Yt . To account
for instantaneous effects, modifications of Granger causality have been proposed
that add instantaneous terms in the corresponding SCM, but then identifiability
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may break down [e.g., Lütkepohl, 2007, (2.3.20) and (2.3.21)]. Knowing that a
system contains instantaneous effects may suggest modifying Granger causality by
regressing Yt in (10.8) not only on Xpast(t) but on Xt ∪Xpast(t) instead. However, as
already noted by Granger [1988], this may yield wrong conclusions: if Xt helps in
predicting Yt , this could equally well mean that Yt influences Xt instead of indicating
an influence from Xt to Yt .

Remark 10.5 (Model misspecification may help) There is a paradox message of
this insight: even in the case in which variables influence other variables instanta-
neously, for inferring causal statements it is more conclusive to check whether the
past of a variable helps for the prediction rather than to check whether the past and
the present value help. Condition (i) of Theorem 10.4 does not exclude instanta-
neous effects. Therefore (subject to causal sufficiency), we can still conclude that
every benefit of Xpast(t) for predicting Yt from Ypast(t) is due to an influence of X on
Y . Moreover, whenever there is any influence of X on Y , no matter whether it is
purely instantaneous or not, Xpast(t) will in the generic case improve our prediction
of Yt , given Ypast(t).

10.3.4 Models with Restricted Function Classes

To address the limitations of Granger causality, Hyvärinen et al. [2008] describe
linear non-Gaussian autoregressive models that render causal structures with in-
stantaneous effects identifiable. Peters et al. [2013] describe how to address this
task using less restrictive function classes f j in (10.1). One example is given by
adapting ANMs to time series, that is, to use the SCM

X j
t := f j

(
(PA j

q)t−q, · · · ,(PA j
1)t−1,(PA j

0)t

)
+N j

t ,

for j ∈ {1, . . . ,d}. Apart from identifiability of causal structures within Markov
equivalence classes, there is a second motivation using restricted function classes:
using simulated time series, Peters et al. [2013] provide some empirical evidence
for the belief that time series that admit models from a restricted function class are
less likely to be confounded.

10.3.5 Spectral Independence Criterion

The spectral independence criterion (SIC) is a method that is based on the idea
of independence between cause and mechanism described in Shajarisales et al.
[2015]. Assume we are given a weakly stationary bivariate time series (Xt ,Yt)t∈Z
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where either X influences Y or Y influences X via a linear time invariant filter.
More explicitly, for the case that X influences Y , Y is then obtained from X by
convolution with a function h:

Yt =
∞

∑
k=1

h(k)Xt−k. (10.10)

For technical details, such as the decay conditions for h that ensure that (10.10)
and expressions below are well-defined, we refer to Shajarisales et al. [2015]. To
formalize an independence condition between X and h, we consider the action of
the filter in the frequency domain: for all ν ∈ [−1/2,1/2], let SXX(ν) denote the
power spectral density for the frequency ν ; the latter is explicitly given by the
Fourier transform of the auto-covariance function

CXX(τ) := E [XtXt+τ ] , with τ ∈ Z.

Then, (10.10) yields
SYY (ν) = |h̃(ν)|2 ·SXX(ν), (10.11)

where h̃(ν) = ∑k∈Z e−i2πkνh(k) denotes the Fourier transform of h. In other words,
multiplying the power spectrum of the input time series with the squared trans-
fer function of the filter yields the power spectrum of the output. Whenever h̃ is
invertible, in addition to (10.11) we have

SXX(ν) =

∣∣∣∣ 1
h̃(ν)

∣∣∣∣2 ·SYY (ν). (10.12)

While both equations (10.11) and (10.12) are valid, the question is which one de-
scribes the causal model. The idea is that for the causal direction, the power spec-
trum of the input time series carries no information about the transfer function of
the filter. To formalize this, Shajarisales et al. [2015] state the following indepen-
dence condition:

Definition 10.6 (SIC) The time series X and the filter h are said to satisfy the SIC
if SXX and h̃ are uncorrelated, that is,

〈SXX · |h̃|2〉= 〈SXX〉 · 〈|h̃|2〉, (10.13)

where 〈 f 〉 :=
∫ 1/2
−1/2 f (ν)dν denote the average of any function on the frequency

interval [−1/2,1/2].
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Shajarisales et al. [2015] show that (10.13) implies that the analogue indepen-
dence condition for the backward direction does not hold, except for the non-
generic case where |h̃| is constant over the whole interval of frequencies.

Theorem 10.7 (Identifiability via SIC) If (10.13) holds and |ĥ| is not constant
in ν then SYY is negatively correlated with 1/|h̃|, that is,

〈SYY ·1/|h̃|2〉< 〈SYY 〉 · 〈1/|h̃|2〉. (10.14)

Proof. The left-hand sides of (10.13) and (10.14) are given by 〈SYY 〉 and 〈SXX〉,
respectively. Jensen’s inequality states 1/〈|h̃|2〉< 〈1/|h̃|2〉, which implies the state-
ment. �

Shajarisales et al. [2015] propose a simple causal inference algorithm that checks
which direction is closer to satisfying SIC. They report some encouraging results
using SIC for experiments with various simulated and real-world data sets.

10.4 Dynamic Causal Modeling

Dynamic causal modeling (DCM) is a technique that has been developed particu-
larly for inferring causal relations between the activities of different brain regions
[Friston et al., 2003]. If the vector z ∈ Rn encodes the activity of n brain regions
and u ∈ Rm a vector of perturbations, the dynamics of z is given by a differential
equation of the form

d
dt

z = F(z,u,θ), (10.15)

where F is a known function, u ∈ Rm is a vector of external stimulations, and θ

parametrizes the model class describing the causal links between the different brain
regions. One often considers the following bilinear approximation of (10.15):

d
dt

z =

(
A+

m

∑
j=1

u jB j

)
z+Cu, (10.16)

where A,B1, . . . ,Bm are n×n matrices and C has the size n×m. While A describes
the mutual influence of the activities z j in different regions, the matrices B j describe
how u changes their mutual influence. C encodes the direct influence of u on z.

Here, z is not directly observable, but one can detect the hemodynamic response.
The blood flow provides an increased amount of nutrients (such as oxygen and
glucose) to compensate for the increased demand of energy. Functional magnetic
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resonance imaging (fMRI) is able to detect this increase via the blood-oxygen-
level–dependent (BOLD) signal. Defining a state vector x that includes both the
brain activity and some hemodynamic state variables, one ends up with a differen-
tial equation for x

d
dt

x = f (x,u,θ) (10.17)

by combining (10.16) with a dynamical model of the hemodynamic response. The
high-dimensional parameter θ consists of all free parameters of (10.16) and pa-
rameters from modeling the hemodynamic response. Then, one uses a model of
how x determines the measured BOLD signal y:

y = λ (x). (10.18)

Finally, as data, we obtain an observed time series of y-vectors. DCM then infers
the matrices in (10.16) from these data using various known techniques for learning
models with latent variables, for example, expectation maximization (EM).

Lohmann et al. [2012a] criticize DCM mainly because the number of model pa-
rameters explodes with growing n and m, which renders their identification im-
possible from empirical data. According to their experiments with simulated brain
connections, a large fraction of wrong models obtained higher evidence by DCM
than the true model. These findings triggered a debate about DCM; see also Friston
et al. [2013] for a response to Lohmann et al. [2012a] and Lohmann et al. [2012b]
for a response to Friston et al. [2013].

10.5 Problems

Problem 10.8 (Acyclic summary graphs) Prove Theorem 10.2.

Problem 10.9 (Instantaneous effects) Consider an SCM over a multivariate time
series, in which each variable X j

t is influenced by all past values of all compo-
nents Xk. Additionally, assume that the instantaneous effects form a DAG and that
the distribution is Markovian and faithful with respect to the full time graph. To
which extent can one identify the instantaneous DAG structure from the distribu-
tion?

Problem 10.10 (Granger causality) Argue why Granger causality results in “X
G causes Y ” and “Y G causes X” if one adds arrows Zt → Zt+1 for t ∈ Z in
Figure 10.7(a).
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Some Probability and Statistics

A.1 Basic Definitions

(i) We denote the underlying probability space by (Ω,F ,P). Here, Ω, F , and P
are set, σ -algebra, and probability measure, respectively.

(ii) We use capital letters for real-valued random variables. For example, X :
(Ω,F)→ (R,BR) is a measurable function, with respect to the Borel σ -
algebra. Random vectors are measurable functions X : (Ω,F)→ (Rd ,BRd ).
We call X non-degenerate if there is no value c∈Rd such that P(X = c) = 1.
For an introduction to measure theory, see, for example, Dudley [2002].

(iii) We usually denote vectors with bold letters. In a slight abuse of notation, we
consider sets of variables B⊆ X as a single multivariate variable.

(iv) PX is the distribution of the d-dimensional random vector X, that is, a prob-
ability measure on (Rd ,BRd ).

(v) We write x 7→ pX(x) or simply x 7→ p(x) for the density, that is, the Radon-
Nikodym derivative of PX with respect to a product measure. We (sometimes
implicitly) assume its existence or continuity.

(vi) We call X independent of Y and write X ⊥⊥ Y if and only if

p(x,y) = p(x)p(y) (A.1)

for all x,y. Otherwise, X and Y are dependent, and we write X 6⊥⊥ Y .
(vii) We call X1, . . . ,Xd jointly (or mutually) independent if and only if

p(x1, . . . ,xd) = p(x1) · . . . · p(xd) (A.2)
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for all x1, . . . ,xd . If X1, . . . ,Xd are jointly independent, then any pair Xi and
X j with i 6= j are independent, too. The converse does not hold in general:
pairwise independence does not imply joint independence.

(viii) We call X independent of Y conditional on Z and write X ⊥⊥ Y |Z if and
only if

p(x,y |z) = p(x |z)p(y |z) (A.3)

for all x,y,z such that p(z) > 0. Otherwise, X and Y are dependent condi-
tional on Z and we write X 6⊥⊥ Y |Z.

(ix) Conditional independence relations obey the following important rules [e.g.,
Pearl, 2009, Section 1.1.5]:

X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z (symmetry)
X ⊥⊥ Y,W |Z ⇒ X ⊥⊥ Y |Z (decomposition)
X ⊥⊥ Y,W |Z ⇒ X ⊥⊥ Y |W,Z (weak union)

X ⊥⊥ Y |Z and X ⊥⊥W |Y,Z ⇒ X ⊥⊥ Y,W |Z (contraction)
X ⊥⊥ Y |W,Z and X ⊥⊥W |Y,Z ⇒ X ⊥⊥ Y,W |Z (intersection).

The existence of a strictly positive density suffices for the intersection prop-
erty to hold. Necessary and sufficient conditions for the discrete case are
provided by Drton et al. [2009b, Exercise 6.6] and by Fink [2011]. Peters
[2014] covers the continuous case.

(x) The variance of a random variable X is defined as

var[X ] := E
[
(X−E[X ])2]= E

[
X2]−E[X ]2

if E[X2]< ∞.
(xi) We call X and Y uncorrelated if E[X2],E[Y 2]< ∞ and

E[XY ] = E[X ]E[Y ],

that is

ρX ,Y :=
E[XY ]−E[X ]E[Y ]√

var[X ]var[Y ]
= 0.

Otherwise, that is, if ρX ,Y 6= 0, X and Y are correlated. ρX ,Y is called the
correlation coefficient between X and Y .

(xii) If X and Y are independent, then they are uncorrelated:

X ⊥⊥ Y ⇒ ρX ,Y = 0.
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The other direction does not necessarily hold (see Code Snippet A.1). Only
in special cases, such as the bivariate Gaussian distribution or binary vari-
ables, does the reversed direction hold, too.

(xiii) We say that X and Y are partially uncorrelated given Z if

ρX ,Y |Z :=
ρX ,Y −ρX ,ZρZ,Y√
(1−ρ2

X ,Z)(1−ρ2
Z,Y )

= 0.

The following interpretation of partial correlation is important: ρX ,Y |Z equals
the correlation between residuals after linearly regressing X on Z and Y on Z.

(xiv) In general, we have (see Example 7.9)

ρX ,Y |Z = 0 6⇒ X ⊥⊥ Y |Z and

ρX ,Y |Z = 0 6⇐ X ⊥⊥ Y |Z.

(xv) In regression estimation, we are usually given an i.i.d. sample (X1,Y1), . . .,
(Xn,Yn) from a joint distribution PX,Y . Our aim is to predict the target Y from
the covariates or predictors X. In least squares regression, for example, we
are looking for a function f̂ such that

f̂ = argmin
f∈F

n

∑
i=1

(Yi− f (Xi))
2 .

Here, we optimize over a function class F (see Section A.3). Different re-
gression techniques use different function classes. In linear regression, we
are only considering linear functions f ; see Code Snippet 6.43 for an exam-
ple. Code Snippet 4.14 shows an example for a nonlinear regression tech-
nique.

(xvi) Dependence between sets of discrete random variables X and Y can be mea-
sured by the Shannon mutual information [Cover and Thomas, 1991]

I(X : Y) := ∑
x,y

p(x,y) log
p(x,y)

p(x)p(y)
.

(xvii) Conditional dependence of sets of discrete random variables X and Y, given
the set Z, is measured via the conditional Shannon mutual information
[Cover and Thomas, 1991]

I(X : Y |Z) := ∑
x,y,z

p(x,y,z) log
p(x,y|z)

p(x|z)p(y|z)
.
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(xviii) For continuous variables, the sums are replaced with integrals

I(X : Y) :=
∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy,

and

I(X : Y |Z) :=
∫

p(x,y,z) log
p(x,y|z)

p(x|z)p(y|z)
dxdydz.

A.2 Independence and Conditional Independence Testing

In practice, we are given a finite sample (X1,Y1), . . . ,(Xn,Yn)
iid∼ PX ,Y and want to

decide whether the underlying random variables are independent or not. Since
we do not expect the empirical correlation (or any independence measure) to be
exactly 0, we need to take into account random fluctuations of the dependence
measures. This can be done by statistical hypothesis tests. The idea is to consider
the null hypothesis H0 : X ⊥⊥ Y and the alternative HA : X 6⊥⊥ Y . Therefore, one
usually constructs a test statistic Tn that maps any finite sample to a real number,
and one decides according to

(x1,y1), . . . ,(xn,yn) 7→
{

H0 if Tn ≤ c
HA if Tn > c.

Here, Tn is shorthand notation for Tn((x1,y1), . . . ,(xn,yn)). The threshold c ∈ R is
chosen such that we can control the type I error; that is, for any P satisfying H0,
we have P(Tn > c)≤ α , where α is the significance level of the test, specified by
the user. In practice, we are given data and compute the statistic Tn. If Tn > c, the
null hypothesis is rejected, and we can be relatively confident that our decision is
correct; otherwise, the null hypothesis is not rejected, which does not necessarily
mean much (it could be that the sample size n was too small to detect the depen-
dence between X and Y ). The p-value of a test is the smallest significance level,
such that the test is rejected.

We now briefly mention a couple of choices for Tn. There are many more tests,
however, and we do not claim that the list contains optimal procedures; see Code
Snippet A.1 for a practical example.

(i) To test for vanishing correlation, we can use the empirical correlation co-
efficient and a t-test (for Gaussian variables) or Fisher’s z-transform (e.g.,
cor.test in R Core Team [2016]).



A.2. Independence and Conditional Independence Testing 217

(ii) As an independence test, we may use a χ2-test for discrete or discretized
data (e.g., chisq.test in R Core Team [2016]).

(iii) An example for a general non-parametric independent test is the Hilbert-
Schmidt Independence Criterion (HSIC) [see Gretton et al., 2008]. Its
idea is based on an injective mapping into reproducing kernel Hilbert spaces
(RKHSs) [Schölkopf and Smola, 2002]. Given a positive definite kernel, we
can map probability distributions into the corresponding RKHS H, that is,
PX ,Y 7→ µ(PX ,Y ) ∈H. For so-called characteristic kernels (e.g., the Gaussian
kernel), this mapping is injective. In particular, we then have

µ(PX ,Y ) = µ(PX ⊗PY ) if and only if PX ,Y = PX ⊗PY ,

and the latter holds if and only if X and Y are independent. The HSIC is
defined as the squared RKHS-distance between the joint distribution and the
product of marginals:

HSIC(PX ,Y ) := ‖µ(PX ,Y )−µ(PX ⊗PY )‖2
H.

As test statistic Tn we can now use an estimator for HSIC(PX ,Y ). If X and Y
are independent, HSIC(PX ,Y ) equals 0, and we expect its estimator Tn to be
small. Gretton et al. [2008] provide ways how to choose the threshold c.

Alternatively, we can express HSIC as the Hilbert-Schmidt norm of the
covariance operator CXY . The latter is defined such that for all f and g that
are members of the corresponding RKHSs

〈 f ,CXY g〉= E [ f (X)g(Y )]−E [ f (X)] E [g(Y )] .

The cross-covariance operator is therefore an extension of the covariance
matrix. If X is dX -dimensional, Y is dY -dimensional, and the corresponding
RKHSs are isomorphic to RdX and RdY , respectively, CXY can be described
with the dX × dY -dimensional cross-covariance matrix. Certainly, X and Y
do not need to be independent if the covariance matrix vanishes. For char-
acteristic kernels, however, the RKHSs are infinitely dimensional and not
isomorphic to Rd . The cross-covariance operator has zero norm if and only
if X and Y are independent.

Pfister et al. [2017] extend the procedure to test for joint independence
between d variables. This is necessary to test for joint independence of noise
variables, for example. They provide code for both the bivariate and the
multivariate procedure (see the R-package dHSIC).
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In practice, one usually needs to choose kernel parameters. For the Gaus-
sian kernel, many implementations choose the bandwidth σ according to the
commonly named median heuristic [e.g., Gretton et al., 2008].

(iv) Conditional independence testing Conditional independence testing is a
hard problem, especially if the conditioning set is large. While it is current
research to obtain a precise formalization for this statement, we provide an
example that indicates the hardness of the problem. If Z1, . . . ,Zd are binary
variables, we have that

X ⊥⊥ Y |Z1, . . . ,Zd

⇔ ∀(z1, . . . ,zd) ∈ {0,1}d : X ⊥⊥ Y |Z1 = z1, . . . ,Zd = zd .

If we cannot assume anything on the way X and Y may depend on the Z’s,
we need to perform an unconditional independence test for each of the 2d as-
signments (e.g., Zd could be a common child of X and Y with the dependence
only detectable for a specific assignment of the other Z1, . . . ,Zd−1).

For continuous variables, extensions of the HSIC test have been proposed.
Fukumizu et al. [2008] extend the idea to conditional cross-covariance oper-
ators to obtain a conditional independence test. This is developed further by
Zhang et al. [2011], who additionally provide an approximation of the test
statistic’s distribution under the null hypothesis.

Code Snippet A.1 The following code generates a sample of a distribution over
two variables that are uncorrelated but dependent.

1 library(dHSIC)

2 #

3 # generates a sample from two uncorrelated but dependent random variables

4 set.seed(1)

5 A <- runif(200)-0.5

6 B <- runif(200)-0.5

7 X <- t( c(cos(pi/4), -sin(pi/4)) %*% rbind(A, B) )

8 Y <- t( c(sin(pi/4), cos(pi/4)) %*% rbind(A, B) )

9 #

10 # performs the statistical test

11 cor.test(X,Y)$p.value

12 # 0.3979561

13 dhsic.test(X,Y)$p.value

14 # 1.970705e-08
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A.3 Capacity of Function Classes

Here, we address the question whether the sequence of functions minimizing the
empirical risk (1.3) converges against a function that also minimizes the risk (1.2);
see Section 1.2. By the law of large numbers, we know that for any fixed f ∈ F
and ε > 0,

lim
n→∞

P
(∣∣R[ f ]−Rn

emp[ f ]
∣∣> ε

)
= 0, (A.4)

with exponentially fast convergence governed by Chernov’s bound [e.g., Vapnik,
1998]. However, this does not imply consistency of empirical risk minimization.
This is due to the fact that we are choosing the function f by minimizing (1.3).
This implies that even though the (xi,yi) are independent, the errors or losses
1
2 | f (xi)− yi| are not. In this case, the law of large numbers in its usual form does
not apply. It turns out that to get consistency, we need a uniform law of large
numbers [Vapnik, 1998]. This amounts to

lim
n→∞

P

(
sup
f∈F

(R[ f ]−Rn
emp[ f ])> ε

)
= 0 (A.5)

for all ε > 0, a property that depends on the function class F .
How about choosing F = YX , in other words, all functions from X to Y? Un-

fortunately, this does not lead to (A.5), and the reasoning is as follows: Suppose
that based on the available sample (1.1), we decide that f ∗ is a good solution — for
instance, since it satisfies f (xi) = yi for all i. In this case, let us construct another
function f ∗∗ that agrees with f ∗ on the sample and disagrees everywhere else. If
our distribution PX ,Y possesses a density, then the probability of encountering any
of the training points exactly again in the future is zero. As a consequence, f ∗ and
f ∗∗ will almost always disagree. Based on the training set alone, however, there is
no way to choose one over the other. Similarly, in (A.5) we would find that when-
ever we have found a function f ∗ for which (R[ f ∗]−Rn

emp[ f
∗]) happens to be small,

we can construct another function f ∗∗ for which (R[ f ∗∗]−Rn
emp[ f

∗∗]) is large, so
uniform convergence (A.5) is impossible to achieve in our considered case where
F = YX .

On the other hand, the condition (A.5) becomes weaker as we make F smaller.
How one measures the size (or capacity) of F is beyond the scope of this book,
but it turns out that for a summary of the size of F irrespective of the underly-
ing distribution, a single number is enough. It is referred to as the VC (Vapnik-
Chervonenkis) dimension of F . It sometimes coincides with the number of free
parameters, but it can also be vastly different. If the VC dimension is finite, we



220 Appendix A. Some Probability and Statistics

get consistency of empirical risk minimization for any PX ,Y [Vapnik, 1998]. The
VC dimension is related to falsifiability and Popper’s notion of the dimension of
a theory [Corfield et al., 2009]. A typical risk bound of statistical learning theory
states that for all δ > 0, with probability 1−δ and for all f ∈ F , we have

R[ f ]≤ Rn
emp[ f ]+

√
h(log(2n/h)+1)− log(δ/4)

n
, (A.6)

where h is the VC dimension of the function class F . This means that if we can
come up with an F that has small VC dimension yet contains functions that are
sufficiently suitable for the given task to achieve a small Rn

emp[ f ], then we can
guarantee (with high probability) that those functions have small expected error on
future data from the same distribution. This formulates a non-trivial trade-off: on
the one hand, we would like to work with a large class of functions to allow for a
small Rn

emp, but on the other hand, we want the class to be small to control h.
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Causal Orderings and Adjacency Matrices

Definition B.1 Given a DAG G, we call a permutation, that is, a bijective mapping,

π : {1, . . . , p}→ {1, . . . , p},

a causal ordering (sometimes one says topological ordering) if it satisfies

π(i)< π( j) if j ∈ DEG
i .

Because of the acyclic structure of the DAG, there is always a topological order-
ing (see Proposition B.2). But this order does not have to be unique. The node
π−1(1) does not have any parents and is therefore a source node, and π−1(p) does
not have any descendants and is thus a sink node.

Proposition B.2 For each DAG there is a topological ordering.

Proof. We proceed by induction. We need to show that in each DAG, there is
a node without any ancestors. Start with any node and move to one of its parents
(if there are any). You will never visit a parent that you have seen before (if you
did there had been a directed cycle). After at most p− 1 steps you reach a node
without any parent. �

Definition B.3 We can represent a directed graph G = (V,E) over d nodes with a
binary d×d matrix A (taking values 0 or 1):

Ai, j = 1 ⇔ (i, j) ∈ E .

A is called the adjacency matrix of G.
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This representation of DAGs is particularly useful for the efficient implementa-
tion of algorithms. There are a couple of useful results transforming adjacency
matrices, some of which we report here.

Remark B.4 (i) Let A be the adjacency matrix for DAG G. The entry (i, j) of
the squared matrix A2 equals the number of paths of length two from i to j.
This is because

A2
i, j = ∑

k
AikAk j.

(ii) In general, we have

Ak
i j = # paths of length k from i to j.

(iii) If indices increase on directed paths, that is, j ∈ DEG
i implies j > i, then the

identity is a causal ordering and the adjacency matrix is upper triangular, that
is, only the upper-right half of the matrix contains non-zeros.

(iv) We may want to use sparse matrices when the graph is sparse to save space
and/or computation time.

The number of DAGs with d nodes have been studied by Robinson [1970, 1973]
and independently by Stanley [1973]. The number of such matrices (or DAGs) is
growing very quickly in d (see Table B.1).

McKay [2004] proves the following equivalent description of DAGs which had
been conjectured by Eric W. Weisstein.

Theorem B.5 The matrix A is an adjacency matrix of a DAG G if and only if A+Id
is a 0-1-matrix with all eigenvalues being real and strictly greater than zero.
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d Number of DAGs with d nodes
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http:

//oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows
faster than any linear term.

http://oeis.org/A003024
http://oeis.org/A003024
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Proofs

C.1 Proof of Theorem 4.2

We first state a lemma; its proof can be found in Peters [2008], for example.

Lemma C.1 Let X and N be independent variables and assume that N is non-
deterministic. Then N 6⊥⊥ (X +N).

Proof of Theorem 4.2. If X and NY are normally distributed, we have

β :=
cov[X ,Y ]
cov[Y,Y ]

=
αvar[X ]

α2var[X ]+var[NY ]

and define NX := X −βY . NX and Y are uncorrelated by construction and because
NX and Y are jointly Gaussian, it follows that they are independent, too.

To prove the “only if” statement, we assume that

Y = αX + NY

and NX = (1−αβ )X − βNY

are independent. Distinguish between the following cases:

(i) (1−αβ ) 6= 0 and β 6= 0.
Here, Theorem 4.3 implies that X ,NY and thus also Y,NX are normally dis-
tributed. Hence, PX ,Y is bivariate Gaussian, too.

(ii) β = 0.
This implies

X ⊥⊥ αX +NY ,

which is a contradiction to Lemma C.1.
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(iii) (1−αβ ) = 0.
It follows −βNY ⊥⊥ αX +NY . Thus

NY ⊥⊥ αX +NY ,

which, again, contradicts Lemma C.1.

This concludes the proof. �

C.2 Proof of Proposition 6.3

Proof. Recall that our definition of an SCM includes the requirement that the
underlying graph is acyclic. We can now substitute the structural assignments re-
cursively into each other and can therefore write each node X j as a unique function
of all noise terms (Nk)k∈AN j

that belong to the ancestors of X j. That is,

X j := g j
(
(Nk)k∈AN j

)
.

(The function does not necessarily depend on the noise terms of all ancestors.) �

C.3 Proof of Remark 6.6

Proof. We will show that whenever we can remove a variable from PA j, we can
still remove it from PA∗j in the reduced model.

Consider an input Xk ∈ PA j ∩PA∗j that f j does not depend on. That is, we have
f j(pa j,−k,xk,n j) = f j(pa j,−k,x

′
k,n j) for all xk,x′k,pa j,−k and n j with p(n j) > 0.

Here, PA j,−k :=PA j \{k} denotes the set of all input variables except for k. Then, g
does not depend on this variable xk either because g(pa∗j,−k,xk,n j) = f j(pa j,xk,n j)
for all xk,pa∗j,−k and n j with p(n j)> 0. �

C.4 Proof of Proposition 6.13

Proof. To simplify notation we write X1 instead of X and X2 instead of Y . First,
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the truncated factorization formula (6.9) implies

pC;do(X1:=x1)
X2

(x2) =
∫

∏
j 6=1

p j(x j |xpa( j))dx3 · · ·dxd

=
∫

∏
j 6=1

p j(x j |xpa( j))
p̃(x1)

p̃(x1)
dx3 · · ·dxd

= p
C;do(X1:=Ñ1)
X2 |X1=x1

(x2) (C.1)

if Ñ1 puts positive mass on x1, that is, p̃(x1) > 0. We furthermore require that
the following two statements hold for all distributions QX1,X2 over (X1,X2) with
density q:

X2 6⊥⊥ X1 in Q ⇐⇒ ∃x41 ,x�1 with q(x41 ),q(x�1 )> 0 and QX2 |X1=x41
6= QX2 |X1=x�1

(C.2)
and

X2 6⊥⊥ X1 in Q ⇐⇒ ∃x41 with q(x41 )> 0 and QX2 |X1=x41
6= QX2 . (C.3)

We then have for any N̂1 with full support

(i)
(C.2)
=⇒ ∃x41 ,x�1 with pos. density under Ñ1 s.t. P

C;do(X1:=Ñ1)
X2 |X1=x41

6= P
C;do(X1:=Ñ1)
X2 |X1=x�1

(C.1)
=⇒ (ii)
(C.1)
=⇒ ∃x41 ,x�1 with pos. density under N̂1 s.t. P

C;do(X1:=N̂1)
X2 |X1=x41

6= P
C;do(X1:=N̂1)
X2 |X1=x�1

(C.2)
=⇒ (iv)
(trivial)
=⇒ (i)

We further have (ii)
(trivial)
=⇒ (iii) and that PC

X2
= PC;do(X1:=N∗1 )

X2
with N∗1 having the

distribution PC
X1

. Together with ¬(i)⇒¬(ii), the latter implies

¬(i) =⇒ X2 ⊥⊥ X1 in PC;do(X1:=N∗1 )
X

(C.3)
=⇒ PC;do(X1:=N∗1 )

X2 |X1=x4 = PC;do(X1:=N∗1 )
X2

for all x4 with p1(x4)> 0

(C.1)
=⇒ P

C;do(X1:=x4)
X2

= PC
X2

for all x4 with p1(x4)> 0
¬(ii)
=⇒ P

C;do(X1:=x4)
X2

= PC
X2

for all x4

=⇒ ¬(iii)
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Here, the symbol “¬” denotes the negation of a statement. �

C.5 Proof of Proposition 6.14

Proof. Statement (i) follows directly from the Markov property of the interven-
tional SCM. The intervention removes the incoming edges into X , and if there is
no direct path from X to Y in the original graph, X and Y are d-separated.

Statement (ii) can be proved by a counterexample (see, e.g., Example 6.34). �

C.6 Proof of Proposition 6.36

Proof. “if”: Assume that causal minimality is not satisfied. Then, there is an X j

and a Y ∈ PAG
j , such that PX is also Markovian with respect to the graph obtained

when removing the edge Y → X j from G. This implies X j ⊥⊥ Y |PAG
j \{Y} by the

local Markov property.
“only if”: If PX has a density, the Markov condition is equivalent to the Markov

factorization [Lauritzen, 1996, Theorem 3.27]. Assume now that Y ∈ PAG
j and

X j ⊥⊥ Y |PAG
j \{Y}, which implies p(x j|paGj ) = p(x j|paGj,−Y ) where PAG

j,−Y is de-
fined as PAG

j,−Y = PAG
j \ {Y}. Then, p(x) = p(x j|paGj,−Y )∏k 6= j p(xk|paGk ), which

implies that PX is Markovian with respect to G without Y → X j. �

C.7 Proof of Proposition 6.48

Proof. We assume that both models satisfy causal minimality and come with
graphs G and H. Intuitively, we can identify the children of a node X since they
change after intervening on X . Some of the children, however, may not change
their distribution after an intervention due to two canceling paths, for example. We
thus introduce the following notation. Given a DAG G, we call X a youngest par-
ent of a node Y and write X ∈ YPAY if X ∈ PAY and X is not an ancestor of any
other parent of Y . A node Y may have several youngest parents. The proof requires
two arguments:

(i) If X ∈ YPAG
Y , then there is a total causal effect from X to Y , meaning that

there are x4 and x�, such that P
do(X :=x4)
Y 6= P

do(X :=x�)
Y . This follows from

causal minimality.
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(ii) If Z ∈ ANG
Y , then there exist X1, . . . ,Xk, such that X1 = Z, Xk = Y , and Xi ∈

YPAG
Xi+1

for i ∈ {1, . . . ,k−1}.

Finally, we can combine these two statements and conclude that if Z ∈ ANG
Y , then

there are X1, . . . ,Xk such that for i ∈ {1, . . . ,k− 1}, Xi has a total causal effect on
Xi+1, which implies that there must be a direct causal path from Xi to Xi+1 also in
H; see Proposition 6.13. But then Z ∈ANH

Y , which implies that both G andH have
the same ancestor relationships. Since both G andH satisfy causal minimality, this
implies that G =H and therefore the two models are equivalent as causal graphical
models. �

C.8 Proof of Proposition 6.49

Proof. According to the proof of Proposition 6.3, we can write for the first SCM
X = g(N). But since

g(n) = g∗(n) ∀n with p(n)> 0,

we clearly have that both SCMs induce the same observational distributions (and
intervention distributions with the same argument). Regarding counterfactuals, we
cover both the discrete and the continuous case by conditioning on X ∈ A with
P(X ∈ A)> 0; see Definition 6.17. The new density over the noise variables satis-
fies

p̃(n1, . . . ,nd) =

{
p(n1,...,nd)

P(X∈A) if g(n1, . . . ,nd) ∈ A
0 else

=

{
p(n1,...,nd)
P(g(N)∈A) if g∗(n1, . . . ,nd) ∈ A

0 else

=

{
p(n1,...,nd)

P(g∗(N)∈A) if g∗(n1, . . . ,nd) ∈ A
0 else

= p̃∗(n1, . . . ,nd).

We still have
g(n) = g∗(n) ∀n with p̃(n)> 0,

which implies that all counterfactual statements coincide. �
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C.9 Proof of Proposition 7.1

Proof. Let N1, . . . ,Nd be independent and uniformly distributed between 0 and 1.
We then define X j := f j(XPA j

,N j) with

f j(pa j,n j) := F−1
X j|PA j=pa j

(n j) (C.4)

where F−1
X j|PA j=pa j

is the generalized inverse cumulative distribution function from
X j given PA j = pa j. The generalized inverse cumulative distribution function of a
random variable Y is defined as F−1

Y (a) := inf{y ∈R : FY (y)≥ a}. Equation (C.4)
guarantees that in the constructed SCM, the conditional X j|PA j = pa j has the cor-
rect distribution. The statement then follows from the Markov factorization, Defi-
nition 6.21(iii). �

C.10 Proof of Proposition 7.4

Proof. Assume causal minimality is not satisfied. We can then find nodes j and
i ∈ PA j with X j = f j(PA j\{i},Xi)+N j that does not depend on Xi if we condition
on all other parents A :=PA j \{i}, that is X j ⊥⊥ Xi |XA (see Proposition 6.36). Here,
we denote PA j \{Xi} by XA. For the function f j, we will now show that f j(xA,xi) =
cxA for PXA,Xi-almost all (xA,xi). Indeed, assume without loss of generality that
E[N j] = 0, then the mean of X j |PA j = (xA,xi) equals f j(xA,xi). Equation (2b)
from Dawid [1979] states that if X j ⊥⊥ Xi |XA, then the density of X j |XA,Xi does
not depend on the argument of Xi. Therefore, also the conditional mean f j(xA,xi)
does not depend on xi. It follows that f j(xA,xi) = cxA . The continuity of f j implies
that f j is constant in its last argument.

The converse statement follows from Proposition 6.36, too. �

C.11 Proof of Proposition 8.1

Proof. We use the Bellman optimality equation [e.g., Sutton and Barto, 2015,
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Chapter 3.8]. For all s◦ and s with f (s◦) = f (s), we have

Q∗(s,a) = ∑
s′

p(s′ |s,a)
(
E[R |s′,a]+max

a′
Q∗(s′,a′)

)
= ∑

f ′
∑

s′: f (s′)= f ′
p(s′ |s,a)

(
E[R |s′,a]+max

a′
Q∗(s′,a′)

)
= ∑

f ′
p( f ′ |s,a)

(
E[R | f ′,a]+max

a′
Q∗(s′,a′)

)
= ∑

f ′
p( f ′ |s◦,a)

(
E[R | f ′,a]+max

a′
Q∗(s′,a′)

)
= Q∗(s◦,a).

This concludes the proof. �

C.12 Proof of Proposition 8.2

Proof. The first equation follows from the discussion in Section 8.2.1. The Markov
factorization property implies

p(x) = p(a|s) p(s|h) p(h) p(y| f ,h) p( f |a);

see Figure 8.5. It now follows with F ⊥⊥ S |A that∫
y

p̃(a|s)
p(a|s)

p(x) dx =
∫

y p̃(a|s)p(s|h)p(h)p(y| f ,h)p( f |a,s) da d f dh ds dy

=
∫

y p̃( f ,a|s)p(s|h)p(h)p(y| f ,h) da d f dh ds dy

=
∫

y
p̃( f |s)
p( f |s)

p(s |h)p(h)p(y| f ,h)p( f |s) d f dh ds dy

=
∫

y
p̃( f |s)
p( f |s)

p(s |h)p(h)p(y| f ,h)p( f ,a|s) da d f dh ds dy

=
∫

y
p̃( f |s)
p( f |s)

p(x) dx.

The last equality follows from p( f ,a|s) = p( f |a,s)p(a|s). �

C.13 Proof of Proposition 9.3

Proof. To show (i), we start with the SCM C over X and its entailed distribution
PX. We then consider the structural assignments for variables O ∈ O and repeat-
edly plug in the assignments for the variables X ∈ X\O whenever these variables
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appear on the right-hand side. This leads to a new SCM in which each structural
assignment for O ∈O contains a multivariate error variable ÑO. It is apparent that
this smaller SCM entails the same observational distribution PO and the same in-
tervention distributions when intervening on any O ∈ O. From causal sufficiency,
it follows that the new noise variables (ÑO)O∈O are jointly independent. As in the
case of one-dimensional noise variables (Proposition 6.31), this again implies that
the distribution PO is Markovian with respect to the induced graph structure. The
statement now follows from the fact that this new SCM can be transformed to an
SCM with one-dimensional error variables that entails the same observational and
intervention distributions (exploiting the same construction as in Proposition 7.1).
For a more formal description of this procedure, as well as for more details on these
arguments, see Bongers et al. [2016].

Statement (ii) follows from Example 9.2. �

C.14 Proof of Theorem 10.3

Proof. If there is an arrow from X j
past(t) to Xk

t , the dependence (10.3) follows im-
mediately from faithfulness because two directly connected variables cannot be
d-separated. Now assume that there is no edge from X j

past(t) to Xk
t . Then, Xk

t is d-

separated from X j
past(t) given X− j

past(t). Any path leaving Xk
t with an outgoing edge is

blocked because it will have a collider (and no node after with time index larger or
equal to t is conditioned on); any path leaving Xk

t with an incoming edge is blocked
because the next node is in the conditioning set X− j

past(t). �

C.15 Proof of Theorem 10.4

Proof. To prove (i), consider a full time graph containing no arrow from X to Y .
Then, every path from Yt to Xpast(t) is blocked by Ypast(t). Any path that starts with
an outgoing edge from Yt must contain a collider that is not in the conditioning
set (neither is any of its descendants); any path starting with an incoming edge is
blocked since the first node on this path is in Ypast(t).

To prove (ii), assume Yt has parents from X , denoted by PAX
Yt

. Then (10.5) implies

Yt ⊥⊥ PAX
Yt
|Ypast(t). (C.5)

For any Xs ∈ PAX
Yt

, (C.5) implies by weak union (see Appendix A.1)

Yt ⊥⊥ Xs |Ypast(t)∪ (PAX
Yt
\{Xs}). (C.6)
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Due to Peters et al. [2014, Lemma 38], minimality implies that Yt is dependent of
any parent A of Yt , given any set of non-descendants of Yt that includes the other
parents of Yt except A. Hence we have

Yt 6⊥⊥ Xs |Ypast(t)∪ (PAX
Yt
\{Xs}),

in contradiction to (C.6). �
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J. Peters and P. Bühlmann. Structural intervention distance (SID) for evaluating
causal graphs. Neural Computation, 27:771–799, 2015.

J. Peters, D. Janzing, A. Gretton, and B. Schölkopf. Kernel methods for detecting
the direction of time series. In Proccedings of the 32nd Annual Conference of
the German Classification Society (GfKl 2008), pages 1–10, 2009a.

J. Peters, D. Janzing, A. Gretton, and B. Schölkopf. Detecting the direction of
causal time series. In Proceedings of the 26th International Conference on Ma-
chine Learning (ICML), pages 801–808, 2009b.

J. Peters, D. Janzing, and B. Schölkopf. Identifying cause and effect on discrete
data using additive noise models. In Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS), pages 597–604, 2010.

http://dx.doi.org/10.3929/ethz-a-007597940
http://dx.doi.org/10.3929/ethz-a-007597940


Bibliography 253

J. Peters, D. Janzing, and B. Schölkopf. Causal inference on discrete data using
additive noise models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33:2436–2450, 2011a.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Identifiability of causal
graphs using functional models. In Proceedings of the 27th Annual Conference
on Uncertainty in Artificial Intelligence (UAI), pages 589–598, 2011b.

J. Peters, D. Janzing, and B. Schölkopf. Causal inference on time series using
restricted structural equation models. In Advances in Neural Information Pro-
cessing Systems 26 (NIPS), pages 154–162, 2013.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with contin-
uous additive noise models. Journal of Machine Learning Research, 15:2009–
2053, 2014.
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ACE, see average causal effect
additive noise model, 48, 50, 52, 69,

137, 138, 140, 151, 190,
208

adjustment, 109
ANM, see additive noise model
arrow of time, 29, 50
autoregressive models, 50, 199, 208
average causal effect, 112, 116, 175,

176

backdoor criterion, 115
Bayesian Dirichlet equivalence

score, 150
Bayesian Dirichlet score, 149
Bayesian information criterion, 139,

149, 150, 178
Bayesian methods, 149
BD score, see Bayesian Dirichlet

score
BDe score, see Bayesian Dirichlet

equivalence score
BIC, see Bayesian information crite-

rion

CAM, see causal additive model
causal additive model, 140
causal discovery, see causal learning
causal effect, see total causal effect

causal learning, 135
causal Markov condition, 105, 106
causal minimality, 107, 108, 109
causal sufficiency, see sufficiency
choke points, 189
collider, see graph
common cause, 11, 95, 104, 129,

172, 173, 175, 187, 206
conditional independence, 214
confounder, see common cause
counterfactuals, 36, 96, 106

DAG, see graph
DCM, see dynamic causal modeling
descendant, see graph
directed acyclic graph, see graph
distribution equivalence, 150
dynamic causal modeling, 210
dynamic programming, 151

entropy
Shannon entropy, 59, 67, 68,

127, 187
transfer entropy, 205, 206

equal error variances, 139

faithfulness, 107, 136
FCI algorithm, 184
fMRI, see functional magnetic reso-

nance imaging
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functional magnetic resonance imag-
ing, 211

GES, see greedy equivalence search
GIES, see greedy interventional

equivalence search
Granger causality, 201, 202, 203,

204–206, 208, 211
graph

collider, 82
d-separation, 83
descendant, 82
directed acyclic graph (DAG),

82
induced path graph (IPG), 182
maximal ancestral graph

(MAG), 180
parent, 82
partially ancestral graph (PAG),

180
partially directed acyclic graph

(PDAG), 82
partially oriented induced path

graph (POIPG), 182
path, 82
v-structure, 82, 102, 145
Y-structure, 177, 182, 184

greedy equivalence search, 150
greedy interventional equivalence

search, 153

IC algorithm, 143, 144
ICA, see independent component

analysis
ILP, see integer linear programming
independence

causal mechanisms, 16, 47, 54,
57, 72, 77

generic viewpoint assumption,
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noises, 18
objects, 127
random variables, 213
structure from motion, 16

independent component analysis,
139, 152, 190

induced path graph, see graph
instantaneous effects, 198
instrumental variable, 175, 186
integer linear programming, 151
interventional sufficiency, see suffi-

ciency
interventions, 34, 88
invariance

Simon’s criterion, 24
invariant

causal prediction, 154
conditionals, 113
mechanisms, 20

inverse probability weighting, 159,
160

IPG, see graph

Kolmogorov complexity, 47, 59, 60,
128

latent projection, 179, 182
linear non-Gaussian acyclic model,

48–50, 139, 140, 208
LiNGAM, see linear non-Gaussian

acyclic model

MAG, see graph
marginalization, 174, 179
Markov condition, 109
Markov equivalence, 102
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Markov property, 100, 101, 104, 105,
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maximal ancestral graph, see graph
mechanism, 9, 17

independent, 19, 20
invariant, 18, 20

noises
independent, 8

non-descendant, see graph
nondeterministic polynomial time,

145, 150, 151
NP, see nondeterministic polynomial

time

PAG, see graph
parent, see graph
partially ancestral graph, see graph
partially directed acyclic graph, see

graph
partially oriented induced path graph,

see graph
path, see graph
path model, 22
PC algorithm, 143, 145, 179, 184
PDAG, see graph
POIPG, see graph
potential outcomes, 122
propensity score matching, 117

random variable, 213
regression, 215

half-sibling, 157
regression with subsequent indepen-

dence test, 152
RESIT, see regression with subse-

quent independence test

SCM, see structural causal model
selection bias, 104
SEM, see structural equation model
semi-supervised learning, 71
SGS algorithm, 143, 144
SIC, see spectral independence crite-

rion
Simpson’s paradox, 172, 174, 196
spectral independence criterion, 208,

209
structural causal model, 9, 22, 33, 83
structural equation model, see struc-

tural causal model
structure learning, see causal learn-

ing
sufficiency

causal sufficiency, 171, 173
interventional sufficiency, 171,

172, 173

tetrad constraints, 189
time series

full time graph, 198
summary graph, 199, 200

total causal effect, 91
transfer entropy, see entropy

v-structure, see graph
variable

endogenous, 23
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visual perception, 15, 30

Y-structure, see graph
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