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Series Foreword

Computational neuroscience is an approach to understanding the infor-
mation content of neural signals by modeling the nervous system at many
different structural scales, including the biophysical, the circuit, and the
systems levels. Computer simulations of neurons and neural networks are
complementary to traditional techniques in neuroscience. This book series
welcomes contributions that link theoretical studies with experimental
approaches to understanding information processing in the nervous sys-
tem. Areas and topics of particular interest include biophysical mecha-
nisms for computation in neurons, computer simulations of neural cir-
cuits, models of learning, representation of sensory information in neural
networks, systems models of sensory-motor integration, and computa-
tional analysis of problems in biological sensing, motor control, and
perception.

Terrence J. Sejnowski
Tomaso A. Poggio
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Foreword by Terrence J. Sejnowski

The exploration of the electrical properties of dendrites pioneered by
Wilfrid Rall provided many key insights into the computational resources
of neurons. Many of the papers in this collection are classics: dendroden-
dritic interactions in the olfactory bulb; nonlinear synaptic integration
in motoneuron dendrites; active currents in pyramidal neuron apical
dendrites. In each of these studies, insights arose from a conceptual leap,
astute simplifying assumptions, and rigorous analysis. Looking back, one
is impressed with the foresight shown by Rall in his choice of problems,
with the elegance of his methods in attacking them, and with the impact
that his conclusions have had for our current thinking. These papers de-
serve careful reading and rereading, for there are additional lessons in each
of them that will reward the careful reader.

New techniques have recently allowed direct experimental exploration
of mechanisms, such as active membrane currents within dendrites, that
previously were only accessible through somatic recordings. The distribu-
tion of sodium and calcium currents extends quite widely in the dendritic
trees of neocortical and hippocampal neurons. There are still uncertainties
in the densities of these ionic currents, and the diversity of their bio-
physical properties, but it is now clear that the computational repertoire
of cortical neurons is far richer than anyone had previously imagined,
except perhaps for Rall.

The current work in computational neuroscience has built upon the
solid foundations provided by Rall's legacy. Exploring the interplay be-
tween the wide range of voltage-sensitive conductances that have been
identified, and the spatial interactions within dendrites and between net-
works of neurons, is now within our grasp. This includes issues such as
homeostatic mechanisms for regulating ionic currents in dendrites, the
effects of spontaneous activity on dendritic processing, the source of the
stochastic variability observed in the spike trains of cortical neurons and
role of inhibitory interneurons in synchronizing spike trains in cerebral
cortex, and the implications of Hebbian mechanisms for synaptic plastic-
ity. Hidden within dendrites are the answers to many of the mysteries of
how brains represent the world, keep records of past experiences, and
make us aware of the world.

It would be difficult to imagine the field of computational neuroscience
today without the conceptual framework established over the last thirty
years by Wil Rall, and for this we all owe him a great debt of gratitude.
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iOverview of Wilfrid Rail's Contributions to Understanding Dendritic
Function by Idan Segev, John Rinzel, and Gordon M. Shepherd

The branching structures called dendrites are among the most striking
and characteristic features of nerve cells, and understanding their contribu-
tions to nerve function has been a supreme challenge to neuroscience.
More than thirty years have passed since the three key papers of Wilfrid
Rall on the biophysical properties of branching dendritic trees appeared
(Rall 1957, 1959, 1960). These papers were revolutionary in several ways.
They showed first that dendrites could be analyzed by a rigorous mathe-
matical and biophysical approach, so that studies of the functional prop-
erties underlying impulse generation and synaptic responses could be car-
ried out on a par with studies of similar properties in cell bodies and
axons. They introduced a new theoretical framework for modeling these
complex structures so that their integrative properties could be studied
and, through this, their contributions to signal processing in the nervous
system. Finally, these studies challenged the dominant hypothesis of con-
temporary neurobiologists and modelers that neurons are essentially iso-
potential units.

For neural modelers, the assumption of isopotentiality of neurons was
very convenient because it allowed them to neglect the daunting spatial
properties of dendrites and focus only on temporal aspects of the input-
output properties at the cell body (an assumption that continues to this
day in most neural network models). This had been the basic premise
underlying all theoretical models since the pioneering study of McCulloch
and Pitts (1943), in which the neuron was represented as a "point unit"
that implements simple binary ("on-off") computation. However, Rall
showed that the interrelations between the unique morphology and the
specific electrical properties of neurons can be critical for their input-
output functions, and that by combining the different kinds of "neuron-
ware" (dendrites, spines, axon, membrane channels, synapses) into com-
plex structures, the neuron can be a computationally powerful unit.

In retrospect it is difficult to understand why dendrites were ignored,
functionally, until Rall's pioneering work. They had been the focus of
intense anatomical studies for many years since the classical studies of
Ramón y Cajal and his contemporaries in the 1890s, and their extended
and complex morphology was well appreciated (reviewed in Shepherd
1991). A glance at the drawings of Ramón y Cajal makes it clear that the
majority of the surface area of most neurons is in the dendrites and that,
most significantly, abundant inputs seem to converge onto the dendritic
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4 Idan Segev, John Rinzel, and Gordon M. Shepherd

trees. The electrically distributed nature of dendrites was actually known
for many years, simply from the fact that extracellular electrical field po-
tentials, such as the electroencephalogram, can be recorded in the brain; a
tissue composed of isopotential units would not give detectable summed
extracellular currents. Studies of field potentials in the cortex had further
suggested that "decrementing conduction" occurs in dendrites. But these
considerations were overridden by the need for simplifying assumptions in
facing the complexity of the nervous system, and once they were estab-
lished, it was difficult to abandon them in favor of new ones.

Reflecting Rail's methodical approach and modest personality, his the-
ory for dendrites penetrated the scientific community slowly and then
deeply. It spread among cellular neuroanatomists and neurophysiologists,
and, with time, the functional consequences of dendrites began to attract
serious attention. Old experimental results were reinterpreted, and new
experimental and theoretical studies were designed to explore the input-
output function of dendrites (e.g., Rall et al. 1967; Rall 1967; see reviews in
Jack et al. 1975; Rall 1977, Rail et al. 1992, and Mel 1994). We know now
that most of the synaptic information transmitted between nerve cells is
indeed processed in the dendrites, and that it is there that many of the
plastic changes underlying learning and memory take place. It is now
generally agreed that the specific aspects of dendritic morphology charac-
teristic of different types of nerve cells must be considered when the com-
putational and plastic functions of the brain are to be understood. Thus,
we speak naturally today about "dendritic integration," "spatiotemporal
summation of synaptic inputs," "dendritic nonlinearities," "dendritic plas-
ticity," "chemical compartmentaiization," and ion diffusion along den-
dritic segments. Much of this new vocabulary has emerged from the work
of Wilfrid Rall.

In pursuing these early studies, Rail was one of the first to realize the
potential of digital computers for biology (Rall 1964). He was a pioneer
not only in constructing the first computer-based models of the neuron
complete with its dendrites but also in drawing attention to the dendrites
as the main computational substrate for signal integration in the nervous
system. Most neurobiologists entering the field now are unaware of Rail's
seminal 1964 paper on compartmental modeling and the foundations he
laid in it and his subsequent papers for the present methods and concepts
that are now taken for granted in the computer modeling of neurons.
Through this work Rall may, in fact, be regarded as a founding father of
computational neuroscience.

This book is a manifestation of the bulk of Rall's theoretical thinking
applied to the nervous system. It brings together his major articles that
established many of our present concepts and insights regarding the infor-
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5 Wilfrid Rail's Contributions to Understanding Dendritic Function

mation-processing functions of nerve cells. Each article is accompanied
by an introduction that highlights the main insights gained from the paper
and puts the work in the appropriate historical perspective. These intro-
ductions are written by co-workers who collaborated with Rail in these
studies or were his colleagues in the field. They have tried to convey a
sense of the context within which the studies were carried out, and of their
unique perspective from working with Rail on these problems and being
inspired by him. The introductions also point toward the impact of spe-
cific papers on the present state of the art of single neuron modeling.
Appropriate commentaries are also provided for several important papers
that could not be included because of space limitations.

One may wonder why this book is assembled now. There are several
reasons. First, in this "Decade of the Brain," when the field of computa-
tional neuroscience is becoming so active, it seems timely to group to-
gether the work of a major creator of the field. Second, a source book such
as this, with appropriate perspectives, should help the newcomer to appre-
ciate where things started and where they may lead. Third, some of Rail's
papers are not easily accessible. Fourth, with the passage of time, many
fundamental contributions of Rall have been forgotten or have been mis-
interpreted. For example, many erroneously believe that Rail considered
only passive membrane properties, thereby neglecting the functional con-
sequences of synaptic- and voltage-gated nonlinearities in dendritic trees.
Nothing could be further from the truth, and this book provides the evi-
dence in his papers and the commentaries. Finally, in keeping with his
modest personality, Rail has never received the recognition one would
expect of a major creator of modern neuroscience. As he enters retirement
and devotes more time to his artistic pursuits, this book serves as an
appreciation from ail of us who have been influenced by his scientific
thinking and personality.

In the remainder of this introduction we highlight for the general reader
the major insights that were gained from the main studies of Rall and
his collaborators and followers. We do so by emphasizing the leading
questions that he posed along the path of his scientific career, and their
answers. A fascinating account of the development of his ideas can be
found in his recent brief memoir (Rall 1992). More on the general back-
ground for the development of his ideas can be found in Rall 1977, Shep-
herd 1992, and Segev 1992. This background is amplified in the various
introductions and commentaries in this book, together with more per-
sonal comments by colleagues and co-workers that are not available
elsewhere. Theoretical elaboration and extension of Rall's theory can be
found in Jack et ai. 1975, Butz and Cowan 1974, Horwitz 1981, Poggio
and Torre 1978, Koch et al. 1982, Holmes 1986, Abbott et al. 1991, and
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6 Idan Segev, John Rinzel, and Gordon M. Shepherd

Major et al. 1993. The impact of Rail's ideas on computational neuro-
science can be found in Sejnowski et al. 1988. The epilogue of this
introduction discusses possible future directions for the theoretical and
experimental studies on the computational functions of single neurons.

Early Training: From Physics to Neurophysiology

Wilfrid Rail received his early training in physics, graduating from Yale
University with highest honors in 1943. The Second World War was in
progress, and, like many other young physicists, he became part of the
Manhattan Project. A glimpse of his role in that effort as a mass spectro-
grapher at the University of Chicago can be gained from his memoir in
RaIl 1992. At the end of the war he became interested in applying physics
to biology. As it happened, the first graduate program in biophysics was
being formed at Chicago by K. S. Cole, and Rail enrolled as one of the first
students in 1946. Over the next two years, his summers were spent at the
Marine Biological Laboratory in Woods Hole as a research assistant to
Cole and George Marmont, helping to develop and introduce the new
space clamp and voltage clamp methods for the squid axon. At Chicago,
in addition to courses in experimental biology, he took courses taught by
Rashevsky, Carnap, Fermi, and Sewall Wright. All in all, not a bad way to
start a career in biophysics!

Whìle completing requirements for a master's degree in 1948, Rall had
corresponded with John C. Eccles at the University of Otago Medical
School in New Zealand about Eccles's new theory of synaptic inhibition.
This resulted in an offer to come to Dunedin to carry Out his doctoral
work. There he was immediately plunged into the intensive studies of the
neural basis of spinal reflexes that soon led to the pioneering intracellular
studies of motoneurons by Brock, Coombs, and Eccles in 1951-1952. At
that point Rail turned to a more independent project for his dissertation,
a study of the monosynaptic activation of a motoneuron pool and the
construction of a probabilistic model for the input-output relations. In
this work Rail gained much from the wise counsel of A. K. (Archie)
McIntyre, who became Professor when Eccles left for Australia in 1952.
Among the students at Dunedin was Julian Jack, one of the contributors
to this volume.

One should not think that this life in New Zealand was lived far off the
beaten path, certainly not in neurophysiology. Eccles was always on the
move. His intracellular studies made Dunedin the center of the world in
the l950s for the new neurophysiology of the central nervous system.
Mcintyre himself had recently studied at Cambridge, London, and the
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7 Wilfrid Rail's Contributions to Understanding Dendritic Function

Rockefeller Institute; in fact, the new instrumentation he brought back to
Dunedin played a critical role in the pioneering intracellular studies. Rall
was therefore ideally placed to experience the best in experimental neuro-
physiology and to be stimulated by the dynamic Eccles and the reflective
McIntyre into constructing models that could give insight into experimen-
tal findings. Few have brought such a deep understanding of experimental
biology, gained from first-hand experience, to the task of theoretical
modeling.

After receiving the Ph.D. in 1953, Rail obtained a Rockefeller Founda-
tion postdoctoral fellowship, which enabled him to gain further experience
with the leading neurophysiologists of the time. In London in early 1954
he studied in the laboratory of Bernard Katz; during this period Katz and
his students were laying the foundations of our modern concepts of the
synapse by their work on the physiology of the neuromuscular junction.
Rail also had the opportunity to discuss his approach to modeling the
membrane properties of the nerve cell body (soma) with Alan Hodgkin in
Cambridge, who provided him valuable encouragement (Rail 1992). In
New York he worked at the Rockefeller Institute (now Rockefeller Uni-
versity) in the laboratory of David Lloyd, who was responsible for many
of the classic experiments in spinal cord reflex physiology. He collaborated
mainly with Carlton Hunt, who, with Stephen Kuffler, had established
much of the basic physiology of muscle spindles and their contributions to
spinal reflexes.

After a final year in Dunedin, Rail returned to the United States to head
the laboratory of biophysics at the Naval Medical Research Institute in
Bethesda, Maryland, under K. S. Cole. Cole soon left for the National
Institutes of Health, along with several others, including J. Z. Hearon, who
was asked to set up a new Office of Mathematical Research (OMR). Rall
joined that group in 1957, and spent the rest of his career there. The
congenial atmosphere established by Hearon, the institutional home for
the OMR provided by DeWitt Stetten in the National Institute of Arthri-
tis and Metabolic Diseases, and the overall support provided by the Na-
tional Institutes of Health for the OMR deserve special mention and
recognition. Mention should also be made of the Laboratory of Neuro-
physiology (LNP), with Wade Marshall, Kay Frank, Mike Fuortes, Phil
Nelson, Tom Smith, and Bob Burke, where Rail established close friend-
ships and collaborations with experimenters on the forefront of work on
the motoneuron and spinal reflexes. In retrospect it may be seen that here
OMR and LNP established one of the first working groups combining
experimental and theoretical neuroscience. With this support and in this
environment, Rail could concentrate his unique gifts on long-term projects
uniting experimental data with theoretical models.
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8 Idan Segev, John Rinzel, and Gordon M. Shepherd

Insights Gained from Models of Motoneuron Populations

Rail's first study, for his doctoral thesis, involved an analysis of the
input-output relations of motoneuron populations. This study linked the
concept of the motoneuron pool of Sherrington, with whom Eccles had
studied in the 1920s, with the modern analysis of activation of the pooi by
different intensities of afferent nerve stimulation, by Lloyd. Rail was inter-
ested in characterizing in a quantitative fashion the fractional activation
of a pool at different levels of motoneuron excitability. He constructed a
model based on several assumptions: each motoneuron has the same num-
ber of synaptic sites (e.g., 5,000); each site has the same probability of being
occupied by a monosynaptic connection; each motoneuron fires an im-
pulse when the number of activated monosynaptic connections exceeds a
threshold value, which has an inherent variability. A model based on these
assumptions gave a close fit to the experimental data (see Rall 1955a,b).
Fuller discussion of these papers is to be found in the appendix to this
volume, where Julian Jack notes that "this work has yet to be emulated for
any other neuronal population" and remains a valuable example for those
who may wish to construct models of neurons with a distribution of prop-
erties and models of populations of those neurons that perform a range of
functions.

Although not directly involved with dendrites, which is the main theme
of the present book, this early study was significant for Rail's later work in
several ways. First, he brought to it a perspective on the function of a
neuronal population in mediating a particular behavior, in this case a
spinal reflex; similarly, in his later studies his interpretations went beyond
the immediate biophysical properties to implications for system functions
and behavior. Second, it focused on properties of individual neurons (num-
bers of synaptic sites; threshold for impulse generation) as being critical for
the function of the neuron population; that is, systems behavior arises out
of the properties of realistic neuron models. And third, it raised for him the
question of how the biophysical properties of the neuronal membrane con-
tribute to the integrative actions of the neuron, which came to lie at the core
of his thinking.

Do Only Adjacent Somatic Synaptic Inputs Sum Successfully?

In thinking about the biophysical properties underlying neuronal integra-
tion, Rall became aware of a widely accepted assertion by Lorente de
Nó (1938) that spatial summation between several Synaptic inputs on the
soma membrane is very local, and that successful summation occurs only
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9 Wilfrid Rail's Contributions to Understanding Dendritic Function

when activated synapses are close to each other. This was in conflict with
Rall's physical intuition, and in 1953 he addressed this question in a short
abstract entitled "Electrotonic theory for spherical soma." Modifying the
well-established passive cable equations (Hodgkin and Rushton 1946) to
the case of a spherical membrane surface, he showed theoretically that the
transient voltage in the soma membrane following focal depolarization
equalizes very rapidly over the spherical surface. The implication is that,
contrary to Lorente de Nó's assertion, synaptic potentials will sum effec-
tively, independently of where they are located on the soma surface. In
other words, Rall demonstrated that, functionally, the soma can be treated
as an isopotential unit.

Can One Neglect the Cable Properties of Dendrites When the Input Is Applied to the
Soma?

The next step was to examine the electrical consequences of the dendrites
when the input is applied to the soma. By that time, Eccles and his collab-
orators in Dunedin had obtained their first pioneering results in recording
and stimulating cat spinal motoneurons with an intracellular electrode in
the soma. In interpreting the voltage transients recorded from the soma,
they assumed that the current was confined mostly to the soma. Rail ques-
tioned whether it is valid to neglect the cable properties of the dendrites.
In a letter to Science, Rail (1957) showed that when dendrites are coupled
to the soma, a significant portion of the current spreads electrotonicaily
from the soma to the dendrites. Thus, dendrites affect the charging (and
discharging) rate of the soma membrane following an input to the soma.
Indeed, the resultant voltage transients will build up (and decay) faster
when dendrites are present compared to the case of a soma without den-
drites (i.e., faster when the transient is normalized relative to the steady-
state amplitude). In the iimiting hypothetical case of a soma without den-
drites, one has the case of an isopotential unit consisting of the membrane
resistance and capacitance in parallel, and the voltage rise time (and its
decay) in response to a step current input is governed by a single exponent
having the membrane time constant, 1m When dendrites are present, the
decay is faster than 1m; thus, fitting a single exponent to the experimental
voltage transient recorded at the motoneuron soma underestimates the
actual 1m (by a factor of about 2 in the case considered by Rall). Rail
showed that when the somatic transients were analyzed using the correct
value of 1m, there was no need to invoke a "residual synaptic current" in
shaping the decay of the somatic EPSPs, as was assumed by Eccles and his
co-workers. Thus, Rall provided the theoretical basis for recognizing that
dendritic neurons are not isopotential units.
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10 idan Segev, John Rinzel, and Gordon M. Shepherd

What Is the Effect of Dendritic Inputs on the Soma Depolarization?

Having shown that signals at the soma are affected by the presence of
dendrites, Rail turned his attention to the question of how inputs to the
dendrites are integrated at the soma. This question inspired the majority
of Rail's studies. The working hypothesis during the 1950s was that syn-
apses on the dendrites, in particular on distal branches, are essentially
ineffective, and that only the synapses at the soma and the proximal den-
drites contribute to a neuron's output. The complex patterns of dendritic
branching made this problem seem intractable to most approaches. In
order to deal with it, Rail developed first an analytical cable theory for
dendrites (Rail 1959, 1960), followed by a numerical approach utilizing
compartmental models (Rail 1964); these form the theoretical foundation
for exploring the input-output functions of dendrites.

In order to make his methods as accessible as possible to experimen-
talists, Rail drew attention to certain simplifying approaches among the
broader theoretical framework he constructed. Although this had the vir-
tue of facilitating use of the methods, it meant that many workers have
been unaware of the full power of the comprehensive theory. For example,
there is a misunderstanding that Rail's cable theory for dendrites can treat
only passive trees with uniform membrane resistance, unvarying branch
diameters, and a rigid branching pattern. In fact, the methods specifically
embrace arbitrary branching geometries and branching patterns and in
which the branches may have nonuniform membrane properties (for exam-
ple, simulating steady background synaptic conductance input to the tree:
see Rail 1959, 1962a). For simplicity Rail first applied his analytical theory
assuming that the dendritic tree belongs to a class of trees that are electri-
cally equivalent to a single cylinder.

It is difficult for a person coming into the field today to appreciate how
this simple "equivalent cylinder" model provided for a new world of un-
derstanding of dendritic functions. The major insights regarding voltage
spread in passive trees came from the analysis of such trees (Rail and
Rinzel 1973; Rinzel and Rail 1974). Here we briefly summarize these
insights.

1. The degree of branching and the extremely thin diameters of dendritic
branches at distal locations, together with the small dimensions of den-
dritic spines, imply large input resistances (and input impedances) at these
locations (on the order of a few hundred megohms and more). Thus, a
small excitatory synaptic conductance change (of less than I nS) is suffi-
cient to produce a large local dendritic depolarization of a few tens of mV
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11 Wilfrid Rail's Contributions to Understanding Dendritic Function

(Rail and Rinzel 1973; Rinzel and Rail 1974; Rail 1977). In brief, small
processes generate large local responses.

The local dendritic depolarization is expected to attenuate severely in
the central (dendrites-to-soma) direction. Steady voltage is expected to
attenuate about 10-fold whereas fast transients may attenuate 100-fold or
more when spreading from distal dendritic tips to the soma. The attenua-
tion within the tree is asymmetrical; a much less severe attenuation is
expected in the peripheral (soma-to-dendrites) direction. This asymmetry
in peripheral versus central directions implies that from the soma view-
point, dendrites are electrically rather compact (average electrotonic
length of 0.3-2), whereas from the dendrites (synaptic) viewpoint the tree is
electrically far from being compact (Rail and Rinzel 1973; Rinzel and Rail
1974).

The large voltage attenuation from dendrites to soma for transient
synaptic inputs implies that many (several tens) excitatory inputs should
be activated within the integration time window, Tm, in order to sum and
produce sufficient (10-20 mV) somatic depolarization that can reach
threshold for impulse initiation at the axon hillock.

Although severely attenuated in peak values, the degree of attenuation
of the area of transient potentials is relatively small because of the more
prolonged time course of the response. Thus, the "cost" (in term of voltage
area as weil as the charge) of placing the synapse at the dendrites rather
than at the soma is quite small. Hence, even in completely passive trees,
distal dendritic synapses contribute to the somatic depolarization and can
modify the output discharge of the neuron (Rail 1964).

Synaptic potentials are delayed, and they become significantly broader,
as they spread away from the input site (RaIl 1964; RaIl 1967; Rail et al.
1967; Rinzel and Rail 1974). The input response at a distal branch (see
figure 2 of Rinzei and Rail 1974) implies that, locally, synaptic potentials
are very brief. At the soma level the time course of the synaptic potentials
is primarily governed by Tm. This range in width (duration) of the synaptic
potential implies multiple time windows for synaptic integration in the
tree (Agmon-Snir and Segev 1993, and see also Stratford et al. 1989).

These results demonstrated that the distributed structure of dendrites
and their morphological complexity have the functional consequence that
dendritic synaptic inputs should give large local responses that undergo
marked attenuation within the tree. This implies that, in principle, the tree
can be functionally fractionated into many semi-independent functional
subunits, each of which can perform its computational task locally. The
result of this local computation can have a global effect on the input-output

Copyrighted Material



12 Idan Segev, John Rinzel, and Gordon M. Shepherd

(dendrites-to-soma) function of the neuron under appropriate conditions
of synchronous activation of critical numbers of inputs with critical spatial
relations. There can also be very local effects controlling local input-
output dendritic processing through dendrodendritic synapses. And there
can be local activity-dependent plasticity, as in dendritic spines (see Rail
et al. 1966; RaIl 1974; see also Koch et al. 1982; Shepherd and Brayton
1987; Rall and Segev 1987; Rinzel 1982; Woolf et al. 1991; and a recent
review by Mel [1994]).

What Can We Learn about the Dendrites from Intracellular Recording at the Soma?

Being both theoretician and experimentalist, Rall felt it was important
that his theoretical models would help experimentalists to learn more
about the electrical properties of neurons. Indeed, Rall's theory is based on
biophysical parameters that, in principle, can be measured experimentally.
Furthermore, in many of his studies Rall suggested critical experiments
that allow one to extract these biophysical parameters (e.g., the "shape
index" to characterize and compare synaptic potentials in Rall et al. 1967,
and the "peeling method" for estimating the membrane time constant and
the time constants for equalization of transient potentials in Rail 1969).

The challenge was to get these biophysical estimations from recordings
made with an intracellular electrode at only one point, the soma. At first, it
may seem quite impossible to gain information about a large treelike
structure from a local (somatic) recording at its origin. Yet Rall showed
that many of the important electrical properties of dendrites can be esti-
mated rather faithfully from such recordings. He showed how one can
estimate the cable length of the dendrites (L), the specific properties of the
membrane (Ra,, Cm) and of the cytoplasm (Re), the time constant of the
dendritic tree (tm), the dendrite-to-soma conductance ratio (p), and, sur-
prisingly, the properties of the synaptic input (i.e., its electrical distance
from the soma (X = x/2), its time course ( = 1/,eak), and its amplitude).

From the application of Rall's experimental suggestions and from their
extensions by Jack and his collaborators (Jack et al. 1975) we know that,
depending on the neuron type and experimental condition, Rm ranges
between 5,000 and 50,000 ohm cm2. Present-day researchers may be sur-
prised to learn that the earliest suggestions for the specific membrane
resistance, based on assumptions of current flow only across soma mem-
brane, were less than 1,000 ohm cm2; when Rall first suggested, based on
his analysis of current flow into the dendrites in 1959, that it should be at
least 2,000 ohm cm2 and probably 4000, or even higher, his was a lone
voice in the wilderness. The specific capacitance (Cm) is assumed to be
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constant at l-2 pF/cm2, and R is estimated to range between 70 and 250
ohm cm. The time constant of dendritic membrane is, thus, 5-50 msec.
The cable length of dendrites (from the soma viewpoint) was estimated to
be rather small (0.3-2)A this implied that, for steady input to the soma,
dendrites are electrically compact. The dendrite-to-soma conductance ra-
tio (p) was estimated to be between 4 and 25 (and maybe more), and, this
implied that most of the membrane conductance is in the dendrites.

Regarding the properties of the synaptic input, Rail showed that the
variable time courses of EPSPs recorded at the soma are indicative of a
wide distribution of the excitatory inputs over the dendritic surface. Thus,
the electrotonic distance to the soma (X) may range from O (a somatic
input) to 1.5 or 2 (distai dendrïtic inputs). The theory (Rail 1967) allowed
estimations of X for individual synaptic inputs. Dramatic confirmation
was obtained in the study of Redman and Walmsley (1983) who showed
that the value for X that was estimated from Rail's theory agrees ex-
tremely weil with the actual anatomical location of the synapse as found
by labeling and reconstructing both the presynaptic (Ia) axon and the
postsynaptic dendrites of the spinal alpha motoneuron.

Current experimental work on synaptic integration is concerned with
discriminating between different subtypes of excitatory and inhibitory
synapses. A summary of this work is beyond the scope of this introduc-
tion. Suffice it to say that synaptic inputs can be generally divided into at
least two types of excitatory inputs, one with a fast (AMPA) time course
(rise time of smaller than 1 msec) and the other with 10-fold slower kinetics
(NMDA), and at least two types of inhibitory inputs, a fast one (GABAA)
and a slow one (GABAB). Rail's theory of dendritic function will continue
to be a critical tool in analyzing the contributions of each type of synaptic
response to the integrative functions of the neuron.

What Can We Learn about Neuronal Organization from Extracellular Potentials?

Thus far we have considered analysis of the functional organization of
the neuron based only on recordings of intracellular potentials. However,
the extraceilular potentials due to extraceilular current also provide im-
portant information. At the time that Rail became interested in these po-
tentials in relation to dendritic function, nearly a century of research had
been carried out on the extraceilular currents generated by the impulse in
peripheral nerves. From this had emerged generally accepted concepts for
interpreting the compound extracellular potentials recorded by two differ-
ent methods: between a focal electrode and a distant ground when the
nerve is placed in a volume conductor, and between two electrodes on the
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nerve when it is surrounded by a nonconducting medium (i.e., mineral oil)

(see Fulton 1955).

Unitary Extracellular Potentials

When the first unitary extracellular potentials were recorded routinely
from neurons in the 1950s, it was presumed that the volume conductor
interpretation was applicable, and it was expected that the potentials,
interpreted in this way, could be used to answer such critical questions
as whether impulses spread actively or passively into the dendrites. The
biphasic nature of the spikes recorded from near the soma seemed to
support the idea of active impulse invasion into the dendrites; that is, the
second phase of positivity of the soma recording was assumed to reflect
active current sinks associated with the spike in the dendrites (see Fatt
1957). However, Rail's earliest studies of intracellular current indicated to
him that the biphasic nature of the extracellular spikes was more likely
due to a reversal of longitudinal current between an active soma and
largely passive dendrites. Building on his analysis of intracellular currents,
he carried out laborious and detailed calculations of the associated cur-
rents along the dendrites, and he showed that the second positive phase of
the soma spike could be due to the rapid repolarization of the soma rather
than to active impulse invasion of the dendrites (Rail 1962b).

Although the interpretation of extracellular unitary spikes now seems a
somewhat arcane subject, it was a hotly debated topic at the time because
of the possible insights it could give into the question of active dendrites.
Excerpts from Rail's paper are published here, together with commen-
taries that explain the significance of this study for the interpretation of
extracellular unit potentials recorded from motoneurons in the spinal cord
(Nelson and Frank 1964). This work was of further importance as one of
the foundations for the study that led to the identification of dendroden-
dritic synaptic interactions in the olfactory bulb.

Extracellular Field Potentials

In contrast to extraceliular unitary potentials, extracellular field potentials
are due to the summed activity of populations of synchronously active
neurons. Building on his insight into the longitudinal currents in dendrites
set up by impulses or synaptic potentials, Rail inferred that field potentials
are due to summed extraceilular currents outside dendrites arranged in
parallel. This meant that the situation contains elements of recording both
from peripheral nerves in oil and from a nerve in a volume conductor:
within the active region the current paths are constrained in parallel, but
outside the region the current returns within a volume conductor. This
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gives rise to a "potential divider" effect of the recording electrodes along
these current paths.

The utility of this concept was demonstrated in reconstructing evoked
potentials in the olfactory bulb in the study of Rall and Shepherd (1968).

The concept provided the key to understanding the way that different
phases of the extracellular field potentials could be correlated with the
sequence of intracellular potential changes associated with impulse gener-
ation. This was a break with a long tradition in electrophysiology (unfor-
tunately still surviving) of assigning labels to different parts of an ex-
tracellular transient and assuming that each is a direct reflection of a
propagating intracellular impulse or spreading synaptic potential. With
the increased accuracy of the model, it was possible to use the field poten-
tials to localize sites of synaptic interactions, which led to the prediction of
dendrodendritic synapses between mitral and granule cells in the olfactory
bulb. The generality of the potential divider model in reconstructing
evoked potentials for different extents of activated neuronal populations
in the cerebral cortex was subsequently demonstrated by Klee and Rail
(1977).

Output Functions of Dendrites: Dendrodendritic Synaptic Interactions

The new approaches that Wiifrid Rail developed during the late 1950s

and early l960s came together during the 1960s in a study of the func-
tional organization of neurons in the olfactory bulb. Up to that time Rail
had worked mainly with the group of Kay Frank, Michael Fuortes, and
their colleagues at NIH on the motoneuron model. His motivation for
becoming interested in the olfactory bulb came first from the realization
that the field potentials elicited in the bulb by antidromic activation of the
output neurons come very close to meeting criteria of synchrony and
symmetry, and that the bulb would therefore be an attractive model in
which the "potential divider" approach could be used to analyze the rela-
tion between field potentials and underlying intracellular activity.

The study of mitral and granule cells in the olfactory bulb brought
together most of the methods that Rail had developed in his classical work
and added several new ones. Thus, the compartmental approach, devel-
oped initially for the motoneuron, was used to construct a model of the
output neuron, the mitral cell, and the main interneuron, the granule cell,
in the olfactory bulb. Excitatory and inhibitory synaptic potentials were
simulated as in the motoneuron model. A new action-potential model,
approximating the conductances of the Hodgkin-Huxley model, was de-
veloped specifically for this study. The extracellular currents were derived
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from the intracellular potential distributions, and the extracellular poten-
tials were calculated according to the "potential divider" model. It was
the first study to combine all of these experimental and theoretical
approaches.

The hypothesis tested in this work was that the Renshaw circuit for re-
current inhibition in the spinal cord, by means of axon collaterals through
an inhibitory neuron, could be extended to the olfactory bulb in the form
of a recurrent inhibitory circuit from mitral cell axon collaterals through
the granule cells. The unexpected result from the study, however, was that
this feedback is mediated primarily not by an axon collateral pathway but
by a reciprocal synaptic interaction between the mitral dendrites and the
granule cell dendrites. The morphological evidence subsequently sup-
ported this interpretation, and the combined electrophysiological. biophy-
sical, computational, and morphological study was published in Rall et ai.
1966 and Rail and Shepherd 1968.

If Rail's previous studies had given a new picture of the functions of
dendrites in receiving and integrating synaptic inputs, the olfactory bulb
study opened up new ideas concerning the out put functions of neurons in
general and the dendrites in particular. The classical idea, dating back to
the doctrine of the "dynamic polarization of the neuron" of Cajal and van
Gehuchten (see Ramón y Cajal 1989), was of the dendrites as exclusively
receptive parts of the neuron and the axon as the exclusively output
part. The olfactory bulb study showed that this classical idea needed
to be replaced by an enlarged view, in which dendrites are also potential
output sites. The fact that outputs from granule cell spines can be acti-
vated by the mitral cell dendritic inputs indicated that neuronal outputs
can be activated locally, so that parts of a neuron can mediate semi-
independent input-output functions. The computational complexity of a
neuron and its interactions was thus greatly increased over the classical
model.

This was the first evidence for the possible output functions of dendrites,
which subsequently has become a rich field of study, embracing not only
synaptic outputs from many kinds of dendrites but also nonsynaptic
transmitter release from dendrites (cf. Glowinski et al. 1984), and currently
the implication of gaseous messengers such as NO and CO in feedback
from dendritic spines onto axon terminals (Garthwaite 1991) and onto
other dendrites (Breer and Shepherd 1993). The dendrodendritic circuit
was subsequently modeled as a functional unit mediating reciprocal and
lateral inhibition of mitral cells (Shepherd and Brayton 1979), an early
example of a specific "microcircuit" in the nervous system (Shepherd
1978).
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What Are the Consequences of Synaptic Nonlinearities in Dendrites?

In his early analytical studies Rall assumed that as a first approximation
the synaptic input can be modeled as a transient current input. This al-
lowed analytical solutions for passive trees. Rall was the first to point out
that synaptic responses and their interactions are inherently nonlinear-
that they characteristically involve a transient conductance change in the
membrane that perturbs the electrical properties of the entire tree consid-
ered as an interconnected system. One of the great utilities of the compart-
mental approach introduced by Rall in his classical paper of 1964 was the
ability not only to model arbitrarily complex branching geometries but
also to incorporate and explore the consequences of dendritic nonlin-
earities, either synaptic (time-dependent) or excitable (time- and voltage-
dependent) membrane channels.

In the 1964 paper Rall started to explore how synaptic nonlinearities
influence the input-output properties of dendrites. The main results are
summarized:

Because of the inherent conductance change associated with synaptic
inputs, it is a general rule that synaptic potentials summate nonlinearly
(less than linearly) with each other. This effect decreases with increasing
separation between the synapses. Consequently, in passive trees, spatially
distributed excitatory inputs summate more linearly (produce more
charge) than do spatially clustered synapses.

Inhibitory synapses located on the path between the excitatory input
and the "target" point (e.g., soma) can reduce the excitation more effec-
tively than when placed distal to the excitatory input. This basic property
has been studied and emphasized in subsequent work (see Jack et al. 1975;
Koch et al. 1982). Thus, the strategic placement of inhibition relative to
excitation is critical for dendritic integration. Another important rule of
dendritic integration is that inhibition near the soma will have a global
veto effect whereas inhibition on dendrites will have more localized veto
effects on the responses and integration in local subunits.

The somatic depolarization, resulting from activation of excitatory in-
puts at the dendrites, is very sensitive to the temporal sequence of the
synaptic activation. It is largest (but most transient) when the excitatory
synaptic activation starts at distal dendritic sites and progresses proxi-
mally. Activation of the same synapses in the reverse order in time (pro-
ceeding from soma to distal dendrites) will produce smaller (but more
sustained) somatic depolarization. Thus, the output of neurons with den-
drites is inherently directional selective (see also Torre and Poggio 1978).
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4. Background synaptic inputs effectively alter the cable properties (elec-
trotonic length, input resistance, time constant, etc.) of the postsynaptic
cell. Hence, this activity dynamically changes the computational (input-
output) capabilities of the neuron (Rail 1962a; Holmes and Woody 1989;
Bernander et al. 1991; Rapp et ai. 1992).

Finally, at an early stage, Rall pointed out that, in principle, nonlinear
dendrites are computationaily richer than passive dendrites (see Rail
1970). The electroanatomical properties of the dendritic tree, the func-
tional architecture of synaptic inhibition and excitation on the tree and
their precise timing, and the context (background activity) upon which the
input acts, combine to determine the integrative capability of the tree.
The repertoire of operations within a tree is greatly extended by excitable
channels in dendrites (cf. Lunas 1988).

What Are the Functional Properties of Dendritic Spines?

Dendritic spines are very thin and short appendages that terminate with a
bulbous head. In spiny neurons, they come in large numbers and cover
much of the dendritic surface, and are the major target for excitatory
synaptic inputs. But what is their function? To paraphrase the old saying,
if dendrites have been a puzzle, their spines have been an enigma wrapped
in that puzzle. Rail was led to this enigma by several routes, including the
work on the cable properties of thin dendritic branches, the analysis of
current spread between granule cell spines in the olfactory bulb, and expo-
sure to new data on the dimensions of dendritic spines in cortical pyrami-
dal neurons.

The Role of Dendritic Spines in Synaptic Plasticity

Rail was particularly intrigued by the finding that, in the apical dendrites
of cortical pyramidal neurons, distal dendritic spines tend to have longer
and thinner stems than do more proximal spines. This seemed counter-
intuitive (always a useful starting point for a theoretical study) because it
would appear to add a further disadvantage to the distai location. In the
late 1960s and early 1970s, Rail and Rinzel constructed an electrical model
of the dendritic spine and explored the consequence of the partial electri-
cal decoupling of the spine head (the synaptic input) from the dendrite
(and soma) provided by the thin spine stem (large resistance).

Rail and Rinzel (1971a,b) and Rail (1974) showed that, although the
efficacy of spiny synaptic inputs is reduced because of the spine stem resis-
tance, this resistance could be a locus for neural plasticity because changes
in the stem (e.g., increased diameter) could change (e.g., increase) the effi-
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Epilogue: The Future

Currently there is great excitement in the neurobiological community in
the finding of the richness of ion channels in the soma-dendritic mem-
brane, in particular voltage-dependent channels (see Lunas 1988). One
challenge for the experimental research on dendrites is to characterize
these channels in terms of types, kinetics, and distribution over the den-
dritic surface. Theoretical explorations of the consequences of these chan-
nels (e.g., the NMDA channel) for the computational functions of single
neurons as well as for their plastic functions are already underway (e.g.,
Mel 1993; De Schutter and Bower 1994). Thus it is apparent that, for
molecular biologists, the methods of Rall have special relevance. It is well
recognized that the cloning of a gene is only the start in understanding
its role in nervous function. A critical step is to understand the cellular

cacy of spiny synapse in a very specific manner. They showed that small
changes in spine neck resistance would have a significant effect on the
synaptic efficacy only if the spine stem resistance is matched with the input
resistance at the spine base, and that this could explain the observation
that distal spines tend to have thinner (larger resistance) stems.

Excitable Spines

These theoretical results led to further exploration of the possible conse-
quences of excitable channels in dendrites as found recently in many neu-
ron types (e.g., Stuart and Sakmann 1994), These studies have demon-
strated that excitable channels in dendrites, in particular on dendritic
spines, can amplify synaptic efficacy. Furthermore, compared to the case
of spines with passive membrane, spines with voltage-gated or voltage-
sensitive membrane properties can produce a sharper "operating range"
for changes of synaptic efficacy. These changes can be brought about by
changes in the spine stem dimensions, or by other modifications (such as
changes in internal cytoplasm resistivity or movement of organelles). A
"chain reaction" of firing of excitable spines following excitatory synapses
to a few spines was conjectured, and the great sensitivity of the spread of
this chain reaction on the location and timing of inhibition was theoreti-
cally explored (Segev and RaIl 1988). The consequences of such chain
reactions for synaptic amplification and for the repertoire of possible logi-
cal operations in dendrites have been discussed (e.g., Miller et al. 1985;
Shepherd et al. 1985; Rall and Segev 1987; Shepherd and Brayton 1987;
Baer and Rinzel 1991). A recent review on the electrical and chemical
properties of dendritic spines can be found in Koch and Zador 1993.
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function of a gene product, such as a synaptic- or voltage-gated membrane
channel. Because in a neuron that channel will be expressed in a specific
location, the methods of Rail will be necessary for understanding the con-
tribution of that gene product to the overall functioning of the neuron.
Research on the consequences of nonlinear channels for the dynamics of
neural networks has also started and is expected to flourish in coming
years (cf. Traub and Miles 1991).

Novel technologies are proving useful for probing, physically emulat-
ing, and finely altering local sites of active neurons within the nervous
system. Among these are voltage-dependent dyes that enable one to view,
in real time, the electrical activity of neurons when the system carries out
specific computations. VLSI technology potentially makes it possible to
emulate the electrical (and chemical) activity of synapses, dendrites, and
axons and to construct realistic neural networks in chips that operate in
real time. These, and molecular biological methods including antibodies
against specific ion channels, combined with high-resolution optical
probes, may serve as the essential link between the single-neuron level and
the system levels. Again, the theoretical basis for this link between single-
neuron computations and systems computations will continue to draw on
the methods of Rail.

We are presently in an era when the new methods are revealing the
complexity of dendritic branching systems in all their glory. An important
theoretical endeavor that is likely to develop in the next few years is the
search for systematic methods to reduce this complexity in single-neuron
models while retaining the essential input-output functions of the full
models. Rail has argued eloquently for focusing on such reduced and
tightly constrained models as the means to obtain the best insights into
principles, rather than building models incorporating more and more
complexity without adequate constraints (see Rail 1992). These "canoni-
cal" models will not only elucidate the principles that govern the opera-
tion of neurons, but they will also be the building blocks of models of large
neuronal networks (see Stratford et al. 1989; Shepherd 1992; and Segev
1992).

We are at the dawn of interesting times, when experimental and theoret-
ical tools are developing very rapidly. Many of the mysteries of neurons
and dendrites may soon be solved. At the core of these mysteries is the
contribution of individual neurons and their dendritic trees to the pro-
cessing of information in neural systems, as the basis for behavior and
cognitive functions. The contributions of Wilfrid Rail gathered in this
volume will likely serve as key tools in unlocking the doors to those
mysteries.
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2.1 Introduction by Julian Jack and Stephen Redman

Rail, W. (1957). Membrane time constant of motoneurons. Science 126:454.

Rail, W. (1959). Branching dendritic trees and motoneuron membrane resistivity.
Exptl. Neurol. 1:491-527.

Rail, W. (1960). Membrane potential transients and membrane time constant of
motoneurons. Exptl. Neurol. 2:503-532.

After Wil Rail arrived in Dunedin, New Zealand, in 1949, to study for his
Ph.D. under the supervision of John Eccles, significant events in the his-
tory of neuroscience took place there. Eccies, with his colleagues Brock
and Coombs, made his first intracellular recordings from motoneurones.
EPSPs and IPSPs were recorded for the first time. The scientific disputes
that subsequently arose between Rail and Eccies (after Rail had returned,
in 1956, to the United States) over the correct interpretation of recordings
from motoneurones can be traced to the lack of attention that Eccies paid
to cable properties of motoneurones. These disputes were over the correct
value of the specific membrane resistivity for the motoneurone membrane,
the time course of excitatory and inhibitory synaptic currents, and the
effectiveness of synapses on dendrites.

Rail began his analysis of the electrotonic characteristics of dendritic
trees with very little quantitative morphological material available. One
motoneurone had been reconstructed from serial sections by Haggar and
Barr (1950). Chu (1954) had obtained motoneurones from human spinal
cord by shaking fresh autopsy tissue in a jar containing glass beads.
(This was probably the first preparation of dissociated neurones.) The cell
bodies and their proximal dendrites remained intact. The branching pat-
terns, dendritic lengths, and diameters obtained from these data formed
the basis of Rail's 1959 paper, "Branching dendritic trees and motoneu-
rone resistivity." His aim was to provide a method for reducing the geo-
metrical complexity of a branching dendritic tree, while preserving its
electrical properties. The scheme he used was a recursive calculation for
the steady-state input conductance of a finite length of a cylindrical den-
drite terminating with further branching. Each length of dendrite was
terminated by a conductance that was the input conductance of the subse-
quent branchings. Repeated substitutions for the input conductance at
each branch point led to a compact expression for the input conductance
of a dendritic trunk. This procedure placed no restrictions on branching
rules and did not require the specific resistivities of the membrane and
cytoplasm to remain constant throughout the dendrites. Rail made the
important observation that if k branches (of diameter dJk) originate at the
jth branch in a tree and satisfy the relationship

- V' ,j3/2u(j1) - L jk
k

then these k branches could be collapsed into a continuation of the
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(j - 1)th element (diameter d(J_l)) with no electrical discontinuity occur-
ring at the jth branch point. If this branching rule (which became known
as the 3/2 power law) applied throughout the entire dendrite, the dendritic
tree could be collapsed to a continuous extension of the trunk dendrite. (In
this treatment, the question of how to terminate the dendritic cylinder was
not discussed, although it was implicit in the recursive procedure that the
dendritic cylinder would terminate.) The limited morphological material
available to Rail at the time suggested that the 3/2 power law might be
approximately obeyed, at least at proximal branches. This simplification
was enormously important for the subsequent mathematical treatment of
transient potentials in dendrites.

Rail's reduction of a dendritic tree to an equivalent dendrite was some-
times criticized in the mistaken belief that it was only valid when the 3/2
power law could be applied at branch points. This misunderstanding may
have arisen because much of the subsequent analytical treatment of the
neurone model in the 1960s and 1970s assumed an equivalent dendrite of
uniform diameter, which does require the 3/2 power law.

Input resistances of motoneurones were measured by Coombs, Eccles,
and Fatt (1955); Coombs, Curtis, and Eccies (1959); and Frank and
Fuortes (1956). Eccies and his collaborators described a "standard moto-
neurone," derived from the same morphological data that was available to
Rail, as having five dendrites of 5 pm diameter and infinite length attached
to a 70 pm diameter soma. Using this model, Coombs et al. (1955) calcu-
lated the membrane resistivity (Rm) to be 500 cm2. Rall went to consider-
able effort to demonstrate that Eccles had seriously underestimated the
size of the dendritic tree, and therefore Rm. Rail's calculations suggested a
mean value of 4,000 fkm2. The difference between these two estimates of
Rm was to have a profound influence on the opposing positions Rall and
Eccles subsequently took on the effectiveness of dendritic synapses. Eccles
(1957, 1960) calculated that the dendrites would exceed three space con-
stants in length, and that synapses located at such large electrotonic dis-
tances from the soma could not contribute to the somatic membrane
potential. Thereafter Eccles attached little significance to synapses on
dendrites. In contrast, Rail subsequently calculated that motoneurone
dendrites extended to between one and two space constants and that
dendritic synapses could make significant alterations to the somatic
membrane potential.

Apart from the issue of whether dendritic synapses were effective, a
second debate developed about the time course of the synaptic current
generating the EPSP in the motoneurone. Both Frank and Fuortes (1956)
and Coombs, Curtis, and Eccles (1956) had concluded that the time con-
stant of the motoneurone membrane was much shorter than the time
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constant of decay of the EPSP; Coombs, Curtis, and Eccies took this
further and suggested that the explanation for the difference was that there
was a prolonged phase of transmitter action (i.e., a prolonged current
injection) lasting throughout the time course of the synaptic potential. At
that time, Fatt (1957) offered a different interpretation, suggesting that the
slow decay was "passive and involves a spatial factor." Fatt had presented
evidence from extracellular recording that he interpreted as indicating
that a substantial part of the synaptic input came from the dendrites.
Nevertheless, Fatt accepted the measure of the Thomatic" membrane time
constant provided by the other groups and concluded that there was a
difference between somatic and dendritic membrane time constant.

The scene was set for Rail to provide the calculations arising from his
soma-dendritic model of the cell. In his brief report in Science(1957), he set
out the issue with stark clarity and concluded that all the data was com-
patible with the assumption of a uniform membrane time constant of
higher value than the previous estimates. The "somatic" membrane time
constant measured by passing a pulse of current through a microelectrode
in the soma was underestimated if the time course was assumed to be a
simple exponential, by a factor of about two. Thus, in both this debate as
well as the one arising from consideration of the input resistance of moto-
neurones, the issue was the value of the membrane properties.

Eccles and his colleagues resisted this conclusion and in 1959 published
two papers (Coombs, Curtis, and Eccles 1959; Curtis and Eccles 1959)
reasserting that the membrane time constant was less than the decay time
constant of the EPSP, although, as a result of partly acknowledging Rall's
criticism, the difference between the two was now judged to be smaller.
They insisted that there was clear evidence for a residual phase of synaptic
excitatory current and adduced two further pieces of evidence in favor of
such residual action: (i) the fact that an antidromic action potential did not
abolish the EPSP when timed to coincide with its peak; (ii) the observa-
tion that hyperpolarization shortened the time constant of decay of the
EPSP. Curtis and Eccies argued that this could not be accounted for other
than by the hyperpolarization having a direct action on either the binding
or clearance of the transmitter substance. A final, ingenious argument was
offered by Curtis and Eccies. Having accepted that there would be some
current spread from soma to dendrites, they suggested that it would be
much less than Rail calculated, and hence maintained that the membrane
time constant was less than the synaptic decay time constant. Using the
assumption of a simple spherical model of the nerve cell, they derived the
time course of the synaptic current anew and found that between the
initial brief phase and a subsequent prolonged residual phase there was
a brief reversal of the current. They offered the interpretation that the
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preponderance of active synapses were on the soma and proximal dendrites
and this brief current reversal was attributable to spread of the excitatory
current into the distal dendrites, temporarily "hiding" the low residuum of
synaptic excitatory Current. The fact that they used an isopotential, non-
distributed model to derive the time course of synaptic current and then
assumed a nonisopotential distributed model to interpret it, seemed to
have escaped them!

Rail's response in his 1960 paper was magisterial. In the introduction he
reviewed the past history and then started the analysis by introducing a
simple procedure for the soma-dendritic model that would allow determi-
nation of the membrane time constant; this was to plot /t times dV/dt (for
response to a current step) versus t, instead of the conventional dV/dt
versus t, on a semilogarithmic scale. The negative slope of the resulting
line gives the reciprocal of the membrane time constant, providing there is
a "dendritic dominance" (i.e., more current spreads into the dendrites than
passes across the soma membrane) of the order that he, and Eccles, calcu-
lated to be appropriate. He then showed that the experimental data from
two cells reported by Coombs, Curtis, and Eccies (1959) gave an estimate
of the membrane time constant greater than that deduced by them (of the
order of 30 percent).

Rail then went on to draw attention to a technique using sinusoidal
applied current, which might have been useful in judging the dendritic
dominance. He thus provided a safeguard in terms of the techniques avail-
able, so that both dendritic dominance and the membrane time constant
could be estimated, with the method for their joint estimation achieved by
successive approximation if dendritic dominance was not large.

The final part of the paper (other than the mathematical appendix,
presenting the detailed derivation of the equations on which the reason-
ing in the paper is based) then gave a clear and decisive review of the
hypotheses advanced both by Fatt and by Eccles and his colleagues. Rall
pointed out that Fatt's suggestion was not in conflict with his conclusion,
but that there was no necessity to adopt this more complicated model
(different time constants for soma and dendrites). The discussion (pages
519-523) then systematically treated the arguments that Eccles and his
colleagues had advanced and showed that there was an alternative
explanation for each.

Eccles (1961) subsequently stoutly defended his view that there was a
prolonged phase of synaptic current, using new data on the structure of
motoneurones provided by Aitken and Bridger (1961) and further electro-
physiological measures. It would be inappropriate to give a detailed cri-
tique of his arguments, but it was hardly a compelling defense. As Eccles
himself pointed out in 1964, the analysis remained unsatisfactory unless
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the structure were known of the particular neurone from which the experi-
mental results were obtained.

It may seem strange to introduce Rall's classic early papers on nerve cell
modeling by describing a controversy. But the controversy, which rum-
bled on for about a decade, was a decisive influence in shaping the way
Rall presented his initial work. Until recently, when specialist journals
have become available, it was always a struggle to persuade the editorial
boards of physiological journals to accept papers of a purely theoretical
nature. Rall was the pioneer of nerve cell modelingfor structures more
complicated than the axonand remained virtually the sole worker in the
field for nearly two decades (his first publication, studying the isopotenti-
ality properties of spherical nerve cells, was published in 1953). In that
time, he not only laid a complete foundation for the more sophisticated
models of today but did so in a period where his work was commonly
greeted with indifference or, as in the case of the aforementioned contro-
versy, strong opposition. It may not have escaped the reader's attention
that a substantial period elapsed between the preliminary report in Sci-
ence and the subsequent publications two and three years later in the new
and then rather obscure journal Experimental Neurology. To those of us
who developed an interest in the field at this time, it was with a sense of
justice finally done that we saw Rall's subsequent work being published
in prestigious journals such as Biophysical Journal and the Journal of
Neurophysiology.

We would like to add some even more personal aspects to our commen-
tary. One of us (Julian Jack) was a young premedical student in Dunedin,
in the period after Eccles had gone to Canberra but before Wil returned to
the United States. Wil presented two seminars to interested students on
his cable theory. This work was of such novelty and interest that it in-
spired J. Jack to attend undergraduate mathematics lectures in his spare
time and subsequently (in 1959, long after Rall had left) to persuade his
research supervisor, Archie McIntyre, to allow him to take a break from
spinal cord reflex studies and make a few intracellular recordings from
cat motoneurones. The explicit objective of these experiments was to see
whether, with very restricted stimulation of the group ta fiber excitatory
input, it might be possible to detect EPSPs with different rise times; the
hope was that individual fiber inputs might be located either near to the
soma or further out on the dendrites and thus show different time courses,
since this was the possibility that Rail had implied in his seminar. The
experiments did indeed confirm Rall's prediction, but they were not pur-
sued further until after J. Jack had completed his medical studies in
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England and subsequently linked up with Bob Porter, Simon Miller (Jack,

Miller, and Porter 1967), and, finally, S. J. Redman (see Jack, Miller,

Porter, and Redman 1971). The long incubation on this occasion was not
because of any external opposition but because in order to make as satis-

factory as possible a quantitative treatment of the data, we had to develop
the theory and make matching computations. By then the similar work
from NIH was published (see Rail 1967; Rail et al. 1967). Both of us have
the most pleasant memories of first meeting Wil and then visiting him at
NIH together. He was extremely encouraging to us and subsequently very
generous in his referencing of our work, even before it was published (see

Rail 1969a, footnotes 10, 18, 19). He subsequently made very helpful sug-
gestions on drafts of our papers. Since those days, he has remained a good
friend and a supportive colleague. We have admired the high standards he
has maintained in his publications, and his scholarly attitude and integrity
has been an inspiration for us.
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Wilfrid Rail

New information about motoneuron membranes has been obtained in
recent experiments in which intracellular electrodes were used for both
stimulation and recording at the motoneuron soma (1-6). Unexpectedly
low membrane time-constant values have been inferred from the sub-
threshold transients of membrane potential observed when constant cur-
rent was applied across the soma membrane (2-4). It is shown in this
report, however, that these experimental transients are theoretically con-
sistent with significantly larger membrane time-constant values, provided
that the cablelike properties of dendrites are taken into account. This
correction removes the apparent discrepancy (3-5) between the soma
membrane time constant and the time constant of synaptic potential de-
cay and thus removes the need for special explanations, such as a hypo-
thetical prolongation of synaptic depolarizing activity (4, 6), or a prolon-
gation of soma synaptic potential by electrotonic spread from a larger and
slower synaptic potential postulated to occur in the dendrites (5).

The membrane time constant t is defined as the product of passive
membrane resistance and capacitance. The assumption (2-4. 6) that the
experimentally observed membrane transients may be regarded as expo-
nential curves having this time constant t would be valid only if constant
current were applied uniformly to the entire membrane surface. For the
experiments in question, this could be true only for the hypothetical case
of a soma without dendrites. The lower dashed curve in Fig. i illustrates the
exponential time course of membrane potential change V, relative to its
final steady value V for this hypothetical case.

Since the motoneurons are known to possess several large dendrites,
a significant portion of the current applied to the soma must spread
(electrotonically) along these several dendrites. This will change the time
course of soma membrane potential. For example, as the size and number
of dendrites is increased relative to soma size, there is a limiting case, den-
drites without soma. This case is illustrated by the upper dashed curve in
Fig. 1, on the assumption that these dendrites have the same membrane
time constant r and that they may be represented as cylinders of infinite
length. This time course can be precisely expressed as

V/VS = erLjt/t

for the membrane potential at the point (soma) where constant current
is applied across the membrane of each dendrite. It is the same as that
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Figure 1
Membrane potential transients at the neuron soma and origins of dendrites, when constant
current is applied across the soma membrane.

obtained in the more familiar problem of electrotonic potential beneath
an electrode (x = 0), when constant current is applied between external
electrodes placed far apart on a cylindrical axon (7). This curve is not a
simple exponential: the time required to reach half of the steady value is

one-third of the time required in the lower dashed curve, while the time
required to reach 90 percent of V is about three-fifths of that required in
the lower dashed curve.

The middle curve in Fig. I corresponds to an intermediate relation
between dendrites and soma (8). It has been assumed that soma and den-
drite membranes have the same membrane time constant and that the
membrane potential at any moment is uniform over the soma surface (9),
up to and including the origins of the dendrites. The dendrites can be
treated either as cylinders of infinite length or as structures which taper
and branch exponentially.

This intermediate curve was calculated with a value of 5 for the ratio
between the steady-state membrane current drawn by the dendrites and
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the steady-state current drawn by the soma membrane. This value is theo-
retically consistent with the specific example of a soma with six cylindrical
dendrites (used in ¡ and 6, as weil as in 3), provided that a value of about
2000 ohm cm2 is used for the membrane resistivity. Since this example
probably underestimates the size and number of dendrites (1, p. 322), it is
predicted that the time course of soma membrane potential change, when
constant current is applied to the soma, will lie between the two upper
curves in Fig. 1, for many motoneurons.

On the basis of this theoretical prediction, the membrane time constant
can be estimated as being the time required for the experimental transients
to reach about 82 percent of the final steady value. Since, however, the
experimental error permits exponential curves to be fitted to the experi-
mental transients (2-4), it should be noted that the time constants of such
curves can be expected to be smaller than the actual membrane time con-
stant, by a factor of about 2. It appears, therefore, that these experimental
transients do not conflict significantly with the earlier estimate (10), of
about 4 msec for the membrane time constant of cat motoneurons, which
was based on the decay time constant of synaptic potentials (10), and of
monosynaptic facilitation (11).

This is consistent with the simple notion of synaptic potential decay as
a purely passive process, having the same characteristics on both soma
and dendrites (12).
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2 3 Branching Dendritic Trees and Motoneuron Membrane Resistivity
(1959), ExplI. Neurol. 1:491-527

Wiifrid Rail

This paper is concerned with both the quantitative information and the theory
required for the interpretation of certain experimental results obtained with
intracellular microelectrodes. The theory treats the spread of current from a
neuron soma into branching dendritic trees. Formulas are derived for the calcu-
lation of membrane resistivity from physiological measurements of whole neuron
resistance and anatomical measurements of soma and dendritic dimensions. The
variability of available anatomical and physiological information is discussed.
The numerical result is an estimated range of membrane resistivity values for
mammalian motoneurons, and a corresponding set of values for the dendrit.ic
to soma conductance ratio. These values are significantly greater than those
currently accepted in the literature, mainly because the dendritic dimensions
appear to have been underestimated previously. Analysis of the histological
evidence also reveals significant quantitative differences between infant, adult,
and chromatolytic motoneurons. The theory builds upon the classical theory of
axonal membrane electrotonus; all important assumptions are explicitly stated
and discussed. The theory is general and can be applied to many types of
neurons with many types of dendritic trees; it is also relevant to the diffusion
of material in neurons. The 3/2 power of dendritic trunk diameter is shown to
be a fundamental index of dendritic size. Another parameter characterizes the
extensiveness of dendritic branching.

Introduction

New information about mammalian motoneurons has been obtained
recently from experiments using intracellular stimulating and recording

It is a pleasure to acknowledge the stimulation provided by discussions with
many colleagues; in particular, I wish to mention J. Z. Hearon, R. J. Podolsky, K.
Frank, M. G. F. Fuortes, and G. L. Rasmussen. This work was begun while the
author was in the Biophysics Division, Naval Medical Research Institute, National
Naval Medical Center, Bethesda, Maryland; the opinions or assertions contained
herein are the private ones of the writer and are not to be construed as official or
reflecting the views of the Navy Department or the naval service at large.
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electrodes (1, 7, 8, 12, 14). Correct interpretation of such experimental
results is important because of the following implications: the electric
properties of the motoneuron membrane can be estimated: the relative
importance of soma and dendrites in both normal and experimental situ-
ations can be assessed; and much of accepted motoneuron physiology
may require reassessment.

The interpretation of such experiments is complicated by the need to
interrelate three different kinds of information: electrophysiological meas-
urements on single motoneurons; morphological measurements of such
neurons: a theory of electric current spread from a neuron soma into
several branching dendritic trees. The present paper presents such a
theory and applies it to the best physiological and morphological informa-
tion currently available foi' mammalian motoneurons.

A diagrammatic illustration of the problem is provided by Fig. 1.

When an intracellular microelectrode is used to apply electric current
between a point inside a nerve cell body and a distant extracellular
electrode (not shown in the diagram), some of the current flows directly
across the soma membrane, and some of it flows into the dendrites (and
axon) for varying distance before crossing the membrane. How much

FIG. 1. Diagram illustrating the flow of electric current from a microelectrode
whose tip penetrates the cell body (soma) of a neuron. The full extent of the den-
drites is not shown. The external electrode to which the current flows is at a dis-
tance far beyond the limits of this diagram,
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of the total current flows along each of these different paths is deter-
mined by a combination of electric and geometric factors. The electric
factors, for steady state conditions, are the membrane resistivity and the
specific resistivities of the intracellular and extracellular conducting
media; the membrane capacity must also be considered during the tran-
sient phase of current spread. The geometric factors include the size of
the neuron soma, the size and taper of all dendritic trunks, and also
some measure of the amount and extent of dendritic branching.

Except for the geometric complications, this theoretical problem re-
sembles the classical problem of passive electrotonic potential spread in
axons (5, 9, 20). This fact was used in the first estimate of mammalian
motoneuron membrane resistivity (8); it was assumed that the dendritic
trees could be represented as cylinders of infinite length. These authors
assumed six such cylinders of .5 tt diameter, for cat motoneurons; how-
ever, in their discussion (8, p. 322) they suggested that the dendritic
processes must contribute rather more than their calculations had al-
lowed. Nevertheless, this first model has become the "standard moto-
neurone" of Eccles (10), and a large amount of further interpretation
has been based upon it. The results of the present paper indicate that
this "standard motoneurone" underestimates the dendritic contribution
by a significant amount.

The first interpretations of experimental transients of soma membrane
potential (in response to the application of a current step across the
soma membrane) were also in terms of this "standard motoneurone."
Although the transient characteristics of electrotonic potential spread in
long cylinders are well established for axons (9, 20), this knowledge was
neglected in the estimation of the membrane time constant (6, 10, 14).

The need for reinterpretation of these experiments, with suitable allow-
ance for dendritic transient characteristics, was pointed out in prelim-
inary communications (24, 25), and is dealt with more fully in a com-
panion paper (26).

Theory

ASSUMPTIONS

By means of the following assumptions, the geometric and passive
electric properties of a neuron with dendritic trees are idealized to pro-
duce a formal theoretical model that is suitable for mathematical treat-
ment. Definitions are introduced as needed; a complete list of all sym-
bols is given in Appendix 1. Assumptions 1-5 are specific to the present

Copyrighted Material



40 Wilfrid Rail

model; assumptions 6-8 are equivalent to assumptions already estab-
lished as basic to the theory of axonal electrotonus (9, 20).

I. A dendritic tree is assumed to consist of a cylindrical trunk and
cylindrical branch components. Such a tree is illustrated in Fig. 5. The
analysis has been generalized to include taper, but this complication
is omitted here.

The electric properties of the membrane are assumed to be uniform
over the entire soma-dendritic surface, alternative assumptions are possi-
ble (12), but this assumption centers attention on the geometric aspects
of the problem.

The electric potential is assumed to be constant over the entire
external surface of the neuron. This is equivalent to assuming infinite
conductivity of the external medium; such an assumption is commonly
made for axons placed in a large volume of conducting medium. The use
of this assumption can be shown to cause negligible error in the results.
Briefly, this is because the gradients of electric potential to be expected
in an external medium of large volume, and of reasonable conductivity,
are very much smaller than the corresponding internal (axial) gradients
of potential.2

The electric potential is assumed to be constant over the internal
surface of the soma membrane. Together with assumption 3, this implies
a uniform soma membrane potential. In this formal model, therefore,
the shape of the soma surface is irrelevant, because the entire soma
membrane is effectively a lumped membrane impedance. Thus lumped
impedance represents the common point of origin for all dendritic trunks
belonging to a single neuron. Strict validity of this assumption, during
flow of current into the dendrites from an electrode placed within the
soma, would imply infinite conductivity within the soma.2

The internal potential and current are assumed to be continuous
at all dendritic branch points and at the soma-dendritic junction. This
is an obvious physical requirement which merits explicit statement be-
cause of its importance in the mathematical treatment.

The electric current inside any cylindrical component is assumed
to flow axially through an ohmic resistance which is inversely propor-
tional to the area of cross section.

The electric current across the membrane is assumed to be normal

2 Further assessment of assumptions 3 and 4 is presented in the discussion portion
of this paper, page 521.
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to the membrane surface. The uniformly distributed membrane im-
pedance is assumed to consist of an ohmic resistance in parallel with a
perfect capacity.

8. A membrane electromotive force, E, is assumed to be in series
with the membrane resistance, and is assumed to be constant for all of
the membrane. Under steady conditions, and in the absence of current
flow, the electric potential difference, Vm, across the membrane has a
resting value equal to E.

FUNDAMENTAL EQUATIONS

The derivation of the differential equation for distributions of passive
electrotonic potential in uniform cylinders is well established in the
theory developed for axons (5, 9, 20). In regions containing no sources
or sinks of externally applied current, this differential equation can be
expressed

X2 = V + r -,
ax2 ai

where V = V, E is the electrotonic potential, x represents distance
along the axis of the cylinder, T = RmCm is the membrane time constant,
and A [(d/4) (Rrn/Ri) 11/2 is the characteristic length constant.3

Transient solutions of this differential equation are considered in a
companion paper (26). Under steady state conditions, av/at o, and
the general solution of the differential equation can be expressed in terms
of exponential or hyperbolic4 functions, with two arbitrary constants.

3 A more familiar expression for 2. would be [rm/(re + r.) ]1/2. Here, however,
assumption 3 implies r5 = 0, and the resistances, rm and r, for unit length, have
been expressed in terms of fundamental quantities: R,,, = membrane resistance for a
unit area (0cm2) R = specific resistivity of internal medium (0cm) ; and d is
the diameter of the cylinder. Thus r,,, = Rm/7rd) and r = 4R/(ird2). The deriva-
tion of Eq. [1] can be indicated briefly as follows: because of assumptions 3 and 6,
the axial current, I, is defined by Eq. [8], and (see Fig. 2) the membrane current
per unit length of cylinder is Ç, = 01/Ox = (l/r) (32V/3x2) ; also, because of
assumptions 3, 7, and 8, m = Td(Cm av/at + V/Rm) equating these two expres-
sions for m results in Eq. [i]. Further details can be found in Research Report
NM 01 05 00.01.02 of the Naval Medical Research Institute, Bethesda, Maryland.

' The hyperbolic sine and cosine are tabulated functions defined as follows:
smb u = '/2 (eU U) and cosh u = '/2 (e" + e"). The properties relevant to
the boundary conditions of the present problem are these: when u = 0, smb u 0,

and cosh u = 1; also, d/dx (sinh u) = (cosh u) du/dx, and d/dx (cosh u) =
(smb u) du/dx.

[1}
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The following form proves to be particularly useful for present purposes

V/V1 = cosh [(xi - )/XoI + B1 sinh [(xi - x)/Xc], [2]

where A A1 refers specifically to the dendritic trunk. The constant, Vi,
represents the value of ¡7 at x x1, and the constant, B1, is related to
the amount of axial current flowing at x x1. For the case of a cylin-

V VmE

Vm = V« Ve

L0

I-A Vj

r\Sx
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FIG. 2. The upper diagram illustrates electric potentials and current flow for a
cylindrical trunk arising from a so ma. The lower diagram shows the lumped param-
eter equivalent circuit for the membrane. Symbols are as given in the text and in
Appendix 1, with the addition of ¿ox, which simply represents the increment in x for
which quantities are lumped. The differential equations, of course, imply no lumping
(i.e. the limit as ¿x - O).

drical trunk, extending from x = O to x x1, the soma electrotonic poten-
tial, V0, is related to V1 by the expression

V5/V1 = cosh (L0/X0) + B1 sinh (L5/X5), [3]

where L0 = x1 is the length of the trunk, see Figs. 2 and 4. The value
of B1 is determined by the branches arising at x x1, as well as by
the extensiveness of subsequent branching arising from these primary
branches. This dependence of B1 upon branching is made explicit below,
Eq. [16].

r-= V - - - V> Vi
I

'A
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For the special case, B1 = 1, Eq. [2] simplifies to the exponential
electrotonic decrement,

V/Vc = e'o, [41

already well known for axon cylinders of infinite length. For a dendritic
trunk, this solution applies only for the range O x x1; it implies
that the branches arising at x = x1 provide the same combined input con-
ductance at x = x1 as would an infinite extension of the cylindrical
trunk. A value of B1 greater than unity implies that the dendritic tree is
branched more extensively than this, and a value less than unity implies
less extensive branching.

Termination of a Cylinder. There are several reasons for briefly con-
sidering the special cases, B1 O and B1 = oc. These special cases
represent particular terminal boundary conditions that are relevant, in
one case, to a natural "sealed end" of a terminal dendritic branch, and
relevant in the other case to experimentally produced "killed end" termi-
nation of a dendritic branch or axon. Also, these two special cases result
in simplifications of Eq. [2], and they represent two extremes of electro-
tonic potential decrement with distance along a cylinder; these two cases
are compared, in Fig. 3. with the special case, B1 = 1, already con-
sidered in Eq. [4].

When B1 O, Eq. [2] simplifies to

cosh [(xi - x)/Xc]V/i0- [5]
cosh (L0/X0)

which is characterized by a zero slope at x = x1. Curves e, f, and g in
Fig. 3 illustrate this solution for the three lengths, Lo/A0 = 2, 1, and 1/2.
It is clear that these curves slope less steeply than curve a. This solu-
tion would correspond to termination with a "sealed end" that provides
a very high resistance between the internal and external media at x = x1.
This is a good approximation to the case of a membrane cylinder whose
end is sealed with a disk composed of the same membrane; the exact
solution for this case is obtained by setting

B1 = X0R1/R,, = [(R,/Rm)(d0/4)I'12

in Eq. [2]. Thus, for example, if R1 50 (1cm, R,,, = 1250 12cm2, and
= 4 t, then B1 = 2 X 10, which differs negligibly from zero.
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When B1 , Eq. [2] simplifies to

sinh [(z1 - x)/X0]
¡VO - sinh (L0/Xo)

[6]

which is characterized by V = O at z = z1. Curves b, c, and d in Fig. 3
illustrate this solution for the three lengths, L0/À0 2, 1, and 1/2.

V/v

0.9 g

0.8

0.7

0.6

0.5

0.4

0.3
e

0.2

0.1

C b

0 0.5 I 2 X/x

Fic. 3. Distributions of electrotonic potential along unbranched cylinders, for
different terminal boundary conditions and different lengths, Eq. [2]. Curve a cor-
responds to B1 1, or to infinite cylindrical extension, Eq. [4j. Curves b, c, and d
correspond to B1 = and V1 = 0, Eq. [6t Curves e, f, and g correspond to
sealed end termination with B1 = 0, Eq. [5].

It is clear that these curves slope more steeply than curve a. This solu-
tion represents part of the complete solution for a "killed end" boundary
condition at x = z1. When the terminal resistance between the internal
and external media is essentially zero, also the terminal membrane poten-
tial difference, Vm, must be essentially zero, because the membrane EMF
cannot produce an infinite current. Thus, the "killed end" boundary
condition is V = E because the electrotonic potential is defined,
V Vm - E; in other words, this boundary condition is equivalent to
application of a potential, E, across an uninjured membrane at
z = z1. The complete solution which satisfies the two boundary condi-
tions, V = V0 at z = O and V = E at z = z1, can be expressed

Vo sinh [(z1 - x)/XoI - E sinh (x/Xo)
- sinh (L0/X0)

[ I
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INPUT CONDUCTANCE OF A DENDRITIC TREE

Because of assumptions 3 and 6, the axial current at any point, x,
can be expressed

1= (1/ri) [- ]' [8]

where r represents the axial (core) resistance per unit length of the
cylinder. It follows from Eqs. [2] and [8], that for the range O x

I/V1 = G {sinh [(x1 - x)/Xo] + B1 cosh [(x1 - x)/Xo]} [9]

where

G,1 =

= (7r/2)(RmRj)112(do)812 [b]
The dendritic input current, I, that flows from the soma into this

dendritic trunk at x = 0, is obtained by setting x = O in Eq. [9].
Making use of Eq. [3], the result can be expressed as the dendritic input
conductance.

GD = 10/V0 = B0G,,»

where

B1 + tanh (L0/X0)
[12]B0

= i + B1 tanh (L0/X0)
Equations [10], [11], and [12] express a very useful result. The
dendritic input conductance, GD, of any dendritic tree is expressed in
terms of the reference conductance, G, corresponding to an infinite ex-
tension of the cylindrical trunk, and a factor, B0, The value of B0
depends upon the relative trunk length, L0/À0, and upon the value of B1.
The manner in which B1 depends upon successive branchings, is con-
sidered below.

For very short dendritic trunks, B0 essentially equals B1, because
tanh (L0/A0) is then close to zero. For very long dendritic trunks, B0
essentially equals unity, regardless of B1, because tanh (L0/Ao) is then
close to unity. For intermediate trunk lengths, the value of B1) always
lies between B1 and unity.

For the special case, B1 1, B0 necessarily equals unity. For the
limiting special case, B1 = 0, which is the "sealed end" termination con-
sidered with Eq. [5], B0 assumes its smallest possible value, tanh (L0/À0).
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This implies an input conductance, GD, that is less than or equal to G;
it corresponds to the reduced steepness of the initial slopes of curves e, f,
and g in Fig. 3. In the other limiting special case, B1 = , which is
related to "killed end" termination, cf. Eqs. roi and [7], B0 assumes its
largest possible value, coth (Lo/Ao). This implies an input conductance,
GD, that is greater than or equal to Gr,; it corresponds to the increased
steepness of the initial slopes of curves b, c, and d in Fig. 3.

Dependence of B1 upon Branching. In order to obtain an expression
for B1 in terms of subsequent branching, it is necessary to satisfy a series
of boundary conditions required by assumptions 3 and 5. Continuity of
both V and I at every branch point also implies continuity of the ratio,
I/V, which has the dimensions of conductance.

At x - x1, Eq. [9] for the dendritic trunk reduces simply to

11/V1 B1G. [13]

For each branch arising at x x1, there corresponds an equation similar
to Eq. [91 ; i.e., it is identical except for subscripts (cf. Fig. 4). For the

X31 -
x=o X21

B25 + tanh (L15/X15)

Copyrighted Material
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'j

d, X(j

FIG. 4. Dendritic branching diagrams to illustrate the subscript notation used in
the text.

kth branch, extending from x = x1 to x x25, and having a diameter,
a length, Llk, and a characteristic length, A10, the I/V value at

s x1 can be expressed

11k/Vi = B10G,c/d10/d0)3/2, [14]
where

B15
- i + B25 tanh (L15/X15)

and B2,. depends similarly upon branching subsequent to r = s20.
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Continuity of I/V at x x1, requires that the sum, composed of one
term like Eq. [141 for each branch arising at x = must equal the
quantity given in Eq. [13]. This results in the expression

B1 = Bik(dIk/do)h/2. [16]
k

For the common case of two unequal branches (cf. Fig. 4), this can be
written

B1 = B11(d11/d0)312 + B12(d12/d0)312 [17]

and for the special case of equal branches, N1 in number, this can be
written

B1 = N1(d1/d0)3/2
L + B2 tanh (Li/Ai)]

r B2 + tanh (L1/X1)
[18]

It can be seen that B1 depends not only on the (primary) branches aris-
ing at x = x1, but also (Eq. [15]) on the values of B21, which depend
upon the (secondary) branches arising from the primary branches. This
process can be repeated, step by step, until terminal branches are reached.

Generalization to any Branch Point. The results expressed in Eqs. [15]
and [16] can be generalized to any branch point, x = x, of a dendritic
tree (cf. Fig. 4). Thus

B = BJk[d,k/d 11/2 [19](j-i)J
k

where

Bum- + tanh (L./X')
B,1 -

i + tanh (L1/X,1) [20]

and the subscript, jk, represents the kth branch arising atxx; the
value of À1 can be expressed

= [21]

These general results were used to calculate Table 1.
A Hypothetical Dendritic Tree. A specific hypothetical example of an

extensively branched dendritic tree is illustrated in Fig. 5. This example
contains some symmetry to simplify the illustrative calculations; how-
ever, the general method does not require the presence of any symmetry.
This example was also intended to be a possible approximation to some
of the dendritic trees of mammalian motoneurons, on the assumption
that histological preparations usually do not show the full extent of
peripheral dendritic branching; how close an approximation it may be
is still an open question (see pages SIS and 516).
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The trunk and all branch elements are assumed to be cylinders. The
trunk is assumed to have a diameter of 15 .e and a length of 50 .t. It
bifurcates into two equal branches, 10 in diameter and loo li jfl length.
All subsequent branches are assumed, for simplicity, to be 200 t in
length; their diameters, in microns, are indicated by the numbers beside

Copyrighted Material
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Fin. 5. Diagram of the hypothetical dendritic tree used for the calculations sum-
marized in Table 1. The lengths and largest diameters are drawn to scale. The two
halves of the tree are mirror images; the numbers represent dendritic branch diam-
eters in microns. This two-dimensional spread is meant to represent a more compact
three-dimensional tree.

them in Fig. S. The radial extent of this system is approximately one
millimeter.

To calculate the dendritic input conductance, GD, of such a system
it is necessary to assume values for the resistivities, Rm and R. The
calculations in Table 1 have been carried out with two different values
for the ratio, R,,,,'R; the larger value, 72 cm, corresponds, for example.

to Rm - 3600 flcm2 and R = 50 12cm; the smaller value is one fourth of
the larger. Given the R,/R value, Eq. [21] is used to calculate the
À,,, values; then the tanh (L,,/À,,) values are calculated for each cylin-
drical component. Beginning with B(j+l),, O for the terminal branches,
the procedure is to calculate from Eq. [20] and then B from Eq.
[19]. This provides the B(J+l),, value for a next-to-terminal branch.
In this manner, step by step, the calculation approaches the dendritic
trunk, where B0 is defined by Eq. [12] and B1 is defined by Eq. [16].



49 Branching Dendritic Trees and Motoneuron Membrane Resistivity

Copyrighted Material

Table i demonstrates that, with the larger value for Rm, the exten-
siveness of branching is only just sufficient to make the dendritic input
conductance of this tree essentially equal to the input conductance, G,,
corresponding to an infinite extension of the cylindrical trunk. With the
smaller R,. value, the same branching is more than sufficient to satisfy
this criterion; in fact, the B value increases from zero to unity in only
three steps; in other words, the 8-t branches could be extended to infinity
without changing the input conductance of the dendritic tree. It is clear
that for smaller R, values, less extensive branching is required to make
B0 be close to unity.

For this particular dendritic tree, the result is GD = 2 X i0 recipro-

cal ohms for Rrn = 3600 t2cm2, and GD 4.5 X 10 reciprocal ohms for
= 900 tìcm2. To obtain the conductance of a whole neuron, several

such conductances must be added in parallel with the soma membrane
conductance.

Comment. A value of B0 greater than unity can result only when B1
is greater than unity. If the B27, values are close to unity, this depends
mainly on the sum of the (dlk/do)3'2 values being greater than unity.
The anatomical evidence does include several sets of primary dendritic
branches whose diameters approximate this condition.

It is not accidental that any B-k value different from unity always lies
between B(j+1)k and unity. This is an algebraic property of Eq. [20];
it is valid for B(J+1k either less than or greater than unity. Thus, when-
ever nature keeps the values of

k

very close to unity, the values of B5, as one calculates from the terminal
branches to the trunk, must approach stepwise toward unity; once a value
close to unity is reached, further steps cannot carry the value away from
unity by any significant amount.

WHOLE NEURON CONDUCTANCE

The whole neuron conductance, GN, can be defined

CN = TA/TO = 1/RN, [22]

where 'A represents the applied current flowing from an electrode within
the neuron soma to an extracellular electrode, and V0 is the steady value
of the electrotonic potential at z = 0 (i.e., at the soma and at the origin
of every dendrite), that results from this current.
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Physical continuity of current (assumption 5) implies that the applied
current, 'A, must equal the sum of the several dendritic input currents
plus the current flowing across the soma membrane. Similarly, GN is the
sum of the several dendritic input conductances plus the soma conduct-
ance.

Because of assumptions 2-4, the soma conductance can be expressed

G8 = S/Rm, [23]

where S represents the soma surface area.
Making use of the results obtained for dendritic trees (Eqs. [10]-

[12]), the combined dendritic input conductance can be expressed

GDJ = CD312(Rm)2 [24]

where

C = (ir/2)(R2)2, [25]
and

D312 = B0(d01)3I2. [26]

Equation [261 defines a combined dendritic tree parameter. It shows
that the combined effect of several dendritic trees is proportional, not
to a simple sum or average of the trunk diameters, but to a sum com-
posed of the 3/2 power of each trunk diameter appropriately weighted.
The weighting factor, B0, relates the input conductance, GDJ, of the jth
trunk to its infinite cylindrical extension value, see Eqs. [10] to [121.
Because B0 does depend upon Rm/Rj through tanh (L01/A01), the
parameter, D312, does not reflect purely geometric characteristics of the
dendritic trees. For this reason, it is useful also to define a combined
dendritic trunk parameter

[27]

which does not depend in any way upon the values of Rrn and R. It is
this last parameter that is most easily estimated from histological evi-
dence. If, in addition, study of representative dendritic trees should
establish that all the B01 values are close to unity, then the geometric
parameter [27] would provide a good approximation to the more general
parameter, D312, defined by Eq. [26]. This approximation has been
used in Table 2 below, but its validity is obviously subject to further
testing. The following formulas are general, and are not based upon
such an approximation.
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Making use of Eqs. [23][26], the whole neuron conductance can be
expressed,

CD3'2 S
[28]

where it has been assumed that the same Rm value applies to both soma
and dendrites; alternative assumptions would have to be introduced at
this point.

Because the practical problem consists of estimating Rm from an
experimental measurement of RN, it is useful to solve Eq. [28] ex-

plicitly for Rm. The result is

Rm = (1 + e)C2D3RN2 [29]

where

ir I 4S 1
i+=Ll+i+C2D3Rj [30]

When C2D3RN is greater than 4S, expansion of [30] yields

2S

C2D3RN

For a numerical illustration relevant to mammalian motoneurons (see
Table 2), consider S 1.25 X 10 cm2, D3'2 = 2.5 X 10 cm312, C =
0.2 (Ilcm)1/2 and RN = 1.2 megohms (7). Then K,,, = 3900 1cm2; a
value of 0.083 is found for . Increase of R to 1.65 megohms (14) in-
creases Rm to 7200 1cm2 These values are shown in Fig. 6, which
displays the theoretical relation between R and Rm (log-log scaling) for
nine different values of the combined dendritic tree parameter, D3'2; for
this figure, it was assumed that C = 0.2 (tkm)1I2, which correponds to
R between 50 and 75 )cm, and that D3'2/S = 2 cm"2, which corre-
sponds to the average in Table 2.

DENDRITIC TO SOMA CONDUCTANCE RATIO

The ratio of combined dendritic input conductance to the soma mem-
brane conductance is simply the quotient of Eqs. [24] and [23]. This
ratio is important in the consideration of transients (24, 26). It can
be expressed

p = C[D3/2/S]/. [31]

Clearly, the value of p depends upon both geometric and electric quanti-
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ties. However, when dendritic trees are such that the parameter, D32,
is equal to the purely geometric combined dendritic trunk parameter
(compare Eq. [26] with expression [27]), then

D3/2/S = d01312/S, [32]

and this ratio can then be regarded as purely geometric.

4

3

2

0.5

0.3

0.4 I 2 4 6
Fic. 6. Theoretical relation between membrane resistivity, Rm, and whole neuron

resistance, RN, for several values of D3!2; note log-log scaling. Rm is in 103 ohm
cm2 and RN is in megohms; the numbers in the middle represent the D3!2 values
in iO cm3!2. Filled circles represent specific intermediate values mentioned in the
text; open circles represent extreme values of the range presented in the Results
section. Because of the log-log scaling, these theoretical curves are almost, but not
quite, straight lines. The calculations shared the assumptions of Eq. [33 J, and were
based upon Eqs. [281 and [34].

For the motoneurons of Table 2, this geometric ratio has an average
value of about 2 cm!2; using also C = 0.2 (flcm)'!2, Eq. [31] yields
the particular numerical formula

p = 0.4/7 [33]

where R,n must be expressed in ìcm2. This implies, for example, that
values of 400, 1600, 3600, and 6400 fcm2 for Rrn, would correspond to
values of 8, 16, 24, and 36 for the ratio, p.
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For the interpretation of experimental evidence, it should be empha-
sized that p depends upon R,, as well as upon geometry, and that the
determination of R, from the data cannot depend upon the value of p
(unless a trial and error procedure is employed). The direct procedure
for calculation of R, makes use of Eq. [291. However, in calculations
where a value of Rm is assumed (e.g., Table 2), it is efficient to calculate
p from Eq. [31], or from formula [331 when applicable, and then to
calculate RN from the relation

RN - (p + 1)S

which follows from the definitions (or from Eqs. [281 and [31]).

Anatomical lnforma+ion

Ideally, for present purposes, the soma and dendritic dimensions
should be those of the same neuron upon which the electrophysiological
measurements have been made, and the dimensions should be those of
the living neuron. Instead, it is necessary, at present, to use the morpho-
logical dimensions of one sample of dead cells in combination with
physiological results obtained from a different sample of living, but not
completely normal cells. Because of uncertainty in how well these two
samples are matched, there is also uncertainty in the interpretations. It
is therefore important to consider the variability of the data and the
possibilities for systematic error.

The information summarized in Table 2 was obtained by measure-
ment of published histological material, which is identified in the foot-
notes. These neurons were all large ventral horn cells from the lumbar
region of mammalian spinal cord. Although the motor axon was not
identifiable in every case, it is generally assumed that such cells are the
same as the motoneurons which neurophysiologists have been studying
with intracellular microelectrodes.

This quantitative sample is small and is based upon histological illus-
trations that were not specifically intended for such measurements. I
hope that this study will stimulate neurohistologists to provide more
extensive measurements from the best possible original material.

Other Anatomical Sources. Ramón y Cajal presented a wealth of
material relevant to the present study. There are, however, two dis-
advantages: Most of his illustrations are from fetal material, and the
scale is not given in his figure legends. For the present study, such

Rm

Copyrighted Material

[341



55 Branching Dendritic Trees and Motoneuron Membrane Resistivity

illustrations as his Figs. 129-131 (27) are especially interesting for the
extensiveness of branching that they reveal.

Baithasar (2) has presented a histological study of normal and
chromatolytic motoneurons in young cats (ages up to 6 months). Al-
though this study contains considerable information on the dendrites,
the published figures are of limited value for present purposes, because
the sections were 12 to 20 t in thickness, and no reconstruction from
serial sections was presented. In any single section, some dendritic trunks
are likely to be missed completely, and even those which do appear may
not display their full diameters. However, even with these disadvantages,
measurements of Baithasar's figures reveal general agreement with the
results presented in Table 2. Balthasar has been cited by Eccies in sup-
port of his "standard motoneurone" (10, p. 6; 7, p. 514). In fact,
Baithasar emphasizes the differences between several types of cells with
different dendritic complement (2, pp. 356-358, 362-364, 377). Bal-
thasar reports that dorsolateral tibial neurons have 5 to 10 finer dendritic
trunks, of which 1 or 2 are thicker (principal dendrites); central tibial
neurons usually have about 4 to 7 dendritic trunks of relatively larger
caliber; peroneal neurons usually have 3 to 5 relatively even thicker
trunks. He does not give values for these various trunk diameters, but
measurements of his figures (in photographic enlargement) give diameters
of about 19 t for the larger dendritic trunks of peroneal neurons (pre-
sumably not chromatolytic in his Figs. 7a, b), and diameters from 12
to 20 ti for the principal dendrites of chromatolytic tibial neurons (his
Figs. 3a and 7a, b). The smallest dendritic trunks of the chromatolytic
tibial neurons appear to be around 4 to 7 t' in diameter. With such
diameters, the three neuron types (cited above) all seem to imply values
between 200 and 300 tt3/' for the combined dendritic trunk parameter,
in agreement with the results in Table 2.

Systematic Error. A serious possibility of systematic error is the possi-
bility of swelling and/or shrinkage that may take place during various
stages of death and fixation. There is evidence, for example, which indi-
cates dendritic swelling in the cerebral cortex under conditions of anoxia
(29); the possibility of such an effect in the spinal cord remains to be
détermined. On the other hand, histologists often estimate fixation
shrinkage as much as 15 per cent (in linear dimensions) or more. There
is the possibility of unknown osmotic shrinkage or swelling in Chu's
preparations (4). With regard to peripheral branching, experienced
anatomists appear to agree that the true branching must be more exten-
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sive than that usually seen in histological preparations.5 The difficulties
include incompleteness of staining, loss into neighboring histological sec-
tions, and (in the case of Chu's preparations) loss by fragmentation.

It would be very unrealistic to assume that Table 2 is free of systematic
errors. These values simply represent an attempt at a current best
estimate, based on recent published evidence.

CoMPiuusoN OF GEOMETRIC QUANTITIES

Several significant differences and similarities between the various
neurons are suggested by inspection of Table 2. These have been tested
for statistical significance by means of the "t" test (13), which is
appropriate for such small samples on the usual assumption of unbiased
sampling from an underlying normal distribution.

The two adult cat neurons are in good agreement with the sample of
six adult human neurons. With respect to the values listed in Table 2,
they may be treated as a combined sample from a single population. The
t statistic, with S degrees of freedom, gives probabilities in the range
0.3 to 0.7 for such deviations.

Comparison of the six adult human cells with the five infant human
cells reveals that the infant cells are significantly smaller. The average
infant values for both d3I2 and S are about one half the average adult
values. Values of the t statistic obtained for the difference between infant
and adult means give a probability less than 0 001 for the d312 values,
and a probability less than 0.01 for the S values, that these two samples
would be obtained by chance from a single population. The good agree-
ment between infant and adult mean values of the ratio, d3'2/S,
indicates that d8I2 and S are comparable indices of neuron size. It also
indicates a tendency to preserve this ratio and the related ratio, p,
during growth.

Comparison of the two human chromatolytic cells with the six human
adult cells reveals, contrary to the usual statements about degenerative
swelling, that the abnormal dendrites are significantly smaller, and that
the abnormal soma is also smaller, but not significantly so. In the case
of the dendrites, the t statistic gives a probability less than 0.01 that
such a deviation could have occurred by chance. This was an unexpected
result in view of the usual references to degenerative swelling; Chu's

It is a pleasure to acknowledge helpful discussions of this and related questions
with Dr. Grant L. Rasmussen.

Copyrighted Material



61 Branching Dendritic Trees and Motoneuron Membrane Resistivity

figure legends refer to a "swollen cell-body." In these two cases, at
least, the swelling is an optical illusion due to dendritic shrinkage. These
two cells may not correspond to the more acutely degenerate cells that
have been studied electrophysiologically.

The "standard motoneurone" of Eccles (7, 10) is significantly differ-
ent from both the adult and infant neurons in Table 2. It does not satisfy
the usual statistical criteria for being a probable mean from these cell
populations. Comparison of the d3/2 value (for either "standard moto-
neurone") with the group of eight adult neurons gives a value of the t
statistic, which implies a probability less than 0.001 for chance occur-
rence of such a deviation. The "standard motoneurone" value for the
ratio, d3'2/S, is about one-fourth the mean value found for both adult
and infant neurons; the t statistic gives a probability of less than 0.01
for chance occurrence of such a deviation. The "standard motoneurone"
may not be significantly different from the two chromatolytic cells.

DENDRITIC DIAMETER CHANGE WITH BRANCHING

It is important to know how the value of d3'2 changes as one con-
siders successive branchings in a dendritic tree. The value of B0 for
any given dendritic tree depends most strongly upon the first few branch-
ings (i.e., of the trunk and major branches); this can be seen by con-
sidering the branching calculations summarized in Table 1, accom-
panying Fig. 5.

Obviously, careful measurements ought to be made with the most suit-
able obtainable histological preparations. A few tentative results are
given here based upon some of the published histological illustrations al-
ready referred to. The examples shown here include only the first one
or two branchings. They indicate that the value of d312 increases some-
what with branching. When measurements are extended to more periph-
eral branching, it is important to guard against spuriously low values;
these could result from loss of branches due to thin sections, incomplete
staining, or fragmentation.

Haggar and Barr's photograph (18) provides a little information about
branching. The 16-ti trunk gives off two branches, 4.5 and .t, while
becoming itself reduced to 13 t in diameter; thus the trunk d312 value
of 64 t3I2 is exceeded by a larger d312 value of 67.7 t3I2. There is also
a 6.5-pt trunk which bifurcates into a 5- and a 4-ii branch; here the trunk
d3'2 value of 16.6 i312 is exceeded by a larger d12 value of 19.2 t3/2.

Chu's Fig. 3 (4) has a trunk at 6 o'clock which is about 10 i' in
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diameter and gives rise to two branches about 7.5 and 6 p.; farther out,
these have become three branches about 6, 5, and 4.5 p.. The d3I2 value
goes from about 31.5 i.t' for the trunk, to about 35 p.3'2 for the two and
also the three branches. This cell also has a 9-p. trunk at 10 o'clock which
gives rise to two branches about 7.5 to 5 p., and then three branches about
5, 5, and 3.5 p.. The d3'2 values go from about 27 p.3t2 to about
32 and then to about 29 p.312.

Clearly, better and more extensive measurements are desirable. These
measurements do suggest, when considered together with Fig. S and
Table 1, that motoneuron dendritic branching may exceed the amount
necessary to make B0 = 1 and may thus make the combined denditric
tree parameter greater than the combined dendritic trunk parameter. If
this should prove to be the rule, then RN values calculated for any given
Rm (Table 2) will become smaller; conversely, larger Rm values will be
implied by any given experimental value.

HIsTOLoGIcAL QUESTIONS

These preliminary results raise a number of questions requiring
further study. Among these are the following: How extensive is the
peripheral branching of mammalian motoneuron dendrites? Will further
study confirm that the value of d312 increases when calculated for suc-
cessive branchings of a dendritic tree? For how many branchings can
this be reliably tested? Can the shrinkage and/or swelling of dendrites
resulting from death and fixation be reliably estimated? Can satisfac-
tory methods be devised for histological measurement of the same cell
upon which physiological measurements have been made? \Vill further
study confirm that acute chromatolytic somas only appear to be swollen
because of shrunken dendrites? Are there important geometric differ-
ences between acute and chronic chromatolytic cells? 'Will further study
confirm the proportionality found (on the average) between soma surface
area and the combined dendritic trunk parameter, during growth from
infant to adult? Do similar relations hold for other types of neurons?

Results with Comments

The purpose here is to compare the anatomical information of Table 2
with electrophysiological measurements of whole neuron resistance, RN,
obtained with cat motoneurons. This leads to an estimated range of Rm
values within which the unknown R,,, value of mammalian motoneuron
membrane is most likely to lie.
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PHYSIOLOGICAL-ANATOMICAL MATCHING

Electro physiological RN Values. Frank and Fuortes (14) reported a
mean value of 1.65 megohms for fifty-two cat motoneurons; the eleven
values listed in column 8 of their Table I have a mean of 1.5 megohms,
and a statistical variance whose best estimate is 0.32 (megohms)2, imply-
ing a standard deviation of 0.57 megohm. More recent results,6 obtained
with larger tipped micropipettes, give a lower mean value of about 1.2
megohms.

The earlier measurements of Coombs, Eccles, and Fatt (8) have been
extended by the results recently reported for twenty-five cat moto-
neurons by Coombs, Curtis, and Eccles (7). These twenty-five values
have a mean of 1.14 megohms, and a statistical variance whose best esti-
mate is 0.22 (megohms)2, implying a standard deviation of 0.47
megohm.

Both sets of measurements lie in the range from 0.5 to 2.5 megohms.
The ratio between the two variances is not statistically significant (13).
When the eleven tabulated values of Frank and Fuortes (14) are com-
pared with the twenty-five values of Coombs, Curtis, and Eccles (7), the
t test gives a probability slightly greater than 0.05 that this much differ-
ence between means would occur by chance (13), if sampling were from
a single normal population; i.e., the difference is probably not significant.
The combined sample of thirty-six motoneurons has a mean of 1.25
megohms, and a variance whose best estimate is 0.27 (megohms)2, im-
plying a standard deviation of 0.52 megohm.

Comparison with Table 2. For R,,, 4000 11cm2, the mean of the
calculated RN values for adult motoneurons in Table 2 agrees quite well
with the above-mentioned physiological measurements. However, the
variance of the calculated RN values has a best estimate of 0.019
(megohms)2, for the six adult human cells. This is smaller than the
physiological variance by a factor of about 14. This variance ratio has
a probability less than 0.01 of occurring by chance (13), if sampling
were from a single normal population; i.e., this ratio is probably sig-
nificant.

Variance Discrepancy. The problem is to find a satisfactory explana-
tion for the fact that the spread of physiological values corresponds to
nearly four times the spread in anatomical size. The most important
variability in anatomical size is that of the combined dendritic parameter,

O Personal communication from Drs. Frank and Fuortes.
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as may be seen from the large values found for the dendritic to soma con-
ductance ratio, p, in Table 2. It is therefore relevant to note the possible
importance of variability between motoneurons with respect to the ex-
tensiveness of their branching. This could produce a variability in the
combined dendritic tree parameter that would be greater than that of the
combined dendritic trunk parameter. This possibility, as well as the
possibility of unknown selection in this small anatomical sample, can be
checked by further histological study.

Another possibility is that there could be variability in Rm super-
imposed upon size variability. Unless direct evidence is obtained for
this, I prefer the hypothesis that these cat motoneurons are closely similar
in their passive membrane resistivity.

It is possible that the larger physiological variance is partly due to
variability in experimental recording conditions and in physiological
trauma. Such variability is difficult to assess. For example, it is known
that small neurons are more liable to serious injury upon penetration
by a micropipette than are the larger neurons. This would be expected
to bias the physiological sample toward the larger cells in a given popu-
lation; the largest RN values would tend to be lost and low RN values
would predominate. Evidence in support of this is provided by the
observation7 that average RN values fell when the tip size of the micro-
pipette was increased. This effect would lower both the mean and the
variance of RN. The effect of injury upon cells included in the physiologi-
cal sample would also be in the direction of low RN values; this would
also tend to lower the mean value obtained for RN, but it would prob-
ably increase the variance. Occasionally, clogging of a micropipette tip
can produce a high resistance value, but this effect is probably secondary
to those already mentioned.7 The net result of all these factors upon the
variance of RN is not clear. It may be expected that the mean value ob-
tained for RN will be lower than the "correct" value, but the magnitude
of this discrepancy is not known.

MEMBRANE RESISTIVITY

Because of the uncertainties considered above, the membrane resistivity
of cat motoneurons is probably best estimated in terms of a range of

Personal communication from Drs. Frank and Fuortes. It is a pleasure to ac-
knowledge helpful discussions of this and related questions with Drs. Frank and
Fuortes.
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values. On the basis of the evidence considered here, this range extends
approximately from 1000 to 8000 11cm2.

The low end of this range corresponds to the possibility that the lowest
RN values, around 0.5 megohm, actually represent the true resistance
values of large cells with D312 values around 300 t3I2. The high end of
this range corresponds to the possibility that the largest RN values,
around 2.5 megohms, actually represent the true resistance values of
small cells with D3!-° values around 180 1.1312; see Fig. 6.

However, if the mid-range of the physiological samples corresponds
with the mid-range of the anatomical sample, a value around 4000 to 5000
11cm2 would be indicated for R,,,. Then the RN value of 1.2 megohms
(7) would correspond to a D312 value of about 250 t312 The 1.65-
megohm value of Frank and Fuortes (14) was obtained with finer micro-
electrodes and may have been less weighted for the largest motoneurons;
thus, while a 250-li3!2 value for D32 would imply R,, 7000 11cm2
for this RN value, a reduction of D32 to 200 li3'2 would imply Rm =
4700 11cm2.

Such values for R,, are larger than the values of 500 (8), 400 (10),
and 600 (7) 11cm2 proposed by Eccles and his collaborators. Most of
this difference can be attributed to a difference in estimation of dendritic
dimensions; see "standard motoneurone" in Table 2. This difference is
surprising because essentially the same anatomical sources (2, 4, 18)
were cited by Eccles (10, pp. 2-6) as the basis for his "standard moto-
neurone." The statistical improbability of this "standard motoneurone"
is assessed on page 515 of this paper. All of these estimates share whatever
systematic error may be present.

DENDRITIC TO SOMA CONDUCTANCE RATIO

A range of probable values for this conductance ratio can be obtained
by combining the R,,, values, considered above, with the values found for
the purely geometric ratio in Table 2. The geometric size ratio, Eq. [32],
has a mean value of about 2.1 cm112, with a standard deviation of about
0.4, for the combined population of eight adult plus 5 infant mammalian
neurons in Table 2. There seems to be no significant correlation between
neuron size and the value of this ratio. Therefore, the most probable
values of the conductance ratio, p, can be expected to lie in a range, plus
or minus one standard deviation, for any particular value of R,,,. Using
Eq. [31], with C 0.2 (11cm)'2, the following ranges of probable p
values are obtained: at one extreme, with R,, = 1000 11cm2, this range
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extends approximately from 10 to 16; at the other extreme, with Rm
8000 11cm2, this range extends approximately from 31 to 47; for the mid-
range of 4000 to 5000 11cm2, this probable range of p values extends
approximately from 21 to 35.

All of these values are significantly larger than the value of 2.3 used by
Eccles and his collaborators (7, 8, 10); see especially (7, p. 518). This
discrepancy merits explicit mention, because of the interpretations which
have been based upon the 2.3 value; it may be attributed to the difference
between the "standard motoneurone" and the measurements summarized
in Table 2; these differences have already been commented upon above.
The factor of about 10 between this 2.3 value and the mid-range, 21 to
35, cited above, can be seen (in Table 2) to be composed of two factors:
a factor of about 4 in the geometric ratio, d3"2/S, and a factor of about

2.5 in the value of \/ R,,.
Large values of p provide a measure of the dominance of dendritic

properties over somatic properties in determining various whole neuron
properties of motoneurons. Clearly, the conductance is predominantly
dendritic. The above values further strengthen the case (24, 26) for
dendritic dominance in the passive transient response of the motoneuron
membrane to a current step applied at the soma. The case for dendritic
dominance in the modulation of a facilitatory synaptic potential also de-
pends upon large p values; this leads naturally to a possible functional dis-
tinction between dendritic and somatic synaptic excitation: the larger and
slower dendritic contribution would be well suited for fine adjustment of
central excitatory states, while the relatively sr.rìall number of somatic
synaptic knobs would be well suited for rapid triggering of reflex dis-
charge. Such implications will be developed further in a subsequent
paper.

Discussion

GENERALITY OF THE THEORY

The theory and the resulting method of analysis are clearly more gen-
eral than the particular applications presented as Results. The applica-
bility of the theory to motoneurons is not contingent upon the correct-
ness of the particular anatomical and physiological estimates presented
here; the possibility of systematic error has been pointed out; as better
data become available, these can be fed into the general theoretical
results. The same method of analysis is also applicable to other types
of neurons. Of particular interest are the dendritic trees of Purkinje cells
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and of pyramidal cells, both of which have been subjected to recent
quantitative study.

Difiusion Analogy. All of the theoretical results obtained in this
paper are also applicable to the diffusion of material (without convection)
from a steady source within the soma to a constant low extracellular
concentration, or to diffusion from a constant high extracellular concen-
tration to a steady sink within the soma. In this context, the intracellular
source could represent either metabolic production of a substance within
the soma, or active inward transport across the soma membrane; similarly,
the intracellular sink could represent either metabolic consumption of a
substance within the soma, or active outward transport across the soma
membrane. Free diffusion along the dendritic core and across the soma
and dendritic membrane would be assumed.

For example, Eq. [311 could be used to calculate the dendritic to
soma ratio for steady diffusional flux under the above-mentioned condi-
tions; it is necessary only to replace the ratio, Rm/Ri, by the ratio, D/P,
where D is the intracellular diffusion coefficient (cm2/sec), and P is the
membrane permeability (cm/sec). Thus, for D = lO cm2/sec and
P = 1O cm/sec (34) the average neuron of Table 2 would give a
value of about 31 for this diffusional flux ratio. Such diffusional con-
siderations may be relevant to an understanding of factors governing
neuronal development and metabolism.

ASSESSMENT OF SIMPLIFYING ASSUMPTIONS

iso potentiality of tite External Medium. The mathematical theory
makes use of the assumption of extracellular isopotentiality. It is obvious
that this assumption does not correspond strictly to the situation in
nature, and it is desirable to assess the magnitude of discrepancies that
might result from this. The gray matter does not provide an infinite con-
ductivity; it is not even a homogeneous conducting medium. The hetero-
geneity of the interneuronal space is currently under active study (33).
This heterogeneity may not produce very much distortion of the extracellu-
lar potential field, because the connectivity of the interstitial space must be
much more extensive and of finer grain in three dimensions than it appears
in a single plane. Thus, it may be hoped that little error results from
considering the medium to be homogeneous with an apparent extracellu-
lar specific resistance, Re, that is subject to physical measurement. The
gray matter of cat cortex has been found to have an apparent R of about
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222 t2cm (16), or approximately four to five times the value of mam-
malian Ringer (28, P. 470).

For steady radial current flow from inside a spherical soma to a dis-
tant external electrode, the potential, V6, just outside the membrane
equals

(' R6 jR6V=iI dr=-J 4irr2 4irb

where i is the total radial current and b represents the radius of the
sphere. The potential drop, V, across the membrane resistance is simply

V = iR,,/(4rb2).
Therefore, the ratio of Ve to V is equal to

Ve/V = bRe/Rm.

For b 30 X l0 cm, Re = 222 ìcm and R, = 4000 [1cm2, it fol-
lows that Ve/V = 1.5 X 10; thus V6 differs negligibly from zero, for
present purposes.

A similar calculation for a cylindrical membrane, with integration from
r = a to a 10, gives the result

V6/V 6.9aRe/Rm.

For a = 5 x 10 cm, Re = 222 CIcm and Rrn = 4000 12cm2, it follows
that Ve/V = 1.9 X 10g; here V5 also differs negligibly from zero.8

In the early theory of axonal electrotonus, the difficulty of treating the
external potential field was recognized by Hermann (19), and was solved
for certain boundary conditions, by Weber (30). This mathematical
problem has also been studied by Weinberg (31); it involves infinite
series of Bessel functions. These complications are usually avoided by
limiting consideration either to the case of an axon placed in air or in oil,
or to an external volume conductor whose conductivity may be regarded
as effectively infinite.

8 These quantitative considerations were also verified by means of a resistance-
capacitance network analog constructed and tested by A. J. McAlister (21). The first
analog assumed zero external resistance. Extension to the case of an external medium
with finite resistance was accomplished by adding an external resistance network in
which the radial increments in resistance were calculated to correspond to cylindrical
symmetry in a volume; this type of external resistance network was suggested by
K. S. Cole during discussions participated in by W. H. Freygang, Jr., K. Frank, A. J.
McAlister, and W. Rail. The experimental tests also revealed a negligible longitudi-
nal gradient of external potential.
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Formal solutions of the external field surrounding a spherical neuron
with or without cylindrical dendrites have recently been obtained, and
will be presented separately.

iso potentiality of Soma Membrane. Virtual isopotentiality of the soma
interior, under resting conditions, has been assumed since the earliest
intracellular electrode studies (3). However, the assumption of approxi-
mate isopotentiality during the flow of applied or active membrane cur-
rent is more recent. A theoretical basis for it was provided first for a
hypothetical spherical when the electrotonic potential distribution
is expanded in terms of Legendre polynomials, it turns out that the
higher order terms, which represent the nonuniformity of the electrotonic
potential, are smaller than the uniform (zero order) component by a
factor whose order of magnitude is b(Re + 2Rj)/Rm, where b is the
radius of the sphere. This factor is less than 10 for mammalian moto-
neurons. Intuitively, this means simply that the resistance to current
flow across the soma membrane is much greater than the resistance to
current flow between different points interior (or different points ex-
terior) to the soma membrane. This assumption of soma membrane
isopotentiality during current flow was implicit in the calculations of
(8), and it has recently become explicit in the discussion of mammalian
motoneurons (7, 10, 12, 15, 17, 21, 23-26).

When dendritic current is taken into account, soma isopotentiality
does not hold as precisely as for the spherical nerve model. Consider, for
example, the unfavorable case of an asymmetric neuron with an intra-
cellular electrode at one end of an elongated soma (or even in a proximal
dendrite) and with most of the major dendrites arising at the other end
of the soma. If, for example, the soma has major and minor diameters of
90 and 40 i, and if twenty times more steady current flows across the
soma to the dendrites than flows across the soma membrane, then using
R = 50 ìcm and Rm = 4000 12cm2, it can be calculated that the steady
potential drop between the two ends of this soma would be about 2 per
cent of the steady electrotonic potential of the soma membrane.

Uniform Membrane Resistivity. The value of R, has been assumed
to be the same for the entire soma-dendritic membrane. This is not
necessary; the theoretical solutions could be carried out with a different
R, value for the soma and for each cylindrical branch component. In

Preliminary results were presented in 1953 (22), 1955 (23), and 1957 (Abstracts
of National Biophysics Conference, p. 58) ; full details have not been published.
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particular, since GN is dominated by the combined dendritic input con-
ductance, the whole neuron value is not very sensitive to postulated
changes in the Rm value of just the soma. For example, if we begin with
p = 25, halving the somatic Rm value (12) would reduce RN by only
4 per cent; reduction of the somatic Rm value by a factor of 10 would
reduce RN by 26 per cent.

The fact that synaptic knobs are distributed in high density over both
soma and dendritic membrane surfaces,'° and the fact that these knobs
are packed very close to the membrane surface,1' suggests that the soma
dendritic membrane might have a true resistivity, for unit area, that is
lower than the effective value which includes the heterogeneity of the
external surface and external volume. Therefore, it should be emphasized
that all of the theory and numerical estimates of the present paper are
concerned with the effective value of Rm.

APPENDIX 1. DEFncITION OF SYMBOLS

' See Rasmussen in Ref. (32).
11 See, for example, Palay in Ref. (32).
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input conductance of in-
finitely extended cylin-
drical trunk (Eq. [101)

= specific resistance of the
internal medium (2 cm)

= resistance across a unit
area of membrane
(t cm2)

= diameter of cylinder (cm)
= Rn,/ird = membrane re-

sistance for a unit
length of cylinder
(f2 cm)

= 4R = rd2 = internal re-
sistance per unit
length of cylinder
(fi cml)

= [r,,,/r]l/2 = characteris.
tic length of cylinder
(cm)

= [(Rn,/R1) (d/4)11/2
= diameter of trunk
= characteristic length of

trunk

Ve = extracellular electric po- G,,,
tential

V = intracellular electric po.
tential

V,,, = V - V = membrane Po-
tential Rm

E = resting membrane poten-
tial, and EMF

V = V,,, - E electrotonic Po- d
tential

x = distance along a dendrite,
measured from soma

V0 = electro tonic potential at
x=O

in, = membrane current densi-
ty, expressed per unit
length of cylinder

I = internal (axial) current À

= internal current at z = 0;
dendritic input current

RD V0/I, = dendritic input
resistance d0

GD = 10/V0 = dendritic input À0
conductance



71 Branching Dendritic Trees and Motoneuron Membrane Resistivity

APPENDIX 1 (Continued)
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= electrotonic potential at
X =

= value of X at a general
branch point

= diameter of kth branch
arising at x = X3

= characteristic length of
this kth branch (Eq.
[21])

= length of this kth branch
= branching constant at

X=X3 (see Eq. [19])
= branching constant at end

of kth branch arising at
X = Xj

= diameter of cylinder from
which branches arise at
X = X3
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This paper is concerned with the interpretation of passive membrane po-
tential transients produced in a neuron when intracellular microelectrodes are
used to apply current across the soma membrane. It is also concerned with the
specific problem of estimating the nerve membrane time constant from experi-
mental transients in neurons having extensive dendritic trees. When this theory
is applied to the most recent results published for cat motoneurons, the resulting
membrane time constant estimates are significantly larger than the values
estimated by Eccles and collaborators. The time course of soma membrane po-
tential is solved for a variety of applied currents: current step, brief pulse of
current, sinusoidal current, voltage clamping current, and a current of arbitrary
time course. The sinusoidal case provides a theoretical basis for a purely electro-
physiological method of estimating the fundamental ratio between combined
dendritic input conductance and soma membrane conductance. Also included
is the time course of passive decay to be expected to follow various soma-
dendritic distributions of membrane depolarization or hyperpolarization. The
discussion includes an assessment of the observations, hypotheses, and interpreta-
tions that have recently complicated our understanding of synaptic potentials
in cat motoneurons. It appears that electrotonic spread between the dendrites
and soma can account for the observations which led Eccles and collaborators to
postulate a prolonged residual phase of synaptic current in cat motoneurons.

Infroduction

The experimental recording of motoneuron membrane potential tran-
sients resulting from the application of an electric current step across
the soma membrane is one of the remarkable recent achievements made
possible by intracellular microelectrodes (1, 6, 7, 19). A correct inter-

It is a pleasure to acknowledge the stimulation provided by discussion with
many colleagues. Suggestions made by Dr. J. Z. Hearon led to some of the more
generalized mathematical results. Preliminary results (25) were obtained while the
author was in the Biophysics Division, Naval Medical Research Institute, Bethesda,
Maryland.
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pretation of these experimental results is important because it provides
an estimate of the membrane time constant; this, in turn, has implica-
tions for the interpretation of synaptic potentials and for theoretical
concepts of synaptic excitation and inhibition.

The fact that a large portion of the applied electric current must
spread (electrotonically) from the neuron soma into its several dendritic
trees was neglected in the first interpretations of such experimental
transients. It is now becoming clear that this dendritic current is of pri-
mary importance in the estimation of motoneuron membrane proper-
ties (25, 28).

Synaptic Potential Decay and Membrane Time Constant. During the
10 years from 1946 to 1956, a rather simple and useful concept of the
"synaptic potential" was developed by Eccies and his collaborators (2, 9,
12, 13). It was held that synaptic activation causes the motoneuron
membrane to undergo a brief "active" phase of depolarization; when
below the threshold for reflex discharge, this depolarization was as-
sumed to undergo a passive decay having an exponential time constant
of about 4 msec. The brief "active" phase was found to persist for
not more than 0.5 msec (2, 13), an interval later revised to 1.2 msec (9);
it was believed to result from a large nonselective increase in the ionic
permeability of the motoneuron membrane (9). Because the subsequent
synaptic potential decay was assumed to be passive,2 and because the
depolarization was implicitly assumed to be effectively uniform over the
neuron surface,3 this decay was expected to have an exponential time
constant equal to the membrane time constant, t = RmCm, of the resting
membrane. The average value of this t was thus found to be about
4 msec, with a range from about 3 to 5 msec for cat motoneurons (13,
pp. 116 and 142).

Rapid Transients Misinterpreted. In 1956, unexpectedly rapid mem-
brane potential transients were recorded by Frank and Fuortes (19), and
confirmed by Eccles and collaborators (6, 14). These transients were
produced experimentally by the application of a current step across the
soma membrane; their rapid time course was misinterpreted as evidence

2 The word "passive" is used to imply that the membrane resistance, capacity,
and electromotive forces all remain constant at their physiological resting values.

3 This assumption of uniform distribution deserves explicit mention. A simple
exponential decay is not to be expected when the dendritic depolarization is signifi-
cantly different from that of the soma. The effect of nonuniform depolarization is
represented mathematically iii Eq. [23) and is ifiustrated graphically in Fig. 4.
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for a membrane time constant that was significantly smaller than the
time constant of synaptic potential decay; the values reported for t
were ito 1.4 msec (19) and 2.5 msec (6, 14).

If these values had correctly represented the true membrane time con-
stant, they would have made the earlier simple concept of the synaptic
potential untenable. Thus, Frank and Fuortes concluded that the long
duration of the synaptic potential "is not a consequence of the time con-
stant of the membrane itself, but rather of a similarly long-lasting change
occurring elsewhere" (19, p. 468). Coombs, Curtis, and Eccies (6) de-
veloped a more detailed explanation; they calculated a hypothetical time
course of synaptic current that was assumed to be necessary to account
for the synaptic potential. Using their 2.5-msec time constant, they
obtained a hypothetical time course that was characterized by a prolonged
residual phase of current following the brief early phase of current; this
hypothetical time course has been widely illustrated (6; 14, Figs. 11 and
23; 15, Fig. 2; 16, Fig. 5). Fatt (17), on the other hand, preferred to
preserve the hypothesis that the "active" phase of depolarization is brief;
he assumed that synaptic potential decay would be dominated by the
dendritic membrane time constant which he assumed to be longer than
that of the soma. Assuming that a large amount of the synaptic potential
is generated in the dendrites, he suggested that electrotonic spread from
dendrites to soma would cause the dendritic membrane time constant
to dominate the decaying phase observed at the soma.

Dendritic Electrotonus Accounts for Rapid Transient. The apparent
need for these various hypotheses was then shown to have resulted from
a misinterpretation of the experimental results. It was pointed out in a
preliminary communication (25), that when the transient characteristics
of the motoneuron dendrites are taken into account, the recently obtained
experimental transients agree quite well with theoretical predictions
based upon the older membrane time constant value of around 4 msec.
Briefly, this follows from the fact that the electrodes do not apply the
current directly across the extensive dendritic surfaces; the current is
applied across the soma membrane and must spread electrotonically into
the dendrites. When these dendrites are approximated as cylinders of
infinite length, it follows that the dendritic contribution to the motoneuron
potential transient should be expected to resemble the uppermost curve
in Fig. 1; this transient is already well established in the theory of axonal
electrotonus (11, 21); it can be expressed erf \/ t/r. This transient is
significantly faster than the simple exponential transient, i - e' (see
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lowermost curve in Fig. 1), that would be expected in the case of uni-
formly applied current.

The resultant whole neuron transient recorded across the soma mem-
brane can be expected to represent a combination of these dendritic and
somatic components. This transient function depends upon the relative
weights given to the dendritic and somatic contributions. These weights
depend upon the steady state ratio between the current flowing into all

0 05 .0 5 20 2.5

Fic. 1. Transients of passive soma membrane potential when a constant current
step is applied across the soma membrane at zero time. The electrotonic potential, V,
is expressed relative to its final steady value during constant applied current. Time is
expressed relative to the membrane time constant. Curves are drawn for p = 0, 2,
5, and X the dots correspond to p = 10. The uppermost curve, Q = , represents
the limiting case in which the dendrites are completely dominant. The lowermost
curve, Q = 0, represents the limiting case of a soma without dendrites.

dendrites and the current flowing across the soma membrane (27, 28).

The dependence of the resultant transient upon this ratio, , is illustrated
in Fig. 1; it is expressed mathematically in Eq. [91 of the Appendix.

Although estimates of this dendritic-to-soma ratio vary (7, 25, 28),

they all imply some degree of dendritic dominance, for motoneurons in
cat and in man. The "standard motoneurone" of Eccles and his col-
laborators implies a ratio of 2.3 (7); however, the sample of moto-
neurons analyzed by Rall (28) suggests that values of this ratio are
more likely to lie in the range from 21 to 35; known uncertainties permit
an even wider range of values extending from about 10 to 47 (28, pp.

519-520).
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The method of membrane time constant estimation used below has the
advantage of being applicable over this entire range of dendritic domi-
nance (i.e., for ratios from 2 to 50). Results obtained by this method
support the conclusions of the preliminary note (25): the rapid experi-
mental transients (6, 14, 19) do not conflict significantly with the old
estimate of about 4 msec for the cat motoneuron membrane time con-
stant; these transients do not force abandonment of the concept of
passive synaptic potential decay.

Reinterpretations. The need to take the dendritic contribution into
account has recently been accepted by Coombs, Curtis, and Eccles (7).
Consequently, their membrane time constant estimate has been revised
upwards (7), and the magnitude of their hypothetical residual synaptic
current has been revised downwards (10). Nevertheless, these authors
still find their membrane time constant estimates too small to be con-
sistent with a passive synaptic potential decay (7, 10); also, they appear
to regard their interpretations of several related experiments as evidence
in support of their hypothetical residual synaptic current (10). Alterna-
tive interpretations of their experiments are considered below in the
Discussion.

Assumptions and Method

It is assumed that a majority of readers will be more interested in
a descriptive presentation of the theoretical results than in the details
of the mathematical derivations. Consequently, the mathematical treat-
ment has been condensed and placed in an Appendix. It should be em-
phasized that the method of this research actually depends upon the
following logical sequence: Select simplifying assumptions which facilitate
mathematical treatment without losing too much that is physiologically
essential. Deduce the theoretical properties of this model in general, and
also for special cases of current physiological interest. Demonstrate the
implications of these theoretical results for the interpretation of recent
experimental data.

The theoretical analysis is applied to an idealized model of a neuron
possessing several branching dendritic trees. It is assumed that the
membrane potential is effectively uniform over the soma surface, and
that the extracellular gradients of electric potential can be neglected
in the treatment of dendritic membrane electrotonous. These two as-
sumptions, together with other assumptions used to idealize the geometric
and passive electric membrane properties of neurons, have been given de-
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tailed presentation and assessment elsewhere (27, 28); previous Figs. 1,
2 and 5 (28) can be used to help visualize the spread of electric current
in terms of the formal model.

Results

MEMBRANE TIME CONSTANT ESTIMATION

Analysis of Transient Obtained with Current Step Applied to Soma.
The estimation procedure presented here is a rather simple and practical
procedure that has the following advantages: it utilizes a linear plot of
the experimental results; it thus permits full use of all reliable portions
of the experimentally recorded transient; however, any obviously un-
reliable portion of the experimental transient need not be used; also,
this method does not depend upon the prior assumption of any particu-
lar ratio between the dendritic and somatic contributions to the transients.

This method does require that the experimental records exhibit a noise
level sufficiently low to permit reasonably reliable measurements of the
slope, dV/dt, at various times after the onset of the current step. Given
these measurements, the procedure is the following:

plot log {\/7 (dV/dt)}, versus t.

Subject to qualifications (expressed below), these points should fit a
straight line; when calculated with natural logarithms, the negative slope
of this line gives the reciprocal of the membrane time constant, t.

The theoretical basis for this procedure (and its qualifications) is pro-
vided by Eqs. [12, 13, 15] of the Appendix. For the limiting case of
complete dendritic dominance, Eq. [131 shows that the above procedure
applies without any qualifications. For lesser dendritic dominance (i.e.,
values of Q greater than 2 but less than infinity) the error resulting
from use of the same plotting procedure can be calculated from Eq. [15];
this error can be shown to be small at times for which the quantity,
Q V t/t, is not too small. Graphical illustration of this is provided by
the (dashed) curves in the lower left part of Fig. 2, for 5 and 2;
a value of 7 msec was used for t to simplify comparison with the plotted
data in Fig. 2. It can be seen that there is little error at times greater
than t/2, when Q = 5; the error is less for larger values of Q. Even for
the low value, = 2, the curve between t = t and 2t is almost straight
and has a slope which is about S per cent less steep than that for = co.
Consequently, the same simple plotting procedure is useful when the value
of is unknown but can reasonably be assumed to be greater than 2;
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whenever is known, the correction can be calculated. For the limiting
case of a soma without dendrites ( = 0), Eq. [12] reduces to Eq. [14],
and a linear relation exists between log(dV/dt) and t.

Illustrative Application to Cat Motoneurons. This linear plotting pro-
cedure was applied to some of the experimental transients published re-
cently by Coombs, Curtis, and Eccies (7). The left half of Fig. 2 sum-
marizes the applied current step analysis of one of their motoneurons
(7, Figs 3 and 5); the right half of Fig. 2 summarizes both a current step
and a current pulse analysis of a different motoneuron (7, Fig. 6).
Photographic enlargements of the published figures were used; the slope,
dV/dt, was measured at intervals of 1 msec. In the case of applied cur-
rent steps, the natural logarithm of VT(dV/dt) was plotted as ordinate
against time as abscissa; these points are shown as open circles in
Fig. 2.

The three sets of open circles (in the left half of Fig. 2) correspond
to three different amplitudes of current, 6, 8, and 10 x 10 amperes,
applied as steps to a single motoneuron (7, Fig. 5). The three corre-
sponding sets of crosses represent the same data after correction for an
estimated 500-msec time constant in the experimental recording system;
see figure legend for details. The straight lines drawn through the circles
and crosses were fitted by the method of least squares.4 The three sets
of crosses fit slopes corresponding to t values of 7.1, 8.1, and 7.3 msec,
respectively; the weighted mean of these values yields a best estimate
of 7.5 msec for the membrane time constant of this motoneuron.5

From their analysis of the same transients, Coombs et al. estimated a
t value of 5.1 msec for this motoneuron (7, Table 3 with Figs. 3 and 5);
their estimate is about 30 per cent below that obtained here. Even if
this motoneuron were to have the small dendritic-to-soma ratio, - 2,

Equal weighting was assumed for the ordinates (expressed as logarithms). This
is equivalent to the not unreasonable assumption that the errors in slope measure-
ment tend to be proportional to the magnitude of the slope (i.e., a constant co-
efficient of variation).

5 This weighted mean has a standard error of about 0.2 msec. Such a mean is
justified because the differences between the three component t values are not
statistically significant; the three standard errors are 0.28, 0.33, and 0.22, respectively;
the largest difference between the three t estimates yields a t value of 2.3, which
is less than that required for significance at the 2 per cent level. The corresponding
difference for the uncorrected slopes (open cirdes) gives a t value of 3.6, which ex-
ceeds that required for significance at the I per cent level, and nearly reaches the 0.1
per cent level.
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Fm. 2. Linear plots of experimental transient data. The left side is based upon
transients obtained with applied current steps of three different amplitudes in a single
neuron (7, Fig. 5); the right side is based upon experiments with a different moto-
neuron, that was subjected to both pulses and steps of applied current (7, Fig. 6).
The open circles (both left and right) represent current step experiments; their ordi-
nates represent the natural logarithm of the product \/ t (dV/dt) ; their abscissae
represent time from onset of the applied step. The crosses include a correction for the
time constant of the recording system; see below in this figure legend. The straight
lines represent least square fits 4 the value of t corresponding to each slope is stated
in the figure. The filled circles represent current pulse experiments (7, Fig. 6, curves
B,E, H, K) ; their ordinates represent the natural logarithm of the product,
-,,,/ t(-dV/dt) / (1 + t/2t) ; correction for the recording system time constant is
negligible in this case; the abscissae represent time from the mid-point of the pulse.
The (dashed) curves at lower left illustrate the effect of = 5, and 2 to be ex-
pected with the step transient plotting procedure (see text) ; the (dashed) curves in
the upper right illustrate the corresponding effect to be expected with the pulse
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the corresponding 5 per cent slope correction (lower left of Fig. 2), would
reduce the 7.5-msec estimate by less than 0.4 msec; however, the value
of is likely to be greater than 10 (28), and the corresponding correc-
tion would be negligible.

In the right half of Fig. 2, the open circles and crosses summarize a
similar analysis for a different motoneuron (7, Fig. 6, records A and J).
Although the circles exhibit a systematic deviation from a straight line
relation, this is not true of the crosses, which include a correction for
an estimated 200-msec time constant in the experimental recording sys-
tem; see figure legend for details. The least square fit through the
crosses yields a membrane time constant estimate of 5.08 msec, with a
standard error of about 0.13 msec.6 This estimate is not significantly
different from that obtained with a pulse analysis on the same moto-
neuron (filled circles of Fig. 2, explained below).

Transient Following Application of a Brief Current Pulse. When a
brief pulse of current is applied across the soma membrane, the decay of
the disturbance can be approximated quite well by that which would be
theoretically expected to follow an instantaneous current pulse; the

6 Combs, Curtis, and Eccles (7, Table 3) did not publish their estimate for this
motoneuron. However, application of their estimation procedure to the step
transients (7, Fig. 6, records A and J), seems to yield a value between 3.4 and 3.6
msec; this is about 30 per cent below the estimate obtained here.

transient plotting procedure (see text). The unit of the ordinate scale is one (i.e.,
the natural logarithm of e).

Correction for instrumental time constant: Coombs, Curtis, and Eccles state that
a time constant of at least 200 msec was always present in their recording system
(7, p. 507). The correction formula to use is dV/dt = du/dt + UIt,., where V
represents the true transient voltage, U represents the distorted recording, and t,.
represents the time constant of the recording system. When U reaches its extremum,
du/dt = 0, and e,. = U/(dV/dt). Neglecting other possible complications, such as
electrode polarization and local response, it follows from this, and from Eq. [13],
that tr can be estimated as \/nt.m t* et/r,,,, where t represents the time at which
dU/dt = 0, and z,, is the membrane time constant. A 200-msec time constant was
estimated for (7, Fig. 6), because records A to J appear to reach their extrema at
times between 10 and 15 msec (corresponding to z,. between 90 and 310 msec), and
because the control records (C to L) exhibit a slope corresponding approximately to
T,. = 200 msec. The value of z,. appropriate to (7, Fig. 5) is considerably less certain
because these are tracings that already include some correction; in view of this, and
because the extrema of records J and K (7, Fig. 3) correspond to r,. in the approxi-
mate range from 150 to 700 msec, it was decided that a correction for z,. = 500 msec
would represent a reasonable compromise.
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approximation is quite good except at very short times after the pulse.
This is illustrated by the theoretical curves in Fig. 3, where the calcula-
tions were simplified by assuming complete dendritic dominance. The
passive responses have been calculated for square current pulses of several
durations (by means of Eq. [10]), and for an instantaneous pulse (by
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FIG. 3. Transients of passive soma membrane potential when a square pulse of
current is applied across the soma membrane. Zero time corresponds to the instant
when current is turned off. Pulse durations compared are 1t/t) = 4, 2, 1, 0.5, 0.2,
and instantaneous (T = 0). The amplitude of each current has been adjusted to
make each pulse deliver the same amount of charge. The ordinate value, 1.0,
represents the steady state value of V during a constant current having the same
amplitude as that of the ¿sT = 1.0 pulse. Dendritic dominance has been assumed
here. The inset presents the same curves with logarithmic scaling of the ordinates;
the dashed line displays the corresponding slope for simple exponential decay, et/7.

means of Eq. [17]). All amplitudes have been scaled to provide the
same amount of charge displacement in every case. The logarithmically
plotted inset (in Fig. 3) shows that the decay rates of neighboring curves
differ rather little at times greater than t/2. Furthermore, the agreement
between the instantaneous pulse curve and the shorter square pulse curves
becomes excellent (for times greater than t/2) when the origin of the in-
stantaneous pulse curve is shifted to the mid-point of each pulse dura-
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tion; this is important for location of t = O when fitting experimental
results.

Procedure for Brief Pulse Analysis. When a pulse is very brief and
dendritic dominance can be assumed, a linear plotting procedure can be
based upon Eq. [181 of the Appendix. The procedure is the following:

plot log [ Vi(dV/dt)/(1 + r/2t)], versus t.
When the correct value of t is used in the factor, (1 + t/2t), the plotted
points can be expected to fit a straight line; the negative slope (calcu-
lated with natural logarithms) gives the reciprocal of t. This procedure
thus requires that a tentative value of t be used in the factor, (1 + t/2t),
to obtain a preliminary plot of the data. With the resulting estimate for
r, the factor (1 + t/2t) can be recalculated and the plotting procedure
can be repeated. In practice, few repetitions of the procedure will be
found sufficient.

Errors resulting from lesser dendritic dominance can be calculated
from Eqs. [181 and [191; graphical illustrations of such errors are pro-
vided by the (dashed) curves in the upper right part of Fig. 2, for

= 5 and 2; a value of 5 msec was used for t. There is little error at
times greater than t/2, when = 5 or greater. For the low value, = 2,
the curve between t = t and t = 2t is almost straight and has a slope
which is about 5 per cent steeper than that for the = cc. Errors associ-
ated with finite pulse duration were considered above, with Fig. 3.

Illustration of Brief Pulse Analysis. This procedure was applied to a
set of experimental transients published by Coombs, Curtis, and Eccles
(7, Fig. 6, records, B, E, H, K). At intervals of i msec, these slopes were
measured in photographic enlargement, and averaged over the four
curves. Then, using the procedure described above, the points shown as
filled circles were plotted in Fig. 2; correction for the estimated 200-msec
time constant in the experimental recording system is negligible in this
case. The least square fit through these points yields a membrane time
constant estimate of 4.84 msec, with a standard error of about 0.14 msec.
This does not differ significantly from the estimate obtained with the
step analysis on the same motoneuron (STEP AJ, crosses in Fig. 2). If
these two estimates are given equal weight, a best estimate of about 5.0
msec is obtained for the membrane time constant of this motoneuron.6

Assessment of Motoneuron Membrane Time Constant Estimates. The
experimental results of Coombs, Curtis, and Eccles (7) provide a valu-
able sample of eighteen carefully studied motoneurons. Although it would
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obviously be desirable to perform similar linear plots for all eighteen of
their motoneurons, the two cases analysed here (Fig. 2) suggest that
there is a significant difference between the method of membrane time
constant estimation used by them, and the method presented here. In
these two cases, their method yields estimates that are about 30 per cent
below those obtained here. If these should prove to be representative of
the entire sample, it would follow that the average membrane time con-
stant estimate of this sample should be increased from 3.1 msec to about
4.4 msec. This would suggest that the present method of estimation
yields membrane time constant values about 75 per cent greater than the
earlier method of Coombs, Curtis, and Eccles (6, 14), which took no
account of dendritic transient characteristics. This should not, however,
be used as the basis for a computational short cut, such as, for example,
an increase of the correction factor, 1.2, used by Coombs, Curtis, and
Eccles (7, pp. 518-519) to a larger value of 1.75; some hazards of such
short cuts are noted in the fine print below.

The apparent simplicity of the estimation procedure used by Coombs, Curtis, and
Eccles (7) should be weighed against the following disadvantages. Their procedure
depends upon their assumption of one particular degree of dendritic dominance,

= 2.3, based upon their "standard motoneurone." The measurement of half decay
times is complicated by uncertainties in the asymptotic baseline and by the fact that
this transient does not possess a characteristic time for half decay. Because of the
second difficulty, these authors (7, p. 519) recommend the measurement of two suc-
cessive half decay times commencing at t = O.6t; however, T is not known in
advance, and in their Fig. 5 their arrows reveal that their measurements commenced
at about 2 msec, in spite of - r value of 5.1 msec (their estimate) or 7.5 mSec
(estimate of this paper) ; such an error would be expected to result in a low esti-
mate. Also, the device of averaging two successive "half times" is equivalent to
halving a single 'quarter time"; the accuracy of this "quarter time" depends upon
the accuracy of two points together with the accuracy of the baseline used; all
information contained in the experimental transient, but not fully contained in this
"quarter time," is effectively disregarded by their procedure.

With regard to questions of statistical significance, the eighteen estimates of Coombs,
Curtis, and Eccies (7, Table 3, column 5) have a mean of 3.14 msec, and a standard
deviation of 1.01, implying a value of 0.24 for the standard error of the mean.
Relative to these statistics, an application of the "t" test for the significance of a
difference between this mean and a larger true mean gives the following result:
if this mean is 25 per cent below the true mean, the difference corresponds to
significance at the 0.001 level. Such significance levels are subject to the usual
qualifications, and they should be considered together with the sources of error
described above.

Application of Voltage Clamp. If it is assumed possible to apply a per-
fect voltage step across the entire soma membrane, then the time course
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of the current that must be supplied by the electronic clamping circuit
would provide a valuable means of estimating the membrane time con-
stant. Because the soma membrane capacity would have to be charged
instantaneously, the transient time course of the applied current would
be determined by the dendrites. Thus, the membrane time constant of
the dendrites could be determined separately from the soma, and inde-
pendently of

.

The linear plotting procedure in this case would be the following:
plot log [t312 (dIA/dt)] versus t,

where 1.4 represents the applied current. This procedure follows from
Eq. [25] of the Appendix. It should be added that a mathematically
more complicated result must be used if there is a significant amount
of series resistance between the neuron membrane and the regions where
the constant voltage difference is maintained.

PASSIVE DECAY OF SOMA-DENDRITIC POLARIZATION

The time course of passive decay from an initial soma-dendritic mem-
brane depolarization (or hyperpolarization) depends upon the initial
distribution of the disturbance over the soma-dendritic surface. Graphi-
cal illustration of this is provided by Fig. 4, which is based upon Eqs.
[22] and [23]. The upper curve (a = 0) represents a simple exponen-
tial decay following a uniformly distributed initial depolarization. The
two lower curves show the more rapid decay, to be expected at the soma,
when the initial depolarization of the dendrites is reduced (as an ex-
ponential function of distance from the soma); see figure legend. The
effect illustrated in Fig. 4 is relevant to synaptic potential decay if this
is assumed to be a passive electrotonic process following a brief de-
polarization. For example, the relative rates of EPSP decay and IPSP
decay reported by Curtis and Eccles (10), would fit the hypothesis that
IPSP initiation is confined more closely to the soma than is EPSP
initiation; see Discussion.

In contrast to these cases, a slower passive decay would be expected
at the soma following an initial depolarization that is greater in the
dendrites than in the soma.

SINUSOIDAL APPLIED CURRENT AND DENDRITIC DOMINANCE

Here is described the manner in which the application of sinusoidal
current7 across the soma membrane may provide a means of estimating

It was suggested to me by Dr. L. Stark, that the soma-dendritic analysis be
extended to include the sinusoidal case.
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dendritic dominance quite independently of anatomical information. The
fundamental parameter of dendritic dominance is the ratio, , of com-
bined dendritic input conductance to soma membrane conductance (28);
see also (7, 8, 25, 26). Previous estimates of this ratio have had to
depend upon calculations which combine anatomical information obtained
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FIG. 4. Effect of initial distribution of soma-dendritic depolarization upon the
time course of passive decay to be expected at the soma. The initial distribution is
assumed to be V(X,O) = eC/X, for the three cases, a = 0, 1, and 5; the case,
a = 0, represents a uniform distribution; when a = 1, 63 per cent of the dendritic
depolarization is distributed proximally to x = X; when a = 5, the total amount of
dendritic depolarization is further reduced by a factor of 5, and 63 per cent of this
is distributed proximally to z = 0.2 X. The logarithmically plotted inset permits an
easier comparison of the three rates of decay. In contrast to this figure, when de-
polarization is least near the soma, Eqs. [221 and [23] imply that the rate of decay
at the soma is slower than for the uniform case.

from one sample of neurons with electrophysiological information from
another sample of neurons (28, pp. 508, 517-520).

Essentially, the experiment would consist of applying a sinusoidal cur-
rent across the soma membrane, at several different frequencies, and
recording the oscillatory electrotonic potential that is developed across
the soma membrane. It would be anticipated, intuitively, that at low
frequencies there must be significant current spread into the dendrites,
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while at high frequencies most of the current would flow across the soma
membrane capacity. For very high frequencies, the current would be
almost entirely capacitative; in other words, the phase angle between
current and voltage would be very close to 900. For very low frequencies,
the current would be almost entirely resistive, implying a phase angle
close to zero.
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Fin. 5. Theoretical relation between phase shift and frequency when a sinusoidal

current is applied across the soma membrane, for Q = 0, 2.5, 10, 25, 50, 100, and .

Zero phase angle implies a whole neuron impedance that is effectively a pure re-

sistance; the 90° value corresponds to effectively pure capacitance. The nr scale can
be used for any r value, the frequencies at the top of the figure apply when t is 4
msec. This is based upon Eq. [29].

The transition from zero phase angle to 900 phase angle is displayed
graphically in Fig. S; phase angles are plotted against a logarithmic
scale of frequency, for several dendritic to soma conductance ratio
values, = 0, 2.5, 10, 25, 50, 100, and infinity. It can be seen that these
curves offer a basis for distinguishing electrophysiologically between
different values of .

These curves were calculated from Eq. [291 of the Appendix. A simple
method of calculating from such experimental data is provided by the
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formula, Eq. [30], obtained by a rearrangement of the first equation.
These equations were derived from the assumption of a passive membrane
impedance composed of a pure resistance and pure capacitance in paral-
lel; possible complications from additional reactive components have been
considered and judged likely to require only a small correction to the mid-
range illustrated in Fig. 5; see Appendix. Complications resulting from
physical instrumentation also may have to be taken into account.

Discusson

ELECTROPHYSIOLOGICAL ESTIMATION OF NEURON PARAMETERS

Estimation of and t Independently of Anatorn-v. The theoretical
formulations presented in this paper provide the basis for electrophysio-
logical estimation of the membrane time constant, t = R mC,,, and of the
dendritic to soma conductance ratio, , both independently of anatomical
data. In principle, simultaneous best estimates of both and t could be
obtained from good experimental data of the kind corresponding to
Figs. 1 and 5. In practice, when there is good reason to believe that

is greater than 2, it is simplest to make a first estimate of t by the
method of Fig. 2; then, using this value of t, estimate by the method
of Fig. 5. After has been estimated, the estimate of t can be re-
examined to see if successive approximations are required.

Validation of Sinusoidal Method. The sinusoidal method for esti-
mating has not yet been tested, and the possibility of unanticipated
difficulties must not be overlooked. However, the theoretical results
of the preceding paper (28; cf. also 7), provide the means for an inde-
pendent estimate of ; this is based upon anatomical data in combination
with a measurement of RN. Comparisons would ideally be carried out
under conditions where the electrode placement can be confirmed visu-
ally, and the soma dendritic dimensions of the same cell can be obtained
under essentially the same conditions; obvious candidates are cells in
tissue culture, possibly cells in tissue slices, and also cells such as the
crustacean stretch receptors.

Estimation of R, and C,,, Depends on Anatomy. Although it now
appears to be possible to estimate and t independently of anatomical
data, the same cannot be said for the membrane constants R,,, and C,,,,
which apply to unit area. In order to estimate R,,, from the whole neuron
resistance, RN, it is not sufficient to have the value of o; it is also neces-
sary to know either the soma surface area, or a combined dendritic
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size parameter (28) 8 The corresponding analysis of axons by Hodgkin
and Rushton (21) demonstrated how four electrical constants can be de-
termined from four electrical measurements. However, in that case it
was also necessary to supplement the electrical measurements with an
anatomical measurement (axon diameter) before the fundamental param-
eters, Rm, Cm and R could be estimated. In the soma-dendritic problem,
the value of R is not regarded as a serious source of uncertainty and a
reasonable value is assumed (28). Thus, the most essential motoneuron
parameters may be given as Rm, Cm (or t) and , plus a suitable meas-
ure of neuron size.

HYPOTHESIS ADVANCED BY FATT

When the apparent discrepancy between synaptic potential decay and
the erroneously low membrane time constant was first being discussed,
Fatt (17, pp. 74 and 79) suggested that soma-dendritic electrotonic
coupling might account for this discrepancy. This suggestion is in
agreement with the present work. More particularly, Fatt's hypothesis
was that the dendritic membrane has a larger Rm value than the soma.
Assuming a uniform membrane capacity everywhere, this would result
in a larger membrane time constant in the dendrites than in the soma.
This hypothesis is not in conflict with the present results and interpreta-
tions. In view of the large dendritic to soma conductance ratio found,
it can be said that the experimental results are determined mainly by
the dendritic membrane and that a smaller value for the somatic t and
R,, would have little effect. Fatt gave two reasons for postulating smaller
somatic values. Such somatic Rm values would correlate with a membrane
threshold difference postulated to exist between soma and dendrites; this
remains a possibility. Also, a smaller somatic t value was intended to
account for the rapid soma membrane potential transients observed
with an applied current step; Fig. i shows that this assumption is not
necessary when is large.

HYPOTHESES ADVANCED BY ECCLES AND COLLABORATORS

Because of their 2.5-msec time constant estimate, Coombs, Curtis, and
Eccles were led to postulate a prolonged residual phase of synaptic cur-

S For neurons whose dendrites dominate the whole neuron conductance, it would
be wiser to use a combined dendritic size parameter, especially if Q has been estimated
by the sinusoidal method. This is because we do not yet know how much of the
soma surface behaves as though it lies at X - O in the electrophysiological determina-
tion of Q. Once this question has been answered experimentally, it may be possible
to simplify the procedure by using an appropriate estimate of the soma surface area.
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rent (6, 14, 15, 16). It was subsequently postulated that this residual
current is due to continued action of a negatively charged transmitter
substance, and that the action of an applied hyperpolarizing current is
to accelerate the removal of this transmitter substance from the synaptic
cleft (14, pp. 63-64; 10, p. 543).

Although these authors have now accepted the necessity of considering
dendritic electrotonous in the estimation of the motoneuron membrane
time constant, they have explicitly objected to the suggested consequences
(25), namely a membrane time constant of about 4 msec, and the
removal of the need for a hypothetical prolongation of synaptic current
time course. Their revised estimate of the average membrane time con-
stant is 3.1 msec, with a range from 1.8 to 5.1 msec (7); this value allows
them to interpret experiments which they find difficult to interpret with
a 4-msec value (7, p. 526). However, there is now good reason to
believe that even their revised membrane time constant estimates (7) are
too low by a significant amount; see pp. 513 and 514.

The hypothetical time course of synaptic current, which originally
showed a significant residual phase (6, 14, 15, 16), has now been revised
by Curtis and Eccles (10) to a time course showing a much smaller
residual phase than before. As explained in the fine print below, this
calculated residuum does not establish the existence of actual residual
synaptic currents; a very similar calculated residuum could be obtained
in the complete absence of actual residual synaptic current.

Other evidence offered by Curtis and Eccles (10) in support of their
hypothetical residual synaptic current is also considered in the fine
print below. It appears that the various observations upon which Curtis
and Eccies have based their arguments can be explained, at least ap-
proximately, by giving adequate consideration to electrotonic spread
between dendrites and soma. Thus it would seem that the evidence pre-
sented by these authors (10) does not establish the existence of signifi-
cant residual synaptic currents in these motoneurons.

Hypothetical Synaptic Current Time Course. The formula used by Curtis and
Eccles (10) to calculate this current time course is equivalent to the well-known
differential equation for current flow through a parallel resistance and capacity;
this equation can be expressed I = V/R + C(dV/dt). The validity of its applica-
tion to the present problem depends fundamentally upon two requirements: The
synaptic current must be uniformly distributed over the soma and dendrites; and
the correct value for the membrane time constant must be used. Although Curtis
and Eccles (10, p. 531) mention these requirements, it seems unlikely that either
requirement has been adequately satisfied in their applications of this formula.
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Even if the assumption of uniformly distributed synaptic current were valid, com-
putation with a membrane time constant estimate, r8, that is significantly different
from the true value, r, would be expected to result in a computational artifact.
Thus, in the complete absence of residual synaptic current, a uniform passive decay
would imply that the formula, Vie8 + dV/dt, has a time course proportional to the
expression, (t - te)e_tIT. This equals zero only when t equals r. When t is sig-
nificantly smaller than r, this artifact has a positive time course somewhat similar
to that originally presented (6, 14, 15, 16) as evidence for residual synaptic currents.

With regard to the assumption of a uniform synaptic current distribution, these
authors themselves (10, pp. 533-534, 541-542) suggest that the synaptic current is
"largely generated by synapses in proximity to the soma." If this is true, their
simple formula cannot be expected to yield synaptic current; it yields something
best regarded as an analytical artifact. During a completely passive decay following
brief synaptic current, the time courses of V and dV/di to be expected at the soma
must resemble Eqs. [23, 241. As illustrated in Fig. 4, such passive decay is more
rapid than for the uniformly distributed case. It can be shown that the formula,
V/t8 + dV/dt, yields only negative values when r8 equals r; however, when r8
is smaller than r, this analytical artifact can have negative values during the first
few milliseconds (after the brief large current) and then have positive values for the
remainder of the decay. This artifact can account, at least approximately, for the
"trough," the "reversal of current," and the "low residuum" obtained by Curtis
and Eccles (10). Consequently, none of these features should be assumed to repre-
sent synaptic current; the "trough" and the "reversal" can be attributed to electro-
tonic spread from soma to dendrites, as was noted also by Curtis and Eccles (10,
p. 541) ; the positive "residuum" can be attributed to calculation with a low esti-
mate of the membrane time constant.

Comparison of EPSP and ¡PSP. Curtis and Eccles (10, p. 542) base one of
their arguments upon the observation that IPSP decay is faster than EPSP decay.
Such observations can be explained simply if one assumes that IPSP initiation is

confined more closely to regions near the soma than is EPSP initiation. An illus-
tration of such a difference is provided by Fig. 4; for example, the middle curve
could represent an EPSP decay, and the lowest curve could represent an IPSP
decay; the uppermost curve represents the simple exponential decay of a uniform
disturbance. The logarithmically plotted inset shows that such IPSP decay would
be faster than both of the other decays at all times; also, the decay following
a brief pulse applied to the soma (see Fig. 3), is very similar to the lowest curve in
Fig. 4. Curtis and Eccles (10, p. 542) reject an explanation of this kind on in-
adequate grounds. Although their t11, and tEPSp as well as their Tm, must be
viewed with reservations (because they all appear to be based upon half decay
times of curves that must not be assumed to be exponential), the following tentative
interpretations would seem reasonable: the fact that their is considerably
smaller than the true tm and that it is slightly larger than their estimate of tm is
what would be expected if the IPSP is initiated mainly near the soma; also, their
larger tEJp values may be fairly close to the true tm suggesting that a significant
amount of EPSP initiation probably takes place in the dendrites as well as the
soma. It may be concluded that the more rapid rate of IPSP decay does not
establish a need for prolonged residual synaptic current to explain EPSP decay.
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Antidromic ¡nteeactions with Synaptic Potentials. Curtis and Ecdes (10) base
another argument for prolonged residual synaptic current upon their observation of
a rebuilding of EPSP following its destruction by an antidromic impulse. Prior to
1956 the same type of experiment was used as evidence for the brevity of synaptic
current (2, 9, 13); however, after the 2.5-msec membrane time constant was an-
nounced, Eccles (14, pp. 35-36) reinterpreted "small effects" that had been dismissed
previously. These small residual depolarizations "are now regularly observed in all
experiments in which the conditions are rendered speda.11y favorable by the large
size of the EPSP and the low noise level of the intracellular recording (10, pp.
535-536).

There is an alternative explanation for such observations. It is necesssr only to
assume that at least part of the dendritic surface does not have its synaptic potential
destroyed by antidromic invasion; this surviving depolarization would then spread
electrotonically to the soma. This suggestion has features in common with the ideas
of Fatt (17, p. 74); it is mentioned and rejected by Curtis and Eccies f10, p. 542)
on what appear to be inadequate grounds. Although Fats did place emphs sis upon
dendritic synapses, this electrotonic explanation would be applicable even if dendritic
synaptic activity were not predominant. In view of tisis alternative explanation, this
complicated observation does not establish the existence of a prolonged residual
synaptic current.

Effect of Hyperpolarizing Current upon EPSP Decay. The shortening of the
time course of an EPSP, generated during the flow of hyperpolarizing current, was
first reported and discussed by Coombs, Eccles, and Fatt (9). After the 2.5-msec
time constant was announced, Ecdes (14, pp. 62-64) postulated that the action
of the hyperpolarizing current is to remove or loosen a negatively rhrged trans-
mitter substance from the sub-synaptic membrane; this action would reduce the
postulated residual synaptic currents. These hypotheses are restated by Curtis and
Ecdes (10, pp. 543-544), who also remark that "no explanation seems to be avail-
able for these results if, as suggested by Rail (1957), r is as long as and
there is no residual transmitter action" (10, p. 542). Such an explanation is given
below.

it is simplest, but not necessary, to consider an excitatory conductance increase
(14, Figs. 22 and 56) to be distributed uniformly over the soma and dendritic mem-
brane; then a purely passive decay would be a simple exponential with the time
constant of the membrane. Even in this case, the synaptic current density would not
be uniformly distributed when this conductance increase occurs during application
of steady hyperpolarizing current. Because such hyperpolarizmg current is applied
across the soma membrane, the steady state hyperpolarization of the membrane must
be greatest at the soma and must decrease electrotonically with distance along the
dendrites. Under such conditions, both the density of synaptic current and the
amount of depolarization caused by the brief excitatory conductance increase
must be greatest at the soma. This nonuniformity will cause a more rapid EPSP
decay of the kind illustrated in Fig. 4. Mathematical justification for the applica-
bility of Eq. [23] and of Fig. 4 to the present problem is given in the Theoretical
Appendix, following Eq. [23]. A similar argument applies also when the membrane
conductance increase is itself not uniformly distributed; the apparent EPSP decay
would be expected to be more rapid in the presence of hyperpolarizing current than
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in its absence. Similar arguments apply to the case of after-hyperpolarization follow-
ing a spike (10, pp. 541-543); however this case is complicated by increased mem-
brane conductance and by uncertainties about the amount of dendritic invasion by
the spike.

The effects described above must contribute to the acceleration of EPSP decay
observed during such byperpolarization. Whether this effect can account com-
pletely for the observed phenomenon must be answered by future research. It is
possible that additional complications will have to be taken into consideration. At
present, the evidence does not appear to require postulation of significant residual
synaptic current, or postulation of a negatively charged transmitter substance that
is loosened or removed by the hyperpolarizing current (10, 14).

GENERALITY OF THE THEORY

The theoretical results in the Appendix are more general than most
of the applications presented as results in the body of this paper. The
theory can be applied to passive membrane responses in other neurons.
Applied disturbances need not be limited to steps, pulses, and sinusoidal
variation; they can also be applied currents or voltages of arbitrary time
course. The transient response is obtained not only for the soma, but
also for various distances along a dendritic tree. The theory can also be
generalized to include the passive membrane response to various soma-
dendritic distributions of synaptic current (27, pp. 520-523).

THEORETICAL APPENDIX

The necessary assumptions, definitions, and symbols have been listed
and discussed elsewhere (27, 28). A derivation of the fundamental equa-
tions can be found in (27, pp. 484-488, 517-523) and in the classical
papers on axonal electrotonus (11, 21). Here we begin with the partial
differential equation

2V/X2 = V + V/T [lj
where X = x/A, T t/t, and V = V, E is the electrotonic potential.
The point, X = 0, represents the soma-dendritic junction; all dendritic
trunks have a common origin there; the soma is treated as a lumped
membrane impedance at X 0. The variable, X, represents "electro-

The lumped soma membrane corresponds to the simplifying assumption of soma
isopotentiality. During steady state soma-dendritic electrotonus, the error in this
assumption may be as large as 2 per cent (8, p. 523). A larger error can occur
during the early part of a transient; however, such transient nonuniformity over the
soma surface tends to decay with a microsecond time constant (23, 24) ; see also
.4bstracts of National Biophysics Conference, 1957; full details have not yet been
published. The transient error was also found to be small in tests made with a
resistance-capacitance network analog, by McAlister (22).
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tonic distance" along a dendritic cylinder. When changes in k are taken
into account at points of dendritic branching, Eq. [1] is applicable to
an entire dendritic tree, provided that all branch points satisfy the
criteria for B = 1; see (28, pp. 499-501).

\Vhen current is applied across the membrane at X = 0, the amount
of this current must equal the sum of the somatic current and the com-
bined dendritic current. This continuity condition implies

Ja (l/R8)(V + V/dT) + (Ç)/R8)(V/X), atX = 0,
where I is the applied current, R8 is the soma membrane resistance, and
Ç) represents the ratio between the combined dendritic input conductance
and the soma membrane conductance.'° Rearrangement results in the
soma-dendritic boundary condition

V7X = (1) [V + V/T-I4R8], at X 0. [2]

The other boundary condition is that V remains bounded as X ap-
proaches infinity.

This boundary value problem can be solved by methods making use of
the Laplace Transformation (3, 4). Using the notation of Churchill (4),
Eqs. [1] and [2] became transformed to

(PV, dX = (s + 1) y - V(X,0) [3]
and

dv"dX = (1/Ç))[(s--1)vV(X,0)ìAR5], at X = 0, [4]

where y and i1 represent Laplace transforms of 1(XT) and l(T),
and V(X, 0) represents the initial condition of VçX,T).

\Vhen the initial condition is zero, this boundary value problem is
satisfied by

v(X,$) C0(Ç) + 1) J(s)e'V' 8+1 [5]
5+1 + Ç)\/S±1

'° The combination of all dendritic transient current into a siile expression is
strictly valid onl when all of the dendrites (whether extended cylinders or branch-
ing trees) have the same separate transient response characteristic at X = O. This
does not require the several dendrites to be of the same diameter. It does require
them to be electrotonically equivalent to cylinders of the same electrotonìc (X = x/)
length. For the solutions given in this Appendix, this electrotonic length is assumed to
be effectively infinite. If, instead, finite electrotonic length is explicitly assumed, the
boundary value problem is changed and a different dass of solutions must be used.
Some solutions of this dass have been illustrated (26); details will be presented
elsewhere.
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where f(s) is the Laplace transform of the time course, F(T), of the
applied current, and C0 is a constant defined by

COF(T) = JARN = IÁRS/(Q + 1). [6]

This definition has the merit that C0 equals the steady electrotonic po-
tential at X = O during a constant applied current; this is because the
steady resistance, RN, of the whole neuron is smaller than that of the
soma, by the factor, (Q + 1); see (28).

The general solution above, Eq. [5], is still in terms of Laplace
transforms; after inverse Laplace transformation, we can express this
general result in the following form

V(X,T) = COF(T) * K(X,T) [7]

where the right hand side represents a concise notation for the convolu-
tion operation (4, pp. 35-41), and

K(X,T) = (Q+ 1)eP'+(l) erfc[ + QV]; [8]

see Churchill's Transform No. 87 and hs Operation No. 11 (4); the
complementary error function, abbreviated er/c, is defined, expanded,
and tabulated by Carslaw and Jaeger (3, Appendix II).

There are two simple physical interpretations that can be given for
the function, K(X,T). It expresses the transient (passive electrotonic)
response when F(T) is a very brief pulse, i.e., "unit impulse" (4, 20)
applied at T = 0. Also, when F(T) is a unit step applied at T = 0,
K(X,T) defines the time derivative, dV/dT, of the response, as a function
of X and T.

Equations [7] and [8] express a general result of considerable power.
On the one hand, it can be reduced to numerous simpler special cases;
on the other hand, it can serve as the basis for numerical calculation of
V(X,T) from any given F(T), and conversely.

The simplest special cases can be obtained by various combinations of
setting X 0, = O or = , and making F(T) a unit step function
or a unit impulse function. When F(T) is a unit step applied at T 0,
f(s) = l/s; also, with certain qualifications (4, 20), when F(T) approxi-
mates a unit impulse (instantaneous monophasic pulse) applied at
T = 0, we can treat f(s) as equal to unity.

Soma Response to Applied Current Step. We set X = O and f(s)
I/s to obtain

V(0,T)
= i [ erf 1 + e'1T erfc( V) [9]
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This is illustrated in Fig. 1 for several values of ç. When , this
simplifies to

V(0,T) C0 erf VT ; [10]

this limiting case can be interpreted as "dendrites without soma" (25),
or in other words, complete dendritic dominance; this equation agrees
with results previously obtained for axons (11, 21), for a constant cur-
rent step applied at X = 0. The other limiting case, = 0, can be in-
terpreted as a "soma without dendrites" (25); in this case

V(0,T) = C0(1eT); [111

this is the well-known result for the application of a constant current step
to a lumped resistance in parallel with a lumped capacity, where
T = t/r and t = RC.

Soma dV/dl for Applied Current Step. As a basis for linear plotting
of data, we make use of the corresponding time derivatives. From Eq. [9]
we obtain

dV/dt = C0[ + i
er/c (QVI/t). [12]

When Q = oc, this simplifies to

and when Q = 0,
dV/dt = (C0/t)etIT [141

The deviation of Eq. [12] from Eq. [13] can be assessed. Rearrange-
ment of Eq. [12] gives

'.Jirt (dV/dt)e+t/r V xt/t eP2tIT er/c (Q 'J E/u). [15]

It can be shown (3, Appendix II) that the expression on the right differs
from unity by less than 0.02 when V t/t is greater than 5, and by
about 0.1 when Q V t/r = 2; see illustration in Fig. 2, lower left.

Brief Current Pulse Applied to Soma. Assume F(T) to be suffi-
ciently brief that f(s) = 1. Then V(X,T) is proportional to K(X,T) of
Eq. [8]. When Q = oc, this simplifies to

V(X,T) = C0
e

4T [16]

which agrees with an earlier result for cylinders provided by Hodgkin
(18, p. 363). When also X = 0,

dV/dt
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and

C0eT
V(0,T) =

dV/dt = Vtt (i+ ).
Eq. [17] has been used for the AT = O curve in Fig. 3, and Eq. [181
has been used as the basis for linear plotting of experimental pulse data
in Fig. 2. When is not effectively infinite, the time derivative at X O

is more general than Eq. [18]; then

dV/dT = C0(9 + 1)eT[(@2_ l)eTerfc - VAT] [19]
When ./ t/t is not too small, we can use the asymptotic expansion
(3, Appendix II) to obtain

dV/dT 00(9+1)eT
[1 +

2_1 3(9e-1)
9 \/tT [ 292T 494 T2

The limit of this expression, as Q - co, is Eq. [181. Such deviations are
illustrated in Fig. 2, upper right.

Soma-Dendritic Response to Current Step. For a current step applied
at the soma, f(s) = 1/s in Eq. [51. If we do not set X = 0, the inverse
Laplace transformation is more complicated than those considered previ-
ously. The problem can be solved by noting that

92_l
+ 1

- V(s-1) (+@) s-1
and then using Carslaw and Jaeger's transforms, Nos. 13, 19, and
30 (3). The final result can be expressed

V(X,T)
C0

[ erIc (2 - (1 ) ex erjc

(2+ /T )] + (91 )ePx+(P_1)TerJc(2 + QVT)
[20]

For the limiting special case, co, Eq. [20] simplifies to the result
previously obtained for axons (21, Eq. 4.1) and (11, p. 452, Eq. 36b).

Nonzero Initial Condition. When V(X,0) is not zero in Eqs. [3, 4],
the solution, Eq. [5], must be modified. In particular, if

V(X,0) =
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we obtain
J(s)e_Xv'a+l A

a(Q + a)e\/Ti
s+1+QVs+1

The inverse Laplace transformation can be obtained by noting that

+ i i

V(s_a2)(V+Q)\/(s_a2) v(/+Q) sau
and then using Carslaw and Jaeger's transforms, Nos. 13, 19, and 30 (3).
The final result can be expressed

V(X,T) = COF(T) * K(X,T)

+ (A/2)e+ (aflT [i + erf (2 - a
]

+ (A/2) (:t: )e+(uTerfc(2 + a\/T)

(Qa ) +')TeT/c (2 + QVT) [21]

where K(X,T) is given by Eq. [8].
The same method can be used to generate results for more complicated

initial conditions provided these can be expressed as a linear combina-
tion of exponential terms like the one considered above.

Passive Decay from Brief Depolarization. Consider passive decay from
a soma-dendritic depolarization (or hyperpolarìzation). If this depolariza-
tion can be represented as the initial condition

V(X,0) = Ae + B [22]

and there is no current being applied at X = 0, then Eq. [211 implies
a passive decay with a time course at X O that can be expressed

V(0,T)
A [ 9e(az_tT er/c (a v'7) -Qa

ae(P2_l>T er/c ( '7] + BeT

This time course is illustrated graphically in Fig. 4, for three values of a,
with B 0; of course, the exponential rate of decay that would be
associated with B is the same as that associated with A when a = 0.

[23]
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Equation [23] also expresses the time course following a very brief
synaptic current pulse whose soma-dendritic density is proportional to
Eq. [22]. Although this can be appreciated intuitively, it is demonstrated
mathematically by the agreement between Eq. [231 and a similar result
obtained by another approach (27, pp. 520-523). If such a soma-
dendritic distribution of depolarizing current were instantaneously applied
(at T = 0) during a maintained steady application of hyperpolarizing
current at X = 0, this would be equivalent to setting F(T) = 1, in

Eq. [21], and adding C0e to the initial condition of Eq. [22]. It fol-
lows from Eqs. [21, 7, 8, 9], that the time course, V(0,T) - V(0,cs),
of return to steady state hyperpolarization, is identical with the right
side of Eq. [23]. This result is relevant to the interpretation of certain
experiments (10); see Discussion, where it is important to note that the
distribution of synaptically induced depolarization is different in the
presence and absence of applied hyperpolarization.

The time derivative of Eq. [23] is needed in another part of the Dis-
cussion; it can be expressed

dV/dt
A [Q(a2_1)e2_1)TerJc(a\/)

«Qa) L
a(92_1)e(P2_l)Terfc ()] - (B/t)e [24]

Voltage Step Applied to Soma. We assume that a voltage step, VA,
is applied across the membrane at X = O and T = 0. This implies the
Laplace transformed boundary condition

v(0,$) = (VAE)/s,
where E is the resting potential, and V(X,0) is assumed zero before the
step. It follows, therefore, from Eq. [5], that

f(s) i + + QVS+1
s s

The first two terms correspond to the instantaneous current and the
steady current that must be supplied to the soma; the last term corre-
sponds to the current being supplied to the dendrites. This implies that
after the initial instant, -

'A erf / T + - + constant;

see Churchill's Transform No. 38 and Operation No. 11(4).
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Thus, the time derivative of applied current after the initial instant
has a time course given by

dI./dt - (eIT)/(t3I2) [25]

Sinusoidal Current Applied Across Soma Membrane. Here we make
use of the relation between Laplace transform admittance functions and
the complex admittance of a-c steady state analysis (20, p. 176; 29,
pp. 24-31). Assuming a passive membrane consisting of pure resistance
in parallel with pure capacitance, the complex a-c admittance, Ym per
unit area of membrane, is related to the membrane conductance, Gm, per
unit area as follows

Fm/Gm = i + jWt [26]

where t = RrnCn, is the membrane time constant, j = -',/ 1, and w/2t
is the frequency in cycles per second. If we set X = O in Eq. [5], the
resulting expression implies an admittance function proportional to the
expression s + i + s + 1. This implies a complex a-c admittance

YN [GN/(Q+ 1)1[Ym/Gm+Q\/Ym/Grn] [27]

for the whole neuron during steady state a-c current application across
the membrane at X = 0.

By using the identity

1 + jwt = rej/2 = (r+ 1)/2 + ) (r 1)/2
it follows from Eqs. [26] and [27], that

[28]
where

r = '/ 1 + w2t2
This complex admittance implies a phase angle

= arc tan

for the whole neuron. This is the relation illustrated in Fig. 5, for several
values of . An explicit expression for in terms of w-r and tan ip can
be obtained by a rearrangement of Eq. [29] ; this gives

r wrtanip i= V2(r-1) [ wttan_ (r_1)]
[30]

The sensitivity of the dependence of upon values of wt and can be
characterized as follows: when oir and oir are both large compared
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with unity, and has moderate values (from about 600 to about 75°),
an error of 20 per cent in the value of cot would cause 10 per cent
error in the value calculated for o; also, an error of I degree in the
value of the phase angle, i, would cause 10 per cent error in the value
calculated for .

Two possible complications should be mentioned. Application to ex-
perimental results may require that phase shift resulting from the physi-
cal instrumentation be included in the theoretical formulation. Also,
Drs. K. S. Cole and R. FitzHugh have called my attention to the possi-
bility that the soma-dendritic membrane impedance may contain addi-
tional reactive components like those of squid membrane. In the case
of squid giant axons, three such reactances have been characterized. Of
these, the one corresponding to the "sodium-on" process of the Hodgkin
and Huxley model, is the most important for the present problem. This
reactance can be treated as either a capacitance with series resistance, or
a negative inductance with negative series resistance; at 6.3° C, it has
a time constant of about 0.24 msec, associated with a resistance of about
2.3 >< i0 0cm2 (Cole and FitzHugh, personal communication; also
see 5). When Eqs. [26] to [30] are modified to include this reactance,
calculations with squid membrane parameters indicate a difference of
about 1 degree in the phase angle for a frequency of 1 kilocycle per
second and = 10; higher frequencies result in smaller differences.
Furthermore, it is possible that the motoneuron membrane exhibits less
of this reactance than does squid membrane; experimental evidence from
cat motoneurons provides some support for this possibility (personal
communication with K. Frank).
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3 INTERPRETING EXTRACELLULAR FIELD POTENTIALS
FROM NEURONS WITH DENDRITIC TREES
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3.1 Introduction by Donald R. Humphrey

Rail, W. (1962). Electrophysiology of a dendritic neuron model. Biophys. J.
2:145 167.

"Electrophysiology of a Dendritic Neuron Model" (Rail 1962) was at the
time a remarkable paper, but it is even more so in retrospect. It was
presented first at a Symposium on Mathematical Models and Biophysical
Mechanisms, held at the International Biophysics Congress in Stockholm
in 1961, and published subsequently in the proceedings of the symposium
in the Biophysical Journal. With simple but elegant illustrations, Rail Out-
lines in this paper a mathematical model of the neuron that, in this and
subsequent forms, has allowed neuroscientists to address fundamental
questions about the properties of nerve cells that were previously intracta-
ble. To appreciate the significance of this and related work by Rail of
about the same time (Rail 1959, 1960, 1961), it is helpful to know the
scientific milieu in which it emerged. Only 15 years had elapsed since the
classic experiments by Hodgkin and Rushton (1946) on electrotonus in
crustacean nerve fibers. Only ten years had elapsed since the prize-winning
experiments by Hodgkin and Huxley (1952a,b) on the ionic bases of the
action potential, and those by Fatt and Katz (1951) on the end-plate
potential. In all these classic experiments, the core conductor (cable) mod-
el was used as a theoretical tool to estimate membrane parameters or to
relate ionic currents and membrane potentials. But there was no hint in
any of these papers as to how the model might be extended to studies of
the electrophysiology of neurons, where branching dendrites and complex
geometries appeared, for all but the simplest of applications, to be well
beyond the scope of available theory.

Yet there was clearly a need for an appropriate model of the neuron.
Anatomical data had established that dendrites were the major recipients
of synaptic input in the central nervous system, where dendritic surface
areas are lOto 100 times those of the soma (Ramón y Cajal 1909: Fox and
Barnard 1957; Sholl 1955; Young 1958). And though only a few years had
elapsed since the first intracellular recordings from spinal motoneurons
(e.g., Brock et al. 1953; Frank and Fuortes 1955; Eccles 1957), a large body
of evidence had accumulated about the electrophysiological properties of
these cells. Yet there was no clear vision as to how these data might be
used to answer many fundamental questions about cellular function. For
example, are dendritic membranes passive or excitable (e.g., Fatt 1957:
Freygang and Frank 1959; Nelson and Frank 1964)? 1f dendritic mem-
branes are passive, are the synapses on distal parts effective in modulating
neuronal excitability; that is, what is the effective electrotonic length
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constant of a cell's dendrjtjc tree (Eccies 1964; Rall 1967)? How are excita-
tory and inhibitory synapses distributed over the soma-dendritic surface
of spinal motoneurons, and how do their effects sum at cellular trigger
zones (Smith et al. 1967)? Finally, how could one interpret the extracellular
potentials that are generated by neurons to approach these and other
important questions (Fatt 1957; Rall 1962; Nelson and Frank 1964;
Humphrey 1976)?

In this and related papers, Rall set forth the elements of a dendritic
neuron model that allowed quantitative approaches to these and many
other fundamental questions. Though it was necessary to make simpli-
fying assumptions about dendritic branching in this initial formulation,
the major geometrical features of the neuron were captured. Moreover,
this model led to the development of more sophisticated, compartmental
models, which can be extended to cases of unequal dendritic branching
(e.g., Rall 1964). During the next decade, the basic model outlined in this
paper was used to address the fundamental questions about spinal moto-
neurons previously enumerated (Nelson and Frank 1964; Burke 1967;
Smith et al. 1967; Rall 1967); to determine the biophysical factors that
contribute to a dominance of synaptic over action-potential currents in
the generation of electroencephalographic potentials (Humphrey 1968); to
relate intracellular and extracellular potentials in stellate-shaped and in
cortical pyramidal cells (Nelson and Frank 1964; Humphrey 1968, 1976);
to estimate the excitability of the dendrites of cerebellar Purkinje cells
(Lunas et al. 1968a,b); and, perhaps most significantly, to provide the first
direct evidence for functional dendrodendritic synapses in the mammalian
nervous system (Rall and Shepherd 1968).

The work summarized in this and in other papers by Rall over the next
decade is thus a landmark in computational neuroscience; indeed, the full
potential of his theoretical insights have yet to be reached. It is a distinct
privilege, therefore, to introduce this classic paper to the reader, and to be
among the many researchers who know Wil Rail as a friend and as a
neuroscientist of the highest stature.
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3.2 Editorial Comment with an Excerpt from Rail (1992)

Rail, W. (1992). Path to biophysical insights about dendrites and synaptic function.
In The Neurosciences: Paths of Discovery II, ed. F. Samson and G. Adelman.
Boston: Birkhauser.

Because of space limitations we have chosen not to reprint this paper
by Rail (1962b). The paper's first half reviewed the modeling perspective
gained in several earlier papers (Rail 1957, 1959, 1960, 1962a). The second
haif presented new results on computed extracellular potentiai fields and
transients. Some of these were published only in that paper, while others
were included in Rall 1977, which also is not reprinted in this collection.
In order to describe explicitly these computed extracellular potentials
here, we include two illustrations from the Rall 1962b, together with some
explanatory commentary.

At the time of these extraceilular field computations (early 1960s), neu-
rophysiologists were taught that a positive extracellular voltage, recorded
relative to a distant (indifferent) electrode, signifies that the recording elec-
trode is located near nerve membrane acting as a current source (i.e.,
outward membrane current), and that a negative extracellular voltage sig-
nifies that it is located near nerve membrane acting as a current sink (i.e.,
inward membrane current). Although this does hold true for an axon, the
fact that this simple rule does not hold for a neuron with several dendrites
was clearly demonstrated by these computed results. This was important
to the interpretation of recorded extracellular potentials from cat spinal
cord, in response to antidromic activation of a single motoneuron (Fatt
1957; Nelson and Frank 1964).

Rall's insights about these spinal cord extraceliular potentials are well
explained by the following excerpts taken from an essay (Rail 1992).

My dendritic modeling efforts also followed a parallel path that was concerned
with extracellular potentials. In 1960, with the help of Ezra Shahn and Jeanne
Altmann, I computed extracellular potential fields of simplified dendritic neurons,
for the instant of peak action potential in the soma membrane, assuming one or
more long dendritic cylinders with passive membrane properties (details can be
found on pages 156-163 of Rail 1962b). This required considerable physical labor,
because it involved piece-meal computations using large batches of punched cards
with an IBM-650 computer. we hand-plotted equi potential contours for the case
of a single passive dendrite and a case of seven passive dendrites [shown here as
figure 1]. we found the extracelluiar potential field to be negative (relative to a
distant reference electrode) everywhere near the soma and proximal dendrites, and
found only weakly positive sleeves surrounding distal dendritic membrane. The
physical intuitive explanation of this is that the soma surface provides the sink for
all of the extracellular current, which converges radially into the soma; if the
sources were ail at infinite distance, the equi-potential contours would be spherical
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Figure 1
Computed isopotential contours for a spherical soma with seven cylindrical dendrites, of
which only three can be seen in the plane shown at upper left. As indicated by the inset at
lower right, three dendrites were equally spaced at 60 degrees from the polar axis, and three
more dendrites were equally spaced at the equator. The three-dimensional equipotential
surfaces are shown cut by a plane that includes the polar axis, one 60-degree dendrite, and
one 90-degree dendrite. The soma was the sink for extracellular current current; the dendritic
cylinders were distributed sources of extracellular current matching the passive electrotonic
spread along the dendrites at the time of the peak of the Somatic antidromic action potential.
Here, the dendritic length constant was set equal to 40 times the somatic radius. The num-
bers labeling the contours correspond to the quantity V,/(INR,/4itb), where 'N is the total
current flowing from dendrites to soma, R, represents the extracellular volume resistivity,
and b represents the soma radius. For the particular case of the peak somatic action potential
in a cat motoneuron, this numerical quantity expresses the value of V approximately in
millivolts. This is because of the following order of magnitude considerations: 'N is of the
order i0 A, because the peak intracellular action potential is of the order 10 V. and the
whole neuron instantaneous conductance is of the order 106 siemens; also, R,/4itb is of the
order l0 ohms, because the soma radius, b, lies between 25 and 50 pm, and the effective
value of R, probably lies between 250 and 500 ohm cm; see Rail l962b for more detail, This
appeared first as figures 8 and 9 of Rail 1962b; the combined figure appeared as figure 14 of
Rail 1977.
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112 Idan Segev, John Rinzel, and Gordon M. Shepherd

surfaces, all of them negative (relative to a distant reference electrode), with the
greatest negativity at the soma surface; the negative magnitude would fall off
inversely with radial distance (a Coulomb potential). However, the current sources
are actually distributed (at a low surface density) over the widely distributed den-
dritic surface; alone, this low density source current would produce a small posi-
tive potential relative to a distant sink. But, because proximal dendritic locations
are actually near the soma, the small positive source component is outweighed by
the much larger negative potential associated with the radial current into the soma
sink. Thus, the extracellular potential is negative at a proximal dendritic source
location (an explicit numerical example can be found on pages 158-160 of Rail
1962b). This new physical intuitive insight was important because it had been
conventional dogma to say that an extracellular positivity is always associated
with a current source (as is indeed true for an axon). The new insight holds for
dendritic neurons, and especially for multipolar dendritic neurons. It follows, of
course, that when the soma membrane is a source of extracellular current to all of
the dendrites, the extracellular potential (relative to a distant reference electrode)
is then positive everywhere except for sleeves of weak negativity associated with
distal dendrites.

Also around this time, I discussed with Karl Frank and Philip Nelson the prob-
lems of interpreting extracellular potential transients generated by antidromic ac-
tivation of a single motoneuron in cat spinal cord (Nelson, Frank, and RaIl 1960;
Rail 1962b; Nelson and Frank 1964; see also Fatt 1957). They performed careful
experiments in which they recorded the evoked potential transients at many differ-
ent locations; for locations near the soma, their larger transient (the AB spike) was
diphasic, consisting of a brief large negative spike followed by a smaller and slower
positive phase, as illustrated by the theoretical curve at lower left in figure 2. Paul
Fatt and others had interpreted such diphasic transients as evidence for action
potential propagation in the dendrites. However, my computations demonstrated
that this transient could be successfully simulated with a model that assumed the
dendritic membrane to be entire passive (figure 2) (additional details are provided
by pages 160-163 of Rail 1962b). This computation did not prove the dendrites to
be passive, but it did help to tip the scales in a careful discussion of the issues (see
Nelson and Frank 1964).

This new result was included in presentations at the first International Biophys-
ics Congress, held at Stockholm in 1961. It depends on the fact that an action
potential involves two active phases: rapid membrane depolarization by active
inward Na ion current, and then rapid membrane repolarization by active out-
ward K ion current. When the dendritic membrane is assumed to be passive, the
impulse cannot propagate actively in the dendrites. However, the rapid active
membrane repolarization at the soma does produce a reversal in the direction of
current flow between the soma and dendrites. In the computed diphasic (, +)
extracellular voltage transient (lower left in figure 2) the large negative peak corre-
sponds to extraceliular current flowing radially inward from the passive dendritic
membrane to the actively depolarizing soma membrane; then, the subsequent,
smaller positive phase corresponds to reversed extraceliular current flow, from the
rapidly repolarizing soma membrane radially outward to the passively depolar-
ized dendritic membrane. This insight was essential to the interpretation of anti-
dromically evoked extracellular potential transients in cat spinal cord (Nelson and
Frank 1964), and also later, in the olfactory bulb of rabbit (Rail and Shepherd 1968).
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Figure 2
Computed theoretical relation between intracellularly recorded and extracellularly recorded
antidromic action potentials, as a function of time.

Uppermost curves: Intracellular potential vs. time. The large-amplitude intracellular curve
was given; it corresponds to experimental intracellular recordings made by Nelson and
Frank (1964); the full-sized "AB spike" was believed to represent antidromic invasion of both
axon hilloc and soma membrane, while the subsequent, smaller "A spike" was believed to
represent a spike at the axon hilloc that fails to invade a refractory soma membrane. The
lower-amplitude intracellular curve represents the theoretical effect of passive electrotonic
spread into a dendritic cylinder of infinite length, computed for a dendritic location at a
radial distance R = 18, that is, 18 times the soma radius (this corresponds to a dimensionless
electrotonic distance of 0.425 from the soma, or about 600 pm in the examples considered).

Lowermost curves: Extracellular potential vs. time. The extracellular curves were com-
puted on the assumption of radial symmetry. The curve for a radial distance R = 3 has a
shape that is very similar to that at R = 1, except the amplitude is about 5 times less. The
dashed curve, for a radial distance R = 18, has had its amplitude multiplied by 10 to aid the
comparison of shape; see RaIl 1962b for more detail.

This figure appeared first as figure 11 of Rail 1962b, and also as figure 13 of RaIl 1977.
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4 COMPARTMENTAL METHOD FOR MODELING
NEURONS, AND THE ANALYSIS OF DENDRITIC
INTEGRATION
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4.1 Introduction by ¡dan Segev

Rail, W. (1964). Theoretical significance of dendritic trees for neuronal input-
output relations. In Neural Theory and Modeling, ed. R. F. Reiss. Palo Alto:
Stanford University Press.

This paper (Rail 1964) is one of the most significant landmarks in the
modern era of computational neurosciences. Here, Rail first introduced
the compartmental modeling approach, which is now widely used for sim-
ulating electrical and chemical signaling both at the level of dendritic (and
axonal) trees and at the level of networks of neurons. The paper is of
special significance for me personally because the compartmental model-
ing technique has become the primary method in my theoretical studies.

In his previous work, Rail introduced the cable theory for dendritic
neurons and solved analytically cases of idealized, passive trees. However,
the electrical consequences of complex spatiotemporal patterns of synap-
tic input impinging on dendritic trees could not be explored analytically,
so numerical techniques were necessary. Rail introduced the compart-
mental modeling method, which, in principle, allows computation of volt-
age and current spread in nonidealized, and hence biologically realistic,
trees, with any specified voltage- and time-dependent membrane nonlin-
earities. Rail used digital computers to implement this approach, carefully
choosing examples that focus on the nonlinear interactions between
synaptic inputs in passive dendritic trees and on their effect on the resul-
tant somatic potential. The principles that emerged from these simulations
have shaped many of our current ideas about the computational capabil-
ities of neurons. The implications of the method for experimental neuro-
biologists were also immense. By making possible comparison of experi-
mental findings with model predictions, the method allowed Rail and his
colleagues (Rail et al. 1967) to estimate important biophysicai parameters
for the modeled motoneurons (see also Barrett and Criil 1974; Fleshman
et al. 1989; Jack et ai. 1975; Stratford et al. 1989; and a recent review by
Rail et al. [1992]).

After presenting compartmental models formally, Rail solved the sys-
tem of equations numerically and explored the nonlinearity produced by
patterns of synaptic inputs distributed in a passive dendritic tree. Because
synaptic inputs were modeled as transient conductance changes, the
shunting effect inherent to the mechanism of synaptic inputs was explicitly
considered in the models. Rail showed that for excitatory inputs, summa-
tion of excitatory postsynaptic potentials (EPSPs) may deviate markedly
from linearity when the synapses are electrically adjacent, but that the
effects of brief synapses that are located at electrically remote distal
dendritic branches sum almost linearly. Hence, when the tree receives
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spatially distributed excitatory synaptic activity, it tends to operate as a
linear summing device, whereas when these inputs are spatially clustered,
the tree operates in its nonlinear regime.

Another point Rail highlights in his simulations is the importance of the
spatial (and temporal) organization of inhibitory and excitatory inputs for
dendritic computation. He showed that, as a general rule, an excitatory
input is most efficiently reduced by an inhibitory input when the latter is
placed between the excitatory synapse and the target (output) site (e.g., the
soma and axon hillock). The optimal location depends on several factors,
such as the electrotonic structure of the tree, the time course and magni-
tude of the synaptic conductance involved, and the activation time of
inhibition and excitation. The idea that strategic placement of inhibitory
and excitatory inputs and temporal relation between these inputs can
implement a wide repertoire of input-output operations was later explored
more fully by Jack et al. (1975), Koch et al. (1983), and Segev and Parnas
(1983). Although not explicitly discussed, perhaps Rali's most significant
contribution in this paper was the demonstration that the single neuron
can be computationally a very powerful unit. In a simple and elegant
example he demonstrated that, by virtue of its distributed (nonisopoten-
tial) electrotonic structure, the neuron becomes sensitive to the temporal
sequence of inputs and, as explored later by Erulkar et al. (1968) and by
Torre and Poggio (1978), the neuron could act as a device that computes
the direction of motion. This nontrivial computation was implemented by
a neuron model consisting of a straight chain of 10 compartments, with
compartments 2-9 each receiving a transient excitatory input. The depo-
larization at the model soma (compartment 1) was computed for two
different temporal sequences of synaptic activation. One sequence starts at
the distal compartment (9) and proceeds successively to activate more
proximal synapses. The second sequence follows the reverse order in
time (i.e., compartments 2 - 9). Rall showed that the distal-to-proximal
sequence would produce a larger somatic depolarization compared to the
depolarization resulting from the reverse sequence. The output of this
neuron is, therefore, sensitive to the spatiotemporal direction of synaptic
activation. It essentially becomes a directionally sensitive unit.

Finally, Rall showed that because of the elecrotonic structure of neu-
rons, excitatory potentials originating at the dendrites are expected to
have multiple time courses when measured at the soma. Distal dendritic
inputs result in broad (and more delayed) EPSPs as compared to the
earlier, faster-rising, and narrower EPSPs due to proximal inputs. The
functional significance of these differences was briefly discussed. In one
mode of neuronal operation, the smooth, relatively "sluggish" EPSPs
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from distal inputs might set the background (subthreshold) depolarization
at the soma, while the proximal inputs, when precisely timed, would
trigger the axonal spikes. In this way the neuron may operate as an
integrator for distal inputs and as a coincidence detector for the proximal
inputs. Rail also discussed another possible mode of behavior, in which
background synaptic activity is sufficient to cause a rhythmic discharge at
the axon. In this case, inhibition near the soma could block axon firing
over specific periods, thereby "shaping" the temporal pattern of the neu-
ron's output.

In retrospect, in addition to specific contributions previously discussed,
this paper marked three more general pioneering advances for neuronal
modeling. First, Rall shows the potential power of digital computers in
exploring and explaining physiological problems; in the míd-1960s digital
computers were only rarely used in biology. Second, Rall brought his
background from the inanimate world of physicists and engineers to bear
on problems of physiological systems. Third, Rail showed great vision by
suggesting computational approaches to modeling aspects of neurons that
could not yet be measured, such as the detailed dimensions of dendrites.
Unlike many physicists who are satisfied with simple cases that allow
"pretty" analytical solutions, Rall sought to understand the rich, but com-
plicated, possibilities that nonlinear systems typically introduce, and he
developed sophisticated numerical methods to achieve this goal.

During this "decade of the brain," computers have become an essential
tool in neurobiology, and detailed compartmental models of diverse types
of neurons are constantly under construction. Sophisticated software tools
for implementing compartmental techniques (e.g., NEURON, GENESIS,
NODUS, AXONTREE, MNEM OSIS) have been developed (see reviews
by Segev et ai. [1989] and De Schutter [1992]). This theoretical approach
has been proven to be extremely useful for probing the computational role
of dendrites and of dendritic spines (see reviews by Mel [1994] and Segev
[1995]) and exploring their possible significance for plastic processes in
dendrites (review by Koch and Zador [1993]).

Sometimes neuronal models become too complicated, and we do well to
heed the message implicit in Rail's approach to modeling. He started with
the simplified, idealized case and used it as a reference. Then he added
complexities to the model, one at a time. Following theoretical explora-
tions of the models, he formulated the main principles that govern their
behavior and then used these to build reduced models that retain the
essential properties of the complex models. Rail's work teaches that this
path, from the simple to the complex to the reduced, can be a real route to
understanding.
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I conclude this introduction with a personal comment about Wil Rail.
When I came to the NIH as a postdoctoral fellow in 1982, I was rather
overwhelmed by my move to the United States. Feeling that I had little
to offer the renowned Rall, I feared that he would be disappointed by
my ignorance. Even though, from our previous written correspondence
(which he always wrote by hand), I could sense his warmth and kindness,
I was still extremely tense. When I finally met him I was amazed, and still
am, at how modest and generous Wil is. He respects his colleagues what-
ever their status, and he considers their ideas, however naive. He listens! It
was a most important lesson for me, and a crucial step toward indepen-
dence, to see how Wil, with all his powerful physical insights and his
mathematical tools, is self-confident enough to reexamine his thinking and
reevaluate his conclusions again and again in light of our discussions. This
is the ultimate expression of intellectual honesty. Few are fortunate to
have such a mentor and a friend as Wil Rail.
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4.2 Theoretical Significance of Dendritic Trees for Neuronal
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Wilfrid RaIl

Neural modelers have usually assumed that the synaptic input to a neuron can
be treated as input delivered to a single point or a single summing capacitor.
There has also been a tendency to assume that a combination of synaptic
excitation and inhibition can be treated as a simple arithmetic sum of positive
and negative input components. Both of these assumptions are oversimplifica-
tions. It is the purpose of this paper to draw attention to theoretical models
which avoid these oversimplifications, and to present the results of computations
designed to test the significance of what may be called spatiotemporal patterns
of synaptic input.

It is a well-established anatomical fact that essentially all of the neurons in
the gray matter of the vertebrate central nervous system have extensively
branched dendritic receptive surfaces. Two examples of this (A and B) are
illustrated in Fig. 1. The Purkinje cell of mammalian cerebellum (Fig. lA) has
a dendritic surface area that can be as much as one hundred times that of its
cell body (estimate based upon the careful measurements of Fox and Barnard,
1957). Mammalian motoneurons (Fig. IB) and pyramidal cells have dendritic
surface areas that have been estimated to be ten to twenty times that of their
cell bodies (Sholl, 1955; Aitken, 1955; Young, 1958; Schadé and Baxter,
1960, p. 175). Although the Purkinje cell is a special case, neural modelers
should beware of schematic neurons (e.g., C, D, E, F) whose dendrites are
either short and unbranched or completely missing. An excellent illustration
and discussion of various dendritic branching patterns can be found in a recent
paper by Ramon-Moliner (1962).

The entire dendritic surface of mammalian motoneurons is covered by a high
density of synaptic connections (Wyckoff and Young, 1956; Rasmussen, 1957).*
Thus there is little reason to doubt that the extensive dendritic surface of such
neurons must be regarded as a receptive surface to which synaptic input is
delivered from many afferent sources. In spite of differences between various

* These densities were estimated as 15 to 20 synaptic end-feet per 100 square micra of dendritic surface
area. Motoneurons vary in size; the total dendritic surface of any one such neuron is of the order of 1O to
10 square micra. Such values imply that an individual motoneuron can be expected to receive from 1500
to 20,000 synaptic endings.
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cw

(

FIG. 1. Histological and schematic neurons. Parts A and B are reproduced with only slight
modification from the classic histological work of Ramón y Cajal (1909); A represents a single
Purkinje cell of adult-human cerebellum; B represents a single motoneuron of fetal-cat spinal cord.
Parts C, D, E, F and G are schematic neurons with schematically indicated synaptic connections;
they all represent neurons whose dendritic branching could be expected to resemble B. Part C
represents a portion (redrawn) of a well-known diagram by Ramón y Cajal (1909) of a circumscribed
reflex; D resembles a schematic drawing by Lorente de Nó (l938b); E resembles the schematic
motoneurons of Lloyd (1941); F resembles the even more schematic symbols of McCulloch and
Pitts (1943). Part G is also schematic it is intended to show neither the full dendritic receptive
surface of the neuron nor a full complement of synaptic connections to this surface; its purpose is
to distinguish between three different patterns of synaptic connections, as discussed in the
text.

types of central neurons with respect to both synaptic histology and unre-
solved synaptic mechanisms, it seems reasonable to assume that all of their
extensive dendritic surfaces serve a receptive function; see also Bishop (1956,
1958), Grundfest (1957), and Bullock (1959). Furthermore, many questions of
synaptic mechanism can be bypassed if one is willing to assume that the effects
upon the receptive surface can be treated as excitatory and inhibitory mem-
brane-conductance changes; this approach is elaborated in a later section.

The schematic dendritic neuron of Fig. 1G helps to illustrate some of the
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questions we wish to consider. Three sets of synaptic endings are indicated;
these are not intended to represent all synaptic connections with this neuron;
neither should (a), (b), and (c) be taken literally as single afferent fibers. Here,
(a) is meant to represent a group of afferent fibers whose synaptic connections
are made predominantly over the peripheral dendritic surface; (b) represents
a different group of afferent fibers whose synaptic connections are made pre-
dominantly over the surface of the neuron soma and dendritic trunks. A third
group of afferent fibers (c) makes synaptic connections first with the dendritic
periphery, but also, at successively later times, with successively less peripheral
portions of the dendritic system, and finally with the soma. Separate synaptic
activity in (a), (b), or (c) provides a simplified example of difference in spatial
pattern of synaptic input; (c) also implies a particular spatio-temporal pattern.
Various sequences of activity in various combinations of (a), (b), and (c) can
provide a variety of spatio-temporal patterns of synaptic input.

In order to gain insight into the possible functional significance of various
spatio-temporal patterns, we pose the following theoretical problem: develop
and explore mathematical models which permit the calculation and comparison
of the effects to be expected at a neuron soma for such varied patterns of synaptic
activity.

A mathematical model to aid the exploration of the physiological implications
of dendritic branching has been developed over the past several years (Rall
1957, 1959, 1960, 1962a, b). The 1959 paper presents and discusses the essential
simplifying assumptions and makes a detailed effort to determine, for important
model parameters, the ranges of values which would be consistent with available
anatomical and electrophysiological evidence. This study provided evidence
for a significant dominance of dendritic properties over somatic properties in
determining various whole-neuron properties of mammalian motoneurons.
It was pointed out (Rall, 1959, p. 520) that "this leads naturally to a possible
functional distinction between dendritic and somatic synaptic excitation: the
larger and slower dendritic contribution would be well suited for fine adjustment
of central excitatory states, while the relatively small number of somatic synaptic
knobs would be well suited for rapid triggering of reflex discharge."

A limited aspect of this problem, the passive decay of nonuniform membrane
depolarization, was dealt with first (Rall, 1960, pp. 5 15-16 and 527-29). This
was useful for a discussion of problems in the interpretation of experimentally
observed synaptic-potential decay. This limited problem has the mathematical
advantage that the nonuniformity occurs in the initial condition of the boundary-
value problem; the linear partial differential equation remains homogeneous,
and its constant coefficients are not affected by the nonuniformity. However,
this mathematical simplification is lost when one wants to treat the onset of
nonuniform synaptic activity or to treat various durations of sustained non-
uniform synaptic activity. As will be shown below, such problems involve a
perturbation of the system; not only does the differential equation become non-
homogeneous, but the value of an important coefficient is perturbed from its
passive-membrane value. For each region of soma-dendritic receptive surface
which receives significantly different synaptic activity, the magnitude of the
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perturbed coefficient and of the nonhomogeneous term of the partial differen-
tial equation will be different. The problem becomes a multi-region boundary-
value problem. The particular case of two regions has been presented, together
with its formal solution and with numerical examples (Rall, 1962a). One
example of those results is included below (in Fig. 5); however, the details of
the two-region boundary-value problem will not be reproduced here.

Spatiotemporal synaptic patterns involving multiple regions can be more
conveniently handled by using a compartmental model of a dendritic system.
The term "compartmental model" is borrowed from the fields of chemical
kinetics and radioactive-tracer kinetics. The essential simplifying assumption
is that spatial nonuniformity within regions (compartments) is completely
neglected; nonuniformity is represented only by differences between regions
(compartments). For nerve models, this means that one explicitly replaces a
distributed-parameter transmission line with a lumped-parameter transmission
line, a procedure that is commonly used for both diagrammatic and analog
representations of transmission lines. Mathematically, the multi-region
(partial-differential-equation) boundary-value problem is replaced by a system
of ordinary differential equations which are linear and of first order. The
formal mathematics and also computational methods for dealing wìth such
systems are well developed. My acquaintance with this body of knowledge
has benefited greatly from discussions with John Z. Hearon and Mones Berman.
Particularly relevant papers, which also include references to the literature, are
Hearon (1963) and Berman, Shahn, and Weiss (l962a, b).

Membrane Model

Equivalent Circuit. For the present discussion, a small uniform patch of
dendritic membrane is represented by the equivalent circuit shown in Fig. 2.
This is only a slight generalization of the models proposed by Fatt and Katz
(1953) and Coombs, Eccles, and Fatt (1955). The background for such models

FIG. 2. Equivalent circuit for electric
model of nerve membrane, where Im is the

y, membrane Current density (i.e., current
I

per unit area of membrane) flowing from
m the cell interior, at potential V, to the

cell exterior, at potential Ve; Cnr is the
membrane capacitance per unit area; and

Rml/Gr RI/G P l/G Gr, G0, and G. are separate parallel con-
ductances per unit area, with their asso-

- ciated emf's designated as E0, E, and E.
- E1 The subscripts r, E, and j designate the

conductance pathways associated with the
¿ resting membrane, with synaptic excitation,

rn and with synaptic inhibition, respectively.
Membrane potential is defined as Vm =
V V0. The value of 1m is defined by
Eq. 1 below; positive values of 1m indicate
outward current.
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is provided by the important papers of Hodgkin and Katz (1949), Fatt and
Katz (1951), and Hodgkin and Huxley (1952); references to earlier literature
can be found in these papers.

An essential feature of this model is that each of the three parallel conducting
pathways contains its own series emf, which is assumed to remain constant.
The resting conductance Gr is also assumed to remain constant; thus all
voltage changes are treated as consequences of changes in the values of GE,

G, and 'm. The resting state of the membrane is obtained when these three
variables are all zero; then the membrane potential, defined as Vm = V1 - Ve,
is equal simply to the resting emf Er. When G alone is increased from zero,
this causes the value of Vm to move closer to that of E; similarly, an increase of
G alone causes a displacement of Vm toward E.

It is consistent with experimental evidence to regard Er and E as around 70
to 80 mv negative (interior relative to exterior) and to regard E as close to
zero. Thus an increase in G, assuming that Vm is initially close to Er, makes
Vm less negative; this is a positive displacement of Vm and is commonly de-
scribed as depolarizing, because the absolute value of Vm is decreased. An
increase in G, assuming that Vm is initially close to Er and E, can either hyper-
polarize, depolarize, or have no effect on, Vm; the direction of the change
depends upon the sign of the difference, E - Vm.

Synaptic Input. Mechanisms of synaptic transmission will not be specified
or discussed here. To focus attention upon spatiotemporal patterns of synaptic
input, it is assumed that local changes in G and G can be used as measures of
local synaptic activity. Thus for a given portion of dendritic receptive surface
area, AA, and for a given period of time, AT, we will think of the excitatory
membrane conductance per unit area, G, as roughly proportional to the number
of synaptic excitatory events that occur over AA, during AT. Similarly, G
shall be regarded as roughly proportional to the number of synaptic inhibitory
events that occur over AA during AT. We will mention, but not elaborate on,
the possible complications (1) that the elementary synaptic events might not be
of equal magnitude, and (2) that a different type of inhibition could reduce G
rather than increase G. Here we will assume that synaptic input to a dendritic
neuron can be specified as a set of G and G values, each assumed to remain
constant over specified AA for specified AT.

Voltage Dependence of Conductances. As presented below, the mathematical
model depends upon the assumption that G and G are independent of the
membrane potential. This assumption confers the advantages of a differential
equation having constant coefficients. The solution of the two-region boundary-
value problem (Rall, l962a) depends upon this assumption. It should be noted,
however, that when one shifts emphasis from formal solutions to numerical
computations with a compartmental model, it becomes practical to consider
the possibility of testing the effects of mild voltage dependence. The assumption
of complete voltage independence corresponds to the "electrical inexcitability"
of Grundfest (1957). The assumption of a mild voltage dependence might
provide a way of approximating the property of "decremental conduction"
in the dendrites favored by Lorente de Nó and Condouris (1959, p. 612). Both
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of these cases can be distinguished from the full-blown time and voltage depend-
ence assumed in the Hodgkin and Huxley (1952) model of the axonal nerve
impulse. The approach of the present research is to explore questions of spatio-
temporal pattern first with the simpler assumption (voltage-independent
conductances). Later, it would be well to explore the differences obtained for
various degrees of voltage dependence.

Mathematical Formulation of Membrane Model. The net current across a
uniform patch of membrane is simply the algebraic sum of four component
currents, one capacitive and three conductive; the density of this current
(i.e., current per unit area of membrane) can be expressed as

Im = Cmf'm + Gr(Vm - Er) + G(Vm - E) + G(Vm - E),

where f'm represents the time derivative of membrane potential; the other
symbols are all defined in Fig. 2 and its legend. To focus attention upon Vm
as the dependent variable, this differential equation can be rearranged as
follows:

T Vm = (1 + + /)( Vm - Er) + ImRm + t(E - Er) + /(E - Er),

where the new variables d and /. representing synaptic excitation and in-
hibition, are defined:

(2.1) = GJGF = Rm/R,

(2.2) / = G/Gr = Rm/Rj,

and where T represents the membrane time constant:

(2.3) T = Cm/Gr = RrnCm.

The introduction of ¿' and / as new variables has several advantages; these
quantities are dimensionless numbers which correspond to intuitively meaning-
ful conductance ratios; they also provide a simple notation that is well suited
br later compartmental assignment of subscripts.

Here we are concerned with the solution of the differential equation (2) for
step changes in the values of ¿, /, and 'm At first, 'm will be regarded as
constant current applied across the patch of membrane by means of electrodes;
later, 'm will include the net current supplied to one region of soma-dendritic
membrane by neighboring regions or compartments. For periods of time during
which ¿, /, and 'm remain constant (after a step change at time t = O), the
differential equation and its solution can be conveniently expressed in the
reduced form

ô = i(v -
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whose solution is

(4) e = y5 - (t' -
where , y, and y0 are constants and L' is a transformed variable; e0 is the value
of y at t = O; and v is the steady-state value approached by e for large t.
The following definitions complete this formulation:

I ++/ Gr+Ge+Gj
T Cm

Vm - ErV. EeEr'
¿ + ßX + X

L'S l++/'
EE
EEr'

1mRm
X

E Er

This notation differs from, but remains consistent with, that of an earlier
presentation (Rail, 1962a). As before, the dependent variable expresses the
departure of the membrane potential from its resting value. By defining y as in
Eq. (6), we normalize this variable so that y = 1 for Vm = E, and y = O for
Vm = Er; also, y = ¡ for Vm = E, and ß = 0.1 for the particular example
E5 = 0, Er = 70 mv, and E = 77 mv.

Six examples of Eq. (4) are illustrated in Fig. 3. In all cases, the initial value,
= 0.1, represents a preceding steady state. Curves A and D both correspond

to a step increase of 0.5 in the value of ¿ only, whereas curves C and F both
correspond to a step increase of 0.5 in the value of / only (with ß = 0), and
curves B and E both correspond to a step increase of 0.5 in the values of both
¿' and J. In the original calculation (Rail, l962a, Fig. 3) the initial values were

=
, / = 0, and z = O for curves A, B, and C, on the left; they were

=
, / = 2 (with fi = 0), and z = O for curves D, E, and F, on the right;

however, these same curves correspond equally well to other sets of initial
values and to other step changes in the values of ¿, J, and z."

* The values oíthree parameters are needed to determine a particular curve from Eq. (4). All six curves
in Fig. 3 have in common the value u0 = 0.1; thus they differ from each other only in the values of two
independent parameters. lt is convenient to regard the dimensionless rate constant pr (see Eq. 5 and Eq.
12.1) as one independent parameter, and the initial slope r(u)0 (see Eq. II) as the other. Then the values of
o' and At's are not independent; they are determined by Eq. (12). A difference in the value of a single
independent parameter accounts for the difference between the two curves in each of the following pairs
(A, D), (B, E), (C, F), (A, C), and (D, F). One of many possible sets of conditions corresponding to curve A
is given by of = 0.6l,/ = 0, = 0.45, with the step A = 0.45, and oS' and/ unchanged; another set
is given by ¿'i, = 0.61, / = 2.25 (with /1 = 0.1), x0 = 0, with the step A/ 2.25, and oS' and z
unchanged.
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Linearity, Nonlinearity, and Related Properties. Several noteworthy prop-
erties of this membrane model are illustrated by Fig. 3; several of these are
made both more explicit and more general by Eqs. (l0)-(12) below. Algebraic
manipulation of Eqs. (3), (5), and (7) yields for the change in slope (at t = 0) to be
expected for any combination of step changes in the values of ¿, f, arid x
at t = 0, the expression

r(Av)0 = (1 - v0)A - (y0 - ß)Af + A,

where y0 is the value of y at t = 0. If we assume a preceding steady state, it
follows that a zero slope existed just before t = 0; also, y = at t = 0;
then Eq. (10) simplifies to

r(t3)0 = (1 - v08)Ae - (vos - ß)A/ + Ax,

which expresses the initial slopes of Fig. 3. Also, it follows from Eq. (3) that
the steady-state increment can be expressed as

Av8 = y8 - v =

Copyrighted Material

Curve ¿ Af Slope

A 0.5 0.45 0.28 1.61
B 0.5 0.5 0.40 0.19 2.11
C - 0.5 -0.05 -0.031 1.61
D 0.5 - 0.45 0.118 3.83
E 0.5 0.5 0.40 0.092 4.33
F - 0.5 -0.05 -0.013 3.83

o .2 .4 .6 .8 IO O .2 .4 .6 .8

tir
FIG. 3. Transients of y produced by a step change in the values of one or more of the variables

¿', /, and z; see Eq. (4) and Eqs. (10)-(12). Values corresponding to each curve are listed below,
where "slope" refers to the initial slope defined by Eq. (11):

AC
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AC + Af -
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where r(z))0 is given by Eq. (11) and - corresponds to constant values following
the step at t = 0; that is,

(12.1)

Linearity can be seen to hold in two restricted senses:
The change of initial slope is shown by Eq. (10) to be a linear combina-

tion of the input increments, A5, /, and ¿; however, the coefficients of this
linear combination are different for every value of y0. Thus in Fig. 3 curves
B and E both have an initial slope equal to the sum of the separate slopes of
curves A and C, or of curves D and F.

Linearity in the sense of summation of successive steps applìes only to
x; the contribution of in Eqs. (10) and (11) is independent of the value of

y0; also, the value of r in Eq. (12) is left unchanged by . Successive incre-
ments in the value of ¿ and / do not have this property, except for the special
case of simultaneous A and / with the constraint that ¿/ = - ¿. The
fundamental requirement for linear summation of successive steps is that the
value of the rate constant remain unchanged.

Nonlinearity is present in the following two senses.
The steady-state increment (Eq. 12) cannot be expressed as a linear

combination of ¿, L/, and because and L/ also appear in the value
of the denominator, T. This accounts for the differences between the left
and right sides of Fig. 3, in spite of the matching initial slopes.

Successive increments in the value of ¿ or of / do not sum linearly in
their effects. Successive increases in the value of d' are decreasingly effective
because the successive values of y0 in Eq. (10) increase and because the value
of zr in Eq. (12) increases; it follows also that successive decreases of from
an initially large value are increasingly effective. Successive increases in the
value of f are decreasingly effective because the successive values of y0 in
Eq. (10) approach the value of ß (i.e., Vm shifts toward Ej) and because the value
of T in Eq. (12) increases; it follows also that successive decreases of / from
an initially large value are increasingly effective.

At the risk of unnecessary repetition, it is noted that these nonlinearities exist
without any added complication such as voltage dependence of conductances.
They result from the fact that ¿ and ¿/ are inputs of a different kind from

A change in represents a change of input current to an unperturbed
system. A change in ¿ or / is a change in a conductance which is an element of
the system; the system itself is perturbed; the value of a constant coefficient
in the linear differential equation is changed; hence the simple superposition
rules do not hold.

Dendritic Trees

Although a compartmental model of dendritic trees proves to be more
flexible for treating variety both in spatiotemporal patterns of activity and in
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dendritic branching pattern, it seems desirable to consider first the distributed
model of dendritic branching. The latter has the advantage of more immediate
appeal to intuition and thus provides a bridge from familiar concepts of
anatomy and physiology to the more abstract compartmental model.

Distributed Model. A theoretical model of dendritic branching depends
upon a number of simplifying assumptions. A dendritic tree is assumed to
consist of cylindrical trunk and branch elements; extracellular gradients of
potential are assumed to be negligible; the membrane is assumed at first to be
passive and uniform throughout the dendritic tree. Also, the distribution of
membrane potential along each cylindrical branch element must satisfy the same
partial differential equation that is well established for passive axonal membranes
(Hodgkin and Rushton, 1946; Davis and Lorente de Nó, 1947). For each
cylindrical element, this equation is of the form

V 2J/

dTaX2
where V = V1, - Er represents the deviation of the membrane potential from
its resting value, T = t/r expresses the time in terms of the passive-membrane
time constant, and X = x/). expresses axial distance in terms of the charac-
teristic length A, which is proportional to the square root of the cylinder diam-
eter. We require solutions for cylinders of finite length which satisfy boundary
conditions determined by the physical requirement of continuity of axial current
and of membrane potential at all points of junction between branches. A
systematic method for satisfying these boundary conditions under steady-state
conditions for any arbitrary branching pattern has been devised (Rall,
1959).

Class of Trees Equivalent to Cylinder. The exploration of transient solutions
was facilitated greatly by a consideration of the class of dendritic trees which
can be shown to be mathematically equivalent to a cylinder. Figure 4 shows one
example of this class. Because this particular example displays symmetric
branching, each daughter branch at every bifurcation has a diameter that is 63%
of its parent diameter, It should be pointed out, however, that less-symmetric
trees also belong to the class under discussion. The essential requirement is
that the daughter diameters at each bifurcation satisfy the following constraint:
the sum of their separate diameters raised to the power is equal to the parent
diameter raised to the power. The mathematical argument (Rail, 1962a) will
not be reproduced here; intuitively, this constraint resembles the familiar
notion of impedance-matching.

It is a particularly simple and convenient property of this class of dendritic
trees that equal increments of length in the equivalent cylinder correspond to
equal increments of dendritic surface area. This is indicated in Fig. 4 by the
dashed lines which divide the dendritic tree into five regions of equal dendritic
surface area. This property provides a convenient scale, extending from a
neuron's soma to its dendritic periphery, that can be used to define and compare
various soma-vs.-dendrite distributions of synaptic activity.
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EQUIVALENT CYLINDER

Fio. 4. A dendritic tree illustrative of a class of trees that can be mathematically transformed into
an equivalent cylinder. The diagram corresponds to a specific numerical example (Rail, 1962a, Table
I) of a symmetric tree with a radial extent of about 800 , and with cylindrical diameters decreasing
from a trunk of 10 u to peripheral branches of li.. The dashed lines connect points having the same
Z-value (electrotonic distance) in both tree and cylinder, Z is defined by

rx2 dxZ2Z1=J -.
- xi

where x represents distance along successive cylindrical axes. A, the characteristic length which
changes with branch diameter, is defined as

=
where R is the specific resistivity of the intracellular medium, d is the diameter of the cylinder, and
the extracellular resistivity is assumed to be negligible.

Relation to Anatomy. The relation of such dendritic trees to anatomical
evidence deserves brief comment, with respect both to the constraint upon
branch diameter and to the electrotonic length of the equivalent cylinder.
Inspection of the various dendritic branching patterns presented and discussed
by Ramon-Moliner (1962) suggests that dendritic trees of the "tufted" type are
less likely to satisfy the (I-power) constraint upon branch diameter than trees
of the "radiate" type; however, this question has not yet been investigated in
detail. Motoneurons of the spinal cord are of the radiate type; the constraint
upon the * power of branch diameters appears to be satisfied, to at least a rough
first approximation, by some of the histological examples that have been studied
(RaIl, 1959; also unpublished analysis of measurements provided me by Aitken
and Bridger, 1961). The same material has also been analyzed to obtain estimates
of electrotonic length; when the value of Z (as defined in Fig. 4 above) is com-
puted for all dendritic terminals, an appropriately weighted average of the values
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obtained for such a neuron typically lies in the range between Z = 1 and Z = 2.
The order of magnitude of such estimates is important in determining that the
dendritic periphery is much less functionally remote from the neuron soma than
many neurophysiologists have assumed for over twenty years, from Lorente de
Nó (1938a) through Eccles (1960, pp. 199-201).

Limitations of Equivalent-Cylinder Mode!. Although the equivalent-cylinder
model has served a very useful purpose in studying dendritic trees, it has three
significant limitations which can be overcome by going to a compartmental
model. One limitation is the assumption of what might be called "electrotonic
symmetry." Although the actual branch diameters and lengths need not be as
symmetrical as the diagram in Fig. 4, all terminal branches must be assumed to
end with the same Z-value (i.e., the same electrotonic distance from the soma).
Furthermore, spatiotemporal disturbances in the equivalent cylinder can
represent only those dendritic tree disturbances which can be assumed to be the
same in all parts of the tree corresponding to any given Z-value. This assump-
tion is readily fulfilled when a disturbance is initiated at the soma and spreads
into a passive dendritic tree (e.g., Rail, 1960), or when synaptic activity is
assumed to be distributed uniformly over all dendritic branches corresponding
to a given range of Z-values (e.g., Rall, 1962a, and also Figs. 5, 6, and 7 below).
However, this symmetry requirement is not satisfied by patterns of synaptic
activity which feature significant differences between two or more branches that
occupy the same range of Z-values.

An obvious limitation is the constraint upon the power of branch diameter.
Some exceptions to this limitation can be represented by the more general class
of dendritic trees that are equivalent to an exponential taper (see treatment of
taper in Rail, 1962a); in some cases it may be useful to join two segments
of different taper. However, as soon as more than two regions are required to
express either complexity of taper or complexity of synaptic pattern, the rigor-
ous solution of the boundary-value problem becomes even more complicated
than in the two-region case. For practical purposes, this can be regarded as a
third limitation: when more than two regions of cylinder or taper are required,
it is simpler to go to a compartmental model.

Compartmental Model. A lumped-parameter transmission line is commonly
used to introduce and develop the theory for the distributed-parameter case;
successive subdivision of the lumps leads, in the limit, to the distributed case.
Here, however, we retain the lumped-parameter approximation: each lump of
membrane becomes a compartment: the rate constants governing exchange
between compartments are proportional to the series conductance between
them. A single compartment may correspond to a single dendritic branch, a
group of branches, or just a segment of a trunk or branch element, according to
the needs of a given problem. For problems compatible with the equivalent-
cylinder constraints, the compartmental model is simply a straight chain of
compartments of equal size: this case permits a comparison of predictions made
with both kinds of models. Branching chains of compartments of unequal size
can be used to approximate an unlimited variety of dendritic branching systems
and of synaptic activity patterns.
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The mathematical formulation of such a compartmental model consists of a
system of ordinary differential equations which are linear and of first order.
The ith compartment satisfies the equation

1)1 = uÍiVi +f,
where

J; = ( + ß/ + x)&'

and each of the coefficients represents a rate constant. When subscript j
differs from subscript i, the value of the coefficient is always nonnegative, and
the order of the subscripts has the meaning: from the jth compartment into
the ith compartment. When subscript j equals subscript i, the coefficient
always has a negative value which represents the total rate of loss from the ith
compartment. The values of these and , are given by the expressions,

= (1 + + /)/T - ii
and

= g.5/c1 = gjc1 for i

where c represents the capacitance of the ith compartment, and g = gi
represents the conductance between adjacent compartments. Where i and j
do not represent directly connected compartments, gj is zero. It can be seen
that the net current flow from the jth compartment to the ith compartment is
given by the difference

c-uv - cv, = g(v1 y1).

For the special case of a straight chain of compartments each of which cor-
responds to an equal increment \Z of an equivalent cylinder, it can be shown
that the result

liii = Pii = (LZ)9

corresponds to treating ail the c, as equal to the capacitance of a AZ-length of
equivalent cylindrical membrane and all the nonzero as equal to the core
conductance of a AZ-length of equivalent cylinder. Furthermore, this result
leads, in the limit, as LZ is made successively smaller, to the correct partial
differential equation for the equivalent cylinder.

The symbols ¿, /, ß, and T have the same significance as earlier [see Eqs.
(2)(9)]; however, is here restricted to current that might be supplied to a
compartment by means of electrodes. Subscripting of cf and / is essential for
synaptic patterns; ß and r could also be given subscripts, but they will be
assumed, for present purposes, to be the same for all compartments.

Some Properties of Linear Compartmental Systems. For any given set of
values of ¿, /, and the linear system defined by Eqs. (l3)(16) is of the
type discussed by Hearon (1963). The square matrix M, composed of the co-
efficients p,, has two important properties discussed by Hearon. It has a
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strictly dominant diagonal composed of jt, that are all negative, and it has
nonnegative off-diagonal elements whose values are so constrained by the con-
nectivity of the system that the matrix is either symmetric to begin with (special
case of Eq. 17), or symmetrizable because cu = These properties of
the matrix are sufficient to guarantee a number of important properties of the
solutions of such a linear system. The roots of the matrix are all real and
negative; this ensures that the solutions are bounded and nonoscillatory, and
that the homogeneous problem (aIlf = 0) has no nonzero steady-state solution.
For the nonhomogeneous problem, the steady-state solution is a vector which
can be defined as c() = Mf, where M-1 represents the inverse of M, and
f is a constant vector composed of thef in Eqs. (13) and (14). As long as M
and f remain unchanged, the transient behavior of the system, in passing from
any given initial state toward its steady state, can be expressed as a linear
combination of (decaying) exponentials, exp (rn,t), where -rn represents
distinct roots of the matrix M. See Hearon (1963) for a discussion of multiple
roots, separation of roots by the initial conditions permitting overshoot,
and other related questions.

Whenever there is a step change in the value of ó, or /, this has two effects
upon Eq. (13). First, it perturbs the system by changing the diagonal element,t; this changes the matrix M and the values of its roots. Second, it changes
the value off; this, together with the change in M, causes a change in the
steady state toward which the system now tends. In contrast, a change in only
the value of X. would changef, without changing the matrix M; in this case,
the system itself is not perturbed.

The superposition properties of linear systems apply only to changes in
f which are not associated with any change in the matrix M. When M remains
unchanged, the system can be called a linear time-invariant system, or a constant-
parameter linear system; see, for example, Mason and Zimmerman (1960,
pp. 3 18-21). The point here is that we do not have such a system when changes
occur in ¿ or /., except for the very special case where .i,, remains constant
because of equal and opposite changes in ¿ and J,.

Method of Solution. For any given initial condition, with a constant f
vector and a constant matrix M, it is possible to completely define the required
transient solution. Numerical computation requires inversion of M and
solution of its roots; standard procedures are available for this. However, for
spatio-temporal patterns of synaptic activity which involve repeated stepwise
perturbations of the system, a new transient solution with a new initial condi-
tion, a new constant f vector, and a new constant matrix M is required for each
perturbation. An alternative numerical procedure replaces the set of differen-
tial equations with a corresponding set of difference equations. Beginning with
the initial set of i, the change Ou, in each compartment is obtained from the
difference equation for a short time increment, Ot. As the computation pro-
gresses through successive OIs, the perturbations (changes in andf1) can be
introduced at the times required by the synaptic-activity pattern being assumed.
The results presented below were obtained by a numerical procedure of this
kind. Use was made of a general computer program that has been developed
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by Berman, Shahn, and Weiss (1962a, b)* for a large variety of problems
related to compartmental systems, as well as other systems; this program em-
ploys a fourth-order Runge-Kutta procedure for improving the accuracy of
numerical solutions obtained for any specified time increment.

Results of Computations

Central vs. Peripheral Half of Tree. Consider a dendritic tree that is equiv-
alent to a cylinder whose length equals one characteristic length, as in Fig. 4.
We wish to compare the effect at the soma (Z = 0) of synaptic excitation (Ge)
delivered only to the central half of the receptive surface (i.e., Z = O to Z = 0.5)
with the effect of the same amount of synaptic excitation delivered only to the
peripheral half (i.e., Z = 0.5 to 1.0). Curve A in Fig. 5 shows the effect of a
step increase (from ¿E = O to ¿E = 2 at t = 0) confined to the central half,
whereas curve C shows the effect of an equivalent step increase confined to the
peripheral half; curve B corresponds to a uniform step ( = i) over the entire
receptive surface. These curves were originally computed as solutions of a two-
region boundary-value problem in a distributed-parameter system (Rail,
1962a). More recently, they were recomputed for a chain of ten equal
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* I wish to express my appreciation to Dr. Berman and Mrs. Weiss for their advice and help in the task
of achieving compatibility betwccn their program and the idiosyncrasies of my problems.. The computations
were done on the IBM 7090 at the National Bureau of Standards.
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Fio. 5. Computed transients of sonia membrane depolarization for step changes of GE; centrai

vs. peripheral half of dendritic tree; see text. Curves A and D are for = 2 over central half of
receptive surface. Curves B and E are for ¿ = I over entire surface. Curves C and F are for ¿ = 2
over peripheral half of surface. Curves A, B and C are for an on-step; curves D, E, and F are for a
scivare pulse (on-step followed by off-step).
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compartments, using Eqs. (13)(15) and (17). Agreement was within 2%, indi-
cating that errors due to compartmental lumping were not serious.

The early portions of curves D, E, and F are the same as those of curves A, B
and C, because they are produced by the same on-step; after a time interval,
0.2r, each on-step is followed by an off-step. Thus curves D, E, and F can be
regarded as theoretical (excitatory) synaptic potentials (epsp) for the artificial
assumption of a square ¿ pulse. It can be seen that curve F rises more slowly to
a later peak with an amplitude half that of curve D. Because the threshold for
motoneuron reflex discharge has been found (experimentally) to correspond to
soma-membrane depolarizations in the range between these peak amplitudes, it
is clear that the differences between curves D, E, and F could be responsible for
success or failure in the initiation of a propagated impulse.

In addition to the differences that have been noted for the effects of central
vs. peripheral ¿ steps and pulses, it is important to note that the asymptotic
value of curve C is only about 20% less than that of curve A. This means that a
sustained barrage of peripheral dendritic synaptic activity can have a very
significant effect on the level of soma-membrane depolarization.*

Comparison of Four ¿-Pulse Locations. To demonstrate the importance of
specifying the spatiotemporal patterns of synaptic input, a specific numerical
example will be presented in two stages. The first stage compares four different
cases in which the same magnitude of excitatory conductance pulse is delivered
to four different portions of the dendritic receptive surface of a neuron. A
comparison of the transient soma-membrane depolarizations calculated for
these four cases provides a more detailed demonstration of the effect of central
vs. peripheral dendritic location than was demonstrated above for two regions.
The second stage makes use of these same four input locations to compare
two different spatiotemporal sequences of ¿ pulses.

Computations were carried out for a straight chain of ten equal compart-
ments (Z = 0.2 per compartment). Compartment No. 1 is regarded as the
soma, and compartments 2, 3, . , 10 are regarded as equal increments of
dendritic surface area, arranged in sequence from dendritic trunks to dendritic
periphery; see the diagram in the upper-right corner of Fig. 6.

All four of these curves display transient depolarization of the soma mem-
brane. The magnitude and time of occurrence of the ¿' pulse is the same in
each case; perturbations A, B, C, and D differ only with respect to ¿-pulse
location, as indicated in the figure. Curve A displays the largest and earliest
peak depolarization; it results from an ¿ pulse in compartments 2 and 3, a
dendritic location which would correspond to the trunks and portions of pri-
mary branches. Cases B, C, and D result from progressively more peripheral
¿e-pulse locations; these are intended to correspond to progressively more

The curves in Fig. 5 correspond to an over-all electrotonic length equal to one characteristic length
(i.e., the Z-values extend from Oto 1.0). For the same geometry, a reduction in the estimated value of Rm/Ri
by a factor of four would reduce the estimated values ofA by a factor of two; all Z-values would be doubled.
Recalculation of these curves on this assumption would increase the steady-state asymptote of curve A from
a value of 0.54 to a value of 0.65 and would decrease she asymptote of curve C from 0.43 to 0.33; also, the
peak of D would increase from 0.24 to about 0.28, and the peak of F would decrease from about 0.12 to
about 0.07; the decaying portions of D and F would come together (within 10%) only at about t = r
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FIG. 6. Effect of e-pulse location upon transient soma-membrane depolarization. The soma-
dendritic receptive surface is divided into ten equal compartments (Z = 0.2) as shown, upper right.
The four e-pulse locations are shown in the diagrams beside the letters A, B, C, and D; in each
case, 4' = I in two compartments for the time interval indicated by the heavy black bars. These
curves were drawn through computed values for time steps of O.O5T. To convert to real time, a
T-value between 4 and 5 rnsec is appropriate for mammalian motoneurons.

peripheral distributions of restricted synaptic activity delivered to the dendritic
receptive surface of a neuron. As a consequence of these locations, curves B,
C, and D display progressively lower and later peaks ;* these curves also display
a progressive delay in their initial rise.

Each of these curves represents a theoretical synaptic potential (epsp) for
the artificial assumption of a square ¿ pulse. It does not seem likely that the
differences between such synaptic potentials would be unimportant for neuronal
input-output relations.

* The peak height of curve A ¡s 0.085 at about t = 0.25T. For curve B. this is 0.042 at about z = O.4T.
Curve C has a wide peak of 0.023 centered at about O.6T. Curve D has a wide peak of about 0.017 centered
at about t = O.8r. At times after t = IST, the decay of all four curves ¡s approximately the same (within
10); this is because the depolarization spreads and tends to become uniform over the soma dendritic
surface as it decays.

Copyrighted Material

.5



139 Theoretical Significance of Dendritic Trees for Neuronal Input-Output Relations

Two Spatiotemporal Patterns. Consider next a sequence of four successive
6 pulses where each individual 6 pulse has the same magnitude and duration
as in Fig. 6. What kind of difference should be expected at the soma for the
following two sequences of 6-pulse locations: sequence A k B - C - D
(trunks first, dendritic periphery last) and D - C - B - A (dendritic peri-
pherv first, trunks last), where these letters refer to the four input locations (not
the voltage transients) of Fig. 6? The computed transient soma-membrane
depolarizations for these two cases are shown in Fig. 7. Curve D e C - B - A
has a peak value of 0.152 which occurs close to t = r. Curve A - B - C - D
has two peaks of 0.085, one near r = 0.25r and a second near t = 0.55r. The
decay of the curves is approximately the same (within 10%) after t = 2-r.

It should be emphasized that these curves were not obtained by displacing
and adding curves A. B. C, and D of Fig. 6: they represent the results of
separate computations for the designated sequences of 6 pulses. It is clear that
the effect at the soma of these two sequences is quite different. The 6-pulse
sequence A - B C -D achieves no significant increase of peak soma
response over that achieved by 6 pulse A alone. In contrast, the 6-pulse
sequence D - C - B - A achieves significant summation by almost doubling
the peak soma response. Both sequences produce results that differ significantly

o Ai, t3 At3 At4

tir
FIG. 7. Effect of two spatiotemporal sequences upon transient soma-membrane depolarization.

Two pulse sequences, A - B -. C - D and D - C - B - A. are indicated by the diagrams at
upper left and upper right: the component e-puIse locations are the same as in Fig. 6. The time
sequence is indicated by means of the four successive time intervals, .Xt, and Xt1, each equal
to 0.25 r. The magnitude, { = I, in two compartments is the same as in Fig. 6. The dotted curve
shows the computed effect of g = 0.25 in eight compartments ( through 9) for the period t = 0
to t = i-.
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from the dotted curve, obtained when the spatiotemporal pattern is removed
by averaging ¿ over the eight compartments and four time intervals. Three
conclusions seem warranted.

A temporal sequence of d pulses does not result in a unique output unless
the dendritic locations of these f pulses are specified.

For maximal peak of the soma-membrane depolarization, the peripheral
dendritic d pulses should be delivered earlier than the proximal dendritic d
pulses.

For rapid achievement and maintainance of a steady soma-depolariza-
tion level, a proximal dendritic ¿ pulse followed by a prolonged sequence of
peripheral dendritic sf pulses would be very effective.

Effect of Inhibitory-Conductance Location. Consider the presence of a sus-
tained inhibitory conductance during the occurrence of an ¿ pulse. What
difference in transient soma-membrane depolarization should one expect when
the inhibitory perturbation is located peripherally or proximally in relation to
sf-pulse location? The results of a relevant computation are presented in Fig. 8.
For A the / location (compartments 9 and 10) is peripheral to the sf pulse.
For B the / location (compartments 5 and 6) is the same as the sf-pulse loca-
tion. For C the / location (compartments I and 2) includes the soma and is
proximal to the rf pulse. The peak of curve B is 93% of the control peak, while

CONTROL
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Fin. 8. Effect of inhibitory-conductance location upon transient soma-membrane depolarization.

The continuous curve represents the uninhibited "control" transient in compartment i (i.e., the soma)
for an pulse in compartments 5 and 6, as shown in the diagram at upper right; = i for t =
0.25 r, as in the two preceding figures. The dotted curves show the inhibitory effect of having J = I
in two compartments throughout the time shown; lt was assumed for these particular computations
that E. = Er The J locations corresponding to curves A, B, and C are indicated by the three
diagrams in the lower part of the figure.
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that of curve C is about 88% of control. In another calculation with / = lo,
the peak corresponding to B dropped to 57% of control, while the peak cor-
responding to C dropped to 40% of control; even with / = 10, the peak
corresponding to A was 99% of control. Also, for / = i in compartments
7 and 8, the computed peak was 99% of control. These results suggest a rather
simple generalization. When the / location is peripheral to the ¿e-pulse loca-
tion, the peak of the transient soma-membrane depolarization is not signi-
ficantly reduced from the uninhibited control level; however, the declining
phase of the soma transient is more rapid. When the j location is identical
with, or proximal to, the f-pulse location, the transient soma peak is reduced
from its control level; this reduction is greatest when the / location includes
the soma.

Some qualifications should be added immediately. These results were com-
puted for a straight chain; other computations with branching systems have
revealed situations in which a / location identical with a peripheral f location
can produce more effective inhibition than an equal amount of sustained / at
the soma. Such situations, and also the effect of E different from Er, require
further investigation. Furthermore, when ¿r and / perturbations are both
sustained, the steady-state results differ from those noted above for the peak of
a brief transient; the effects due to peripheral / locations are less discriminated
against. On the other hand, when ¿r and / perturbations are both brief, their
timing becomes very important and peripheral locations become less effective.
Proximal / pulses are most effective when they are timed to center upon the
peak depolarization at the / location; this means that for optimal effect a /
pulse located as in C of Fig. 8 should be timed later than a / pulse located as
in B of Fig. 8. Thus it should be clear that a strategically placed (spatiotem-
porally) / pulse can have a potent inhibitory effect.

Spatial Summation of Events in Peripheral Divisions of Tree. Here we
present only one set of results obtained for a branching compartmental system.
Computations were carried out for the nine-compartment system shown in
Fig. 9; compartment 8 was taken to be the neuron soma, while compartments
1, 2, 3, and 4 represent four divisions of the dendritic periphery; transient
membrane depolarization in compartment 8 was computed for various combina-
tions of events in the four peripheral compartments. Curve A was computed
for an instantaneous depolarization, y = 0.5, in any one of the four peripheral
compartments; curve B was computed for a simultaneous pair of such events;
curve C was computed for four simultaneous events of this kind. Except for
inaccuracies in drawing these curves, the ordinates of B are twice those of A at
all times; also, the ordinates of C are four times those of A at alltimes. Because
the system is not perturbed, curves A, B, and C can be obtained equally well
for other distributions of equal amounts of instantaneous depolarization in the
peripheral compartments; for example, curve B would also result from y =
at t = O in any one peripheral compartment, or from some combination, such
as y = 0.1, 0.2, 0.3, and 0.4, in the four peripheral compartments. In contrast,
curves DH on the right all involve different perturbations of the system, but
all are computed for zt = O.252-. Curve D was computed for an ¿r pulse
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(g = 2) in any one of the four peripheral compartments. Curve E was com-
puted for a simultaneous pair of such ¿ pulses in compartments i and 2; the
peak amplitude of E is not twice, but 1.94 times, that of D; symmetry requires
the same result if compartments 3 and 4 are substituted for 1 and 2; however,
for compartments 1 and 4 (or 2 and 3, or 1 and 3, or 2 and 4) a slightly different
curve (not shown) is obtained with a peak amplitude that is 1.99 times that of
D. If, on the other hand, the pair of g pulses is combined in a single peripheral
compartment (i.e., g = 4) the summation is poorer, as shown by the dotted
curve, G, whose peak is 1.83 times that of D. Curve F was computed for
simultaneous g pulses (each g = 2) in all four peripheral compartments; the
peak amplitude of F is 3.84 times that of D; in contrast, when these four g
pulses are combined in a single peripheral compartment (i.e. g = 8), the sum-
mation is still poorer, as shown by the dotted curve H, whose peak is only 3.12
times that of D. In these calculations all compartments were assumed to be of
the same size, corresponding to LZ = 0.2, and all 1u, were taken to be
equal.

Once one has accepted the fact that linearity of summation of effects should
not be expected for perturbations of the system, it is interesting to reflect on
the significance of the results shown at the right in Fig. 9. These results show
that, although the departure from linearity can become quite large when per-
turbations are superimposed upon the same compartment, the departure from
linearity can be surprisingly small when brief perturbations occur in separate
portions of the dendritic periphery. The intuitive key to this phenomenon is
the notion that separate location reduces the interference that each perturbation
introduces into the effect from the other. Just as an g pulse in one peripheral
compartment sums better (because it interferes less) with an g pulse in a dif-
ferent peripheral compartment than in the same compartment, so, also, a /
pulse in one peripheral compartment is less effective in inhibiting the transient
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Fic. 9. Effect of peripheral dendritic summation upon transient soma-membrane depolarization.
The left side of this figure illustrates linear summation for events which can be regarded either as
initial conditions or as nearly instantaneous (at t = O) depolarizations produced by very brief and
very large applied currents. The right side of this figure illustrates various degrees of non-linearity
in the summation of simultaneous pulses having a duration & = O.25r, as shown by the black bar.
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due to an ¿' pulse in a different peripheral compartment than in inhibiting the
transient due to an ¿' pulse in the same compartment.

Discussion

Although more computations will be required for exploring answers to a
variety of further questions, the specific results presented and discussed above
(Figs. 5-9) support the notion that spatial pattern and spatiotemporal pattern
of synaptic activity must be taken into account by any comprehensive theory
of neuronal input-output relations.

Dendritic Synaptic Functions. Dendritic branching provides a very large
surface area which can receive synapses from many different afferent sources.
Although individual brief events in the dendritic periphery suffer significant
attenuation in the spread of their effects to the soma, the very large number of
dendritic synapses (of the order lO to lOi) permits a ceaseless spatiotemporal
spattering of synaptic events, the integration of which can provide a finely
graded background level of depolarization (a biasing of neuronal excitatory
state). The sluggish transient characteristic (compare curve D of Fig. 6 with
curve A) provides for a smoothing of the temporal input pattern delivered to
the dendritic periphery. An approximation to linear summation of é-pulse
effects is provided by separated peripheral dendritic locations (see Fig. 9);
however, linear summation does not occur with common locations, whether
central or peripheral. The effect of / location has been discussed above with
Fig. 8.

Trigger Zone, Convergence Zone, and Soma. It is important to distinguish
the soma from the concepts of the trigger zone and of the convergence zone,
although they are often (at least implicitly) identified with each other, for con-
venience. In the case of motoneurons, the soma does represent the zone of
dendritic convergence, and it is in this sense that the word soma has been used
in this paper. The present theoretical results can be applied to other situations,
such as receptor branches or the dendritic arborization from an apical dendrite,
where the functionally important zone of convergence may be far from the
soma. The situation is conceptually simplest when the trigger zone (for initia-
tion of an impulse) is either at or near the convergence zone. This is generally
assumed to be the case for motoneurons, except perhaps in those cases where
the axon arises from a dendrite at some considerable distance from the soma.
The possibility of two trigger zones, one for each of two different dendritic
convergence zones, has been suggested for pyramidal cells (see Eccles, 1957,
p. 226); particularly interesting to me is the suggestion that one of these (the
more peripheral one) might serve a booster" rather than an impulse-triggerng
function (Spencer and Kandel, 1961). The importance of graded integration of
synaptic activity in the dendrites, as contrasted with impulse generation and
propagation in axons, has been increasingly emphasized in recent years (Bishop,
1956, 1958; Bullock, 1959; Grundfest, 1957).

Central vs. Peripheral Dendritic Function. For a neuron with a single trigger
zone that can be identified with the soma and the zone of dendritic convergence,
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the theoretical results can be seen to suggest a general functional distinction
between dendritic and somatic synaptic activity, in contrast with the relatively
sluggish and finely graded depolarization that would spread to the trigger zone
from the dendritic periphery, brief synchronous activity of a few synapses at
or near the soma could produce precisely timed and relatively sharp depolariza-
tions. These would be well suited to precisely timed triggering of axonal
impulses; their amplitudes might well be too small to reach threshold without
the help of earlier dendritic synaptic activity. Thus the dendritic activity could
determine success or failure in the onward transmission of temporal synaptic
patterns delivered at the soma. A different mode of behavior would result when
sustained dendritic synaptic activity was sufficient to cause a rhythmic discharge
of impulses (similar to the action of a generator potential in a sensory neuron);
in such a case, synaptic inhibition at the soma could block the discharge of
impulses over specific periods, or it could reduce the frequency of rhythmic
discharge. An experimental example of this last effect is provided by the observa-
tions of Kuffier and Eyzaguirre (1955) on stretch receptor cells of crayfish.
The differences in epsp time course presented in Figs. 5 and 6 are roughly
similar to the differences reported by Fadiga and Brookhart (1960) for spinal
motoneurons of the frog.

Implications for Theories of Nerve Networks. The incorporation of these
results into a theory of nerve networks seems to lead to something more com-
plicated than is usually assumed. In the case of the "neuronic equations" of
Caianiello (1961, and this volume), the delayed-coupling coefficients (for h
different from k, and r greater than zero) could be used to approximate the
differences displayed here in Fig. 6; however, the assumed linear combination
of inputs neglects the nonlinearities discussed above with Eqs. (10)(12). A
complete incorporation of the compartmental model would lead to four sets of
equations: two sets would define all of u,, andf as linear combinations of
input from all sources; another set would consist of systems of differential or
difference equations, one for each compartmental neuron; and the fourth set
would test the difference between depolarization and threshold at the trigger
zone of each neuron.

Conduction Safety Factor with Branching. A question was asked regarding
the electrotonic equivalence between a cylinder and a class of dendritic trees
(see Fig. 4); the questioner felt, especially from the point of view of impulse
propagation, that successive branching must, with the accompanying reductions
of diameter, lead to a block of conduction; would this not conflict with the
concept of electrotonic equivalence? The answer is that small branch diameter
should not be expected to cause conduction block, when the 3-power-of-diam-
eter constraint (see Fig. 4, and Rail, 1962a) is satisfied at every branch point;
the partial differential equation is the same for cylinder and tree, provided that
distance is expressed as electrotonic distance, Z. For conditions of constant
impulse-propagation velocity in a cylinder (Hodgkin and Huxley, 1952), one
should expect the corresponding velocity in individuai branches to decrease as
the square root of branch diameter; (see Rall, 1962a, p. 1082). Furthermore,
if branch diameters are smaller than required by the 3-power constraint, the
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safety factor for impulse propagation into the small branches will increase, not
decrease. A decrease of safety factor and an increased likelihood of conduction
block would be expected when branch diameters exceeded the values required
by the f-power constraint. For such cells (e.g.. the Purkinje cell of Fig. lA, and
at least some of the "tufted" cells of Ramon-Moliner, 1962), this geometric
polarity might account for a failure of impulses to invade dendritic trees, even
if the membrane vere electrically excitable; such cells also provide for powerful
convergence from their dendritic periphery whether the spread is passive or by
means of impulses. Such safety-factor considerations may be important at
branched receptor terminals and at branched axonal terminals.
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5.1 Introduction by Gordon M. Shepherd with Supplemental
Comments by Milton Brightman

Rail, W., Shepherd, G. M., Reese, T. S., and Brightman, M. W. (1966). Dendro-
dendritic synaptic pathway for inhibition in the olfactory bulb. Exp. Neurol.
14:44-56.

Rail, W., and Shepherd, G. M. (1968). Theoretical reconstruction of field potentials
and dendrodendritic synaptic interactions in olfactory bulb. J. Neurophysiol.
3 1:884-915.

My part in this study grew out of my work on the physiology of olfactory
bulb neurons, carried out under Charles Phillips at Oxford from 1959 to
1962. At that time, the main model for the electrophysiological analysis of
neuronal properties and synaptic circuits in the central nervous system
was the spinal motoneuron, based on the pioneering work of John Eccles
in Canberra and of Kay Frank and Michael Fuortes at NIH. In order to
extend this approach, we decided to develop the olfactory bulb as a simple
cortical system within the mammalian forebrain, based on several attrac-
tive features: its clear separation of afferent and efferent fibers, sharp
lamination, near-symmetrical arrangement of layers, and distinct neuron
types with well-developed dendritic trees and axonal branching patterns.
We found in anesthetized rabbits that the large output cells, the mitral
cells, can easily be driven directly by antidromic invasion or synaptically
by olfactory nerve volleys, and that the impulse response is followed by
profound and long-lasting inhibition (Phillips et al. 1961, 1963; Shepherd
l963a), results that were reported independently by two other laboratories
(Green et al. 1962; Yamamoto et al. 1963). We also recorded from the other
cell types and worked out one of the early local circuit diagrams in which
the mitral cells are subject to feedback and lateral inhibition by the gran-
ule cells acting as inhibitory interneurons (Shepherd 1963b). We noted the
analogy with Renshaw inhibition in the spinal cord, but with two differ-
ences: first, the granule cell lacks an axon, so that the inhibitory output is
presumably mediated by its long superficial spine-covered process, and
second, impulse firing by the granule cell is limited to brief bursts, so that
there must be "sustained transmitter actions outlasting the initial impulse
activity."

As the end of my time in Oxford grew near, I wrote to several investiga-
tors back in the United States about postdoctoral positions. Among them,
because of his early papers on dendrites, was Wilfrid Rail. He wrote back
that he was interested not only in our evidence about dendrites but also in
the large extracellular field potentials we had discovered in the olfactory
bulb. He therefore invited me to join him in a theoretical analysis of the
generation of the field potentials in the olfactory bulb by the bulbar neu-
rons. Although he had no position to offer himself, he was able to arrange
a joint position for me under Wade Marshall and Kay Frank in the Labo-
ratory of Neurophysiology, then in the west wing of Building 10. This was
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a result of his close collaboration with Kay and his group on the analysis
of dendritic integration in motoneurons.

The prospect of working with Wil was exciting for me for several rea-
sons. Although I had little mathematical background, I had been inter-
ested in applying computers to the analysis of neurophysiological data
since spending the summer of 1956 running one of the earliest analog
computers in Walter Rosenblith's laboratory at MIT. I had also been
inspired by the idea of modeling neurons after hearing a talk by Francis
Crick at Oxford on the modeling of DNA around 1961. So it seemed like
an ideal opportunity to do the kind of multidisciplinary study that people
were beginning to talk about as desirable in biology.

Nonetheless, the collaboration was a gamble for both of us. The idea of
interrupting my experimental career by taking off two years from the
laboratory to do a theoretical study was met with skepticism by most of
my colleagues. There was no clear precedent for that kind of career path
in the neurophysiology of the central nervous system. On Wil's part, he
was obviously taking a risk on someone he had never met, and who lacked
any obvious mathematical qualifications to be in NIH's Office of Mathe-
matical Research. Moreover, Wil's work on the motoneuron had encoun-
tered stiff opposition from his former mentor, Eccles, and there was deeply
rooted disbelief among nearly all neuroanatomists and neurophysiologists
(there were not yet "neuroscientists") that theoretical studies had any rele-
vance whatsoever to the complexities of central neurons. However, Wil
and I hit it off from the start, and we never had any doubts that we
were doing a potentially important project that required our close
collaboration.

By the time I arrived in Bethesda, Wil had already settled on the basic
approach to the problem. With regard to the field potentials, the key idea
was that they are generated by synchronous action of the active cells, and
that because of the near radial symmetry of the bulb, the potentials result
from a potential divider effect of the recording electrodes along the exter-
nal current pathway. This reduced the three-dimensional field-potential
distribution to a one-dimensional problem, which in turn enabled the
active populations to be represented by single representative neurons, so
that we could draw on his previous work on field potentials around single
neurons.

With regard to simulating the action potentials and synaptic potentials
that give rise to the field potentials, the timing was propitious because Wil
was just finishing the first stage of developing the compartmental method
for neuronal modeling. During the fall after I arrived, he was preparing to
deliver his seminal paper launching these methods at the Ojai Symposium
on Neural Modeling, held in November of 1962 (Rall 1964). In that paper
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(see part 4 of this book) he adapted the compartmental program (SAAM)
developed by his colleague Mones Berman for kinetic analysis and applied
it to the analysis of synaptic integration in an extended dendritic tree.

In our study we extended these methods from the motoneuron to olfac-
tory bulb neurons. We determined early that the field potentials generated
by an antidromic volley in the mitral cell axons were likely to be asso-
ciated with a sequence of antidromic invasion of the mitral cells followed
by synaptic excitation of the granule cells, so that simulating these poten-
tials would require representative models of each type of neuron. Since no
one had modeled whole neurons before, incorporating the structural di-
versity of axon, soma, and dendrite as well as the functional properties of
synaptic potentials and action potentials, we had to make some hard
decisions about the amount of detail to include, Hence the rather long
Methods section in the ultimate paper (Rail and Shepherd 1968), explain-
ing at some length the rationale for representing the critical components
of each type of neuron. The action-potential model was a particular chal-
lenge in this regard. Our first choice was to use the Hodgkin-Huxley mod-
el of the impulse in the squid axon, but the parameter values had not yet
been determined for mammalian neurons, and given the already consider-
able computational load imposed by the multicompartmental representa-
tion of the neurons and their synaptic properties, the additional load of
the full Hodgkin-Huxley equations would have made the models too cum-
bersome. Wil therefore wrote a Fortran program for the compartmental
simulation that included a simplified impulse model as well as the field-
potential calculations using the potential divider concept. The impulse
model consisted of a pair of nonlinear differential equations representing
an activating conductance followed by a quenching conductance. We car-
ried out several voltage clamp simulations showing that these equations
behaved in generai agreement with the equations describing the sodium
and potassium conductances of the Hodgkin-Huxley impulse model. We
mention in the paper that a more detailed exploration of this model was
in preparation; although this was never realìzed, the model was used fur-
ther in Goldstein and Rail 1974.

Modeling the mitral cells required more accurate estimates of the sizes
of mitral cell somas and dendrites, and modeling the relation between
intracellular and extracellular potentials required estimates of the packing
densities of mitral and granule cells. Paul Maclean made his laboratory in
Building 10 available so that I could prepare some histological material of
the rabbit olfactory bulb for this purpose. Tom Powell had driven home
to me the importance of good quality perfusion and fixation and attention
to tissue shrinkage, so I used a balanced fixative (Bouin's fluid) and took
extra care with these steps. Grant Rasmussen generously gave me some
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space in Building 9 to work with this material. There I became acquainted
with Jan Cammermeyer, who had made it his life's work to battle the
infamous "dark neurons," which he showed were caused by too early
removal of perfused brain tissue. Because these would interfere with our
measurements, I religiously waited several hours after perfusion before
starting cautiously to remove the bulbs. Sections were made in all three
planes in the bulb, and with the excellent fixation and cresyl violet staining
I was able to carry out the cell measurements.

An even more fortunate result of working in Building 9 was that I met
Tom Reese and Milton Brightman, who were working down the hail. Tom
was finishing his electron-microscopical study of the cellular organization
of the olfactory epithelium, and by early 1964 he and Milton started their
study of the olfactory bulb. Up to that time there had been no study of the
fine structure or synaptic organization of the olfactory bulb. It soon be-
came apparent to us that we had the opportunity for a collaborative study
combining electrophysiology, electron microscopy, and biophysical mod-
eling, which must have been the first to involve all three approaches (the
combined structural and functional studies of the cerebellum by Eccles,
Ito, and Szentagothai and of the retina by Dowling, Boycott, and Werblin
were also getting under way about this time). The perfusions for the elec-
tron microscopy were difficult, so the study went slowly (at least it seemed
to me).

Meanwhile there was plenty to do with Wil. When I arrived, he was
working on some camera lucida drawings of Golgi-impregnated moto-
neurons of cats that had been obtained by Aitken and Bridger as a part of
a larger study of motoneuron morphology. Wil was interested in seeing
whether the equivalent cylinders for the dendritic trees were different for
different size trees. We spent many months on that data but in the end
gave it up because we were unsure about how many dendritic branches
were hidden or cut off. During this time the mathematical research office
moved from Building 10 to Building 31. As an experimentalist I enjoyed
the rare privilege of rubbing elbows with mathematicians on a daily basis,
and I came quickly to appreciate the unique role the office was playing in
bringing theory to bear on modern experimental biology. I also made
many new colleagues through Wade Marshall's neurophysiology labora-
tory and the active Friday noon seminars there in his conference room in
Building 10.

Through most of 1964 Wil and I developed a rhythm for doing the
work. In the morning we would collect the printout at the computer center
of the results of the overnight run of the model. We would spend the
morning pouring over the results and the afternoon determining which
parameters to add or change. Then it was punching them into the IBM
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cards and leaving them at the computer center where the Honeywell 800
would grind away overnight. When you only get one or two runs per
night, it puts great pressure on your intuition to sense what are the con-
straining variables and which parameter change will give the most insight
into how the model is functioning. That economy is behind the strong
feelings Wi! and those of us who have worked with him have about the
importance of constructing models that are adequately constrained.

By the summer of 1964 we had the models for antidromic impulse inva-
sion of the mitral cells and synaptic excitation of the granule cells pretty
well worked out. That left just a couple of months in the fall to wrap up
the study before I had to leave for a visiting position at the Karolinska
Institute in Stockholm. Our writing mode was to sit together with Wil
writing things down in a bound protocol book as we arrived at an inter-
pretation and conclusion. Things seemed to be coming together except for
one unsolved problem. After mitral cell antidromic invasion, how are the
granule cells excited so that they can then inhibit the mitral cells? The
assumption in our Oxford circuit diagram was that this excitation came
by way of axon collaterals of the mitral cells. However, the localization of
the field potentials in our computational model showed that there was an
intense depolarization of the peripheral process of the granule cells in a
relatively thin layer at the level of the mitral cell secondary dendrites,
which was difficult to reconcile with the different distributions of axon
collaterals. The more we struggled with this problem, the more the con-
straints of the model indicated that the excitation of the granule cell pro-
cesses must occur at the same narrow level as the subsequent inhibition of
the mitral cell dendrites. But how? In a moment, one afternoon, the idea
hit us that the excitation of the granule cells must come from the same
dendrites that the granule cells then inhibit; in other words, synaptic exci-
tation in one direction and synaptic inhibition in the other must occur
between the same two processes. I knew from the classical literature that
there was no precedent for this kind of interaction between dendrites, and
Wil knew from his knowledge of synaptic mechanisms that there was no
precedent for this in the physiological literature. However, the model indi-
cated strongly that some kind of two-way synaptic mechanism must be
present.

When I left NIH in November 1964, the project fell into limbo. Most of
the analysis was complete, but there were still figures to finalize and much
of the text to write. Anyone who knows Wi! knows that writing does not
come easily for him. Furthermore, the work on the olfactory bulb had
taken time away from the major study of synaptic integration in moto-
neurons that he was continuing to pursue with Kay Frank and his col-
leagues, and he felt, quite rightly, that that study had the highest priority
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in order to establish the credibility of the model for dendritic integration.
We also needed to know from Tom and Milton whether there was any
electron-microscopical evidence for the kind of bidirectional synaptic in-
teractions we were postulating.

Fortunately, the evidence was not long in coming. In a few months Wil
wrote me in Stockholm that Tom and Milton had indeed found synapses
between mitral and granule cell dendrites. When he heard that these were
ordinary synaptic contacts situated side by side with opposite polarities,
Wi! immediately told them that these were precisely the kinds of connec-
tions to mediate the interactions we had postulated. Soon we heard that
synapses between dendrites in the olfactory bulb had also been seen by
Hirata (1964), who referred to them as the "atypical configuration," and by
Andres (1965), but the identification of the synaptic processes was not
clear, and without the physiology and model it was difficult to infer a
function for the synapses because they seemed to be opposing each other.
The convergence of our prediction with the identified synapses was not
only an exciting result but Tom's and Milton's electron micrographs and
serial reconstructions were stunningly clear, so we agreed to write a short
paper together on the dendrodendritic synapses and their interactions and
send it to Science. The result? Rejection, with the comment by the referee
"not of general interest."

This setback occurred while there was continuing skepticism toward
Wil's studies of the motoneuron. That period was the low point in Wil's
fight for the functional importance of the dendrites, and for the place of
theory in the study of neuronal function. I think it was only his stubborn
belief in himself that carried him through those difficult years between
1959 and 1966. I was too naive to have any doubts myself. The support of
Kay Frank, Bob Burke, Phil Nelson, Tom Smith, and their colleagues was
especially important in seeing Wil through this period. I mention these
things to give the reader an appreciation of how much opposition Wil had
to overcome, and how far things have progressed between then and now.
Fortunately, it was the dark before the dawn.

In June I was back in the United States to attend a meeting on sensory
receptors at Cold Spring Harbor, where John Dowling reported the
studies showing similar reciprocal synapses in the retina. After the meeting
I came to Bethesda so that we could decide what to do about getting our
paper published. Wil contacted William Windle, the editor of Ex perimen-
tal Neurology, who invited us to submit it there. We submitted it in July;
it was accepted but not published until January 1966 (RaIl et al. 1966). The
results on reciprocal synapses in the retina came out independently during
this same time period.
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Epilogue

In considering the significance of this work, the 1966 paper emphasizes the
fine-structural evidence for the reciprocal synapses. The beautiful electron
micrographs of Reese and Brightman showed these clearly, and their serial
reconstruction was so definitive that there never was any doubt about the
identity of the participating dendrites. This further left no doubt about the
presence, identity, and prevalence of dendrodendritic synapses, which was
significant at the time in providing a kind of benchmark for others as they
encountered less clearly identifiable presynaptic dendrites in other parts
of the nervous system. The physiology section describes how successive
phases of the field potentials reflect a sequence of mitral cell invasion,
granule cell excitation, and mitral cell inhibition that is mediated in the
model by the reciprocal dendrodendritic interactions. It was a satisfying
case in which a theoretical model predicted anatomical connections, and
in addition provided an explanation for how they would constitute a func-
tional circuit.

In Rall and Shepherd 1968 the emphasis was on the independent evi-
dence from the physiology and the biophysical model that led to the pos-
tulate of the reciprocal interactions. Several points in the results reflect key
steps in constructing the model that, although not often mentioned, oc-
cupied much of our effort. These included (1) the potential divider model
for the recording of the field potentials; (2) the contrasting ratios of intra-
cellular and extracellular current paths for mitral versus granule cells

By the end of 1966 1 was back in the United States, and Wil had finished
the study of synaptic integration in motoneurons. The publication of the
five motoneuron papers in collaboration with Kay Frank's group in 1967
in the Journal of Neurophysiology (see chapter 6.2 in this volume) finally
brought vindication for Rail's approach to the analysis of dendrites. It also
meant that we could turn to writing the full manuscript of our olfactory
bulb study. During 1967, while at MIT and finally Yale, I made periodic
trips to Bethesda to get the manuscript done. We would sit together and
discuss each sentence and often each word as he would write it out in
longhand, for later typing by a secretary. It was slow, but it was a marvel-
ous intellectual experience. I have often taken up pencil and paper (or
more recently, sat at the computer) and done the same with a student or
colleague if the subject is something I really care about. The paper was
finally submitted in March 1968 and published in the last issue of the
Journal of Neurophysiology that year. It was just over six years since I had
arrived in Bethesda.
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(which became crucial in driving us to the postulate of the mitral-to-
granule cell connection); (3) the evidence that intracellular conduction
velocity cannot in general be inferred from extracellular field potentials;
and (4) the exploration of active versus passive dendritic properties (this
was the first attempt to combine both into a model of a single neuron, and
was the start of our later interest in active properties of dendrites and
dendritic spines). All of these points were crucial in putting constraints
on the model. Modern-day neuronal models of course bring much more
computational power to bear, enabling more extensive simulations of
geometry and membrane properties, but few incorporate both extracellu-
lar and intracellular data and are as tightly constrained as this original
model.

The discussion in the 1968 paper went into some detail regarding the
implications of the results. Wil was very much the driving force behind
this. The confluence of anatomy, physiology, and biophysical models pro-
vided insights into types of neuronal organization not known before, and
he wanted to follow these implications to their logical conclusion in order
to point out the new principles that were implied. Among these implica-
tions were (1) presynaptic dendrites can have either synaptic excitatory or
inhibitory outputs; (2) cells without axons, such as the amacrine or granule
cell, have synaptic outputs like other neurons; (3) neurons can have local
input-output functions not involving the entire neuron; and (4) action
potentials are not needed for synaptic activation or neuronal output.
There were also implications regarding dendritic spine functions that
would be pursued by both Wil and myself in later work. The results specif-
ically supported our previous idea that the granule cells are the general
inhibitory interneuron in the olfactory bulb and that they mediate a kind
of Renshaw inhibition, but by a different type of local synaptic pathway. I
would not have had the temerity myself to stick my neck out in so many
directions, but as each point came up in our discussions, Wil assessed it on
its merits. We did have the advantage that between us we had a good
grasp of the relevant biophysical and physiological literature; my training
at Oxford had emphasized the classical antomical literature as well, and
Tom and Milton gave us the current coverage of the relevant fine struc-
ture. The discussion therefore attempted to place the new findings within
a synthesis of these overlapping fields.

It is fair to say that the two papers had a mixed reception. Eccles,
despite his opposition to the Rall model of the motoneuron, was charac-
teristically enthusiastic about new data, and he organized a symposium
for the 1968 FASEB meeting in Atlantic City on the new evidence regard-
ing synaptic organization, at which Dowling and I spoke. Frank Schmitt
included talks by both Wil and myself at the NRP meeting in Boulder in
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1969. Roger Nicoll's paper in 1969 on the electrophysiology of the olfac-
tory bulb provided important early support for the model. But physiolo-
gists have generally been slow to assimilate the results because of the
difficulties of analyzing dendritic properties; for example, after almost 30
years there is not yet clear evidence regarding the functions of the recipro-
cal synapses in the retina.

Wil and I had intended to pursue further studies together to test the
reciprocal model, but the problem with his cataracts made this impossible.
In the middle 1970s I therefore began a collaboration with Robert Bray-
ton, a mathematician then at the IBM Watson Research Center, that
resulted in a more detailed simulation of the reciprocal dendrodendritic
synaptic circuit (Shepherd and Brayton 1979). The significance of this
work for subsequent studies of active properties of dendrites and dendritic
spines is discussed later in this volume. In 1978 we introduced the isolated
turtle brain preparation and applied it to analysis of the synaptic circuits
in the olfactory bulb (Nowycky et al. 1978; Mori and Shepherd 1979). This
led to direct physiological testing for the reciprocal circuit (Mori et al.
1981); the results of Jahr and Nicoll (1982) were especially convincing
in providing evidence from intracellular recordings and pharmacological
manipulations for both reciprocal and lateral inhibition.

It was the anatomists who were most immediately influenced by the
work. The anatomical findings gave a clear image of the new type of
dendritic synaptic organization and served as the model, along with the
similar findings in the retina, for the studies just opening up on the
synaptic organization of many brain regions. Famiglietti and Peters
(1971), Morest (1971), and Ralston (1971) were among the pioneers who
showed that presynaptic dendrites are not peculiar to the olfactory bulb
and retina but are components of normal circuits in different thalamic
relay nuclei. The generality of the findings and interpretations here and in
other regions of the nervous system stimulated me to gather the new
evidence into a book on the new field of synaptic organization (Shepherd
1974). The term local circuit was introduced by Pasko Rakic (1976) to
apply to neural organization at this regional level, and the dendrodendri-
tic connections and interactions were the prototype covered by the term
microcircuit, which was introduced to apply to the most confined and
specific of the local circuits (Shepherd 1978).

Although the confirmation of our findings and the general acceptance of
the interpretation were gratifying, there is a sense in which Wi!, as senior
author on this work, has never received the credit that was due. It was a
pioneering study, using methods largely developed by him, that, together
with the work on the motoneuron, laid the foundations for the field
of computational neuroscience. It led to the discovery of a new type of
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function of neuronal dendrites. And the findings required revision in fun-
damental concepts, dating from Caja!, of how neurons are organized. The
lack of recognition may be due in part to the fact that the new findings
introduced new complexities into understanding the rules of neurona! or-
ganization, and the time was simply not yet ripe for a new synthesis that
could be readily grasped by experimental neuroscientists. It may also re-
flect the general tendency of theoretical neuroscientists to ignore the im-
portance of dendritic functions. And it may be because Wi! Ra!! is a mod-
est person who feels the evidence should speak for itself.
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Supplementai Comments by Milton Brightman

Our first meeting with Wi!, about 30 years ago, here at the NIH, was
prompted by Tom Reese's superb electron micrographs of the rat olfac-
tory bulb. The microscopy lab was situated in the basement of Building 9
in what had originally been a plumbing shop. The light was not always
adequate and the micrographs were still being rinsed, but I was struck by
the image of a single neuronal process that, according to the location of
synaptic vesicles, was postsynaptic at one point and presynaptic at an-
other. We were both excited about this unique arrangement.

A short time later, Tom told me that we were to meet with two physiol-
ogists who were keenly interested in the finding. It was then that I first met
Wil Rall and Gordon Shepherd. Their enthusiasm about what we had
seen was very evident as they explained the functional significance of these
peculiarly arranged synaptic contacts and how they could account for
lateral inhibition in the olfactory cortex. It was the joy with which Wi! told
us of the implications, as much as anything, that encouraged us to look
further.
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5 2 Dendrodendritic Synaptic Pathway for Inhibition in the Olfactory
Bulb (1966), Exptl. Neurol. 14:44-56

Wilfrid Rail, G. M. Shepherd, T. S. Reese, and M. W. Brightman

Anatomical and physiological evidence based on independent studies of the
mammalian olfactory bulb points to synaptic interactions between dendrites. A
theoretical analysis of electric potentials in the rabbit olfactory bulb led origi-
nally to the conclusion that mitral dendrites synaptically excite granule dendrites
and granule dendrites then synaptically inhibit mitral dendrites. In an independent
electron micrographic study of the rat olfactory bulb, synaptic contacts were found
between granule and mitral dendrites. An unusual feature was the occurrence of
more than one synaptic contact per single granule ending on a mitral dendrite;
as inferred from the morphology of these synaptic contacts, a single granule
ending was often presynaptic at one point and postsynaptic at an adjacent point
with respect to the contiguous mitral dendrite. We postulate that these synaptic
contacts mediate mitral-to-granule excitation and granule-to-mitral inhibition.
These dendrodendritic synapses could provide a pathway for both lateral and
self inhibition.

Introduction

The purpose of this paper is to bring together two recent but independent
lines of evidence which suggest that there is synaptic interaction, in both
directions, between the dendrites of mitral cells and the dendrites of
granule cells in the mammalian olfactory bulb. By means of these synapses,
mitral cell dendrites would excite granule cell dendrites, and granule cell
dendrites would then inhibit mitral cell dendrites. The morphological
evidence is from an electron micrographic study of the olfactory bulb
(Reese and Brightman), while the physiological argument arose originally
from a theoretical analysis (Rail and Shepherd) of electric potentials ob-
tained from recent physiological studies on the olfactory bulb (15, 16).

Anatomy

Figure 1 emphasizes, for our purposes, the form and relations of the
large mitral cells as seen in Golgi preparations (19). Each mitral cell has

Figures 1 and 3 were drawn by Mrs. G. Turner.
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a radial, primary dendrite which receives the incoming fibers from the
olfactory epithelium, and several tangential, secondary dendrites which
form an external plexiform layer. Into this layer come also many branches
of radial dendrites from numerous deeper lying granule cells. These
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FIG. 1. Layers and connections in the olfactory bulb (adapted from Cajal, 19).
GL, glomerular layer; EPL, external plexiform layer; GRL, granular layer; ON,
olfactory nerve; LOT, lateral olfactory tract; g, granule cell; m, mitral cell; PD,
primary mitral dendrite; SD, secondary mitral dendrite.

branches are studded with gemmules (Golgi spines) which make many
contacts with the mitral secondary dendrites. Mitral dendrites resemble
dendrites of other multipolar neurons in being distinctly wider than the
axon, and in emerging as multiple trunks, whereas the axon is single.
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Granule cell dendrites resemble certain other dendrites in bearing gem-
mules and being profusely branched.

Methods. Rats weighing 200-2 50 g were perfused through the heart
with a solution of 1% OsO4 in isotonic sodium phosphate at pH 7.0, and
the olfactory bulbs were prepared for electron microscopy by conventional
techniques. In order to identify cell processes, it was important to know
both the region of the bulb and its orientation in each electron micrograph.
This was achieved by embedding large coronal slices of olfactory bulb
and sectioning them for electron microscopy only after they were ex-
amined with the light microscope. The electron microscopic results are
here limited to the deeper regions of the external plexiform layer where
most of the large tangential dendrites are from mitral cells. A few of these
dendrites, however, are from deep lying tufted cells.

Results. Mitral and granule cell dendrites were easily identified in elec-
tron micrographs by comparing their appearance with that in previously
available Golgi preparations (19). The mitral secondary dendrites were
the only large processes in the external plexiform layer with a tangential
and a rostral-caudal orientation (22), while the granule cell dendrites
were smaller and had a radial orientation, perpendicular to the mitral
dendrites. The mitral secondary dendrites were studded with numerous
synaptic endings which were thought to be mostly gemmules from granule
cells because their ubiquity corresponded to that of the gemmules in Golgi
preparations. Also, in favorable sections (Fig. 2) and in an accurate re-
construction of one series of sections (Fig. 3) these endings were shaped
like gemmules and arose from a radially oriented granule cell dendrite.

Each granule ending made one or more typical synaptic contacts with
a single mitral dendrite and each synaptic contact consisted of a region
of increased density and separation of the apposed cell membranes form-
ing a cleft filled with a fibrillar dense material. Also part of each synaptic
contact was a cluster of vesicles closely applied to the cytoplasmic side of
either the mitral or granule cell membrane. These synaptic contacts there-

Fin. 2. Electron micrograph showing many synaptic endings on mitral secondary
dendrites (large circular outlines) in the external plexiform layer of the rat olfactory
bulb. One of the endings, a gemmule containing many vesicles, is in the center. A
fortuitous plane of section along the axis of a granule cell dendrite (photographically
darkened) demonstrates the continuity of this dendrite with the gemmule, Although
this gemmule contains synaptic vesides, no synaptic contacts are shown clearly in this
plane of section. Lead citrate; X 20 000.
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fore closely resembled synaptic contacts in other parts of the central
nervous system (6, 14). However, the granule endings on mitral dendrites
differed from typical synaptic endings in that two separate synaptic
contacts with opposite polarities were often found side by side in the same

Ftc. 3. Graphical reconstruction (12) of a granule synaptic ending (g) on a mitral
secondary dendrite (m). The granule ending is shaped like a gemmule and arises from a
granule dendrite lying approximately perpendicular to the mitral dendrite. Within a
single ending are two synaptic contacts with opposite polarities (indicated by arrows).
The reconstruction was made directly from a series of tracings of twenty-three con-
secutive electron micrographs; no sections are omitted in showing cut surfaces. Micro-
tubules and endoplasmic reticulum are not shown. X 20 000.

ending (arrows, Fig, 3 and 4). This interpretation of polarity was made
by analogy with synapses in other regions of the central nervous system
where polarity depends on a grouping of vesicles at the dense segment of
the presynaptic membrane (14); this interpretation implies that there is
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both mitral-to-granule and granule-to-mitral synaptic transmission. That
many of the granule endings appeared to make only one synaptic contact
with a mitral dendrite could depend on the part of the ending sectioned
(Fig. 3).

Another consistent difference in structure which correlated with the
polarity of a synaptic region was a dense, filamentous material typically

.-

FIG. 4. A mitral secondary dendrite (m) and one of the many synaptic endings
(g), presumed to be gemmules from granule cells. There are two synaptic contacts
with opposite polarities (indicated by arrows). Where the polarity is from the mitral
dendrite to the granule dendrite (as judged by the grouping of vesicles), a dense fila-
mentous material (f) is attached to the postsynaptic cell membrane. Lead citrate;
X 90 000.

attached to the postsynaptic cell membrane at the mitral-to-granule synap-
tic contacts (Fig. 4, f). In this respect, these synaptic contacts are analo-
gous to those in axodendritic synapses in cortical areas, while the absence
of a postsynaptic dense material at the granule-to-mitral synaptic contacts
makes them more analogous to those in axosomatic synapses (6). Mitral-
to-granule synaptic contacts also differed from granule-to-mitral contacts
in having fewer vesicles near the presynaptic membrane and in having a
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wider synaptic cleft. These structural differences suggest that a different
function is associated with each of the two kinds of synaptic contact.

Physiology

Independent evidence for the existence and nature of connections be-
tween mitral and granule dendrites has come from electrophysiological
studies of the rabbit's olfactory bulb. A weak electric shock to the lateral
olfactory tract sets up an impulse volley in some axons of the mitral cells,
and these mitral cells are then invaded antidromically. The mitral cells
which have not been invaded may nonetheless be inhibited for loo msec
or more following the volley, and during this period, the mitral cell mem-
brane is hyperpolarized. The variable latency of onset of the inhibition in
individual mitral cells, together with its prolonged duration, suggested an
interneuronal pathway between the stimulated mitral cells and their in-
hibited neighbors. In view of the anatomical data available at that time, it
was proposed that the granule cells function as inhibitory interneurons. It
was assumed that mitral axon collaterals would excite the granule cells
(presumably at their deep lying dendrites and cell bodies), and that
granule cell activity would then deliver synaptic inhibition to the mitral
dendrites (16, 21, 26).

The new concept, that mitral secondary dendrites deliver synaptic ex-
citation directly to granule dendrites, arose from a theoretical study in
which mathematical computations were adapted specifically to a recon-
struction of the electric potential distribution in the olfactory bulb follow-
ing a strong shock to the mitral axons in the lateral olfactory tract. The
potential pattern, as a function of both time and depth in the bulb, is
very clear and reproducible (13, 16, 24) (Fig. 5).

Methods. Extensive computations were performed on a Honeywell 800
digital computer. These were based upon the mathematical neuron models
presented elsewhere (17, 18). In adapting these models to the present prob-
lem, special attention was given to the concentric laminar arrangement of
the mitral and granule cell populations in the olfactory bulb. Also, com-
putations were used to assess the theoretical parameters corresponding to

FIG. 5. Tracings of experimental recordings from rabbit's olfactory bulb following
a strong shock to the mitral axons in the lateral olfactory tract (16). Periods I, II and
III are indicated at top; the time from stimulus is shown at bottom. The depth of
microelectrode penetration into the bulb is given at left, for each tracing; GL, glomer-
ular layer; EPL, external plexiform layer; MBL, mitral body layer; GRL, granule
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Tr
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layer. Positivity of microelectrode, relative to a distant reference electrode, is upwards.
Dashes distinguish period III, which we attribute primarily to granule cells, from
periods I and II, which we attribute primarily to mitral cell activity.
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dendritic electrotonic length, dendritic facilitation, active and passive
membrane properties, axon-soma-dendritic safety factor, and the effective
location of the reference electrode along a potential divider which bridges
across the bulbar layers.

Results and Interpreiations. To facilitate a brief description of these
potentials and the interpretation derived from the reconstructions, we
designate three successive time periods in Fig. 5. During period I, there
is a brief negativity deep in the bulb, coupled with a positivity at its sur-
face. This can be attributed primarily to flow of extracellular current from
mitral dendrites to mitral cell bodies during the active depolarizing phase
of synchronous action potentials in the mitral cell bodies. During period
II, there is a brief deep positivity coupled with a brief surface negativity;
this can be attributed primarily to flow of extracellular current from re-
polarizing mitral cell bodies to mitral dendrites which have been depolar-
ized, either by passive electrotonic spread, or by active impulse invasion
from the cell bodies.

During period III, there is a large positivity centered deep in the granule
layer of the bulb, together with a large negativity centered in the external
plexiform layer. This implies a substantial flow of extracellular current
from the depths of the granule layer radially outward into the external
plexiform layer. The population of cells which generates this electric cur-
rent must possess a substantial intracellular pathway for the return flow of
current from the external plexiform layer, through the mitral body layer,
into the depths of the granule layer. This requirement is satisfied by the
large population of granule cells, but not by the mitral cells. Furthermore,
the potential distribution during period III could be reconstructed by as-
suming that there is a strong membrane depolarization of the granule
dendrites in the external plexiform layer, coupled with essentially passive
membrane in their deeper processes and cell bodies.

Because this depolarization of granule dendrites would occur in the
region of contact with many mitral dendrites, and at a time just after the
mitral dendrites were depolarized, it was logical to postulate that the mitral
secondary dendrites provide synaptic excitatory input which depolarizes
granule dendrites. Furthermore, because period III corresponds with the
onset of mitral cell inhibition, the granule dendritic depolarization is both
well timed and well placed to initiate synaptic inhibitory input to the
mitral dendrites. Thus, the theoretical study led us to expect that dendro-
dendritic synaptic contacts would subsequently be found that could medi-
ate both mitral-to-granule excitation and granule-to-mitral inhibition.
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These have been discovered independently in electron micrographs of the
mitral-granule endings as presented here. These findings also appear to be
supported by other authors (1, 9).

Discussion

In summary, the sequence of events following impulse discharge in
mitral cells is viewed as follows: Depolarization spreads from the mitral
cell bodies into the mitral secondary dendrites; this membrane depolariza-
tion activates excitatory synapses which depolarize granule cell dendrites;
the synaptic depolarization of granule dendritic membrane then activates
granule-to-mitral inhibitory synapses. The resulting hyperpolarization and
inhibitory effect in the mitral dendrites might be prolonged by sustained
action of inhibitory transmitter.2

This schema suggests a pathway in which inhibition is mediated by
nonpropagated depolarization of dendritic trees rather than by conduction,
in the usual manner, through axons. Because these granule cells have no
typical axons, it seems likely that they may function without generating
an action potential. Computations with the theoretical model indicate that
synaptic depolarization of the granule dendritic membrane can account for
the observed potentials. However, we do not exclude the possibility that
this depolarization could be augmented by a weak, active, local response.
Neither can we completely exclude the possibility that the synaptic poten-
tial in the dendrites might cause occasional firing of impulses at the gran-
ule cell bodies. A nonpropagated depolarization of the deep-lying granule
dendrites should produce a potential distribution opposite to that of period
III; this situation has been previously reported and so interpreted (25).
That graded amounts of granule dendritic depolarization could be re-
sponsible for graded release of inhibitory synaptic transmitter seems rea-
sonable in view of experimental results obtained with presynaptic polariza-
tion at neuromuscular junctions (2, 11).

The granule cells can serve as inhibitory interneurons in a more general
sense than in the schema proposed above, because their deeper lying
processes receive input from several sources (19). Our emphasis upon the
synaptic input in the external plexiform layer is not meant to exclude the
importance of these other inputs in other situations. In fact, the granule

2 Under conditions such as those in period III in Fig. 5, there is an additional in-
hibitory effect exerted upon the mitral cells. The extracellular current and potential
grathent generated by the granule cells would have an anodal (hyperpolarizing) effect
at the mitral cell bodies, coupled with a cathodal effect at the dendritic periphery.
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cell is strategically situated to enable its inhibitory activity to represent an
integration of several inputs.

It has generally been assumed that dendrites do not occupy presynaptic
positions. However, in the olfactory bulb, both granule and mitral dendrites
have pre- as well as postsynaptic relationships to each other. This feature
is also found in the glomeruli of the olfactory bulb where dendrites, which
are postynaptic to palisades of incoming axons, are presynaptic to other
structures (20). Expanding the concept of dendrites to include pre- as
well as postsynaptic functions adds new possibilities in the interpretation
of sequences of synaptic contacts found elsewhere in the nervous system
where an ending which is presynaptic to one process is postsynaptic to
another (3, 7, 10, 23). For example, such a sequence of synaptic contacts
might include a dendrodendritic rather than an axoaxonic contact. Because
the morphological evidence for presynaptic inhibition has depended on the
identification of axoaxonic synaptic contacts, some of this evidence may
need re-examination.

It has long been recognized that the retinal amacrine cell and the olfac-
tory granule cell are very similar with respect to external morphology
(19). Recent findings in the retina indicate that arrangements of synaptic
contacts there are similar to those in the olfactory bulb and involve the
amacrine cells which, like the granule cells, lack an axon (5, 10). It will be
interesting, therefore, to see whether the amacrine cells provide a similar
dendrodendritic inhibitory pathway.

Because of the importance of adaptation and lateral inhibition in sensory
systems (8), it is noteworthy that the mitral-granule dendrodendritic
synapses provide an anatomical pathway for such inhibitory effects. From
the Golgi preparations, it appears that the secondary dendrites of each
mitral cell must contact the dendrites of many granule cells, and that each
granule dendritic tree must contact the dendrites of many mitral cells.
Thus, each time a mitral cell discharges an impulse, its dendrites delivei
synaptic excitation to many neighboring granule dendritic trees, and these,
in turn, deliver graded inhibition to that mitral cell and many neighboring
mitral cells. Such lateral inhibition can contribute to sensory discrimina-
tion by decreasing the level of noisy activity in mitral cells neighbor-
ing the activated mitral cells; also, the self-inhibition would limit the
output of the activated mitral cells. When there is a widespread, intense
sensory input, the entire granule cell population can exert an adaptive kind
of inhibitory effect upon the entire mitral cell population. Such features
are in accord with physiological findings (4). Interaction between the
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mitral and granule cell populations can also provide a basis for rhythmic
phenomena as the granule cell population begins to inhibit the mitral
cell population, this begins to cut off a source of synaptic excitatory input
to the granule cell population; later, as the level of granule cell activity
subsides, this reduces the amount of inhibition delivered to the mitral cells,
and permits the mitral cells to respond sooner to the excitatory input they
receive.
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5.3 Theoretical Reconstruction of Field Potentials and Dendrodendritic
Synaptic Interactions in Olfactory Bulb (1968), J. Neurophysiol.
31:884-915

Wilfrid Rail and Gordon M. Shepherd

THE ORIGINAL OBJECTIVE of this research was
to apply a mathematical theory of generalìzed
dendritic neurons (36-39) to the interpreta-
tion and reconstruction of field potentials
observed in the olfactory bulb of rabbit (32,
33). In the course of pursuing this objective,
we were led to postulate dendrodendritic
synaptic interactions which probably play
an important role in sensory discrimination
and adaptation in the olfactory system (40).
More specifically, our initial aim was to
develop a computational model, based on
the known anatomical organization of the
olfactory bulb and on generally accepted
properties of nerve membrane, that could
reconstruct the distribution of electric poten-
tial as a function of two variables, time and
depth in the bulbar layers, following a
synchronous antidromic volley in the lateral
olfactory tract. The experimental studies of
Phillips, Powell, and Shepherd (32, 33) had
previously established that the recorded
potentials at successive bulbar depths are
highly reproducible and correlated with the
histological layers of the bulb. These authors
recognized the importance of this finding in
relation to the symmetry and synchrony of
activity in the mitral cell population; they
deferred the interpretation of these poten-
tials, in terms of specific neuronal activity,
with a view to the present theoretical study.

METHODS
Physiological

The experiments were performed on young
rabbits under urethan-chloralose or Nembutal
anesthesia. The surgical procedures for exposing
the olfactory bulb and lateral olfactory tract, and
the details of the stimulating and recording tech-
niques, have been previously described (33).
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As illustrated in Fig. IB, differences in extra-
cellular potential were recorded between a focal
penetrating microelectrode tip and a reference
chlorided silver plate. The pipette tip was inserted
through the successive layers of the olfactory
bulb, whereas the silver plate was usually placed
under the skin at the back of the head. Moving this
reference electrode forward to the - position indi-
cated diagrammatically in Fig. IB, or to the
Ringer fluid in the craniotomy over the bulb, had
little effect on the general pattern of the potentials
recorded when the focal tip was well within the
bulb. The pattern was also little affected when
mineral oil replaced the Ringer fluid on the ex-
posed dorsal surface of the bulb. The potential
amplitudes were smaller with the Ringer fluid, and
the amplitudes decreased predictably to zero if the
interelectrode distance also decreased to zero.

The tract shocks were somewhat submaximal
for the bulbar response in order to minimize the
spread of stimulating current. As the shock strength
was increased from threshold to maximal the re-
sponses changed in amplitude but not in general
pattern. The recordings from neighboring elec-
trode penetrations often varied in the relative
amplitudes of different components of the re-
sponses but not in the general pattern. This varia-
tion appeared to be due in part to contributions
from single units picked up by the microelectrode;
a small back-and-forth adjustment of the micro-
electrode often reduced these contributions to
negligible magnitudes.

Experiments in which the recording pipette
penetrated first the dorsal hemisphere of the bulb
and then continued on through the ventral hemi-
sphere usually showed responses which were simi-
lar in pattern and magnitude, and the same held
for recordings from the medial and lateral hemi-
spheres of the bulb (cf. ref. 33, Plates 2 and 3). We
conclude that roughly the same proportion of
mitral cells per unit area of mitral body layer was
invaded antidromically throughout most of the
bulb. The synchrony of antidromic invasion in a
given region of the bulb was indicated by the
brevity and sharpness of the response. The great
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majority of unitary spikes recorded from the mitral
cell layer during antidromic invasion occurred
during the first millisecond of the evoked response,
i.e., during period I of Fig. 4 below (33, 46).

The input from the recording electrodes was
capacitor-coupled with a time Constant of about 1
sec. This was long enough to ensure that there was
negligible distortion of the relatively rapid poten-
tial responses in the period of a few milliseconds
which was under study; it was short enough, on the
other hand, to provide for accurate superimposi-
tion of successive responses on the oscilloscope
screen. Tracings such as those in Figs. 3 and 4 were
made from records in which IO responses were
superimposed at a rate of 1/sec.

Anatomical

The method for correlating the sequence of
summed potential transients with the successive
laminae of the bulb is fully described by Phillips
et al. (33). Further studies of bulbar structure were
carried out with material fixed in Bouin's fluid, em-
bedded in paraffin, and stained with cresyl violet
(49). The aim of these studies was to characterize
the over-all symmetry of the bulb and to make
quantitative estimates of the density and dimen-
sions of the mitral cells for use in the computations,
as described below.

GLOMERULUS

0
V/I/I/Il/ui,,,,

I

MITRAL CELLS

B
s'so. 1. A: schematic diagram of one mitral cell and one granule cell. The mitral primary dendrite ends in a

dendritic tuft at the glomerulus; several mitral secondary dendrites extend away from the primary axis and are
shown truncated. Granule dendrites are studded with gemmules (Golgi spines) which make contact with the
dendrites of many neighboring mitral cells (not shown). B: experimental setup for electrical stimulation of
lateral olfactory tract and microelectrode recording from the bulb; diagram indicates approximately spherical
arrangement of the mitral cell layer, projection of mitral axons to lateral olfactory tract, and relation of the
olfactory bulb to telencephalon.
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The olfactory bulb, as its name implies, approxi-
mates in form to a sphere. Figure I B shows that the
bulbar cortex departs from spherical symmetry in
being elongated in the anteroposterior axis and
open at its posterior connection to the telence-
phalon; also at its posterodorsal surface it is re-
placed by the accessory olfactory bulb. Within the
bulb the mitral axons converge toward the ventral
posterolateral surface to form the lateral olfactory
tract, so that a volley of antidromic impulses fans
out within the bulb to invade the spherical sheet
of mitral cells roughly simultaneously. This applies
particularly to the anterior and dorsal regions of
the bulb, where our recordings were taken. The
retrobulbar area is continuous with the deep
granular layer of the bulb, and is more or less
synonymous with the anterior olfactory nucleus. In
mammals, the lateral part of this nucleus is con-
sidered to receive collaterals from mitral axons
(27), and would therefore be invaded by an anti-
dromic tract volley. The same would be true of the
accessory olfactory bulb, which appears to project
to the lateral olfactory tract (2). To the extent that
the Orientation and timing of current flows in these
structures resembled those in the bulb the func-
tional symmetry of the bulb would tend to be pre-
served.

The diameter of the bulb in young rabbits of the

FOREBRAIN

LATERAL
OLFACTORY
TRACT
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MITRAL CELL MODEL

EQUIVALENT
DENDRITE

SOMA

AXON

FIG. 2. Successive abstractions of mitral cell. From
left: schematic primary and secondary dendrites;
dendrites lumped as an equivalent cylinder (36-38);
chain of compartments used to represent axon, soma,
and dendrites. Enlarged single compartment at right
shows the electrical equivalent circuit used to repre-
sent the lumped electric parameters of nerve mem-
brane belonging to one compartment. Symbols desig-
nate: C,,= membrane capacity; Gr=resting mem-
brane conductance; G, excitatory membrane con-
ductance with E, as the excitatory emf; G;=inhihi-
tory membrane conductance with E, as the inhibitory
enif; V =intracellular potential; V.=extracellular
potential; L, =net membrane current; r, designates
intracellular core resistance between neighboring
compartments.

size used in the physiological experiments was 3 to
4 mm in the transverse axis; a value of 2 mm for the
bulbar radius provides a reasonable approxima-
tion. Along this radius the inner glomerular bound-
ary lay at 0.3 mm and the mitral cell bodies at 0.7
mm from the Outer surface, for the experiment de-
picted in Figs. 3 and 4. These were typical figures,
and imply lengths of primary (or radial) mitral
dendrites of some 400 p. The diameters of the pri-
mary dendrites ranged from 2 to 10 p, with an
average of around 6 p. The trunks of the mitral
secondary dendrites are somewhat smaller, around
4g, in diameter; according to Cajal (41) they are

two, three or more in number." From Cajal's
diagrams of Golgi-stained sections one can see that
these secondary dendrites divide several times, and
that they often exceed the primary dendrite in
over-all length. The secnndary dendrites tend to
run in the anteroposterior axis of the bulb (49). We
are assuming that during antidromic invasion the
radial component of extracellular current around
the secondary dendrites summates approximately
with the current around the primary dendrite, so
that the whole mitral dendritic tree can be lumped
together as a single equivalent cylinder (see Fig. 2).

From the classical work with the Golgi stain it
has been known that the other main constituent of
the external plexiform layer consists of branching
dendritic processes from the granule cells; one of
these is depicted schematically in Fig. IA. There
are many granule cells relative to mitral cells (cf.
Fig. 3), and each granule cell branches profusely
in the external plexiform layer. It could be assumed
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therefore that most of the external plexiform layer
is taken up by the granule cell dendritic branches
and their dendritic spines; this has recently been
borne out by electron micrographs (44, 45; also
T. S. Reese, unpublished observations). Quantita-
tive estimates related to the cell densities of both
mitral and granule cell populations are presented
in the section on RELATIVE RADIAL RESISTANCE
ESTIMATES, below.

The existence of synapses between the mitral cell
dendrites and the granule cell dendrites in the ex-
ternal plexiform layer was not known when we be-
gan this study, although the existence of many
gemmules (Golgi spines) on the granule cell pro-
cesses was known (41). Our theoretical computa-
tions and interpretations, as presented in RESULTS,
led us to postulate unusual synaptic interactions be-
tween these dendrites in the external plexiform
layer; we postulated mitral-to-granule synaptic
excitation followed by granule-to-mitral synaptic.
inhibition, Subsequent to these computations and
interpretations, the existence of pairs of oppositely
oriented synaptic Contacts between granule ceO
gemmules and mitral dendrites became known
from independent electron microscopic studies
(40, 44, 45; also 3, 18, and K. Hama, personal
communication). Electron microscopy of serial
sections (44 and Reese, personal communication)
shows that granule cell processes account for the
major part of the neuropil in the deep third of the
external plexiform layer; glia is relatively rare;
most synaptic endings (gemmules) contain gra-
nule-mitral synaptic contacts of opposite polarity;
there are a few unidentified endings present on
granule dendrites.

Besides the mitral and granule cells shown in
Fig. IA, the bulb Contains two other main cell
types: short-axon cells around the glomeruli, and
tufted cells in the external plexiform layer just
deep to the glomeruli. There is no clear anatomical
evidence about the projection of tufted cell axons,
whether to the telencephalon or confined within
the bulb (51). In microelectrode experiments
(32, 47) presumed tufted cells were activated
synaptically after stimulation to the tract; these
spikes occurred at variable latencies early in period
III (see Fig. 4) of the evoked response. In view of
their relatively asynchronous firing, and their
short dendrites, we assume that the summed cur-
rent flows around the tufted cells will be small
enough so that they can be neglected for the pur-
poses of the present reconstruction. Glomerular
cells can similarly be neglected; their dendrites
are short and bushy and haphazardly arranged; the
main effect on them of tract stimulation was in-
hibition (47, 48).

It remains to be noted that in experiments like
the present ones, employing shocks to the lateral
olfactory tract, the possibility exists that centrifugal
fibers in or near the tract might contribute to the
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bulbar response. Anatomical studies (6, 34), in-
volving transection of the tract and the tracing of
degenerating fibers into the bulb in Nauta prepara-
tions, have suggested that in the rat there is a small
projection to the bulb from the olfactory tubercle
or rostral part of the pyriform cortex. However in
the present experiments the stimulating site was
well out on the olfactory tract, lateral and caudal
to these regions. Green et al. (15) made similar
chronic transections of the tract just behind the
bulb in cats and, using electric shocks to the tract
on the bulbar side of the lesion, were unable to find
any differences in the bulbar responses ascribable
to a loss of centrifugal fibers. In view of the uncer-
tainty about the centrifugal fibers, our analysis is
based first on the known features of bulbar ana-
tomy, and the obvious physiological consequences
of these features. A possible small contribution for
centrifugal fibers is discussed in connection with
Figs. 13 and 14.

Relative radial resistance estimates

The precise dimensions and densities of the
mitral cells and granule cells in the olfactory bulb
are less important for our theoretical calculations
than are certain order of magnitude estimates of
relative resistance values for radial electric current
flow in the olfactory bulb. Our original estimates
of these relative resistance values were based upon
a knowledge of the gross anatomy obtained from
Golgi preparations; the most recent electron
micrographs provide more detailed information,
but do not change the orders of magnitude of these
estimates.

For the mitral cell dendrites, we have estimated
the ratio of extracellular to intracellular radial re-
sistance to be of the order 1/20, while, for the
mitral cell axon, we have estimated this ratio to be
about 25 times smaller, or of the order 1/500; in
contrast with these estimates, our estimate of this
ratio for the granule cell dendrites is of the order
4/1. These estimates are so different from each
other that a factor of 2 in uncertainty does not
change their relative orders of magnitude. Here we
shall attempt to give only a rough anatomical
justification for such estimates.

If we treat the mitral body layer as a spherical
surface of radius 1.3 mm, it has a surface area of
about 20 mm2. If the number of active mitral cells
per bulb is between 20,000 and 40,000 (i.e., ap-
proximately 50-100% of the mitral cell popula-
tion, cf. ref. 2) the amount of this spherical surface
area per active mitral cell is between 500 and 1000
,.i2. For a spherical surface in the middle of the
external plexiform layer (radius ca. 1.5 mm) these
surface areas per active mitral cell become in-
creased to almost 750 and 1,500 A mitral pri-
mary dendrite, 6 j.s in diameter, has a cross-sec-
tional area of about 28 s2. Four secondary den-
dritic trunks having 4-.i diameters would have a
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combined cross-sectional area of about 50 but
these trunks do not extend radially in the bulb. If,
for simplicity, we assume that these secondary den-
drites are oriented about 60° away from the ra-
dially oriented primary dendritic axis, the effective
cross section for radial electric current must be re-
duced by the factor, cos (60°) = 1/2. When the re-
duced estimate of 25 p2 for these secondary den.
dritic trunks is added to the 28-p2 estimate for the
primary dendrite, we obtain an estimated effective
combined dendritic cross section for radially ori-
ented intracellular electric current of 53 p2 for this
mitral cell; values ranging from 25 p to 100 j.s
seem reasonable, and a value of 50 p2 can be re-
garded as a reasonable order of magnitude esti-
mate for the radial intracellular dendritic cross
section per mitral cell. Compared with the values of
500-1,000 .s2/mitra1 cell estimated above (second
sentence of this paragraph), we obtain ratios for
the intracellular to total radial cross section of
1/10-1/20 near the mitral body layer; for the
larger radius at the middle of the external plexi-
form layer, the corresponding ratios are about
1/15-1/30.

Most of the cross-sectional area not occupied by
mitral dendrites is occupied by granule dendrites;
this is not truly extracellular, but it is available to
conduct transient extracellular current generated
by the mitral cells. This transient corresponds to a
frequency of about 50 cycles/see; for a granule cell
membrane time constant of around 10 msec, this
would imply a ros value of about 30, which means
that the capacitative membrane current would be
about 30 times that across the membrane resis-
tance. Thus, it can be calculated that the granule
dendritic membrane adds relatively little to the
impedance for this transient current (generated by
mitral cells) that flows radially inside the granule
cells; this impedance is primarily due to the resis-
tivity of the granule cell intracellular medium. Be-
cause the granule cell processes are radially ori-
ented, it is not necessary to increase the radial
(longitudinal) impedance estimate by the factor of
3 derived by Ranck (42) for randomly oriented
cylinders. It is not unreasonable to suppose that the
intracellular to extracellular radial conductance
ratio (for mitral cells) is approximately equal to the
ratio of intracellular to total cross-sectional area
estimated at the end of the preceding paragraph.
From this it follows that a ratio 1/20 provides a
reasonable order of magnitude estimate for the
extracellular to intracellular resistance ratio for
transient radial current generated by the mitral
cells.

The mitral cell axon has a diameter of the order
of I p (2), and hence a cross-sectional area of about
l-2 ¿s2. Compared with the combined dendritic
effective radial cross section of around 50 ¿s2/mitral
cell, the axonal estimate is at least 25 times smaller.
Near the mitral body layer, this implies an extra-
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cellular to intracellular radial resistance ratio of
the order of 1/500.

We knew that granule cells are much more
numerous than mitral cells (e.g., Fig. 3), and as-
sumed that granule dendrites would be the most
numerous processes in the external plexiform layer;
thus, we had guessed that the ratio of extracellular
to intracellular radial resistance is probably greater
than unity, for granule cells. Electron microscopy
of serial sections (44 and Reese, personal communi-
cation) shows, indeed, that the granule processes
account for the major part of the neuropil in the
deep third of the external plexiform layer. When
seen in cross section, near the mitral body layer,
the tightly packed granule dendrites have indi-
vidual cross-sectional areas of from 0. 1 to I M2,

and the width of the extracellular space between
neighbors is around 0.02 M (approximate figures
based on electron micrographs). If one simplifies
this to a square lattice, one obtains a ratio for
intracellular to extracellular cross-sectional area of
12/(2lw) = 1/(2w), where lis the length of a side and
w is the width of extracellular space. The values
above thus give a range from 8/1 to 25/I for this
ratio of areas. These granule cell processes and
spaces occupy a portion of the total cross section for
radial current flow that we estimate to be of the
order of 75% (based on examination of a few
electron micrographs from the deep third of the
external plexiform layer). How much of the re-
maining 25% is available to the radial extracellular
current generated by the granule cell population is
not known; presumably somewhere between 5 and
25% of total cross section is available. Thus the
ratio of intracellular granule cell cross section to
the effectively extracellular cross section probably
lies between a low estimate of

(75 - 8)/(8 + 25) = 63/33 2/1

and a high estimate of
(15 - 3)/(3 + 5) = 72/8 = 9/1

In the absence of specific knowledge of the resistivi-
ties of these media, we estimate the ratio of extra-
cellular to intracellular radial resistance for the
granule cell population as lying in this same range;
this ratio can be expressed as having the order of
magnitude 4/1.

Theoretical

The computational reconstructions are based on
a theoretical model which actually consists of
several component mathematical models. In
previous publications (36-39) we have described
and reviewed the development of these component
models and have also provided several examples of
computed results approximating experimental
observations on cat motoneurons. The present
computations differ from and go beyond the pre-
vious examples in several respects. 1) Here the
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specific values of the theoretical parameters of the
general model are chosen to approximate mitral
cells or granule cells instead of motoneurons. 2)
The compartmental model that was previously
used to represent the electrotonic extent of the
dendritic trees (38, 39) is here generalized to
provide for geometrical and functional differences
between the axonal, somatic, and dendritic regions
of a neuron. 3) In addition to the previously used
mathematical model of passive nerve membrane
and of synaptic excitation and inhibition, the
present computations also incorporate a mathe-
matical model which generates action potentials.
This new component model is somewhat related to
the well-known model of Hodgkin and Huxley (19)
but it is computationally less expensive. The use of
an active membrane model makes it possible to
simulate impulse propagation in the axonal com-
partments and to simulate invasion of an impulse
from axon to soma; it also makes it possible to
compare theoretical predictions for the case of
active as well as passive dendritic membrane. 4)
The computation of radially symmetrical extra-
cellular field potentials for the olfactory bulb is
quite similar, in several respects, to the computa-
tion of radially symmetrical extracellular potentials
for a single multipolar motoneuron model (37);
however, there is a very important new feature,
discussed later (with Figs. 5, 6, and 7), which
results from what is there described as the punc-
tured spherical symmetry of the bulb.

Compartmental representation of neuron

The diagrams in Fig. 2 provide a schematic
summary of three levels of abstraction of a mitral
cell. The axon, soma, both primary and secondary
dendrites, and the terminal dendritic tuft are
shown schematically at far left. The next diagram
shows all of the dendrites lumped into an equiva-
lent cylinder with a transition at one end through
soma to axon. The third diagram shows the equiva-
lent dendrite represented as a chain of six equal
compartments, linked to a smaller somatic com-
partment, which is itself linked to three still smaller
axonal compartments. In most of the actual com-
putations, the number of dendritie compartments
was either 5 or 10. Each compartment represents
a region of membrane surface for which the mem-
brane capacity and the several parallel membrane
conductances are treated as lumped electric
parameters, as shown at right in Fig. 2; see (5, 9,
10, 19, 20, 36-39).

Mathematical representation of neuron

The chain of compartments in Fig. 2 is simply a
diagram for what is actually a system of ordinary
differential equations of first order (38, p. 84-87).
For passive membrane, the equations are linear,
with constant coefficients. For changing synaptic
conductances that are voltage independent, the
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Active membrane models

The above equations have been found to
generate a wide selection of well-shaped action
potentials, and to display such basic properties as
a sharp threshold, the expected relation of spike
latency to stimulus strength, a refractory period,
and at least a qualitative agreement with voltage
clamp behavior. This model is conceptually re-
lated to the Hodgkin and Huxley (19) model in the
general sense that an action potential results from
a sequence of two transient changes in membrane
conductance: a brief excitatory conductance in-
crease, overlapped by a slightly later and longer
lasting increase of an inhibitory or quenching
conductance. Although the equations which gener-
ate these conductance transients differ significantly
from the Hodgkin-Huxley equations, they do
define a system which shares the general mathe-
inatical properties discussed by FitzHugh (11).
The present model is defined in the domain of
equivalent electric circuits of nerve membrane;
it makes no explicit reference to ionic permeabili-
ties and ionic concentration ratios. The following
considerations indicate why this new model was
used in preference to the well-established model of
Hodgkin and Huxley: the numerical values of the
Hodgkin-Huxley parameters have not been deter-
mined for mammalian nerve membrane, and
would have to be guessed; the present computa-
tions are not concerned with manipulation of
ionic media; the present computations explore
complications of neuronal geometry and spatio-
temporal pattern which themselves impose a
significant computational load; and use of this
simpler model makes it possible to avoid the heavy
computational load that use of the Hodgkin-
Huxley model would have imposed. A more de-
tailed presentation and exploration of this new
model will be presented elsewhere.

Computations

Computations were carried Out on a Honeywell
800 computer (during 1963 and 1964) at the
National Institutes of Health. The computer
program was organized into two major divisions:
A) The intracellular sequence of neuronal events,
and B) the extracellular field potentials.

A. The sequence of neuronal events was gener-
ated by means of equations 1-3, above, for a com-
partmental neuron model of the type indicated
by Fig. 2. Any particular computation requires
that one assign numbers that specify the follow.
ing: the number of compartments of each kind
(usually three axonal. one somatic, and five or ten
dendritic); the kinetic parameters (k1 through k7)
for active membrane; the ratios representing the
geometric hurdles (i.e., changes in safety factor)
for propagation from axon-to-soma-to-dendrites;
the amount of dendritic facilitation, which could
be either in the form of synaptic excitation, C,

equations are still linear, but with some time-
varying coefficients. For active membrane, the
system is augmented by nonlinear differential
equations. The basic first order differential equa-
tion for the th compartment can be expressed in
the following two alternative forms,

(dv/dt) = ijjv + zv + f (JA)

or

(dv1/dT) - V + (1 - v)6 - (v -

+x+TMU(vJvù (lB)ii
where these symbols have been precisely defined
previously (38), and will therefore be identified
more descriptively here. The time derivatives, at
left, are proportional to the rate of change of
membrane potential in the jth compartment. The
first equation distinguishes explicitly between the
coefficients, sjj and /s; in the coefficient matrix
for this system of equations, the diagonal elements,
sjj, all have negative values which yield the total
rate of loss from the jt5 compartment; the off-
diagonal elements, ,.z,, all have positive values
which yield the rate of gain in the iM compartment
due to flow of current from the j compartment;
also, f, represents the forcing function for the th

compartment. The second equation shows the ex-
plicit dependence of this time derivative (where T
=t/i-) upon the variables C, J, and x in thc ii"
compartment, where

C = G,/Gr

expresses membrane excitation as the ratio of
excitatory membrane conductance to the resting
conductance (see Fig. 2), and

G/Gr

expresses membrane inhibition as the ratio of
inhibitory membrane conductance to the resting
conductance (see Fig. 2); also x represents any
current that is applied directly to this compartment
by means of electrodes, while the summation term
represents net current fiw to the compartment
from its immediate neighbors. For passive mem-
brane, C and ¿J are both zero; for synaptic input to
any compartment, the values of C and ¿J are pre-
scribed to express this input. For active membrane,
the values of C and ¿J have been determined by the
following pair of nonlinear differential equations

dC/dT = kiv2 + ksvt - k3C - k4ßJ (Z)

d,ÇJ/dT = k5C + k6C - k7J (3)

where C, ¿J, y, and T are all dimensionless variables,
and the coefficients, k1 through k7, are all dimen-
sionless constants. One of many possible sets of
values for these seven coefficients found suitable
for generating action potentials is the following:
ki=500; ks=20,000; ks=25; 1<4=0.2; ks=5;
lcs=0.05; and k7= 10.
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in the dendritic compartments, or as residual de-
polarization of the dendritic membrane; and the
electrotonic length of the dendritic chain (usually
between one-half and twice the characteristic
length, X, of the equivalent cylinder). The geo-
metric relations between axon, soma, and den-
drites determine the relative values chosen for the
various coefficients, .sjj, of equation 1. These co-
efficients can be defined

= g/c
where gii represents the core conductance between
adjacent compartments, i and j, and e1 represents
the capacitance of the i' compartment. It is

helpful to note that gifv1vi) defines (by Ohm's
law) the net current to compartment i from its
neighbor, j, and that dividing this quantity by
e1 gives the contribution to the rate of change,
(dv1/dt), due to this net current flow. For most of
the mitral cell calculations the value of be-
tween dendritic compartments was four times that
between axonal compartments. The important
hurdle ratio, zd/ g/g, where subscript, sd,
means to soma from the nearest dendritic com-
partment, and subscript, sa, means to soma from
the nearest axonal compartment, can be under-
stood as the ratio of combined dendritic core
conductance to axonal core conductance. A value
of 40/I was used in many of the calculations;
values from 25/1 to 50/I are implied by the
radial resistance estimates of the preceding section.

An impulse once initiated in the most distal of
the three axonal compartments would propagate
successively to the second and third axonal com-
partments and then fail to invade the soma com-
partment, when a hurdle ratio (40/1) was used
without any dendritic facilitation. Most of the
computations overcame such antidromic block
by adding some dendritic facilitation; a few com-
putations were also done with a smaller hurdle
ratio. Further details of this will be presented else-
where.

B. The calculation of the extracellular field
potentials from the sequence of intracellular and
membrane potential transients generated in ail
compartments depends on the assumptions of
bulbar symmetry and synchrony stated and dis-
cussed explicitly in PART II of the RESULTS. In the
idealized spherical bulbar model we regard both
the intracellular potential, V, and the extra-
cellular potential, Ve, as functions of time and
radial position, and we have the basic relation

av. av= - (re/ri) -
ap öp

where p represents radial position and re/ri gives
the ratio of extracellular to intracellular resistance
per unit length io the radial direction. It should
be noted that this ratio is not constant because

decreases with the increase in conical cross
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section for increasing radial distance from the
center, while r, remains constant for an equivalent
cylindrical dendrite. However, the extracellular
field calculation was done in four stages, and dur-
ing the first stage, this resistance ratio was treated as a
constant, usually with a value around 0.05 for
mitral dendrites, a value around 0.002 for mitral
axons, and a value around 4 for granule cells;
(cf. preceding section of METHODS for a justification
of these values). The four stages of the extra-
ceilular field calculations will now be summarized
for the case of the mitral cells.

First stage. For each time value, we com-
puted

- 0.05iV1

for the potential differences between dendritìc
compartments, from the terminal dendritic com-
partment up to and including the soma compart-
ment, and we computed

= - 0.002V

from the soma compartment to successive axonal
compartments. Using these the value of Ve
at each compartmental depth, relative to Ve = O at
the dendritic terminals, was easily obtained.

Shunt current correction. When the secondary
extracellular current (extra path shown in Figs.
5 and 6) was assumed to be a significant fraction of
the total extracellular current, all of the Ve were
reduced by this fraction. This correction was
omitted in most cases.

Cone correction. When it was decided to
include the correction for the dependence of r,
upon radial position, this correction was intro-
duced at this stage of the calculation.

Potential divider ffect. For each time value
and each compartment, Ve was reexpressed relative
to the distant reference electrode. This correction
is discussed in PART H of RESULTS lfl association with
Fig. 5, and illustrated in PART Hi of RESULTS in
association with Figs. 6 and 7. With the 1/4
potential divider ratio assumed for mitral cell
extracellular current, this meant that for each
time value an amount equal to one-fifth of the
potential difference (Ve at the dendritic terminals,
minus Ve at the soma) was added to the values of
Ve obtained for each compartment by the previous
stages (B-1 through B-3).

Assumption of radial extracellular current

Even with the idealized symmetry and syn-
chrony presented in PART H of RESULTS, it would
not be strictly correct to assert that all of the extra-
cellular current in the spherical bulb is radially
oriented and that the isopotential surfaces are
concentric spherical surfaces. This is because the
extracellular current generated by each mitral
cell must flow away from its principal axis out
into the conical cross section before it can flow
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along radii of the spherical bulb. However, a good
case can be made for neglect of this complication
as unimportant to our main purpose; similar
neglect is customary for considerations of the
intracellular current flow in axons. If there were
as few as 10 active mitral cells, symmetrically
spaced in the bulb, the true isopotential surfaces
would be expected to deviate significantly from
spherical surfaces in the manner illustrated else-
where (Fig. 9 of ref. 37); however, with many
thousands of active mitral cells, it has been esti-
mated that the almost spherical isopotential
surfaces would be distorted only very slightly by
many very small "dimples," one such dimple
being centered upon each mitral cell axis; also,
this dimpling would be smoothed by the effects
of the secondaiy dendrites. Thus one can regard
the departure of the bulb from simple spherical
shells and radial extracellular current flow as
unimportant to the present study, where the
experimental data themselves suggest the radial
dependence of the field potentials. All of the
computations have been based upon this simpli-
fying assumption.1

RESULTS

I. Electrophysiological recordings
lo be interpreted

A shock delivered to the lateral olfactory
tract sets up a synchronous volley of impulses
in the mitral cell axons. The impulses travel
antidromically in the axons into the olfactory
bulb, where they invade the bodies of the
mitral cells (see Fig. 1). This activity generates
extracellular current, and the microelectrode
records the potential changes, relative to the
reference electrode, caused by the summed
current flow generated by the whole popula-
tion of active mitral cells. Other cells within
the bulb are also activated, of course, but the
mitral cells are of first interest because they
are the main cells in the bulb known to send
their axons into the lateral olfactory tract,
where electrical stimulation is applied. In the
following reconstruction, therefore, current
flow around other active elements will be
discussed only after the mitral cells have been
accounted for.

A typical sequence of recordings from the
surface to the depth of an olfactory bulb is
shown on the right in Fig. 3. On the left is

In his analysis of the potential field in squid ret-
ina, Hagins (16) recognized and exploited the notion
that the potential field beaomes effectively one-dimen-
sional when a population of suitably oriented cells is
activated synchronously by a suitable stimulus.

o-

5

lo -
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FIG. 3. Tracing of histological section of olfactory
bulb, at left. Recorded extracellular potential re-
sponses to single volleys in the lateral olfactory tract
are shown at right; each is connected to a dot showing
position along electrode tract from which recording
was obtained. Time scale for responses in msec; small
dots show hase line at 2-msec intervals. Depth scale
at left in 1OO-i divisions. Histological layers: olfactory
nerve, glomeruli, external plexiform, mitral cell body,
granule cell, after Phillips et al. (33). Vertical bar at
lower righs is 1 mv.

juxtaposed a tracing of a histological section
containing the microelectrode path over
which these records were obtained. The
records are shown connected to the depths at
which they were recorded, due allowance
being made for distortions during the histo-
logical procedures (33). Each record begins
with a short base line, followed by a gap indi-
cating the artifact associated with the shock
delivered to the lateral olfactory tract, and
then a sequence of positive or negative poten-
tial deflections. Both the temporal and the
spatial sequences are highly reproducible,
and were used routinely, at the time of re-
cording, to locate the depth of the recording
pipette tip (32, 33, 46). Recordings similar to
those in Fig. 3 have also been reported by
von Baumgarten et al. (52) and by Ochi
(30).

We now wish to focus attention on four re-
cording depths which are most important for
reconstructing with a theoretical model the
sequence shown in Fig. 3. The critical depths
are the layer of mitral cell bodies (MBL)
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iic. 4. Enlarged tracings, with faster sweep speed,
of the most important potential transients of Fig. 3.
Four depths are: GL=glomerular layer; EPL=cx-
ternal plexiform layer; MBL=mitral body layer;
GRL=granule layer. Time scale is in msec; vertical
lines divide these transient responses into time periods
I, II, and III, as shown at top. Polarity, microelec-
trode potential relative to reference electrode poten-
tial, is indicated by + and - symbols. Vertical bar
at lower right is i mv.

where the mitral dendrites arise; the glomeru-
lar layer (GL) where the primary dendrites
terminate; an intermediate depth in the
external plexiform layer (EPL) along the
dendritic shafts; and also a deeper location
in the granule layer (GRL). The records
taken at these depths (in Fig. 3) are shown on
a more expanded time base in Fig. 4, labeled
accordingly. With this time resolution it can
be seen that the initial part of the response at
the MBL consists of a negative deflection
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followed by a positive deflection, while the
response at GL is similar but of opposite
polarity; the response at an intermediate
depth (EPL) is a triphasic (+ - +) sequence.
From these features we designate three time
periods which are crucial for the analysis of
the mitral cell activity responsible for these
potential transients. During period I there is
in general a positive peak at GL and a nega-
tive peak at MBL. During period II there is
a reversal to a negative peak at GL and a posi-
tive peak at MBL. These first two periods
each last about i msec, and cover most of
the duration of mitral cell activity. Period III
then follows, from about 3.5-8 msec and
beyond; during this period we infer (see
PART iv of REsuLTS) a dominance of granule
cell potentials.

We wish to draw attention to the fact that,
to a first approximation, the records at the
origin and termination of the mitral dendrites
(MBL and GL, respectively) are of similar
time course but of opposite sign. In the theo-
retical treatment below a precise propor-
tionality (with opposite sign) is predicted for
that part of the response due to activity in
the mitral cell bodies and dendrites. Devia-
tions from a precise proportionality will be
attributed to activity in other bulbar ele-
ments and in granule cells. This theoretical
treatment thus avoids the common neuro-
physiological practice of treating the negative
spike in Fig. 4 as an entity, to be followed
through the successive layers and then
assigned a conduction velocity. We will show
instead that the GL negativity of period II
can be regarded as a sign of soma membrane
repolarization rather than a sign of arrival of
depolarization at the dendritic periphery.

II. Importance of bulbar
symmetry ana' synchrony

An attempt at understanding field poten-
tials in the central nervous system should take
full advantage of whatever geometric sym-
metry is provided by the anatomical Struc-
tures and whatever synchrony of activity in
the neuronal population can be obtained
experimentally. Both the degree of symmetry
in the rabbit olfactory bulb and the degree of
synchrony in the above experiments provide
one of the most favorable situations available
for study in the mammalian central nervous
system. Given these favorable conditions, one
can entertain the notion of an idealized system
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having perfect symmetry and synchrony.
Some of the general theoretical consequences
of such an idealized system can then be
explored and compared with general features
of the experimental observations.

First, we imagine an idealized bulb with
perfect spherical symmetry, in which the
antidromic activation of the mitral cells is
assumed to be perfectly synchronous. In this
ideali.zed bulb all of the mitral cells are equal
in size; all have their cell bodies at the same
distance from the center of the spherical
bulb; and all have their primary dendritic
axes oriented radially outward. The mitral
cell bodies are equally spaced throughout
the thin spherical shell (mitral body layer)
which contains them. A two-dimensional
schematic diagram of such radial symmetry is
shown in Fig. 5A. The puncture of this
spherical symmetry (corresponding to the
connection of the olfactory bulb to the telen-
cephalon) is indicated by Fig. 5B. In both
diagrams a cone has been sketched in as a
reminder of the three-dimensional aspect of
our problem. Also, this cone suggests the
element of bulbar volume associated with
each active mitral cell. For N synchronously
active mitral cells, we think of the entire
spherical volume as divided into N equal
volume elements. The axis of each volume
element coincides with the radially oriented
primary dendrite of one of the N mitral cells.
These volume elements will sometimes be
referred to as cones, and sometimes more

rio. 5. A: schematic representation of idealized olfactory bulb, with perfect spherical symmetry and perfect
synchronization of mitral activity. Radial current around one mitral cell is shown within its associated conic
volume. B: puncture of ideal symmetry by connection of bulb to telencephalon; the small component of mitral-
generated current which leaks out of the bulb and through the puncture is indicated by dashed line, along with
position of reference electrode.
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correctly as pyramids. Because the number.
N, of active mitral cells is large, these cones
should be thought of as mere slivers; e.g.,
N=25,000 implies a solid angle of f2 (4ir/N)

5X1O4/cone; this implies an angle of less
than 1° between the axis and the surface ele-
ments of the cone or pyramid.

FLOW OF CURRENT CONFINED WITHIN CONES.
For the idealized bulb (with perfect spherical
symmetry) we assume that each active mitral
cell produces exactly the same flow of electric
current into its associated volume element.
Then an appreciation of the spherical sym-
metry and synchrony can lead one to an
intuitive grasp of the consequence that the
current produced by each of these cells must
remain confined within its own volume ele-
ment. At the surface of contact between neigh-
boring (pyramidal) volume elements, the
gradient of potential and hence the current
flow are completely radial. The current is
confined within each cone just as effectively
as if we could dissect out a single volume
element and place it in mineral oil; that is to
say, the neurophysiological lore concerning
the recording from axons ìn oil is more rele-
vant to the present case than is the lore
concerning the recording from axons in a
volume conductor. This simplification, it
should be emphasized, depends on both the
symmetry and synchrony of this idealized
case. For the purpose of the present computa-
tions, we have made the further simplifying

REFERENCE ELECTRODE
LOCATED ON

POTENTIAL DIVIDER

A B
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assumption that the extracellular current in
the conical slivers can be regarded as uni-
formly radial (see METHODS).

PUNCTURE OF SPHERICAL SYMMETRY: EXTERNAL
CURRENT PATH. We have two good reasons for
considering the puncture of spherical sym-
metry. One is the simple anatomical fact
that the olfactory bulb does not have a
closed histological structure; the spheroidal
cortical layers are punctured by the olfactory
tract and by the retrobulbar area. However,
this anatomical fact might conceivably have
been of negligible importance to the over-all
problem.

Our other reason for considering this punc-
ture is that we have electrophysiological
evidence for its significance. If the bulb were
completely closed, with perfect spherical
symmetry and synchrony as outlined above,
mitral cell activity should cause no net flow
of current outside the glomerular layer; in
other words, the electric potential in the outer
bulb (from the glomerular layer to the bulb
surface) would remain constant and be iso-
potential with that at the distant reference
electrode. This would be an example of the
"closed field" characterized by Lorente de
Nó (28, 29, 37). However, experimentally,
we find that the recorded response at the
bulb surface is not negligible, and is almost
the same as at the glomerular layer (see outer
two records of Fig. 3). In fact this surface
record is roughly one-fourth as large (with
opposite sign) as that obtained at the mitral
body layer during periods I and II (see Fig. 4,
and compare GL with MBL record). This is
clearly not a closed field; the puncture and/or
departures from perfect symmetry and syn-
chrony have significantly changed the record-
ing situation.

Stated briefly, the fact of puncture provides
an extra path for electric current to flow
between the depth of the bulb and the bulb
surface; this path is in addition to and lies in
parallel (electrically) with all of the conical
slivers (see Fig. 5B). This extra path has a
finite electrical resistance that can be viewed
as part of a "potential divider." The electric
potential difference between the bulb surface
and the bulb depth is distributed along the
resistance of this extra path, and the distant
reference electrode is effectively located some-
where along this resistance; thus, the refer-
ence electrode divides the over-all potential
difference into two parts.

POTENTIAL DIVIDER. We are concerned with
current generated by each mitral cell body
and its dendrites; the primary flow of current
occurs between the GL and MBL levels of
each cone; a relatively small amount of
current flows through the extra path (Fig. 5B)
that is part of the potential divider. The
outer arm of this potential divider consists of
a series combination of the following com-
ponent resistances: the radial resistance (per
cone) from outer glomerular layer through
the olfactory nerve layer and the pia-arach-
noid of the bulb; then the resistance (per
cone) from the bulb surface through the
cranial tissues which lie between the pia and
the nearest point that is isopotential with the
distant reference electrode. The inner arm of
this potential divider consists of a different
series combination of resistances: the radial
resistance (per cone) from the mitral body
layer inward to where the axons turn to join
the lateral tract; then N times the resistance
outward through the bulb puncture; then N
times the resistance to the distant reference
electrode. We have found it useful to think
of the outer arm as having one-fourth the
resistance of the inner arm.

EXAMPLE OF POTENTIAL DIVIDER EFFECT.

Suppose that extracellular currents flowing
between GL and MBL have caused the elec-
tric potential at MBL to be 2.5 mv negative
relative to the potential at GL. This puts a
potential difference of 2.5 mv across the
potential divider. For a potential divider ratio
of 1:4, there would be a potential drop of
0.5 mv over the outer arm and a potential
drop of 2.0 mv over the inner arm. Relative
to the distant reference point, the potential
at GL must be 0.5 mv positive and the
potential at MBL must be 2.0 mv negative.
Once this example is understood it seems
reasonable to interpret the opposite sign and
the relative amplitudes of the experimental
records at MBL and GL (during period I
and II of Fig. 4) largely as consequences of
this potential divider effect. This effect has
been incorporated in the computations (stage
B-4 of THEORETICAL METHODS).

COMMENT ON EXTRACELLULAR POSITIVITY.

Irì answer to a possible objection that the
0.5 mv positivity at the glomerular layer can
be understood simply as the familiar posi-
tivity recorded near an axonal source of
current in a volume conductor, we would
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draw attention again to the significance of the
spherical symmetry of the population in
Fig. SA; for this closed field (28, 29, 37) every
mitral dendrite would be a source of current
and yet the extracellular potential (relative to
a distant electrode) would be zero at the
GL depth, and it would be negative, not posi-
tive, among the dendrites in the EPL. For
punctured symmetry, the distant electrode is
no longer isopotential with the bulb surface;
it lies on the extra path for current flow from
the bulb surface to the depths of the bulb.
The fact that there is no path for current flow
directly from the distant electrode to points
along the conical volume elements provides
the essential distinction between this case and
the familiar case of an axon in a volume con-
ductor.

COMMENT ON SMALLER REGIONS OF SYNCHRO-
NOUS ACTIVITY. If one were to increase the
size of the puncture, or to decrease the por-
tion of the spherical layer in which syn-
chronous activation takes place, the direction
of change in the potential divider ratio is
easily predicted: the resistance of the inner
arm of the potential divider would be de-
creased; hence the ratio of the outer to inner
arm resistance would be increased. To at
leapt a first approximation, this approach
could be applied to cortical regions sub-
stantially smaller than hemispheric shells; the
principal requirement would be reasonable
synchrony and reasonably uniform density of
many active units over the region in question.
Then, except for the units near the boundary
of this region, it is still approximately true that
there is a conical volume element associated
with each active unit and that there is no path
for current flow directly from the distant elec-
trode to points along the conical volume ele-
ments. Thus, we expect that this approach is
applicable to cases of partial activation of the
olfactory bulb, and that it will also be useful
in the study of other cortical populations of
neurons in the central nervous system.

III. Computations for synchronou.r antidromic
activation of mitral cell population

NEUROPHYSIOLOGICAL SEQUENCE OF MEMBRANE

POTENTIAL TRANSIENTS. The computations are
designed to represent the following sequence
of neurophysiological activity in each of the
synchronously active mitral cells: an impulse
propagates antidromically along each mitral
cell axon to the axon-hillock region; although
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the mitral soma membrane depolarization is
slowed by the dendritic load, it finally does
reach threshold and fire an action potential;
this is followed by a spread of membrane de-
polarization out into the dendrites either
rapidly and without decrement in the case of
active dendritic membrane, or more slowly
and with some electrotonic decrement in the
case of passive dendritic membrane.

This sequence of events is generated by a
mathematical model that is based on well-
known electrical properties of nerve mein-
brane and on available anatomical and phys-
iological knowledge of the relation between
axon, soma, and dendrites. Although more
details are given below (and in METHODS),
a point to be emphasized here is that the
mathematical model begins with a represen-
tation of basic neurophysiological properties
and generates a sequence of events that would
reasonably be expected to occur in a repre-
sentative mitral cell.

DISTINCTION BETWEEN MEMBRANE POTENTIAL
AND EXTRACELLULAR POTENTIAL. Because
some neurophysiological literature fails to
distinguish clearly between membrane poten-
tial transients and extracellular potential
transients, it seems wise to emphasize the
distinction here. A membrane potential
transient that takes place uniformly over the
entire membrane surface of a neuron would
generate no extracellular current flow and
would therefore generate no extracellular
potential transient. A nonuniformity of
membrane potential, as between soma and
dendrites, generates a loop of current flow
that is partly intracellular and partly extra-
cellular; thus, if the soma membrane is more
depolarized than the dendritic membrane,
intracellular current flows from soma to
dendrites, whereas extra cellular current flows
from dendrites to soma. The recorded extra-
cellular potential represents the difference,
AVe, measured between two recording elec-
trodes placed in a field of extracellular current
flow. With various special recording arrange-
ments, this V, can bear various relations to
the transient nerve membrane potential,
Vm, at the region of interest; Ve can be made
essentially proportional either to Vm itself,
to its first time derivative, or to its first or
second derivative with respect to distance
along the nerve axis; in general, zW is
proportional to none of these. The essential
logic Is this: nonuniform menbranc activity
Material
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FIG. 6. Diagram showing the relation of the record-
ing electrodes to the extracellular current generated
by a mitral cell at moment of active inward soma
membrane current (heavy black arrow); dendritic
membrane current is outward. The primaly extra-
cellular current flows radially from dendrites to soma.
The smaller, secondary extracellular current flows
Out through surrounding structures and back through
the bulbar puncture. Distant electrode acts as poten-
tial divider along external resistance path; microelec-
Erode acts as potential divider along internal radial
resistance path.

of a neuron generates extracellular current;
this extracellular current, together with that
generated by other neurons, sets up a field of
extracellular current flow; the details of this
field depend on the geometric arrangement
of the cells, their degree of synchrony or
asynchrony, and the shape and possible
inhomogeneity of the volume conductor;
finally, the recorded extracellular potential
transient depends on the location of both
electrodes in this field.

COMPUTATION OP EXTRACELLIJLAR TRANSIENTS.

The computational sequence has been out-
lined in METHODS. A general understanding of
the computed results can be obtained by a
study of Figs. 6 and 7. In Fig. 6 the chain of
compartments represents the soma and
dendrites of a mitral cell; the open circles
represent dendritic compartments, while the
filled circle represents the soma compartment
at the time (period I) of active inward mem-
brane current. The black arrows show the
direction of membrane current at each
compartment: inward at the Soma, outward
from the dendrites. The open arrows Show the
direction of extracellular current flow. The
primary extracellular current flows from
dendrites to soma (radially inward in the
bulb). The secondary extracellular current

Copyrighted Material

flows outward along the external resistance
path and back through the bulbar puncture.
As shown in Fig. 6, the distant reference elec-
trode taps the potential drop along the
secondary pathway, whereas the microelec-
trode taps the potential drop along the pri-
mary (radial) pathway. With the help of this
diagram we can now explain the relation be-
tween the three columns of computed results
shown in Fig. 7.

The transients shown in Fig. 7 provide an
overview of a complete set of computed
results. The transient at lower left is the intra-
cellular action potential at the soma, follow-
ing antidromic propagation through the
axonal compartments. The dendrites are here
assumed to be passive and are represented by
compartment numbers 5 through 9. The
intrace1lulartransients at two dendritic loca-
tionS, 6 and 9, illustrate the delay and attenu-
ation of passive electrotonic spread from the
soma into the dendrites, primarily during
periods I and II.

As outlined in METHODS, the radial gradient
of intracellular potential is used to compute
the radial gradient of extracellular potential.
If the reference electrode were placed near
the dendritic terminals, the computed dis-
tribution of extracellular potential would
result in the transients illustrated in the middle
column of Fig. 7. It may be noted that the
extracellular transient at the soma level is
proportional to the difference between the
intracellular transients at soma, 4, and
dendritic terminals, 9. The soma extracellular
negativity of period I reflects that soma
membrane depolarization exceeded dendritic
terminal membrane depolarization through-
out this time; the soma extracellular posi-
tivity of period II reflects that the actively
repolarizing soma has become less depolarized
than the passive dendritic terminals.

When this distribution of extracellular
potential was expressed relative to the differ-
ent reference potential found at the distant
electrode (see Figs. 5 and 6), the computed
transients became changed to those shown
in the third column of Fig. 7. A potential
divider ratio of 1:4 was used with the result
that the terminal extracellular transient has
an amplitude exactly minus one-fourth that
of the soma extracellular transient in the
third column. If the potential divider effect
were the only consideration, the soma extra-
cellular amplitude would become exactly
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four-fifths that of the middle column. How-
ever, this particular computation provided a
20% reduction of the extracellular ampli-
tudes at all depths, to allow for the possibility
that the ratio of secondary to primary extra-
cellular current might be this large (see Fig.
6); compare also shunt current correction
(B-2 of COMPUTATIONS, METHODS). It also in-
cluded a cone correction (B-3 of METHODS)
providing for the change of extracellular re-
sistance, re, per unit radial distance in the
bulb; this correction amounted to a 10% in-
crease of amplitude at the soma depth.

FOUR SETS OF EXTRACELLULAR TRANSIENTS.
The transients in Fig. 8 were all computed
relative to a distant reference, as just de-
scribed for Fig. 7. Comparison of sets A and B
shows the effect of dendritic electrotonic
length when the dendritic membrane is as-
sumed to be passive; sets C and D display
two results obtained by assuming active
dendritic membrane.

A striking feature of these comparisons is
that during period I, all four sets show a very
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similar sequence (along the dendrites) from a
positive peak at the dendritic terminals to a
negative peak at the soma, and this sequence
is also similar to that of period I in the ex-
perimental transients in Figs. 3 and 4. Thus
period I can be seen to provide support for
this class of theoretical models, but no basis
for deciding between active and passive
dendrites.

During period II, significant differences
can be seen between these four theoretical
sets of transients. Thus, comparing sets A
and B (Fig. 8) both the negativity at the
dendritic terminals and the positivity at the
soma are smaller and less well peaked in A
than in B. This can be attributed to the
greater electrotonic length of A; passive
electrotonic attenuation and slowing of the
intracellular transient in compartment 14 of
A is much greater than in compartment 9 of
B.

The results for the active dendrites of C and
D (Fig. 8) differ distinctly from those for the
passive dendrites of A and B during period II
in two respects. First, the active dendrites

F10. 7. Computed voltage transients for axon-soma-dendritic compartmental model of mitral cell during anti-
dromic invasion. Left-hand column: intracellular transients in soma, 4; dendritic shafts, 6; and dendritic termi-
nals, 9. Soma is active, dendrites are passive; dendritic electrotonic length equals X/2. Extracellular transients
at these compartments are shown in the middle column computed relative to the dendritic terminals, and in
right-hand column computed relative to distant reference electrode. Time scales divided into periods I and II.
Amplitude of intracellular soma peak about 86% of axonal spike amplitude potential; amplitude of negative
extracellular soma peak, relative to distant electrode, about 1.5 mv.
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are associated with a period II positive peak
at the soma that is approximately as large as
the negative peak of period I; similarly, the
period II negative peak at the terminals is
approximately as large as the positive peak of
period I. In other words, these are almost
symmetrical diphasic transients; this can be
attributed to the fact that a full-sized action
potential propagates to the dendritic ter-
minals. Second, there is a sharper triphasic
transient at the middendritic locations in the
case of active dendrites. In this case the active
dendrites of short electrotonic length tend to
fire in synchrony with the soma; this makes
the extracellular current flows smaller, and a
larger factor (re/ri) for converting from the
intracellular to extracellular potentials is

necessary, especially in D of Fig. 8. Of in-

4
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D. Length =X/2
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FIG. 8. Computed extracellular voltage transients for four different sets of membrane properties in compart-
mental model of mitral cell during antidromic impulse invasion. Potential is expressed relative to the distant
reference electrode. Length of chain of dendritic compartments indicated at top; 5-compartment chain, 5-9,
represents X/2; 10-compartment chain, 5-14, represents X. Compartmental location is indicated by number
beside each t;ansient. Transients for compartment 4 correspond to soma in schematic model at left; other tran-
sients are from dendritic chain. Time marks indicate periods I and IL.

terest in this connection is the finding that
with a little background facilitation the
dendritic terminals can actually fire before
the soma which is slowed by the axon-soma
delay and the loading effect of the dendrites.
In such cases the polarities of the computed
transients in periods I and II are reversed, in
disagreement with experiment.

When the computed transients during
period II are considered in relation to the
experimental transients of Figs. 3 and 4, cer-
tain similarities may be noted. At the level of
the mitral cell bodies the experimental tran-
sient agrees best with the case of the electro-
tonically short passive dendrites (Fig. 8,
series B), whereas at the dendritic terminals
(GL) the agreement is best with the case of
the active dendrites (series C and D). In the
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midplexiform region (EPL) the experimental
transient agrees approximately with the corn-
puted transient for location 6 of the elec-
tronically short passive dendrites (series B),
and also with the transients of locations 11
and 12 of the electrotonically long active
dendrites (series C). The computations thus
suggest that the experimental records were
from a population of mitral cells which had
electrotonically short passive dendrites or
electrotonically long active dendrites, or per-
haps both types were present in the experi-
mental population. We shall pursue this
point below in the DISCUSSION.

All of the computed transients differ from
the experimental transients in two important
respects. During period I the computed tran-
sients at soma and dendritic terminals are
strictly inversely proportional, whereas in
the experimental recordings the transient at
the dendritic terminals leads that at the
mitral cell bodies (see Fig. 4). Also, in the
experimental records the activity in period II
and period III appears to overlap. These
points suggest the possibility of at least two
additional generators of sufficient extra-
cellular current to modify the extracellular
potentials produced by the current from the
mitral cells alone. Later we shall show how
this additional Current 1S most probably
generated.

AMBIGUITY OF CONDUCTION VELOCITY. In this
presentation of the extracellular transients,
we have emphasized time periods I and II;
we have not treated the negative peak as
though it were an entity which propagates
from the soma to the dendritic terminals.
The four sets of computed results in Fig. B
show a progressive delay of the negative peak
that is quite similar to that observed experi-
mentally. An experimental assessment of how
well this progressive delay corresponds to the
soma-dendritic progression of the intracellular
peak would require reliable intracellular
recording from several sites along the den-
drites; such observations are beyond the reach
of present techniques. However, the theo-
retical computations can provide detailed
numerical results, with good resolution for
both time and distance, which are relevant
to this question.

Figure 9 summarizes the apparent veloc-
ities of 4 features of the computed transients,
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FIG. 9. Apparent progression of computed transients
through compartmental model of mitral cell. Heavy
line. peak of intracellular transient. Lght line. onset of
negativity in extracellular transient, expressed rela-
tive so distant electrode. Dashed line: peak of extra-
cellular negativity. Open circles: peaks of extracellular
negativity, expressed relative to dendritic terminals.
Time expressed as t/r.

with a time resolution of approximately 10
¿.ssec, and a distance resolution in terms of
compartmental lumping of approximately 50
z. These 10 dendritic compartments were
passive; the electrotonic decrement of the
intracellular transient was essentially the
same as shown in the first column of Fig. 7.
The heavy line in Fig. 9 plots the peak of the
intracellular transient as a function of com-
partment location and time. For the three
axonal compartments, this line represents
propagation of the active axonal action
potential; the same line with smaller slope
from axon hillock to soma shows the de-
lay of the soma action potential resulting
from unfavorable geometric safety factor;
from soma into dendrites the heavy line in-
dicates the apparent velocity of the intra-
cellular transient peak associated with elec-
trotonic spread into the passive dendrites.
This slope is approximately constant, and
its magnitude is of the order of 1 mm/msec for
a membrane time constant of the order of 5
msec.

We now ask whether any feature of the
extracellular transients can provide a reliable
guide to this apparent intracellular velocity.
It is a familiar neurophysiological practice to
plot, against distance, the time of onset or the
time of peak of an assumed entity such as a
negative wave in a set of experimental extra-
cellular transients. Thus in Fig. 9, the thin
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line represents a plot of the time when the
computed extracellular transient begins its
negative excursion, while the dashed line rep-
resents a plot of the time of peak negativity.
It is apparent that these extracellular features
do not provide a reliable guide to the intra-
cellular apparent velocity.2 Plots have also
been carried out for several cases of active
dendrites as well as several cases of passive
dendrites; all of these have shown significant
discrepancies rather similar to those in Fig. 9.

Both extracellular plots show a large shift
(or slowing of apparent velocity) in the mid-
dendritic region. This can be understood as a
consequence of the potential divider effect
(see METHODS and Fïgs. 5, 6, and 7); the open
circles in Fig. 9 show the absence of this large
shift for a plot of the extracellular negative
peak, when this is referred to the extracellular
potential at the dendritic terminals as in the
middle column of Fig. 7.

It is important to note that the extracellular
plots in Fig. 9 all agree with experiment in
showing no appreciable axon-soma delay. Be-
cause the axonal core resistance per unit
length is estimated to be at least 25 times that
of the combined dendritic intracellular path-
way for radial current flow (see section on
RELATIVE RADIAL RESISTANCE ESTIMATES in
METHODS), the extracellular potential gradi-
entS computed between axonal compartments
are much smaller than those computed be-
tween dendritic compartments. This ex-
plains why the computed extracellular poten-
tials associated with the axonal compartments
differ little from that at the soma compart-

2 A careful consideration of Fig. 9 suggests that a
more reliable estimate of intracellular apparent veloc-
ity can be obtained from the MBL extracellular
transient alone. One way to see this is that the periph-
eral negative peak really corresponds to the soma
positive peak (i.e., the period II peak) and that the
intracellular peripheral peak occurs at a time be-
tween I-II transition and II peak. For an almost in-
stantaneous invasion, the period Il peak corresponds
to inflection of intracellular fall, whereas with electro-
tonic delay, period It peak may be very close to intra-
cellular peripheral peak. Therefore, the time from
soma intracellular peak to peripheral intracellular
peak can be estimated to lie in the range of values
greater than the time from period I peak to 1-II
transition and less than the time from period I peak
to period II peak. An approximate rule of thumb for
choosing a suitable value in this range is to take the
time from period I peak to the time when the increas-
ing period II peak reaches half its maximum ampli-
tude.
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ment, and hence, why the computed extra-
cellular potentials do not reveal the signifi-
cant axon-soma delay that occurs infra-
cellularly. This agreement with experiment
thus provides additional support for the order
of magnitude estimate made for these relative
radial resistances; furthermore, this provides
important indirect support for a major con-
clusion3 reached in a later section of RESULTS,
on the basis of very similar quantitative con-
siderations.

MITRAL EXTRACELLULAR POTENTIAL GRA-

DIENTS. The theoretical results provide extra-
cellular potential as a function of both depth
and time. Figures 7 and 8 have displayed
potential as a function of time at several
depths; however, our understanding of these
results has depended also upon thinking of
the potential as a function of depth at several
points in time. To make this point of view
more explicit, Fig. 10 provides this type of
plotting for the same computed results that
were plotted as transients in Fig. 8. The points
in time on the left refer to periods I and II of
the previous figures.

The changing slope of these plots corre-
sponds to the changing gradient of extra-
cellular potential in the bulb; the direction of
extracellular current flow must be every-
where downhill in these plots. The over-all
result common to all four sets is that the ex-
tracellular potential falls steadily from the
dendritic periphery to the soma for the early
and peak times of period I, and that the re-
verse is seen for the peak and late times of
period II. This is in general agreement with
the experimental plots shown in Fig. II. At
the time of transition from period I to period
II the computed extracellular potential
must (by definition) be zero at both the soma
and the dendritic terminals; minor deviation
from this in Fig. 10 is due merely to the fact
that the printed output of these computations
was given in time steps that were too large to
provide the precise transitional plot. Thus, it
is useful to examine the plots for late I and

An important conclusion (in PART IV of RESULTS),
that the mitral cell population could not generate the
potential distribution observed during period III, is a
consequence of these same quantitative considera-
tions. Because of these relative radial resistance values,
the mitral axons can be ruled out as the source of the
large potential gradient generated in the depths of the
granule layer during period III. This forced our at-
tention upon the granule cell population.
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early II together with that for 1-II transition.
Then it can be seen that in every case we find
a transitional distribution of potential which
has a minimum in the proximal or mid-
dendritic region. Thus, whether the dendrites
are assumed to be active or passive, there is a
time when the extracellular current flows
from the dendritic periphery and from the
(repolarizing) soma toward the middendritic
region.

The experimental plots in Fig. 11 do not
show a prominent minimum of this kind in
the dendritic region. In addition, the poten-
tial gradients for current flow are much less
steep than they are for the computed plots
illustrated in Fig. 10. These differences
would appear to be due in large part to several
simplifications required by the computa-
tional model. Thus in the experimental situa-
tion there is a degree of asynchrony in the
activity of neighboring mitral cells. In a given
cell the secondary dendrites do not reach as
far radially as does the primary dendrite. The
mitral cells and their dendrites differ in size,

PASSIVE DENDRITES

and they may differ in active or passive
membrane properties. It can be intuitively
appreciated that all these features would have
the effect of smearing and/or partial canceling
of the individual extracellular current flows of
the population of mitral cells, and thereby
lessening the extracellular potential gradi-
ents.

Comparison of the plots of Figs. 10 and 11
also shows clearly that other generators of
extracellular Current must be actíve in the
experimental situation. The experimental
values at the mitral cell body and dendritic
terminals are not proportional nor are they
both zero during the I-II transition period.
This point will be dealt with below, in PART
y. In addition, the steep gradients deep to
MBL late in period II are not found with the
computed model of the mitral cell. We shall
next inquire into the possible source of this
current flow.

IV. Granule cell computations and period III

The potential transients from the mitra
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FIG. 10. Dependence on depth of computed extracellular potentials, referred to distant electrode, for com-
partmental model of mitral cell during antidromic impulse invasion. Same four sets of membrane properties as
in Fig. 8. Distributions of extracellular potentials along compartmental chains are shown at instants of time
specified at left in terms of an arbitrary computational index, and in terms of the transients in periods I and II.
In each figure the horizontal base line indicates O potential, the vertical line relates the base line to the potential
recorded at the soma.
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cell model are nearly completed by the time of
period III (cf. Fig. 8). In the experimental
records, on the other hand, a large positivity
develops deep in the granule layer late in
period II and during the initial few milli-
seconds of period III. Roughly simulta-
neously with this a large negativity develops
in the deeper half of the external plexiform
layer. This distribution of potential implies a
substantial flow of extracellular current from
the depths of the granule layer radially out-
ward into the plexiform layer. The population
of cells which generates this current must
possess a substantial intracellular pathway for
the return flow of current from the external
plexiform layer through the mitral body layer
to the granule layer. The mitral cells cannot
provide this intracellular pathway because
their axons (in the granule layer) have a core
resistance per unit length estimated as at least
25 times the effective radial intracellular re-
sistance of their combined dendrites in the
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rio. 11. Extracellular potentials, from two different experiments, during antidromic impulse invasion. Distri-
butions of extracellular potentials with respect to radial depth, as indicated on abscissas above, for different in-
stants of time as specified at left (in terms of periods I and II, and as instant of time in msec). Horizontal base
line indicates O potential; vertical line relates base line to potential recorded at soma.

external ple';iform layer.4 There is however a
large population of granule cells with appro-
priate location and orientation and in súffi-
cient size and number (see Figs. 1, 3, and
ANATOMICAL METHODS) to provide this path-
way. We therefore attempted to determine
whether a reconstruction of granule cell ac-
tivity could account for the experimental
transients in period III.

Although the computation illustrated in
Fig. 12 was designed for this granule cell
problem, it can also be viewed simply as a
chain of twelve equal compartments. We have
computed the consequence of synaptic excita-
tion in compartments 7 through 12, while
compartments I through 6 simulate passive
membrane properties. For simplicity the in-

See the relative radial resistance estimates in
METHODS. Also, an earlier footnote (no. 3) near Fig. 9
draws attention to an important supporting observa-
tion, namely, the fact that extracellular records do ñot
reveal significant axon-soma delay.
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tensity and temporal distribution of synaptic
excitation was assumed to be the same in each
of the six outer compartments; this intensity
had the stepwise temporal pattern shown at
the bottom of Fig. 12; these steps provide a
crude approximation to a temporally dis-
persed synaptic input. The seven transients
displayed in the first column of Fig. 12 sample
transient membrane depolarization that is
produced in the outer six compartments and
spreads electrotonically to the inner six com-
partments. The delay and attenuation of peak
that occur with this electrotonic spread are
similar to that computed elsewhere for syn-
aptic potentials (38) and for end-plate poten-
tials (9).

The middle column of Fig. 12 shows the
extracellular potential transients, relative to
compartment 12, that were computed from
the intracellular transients. The computation
consists merely of taking the compartmental
differences, V1, multiplying by (re/ri), and
then multiplying by cone factor, as outlined
in METHODS. Cone conductance correction for
the granule model is greater than for the

I N TR ACE L L'J LAR
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mitral model because the deep granule den-
drites extend to smaller values of bulbar radius
(i.e., the total range of radius values is greater
for the granule cells than for the mitral cell
bodies and dendrites).

It should be emphasized that this column
shows only extracellular positivity, and that
this results without assuming membrane
hyperpolarization anywhere in this neuron
model. Obviously, if the extracellular poten-
tial were referred to compartment I instead
of to compartment 12, the resulting transients
would all assume negative polarity; this would
correspond to placing an experimental refer-
ence electrode at the center of the olfactory
bulb. However, since experimental recordings
are referred to a distant electrode, the tran-
sients in the third column of Fig. 12 show the
computed results for a potential divider
factor of 1/2 (i.e., the resistance from the dis-
tant reference electrode to the outer dendritic
terminals of the granule cells is assumed to be
half that of the resistance to the deep den-
dritic terminals of the granule cells). It can be
seen that these these transients are basically

E XTR ACELLU L AR

Relative to Dendritic Relative to Distant

Terminals Electrode

0 .2 .4 .6 .8 0

FIG. 12. Computational results for granule cell model. Chain of 12 equal compartments corresponds to an
electrotonic length of 1 .7 X. Filled circles indicate bd of membrane depolarization, stepwise time course of
synaptic excitatory conductance, f, shown below. Time in t/r; each of the four depolarizing () steps had a aime
duration of 0.1 r. Computed potential transients, intracellular and extracellular, as shown, refer to compartment
number at left, and corresponding olfactory bulb layer at right.
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similar to those recorded during period III
(Figs. 3, 4). Here we can view the six outer
compartments as representing the extension
of the granule dendrites into the external
plexiform layer. Compartment I represents
the deep dendritic terminals. The location of
the granule cell body need not be specified for
present purposes; this location can be any-
where in the range from compartment 2 to 6
in the granule layer. The level of the mitral
cell bodies corresponds approximately to
compartment 7 of this granule cell model.

Under these assumptions the computed
granule transients show a negativity in the
external plexiform layer, a positivity in the
granule layer which grows with increasing
depth, and a relatively flat response at the
mitral body layer. There is an approximate
temporal coincidence of the positive and nega-
tive peaks, and a steep potential gradient
across the mitral body layer. In these basic
features there is good agreement between the
computed transients and the experimental
records during period III. Also, it should be
added that there was no difficulty in account-
ing for the magnitude of the extracellular
potential gradient observed during period III
in spite of the fact that the intracellular
potential gradient is expected to be much
smaller during granule cell synaptic activity
than during a mitral cell action potential. The
compensating factor is the relatively large
re/ri ratio (see METHODS), estimated for the
granule cell population. For example, the
intracellular synaptic potential amplitude
could be as little as 3 mv, with an intracellular
difference of only about i mv between com-
partments 4 and 8 (in Fig. 12) because an
re/ri ratio of 9:1 would result in an extra-
cellular potential difference of 9 mv between
these EPL and GRL locations; this is even a
little more than is usually observed. Alterna-
tively, the intracellular synaptic potential
could be as large as 15 mv if the r0/r1ratio were
as small as 2: 1. The present experimental
evidence does not permit us to determine the
most probable values in this range.

V. Superposition to reconstruct field potentials

The four sets of transients in Fig. 13 provide
an illustrative example of how a theoretical
model system composed of three sets of
neurons which generate overlapping extra-
cellular currents would be sufficient to ac-
count for the experimental observations dur-

Copyrighted Material

ing the first 8 msec or so of the bulbar re-
sponse. The column on the right can be seen
to agree well with the major features of the
experimental series of Figs. 3 and 4; this
column actually represents the superposition
of the other three columns. The mitral column
presents transients identical with those of B
in Fig. 8; i.e., the case of passive dendrites
with electrotonic length =À/2. The granule
column displays transients very similar to
those computed according to the granule cell
model presented with Fig. 12. The hypo-
thetical transients shown as dashed lines in
the column labeled "other" are presumed to
result from deeper lying neuronal structures
(see fine print below for explanation).

The three component columns of Fig. 13
are meant to represent neither a unique fit nor
an exhaustive representation of components
in the resultant field potential. For example,
we expect that a further small contribution to
periods I and II would be provided by ac-
tivity in those axon collaterals and centrifugal
fibers which extend into the external plexi-
form layer; this contribution would be small
because of the same quantitative considera-
tions that apply to the mitral axons (see sec-
tion on RELATIVE RADIAL RESISTANCE ESTI-
MATES lfl METHODS; see also previous footnotes
3 and 4).

The need for introducing a third generator of
extracellular current in Fig. 13 can be appreci-
ated most easily by reexamining the transition from
period I to period II. The computed mitral tran-
sients provide a sharply defined instant of I-II
transition at which both the GL transient and the
MBL and GRL transients cross the base line. The
experimental transients of Fig. 3 do not show such
close proportionality between GL, as compared
with MBL and GRL; in fact, the vertical line
marking I-II transition was chosen as a com-
promise between the earlier time for GL and the
later time for MBL and GRL, when the transient
crossed the base line. The same discrepancy is
evident also in Fig. 11, where it can be seen that
the GL potential is negative when the MBL
potential is close to zero.

There are two reasons for concluding that
superposition of granule and mitral computed
transients would not account for this observed
shift in base line crossover. One is that the granule
transient must arise later because of synaptic
delay. The other reason is that the potential
divider effect is similar for the granule and the
mitral computations. Indeed, if the two potential
divider factors were identical, it would be im-
possible to obtain any discrepancy between the
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MITRAL OTHER GRANULE SUPERPOSITION

GL

E PL

MBL

GRL

FtC. 3. Reconstruction of extracellular potential transients in bulb following a volley in lateral olfactory tract.
Computed transients for mitral and granule cells at four levels in bulb are shown, with presumed contribution
by other deeper lying elements (labeled "other"). Superposition at right from simple addition of the three sep-
arate transients at each level. Time markers along O potential base lines are approximately 2 msec per division.
Polarity, positivity upward, negativity downward, as before. The relative amplitudes of the component tran-
sients werc chosen to satisfy this superposition; factors that determine the voltage amplitude of the granule com-
ponent are discussed in the final paragraph of secnoN Iv.

base-line crossovers at GL and GRL, although
shifts could of course occur at intermediate depths,
EPL and MBL. Actually the potential divider
factor is similar, but not quite the same, because
the granule cells generate significant extracellular
current at deeper levels than do the mitral cells.
It was such considerations that led to the sugges-
tion that other elements which end in the depth of
the bulb and do not extend into the EPL might
have their endings activated at the time of L-II
transitìon. Such a generator of extracellular
current would have the important feature that the
voltage transients at GL and GRL would have the
same polarity and should differ only somewhat
in amplitude. This is because the potential divider
situation differs significantly from both the mitral
case and the granule case; this is illustrated dia-
grammatically in Fig. 14. The essential point is
that for the granule cells (or mitral cells), the pri-
mary extracellular current (open arrow of Fig.
14A, and battery of Fig. 14B) flows through the
same (radial) resistance along which the micro-
electrode picks up its potential, while for the
"other" deep-lying elements the primary extra-
cellular current (open arrow of Fig. 14G, and

Copyrighted Material

battery of Fig. 14D) does not flow through that
same radial resistance.

An example of a series of transients due to other
nervous elements in the bulb is shown tentatively
as dashed lines in Fig. 13, where the negative
peak could be due to one set of elements and the
positive peak might be due to another set of ele-
ments. Thus, for example, the negative peak could
be ascribed to deep terminals that are invaded by
an impulse, whereas the positive peak, if needed.
could be ascribed to deep terminals which im-
pulses fail to invade. In the experimental situation
it has been stressed (33) that there are centrifugal
fibers as well as collaterals from mitral axons which
may be activated by a shock to the lateral olfactory
tract. These elements could generate the potentials
ascribed to "other" in Fig. 13.

VI. Postulated mitral-granule
synaptic interactions

The reconstruction of the observed field
potentials during period III depended on the
assumption of granule cell activity and, in
particular, on the assumption of substantial
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(A)

Iv1+

GRANULE OTHER

FIG. 14. Diagrams (A and B) show extracellular cur-
rent for granule cells or mitral cells, in contrast with
diagrams (C and D) for deeper lying other elements.
In both A and C, open arrow indicates the primary
extracellular current, and dashed line indicates
secondary extracellular current (cf. Figs. 5 and 6). B
and D are simplified equivalent electric circuits for A
and C, respectively; in both cases, the resistance at
left represents the radial resistance, and the resistance
at right represents the extra pathway which passes
through bulb puncture; the battery is a nondistrib-
uted representation of the neuronal generator of
extraccilular current (cf. Fig. 6). The direction of
current flow shown in A and B corresponds to that
produced by mitral cells during period I; this is op-
posite to that produced by granule cells during period
III.

synaptic excitation of the granule dendrites in
the external plexiform layer. Mitral cells were
ruled out as the primary generators of current
during period III because their axons could
not provide the necessary amount of current
in the deep granule layer. Synaptic excitation
of deep-lying granule processes was ruled out
as the primary cause, because this would pro-
duce a field potential of polarity opposite to
that observed. Synaptic inhibition of the
deep-lying granule processes would produce
the correct polarity of field potential, but
would be unlikely to account for the observed
extracellular amplitudes and would be unable
to account for a subsequent granule-to-mitral
inhibition; however, we have not ruled out
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the possibility that there could be synaptic
inhibition of the deep-lying granule processes
simultaneous with the postulated synaptic
excitation of the outer granule processes in the
external plexiform layer.

Once this massive synaptic excitation in the
external plexiform layer was recognized as the
best explanation of period III, the question
arose as to what the source of this synaptic
excitation might be. One possibility would be
the recurrent collaterals of the mitral cell
axons. However, we recognized that the
mitral dendrites could provide a more sub-
stantial source of synaptic excitation, pro-
vided that effective synapses exist between the
intimately related dendrites (of granule and
mitral cells) in the external plexiform layer.
This was an intriguing possibility because the
mitral dendrites are themselves depolarized
late in period I and during period II, just
when the synaptic excitatory activity would
have to be initiated. It was already known
from unitary studies that many mitral cells
undergo inhibition during period III (33),
and that the minimal latency for the onset of
inhibition occurs early in period III (i.e., 3-5
msec after the tract shock). From these con-
siderations the conclusion was drawn that the
granule dendritic depolarization in the EPL
is in its turn both well timed and well placed
to initiate synaptic inhibitory input to the
mitral cell bodies and dendrites.

POSTULATED DENDRODENDRITIC SYNAPSES. This
theoretical study thus led us to postulate, prior
to any knowledge of electron-microscopic
evidence, that there might be dendroden-
dritic synaptic connections in the external
plexiform layer that could mediate mitral-to-
granule synaptic excitation followed by
granule-to-mitral synaptic inhibition. How-
ever, since there was no precedent for this, we
did not know whether to expect conventional
synaptic contacts with synaptic vesicles or
some new kind of contact capable of two
different kinds and orientations of synaptic
activity. It was thus an exciting experience to
learn several months later from Reese and
Brightman that their independent electron-
micrographic studies (44, 45) revealed two
kinds of synaptic contacts, of opposite polar-
ity, between mitral secondary dendrites and
gemmules of granule dendrites. The polarity
of these synaptic contacts was judged by the
same criteria used elsewhere in the mamma-
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1jan central nervous system (13, 31); i.e., by
the grouping of synaptic vesicles close to the
presynaptic membrane of the synaptic con-
tacts (40, 44). Then we learned that these two
kinds of contacts in the external plexiform
layer had been observed independently by
others (3, 18; K. Hama, personal communi-
cation). The remarkable finding of these pairs
of oppositely oriented synaptic contacts fitted
the needs of our theoretical postulate so well
that we decided to publish jointly a brief
statement of the anatomical, physiological,
and theoretical considerations supporting the
postulation of such dendrodendritic synaptic
interactions (40). Further studies in rat, rab-
bit, and cat (44) have shown that the mitral-
granule-dendrodendritic synapses predomi-
nate in the inner part of the external plexiform
layer; indeed, it has been shown with serial
reconstructions made from electron micro-
graphs that the inner third of the external
plexiform layer contains mainly granule den-

I-u u-rn

drites, granule gemmules, mitral primary and
secondary dendrites, remarkably little glia,
and a few unidentified endings on granule
dendrites (44 and Reese, personal communi-
cation).

DISCUSSION

Postulated sequence of events

The scheme of these postulated synaptic
interactions is illustrated by the diagrams in
Fig. 15; the three diagrams at top (A) sum-
marize the postulated Sequence of events. The
first diagram (1II) indicates that depolariza-
tion of the mitral dendritic membrane occurs
during the latter part of period I, whether by
passive electrotonus or by active impulse in-
vasion, and this causes excitatory synaptic
activity () during period II by means of the
excitatory synaptic contact (arrow) from the
mitral dendrite to the gemmule of a granule
cell dendrite. The next diagram (IIIII) in-

F10. 15. A: postulated mechanism of dendrodendritic synaptic pathway between mitral (light) and granule
(shaded) dendrite, during successive time periods (I. II, III) following antidromic volley in mitral cell. J-II,
depolarization (D) of mitral dendrites activates excitatory (J) synapses to granule dendrite. II-III, synaptic de-
polarization of granule dendrite activates inhibitory (j) synapse to mitral dendrite. III, persisting inhibiting
hyperpolarization of mitral dendrite. B: diagram illustrating how antidromic (AD) invasion of one mitral cell
leads to inhibition of neighboring mitral cell through extensive synaptic contacts with granule dendritic gem-
mules. Mechanism works similarly during orthodromic (OD) activation via olfactory nerves as indicated above.
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dicates the resulting depolarization (D) of the
granule gemmule which activates the inhibi-
tory synaptic contact (arrow) thus delivering
inhibition (3) to the mitral dendrite. This
begins late in period II, when the mitral
dendrite is itself repolarizing (see Fig. 7); the
rapid process of repolarization would help
shut off the () synapse, and would move the
membrane potential in the same direction as
would the developing (3) activity. In the
third diagram (III) inhibitory activity con-
tinues and produces hyperpolarization (H) of
the mitral cell membrane; persisting (3) ac-
tivity might be due partly to long-lasting
depolarization (D) of the granule dendrite,
and possibly also to prolonged transmitter
release or action.

Dendritic action potentials not required
for synaptic activation

With both kinds of synaptic contacts, we
suggest that the synaptic activation would not
require a presynaptic action potential in
either dendrite; the membrane depolarization
itself could activate the synapse, as has been
demonstrated experimentally for the nerve-
muscle junction (4, 22, 24, 26) and for the
squid synapse (3a, 23). The reason for con-
sidering this possibility is that this pathway
has no apparent need for a propagated action
potential in either the mitral dendrites or the
granule dendrites; passive electrotonic spread
would seem to be sufficient for spread of
depolarization over the relatively short
dendritic distances involved. Except for
gemmules with unusually long and thin
stems, membrane depolarizations produced at
individual gemmules would spread over the
granule dendritic tree and summate with each
other, thus activating (in a graded manner)
all of the inhibitory synapses belonging to this
same granule dendritic tree. Thus, each
depolarized granule dendritic tree would
deliver graded synaptic inhibition not only to
the mitral cells that were previously active,
but also to any others with which they have
synaptic contacts.

In unitary studies (15, 33, 48, 55) record-
ings of spikes attributable to activated granule
cells have been rare; furthermore, the impulse
activity was brief in relation to the long-last-
ing character of the mitral inhibition. It was
therefore suggested (48) that the granule cell
might be capable of long-lasting transmitter
liberation in the absence of the usual type of
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impulse activity. The role of the granule
dendrites in mediating inhibition from one
mitral cell to another implies a certain
amount of spread of depolarization from an
activated granule gemmule into the con-
tiguous granule dendritic tree. Although this
could occur to a considerably extent by pas-
sive spread alone, as pointed out above, it
would of course be helped by any regenera-
tive or "active" properties of the granule
membrane. Since normal impulse activity in
granule cells is so rarely elicited, any active
spread of depolarization in the granule den-
drites would likely be of a decrementing or non-
propagating nature. It is also relevant to note
that some of our computations explored the
effect of a weakly active granule cell mem-
brane; we found that unless we applied
synaptic inhibition to the deep (GRL) por-
tions of the granule cells, the depolarization of
the outer dendritic branches (in EPL) would
spread to the deeper level too effectively, and
result in an unsatisfactory reconstruction of
the extracellular potential distribution ob-
served during period III; in other words, the
simplest reconstruction of period III was ob-
tained with passivè granule cell membrane.

Functional implications of
dendrodendritic synaptic pathway

It is clear from diagram A in Fig. 15 that
each antidromic impulse in a mitral cell will
result in subsequent inhibition back upon it-
self (a negative feedback). In addition, as
diagram B illustrates, depolarization of one
mitral cell, by antidromic (AD) invasion,
leads to inhibition of neighboring mitral cells
through their contacts with mutual granule
dendrites. The dendrodendritic synapses thus
provide a mechanism for the inhibition (self-
inhibition and lateral inhibition) which is a
prominent feature of mitral cell responses to
tract stimulation (15, 33, 46, 48, 54, 55). For
neuronal circuits in general, it may be noted
that such a dendrodendritic pathway must be
regarded as an alternative to the recurrent
axon collateral pathway for recurrent inhibi-
tion.5

During natural orthodromic activation of

It was very recently brought to our attention that
Tönnies and Jung (50) did suggest and appreciate
the importance of the idea of dendritic feedback
(Rückmeldung) as an alternative to a recurrent col-
lateral pathway; at that time (1948) they were con-
cerned with motoneurons of spinal cord.
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the mitral cells it may be anticipated that the
dendrodendritic synaptic mechanisms would
function in essentially the same manner as in
the case of antidromic invasion. Input from
olfactory nerves (indicated diagrammatically
at the top of Fig. i 5B) depolarizes the pri-
mary mitral dendrite; the depolarization
spreads, actively or passively, to trigger an im-
pulse at the axon hillock and soma. The sec-
ondary dendrites are depolarized by elec-
trotonic spread or an impulse, just as in the
case of an antidromic impulse (the difference
being the synaptic depolarization of the pri-
mary dendrite in the orthodromic case) and
the sequence of granule excitation and mitral
inhibition ensues as already described. Mitral
inhibition elicited by either antidromic or
orthodromic volleys should therefore be simi-
lar, and this is what has been found in physio-
logical experiments (47, 48, 54). The power-
ful nature of the inhibition is also in accord
with the physiological findings.

Because of the widespread distribution of
the dendrodendritic contacts, activity in one
mitral cell or group of mitral cells would be
accompanied by inhibition of most of the
surrounding inactive or less active mitral
cells. It may be deduced that during natural
activity a mitral cell would exert on its neigh-
bors the kind of lateral inhibition which is a
common feature of many sensory systems
(17, 43). The inhibitory "surrounds" would
be elongated in the anteroposterior axis of the
bulb, to correspond with the orientation of the
mitral secondary dendrites (49). It is for
future research to test the conjecture that such
lateral inhibition contributes to sensory dis-
crimination in the olfactory system. There can
be little question that both the lateral inhibi-
tion and the self-inhibition of the mitral cells
must contribute to adaptation in the olfactory
system; however, the relative importance of
this adaptive mechanism to the total adaptive
capacity of the system must be evaluated by
future research.

Pathways for granule cell activation

On the basis of unitary studies it has been
suggested (33, 48) that the granule cell is the
general inhibitory interneuron in the bulbar
cortex, mediating inhibition of the mitral
cells as well as of tufted and glomerular cells.
The present results support and extend that
interpretation. With regard to the pathway
for granule cell activation, the present evi-
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dence suggests that the primary pathway for
the case of antidromic mitral invasion is by
way of the synaptic connections between
mitral secondary dendrites and granule den-
drites in the external plexiform layer. It would
appear that this is also the main pathway dur-
ing orthodromic activation via the olfactory
nerves. But we should like to emphasize that
this does not exclude the possibility, or indeed
likelihood, of other inputs to the granule cell,
in either these cases or in other cases. For in-
stance, the present evidence does not exclude
the possibility that mitral axon collaterals
deliver an input to the deep granule cell pro-
cesses during antidromic mitral invasion; this
would be in analogy with Renshaw inhibition
in the spinal cord, as was postulated in the
early unitary studies (8, 33, 48). The evidence
does however suggest that this input, if ex-
citatory, is limited, since it would give rise to
extracellular potential gradients the reverse of
those which actually occur during the onset of
mitral inhibition (in period III).

The mitral axons have another well-de-
veloped system of recurrent collaterals which
terminate in the external plexiform layer and
which might provide thereby an input to
either the mitral secondary dendrites or
peripheral granule dendrites. A direct con-
nection with the mitral secondary dendrites
was, however, ruled Out by the long latency of
onset of antidromic mitral inhibition, and the
polysynaptic character of the inhibition (33,
48). A recurrent collateral input to the gran-
ule dendrites (in the EPL), on the other hand,
might be expected to have an action similar to
the input we have postulated from the mitral
secondary dendrites, and is therefore difficult
to rule out. If the inhibition were mediated by
granule cells activated by mitral recurrent col-
laterals, it should begin earlier when evoked
by the antidromic route than by the ortho-
dromic route. In fact, unitary studies (33, 46,
48) have shown that inhibition begins at ap-
proximately the same latency following either
an orthodromicaily or an antidromically
evoked spike in the mitral cell body; this
would be expected with a dendrodendritic
pathway, as described above in relation to
Fig. 15 B.

In other studies (55) it has been found that
repetitive stimulation of the lateral olfactory
tract does not augment the mitral inhibitory
potentials. Such observations are consistent
with the dendrodendritic pathway, because
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the antidromic volley is blocked at the mitral
cell bodies and therefore cannot activate the
mitral to granule synapses. Similarly, alter-
nating periods of mitral cell invasion and
bockage at certain frequencies of tract stimu-
lation (15) are consistent with the self-inhibi-
tory feature of the dendrodendritic pathway.
It may be concluded that the evidence from
several lines of physiological study is consis-
tent with the dendrodendritic inhibitory path-
way.

Until now the term "recurrent inhibition"
has been used in connection with recurrent
axon collaterals which are present in many
neurons of the central nervous system. Since
the dendrodendritic pathway provides for the
same type of negative feedback as that medi-
ated by recurrent coilaterals it may be well to
use the term "recurrent inhibition" in a gen-
eral physiological sense without restricting it
to one anatomical pathway. It appears that
further work is needed to characterize the
functions of the mitral axon collaterals. One
possibility is that the recurrent coliaterals pro-
vide for activation of the tufted cells in the ex-
ternal plexiform layer (33, 48).

The other input to the external plexiform
layer which needs to be considered is the
centrifugal fibers which enter the bulb along
with the lateral olfactory tract, and might
therefore be excited by a shock to the tract.
Anatomical studies show that these fibers

form only a very small proportion of the
total number of fibers in the tract" (34, cf. 41);
nonetheless, following transection of the tract.

severe terminal degeneration is found
throughout the periventricular and granule
cell layers, and many fibers extend superficial
to the mitral cells to reach the external plexi-
form and glomerular layers." Recently, Price
(35) has obtained electron micrographs of
such degenerating terminals making synaptic
connection with gemmules of granule cells in
the external plexiform layer; the gemmules in
turn formed reciprocal synapses of the type
described by Rail et al. (40) with presumed
mitral dendrites. It appears therefore that the
centrifugal fibers would be able to exert an
important influence on the granule cells,
possibly by raising or lowering the excitability
of the gemmules, but the unitary studies to
date have given no evidence of what the ac-
tion of the centrifugal fibers might be. With
regard to mitral inhibition following tract
volleys it is unlikely that centrifugal fibers
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play any major role, since the inhibition is not
affected by chronic transection of the tract
(which causes the centrifugal fibers to de-
generate) (52). In addition, orthodromic
volleys in the olfactory nerves do riot directly
activate the centrifugal fibers, yet the mitral
inhibition following these volleys is closely
similar to that following tract volleys (47).
However, a small input from centrifugal fibers
following tract volleys cannot be ruled out,
and we have included these fibers among the
"other" elements which make a small con-
tribution to the summed extracellular poten-
tials in the bulb (cf. Figs. 13 and 14).

During normal olfactory activation of the
bulb, or by other experimental methods of
activation, different inputs to the granule cells
may predominate. Thus, a volley in the
anterior commissure gives rise to extracellular
potential gradients of opposite polarity to
those in our period III (53), i.e., negativity in
the granular layer and positivity in the ex-
ternal plexiform layer. Walsh (53) suggested
that this gradient arose from a synaptic de-
polarization of the deep granule processes by
the commissural fiber input. Other possible
inputs to the granule cells include the stellate
cells in the granule layer and tufted cell
collaterals in the inner plexiform layer.
Finally, the several types of centrifugal fibers
to the bulb from the forebrain terminate in
close relation to the granule cells. Thus the
granule cell is likely to play a most complex
role as a final common path for inhibition in
the olfactory bulb.

Amacrine cells

The granule cell is analogous to the ama-
crine cell of the retina in lacking an axon (41).
Thus it is of considerable interest that elec-
tron-microscopic studies have revealed further
similarities; the retinal amacrine cells have
been found to participate in "serial" or
"reciprocal" synapses with bipolar cells (7,
7a, 25, 43a). Although there are differences
in the structural details, there is some formal
similarity in that these retinal amacrine cells
appear to be both postsynaptic and presyn-
aptic to the bipolar cells, whereas the olfac-
tory granule cell gemmules appear to be both
postsynaptic and presynaptic to the mitral cell
dendrites. On the basis of these similarities, we
(40) commented that it will be interesting to
learn whether the retinal amacrine cells pro-
vide a dendrodendritic inhibitory pathway
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similar to that we have proposed for the olfac-
tory bulb. By this we implied the possibility
that such a mechanism for lateral inhibition
and adaptive inhibition might be common to
several sensory systems. These possibilities
must, of course, be tested by future research.
It may be noted that the orientation of the
amacrine cells in the retina lacks the simple
radial orientation which was basic to our
analysis of granule cell potentials.

It recently came to our attention that Gray
and Young (14, 56) have suggested that the
amacrine cells in the optic lobe (VU2) of
Octopus function as inhibitory interneurons.
These amacrine cells have synapses with
vesicles on both sides, and both presynaptic
and postsynaptic functions were postulated.
These cells are very numerous in this lobe
and Young (56) regards them as important
components of the memory system in Octopus.

Rhythmic potentials

The resting activity of the bulb is character-
ized by spontaneous potential oscillations
("EEG waves") of large amplitude (12).
During odorous stimulation of the olfactory
mucosa the activity recorded from the surface
of the bulb consists of rapid "induced" poten-
tial waves (1). Though a discussion of the
nature of these types of activity is beyond the
scope of this paper, we have previously
noted that the dendrodendritic synaptic
interactions between mitral and granule cell
populations are well suited for the develop-
ment of rhythmic activity (cf. 40). Impulse
discharge in many mitral cells results in
synaptic excitation to the processes of a large
number of granule cells. These granule cells
constitute an internuncial pool that delivers
graded inhibition to the mitral cells. As the
granule cell pool begins to inhibit the mitral
cells, this begins to cut off the source of
synaptic excitatory input to the granule cells.
As the granule cell activity subsides, the
amount of inhibition delivered to the mitral
cells is reduced; this permits the mitral cells
to respond again to the excitatory input from
the glomeruli. In this way a sustained excita-
tory input to the mitral cells would be con-
verted into a rhythmic sequence of impulse
followed by inhibition, locked in timing to a
rhythmic activation of the granule cell pool.
The amplitude of the resulting extracellular
potentials would be enhanced both by the
synchrony inherent in the tight synaptic
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coupling between mitral and granule cell
populations, and by the radial alignment of
the processes. Further work is needed to test
this hypothesis. It will also be interesting to see
whether similar mechanisms underlie the
development of extracellular potential oscil-
lations in other regions of the central nervous
system.

Electric coupling

It should also be noted that the radial
potential gradient generated by the granule
cell population must have a direct electrical
effect on the mitral cells. Under conditions
such as those in period III of Fig. 4, the extra-
cellular potential gradient, from GRL to
EPL, must have an anodal (hyperpolarizing)
effect upon all mitral cell bodies, coupled with
a cathodal (depolarizing) effect upon the
mitral dendritic terminals; the magnitude
of such membrane polarizations could be as
much as I mv. This would exert a small
inhibitory influence upon the impulse trigger
zone near the mitral axon-hillock and soma
region of all mitral cells. A reversed extra-
cellular potential gradient would, of course,
exert a small excitatory effect upon this im-
pulse trigger zone. These effects would be
expected also during rhythmic synchronized
activity of the granule cell population of the
kind described above.

Other studies of tract-evoked potentials

Experimental transients similar to those
under study here have been the subject of
previous interpretations using the neuro-
physiological lore of current sources and sinks.
Von Baumgarten et al. (40, 52) considered the
early part of the evoked response in the rabbit
to signal mitral activity, but they could not
distinguish between active or passive invasion
of the dendrites, or invasion of mitral axon
collaterals in the external plexiform layer.
These authors concluded that the large nega-
tive potential (in the EPL during our period
III) was due to tufted cell activation and the
large positive potential (in the GRL during
our period III) to granule inhibition; in doing
so they appear to have overemphasized the
minor differences in time course between the
two transients. Ochi (30) concluded that the
early part of the response represented an
antidromically propagated inpulse in the
mitral dendrites because of the gradual in-
crease in latency. However, as we have
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indicated above (cf. Fig. 9), this should not
be regarded as a reliable guide to intracellular
conduction velocity. Ochi noted the similarity
in time course between the large negative and
positive potentials, and suggested that the
negative potential represented a current
sink due to synaptic activation of the mitral
dendrites via the mitral axon collaterals; the
positive potential he regarded as the associ-
ated current source, without further identifi-
cation of the pathway involved. In his inter-
pretation the source would have to include the
mitral axons, which we assess to be inadequate
for the large current flow generated. In the
turtle, according to Iwase and Lisenby (21),
there is a . . . slow negative excursion"
(irs the external plexiform layer) which is the
result of . . . depolarization of the mitral
cell basal dendrites and of the activities of
granular cells which synapse with the mitral
cell dendrites." No explanation was offered
for how this potential distribution might arise,
or what the granule cell contribution to this
potential might be.

Mitral dendritic rnern b rane properties

Our computations with the mitral model
favor the assumption of either electrotonically
short passive dendrites or electrotonically
longer active dendrites (cf. Fig. 8). We are in-
clined not to press further in deciding between
these alternatives. One reason is that the ex-
perimental transients in different inicroelec-
trode penetrations vary somewhat in their rel-
ative amplitudes. Also the critical time for dis-
criminating between these theoretical alterna-
tives is in period II, at a time when the current
flows from other elements, as well as from
granule cells, have become significant. A
unique fit of theory with experiment is not
possible at this time, because either the active
or the passive dendritic case can be accommo-
dated by adjustment of the component tran-
sients in various superpositions, of which
Fig. 13 is only one example. Rather than
engage further in these details we should like
to point out the possibility that mitral
dendrites of both types might be present in
the experimental population. Such a mixed
population of active and passive mitral
dendrites could be interpreted in the follow-
ing manner. The larger mitral cells have thick
dendrites which are correspondingly short
electrotonically, so that normal orthodromic
activation of the glomeruli (cf. Fig. 1) would
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be effective by passive spread alone. The
smaller mitral cells with their thin dendrites
would be electrotonically more distant from
the glomeruli and active impulse propagation
might be necessary to transfer the glomerular
input to the mitral axon. Another interpreta-
tion would be that normally all the mitral
dendrites have active properties, but that the
conditions of surgery, anesthesia, and experi-
mentation render the dendrites passive, begin-
ning with the larger ones. These possibilities
would seem to be open to further study.

SUMMARY

A computational neuron model has been
developed and tested for its sufficiency in
reconstructing field potentials recorded in the
olfactory bulb after a volley in the lateral
olfactory tract. One set of computations
simulates synchronous antidromic invasion of
the mitral cell population; another set stim-
ulates synchronous synaptic activation of
the granule cell population. The theoretical
results establish that the initial brief time
periods (I and II) of the recorded field poten-
tials can be attributed primarily to activity of
the mitral cell population. The recorded
potential distribution during the following
longer time period (III) could not be due to
extracellular current flow generated by the
mitral cell population; it could be due to
current generated by the granule cell popula-
tion. The timing and location of such mitral
and granule cell activity led us to postulate
that mitral dendrites deliver synaptic excita-
tion to granule dendrites, and that granule
dendrites then deliver synaptic inhibition to
mitral dendrites. Structures for such a dendro-
dendritic synaptic pathway have been demon-
strated in electron micrographs by others.

Realistic sequences of antidromic and
synaptic activity in representative neurons
were computed by means of a mathematical
model that is based upon known anatomical
facts and nerve membrane properties. The
functional relations between axonal, somatic,
and dendritic membrane were simulated by
the mathematical equivalent of a compart-
mental model. The values assigned to several
theoretical parameters of the general model
provide for approximations to particular neu-
ron types, such as mitral cells or granule cells.
The values of these parameters determine the
following: a) the geometric factor for invasion
of soma and dendrites by an impulse propa-
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gating antidromically along the axon, b) the
magnitude of background facilitation in the
dendritic membrane, c) the extent to which
the dendritic membrane is assumed "active"
or "passive" with respect to impulse propaga-
tion, and d) the effective electrotonic length
of the dendrites. This general model includes
also a mathematical model for generating
action potentials with adjustable kinetics.
Numerous exploratory computations were
used to find several different combinations of
these theoretical parameters which result in
approximations to the experimental data.

In developing the theoretical model, the
spherical symmetry of the bulbar layers and
the synchrony of bulbar activation permit
an important simplification: the field poten-
tials become essentially functions of only two
variables, time and radial depth in the bulb.
The relative values of intracellular and extra-
cellular resistance (per unit distance along
bulbar radii) for mitral dendrites, mitral
axons, and granule dendrites were found to
be of basic importance to these theoretical
reconstructions. Although the values used are
only approximate, they differ by orders of
magnitude; this forced the conclusion that the
mitral cells could not generate the potentials
of period III, and that the granule cell popu-
lation provides the only plausible generator of
these potentials.

The experimental finding of a potential
difference between bulbar surface and distant
reference electrode implies that the spherical
symmetry of the bulb is punctured, thus pro-
viding an extra pathway for current flow be-
tween the depth and surface of the bulb. The
position of the distant reference electrode
along this extra pathway gives rise to a
potential divider effect in the recordings. This
effect is crucial to the interpretation of the
recorded transients and is incorporated in
the theoretical model. For mitral cell ac-

tivity, a potential divider ratio of approxi-
mately 1: 4 in the theoretical model produces
a superficial (GL) potential transient that is
one-fourth the amplitude of the deep (MBL)
potential, and of opposite sign. Similar con-
siderations apply to the interpretation of
granule cell potentials, with a ratio (ca. 1:2)
reflecting the deeper distribution of the
granule cell processes.

During period I, both the positivity in
the outer bulbar layers (GL to surface) and
the negativity at the mitral body layer (MBL

and deeper) of the computed field potentials
are produced by the flow of extracellular cur-
rent from the mitral dendrites radially inward
to the actively depolarizing mitral cell bodies.
During period II, both the negativity in the
outer layers and the associated deep positivity
of the computed potentials are produced by
the flow of extracellular current radially
outward from repolarizing mitral soma mem-
brane to depolarized mitral dendrites. During
period III, both the computed negativity in
the external plexiform layer and the computed
positivity in the granule cell layer are pro-
duced by the flow of extracellular current
from the deep processes of the granule cells
radially outward to the synaptically de-

polarized granule cell dendrites in the external
plexiform layer.

Field potentials during periods I and II
of antidromic mitral activity are best simu-
lated by assuming either active dendrites of
relatively long electrotonic length or passive
dendrites of relatively short electrotonic
length. Overlap of mitral and granule ac-
tivity during period II prevents further dis-
crimination between these cases. Usual
methods for estimating intracellular conduc-
tion velocity from field potentials are shown
to be unreliable in the case of a detailed simu-
lation of mitral intracellular potentials and
bulbar field potentials.

The concept of the granule cell as an in-
hibitory interneuron acting upon mitral cells
is reinforced and extended. The dendro-
dendritic synaptic pathway wc have postu-
lated provides a possible mechanism for
adaptive and lateral inhibition of the mitral
cells. This pathway contains several novel
features which are of general interest in
neurophysiology, apart from the olfactory
bulb: a) dendritic membrane can transmit
as well as receive synaptic information, b)
dendrodendritic synapses provide a mecha-
nism for axonless neurons to interact integra-
tively with other neurons, c) such neurons may
function without generation of an action
potential, and d) these synaptic interactions
also provide a mechanism for generating
rhythmic activity in neuronal populations.
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6.1 Introduction by Robert E. Burke

Rail, W. (1967). Distinguishing theoretical synaptic potentials computed for
different soma-dendritic distributions of synaptic input. J. Neurophysiol.
30:1139-1169.

The paper reprinted in the next chapter, "Distinguishing theoretical
synaptic potentials computed for different soma-dendritic distributions of
synaptic input," is a landmark paper for several reasons. In many respects,
it represented the culmination of Wil Rail's work over the previous decade
(much of it included in this volume), in which he developed a mathemati-
cal framework for understanding the electrical properties of dendritic neu-
rons and the synapses that contact them. Many of the applications of this
elegant cable theory were implicit in rigorous mathematical formulas,
where they were protected from the mathematically unwashed, such as
myself. In this paper, however, Wil took explicit examples from experi-
mental data and showed how those results were not only explicable but in
fact predictable from an understanding of cable theory as applied to den-
dritic neurons. His exposition was deliberately nonmathematical, using
examples of limiting cases that were clearly understandable to nonmathe-
maticians. Even people like myself, whose eyes glaze over when confronted
with a differential equation, could see the "why" of our experimental re-
sults. Although Wil's earlier work had influenced many people in biophys-
ics, I believe that this 1967 paper revealed the power of applied mathemat-
ics for many neurophysiologists.

This is not to say that the paper was purely a didactic explication of
things already published. In fact, there is much that was new. For example,
Wil introduced the quantitation of postsynaptic potential (PSP) shapes
using the notion of "shape indices" and showed how these depended not
only on spatial location of the input but also on dendritic electrotonic
length and the time course of conductance input (see his "Comment on
nonuniqueness" in chapter 6.2). The last fact in particular has often been
neglected in later papers by others who took shape index data as generally
indicative of electrotonic location, without attention to the important un-
derlying assumptions. In a final sentence, Wil provided the following sum-
mation: "A theme common to all of these computations and interpreta-
tions is that results, which may appear paradoxical when examined only
at the soma, can be understood quite simply when attention is directed to
the synaptic input location with special attention to the effective driving
potential there."

This paper was the fourth in a series of five that were published in 1967
(Smith et al. 1967; Nelson and Frank 1967; Burke 1967, Rall 1967; Rail et
al. 1967). The first three papers reported experimental observations on cat
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c-motoneurons and the group Ja EPSPs generated in them. They were
written by colleagues who had come to NIH in the 1950s and 1960s to
work with the late Karl Frank, who was a major pioneer in using intra-
cellular micropipettes to study cellular and synaptic processes. J was one
of these people and can give a personal perspective on the genesis of this
series, which is still referred to by some of our friends as "the '67 Book."
My participation in this effort indelibly influenced my entire scientific
career, and I hope that this brief reminiscence will give some idea of the
excitement that comes to a young scientist who is lucky enough to work
with great mentors.

I came to the NIH in 1964 to learn intracellular recording with Kay
Frank (as he was universally known). He suggested that I could start by
applying the method to cat motoneurons, in order to see whether or not
group Ja EPSPs in motoneurons summated linearly. This question was of
interest because Ja EPSPs did not always behave as expected for synaptic
potentials that were generated by an increased postsynaptic conductance
change. Working in Kay's lab, Tom Smith and Ray Wuerker had earlier
found that Ia EPSPs were difficult, and frequently impossible, to invert by
applying depolarizing current to the motoneuron soma, despite claims to
the contrary (e.g., Eccles 1957). They also found that it was usually impos-
sible to detect postsynaptic conductance changes during Ja EPSPs, even
when using a sensitive AC analysis method (Smith et al. 1967). Phil Nelson
and Kay had also observed that Ia EPSPs showed great variability in
their response to currents injected at the motoneuron soma, which was
only partially explainable by the nonlinear rectification behavior of the
motoneuron membrane (Nelson and Frank 1967). Nonlinear potential
summation would fit with the behavior expected for "chemical" synapses,
while exclusively linear summation could have two interpretations: (1) Ja
EPSPs are generated in part by electrical transmission (which we felt un-
likely); or (2) Ia EPSPs are produced by purely chemical synapses that are
widely distributed over the dendritic tree, in relative electrotonic isolation
from one another. The latter notion seemed unlikely to me, probably
because my earliest inspiration toward neurophysiology had come from
John Eccles's classic monograph The Physiology of Nerve Cells, in which
Eccles took the position that "the dendrites are so long, relative to their
diameter, that changes in the membrane potential of more distal regions
would make a negligible contribution to potentials recorded by a micro-
electrode implanted in the soma" (Eccles 1957, p. 6).

After starting experiments with electrically evoked composite Ia EPSPs,
I also literally began playing around with the synaptic noise" produced
in motoneurons when their parent muscle was stretched (Granit et al.
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1964). Much to my surprise, I found that it was often possible to recognize
large-amplitude, rhythmically occurring EPSPs, ticking along within the
background synaptic signals at frequencies that varied with levels of
stretch, as would be expected for PSPs produced by an individual group
Ia afferent (Burke and Nelson 1966). When I showed such records to Kay.
he became quite excited and exclaimed, "You've got to stretch these sig-
nals out and look at their shapes!" He pointed me to Wit's 1964 paper
describing the shape differences to be expected for EPSPs generated at
different electrotonic locations. Luckily, my data had been recorded on
FM tape. and reanalysis showed that, indeed, the shapes for any given
single-liber EPSP were quite consistent, but those produced by different
fibers had very different shapes (Burke 1967). It was immediately obvious
to us that we had an experimental validation of Wit's theoretical predic-
tions. The single-fiber EPSP shape differences and the fact that composite
Ia EPSPs often exhibited linear summation (Burke 1967) both fit very well
with the idea that group Ia synapses were widely, and variably, distributed
over the motoneuron surface. Furthermore, the fact that some Ia fibers
produced somatic EPSPs with quìte prolonged shape indices strongly sug-
gested that synapses located on distal regions of the motoneuron dendrites
could indeed produce significant voltages at the motoneuron soma. Need-
less to say, all this was very satisfying to both Wil and Kay, because it
provided direct experimental support for Wil's view of dendritic function
as critical to our understanding of neuronal input-output relations. For
me, it was a revelation of what science was about!

Although Wil had illustrated the effects on dendritic location of
synaptic potential shape in 1964, that paper (Rail 1964) was in a mono-
graph that was not widely available. It seems fair to say that the 1967
paper under discussion here contained the first thorough theoretical ex-
ploration of the behavior of dendritic PSPs in the general neurophysio-
logical literature. In it. Wil used compartmental equivalent cylinder
models to explore examples of the interactive effects of conductance dura-
tion, amplitude, and spatial location on peak depolarization, illustrating
important sources of nonlinear dependence between local voltage pertur-
bation and fixed driving potentials at various points in the cylinder. He
also looked at interactions between EPSPs and hvperpolarizations pro-
duced by injected currents at the soma and by simulated inhibitory con-
ductances in different spatial locations. All of these simulations had imme-
diate relevance for understanding our experimental findings.

A large fraction of this paper was devoted to an analysis of the de-
tectability of dendritically located conductance changes underlying
EPSPs when currents are injected into the soma. This section arose
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directly from Wil's consideration of the largely unsuccessful attempts by
Tom Smith and colleagues (Smith et al. 1967) to use AC currents and
sensitive phase-detection methods to define the Ja EPSP conductance. Wil
recognized that the problem was primarily one of signal-to-noise ratios.
The key insight was that, if a major fraction of the Ja conductance were
delivered to the dendrites (a view not generally accepted at the time), the
electrotonic cable intervening between the soma (the source of current
and the site of measurement) and the distant sites of conductance change
produces an inevitable decrement to both the local perturbing voltage
changes at the synaptic sites and the results of that perturbation as re-
flected at the soma. Any such detection system thus faces an electrotonic
decoupling that is larger than the electrotonic distance involved. Given
the relatively small perturbations of local EPSP driving force that were
experimentally feasible, Wil concluded that the expected magnitude of
signal distortion at the soma, though theoretically present, would be be-
low detection threshold at remarkably short electrotonic distances. Fur-
thermore, the time course of the distorted signal did not match that of the
conductance change itself, even when detectable. To all of us involved in
this series of papers, these insights came as major surprises. These inconve-
nient properties of dendrites continue to plague everyone who tries to
voltage clamp dendritic neurons (see Rail and Segev 1985; Spruston et al.
1993).

My own favorite aspect of this paper is Wïl's remarkable "computa-
tional dissection" of the synaptic and redistribution (or "loss") currents
that are inherent as synaptic potentials are generated in dendrites (section
2 and figure 4). This brief section presents concise and wonderfully lucid
insights into why synaptic potential shapes and amplitudes change in an
electrotonic cable. It bears careful and repeated study by anyone inter-
ested in how dendritic neurons process synaptic information.

Wil was the senior author on the last paper in the series of five papers
of 1967 entitled "Dendritic location of synapses and possible mechanisms
for the monosynaptic EPSP in motoneurons" (Rall et al. 1967). This paper
was a concerted attempt to discuss the implications of the experimental
observations in the first three papers in the light of Wil's theoretical results
(paper four of the series). For reasons of economy, the paper has not been
reprinted in this volume, but there are several aspects of it that are worth
attention. It was in this paper that the first graphs of EPSP shape indices
appeared in the form that later became widely used. Figure 1 here (repro-
duced from figure 5 in the original) encapsulates the central theme of
this paperthe comparison of experimental data with modeling results.
At the time, this was a rather startling thing to do with respect to neuronal
electrophysiology.
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Figure 1
Shape index plot of EPSP half-width (ordinate) versus time to peak (abscissa), with scales in
ms (from Rail et al. 1967). Small open circles denote experimentally observed single-fiber
EPSPs. Large open symbols show shape indices for simulated EPSPs with "fast" (diamonds;
alpha function with peak time of 0.1 ms) and "medium" (triangles; peak time of 0.2 ms)
synaptic conductance time courses, recorded in compartment 1 of a 10-compartment cylin-
der (time constant = 5 ms; L = 1.8). Compartmental location of active conductances: A = 1,
2,9, 10; B = 1,2,3,4,9, 10; C = 3,4,9, 10; E = all 10, weighted to produce equal somatic
amplitudes. Arrows and solid symbols show the effects of increasing time constant to 7 ms.
The dashed line indicates the locus of shape indices for somatic EPSPs produced by conduc-
tances in individual compartments. The solid line shows the locus of shape indices of com-
posite EPSPs produced by conductance changes of different durations applied at equal
strength in all 10 compartments. Reproduced from Rail et al. 1967.
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Figure 1 illustrates the time to peak and half-width of experimental
single-fiber EPSPs from paper three (Burke 1967), with overlays derived
from idealized cable models with ten compartments. The membrane time
constant and electrotonic length (5 ms and 1.8, respectively) chosen for the
model were thought to be representative of cat motoneurons. Subsequent
experiments showed that these guesses were quite reasonable. The small
open circles denote shape indices of individual EPSPs produced by 11
group la afferents in seven cat motoneurons. The dashed line shows the
locus of shape indices for EPSPs generated in indìvidual compartments of
the model and recorded in the Thoma" compartment. The large open sym-
bols denote the shapes of composite EPSPs generated by conductances
with "fast" or "medium" time courses, activated simultaneously in multi-
pie compartments. The large filled symbols and arrows indicate changes
that were produced when the model time constant was increased from Sto
7 ms. The point of the figure was to show that a model system with a
realistic range of parameters could generate synaptic potentials that fit
reasonably well with experimental results. Although the simple compart-
mental model used for this figure is unrefined by today's standards, it
represented a significant step in the evolution of thinking about dendritic
function and the importance of synapses that are found on dendrites,
because it brought together theoretical and experimental results in a way
that was new and compelling.

An important deficiency in the 1967 comparison was the lack of time-
constant estimates for the motoneurons; I had not looked at them because
I did not anticipate their eventual importance. It was clear that variations
in motoneuron time constant could not explain all of the observed shape
differences because one notable example showed that two Ja fibers that
ended on the same motoneuron generated EPSPs with markedly different
shapes (Burke 1967, figure 10). However, figure 1 clearly shows that even
a modest variation in time constant can account for a considerable range
of shapes. Subsequent work by Jack et al. (1971) addressed this problem
by plotting Ia EPSP shape indices that were normalized by motoneuron
time constant. In addition, these authors plotted regions on the shape
index plot that would account for likely variations in the values of den-
dritic electrotonic length, dendritic to somatic conductance ratios, and
normalized synaptic-current time course. Their results, for a large sample
of single-fiber EPSPs, allowed Jack and co-workers to conclude that Ja
EPSPs arose from all regions of the dendritic membrane. Other studies
soon confirmed and extended these observations (Mendell and Henneman
1971; lansek and Redman 1973). Later, it became possible to inject horse-
radish peroxidase into individual group la afferents and motoneurons
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postsynaptic to them, to demonstrate that putative Ia boutons are indeed
widely distributed in the dendritic trees (Burke et al. 1979; Brown and
Fyffe 1981). In a remarkable experiment, Redman and Walmsley (1983)
then combined such histological reconstructions with electrophysiology
to show that the two methods produced the same estimates of electrotonic
location. More recently, anatomical data on motoneurons and la bouton
locations have been combined with estimates of motoneuron membrane
properties to model the range in size and amplitude of composite group ¡a
EPSPs that arise from spatially dispersed boutons (Segev et al. 1990). The
steady accumulation of evidence that group Ia EPSPs are generated large-
ly in the motoneuron dendrites has been a source of much satisfaction for
Wil and for all of us involved in this work.

In 1967, most of us felt that ¡a EPSPs were generated by "chemical"
synapses despite the existence of some experimental data that seemed in-
compatible. The wide spatial distribution of group Ia synapses proved to
be the factor that brought all of the evidence back into line. lt will be
obvious to readers of this paper that the linchpin in this effort was Wil
Rail. His insights and model results were essential to generating a cohesive
and rigorous summation of the experimental results then available. It may
be difficult for readers today to imagine that, only 25 years ago, the func-
tion of neuronal dendrites was poorly understood, frequently neglected,
and even explicitly denied. The fact that dendrites now enter into every-
one's thinking about neuronal function is a tribute to the clarity and force
of Wil RaIl's pioneering contributions to neuroscience.
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6.2 Distinguishing Theoretical Synaptic Potentials Computed for
Different Soma-Dendritic Distributions of Synaptic Input (1967),
J. Neurophj'siol. 30:1138-1168

Wilfrid Rail

B MEANS OF COMPUTATIONAL EXPERIMENTS with a mathematical neuron
model, it is possible to make many detailed predictions, some of which can
be tested by comparison with suitably controlled experimental observations.
In particular, a theoretical model which permits a choice of both the time
course and the soma-dendritic location of synaptic input, makes it possible
to explore the way in which the shape of a synaptic potential can be expected
to depend upon these two aspects of synaptic input. It is also possible to
explore such related problems as the following: the effect of superimposing
various combinations of synaptic input, both excitatory and inhibitory, and
at various locations; the effect of applied hyperpolarizing current upon the
shape of a synaptic potential; and the detectability at the neuron soma of a
synaptic conductance transient located in the dendrites.

Many such computational experiments have been carried out, with two
somewhat different objectives in mind. One objective has been to explore
and gain insight into the general properties of the theoretical model, while
the other objective has been to test the applicability of this theoretical
model to the particular case of motoneurons in the cat spinal cord. The
experimental observations presented in several companion papers (1, 8, 15)
have provided an unusual opportunity for such a comparison of theory and
experiment. This comparison has been carried out as a collaborative effort;
the implications of this for our understanding of synaptic potentials in cat
motoneurons are presented in a separate paper (14). The present paper is
not about motoneurons, but about the properties and implications of the
more general theoretical model.

There are several positive advantages to separating the consideration
of a general model from its application to a particular neuron type. The
general model can be tested for applicability to different neuron types;
some applications may differ only in the value of the membrane time con-
stant needed to relate a general result to a particular neuron type; other
applications may differ in the values of theoretical parameters correspond-
ing to electrotonic length or to the time course of synaptic current; still other
applications may require explicit consideration of several sets of dendrites,
such as the basal and apical dendrites of pyramidal cells.
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Theoretical predictions that canot be tested experimentally are usually
regarded as scientifically meaningless; however, it is important to distin-
guish between predictions that could never be tested, and others that are
testable, in principle, but which require greater experimental control or
finesse than is currently available. The present research provides several
illustrations of the latter. For example, when synaptic input is located in the
dendrites, a comprehensive computation can provide not only the synaptic
potential time course predicted to occur at the soma, but also the time course
of the synaptic current and the transient membrane depolarization at the
dendritic location, as well as the details of the electrotonic spread of current
and of membrane depolarization from the dendrites to the soma. Such de-
tails are not easily tested in neurons; yet these details can have great value
in enriching our physical intuitive understanding of such related events.
We can build our physical intuition upon the quantitative answers to pre-
cise questions obtained for the theoretical model, and this physical intuition
can then be helpful in the interpretation of approximately similar experi-
mental observations.

Several examples of the differences between the brief synaptic potential
computed when synaptic input is restricted to the neuron soma or proximal
dendrites, and the slower rising and longer lasting synaptic potential com-
puted when synaptic input is restricted to distal portions of the dendrites
have appeared as illustrations in previous theoretical papers (12, 13). The
earliest theoretical results relating the time course of a synaptic potential to
the time course of nonuniformly distributed synaptic current appeared in
1959 (9). The fact that passive decay (as seen at the soma) should be fastest
when membrane depolarization is greatest at the soma, and slowest when
membrane depolarization is greatest in the dendritic periphery was demon-
strated theoretically and illustrated graphically in 1960 (11, p. 515-516, 521,
528-529). The theoretical basis for transforming an extensively branched
neuron into an equivalent cylinder, and for representing nonuniform dis-
tributions of synaptic excitatory andor synaptic inhibitory membrane
conductance, was presented in 1961, and this theory was used to compute
an early illustrative comparison of synaptic potential shapes obtained for
synaptic input restricted to half of the sorna-dendritic surface (12, Fig. 7).
The use of a compartmental model of soma-dendritic surface was intro-
duced in 1962 as means of computing the consequences of many spatio-
temporal patterns of synaptic input (13). Because of the new quantitative
experimental detail now available (1, 8, 14, 15) the present computations
have avoided the artificiality of step changes in synaptic conductance value
by introducing a smooth transient synaptic conductance time course as the
synaptic input.

METHOD

Compartmental model. For most of these computations, the soma-dendritic surface of a
neuron has been represented as mathematically equivalent to a chain of 5 or 10 equal corn-
partments. This concept is illustrated schematically in Fig. 1, where the dashed lines divide
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FIG. 1. Schematic diagrams. Electric equivalent circuit model of nerve membrane, at

upper right. Branching dendritic tree, at upper left. Diagram indicates the mathematical
transformation (12) of a class of dendritic trees into an equivalent cylinder, and into ap-
proximately equivalent chains of equal compartments (13). See text and references (12, 13)
for details and discussion.

the dendritic branching system into 5 regions of equal membrane surface area. When each
such region is approximated as a compartment, in which the membrane capacity and the
several parallel membrane conductances (see inset in upper right of Fig. 1) are treated as
lumped electric parameters, the essential simplifying assumption is that spatial nonuni-
formity within each region is completely neglected. Spatial nonuniformity of the whole
neuron is represented only by the differences between regions.

Soma and dendritic compartments. With the most commonly used chain of 10 compart-
ments, shown at bottom of Fig. 1, the neuron soma has been identified with compartment
1, while compartment 10 represents a lumping of the most peripheral portions of all den-
dritic trees belonging to ti-us neuron model. The intermediate compartments represent
increments of electrotonic distance, as measured from the dendritic trunks to the dendntic
periphery.

Electrotonic distance, Z. In a dendritic tree, the electrotonic distance, Z1, from the soma
to any dendritic point x1, can be defined by the integral

z1 = fdx/x

Copyrighted Material

SOMA DE NOR ITES



218 Wilfrid Rail

where x measures actual distance along the lengths of successive branches from the soma
to the point in question, and x represents the characteristic length (or length constant)
which changes with branch diameter at each point of branching. For a branchmg system
that is transformable to an equivalent cylinder (12), or to a chain of equal compartments
(13), each dendritic compartment represents not only an equal amount of membrane sur-
face area, but also an equal increment in electrontoic distance (12, 13). Thus, for the 10-
compartment chain at the bottom of Fig. 1, the increment per compartment usually had the
value, Z = 0.2; then the values, Z = 1.0 in compartment 6, and Z = 1.8 in compartment 10,
express the corresponding electrotonic distances away from the soma compartment. Oc-
casionally, computations were done with ¿riZ = 0.1, or with Z =0.4 as the electrotonic in-
crement per compartment.

Mathematical model. The actual mathematical model is a system of ordinary differen-
tial equations which are linear and of first order; some coefficients are constants, but others
(those related to synaptic conductance) are functions of time. This system of equations was
presented and derived in a previous publication (13).

Dimensionless variables of the model. The state of the system at any time is defined by
three variables in each compartment. Two of these are independent variables representing
synaptic excitatory and inhibitory conductance, while the dependent variable represents
membrane potential. When there is externally applied current, this must be considered as
an additional independent input variable. Each of these variables has a very specific defini-
tion in the mathematical model. Also, each variable is defined as a dimensionless ratio that
has a useful physical intuitive meaning.

Synaptic intensity variables. The synaptic excitatory intensity, g, and the independent
synaptic inhibitory intensity, fi, must be specified for each compartment. They are defined
as the membrane conductance ratios,

il = Ge/Gr fi = Gi/Gr

where Gr, G, and G are parallel membrane conductances in the electrical equivalent circuit
shown as an inset in Fig. 1; Gr represents resting membrane conductance in series with the
resting battery, Er; G, represents synaptic excitatory conductance in series with the synap-
tic excitatory battery, E,; G, represents synaptic inhibitory conductance in series with the
synaptic inhibitory battery, E. The values of Er, E,, and E are assumed to remain con-
stant. This formal model (12, 13) is only a slight generalization of more familiar membrane
models (2, 3, 6). The two variables, g and fi, will sometimes be referred to as synaptic input;
the time course in each compartment is prescribed and, for all of the present computations,
is assumed to be independent of membrane potential and of applied current.

Membrane potential disturbance, u. This variable provides a dimensionless measure of
the deviation of membrane potential from its resting value. it is defined

V = (Vm - Er)/(Ee - Er)

where Vm represents the potential difference across the membrane (inside potential minus
outside potential).

The variable, y, is normalized in the sense that

v=l, when VmE,
Thus, excitatory deviations from the resting potential are represented as positive values
on a scale extending from O to 1. These positive values of u correspond to membrane de-
polarization; this is consistent with the experimentally observed positivity of intracellularly
recorded excitatory synaptic potentials. The value, u = 1, corresponds to the limiting
amount of depolarization, for il very large, and fi small, and in the absence of applied cur-
rent.

Peak amplitudes of u = 0.01 and y =0.1 were obtained in several series of computed
synaptic potentials. This means depolarization one-hundredth or one-tenth of the way
toward the limiting value. For example, if (E, Er) 70 mv, then u = 0.01 corresponds to
0.7 mv, and y = 0.1 corresponds to 7 mv. Negative values of u represent membrane hyper-
polarization. For example, if (E Er)/(E, E,) = 0.1, then this value represents the
limiting negative value of u (for fi much larger than g, and in the absence of applied current).

Dimensionless time variable, T. This variable is defined
T = tir
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where t represents time and r represents the passive membrane time constant. Results ex-
pressed in terms of T can be equally valid for neurons which may have different membrane
time constants.

Dimensionless slope divided by peak. Although the theoretical slope, dv/7dT, is already a
dimensionless quantity, the comparison of experimental and theoretical rising slopes of
synaptic potentials is facilitated by considering the value of the slope divided by the peak
amplitude of the synaptic potential. This dimensionless quantity can be expressed

(dv/dT)/v = r(dV/dt)/V

where V=VmEr, is in millivolts, dV/dt is in millivolts per millisecond (i.e., volts per
second), and subscript, p, designates the peak value of u or V. Usually, the slope has been
measured at the point where the rising synaptic potential reaches half of its peak amplitude,
i.e., the point halfway up; sometimes the slope was also measured at the point halfway
down. To compare with experiment, consider, for example, a rising slope of 12 v/sec for a
synaptic potential having a peak amplitude of 4 mv, then (dV/dt) /V = 3 msec, and, for a
membrane time constant, r =5 msec, we obtain a dimensionless value of 15 for the slope over
peak defined above.

Depolarizing current density. The dimensionless slope, dv/dT, is also a dimensionless
measure of net depolarizing current density. This net current refers to the difference be-
tween the actual synaptic current at the region in question, and the loss current composed
of electrotonic current spread to neighboring regions and of current that leaks across the
local passive membrane resistance. The actual net depolarizing current density can be
expressed

Cm [Cm(E-Er)/rI

where C,, represents the membrane capacitance. For example, if Cm = 1 f/cm2, (E, - E,)
= 70 mv, and r = 5 msec, the factor enclosed by the square brackets has a value of 14 amp
¡cm2.

Computation method. The computations were carried out with the computer program
SAAM 22, on the IBM 7094 at the National Bureau of Standards. The computer program
is the current version of a program developed over a period of years by Berman, Weiss, and
Shahn; it is especially suited for computations with compartmental models, and contains
many features that contribute to its versatility. One feature is that the computations can
be required to adjust the values of one or mme parameters to obtain a least-squares fit be-
tween the theoretical points and several data points; this feature was used to find, for any
given compartmental and temporal distribution of synaptic input, il, the magnitude of il
that produces a synaptic potential having a prescribed peak value (usually u = 0.01, or
u =0.10). Another feature is that one or more parameters can be required to vary with time
in proportion with any prescribed transient function; this feature was used to prescribe
smooth time variation of synaptic input, il and/or ¡j, in one or more compartments.

Synaptic transient function. Most of the computations used a transient of the form de
fined by

F(T) = (T/T) exp (1 - T/T)
where T represents dimensionless time as a variable starting from zero, and T, is a constant
to be selected. This transient has the following features, F(T) =0 for T =0, F(T) = 1.0, the
peak value, at T =T, and FT) returns to zero for large values of T. Also F(T) =0.5 at
nearly T = 0.23 T, on the way up, and again at nearly T = 2.68 Ti,, on the way down; thus
the half-width (width at half of peak amplitude) is very nearly 2.45 T. The area under the
entire curve equals eT, where e is the base of the natural logarithms. Graphic examples of
this transient are provided by the dotted curves in Figs. 2 and 4. The three particular
choices of T, used most, 0.02, 0.04, and 0.092, provide the transients referred to in the text
as "fast," "medium," and "slow" input transients.

Fast input transient. This transient reaches its peak at T = 0.02, and has a half-width
(duration at half of peak amplitude) of about 0.049 in units of T. For a membrane time
constant of r = 5 msec, this would imply a peak time of 0.1 msec, and a half-width of about
0.245 msec.

Medium input transient. This transient reaches its peak at T = 0.04, and has a half-
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width of about 0.098 in units of T. For a membrane time constant of r = 5 msec, this would
imply a peak time of 0.2 msec, and a half-width of about 0.49 msec.

Slow input transient. This transient reaches its peak at T = 0.092, and has a half-width
of about 0.225 in units of T. Also, the area under this curve is 0.25 in units of T; this area
equals that of a rectangular pulse of unit height and of duration 0.25 in units of T, such as
the synaptic input used in numerous earlier computations (cf. 13, Fig. 6).

RESULTS

I. Different shapes of computed synaptic potentials
Effect of synaptic input location. Four examples of computed excitatory

postsynaptic potentials (EPSP) are illustrated by the solid curves in Fig. 2.
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FIG. 2. Comparison of four EPSP shapes computed for a chain of 10 compartments.
Dotted curve shows the assumed excitatory conductance transient; it is the medium input
time course defined in METHODS. Curve A shows the EPSP for equal input in all compart-
ments. Curves B, C, and D all show an EPSP in compartment 1 for different cases of synap-
tic input restricted to 1 of the 10 compartments. For curve B, synaptic input was in com-
partment i alone; for curve C, input was in compartment 4 alone; for curve D, input was in
compartment 8 alone. Ordinate scale represents amplitudes relative to each peak ampli-
tude. The same EPSP shapes were obtained for peak amplitudes, u = 0.01 and u = 0.10; the
synaptic intensity required for each case can be found (below) in Table 3.

The obvious differences in shape are due to differences in the location of
synaptic input assumed for each computation. Exactly the same time course
of synaptic excitatory conductance was assumed in each case; this time
course, shown as a dotted curve, is the medium input transient defined above
(in METHODS). Curve A shows the EPSP computed for the case of synaptic
input distributed equally to all compartments. This EPSP reaches peak
value at T = 0.20 and has a half-width of 0.88 in units of T. Curve A repre-
sents not only the EPSP that occurs in the soma compartment, but also the
time course of membrane depolarization in every dendritic compartment;
there is no electrotonic spread between compartments for this case of equal
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synaptic input to all compartments. After the synaptic input transient is
completed (after T = 0.3 for this medium input transient), the decay of such
a spatially uniform EPSP is a simple passive exponential decay.

Curves B, C, and D illustrate 3 examples of EPSP shapes computed in
the soma compartment of a chain of 10 compartments when the synaptic
input was localized to a single compartment. Thus curve B was obtained
when synaptic input was restricted to the soma compartment, curve C was
obtained with input restricted to compartment 4, while curve D was ob-
tained with input restricted to compartment 8. Although synaptic excita-
tory conductance had the same (dotted) time course as for case A, larger
synaptic intensities were required in cases B, C, and D, in order to obtain
an EPSP of the same peak amplitude as curve A.

Curve B rises about 1.65 times as fast as curve A, reaches its peak in
about half the time required by curve A, and has a half-width that is only
one-third that of curve A. Also, when both curves have decayed to half of
peak amplitude, curve B falls three times as fast as curve A; this faster
decay can be understood intuitively as the consequence of electrotonic
spread from the soma compartment toward the dendritic compartments
(cf. 11, p. 515-516, 528-529).

Curve C is somewhat similar to reference curve A; however, there are
significant differences. Curve C rises more slowly and falls more rapidly
than curve A; the slower rise can be understood intuitively as the conse-
quence of electrotonic spread from the input compartment (no. 4) toward
the soma, while the faster fall is the consequence of electrotonic spread away
from compartments 1, 2, 3, and 4, toward the peripheral dendritic compart-
ments.

Curve D is more delayed, rises more slowly, has a more rounded peak,
and begins to decline more slowly than the other curves. The half-width
value of 1.42, in units of T, is nearly five times that of curve B, and is 60%
larger than that of curve A. This sluggish rise to a very rounded peak can
be understood intuitively as the consequence of electrotonic spread from the
distal dendritic input compartment (no. 8) to the soma.

EPSP shape and amplitude. The 4 EPSP shapes in Fig. 2 illustrate
equally well the results obtained for several different EPSP amplitudes. In
particular, 1 complete set of results having the small EPSP peak, v, = 0.01,
was compared with another set having a 10-fold larger peak amplitude.
When these results were scaled relative to their peak amplitudes (as in
Fig. 2), the 2 sets of EPSP curves differed negligibly (i.e., rarely by more than
the thickness of the curve). To understand why shape distortions occur for
still larger EPSP amplitudes, and why the agreement is not exact even at
small amplitudes, it is necessary to remember that the synaptic input has
been treated as an excitatory conductance transient. For small amounts of
membrane depolarization, the time course of synaptic current is essentially
the same as that of the synaptic conductance. For a large transient mem-
brane depolarization at the synaptic input location, the effective driving
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potential (for synaptic current) changes enough to cause a significant dis-
tortion of synaptic current time course; this can result in a significant change
of EPSP shape. In practice, one is usually concerned with small EPSP
amplitudes (i.e., less than v. = 0.2). For this range of practical interest, the
EPSP shape computed for a given synaptic input location and time course
can be regarded as approximately independent of EPSP amplitude.

Quantitative shape indices. The comparison of computed EPSP shapes
with experimentally observed EPSP shapes can be facilitated by focusing
attention upon a few quantitative measures. Definitions of several shape
indices are stated below. These shape indices are used in Table 1 to summar-
ize the computed results obtained for the same medium input transient as
in Fig. 2, and for the same chain of 10 compartments having an over-all
electrotonic length equal to twice the characteristic length.

Table 1. Quantitative EPSP shape characteristics
(chain of ten compartments: medium 8 transient)

Time of foot defined as point of intersection with the base line of a line drawn from the point halfway up through the point one-
tenth way up. Except where noted otherwise, time io dïmensionleos, T=1/r.

Time and peak. It is useful to distinguish between time of peak, measured
from the time of synaptic input initiation (T = O in Fig. 2) and time to peak
measured from the "foot" of the EPSP. The time, T =0, is easy to obtain
for a computed EPSP, but is usually not known for an experimental EPSP.
The foot of the EPSP is sometimes characterized as the point where EPSP
rise can first be detected; an alternative, used here is to define the time of the
foot operationally as the point of intersection with the base line, of a line
drawn through the two points where the rising EPSP attains 10% and 50%
of its peak amplitude. When this operational definition is applied to Fig. 2,
the time of foot values, T = 0.05 and T =0.14, are obtained for curves C and
D. In Table 1 the values of time to peak (from EPSP foot) range from T =
0.10 to T =0.67 (or from 0.5 msec to 3.3 msec for T =5 msec).

Half-width. This quantity provides a useful measure of the sharpness of
an EPSP; it is defined as the width of the EPSP at half of peak amplitude.
For the series in Table 1, the half-width is about three times the time to
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peak, for single compartment locations from i to 6; this factor becomes
progressively smaller for input locations 8 and 10, but it is more than 4.6 for
the case of uniform input to all compartments.

Rising slope divided by peak. The slope, dv/dT, is determined at the point
where the rising EPSP attains half of its peak amplitude; this slope is often
the maximal rising slope. An amplitude independent quantity is obtained
by dividing this slope by the EPSP peak amplitude. The resulting dimen-
sionless shape index values cover a sixfold range, from 2.5 to 15.5 in Table 1.
Thus, for a membrane time constant, T = 5 msec, the quantity, (dv/dt) /v,
ranges from 0.5 msec-1 for input to compartment 10 alone, to 3.1 msec'
for input to compartment i alone. There is an approximate inverse propor-
tionality between these rising slope/peak values and the time-to-peak values,
in other words, the time to peak is approximately 1.6 times the reciprocal
of the rising slope/peak value. A similar proportionality was found to apply
to many experimental EPSP shapes, and a]so to theoretical EPSP shapes
computed with either the fast or the slow synaptic conductance time course.

Falling slope divided by peak. Here the slope, dv/dT, is determined at the
point where the falling EPSP attains half of the EPSP peak amplitude and
this slope value is divided by the peak amplitude. A value of 0.5 cor-
responds to uniform passive decay. The cases where synaptic input was
confined to compartments 1, 2, 3, or 4 all fall more rapidly than this because
of electrotonic spread out into the peripheral half of the chain, while the
cases where synaptic input was confined to compartments 6, 8, or 10 fall
slightly more slowly because of electrotonic spread toward the soma from the
peripheral half of the chain.

Plot of half-width versus time to peak. In comparing these theoretical
EPSP shapes with EPSP shapes observed in motoneurons, it was found use-
ful to represent each shape as a point in a two-dimensional plot: the ordinate
of each point is the half-width value, while the abscissa is the corresponding
time to peak. Several examples of such shape index plots are illustrated in a
companion paper (14). Such plots provide a means of grasping and compar-
ing the variety of EPSP shapes found for different values of the theoretical
parameters.

Effects of fast, medium, and slow synaptic input transient. Table 2 provides
a summary comparison of EPSP shapes obtained in three different computa-
tional series, using the three cases, fast, medium, and slow, of synaptic
conductance time course defined in METHODS. The numerical details of Table
2 are presented with the hope that they may be found useful in the exami-
nation of experimental results from various neuron types having different
membrane time-constant values, and a similar time course of synaptic
current or synaptic conductance; one example of this (for cat motoneurons)
is provided in a companion paper (14). Here, comments are made about
only a few general aspects of these numerical results. Perhaps most striking
is the fact that changing the input time course at single compartmental
locations has a proportionately much larger effect for proximal input loca-
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tions than for distal input locations. For example, both the time-to-peak
values and the slope/peak values change by a factor of about 3.5 (fast to
slow) for input in compartment 1, compared with a factor of 1.3 (fast to
slow) for input in compartment lo; the corresponding factors for half-width
are somewhat smaller. The increment of change in time-to-peak values
remains more nearly constant; this increment has a value of 0.15 (fast to
slow) for input in compartment 1 or 10. This can be understood approxi-
mately as follows: this common time increment represents primarily the
shift of peak depolarization in the input compartment caused by the change
in the synaptic input time course. The half-width does not behave in the
same way; the increments themselves decrease as input is shifted to more
distal locations, so much so that for inputs in compartment 8 or 10, the EPSP

Table 2. EPSP shape index values comparing effects of fast, medium,
and slow synaptic input transients

half-width value changes by less than 5% over this range of synaptic input
time course. Apparently the EPSP half-width is determined primarily by
the slowing and rounding effects of electrotonic spread from these distal
input locations. This conclusion receives additional support from the fact
that the same half-width values were also obtained with a square synaptic
conductance pulse (duration T .25) at these same distal input locations.

Effect of different electrotonic length. Computations were carried out to
discover how the EPSP shape index values change when the chain of 10
compartments is assumed to have a different effective electrotonic length.
This is important because of uncertainties about the correct value of the
characteristic length constant, X, even in experimental situations where the
actual dimension of the dendritic branches are fairly well known. As defined
in METHODS, an electrotonic length increment, ¿ìZ =0.2 per dendritic com-
partment, implies a value, Z = 1.8, for the electrotonic length of the 9 den-
dritic compartments. This length was used in computing the EPSP shapes of
Tables 1 and 2. Other computations were carried out with sitZ = 0.1, implying
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Location of Synaptic Japut All Cpts CpI i Cpt 2 Cpt 3 Cpt 4 Cpt 6 Cpt 8 Cpt IO

Time to peak (from foot)
Fast 0.11 .06 .09 .14 .19 .33 .54 .61
Medium 0.19 .10 .14 .19 .24 .38 .59 .67
Slow 0.35 .21 .25 .31 .37 .51 .68 .76

Half-width
Fast 0.80 .18 .33 .50 .69 1.12 1.41 1.44
Medium 0.88 .29 .42 .57 .73 1.14 1.42 1.46
Slow 1.07 .53 .63 .75 .89 1.24 1.47 1.52

(dV/dT)/V0, halfway up
Fast 17.7 27.0 17.6 12.3 8.9 5.2 3.1 2.6
Medium 9.4 15.5 11.0 8.5 6.8 4.5 2.9 2.4
Slow 4.8 7.6 6.1 5.1 4.3 3.2 2.4 2.0
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Z =0.9 for the 9 dendritic compartments, and with LtZ =0.4, implying Z =
3.6 for the dendritic chain.

Two useful approximate generalizations can be stated: doubling z.Z
approximately doubles the time-to-peak value obtained for a given input
compartment; a smaller factor, between 1.4 and 1.5, of increase was found
for the half-width values. More detailed results are summarized in Fig. 3,
which uses a common Z scale to plot the dendritic input locations in the 3
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FIG. 3. Effect of dendritic electrotonic length upon EPSP shape index values. Three

cases, ¿Z = 0.1, 0.2, and 0.4 per dendritic compartment, are shown. The three sets of com-
partment numbers, shown at left, are spaced to fit a common ordinate scale, expressed as
electrotonic distance, Z, shown at right. For each input location (as ordinate), both the
time-to-peak and the half-width values were plotted (as abscissa). The solid lines connect
points plotted for case (zZ = 0.4) where compartment 10 is Z =3.6 distant from the soma,
implying a value, Z = 3.6, for the dendritic electrotonic length. The dashed lines represent
the case (Z = 0.2) implying a value, Z = 1.8, for dendritic electrotonic length. The dotted
curves represent the case (Z = 0.1) implying a value, Z =0.9, for the dendritic electrotonic
length. The fast synaptic input transient (see METHODS) was used for all of these cases.

sets of computations; time-to-peak values and half-width values were both
plotted (as abscissa), for each of the several input locations (as ordinate).
It is instructive to compare two examples of input at the electrotonic dis-
tance, Z=1.2, away from the soma. Both compartment 4 with Z=0.4,
and compartment 7 with Z =0.2 are at this distance from the soma. In
both cases, the time-to-peak value was 0.45 in the EPSP computed at the
soma; however, the input in compartment 7 resulted in a longer half-width
value (1.31) than that (1.15) for the input in compartment 4. Both this
particular difference, and the deviations of the shorter curves from the longer
curves in Fig. 3, are consistent with earlier generalizations stating that elec-
trotonic spread toward the soma from the distal half of the chain causes the
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early decay to be slower than a spatially uniform decay, while electrotonic
spread from the proximal half to the distal half of the chain causes faster
early decay.' Figure 3 has the merit of displaying both shape index values
plotted versus one Z scale that is common to the three cases. For other
purposes it is useful to plot each of these half-width values against its cor-
responding time-to-peak value; such a plot can be found in a companion
paper (14, Fig. 6).

Comment on nonuniqueness. From the preceding figures and tables, it
is apparent that one caimot infer the location and time course of synaptic
input from EPSP shape alone. Most of these computed EPSP shapes can
be at least approximately duplicated by several alternative combinations of
synaptic input location and time course; by permitting multiple input loca-
tions, the number of possible combinations becomes greatly increased (14).
When an EPSP is very brief, this restricts consideration to more proximal
locations and to faster input transients, but some reciprocity of choice re-
mains within this range. When an EPSP is very slow, either or both slow
input time course and electrotonic distance of input location may be re-
sponsib]e. With slow experimental EPSP shapes one must beware of the
possible effects of temporal dispersion of synaptic activity. In any given
application to experimental EPSP shapes, it is important to assess the extent
to which one can safely assume reasonable ranges of values for these three
unknowns: synaptic conductance time course, restricted location of synaptic
input, and dendritic electrotonic length.

Comment on 5 or 10 compartments. Because quite a few computations
were done with a chain of 5 compartments, the effect of this upon EPSP
shape merits a brief statement. In particular, comparisons were made be-
tween a 5-compartment chain having ¿Z = 0.4 per compartment, and the 10-
compartment chain having zZ = 0.2 per compartment. The essential differ-
ence is a factor of 2 in the coarseness of lumping. As might be expected in-
tuitively, it was found that the EPSP shape computed for synaptic input re-
stricted to 1 coarse lump (e.g., compartment 2 of the chain of 5) was approxi-
mately the mean of the 2 EPSP shapes computed for the same synaptic input
time course restricted to one or the other of the 2 corresponding finer lumps
(e.g., compartment 3 or 4 of the chain of 10).

Combinations of synaptic input locations. It should be noted that the
variety of computed EPSP shapes is greatly increased when the synaptic
input is not restricted to a single location. Several examples of this are pro-

The mathematical treatment of such equalizing electrotonic spread (12) implies the
existence of several equalizing time constants which are smaller than the passive membrane
time constant. The relative values of these time constants depend upon the electrotonic
length of the equivalent cylinder or chain of compartments. Experimental determination of
the first equalizing time constant, relative to the passive membrane time constant provides
a means of estimating the underlying electrotonic length of the system. For the particular
case of cat motoneuron EPSP's, this experimental determination is complicated by the un-
known process that causes EPSP decay to end in an after-hyperpolarization; the response
to an applied current pulse appears better suited for this experimental determination, as
has recently been verified by P. G. Nelson (personal communication).
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vided in a companion paper (14, Fig. 5). Two examples are provided in a
later section of the present paper (Fig. 5) in the course of illustrating a more
general argument. A brief generalization can summarize the results of many
such computations: for any given synaptic excitatory conductance time
course, a somatic or proximal dendritic input location contributes especially
to the early rising portion of the E PSP, while a distal input location con-
tributes toward a longer half-width and toward a slower rise and fall; the
particular time-to-peak value and half-width value depend upon the relative
weights of the proximal and distal contributions of the two component
EPSP's (see Fig. 5 below for an illustration). It is helpful to note that for
EPSP shapes of small amplitude and different input locations, the two com-
ponent EPSP shapes sum almost linearly. Conditions for nonlinear summa-
tion are discussed in a later section of this paper, and (13, 14).

II. Computational dissection of synaptic and other electric current relating
transient excitatory conductance to the resulting EPSP

Only when synaptic input is uniform over the entire soma-dendritic
surface is it correct to deduce the time course of synaptic current from the
EPSP by a simple application of the differential equation

dV VI=C --
dt R

for a single lumped resistance in parallel with a single lumped capacitance.
In cases where synaptic input is distributed nonuniformly, unmodified
application of the above procedure would be expected to result in erroneous
inferences; such errors would be further compounded if incorrect values of
the membrane time constant were used (see 11 for a discussion of such
errors).

In an actual physiological case of localized dendritic synaptic input,
it would be extremely difficult to measure the true time course of synaptic
current at the dendritic location, and to compare this with the time course
of the electrotonic spread current which actually depolarizes the soma.
Here, advantage is taken of the complete information that can be obtained
from computational simulation of such situations.

The example illustrated in the right-hand side of Fig. 4 represents a
case of synaptic input that was restricted to compartment 6 of a chain of 10
compartments. The dotted curve at upper right represents the time course
of the excitatory conductance transient in compartment 6, while the solid
curve at lower right represents the resulting EPSP in compartment 1. All of
the dashed curves represent electric currents, each of which plays a role in
the complex of events relating the EPSP to the conductance transient. The
uppermost dashed curve represents the synaptic current that is generated
in compartment 6 by the excitatory conductance transient. Its time course
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FIG. 4. Computational
dissection comparing tran-
sienta of conductance, current,
and voltage in perturbed com-
partment and in compartment
1, for 2 cases. Top left shows
the 8 transient in compart-
ment 2 of a chain of 10 com-
partments; this was responsi-
ble for all of the current and
voltage transients shown on
the left side of the figure. Top
right shows the 8 transient in
compartment 6 of a chain of 10
compartments; this was re-
sponsible for all of the current
and voltage transients shown
on the right side of the figure.
Both 8 transients are plotted
to a common ordinate scale,
expressed as dimensionless 8
values. All of the current tran-
sients, shown as dashed lines
at left and right, have been
plotted to a common ordinate
scale; the ordinate scale values
express the dimensionless
slope, du/dT. All of the volt-
age transients, shown as solid
curves at left and right, have
been plotted to a common
ordinate scale; however, the
dimensionless u values are
exactly one-tenth of the nu-
merical scale shown; the EPSP
peak amplitude in compart-
ment 1 is u =0.10 in both
cases.
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is very similar (but not identical)2 to that of the conductance transient
This synaptic current is not completely available for depolarizing the mem-
brane capacity in compartment 6; it must also supply the "loss current"
consisting of current spread from compartment 6 to compartments 5 and 7,
as well as a small leak, or self decay, through the resting membrane resistance
of compartment 6.

A graph of this loss current is shown superimposed upon that of the syn-
aptic current, and these two currents can be seen to be of quite comparable

2 This synaptic current reaches its peak value at T =0.075, which is earlier than the
time, T = 0.092, of peak conductance. This can be understood in terms of the effective
driving potential, (1-u), which falls as the membrane becomes more depolarized. The
synaptic current is proportional to the product, (1-u) 6, in compartment 6. At T = 0.075,
rounded values are u = 0.19 and 6=9.7; thus, the synaptic current is proportional to (0.81)
(9.7) = 7.9, at this time. At T = 0.092, rounded values are u = 0.22 and C = 9.9; thus, the
synaptic current is smaller, being proportional to (0.78) (9.9) = 7.7, at this later time.
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magnitude. The loss current has a smaller and later peak, but for times
greater than T = 0.19, the loss current exceeds the synaptic current. It is the
difference between these two currents that must be regarded as the net
depolarizing current in compartment 6. This net current is also shown in the
figure, together with the voltage transient in compartment 6. This net cur-
rent peaks earlier and has a peak amplitude that is less than half that of the
actual synaptic current; also, this net current is negative for times greater
than T = 0.19, because this is when the loss current exceeds the synaptic
current. For the same reason, the peak depolarization in compartment 6
also occurs at T = 0.19, and the decay from peak depolarization is faster
than for a purely passive decay of a uniformly distributed depolarization.

But this is not the end of the story. So far, attention has been focused
upon the dendritic location designated as compartment 6. What happens at
the soma, here represented as compartment 1? One could present, in turn,
the current spread from compartment 6 to 5, then 5 to 4, 3 to 2, and finally
2 to 1; only the net current from compartment 2 to compartment 1 is illus-
trated in Fig. 4. This current has a much smaller and later peak than the
synaptic current or any of the other currents illustrated. However, from the
perspective of compartment 1, it is this current that generates the EPSP
by flowing into the parallel resistance and capacity of compartment 1.

This EPSP reaches its peak amplitude (y = 0.1) at T = 0.62, and the
early part of its decay is slower than for a case of passive decay of a uniformly
distributed depolarization. This slower decay can be attributed to the tail of
current spreading to the soma from the dendrites; however, one should
hasten to add that this entire EPSP must be attributed to current spread
from the dendrites.

Further understanding of these results can be obtained by comparing the
right and left sides of this figure. The left side represents a similar computa-
tion for the case of synaptic input confined to compartment 2, which may
be thought of as corresponding to the proximal portions of the dendritic
trunks. The left and right sides have been plotted to the same scale, to
facilitate visual comparisons of amplitude and time course. Thus, in com-
partment 2, with the same excitatory conductance time course, the required
amplitude is only one-fourth that required in compartment 6. The synaptic
current at left is slightly more than one-fourth that at right. The relation
of loss current and synaptic current is qualitatively similar at left and right.
The net depolarizing current in the perturbed compartment is smaller and
slower at left; the peak is one-fourth as great and the reversal to negative
values occurs at T = 0.24 as compared with 0.19 at right. As before, this
necessarily defines the time of peak depolarization in the perturbed compart-
ment, and the decay is more rapid than for passive decay of a uniformly
distributed depolarization. The time course of current flowing from compart-
ment 2 to compartment i is shown at lower left; this time course is propor-
tional to the difference between the voltage transients in these two com-
partments, both of which are shown as solid curves at left. This current has
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negative values for times greater than T = 0.36; this means that the spread
of current into the dendrites is sufficient to make the depolarization in com-
partment 2 decay more rapidly than in compartment 1; after T = 0.36, there
is a flow of current all the way from compartment 1, through compartment
2, into the dendritic periphery.

Perhaps favorable experimental preparations will permit a test of some
of these predictions in the near future. At present, it seems fair to say that
such computations help to illustrate the importance of synaptic input loca-
tion to a consideration of the relation between synaptic current, the loss
current due to electrotonic spread, and the net depolarizing current in any
given compartment.

III. Synaptic intensity required at different soma-dendritic locations: amount
of nonlinearity for different amplitudes and locations

If the same EPSP amplitude is to be obtained, at the soma compartment,
it is intuitively obvious that a greater intensity of synaptic excitatory con-

Table 3. Synaptic intensity (peak 8) dependence upon location, upon conductance
time course, and upon prescribed EPSP amplitude at soma

ductance is needed when synaptic input is confined to a single compartment,
as compared with equal input to all compartments. Also, for a chain of equal
compartments, it would be expected intuitively that the required synaptic
intensity would increase with increasingly distal compartmental location,
because of the electrotonic attenuation expected during passive spread from
the distal compartment to the soma. To go beyond such qualitative expecta-
tion, it is best to refer to the computational results.

Rows A and C of Table 3 list the peak values of synaptic excitatory
intensity (peak 8) found necessary to produce the two EPSP series (small
and large) whose shapes were il]ustrated in Fig. 2 and summarized in Table
1; the small EPSP series had peak u = 0.01 in the soma compartment, while
the large EPSP series had peak u = 0.10 in the soma compartment. In rows
A and C, it can be seen for both series that the synaptic intensity (peak 8)
required in compartment 1 alone was about 2.4 times that required for equal
input to all compartments, and that required in compartment 2 alone was
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Location of Synaptic Input All Opta Opt I Opt 2 Cpt 3 Cpt 4 Opt 6 Opt 8 Opt 10

Medium conductance transient
A. Peak &forvmallEPSP, v=0.Ol .109 0.256 0.406 0.612 0.89 1.7 2.6 3.08
B. (Peak vin input compartment) (0.01) (0.01) (0.011) (0.015) (0.022) (0.041) (0.083) (0.11)
C. Peak cforlargcEPSP,v=O.10 1.15 2.74 4.41 6.88 10.5 24.3 49.9 234.
D. (Peak vin input compartment) (0.1) (0.1) (0.11) (0.155) (0.22) (0.405) (0.602) (0.94)

Slow conductance tranoient
E. PeakcforlargeEPSP,v=0.10 0.58 1.75 2.50 3.55 5.01 9.86 17.1 33.6
F. (Peak vin input compartment) (0.1) (0.1) (0.106) (0.125) (0.16) (0.28) (0.43) (0.73)
G. PeakJ for IPSP. v=-0.05 4.05 13.9 20.5 34.6 72.2 >10'
II. (Peak vin input compartment) (-0.05) (-0.05) (-0.053) (-0.062) (-0.077) <(-0.095)
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about 3.7 or 3.8 times the value for all compartments. For these three syn-
aptic input distributions, the peak E; values of row C are between 10 and 11
times those of row A, indicating approximate linearity over this 10-fold range
of EPSP amplitude. Such approximate linearity does not hold, however,
for the more distal input locations. In particular, for synaptic input re-
stricted to compartment 10, row A shows a peak E; value that was about 28
times its reference value for all compartments, while row C shows a peak
value that was about 204 times its reference value. Put another way, the
peak E; value of 234 in row C is 76 times that in row A, although it produces
an EPSP which is only 10 times larger; this represents a very significant
nonlinearity. For input to compartment 8, the row C value is about 19 times
the row A value, and for compartment 6, the corresponding factor is about
14; both indicate significant nonlinearity. To understand the essential
difference between those cases showing very significant nonlinearity and
other cases showing approximate linearity, it is important to examine the
amount of depolarization that takes place in the compartment which receives
the synaptic input, and to bear in mind that synaptic current is proportional
to the product (l-v)E;, as it varies with time in the input compartment.

Peak depolarization at input compartment. The time course of membrane
depolarization in the input compartment (as illustrated in Fig. 3) was com-
puted routinely in most of the synaptic potential computations. For each
case in Table 3, the peak depolarization at the input compartment is tabu-
lated as a number enclosed by parentheses. It can be seen that the values
in row D are all about 10 times those in row B. However, it is instructive
that in the extreme case of input to compartment 10, it was not possible for
the peak y value in row D to equal 10 times that of row B, because the limit-
ing value of u, for E; very large, is u = 1.0 (see METHODS). This means that the
10-fold increase of the EPSP (at the soma) was achieved in spite of the ampli-
tude limitation at the input compartment. The very large synaptic intensity
(peak E; = 234) produced an atypical depolarizing transient in compartment
10: its peak occurred earlier (T = 0.06 as compared with T =0.11), it had a
saturated, flat-topped shape, and its area was presumably close to 10 times
that of the undistorted depolarizing transient of the small EPSP series. It
is not suggested that such extreme cases need occur in nature; equally
potent distal synaptic input can be achieved with smaller synaptic intensity
over 2 or 3 distal compartments. The essential point is that the 10-fold
increase of the EPSP at the soma corresponds, in every case, to a 10-fold
increase of the depolarizing transient at the input compartment. The non-
linearities demonstrated by the upper half of Table 3 can thus be ascribed
to the more than 10-fold increase of synaptic intensity required to produce
the 10-fold increase of depolarization in the input compartment. This non-
linearity is greatest for dendritic input locations where the peak depolariza-
tion is greatest. In other words, peak E; must increase more than 10-fold to
compensate for the decrease in driving potential (l-v). This source of non-
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linearity was tested quantitatively by means of an additional set of computa-
tional experiments.

Nonlinearity of EPSP amplitude increase for a 10% increase of synaptic
intensity. For each of the synaptic intensity values in row A of Table 3, an-
other EPSP was computed with a synaptic intensity that was 10% larger in
amplitude, but had the same time course as before. The results (not shown in
Table 3) demonstrate how the percentage of increase in EPSP amplitude
depends upon the amount of depolarization that occurred in the input com-
partment. When the original peak y in the input compartment was around
0.01, the 10% increase of peak g produced an EPSP amplitude increase of
about 9.9%. Original peak u values of 0.041 and 0.063 resulted in EPSP
amplitude increases of 9.64% and 9.47%. For the larger EPSP series, original
peak u values of 0.405, 0.602, and 0.94, respectively, resulted in EPSP ampli-
tude increases of 6.5, 4.6, and 1.5%, respectively. In most of these cases the
percentage increase of EPSP amplitude was fairly well approximated by the
expression

P 10(1 - 0.9y)

where y represents the original peak u value in the input compartment, and P
represents the percentage increase of EPSP amplitude for 10% increase of
synaptic intensity. As the original peak u value ranges from O to 1.0, the
quantity inside the parentheses ranges from 1.0 to 0.1; the departure of this
quantity from unity is obviously a measure of the nonlinearity for small in-
crements of perfectly synchronous synaptic input at the same location.

This nonlinearity is similar to that derived earlier for muscle end plate
potentials (7), and that derived for initial slopes and steady-state depolariza-
tions in response to a step conductance change (12, 13). However, the end-
plate potential treatment explicitly neglected reactances, and neither treat-
ment provided for a smooth conductance transient, or for the computed peak
of a transient depolarization; also neither calculation of nonlinearity pro-
vided for distant input locations. All of these difficulties are provided for in
the present computations. Thus, it is useful to have determined that. all of
these nonlinearities are rather similar, when attention is focused on the mem-
brane depolarization at the site of the conductance transient.

Large nonlinearities implicate dendritic conductance transients. The com
puted results summarized above provide the theoretical basis for a recogni-
tion of the significance of occasional large nonlinearities observed in the
summation of EPSP amplitudes (1, 14). First, a significant nonlinearity is,
by itself, suggestive evidence for a membrane conductance transient at the
input location. Second, when the observed nonlinearity significantly exceeds
that which could be accounted for in terms of the peak depolarizations at the
soma, this suggests that the synaptic input occurred at dendritic locations,
sufficiently distant and sufficiently circumscribed to account for the needed
peak depolarization at the input location. It is not necessary that the addi-
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tional synaptic input should occur at the same location as the control input;
it would be sufficient for the control input to generate a depolarization which,
as it spreads to the location of the additional synaptic input, is of sufficient
magnitude (at the time of this additional conductance transient) to account
for the nonlinearity.

Synaptic intensity with slow conductance time course. It should not be sur-
prising that the peak synaptic intensity (peak 8) required to produce a given
EPSP amplitude is reduced when the time course of the synaptic conduc-
tance is changed from the medium transient to the slow transient. This can
be verified in Table 3 for the large EPSP amplitude (u = 0.10) at the several
input locations tabulated (row E compared with row C). Since, for unit peak
amplitude, the area under the slow transient is 2.3 times that under the
medium transient, it is not surprising that the required peak 8 for uniform in-
put to all compartments was about half as much for the slow conductance
transient as for the fast conductance transient (0.58 compared with 1.15);
one can understand why the full factor of 2.3 was not obtained by noting
that the slow transient has a sigiiificant tail at times after the EPSP peak is
attained. For input locations near the soma, this factor is even smaller, be-
cause the EPSP peak occurs earlier. For input locations beyond compart-
ment 5, the factor relating peak 8 values exceeds 2.3, because the EPSP
peaks occur later, and because the fast dendritic transients encroach farther
into the nonlinear domain.

One functional implication of this result is that a small amount of tem-
poral dispersion can enhance summation of input to a common peripheral
dendritic location, while the same amount of temporal dispersion can reduce
the peak summation for brief input delivered to the soma or a proximal den-
dritic location.

Synaptic inhibitory conductance intensity at different locations. The lower
part of Table 3 shows the results of a series of computed inhibitory postsyn-
aptic potentials (IPSP). These were computed with the slow conductance
time course. It was assumed that the limiting value, (E Er)/(E, Er)

0.1, and the prescribed IPSP amplitude was half of this (u = 0.05),
corresponding to 3.5 mv if E Er =70 mv. Because this prescribed IPSP
amplitude represents half the limiting amplitude, it should not be surprising
that the required peak ,j values display very significant nonlinearity. If
linearity had held perfectly, these peak j values would have been exactly 5
times the peak 8 values for EPSP amplitudes of u = .10; however Table 3
shows ratios closer to 10, for several input locations. At compartment 6, the
nonlinear saturation effect is so great that even a 100 times greater con-
ductance peak is not sufficient. The large j values are needed to compensate
for the small driving potential. An interesting functional implication of this
result is that distal dendritic synaptic inhibition is not effective in producing
an IPSP at the soma, although this same input could be very effective against
synaptic excitation delivered to the same dendritic locations (4, 5, 12, 13).

Çombi nations of synaptic excitation and inhibition at different locations. It
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proved instructive to compute the results of combining some of the excita-
tory and inhibitory synaptic inputs that have already been presented sepa-
rately in rows E and G of Table 3. Thus, for example, when peak E = 1.75 and
peak j = 13.9 were placed simultaneously in compartment 1, the resulting
synaptic potential had a peak amplitude, y = 0.0124, that was significantly
smaller than would have been obtained by a simple summation of the syn-
aptic potential amplitudes, u = +0.10 and u = 0.05, obtained separately.
Quite another result was obtained when peak = 5.01 and peak j = 72.2 were
placed simultaneously in compartment 4; the resulting synaptic potential
had the opposite sign; its peak amplitude, u = 0.0146 in compartment i re-
sulted from a peak hyperpolarization, u = 0.0224, in compartment 4. This
rather surprising result can be understood by noting that the peak j value in
compartment 4 was more than 10 times the peak value in compartment 4,
and this factor more than compensates for the 10-fold smaller inhibitory
driving potential. In other words, the synaptic inhibition was more powerful
than the synaptic excitation, even though the separate synaptic potential
amplitudes, u = +0.10 and u = 0.05, were the same as above. This extreme
example provides a further illustration of the fact that synaptic potentials
observed at the soma do not provide a reliable measure of the relative po-
tency of synaptic excitation and inhibition combined at a common dendritic
location. It is more than sufficient to account for the observations (14, Fig.
7B) which we have attributed to interaction at a dendritic location.

Other computations, in which synaptic excitation and inhibition were
placed in different dendritic trees of the same neuron, demonstrated that
such electrotonic separation of input locations can account for the linear
summation of EPSP and IPSP that is sometimes observed experimentally
(14, Fig. 7A).

IV. Effects of steady hyperpolarizing current upon EPSP shape
There have been numerous experiments and interpretations concerned

with the effects of a steady hyperpolarizing current. This current is applied
inward across the soma membrane between an intracellular microelectrode
and a distant extracellular electrode; after the nerve membrane has reached a
steady state of hyperpolarization, an EPSP is evoked by synaptic input; the
shape of this EPSP is compared with that obtained without membrane hy-
perpolarization. The question is: what change in EPSP shape should one
expect to find for various soma-dendritic locations of synaptic input? It was
pointed out in 1960 (11, p. 522-523 and 528-529) that ". . . steady state
hyperpolarization of the membrane must be greatest at the soma and must
decrease electrotonically with distance along the dendrites. Under such con-
ditions (with uniformly distributed synaptic input), both the density of syn-
aptic current and the amount of depolarization caused by the brief excitatory
conductance increase must be greatest at the soma. This nonuniformity will
cause a more rapid EPSP decay." At that time, however, a detailed con-
sideration of the effects upon EPSP rising slope as compared with EPSP
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amplitude was not attempted. Also, at that time, the phenomenon of anoma-
lous rectification (8) had not seceived much attention. Here, attention will be
focused upon EPSP properties that can be predicted without complication
by anomalous rectification. The focus is upon the consequences of different
synaptic input locations when synaptic input is represented as a transient in-
crease of excitatory membrane conductance.

Expected increase of EPSP slope and amplitude. For EPSP computations
with such steady-state hyperpolarization, should one expect both the rising
slope and the peak amplitude of the EPSP to increase by the same factor?
The answer is no, in general, but yes for all cases when synaptic input is re-
stricted to a single compartmental location. This answer has been verified by
numerous examples of such EPSP computations; it is explained below in
physical intuitive terms; a mathematical demonstration will be given else-
where.

Electrotonic decrement of steady-state hyperpolarization. In an equivalent
cylinder of electrotonic length, Zr, the relative values of steady-state hyper-
polarization, as a function of electrotonic distance, Z, can be expressed
cosh(Z-Z)/cosh Z,, on the assumption that hyperpolarizing current is ap-
plied at one end, Z = O, of the cylinder, and that the other end, Z = Zrn, is a
sealed end (see ref. 9 or 10, Fig. 3). For a chain of five compartments, with
LZ =0.4 per compartment, and with Z =0 in compartment 1, we have Zm
= 1.6 at the dendritic terminal in compartment 5. With this value of Zm, con-

sider, for example, a steady-state hyperpolarization that amounts, in com-
partment 1, to a 20% increase of the synaptic excitatory driving potential.
For this case, the decreasing amounts of steady-state hyperpolarization in
the four dendritic compartments are 14% in no. 2, 10% in no. 3, and roughly
8% in both nos. 4 and 5.

Factor of EPSP increase for single input location. When the synaptic ex-
citatory conductance transient is restricted to a single compartment, the
effect of steady-state hyperpolanzation is to increase the computed EPSP
amplitude by the same factor over its entire time course; thus both the rising
slope and the peak amplitude are increased by precisely the same factor. This
factor exactly equals the factor of increase in synaptic current, which exactly
equals the factor of increase in the excitatory driving potential at the par-
ticular compartment in which the synaptic conductance transient is assumed
to occur. Only when the synaptic input occurs at the soma will this factor of
increase be the same as that of the excitatory driving potential at the soma;
then a 20% hyperpolarization at the soma would produce a 20% increase in
EPSP slope and amplitude. Such a case is illustrated by curves A1 and A2 in
Fig. 5. In contrast, curves B1 and B2 result from synaptic input restricted to
compartment 4 of a five-compartment chain. Here the slope and amplitude
of curve B2 are only 8% greater than those of curve B1, and this corresponds
to the 8% steady-state hyperpolarization in compartment 4 when 20% hy-
perpolarization is maintained at the soma compartment. In other words, the
electrotonic decrement of steady-state hyperpolarization is responsible for a
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different increase of excitatory driving potential at each compartmental loca-
tion, and it is the factor of increase in driving potential at the one-compart-
ment receiving synaptic input that determines the factor of increase in EPSP
slope and amplitude. In these cases, EPSP shape is unchanged.

EPSP shape change with compound synaptic input locations. When syn-
aptic input is distributed to two or more compartments, the effect of steady-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
tir
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FIG. 5. Effect of steady-state membrane hyperpolarization (applied at soma), upon
computed EPSP shape for (A) proximal input, (B) distal input, and (C) combined proximal
and distal input. Subscript i designates each control EPSP computed without hyperpolar-
ization. Subscript 2, designates the increased membrane potential transient at the soma
compartment obtained with a steady-state hyperpolarization equal to 20% at the soma
compartment. Computations were with a five-compartment chain, with zZ = 0.4; the
medium time course of synaptic membrane conductance was used for all cases. Case (A)
corresponds to peak 8=0.10 in compartment 1; case (B) corresponds to peak 8=0.55 in
compartment 4; case (C) corresponds to a combination of these two inputs; one unit of the
ordinate scale corresponds to v = 0.001, for these particular peak 8 values.

state hyperpolarization upon the EPSP is more complicated. The peak
amplitude is increased by a factor that is smaller than the factor of increase
in the early rising slope; also, the peak occurs earlier in time, and the fall to
half of peak amplitude also occurs earlier. These changes, it should be em-
phasized, are predicted without introducing any complications due to anom-
alous rectification. These changes can be understood in terms of the different
amounts of increase in the synaptic excitatory driving potential at the sev-
eral compartments receiving synaptic input. The input compartment nearest
to the soma has the largest factor of increase in driving potential; this factor
largely determines the factor of increase in the early rate of rise of the EPSP.
Thus, in Fig. 5, where curves C1 and C2 were generated by a compound syn-
aptic input (in compartments i and 4), the early slope (halfway up) is 20%
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greater in C2 than in Ci, as it is also in A2 compared with A1. However, the
peak amplitude of C2 is only 14% greater than that of C1, and the time of
peak is shifted from T = .43 to T = .17, providing a fairly extreme example of
such a shift. Also, one can deduce that C2 falls to one-half of its peak ampli-
tude at an earlier time than does C1, because the peak of C2 is 14% greater,
while the tail amplitude of C2 is only 8% greater than that of C1.

This one example shows why it should not be expected, in general, to
have EPSP shape remain the same with and without steady-state hyper-
polarization. Nevertheless, it should be added that the experimental observa-
tions (8) include cases where the rising slope is increased by as much as 20%
without any significant increase of peak amplitude; in such cases, the phe-
nomenon of anomalous rectification (8) presumably contributes as much or
more to the EPSP shape change as does the compound input location effect
illustrated in Fig. 3.

Different observations with hyperpolarizing carrent. It is possible to account
for several different experimental observations that might, at first glance,
appear to conflict with the theoretical predictions. For example, hyperpolar-
izing current can produce a large increase of EPSP amplitude with an EPSP
shape of very slow time course. These slow EPSP shapes do not imply distal
dendritic synaptic input; in all cases that have come to my attention, these
shapes can be explained by temporal dispersion of a polysynaptic input that
could be somatic or proximal dendritic.

Sometimes a 30-mv hyperpolarization produces as much as a threefold
increase of EPSP amplitude. To account for this, one must bear in mind that,
when both synaptic excitatory and inhibitory activity are present, the syn-
aptic "equilibrium potential" becomes a weighted mean of the separate ex-
citatory and inhibitory values

Eeq - Er =
(E - Er)8 + (E Er)g

see and compare V* of (12) and u. of (13). For example, if the effective driving
potential, Eeq Vrn, should happen to be 15 mv, then a 30-mv hyperpolariza-
tion would increase the effective driving potential to 45 mv, and this would
account for a threefold increase in synaptic potential amplitude. Whenever
one cannot exclude the possibility of temporal dispersion or the possibility of
mixed excitatory and inhibitory effects, one must beware of requiring the
theory to account for the observations without benefit of these additional de-
grees of freedom.

At the other extreme, there are experiments which produce no significant
increase of EPSP amplitude with steady-state hyperpolarizing current. For
such cases it is relevant to ask the magnitude of the smallest increase that
could have been detected, and then to ask how dendritically remote the syn-
aptic input would have to be to account for this theoretically, without the
help of anomalous rectification. Suppose, for example, that the experimental
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procedure would fail to detect a 4% increase, and that the hyperpolarization
at the soma was 20%; this would require that the electrotonic decrement of
the hyperpolarization from the soma to the synaptic input location be a fac-
tor of 5 or more. From a table of hyperbolic cosine values, one can see that
Zm = 2.3 would be a sufficient dendritic electrotonic length to account for this
with terminal dendritic synaptic input. Alternatively, for longer dendritic
electrotonic length (Z,,, 4), the synaptic input location would need only be
Z =1.6, to account for this much exponential decrement. In other words, an
undetected increase of EPSP amplitude in such experiments need not conflict
with theoretical predictions.

V. Detectability at the soma, of transient synaptic conductance
at different soma-dendritic locations

The basic question to be answered here is this: given a dendritic synaptic
conductance transient which generates an EPSP of respectable size at the
soma, should one expect to obtain, with microelectrodes at the soma, ex-
perimental evidence that detects the synaptic conductance transient, as
distinguished from a synaptic current transient? If experimental methods
were perfect, the answer would certainly be yes; however, since there is sig-
nificant experimental noise to contend with, the question becomes a quanti-
tative one of estimating whether the theoretically predictable effect is large
enough to detect by present experimental techniques. In fact, the theoretical
results presented below suggest that the predicted effect for proximal den-
dritic input locations may be above the present threshold for experimental
detection, while that for distal dendritic input locations may be below the
present threshold for experimental detection. Future experiments may, of
course, succeed in shifting the detection threshold.

Computational experiment. Although the experimental approach (15) has
been to analyze transients obtained with an a-c impedance bridge technique,
my own preference has been to consider a constant current applied at the
soma, and to analyze the distortion of the EPSP transient that is theoreti-
cally predicted under such conditions. The results of computations for one
case of transient dendritic synaptic conductance are illustrated in Fig. 6. In
this case, the conductance transient was restricted to compartment 3 of a
chain of five compartments (with iiZ = 0.4 per compartment). A constant
current was applied to compartment 1 (the soma) at zero time; the two solid
curves at left illustrate the passive response in compartment i to depolariz-
ing and hyperpolarizing current. The two solid curves at right illustrate the
slower and smaller passive response computed in compartment 3 for the same
constant current applied at the soma. These solid curves thus represent con-
trol transients of membrane potential obtained in the absence of any syn-
aptic conductance transient. Perfect symmetry between upper and lower
curves reflects the fact that all membrane parameters are assumed to remain
constant (i.e., independent of membrane potential).

Next, a synaptic conductance transient was introduced in compartment
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3 (at T = 1.0) after the initiation of a constant current at T =0. This syn-
aptic conductance had the medium time course (defined in METHODS, and
shown at lower right of Fig. 6), and the synaptic intensity was made equal to
that which would produce an EPSP amplitude of u = 0.10 in compartment i
in the absence of applied current. The dashed curves in Fig. 6 show the dis-
torted membrane potential transients that were computed for compartments

02 0.4 0.6 0.8 lO 1.2 1.4 1.6 0.2 0.4 0.6 0.8 IO 12 1.4 1.6 tIr

FIG. 6. Transients related to the detectability of a dendritic conductance change. The
left side shows transients computed for compartment i in a chain of five compartments
(zZ = 0.4), while the right side shows transients computed for compartment 3. The solid
curves at left and right show the voltage transients which result when a constant-current
step is applied to compartment 1 at zero time; the upper solid curves result from depolariz-
ing current; the lower solid curves result from hyperpolarizing current. The dashed curves
show the change in these voltage transients computed when a brief synaptic excitatory in-
put was put in compartment 3. The synaptic input began at T = 1.0, had a peak 1 value of
9.52, and had the medium time course shown at lower right. The dotted curves show the
deviation from the solid curves obtained in computations with the same conductance tran-
sient, but with E, = Er. The same dotted transients were also obtained by computing one-
half of the difference between the upper dashed curve and the lower dashed curve. Ampli-
tude scale expresses dimensionless units of u.

1 and 3 for both depolarizing and hyperpolarizing applied current. When the
peak amplitudes of these dashed curves are measured as departure from the
solid curve control transients, a simple generalization becomes apparent. In
both compartments, the upper peak (obtained with depolarizing current) has
an amplitude that is 10% smaller than it would be in the absence of the ap-
plied current, while the lower peak (obtained with hyperpolarizing current)
has an amplitude that is 10% larger than it would be in the absence of the
applied current. This 10% change in amplitude is easily explained by the
effective driving potential in compartment 3 at the time of the synaptic con-
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ductance transient; at this time, the two solid curves show depolarization or
hyperpolarization corresponding to u = ± 0.1, implying effective synaptic
excitatory driving potentials (1-u), that are 10% smaller or larger than the
resting value. It should be added that this 10% distortion could be doubled
to 20% simply by doubling the intensity of the applied current.

Computational dissection of distortìon due to conductance transient. The
deviation of the dotted curves from the solid curves is a measure of the above
distortion alone. This can be obtained in two different ways. The easiest way,
computationa]ly, is simply to set the excitatory emf, E,, equal to the resting
emf, Er, in all compartments. Then, in the absence of applied polarizing cur-
rent, the conductance transient would produce no voltage transient what-
ever, but, in the presence of applied current, the dotted curves are predicted.
The effective driving potential for the deviation of the dotted curves from
the solid curves is simply the u = ± 0.1 polarization in compartment 3 at the
time of the conductance transient.

The significance of these dotted curves is that they represent the distor-
tion imposed upon the solid control transients by the conductance transient,
but without the excitatory ernf. It is this distortion that is attributable to the
conductance transient alone. It is the detectability of this distortion in com-
partment 1 that needs to be assessed.

The alternative method of obtaining these dotted curves consists es-
sentially of canceling the effect of E, by taking a difference between two
(dashed curve) transients. At both left and right in Fig. 6, the upper dotted
curve can be obtained by taking, for every T, one-half the ordinate of the
upper dashed curve minus one-half the ordinate of the lower dashed curve.
Although the figure may show this imperfectly, this result was computa-
tionally precise; it is an exact mathematical consequence of assuming a
linear system in which all coefficients, whether constant or time dependent,
are independent of the membrane potential, and hence unchanged by both
depolarizing and hyperpolarizing applied currents.

Computed distortion related to a-c bridge imbalance. The previous para-
graph has been explicit about canceling the effect of E, by taking appropriate
differences between transients of opposite polarity, because this concept is
rather similar to that of averaging a-c bridge imbalance over all positive and
negative phases of the sinusoidal period, as in the experimental method de-
vised by Smith et al. (15). The end result of such averaging may be regarded
as roughly comparable to the dotted distortion in compartment 1 of Fig. 6.
The a-c method has a number of complications which have been discussed in
the APPENDIX of (15).

Computed distortion as percent distortion. As noted earlier, the magnitude
of the dotted distortion in Fig. 6 could be increased by increasing the in-
tensity of the applied current. But this would also increase the amplitude of
the solid curve control transients and, presumably, also the amplitude of the
experimental noise which limits the precision of experimental measurements.
Thus, it seems appropriate to express the amplitude of the computed distor-
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tion as a percentage of the solid curve control amplitude. In compartment 3,
this percentage is 33, but in compartment 1, where experimental observation
would have to be made, the percentage distortion is only 3.5, as labeled in
Fig. 6. The approximate factor of 10 relating these 2 percentages can be
understood as due to a factor of nearly 3 in the electrotonic decrement of
membrane polarization from compartment no. i to no. 3 at T =1.0, and a
factor of about 3.3 in the decrement of the transient peak amplitude from
compartment no. 3 to no. 1. The resulting 3.5% distortion at the soma com-
partment probably lies close to the threshold for detection by the experi-
mental techniques of Smith et al. (15).

Effect of different input locations. This computational experiment was re-
peated with different locations of the conductance transient. Each column of

Table 4. Detectability of conductance transient

A. Perturbed compartment

Synaptic intensity (peak 8)in
perturbed cpt
Time of peak distortion of y in
cpt i
Distortion of y in cpt 1 when
E, =E.
Distortion (D) expressed as
percent of control response to
current step alone

Distribution of y over five cpts,
atT=1.0
Relative values of F

Table 4 summarizes the results of one of these experiments; column 3 is the
same as that already illustrated in Fig. 6. In each case, the conductance
transient had the same medium time course, and its intensity (row B of
table) was made equal to that previously found necessary to produce an
EPSP of amplitude, y = 0.10, under normal conditions. When E, =Er, the
distortion in compartment 1, for each case, is expressed in dimensionless
units of u, in row D of the table. To assess the detectability of each distortion,
it is expressed (in row E) as a percentage of the control transient (solid curves
at left in Fig. 6) at the time of peak distortion (time shown in row C). This
shows that a 9.8% distortion is predicted when the conductance transient
occurs in compartment 1, while only a 1.7% distortion is predicted when the
conductance transient occurs in compartment 5. Also, for the case of a con-
ductance transient distributed equally to all five compartments, the last
column shows a prediction of an 8.5% distortion.

Detectability. Thus, an experimental procedure which can detect only
those distortions that exceed 3.5% would be expected to detect the distortion
caused by the two cases of proximal input (colnmns 1 and 2), and by the
equal input to all five compartments; it would fail to detect the two cases of
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distal dendritic input (columns 4 and 5), and might barely detect the case of
input to compartment 3 of the chain of five compartments. All of these cases,
it should be noted, involve substantial conductance transients, each of which,
under normal conditions, would produce an EPSP amplitude of y = 0.10 at
the soma.

Electrotonic spread of membrane polarization provides key. Useful physical
intuitive understanding of these results can be gained by comparing rows D
and Fof Table 4. Row F shows the compartmental distribution of membrane
depolarization, u, (at T = 1.0) due to the depolarizing current step applied to
compartment 1 at T =0; this was the same in each experiment. When E,

Er, these values correspond to what can be regarded as the effective driving
potential in each compartment, for a conductance transient applied, at T
=1.0, to that compartment. Inspection shows that in each of the experi-

ments, the distortion in compartment 1 (row D) is very nearly one-tenth of
this effective driving potential (row F) of the perturbed compartment; the
factor of 10 reflects the fact that the EPSP amplitude had been prescribed as
one-tenth the normal driving potential. Also, the relative values (row G) of
the membrane depolarization at T = 1.0 are related to the percent distortion
values (row E) by nearly a factor of 10. In other words, relative detectability
at the soma depends upon the relative amount of electrotonic spread from
the testing electrodes to the site of the conductance transient.

Additional generalizations. This simple generalization provides a basis for
understanding several other related generalizations. 1) If the transient con-
ductance were initiated earlier than T = 1.0 for a constant current applied at
T = 0, the electrotonic spread into the dendrites would be less, and the de-
tectability of dendritic conductance change would be even worse than in
Table 4. 2) From these idealized considerations alone, the detectability of
dendritic conductance change would be greatest when the electrotonic spread
from the applied current reaches a steady state. This fact can perhaps be ex-
ploited with some neuron types; however, in the case of cat motoneurons,
anomalous rectification (8) complicates such steady states. 3) High-fre-
quency sinusoidal applied current is useless for testing dendritic conductance
change, because most of this current flows across the soma membrane capaci-
tance (see ref. 11, p. 517 and 530). 4) At low frequencies, such as about 100
cycles/sec, a sinusoidal steady state reaches out into the dendrites with a
spatial decrement similar to that shown in rows F and G. For example, when
a sinusoidal frequency of one-half cycle per r (100 cycles/sec, if r = 5 msec) is
applied to compartment 1 of a chain of five compartments, the relative
steady-state sinusoidal amplitudes were found to be 1.0, 0.55, 0.30, 0.18, and
0.14, respectively (these may be compared with row G of Table 4); also, the
steady-state phase lags in compartments i through 5 were found to be ap-
proximately 45°, 72°, 100°, 125°, and 145°, respectively. 5) The fact that the
distortion, row E, colunm 1, in Table 4 is very nearly 10% is no coincidence;
it is a consequence of the fact that the magnitude of transient conductance in
compartment 1 had already been selected to yield an EPSP amplitude equal
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to 10% of the normal driving potential. Thus one can guess, and it was
found, that when the magnitude of the transient conductance in compart-
ment 1 is increased (more than doubled) to that required to produce a dou-
bled EPSP amplitude, u =0.20, then the percentage distortion corresponding
to row E in the first column of Table 4 becomes increased to very nearly
20%; in fact, the complete series of computational experiments for this larger
prescribed EPSP amplitude results in a new set of percentage distortion
values which are essentially double those in row E of Table 4. Similarly for
IPSP computations, when the IPSP amplitude was prescribed as halfway
from resting potential to the inhibitory equilibrium potential, the percentage
distortion values were found to be essentially five times those in row E of
Table 4.

Time course of transient distortion. When the conductance transient is
confined to a single compartment, the time course of the distortion in com-
partment 1 is essentially the same as that of the corresponding EPSP. This,
it should be emphasized, is significantly slower than the time course of the
synaptic conductance transient, as can be seen in Fig. 6 and also in Fig. 4.
The situation is more complicated when synaptic conductance transients
occur in more than one compartment; it is obviously even more complicated
when synaptic inhibition is present as well as synaptic excitation; in these
more complicated cases, the distortion should not be expected to have the
same time course as the EPSP or the EPSP-IPSP combination. For the par-
ticular case of equal conductance transients in all compartments (colurim 6
of Table 4) the transient distortion peaked earlier and decayed faster than
the corresponding EPSP; this distortion can be understood as a weighted
sum of five component distortions, with the largest weight attached to the
perturbation in compartment 1, and progressively smaller weights attached
to the contributions of the other compartments. These theoretical results
should serve to illustrate the fact that this transient distortion, which does
provide evidence for the presence of a synaptic conductance transient, does
not permit a simple inference of the synaptic conductance time course.

SUMMARY

Extensive computations have been carried out with a mathematical
neuron model which permits a choice of both the time course and the soma-
dendritic location of synaptic input. The results provide quantitative predic-
tions of the way in which the shape of a synaptic potential, as well as other
properties of synaptic potentials, depend upon these spatial and temporal
aspects of synaptic input. Quantitative details have been summarized in
several tables and figures. Also, several qualitative generalizations have been
developed as aids to intuitive imderstanding of these theoretical results.
Specific applications of these theoretical results to the interpretation of ex-
perimental results from cat motoneurons are presented in a collaborative
companion paper (14). The theoretical results have been presented in five
parts.

Copyrighted Material



244 Wilfrid Rail

Part I provides details of how the shapes of computed synaptic poten-
tials can be characterized by means of the quantitative shape indices: time to
peak, half-width, and rising slope/peak. The dependence of these shape
indices upon synaptic input location, time course, and upon dendritic elec-
trotonic length is demonstrated quantitatively and discussed in terms of
electrotonic spread over the soma-dendritic membrane surface.

Part II provides a computational dissection of the several electric current
transients and membrane potential transients that relate a dendritically
located synaptic conductance transient to the resulting synaptic potential at
the soma. These quantitative results, although not yet tested experiment-
ally, provide insight into the distinctions that can and should be made be-
tween synaptic current, loss current due to electrotonic spread away from the
input location, and the resultant, net depolarizing current. Both this net
depolarizing current and the resulting membrane potential transient are
distinguished at the dendritic input location and at the soma.

Part III provides details of the synaptic conductance intensities required
at different locations in order to produce synaptic potentials of certain pre-
scribed amplitudes. The nonlinearities, which tend to be greatest for distal
dendritic input locations, are explained in terms of the amount of membrane
depolarization occurring at the input location; significant membrane de-
polarization produces significant reduction in the effective driving potential.
Reduced driving potential can be compensated for by increased intensity of
synaptic conductance. Many examples of nonlinearity, both for various in-
tensities of synaptic excitation and for combinations of synaptic excitation
and inhibition, are illustrated and discussed.

Part IV explains the effects of steady-state hyperpolarizing current upon
synaptic potentials in terms of the increase in effective driving potential at
each site where a synaptic input conductance transient occurs. For single in-
put locations, the slope and amplitude of the synaptic potential increase by
the same factor, leaving the synaptic potential shape unchanged. For com-
pound input locations, it is shown that the contribution of the proximal input
location is augmented more than that of the distal dendritic input location
(because of electrotonic decrement of the steady-state hyperpolarization),
and a change in the shape of the synaptic potential is predicted. Comments
are also made regarding anomalous rectification and other unusual observa-
tions with polarizing currents.

Part V presents quantitative results that are relevant to the detectability
at the soma, of transient synaptic conductance at different dendritic loca-
tions. It is shown that relative detectability (for a given size of the control
synaptic potential) depends upon the relative amount of electrotonic spread
from the testing electrodes to the input location. For a suitable detection
threshold, this could explain failure to detect conductance transients at distal
dendritic locations under conditions which permit detection of conductance
transients at proximal dendritic locations.

A theme common to all of these computations and interpretations is that
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results, which may appear paradoxical when examined only at the soma, can
be understood quite simply when attention is directed to the synaptic input
location with special attention to the effective driving potential there.
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7 EQUALIZING TIME CONSTANTS AND ELECTROTONIC
LENGTH OF DENDRITES
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7.1 Introduction by William R. Holmes

Rail, W. (1969). Time constants and electrotonic iength of membrane cylinders
and neurons. Biophys. J. 9:1483-1508.

Rail's paper "Time constants and eiectrotonic length of membrane cylin-
ders and neurons" (1969) provides a classic example of how theory and
experiment can be combined to allow insight into a major neurophysio-
logical issue. Although the efficacy of distai synapses depended on how far
they were electrotonically from the soma, the electrotonic length of vari-
ous types of cells was not known. Several years earlier Wil had done some
calculations based on anatomical measurements of a motoneuron and had
concluded that the electrotonic length of that celi was between one and
two space constants. However, these calculations were laborious. What
was needed was a quick and simple procedure that could be used to esti-
mate the electrotonic length of any cell. Such a procedure was presented
in this paper.

Wil bent the rules ofjournal format somewhat when, immediately after
the introduction, he included a three-page section titled "General State-
ment for Users." Perhaps he was influenced to do this by colleagues
such as Bob Burke who had a "mental block activated by any differential
equation" (as Bob expresses it in section 6.1). Whatever the reason, the
strategy was extremely successful. This statement for users was easy to
understand, and it clearly stated what had to be done to estimate electro-
tonic length.

With a minimum of mathematical detail, Wil showed that for cells
that can be approximated as a cylinder with sealed ends, the electrotonic
length, L, can be obtained from the simple formula L = ir[t0/t1 - li_1/2,
where to and t1 are the first two time constants of a voltage decay tran-
sient following current input. The chief problem for the experimentalist
was to get estimates for to and t1. Although we now have many methods
to estimate time constants from transients, the most popular method in
1969 was exponential peeling because it could be done with pencil and
ruler. Wil described this method in detail for the experimentalist because
it was "sometimes misunderstood and done incorrectly." At the end Wil
recommended estimating time constants with "a well tested computer pro-
gram," although, at the time, computer programs were keypunched on
cards and, assuming a computer was even available, one was lucky to get
one run a day.

For most neuroscientists, the paper began and ended with this three-
page section, but that was all right, because in the next two decades this

Copyrighted Material



250 William R. Holmes

simple procedure for estimating electrotonic length was followed in count-
less experimental studies. The term electrotonic length became part of the
common vocabulary. Estimates of L were reported right along with rest-
ing potential and input resistance as basic properties of a neuron. In most
cases reported L values were between 0.6 and 1.5, and this indicated that
most synapses were close to the soma electrotonically. Thus, distal inputs
could play a significant role in bringing a cell to its firing threshold.

Although investigators usually focus on the three-page statement for
users, the remaining 22 pages of the paper provide a virtual treasure chest
of results and insights that are still being rediscovered. To provide insight
into why the electrotonic length formula worked, Wit remarked that after
t0 the time constants of a voltage decay transient could be thought of as
"equalizing" time constants governing the equalization of membrane po-
tential over the length of the cylinder. The electrotonic length formula
merely expressed a relationship between the time constants and electro-
tonic length obtained from the boundary conditions of the differential
equation. The interpretation of the time constants as equalizing time con-
stants became very important in future studies.

The theoretical work in this paper was not restricted to the derivation
of the electrotonic length formula, and this fact is often overlooked. Wit
had provided the experimentalists with a tool based on the assumption
that the cell could be approximated as a cylinder with sealed ends, but he
realized that, eventually, investigators would not be satisfied with this
assumption. Therefore, he presented results in which he explored theoreti-
cally the effect on L estimates of various kinds of violations of the cylinder
assumption. What is especially helpful is Wil's use of illustrative examples.
To some, these might seem tedious, but they do provide insight, particu-
larly for the less mathematically sophisticated reader.

Wit's theoretical treatment of a cylinder coupled to a lumped soma laid
the basis for theoretical work on soma shunt models done by Durand
(1984), Kawato (1984), Evans et al. (1992), and Major et al. (1993) and the
formulas given in Holmes and Rall 1992a. Experimentalists found that the
electrotonic length formula did not give results that were consistent with
other data unless a soma with a soma shunt conductance (possibly due to
electrode penetration) was included in the model. Although Wil's theoreti-
cal treatment did not explicitly mention a shunt conductance, this was
implicitly included in the expression for soma conductance. Adding an
isopotential patch of membrane (the soma) adds an artificial value to the
L calculated with the simple formula because of its effect on r1. Wil gave
expressions for the time constants in this case and noted that coefficients
have to be determined with "special attention" (a modified orthogonality).
Wit also introduced an approximate correction that one could apply to
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the original-formula L estimate to account for the soma conductance
(equation 23).

Wi! also considered theoretically the case of several dendrites coupled
to a soma. Each dendrite was represented as a cylinder, but because the
cylinders could have different lengths and diameters, they could not be
lumped together as a single cylinder. This work laid the theoretical basis
for subsequent work by Segev and Rall (1983), Evans et al. (1992), Holmes
and Rail (1992a), Holmes et al. (1992), and Major et al. (1993). What was
interesting here was that the interpretation of the time constants changed
as one went from the single-cylinder case to the multicylinder case. The
time constants after to were still equalizing time constants, but for many
time constants, the equalization was along particular tip-to-tip paths in
the neuron instead of from the soma to the dendritic tips. In Wil's two-
cylinder example, the L estimate was equal to the sum of the L values of
the two cylinders when the p values of the cylinders were large and ap-
proximately equal; this happened because r1 represented equalization be-
tween the tips of the two cylinders. In subsequent work Wi! and I found
that we could interpret the time constants in complex branching struc-
tures (cf. figure 7 of Holmes et al. 1992) in the same way as equalizing time
constants over particular paths in the neuron. The interpretation of time
constants is important because it explains how and why electrotonic
length estimates can be iti error when the neuron cannot be approximated
as a cylinder with sealed ends.

In the last section Wi! derives expressions for the time constants for
current transients under voltage clamp. Two additional formulas for elec-
trotonic length are given that use these voltage clamp time constants.
What is particularly appealing about the voltage clamp time constants is
that they are independent of the soma conductance and, in particular,
independent of any soma shunt that might exist. Intuitively, what happens
is that the voltage clamp isolates the soma from the dendrites and effec-
tively decouples the dendrites from each other. I discovered this result
with the compartmental models I was using during my postdoctoral days
in Wil's lab, and I showed the result to Wil. He thought about it for a
moment, his legendary intuition told him the result was correct, and he
remarked that this was an insight that seemed familiar to him. I later
found this result in this paper, but fortunately for me, I found it before Wil
remembered it was there.

Today, it is less popular to compute L with Wil's original formula be-
cause it is now known that many cells cannot be represented as a cylinder
and this causes difficulties with obtaining meaningful estimates of t1.
What is astonishing is not that the formula is less highly regarded today
but that it took two decades for the sophistication of experimental data to
catch up to that of this simple theoretical expression. With more and
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better morphological and electrophysiological data available now, tech-
niques for estimating electrotonic parameters of a cell have become more
complex. Present methods include fitting parameters to transients (e.g.,
Clements and Redman 1989; Stratford et al. 1989) or finding parameter
values via an inverse procedure (Holmes and Rail 1992b); see also Ali-
Hassan et al. 1992. Estimating parameter values for voltage-dependent
conductances has also become important as the sophistication of neuronal
models has increased. Stochastic search, genetic algorithm, and simulated
annealing methods are being developed to provide these estimates.

The complexity of these new techniques makes it more difficult to de-
velop the intuitive insights that played such a large role in Wil's work.
With the computer power available today, the temptation is to ignore
theory and intuition until the mass of computed results reaches a point
where this is no longer possible. What we can learn from this paper is that
such an approach would be a mistake. Theory and intuition should be
developed hand in hand with computed and experimental results to max-
imize insight into the issue being studied.
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and Neurons (1969), Biophys. J. 9:1483-1508

Wilfrid Rail

(G.H1)

ABSTRACT A theoretical basis is provided for the estimation of the electrotonic
length of a membrane cylinder, or the effective electrotonic length of a whole neu-
ron, from electrophysiological experiments. It depends upon the several time con-
stants present in passive decay of membrane potential from an initially nonuniform
distribution over the length. In addition to the well known passive membrane time
constant, 7m RmCm, observed in the decay of a uniform membrane potential,
there exist many smaller time constants that govern rapid equalization of membrane
potential over the length. These time constants are present also in the transient re-
sponse to a current step applied across the membrane at one location, such as the
neuron soma. Similar time constants are derived when a lumped soma is coupled to
one or more cylinders representing one or more dendritic trees. Different time con-
stants are derived when a voltage clamp is applied at one location; the effects of both
leaky and short-circuited termination are also derived. All of these time constants
are demonstrated as consequences of mathematical boundary value problems. These
results not only provide a basis for estimating electrotonic length, L = 1/X, but also
provide a new basis for estimating the steady-state ratio, p, of cylinder input con-
ductance to soma membrane conductance.

INTRODUCTION

When membrane depolarization or hyperpolarization is distributed uniformly over
the entire surface of a neuron, and the membrane potential is then allowed to decay
passively to its resting value, the time course of this decay is the same at every point
of the membrane and consists of a single exponential decay having a time constant
known as the passive membrane time constant, Tm = RmC,,,. However, for a nonuni-
form distribution of membrane polarization over the neuron surface, the time course
of passive decay to the resting state is not the same at all points of the membrane. In
those regions where the membrane potential has been displaced farthest from the
resting value, the rate of decay will be initially more rapid than elsewhere and more
ranid f h'n for the case of uniform decay; this is because there is an equalizing
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(passive electrotonic) spread from more polarized regions to less (or oppositely)
polarized regions of the membrane surface.' The different decay transients expected
at different membrane locations can all be expressed as different linear combina-
tions of several specific exponential decays (Rail, 1962; also 1964).

The tendency for membrane polarization to equalize over the neuron surface
during passive decay is analogous to the tendency for temperature to equalize over
an unevenly heated metal surface as it cools. This analogy is helpful to physical
intuition; also, the mathematical treatment of these problems is essentially the
same. All of the time constants of exponential decay, namely both the passive
membrane time constant and the many shorter equalizing time constants, correspond
to characteristic roots (eigenvalues) of the mathematical boundary value problem.

Both the statement and solution of several boundary value problems for nerve
cylinders of finite length and for a certain class of dendritic neurons were presented
several years ago (Rail, 1962). That paper, however, was concerned with a problem
more general than passive decay of nonuniform membrane potential; it was con-
cerned also with the effects of nonuniform synaptic membrane conductance. Here,
my purpose is to focus attention upon the equalizing time constants, and to point
out their importance for an experimental estimation of effective electrotonic length
in nerve cylinders and in dendritic neurons.

Application to Motoneurons

Explicit focus upon these theoretical relations is now timely because my suggestions
to Drs. P. G. Nelson, FI. D. Lux, and R. E. Burke have led them to seek and ob-
tain experimental results specifically intended for such estimation of effective elec-
trotonic length. Their experimental results (Nelson and Lux, 1969; Burke2) are
consistent with interpreting the dendritic trees of cat motoneurons as being elec-
trotonically equivalent to membrane cylinders of lengths in the range from about one
to about two characteristic lengths. It is both interesting and gratifying that this
estimated range of lengths agrees with that I obtained several years ago from en-
tirely different calculations based upon the anatomical measurements of Aitken
and Bridger (1961); although the details of these calculations have not been pub-
lished, the resulting estimates have been explicitly stated (Rail, 1964, p. 83-84).
Also, this same range of electrotonic lengths was found to be consistent with the
range of synaptic potential shapes (monosynaptic EPSP) found in motoneurons
(Burke, 1967; Rail et al. 1967, p. 1180-4181).

The fact that membrane potential transients in dendritic neurons should not be
viewed as single exponential decays was recognized (Rail, 1957, 1960) in dealing
with the problem of estimating the passive membrane time constant. The fact that a

'See, for example, Fig. 4 of Rail, (1960) and Figs. 6 and 7 of Rail (1962).
2 Personal communications with R. E. Burke; this forms part of a larger study that has not yet been
submitted for publication.
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synaptic potential may decay in two stages was demonstrated by Fadiga and
Brookhart (1960); they also noted that such two stage decay is observed at the soma
when the synaptic input is delivered to the soma, but not when the input is delivered
to the dendrites. Time constants for finite dendritic length were provided by (Rail,
1962; see p. 1083 and 1088). Ito and Oshima (1965) found that they could repre-
sent certain membrane potential transients as a linear combination of three ex-
ponential decays having time constants of about 25, 5, and 1 msec, respectively.
With regard to shortest time constant, they discussed the possible role of dendrites,
and of the endoplasmic reticulum. Their slowest time constant corresponds to some
still incompletely understood slow process that underlies the over- and under-
shoots they studied, and possibly also the anomalous rectification studied by Nelson
and Frank (1967). Whatever this underlying slow process may be, it is important
to emphasize that it cannot be accounted for by the passive membrane potential
theory of the present paper. Fortunately, these complications appear to be significant
only in some motoneurons, and negligible in others (Nelson and Lux, 1969). Also,
different neurons, such as those studied by Tsukahara, Toyama, and Kosaka
(1967), appear to be free of complication by this slow process.

With regard to variety in the shapes of miniature monosynaptic EPSPs in
motoneurons, the observations of Burke (1967) have been essentially confirmed
in several other laboratories (Jack et aL, 1967; Mendell and Henneman, 1968;
Letbetter et al., 1968; and also personal communications from these groups). Es-
sentially all of this observed variety in EPSP shape has been accounted for theo-
retically (except for the slow process mentioned in the previous paragraph) by means
of computations (Rail, 1967; Rail et al., 1967) which imply the validity of the
equalizing time constants to be explained and discussed below.

Definitions of Symbols

Vm = V Ve membrane potential, as intracellular minus extracellular electric potential.
V = Vm - E,. deviation of membrane potential from its resting value; electrotonic potential.
r- intracellular (core) resistance per unit length of cylinder; (ohm/cm).
r, extracellular resistance per unit length of cylinder, if defined; otherwise set equal to zero;

(ohm/cm).
Tm membrane resistance across a unit length of cylindrical membrane; (ohm cm).
Cm membrane capacity per unit length of cylindrical membrane; (farad/cm).
Tm = rmcm passive membrane time constant; (sec).
T t/Tm time in terms of Tm dimensionless time variable.
X = [rm/(rj + re)]h/2 characteristic length of nerve cylinder, with r, usually set equal to zero;

(cm).
X = x/X distance along axis of cylinder in terms of X; dimensionless electrotonic distance

variable.
L = 1/X length of cylinder in terms of X; dimensionless electrotonic length.
CO3 C1, C2, ..., C coefficients (independent of r) used to form a linear combination of ex-

ponential decays; (volt).
TO = Tm passive membrane time constant; (sec).
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T1, T2, , ra equalizing time constants, in parts I and II below, where n can be any positive
integer; different time constants in part III below; (sec).

a2 separation constant, for separation of variables.
a ,2 eigenvalues of boundary value problem.

= + roots in form most used.
B,, constant coefficients in infinite series solutions; sometimes Fourier coefficients; (volt).
'A current applied outward across membrane at X = O; (amp).
VA voltage (V) applied at X = O; (volt).
I soma membrane current; (amp).
1c current flowing into cylinder at X = O; (amp).
G8 soma membrane conductance, being steady-state value of I/ VA; (mho).
G,, = [Xr] = X/rm = [rjrmJ_J2 input conductance of a cylinder of infinite length; (mho)
G = G,, tanh (L) input conductance (at X = O) of a cylinder with a sealed end at 1= L,

being steady-state value of I/ VA ; (mho)
p = G/G8 = p,, tanh (L) ratio of cylinder input conductance to soma membrane con-

ductance, being steady-state value of 1c/1
p,, = G,,/G8 ratio, p, for limiting case when cylinder has infinite length.
p = G/G. ratio of cylinder input conductance (for jth of several cylinders) to the mem-

brane conductance of a common soma.

RESULTS

I. General Statement for Users

This section attempts to summarize in usable form the results judged to be of most
direct importance to an experimental neurophysiologist. More detailed definitions,
derivations and special cases are presented in the later sections of this paper.

The passive decay transients can be expressed as a sum of exponential decays

V = Güero + Cie°' + Coe + . . . + Cn" + (1)

where TØ Tm represents the passive membrane time constant, and Ti, F2,
Tn represent infinitely many equalizing time constants which are smaller than
TO. Usually only the first one or two equalizing time constants are important to
the interpretation of experimental results. The coefficients, C,,, are constants.3

The values of the equalizing time constants, relative to TO, depend upon the effec-
tive electrotonic length of the cylinder or neuron; they do not depend upon a speci-
fication of the initial non-uniform distribution of membrane potential from which
the passive decay takes place. For a cylinder with both ends sealed and of elec-
trotonic length, L = /X, the values of the equalizing time constants are given by
the expression

TO
T,, - + (n7r/L)2

'These coefficients are independent of t. They generally have different values at each point of observa-
tion (i.e. value of x); they are also different for different initial conditions.
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This implies, of course, that

L-

Although these equations can be used to calculate the value of L corresponding
to any given value of the ratio, rolr.., it is helpful to have a few sets of illustrative
values; this is provided by Table I.

The relative values of the coefficients, CO3 C1, C2, , C., depend upon
the nonuniform initial condition, upon the effective electrotonic length and, for a
dendritic neuron, also upon the dendritic-to-soma conductance ratio, p. A com-
pletely uniform initia! condition would cause all of the coefficients except Co to
be zero. A nonuniformity that is distributed symmetrically about the mid-point
of the cylinder would cause all of the odd numbered coefficients to be zero; in this
case, the most important equalizing time constant would be Usually, however,
with asymmetric initia! nonuniformity, the most important equalizing time con-
stant is r

The feasibility of estimating the first one or two equalizing time constants in
equation i from an observed decay transient depends upon three considerations:
(1) C1 and/or C2 must not be too small relative to CO3 this is enhanced by having
the initiai polarization concentrated near the point of observation, and, for a
dendritic neuron, also upon the dendritic-to-soma conductance ratio, p, not too
small; (2) the effective electrotonic length must not be too long, because this would
make successive time constants too close together to permit their resolution; in-
creased length leads, in the limit, to expressions involving error functions as on p.
528 of (Rail, 1960); (3) the effective electrotonic length must not be too short, and
the transient must be recorded with sufficiently high fidelity that at least one of the
faster decaying components is preserved.

Although the above has all been stated for passive decay to the resting state, the
same applies also to the transient approach to a nonresting steady state of passive
membrane, such as when a constant current step is applied to one end of a cylinder,
or to the soma of a dendritic neuron. It should be emphaci7ed that this holds for

TABLE I
RATIO OFr TO EQUALIZING TIME CONSTANTS

* r0 = T. = R..C... Ratios based on equation 16.
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Ratio L=l L=.2 L=2 L=3 L=4

TI, Fi 10.9 5.0 3.5 2.1 1.6
T1 Tj 40.5 17.0 10.9 5.4 4.5
,- 11 89.8 37.0 23.2 10.9 6.6

159.0 65.0 40.5 18.5 10.9

flT
(3)- i



258 Wilfrid Rail

constant current, but not for a voltage clamp;4 also the membrane must remain
passive.

Given the favorable conditions specified above, the procedure is to "peel" the
slowest exponential decay from the faster decaying portion of the transient. This
procedure, long known to physicists studying multiple radioactive decays, can be
carried out quite simply with the help of semilogarithmic plotting; nevertheless,
it is sometimes misunderstood and done incorrectly. If we plot log V vs. t, the result
(from equation 1) is a straight line only for values of t sufficiently large that faster
decaying terms of equation i are negligibly small compared with the first (zero
index) term; for such values of t, the transient has a single exponential "tail"; in
other words

implying that

and that

where "slope of" means (d/dt), or slope with respect to t. In the semilog plot, we
can extrapolate the straight line tail back to earlier values of the time; when these
extrapolated values are subtracted from the observed values, the resulting differ-
ence is the "peeled" transient; in other words

[peeled V] = V - [tail V] (5 a)

= V_ Coe'°. (5b)

When Ti and T2 are not too close together, and C1 is not too small, we can find a
range of values of t for which all faster decaying terms (corresponding to n > 1)
are negligibly small compared with the term for n = 1; then we can write

[peeled V] = C1e'' (6 a)
implying that

loge [peeled V] = - t/Ti + const. (6 b)
and that

0.4343
Ti -

[tail V] = Coet/0

loge [tail V] = t/TO + const.

0.4343
To -

slope of logio [tail VI

slope of log [peeled V]

for this intermediate range of t.

See part III below for the effect of voltage clamping.
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It is important to note that, over this intermediate range of t, it is not the ob-
served V, but "peeled V," whose log has a constant slope with respect to t. When
someone inadvertently fits a straight line to log V vs. t, for this intermediate range
of t, the slope of that straight line is not the same as in equations 6 and will not
yield a correct estimate of Ti

From the results above, it can be seen that

/
slope of log [peeled VI

TO Ti
slope of log [tail V]

Also, from equation 3 for a cylinder of finite length, with sealed ends, it can be
seen that

Lt / i i-1/2= lt [To/Ti - LI

Thus, when they have been correctly applied to experimental data,' equations
7 and 8 provide an estimate of the electrotonic length of the cylinder most nearly
equivalent to the whole neuron in question. Part II below also provides results
for a lumped soma coupled to one or more dendritic cylinders; there it is shown
to what extent the electrotonic length of the dendrites can differ from the L defined
by equation 8. Results for voltage clamping are in part III.

Although it is sometimes possible to peel a sum of exponential decays in several
successive steps, it is usually best to use a well tested computer program to obtain
the most reliable decomposition of a linear combination of several exponential
decays.

II. DERIVATION OF EQUALIZING TIME CONSTANTS

Equalization over Length or Circumference?

Because this paper is concerned with membrane cylinders (and dendritic neurons)
whose lengths are much greater than their diameters, it can be shown that equaliza-
tion of membrane potential over the length is of primary importance. However,
it is important to note that additional time constants govern equalization of mem-
brane potential over the circumference of the cylindrical cross section. Expressions
for such circumferential equalizing time constants are derived in a companion paper
(Rail, 1969). There it is estimated (for typical neuronal values) that circumferential
equalization should be around a thousand times more rapid than equalization over
the length of the cylinder. This provides a justification for considering only the one
spatial variable, X, in the derivation that follows.

'It should be noted that such peeling can be applied also to the slope, dV/di, because this is a differ-
ently weighted sum of the same exponential decays. This is useful in situations where the level but not
the direction of the baseline is uncertain. Also, peeling this sum of exponentials is aided by the greater
weight of the equalizing terms relative to the uniform decay term.
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Statement of Boundary Value Problem, for Cylinder with Sealed Ends

The partial differential equation for passive membrane potential distributions in a
nerve cylinder is well established; it can be expressed

a2vV av (9)
ax

for all values of X and T. For a cylinder of finite electrotonic length, L, we restrict
consideration of this differential equation to the range O X L. We assume a
"sealed end" (Rall, 1959, p. 497) at both ends of this cylinder: this corresoonds to
the mathematical boundary conditions

av = 0, at X = 0, for T> 0, (10)

atX = L, for T> 0. (11)

The initial condition can be expressed

v(X,0) = F(X), for O X L. (12)

Taken together, equations 9-12 define a boundary value problem which has a unique
mathematical solution obtainable by classical methods (Churchill, 1941; Carslaw
and Jaeger, 1959; and Weinberger, 1965).

Equalizing Time Constants, for Cylinder with Sealed Ends

Because of present interest in these time constants, we wish to pay particular atten-
tion to the way in which they are determined by the differential equation and the
boundary conditions. First, we note that a solution of the partial differential equa-
tion 9 can be expressed

V(X, T) = (A sin aX + B cos aX)e12)T (13)

This solution, obtained by the classical method of separation of variables,6 repre-
sents V(X, T) as the product of two functions, one of which is a function of X only,
the other being a function of T only; the constant, a2, is known as the separation
constant. The fact that this is a solution can be verified by differentiation and substi-
tution in equation 9; it should be noted that equation 9 is satisfied for any arbitrary
combination of values for the constants A, B and a.

6 See, for example, Chapter IV in Weinberger (1965), or pages 25-27 in Churchill (1941).
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In order to apply the boundary conditions (equations 10 and 11), we must con-
sider the partial derivative with respect to X,

av = (aA cos aX - aß sin aX)e_(1i)T.

At X = O, sin aX = O and cos aX I; therefore the boundary condition (equation
10) at X = O requires that aA = O, and this, in fact, requires that we set A = 0;
(A could differ from zero only in the special case when a = O; then sin aX O, and
again A sin aX vanishes in equation 13). With A = O, the other boundary condition
(equation 11) at X = L then requires that

aB sin aL = 0. (14)

This conditìon is satisfied when a = O, and also by every value of a for which aL
is equal to some integral multiple of 7r, because then sin aL = 0. Thus, the in-
finitely many roots of equation 14 can be expressed

a,, = nir/L (15)

where n is any positive integer,7 or zero. It may be noted that the numbers, a,,2,
correspond to the "eigenvalues" or the "characteristic numbers" of classical bound-
ary value problems.

For n = 0, a = 0, and it follows that the time dependent part of equation 13
becomes simply

e-T eh"
which represents exponential decay with the passive membrane time constant,
r,,, = rmcm , which we here identify also as TO.

When n is any positive integer, the corresponding a,, of equation 15 implies that
the exponent in equation 13 has the value

- [1 + (mr/L)211/To -_

from which it follows that

TØ/T,, = 1 + (nir/L)2 (16)

This result defines the equalizing time constants, r,,, for n equal to any positive
integer. This provides the basis for equations 2 and 3 and the illustrative values of
Table I, in part I above.

For all of these values of n, the functions (equation 13) are linearly independent of each other;
negative integer values of n also satisfy equations 14 and 15, but their use in equation 13 would not
provide any additional independent eigenfunctions.
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Comment on Solution as a Sum of Exponentials

The preceding section has shown that the two boundary conditions (equations 10
and 11) constrain two of the arbitrary constants in equation 13, which defines a class
of solutions of the partial differential equation 9. The resulting class of solutions can
be expressed

V(X, T) = B cos (anX)e_(12)T

where B is still an arbitrary constant, and each solution corresponds to a particular
value of a, as defined by equation 15.

Because equation 9 is linear, any linear combination of these distinct solutions is
also a solution. The class of all such linear combinations can be expressed as the
following infinite series

V(X, T) = B, cos (nirX/L)e_u1+2JT (17)
nO

where the B are still arbitrary constants. Only when we impose the constraint pro-
vided by the initial condition (equation 12) of the complete boundary value prob-
lem, do the coefficients, Ba., become constrained to particular values. These particu-
lar values can be defined as the Fourier coefficients,

L

Bo=(1/L)f F(X)dX
Q

and, for n > 0,

B = (2/L) f F(X)cos(nX/L)dX.

Then equation 17 expresses a unique solution of the boundary value problem origi-
nally defined by equations 9-12; see Churchifi (1941), or Weinberger (1965). Explicit
solutions for particular choices of F(X) will be presented in a separate paper.

This solution obviously represents a sum of exponentials like equation i in part I,
above. Any particular point of observation corresponds to a particular value of X;
then the coefficients of equation 1 are related to those of equation 17 by the ex-
pression

C, = B cos (n7rX/L).

Coupling of Single Cylinder to Lumped Soma

The point, X = 0, is taken as the point where a lumped soma membrane is coupled
with the origin of the membrane cylinder (Rail, 1959). This cylinder may be thought
of as a single cylinder of finite length, with a sealed end at X = L; it may also be
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thought of as an "equivalent cylinder" representing an entire dendritic tree, or even
several dendritic trees which have the same electronic length (Rail, 1962, 1964).

The boundary condition at X O is more complicated than before. The current
flowing outward across the lumped soma membrane can be expressed

1. = G8(V+ aV/aT)

where G8 represents soma membrane conductance. The current flowing into the
cylinder at X = O can be expressed

h = (l/r)[aV/ax]o
= (l/Xr)[aV/aX}1.o.

If there is a current, 'A, applied outward across the membrane at X = O, continuity
requires that

IA = IS + IC.

Hence, the boundary condition at X = O can be expressed

[ÔV/aX]10 = Xr,[IA + G3(V + 3V/aT)]. (18)

The symbol, p, has previously (Rail, 1959) been used to represent the ratio of
cylinder input conductance to soma membrane conductance; this ratio equals the
ratio of the steady-stâte values of I, and h, above; thus

(l/Àr)Vo tanh Lp-
G8 V0

tanh L
XrG8

where V0 is the steady-state value at X = O and

V = V0 cosh [L - X]/cosh L

is the steady-state solution in the cylinder.
Using the above expression for p, and setting IA = O in equation 18, we obtain

the expression

pt3 V/X = (V + *3V/aT) tanh L, at X = 0 (19)

as the boundary condition expressing cylinder-to-soma coupling during passive
membrane potential decay.

The mathematical boundary value problem to be solved differs from that defined
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by equations 9-12 only in that the previous boundary condition (equation 10) at
X O is now replaced by equation 19 above. This difference, however, results in a
changed set of equalizing time constants and in a solution that involves a generalized
Fourier expansion in which special attention is required to obtain correct values of
the coefficients.8

Equalizing Time Constants for Cylinder with Soma

Because the differential equation is the same as before, we again use a solution of
the same general form as equation 13, above, except that we replace the argument,
aX, by the argument, a(L - X), to take advantage of the fact that the simpler
boundary condition is at X = L. Thus, we consider the solution

V(X, T) = [A sin a(L - X) + B cos a(L X)]e1i)T. (20)

The boundary condition (equation 11) at X L requires that A = O, and the bound-
ary condition (equation 19) at X = O then requires that

paB sin aL (a2B cos aL) tanh L.

This requirement is satisfied by a = 0, and by values of a which are roots of the
transcendental equation

aL cot aL = - pL/tanh L = - C (21)

where C is a positive constant; the roots of this equation have been tabulated.9 The
equalizing time constants can be expressed

TOT,, =
1 + (a,,)2

where each a,, is a root of equation 21. The consequences of equations 21 and 22 are
summarized in Fig. 1, which shows the dependence of TO/Ti upon L for several
different values of p. lt is apparent that any given value of TO/Ti corresponds to
many possible combinations of values for p and L. For example, a value of 6 for the
ration, To/Ti, corresponds approximately to L = 1.1 for p = 2, or to L = 1.25 for
p = 5, or L = 1.4 for p = ; of course, p need not be an integer, and many other
combinations are possible.

Some intuitive grasp of the possible values of the roots, a,,, can be obtained by
considering briefly the limiting cases for p very large and p very small.

The limiting case, p = , corresponds to complete dendriric dominance (Rall,

This has been done for several cases, but the results have not yet been submitted for publication.
See Table TI of Appendix TV in Carslaw and Jaeger (1959); note that their corresponds to aL here,
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L

Fioui&a I Dependence of the time constant ratio, To/fl, upon the value of L, for several
values of p. Calculations based upon equations 21 and 22.

1959) or to a vanishing soma admittance at X = O; it is equivalent to the zero slope
boundary condition at X = O, and implies that

= mr L (for p = c)

where n may be zero or any positive integer; (cf. earlier equations 14-16).
The other limiting case, p = O, corresponds to vanishing dendritic admittance, or

to an infinite soma admittance at X = O; it is equivalent to a voltage clamp at X = O,
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and implies that

a,, = (2n - l)ir/2L, (for p = 0)

where n may be any positive integer; (cf. equations 27 and 29, below).

Illustrative Example For any finite value of pL, aO = 0, and zr/2 < aiL < ir.
For example, if L = 1.5 and p = 482, then pL/tanh L = 8.0, and the first nonzero
root of the transcendental equation 21 is ajL = 2.80, or, since L = 1.5, a1 = 1.87; it
follows that TO/Ti = 4.5 for this particular case. This time constant ratio for the
cylinder-coupled-to-soma may be compared with two related cases of a cylinder
alone, with sealed ends at both X = O and X = L, where equation 16 applies. First
consider the cylinder alone with L = 1.5; then TO/Ti = 5.4 is implied. However, this
cylinder alone has an electrotonic length that is less than that of the previous combi-
nation of soma with cylinder. Therefore, we consider a longer cylinder, lengthened
by the factor, (p + l)/p, to allow for the soma membrane surface as an extension
of the cylinder instead of as a lump; for this length

ro/Ti = + [Lp ± 1)/p1

which equals 4.0 in the case of this particular example. It may be noted that the cor-
rect To/Ti value of 4.5, found above for the soma coupled to the cylinder, lies between
the two values 5.4 and 4.0, found for the two different lengths of a cylinder alone
just considered.

From the foregoing, it can be seen that when the inverse problem of estimating L
from a TO/Ti value is considered, simple use of equation 8 yields an L value for that
cylinder which best approximates the whole neuron or cylinder being studied. If we
know at least an approximate value of p and wish to estimate the L value for the
equivalent dendritic cylinder, the value provided by equation 8 would be too large
by a factor, f, where 1 <f < (p + l)/p. A reasonable approximation is provided by
eitherf (1 + O.S/p), orf /i + i/p. Thus, we can write the approximate ex-
pression

r i \-11/2
r ipRp+lìir

L TO/Ti -

for an estimate of L (of the equivalent dendritic cylinder) when the values of p and
TO/Ti are known. This expression gives results in agreement with Fig. I.

Several Dendrites Coupled to Single Soma

When the several dendritic trees of a neuron correspond to equivalent cylinders of
significantly different electrotonic length, it is not correct to represent them all
together as one cylinder. Here we show that it is possible to obtain correct equalizing
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time constants even for such more complicated problems. The previous analysis
shows that the current flowing into one cylinder could be expressed

pG,s [ 3V1
- tanhL [-J=0

Now, if we have several cylinders, k in number, and the Jth cylinder has a lenght, L,
and a cylinder input conductance to soma membrane conductance ratio, p , the
total dendritic input current can be expressed

I Gr' f5 I- aVl
D - 8íitanhL[aXJr.o

In each cylinder, there is a solution of the form (equation 20), with A = O and with
a,, required to satisfy the following generalization of equation 21

a ptanaL
j=i tanh L

Consider, for example, k = 2, L1 = 1, with pi/tanh L1 = 3 and L2 = 2, with
p2/tanh L2 = 5; then the transcendental equation is

a = 3 tan a - 5 tan 2a.

Obviously, a = O is a root. Seeking, by trial and error, a root between O and ir/2, we
find a1 1.10, because then tan a 1.96 and tan 2a 1.37, which values nearly
satisfy the above equation. Between ir/2 and ir, we find a2 1.97, because then tan
a 2.37 and tan 2a 1.03, which values also nearly satisfy the above equation.
Notice, for al and a2, tan a and tan 2a have opposite signs. However, near ir, we
find the root, a 2.92, because then tan a 0.22 and tan 2a 0.47, which
values have the same sign and nearly satisfy the above equation. For n > 3, it can
be shown that a,, nir/3, which is rather interesting because this is the same as
equation 15, where the denominator here represents L1 + L2 , the sum of the lengths
of the two cylinders. In fact, this simple rule provides first approximations to the
smaller roots as well. On reflection, it is obvious that this simple result would hold
best when both p are large and approximately equal; then the whole neuron can be
approximated as an equivalent cylinder of length, L1 + L2, with the soma located
not at X = O but at a point L1 from one end.

Although the roots of equation 25 can also be found for any particular case of
three or more cylinders coupled to a single soma, little purpose would be served by
another illustrative example. It will be clear to anyone who has carefully considered
the example above, that the addition of a third cylinder of a different length must in-
crease the number of roots between O and ir, because of the greater number of possi-
bilities of positive and negative contributions to the summation in equation 25.
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III. VOLTAGE CLAMP AND RELATED PROBLEMS

Drastic Effect of Voltage Clamp

When the membrane potential is held to a constant value at one end of the cylinder,
or at the point (X 0) of soma-to-cylinder coupling, the boundary value problem
becomes very significantly changed: the time constants are changed and should not
be called "equalizing" time constants; furthermore these new time constants are
independent of p; in fact, after the initial instantaneous charging of the soma to its
clamped value, the soma membrane draws a constant current from the voltage
clamp, while the transient component of the clamping current flows entirely into the
cylinder (cf. Rail, 1960, p. 514-515 and 529-530 for the case of a cylinder of infinite
length).

Before demonstrating it mathematically, it can be understood physiologically,
that simple passive decay and simple equalizing decay cannot take place when there
is a voltage clamp placed across the cell membrane at any point. The voltage clamp
has much in common with a short circuit; whereas passive membrane decay requires
that the membrane have its normal membrane conductance (also capacitance and
EMF) everywhere. A short circuit, or a voltage clamp, must make the decay to a
steady state be more rapid than a simple passive decay. Nevertheless, these faster
time constants may also be useful for estimation of L by means of equation 33 below.

Time Constants for Voltage Clamp at X = O

The boundary value problem differs from that stated earlier with equations 9-12 in
that the previous condition (equation 10) at X = O is replaced by

V(0,T) = V0. (26)

It is simplest to show the effect of voltage clamping upon the time constants by con-
sidering first the particular case of Vo = 0. Thus, the boundary condition

V(0, T) = 0 (27)

requires that the coefficient, B, in the solution (equation 13) be set equal to zero.
Then the zero slope boundary condition (equation 11) at X = L requires that

aAcosaL=0. (28)

Although this equation is satisfied by a = 0, this root is trivial because it makes sin
aX = O for all X. However, equation 28 is satisfied by aL = ir/2, and by every value
of a for which aL is equal to ir/2 plus (n - l)ir, because then cos aL = 0. Thus, the
infinitely many roots of equation 28 can be expressed

= (2n - 1)ir/2L (29)
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where n may be any positive integer. In this case, the infinite series solution to the
boundary value problem can be expressed

V(X, T) = A,, sin (anX)e1+C¼2)T (30)
1=1

where the a,, are defined by equation 29 and the A,, are the Fourier coefficients de-
fined by

2A,, = - J F(X) sin (a,,X) dx.
L j0

Here, the time constants implied by equations 29 and 30 are quite different from
those considered earlier; here

Tm
T -

I + (2n - l)2(ir/2L)2

where n may be any positive integer. We note again that ao = 0, which would have
given a T = Tm , has been excluded because such an ao would make sin (aiX) in
equation 30 vanish for all X. Thus, even the largest time constant, Ti , is smaller
than Tm . For example, if L = ir/2, Ti = 0.5 Tm and T2 = 0.1 Tm see also Table II.

These time constants are obviously different from the equalizing time constants
discussed in parts I and II above. Nevertheless, if both Tj and r2 can be measured
reliably, the following expression, obtained from equation 32 above, permits an
estimate of L,

L = (T/2)(9T2 - r1)112(Ti - T)"2. (33)

When the clamped value, V0 , is different from zero, the time constants are the
same, but solution becomes

cosh (L - X) + I A,, sin (a,,X)e_i)TV(X, T) = V0
cosh L

TABLE II

RATIO OF Tm TO TIME CONSTANTS4 UNDER VOLTAGE CLAMPt

( 31)

(32)

* Ratios based on equation 32. Note that these time constants need not be referred to Tm ; they
can be referred to each other, as in equation 33.

Voltage clamp applied at one end.

Copyrighted Material

Ratio L=1 L=ir/2 L=2 L=3 L=4

Tm/Ti 3.5 2.0 1.6 1 .27 1.15

Tm/Ti 23.2 10.0 6.5 3.5 2.4

Tm/Ti 62.6 26.0 16.4 7.9 4.9

m/T 4 121.9 50.0 31.2 14.4 8.5
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where the A,, are obtained from equation 31 provided that F(X) is replaced by the
difference, F(X) - V0 cosh (L - X)/cosh L, in equation 31.

At X = 0, this transient simply gives V = V0 , as it should. However, referring
back to equation 18, we can express the voltage clamping current, minus the con-
stant current to the soma, as proportional to I-8 V/ax] at X = O, as follows,

[IA - V0 tanh L - a,, A,, (34)
-1

where the A,, are the same as those of the preceding paragraph, and the a,, and the
resulting time constants are the same as equations 29, 32, and 33 above.

Special Case of Voltage Clamps al X = O and X = L.

This special case merits brief mention because the time constants turn out to be the
same as the equalizing time constants found earlier for the cylinder with both ends
sealed, except that here there is no T Tm . The boundary conditions can be ex-
pressed,

V(O,T)=V0, and V(L,T)=VL

where V0 and VL are both constants. The steady-state solution can be expressed

V(X, ) = ft'0 sinh (L - X) + JL sinh X]/sinh L. (35)

Now, if we consider the function

U(X, T) = V(X, T) - V(X, ) (36)

we obtain a boundary value problem in which the partial differential equation for
U(X, T) has the same form as equation 9, and the boundary conditions become
simplified to

U(0, T) = O = U(L, T).

When a general solution of the form (equation 13) is subjected to the boundary
condition at X = 0, we find that B = 0, and then the boundary condition at X = L
requires that

A sin aL = O

which has the roots

a,, = nir/L. (37)
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The solution for U(X, T) can thus be expressed

U(X, T) = A,, sin (n7rX/L)e_u1+ht]T. (38)

Although the a,, are the same as in equation 17, equation 38 differs significantly
both by being a sine series instead of a cosine series, and by summing from n =
instead of n = O.

This solution would be of practical value in those axons, dendrites or muscle
fibers where it may be possible to voltage clamp at two points and observe the time
course of the transient at a location between the two clamped points. This would
have the merit of being completely undisturbed by any activity outside the region
between the two voltage clamps.

Killed-End at X = L

The killed-end boundary condition corresponds to a short circuit between interior
and exterior media; this means that V,,, = O, at X = L, and since V = V,,, - Er,
we have the boundary condition,

V(L, T) = - Er = VL

which is equivalent to a voltage clamp at X = L.
If the boundary condition at X = O is a voltage clamp, the problem becomes the

same as that of the preceding section. However, if the boundary condition at X = O
is a zero slope, then the problem becomes the same as that of equations 26-33 with
the ends reversed.'0 These results would be relevant to experiments in which one
would apply a voltage clamp to a neuron soma, and measure time constants both
before and after severing or killing the dendritic terminals.

For a current clamp at X = O with cylinder-to-soma coupling, it would be neces-
sary to use a modification of the analysis previously used (equations 18-22). First,
we define G(X) as the steady state (equation 35) for 14 = O and V = V1 = E. at
X = L. Then, for the function

W(X, T) = V(X, T) - G(X)

we have the boundary conditions

W(X,T)=O at X=L

O Very recently, I learned that Lux (1967), treated the problem of constant current at X = 0, with a
differently defined short Circuit at X = L. By using Laplace transform methods, he obtained time con-
stants that agree with those obtained here (equation 32). These same time constants have also been ob-
tamed by Jack and Redman (personal communication) using still another method.
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and

'I9W/ÔX = (W + aW/ÔT) coth L, at X = 0.

This second boundary condition differs from previous equation 19 because

(1/Xr1)Wo coth L
G8W

is a steady-state (conductance) ratio with respect to W, whereas the true p would be

(1/Xr)( W0 coth L - [dG/dX]0)p-
Ga (W0 + G0)

where the zero subscript designates values at the point, X = 0. When these boundary
conditions are applied (cf. equations 20 and 21 above) we set B = O and find that

yaA cos aL = (a2A sin aL) coth L

which can be rewritten as the transcendental equation

aL tan aL = -yL tanh L (39)

where '1L tanh L is a positive constant. The roots of this equation have been tabu-
lated by Carslaw and Jaeger (1959, Appendix IV, Table I). The solution for W(X, T)
is thus of the form (equation 30), where here each a is a root of equation 39.

Case of Leaky End at X = L

Instead of a short circuit by an infinite conductance at X = L, consider a leaky end
having a finite conductance, GL, between interior and exterior media at X = L. At
this end, the leakage current must equal the core current

GLVm = (l/Xr,)[aVm/äX], at X = L.

This can be expressed more simply as the boundary condition

ô Vm/äX = - h Vm, at X = L (40)

where h = GLXr. Let the other boundary condition be

ôVm/ÖX = 0, at X = 0. (41)

Then the solution takes the form

vm(x, T) = B cos (anX)e_(mn2)T (42)
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where the roots, a,.., must satisfy the transcendental equation

aLtanaLhL (43)

where hL is a positive constant. The roots of this equation have been tabulated by
Carsiaw and Jaeger (1959, Appendix IV, Table I).

If instead of the boundary condition (equation 41), the value of Vm were clamped
to zero at X = 0, but still satisfied equation 40 at X = L, then the solution takes the
form (equation 30) where the roots, a,. , must satisfy the transcendental equation

aL cot aL = hL. (44)

These roots have also been tabulated by Carsiaw and Jaeger (1959, Appendix IV,
Table II).

Effect of Series Resistance with Voltage Clamp

In actual experimental situations, it may be difficult to prevent the presence of a
series resistance between the clamped voltage, VA , and the voltage at X = 0. This
means that the soma-dendritic system is not truly voltage clamped at X = 0. In-
stead, the apparatus provides an applied current,

IA = G*(VA - V), at X=0
where G.1. is the reciprocal of the series resistance,1' VA is the applied constant voltage,
and V is the transient voltage at X = 0. Then, previous equation 18 can be used to
obtain the boundary condition

aV/ox = Xr,[G*(V - VA) + G8(V + 3V/aT)], at X = O

for G.1. finite. If we take the other boundary condition as 3V/OX = O at X = L, and
if we consider the function

U(X, T) = V(X, T) - V(X, cO)

then, the boundary value problem for U has the boundary condition

p8 U/OX = kU + (U + aU/aT) tanh L, at X O

where k = (G/G3) tanh L is a positive constant of finite magnitude; this result may
be compared with equations 19 and 40. The other boundary condition is aU/OX = O

"In this section G1. is finite, and V at X = O differs from VA when there is current, JA, flowing
In the limit, as G1. -* m, V -+ V4 , and perfect voltage clamping is restored; then the boundary con-
dition of the present section is replaced by one like equation 26, and the transcendental equation 45 is
replaced by equation 28, which implies the roots given by equation 29.
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at X = L. Then, using a solution of the form (equation 20), the boundary conditions
require that

paB sin aL = kB cos aL - a2B cos aL tanh L

which is not satisfied by a = 0. In this case, the a,. are roots of the transcendental
equation

aL tan aL = [G/G8 - a2](L/p) tanh L (45)

which differs from all previous examples. It may be noted that for large G/G8 the
right hand side is approximately independent of a for small a,. ; then equation 45
can be treated almost like equation 39; as G/G8 becomes very large the voltage
clamp condition is approached.12 At the other limit, as G - 0, equation 45 reduces
to equation 21. Intermediate cases must be treated individually.

Illustrative Example Suppose that the whole neuron steady state con-
ductance is 6 X l0 mho, and that p = 5; then the soma membrane conductance,
G8 = l0 mho. Suppose also that L = 1.5 and G = 2 X i0 mho. Then the
equation for the a becomes

aL tan aL = (200 - a2)(0.272).

Because G/G8 is large, we know that a1L is close to ir/2; then sin aiL 1.0 and
cos a1L - a1L. Thus, we have

a1L (ir/2)C/(C + 1)

where

C = [G/G8 - (ir/2L)2](L/p) tanh L.

In the above example, C 54, giving a1L 1.54, a1 1.03, and a value of about
2.06 for Tm/ri.

Experimental values obtained in voltage clamping experiments on cat motoneu-
rons can be found in papers by Frank, Fuortes and Nelson (1959), Araki and
Terzuolo (1962), and Nelson and Frank (1963).

DISCUSSION AND CONCLUSIONS

This paper presents solutions to a number of mathematical boundary value problems
which characterize transient distributions of membrane potential in passive mem-
brane cylinders and in neurons whose dendritic trees can be represented as equiva-

12 See footnote 11.
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lent cylinders.'3 These solutions can all be expressed as the sum of a steady state
component plus several transient components which decay to zero; together these
transient components represent a linear combination of exponential decays. This
linear combination is actually an infinite series, whose coefficients (in the simpler
cases) are Fourier coefficients determined by the initial condition of the boundary
value problem; more complicated cases involve coefficients of generalized Fourier
expansions; these will be presented explicitly in a separate publication.

Solutions have been obtained for a variety of boundary conditions. All of the cases
in parts I and II of the Results have in common that the membrane is nowhere short-
circuited in any way; the ends of the cylinders are either sealed or coupled to a soma;
constant current electrodes are also permitted. However, voltage clamping elec-
trodes, and killed-end or leaky-end boundary conditions are excluded from parts I
and II, and are dealt with separately in part III.

The essential difference between these two classes of solutions is that uniform
passive decay with the passive membrane time constant, Tm , can occur and usually
does occur'4 under the conditions of parts I and II; it cannot occur under the condi-
tions of part III. Also, the time constants, r1, T2, T3 , . . . etc. in parts I and II have
meaning as equalizing time constants; the time constants in part III are usually
quite different,'5 and should be thought of not as equalizing, but as governing the
transient approach to the steady state associated with the given voltage clamp or
leak.'6

Special attention has been given to explaining how the equalizing time constants
arise from the boundary conditions, and how the effective electrotonic length can be
estimated from time constant ratios, especially the ratio, r0/r, , of the passive mem-
brane time constant, To = Tm , to the first equalizing time constant, r5 ; see equations
8 and 23 in parts I and II above. In contrast, for voltage clamp conditions, the effec-
tive electrotonic length can be estimated from a different relatìon; see equation 33 in
part III above.

For those cases which include the coupling of a cylinder to a lumped soma mem-
brane, the ratio, p, of cylinder input conductance to soma membrane conductance,

The class of dendritic trees that can be represented as equivalent cylinders has been defined (Rail,
1962) and discussed (Rail, 1964); this class has the property, dA/dr ce dZ/dx, which means that the
rate of increase of dendritic surface area, with respect to x, remains proportional to the rate of increase
of electrotonic distance, with respect to x. A larger class of dendritic trees has the more general prop-
erty, dA/dZ ce eKZ, where K is a constant that may be positive or negative (Rail, 1962). Mathematical
solutions have been obtained for this larger class, and will be presented in a separate publication in
coilaboration with Steven Goldstein.
' It does not occur when the initial condition does not contain a uniformly distributed component;
then C, = O, in equation 1.
"Compare Table II with Table I. However, for voltage clamping at both ends, see equation 37
16 Although it is true that [V(X, T) - V(X, )] decays to zero everywhere in all of these cases, uniform
decay is possible only in parts I and II, where the boundary conditions at X = O and X = L are
either V/aX = O or coupling to an intact soma. Uniform decay is not possible in part III, because a
point of short-circuit or of voltage clamp imposes nonzero 3 V/,3X at that point.
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effects the value of L (for the cylinder) estimated from a given TO/Ti value; this is
displayed in Fig. i above. By using p = (which is equivalent to cylinder without
soma) we obtain the value of L for that cylinder which best approximates the whole
neuron. However, to estimate the value of L for the cylinder which best approxi-
mates a dendritic tree as distinct from the soma, it is necessary to have an estimate of
p, when working with the equalizing time constants and Fig. 1.

In contrast to the above, it is significant that the different time constants obtained
with voltage clamping at the soma do not depend upon p at all, for ideal clamping,
and the effect of p is very small even when there is a moderate amount of series re-
sistance in the system; see illustrative example following equation 45 in part III
above. This means that the value of L for the cylinder can be estimated without
knowing p; this can be done either with rj and T2 in equation 33, or by using ri from
voltage clamp together with r,,, obtained either with current clamp or unclamped
passive decay, and using equation 32 with n = i.

It is noteworthy that using both current clamping and voltage clamping at the
soma could thus provide a new method of estimating p. Obtain Tm from current
clamp; also obtain T and, if possible, T2 with voltage clamp; these provide an esti-
mate of L for the cylinder (from equations 32 and 33). Now using this L and the
equalizing time constants obtained with current clamping, one can estimate p from
Fig. I, or from equations 21 and 22.

There are two other electrophysiological methods of estimating p. One is based
upon sinusoidal stimulation applied to the soma (Rail, 1960; Nelson and Lux,
1969). Because the original theory was based upon the assumption of a cylinder of
infinite length, it should be remarked that finite length has less effect upon the steady-
state AC input admittance of the cylinder than upon the steady-state DC input con-
ductance of the cylinder.'7 The other method is based upon equations 6 and 12 of
(Rail, 1960) for the slope, dV/dt, of the response to an applied current step. This
method was used by Lux and Pollen (1966). It also is based upon the assumption of
a cylinder of infinite length; however, the early part of the transient should be little
changed by finite length. The amount of error can be evaluated by adding to the
transient, V(0, T), the transient, V(2L, T). This is because a matched current step
applied at X = 2L would result, by symmetry, in making â V/âX = O at the point,
X = L, halfway between the two current sources; this â V/aX = O at X = L is
equivalent to the sealed-end boundary condition used in the present paper. For
longer times, it becomes necessary to consider more terms, corresponding to X =
4L, X = 6L, etc.;" however, these additional terms are not needed for the early
portion of the slope.

' An explicit solution for sinusoidal steady states in cylinders of finite length (with sealed ends) has
been worked out and will be published separately; see also Lux (1967) for a case of finite length with a
different terminal boundary condition.
1 These additional terms are more complicated. They have been derived and computed by Jack and
Redman (personal communication), as part of an extensive program of theory, computations and ex-
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In conclusion, it can be seen that it is now appropriate to explore various pro-
cedures for estimating the most consistent set of the parameters, p, L, R,, and r,, =
RrnCm which determine the electrical properties of a passive neuron, for particular
neurons and neuron types. Such exploration has now begun.19 At present, it is too
early to say which of the several possible combinations of theory and experiment
will provide the best simultaneous estimate of the values of these parameters; this
will be determined largely by the limitations of experimental precision.

Notes Added in Response to Referee Comments. I thank one referee for drawing my
attention to the recent work of Koike, Okada, Oshima, and Takahashi (Exp. Brain Res.
1968. 5:173-188 and 189-201. Following Ito and Oshima (1965), the authors have applied a
"triple exponential analysis" to pyramidal tract cells of cat's cerebral cortex.

One referee expressed reservations about assuming the same passive dendritic membrane
properties for the soma and the dendrites. This is a simplifying assumption that has been dis-
cussed earlier (Rail, 1959, p. 494 and 523-524; RaIl, 1960, p. 514-515, 519, and 529). Fortu-
nately, careful experiments with voltage clamping at the soma, compared with current clamp-
ing at the soma, can provide a test of this simplifying assumption for each neuron type.

One referee questioned the assumption that the membrane itself should have only one
passive membrane time constant; he asks why I did not include another membrane time con-
stant corresponding to the tubular system of muscle fibers; see Ito and Oshima (1965). My
approach has been to investigate how much can be accounted for by a consideration of finite
dendritic length without the addition of more complicated membrane models. If electron
microscopy should reveal similar tubular systems in certain neuron membranes, this question
would merit further study in those neurons. In the case of cat motoneurons, the EPSP shape
analysis (Rail et al., 1967) supports the notion that the faster time constant depends upon
finite length, and that the weight of its contribution to the observed transient depends upon the
nonuniformity (over dendritic length) of the membrane depolarization.

I am grateful to Dr. J. Z. Hearon and to Drs. P. G. Nelson and R. E. Burke for helpful comments on
an earlier draft of this manuscript.

periments that they and their collaborators have carried out. They have used Laplace transform meth-
ods to obtain the terms of their mathematical series; these terms are expressed in terms of parabolic
cylinder functions (or, alternatively, in terms of error functions). This mathematical series is quite
different from the sums of exponential decays presented here. It is interesting that these different
mathematical approaches are not contradictory; they are complementary.

Jack and Redman have recently read a draft of this paper, and I have recently read drafts of two of
their unpublished manuscripts. Although we have not yet had the opportunity to make detailed quan-
titative comparisons, we do find our results to be in substantial agreement. Also, we know that the
sums of exponentials converge most poorly for smail values of r, while the sums of terms involving
error functions converge most poorly for large values of r.
"For example, Nelson and Lux (1969), and Burke (earlier footnote 2); also, Jack and Redman (earlier
footnote 18) have devised a particular set of procedures for estimating values of these parameters.
Furthermore, the parameter, K (see earlier footnote 13), as weil as the long time constant of Ito and
Oshima (1965) need to be taken into account for some neurons.
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8 ANALYSIS OF RESPONSE TO SINGLE INPUTS IN A
COMPLEX DENDRITIC TREE
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8.1 Introduction by Charles Wilson with Supplemental Comments
by John Rinzel

Rail, W., and Rinzel, J. (1973). Branch input resistance and steady attenuation
for input to one branch of a dendritic neuron model. Biophys. J. 13:648-688.

Rinzel, J., and Rail, W. (1974). Transient response in a dendritic neuron model
for current injected at one branch. Biophys. J. 14:759-790.

Although it may not have been immediately obvious to everyone in 1959
and 1960 that synapses located out on the distal portions of the dendritic
tree were important in neuronal function, it certainly was in 1973. By that
time the issue of whether or not dendrites were important was considered
settled, at least by students and other open-minded people (I was a student
then). The emphasis of the discussion had shifted to making concrete pre-
dictions based on a knowledge of synaptic distributions on dendrites. The
early i 970s was a period of great progress in neuroanatomy, riding on
several revolutionary technical advances and spearheaded by the applica-
tion of the electron microscope. The landmark book The Fine Structure of
the Nervous System by Peters, Palay, and Webster, first published in 1970
(current edition, 1991), was having an impact that cannot easily be appre-
ciated today. Investigators studying neurons in every part of the brain
were discovering highly structured synaptic arrangements revealing the
remarkable specificity of synaptic connections. The Golgi method (100
years old in 1973) was enjoying a renaissance; students were reading the
work of Cajal and Lorente de Nó as enthusiastically as that of more
contemporary authors. The spatial organization of inputs on a neuron
was clearly shown to be one of the defining characteristics of a cell type
and seemed certain to determine a large part of the functional properties
of cells and circuits in the brain. Neuroanatomists looking for support for
this notion were elated to find that there was an emerging theory of neu-
ronal function based specifically on this concept. During the same period,
many neurophysiologists abandoned the central nervous system of mam-
mals, looking for more secure recording conditions, better characterized
neuronal circuitry, and geometric simplicity in the somata of giant neurons
of invertebrates. Because it is so difficult to record from more than one
part of a neuron at a time, the announcement that the neuron is not
isopotential is not always taken as good news by the neurophysiologist.

There's no question that these are difficult papers for the neuroscientist
to read. They were written for the small audience of mathematical neuro-
scientists and published in the Biophysical Journal, an excellent journal
but certainly not read by everyone at the time. Unlike the widely read
experimental work, these papers could not be read in one sitting but re-
quired (for most of us at least) many hours of careful study. Still, because
of the multidisciplinary mood in neuroscience at the time, and the enor-
mous interest of the topic to so many neuroscientists, these papers were
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widely discussed, and many brave attempts were made to understand
them by scientists and students who would not normally have read mathe-
matical work. Folklore about the implications of dendrites and synaptic
integration in dendritic neurons was more plentiful than understanding of
what Rail and others had actually accomplished up to that time, however,
and this remained so for some time. Despite the obvious successes of
theoretical work before 1973, there was really no general mathematical
theory of synaptic integration in dendritic neurons prior to the Rail and
Rinzel (1973) paper. The equivalent cylinder model, which had come to
represent electrotonic theory in the minds of most people, was a spatially
lumped model, not a model of distributed synaptic interactions. It was
ideally suited for the analysis of the available neurophysiological data, in
which the vicinity of the soma and the signals recorded there required
exact representation but accuracy in the details of distal dendritic events
was less important. The compartmental model, while computationally
able to handle any problem, offered little in the way of insight. Its utility
for simulating spatìally complex situations had been demonstrated (Rall
1964), but it did not offer an analytical solution, whose special cases and
asymptotic behavior could be enumerated and used to create a mental
picture of the entire range of behavior of the system. An analytical solu-
tion, suitable for developing such a thorough understanding for the steady
state, was provided by the Rall and Rinzel paper, and the later Rinzel and
Rall article (1974) completed the analysis for time-varying signals.

What was attempted in these papers was not a model of the motoneu-
ron or any other actual cell. The solution was for an idealized, simplified
neuron. It included input to (the very end of) a single branch of a dendritic
tree of a neuron consisting of several equivalent dendritic trees. The neu-
ron had no soma other than that formed by the junction of the dendritic
trees. There was no axon, and no action potentials. It was clear that this
was not intended to be a realistic model of any particular neuron, and
perhaps some very practical readers discounted the papers on this basis.
The value of this model was actually as an abstraction applicable to all
neurons. Anyone who has tried to make a model of a biological system
knows that the art is not in deciding what details should be included in the
model but in deciding what details should be excluded. In these papers, the
things excluded were those which distinguished one neuron from another.
The model was based on a set of carefully chosen symmetries that simulta-
neously (almost miraculously) abstracted the neuron and simplified the
mathematics. Of course the most important (and widely discussed) simpli-
fication was the assumption of electrotonic continuity at dendritic branch
points (the famous 3/2 power rule). Discussions of which, if any, real neu-
rons obey this constraint have continued unchecked since it was intro-
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duced in earlier papers. There are only two possible approaches to the
issue. One is to select a particular geometry to use as a template for an
abstracted neuron, and the other is to obtain a solution that explicitly
includes the geometry of the cell, and so will serve for all neuron shapes.
Rall and Rinzel took the first approach. Since the publication of their
papers, several approaches for the solution for passive neurons of arbi-
trary geometry have been offered, and they continue to be presented (Butz
and Cowan 1974; Holmes 1986; Horowitz 1981; Koch and Poggio 1985;
Cao and Abbott 1993; Majors et al. 1993). These important contributions,
inspired by the work of Rall and Rinzel, continue to enrich neuron theory.
But, to obtain the solution for an arbitrary geometry, these authors have
been forced to abandon the search for a closed solution and have pursued
recursive methods whose utility is comparable to that of the compart-
mental model.

The closed solution, with its potential for generating understanding
and insight (not simply the correct answer) is still available only for one
branching pattern, the one chosen by Rail and Rinzel. Time has proved
the wisdom of their approach. The fundamental principles that have
emerged from theoretical studies of such abstracted dendrites apply rather
well to neurons of all geometry. The selection of one simple abstract neu-
ron whose solution can be understood revealed the principles that govern
synaptic interactions in linear neurons. To this day, if one wishes to ana-
lyze the implications of dendritic branching on synaptic inputs, rather
than the effects of any particular branching pattern, the assumptions of the
Rail and Rinzel paper should be adopted. For analysis of any specific
neuron, a comparison should probably be made with results obtained
using the generic branching pattern. Otherwise, one is not sure if the result
of interest is due to the specific characteristics of the neuron type or is
expected for any branching neuron. Thus, although not a numerically
accurate model of any cell, this model gave, for the first time, the general
form for the input impedance and for the propagation of synaptic poten-
tials for all dendritic neurons.

The most obvious accomplishments of the analysis should be enumer-
ated. These papers offer the first and best description of branch attenua-
tion, which continues to be an important issue in studies of synaptic inter-
action. They also point out the surprisingly large effect of branching on
the propagation of synaptic potentials. One still often hears the argument
that because the total electrotonic length between an input and a record-
ing site is small, the attenuation of the signal recorded should likewise be
small. The fallacy in this argument is that it is based on the equivalent
cylinder model. While very useful for some purposes, the equivalent cylin-
der model was not Rall's model of synaptic potential propagation in a
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branched neuron. In these papers, the crucial effect of impedance loading
at branch points is very clearly and beautifully explained. A related result,
the fact that voltage attenuation within branching dendrites depends
greatly upon the direction of signal propagation, proved critical for theo-
retical studies of the functional effects of dendritic spines and was very
clearly presented in these papers. The finding that the time course of the
somatic response to transient current injection in the dendrites is indepen-
dent of how the current is distributed among the various branches, but
depends only upon distance from the soma, proved important for neuro-
physiological studies of EPSP shapes. In the second paper, the relation-
ship between transient and steady-state solutions was clarified in a section
on the time integral of voltage and the distribution of charge dissipation
in the dendrites. The approach was to use a single characteristic of the
transient response at any location on the dendrites and solve for it in a
manner similar to the steady-state solution for voltage. This is an excellent
source of insight into the behavior of the model that cannot be duplicated
in strictly numerical simulations of neurons. A similar approach, used
recently by Agmon-Snir and Segev (1993) for analysis of the time course of
synaptic potentials propagating throughout a neuron, was undoubtably
inspired by the Rinzel and Rail treatment. For those of us pursuing com-
puter simulations to deal with the complexity of nonideal, nonlinear neu-
rons, these relationships serve as an essential template for the interpreta-
tion of our results.

These papers also explored the fundamental relationship between input
resistance, local synaptic potential, and synaptic effectiveness. Although it
may seem obvious now, the high input resistance of distal dendritic sites
was not well appreciated at the time and had been dealt with only briefly
in theoretical work (e.g., MacGregor 1968). The dramatic potential for
saturation of synaptic current due to giant local synaptic potentials (which
do not seem giant when seen from the soma) was not well appreciated
until clearly explained in the Rall and Rinzel papers. The importance of
the duration of synaptic conductances, both in the local saturation effects
and in propagation within the dendrites, was also explained there for the
first time. The possibility that synaptic current might be limited by factors
dependent upon the shape of the postsynaptic neuron, of course, laid the
groundwork for all subsequent work on changes in cell shape as mediators
of synaptic plasticity. This issue later acquired great importance for stu-
dents of dendritic spines, and it is obvious that Rail and Rinzel saw the
application of their approach to the dendritic spine problem at the time
these papers were written. Of course, they also successfully applied the
approach explicitly to the issue of dendritic spines.
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Most important, the papers laid out the symmetry rules that became the
basis for our intuitive understanding of signal propagation in branching
dendritic trees. This intuition is still valuable, and those wishing to de-
velop ìt within themselves can do no better than to consult these two
papers. Because much of what is explained there continues to be discussed,
rediscovered, and misunderstood today, these papers continue to be on
the list of required reading for those who would understand synaptic inter-
actions or interpret synaptic potentials in dendritic neurons.
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Supplemental Comments by John Rinzel

In 1968, I came to the NIH with no post-high-school biology background
(T had a B.S. in engineering and an MS. in applied mathematics) to serve
in the U.S. Public Health Service. My alert supervisor in the computer
division directed me to some of Wil's papers and then introduced us.
Coming from outside the field, I had little appreciation of Wil's scientific
stature. I did not realize that he was heading a revolution in neurophysi-
ology and drastically affecting the way many neuroscientists thought
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about dendritic function. His pleasant, soft-spoken, gentle presentation
did not fit any stereotype I had of a revolutionary. He did not direct a
large working group; in fact, he usually worked with one, sometimes two,
young scientists. Fortunately, Wil took me on as a collaborator. We were
going to consider questions related to dendritic spines, and I was to carry
out the computations (at which I was well experienced for physics prob-
lems). It soon became clear that this man was superextraordinary. His
time and availability seemed limitless, and his patience with my ignorance
of biophysics, impressive. He was fostering me, and I was learning so many
new things.

For our initial computations, I was conservative, concerned about nu-
merical accuracy, and I used a rather fine spatial discretization for solving
the cable equation with a single spine in an explicitly branched dendritic
architecture. This became a costly task on the NIH computers, in spite of
my numerical and programming tricks. This constraint was a factor in our
search for an alternative strategy, an analytical one. In addition, Wil knew,
of course, that the input resistance at the spine site was an important
quantity for us to determine. Earlier (Rall 1959), he had developed a
recursive formula for dendritic input resistance, but the solution was not
in closed form. Formulating a solvable, idealized model problem became
the next challenge, at which point I saw Wil's creative mastery begin to
strike.

As a young mathematical scientist, I was excited to see Wil put mathe-
matical physics to work on a biological problem. His keen physical intu-
ition played a key role. First, he used the principle of superposition to
simultaneously formulate and solve this problem, physically. Then we ex-
pressed the solution mathematically, computed some examples, and, again
with Wil leading, we developed the physiological implications of our theo-
retical results. All of the essential results for these two papers, as well as
those from our modeling of passive dendritic spines, were obtained before
I returned to graduate school in 1970. (The writing came significantly later,
due partly to Wil's worsening vision problems and partly to his high
standards and dedicated effort to communicate theoretical results clearly.)

Without question, Wil's mentoring was inspirational and career deter-
mining for me. We bonded, beyond the level of scientific colleagues, and
his outlook on life has been a guide for 25 years.

Supplemental Reference

Rail, W. (1959) Branching dendritic trees and motoneuron membrane resistivity. Expt.
Neurol. 1:49 l-527.
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8.2 Branch Input Resistance and Steady Attenuation for Input to One
Branch of a Dendritic Neuron Model (1973), Biophys. J.
13:648-688

Wilfrid Rail and John Rinzel

ABSTRACT Mathematical solutions and numerical illustrations are presented for
the steady-state distribution of membrane potential in an extensively branched
neuron model, when steady electric current is injected into only one dendritic
branch. Explicit expressions are obtained for input resistance at the branch input
site and for voltage attenuation from the input site to the soma; expressions for
AC steady-state input impedance and attenuation are also presented. The theo-
retical model assumes passive membrane properties and the equivalent cylinder
constraint on branch diameters. Numerical examples illustrate how branch input
resistance and steady attenuation depend upon the following: the number of den-
dritic trees, the orders of dendritic branching, the electrotonic length of the den-
dritic trees, the location of the dendritic input site, and the input resistance at the
soma. The application to cat spinal motoneurons, and to other neuron types, is
discussed. The effect of a large dendritic input resistance upon the amount of local
membrane depolarization at the synaptic site, and upon the amount of depolar-
ization reaching the soma, is illustrated and discussed; simple proportionality with
input resistance does not hold, in general. Also, branch input resistance is shown to
exceed the input resistance at the soma by an amount that is always less than the
sum of core resistances along the path from the input site to the soma.

INTRODUCTION

It seems now generally accepted that the many synapses distributed over the den.
dritic surface of a neuron can make significant contributions to the integrative be-
havior exhibited by this neuron as it responds to various spatiotemporal patterns
of afferent input. In some theoretical studies it has been useful to lump the effects
of neighboring synapses and to lump regional groupings of the dendritic branches
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belonging to a neuron (e.g., Rail, 1962, 1964, 1967). Nevertheless, it is clear that
any particular one of these synapses is located upon one particular dendritic branch;
also, when a synapse is made with a dendritic spine, that spine is attached to a par-
ticular dendritic branch. This gives rise to questions about the input resistance
that would be "seen" or confronted by a particular synapse on a particular den-
dritic branch. Questions arise also about the amplitude of membrane depolariza-
tion generated at the synaptic site, and about the attenuation of amplitude as this
membrane depolarization spreads (electrotonically) from the synaptic site to other
locations, both in the same dendritic tree, at the neuron soma, and in other den-
dritic trees of the same neuron. Such questions have been noted and discussed, for
example, by Katz and Miledi (1963, p. 419), Arshavskii et al. (1965), RaIl (1967;
1970, p. 184), and Kuno (1971).

This is the first of several closely related papers which provide mathematical
solutions and contribute biophysical intuition toward the understanding of effects
of synaptic input to one branch of an extensively branched neuron model. This
first paper is restricted to the steady-state problem. For a steady current applied
across the membrane at one site in one branch of the neuron model, the complete
steady-state solution for the distribution of electrotonic potential throughout all
branches and trees of the neuron model is obtained. This steady-state solution pro-
vides expressions for branch input resistance and for steady-state attenuation of
electrotonic potential from the branch input site to the neuron soma; numerical
examples are tabulated, illustrated, and discussed.

The second paper' treats the corresponding transient problem, for the injection
of a brief current at the branch input site. Our solution of this more difficult prob-
lem depends upon the conceptual approach (mathematical superposition of simpler
boundary value problems) that is introduced, illustrated, and discussed in the first
paper. In addition to providing a mathematical derivation of the required transient
response functions, the second paper also illustrates and discusses specific computed
examples.

Subsequent papers of this series will deal with the additional theoretical com-
plications involved in treating synaptic input to a dendritic spine. The effect of a
synaptic excitatory conductance at the spine head is coupled to the dendritic branch
by means of the spine stem current. Our solution of this problem depends partly
upon the transient response functions derived in the second paper of this series.
Also, the steady-state interpretations of synaptic input to a dendritic spine make
use of the steady-state results in the first paper of this series. A consideration of
these theoretical results in relation to recent neuroanatomical studies of dendritic
spines has led to a recognition of possible functional implications of spine stem
resistance; a paper presenting and discussing these implications is in preparation.

i Rail, W., and J. Rinrel. Manuscript in preparation.
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Brief communications of various portions of this research have already been pre-
sented on several occasions.2

ASSUMPTIONS OF NEURON MODEL

Symmetry and Idealized Branching

Much of our biophysical intuition and many of our mathematical results have been
facilitated by several assumptions of symmetry in our idealized neuron models.
If we had been interested only in the steady-state problem, we could have dispensed
with these symmetry assumptions completely: we could have solved the problem
by the same stepwise procedure (which permits arbitrary branch lengths and diam-
eters) that was outlined earlier (Rail, 1959) for the case of steady current injection
at a neuron soma. The symmetry assumptions are of greatest value in obtaining
the transient solutions;' they permit us to apply the mathematical principle of super-
position to construct the solution of a complicated boundary value problem as a
combination of several simpler boundary value problems. Because it simplifies
our exposition of the particular superpositions we have used, we have chosen to
introduce the method in this steady-state paper. Also, we simplify our presentation
by beginning with more severe symmetry assumptions than superposition actually
requires; the effects of relaxing the severity of these assumptions are examined later
in the Appendix.

Most of our results are expressed for an idealized neuron model composed of
several equivalent dendritic trees (N in number) in which there are several orders
(M) of symmetric dendritic branching. A diagram of one particular example (Fig.
1 A) shows six equal dendritic trees in which there are two orders of symmetric
dendritic branching. It should be pointed out immediately that the angles between
the trees and between the branches are of no importance. These angles do not enter
into any of the mathematics.3 It is the lengths and diameters of the trunks and
branches that are important. Fig. I A is intended merely to bring out the equiv-
alences between corresponding lengths and diameters. The soma of this neuron
model is represented by the common origin of the six dendritic trees.

In addition to the symmetry assumptions already noted, we have restricted our
treatment to dendritic trees whose branch diameters satisfy the constraint for trans-

The use of symmetry and superposition to obtain these solutions was included in a presentation
for the American Association for the Advancement of Science Symposium on Some Mathematical
Questions in Biology, Boston, December, 1969. The mathematical and numerical treatment of cou-
pling the dendritic spine to a branch of the model was presented at the Society for Industrial and
Applied Mathematics National Meeting, Denver, June, 1970. Functional implications for dendritic
spines were presented at the 25th International Congress of Physiological Sciences, Munich, July,
1971, and at the first annual meeting of the Society for Neuroscience, Washington, D. C., October,
1971.
This follows from the assumption of extracellular isopotentiality; see Other Simplifying Assump-

tions section below.
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FIGURE 1 Diagrams ifiustrating features of the idealized neuron model. A represents the
neuron model composed of six identical dendritic trees. B indicates the relation of a den-
dritic tree to its equivalent cylinder. C represents the same model as A, with each den-
dritic tree replaced by an equivalent cylinder. D represents the same model as A and C,
with dendritic branching shown explicitly only for the tree which receives input current
injected into the terminal of one branch; the five other trees of the model are represented
by their equivalent cylinders, here shown gathered together. In diagrams A, C, and D,
the point of common origin of the trees or equivalent cylinders is regarded as the neuron
soma; see text.

formations between a tree and an equivalent cylinder (Fig. i B; also Rail, 1962,

1964). Except in the Appendix, we have assumed symmetric bifurcations that yield
daughter branches of equal diameter. Together, these assumptions imply that at
every branch point, each daughter branch diameter is about 63 % of its parent
branch diameter; strictly, the requirement is that the 3/2 power of each daughter
diameter be exactly half as great as the 3/2 power of its parent diameter. With
such branching, an entire dendritic tree can be shown to be mathematically equiv-
alent to a cylinder (Rail, 1962); increments isx of actual dendritic length are ex-
pressed as increments of electrotonic length, X = x/X, where X is the charac-
teristic length of each cylinder as defined below. This equivalence applies to spatio-
temporal spread from the trunk into the dendritic branches; it applies also to
spread from the dendrites to the trunk, when the input is delivered equally to all
terminal branches of that dendritic tree.

The equivalent cylinder concept can be used to reduce the idealized (branched)
neuron model of Fig. 1 A to simpler versions (Figs. 1 C and D) for appropriate
conditions. Thus, for example, if current is injected equally to ail terminal branches
of just one of the six dendritic trees of Fig. 1 A, this tree can be treated as an equiv-
alent cylinder which receives input at its distal end. The origin of this cylinder can
be coupled to the origins of five other equivalent cylinders, as in Fig. 1 C. These
other cylinders have the same dimensions as the input cylinder but differ in receiv-
ing no input at their distal ends; they receive equal shares of the current that reaches
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them at their common origin (soma) from the input cylinder. The six cylinders in
Fig. i C represent the same neuron model as that in Fig. i A; the existence of the
branches makes no difference under the stated condition of input delivered equally
to all terminal branches of the one tree. However, when the input current is in-
jected to only one branch terminal of one dendritic tree, it is necessary to include
the branching details of that tree but not the branching of the other trees, as shown
in Fig. i D. The five equivalent cylinders which do not receive input have been
oriented more together in this figure to emphasize their equivalence with each other
in sharing equally the current that flows to the origin (soma) from the input tree;
the angles between the cylinders have no other significance, as noted earlier.3 This
last case (Fig. i D) is an illustrative example of the problem we solve below.

Other Simplfying Assumptions

Here we briefly note several other simplifying assumptions of dendritic neuron
models (cf., Rall, 1959, 1962). All dendritic trunks and branches are treated as
cylinders of uniform passive nerve membrane. Extracellular resistivity is neglected,
implying extracellular isopotentiality. This, together with the usual core conductor
assumptions, permits each cylinder to be treated as a one-dimensional cable of
finite length (see RaIl [1969 b] for discussion and references). At all branch points,
membrane potential is assumed to be continuous, and core current is conserved.
Dendritic terminals are assumed to be "sealed" or "insulated," implying zero
leakage current across the terminal membrane; except for a terminal where current
is injected, this implies a zero slope (dV/dX = O) boundary condition, just inside
(not across) the terminal membrane.

The assumption of extracellular isopotentiality brings with it several useful
simplifications. It means that spatial orientation of the dendritic trees and branches
can have no effect upon the distribution of membrane potential over the dendritic
surfaces; only electrotonic distances and boundary conditions are important. It
also provides simpler expressions for the characteristic length X and for the various
input resistances. It should be noted that this assumption represents a good approxi-
mation for some experimental situations, but not for others. For a single dendritic
neuron placed in a volume conductor (which is assumed not to be subjected to an
externally applied electric field) the current flow generated by activity of that neuron
results in gradients of extracellular potential that are negligible relative to the much
larger gradients of intracellular potential along the intracellular core resistance
and across the relatively large membrane resistance (for estimates, see Rail, 1959,
1969 b). When extracellular space is severely restricted, however, either by glial
sheaths or by simultaneous activity in a large population of closely packed cells,
extracellular potential gradients can become comparable with or even greater
than the intracellular potential gradients; see, for example, synchronous activity of
granule cells in olfactory bulb (Rall and Shepherd, 1968, pp. 887-890, 901-904).
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Under such conditions, one must avoid assuming extracellular isopotentiality and
assume an appropriate extracellular resistance per unit length for each cylinder;
also, the effects of tree and branch orientation would then need to be considered.

Because it might be objected that we should not treat the soma as merely the
point of common origin of the dendritic trees, we comment. The superposition
methods of this paper and its transient sequel would lose much of their simplicity
if a lumped soma were explicitly included at the origin of the neuron model. This
can be verified by examining the effect of a lumped soma upon previously published
theoretical transient results (Rail, 1969 a, pp. 1492-1496; see also Rail, 1960, as
well as Jack and Redman, 1971). Our present assumption of a point soma can be
qualified with the thought that a finite soma surface area could be designated, if
needed, as being composed of several initial length increments, one from each
dendritic trunk. Finally, we note also that the neuron model of the present paper
does not include an axon- or a spike-generating locus; our focus of attention is
upon the contribution of passive membrane electrotonus to the integrative proper-
ties of the extensively branched neuron model.

SYMBOLS

For Membrane Cylinders

Vm = V - Ve Membrane potential, as intracellular minus extracellular
electric potential; (volts).

V = V,, Er Electrotonic potential, as deviation of membrane poten-
tial from its resting value Er ; (volts).

R Resistivity of intracellular medium; (ohms centimeters).
Rm Resistance across a unit area of membrane; (ohms square

centimeters).
d Diameter of membrane cylinder; (centimeters).
r = 4R/(ird2) Core resistance per unit length; (ohms centimeters').
X = [(Rm/Ri)(d/4)Ih/2 Characteristic length of membrane cylinder, when extra-

cellular resistance is neglected; (centimeters).
X Actual distance along a cylinder axis; (centimeters).

= x/X Increment of electrotonic distance; (dimensionless).
X = f (1/X) dy Electrotonic distance from origin; in a tree, X changes at

each branch point; (dimensionless).
= Xr = (2/ir)(R,,Rj)h/2(d)Ì2 Input resistance at origin of membrane cylinder of

semi-infinite length; (ohms).

For Membrane Cylinders of Finite Length
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Electrotonic distance from origin (X = O) to the end of cylinder (X = L).
Input resistance at end (X = L) for a cylinder insulated (dV/dX = 0) at the origin;
Eq. 7.
Input resistance at end (X = L) for a cylinder clamped (V = O) at the origin;
Eq. 9.
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For Idealized Neuron Model

For the Discussion

Vin Steady value of V at some synaptic site.
Rm Input resistance at this synaptic site.
gE Synaptic excitatory conductance at this synaptic site.
V = Ef - Synaptic excitatory equilibrium potential, being the difference between

the excitatory emf and the resting emf.
(Vf Vm) Effective steady driving potential for synaptic current.
Vili/Vf Normalized steady synaptic depolarization; Eq. 32.

L/(M + 1) For equal electrotonic increments.

THEORY

For the usual assumptions of one-dimensional cable theory, steady-state distribu-
tions of membrane potential along the length of a passive membrane cylinder must
satisfy the ordinary differential equation

d2V"dX2 - V = O, (1)

where X and V are explicitly defined in the list of Symbols. Because we wish to
exploit even and odd symmetry about the origin, we express the general solution of
Eq. 1 in terms of hyperbolic functions,4 as follows,

V = A siali X ± B cosh X, (2)

4The hypobolic sine and cosine are defined and tabulated in standard mathematical tables. Because
sinh (X) = - sinh (X), this function has odd symmetry about the origin. Because cosh ( X) =
cosh (X), this function has even symmetry about the origin.

Number of equivalent dendritic trees (or their equivalent cylinders)
that are coupled at X = O.
Electrotonic length of each of those trees or equivalent cylinders.
Number of orders of symmetric branching, specifically in the dendritic
tree which receives the input.
Electrotonic distance from the origin to the first point of branching.
Electrotonic distance from the origin to the kth-order branch points.
Value of R, for the trunk cylinder of one dendritic tree.
Whole neuron input resistance at the point (X = O) of common origin
of the N trees or equivalent cylinders; Eq. 11.
Input resistance at the end (X = L) of one equivalent cylinder of the
neuron model, for current applied as in Fig. 2 F; Eq. 14.
Input resistance at the end (X = L) of one terminal branch of the neuron
model, for current applied as in Figs. i A and D; Eq. 22.
Steady value of V at input branch terminal.
Steady value of Vat the origin of the neuron model.
Attenuation factor from input branch terminal to soma; Eq. 26.
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where A and B are arbitrary constants to be determined by the boundary condi-
tions.

When a steady current f is injected at the terminal (X = L) of a cylinder of
finite length, the terminal boundary condition can be expressed

dV/dX = IR0., at X = L, (3)

where R0, represents the input resistance for a semi-infinite length of such a cylin-
der. It may be noted that both the diameter and the materials of the cylinder are
included in the definition of R0. ; see the list of Symbols. To understand this bound-
ary condition, it is helpful to note that the intracellular (core) current (flowing
parallel to the cylinder axis and taken as positive when in the direction of increasing
x) can be given several alternative5 expressions

(dV4/dx)/r = (dV4/dXi/(Xr) = (dV/dX)/R0..

When the injected current is positive, the resulting core current is negative, because
it must flow from X = L toward the origin. Furthermore, we assume that none of
the injected current can leak out through the sealed terminal of the cylinder; there-
fore, the core current must equal exactly I at X = L, and Eq. 3 must hold. It
should be added that for a cylinder which extends from the origin to a terminal at
X = - L, the sign becomes reversed, because a positive current injected at this
terminal would result in a positive core current flowing from X = - L toward the
origin. Thus, the boundary condition for current injection at X = - L differs
from Eq. 3 by a minus sign.

Even Symmetry for 2L; or Length L Insulated at the Origin

For a cylinder of length 2L diagram A in Fig. 2 illustrates the case of even sym-
metry, where the same steady current 1/2 is injected at both ends (X = ±L) of
the cylinder. This symmetry requires4 that A = O in Eq. 2; the value of B can be
determined from the boundary condition at either end. Because the core current
at X = L must equal minus 1/2 in this example, we see (from Eq. 3, above) that
the boundary condition here can be expressed

dV/dX = (I/2)R0., at X = L. (4)

Together with A = O in Eq. 2, this boundary condition implies that B = (I/2)R0./

'The first expression simply represents Ohm's Law. The second uses the substitution, dx = XdX,
which follows from the definition of X. The third expression depends upon two substitutions: Xr4 =
R, by definition, and dV/dX = dV/dX, because V = V4 - V - E,, and both V and Er are
assumed to be constants (independent of X).
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Flouas 2 Diagrams illustrating superposition of component boundary value problems
characterized by even and odd symmetry; see text. A, B, and C refer to a cylinder of length
2L. A shows even symmetry for equal source currents at both ends; the graph of V with
distance shows zero slope at origin (X = O), corresponding also to insulated boundary
condition at origin. B shows odd symmetry for a source current at X = L with a match-
ing sink current at X = - L; the graph shows V = O at origin, corresponding also to
voltage-clamped boundary condition at origin. C shows the superposition of A and B;
the graph shows zero slope at X = - L, corresponding to insulated boundary condition
at X = L. D, E, and F refer to a neuron model composed of six equal cylinders of length
L like Fig. i C; one cylinder extends to the right, to distinguish it from the other five, shown
gathered to the left of the common origin. D shows even symmetry for equal source cur-
rents 1/6 applied to the distal ends of all six cylinders; the graph shows zero slope at the
origin. E shows the result of five source-sink current pairs, where one cylinder receives
all five source currents, while each of the other five cylinders receives one of the (-1/6)
sink currents; the graph shows discontinuous slope at origin, where the one cylinder has a
slope which is five times as steep as that in each of the five other cylinders. F shows the
superposition of D and E, where the resultant current is all applied to one cylinder; the
graph shows that the five other cylinders satisfy a zero slope (insulated) boundary con-
dition at their distal ends; graph also shows a fivefold discontinuity of slope at the origin,
in agreement with E.
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sinh L, and that the solution for this case of even symmetry can be expressed

V(X) = (1/2)R cosh X/sinh L, (5)

for the entire range, L < X < L. It should be noted that the case of even sym-
metry necessarily implies the condition

dV/dX = O, at X = 0, (6)

which corresponds also to an insulated or sealed boundary at X O, as noted in
Fig. 2 A.

The input resistance at X = L, for this case of a cylinder insulated at the origin,
is the ratio of the steady input voltage, V(X) at X = L, to the steady input current
1/2. It follows from Eq. 5 that this input resistance can be expressed

RCL, i = Re,, coth L. (7)

For example, if L = 1.0, this input resistance is 1.3 13 times R,, . For values of L
greater than 2.65, this resistance differs from R,,0 by less than 1 %.

Odd Symmetry for 2L; or Length L Clamped at the Origin

For a cylinder of length 2L diagram B in Fig. 2 illustrates the case of odd sym-
metry, where a steady source current 1/2 is injected at X = L, and a matching
steady sink current 1/2 is applied at X = L. This odd symmetry requires that
B = O in Eq. 2; the value of A can be determined from the boundary condition at
either end. The boundary condition at X = L can be expressed in the same form
as Eq. 4, but here, with B = O in Eq. 2, this boundary condition implies that A=
(I/2)R,/cosh L, and that the solution for this case of odd symmetry can be ex-
pressed

V(X) = (I/2)R,,,, sinh X/cosh L, (8)

for the entire range, - L X L. It should be noted that the case of odd sym-
metry necessarily satisfies the condition V = O at X = O which is equivalent to a
voltage-clamped boundary condition at X = 0, as noted in Fig. 2 B.

Setting X = L in Eq. 8, we see that the input resistance at X = L can be ex-
pressed, for this case of a cylinder clamped (V = 0) at the origin, as

RCLC1P = R,,0 tanh L. (9)

For example, if L = 1.0, this input resistance is 0.762 times R,,,, . For values of L
greater than 2.65, this resistance differs from R,,,, by less than 1 %.
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Whole Neuron Input Resistance at Origin (Soma) of Neuron Model

Consider a neuron model composed of N equal dendritic trees coupled to a com-
mon origin (Fig. I A). Each tree has a trunk whose diameter and materials can
be characterized by R , the input resistance at the origin of a trunk cylinder ex-
tended to semi-infinite length. Each dendritic tree is assumed to have a finite elec-
trotonic length L and, in those situations (such as current injection at the origin)
where it is not necessary to distinguish between separate dendritic branches, each
dendritic tree can be represented as an equivalent cylinder (Figs. i B and C) of
electrotonic length L. We assume all dendritic terminals to have sealed (insulated)
ends; this implies a zero slope (dV/dX = 0) boundary condition at X = L. If the
current, I is injected at the common origin of N such cylinders, I/N flows into each
cylinder, and the steady potential distribution can be expressed, for each cylinder, as

V(X) = (I/N)R,,. cosh (L - X)/sinh L, (10)

which satisfies the boundary conditions at X = O and at X = L. The whole neuron
input resistance RN at the origin of this model is the ratio of the steady input voltage
V(X) at X = O to the steady input current I. It follows from Eq. 10 that this input
resistance can be expressed

RN = (RT,0cothL)/N. (Ii)

For example, consider L = 1.0 and N 6; then RN is 0.219 times RT. . For values
of L greater than 2.65, RN differs from RTOO/N by less than 1 %.

Effect of Restricting Input Current to One Cylinder of Neuron Model

Suppose that a steady current I/N is injected at the end of each cylinder, as illus-
trated in Fig. 2 D for the case of N = 6. Then there is even symmetry with respect
to the origin, and Eqs. 4-7 apply, with I/N replacing 1/2, and Rr replacing Ro
Next, instead of this even symmetry, suppose that a steady source current I/N
is injected at the end of only one cylinder, while a steady sink current -I/N is
applied to the end of one other cylinder. For the special case of N = 2, this is
exactly the same as Fig. 2 B and Eqs. 8 and 9. For N greater than 2, it should be
noted that the additional cylinders would not be disturbed by the single source-sink
pair just described.6 Thus, as shown in Fig. 2 E, we can superimpose (N - 2)
additional source-sink pairs, with the result that one cylinder receives a combined
source current (N - 1)1/N at its end X = L while each of the (N - 1) other
cylinders receive separate sink currents each of which equals -1/N; note that this

6 The several cylinders are connected only at the origin, and the source-sink pair satisfies two con-
ditions: V = O at the origin, and the current reaching the origin from the source is exactly matched
by the current flowing from the origin toward the sink.
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superposition of source-sink pairs preserves the voltage-clamped condition (V = O)

at the origin (Fig. 2 E).
Now we can superimpose the N sources of Fig. 2 D with the (N - 1) source-

sink pairs of Fig. 2 E to obtain the combined result of Fig. 2 F, where one cylinder
receives a combined current injection I at X = L, while the complete cancellation
of the source and sink currents at the ends of the (N - 1) other cylinders implies
that their ends receive zero resultant input current and thus correspond to insulated
ends.

As is indicated in Fig. 2 F, it is convenient to let the input cylinder be represented
by positive values of X, and to let the (N - 1) other cylinders be represented by
negative values of X. Thus, the superimposed solution can be represented mathe-
matically (using Eqs. 5 and 8 with 1/2 replaced by 1/N, and R, replaced by R)
by the following two expressions: for the input cylinder (i.e., for O X L),

V(X) = (I/N)RT,, [cosh X/sinh L + (N - 1) sinh X/cosh L], (12)

while, for each of the (N - 1) other cylinders (i.e., for L X O),

V(X) = (I/K)RT,, [cosh X/sinh L + sinh X/cosh L]. (13)

It may be noted that this steady-state solution does satisfy continuity of V and
conservation of core current at the origin; it also satisfies the current input boundary
condition (dV/dX IRr,,) at X = L of the input branch, as well as the zero slope
boundary condition at each terminal (X = - L) of the N - i other cylinders of
the neuron model.

Setting X = L in Eq. 12 and dividing by the steady input current I we see that
the input resistance at X = L of the input cylinder can be expressed, for this case
of current injection at the end of one cylinder of the neuron model, as

RNCL = Rroe[coth L + (N - 1) tanh L]/N. (14)

It can be seen that for N = 1, this equation reduces to Eq. 11, as it should. Also,
for large L, where both the hyperbolic tangent and hyperbolic cotangent differ
negligibly from unity, this resistance differs negligibly from as would be ex-
pected from the physical intuitive consideration that the boundary condition at
the origin should have negligible effect upon the terminai input resistance when L
is large enough. Additional insight into this result can be obtained by referring
this result to the insulated and "clamped" (even and odd) results of Eqs. 7 and 9;
then the present result can be expressed

RNCL = [1/N]RCL, i + [(N - l)/N]RcL, , (15)

where we have identified R,.,, (of Eq. 14) with Roe (of Eqs. 7 and 9).
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A physical interpretation of this result is that a fraction 1/N of the input current
is completely dissipated in the input cylinder (as though there were insulation at
the origin; see Figs. 2 A and D), while the remaining fraction (N - 1)/N of the
input current dissipates partly in the input cylinder and partly in the other cylin-
ders (as though the origin were clamped to V = 0; see Fig. 2 E).

In view of earlier Eq. 11 for the whole neuron input resistance RN at the origin,
we can use Eq. 14 to express the ratio

RNCL/RN = I + (N - I)(tanh L)2. (16)

For example, if L = 1.0 and N = 6, the input resistance RNCL defined by Eqs.
14-16 is 3.9 times RN, or 0.86 times RT0. . For large values of L, the input resistance
ratio of Eq. 16 is nearly N.

It is also interesting to note that the special case N = 2 which reduces Fig. 2 F
to Fig. 2 C, also reduces Eq. 14 to the simpler expression

R2CL = RToo(coth L + tanh L)/2

= RT,, coth (2L), (17)

where the second form follows from a standard identity. This agrees, as it should,
with Eq. 7 for a doubling (from L to 2L) of the distance from the insulated end
to the input end of a cylinder; compare Fig. 2 C with the right half of Fig. 2 A.

Effect of Restricting Input Current to One Dendritic Branch Terminal

We consider first the case where there is only one order of symmetric dendritic
branching. Diagrams A, B, and C in Fig. 3 illustrate the superposition method for
this case. If both branch terminals of one tree receive the same steady input current
1/2 (as in Fig. 3 A) the distribution of steady membrane potential must be exactly
the same in both branches. Given that the branch diameter satisfies the constraint
for transformation of this tree to an equivalent cylinder, this case is equivalent
to the injection of I at X = L in the equivalent cylinder. In other words, the case
of Fig. 3 A is equivalent to that of Fig. 2 F, and the steady-state solution is the
same as that given by eqs. 12 and 13.

Now we consider the particular kind of odd symmetry ifiustrated by Fig. 3 B,
where a steady source current 1/2 is injected at one branch terminal, while a match-
ing steady sink current 1/2 is applied at the other branch terminal. Let X = Xi,
define the (first-order) branch point. The odd symmetry between the two branches
implies that V = O at X = X1, and that all of the current flowing to X = Xi from
the source branch must exactly equal all of the current flowing from X = Xi into
the sink branch. This source-sink pair supplies no current or voltage to the trunk or
the other trees, which is why they are dotted in Fig. 3 B. The distribution of steady
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Fioupn 3 Extension of superposition method to dendritic branching in one tree; see text.
Diagrams A, B, and C, represent the simplest case of only one order of branching, with a
pair of equal branches. A shows even branch symmetry, with equal source currents to both
branch terminals. B shows odd branch symmetry, with a source current applied to one
branch terminal and a matching sink current applied to the other; no current flows in the
dotted regions. C shows the superposition of A and B, where the resultant current is all
applied to one first-order branch terminal. Diagrams D, E, and F represent the extension
to second-order branching. D shows even branch symmetry only for the pair of secondary
branches belonging to one primary branch, with equal sources currents to both of these
secondary branch terminals. E shows odd branch symmetry, for a source-sink current
pair applied to one pair of secondary branch terminals. F shows the superposition of D
and E, where the resultant current is all applied to a single secondary branch terminal.

potential in the source branch, due to this source-sink pair alone, can be expressed

V(X) = (I/2)(2RT,0) sinh (X - Xj)/cosh (L - X1), (18)

for the range, X1 < X < L; the sister (sink) branch has corresponding negative
values. This odd symmetry may be compared with that of Fig. 2 B and Eq. 8.
Here, we note that (1/2) is the amount of the source current, and that (2R,) is
the R,, value for each branch cylinder; this R,, value follows from the equivalent
cylinder constraint which requires that symmetric branches each have a d'2 value
equal to half the trunk value.

Steady-State Solution for One Order of Branching

By superimposing the odd branch symmetry of Fig. 3 B with the even branch sym-
metry of Fig. 3 A, we obtain the case of input to a single branch of first order,
Fig. 3 C. Within this input branch, the resultant solution is given by the sum of
Eqs. 12 and 18 (i.e., the righthand sides) for the range X1 X L. For the sister
branch, the solution is given by Eq. 12 minus Eq. 18. For the trunk (O X X1),

Eq. 12 alone is still the solution; also, for the (N - 1) other trees, Eq. 13 is still
the solution assuming (-L X O) as before.

This result has the interesting implication that the solution in the trunk and in
the other trees is completely unaffected by whether the input current I is injected
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entirely into one branch terminal or divided equally between the two branch termi-
nals, and this is easily generalized to include any apportionment of this input cur-
rent between these two branch terminals.

Extension to Higher Orders of Branching

Diagrams D, E, and F of Fig. 3 illustrate the additional superposition required
when we add a second order of symmetric branching. When the same steady input
current 1/2 is delivered to the terminals of the two secondary branches belonging
to the same parent primary branch (Fig. 3 D), the distribution of steady membrane
potential is the same in both of these secondary branches and is equivalent to that
of Fig. 3 C, just solved above.

Now we consider the case of odd symmetry between this pair of secondary
branches (Fig. 3 E), with a steady source current 1/2 injected at the terminal of
one secondary branch, while a matching steady sink current 1/2 is applied at
the terminal of its sister branch. Let X = X2 be the electrotonic distance, from
origin to second-order branch point. In analogy with the previously considered odd
symmetry between a pair of primary branches (Fig. 3 B), this case of odd symmetry
between a pair of secondary branches has V = O at X = X2, and supplies no cur-
rent or voltage to any of the regions shown dotted in Fig. 3 E. The distribution of
steady potential in the source branch, due to this source-sink pair alone, will be
expressed in the more general form that applies to a branch pair of kth order, where
the particular case k = 2 corresponds to the secondary branches of Fig. 3 E; this
general form is

V(X) = (I/2)(2"RToo) sinh (X - Xk)/cosh (L - Xk), (19)

for the range, Xk < X < L; the sister (sink) branch has corresponding negative
values. We note that (1/2) is the amount of the source current (of the source-sink
pair), and that (2kRT) is the R, value for a kth-order branch, on the assumption
of symmetric branching in a tree satisfying the equivalent cylinder constraint. It
may be noted that Eq. 19 agrees, when k = 1, with Eq. 18, as it should.

The case of input restricted to the terminal of a single secondary branch (Fig.
3 F) is obtained by superimposing the odd (secondary branch) symmetry of Fig.
3 E with the even (secondary branch) symmetry of Fig. 3 D, where we have already
noted that the latter is equivalent to the case of Fig. 3 C, for one order of branching.
This method can now be generalized by using Eq. 19 in successive superpositions,
as the order k is stepped from 1 to M in unit steps.

Steady-State Solution for Branch Terminal Input with M Orders
of Branching

When there are M orders of symmetric branching in the input tree, the method of
successive superpositions (using Eqs. 12 and 19) leads to the following general
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expression for the distribution of potential in this neuron model when the steady
current I is injected only at the terminal of one branch,

y x - f cosh X A sinh X (k-i) Bk sinh (X - Xk)
20( ) - IR

N sinh L + N cosh L + 2
cosh (L - Xk)

where A and Bk are simple constants whose values are specified according to loca-
tion, as follows:

intheinputtree A = N- 1;
in the input branch Bk 1, for all k from i to M;
in the sister branch same, except BM = - 1;
in the parent branch same, except BM = 0;
in first cousin branches same, except BM = 0, and BM_i =
in grandparent branch same, except BM = 0, and BM_1 = 0;

in the input trunk Bk = 0, for all k; (cf. Eq. 12);
in the other trees JA = 1, assuming, ' X < 0, and

1Bk = 0, for all k; (cf. Eq. 13).
A specific example of such solutions is presented and illustrated in the Results
section below.

By differentiating Eq. 20 with respect to X and setting X = L, we can verify
that the boundary condition at the input-receiving branch terminal is correctly
satisfied; thus

(dV/xL = IR {(l/ + (N - 1)/N + 2'}
= 2MIR00, (21)

which is i times the R, value of a Mth-order branch cylinder, as it should be,
according to Eq. 3. For the sister branch, the corresponding expression for its
terminal boundary condition reduces to zero because the last term of the summa-
tion has a minus sign. A zero slope boundary condition is similarly satisfied at
the ends of all terminal branches (except the input branch) of this neuron model.
The other boundary conditions, continuity of V and conservation of core current
at every branch point, have been satisfied also by the method of superposition
used; each odd function that was superimposed at a branch point contributed
zero to the value of V at that point, and contributed a source-sink pair of currents
whose net contribution was also zero at that point.

input Resistance for Current Injected to a Single Branch Terminal

We can now give the general expression for the input resistance REL for current
injected at the terminal (X = L) of one dendritic branch of a neuron model corn-

7This sign convention agrees with Figs. 2 D, E, F and with Eq. 13. Alternatively, if the other trees
are represented by positive values of X, as in Fig. 4 and in expression 27 below, then A = 1.

1;

Copyrighted Material



Copyrighted Material

303 Branch Input Resistance and Steady Attenuation

posed of N equal dendritic trees, with M orders of symmetric dendritic branching
(which satisfy the equivalent cylinder constraìnt'. By setting X = L in Eq. 20 (for
the input branch) and dividing by the steady input current I we obtain the input
resistance

RBL = RTC0 + (N - 1)tanhL + tanh(L - Xk)}. (22)

For the special case of no dendritic branching, M = O and the summation ex-
pression in Eq. 22 contributes nothing; this equation then reduces to Eq. 14. Also,
the special case of a long input branch makes all of the hyperbolic tangent and
hyperbolic cotangent values close to unity; then (as seen with Eq. 21) the expression
for RBL reduces essentially to , which is the R,. value of an Mth-order branch
cylinder, as would be expected from physical intuitive considerations.

In this expression. the size and the materials of the neuron model are incorporated
in which is the limiting value of the input resistance of a dendritic trunk
cylinder, when extended to semi-infinite length. In experimental situations, how-
ever. it is the value of the whole neuron input resistance R at the soma that is the
most useful reference value. Also, referring to Eq. 11 for R , we see that it is not
difficult to express the ratio of these two input resistances, RBL and R., as follows:

= i + (V - l)(tanh L)2 + Ntanh (L) 2' tanh (L - Xk). (23)

This is the expression that was used to compute the table of illustrative values given
in the Results section below; a more general expression is derived in the Appendix.

Steady-State A n'enuation Factor from Branch Terminal to Soma

Attenuation factors are usually defined as the ratio of an amplitude or intensity
at the input location to the smaller (attenuated) value found at a point of observa-
tion or output. So defined, the attenuation factor is a number greater than one;
also, increased attenuation results in an increased attenuation factor. For the pres-
ent problem of steady-state ' oltage attenuation, the voltage at the terminal of the
input branch of the neuron model can be obtained most simply as

VBL = IRBL (24)

The corresponding voltage at the origin (soma) can be obtained by setting X = O
in Eq. 12. 13. or 20: this gives

V0 = IR/(NsinhL)

= IR., 'cosh L. (25)

where die second expression makes use of Eq. 11 for RN.
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Now, by taking the ratio of VBL to V0, we can write the following expression
for the attenuation factor, from input branch terminal to the soma,

AFBL/o = (RBL/RN) cosh L, (26)

where the ratìo of input resistances inside the parentheses is precisely that defined
by Eq. 23, above. This tells us that the attenuation factor is closely related to, but
not identical with, the ratio of the input resistances at the input branch terminal
and at the soma; the attenuation factor is always larger, because cosh (L) is greater
than unity for all L values greater than zero. Illustrative values are given in the
Results section, below; a more general expression is derived in the Appendix.

Note on Generalization of Theory

The Appendix provides more general results for branch input resistance and for
attenuation factor. The input current can be applied at any point of any branch.
Daughter branches need not be equal, but their diameters still must satisfy the more
general equivalent cylinder constraint. Also, the dendritic trees need not be of
equal trunk diameter, and the results are even further generalized to provide for
trees that need not have the same electrotonic length. The final section of the Appen-
dix provides results for AC steady-state impedance and attenuation.

ILLUSTRATIVE RESULTS

Example of Potential Distribution throughout Neuron Model

The method of solution described above has been used to compute the particular
example illustrated in Fig. 4. This is a case of six dendritic trees with three orders
of branching, i.e., N = 6 and M 3. Here each tree has an electrotonic length
L = i which is divided into four equal electrotonic increments, ¿X = 0.25, for
each trunk and each order of branching. The steepest gradient of membrane poten-
tial occurs in the input branch (BI); most of the input current reaches the parent
branch point (P). Very little of this current flows out into the sister branch (BS);
most of it flows through the parent branch where the gradient with respect to X
is roughly half as steep as that in the input branch, because the R,,, value of the
parent branch cylinder is half that of the input branch cylinder. At the grandparent
branch point (GP), relatively little current flows into the first cousin branches
(BC-i), and most of the current flows through the grandparent branch, where the
gradient with respect to X has been roughly halved again. In contrast to the steep
gradients in the input branch and the parent and grandparent branches, the dashed
curve in Fig. 4 shows the smaller gradient obtained if the same total amount of
input currently were divided equally between the eight terminal branches of one
dendritic tree. This dashed curve is continuous with the curve for this tree trunk;
in fact, the solution in this trunk would be the same for any apportionment of the
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Fiouaa 4 Branching diagram (upper left) and graph (below) showing steady-state values
of V as a function of X in all branches and trees of the neuron model, for steady current
injected into the terminal of one branch. BI and BS designate the input branch and its sister
branch; P and GP designate their parent and grandparent branch points; BC-i and BC-2
designate first and second cousin branches, with respect to the input branch; OT desig-
nates the other trees of the neuron model. The model parameters are N = 6, L = 1, M = 3,
with equal electrotonic length increments ìsX = 0.25 assumed for all branches. Ordinates
of graph express V/IRr, values, as defined by Eqs. 12, 13, and 20; see also expressions 27-31
and commentary in text.

same total input current between these eight branch terminals. Also, the solution
from the soma into the five other trees (OT) is the same for any such apportion-
ment of the same input.

The values of membrane potential shown in Fig. 4 are given as the dimension-
less ratio of V(X) to . For the other trees (OT), these values were obtained from
the expression

0.142 cosh X - 0.108 sinh X, (27)

which follows from Eq. 13; (the minus sign is used here together with positive
values of X for these cylinders). For the trunk of the input tree and for the dashed
curve in Fig. 4, the values were obtained from the expression

0.142 cosh X + 0.54 sinh X, (28)
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which follows from Eq. 12. For the grandparent branch, which extends from X =
0.25 to X = 0.5, one must add to the value of expression 28, the value of

sinh (X - 0.25)/cosh (0.75), (29)

based on Eq. 18. However, for the other half of this tree, extending from X = 0.25
to the four terminals of the second cousin branches (BC-2), the value of expression
29 was subtracted from that of expression 28.

For the parent branch, extending from X = 0.5 to X = 0.75, one must add to
the value of expressions 28 plus 29 also the value of

2 sinh (X - 0.5)/cosh (0.5), (30)

based on Eq. 19 with k = 2. For the input branch, extending from X = 0.75 to
X = 1.0, one must add to the value of expressions 28 plus 29 and 30 also the ex-
pression

4 sinh (X - 0.75)/cosh (0.25), (31)

based on Eq. 19 with k = 3. For the sister branch (BS), the value of expression
31 was subtracted from that of expressions 28 plus 29 and 30. In that portion of
the tree which extends from the grandparent branch point (GP) to both terminals
of the first cousin branches (BC-i), the value of expression 30 was subtracted
from that of expressions 28 plus 29.

Examples of Input Resistance Ratio and Attenuation Factor

In Fig. 4, the value plotted for V/IRT,. at the input terminal is about 3.4, while
that at the origin (soma) is 0.142; the ratio of these two numbers gives a value of
23.9 for the attenuation factor from input terminal to soma. Alternatively, one can
use Eq. 23 to obtain a value of 15.5 for the input resistance ratio RBL/RN , and then
use Eq. 26 to obtain a value of 23.9 for the attenuation factor. Many additional
examples have been calculated and listed in Table I.

All of the values in Table I depend upon specifying the values of N, L, and M for a
symmetrically branched neuron model, with the additional simplifying assumption
that the successive branch points Xk are equally spaced, with increments in X given
by LX = L/(M + 1). The value inside each parenthesis in Table I gives the input
resistance ratio RBL/RN., defined by Eq. 23. The value immediately below each
parenthesis gives the corresponding attenuation factor, defined by Eq. 26. Several
useful rough generalizations about the effects of changing the value of N, L, or
M separately can be made from inspection of the values in Table I.

Effect of increasing L, with N and M constant. Consider the effect of
doubling the value of L from 1.0 to 2.0; this means doubling all trunk and branch
lengths, when expressed in units of X. Comparison of the first two columns of
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TABLE I

INPUT RESISTANCE RATIO (RBL/RN) AND STEADY-STATE
ATrENUATION FACTOR AFBL,o

Table I shows that the input resistance ratio is roughly doubled, and that the attenu-
ation factor increases roughly fivefold. With the larger M values, these factors of
increase are somewhat larger.

Effect of increasing N, with L and M constant. We examine the effect of
increasing N from 6 to 10, when L = 1.5 and M is constant, by comparing the
last two columns of Table I. Both the input resistance ratio and the attenuation
factor increase by a factor that is very close to 10/6. We can understand this most
easily by considering, for example, that the dendritic trees are not changed in size
(i.e., RT,,, is held constant), Then RB,. is little changed, because the distribution of
input current in the input tree is almost unchanged; it is only slightly affected by
the boundary condition (at the origin) with the other trees. However, the value of
RN is very significantly changed; the parallel input resistance of 10 trees must be
reduced to exactly 6/10 of that for 6 trees of the same size. For such conditions,
the increase in the input resistance ratio and in the attenuation factor can be at-
tributed almost entirely to the 6,/IO factor in RN

Effect of increasing M, with N and L constant. The previous example of
N 6, L = 1, and M = 3 implied trunk and branch increments of LX = 0.25
(see Fig. 4). If we preserve these values of N and L, and increase M by four orders
of branching to M = 7, this results in LX = 0.125, with eight increments. The
values in Table I show an approximately ninefold increase, from 15.5 to 138 for
the input resistance ratio, and from 23.9 to 213 for the attenuation factor. Through-
out Table I, an increase of M by four orders, while N and L are held constant,
results in around a 9- or 10-fold increase. In other words, the factor of increase per
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N=6 L=l.5
M

L=1.0 L=2.0 N=6 N = 10

2 (9.5) (17.4) (14.3) (23.6)
14.7 65.5 33.6 55.4

3 (15.5) (30.4) (24.2) (40.2)
23.9 114 56.8 94.4

4 (26.0) (53.6) (41.7) (69.4)
40.1 202 98.0 163

5 (44.6) (95.4) (73.1) (122)
68.8 359 172 286

6 (78.0) (172) (130) (216)
120 647 305 508

7 (138) (311) (233) (388)
213 1170 548 912

8 (248) (569) (422) (704)
352 2140 992 1650
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Unit increase in M is given roughly by the square root of three, for the values in
Table I. We gain some additional insight by noting that changes in M can have no
effect upon the value of RN when N, L, and RT,,, are held constant (see Eq. 11).
Under such conditions, the increase in the input resistance ratio and in the at-
tenuation factor, with increase in M, can be attributed entirely to the increase
of RBL , which can be attributed, in turn, to the smaller diameters of the higher
order branches.

Nonreciprocity of Branch Attenuation

Comparison of the attenuation along the input branch and its sister branch (in
Fig. 4) is instructive because neurophysiologists sometimes argue, erroneously,
that the attenuation along a dendritic branch should be the same, whether it takes
place in the centripetal or the centrifugal direction. This fallacy presumably results
from noting that the core resistance is the same in both directions, while forgetting
the importance of the boundary conditions. In Fig. 4, the attenuation from the
parent branch point (P) to the terminal of the sister branch (BS) is rather small
because of the insulated (zero slope) boundary condition at the terminal; in con-
trast, the attenuation from the terminal of the input branch (BI) to the parent branch
point (P) is much larger because the boundary condition at P permits a large amount
of current to flow from the input branch into the thicker parent branch. Here, the
input branch and its sister branch have exactly the same core resistance; the dif-
ference results entirely from the boundary conditions. Similarly, in Fig. 2 the graphs
show how attenuation from X L to the origin depends upon the boundary
condition at the origin. An earlier publication (see Eq. 3 and Fig. 3, pp. 496-498,
Rail, 1959) provides both a mathematical expression and a graphical illustration
for such dependence of attenuation upon boundary conditions.

DISCUSSION

Application of Theoretical Results to Motoneurons

Motoneurons of cat spinal cord are large neurons whose input resistance values
(RN usually between 0.5 and 2.5 Mtl) are lower than for most other neurons in the
mammalian central nervous system. The notion that the equivalent cylinder con-
straint might apply to motoneurons, at least as a rough approximation, was sug-
gested some time ago (Rail, 1959) on the basis of preliminary evidence. Recently,
Lux et al. (1970) checked 50 dendritic bifurcations in 7 carefully studied moto-
neurons and reported that the ratio of the summed d3'2 of the daughter branches to
the parent d3'2 ranged from 0.8 to 1.2, with a mean of 1.02 ± 0.12 (SD). Also,
Barrett and Crill (1971) found that (except for a sharp initial taper of the dendritic
trunks) the summed c1312 value decreases only rather gradually with distance. These
results, together with unpublished calculations based upon the data of Aitken and
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Bridger (1961), imply that motoneuron dendritic trees may reasonably be approxi-
mated by equivalent cylinders, and furthermore, that the electrotonic length L
for soma plus dendritic tree ranges between 1 and 2, with a mean value around
1.5 (see also Rail, 1964, 1969 a, 1970; Nelson and Lux, 1970; Burke and ten Brug-
gencate, 1971; Jack et al., 1970, 1971; Lux et al., 1970; Barrett and Crill, 1971).
The study of Lux et aI. (1970) is unusual in providing the first examples of estima-
tion of L values by two independent methods on the same neuron; one method
(Rail, 1959) depends upon anatomical measurements of branch lengths and diam-
eters, together with the RN measurement; the other method (Rail, 1969 a) is en-
tirely electrophysiological, depending upon the theoretical relation between L and
the time-constant ratio obtained by peeling the sum of exponential decays. Barrett
and Crill (1971, plus personal communication) have recently also determined L
by both methods on the same neuron.

Dendritic trees of different size occur on a single motoneuron. Also, the larger
motoneurons tend to have both more numerous and larger dendritic trees than do
the smaller motoneurons; see Kerneil (1966), and also Gelfan et al. (1970). Such
differences in tree size need not imply differences in electrotonic length L because
the larger trunk diameters imply larger X values. Thus, we have supposed that the
separate L values of the separate dendritic trees belonging to a particular moto-
neuron could be nearly the same, in spite of differences in tree size. This supposition
obtains support from the observation by Burke and ten Bruggencate (1971) that
there is no significant correlation between whole motoneuron size (as indicated by
RN) and the L value estimated for the whole motoneuron; in other words, the ob-
served range of L values was found to be the same for smail motoneurons as for
larger motoneurons. Because the large motoneurons possess more large dendritic
trees, this result implies that the large dendritic trees do not have significantly
larger L values. The measurements reported by Lux et al. (1970) and by Barrett
and Crill (1971) also support this conclusion.

The early measurements of Coombs et al. (1955) and of Frank and Fuortes
(1956) provided a range of cat motoneuron input resistance values of from 0.5
to 2.5 M; this range was discussed in relation to dendritic anatomy by Rail (1959)
and by Kernell (1966) and Burke (1967 a). Although these last two authors found a
few larger RN values, around 6-8 Mci, most cat motoneuron input resistance values
still lie in the original fivefold range. RN values of 0.5 M correspond to the larg-
est motoneurons having the highest axonal conduction velocity and belong to fast
twitch, phasic-type motor units; RN values of 2-3 M correspond to significantly
smaller motoneurons having lower axonal conduction velocity and usually be-
longing to slow twitch, tonic-type motor units (Burke, 1967 a; cf., Wuerker et
al., 1965; Kernell, 1966).

For this fivefold range in RN, the terminal branch input resistance RBL in a tree
having about six or seven orders of branching, would be estimated in the range
from roughly 40 to 350 Mc for L = 1.0, and from roughly 65 to 750 Mll for L =
1.5-2.0, using Table I. For a dendritic tree with only three orders of branching, a
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range of smaller values, roughly 7.5-75 MT2 for L = 1.0-2.0 would be estimated for
RBL ; however, so few orders of branching would be expected only in a small den-
dritic tree with small trunk diameter. For input to a midbranch (X = L/2) refer-
ence to the corresponding sections of the Appendix and Discussion suggest an
input resistance roughly in the range from 1.5 to 20 Mil, depending upon branch
order.

Because we have specified branch order, but not branch diameter, in the ex-
amples above, it is useful to consider what branch diameters are implied by dif-
ferent orders of symmetric branching. For example, a tree with a trunk diameter
of 5 m and 7 orders of symmetric branching would imply a terminal branch diam-
eter of 0.2 sum; a tree with a large trunk diameter of 20 jm would imply a 7th-order
branch diameter of 0.8 jzm, or a 10th-order branch diameter of 0.2 tim. These par-
ticular examples were chosen because 0.2 im corresponds to the smallest terminal
branch diameters observed by histologists (Golgi material and light microscopy
by Dr. Aitken, personal communication; electron microscopy by Doctors Reese
and White, personal communication).

With regard to steady-state voltage attenuation from a branch input site to a
motoneuron soma, it is important to note the evidence that the dendritic membrane
of cat motoneurons is normally passive. This is provided by the observation that
whenever the combination of two excitatory postsynaptic potentials (EPSP) de-
parts significantly from linearity, that departure has been a small deficit (Burke,
1967 b, pp. 1116-1120; Rail et al., 1967, pp. 1184-1185; see also Kuno and Miya-
hara, 1969). It is well known that such small deficits can be accounted for theo-
retically with the usual assumption that synaptic excitation consists of a conduct-
ance change in the postsynaptic membrane, where neither this synaptic conductance
nor the adjacent passive membrane has voltage-dependent (regenerative) proper-
ties (Martin, 1955; Rall, 1967, p. 1157; Rail et al., 1967, p. 1183; Kuno, 1971; see
also Eq. 32 below). On the other hand, if a small nonlinearity were caused by ac-
tive membrane properties (local response), one would expect an excess (not a
small deficit) of membrane depolarization; such small excess has not been reported
for normal motoneurons. However, the abnormal "partial responses" of chromato-
lyzed motoneurons have been attributed to active properties of abnormal dendritic
membrane, as contrasted with normally passive properties (Eccles et al., 1958;
Kuno and Llinas, 1970). Thus, assuming normal membrane properties, our earlier
example of a trunk diameter of 5 um and a seventh-order terminal branch of 0.2
m (with N = 6 and L = 1.5 in Table I) implies RBL/RN = 233 and a steady-state

attenuation factor of 548. If this branch terminal were depolarized by 55 mV, the
steady effect at the soma from this one steady input would be 0.1 mV.

Application to Other Neuron Types

Pioneering quantitative treatment of dendritic branching in cerebral cortex was
provided by Bok (1936, 1959) and by Sholl (1953, 1956). The variety of dendritic
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patterns in different neuron types has been emphasized and illustrated by Ramon-
Moliner (1962, 1968) and by the Scheibels (1970). Improved quantitative methods
were described and illustrated by Mannen (1966). The contributions of many
other anatomists are reviewed in the papers cited above.

In order to apply the present theoretical results to any particular neuron type,
one would like to have at least approximate answers to several questions. Does
the dendritic branching approximately satisfy the equivalent cylinder constraint?
Has an approximate range of RN values been determined experimentally? Do the
several dendritic trees seem to have similar electrotonic lengths, and, if so, has the
range of such L values been estimated from experiment? Are estimates of N, M, and
terminal branch diameter available? When the answers to these questions are affirm-
ative, branch input resistance values can be estimated by means of the present
theoretical results. If the branching does not satisfy the equivalent cylinder con-
straint, one must use the general method (Rail, 1959) for arbitrary branch lengths
and diameters. For neurons where the evidence suggests active (nonlinear, regener-
ative) dendritic membrane properties, the attenuation factor expressions of the pres-
ent paper do not apply.

Input resistance values have been measured for only a few types of neurons other
than motoneurons; nearly all of these values have been larger, indicating that the
neurons are smaller, and this accounts for the increased difficulty in obtaining re-
liable measurements with intracellular microelectrodes. Spencer and Kandel
(1961) reported an average estimate of 13 M for hippocampal neurons. Taka-
hashi (1965) reported RN values from 1.5 to 15 Mtl for pyramidal tract neurons,
reporting a mean of 5.9 Mtl for 26 fast conducting cells and 10.1 Mtl for 10 slow
conducting cells (see also Koike et al., 1968). Lux and Pollen (1966) obtained a
range from 4.5 to 10 Ml for identified Betz cells, and a wider range of 4.4-15.2
Mtl for nonidentified cortical cells (see also Creutzfeldt et al., 1964; Jacobson and
Pollen, 1968). It seems reasonable to attribute RN values around 4.5 Mtl to the
larger pyramidal cells, and RN values around 10-15 Mtl could be attributed to
smaller pyramidal cells. Still larger RN values would be expected for the smaller
neurons of stellate and other cell types.

Calculations involving electrotonic distance in the apical dendrite of a pyramidal
cell have been reported by Jacobson and Pollen (1968); see also Humphrey (1968)
where emphasis was more upon extracellular potentials. Although the apical
dendrite is usually much longer than the basilar dendrites, it is important to point
out that this does not necessarily imply a larger L value, because the apical diam-
eter is also larger. Furthermore, the well-known taper of apical dendritic diameter
does not necessarily mean significant departure from the equivalent cylinder con-
straint, because the apical dendrite gives off side branches as it reduces its diameter.
Jacobson and Pollen (1968) published a brief summary of their measurements
and calculations based on a large sample of pyramidal cells. They mention seeing
between 3 and 12 side branches of betwen i and 2 m diameter along the major
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stretch of the apical shaft; they also reported apical dendritic diameter at 50 Mm
intervals along a 250 m length, both for the five largest pyramidal cells and for 80
small- and medium-sized pyramidal cells. It is interesting that the following ex-
amples, which are in general agreement with Jacobson and Pollen's data, also
satisfy the equivalent cylinder constraint on d312: a 2.2 Mm apical diameter with a
1.0 um side branch emerging from a 2.6m parent diameter; a 3.1 Mm apical diameter
with a 1.5 m side branch emerging from a 3.8 Mm parent diameter; a 4.6 Mm
apical diameter with a 2.0 m side branch emerging from a 5.4 Mm parent
diameter. Because of the unequal branching, dendritic input resistances would be
calculated by means of the general results in the Appendix. Also, with regard to
electrotonic length estimation, we can use Jacobson and Pollen's apical diameters
for the five largest pyramidal cells, plus their rough estimate of a 250 Mm long sec-
ondary branch tapering from 2.5 to 2.0 Mm diameter, and a 250 Mm tertiary branch
tapering from 2.0 to 1.5 Mm. For the larger membrane resistivity (Rm = 4,500
f1 cm2) we get X values of about 0.3, 0.4, and 0.5 for these primary, secondary,
and tertiary segments, giving a sum of about 1.2 for the apical value of L minus
the still higher order branches; for the smaller R, value of 1,500 f1 cm2, the X
values are about 0.5, 0.7, and 0.8, giving a larger sum of about 2.0 for the apical
value of L minus the still higher order branches. Unfortunately, we do not have the
corresponding information on the basilar dendrites of these same cells. For several
ranges of values, however, Jacobson and Pollen (1968) themselves obtained esti-
mates of steady-state electrotonic attenuation over the apical dendritic length.
Their results imply attenuation factors of about 3 or 4 from the major branch
point (V1) to soma, about 18 from the next branch point (V2) to soma, and about
33-50 from the next branch point (V3) to soma.

Local Synaptic Depolarization Not Proportional to Input Resistance

Because it is quite commonly believed that the amplitude of synaptic depolariza-
tion at the synaptic site should be expected to be directly proportional to the input
resistance at that site, it seems important to draw attention to several reasons why
such a strict proportionality should not be expected to hold, in general. It may be
noted, however, that such proportionality can be a useful approximation for some
situations; see, for example, Katz and Thesleff (1957), Katz and Miledi (1963),
and Katz (1966); see also Kuno (1971), and MacGregor (1968).

First, it should be noted that brief synaptic input results in a transient EPSP,
and even if the synaptic current generated at two different input sites were the same,
the EPSP amplitude would depend not simply upon the input resistance at each
site, but upon the different transient response function at each site. Furthermore,
if there is significant depolarization of different amounts at the two synaptic sites,
equal synaptic conductance transients would not produce equal synaptic current
transients (Rail, 1967). Thus, in general, when comparing two synaptic sites, the
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synaptic currents would be unequal, the transient response functions would not be
related by any simple ratio, and the resulting peak depolarizations should not be
expected to exhibit the input resistance ratio. The steady-state aspect of this prob-
lem is treated explicitly below; the transient details are included in the companion
paper.' In any case, it is clear that when the effect of synaptic input to a fine den-
dritic branch having high input resistance is compared with that of equal synaptic
input to a thicker branch having lower input resistance, the local depolarization
(at the synaptic site) is larger at the site with the larger input resistance. This has
led some (at least in conversation) to infer, erroneously, that such a larger local
effect would produce a larger EPSP at the soma. The error here consists of forget-
ting that the attenuation from the synaptic site to the soma would be increased by a
factor that is usually greater than the factor of input resistance increase (see Eq.
26); also, as noted already, the local depolarization at the synaptic site would be
increased by a factor that is likely to be smaller than the factor of input resistance
increase. The following example illustrates these two effects for a steady state; the
overall discrepancy would be even greater for transients.

For a steady synaptic excitatory conductance g, we can express the steady synap-
tic current as

(V. - Vr,)g, =

Where V, = E, - E is the excitatory equilibrium potential, relative to the resting
potential, and V is the resulting steady depolarization at the input site whose
input resistance is Rr,. Rearrangement of this expression provides the following
useful expression for a single input,

(V,r,/V,) = (Rr,g,)/(l + Riag,), (32)

where it can be seen that steady Vr, is proportional to (R1g,) only when the value
of (R1r,g,) is much smaller than unity. Suppose, for example, that g = 10_8 mho,
and suppose, at the soma, Ri,, = RN = 106 0; then Eq. 32 gives 0.01/1.01 for
(V1r,/V,). Next, suppose we place the same steady-state synaptic conductance at a
branch terminal, where, for example, Rr, = RBL = 108 0, or 100 times the pre-
vious input resistance; then Eq. 32 gives (Vr,/V,) = 1/2, which is 50 rather than
100 times the previous steady depolarization. To carry this example further, con-
sider the attenuation from the branch terminal to the soma, and compare this
attenuated amplitude with that found previously for input at the soma. In this
example, RRL/RN = 100, and if we also assume L = 1.5, Eq. 26 implies an attenu-
ation factor of 235; then the steady value of 1/2 for (V1/V,) at the input branch
terminal implies a value of (y/y,) = 0.00212 at the soma, or about one-fifth the
value obtained when the same synaptic conductance was applied directly to the
soma. To recapitulate this example, when the synaptic excitatory conductance
was shifted from the soma to a branch terminal whose input resistance was 100
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times as great as that at the soma, the steady depolarization at the synaptic site
was increased 50 times, not loo times; also, the steady attenuation factor of 235
from the input branch terminal to the soma resulted in a soma depolarization that
was about one-fifth the reference value obtained with synaptic input at the soma.

Nonlinear Summation of Adjacent Dendritic Synaptic Inputs

It has already been pointed out elsewhere (Rail, 1967, pp. 1155-1156, 1167-1 168;
Rail et al., 1967, pp. 1183-1184) that the larger depolarization at a dendritic synap-
tic site can be responsible for significant nonlinearity of synaptic summation. This
nonlinearity results because the depolarization due to one synapse reduces the
synaptic driving potential (V1 - V) at the adjacent synapse ;8 the larger the local
depolarization, the greater the nonlinear effect. In fact, we have argued that when
an observed nonlinearity significantly exceeds the amount which could be ac-
counted for by the depolarization at the soma, it is reasonable to suppose that the
synaptic input sites must have been dendritic and sufficiently near each other for
the depolarization produced by one to sufficiently reduce the effective synaptic
driving potential of the other. Essentially the same concept has been used by Kuno
and Miyahara (1969) to account for nonlinearities they observed. Also, MacGregor
(1968) has recently stressed nonlinear effects in dendritic regions.

How Branch Input Resistance Differs from Core Resistance

It is of interest to examine the simple notion that branch input resistance might be
estimated as the series resistance composed of RN plus successive core resistance
along the direct line from the input branch terminal to the soma. Such a resistance
estimate can be shown mathematically (see below) to exceed the correct value of
RBL ; a large discrepancy results with large electrotonic branch lengths, while
smaller discrepancies result with small L and short electrotonic branch lengths.
The physical intuitive explanation is that simple core resistance neglects the spread
of current into the sister and cousin branches, and it also neglects the leakage of
current across the dendritic membrane surface; in other words, it neglects the
branching and cable properties of the dendrites. However, when a branch is short,
little current leaks across its membrane, and consequently, the gradient of poten-
tial along its core is nearly constant; this can be seen in Fig. 4, where the slopes
along the main line are nearly constant, and the slopes in the sister and cousin
branches are rather small because they must be zero at their terminals. In this par-
ticular case, the series resistance estimate is 3.97 times , which is about 17%
larger than the correct value of RBL . A larger discrepancy results when we double
L from 1.0 to 2.0, keeping N = 6 and M 3. Then the series resistance estimate
is 7.67 times R7 , which is about 46% larger than the correct value of

In particular, if n equal synapses are active in very close proximity, we can replace g. by the product
ng. in Eq. 32 to obtain the resultant local depolarizing effect.
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To explain these results, we note first that for a length, ¿X = x/X, of a cylinder
characterized by R0 = Xr , the core resistance can be expressed rx = R(x/
X) = RC4X. Thus, the core resistance of a kth order branch segment, extending
from X = Xk to X = Xk+l of the neuron model, can be expressed as

2kRT(Xk+l - Xk).

The proposition we wish to prove can be expressed

RBL < RN + R0. {x1 + 2°(Xk+l - Xk)}, (33)

where the right side of this inequality represents the series resistance estimate com-
posed of RN plus successive core resistance segments along the direct route from
the input branch terminal to the origin (soma).

In order to prove this inequality, we refer to Eq. 22 for RBL and note a useful
property of the hyperbolic tangent: although tanh (x) approximately equals x
when x is small, it is always less than X; in fact, the first two terms of the series ex-
pansion (for values of x less than unity) give that tanh (x) x - x1/3. Thus, we
¿an examine each term of the summation in Eq. 22 and express a corresponding
inequality. We do this here for k = M, k = M - 1,..., k = I, and for the
term in tanh (L):

2(M_1) tanh (L - XM) < (L - XM)2M', (34)

2(M_2) tanh (L - XM_l) < (L - XM)2M2 + (XM - XM_l)2M°, (35)

2° tanh (L - X1) < (L - XM) + (XM - XM_l)

+ ... + (X2 - X1), (36)

[(N - 1)/N] tanh (L) < (L - XM) + (XM - XM_I)

+...+(X2X1)+X1. (37)
It should be noted that the sum of the column composed of the first expression to
the right of each inequality sign simplifies to 2M(L - XM); this times RT. is equal
to the core resistance of the input branch. Furthermore, the sum of all the right-
hand terms of inequalities 34-37 yields the expression inside the brackets of pre-
vious inequality 33, and this times RT. is equal to the series core resistance along
the direct route from the input branch terminal to the origin. Thus, referring again
to Eq. 22, we can see that if we multiply the left and right sides of inequalities 34-37
by and then add RN (Eq. 11) to both the sum of the left sides and the sum of
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the right sides of the above inequalities, the result is precisely the inequality 33 which
we set Out to prove.

This proof not only demonstrates that RBL is always less than this series resistance
estimate, it also provides a detailed breakdown into component inequalities which
can be examined to see how much each contributes. This, as well as several other
points, can be illustrated by reference to Table II.

Components of Input Resistance and of Core Resistance. In Table II,
the first row corresponds to inequality 34 and five subsequent rows correspond to
inequalities 35-37, for the particular case of N = 6, L = 1,5, and M = 5, with
equal increments, X = 0.25, for all branches. Columns A and B display the com-
ponent terms of RBL/RT,C , as defined by Eq. 22. It can be seen that the highest
order term (3.92) makes the largest contribution to the numerical result; also, it
differs least from its corresponding term in column C, because the hyperbolic
tangent has the smallest argument. The fact that the two highest order terms are
nearly equal in column B, and exactly equal in column C, results from two simplify-
ing assumptions: the assumption of equal electrotonic length for the input branch
and its parent branch, and the assumption of equal daughter diameters that satisfy
the equivalent cylinder constraint. Subsequent terms in column B become pro-
gressively smaller, as the power of 2 becomes smaller in column A. The smallest
term, 0.184, in column B corresponds to RN/RTOO ; it must be included to obtain
the correct total for RBL/RTOO , as defined by Eq. 22. When this total, 13.46, is
divided by the value of RN/RTOO , we obtain a value of 73.1 for RBL/RN, in agree-
ment with the value given earlier in Table I, for L = 1.5, N = 6, and M = 5.

The core resistance of a kth-order branch is 2kRr,,zX, for equal electrotonic
length increments X; see explanation in the sentences preceding inequality 33.
For the present example, the value of the core resistance divided by RT,. is 8.0 for

TABLE II

COMPONENTS OF INPUT RESISTANCE AND CORE RESISTANCE
(Using inequalities 34-37 for N = 6, L = 1.5, LsX = 0.25)

A B C D E F

2 tanh (0.25) = 3.92 < 4.0 = 4.
2 tanh (0.50) = 3.70 < 4.0 = 2. + 2.
22 tanh (0.75) = 2.54 < 3.0 = 1. + 1. + 1.
2'tanh (1.0) = 1.52 < 2.0 = 3' + 3 + 3 + 3
2° tanh (1.25) = 0.85 < 1.25 = h + 3/4 + 3 + h + h
(5/6) tanh (1.5) = 0.75 < 1.50 = h + h + h + h + h + h

13.28 < 15.75 = 8. + 4. + 2. + 1. + h + h
+ +

(1/6) coth (1.5) 0.184 = 0.184 = RN/RT,.
RRL/RT,O = 13.46 < 15.93 = (RN + RCORE)/R7,.
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the input branch, 4.0 for its parent branch, and .O for its grandparent branch.
The a1ues aie to be found in Table II as the following column sums sum of
column D for the input branch, sum of column E for the parent branch, and sum of
column F for the grandparent branch. Furthermore, the sum of all terms of the
iight.hand side of inequalities 3.4-3 provides the value 15.5 for the ries core
resistance divided by R along the direct route from the input terminal to the
o(igìn. By adding R1. R = 0.154 to this value, we obtain 15.93 for the right-
hand side of inequality 33 divided 1w R. This result erceeds the lunch input
resistance value, R'R = 13.4.6. by more than 15 li. Even larger discrepancies
result with larger values for L

Effect o/a Me,drùic lñpvt Locution

Up to this point of the paper, we have ooasir& only the input sire at a dendritic
terminal. What is the effect of shifting the input site to a middendriiic location?
One can gue. inunediately. that the input rece should be selier than t
the terminal for two ree.sos: the input branch diameter is larger, and the input
current suits immediatth into centripetal and centrifugal components. The ext
nthematkal consequences ere eriwd in the A: comparison of Eq. A 8
with Eq. 2 shows l.here If the input site is at 1= X,-on alunchof
orse: k = k,. Eq. AS has X, in iaoe ofL in the arguments of the numerators,
ani the s' tin r-zs only to k k instz1 of k = M: aso. there is a fctor,
o.thLX.ret.Sue.fore'-"ethatX=0.5isusedwithLV=6.
L = 1.0. ami M = 3. or M = . This in'izt site is eiactiv middendritic in terns
oferotoi is.anoe. For M = 3. E.. A S cives

= 1.13 0.1 - 0Y = 0..
whithisabout2lofthe value ,3.4Y o.eforaterminalinutsite.ForM=

. Eq. A S giwes (1.13' 0.it - 0.S - 0li - 0.3' ± 0.4 or L2 for
which is only about 6 of the value 313Ì obaîned for a terminal input site.

Ej'v: q1 LT'-. fr*ascifr:

Ali o the results. so far, have been hase.! upon the uon of symmetric lì-
furcations ulor the innut portion of the innu: e: this n the R vahE of the
terminal lunch vlinr eui to ea zìv Hos'eve. i: is :nrnant to ne
that these resalrs !ase not eend uno: svnneinr rohi cher n.or-
ions ofthe innut uee. or in the other trees of the neuron model; this .xher lunch-
ing can be r:ofse or srerse in :es of the nurnr of rfers Ml ar..± i can be

etr . r:ovale.f the e ivalez: rvlizìe constraint is seisfe.f. aral that
all terminals c sr'on-d ro the suze ':orir isa X = L froz the ori±.
This generality !oliis becatee the elen: alr for the noniz;ut sister
lunch is ali that enters into s'esiar uio the input lunch linezge
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What, however, is the effect of asymmetric bifuractions along the input branch
lineage? The solution to this problem is derived in the Appendix. Briefly, the R,,,
value of the input branch becomes generalized from 2MR,, to the product, 7179.
1MRTC,. , where each of these y is the ratio of the R,, of the input carrying daughter
cylinder at the kth branch point, to the R,, of its parent cylinder. For symmetric
branching, each 7k would equal 2; when the input carrying daughter cylinder is
thinner than its sister branch, 7k is greater than 2. In the expression for RBL, the
factor, 2" in the summation expression becomes replaced by a product, 7172...
(rk - 1); compare Eq. A 9 with earlier Eq 20. Clearly, if all of the Yk are greater
than 2, both RBL and the R, value of the terminal branch cylinder would be greater
than for the case of symmetric bifurcations; also, the attenuation factor would be
greater. On the other hand, for randomized asymmetries where 7k values less than
2 are as probable as values greater than 2, these effects will tend to cancel. Any
specific example can be computed in detail.

Effect of Unequal Trees

Although the body of this paper presents a model composed of equal dendritic
trees, the superposition method can be generalized to treat unequal trees. It is
simplest to consider different trunk diameters while preserving a common electro-
tonic length L for all trees. However, Eqs. A 9-A 12 of the Appendix show how
unequal L values can also be provided for. These expressions involve the ratio
which equals the ratio of the combined input conductance of all dendritic trees
(from their common origin) to the input conductance of the input tree alone. Each
tree must still have branch diameters that satisfy the equivalent cylinder constraint,
but the N equivalent cylinders can now have different lengths and diameters. If
these lengths and diameters are all made equal, the ratio reduces to N.

SUMMARY

(a) Mathematical solutions and numerical illustrations are presented for the steady-
state distribution of membrane potential in an extensively branched neuron model,
when steady electric current is injected into only one dendritic branch. The model
assumes that the dendritic membrane is passive and that the dendritic trees satisfy
the equivalent cylinder constraint on branch diameters. Although the initial deriva-
tion assumes equal dendritic trees and symmetric dendritic branching, these sim-
plifying assumptions are dispensed with in the Appendix. Also, the initial deriva-
tion limits the site of current injection to the end of a terminal branch, while the
generalization in the Appendix permits the input site to be located anywhere on
any branch or trunk of a dendritic tree.

(b) These solutions provide us with explicit expressions for input resistance at a
branch input site, and for the attenuation factor for voltage attenuation from the
input site to the soma. It is useful to express the branch input resistance relative to
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the whole neuron resistance RN measured at the soma (origin) of the model. The
attenuation factor is related to, but always greater than, this input resistance ratio.

Table I illustrates many numerical examples of this input resistance ratio
and the attenuation factor, for the case of symmetric branching, with equal electro-
tonic increments per branch, and with input injected at a branch terminal; the
input resistance ratios range from about 10 to 700, while the attenuation factors
range from about 15 to 2,000, for the ranges of N, L, and M assumed for this
table. Increasing the number of orders of branching M, while keeping the number
of trees N and their electrotonic length L constant, increases both the input re-
sistance ratio and the attenuation factor approximately threefold for a two unit
increase in M. Increasing N, while L and M are held constant, increases both the
input resistance ratio and the attenuation factor in nearly direct proportionality
with the increase in N. Doubling L from 1.0 to 2.0, with N and M held constant,
approximately doubles the input resistance ratio, and increases the attenuation
factor about fivefold.

The application to cat spinal motoneurons is discussed with attention to re-
cent experimental evidence showing that these neurons satisfy the various assump-
tions of the model to at least a reasonable approximation. Terminal branch input
resistance values are estimated to lie in the range from roughly 40 to 750 M; for
middendritic input sites the range would be smaller, roughly 1.5-20 Mcl, or more
for high orders of middendritic branching.

Although applicability of the theory to other neurons is handicapped by
insufficient information, the requirements are discussed and the case of pyramidal
tract neurons is reviewed.

The theoretical solution in the dendritic trunk (and at the soma) is the same
whether injected current is applied entirely to one branch or is divided between
several branches of the same tree, provided that the injection sites are all at the
same electrotonic distance from the soma. This does not hold for input as a synap-
tic membrane conductance.

Membrane depolarization at the site of a steady synaptic conductance input
is not, in general, directly proportional to the input resistance. While a high input
resistance does yield a larger local depolarization, this depolarization itself causes a
deficit in synaptic current, because it decreases the effective synaptic driving poten-
tial. Also, because of increased electrotonic attenuation, the large depolarization
at a dendritic synaptic site yields less soma depolarization than if the same syn-
aptic conductance input were delivered directly to the soma.

It is shown that branch input resistance exceeds the input resistance at the
soma by an amount that is always less than the series sum of core resistances along
the path from the input site to the soma.

Several significant generalizations of the theoretical results are provided in
the Appendix: the dendritic trees can be unequal in trunk diameter and in electro-
tonic length; daughter branch diameters can be unequal but must satisfy the equiv-
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aient cylinder constraint; the site of current injection can be anywhere on a branch
of any order.

(j) Expressions are also derived for input impedances and attenuation for AC
steady states.

APPENDIX

MORE Giumi. Ti-ioaFrIcA1 RESULTS

Additional Symbols Used in Appendix

X Electrotonic distance from the origin to the point of current
injection, not restricted to X L.

V' Value of V at the point of current injection.
R, L, R,) Input resistance at the point (X X) in a cylinder insu-

lared(dV/dX = 0)attheoriginaswellasat X = L;Eq. Al.
R, 11(X, L, R,,) Input resistance at the point (X X) in a cylinder clamped

(V = 0) at the origin, but insulated at X L; Eq. A 2.
RNc(X, L, N, Ri,,) Input resistance at the point (X = X) of one equivalent

cylinder of the neuron model; or parallel input resistance
of all branches (at X = X) belonging to one dendritic
tree of the neuron model; Eq. A 5.

k Branching order of the one branch which receives input
at X = X.

Rß1 Input resistance at the point (X = X) on one dendritic
branch of order (k); function of (Xi, k, L, N, RT,,) with
symmetric branching; Eq. A 8.

Rß More general branch input resistance at the point (X = X)
for nonsymmetric branching and unequal trees (branching
must still satisfy equivalent cylinder constraint); see Eq.

7 Ratio of combined input conductance of all dendntic
trees (at their common origin) to the input conductance
of the input tree; Eq. A 10; reduces to N for equal trees.

7' Ratio of the d812 value for the trunk of the input tree to the
d312 value for the first-order branch which leads to the in-
put Site.

7k Ratio at kth-order branch point of the parent d value to
the d2/2 value of the input carrying daughter branch.

Pk Product which reduces to 2"' for symmetric branching;
see Eqs. A 9A 12.

AFBx/o General attenuation factor from X = X to soma; Eq.

C,., = 2rf Angular frequency for a sinusoidal steady state.
i = For complex variable notation.
q = (1 +Jr)h/2 = (Ym/Gm)1'2 Complex function of frequency; function of membrane

admittance to conductance ratio.
r = (I + w2r2)h/2 a2 + b2 Modulus of q2.
a = [(r + 1)121112 Real part of q.
b = [(r - l)/2]h12 Imaginary part of q.
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ZBL

Input impedance at the end (X = L) for a cylinder insu-
lated (dV/dX = O) at the origin; Eq. A 15.
Input impedance at the end (X = L) for a cylinder clamped
(V = O) at the origin; Eq. A 16.
Whole neuron input impedance at the point (X O) of
common origin of N equal dendritic trees or equivalent
cylinders; Eq. A 17.
Branch input impedance at the end (X = L) of one termi-
nal branch of the neuron model.

Effect of Input Site Not Restricted to X = L

When the point of current injection is located at the electrotomc distance, X = X < L,
from the origin, the injected current divides into a centrifugal and a centripetal component.
For a single cylinder of length 2L even symmetry (compare earlier Fig. 2 A and Eqs. 4-7)
would require a source current of 1/2 at X = Xi as well as X = +X1. This even symmetry
implies dV/dX = O at X = O, and insulated ends also imply that dV/dX = O at X = ±L.
For positive values of X, we need to match solutions for the two regions that join at X = X.
We can write

V(X) V cosh X/cosh X,, for O < X < X,,
and

V(X) = V, cosh (L - X)/cosh (L - X,), for X X ± L.

which provide continuity of V(X) at X = X, and which also satisfy dV/dX = O at X = O
and X = L. In other words, these three boundary conditions have been used to determine
three of four arbitrary constants; the remaining constant V must be determined from the
requirement that 1/2 equal the amount of core current flowing away from X = X. This
can be expressed

1/2 = (Vj/Roe)[tanh X + tanh (L - X,)]

= (Vj/Roe) sinh L/[cosh X cosh (L - X)].

From this it follows that the input resistance, V,/(1/2), can be expressed

R0, 15(X,, L, Roe) = Roe cosh (L - X,) cosh X,/sinh L, (Al)
for a cylinder of length L insulated at both X = O and X = L, with steady input current
injected at X = X. This input resistance clearly depends upon three parameters, L, R,,,
and X. When X = L, this reduces to Eq. 7; it can be seen that X = O also gives the same
result.

For the corresponding case of odd symmetry, with a source current 1/2 at X = X,, and a
matching sink current 1/2 at X X1 (compare earlier Fig. 2 B and Eqs. 8 and 9), simi-
lar treatment of this problem yields the input resistance

R0, 01(X, L, Roe) = Roe cosh (L - X,) sinh X,/cosh L, (A 2)
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for a cylinder of length L, which is clamped (V = O) at X = O, and insulated at X = L,
with steady input current injected at X . This input resistance reduces to Eq. 9 when X, = L.

By making use of the insight contained in earlier Eq. 15 and the physical interpretation
given in the paragraph following it, the corresponding superposition for the present prob-
lem provides the solution for the injection of steady current I at the point X = X., in only
one of N equal cylinders coupled at X = O. For the range, O X X of the input cylin-
der, this solution can be expressed

1coshX (N - 1) sinhX (A 3)V(X) = IR cosh (L - X)
N sinh L + N cosh L

At the origin, this simplifies to

V(0) = (I/N)R,. cosh (L - X)/sinh L

= IRN cosh (L - X1)/cosh L, (A 4)

where the second form makes use of Eq. 11 for RN. This result remains unaffected by the
branching considerations that follow; it is used later to obtain an expression for a generalized
attenuation factor.

When we set X = X, in Eq. A 3, the result can be expressed V(X1) = IRNc, where RNC
represents the input resistance for this case. This input resistance can be expressed

RNC(XI, L, N, RTO) = RT, cosh (L - X,)

(cosh (X1) (N - 1) smb (X,)
NsinhL + NcoshL j, (A5)

for current injection at X = X to only one of N equal cylinders coupled at the origin. This
input resistance reduces to Eq. 14 when X = L; it also reduces to Eq. 11 when X = O.

Next, consider one order of symmetric dendritic branching, with X > X1. Then the odd
symmetry for 1/2 applied at X. of the input branch, with a matching - 1/2 applied at X.
of the sister branch, is responsible for a contribution corresponding to Eq. 18 but modified
as suggested by a comparison of Eq. A 2 with Eqs. 8 and 9. Here, this contribution can be
expressed

V(X) = (I/2)(2RT) cosh (L - X1) sinh (X - Xi)/cosh (L - X1), (A6)

and a similar contribution is provided by each order of branching for which the branch point
occurs at an electrotonic distance less than X from the origin. Let k1 represent the order of

the branch which receives the input current. The solution in the input branch, for Xk1
X < X,, can be written as

V(X) = IRT,, cosh (L - X1)

cosh X + (N - 1) sinh X + 2' sinh (X - Xk)'1, (A 7)
)N sinh L N cosh L cosh (L -

which differs from Eq. 20 (for input branch) in two respects: the factor cosh (L - X1), and
the fact that the summation runs to k = k, rather than to k = M. Clearly, Eq. A 7 reduces
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to this earlier result when X = L, with k, = M. By setting X = X in Eq. A 7 and dividing
by I, we obtain the corresponding expression for input resistance

= cosh (L - X1)

fcosh (X1) + (N - 1) sinh (X1) + 2(k-1) sinh (X1 - Xkfl (A 8 ))NsinhL NcoshL cosh(L -

which may be compared with previous Eq. 22.

Effects of Unequal Trunks and Branches

There is no difficulty in treating trunks and branches of unequal diameter, provided that all
of the trees satisfy the equivalent cylinder constraint (preservation of dh/2 with successive
branching). This is simplest when these trees all have the same electrotomc length L. In our
derivation, the importance of N was that it represented the ratio of the summed d31' value
(for all trunks of the neuron model) to the d312 value of the trunk of the input tree, alone;
when the trunk diameters are unequal, this ratio of dhI2 values can be designated9 as -y. Then,
also the ratio of the dall sum for the "other" cylinders to that for all cylinders can be ex-
pressed as (-y - 1) ¡-y, corresponding to (N - 1)/N of the previous derivations.

Similarly, for first-order branches of unequal diameter, we use yi to designate the ratio
of trunk d312 to the dall value of the input receiving branch. The equivalent cylinder con-
straint implies that the corresponding ratio for the sister branch is 'yi/(yj - 1) because the
reciprocal of this plus the reciprocal of y' must sum to unity. Referring to Fig. 3 A, but with
unequal branch diameters, we can see that the input current would not be represented as
two equal source currents of 1/2, but rather, a source current of i/-y, in the input branch,
together with a different source current of (y, - 1)1/y, in the sister branch. Then, the
source-sink pair of Fig. 3 B must be chosen to be currents of plus and minus('yi - l)I/y,
in order to obtain a zero slope at the sister terminal after superposition, corresponding to
Fig. 3 C. This means that the product, (1/2) times (2Rr), in Eq. 18 or A 6 for the source
branch of the previous derivation, must be replaced by the product, (y, - 1)1/y,
times (71 R), which equals (y' - 1)1Rr; it should be noted that y,RT is the R value
of this branch cylinder. Superposition of this source-sink current with the source current of
I/yr in the input branch results in a total source current of ¡ in the input branch. Thus, with
the next order of branching, we are led to a source-sink current of (y, - 1)1/72 multiplied
by a R value of y,-y9.RT. for the input branch; this product equals 71(72 - 1) With
kth-order branching, this product becomes 7172... (7k - 1)IRT instead of the product,
(1/2)(2kRT) = 2'IRT of previous Eq. 19.

Now, referring to Eqs. 20 and A 7, we are ready to write the generalized expression for
the distribution of steady potential in the input branch, allowing both for X different from
L and for unequal trunk and branch diameters. This result can be expressed,

V(X) = IRT cosh (L - X,)

( cosh X ('y - 1) sinh X k1 sinh (X - Xk))+Pk (L-Xk)J'
(A9)

sinh L + y cosh L k=1 cosh

The ratio y takes the more general form shown below in Eq. A 10 when dendritic trees can have
unequal L values as well as unequal diameters.
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where p =(-y 1), P2=71(72 -l),...pk 7172...(Yk 1), with l'i 72...Yk
defined as in the preceding paragraph, and where y is defined by Eq. A 10 below; also,

and L refer here specifically to the input receiving tree.

Effect of Including Trees with Unequal L Values. In order to find the effect of un-
equal L values, we refer to the analysis associated with Figs. 2 D, E, F and Eqs. 12-15, where
the superposition of unbranched cylinders was presented. There the component source
currents and sink currents were all of equal magnitude; here these component currents must
be chosen unequal in order to obtain the required superposition result. Corresponding to
the even-type symmetries of Fig. 2 D, we choose unequal source currents which satisfy the
previous condition at the origin, namely, dV/dX = O with a common value of V. Then,
corresponding to the odd-type symmetries of Fig. 2 E, we choose unequal source-sink com-
binations which satisfy the following conditions: each sink current (cf., Fig. 2 E) is chosen
to cancel exactly the source current (cf., Fig. 2 D) at the terminal of one of the (N - 1)
other cylinders; also, at the origin, V = O and the current is continuous. The result of the
complete superposition is to find that -y, in Eq. A 9, represents the following generalized
ratio,

(A 10)

= cosh (L - X)

y = d32
(

tanh L.) / (d3'2 tanh Li),

where d and L refer to the input receiving cylinder, and where the summation is taken over
all N cylinders, including the input cylinder. This ratio has a simple physical interpretation:
it is the ratio of the combined input conductance of all cylinders (from their common origin)
to the input conductance of the input cylinder alone (taken from this origin). When all L
are equal, -y reduces to the d312 ratio noted earlier, and when all d1 are also equal, 7 = N.

More General Input Resistance Ratio and Attenuation Factor

We can now obtain a more general input resistance RB by settmg X = X in Eq. A 9, and
dividing by the input current i. If we also note that Eq. 11 for RN should be generalized by
replacing N with y, we can write our general result as the input resistance ratio,

cosh (Xi) + (-y - 1) sinh (Xi)
cosh L (coth L)(cosh L)

" sinh (X -+ coth L j cosh (L - Xk) Ì
(A Il)

Also, the more general attenuation factor can be expressed in two useful forms,

AFBX/o = (RB/RN)(cosh L)/cosh (L - X1)

= cosh (X1) + (y - 1) sinh (X1)
coth L

k1

+ y sinh L sinh (X - Xk)
k=1 cosh (L - J(k)

It can be seen that when X = L, y = N, and Pk = Eqs. A 11 and A 12 reduce to
previous Eqs. 23 and 26.
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Generalization to AC Steady-State Impedance and Attenuation

The same superposition scheme can be used for the AC steady state. Current and voltage
become complex quantities; conductances and resistances are replaced by complex admit-
tances and impedances. For a sinusoidal angular frequency, w = 2irf, the ratio of membrane
admittance per unit area to membrane conductance per unit area can be expressed,

Ym/Gm = i +jwr = q2.

The cable equation for AC steady states in nerve cylinders can be expressed

d2V/dX2 - q2V = O, (A 13)

which may be compared with Eq. 1 of the earlier derivation. The corresponding general
solution can be expressed

V(X, w) = A smb (qX) + B cosh (qX), (A 14)

where we note that differentiation with respect to X will introduce the complex factor q
into the expressions for slope and for core current.

Following the previous consideration of the even and odd symmetries in Figs. 2 A and
2 B, we obtain the corresponding impedances,

and

ZCL, = (R,/q) coth (qL),

ZCL,ClP = (R/q) tanh (qL).

It may be noted that for zero frequency, q = 1, and these impedances reduce to the cor-
responding resistances of Eqs. 7 and 9.

In the same way, the whole neuron impedance at the origin of the model with N equivalent
cylinders or trees, can be expressed

ZN = (R,0/qN) coth (qL)

= (RN/q) tanh L coth (qL). (A 17)

Also, by noting previous Eqs. 14 and 15 together with Eqs. 22 and 23, we can write down the
corresponding expression for the ratio of branch terminal input impedance to ZN, as follows

ZBL/ZN = I + (N - l)[tanh (qL)]2

+ N tanh (qL) 2' tanh [q(L - Xk)]. (A 18)
k=1

Similarly, the attenuation factor from the input terminal to the origin (soma) of the model
can be expressed as the modulus of VBL/ VO , as follows

I VBL/ V0I = ZBL/ZNI! cosh (qL) I. (A 19)
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In order to obtain the real and imaginary parts of these complex impedances and ratios,
we make use of the definitions of a, b, and r (see list at beginning of Appendix) as the real
part, imaginary part, and the squared modulus, respectively, of q, together with the following
two identities:

tanh (qL) = (sinh a + j sin ß)/(cosh a + COS ¡3),

coth (qL) = (smb a - J sin ¡3)/(cosh a - cos ¡3),

where a = 2aL, and ¡3 = 2bL. Making use of these definitions and identities, we can express
the real and imaginary parts of ZN as

(ZN)
RN(tanh L)(a sinh a - b sin 3)

r(cosh a - cos ¡3)

RN(tanh L)(b sinh a - a sin ¡3)
r(cosh a - cos i3)

and the modulus can be expressed as

2 .2 1/2RN(tanh L)(sinh a + sin ¡3)
N (r)"2(cosh a - cos ¡3)

Also, the ratio of the imaginary to the real part provides the tangent of the phase angle.
A similar treatment of the impedance ratio ZBL/ZN can be carried out, where we also

definea,, =2a(L X,,)andí3,, =2b(L X,,).Then

I31(ZBL/ZN) = 1 + (N - l)(sinh2a - sin2j3)
(cosh a + cos ¡3)2

M r sinh a sinh a - sin ¡3 sin ¡3k 1+ N 2(k-1)

[(cosh a + cos ß)(cosh a + cos ¡3k)]'k=1

(N - 1)(2 smb a sin ¡3)
d(ZBL/ZN) (cosh a + cos (3)

+ N 2' [ sinh a sin ¡3,, + Slflh a sin ¿3
L(cosh a + cos ß)(cosh a + cos ¡3,,)

These results can then be used to compute the modulus, ZBL/ZN , and then the AC attenu-
ation factor defined by Eq. A 19.
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8.3 Transient Response in a Dendritic Neuron Model for Current
Injected at One Branch (1974), Biophys. J. 14:759-790

John Rinzel and Wilfrid Rail

ABSTRACT Mathematical expressions are obtained for the response function corre-
sponding to an instantaneous pulse of current injected to a single dendritic branch in a
branched dendritic neuron model. The theoretical model assumes passive membrane
properties and the equivalent cylinder constraint on branch diameters. The response
function when used in a convolution formula enables one to compute the voltage
transient at any specified point in the dendritic tree for ari arbitrary current injection
at a given input location. A particular numerical example, for a brief current injection
at a branch terminal, illustrates the attenuation and delay characteristics of the de-
polarization peak as it spreads throughout the neuron model. In contrast to the severe
attenuation of voltage transients from branch input sites to the soma, the fraction of
total input charge actually delivered to the soma and other trees is calculated to be
about one-half. This fraction is independent of the input time course. Other nu-
merical examples, which compare a branch terminal input site with a soma input site,
demonstrate that, for a given transient current injection, the peak depolarization is
not proportional to the input resistance at the injection site and, for a given synaptic
conductance transient, the effective synaptic driving potential can be significantly re-
duced, resulting in less synaptic current flow and charge, for a branch input site. Also,
for the synaptic case, the two inputs are compared on the basis of the excitatory post-
synaptic potential (EPSP) seen at the soma and the total charge delivereto the soma.

INTRODUCTION

To understand the passive integrative behavior of a neuron, we feel it is important to
study the contribution made by individual input events. The steady-state aspect of
such problems in an extensively branched neuron model was presented in a previous
paper (Rail and Rinzel, 1973), hereafter referred to as RR-I. Symmetry, idealized
branching, and linearity were exploited there to obtain analytical expressions for the
steady membrane potential distribution in a branching neuron model for steady cur-
rent input at a single dendritic branch site. These results were used to calculate the
input resistance at branch terminal input sites and also to determine the steady-state
voltage attenuation factor from a branch terminal input site to the soma. Here, we use
the same superposition methods as in RR-I to solve the corresponding transient prob-
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329 Transient Response in a Dendritic Neuron

tern for arbitrary current injection at a single dendritic branch site. An explicit ex-
pression for the response function is obtained. We illustrate our results by calculating
the transient potential at several locations in the neuron model for a particular tran-
sient current applied to a branch terminal. In addition, we discuss the reduction of
synaptic driving potential associated with dendritic synaptic conductances and also the
distribution of total charge dissipation for a transient current injection. More general
response functions are derived in an appendix. We have also applied the results pre-
sented herein a theoretical study of dendritic spine function. This work will appear in
a subsequent paper.

The applicability of this model to experimental neurons was discussed in RR-I.
There we reviewed experimental evidence to show that cat spinal motoneurons satisfy
the assumptions of the model to a reasonable approximation. The case for pyramidal
tract neurons was also reviewed.

Previous transient solutions for dendritic neuron models have usually dealt with
dendritic branches by lumping them together to avoid treating them individually.
Those of Rail (1960) were obtained by using Laplace transform methods to treat den-
dritic cylinders of infinite length. Those of Rail (1962, 1969) defined a class of den-
dritic trees that can be treated as equivalent to cylinders of finite length, and used the
classical method of separation of variables to treat a variety of initial conditions and
boundary conditions. Studies of Jack and Redman (1971 a,b) have extended the ap-
plication of Laplace transform methods to several difficult problems involving both
cylinders of infinite length and cylinders of finite length. Recently, Redman (1973) has
obtained the transient potential distribution in a neuron model which receives current
in only some of its dendritic trees. Even these solutions, however, do not treat input at
only a single branch of a tree. Transient results providing for segregation of input
between four portions of the dendritic periphery were obtained in computations with
compartmental models (Rail, 1964, Fig. 9). These results demonstrated that the mem-
brane potential time course is the same at the soma (but not in the branches) for any
apportionment of simultaneous current injection amongst the dendritic terminals, and
that the amplitude at the soma depends only upon the total amount of this current.
This property follows, of course, from the linearity of the system. Transient problems,
for dendritic neuron models and membrane cylinders have also been treated by Lux
(1967), MacGregor (1968), Barnwell and Cerimele (1972), and Norman (1972); tran-
sient input to a single location, with explicit treatment of branching, has been con-
sidered by Barrett and Crill(1974), and Butz and Cowan (personal communication).

Assumptions

We make the same assumptions here as in our previous paper (RR-I). Since a detailed
discussion of these assumptions was provided there we will only summarize them here.
Our neuron model is composed of N identical dendritic trees each of which exhibits M
orders of symmetric branching. We assume that all branchings are symmetric bifurca-
tions and that they satisfy the 3/2-power law, that is, each daughter branch diameter
raised to the 3/2-power is equal to one-half times the 3/2-power of the parent branch
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FIGURE I Diagrams illustrating features of the idealized neuron model. A represents the neuron
model composed of six identical dendritic trees. B indicates the relation of a dendritic tree to
its equivalent cylinder. C represents the same model as A, with each dendritic tree replaced by
an equivalent cylinder. D represents the same model as A and C, with dendritic branching shown
explicitly only for the tree which receives input current injected into the terminal of one branch;
the five other treesof the model are represented by their equivalent cylinders, here shown gathered
together. In diagrams A, C, and D, the point of common originof the trees or equivalent cylin-
ders is regarded as the neuron soma, Same as Rail and Rinzel (1973).

diameter. Hence, each tree is mathematically equivalent to a single membrane cylinder
(RaIl, 1962, 1964). Fig. i illustrates our branching neuron model with N = 6, M = 2
and the equivalent cylinder concept. Fig. 1 D should convey the following idea. When
input is delivered to only one branch terminal in a single tree, the branching details of
the other trees, which do not receive input directly, are unimportant. In the Appendix,
we present solutions for problems with relaxed geometric assumptions.

Each trunk and branch segment in the neuron model is considered to be a cylinder
of uniform passive membrane. The extracellular medium is taken to be isopotential;
then, with the usual core conductor assumptions, we can treat each cylinder as a one
dimensional, finite length, electrotonic cable. The membrane potential is continuous
and core current is conserved at all branch points. The dendritic terminals, which do
not receive applied current directly, are assumed to be sealed; that is, the membrane
potential has zero slope with respect to axial distance at such terminals.

SYMBOLS

For Membrane Cylinders

Vm = - V

V = V,,, - E,

Membrane potential, as intracellular minus extracellular
electric potential; (volt).
Electrotonic potential, as deviation of membrane poten-
tial from its resting value E,; (volt).
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33! Transient Response in a Dendritic Neuron

R Resistivity of intracellular medium; (ohm centimeter).
Rm Resistance across a unit area of membrane; (ohm centi-

meter2).
C,,, Capacity of a unit area of membrane; (farad centi-

meter2).
d Diameter of membrane cylinder; (centimeter).

= 4R1/(ird2) Core resistance per unit length; (ohm centimeter I)

r,,, = R,,,/ird Resistance across a unit length of membrane; (ohm centi-
meter).

= irdC,,, Membrane capacity per unit length; (farad centimeter').
T = R,,, C,,, Passive membrane time constant; (second).
t Time; (second).
T = tir Dimensionless time variable.
p Laplace transform variable for transform with respect to

T.

q = v'p + 1.
P(p) Laplace transform of F(T).
X = [(RmiRi)(d/4)1'12 Characteristic length of membrane cylinder, when extra-

cellular resistance is neglected; (centimeter).
x Actual distance along a cylinder axis; (centimeter).

= Increment of electrotonic distance; (dimensionless).

x
=

f (I / X) dy; Electrotonic distance from origin; in a tree, X changes at
O each branch point; (dimensionless).

L Electrotonic distance from origin (X = O) to the end of
finite length cylinder (X = L).

R,, = Xr, = (2/ir)(R,,,R1)"2(dY312 Input resistance at origin of membrane cylinder of semi-
infinite length; (ohm).

K1,,,(X, L, T) Response at time Tand location Xin a cylinder of length
L insulated a VI X = O) at the origin for instantaneous
point charge placed at the end X = L.

K1(X, L, T) Response at time Tand location X in a cylinder of length
L clamped (V = O) at the origin for instantaneous point
charge placed at the end X = L.

¡ Transient current applied outward across membrane at
X = L; (ampere).

For Idealized Neuron Model

N Number of equivalent dendritic trees (or their equivalent
cylinders) that are coupled at X = O.

L Electrotonic length of each of those trees or equivalent
cylinders.

M Number of orders of symmetric branching, specifically in
the dendritic tree which receives the input.

X1 Electrotonic distance from the origin to the first point of
branching.
Electrotonic distance from the origin to the kth-order
branch points.

R, Input resistance for a dendritic trunk cylinder when ex-
tended for infinite length away from soma; (ohm).

RN Whole neuron input resistance at the point (X = O) of
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RBL

For the Discussion

I,, Peak value of transient input current; Eq. 35; (ampere).
Transient depolarization at location X due to current in-
jection at location X.,,; (volt).

W(X) Time integral of potential at location X; Eq. 40; (volt-
second).

Q.,, Total input charge for a transient current injection;
(coulomb).

i1(X, T) Current per unit length flowing across membrane leakage
resistance; (ampere-centimeter I)

(X) Charge dissipation per À length; (coulomb).
Q(Xa, Xb) Total charge dissipated by membrane leakage in branch

section from X to Xb; (coulomb).
V,,, Transient synaptic depolarization at some synaptic site,

X1,,; (volt).

g, Synaptic excitatory conductance at this synaptic site;
(ohm').

V, = E, - E, Synaptic excitatory equilibrium potential, being the dif-
ference between the excitatory emf and the resting emf;
(volt).

(V, - Vm) Effective driving potential for excitatory synaptic current;
(volt).

I, Synaptic excitatory current; (ampere).

THEORY

For the usual assumptions of one dimensional cable theory, transient distributions of
membrane potential along the length of a passive membrane cylinder must satisfy the
partial differential equation:

a2V/9X2 = (3V/3T) + V, (1)

where X, T, and V = V(X, T) are explicitly defined in the list of symbols. Our basic
assumption is that this partial differential equation is satisfied in every trunk and
branch cylinder of the idealized neuron model illustrated in Fig. I.

The initial-boundary value problem for the injection of a time varying current, 1(T),

Copyrighted Material

common origin of the N trees or equivalent cylinders;
(ohm).
Input resistance at the end (X = L) of one terminal
branch of the neuron model, for current applied as in
Figs. I A and D; (ohm).
Electrotonic distance from the origin to the point of cur-
rent injection.
Transient current applied outward across membrane at
X.,,; (ampere).
Response at time T and location X in the neuron model
for instantaneous point charge placed at location Xe,,.
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to a single branch terminal (Fig. i A and D), can be broken down into component
problems (RR-I, Figs. 2 and 3). The overall problem consists of Eq. 1 together with
an initial condition:

V(X,O) = 0 (2)

for all trunks and branches, and with boundary conditions analogous to those of the
steady-state problem. These boundary conditions can be stated as follows: V(X, T)
is continuous at the common origin and at all branch points (X = Xk); also there is
conservation of current (Kirchhoff's law) at the origin and at all branch points; for the
input branch, the terminal boundary condition can be expressed:

3 V/3X = 2MRr. ¡(T), at X = L, (3)

where 2MRT.. represents the value (input resistance for semi-infinite length) of an
Mth order branch (assuming symmetric branching which satisfies the equivalent cylin-
der constraint); for all other branch terminals, the boundary condition is simply:

ÔV/3X=0, atX=L (4)

which represents a sealed end.

Solution as a Convolution of ¡( T) with a Response Function

Because we are dealing with a linear system, we know that the solution, V(X, T) for
¡(T) injected at one branch terminal can be formally expressed and also computed
numerically in terms of the response function, K(X, T; L), which is a function of T
corresponding to the response at the location X, for an instantaneous point charge de-
livered at T = O at the input site, X = L, of one branch. The Appendix treats also
other input sites, X = X1, for which the response function is K(X, T; X,,,). Here we
express the transient solution, for ¡(T) injected at X = L of one branch, as the con-
volution:

V(X, T) = J I(s)K(X, T - s;L)ds.
o

The corresponding formula in the Laplace transform space is the product:

'(X,p) = Î(p)k(X,p;L) (6)

where indicates Laplace transform with respect to T, and p is the transform vari-
able. For examples and discussion, see Chapters XII and XIV of Carslaw and Jaeger
(1959).

It is useful to comment on the relation between the response function and an in-
stantaneous point charge represented in terms of the Dirac delta functions, 6(T) and
6(X). Consider an instantaneous point charge, Q0 coulombs, applied at the terminal,
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X = L, of one branch at T = O. This can be treated as an input function:

1(T) = (Q0/r)(5(T) (7)

which is applied at X = L of one branch. Then from Eq. 5, the resulting response can
be expressed:

V(X, T) = (Q0/r)K(X, T; L). (8)

It may be noted that Q0/r is in amperes, K(X, T; L) is in ohms, and V(X, T) is in
volts; also, the factor (Q0/r) in Eq. 7, satisfies the condition that

i ¡(tir) dt = r f I(T)dT = Q0.

Normalization by setting Q0/r = 1 A, means that V(X, T) in volts has the same mag-
nitude and dependence upon X and T as K(X, T; L) in ohms. For an initial bound-
ary value problem, we can alternatively set ¡(T) = O and regard the instantaneous
point charge as an initial condition involving (5(X); if the instantaneous initial charge
is Q0 coulombs at the point X = L of one branch, the initial condition in that branch
can be expressed:

V(X,0) = (Qo/XCm)(5(X - L)

= (2MRT.. Q0/r)(5(X - L). (9)

Here it may be noted that ACm is the membrane capacity per A length of the terminal
branch, and this times V(X, O), when integrated over X, yields Q0 as the total initial
charge. Also, the second expression follows from the first because

(ACm)' = (rm/X)/r, and (r,,,/A) = 2MR

represents the input resistance for a semi-infinite length of the terminal branch cylin-
der, as in Eq. 3.

For the present problem, the required response function consists of a sum of several
component response functions, where each of these components corresponds to one
of the components of the steady-state problem, as presented in (RR-1, Figs. 2 and 3).
The correspondence between these components is made most apparent when the com-
ponent initial-boundary value problems are expressed in the Laplace transform space,
as illustrated in the next section.

Case of Cylinder Insulated ai the Origin

For the single cylinder with current applied at X = L and zero slope at X = O (see
RR-1, Fig. 2 A), the initial-boundary value problem consists of Eqs. 1 and 2 together
with:
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19V/ÔX = Rj(T), atX = L (10)

and

t9V/ÔX=0, atX=0.

Laplace transformation of Eq. 1 yields:

d21/dX2 = (p + l)P, (12)

which is an ordinary differential equation whose general solution can be expressed:

P(X,p) = A(p)sinh(qX) + B(p)cosh(qX), (13)

where q = (p + 1)1/2. Laplace transformation of Eq. 11 yields the boundary condi-
tion:

= 0, atX = 0, (14)

and this requires that A(p) = O in Eq. 13. It remains to determine B(p) from the
other boundary condition.

Laplace transformation of Eq. 10 yields the boundary condition:

ai'/ax = R., ¡(p), atX = L. (15)

This, together with Eq. 13 and A(p) = 0, yields the solution:

(X,p) ¡(p)R cosh(qX)
= (16)

q sinh(qL)

in the Laplace transform space, for this particular case.
Either by comparing Eq. 16 with Eq. 6, or by setting 1(T) = ô(T), implying that

Ì(p) = 1, we obtain the Laplace transform of the response function for this compo-
nent problem, namely,

cosh(qX)k15(X,L,p) -
qsinh(qL)

Here, subscript "ins" designates this case of the cylinder insulated at the origin; also X
designates the point where the response is observed, p is the complex variable of the
Laplace transform domain, and L designates the electrotonic length of the component
cylinder; it is assumed that current is injected at the end, X = L. When the point of
observation is also set at X = L, then Eq. 17 simplifies to

k,(L,L,p) = (R.,/q)coth(qL).

(17)

This particular Laplace transform has a formal correspondence with the input resis-
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tance, RCL ,ns' and the input impedance, ZcLI,,, of the steady-state presentation
(RR-I. Eqs. 7 and A 15).

Case of Cylinder Clamped at the Origin

The other important special case will be presented more briefly. This is the case of a
cylinder with 1(T) applied at X = L, and clamped at the origin(V = Oat X = O) cor-
responding to Fig. 2 B of the steady-state presentation. Here, Eqs. 1, 2, and 10 apply
as before, and the clamped boundary condition at the origin requires that B(p) = O
in Eq. 13. Then the boundary condition (Eq. 15) leads to the following Laplace trans-
form of the response function for this component problem:

R sinh(qX)L,p)
qcosh(qL)

This result for the clamped origin may be contrasted with Eq. 17 for the insulated
origin. When X = L, this result corresponds formally to RcLP and the input im-
pedance, ZcL, of the steady-state presentation (RR-I, Eqs. 9 and A 16). The next
step is to combine these component results by means of superpositions corresponding
to those of the steady-state presentation.

R esuli for Input Restricted to One Dendritic Branch Terminal

Given the two component results above, and reviewing the superpositions leading to
(Eqs. 12 and 13 of RR-I) for X coupled cylinders and to (Eqs. 18-20 of RR-I) for the
M orders of branching, we obtain the following general expression for the Laplace
transform of the response function, for input restricted to one dendritic branch ter-
minal,

£(X,p;L) = X'(X,L,p) + ANk1(X,L,p)

± 2»Bkp(X - Xk, L -
kI

where A and Bk are simple constants whose values are specified according to location,
as follows:

in the input tree A = X - 1;
in the input branch Bk = 1, for all k from 1 to M;
in the sister branch same, except BM = - 1;
in the parent branch same, except BM = 0;
in the first cousin branches same, except Bi,, = 0, and BM_I = -1;
in grandparent branch same, except BM = 0, and BM_I = 0;

in the input trunk Bk = 0, for all k;
IA = 1, assuming, X < O, and

in the other trees,
[Bk = O, for all k.
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In this expression, all component response functions (Eqs. 17 and 18) have R set
equal to RT

Response Functions in the Time Domain

In the time domain, the response function, K(X, T; L) for input restricted to one den-
dritic branch terminal is equal to the corresponding linear combination of component
response functions. Thus, corresponding to Eq. 19 and using the notation introduced
there, we have

K(X, T; L) = N'K5(X, L, T) + AN'KCIP(X, L, T)

+ 2'BK(X - Xk,L - Xk, T).
k-I

This means that we can have a completely explicit expression for K(X, T; L) as soon
as we have explicit expressions for the two types of response functions, (X, L, T)
and K1 (X, L, T), in the time domain. These explicit expressions can be obtained by
two quite different approaches. One is to invert the two Laplace transforms defined by
Eqs. 17 and 18. These inverse transforms can be found in Roberts and Kaufmann
(1966) expressed in terms of theta functions. The functional relations satisfied by the
theta functions immediately give two representations for each response function. The
other approach is to solve the component problems directly in the time domain. The
response functions can again be represented in two ways. One way corresponds to
solving the problem by separation of variables and the other by the method of images.
The equivalence of the two representations is seen through an application of Poisson's
summation formula (e.g., Carsiaw and Jaeger, 1959).

The method of separation of variables has been previously applied to membrane
cylinders by Rall(1969). To find the component response functions, we use his equa-
tions 17 and 30-32 with the initial condition F(X) = R, ô(L - X) and obtain

KÎS(X,L,T) = R{l + 2 (_lycos(nX/L)exp[_(n/L)2T, (21)

and

2eT 1(2n - 1)irK1(X, L, T) = R
L

(- 1) sin( x) ex[ (2n - l))2T1
,,-i 2L \ 2L

(22)

These infinite series representations converge rapidly for large values of T. For small
values of T, we make use of different representations which are based upon the funda-
mental solution

(20)

V(X, T) = [Q0R, /r(7rT)'/2]exp[(T + X2/4T)] (23)
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for an instantaneous point charge Q0 placed at X = O of a semi-infinite (O X

membrane cylinder. It may be noted that Q0R Ir = Qo/(Àcm), because r = rmc,,,
andR = r,/X. For the case of a cylinder which extends infinitely in both directions
from X = O, half of the charge spreads in each direction, and the expression above is
divided by 2; then this agrees with Hodgkin, as cited in Appendix I of Fatt and Katz
(1951). The required representations, for small T, can be constructed by using the
method of images(e.g., Carslaw and Jaeger, 1959). To satisfy the boundary condition,
13 V/13X = O at X = O, equal instantaneous point charges are placed simultaneously,
along an infinite line, at locations, X = (2n - l)L for all integer values of n. This
superposition yields the response function,

T
K,(X, L, T) = R.. e

'1/2
exp[L(2n - 1) + X]2/4Tj. (24)

(lrT) ,,

Also, one obtaíns V = O at X = O by using instantaneous point charges of alternating
signs at successive odd multiple locations, X = (2n - 1)L, along an infinite line; this
superposition yields the response function,

eT (-1)exp{[L(2n - 1) + X12/4fl. (25)KCIP(X,L,T) = R
(7rT)112

These (small T) representations of the two response functions can be shown to be
equivalent to the expressions derived and used by Jack and Redman (1971 a), provided
one notes that their X corresponds to our L - X (for the electrotonic distance between
the input site and the point of observation), and that their summation of two expres-
sions, over n = O to n = , is equivalent to our summation of one expression over
n = - to n = + oc ; then their Eq. 11 agrees with our Eq. 24, and their Eq. 14 agrees
with our Eq. 25. While these two infinite series converge well for small values of T,
they converge poorly for large values of T.

We have used the large time and small time representations to advantage in our cal-
culations switching from one to the other in order to minimize computational effort.
When X = O or X = L, the errors made in truncating the alternate representations for
K,(X, L, T) and K1(X, L, T) are easily bounded. For example, with X = L, by
neglecting all terms with n > 1 in Eqs. 24 and 25 when T 0.1 for L = 0.5 and
when T< 0.5 for L = 1.5, a relative error of no greater than iO is committed. For
the large time representations, Eqs. 21 and 22, the use of at least four terms when T>
0.1 for L = 0.5, and six terms when T> 0.5 for L = 1.5, will guarantee the same relative
accuracy. We observe here that the number of terms needed for a given relative ac-
curacy depends on the length L. In this sense, the small T representations can be also

thought of as large L representations and similarly the large T representations can be
thought of as small L representations.

Copyrighted Material



339 Transient Response in a Dendritic Neuron

ILLUSTRATIVE RESULTS AND DISCUSSION

Asymptotic Behavior of the Response Function at the Input Termina!

Useful physical intuitive insight can be obtained by considering the response function
at the input terminal, in the time domain. When an instantaneous point charge, Q0

coulombs, is placed at X = L of the input branch, the earliest spread of charge occurs
only within that one branch. During this very early time (before charge spreads into
the parent branch and the sister branch) the voltage transient at the terminal must be
identical with the early transient for Q0 placed at the end of a semi-infinite cylinder
whose R value is 2MRT . This early transient can be expressed (compare Eq. 23) as:

-T
M eV(L, T) - (RT. Q0/r)2

I 2
as T' 0, (26)

(irT) /
where means "is asymptotic to."

As time goes on, the charge spreads and decays. If the membrane resistivity were
infinite, there would be no dissipative charge decay, and the original charge Q0 would
spread and become distributed uniformly over the entire surface of the N dendritic
trees of Fig. 1 A. The total membrane capacity of those trees equals that of the N
equivalent cylinders (Fig. 1 C) and is NLÀc,, where cm is the membrane capacity per
unit length of a trunk cylinder. Thus, the final uniform voltage (without dissipative
decay) would be Q0/(NL ACm). However, because of finite membrane resistance, the
charge redistribution is concurrent with charge decay (dissipative leak across mem-
brane resistance). For very large values of time, the decaying voltage at the input
terminal approaches that at all other locations; that is, for all X:

V(X T) Q0 e
(RT Q0 as T (27)

NLAcm r /NL

where the second expression makes use of'the fact that = rm/X and r = rmc,, to-
gether imply RT fr = (AcmY'. These physical intuitive considerations tell us that
V(L, T) begins as expression 26, but with spread of charge into other branches it de-
parts from this transient function, and with further spread into all of the trees, it must
finally approach expression 27; the complete solution must define the stages of transi-
tion from the early limiting case (26) to the final decay (27). This will now be shown
to be the case.

If we set X = L in Eqs. 20, 24, and 25, the response function at the terminal (for
small T) is found to be:

K(L, T; L) eT
exp(-n2L2/T)

RT N(rT)'12,,

+
(N - l)eT

N(irT)'12

M

(- l)exp(-n2L2/T)

eT 2k_Ir (-l)exp[-n2(L - Xk)2/TI. (28)
(irT)'12
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For each of the three infinite series in this expression, only the term for n = O does not
vanish as T - 0; then, noting that

(i+N_l+ 2kI)2M

we can write

K(L, T; L) 2MeT
as T - 0.

RT (rT)2

This is seen to agree with the previous physical intuitive result (26) when normalized
by setting = lOAm Eq. 8.

To find the large time behavior of the response function at the terminai, we use the
other representation. With X = L in Eqs. 20-22, we have

K(L, T; L) eT J + 2 exP[_(n/L)2}
Ri,. NL

(N - l)eT
2 exp[ f(2n - l)lr)2T]

NL
L

2L

M [ 1(2n - 1)7r2Tl
2(L - Xk)J j

First, we note that these series fail to converge as T - 0, because then each exponen-
tial term under each summation approaches unity. Then we note that as T - , each
exponential term under each summation approaches zero. Therefore we can write

K(L TL) eT asT
RT NL

This agrees with the corresponding physical intuitive result (Eq. 27) when normalized
by setting Qo/r = 1.0 A in Eq. 8. Moreover, the same limit is obtained at any
point X in the tree. This limit corresponds to the zero order (n = 0) term of a
Fourier (cosine) series (see p. 1492 of RaIl, 1969) and is independent of X; in other
words, it corresponds to a component of potential that is uniformly distributed over
the entire surface of the neuron model.

When T is neither too small nor too large, numerical computations with both repre-
sentations (Eqs. 28 and 30) give identical results, to many significant figures. Fig. 2
illustrates this response function with the solid curve, for M = 3, X = 0.25, X2 =
0.5, X3 = 0.75, L = 1.0, and N = 6. These parameters correspond to those used in
the steady-state example of RR-I, Fig. 4. The upper dashed curve represents Eq. 29
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102
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I/e
Io-I

IO2

FIGURE 2 Response function at the input branch terminal (shown solid), compared with two
asymptotic cases (shown dashed); ordinates are plotted on a logarithmic scale. The solid curve
represents the response function defined by Eqs. 28 and 30 for M = 3, X1 = 0.25, X2 = 0.5, X3

0.75. L = 1.0, and N = 6. The lower dashed curve is a straight line representing uniform decay
and representing the asymptotic behavior of the response function as T (Eq. 31); its left in-
tercept represents a value of 1/6 because NL = 6. The upper dashed curve represents the asymp-
totic behavior as T O (Eq. 29); this also represents the response for a semi-infinite length of ter-
minal branch. For any combination which makes QORT.. fi- = I mV, the values of the functions
plotted here would correspond to Vin millivolts; see Eqs. 26 and 27.

extended to all values of T. This full time course is valid for the limiting special case
in which the length of the input branch is increased indefinitely. The earliest deviation
of the solid curve from this dashed curve is due, physically, to the fact that when the
spread of charge reaches the parent node X = X3 its further spread is facilitated by
the lower resistance provided by the parallel combination of the parent branch and the
sister branch.

The lower dashed line in Fig. 2 represents Eq. 31, and it can be seen that the later
decay of the solid curve agrees with this. The complications of spread over the entire
surface of the neuron model, and the complications of the various infinite series in
Eqs. 28 and 30 govern the precise way in which the solid curve transient passes from
early agreement with the upper dashed curve to late agreement with the lower dashed
curve.

The Response Function at X = O

Here we state briefly the alternate representations in the time domain of the response
function at the soma (X = 0) for input to a dendritic branch terminal. We recall that
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for locations in the trunk of the input tree, the branching terms in Eq. 20 do not apply,
and furthermore, when X = 0, the K1 term must vanish. Therefore,

K(0, T; L) = (I/N)K1(0, L, T). (32)

For small values of T, we have the representation

RTeT exp-[L(2n - 1)]2/4T (33)K(0, T; L)

N(irT)t/2

which vanishes in the limit, as T-. 0. For Tnot too small, we have the representation

K(0, T; L)
RTeT 1 + 2 (- l)exp[-(n/L)2T (34)
NL

which agrees with Eq. 31 in the limit, as T - , as expected intuitively from Eq. 27.
lt is important to realize that the response function evaluated at the origin is inde-

pendent of the manner in which the input current ¡(T) = ô(T) is distributed
among the branch terminals. More generally, for arbitrary current injections, the solu-
tion at X = O does not depend upon the way in which the input current is shared by
locations which are electrotonically equidistant from the soma.

Illustrative Transients Computed by Convolution

Figs. 3-5 illustrate voltage transients computed according to the convolution formula
(5) for several different locations in the neuron model, when one particular current
transient was applied to a single branch terminal. The neuron model parameters were
N = 6, M = 3, and with all of the same branch lengths as in RR-I, Fig. 4. The input
current, ¡(T), had a time course of the form

¡(T) = IaTe_cT) (35)

with a 50. This input function has a smooth time course, starting from I O at
T= 0, reaching a peak value of I at T = (I/a) = 0.02, returning halfway down at
about T = 2.7/a = 0.054, and being effectively zero from T = 0.15 onwards. The
graph of Eq. 35 with I = ¡ A, appears in Fig. 3. This function is the same as the "fast
input transient" used previously (RaIl, 1967). This family of input transients has also
been used extensively by Jack and Redman (1971 a. b). As mentioned previously, we
have employed both the small time and large time component response functions in our
calculations. To evaluate convolutions of Eq. 35 with the small time representations,
we used a techniquedescribed byJack and Redman (1971 a; pp. 312-313).

In Fig. 3, the upper dashed curve shows the input current time course and the solid
curve shows the resulting voltage transient at the input branch terminal. Here, a linear
voltage amplitude scale has been used, and the attenuated soma voltage transient
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FIGURE 3 Computed voltage time course at the input receiving branch terminal (solid curve) and
at the soma (lower dashed curve) for a particular time course, 1(T), of injected current (upper
dashed curve). ¡(T) is given by Eq. 35 with a = 50 and shown here as 1(T)/lt. The neuron
model is shown upper right and the parameters used were N = 6, M = 3, X1 = 0.25, X2 = 0.5,
X3 = 0.75, and L = 1. The ordinate values for the solid curve, using scale at left, represent di-
mensionless values of V(L, T)/(2MRT,, 1e) where V(L, T) was obtained using Eqs. 5, 28, 30,
and 35. The soma response (lower dashed curve) has been amplified 200 times; the ordinate
values, using scale at right, represent dimensionless values of V(0, T)/(2MRT,, 1e) where V(O,
T) was obtained using Eqs. 5, 33, 34, and 35. The factor 2MRT,, 1e equals 8 x (4.56 Rw) X
(1e) which is approximately equal to 100 times the product RN and I,,. For example, if RN =
106 0 and Ij,, = l0 A, the above factor is approximately I V; then the left-hand scale can be
read in volts for V(L, T) and the right-hand scale can be read in volts for V(0. T).

(lower dashed curve) has been amplified 200 times to aid visual comparison of these
voltage response shapes. In Fig. 4, the same two voltage transients have been re-
plotted to a log amplitude scale, together with transients at other locations. This
permits comparison for successive locations along the main line from the input branch
terminal (BI), to the parent node (P), to the grandparent node (GP), to the greatgrand-
parent node (GGP), and to the origin (X = 0, or soma) of the model. Also included
is the further attenuated and delayed transient predicted for the branch terminals of
the five other trees (UT) which do not contain the input branch. It can be seen that
with increasing electrotonic distance from the input terminal, the time of the peak be-
comes increasingly delayed and the peak amplitude becomes increasingly attenuated.
These peak times, amplitudes and attenuation factors have been collected in Table I.
Each transient attenuation factor represents the ratio of peak V(L, T) to the peak
V at the location in question; these transient attenuation factors are all greater than
those for the steady-state problem, which are included in the bottom row of Table I,
for comparison. lt should be emphasized that these particular values depend upon
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Location: BI P GP GOP Soma BS BC-I BC-2 01

Peak time 0.04 0.085 0.135 0.21 0.35 0.12 0.27 0.46 0.84
Peak value X l0 64.8 14.5 3.75 1.05 0.276 l2.8 2.54 0.557 0.135

Transient attenuation factor 1.0 4.5 17.3 62 235 S.l 25 I I6 479

Steady-state attenuation factor 1.0 2.3 5.3 12.0 23.9 2.4 6.0 15.5 34.0

0 0.25 0.5 0,75 .0 .25

T

FIGURE 4 Semi-log plots of transient membrane potential versus T at successive sites along the
mainline in the neuron model for transient current injected into the terminal of one branch. BI
designates the input branch terminal while P, GP, and GOP designate the parent, grandparent,
and great grandparent nodes, respectively, along the mainline from BI to the soma. The response
at the terminals of the trees not receiving input directly is labeled OT. The model parameters,
neuron branching diagram, and current time course are the same as in Fig. 3. Also as in Fig. 3,
the ordinate values represent dimensionless values of V(X, T)/(2M RT Ire) where '(X, T)
was obtained as the convolution of ¡(T) with K(X, T; L) defined by Eqs. 5, 20, and 35 using
21, 22, 24, and 25.

the particular values of N 6, M = 3, L = I with iX = 0.25, and the particular
input transient used. A faster input transient would result in larger transient voltage
attenuation factors, while a slower input transient would result in smaller factors, with
the steady-state values as a lower limit; see Fig. 3 of Redman (1973) for an illustration
of this point. In Table!, the transient attenuation factor of 235 (from BI to soma) is
nearly 10 times the factor, 23.9, for the steady-state case.

It may be noted that both of these attenuation factors can be attributed partly to
electrotonic distance and partly to branching. This can be demonstrated by compari-
son with results obtained without branching (or with input current divided equally

TABLE I

TRANSIENT AUENUATION FACTORS AND PEAK TIMES FROM FIGS. 4 AND 5,
AND STEADY-STATE ATTENUATION FACTORS FROM (RR-I, FIG, 4)
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among the eight branch terminals of one tree). Then, for the same input current time
course (a = 50 in Eq. 35) the response at the soma is the same as before, but the
voltage at the input terminals is reduced. .The transient attenuation factor is reduced
to 30.3 and the steady-state factor is reduced to 6.02; these reduced values represent
attenuation attributable solely to electrotonic distance, and not to branching.

Transients at All Branch Terminals.

In Fig. 5, all of the voltage transients correspond to branch terminals (X = L), and
the comparison is between the input branch terminal (BI), its sister branch terminal
(BS), the first and second cousin branch terminals (BC-I) and (BC-2) of the same
dendritic tree (see diagram of neuron model), as well as all terminals of the other
dendritic trees (OT). It can be seen that the sister transients (BI and BS) become
effectively identical from T = 0.25 onward; also this joint transient later becomes
effectively identical with the transient (BC-I) from T = 0.75 onwards. These effects
can be intuitively understood as due to rapid equalizing electrotonic spread between
neighboring branches.

Also, it can be seen in Figs. 4 and 5, and verified in Table I, that both the peak time
and the attenuation factor of the sister terminal (BS) exceed the values for the parent
node (P), as should be expected from the intuitive consideration that the spread of
charge must reach the parent node before it can spread into the sister branch. It is

,02

Q4

0 0.25 0.5 0.75 I0 .25 '.5
T

FIGURE 5 Semi-log plots of voltage versus T at all of the branch terminals in the neuron model
for transient current injected into the terminal of one branch. Refer to Fig. 3 for model parameters
and input current parameters. BI and BS designate the input branch terminal and the sister
branch terminal. BC-I and BC-2 designate the terminals of the two first cousin and the four sec-
ond cousin branches in the input tree, while OT designates the branch terminals of the other five
trees. The transients are computed and scaled as indicated in Fig. 4.
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noteworthy that in both the transient and in the steady state, the attenuation from Bi
to P is much greater than that from P back out to BS. In the steady-state results
(RR-I, Fig. 4) this is an obvious result of the fact that the zero slope boundary condi-
tion at the sister terminal (BS) tends to minimize attenuation, while the relatively large
current flows at the parent node (P) permit steep gradients and large attenuation.
Similar statements can be made about the first cousin terminals (BC-i) following the
grandparent node (GP), and about (BC-2) following (GGP), and (OT) following soma.

Transient Peak Depolarization Not Proportional to Input Resistance

This section is concerned with current injection only; additional complications associ-
ated with synaptic membrane conductance are treated in a separate section. We will
compare the case of membrane depolarization at a dendritic branch terminal when cur-
rent is injected only there, with the reference case of membrane depolarization at the
soma when the same current is injected only at the soma. For steady current, it fol-
lows from the definition of input resistance, that the ratio of the steady depolarizations
obtained in these two cases must equal the ratio, RBL /RN, of the input resistances
at these two sites. However, for brief transient input current, it is not the two input
resistances but the response functions at the two input sites that must be considered;
this has been noted earlier in RR-I and Redman (1973). It is the convolution of ¡(T)
with the response function K(L, T; L) for the case of branch terminai input, which is
to be compared with the reference case provided by convolution of the same ¡(T) with
the response function K(O, T; O) at the soma for input at the soma.

Such a comparison is illustrated by the solid curves of Fig. 6, which were computed
for the same neuron model parameters and the same brief current transient as before
(see figure legend for specifics). Here, the ratio of the peak depolarizations, peak
l"L;L/Peak V0;0, is equal to 46.3; this is nearly three times the ratio of the input resis-
tances, RBL/RN = 15.5, that was calculated for the same model parameters (RR-I,
p. 667). It should also be emphasized that VL.L(T) and J'0(T) have no overall con-
stant of proportionality because of their difference in time course; this is seen by means
of the dashed curves in Fig. 6, which rescale the amplitude of J'0(T) by the factor,
15.5 for the lower dashed curve, and by the factor, 48, for the upper dashed curve. It
can be seen that the half-width of this soma response time course is more than 3/2 that
of VL;L(T). The more rapid response at a branch terminal can be understood in
terms of the rapid equalization between neighboring branches.

To understand why the peak depolarizations at the two input sites scale as they do,
we consider the asymptotic behavior (as T' O) of the corresponding response func-
tions. The small time expression for the response function at a terminal input location
K(L, T; L) is given by Eq. 28 and its asymptotic form (as T -' O) is expressed by
Eq. 29. For the soma, the small time expression for K(O, T; O) is given by Eq. (54) in the
Appendix, and its asymptotic form can be expressed

K(O,T;O) e_T as TO.
N(irT)"2
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(37)

0., 0.2 0.3 0.4

T

FIGURE 6 Voltage transients (shown solid) versus T at two different sites of current injection.
The upper solid curve lLL(T) is the voltage transient at X = L for current injection to that
branch terminal: it is obtained as the convolution of 1(T) with K(L, T; L), given by Eqs. 28 and
30. The lower solid curve V0;0(T) is the response at the soma when the same current is applied
there;itisobtainedasthe convolution ofl(T) withK(0, T;0),given by Eqs. 53, 54, and 21. The
model neuron parameters and current time course agree with those used in Fig. 3. The ordinate
values represent dimensionless values of V/(!e Rr). The lower dashed curve is 0(T) times
15.5 which is the ratio, RBL IRN of the input resistance at the branch terminal to that at the soma.
The upper dashed curve is V00(T) times 48 which is equal to N2M for N = 6, M = 3.

Because 29 and 36 have the same time dependence, we can express the limiting ratio
of these response functions simply as

limit T; L)1 N2M.
K(O, T: O) J

This ratio equals 48 for our example (N = 6 with M = 3). It follows from Eq. 37 that
for very small values of T, L(T)/o(T) - N2M, for the case of a branch termi-
nal input site compared with a soma input site. When ¡(T) is very brief, this makes
the peak values of VL.L(T) and V(T) occur early, and it follows that the ratio,
peak VL.L /peak k will also be close to N2M. This explains the peak ratio of 46.3 in
Fig. 6 being close to the limiting value of 48. For slower ¡(T), the peak values of
VL.L(T) and P(T) occur later, Eq. 37 does not apply, and the peak ratio is ex-
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pected to be smaller; for very slow 1(T), the ratio, VL;L/ V00, approaches the steady-
state ratio, RBL/RN, of 15.5 for this case. The physical intuitive explanation of
Eq. 37 is that at very early times, both input locations respond like the origin of a
semi-infinite cylinder, and it may be noted that the response function of a semi-
infinite cylinder scales as d-3!2. The branch terminal d3/2 value is 2M times that of
a trunk of this model, while at the soma, the N trunks provide a combined d3/2
value which is N times that of a single trunk; this implies a d3/2 ratio of N2M which
agrees with the limiting response function ratio of Eq. 37.

Before leaving this subject, we note that here we have compared different input
sites which have response functions of quite different time course. If, instead, we
compare input sites at the somas of two neurons or neuron models of different size
but having equal L (and equal p if the lumped soma is considered), then the two re-
sponse functions have the same time course and their relative magnitudes correspond
to their input resistance ratio. Similarly, input sites on two different cylinders of
infinite length (± oc) would also have response functions whose relative magnitudes
correspond to their input resistance ratio; cf., Katz and Thesleff (1957); also, Katz
and Miledi (1963). But for the general case of different input sites having different
response functions (of different time course), it is clear that the early portions of the
responses to brief input will not exhibit the input resistance ratio.

Comment Contrasting This Ratio with Attenuation Factor

In the preceding section, we considered the voltage peak ratio, peak L/peak V.0
which had a value of 46.3 in the example illustrated in Fig. 6. This peak ratio should
be distinguished from the transient attenuation factor (from branch terminai to soma),
the ratio, peak VL.L/peak VOL, and which has a value of 235 in Figs. 3 and 4, and
Table I. It should be noted that for a given 1(T), the numerator, peak VLL, is the
same in both ratios, but the denominators are different: peak Vo.L is the delayed
and attenuated peak at the soma for input at the dendritic terminal, while peak V0.0
is the early peak at the soma for a separate input at the soma.

Ratios of Time Integrals of Voltage Transients

It is weil known that when the applied current, 1(T), is prolonged and approaches
a steady current, then the relative voltage amplitudes at different locations approach
their relative steady-state voltage values. It is less well known, but it has been noted
both by Redman (1973) and by Barrett and Crill (1974) that these steady-state rela-
tive values also hold for the time integrals of brief voltage transients, provided that
these are produced by the same transient 1(T). To be completely explicit, this
means for the present study, that

VL.L(T)dT
R

fo
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and that

fVL:L(T)dT

fVO;L(T)dT
RN

o RßLcoshL

o

(39)

The last ratio represents the steady-state attenuation factor (from branch terminal to
soma) of our previous paper (RR-I, Eqs. 24-26).

The easiest way to justify these assertions about the ratios of time integrals of
voltage for transient 1(T) will also serve to prepare the way for the next section
which deals with the distribution and dissipation of membrane charge over the neuron
model.

We define the time integral of V(X, T) as

W(X) = T f V(X,T)dT. (40)

If 1(T) has a finite duration, such that V(X, T) = Oat T O and at T = , it follows
that integration of 3 V/3 T from T = O to T = must equal zero because V = O at
both limits of integration. This means that integration of each term in the partial
differential equation (Eq. 1) from T = O to T = yields the ordinary differential
equation

d2W/dX2 - W = O. (41)

This means that W(X) satisfies the corresponding steady-state problem in all branches
of the neuron model, and it follows that Eqs. 38 and 39 above must hold. The bound-
ary condition at the input terminal can then be expressed

dW/dX = 2MRrQ1,, at X = L, (42)

where

= T f I(T)dT (43)

is the total input charge delivered by the transient input current.

Distribution of Charge Dissipation in the Dendritic Model

The total input charge is dissipated by leakage across the passive membrane resistance
of the entire neuron model, because portions of this charge spread from the terminal
along the dendrites to the soma and into the other dendritic trees of the model during
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the time that charge dissipation takes place. Questions about how this charge dissipa-
tion is distributed over dendrites and soma have been posed and discussed by Redman
(1973), lansek and Redman (1973), and by Barrett and Crill (1974). Here we present
the results obtained for our particular neuron model.

At any location in the model, charge is dissipated by the leakage current

j1 = V/r,,, amperes per centimeter,

which represents a current density per unit length of the cylinder in question. For a
location in a kth order branch of the model, the charge dissipation current per X
length, can be expressed

Ai, = AV/r,,, = V/(2"RT) amperes per A, (44)

where (2"RT. )_I = X/rm is the membrane conductance per X length in a kth order
branch.

The time integral of this current providesq.(X), the total charge dissipation per A
length, at the location X; using Eqs. 40 and 44, this can be expressed

(X) = r Ai,dT
W(X)

Jo 2"RT.
coulombs per A. (45)

It may be noted that.(X) can also be expressed

(X) = ACm f V(X,T)dT (46)

where ACm represents the membrane capacity per X length of the cylinder in question;
because A d112 and ç, d, it follows that ACm d312, and for symmetric branching
with the equivalent cylinder constraint d12 2-", implying that ACm 2 in Eq.
46, in agreement with Eq. 45.

Because the scaling factor in Eq. 45 depends on position X in the neuron model,
we see that the dependence ofç(X) upon X is different from that of W(X) and, hence,
different from that of a steady-state potential distribution. To be completely explicit,
this means, for brief 1(T) injected at a dendritic terminal, the ratio of q.(L) at the
terminal to (0) at the soma (per A length of one dendritic tree trunk) can be expressed

= (RBLcoshL)/(2MRN). (47)

For our specific example (N = 6, M = 3, L = 1, ¿XX = 0.25), this means that the steady-
state attenuation factor (Eq. 39) of 23.9, is divided by 8 to obtain a value slightly less
than 3 for the charge dissipation ratio of Eq. 47. The physical intuitive reason why
the charge dissipation ratio (Eq. 47) is smaller than the voltage ratio (Eq. 39) is that
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351 Transient Response in a Dendritic Neuron

the terminal branch has a smaller membrane capacity per A length than does the den-
dritic trunk; see Eq. 46 and comments attached to it.

Total Charge Dissipation in Each Branch

The amount of total charge dissipation in a segment of a kth order branch, from X0 to
Xb, can be expressed,

rXb

Q(XO,Xb) = I q(X)dX
Jxa

f'Xb
= (2kR.) I

a

= (2kRr,)_
t dX
\ X,

W(X)dX (48)

dW
dX

where use has been made of Eq. 45 and the integration makes use of Eq. 41. The last
expression represents exactly the difference between the total charge which has flowed
into the cylinder at X0 and out of the cylinder at Xb, i.e., the difference of the core
currents integrated over time. As a consequence of Eq. 41 we see that Q(Xa, Xb) can
be determined merely by evaluating derivatives of W. It is important to realize that
(X), and hence any integral ofç(X), is independent of the time course of the transient

input current. Moreover, the fraction of total input charge dissipated in the segment
X0 to Xb is given by the ratio, Q(X0, Xb)/Q10. This fraction exhibits no dependence
upon input time course, provided that V(X, 0) = O = V(X, ); in other words, it de-
pends only upon geometric and electrotonic parameters. Also, at the soma and in the
dendritic trunks,(X) is independent of the way in which 1(T) might be distributed
among one or more sites at the same electrotonic distance from the soma in that tree.
Redman (1973) and lansek and Redman (1973) have made a similar observation re-
garding the amount of charge which reaches the soma in their theoretical model.

For illustrative purposes, we have computed the fraction of total input charge dis-
sipated in various portions of our neuron model when input is restricted to a single
branch terminal. The results of our calculations are displayed in Fig. 7 as percentages.
We find that the portion of charge dissipated along the mainline from the input site
to the origin is 7.6 + 6.6 + 5.7 + 5.3, or about 25%. The portion dissipated in the side
branches off the mainline is 4.5 + 7.4 + 9.1, or about 21%. Thus, combining the main-
line with the side branches, the entire input tree dissipates about 46% of the total input
charge. The portion dissipated in the other trees (5 x 10.8) equals 54% of the total.
These figures account for 100% of the charge dissipation; however, if we designate a
finite soma surface area composed of six initial length increments, tX = 0.1, one from
each dendritic trunk, it follows that this soma surface dissipates about 8.5% of the
total input charge.

At first, it may seem surprising that half of the total input charge spreads from the
input tree through the soma into the other trees, to be dissipated there. This may seem
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FIGURE 7 Diagrams illustrating percentages of total input charge Qe,, dissipated in different
branches of the neuron model for transient current injection at a single branch terminal. The
model neuron parameters agree with those of Fig. 3. The upper diagram indicates the distinct
percentages dissipated in various branches of the input tree. For those branches which dissipate
equal percentages of Qe,,, that percentage is indicated only once, e.g., each second cousin
branch claims 0.7°/, of Qe,,. The lower diagram shows the percentage of Q, dissipated in
the various side paths which leave the mainline from the input site to the origin. Also indicated
is the percentage 8.5% of Q.5 dissipated in a soma which corresponds to the segment of X = O
toX = 0.1 of each trunk. The percentages are calculated using Eq. 48 and (RR-1, Eq. 20 where
Vand lare replaced by Wand Q.5, respectively).

to conflict with the large transient peak attenuation factors; 235 from input terminal
to soma, and 479 from input terminal to other trees (see Fig. 4 and Table I). One must
remember, however, that charge dissipation at different locations is quite different
from the transient voltage peaks for two reasons: (I) it is not the voltage peak but the
time integral of voltage that is important here, and these W(X) values relate to steady-
state voltage attenuation (see Eqs. 40 and 41); (2) the relative values of membrane
capacity per X length further reduce the steady-state voltage ratios to give total charge
dissipation ratios. It may be noted that the ratio of capacity per X length of (N - 1)
other trees to that of the terminal branch equals (N 1)2M, or 40 in our example of
N = 6, M = 3, (see Eqs. 45-47).

Which is most important, the low charge dissipation ratio, the moderate steady-state
voltage attenuation factor, or the larger transient voltage peak attenuation factor? It
depends upon the situation and the focus of concern. When one is concerned about
the nonlinear effects of combining several synaptic inputs treated as synaptic conduc-
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353 Transient Response in a Dendritic Neuron

tance changes the voltage at the input sites is very important; attempts to estimate this
from observations at the soma involve estimation of the transient voltage peak at-
tenuation factor. On the other hand, when such nonlinear effects are shown or as-
sumed to be unimportant, and one wishes to compare contributions of synapses at
different locations, it can be useful to do this in the context of several input charges,
and total charge dissipation. However, one must add the caution that such considera-
tions of total charge dissipation completely disregard temporal considerations such
as input time course and relative timing of several inputs; see (RaIl, 1964, Fig. 7) for
an illustration.

Synaptic Membrane Conductance Change as Input

In our previous paper (RR-I), we pointed out that synaptic depolarization at the input
site should not be expected, in general, to be proportional to the input resistance at
the synaptic site, and a steady-state illustration was provided. Here we will give the
promised illustration and discussion for transients. There are two important factors.

One factor is often referred to as synaptic nonlinearity; when there is significant
synaptic depolarization of different amounts at two synaptic sites, equal conductance
transients do not produce equal synaptic current; this is explained and illustrated be-
low. The other factor is the difference between the response functions at different
input sites; this has been discussed above with Eq. 37 and Fig. 6.

For a transient excitatory membrane conductance, g,(T), the synaptic current
I,(T) is given by

I,(T) = g,(T)[V, - V,,(T)1, (49)

where V, is the synaptic equilibrium potential, assumed constant, and Vm(T) is the
transient depolarization at the input site X0,. Explanation and discussion of how this
equation relates to the membrane equivalent circuit can be found in earlier papers
(RaIl, 1962, 1964); there G, was used to represent g, per unit area. The important
point to notice is that membrane depolarization (increase of V,,, from its zero resting
value) reduces the effective synaptic driving potential, V, - V,,, during the temporal
variation of g,; consequently, less synaptic current flows than would have flo.wed if
V,,, did not change in Eq. 49.

The solution in all parts of the neuron model can be expressed in terms of the re-
sponse function K(X, T; Xv,) for current input at X1,. In particular, the solution at
X,,, satisfies

rT
Vm(T) = J I,(s)K(X,,, T - s; X1,,)th.

o

The convolution on the right defines V,,, explicitly only when I, does not depend upon
V,,; however, substitution of Eq. 49 yields
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rr
V,,,(T) = J g,(s)[V, - V,,,(s)IK(X1,,, T - s;X,)ds. (50)

o

This is a linear Volterra integral equation for V,(T). The equivalent steady-state
equation is the linear algebraic equation appearing immediately before Eq. 32 in RR-I.

Solutions of Eq. 50 for particular transient g,(T) at particular locations must be
obtained numerically. Barrett and Crill(1974) have computed such solutions. Equiva-
lent computations for a compartmental model have been illustrated (RaIl, 1967, Fig.
4). Here we summarize results obtained by numerical solution of Eq. 50 for the two
cases of soma synaptic input location and dendritic terminal synaptic input location
in our neuron model.

Our computations used the same neuron parameters as in the calculations for Figs.
3-7; here, we set RN = 1 MQ. The synaptic conductance time course was of the form
given by Eq. 35 with a = 50 and I,, replaced by iO mho; hence the maximum con-
ductance, attained at T = 0.02, was equal to iO mho. When this g,(T) was ap-
plied to the soma, it resulted in a peak depolarization, peak Vm 0.0 138 V, at the
soma. Note that for V, = 70 mV, this peak Vi,, 1 mV, which lies near the upper end
of the experimental size range for a unitary (single terminal) somatic EPSP of cat spinal
motoneurons (lansek and Redman, 1973; see also Burke, 1967, and Kuno 1971). The
fact that this peak Vm/ V, is much smaller than unity implies that the synaptic driving
potential remains also constant. Thus, the peak value of I,(T) was found to be 99%
of the reference value obtained when Vm is replaced by zero in Eq. 49. Similarly, for
this case, peak V,,, was 99% of the reference value obtained when Vi,, is replaced by
zero on the right in Eq. 50.

Greater effects were found when the same g,(T) was applied to a branch terminal.
There, peak Vm = 0.411 V,, which implies a very significant reduction of the synap-
tic driving potential, varying with time. The resulting synaptic current had its peak
value reduced to 68.2% of its reference value; however, its time integral (the total input
charge) was reduced to 67.2% of its reference value obtained when IÇ = O in Eq. 49.
The difference between the 68.2 and the 67.2% figures results from a slight distortion
of the current time course; this is indicated also by a synaptic current peak time, T =
0.0 14, compared with a reference value of 0.02 for the input transient with a = 50. It
may be noted that with larger membrane depolarization at the input site, larger dis-
tortions of synaptic current should be expected to produce large discrepancies between
the reduction in the current peak and the reduction in the total input charge.

The resulting EPSP at the soma for the above synaptic current at a dendritic terminal
was computed by means of the response function at the soma for current injection at a
branch terminal (Eqs. 33 and 34). This EPSP had a peak value of 0.00184 V1 which
was 67.2% of its reference value, in agreement with the reduction of total input charge.'
When this EPSP peak at the soma is compared with the peak V1,, = 0.411 V, at the

'lt is useful to know that the EPSP peak at the soma remains proportional to the total input charge at the
branch terminal, even for slight changes in brief input time course.

-

Copyrighted Material



355 Transient Response in a Dendritic Neuron

branch terminal synaptic site, one obtains a peak voltage attenuation factor of 224 for
this case. For those quantitatively inclined, one asks why this attenuation factor is 5%
less than the factor of 235 found for the reference case of current injection. The answer
is to be found in the fact that peak J'Ç, (of 0.411 ') at the branch terminal was
only 63.9% of its reference value, even though the time integral of Vrn(T) was 67.2%
of its reference value. The difference between these 63.9 and 67.2% values results from
a distortion of voltage time course that is revealed also by a voltage peak time, T =
0.036, at the branch terminal, compared with T = 0.04 for the reference case. When
the input charge and the soma peak were both reduced to 67.2%, while the input peak
was reduced to 63.9%, the attenuation factor becomes reduced from 235 to (63.9/67.2)
(235) = 224.

It is instructive to briefly recapitulate this example of the several factors that effect
the EPSP at the soma when a brief synaptic conductance transient is shifted from the
soma to a branch terminal. Although the input resistance ratio, RBL/RN, is 15.5, the
ratio of the voltage peaks at these two synaptic sites would be 46.3 (Fig. 6) if the input
were current injection; however, because of synaptic conductance, this ratio of voltage
peaks is reduced to about 30. Then the transient attenuation factor of 224 from the
branch terminal to the soma results in an EPSP at the soma whose peak is less than
one-seventh of that obtained with the same synaptic input at the soma.

Next, if we compare the charge delivered to and dissipated by the soma membrane
in these two cases, the difference appears smaller. We have already noted that the
synaptic conductance transient at the branch terminal delivered only 67.2% of the
reference input charge. From Fig. 7, we are reminded that 8.5% of the actual input
charge will be dissipated at the soma designated there; the result is (8.5) (0.672) =
5.7% of the reference input charge. For synaptic input at the soma, 99% of the refer-
ence input charge was delivered, and of this, l2.7% can be shown to be the portion dis-
sipated at the same designated soma; this is about l2.6% of the reference input charge.
Therefore, the ratio, 5.7/12.7 0.45 tells us that the amount of charge dissipated at
the soma for the synaptic input at the branch terminal is almost half that dissipated at
the soma for the synaptic input at the soma. This is in general agreement with esti-
mates that Barrett and Crill(1974) obtained for their example. There is no contradic-
tion between the charge dissipation ratios and the voltage peak ratios; the difference
results from the fact that the EPSP for somatic input has an earlier and larger voltage
peak, while that for distal dendritic input is slower with a later, more flattened and
lower voltage peak (cf. illustrations in RaIl 1962, 1964, 1967).

We conclude with a simple example illustrating nonlinear summation of transient
EPSPs. This phenomenon results from the reduction in driving potential caused by
the proximity in time and/or spatial location of multiple synaptic events. The con-
sequence for simultaneous dendritic conductance inputs is that the EPSP seen at the
soma does indeed depend on how the synaptic conductance transient is distributed be-
tween the branches. This is not the case for current inputs. Consider the above ex-
ample. If the synaptic conductance g, is shared equally by the eight branch terminals
of one tree, the peak g, is 1.25 X 10_8 mho for each terminal and very little reduction
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in synaptic driving potential is found. The peak value of!, is 94% of its reference value.
The resulting EPSP at the soma is also reduced to 94/ of the reference value.' This
contrasts with the previous example of EPSP reduction to 67% when the synaptic input
(conductance transient) was all placed on a single branch. This provides one more
specific illustration of this transient phenomenon which has been previously discussed
and illustrated (Rail, 1964, 1967, 1970). Nonlinear summation of synaptic input occurs
when the individual synapses cause significant membrane depolarization (reduction
of synaptic driving potential) at the time and place of the other synaptic inputs. Ques-
tions related to this phenomenon have also been addressed by lansek and Redman
(1973).

SUMMARY

(a) Analytic expressions are obtained for the response function corresponding to an
instantaneous pulse of current injected to a single dendritic branch in a branched den-
dritic neuron model. In the main text these results are derived under strict assumptions
of symmetry; more general results are provided in the Appendix. The dendritic mem-
brane is assumed passive and the branching satisfies the 3/2-power law. The response
function is obtained by a superposition technique using component response functions.
This technique was described for the corresponding steady state problem in (Rail and
Rinzel, 1973). Each component response function has two different series representa-
tions: one converges better as T ; the other as T - 0. These alternate representa-
tions are used to analyze the small time and large time behavior of the response
function.

The voltage transients at various points in the dendritic tree for a brief current
injection at a terminal branch were computed using the response function in a con-
volution formula (Eq. 5); these transients are illustrated in Figs. 4 and 5. The attenua-
tion and delay characteristics of the depolarization peak as it spreads throughout the
neuron model are summarized in Table 1.

Because the system is linear, the transient depolarization seen at the soma is in-
dependent of the way in which a given current input might be shared among several
branches provided the input locations are (electrotonically) equidistant from the soma.

In general, the peak depolarization for a given current injection is not propor-
tional to the input resistance at the injection site. An example, which compares a
branch terminal site with a soma site, is presented to illustrate this point. For this case,
the ratio of depolarization peaks, for a brief current input, very nearly equals N2M,

the ratio of the input resistance of the input branch extended as a semi-infinite cylin-
der to the input resistance of the parallel combination of all the dendritic trunks ex-
tended as semi-infinite cylinders.

While there is severe attenuation of voltage transients from branch input sites
to the soma, the fraction of total input charge actually delivered to the soma and other
trees is about one-half. This fraction is independent of the input time course. The
calculation of the fraction of charge dissipated in various portions of the dendritic
tree is outlined and an example is illustrated by Fig. 7.
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(f) When synaptic input is represented as a conductance change, it is important to
consider the reduction in the effective synaptic driving potential caused by membrane
depolarization at the input site. This is taken rigorously into account by Eqs. 49 and
50. For any given input site and given synaptic conductance time course, one can
compute both a reference voltage transient (assuming V = O in Eq. 50, right-hand
side), and the actual reduced voltage transient defined by Eq. 50. An illustrative ex-
ample showed the peak synaptic current at the branch terminal reduced to 68% of the
reference value, the total input charge reduced to 67°/ of reference, the local voltage
peak reduced to fi40/ of reference, and the EPSP peak at the soma reduced to 67% of
reference. In contrast, the same synaptic conductance input at the soma resulted in
99 of reference synaptic current and 99 of reference EPSP.

APPENDIX

Generalizations

In the Appendix of RR-I we provided the steady-state solutions to a variety of problems with
relaxed assumptions of symmetry and input location. Here we consider some analogous tran-
sient problems. In each case we give the Laplace transformed response functions. For Eqs.
5 1-53, 55, and 56, the appropriate time domain expressions can be found by using the addition
formulas for the hyperbolic functions along with the component response function inversions
(Eqs. 21, 22, 24 and 25). We do not present derivations of the solutions to the problems con-
sidered below. Rather, we obtain the Laplace transformed response functions for a given prob-
lem from the corresponding steady-state solution for maintained unit current injection. i = I,
as follows. We replace the argument Z of any hyperbolic function by qZ and then multiply the
entire steady-state solution by q'. This formal procedure is based on the observation that
under the change of variable Y = qX, the transformed transient problem for the response func-
tion becomes a steady-state problem with steady current source q'. If one prefers to de-
rive these results, the discussion which accompanies the solution of the steady-state problems
in RR-I is applicable here also.

Effect of Input Site Noi Restricted to X = L

Suppose the site of current injection is located at a distance X,, from the origin on a branch
of order k. so that Xk. X,, Xk. . Then the response function K(X, T; X,,,) is obtained
from RR-I, Eq. A 7, by following the above recipe. If we use the component response functions
17 and 18, we can express the solution in the input branch, for Xk. X X, as

k(X,p;X,,) = cosh[q(L -

+ (N - l)Nk1(X,L,p) + 2R,,,(X - Xk,L - XkP)] (51)

The response function, evaluated at X = 0, takes the reduced form

k(0,p; X.,,) = N cosh[q(L - X)]k,,(0, L,p). (52)

In the special case when X1,, = 0, this can be written (using Eq. 17)
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k(O, p; O) = N kflS(L, L, p). (53)

Thus, for example, the small T representation follows from Eq. 24 as

RTeT
exp[(2nL)2/4T}. (54)K(O, T; O) =

N(irT)'12

Effects of Unequal Trunks and Branches

To treat the case in which the trunks and branches of the trees are not equal in diameter we
refer to notation introduced in RR-I. The ratio of the summed d312 value (for all trunks)
to the d312 value of the trunk of the input tree is denoted by -y. For a kth order branch point,
'(k is the ratio of the parent d312 value to the d312 value of the input carrying daughter branch.
Now suppose all the trees have the same electrotonic length L. Then, in analogy with RR-I,
Eq. A 9, the transformed response function for Xk, X < X,, is

(X,p;X1,,) = cosh[q(L - 'k,,,(X, L,p)
k

+ (I - y)R1(X, L,p) + PkIÇIP(X - X,,, L - X,,,p)], (55)
k-1

wherep1 = - l,p = - 1).....Pk = . . . (y,, - I). At the origin we have

k(O,p;X,,) = ycosh[q(L - X1,,)]R,(O,L,p). (56)

In the case where the trees are not restricted to have the same length, the expressions 55 and
56 apply provided we replace y by

y
= [

d)/2tanh(qLj)J/[d?I2tanh(qL,)]. (57)

where the subscript "in" refers to the input tree. Implicit in the component response functions
is a value for R which should be taken equal to the R, value for the input tree.

The authors wish to thank Steven Goldstein, Maurice Klee, and Stephen Redman for helpful çomments on
the manuscript.

Receivedfor publication 7 May /974 and in re vised form 23 July1974.

REFERENCES

BARN WELL, G. M., and B. J. CERIMELE. 1972. Kybernetik. 10:144.
BARRETT, J. N., and W. E. CRILL. 1974. J. Physiol. (Lond.). 239:301, 325.
BURKE, R. E. 1967. J. Neurophysiol. 30:1114.
CARSLAW, H. S., and J. C. JAEGER. 1959. Conduction of Heat in Solids. Oxford Press, London. 510.
FAn, P., and B. KATZ. 1951.J. Physiol. (Lond.). 115:320.
IANSEK, R., and S. J. REDMAN. 1973. J. Physiol. (Lond.). 234:665.
JACK, J. J. B., and S.J. REDMAN. 1971 a. J. Physiol. (Lond.). 215:283.
JACK, J. J. B., and S.J. REDMAN. 1971 b. J. Physiol. (Lond.). 215:321.
KATZ, B., and R. MILEDI. 1963. J. Physiol. (Lond.). 168:389.
KATZ, B., and S. TUESLEFF. 1957. J. Physiol. (Lond.). 137:267.

Copyrighted Material



359 Transient Response ïn a Dendritic Neuron

KUNO, M. 1971. Phvsiol. Rev. 51:657.
Lux, H. D. 1967. PflügersArch. 297:238.
MACGREGOR, R. J. 1968. Biophys. J. 8:305.
NORMAN, R. S. 1972. Biophrs. J. 12:25.
RALL, W. 1960. Exp. Neurol, 2:503.
RALL, W. 1962. Ann. N. Y. Acad. Sci. 96:1071.
RALL, W. 1964. In Neural Theory and Modeling. R. F. Reiss, editor. Stanford University Press, Stanford,

Calif. 73.
RALL, W. 1967. J. Neurophysiol. 30:1138.
RALL, W. 1969. Biophys. J. 9:1483.
RALL, W. 1970. In Excitatory Synaptic Mechanisms. P. Anderson and J. K. S. Jansen, editors. Universitets

Forlaget, Oslo. 175.
RALL, W., and J. RINZEL. 1973. Biophys. J. 13:648.
REDMAN, S. J. 1973. J. Physiol. (Lond.). 234:637.
ROBERTS, G. E., and H. KAUFMAN. 1966. Table of Laplace Transforms. Saunders, Philadelphia. 367.

Copyrighted Material



Copyrighted Material



9 EFFECTS OF CHANGING DIAMETER ON IMPULSE
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9.1 Introduction by John Rinzel and ¡dan Segev

Goldstein. S., and Rail, W. (1974). Change of action potential shape and velocity
for changing core conductor geometry. Biophys. J. 14:731-757.

Nearly all neuroscientists are aware that Wi! Rail's theorizing was funda-
mental to our current understanding of the functional significance of den-
dritic trees. Most of his work exploited the simplifying assumption that
membrane potential remained below threshold level for activating volt-
age-dependent currents, that is, that the membrane was passive. Few
may be aware that Wil had also studied action-potential propagation in
branching geometries for active membrane cables, one of the subject areas
of Goldstein and Rail 1974. More broadly, this work considers active
propagation in regions of changing diameter and propagation toward
cable (axon) termination.

As is typical of Wil's work, the problems are cast in a general frame-
work. The model is formulated in an idealized way, retaining the barest
essentials, thereby enabling conclusions with wide application. Both the
active membrane model and the core conductor geometry are formulated
with minimal detail.

The model of membrane excitability is qualitative, rather than quantita-
tive; it originated with the Rail and Shepherd 1968 work (see that paper
and Shepherd's commentary in section 5.1). It served adequately for the
questions being addressed by Goldstein and Rall, for which particular
gating properties of the conductance variables were thought unimportant.
Additional motivation for this model included computational efficiency.
Its nonlinearities are polynomial, rather than exponential, and so it can be
integrated numerically more quickly than the Hodgkin and Huxley (1952)
model. Moreover, the HH model had only been quantitatively determined
for squid axon membrane, so its generality was limited.

Earlier, when Wil was developing a generalized definition of electro-
tonic length, he formulated a general cable equation that allowed for arbi-
trarily changing diameter with distance (Rall l962a). A special case, the
exponential taper, led to a particularly simple, modified cable equation.
The only change was a convective term, K dV/dZ, added to the equation;
here, Z is electrotonic distance, and K, the taper rate. As a consequence
the velocity of a steadily propagating impulse was increased by an amount
K in the direction of outward flare, or decreased by K in the opposite
direction.

For one of us (John Rinzel), the mathematics in Rall's 1962 paper was
magnetic, highly attractive. Here, a physiologist was carrying out mathe-
matics similar to what I was seeing in my early graduate study in applied
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mathematics. ¡ read this paper many times; my copy has numerous mar-
ginal notes and so many underlines that I probably should have under-
lined that which I wanted to skip over rather than read again. The work
showed a unique combination of abstract formulation and mathematical
analytíc skill being brought to bear on identifiable physiology.

The Goldstein-Rall paper also reiterated Wil's general observation of
1962 that, if membrane and cytoplasmic properties are uniform in a
branching tree, the treatment of propagation through branch points with
impedance mismatch is equivalent to allowing a sudden change in diame-
ter in an unbranched cable (assuming that effects of boundary conditions
at terminals, or subsequent branching, could be ignored). As Wil had been
pointing out for some time, impedances are matched if the parent diameter
raised to the 3/2 power equals the summed daughter diameters each raised
to the 3/2 power. A new corollary presented here was that if an action
potential successfully propagated into one daughter branch, then it did so
in every daughter. This meant under the stated assumptions that branch-
ing per se could not mediate selective filtering of action potentials, that is,
routing of some impulses to, say, smaller or larger branches and not to
others. Goldstein and Rail argued that branch points (and step change in
axon diameter) can filter repetitive spikes but that this filtering would be
the same for all postchange branches.

Experimentally it was, however, shown that differential filtering effects
do occur at some branching axons (Grossman et al. 1979). The theoretical
result of Goldstein and Rail thus forced many researchers to seek alterna-
tive explanations for this experimental observation. For example, differen-
tial channeling of action potentials into branches of the same axon could
be explained when differences in membrane excitability or in the extra-
cellular space (Parnas and Segev 1979) or in the axial resistivity of
the daughter branches (Stockbridge 1989) were assumed (see reviews by
Khodorov and Timm [1975]; Parnas [1979]; Swadlow et al. [1980]; and
Waxman [1985]). A recent computational study (Manor et al. 1991a,b) on
active propagation in axonal trees contains many references to related
theoretical work on information channeling in geometrically nonuniform
axons.

The equivalence of these two cases, the branching and the step change
in diameter, meant that it was sufficient to study propagation in an un-
branched cable in which the diameter jumped from one value to another
at a location Z'. The quantity GR (geometrical ratio) was introduced to
quantify the different cases of interest. GR equals the ratio of the two
diameters raised to the 3/2 power (for a given direction of propagation,
the diameter beyond the branch point appears in the numerator or, for
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branching, the sum of the daughter diameters each raised to the 3/2 power
forms the numerator). Numerical solutions of the cable equations showed
here that propagation fails if GR is much greater than one and succeeds
when GR is less than a critical value, which exceeds one. (The case of
failure was characterized analytically for an idealized problem by Pauwe-
lussen [1982]). The reciprocal of GR (relative to its critical value) can be
thought of as the physiologist's safety factor for this problem. From di-
mensional analysis, the asymptotic speed beyond the branch point must
be either less or greater than the approach speed depending on whether
GR < 1 or GR > 1, respectively. Goldstein and Rail showed, however,
that impulse speed changed transiently near Z'; say for GR > 1, deceler-
ating before and accelerating after encountering Z'. Overall, the action
potential is delayed in this case as compared to the case with GR = 1.

The deceleration on approach to Z' for GR> i leads to an intermediate
case for GR just less than the critical value. This paper showed that if the
delay associated with this deceleration was substantial enough, the mem-
brane behind Z' would recover from refractoriness. Then it could become
reexcited by current spreading from the depolarization associated with the
(delayed) impulse traveling successfully away from Z' in the forward direc-
tion. As a consequence, a second impulse was initiated that traveled in the
backward direction, an echo or reflected wave. This phenomenon has been
seen in some other models, although not very robustly for the HH model
(Ramon et al. 1975). Some progress is being made to reveal for models
such as Wil's the mathematical structure that underlies reflection (Rinzel
1990). Experimentally, the delay at axonal sites with low safety factor for
propagation is reflected by a depolarizing hump on the falling phase of the
action potential just before these sites. Typically this hump attenuates in
the backward direction and does not succeed to elicit a second, full-blown,
action potential (e.g., Khodorov and Timm 1975; Parnas and Segev 1979).

Goldstein and Rall also explored the case of an action potential travel-
ing toward an axon termination where the sealed-end boundary condition
was assumed. An interesting insight gained from this work is that this
boundary condition is also satisfied, by even symmetry, at the point where
two action potentials traveling towards each other along a uniform axon
collide. As in the case of other nonuniformities, the action potential's ve-
locity and shape are expected to change near the region of nonuniform
properties. In the case of a sealed-end boundary (which is the limiting case
for a sudden narrowing of the axon) the velocity and amplitude of the
action potential increase.

This work was thought provoking for both experimentalists and theore-
ticians. It touches upon an important controversy (still unsettled) about
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axons. Does the axon function as a faithful transmission line, or should
axons be treated as rather complicated processing devices where, under
some conditions, spikes may differentially travel into one subtree and not
to another? In this context, it has been speculated that branch-point fail-
ure may affect synaptic reliability and probability of release (Henneman et
al. 1984). Goldstein and Rall's study shed some light on these issues and
directed the experimentalists and theoreticians to further explore this top-
ic. Theoretically, this work can also be viewed as part of the attempt,
initiated by R. FitzHugh (1961), to develop reduced models of membrane
excitability that can be explored analytically, using phase-plane tech-
niques. Such reduced models of excitable membrane give important in-
sights into the role of the various neuronal parameters in determining the
repertoire of electrical activity of neurons (see Rinzel and Ermentrout 1989
for a review).
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ABSTRACT The theoretical changes in shape and velocity of an action potential were
computed in regions of changing core conductor geometry. Step decrease and step
increase of diameter, branch points, and gradual taper or flare of diameter were
studied. Results showed increase of both velocity and peak height as the action
potential approaches a point of step decrease. A step increase causes decrease of both
velocity and peak height with approach propagation may either fail, succeed with
brief delay, or, with longer delay, succeed in both forward and reverse directions.
With branching, both the shape and the dimensionless velocity, rO/A, remain un-
changed when the d312 values are matched. Without such matching, the changes of
shape and dimensionless velocity of an action potential correspond to those found for
step decrease or step increase of diameter. For regions of flare or taper, it was found
(for a specific previously defined class) that velocity changed in proportion with the
changing length constant. A simple formula was found to predict how this propor-
tionality constant depends upon the amount of flare or taper.

INTRODUCTION

Theoretical and computational studies of action potentials have usually taken advan-
tage of one or the other of the following simplifying assumptions: either space clamp-
ing conditions are assumed to prevent action potential propagation completely, or
uniform properties and infinite length are assumed to provide propagation at constant
velocity. Both assumptions offer the great computational advantage of permitting the
partial differential equation (cable equation for spatio-temporal spread of membrane
potential disturbances) to be reduced to an ordinary differential equation.

Here, neither simplifying assumption is permissible, because we wish to focus upon
changes in the shape and the velocity of an action potential as it approaches a region
of changing core conductor geometry. The specific kinds of change in geometry con-
sidered are illustrated in Fig. 1; included are sealed termination, step decrease or
increase of diameter, taper or flare of diameter, and branching.

Depending upon the kind and the amount of the geometric change, action potential
propagation can become faster, slower, or remain the same as it approaches the region
of geometric change; also, it can fail to propagate beyond this region, or it can succeed
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with or without delay. Under certain conditions, it can propagate backwards as well
as forwards from this region. Our purpose is to obtain information and gain biophysi-
cal understanding of such changing action potential behavior.

Relation of Shape and Velocity

In order to clarify the relation between action potential shape and velocity, we make
use of Fig. 2. There each shape is shown as a function of distance (x/À), and propaga-
tion is from left to right. The upper two shapes illustrate propagation of a constant
shape at constant velocity; every point, such as A to A' or B to B', travels at the
same velocity. In contrast, the lower two shapes illustrate propagation of a changing
shape; then it can be shown that corresponding points, such as C to C', and D to D',
travel neither at the same velocity nor at a constant velocity. What is more, with
changing shape, even the definition of corresponding points presents a problem. Our
choice has been to treat them as corresponding fractions of the changing peak voltage
of the action potential in the distance domain (where the falling phase must be dis-
tinguished from the rising phase).

For the case of constant shape, there is no difficulty in characterizing the velocity. Given a
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F

di

X0

X0

FIGURE 1

d

G o I 2

XIX
FIGURE 2

FIGURE I Summary of geometric regions considered, shown in longitudinal section.
FIGURE 2 Action potential propagation with constant and changing shape. The letters A. B.
C, D represent points on the action potential at a given time. The corresponding points at a later
timeareA',B', C', D', respectively.
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time increment, dz, every point advances by the same distance, dx, such as A to A', or
B to B'; the propagation velocity, O, is then unambiguously defined as this cix divided by this
dt. Thus

O = (dx)/(dt) mm/ms, (i)

and it can be shown that O is not only the same for all pairs of corresponding points, but O
also remains constant as the action potential propagates to other locations along a uniform
cylinder of infinite length. For such conditions it is well known that

3V/at = - O(ÔV/3x), (2)

where V represents the departure of membrane potential from its resting value. This equation
has several implications: the action potential shape in the time domain is proportional to the
shape in the distance domain, with O as the constant of proportionality; the peak in the time
domain occurs at the same x and t as in the distance domain.

For the case of propagation with changing shape we cannot use Eq. 1 to define a unique
velocity for such an action potential, and Eq. 2 does not apply. in order to be more explicit,
we consider the total differential of V. which is defined as

dV = (3V/3x)dx + (V/at)dt. (3)

For corresponding points, A to A' and B to B', dV 0, and rearrangement of Eq. 3 with sub-
stitution of Eq. I yields Eq. 2. But which changing shape, as for corresponding points C to C'
and D to D', d V 0, and rearrangement of Eq. 3 yields

3 V,/3t = (dV)/(dt) - (3 V/3x)(dx)/(dt). (4)

With dV 0, this equation has implications that contrast with those of Eq. 2: the action poten-
tial shape in the time domain is not proportional to the shape in the distance domain; the peak
in the time domain (i.e., for a given x = x1, the time at which (3 V/(3 z = O can be designated
t = t) does not occur at the same x and z as in the distance domain (i.e., for t = t1, the loca-
tion where a V/ax = O cannot be x = x1); also, corresponding points in the distance domain
do not agree with corresponding points in the time domain.

Because the velocity of such an action potential is not defined, we have chosen to
focus attention upon the changing velocity of the peak in the time domain. This veloc-
ity can be expressed

= hm [zx/t1, (5)

where it is understood that subscript p means that Lx and ¿t are chosen as follows:
3 V/at = Obothatx = x1, t = t1, and at x = x1 + ¿x,t = t + Lt.

In order to explore such velocity and shape changes in regions of changing geometry
(Fig. i) we simulated action potential propagation by means of a mathematical model.
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THEORY AND METHODS

The specific mathematical model used in our computations is shown below as Eqs.
10-12. This model is a particular case of a general class of models defined and dis-
cussed by FitzHugh (1969); see also Evans and Shenk (1970). Because some theoretical
considerations are common to this entire class, we present it first.

General Mathematical Model

This general model consists of the following system of partial differential equations:

(a2 V/aX2) - (V/T) = f(V, W1,... W) (6)

(ôW,/aT) = f(V, W1,... W) for] = (7)

where V represents the departure of the transmembrane potential from its resting
value (millivolts), W1,... W are auxiliary variables defined by Eq. 7, and both X and
Tare dimensionless variables defined as follows: X = x/A, where x is actual distance
(millimeters) and A is the length constant' (millimeters); T = t/r, where t is time (milli-
seconds), and r is the passive membrane time constant' (milliseconds). Such systems
have been shown to simulate propagating action potentials for suitable choice off and
f. The Bonhoeffer-van der Pol model of FitzHugh (1961, 1969) includes only one
auxiliary variable and one f. The model of Hodgkin and Huxley (1952) includes three
auxiliary variables (m, n, and h).

These equations apply to propagation in a uniform cylinder. When core conductor
diameter changes with distance, Eq. 6 must be replaced by a more general expression
(see section on tapering diameter below) in which the definition of X = x/A becomes
generalized (see also RaIl, 1962).

Velocity in Different Domains. Here we restrict consideration to the propaga-
tion of a single action potential in a uniform cylinder of infinite length. As others have
done, we assume for this a constant velocity, O; see Eqs. i and 2 above. It is well
known that O will have different values in different cylinders. Even for identical active
membrane properties (f and f), O will be different for different A and different
r; however, this particular difference disappears in the dimensionless space of X and T,
where Eq. 2 becomes transformed to

V/8T = (rO/A)äV/ÛX. (8)

The dimensionless velocity, rO/A, is the same for all cylinders (regardless of diam-
eter, A or r value) which have the same active membrane properties (f and f).
This assertion follows immediately from the fact that Eqs. 6 and 7 are not dependent

r and X are cable parameters defined in terms of passive cable properties; by definition, they remain un-
affected by the permeability changes associated with active propagation.
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upon the values of A and r: in other words, dimensionless propagation velocity in
X, T space depends only upon fand j; see also Fitzl-Iugh (1973).

Distance Domain. When we compare constant propagation in two cylinders
which differ only in their diameters, we know that both the shape and the velocity of
the action potential are identical with respect to X, but they will be different with re-
spect to x. If the two cylinders have diameters, d1 and d2, with characteristic lengths,
A1 and A2, we know that rO1 /A1 equals r02/A2 and therefore, that

= X/A2 = (d1/d2)"2 (9)

where the last expression represents the well-known dependence of A upon the square
root of diameter. (This implies the usual assumption of extracellular isopotentiality.)

For example, if d1 is 4d2, not only the velocity in the x domain will be twice as
great in cylinder i as in cylinder 2, but also the shape (V as a function of x for any
particular t) is changed correspondingly. This is illustrated in Fig. 5, by comparing the
shape at the far left (corresponding to d1, A1, and 01) with the more contracted
shape at the far right (corresponding to d2, A2, and 02).2 For any given distance (frac-
tion of A1) in the left-hand shape, the corresponding distance (same fraction of A2)
in the right-hand shape is half as great.

Time Domain. For two cylinders which differ only in their diameters, the
action potential in the time domain has a shape (Vas a function of t for any particular
x) that is unchanged, in other words, different values of A do not change the shape in
the time domain. Nevertheless, propagation velocity is still governed by Eq. 9, as long
as r has the same value in both cylinders.

Spec(fic Model

Simulations were performed with the following mathematical model:

(32 V/OX2) - (OV/ÔT) = V - C(1 - V) + i(V+ 0.1), (10)

(ô&/OT) = k1V2 + k2V4 - k3& - k4 ,

(3/OT) = k5+ k6&1 k71J. (12)

This is a particular case of the general model defined in Eqs. 6 and 7. Here n = 2,
W1 = , W2 = J and f,f1, and f2 are the expressions on the right in Eqs. 10-12. Also,
the variable voltage, V, has been replaced by a dimensionless variable, 'U, which has
been normalized to make V range from O to 1 as V ranges from O to the excitatory
equilibrium potential: more detail on this normalization can be found on p. 79 of Rail
(1964).

2 With regard to Fig. 5, it may be noted that while the shapes are distorted near the origin (where the two
cylinders are joined), those farthest from the origin are essentially the same as at greater distances.
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TABLE I

VELOCI [Y OF MODEL ACTIO\ POTENTIALS

Values,FsedoneaperimentalrandÀvaluesfromKatz(1966) X= 5 mm A=2.Smm À=2.Smm
r=0.lms r=2 ms r5 riss

This particular model (Eqs. 10-12) was previously used to generate action potentials
needed in a computational reconstruction of potentials in the olfactory bulb (Rail and
Shepherd, 1968). For several different choices of k. . . . k7, such as those shown in
Table 1, we have obtained well-shaped propagating action potentials which can be re-
garded as mathematically stable (see Evans. 1972). Because the values of k1, . - - k7

remain constant (independent of q.), X, and T), computation with this system is Sig-
nificantly simpler than with that of Hodgkin and Hux1e (1952). In Table I. each set of
k.....k7 is followed by the dimensionless velocity, rO/A, found by numerical
solution for constant propagation in a uniform cylinder of infinite length. To facilitate
comparison with experimental velocities, these rO/A values are reexpressed in Table I
as particular velocities, O. for particular r and X ' alues from the literature (see Katz,
1966).

.Vwnerical Solutions. The set of partial differential equations (PDE) 10-12
was solved simultaneously using standard numerical techniques. The explicit method
of solution was used (see Smith, 1965). The ratio of the time step, i, to the square of
.X was 0.04.

The validity of this solution was tested for the case of constant propagation in the
uniform cylinder. Here, we can make use of Eq. 8 to convert the system of partial
differential equations(10-12) to the following system of ordinary differential equations
(ODE):

(d2V/dX2) + (rO/A)(d'O/dX) = V - C(l -U ) ± (V± 0.1), (13)

-(rO/A)(dC/dX) = k1t + k2V4 - k3 - k4&, (14)

-(rO/X)(dl/dX) = k56+ k6&l- k7l, (15)

This system of equations explicitly contains the dimensionless velocity, TO/A. As was
found originally by Hodgkin and Huxley(1952). we also found that an action potential
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Kinetic parameters Propaganon velodues

k2 k k4 k k6 k7 rO/A O(Squid* 0(Lobsterr (Crab)

rn/s rn/s rn/s
A 1,500 30.000 25 0.2 2.4 0.05 IO 5.0 36 6.2

B 500 30.000 2.5 0.2 lA 0.05 15 4.9 35 6.1 2.45

C 500 300.000 25 0.2 7.4 0.05 IO 8.0 57 IO 4.0

D 500 30,000 25 0.2 7.4 0.05 10 5.0 36 6.2 2.5

E 63 3,800 31 0.025 0.95 0.062 1.3 3.2 23 4.0 L6
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solution of such a system of ODEs is extremely sensitive to a correct choice of velocity.
The Runge-Kutta method of numerical solution was used. When the choice of velocity
had been refined to eight significant figures, the shape of the rising phase and the peak
of this action potential was found to at least three significant figures. When this solu-
tion (of Eqs. 13-15) was compared with that obtained by numerical solution of the
PDEs 10-12 agreement to three significant figures was found for the rising phase and
peak.

Clearly the ODEs 13-15 do not apply to regions where changing geometry causes
changing shape and velocity. All such computations were necessarily made with the
PDEs 10-12 (or 24-26 below). When performing such calculations, the initial condi-
tion was that 'U = C = = O for all X, except that a suprathreshold transmembrane
potential (V = 0.9) was imposed along a short length (X = 0.2) located 1.5 X away
from the region of interest. It was verified by our computations that the resulting ac-
tion potential had constant shape and velocity before entering the region of interest.
In the preparation of the figures, the after hyperpolarization portion of each action
potential was omitted to avoid unnecessary confusion from overlaps.

Tapering Diameter

Here we consider noncylindrical core conductors which taper or flare continuously
with distance. Such changing diameter implies a continuously changing X. To empha-
size this difference between a cylinder and a tapering core conductor we define a
generalized length parameter, Xtaper, and a generalized electrotonic distance, Z, which
are related to each other as follows:

Xtaper = X0(r/r0)"2[1 + (dr/dx)21"4, (16)

dx/dZ = Ataper, orZ2 - Z1
= J

(l/Xtaper)dX,
XI

where À0 is the length constant for a cylinder with a radius, ,, taken as the radius
at a reference location. The new variable, Z, replaces the previously used dimension-
less distance, X = x/X. The basis for these equations can be found on pp. 1078-1079
of an earlier publication (see RaIl, 1962).

Our considerations are here restricted to a particular class of core conductors where
the amount of flare or taper is determined by a single parameter, K, according to Eq.
18. Examples for several values of K are illustrated graphically in Fig. 11. For this
class, the radius changes monotonically with distance according to the rule:

r2 (dx/dZ)exp(KZ). (18)

For some purposes it is desirable to express the dependence of r upon x rather
than Z; this is provided by Eq. 22 below. Although this dependence is complicated in
the most general case (see Appendix), it can be well approximated for most cases of
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interest, where (dr/dx)2 is much smaller than unity.3 When this approximation is
used, we can simplify Eq. 16 and 17 to

dx/dZ X0(r/r0)"2. (19)

By substituting Eq. 19 into proportionality 18, we obtain

r exp (2KZ/3), (20)

where the proportionality constant is r0. When this r/r0 is substituted into Eq. 19,
integration yields

x/X0 (3/K)[exp(KZ/3) - 1]. (21)

Now substitution of(r/r)"2 for exp (KZ/3) in Eq. 21 yields an expression which can
be rearranged to the following simple dependence of r upon x

r/r0 ([Kx/3X0] + 1)2. (22)

This also implies

X X0([Kx/3X0] + 1). (23)taper -

For the class of taper or flare defined by Eqs. 16-18, it can be shown that the earlier
model Eqs. 10-12, which apply to cylinders, become generalized to the following

(a2)/aZ2) + K(3V/9Z) - (ÔV/8 T) = V 8(1 V) + áJ(V+ 0.1) (24)

= k1V2 + k2V4 - k36 - k46J (25)

aJ/3T = k56+ 6öJ k7'l (26)

This assertion is based upon the demonstration (RaIl, 1962) that t92V/3X2 for the cy-
lindrical case becomes replaced by ô2 V/aZ2 + Kô V/c3Z for this class of' taper.
Also, it may be noted that the special case of zero taper, which implies dr/dx = O and
K = 0, reduces Z to X and Atape, to X0, with the result that the more general model
(Eqs. 24-26) is reduced to the cylindrical model (Eqs. 10-12).

RESULTS

Case of Membrane Cylinder with Sealed End

Here we examine the changes in shape and velocity found for a computed action poten-
tial as it approaches a sealed (insulated) boundary. By a sealed end (Fig. 1 A) we

3 To verify that dr/dx is sufficiently small in any given case, one can evaluate the derivative of Eq. 22 below.
For example, jfK 3, r0/ X0 = 0.002 and x/ X0 = 49, then dr/dx = 0.2 and the factor [t + (dr/dx)2 -1/4

0.990 in Eq. 16.
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FIGURE 3 Action potential approaching a sealed end. Each shape represents the action potential
(in the time domain) at six equally spaced (X = 0.2X) locations along the cylinder. The leftmost
curve corresponds to a location X = I from the sealed end.

mean that no current can leak across the membrane which closes the end of the cylin-
der; this corresponds to â V/a X = O at this boundary. The result, that both the peak
and the velocity of the action potential increase as it approaches such a sealed bound-
ary, is illustrated by the six curves in Fig. 3. These curves show temporal action
potentials (V vs. T) at six equally spaced (X = 0.2) locations along the cylinder.
The leftmost curve represents the action potential at a distance of A away from the
boundary; this curve has essentially the same shape and velocity as the action potential
propagating in a cylinder of infinite length. From left to right, these curves show in-
creasing peak height, narrowing half-width, and decreasing temporal displacement,
as the action potential approaches the sealed boundary. With regard to velocity, the
peak displacement at left is ¿T = 0.04, implying a dimensionless velocity, rOe/A =
LX/LsT = 5.0; in contrast, the peak displacement at right is LsT = 0.01, implying
rOe/A = 20,a fourfold increase.

In common with our other computed results, this figure shows that significant
changes in shape and velocity occur only at locations less than A from the boundary;
the major effect occurs within A/2.
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lt has been noted that when collision occurs between two action potentials propa-
gating in opposite directions in a cylinder of infinite length, the conditions at the point
of collision are equivalent to those at the sealed end (e.g., p. 467, Katz and Miledi.
1965). This is because symmetry implies 3 1 73x = O at the point of collision. lt fol-
lows that peak height and velocity must increase just before collision and extinction.

In order to obtain biophysical understanding of such increase in peak height and
velocity, we draw attention to the distribution of core current that flows downstream,
ahead of the active membrane region. When the action potential is far from a bound-
ary or point of collision, the leading core current is free to flow downstream for a con-
siderable distance: it can leave the core over a large area of membrane at relatively
low membrane current density. As the action potential approaches the point were
3 V/äx = O, the core current cannot flow beyond this point, and must leave the core
over a limited area of membrane at relatively high membrane current density. Such
increased local current results in more rapid membrane depolarization, earlier attain-
nient of threshold and peak (implying increased velocity); also the extra local current
augments the amplitude of the peak.

Case of Step Reduction of Criindri ca! Diameter (Fig. ¡ B)

Fig. 4 shows an example of the changes in shape of an action potential as it traverses
the region near a step reduction. The wave is viewed in the time domain at points
labeled .k4 .k0, and X8 in the figure. Dotted curves show a reference action po-
tential in a uniform cylinder of the initial diameter.

The behavior is qualitatively similar to the sealed end in that the peak is both earlier
and higher, and the half-width is reduced as it approaches the boundary point, X..
After the action potential passes .\.,, it soon returns to its initial shape in the time
domain, but its velocity becomes slower (as shown by the increased latency of the solid
curve at .X8). as should be expected for the reduced diameter. The shape of an action
potential is essentially stable when its peak is more than X = 1 distant from .V0 on
either side.

Distance Domain. Fig. 5 shows the same action potential in the distance
domain. The curves are shown at equal time intervals. One notes immediately that
the wave on the extreme right is narrower than the initial wave on the extreme left.
Since these waves are propagating in cylinders of differing diameter, the half-width (in
this distance domain) is reduced by the factor, X2/A1 (see Methods section. Distance
Domain); also 02 is smaller than 0.

Transitional Shapes. Fig. 5 shows that the action potential in the distance
domain undergoes remarkable changes in shape at distances within X of X0. These
changes include not only the previously noted increase in peak height as it approaches
., but also complicated changes of slopes and half-widths. It is important to realize
that in this transitional region, different points of the wave travel at different velocities,
dependìng upon how near and on which side of .k they are located. The increase of
velocity with approach to X0 from the left is revealed both by increasing distance be-
tween peaks and by increasing half-width: the latter results from the fact that the rising
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XA

FIGURE 4 Action potentiat for a step reduction (at X0) of cylindrical diameter. The shape (in the
time domain) is shown at the points, 'o and X8. The dashed curves show the action poten-
tial as it would appear had no step reduction in diameter occurred, In this example d2 /d1 - 0.25
and the kinetic parameters are shown in Table t (set A). XA and X8 are .Xx - 0.6À, distant from
X0.

FIGURE 5 Action potential (in the distance domain) propagating in a region of step reduction
(at X0) of cylindrical diameter. Successive shapes from left to right illustrate the action potential
at equal time intervals ( T - 0.1). 0, - initial constant velocity; 62 - constant velocity attained
in the smaller cylinder after passing X0. in this example d2 /d, - 0.25 and the kinetic parameters
are shown in Tablet (set A).
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phase (leading right-hand slope) is closer to X0 and traveling faster than the falling
phase. After passing k (and entering the smaller diameter) decrease of velocity is
revealed both by decreased distance between peaks and by decreased half-width. The
contraction of the rising phase (in the distance domain to the right of X0) can be under-
stood either in terms of decreased velocity or in terms of decreased À.

The discontinuity of slope at X0 occurs because core resistance is discontinuous and
continuity of current must be maintained. The core current, I., may be expressed

1, = (rd/4R,) [dI/dx]10 = (Td/4R) [dV/dx]0 (27)

where R is the intracellular specific resistance; X0_ and X0 refer to points just to the
left and right of X0, respectively. In the example illustrated in Figs. 4 and 5 the ratio
d1/d2 = 4.

Effect of Difierent Diameter Ratios upon O,. It is of interest to determine how
velocity varies for different ratios of d2/d1 1. We will restrict attention to O, the
velocity of the peak in the time domain. The results of simulation are shown in Fig. 6.
Here the ratio , O, the ratio of the changing peak velocity to the stable velocity of
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FIGuRE 6 Veloàt dsan2es near a step reduetion of cdindrieal diameter for various diameter
ratios. d2 d. , . the velocit of the peak of the action posentiaL is normalized by ) the stable
vdoàty in the initial Large cylinder. The kinetic parameters are given in Table I (set B)
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380 Steven S. Goldstein and Wilfrid Rail

the initial cylinder is plotted versus distance. We note that velocity O/O, grad-
ually begins to increase as the peak approaches within x = 0.6X1 of X0; it reaches
a maximum at X0_, and falls sharply to a stable value(02/01) within a distance of x =

0.3 X2 to the right of X0. As d2 /d1 decreases these effects are accentuated, i.e., velocity
begins to increase farther from X0, rises to a greater maximum value, and falls to a
lower stable value. The following empirical relation has been found to give an ap-
proximate value for 8 at X0.

(28)

In a personal communication, Dr. John Rinzel has shown that Eq. 5 can also be ex-
pressed, 0 = -a 2V/at2/(a2V/axaz). At X0, a V/ÔX is discontinuous and 0 is un-
defined.

Case of Step Increase of Cylindrical Diameter

Fig. 1 D illustrates the geometry of this case; here the ratio, d2/d1 1. As in the
previous case, simulations were used to explore the changes in 8p/0l in the vicinity of
X0. In this case it was found that the velocity becomes slower as the peak approaches
X0. However, the effect of different d2/d values is more complicated than before:
there are three different possibilities to be distinguished. Failure of propagation occurs
when d2/d1 is large enough.4 For smaller d2/d1, propagation continues in the larger
cylinder. There is a third possibility, for intermediate d2/d1, where propagation
not only continues in the larger cylinder but also reinvades the smaller cylinder, as will
be explained more fully below with Fig. 10.

In Fig. 7, failure of propagation was found for d2 /d1 = 3.5; the point of failure was
judged to occur before the peak reached X0, although a wave of subthreshold and de-
creasing amplitude did spread farther. Although the three curves to the left of X0 in
Fig. 7 show similar slowing of velocity over the range, 0.5 to 0.2 for x/X1, the
two curves on the right show large increases of velocity. For large distance to the right
of X0, OP/OS equals the stable ratio 82/01 (i.e. Eq. 9); however, it is remarkable that

is much larger than 02/01 over the first quarter X distance to the right off. Fur-
ther details of changing velocity and wave shape in the vicinity of X0 are shown below
in Fig. 8 for the time domain and Fig. 9 for the distance domain. Comparable results
have been reported by others: one study (Pastushenko et al., 1969 a and b) is based
upon analytical treatment of a square wave action potential; the other (Khodorov et
al., 1969) is based upon computations with the Hodgkin and Huxley model.

Fig. 8 shows an example (d2 /d1 = 2) of our computed action potential as it propa-
gated through the region in question. It shows the action potential in the time domain
at three points. As the wave approaches the discontinuity the peak amplitude falls,

A familiar example is antidromic propagation of an action potential along the axon toward the axon hil-
lock-soma region (Brock et al., 1953 Fuortes et al., 1957); this has recently been simulated by Dodge and
Cooley (1973); similar antidromic propagation was also simulated in computations for mitral cells by RaIl
and Shepherd (1968).
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I I Il i i

0.4 0.2 0 0.2 0.4 0.6

FIGURE 7 Velocity changes near a step increase of cylindrical diameter, for various diameter ra-
tios, d2 /d1

.
O,,, the velocity of the peak is normalized by 8I' the stable velocity in the initial small

cylinder. Kinetic parameters are given in Table I (set B).

the half-width widens, and increased latency (relative to dashed control curve) reveals
the slowed velocity. When the wave has reached X2, the shape in the time domain has
returned essentially to its original form. The increased velocity is revealed by decreas-
ing latency (compare solid curves with dashed control curves at X0 and X2); in fact,
the wave traveling at velocity, 02, will shortly overtake the control (dashed) wave which
travels at velocity, 01, in the control cylinder.

Distance Domain. Fig. 9 shows the same action potential in the distance
domain. Each wave shown is the voltage distribution along the joined cylinders at a
given instant of time. The time intervals are equal. The wave on the far left has the
shape it would have in an infinite cylinder of diameter d1. The wave on the far right
has the shape it would have in an infinite cylinder of diameter, d2; it is wider by the
factor X2/À1 = 1.414 because d2/d1 = 2 (see Eq. 9). The smaller peak amplitude at X0

can be seen in Fig. 9 as well as Fig. 8.
Transitional Shapes. As was pointed out with Fig. 5, different points of such

transitional shapes travel at different velocities; however, the changes in Fig. 9 con-
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FIGURE 8 Action potential for a step increase (at X0) of cylindrical diameter. The shape (in the
time domain) is shown for three points X4, X0, and X8. The dotted curves show the action po-
tential as it would appear had no step increase in cylindrical diameter occurred. For this example
d2 /d1 = 2.0 and the kinetic parameters are shown in Table I (set A). X4 and X8 are Xx = 0.6À1
distant from X0.
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-2 -I O I 2

X/X'

FIGURE 9 Action potential (in the distance domain) propagating in a region of step increase (at
X0) of cylindrical diameter. Successive shapes from left to right illustrate the action potential at
equal time intervals ( T = 0.1). O = initial constant velocity; °2 = constant velocity attained in
larger cylinder after passing X0. In this figure d2 /d, = 2.0 and the kinetic parameters are shown
in Table l(set A).
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trast with those in Fig. 5. The decrease of velocity with approach to X0 from the left
is revealed both by decreasing distance between peaks and by decreasing half-width;
the latter results from the fact that the rising phase (leading right-hand slope) is closer
to and traveling slower than the falling phase. After passing X0 (and entering the
large diameter) a large increase in velocity is revealed both by the increased peak dis-
tance and half-width of the fifth wave from the left. Although the distance between
the last two peaks is not as great as this, it is still greater than that between the first
two peaks; all this is consistent with the curve for d2/d1 = 2 in Fig. 7.

The unusual, somewhat flat-topped shape of the fifth curve from the left merits
further comment. The almost flat top implies that a half À length of the large cylinder
peaked almost simultaneously. This can be partly understood as an indirect conse-
quence of the slowing of propagation before the peak reached X,; during this slowing,
there is extra time for subthreshold electrotonic spread into the larger cylinder. The
resulting distribution of subthreshold voltage becomes more uniform than usual; thus
both threshold and peak are reached almost simultaneously over this length (about
X/2 in Fig. 9). This near simultaneity also accounts for the high peak velocity, just to
the right of X0, indicated by the curve labeled d2 /d1 = 2 in Fig. 7.

At X0, the shapes in Fig. 9 necessarily show discontinuities in their slopes, because
of the discontinuity in core resistance; see Eq. 27. Here the slopes decrease by a factor
of 4.

Forward and Reverse Propagation. Referring back to Fig. 7, we note that
d2/d1 = 3.5 resulted in failure of propagation into the larger cylinder, while d2/d1 =
2.0 resulted in success. An intermediate example, for d2/d1 = 2.5, is illustrated in
Fig. 10, where voltage vs. time shapes are shown for various locations; time is displayed
horizontally; spatial locations are displaced vertically; X0 locates the step increase of
diameter, as before. The three action potentials at far left represent propagation
toward X0 in the smaller cylinder. The fourth shape from the left shows the delayed
action potential occurring at X0. Onward propagation in the larger cylinder is shown
by the nine curves labeled "forward" toward lower right. Reverse propagation in the
smaller cylinder is shown by the three shapes labeled "reverse" at upper right.

To understand how reverse propagation can occur, it is useful to contrast Fig. 10
with Fig. 8, where reverse propagation did not occur. The essential difference is the
longer delay in achieving an action potential at X0. At the time of peak at X0, the
membrane of the smaller cylinder is still refractory in Fig. 8, but with the longer delay
of Fig. 10, this membrane is less refractory and thus able to propagate. Partial re-
fractoriness is evidenced by the delay of this reverse propagation.

Reverse propagation was found before in computations (Rail and Shepherd, unpub-
lished) which simulated antidromic propagation in a mitral cell axon to its junction
with the soma and dendrites. This phenomenon has also been found computationally
by Zeevi (personal communication) and an example of decremental reverse conduction
is included in his Ph.D. thesis (Zeevi, 1972). Khodorov et al. (1969) also provide an
example of reverse decremental conduction. Both expected that such decremental
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FIGURE lO Forward and reverse propagation of the action potential in a region of step increase.
The action potentials (in the time domain) are shown at successive locations indicated by the
vertical scale with X0 being the point of step increase. In this ligure d2 /d1 = 2.5; the kinetic pa-
rameters used are shown as set B in Table I.

reverse conduction might be converted to non-decremental reverse conduction if their
calculations were redone with different parameters chosen to result in a shorter re-
fractory period.

Returning to our computations with different values of d2 /d1, we note that when
d2/d1 is decreased from 2.5, delay in forward propagation is decreased. Thus an ac-
tion potential which might propagate in reverse meets more refractory membrane.
This can result in failure, i.e. reverse decremental conduction.

Case of Tapering Diameter.

Computations were carried out for different degrees of taper determined by choosing
several values of the parameter K; see Methods and Fig. 11. For any particular taper
the change of Xtaper with distance has already been defined by Eqs. 16-18. We expected
that the velocity would also change as diameter and Àlai,r change with distance, and
our computations verified this. What is more, we found that the velocity, O, is propor-
tional to the changing Ataper, which means that

TO/Xiaper = constant = (29)

for a given taper (K) and given membrane kinetics (k1, ... k7). It is noteworthy that
this TO/Xtaper represents a dimensionless velocity, and that its constancy means a con-
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FIGURE lI Longitudinal sections of core conductors whose radii obey the rule: r2 a (dx/dZ) exp
(KZ), where A is a constant and Z a dimensionless distance; see also Eq. 22.

stant rate of propagation with respect to Z, the generalized electrotonic distance vari-
able for taper. In addition this means that the shape of this action potential remains
constant in the Z domain (but changes in the x domain). This also means that the
shape remains constant in the time domain, as would be expected when the considera-
tions embodied in Eq. 8 for c linders are generalized from k to Z. In fact, such con-
stancy of shape in the Z and T domains was explicitl verified in the computed results.
lt is to be emphasized that these results apply only when flare or taper obeys the rule
given by Eq. 18.

Because Eq. 29 implies O a X., and because an earlier equation (23) shows that
depends linearly upon x, it follows that the velocity, O, also depends linearly

upon x, for any given K; that is,

O (ßÀ0/r) (1 + Kx/3À). (30)

It is an interesting result f our computations with different values of K, that fi can be
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approximated as

(rOJA0) - K, (31)

where O, represents the reference velocity of a cylinder (K = O) with radius, r0 and
length constant, X0.

For a specific numerical illustration, we can choose a reference cylinder whose
dimensionless rO/Xo value is 5. From Eq. 31, we see that K > 5 makes i3 < O,
which implies a failure of propagation; smaller values of K give larger values of 3. For
K = 1, 2, 3, 4, and 4.5, the implications of Eqs. 29-31 have been plotted in Fig. 12. The
intercepts at left (for x = O) correspond to the value of ß for each K. The slope of each
straight line (i.e. slope of rO/A0 vs. xIX0) is equal to 13K/3 for each K value. In this

Io

9

8

7

6

r9
X0

4

3

2

o
o

I J J

K2

K3 K4

KO

K 4.5

2 3 4

--

FIGURE 12 Change of velocity with distance (x/X0) in flaring core conductors (with radii defined
by Eq. 22). It is assumed that Eqs. 30 and 31 are valid and that rO/ X0 = 5.
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387 Changes of Action Potential Shape and Velocity

example both K = 2 and K = 3 yield slopes of 2; the steepest possible slope (2.08), cor-
responds to K = 2.5, but is not shown in Fig. 12.

lt seems desirable to elaborate some of the physical intuitive meaning of the results
displayed in Fig. 12. lt is simplest to consider all of these core conductors as having
the same diameter and A0 value at x = O (see Eqs. 22 and 23). Then each velocity, O,
at x = 0, is proportional to the intercept at the left of Fig. 12. We note that increasing
amounts of flare (associated with increasingly positive K values) cause progressively
smaller values of velocity at the point (x = 0) where the diameters are all the same. An
explanation of this fact can be based upon the reduced core resistance that results from
flaring diameter; this increases the fraction of core current that flows downstream and
decreases the fraction that depolarizes adjacent membrane. Because this decreasing
current must depolarize an increasing membrane capacity per unit length (because of
flare), the result is less rapid membrane depolarization, implying less rapid propaga-
tion of the impulse. lt may be noted parenthetically that negative K values would
yield increased velocity for the same core conductor diameter.

Next, we note that Fig. 12 shows that with positive K, the velocity in each case in-
creases linearly with distance. At the point where each sloping line crosses the hori-
zontal (K = 0) reference line, we can say that the effect of increased diameter on ve-
locity has just compensated for the handicap associated with flare (i.e. dependence of
fi upon Kin Eq. 31).

Referring back to Eqs. 30 and 31 we can see that flare (positive K) has two opposing
effects on velocity in the x domain: one is an increase due to increasing A,er (see Eq.
23 in Methods), while the other is a decrease due to decreasing fi (see Eq. 31). It is
these two opposing effects that explain why the slopes in Fig. 12 increase from zero, for
K = 0, to a maximum slope for K = 2.5, and then decrease to smaller slopes for larger
values of K, until fi falls to zero, implying failure of propagation.

The fact that Eq. 31 for fi is only an approximate result of the computations is made
clearer by Fig. 13. Here we plot (as ordinate) the dimensionless velocity, TO/Atar,er,
vs. K. It should be noted that this dimensionless velocity in the Z domain is constant
(independent ofx and core diameter) for each value of K. The three solid lines present
results computed with three different sets of kinetic parameters, k1, . . . k7, as made
explicit by the figure legend. In each case, the dashed line is a straight line defined by
Eq. 31; each dashed line was chosen by setting rOJA0 in Eq. 31 equal to TO/Ataper of
each solid curve at K = 0. In the case of the upper solid curve, the approximate rela-
tion provides an excellent fit for dimensionless velocities greater than 3. As K is in-
creased from 4 to 6, the velocity deviates below the approximate values of the dashed
line, and propagation of the computed action potential actually fails for K = 6, while
the dashed line would imply failure for K = 8. This deviation can be seen to occur
where the safety factor for propagation is low. Inspection of the computed results
shows that the peak height of the action potential becomes significantly reduced over
this range. It may be noted that this peak height decreased by only about l% over the
range(rO/Atr from 10 to 3) where the solid line deviates negligibly from the dashed
line.

Copyrighted Material



388 Steven S. Goldstein and Wilfrid Rail

FIGURE 13 Change in dimensionless velocity, T8/ÀI3r,cr with differing amounts of taper or flare.
Kinetic parameters for the three solid curves shown are in Table 1; the uppermost curve used set
C; middle curve used set D; lowermost curve used set E.

Next we consider the deviation of the middle solid curve from its corresponding
dashed straight line. For most of the dimensionless velocity range (10 to 2), there is a
noticeable difference in slope, in contrast with the previous (upper) curve. This cor-
relates well with the fact that the peak heights of the computed action potentials de-
creased from 0.88 to 0.75 as rO/X, decreases from 10 to 2. This change of peak
height (approximately l5°/) is much larger than that found with the upper curve. This
result supports the conjecture that the dashed line represents a limiting case where
action potential peak height remains unchanged. In fact, it can be demonstrated
mathematically that the artificial assumption of a constant action potential shape (in
the Z and T domains) would imply that Eq. 31 and the dashed straight lines follow
exactly (see Appendix, Eqs. 37-42). The deviation of the lowermost solid curve from
its corresponding dashed line also correlates with decreasing peak height: for the ve-
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locity range (TO/Xtaper from 8 to 2) the peak height decreases from 0.96 to 0.90, or
about 6.

At low velocities, near the point of failure, all three curves deviated from their cor-
responding dashed lines. The lower solid curve differs from the others in being less
steep and bending more gradually as K is increased toward failure. In fact, the fall is
so gradual that it crosses the middle solid curve at K = 4. This result emphasizes the
complex nature of the interaction of the active properties with the geometric prop-
erties of a core conductor at slow velocities. (It may be noted (see Table 1) that the
kinetic parameters corresponding to the lower curve are entirely different from the
other sets. The kinetic parameters of the upper and middle curves differ only by one
parameter, k2).

Branching

Computations were used to explore the effects of core ccnductor branching upon ac-
tion potential propagation. The assumption of extracellular isopotentiality insures
that the angles between the branches can be neglected.

At a branch point, it is usual to distinguish anatomically between a parent branch
and a pair of daughter branches, all of which may have different diameters. However,
since we wish to consider action potential propagation in either direction in any
branch, it becomes necessary to adopt additional branch designations. These dis-
tinguish between that branch along which the action potential approaches the branch
point (regardless of whether this happens to be a parent or a daughter branch), and
the other branches (along which no action potential approaches the common branch
point). Propagation behavior near the branch point depends upon the value of the
geometric ratio,

GR = d)'2/d'2, (32)

where d represents the diameter of the branch along which propagation approaches
the branch point, d represents the diameter of thej th other branch, and the summation
is over all of these other branches. It may be helpful to note that this geometric ratio
also equals the input conductance ratio (other branches/approaching branch) for
branches of semi-infinite length.

For most of our computations, we assumed all branches to be at least several X in
length, with the result that propagation near the branch point, X0, was not modified by
any terminal or branching boundary conditions elsewhere. Then, the results were
found to be clearly separable into three cases, determined by whether this geometric
ratio, GR, is less than, equal to, or greater than unity.

Case of GR = I. This case corresponds to the branching constraint (con-
stancy of 2d3/2) which has been emphasized elsewhere (RaIl, 1959, 1962, 1964) as
permitting a dendritic tree to be transformed into an equivalent cylinder, for con-
siderations of passive membrane electrotonus. Here, the other branches, together,
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correspond to an equivalent cylinder that has the same diameter as the approaching
branch. This means that the partial differential equation in dimensionless X and T
applies to a continuous equivalent cylinder region that extends in both directions (up-
stream and downstream) from the point X0.

For active propagation, it should be noted that as long as the active membrane
properties are the same per unit area in ail branches (i.e. independent of X) it can be
shown that the shape and velocity of the propagating action potential (in the X and T
domains) remain constant near X0; a formal demonstration can be provided by the
dimensional analysis considerations of FitzHugh(1973). This expectation was verified
by computations with theU & cl model and a pair of other branches (of unequal di-
ameter) satisfying GR = I. It should be added that with propagation into these other
branches, the shape and velocity in the x domain of each branch change in proportion
with each X value, even though both remain unchanged in the X domain.

Case of GR <I. Here, the other branches, together, correspond to an equiv-
alent cylinder whose diameter is smaller than that of the approaching branch. Thus,
the action potential shape and velocity in the X and T domains would be expected to
undergo changes near the branch point, X0, like those reported above for a step re-
duction of diameter (Figs. 4-6). Computations verified this expectation that the
velocity and the peak amplitude both increase with approach to X0. Also, in the other
branches, the action potential shape and velocity soon return to their original values
in the X domain, but, of course to changed values in their separate x domains.

Case of GR > 1. Here, the other branches, together, correspond to an equiv-
alent cylinder whose diameter is larger than that of the approaching branch. We ex-
pected and we found changes near the branch point, X0, like those reported above for a
step increase of diameter (Figs. 7-IO). Thus, the velocity and the peak amplitude both
decrease with approach to X0. When GR was made sufficiently large, propagation
failed at X0. Also, when GR was adjusted for propagation to succeed only after sig-
nificant temporal delay at X0, then, as in previous Fig. 10, there was retrograde propa-
gation in the branch along which the impulse originally approached X0, as well as
onward propagation in all of the other branches. In none of these computations was
propagation preferential between the other branches, i.e. it did not fail in one while
succeeding in the others.

DISCUSSION

Additional implications of these results should be mentioned for the closely related
cases of step diameter increase and of branching with GR > I (see Eq. 32). In situa-
tions when failure of propagation occurs at X0, there is a short time during which the
residual depolarization near X0 may prevent failure of a second impulse. Conse-
quently, at different repetition rates, every second, third, or fourth impulse could suc-
ceed in propagating past X0. Thus geometry alone could filter the impulse repetition
rate; in the application to branching, this filtering would be the same in all of the other
branches.
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In the situation where propagation succeeds at X0 with sufficient delay to permit
retrograde propagation, it should be noted that the retrograde impulse will collide
with and thus extinguish a subsequent impulse that may approach X0 at this time.
Since collision could occur at any point along the approaching line, the timing of the
second impulse would be less critical than in the previous example.

An interesting possibility arises when a long core conductor ends in enlargements at
both ends (i.e. either a step increase in diameter or branches with GR > 1). Then under
favorable conditions, successive retrograde propagations could be sustained (back and
forth) between these two end regions. This possibility represents another design for a
pacemaker, but we have not explored this further.

Next we consider two action potentials, one in each of two branches, both approach-
ing X0 simultaneously. All the previous considerations of failure or success at X0
apply here, provided that d12 in Eq. 32 is replaced by the sum of the d312 values of
these two ("approaching") branches.

When two action potentials, one in each of two branches, are not simultaneous in
their approach to several possibilities arise; these have been explored computa-
tionally. If the action potential in the first branch is able to propagate onward into all
other branches before the action potential in the second branch reaches X0, a collision
of the two action potentials will occur in this second branch. If the first action poten-
tial is not able to propagate onward into the other branches, subthreshold current
would spread in them passively. This would depolarize the membrane and result in an
increasing velocity of the second action potential as it approaches X0. A similar
phenomenon has been noted independently by Pastushenko et al. (1969 a and b) using
a square wave to simulate the action potential. We also observed that the possibility
of retrograde conduction in the first branch is enhanced when the two waves do not
reach simultaneously.

Preferential Propagation into Different Branches. The concept that preferen-
tial effects between large and small branches could contribute significant filtering of
ïnformation in neural circuits has been advanced by several people; Lettvin presented
this idea in several seminars and papers (Chung et al., 1970); additional references are
given by Waxman (1972), and by Grossman et al. (1973). First, we emphasize that our
computational and theoretical results provide no basis for such preferential effects.
Then we note that this can be attributed to our simplifying assumptions: uniform
membrane properties (both passive and active), extracellular isopotentiality, constant
intracellular resistivity, implicitly constant ionic membrane equilibrium potentials.
For example, if one were to assume that one branch is composed of more excitable
membrane than the other, preferential effects could be expected. The recognition that
some such additional factor is needed to explain preferential effects has been noted
also by Zeevi (1972) and Grossman et al. (1973).

APPENDIX

Here we wish to examine the consequences of changing the taper rule to lesser and greater de-
grees of taper. We replace our earlier Eq. 22 by a more general expression
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/Kxr/r0 = + i) (33)

where m = O corresponds to a cylinder, m = I corresponds to a conical flare or taper. m = 2
corresponds to our special class, and m > 2 corresponds to flare or taper of higher degree.

Referring back to the general treatment of taper and branching (Rail, 1962. Eq. 20) we find
that the coefficient of 8 '0/8 Z in the general partial differential equation can be expressed

Coef = (dx/dZ) (d/dx) in [r312n(l + (dr/dx)2)]. (34)

It is this coefficient which was shown to reduce to K for our special class. We set n = I, be-
cause we are not here concerned with branching. Also, we restrict consideration to regions
where (dr/dx)2 is negligible3 compared with unity; then Eq. 34 can be simplified to yield the ap-
proximate expression

Coef (3Xo/2ro)I_) (dr/dx). (35)

When Eq. 33 and its derivative with respect to y are substituted into Eq. 35, the result is

Coef ±í (i
Kx"212

2 \

Now, when m = 0, this coefficient of â V/aZ is zero, and the PDE reduces to the case of a cyl-
inder, as expected. When m = 2, the exponent, (in - 2)/2, becomes zero, and the coefficient
of ô V/8Z reduces simply to K, as in Eq. 24 and in the original presentation (Rail, 1962).

However, now we can use Eq. 36 to learn the consequences of different taper classes obtained by
setting in = 1 and in > 2.

For conical flare, in = I, and the value of Eq. 36 becomes

K / Kx\_h/2

which equals K/2 at x = O and decreases with increasing x, when K is positive. As explained
below, this would be expected to result in increasing dimensionless velocity, TO/Xtaper, with in-
creasing x and positive K.

For greater degrees of flare, in > 2, it can be seen in Eq. 36 that the exponent is positive,
which means that the coefficient of â V/az increases with increasing x when K is positive. As
explained below, this corresponds to decreasing dimensionless velocity, T6/Xtaper, with increas-
ing x and positive K.

To understand the effect of this coefficient upon dimensionless velocity, we consider first our
special class of taper which was found to result in constant dimensionless velocity, rO/X.
For this class, we have the relation

80/a T = (TO/Xtaper) (3V/dZ) (37)

(36)

in analogy with Eq. 8 for cylinders. When this relation is substituted into Eqs. 24-26 we obtain
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the following

(320/3Z2) + (K + T0/Xtaper)(ÔV/3Z) = .0 (l -
-t-(.0+0.1), (38)

TO/Xtaper(ä/3Z) = + k2'04 - k3f - k4&J, (39)

TO/Ataper(3iJ/3Z) = k5+ k6CcJ k7J. (40)

When we compare Eqs. 38-40 with the case of constant propagation in a cylinder (Eqs. 13-15),
we note that the equations are quite similar. If the coefficients of 3'U/ÔZ. 3&/cJZ, and 3 SJ/ÔZ
were all the same, the equations would be identical (assuming X replaced by Z) and the ac-
tion potential shapes (in the time domain) would be identical. In particular, comparison of
Eq. 38 with Eq. 13 suggests that one might expect the dimensionless velocity, rO/A in the
cylinder, to correspond to the quantity, K + TO/Xtaper in the taper; this suggests

TO/Ataper = TOr/X0 - K, (41)

which agrees with Eq. 31, where !3 = T0/X(aprr. Our computations showed that this relation
holds approximately (see discussion of Fig. 13). To understand why this relation is not exact
(theoretically) we note the fact that the coefficients of aC/aZ and acJ/aZ in Eqs. 39 and 40
differ from the coefficient of a'U/3Z in Eq. 38, whereas the corresponding coefficients in Eqs.
13-15 are identical. Nevertheless, it can be appreciated, intuitively, that departures from Eq. 41
are least when the shape of the action potential in the time domain differs negligibly between
the case of a cylinder and our special class of taper.

With different classes of taper, we do not expect constant dimensionless velocity. Neverthe-
less, in analogy with Eq. 41, we expect that the changing velocity can be at least roughly ap-
proximated by

- TOIA ' TO/A0 ,nK ( Kx\(m_2112
Laper -

2 \

where the coefficient, K in Eq. 41 has been replaced by the more general coefficient from Eq. 36.
This relation implies that for the greater degrees of flare (m > 2, with positive K), the dimen-
sionless velocity will decrease with increasing x. Also, for the lower degrees of flare (m < 2,
with positive K), the dimensionless velocity would be expected to increase with increasing x.
Only our special class of taper (m = 2), and the cylindrical case (m = 0) can be expected to
have constant dimensionless velocïty in the Z domain.

We would like to thank Maurice Klee and John Rinzel for their helpful comments upon reviewing the manu-
script.
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10 DENDRITIC SPINES: PLASTICITY, LEARNING, AND
ACTIVE AMPLIFICATION
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Presynaptic and Postsynaptic Functions of Dendritic Spines

Rail's first contribution to the subject of dendritic spines was made in the
papers by Rall et al. (1966) and Rail and Shepherd (1968) (reprinted in this
volume). The idea that the granule cell might send its inhibitory synaptic
outputs through its dendritic spines onto the mitral cell dendrites arose
out of the previous work with Phillips and Powell (Shepherd 1963), in
which we envisaged the spines as functioning essentially like axon termi-
nals for the axonless granule cell. The studies with Wil Rall supported this
output function for the granule cell spines, but Reese and Brightman's
work established that the granule cell processes are in fact dendritic in
their fine structure, and the spines are therefore dendritic despite having
presynaptic and postsynaptic relations. This effectively dissociated the
identification of a terminal as pre- or postsynaptic from the criteria for
identification of a terminal as axonal or dendritic, a lesson which is still
not understood by many. Parenthetically it may be noted that the term
gemmule was introduced to refer to these structures partly in order to
avoid confusion with spines that occupy only postsynaptic positions.

Although our biophysical models did not explicitly include the spines, it
was clear to us that the spines play a key role in the synaptic mechanisms.
The new ideas with regard to the spines were (1) the locally generated
EPSP in a spine activates the output inhibitory synapse from the same
spine to provide for recurrent inhibition of the mitral cell, and (2) spread
of the EPSP out of a spine and through the dendritic branch into neigh-
boring spines provides for lateral inhibition of neighboring mitral cells.
We discussed this in the text and illustrated it with a diagram (figure 15,
Rail and Shepherd 1968) that shows the reciprocal and lateral actions
mediated by the spines. We noted that spread between spines would be
limited for spine stems that were unusually long or thin. This was the first
published observation by Wil or myself about the control of the spread of

Copyrighted Material
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Comments by John Miller

Rail, W. (1974). Dendritic spines, synaptic potency and neuronal plasticity.
In Cellular Mechanisms Subserving Changes in Neuronal Activity, ed. C. D. Woody,
K. A. Brown, T. J. Crow, and J. D. Knispel. Brain Information Service Research
Report # 3. Los Angeles: University of California.

Miller, J. P., RaIl, W., and Rinzel, J. (1985). Synaptic amplification by active
membrane in dendritic spines. Brain Res. 325:325-330.

Wil Rail has had a long love affair with dendritic spines. Few realize the
extent of his contributions to this area. Although a full account of the
development of concepts of spine function goes beyond the scope of the
present volume, it may be of interest to provide an orientation to the
specific areas in which Wil's contributions have been ground breaking.
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activity between a spine head and its parent branch. It was essentially
a restatement of Chang's (1952) inference concerning spines on cortical
dendrites.

Over the subsequent quarter of a century there have been many specu-
lations about the general properties of dendritic spines. An often-repeated
claim is that spines have no interesting properties and serve "only to
connect." The granule cell spines still stand as an often-ignored example of
spines to which can be attributed specific functional operations of gener-
ally acknowledged significance for information processing.

Dendritic Spines and Learning

As with most of his work, Wil's interest in the possible role of dendritic
spines in learning had deep roots. His first publication on this topic was in
a "Comment on dendritic spines" at the end of his paper on "Cable prop-
erties of dendrites and effects of synaptic location," delivered at a meeting
on "Excitatory Synaptic Mechanisms" held in Oslo in September of 1969
(Rall 1970). His comment was stimulated by a hypothesis that was
brought forward at the meeting by Diamond, Gray, and Yasargil (1970),
and which attracted wide attention at the time. They speculated that an
intermediary "unit" in a reflex circuit under investigation was a spine
whose activity was relatively isolated from other synaptic activity in the
neuron by virtue of a high spine stem resistance. They speculated that the
function of this isolation might be to reduce the noise level at the synapse;
others speculated that it might linearize the summation of responses in
neighboring spines. Wil comments in his paper from this meeting that his
own preference is that "spine stem resistance might be used physiologi-
cally to change the relative weights of synaptic inputs from different affer-
ent sources; this could provide a basic mechanism for learning in the
nervous system." He notes that this is only a "slight extension" of his
earlier suggestion in Rail 1962b that the relative weight contributed by
dendritic synapses to summation at the soma "could be changed by
changing the caliber (and hence the electrotonic decrement) of a dendritic
subsystem," and that "this would be useful for learning."

In his comment, Wil notes that he has begun a theoretical exploration
of this problem with his colleague John Rinzel. Anatomists were just be-
ginning to make accurate measurements of spine dimensions, and Rall
and Rinzel drew their data from the studies of Laatsch and Cowan (1966),
Jones and Powell (1969), and Peters and Kaiserman-Abramof (1970) on
dendritic spines of cortical pyramidal cells. These spines are exclusively
postsynaptic in position and could be categorized into different types de-
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pending on their outward morphology. Jones and Powell had noted that
spines with thin stems frequently arise from thin distai dendrites and
spines with stubby stems from thick proximal dendrites. The key insight of
Rall and Rinzel was that this anatomical correlation would have critical
implications for the eiectrotonic relations between spines and dendrites,
which in turn could have profound functional importance.

Their results were first contained in two abstracts (Rail and Rinzel
1971a,b), one presented to the IUPS Congress in the summer of 1971 and
the other presented at the first meeting of the new Society for Neuro-
science, held in Washington, D.C., in the fall of 1971. In these, Rail and
Rinzel point out for the first time that the amount of spread of a synaptic
potential from a spine to its parent branch is governed not just by the
spine stem resistance alone but rather by the ratio of the spine stem resis-
tance to the input resistance of the branch; in other words, one is dealing
with an impedance matching problem. When this ratio is either very large
or very small, changes in spine stem diameter (hence, spine stem resis-
tance) have little effect on synaptic potential spread to the branch. In the
middle range, however, where the ratio is near unity, a small change in
spine stem resistance has a relatively large effect on the amount of spread.
"Over this favorable range ... fine adjustments of the stem resistances of
many spines, as well as changes in dendritic caliber ... could provide an
organism with a way to adjust the relative weights of the many synaptic
inputs received by such neurons; this could contribute to plasticity and
learning of a nervous system" (Rail and Rinzel 1971 b).

The reason that these abstracts are quoted here is that they were the
only generally accessible publication of the hypothesis. The details of the
study were published in the privately printed UCLA research report re-
produced here (RaIl 1974), and repeated and extended in an article in a
festschrift volume for Archie McIntyre (Rall 1978). The hypothesis was
first presented to a general readership in a book on synaptic organization
(Shepherd 1974) in much the summary form given here, together with an
extension to the concept of a microcompartment created within the spine
head. As to why Wil did not publish this seminal work more fully, the
answer is mainly to be found in his battle throughout the 1970s with
cataracts and the consequences of cataract surgery. The fact that the study
was well known among those working on the cellular basis of memory
during that time was a further disincentive to more complete publication.
Finally, there has always been enough of the mathematician in Wil for him
to feel that "what is known is trivial," and that publishing a study once,
however succinctly, should suffice for those who are interested. It is a
luxury that few scientists nowadays can afford!
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In the 1974 paper reprinted here, Wi! shows how the anatomical dimen-
sions of the different types of spines translate into simplified equations for
impedance matching of the spine stem resistance to the branch input resis-
tance. He explains that this approach builds on the theoretical method for
estimation of branch input resistance presented fully in the study of Rall
and Rinzel (1973); this paper is included in the present volume. He notes
further that these results based on the assumption of steady-state electro-
tonic spread can be extended to the case of transient synaptic potentials
with only qualitative differences.

From this study came several important concepts. First was the idea of
an "optimal operating range" for the relation between a spine and its
parent dendrite. Second was the idea of "synaptic potency." As is typical
of Wil, he did not confine himself to spine stem length and diameter as the
only possible mechanisms regulating synaptic potency. Among other can-
didates he mentions are synaptic contact area, amount of released chemi-
cal transmitter, duration of synaptic action, and changes in internal spine
stem resistance. The possibility of changes in spine stem dimensions was
soon examined in the experiments of Fifkova and van Harreveld (1977).
Others of these suggestions were remarkably prescient. Later Bailey and
Chen (1983) indeed found evidence in Aplysia for changes in synaptic
contact area associated with activity. The prolonged duration of NMDA
receptor actions in spine synapses and their possible relevance for learning
mechanisms is another current example.

A notable quality of Wil's biophysical work has been his ability to
generalize from biophysical property at the membrane or cellular level to
the function of the system. We have already seen an example of this in the
study of granule cell spines, where the reciprocal synapses were immedi-
ately seen to provide the mechanism for the system functions of recurrent
and lateral inhibition underlying sensory processing. It is also seen in his
1974 paper in his inference, from adustable spine stems, of the larger func-
tional view that "delicate adjustments of the relative weights (potency) of
many different synapses" could be "responsible for changes in dynamic
patterns of activity in assemblies of neurons organized with convergent
and divergent connective overlaps." Thus, from these purely biophysical
deductions, Wil essentially deduced the blueprint for neural networks con-
sisting of nodes interconnected by synapses with adjustable weights. This
general concept of course was not new; what was novel was directing
attention to a critical site and suggesting some testable mechanisms.

This work had a large effect on investigators interested in the synaptic
basis of learning and memory. During the 1970s and 1980s it provided one
of the main organizing hypotheses for possible mechanisms of learning
and memory. The fact that dramatic changes in spine size and shape were
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reported to be associated with sensory deafferentation as well as with
specific types of mental disorders gave further credence to the hypothesis.
With the rediscovery of Hebb and his learning rules around 1980, and the
wealth of new data on the activity dependence of different types of mem-
brane channels in the 1980s, interest has broadened to include these and
other mechanisms in the basis of learning and memory. These can be seen
as additions to the mechanisms previously suggested by Rail. They add to
the complexity of spine synapses and the functional links between spine
synapses, reinforcing the notion that they are likely to be critical to the
integrative actions underlying higher cortical functions.

Active Dendrites and Dendritic Spines

No topic illustrates more clearly the common misconceptions about Rall's
work than the question of nonlinear properties of dendrites in general and
the active properties of dendrites and spines in particular. In the popular
mind, Rall's contributions are regarded as lying entirely within the do-
main of passive cable properties of oversimplified dendritic trees. As such,
they seem mainly to be of historical interest, because it is currently be-
lieved that active properties are the critical agents in dendritic integration.
But the facts speak otherwise. They show that Rail led the way in analyz-
ing the nonlinear properties of synaptic interactions, in incorporating ac-
tive membrane into computational models of dendritic trees, in pointing
out the logical possibilities of local active membrane in dendritic trees, in
incorporating active membrane into models of dendritic spines, and in
exploring the functional implications of populations of active dendritic
spines. Let us consider each of these contributions.

Nonlinear Properties of Synaptic Interactions

This topic was first introduced into the literature in the landmark paper of
Rall 1964, reproduced in this volume. As already pointed out in the intro-
duction to that paper, the compartmental model presented in that paper
enabled Rall to put synapses at different distances from each other in a
dendritic tree and explore their interactions. A cardinal result from that
analysis was that, contrary to the then-popular belief that excitation and
inhibition sum algebraically (i.e., linearly), such summation was true only
for summation of responses to injected current, in which the system was
unperturbed. For the case of synaptic interactions, their summation was in
general nonlinear, because the synaptic conductances perturbed the sys-
tem. The nonlinear nature of these interactions was dependent on several
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key parameters. These included (1) the distance between two active syn-
apses (i.e., the degree of shunting between them), (2) the relation of the
membrane potential to the reversal potentials for the ions involved, and
(3) the geometrical relations between the synapses within the branching
structure of the dendritic tree (whether they were on different branches, on
the same branch extending to the soma, and whether the excitatory or
inhibitory synapse was proximal or distal in the on-line configuration).

At the time, these were recognized as new and fundamental insights into
the nature of synaptic integration in dendrites. No longer could synapses
be modeled by current injection, and no longer could dendrites with even
purely passive membrane be regarded as linear systems. Unfortunately,
there has been a tendency for people to forget this work and connect Rall
with the exploration of only passive linear models of dendritic integration.
The new generation of neural modelers has yet to rediscover the truths
that Rail revealed some 30 years ago.

Active Membrane in Dendrites

The first experimental evidence that dendrites might contain sites of active
membrane came from the studies of Eccles et al. (1958) on chromatolytic
motoneurons and those of Spencer and Kandel (1961) on hot spots in
pyramidal celi dendrites in the hippocampus. When in 1962 we began to
construct our computational model of the mitral cell, it was clear to us
that it would be essential to explore the functional consequences of active
dendritic membrane. Our simulations therefore included either passive or
active membrane in the mitral cell dendrites; the active properties could
have either "hot" or "cold" kinetics. As reported in the initial abstract
(Rall and Shepherd 1965) and the full papers (Rail et al. 1966; Rall and
Shepherd 1968; see this volume), dendrites with active membrane facili-
tated antidromic invasion to the extent that we could rule out fast kinetics
in large dendrites, because the near-simultaneous invasion would not pro-
duce sufficient longitudinal current flows to give the large amplitude ex-
tracellular field potentials that had been recorded experimentally. We
concluded that the simulations were consistent with either antidromic
invasion of thin dendrites by a relatively slowly propagating impulse, or
passive invasion of relatively large dendrites (Rail and Shepherd 1968).

We also modeled active properties in the granule cell. For these we used
only weakly active membrane, because active properties in the granule ceil
dendritic tree promoted rapid spread that, as in the mitral cell, reduced the
field potential amplitudes unacceptably. A satisfactory result for the case
of weakly active dendritic membrane could be obtained only if synaptic
inhibition was applied to the deep granule cell processes at the same time
as synaptic excitation was applied to the superficial processes. This was
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probably the first computational neuronal model to contain all three basic
functional properties: active membrane and both synaptic excitation and
inhibition. Note that the model was heavily constrained in multiple ways:
the anatomy of the granule cells; the intracellular and extracellular unit
recordings; the time course of inhibitory synaptic output; the ratio of ex-
tracellular to intracellular current paths; and the time course, amplitude,
and depths of the extracellular field potentials. We concluded that the brief
repetitìve impulse discharges that can be recorded from granule cells likely
are localized to their cell bodies, and that the spread of activity within the
granule cell dendritic tree and the activation of the output synapses from
the granule cell spines probably do not involve a prominent role for active
membrane. Subsequent studies of granule cell responses have been consis-
tent with that interpretation, without, of course, ruling out that weak
voltage-sensitive inward currents could contribute to inhibitory synaptic
output, as originally suggested.

Given the explicit incorporation of active membrane properties in the
models of both mitral and granule cells, it seems past time to recognize
that Rall was a pioneer in analyzing active properties in compartmental
models of neuronal dendrites.

Functional Implications of Active Dendrites

In the same paper in which he first mentioned the idea of changes in spine
stem resistance underlying learning (RaIl 1970), RaIl also commented on
the more general functional implications of active membrane in dendrites
in relation to information processing:

Active dendritic membrane could result in unusual logical properties that have
interested a number of people (Lorente de Nó and Condouris, 1959; Richard
FitzHugh, personal communication, also Arshavskii et al., 1965). The notion is
that the excitation initiated in a dendritic branchlet will propagate centripetally
beyond each point of bifurcation only if it is aided at the right moment by excita-
tion from several sibling branches along the way, and provided also that it does
not meet inhibition along the way. Such multiple possibilities of success or failure,
at many different points of bifurcation, could lead to elaborate sets of contingent
probabilities which would provide a single neuron (if it has suitable input patterns
over the dendritic branches) with a very large logical capacity.

Rail then went on to define some of the rules for these types of
interactions:

Even for passive dendritic membrane, localized dendritic synaptic excitation has
the property of being especially vulnerable to synaptic inhibitory conductance
which is delivered to the same dendritic location: the larger the amplitude of the
uninhibited local membrane depolarization, the larger is the reduction produced
by a locally superimposed inhibitory conductance. This is very nonlinear in that
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the EPSP amplitude is reduced by much more than the amplitude of a control
IPSP (which may be negligible). In contrast, when the inhibitory input is delivered
to a different dendritic tree, the effect at the soma is simply a linear summation of
the separate EPSP and IPSP observable at the soma; see Rail et al. (1967, pp.
1184 1185) for examples of both kinds. Synaptic inhibition delivered to the soma
is effective against all excitatory inputs, provided the timing is correct, while
synaptic inhibition delivered to a dendritic branch is selectively effective against
excitatory inputs to the same branch.

These two comments taken together essentially set forth an agenda for
specifying the rules of synaptic interaction in dendrites and relating them
to the kinds of logical operations that they would support with the aid of
active dendritic membrane properties. Much of this agenda was to be
realized in the work of Christof Koch and Tomaso Poggio and their col-
leagues in the following decade, through detailed delineation of on-line
excitatory and inhibitory synaptic actions, characterization of shunting
versus summating synaptic inhibition (which constitute two extremes
along the continuum of interactions Rall had explored), and modeling of
explicit logic operations arising from excitatory and inhibitory synaptic
interactions within a dendritic tree (Koch et al., 1982; see also Segev
and Parnas 1983). The relevance of these properties for network models
of cortical circuits underlying cognitive functions was addressed by
Sejnowski, Koch, and Churchland (1988).

Active Dendritic Spines

The opportunity to explore more fully the question of the membrane
properties of dendritic membrane came with the use of more powerful and
flexible computational modeling programs. I had intended to pursue this
question with Wil, but the problem with his cataracts made this impossi-
ble. I therefore began the collaboration with Robert Brayton that resulted
in the more detailed simulation of the reciprocal dendrodendritic synaptic
circuit (Shepherd and Brayton 1979). This simulation placed the Hodgkin-
Huxley model in a proximal dendritic compartment of the mitral cell; the
rest of the membrane in the mitral and granule cell dendritic models was
passive.

By 1980 we had begun to explore the functional consequences of place-
ment of active membrane at other dendritic sites in this model, including
the granule cell spines. We also began to adapt our model to the case of
the exclusively postsynaptic spines of cortical pyramidal cells, to deal with
the question of whether active membrane would help to boost the re-
sponses of dendrites and spines in the most distal parts of the tree. We
were especially interested in the case of pyramidal neurons in the olfactory
cortex, where it is clear that the specific sensory information is conveyed
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from the input fibers (of the lateral olfactory tract) onto spines on the most
distal dendrites. This placement is of course counterintuitive and against
the common belief, still widely held, that synaptic inputs must be directed
to the celi body of a neuron in order to transmit specific information in a
rapid manner, distal synaptic inputs being believed to convey only slow
background modulation. It should be clear from the previous discussion
that we never believed that this could be a valid rule.

About this time John Miller joined Wil's laboratory to further the
studies of dendritic integration. John and I met at a Winter Brain Confer-
ence, and I told him about the advantages of ASTAP for neural modeling.
However, I soon learned, to my chagrin, that ASTA P was a proprietary
IBM product that was not available for general use. This was a distinct
disappointment, because I had become convinced that the use of large
general-purpose circuit simulators, such as ASTAP, was the most effective
way to make neural modeling more accessible for incorporation into ex-
perimental laboratories for parallel exploration of neuronal properties, in
the same way that Wi! had begun to develop the compartmental approach
by adapting the general model of his colleague Mones Berman. However,
in our 1979 paper Brayton had suggested that other more generally avail-
able circuit simulation programs such as SPICE could also be adapted
for this purpose, so we recommended that John and Wil look into that.
Doron Lancet was with me at the time, and he had several interactions
with John in setting this up. Also, Wil and John came to IBM so that
Brayton and I could demonstrate how ASTAP worked. We pointed out
the advantage of being able to adjust the Hodkin-Huxley parameters from
trial to trial, which was especially useful for exploring the values appropri-
ate for active properties of thin dendritic branch!ets and spines.

By 1984 John and Wil had successfully adapted SPICE for carrying out
simulations of active properties of a single dendritic spine and the possible
contribution to boosting the response of the spine to an excitatory
synaptic input. A number of different lines of work then came to a head.
Don Perkel and his son David had independently become interested in the
same problem, using the neural modeling program MANUEL that Don
had developed. The two groups were in touch with each other and agreed
to submit companion papers to Science, consisting of Perkel and Perkel
1985 and the paper reproduced here (Miller et al. 1985). They were re-
jected as being of insufficient interest to a general audience, and were
subsequently published in Brain Research. Brayton and I meanwhile had
gotten our model of active dendritic spines going. We wanted especially to
disprove the received wisdom that distal spines could mediate only slow
background modulation, and chose first to show that interactions between
active spines could provide for a kind of saltatory conduction that would
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convey distal active responses toward the soma. We kept in close touch
with Wil and his team at NIH, which by then included not only John
Miller but also John Rinzel and ¡dan Segev. We decided to submit a joint
paper on our initial finding on the active boosting model; it was first
rejected by Nature as being of insufficient interest but subsequently was
sponsored by Ed Evarts in the Proceedings of the National Academy and
accepted (Shepherd et al. 1985).

I have summarized this series of events to indicate that Wil not only
pointed to the new era of investigation of active properties of dendrites
with his earlier speculations, but he was also a driving force behind
developing the first computational models that demonstrated these
properties.

During this time Barry Bunow at NIH was working on adapting
SPICE for more effective modeling of the nonlinear properties of the
Hodgkin-Huxley equations. The problem was that the equations had to
be simulated by a polynomial expansion, which made it cumbersome to
manipulate the parameters. A great deal of effort went into this study
(Bunow et al. 1985), and SPICE in this version played an important role
during the latter part of the decade in providing a means for modeling
complex dendritic systems. The studies of Robert Burke, involving de-
tailed reconstructions of motoneuron dendritic trees, were among the best
known (Fleshman et al. 1988). During this period Peter Guthrie wrote a
version of SPICE specifically adapted for neuronal simulation, called
NEUROS. At about this time Michael Hines was developing the program
that became NEURON (Hines 1984, 1989), and shortly thereafter Matt
Wilson and Jim Bower developed GENESIS (1989).

After developing the single active spine model, Wil teamed with ¡dan
Segev to explore the functional implications of groups of active spines.
This was again a natural step in going from the level of a single functional
unit to the level of multiple units. They analyzed the rules governing the
coincident activation of different subpopulations of active spines located
on different dendritic branches (Rail and Segev 1987). These rules will
likely govern the ways that subpopulations of spines control both the
immediate responses of a neuron to synaptic inputs as well as the activity-
dependent responses under conditions of long-term potentiation or de-
pression. Rall has conceived of the properties governing spine potency
very broadly; thus, the nonlinearities of spine responses may be due to
active conductances in the spine heads, spine necks, or spine bases, as
modeled in these studies; to changes in Ca + + concentration; to meta-
bolic changes as might be mediated by protein kinases; and to effects
mediated through the genome such as by immediate early genes. The
importance of Rall's studies lies not only in the exploration of specifically
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electrical changes contributing to spine functions but also in the provision
of a broader focus on nonlinear changes in synaptic potency by any or all
of these mechanisms that endow the neuron with increased computational
capacity, as indicated in the passages cited earlier. When these mecha-
nisms can be correlated with specific logical or computational operations,
we will have begun to solve one of the deepest and most perplexing prob-
lems in neuroscience: the specific contributions that neuronal dendrites
make to brain functions.
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Supplemental Comments by John Miller

The paper on synaptic amplification by active membrane in dendritic
spines that I authored with Wil and John Rinzel was cathartic, in several
senses. From a scientific standpoint, it finally got down on paper some
speculative ideas that Wil and John had been thinking about for a long
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time: that is, that spines might act as "current augmentation devices"
to boost synaptic efficacy, if there were voltage-dependent conductance
channels in the spine heads and the biophysical parameters of the spines
were within appropriate ranges.

From a personal standpoint, the whole project represented a culmina-
tion of my education about neuronal integration that had begun in my
first year of grad school. When asked by my advisor (Al Selverston) what
I wanted to do with myself for the next few years, I replied that I wanted
to "learn how nerve cells worked." His response was, "In that case, you'd
better go read everything Rall has ever written." Having already glanced
through the pile of abstruse-looking reprints by Rall that he was collect-
ing, it was as if he had just whacked me upside the head with a giant
integral sign ... one of those French ones with the big knobs on each end.
Then he added, "You may as well read all of Rinzel's, too." Whack! Dou-
ble integral. As it turned out, it was excellent advice, and I (and numerous
others, I imagine) have repeated it many times over.

In reading through Wil's work and other related papers, many of which
have been mentioned in the other notes in this volume, I became particu-
larly intrigued by the few published passages about spines. The papers in
Excitatory Synaptic Mechanisms by Diamond, Gray, and Yasargil and by
Wil, noted in Gordon's preceding comments, attracted considerable atten-
tion, and I remember discussing spines at great length in one of our jour-
nal clubs. I was working in a lab that focused on the generation of motor
patterns by neurons known to have voltage-dependent conductances out
in the dendritic membrane, and I was drawn to speculations about how
the functional characteristics of spines might change if they, too, had
active membrane on their heads. (I also remember Selverston's astute
tounge-in-cheek hypothesis: "Yeah, spines probably evolved to keep the
neurons stuck together better so they wouldn't fall out of the cortex
sort of like neuro-velcro.") Wil and John Rinzel visited Al's lab sometime
later (1976) and I remember asking them about any thoughts they may
have had about active membrane on spines. As I remember, Wil then and
there anticipated the "gestalt" of most results we were later to obtain
through our simulations, by either reconstructing his previous thoughts or
realizing them on the spot.

Since I still had not quite figured out how nerve cells worked by the
completion of my thesis work, Selverston thought it would be a good idea
for me to do a postdoc in Rail and Rinzel's group. Many experimentalists
at the time were realizing the necessity of transforming our qualitative
hypotheses concerning synaptic integration into a more quantitative for-
mat and were inspired by the spectacular advances Pete Getting had made
toward understanding one particular central pattern generator network
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using the compartmental modeling software developed by Don Perkel
and colleagues. I had always been impressed by Wil's use of practical,
well-thought-out simulations in his studies of complex neurons and sub-
systems to complement his analytical derivations in the "simpler" cases,
and I thought that doing a postdoc with Wi! would offer a unique oppor-
tunity to learn more about both analytical and compartmental modeling
approaches.

Our interest in spines was actually very far from our minds for most of
my stay at NIH but was brought to the surface again by several excellent
papers on spine morphology, including one by Fifkova and Anderson
(1981) and one by Charlie Wilson and colleagues (1983). Considering a
slew of speculative papers that were appearing in the popular press about
the possible involvement of "twitching" (but electrically passive) spines in
synaptic plasticity, the time seemed ripe for a careful consideration of
the functional implications of active spines. The basic idea of the "active
spine" study was very simple, and our demonstration of the possibility of
synaptic amplification should have come as no surprise.

There were really only two outcomes of the simulations that surprised
us, at least, at the time. The first was the large magnitude of the augmenta-
tion effect that could be acheived within what we thought at the time to be
the most reasonable estimates for spine dimensions: the net charge de-
livered to the dendrite at the base of an active spine could be as much as
an order of magnitude greater than the charge delivered from a passive
spine of the same dimensions. The second surprise was the extreme sensi-
tivity of the augmentation effect to small variations in biophysical param-
eters of the spines: for any particular configuration of parameters deter-
mining the dendrite input resistance, spine head input resistance, and volt-
age-dependent conductance kinetics, there existed an extremely narrow
"operating range" of spine stem resistance within which the synaptic aug-
mentation could result. Thus, the degree of augmentation could be sub-
stantial, and could possibly be modulated dynamically over a wide range
by fine "adjustments" of (for example) spine neck diameter.

Several other people including (at least) Gordon Shepherd, Idan Segev,
Don Perkel, and Dave Perkel had been thinking along identical lines and
had all arrived at essentially identical conclusions by the time we had
completed our illustrative simulations. Wil, John, and I were aware of
Gordon's thoughts; in fact, he had been extremely generous and encourag-
ing to our pursuit of these simulations, and we discussed the ongoing work
regularly. Indeed, the studies really grew out of the work on spines that
Gordon had already done with Robert Brayton. As well as getting us on
the right track conceptually, Gordon also steered us toward the use of
large general-purpose network simulation programs such as SPICE.
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When we were well into our own simulations, Wil, John, and I discovered
that Idan had begun simulations very similar to ours. Idan and Wil went
on to explore the functional significance of active spines in much greater
detail, and they continue to pursue the functional possibilities.

After our studies were completed, we also discovered that Don and
David Perkel had carried out essentially identical simulation studies. We
did not find this out until the accidental scheduling of back-to-back pre-
sentations at a Neuroscience meeting symposium. It was this surprise and
realization of mutual interest that led us to publish the two papers back-
to-back (Perkel and Perkel 1985). This has always been an essential aspect
of Wil's character: he is an innate "collaborator," not a "competitor." In
this respect, the lessons he teaches us go far beyond dendritic electrotonus.
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Wilfrid Rail

Dr. Rail discussed a possible role of dendritic spines in neuronal plasticity.
Dendritic spines were first reported by Ramón y Cajal in 1888 (cf. The
Scheibels, 1968). The ìmportance of dendritic spines as sites for synaptic
inputs was first noted in 1897 by Berkley (1897). He observed that if a cell
was sensitive to all other neighboring cells over its surface there would be
chaos, that it was fortunate that the cells were covered with glia, that only
the spines stuck out from the gua, and that only the spines would receive
inputs, thereby avoiding chaos. In 1952, Chang made the additional ob-
servation that, because of their long thin stems, dendritic spines would
provide high electrical resistance; this resistance would attenuate the effect
of the synapse on the cell (Chang, 1952). He argued that because of this
attenuation, a cell could be fired only by a large number of such inputs.

Synaptic inputs to cortical pyramidal cells are mostly by these spines. In
1959 Gray demonstrated synapses on the spines by electronmicroscopy
(Gray, 1959). Subsequent studies were made by Colonnier (1968) and oth-
ers (cf. The Scheibels, 1968). Dìamond, Gray and colleagues (1970) pointed
out that 95% of synaptic input to pyramidal cells is via the spines.

What then is the function of the spines? Presumably they must do some-
thing more than simply receive the synaptic input. It cannot be argued
that the spines are there to increase receptive surface area since there
is considerable surface area that is not occupied by synapses (cf. The
Scheibels, 1968). With regard to large spine stem resistance, why would
attenuation of synaptic potency be desirable? Some have postulated that
this large resistance might ensure linear summation of synaptic effects by
reducing the coupling between the synapses. One difficulty with this pos-
tulate is that extreme amounts of attenuation would be needed to get
linear summation. A further possibility is that the dendritic spines could
be used to provide a way of changing the relative contributions of different
synapses. This could underlie or be a part of neuronal plasticity. This
possibility, that spine stem resistance could be used to adjust the relative
potency of different synapses on the cell, can be examined biophysically to
see if it seems reasonable.

Consider the resistance to electric current flow through a spine stem
(Figure 1), from the spine head to its point of attachment on a dendrite.
This spine stem resistance is designated R55. With synaptic membrane
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Figure 2
Variations of spine stems and their resistance values. (From Peters and Kaiserman-Abramof,
1970.)

depolarization at the spine head, intracellular current will flow through
the spine stem in proportion to the potential difference between the
voltage SH at the spine head and the voltage V81 at the spine base. The
potential difference divided by the spine stem resistance gives us the spine
stem current Iss as indicated in Figure 1. For a steady depolarization at
the spine head, becomes a steady current which also flows from the
spine stem into what is known as the branch input resistance RBI of the
cell. This steady current is thus equal to several equivalent ratios:

T
VBI VSH - VBI VSH

'SS = - R5 - R55 + RBI

From these ratio and from Figure 1, it can be seen that if the spine stem
resistance is equal to the branch input resistance, the voltage that is gener-
ated out at the synapse would be divided equally between the spine stem
resistance and branch input resistance. That is, the voltage V81, at the
branch would be half of that, 5H, which is generated at the spine head.
More generally, but still for steady states, the fraction of SH delivered to
the dendrite (i.e., the ratio VBI/VSH) depends upon the resistance ratio,
RSS/RBI, as shown in the lower half of Figure 1. The sensitivity (or adjust-
ment) of this relation can be seen to be greatest over the middle range. Can
this be used as an operating range for adjusting synaptic potency?

Copyrighted Material



415 Dendritic Spines, Synaptic Potency and Neuronal Plasticity

What sort of value should be ascribed to the spine stem resistance?
Figure 2 shows us why one must consider more than just one case. Peters
and Kaiserman-Abramof (1970) classified the dendritic spines according
to their various morphologies: stubby, thin, etc., and it can be seen that
there is considerable variety in the dimensions and morphology (Figure 2).

Spine stem resistances can be estimated for these morphological types.
Using the specific resistivity noted in Figure 2, we estimated the following
ranges of values: for the stubby spines about 0.1 to 1 megohm, for the very
thin spines about 10 to 1000 megohms, and for the mushroom shaped
spines still other values. Jones and Powell (Jones and Powell, 1969; cf
Peters and Kaiserman-Abramof, 1970) noted that long thin spines are
more frequent at distal dendritic locations. Near the cell body and the base
of the apical dendrite they find more stubby spines. It seems strange that
the long thin spine (which would be expected to cause more attenuation)
is usually found at distal dendritic locations (which also cause attenua-
tion). This seems paradoxical. Why should the synapse be doubly handi-
capped by such double attenuation?

Looking at the relationship of the spine stem resistance to the input
resistance may provide a clue to this paradox. There seems to be an im-
pedance matching involved here. If one takes seriously the hypothesis that
the spines may be involved in adjusting the relative potency of synapses,
then the lower half of Figure 1 provides a possible resolution of this appar-
ent paradox. This graph indicates that as long as the spine stem resistance
is no more than one per cent of the input resistance, the spine stem poses
no disadvantage to synaptic effectiveness. Also, if the spine stem were used
to adjust synaptic potency, one might expect the ratio Rss/RBI to lie in the
range from 0.1 to 10, which could be regarded as an optimal operating
range for such adjustment.

In order to estimate RSS/RBI, we must have estimates of branch input
resistance as well as spine stem resistance. A theoretical method of esti-
mating branch input resistance has recently been published in collabora-
tion with John Rinzel (Rall and Rinzel, 1973). This paper provides full
details of assumptions and methods, and many examples are tabulated in
Table I (cf. Rall and Rinzel, 1973). There, the branch input resistance,
RBI, is expressed relative to the more familiar neuron (at the soma) input
resistance, RN, for many different amounts of branching and lengths of
branches. For a distal branch of a pyramidal cell, one might have RBI/

RN 100, and for a typical value of 10 megohms for RN, this would imply
iO megohms for RBI.

Also, when computations were generalized from simple steady state
considerations to transient synaptic potentials, such as those illustrated
in Figure 3 (top), Rall and Rinzel found that when the transient peak
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amplitudes were plotted against RSS/RBI as in Figure 3 (bottom), the results
(note log amplitude scale) were qualitatively similar to the steady state
results of Figure 1. The attenuation from peak V5H to peak YSOMA is 500 or
more, but that still can imply an EPSP amplitude of about 0.15 mV at the
soma. It is important to notice the "flat maximum" at the soma for RSS/RBI,
from 0.01 to 0.1; this means that adjusting the spine stem resistance to
values smaller than one tenth of the branch input resistance would gain
nothing in synaptic potency.

These results for the peak at the soma have been replotted in Figure 4.
Peak V at the soma is plotted relative to its maximum value for that
particular dendritic location, and this is plotted on an arithmetric scale (in
contrast with the log scale of Figure 3). This also shows the flat maximum
for RSS/RBI from 0.01 to 0.1, and the presumed optimal range, from 0.1 to
2 or 3, for adjusting the potency at the soma for the synapse on a spine at
that particular dendritic location.

If we think in term of evolution, and conjecture that there is survival
value in keeping the relatìve potency of many synapses adjustable, then
one might expect to find that actual RSS/RBI values lie in this "optimal
operating range". The lower half of Figure 4 summarizes the results of our
order of magnitude estimates for the spine stem types most commonly
found at three locations: distal dendritic, mid-dendritic, and somatic or
proximal dendritic. The overall range of l0 to 1O ohms for R55 of thin
spines is separated into 108 to iO ohms for the longer-thinner ones most
frequent at distal locations, and iO to 108 ohms for those most frequent
at mid-dendritic locations. Using these estimates, together with the branch
input resistance estimates noted earlier for a pyramidal cell, we see that the
ratio RSS/RB! does seem to lie in this expected range for both the distal and
mid-dendritic locations, whereas the stubby spines at proximal locations
would seem to lie in the flat maximum region of maximum potency with-
out flexibility.

It should be emphasized that this agreement with prediction is based
upon rough order of magnitude calculations. It is not presented as a proof
that our conjecture is correct, but rather as an approximate biophysical
test that suggests plausibility and indicates that this possibility cannot yet
be ruled out. The design principle involved here is to sacrifice maximum
power in order to gain flexibility and control. Adjustability of potency
means either increase or decrease relative to other synapses. Thus we
think of delicate adjustments of the relative weights (potency) of many
different synapses to any given neuron. We think of these changes as

Figure 3
Summary of the effects of brief EPSP time courses based on computations by Rìnzei and
Rail. (unpublished)
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responsible for changes in dynamic patterns of activity in assemblies of
neurons organized with convergent and divergent connective overlaps.

We do not pretend to have explained how the spine stem changes would
be controlled. Also, we emphasize that other possible ways of adjusting
synaptic potent should not be dismissed. Some other possibilities are: (a)
the synaptic contact area could be increased or decreased, (b) the amount
of chemical transmitter released could change, (c) the duration of synaptic
action could be changed, (d) the caliber of the dendritic branch or its entire
dendritic tree could change RBi. It is noteworthy that a change in the
duration would be especially valuable if the depolarization at the spine
head is essentially maximal. A change in a dendritic branch or dendritic
tree has some interesting properties regarding synaptic specificity (Rall,
1962) which may relate to some of Dr. Woody's earlier remarks concern-
ing specificity. If just one spine is changed, there is only a change in the
weight of that particular synapse. If the weight of the dendritic tree is
changed, there is a change in the weight of all the synapses that end on
that tree, but this is still more specific than changing the threshold of
the entire neuron. One could conceive of various conditioning or plas-
ticity situations in which either or any of the above could be most
advantageous.
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The suspected functional rote of dendritic spines as loci of neuronal plasticity (possibly memory and learning) is greatly enriched
when active membrane properties are assumed at the spine head. Computations with reasonable electrical and structural parameter
values (corresponding toan optimal range for spine stem resistance) show that an active spine head membrane can provide very signif-
icant synaptic amplificatìon and also strongly non-linear properties that could modulate the integration of input from many afferent
source s,

Many synaptic contacts between neurons are lo-
cated on dendritic spines. The possible functional sig-
nificance of these spïnes has excited the interest of
theoretical and experimental neuroscientists, Based
upon the assumption that spine head membrane is
passive, previous studies concluded that the efficacy
of a synapse onto a spine head would be less than or
equal to the efficacy of an identical synapse directly
Onto the parent' dendrite2.4.8.'2.'5-21.24.32, However,
for an active spine head membrane, early steady state
considerations suggested that a spine might act as a
synaptic amplifier8. Here we present transient re-
sponses computed for transient synaptic conductance
input. We address two questions: (1) What would be
the difference in efficacy between a synapse onto a

passive spine and onto an active spine? and (2) How
would the efficacy of a synapse Onto an active spine
depend upon structural and electrical parameters of
the spine? Our transient calculations demonstrate
that: (1) the efficacy of a synapse onto an active spine
could, indeed, be much greater than the efficacy of an
identical synapse onto the parent dendrite or Onto a
passive spine; and (2) such amplification would occur
only for certain ranges of spine parameters. A maxi-
mal efficacy could be attained, corresponding to a
narrow optimal range of these parameters.
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Calculations were performed using a commonly
available program called SPICE4 running on an IBM
370 computer. SPICE simulates the behavior of com-
plex circuits of electrical components, and can calcu-
late the non-linear, transient responses of circuits to
time- and voltage-dependent conductance changes.
The methods for modeling the structural and electri-
cal properties of spines and dendrites, including the
formulation of the action potential kinetics of active
membrane7.23, were essentially those described by
Shepherd and Brayton27. Numerical accuracy was
tested ìn several cases for which analytical solutions
could be derived; deviations never exceeded 2%.
Here, the spine head is assumed to be isopotential
and the spine stem is reduced to a lumped resistance
connecting the spine head to the dendrite, repre-
sented as a passive membrane cylinder of infinite
length. Parameters specifying the morphology of the
spine and dendrite were chosen to fall within the
range of anatomical measurements reported in the li-
teraturel,S,S,6,9,IO,t3,tS,26,33 The values for these par-
ameters. as well as the electrical, synaptic and action-
potential conductance parameters, are listed in

Table I.
In order to compare the functional properties of an

active and a passive spine, the responses of each to
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TABLE I

Parameters for computations

Resting membrane resistivity
Cytoplasmic resistivity
Membrane capacitance
Dendrite diameter
Dendrite length
Spine head diameter
Spine stem resistance

Synaptic conductance transient
Time course proportional to te'
Peak conductance

5000 0cm2
100 0cm

t pF/cm'
1pm
infinite
0.75 pm
0,200,400, 800MO
(see figure legends)

a = 50, r = 5 ms
025 and 0.50 nS
(see figure legends)
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identical synaptic inputs were computed. The results
are presented graphically in Fig. 1, for two synaptic
conductance amplitudes. For the smaller synaptic in-
put the computed excitatory postsynaptic potentials
(EPSPs) were all qualitatively similar and remained
in the linear regime (dashed curves in all panels). For

both passive and active cases, the EPSP in the den-
drite (spine base) was substantially lower in ampli-
tude than the EPSP in the spine head (note difference
in voltage scales). This voltage attenuation from
head to base corresponds to the I X R drop across
the relatively large resistance presented by the spine
stem.

When the amount of the synaptic conductance was
doubled, the EPSPs shown as solid lines were ob-
tained. tn the passive case, the EPSP amplitudes are
nearly doubled and the EPSP shapes are qualitatively
similar to the dashed curves. However, the solid
curves in the active case are qualitatively different,
because the EPSP in the spine head exceeded the
threshold for initiation of regenerative currents by
the active spine head membrane. These regenerative

Fig. 1. Spines with active heads can greatly augment synaptic efficacy. Calculations were performed using a model representing a
spine on a dendrite cylinder, shown diagramatically at the left. All model parameters are listed in Table I. Directly above the spine di-
agram are the time courses of the two synaptic conductances used: the dashed curve has a peak amplitude of 0.25 nS; the solid curie
has peak conductance of 0.5 nS. The dashed and solid curves in the enclosed panels are the corresponding voltage transients (EPSP5)
resulting from these two conductance transients, computed at two different locations (spine head or spine base) for two different types
of spine head meffibrane (passive or active). The insets in the two left panels (passive spine membrane) are enlarged views of the areas
enclosed with dashed boxes. Note that the 0.5 nS conductance transient is a supralhreshold for action potential generation in the active
head (upper right panel), resulting in a substantial augmentation of the current entering the spine. This results in a much-enhanced
EPSP at the base of the active spine (lower right panel).

PASSIVE ACTIVE

Parameter Valse

Action potential (3 variable model)'23.2'
Kinetic coefficients k1 = 105, k2 = 6 X 10.

k3 = 25, k4 = 0.2,
k5 = 1,/c3 = 0.01,
k, = 5.

Resulting maximal inward conductance
(loran isolated active spine head) 16 nS

Reversal potential for active inward
cuitent (relative to rest) 125 mV
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Currents have several consequences that can be de-
scribed as synaptic amplification or augmentation
relative to the passive case: (1) much more charge
enters the spine head membrane, resulting in a spine
head EPSP having a much larger amplitude and dura-
tion; and (2) the charge delivered through the spine
stem into the dendrite is substantially larger, result-
ing in an EPSP (at the spine base) that is augmented
in both amplitude and duration. The peak amplitude
of the EPSP at the base of the active spine was 6.5
times greater than at the base of the passive spine.
The net charge delivered to the dendrite by the active
spine (proportional to the area under the EPSP at the
spine base) increased 10-fold over that delivered by
the passive spine (for time duration shown in Fig. 1).
Thus, by either of these two criteria, synaptic efficacy
was substantially increased by incorporation of active
properties into the spine head membrane.

Previous theoretical studies have shown that
changes in the structural and electrical parameters of

loo
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passive spines could change synaptic efficacy8.'2.
16-21,24,32 An 'operating range' was identified within
which synaptic efficacy could be increased or de-
creased - relative to an 'operating point' - by de-
creasing or increasing the spine stem resistance. (An
increase in stem resistance would result, for exam-
ple, from decreasing stem diameter, increasing stem
length, or partially occluding the stem.) It was sug-
gested that such changes could contribute to plastici-
ty in central nervous systems8.'6-21.24. Subsequently,
significant activity-dependent changes in morpholog-
ical parameters of spines have been reported'.3.5.6.'3.
Here we extend our study of the dependence of syn-
aptic efficacy upon stem resistance to the case of an
active spine head. The transient computations, illus-
trated by Fig. 2, show the effect of changing spine
stem resistance, when the spine head and dendritic
parameters remain unchanged. The amplitude and
time course of the synaptic conductance (leftmost
panel) was equal to the larger input (solid curve)

SPINE'
HEAD

ms 5 0 ms 5
Fig. 2. There is an optimal stem resistance for maximal synaptic efficacy. The diagram at the left represents the spine model. AU struc-
turai and electrical parameters of the spine and dendrite except spine stem resistance were as in Fig. 1. Variations in stem resistance
are represented on the diagram as different spine stem diameters, although changes in length and partial occlusion could also change
this resistance. Dotted curves are for the case of zero stem resistance (i.e. synapse directly on the dendrite). Resistance values of 200,
400 and 800 MD are represented with short-dashed, solid, and long-dashed lines, respectively (i.e. the thinner the stem, the higher the
resistance). Directly above the spine diagram is the time course of the synaptic conductance used for all calculations; peak conduc-
tance was 0.5 nS. In each of the 4 enclosed panels are the voltage transient (EPSPs) corresponding to the 4 spine stem resistance
values. The EPSPs were calculated at two different locations (spine head or spine base) for two different types of spine head mem-
brane (passive or active). The insets in the two left panels (passive spine membrane) are enlarged views of the areas enclosed with
dashed boxes. Note that the 400 MD stem results in a suprathreshold response for the active head (solid curve, upper right), yielding
the largest EPSP at the base of the spine (solid curve, lower right). Stems of either higher or lower resistances give lower amplitude
EPSPs at the base.

PASSIVE ACTIVE

SPINE
BASE

/ \
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used in Fig. 1. The solid curves in Fig. 2 are the EPSPs
calculated for a stem resistance of 400 MO. (These
curves are identical to the solid curves of Fig. 1.)
Doubling spine stem resistance yielded the curves
shown as long dashes in Fig. 2; halving spine stem re-
sistance yielded the curves shown as short dashes in
Fig. 2. The dotted curves are for the limiting case of
zero spine stem resistance, for which there can be no
difference of potential between spine head and spine
base. (The dotted curves in the upper and lower pan-
els are identical EPSPs plotted to different voltage
scales.) These dotted curves represent the reference
case, corresponding to a synapse placed directly on
the dendrite.

For the passive spine, comparison of the upper and
lower panels of Fig. 2 shows the expected effects.
For successive increases in spine stem resistance, the
EPSP amplitude in the spine head (upper panel)
grows successively larger than the (dotted) reference
EPSP, while the EPSP amplitude at the spine base
(lower panel) becomes successively smaller. The dif-
ference between these upper and lower EPSPs corre-
sponds to the I X R drop of voltage for current flow-
ing through the spine stem. Thus, for a passive spine,
the effect of these increases in spine stem resistance
is to reduce the EPSP amplitude and area at the spine
base, and hence the efficacy of the synapse.

For the active spine, the computed results at the
right side of Fig. 2 show more complicated (very non-
linear) effects for identical increases in spine stem re-
sistance. For an increase from O to 200 MO, the in-
creased depolarization in the spine head does not
reach the threshold for generation of an action poten-
tial; however, some regenerative response is re-
vealed by the augmentation of both amplitude and
duration of the EPSP (short dashes) at the base of the
active spine, compared with the passive case. Dou-
bling the spine stem resistance to 400 MO has a very
dramatic effect (solid curves). In this case, the spine
head depolarization exceeds threshold, resulting in a
substantial regenerative augmentation of voltage
amplitude and duration in the spine head, and pro-
ducing a large EPSP at the spine base. Note that a
further doubling of spine stem resistance to 800 MO
causes the spine head membrane to reach threshold
earlier. Even though the resulting action potential
has a larger peak amplitude, its shorter latency and
duration result in a smaller area under the curve.
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Less charge is delivered through the spine stem to the
dendrite, and the resulting EPSP at the spine base
has a smaller amplitude and area. Because further in-
crease of spine stem resistance causes further reduc-
tion of the EPSP at the spine base, it follows that the
optimal (maximal) EPSP occurs for an intermediate
spine stem resistance value (around 400 MO in this
example). Because this optimum corresponds to con-
ditions where the spine head depolarization just ex-
ceeds threshold, it is clear that these optimal condi-
tions must correspond also to an intermediate value
of synaptic conductance amplitude; that is, optimal
efficacy occurs with respect to both synaptic conduc-
tance and spine stem resistance. The idea of such an
optimum was briefly noted in the early steady state
considerations of Jack et al.8; transient computations
leading to similar conclusions have recently been
done independently also by Perkel and Perkel'4.

An intuitive understanding of how synaptic effica-
cy is decreased by larger values of spine stem resis-
tance depends upon recognizing the effect of voltage
saturation in the spine head. The reversal potential
sets an upper limit for the spine head EPSP amplitude
and for the I X R voltage drop from spine head to
spine base. Thus when R is increased while the I X R
drop remains almost unchanged, the value of I, the
spine stem current, must decrease almost inversely
with R. This decreased current delivers less charge to
the dendrite and produces a smaller EPSP there.
Note that this intuitive explanation holds also for the
effect of large spine stem resistance values upon a
passive spine; this applies to the early steady state
and transient results of RaIl and Rinzel'7-21.24, and
Jack et al.8, and has also been recognized in two re-
cent analyses of passive spines'2.32. Negligible de-
pendence of synaptic efficacy upon spine stem resis-
tance results when non-linear voltage (saturation) ef-
fects in the spine head are avoided, either by treating
synaptic input as s current injection", or by keeping
synaptic conductance very small'2.32. The small at-
tenuation reported by Turner and Schwartzkroin3°
resulted from using a small value for the ratio of spine
stem resistance to dendritic input resistance'7.'8.24.

Measurements of the stem resistance in real spines
have not been reported in the literature. Estimates of
stem resistance based upon recently reported ranges
of stem dimensions (assuming a uniform cytoplasmic
resistivity) yield values at the low end of the range
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used in our calculations. For example, an unob-
structed stem 0.1 em in diameter and 1 .0,um in length
would have a resistance of 100 MQ. However as
pointed out by Wilson et al.33, such calculations
would substantially underestimate the true stem resis-
tance. A significant proportion of a spine stem may
be occluded by extensive cytoskeletal structures and
by large membrane-bound vesicles called the spine
apparatus (SA)28.29.3t-33. For example, occlusion of
two-thirds of the volume along half the length of the
above stem would double its resistance, to 200 MO.
The resistance of this partially occluded stem would
then be very sensitive to further changes in diameter
of either the SA or the stem itself. For example, a
13% increase in SA diameter (Or 9% decrease in
stem diameter) would increase stem resistance to 400
MQ. A further increase in SA diameter of only 5%
(or a further stem diameter decrease of 5%) would
increase stem resistance to 800 MQ.

Thus, a dendritic spine could theoretically function
as an EPSP amplifier, if the membrane in its head
were active, and if the stem resistance and other bio-
physical parameters lay within the appropriate rang-
es. The 'gain' of the spine would be variable, and
would be sensitive to small changes in stem resistance

around an optimal value. Also, if such active spines
were placed at distal dendritic locations, the augmen-
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talion produced by the active spine head membrane
could compensate for the disadvantage of distal loca-
tion. Still another kind of augmentation might take
place in distal dendritic arbors. The large local depo-
larizations expected there would spread with negligi-
ble decrement into small branches'9.22.25 and spine
heads8.'''2.27, and those spine heads which have ac-
tive membrane might thus be brought to threshold
without any direct synaptic input (or they might
reach threshold for a synaptic input that would be in-
sufficicnt by itself). If this happens, it might be best
for only some spines to have active membrane, be-
cause the distribution of active and passive spines
would determine the extent to which a chain reaction
of spine firings might occur, resulting iii an all-or-
none, and possible large, composite EPSP (for an ar-
bor or for an entire neuron). All of these possibIlities
have significant functional implications for local in-
teractions, synaptic efficacy and plasticity that merit
continued attention by neurobiologists.
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A APPENDIX: MOTONEURON POPULATION MODELS
FOR INPUT-OUTPUT AND VARIABILITY OF
MONOSYNAPTIC REFLEX
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A.1 Introduction by Julian Jack

Rail, W. (1955a). A statistical theory of monosynaptìc input-output relations.
J. Cell. Comp. Physiol. 46:373-411.

Rail, W. (1955b). Experimental monosynaptic input-output relations in the
mammalian spinal cord. J. Cell. Comp. Physiol. 46:413-437.

Rail, W., and Hunt, C. C. (1956). Analysis of reflex variability in terms of partially
correiated excitability fluctuation in a population of motoneurons. J. Gen. Physiol.
39:397-422.

Not long after Wil Rail decided to shift from physics into biology, he was
attracted to migrate from the United States to New Zealand because John
Eccies, then the leading proponent of the electrical hypotheses of synaptic
excitation and inhibition (Eccles 1945; Brooks and Eccles 1947) offered
him a faculty position (in response to a tentative inquiry from Wil). When
Rail arrived in 1949, relative calm prevailed in the literature with respect
to the ideas about synaptic mechanisms. All the leading players in the field
(Lorente de Nó, Eccles, and Lloyd) agreed that synaptic excitation was a
dual-component phenomenon, with a brief, spatially restricted process
that secured firing of the cell and a more prolonged, general process that
could lower the effective threshold for the first process. These two pro-
cesses were called "detonator action" and "residual facilitation" respec-
tively (Brooks and Eccles [1948] used the terms and ß facilitation). A
representation of their respective time courses is given in figure 1, taken
from a chapter by Lloyd in the sixteenth edition of A Textbook of Physiol-
ogy, edited by J. F. Fulton (1949). The actual mechanisms envisaged were
various, but one possibility was that the "detonator action" might be a
very brief localized process on the nerve cell body, akin to the "local
response" that had been described in peripheral nerve (Hodgkin 1938;
Katz 1947), whereas "residual facilitation" simply reflected the underlying
depolarization ("catelectrotonus") that spread by passive electrical propa-
gation throughout the nerve cell membrane surface.

Although the preceding account may read rather quaintly to younger
neuroscientists, the issues that were being addressed are still very alive
today. The "global" hypothesis of synaptic excitation, in which depolar-
izing effects from all over the cell surface are "collected" at the cell body
initial segment where a decision is made about firing of the cell (Eccles
1957, 1964) has been the dominant account for the motoneurone in the
past 30 years; the principal evidence in favor of this account came with
the advent of intracellular recording from motoneurones (Woodbury and
Patton 1952; Brock, Coombs, and Eccles 1952; Coombs, Eccles, and Fatt
1955a and 1955b; Fuortes, Frank, and Becker 1957). Nevertheless, there
are plenty of suggestions from the experimental literature that regenera-
tive responses and even action potentials may sometimes be generated as
a result of more restricted activity, particularly in the dendrites (Kandel
and Spencer 1961; Llinas et al. 1968; etc.). The purpose of this commentary
is to present an abbreviated account of the development of thinking about
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Figure 1
Schematic diagram of the presumed time course of excitability changes produced by the
action of presynaptic excitatory or inhibitory volleys on spinal cord motoneurones. The
illustration is based on the work of Lloyd and of Brooks and Eccles (from Lloyd 1949).

these issues in the period from 1938 to 1960 and to display the key role
that Rall played ìn bringing quantitative clarity to some of the rather
intuitive thinking that then prevailed.

Lorente de Nó (1938, 1939) argued that his evidence was incompatible
with the assumption that firing threshold for oculomotor neurones could
be given simply by the total number of synaptic knobs activated because
he noted that a large presynaptic volley could be ineffective but a smaller
volley from the same source, when combined with synaptic input from
another source, also subthreshold, could evoke discharge. Similar obser-
vations and conclusions were reported by Lloyd (1945) for spinal cord
motoneurones; Lloyd made this point more quantitative by considering
the relationship between size of the presynaptic input volley and the mag-
nitude of the postsynaptic output (input-output curve). In his doctoral
thesis, completed in 1953 and published in 1955 (RaIl l955a, 1955b), Rall
considered these arguments and pointed out that all the observations were
compatible either with a simple concept of threshold in terms of total
number of knobs activated or as a zonal concept in terms of a certain
number of knobs being activated at a discrete zone on the neurone. "With
either threshold definition, it seems sufficient to assume that the first affer-
ent source distributes knobs fairly evenly over a large motoneurone pool,
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while the second afferent source distributes its knobs preferentially to a
small group of motoneurones within the large pool" (Rail 1955a). The
essence of Rail's point was that one could not necessarily think about the
behavior of a population of neurones as if they were equivalent to a single
"average" neurone. Rail went further and developed a theoretical treat-
ment for the input-output relationship of a neurone population in which
the distribution of synaptic knobs to the neurones of the pool was random
in terms either of individual knobs or of knob clusters. The threshold
criterion for firing of an individual neurone could be defined either in
terms of total number of active knobs, irrespective of location, or as a local
number of knobs active in a discrete area of the neurone. Finally, the
distribution of the threshold value (on either criterion) across the pooi of
motoneurones was also assumed to be random and independent of active
knob distribution.

With these models, Rail was able to predict the expected types of input-
output curves for various vaiues of the theoretical parameters, and in a
companion experimental paper (Rall l955b) he showed that the data for
spinal cord motoneurones was equally compatible with models adopting
either of the two competing threshold criteria. Thus, Rail did not claim to
have disproved the zonal concept of neurone threshold, but he was able to
conclude that the nature of the evidence so far offered was not adequate to
establish it.

The concept of "detonator action" not only contained the idea of re-
stricted spatial location but also of brevity: it was supposed to last about
0.5 msec (Lloyd 1949). As part of his thesis research, Rail also partly
addressed this issue, by modeling the time course as weil as the spatial
summation properties of focal depolarizations on the membrane of a cell
soma (modeled as a sphere). He was able to show that brief, focal depolar-
ization tended to equalize around the soma on the time scale of a micro-
second rather than a millisecond, so that the effect of one such input would
have equalized and become uniform in its efifect over the time scale of the
rising phase of a synaptic potential (Rail 1953, 1955a, p. 403). Thus, the
mechanism of a brief, zonal "detonator action" could not be explained by
the spatiotemporal summation characteristics of passive eiectrotonus, but
this treatment did not exclude some form of "local response" mechanism,
that is, the activation of the voltage-dependent sodium conductance in a
restricted region, generating further inward, depolarizing current without
necessarily securing the firing of an action potential by the cell. Indeed,
this general possibility was left open by Eccies, on the basis of his intra-
cellular studies (see Coombs, Eccies, and Fatt 1955b; Eccles 1957), al-
though subsequently quietly forgotten.
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There also still remained the experimental observations of Brooks and
Eccles (1948) that there were two phases to the "facilitation" curve (see
figure 2). It is interesting that Rail does not discuss this evidence explicitly
in his 1955 papers, perhaps because he was skeptical about the experimen-
tal result. In the experimental paper, he does consider the problems of
interpretation when two different motoneurone pools can both be contrib-
uting to the output measurement; this is certainly the situation that pre-
'ailed in the Brooks and Eccies experiment.

This was not the end of the story. Archie McIntyre had become the
Professor of Physiology in Dunedin in 1952, when Eccles left to become
the foundation Professor of Physiology at the Australian National Uni-
versity in Canberra. McIntyre had close links with Lloyd, having previ-
ously collaborated with him, and he doubtless reported to Lloyd the gist
of Rall's criticisms. The obvious response for those still committed to a
zonal theory of excitation was to study the behavior of individual moto-
neurones, rather than a population. McIntyre went on sabbatical leave to
Lloyd's laboratory at the Rockefeller Institute (as Rockefeller University
then was), where Carlton Hunt was also working. These three workers
produced a series of five papers in volume 38 of the Journal of General
Physiology, which occupied about 100 pages (Lloyd, Hunt, and McIntyre
1955; Lloyd and McIntyre 1955a, 1955b; Hunt 1955a, l955b). With re-
spect to the mechanism of firing of the motoneurone, the most detailed
examination was contained in the final paper of the series (Hunt 1955b), in
which it was concluded that the results "exclude the postsynaptic potential
as the essential step in the normal production of discharge." By this Hunt
meant that the effect he observed "could not result if transmitter potential-
ity resulted from a simple summation of independent knob actions. There
must be an interaction between excitatory synaptic knobs." In another
passage, Hunt also concluded that "transmitter potentiality must decay
considerably within 0.2 to 0.3 insec." Thus, one major conclusion arising
from this work was a reaffirmation of a zonal interaction of brief time
course. Transmitter potentiality (the ability of synaptic input to secure
firing of the cell) was concluded to have the same properties as had earlier
been postulated for "detonator action."

A modern reader of these papers, not steeped in the literature of the
period, would find them difficult to read and would likely dismiss them
because the conclusions outlined here have not survived. This would be
a mistake. These five papers, and the subsequent paper in which Rall
was involved (Rail and Hunt 1956) remain important, not because they
reached the aforementioned conclusions but because they were the first
attempt to characterize a population of neurones in terms of the distribu-
tion of their functional responsiveness and also to give an account of the
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Figure 2
The time course of facilitation of monosynaptic reflex responses, recorded in the first sacral
ventral root, to stimulation of the group I afferent fibres in both the medial and lateral
gastrocnemius muscle nerves. When the medial gastrocnemius nerve was stimulated alone, a
small reflex response was evoked, whose size is indicated by the height of the arrows to the
right. Stimuli to the lateral gastrocnemius nerve alone did not evoke a reflex response. The
ordinate plots the magnitude of the reflex firing when both nerves are stimulated; the abscissa
gives the interval between the two stimuli, with zero being simultaneous stimulation and time
intervals to the right showing how much the lateral gastrocnemius volley leads the medial
gastrocnemius volley (and vice versa for intervals to the left). The upper curve (a) is for
maximal group I stimuli to both nerves, and the lower curve (b) is for 300/, below maximal
stimuli (from Brooks and Eccles 1948).



434 Julian Jack

fluctuations, about the average value, in this functional responsiveness. To
my knowledge, this work has yet to be emulated for any other neuronal
population, and it thus remains an exemplar for future neuroscientists
who may wish to move away from models representing a single functional
task by a single neurone or a population with identical properties, to the
more realistic situation where a distribution of properties means the popu-
lation of cells is realistically represented.

Before considering this aspect of these papers, it is best to consider why
Hunt's conclusions are likely to be incorrect and, with the advantage of
retrospection, to outline briefly how he came to misinterpret his data.

If the "detonator action" concept of excitation was correct for the moto-
neurone, then the observed neurone threshold could not be equated with
a fixed level of depolarization of the soma, when initiated by different
excitatory afferent inputs, for the "critical assemblage" of synaptic knobs
could be activated at different levels of net generalized depolarization of
the motoneurone. Subsequent to the publication of these papers, both
Fatt (1957) and Eccies, Eccles, and Lundberg (unpublished observations
quoted in Eccles, Eccles, and Lundberg 1957) with intracellular recording
observed that there was no significant difference in the levels of depolar-
ization required to initiate discharge from different excitatory afferent
sources. That is, the neurone threshold appeared to be simply a fixed
membrane potential. Additional evidence against Hunt's view came from
the observation that (with group Ta afferent monosynaptic excitation) the
motoneurone spike invariably arose from one part of the motoneurone
(Fuortes, Frank, and Becker 1957; Fatt 1957; Coombs, Curtis, and Eccles
1957).

Relatively little experimental attention was given to Hunt's conclusion
that transmitter potentiality had a rapid temporal decay. If this conclusion
were correct, it would be expected that monosynaptic reflex firing of
individual motoneurones should have a narrow latency range. Coombs,
Eccles, and Fatt (l955a) reported that the somatic impulse arose 0.3 to 1.2
msec after the onset of the EPSP, and later Coombs, Curtis, and Eccies
(1957) recorded a similar latency spread. This range, of up to one milli-
second, is wider than that predicted by a transmitter potentiality that
"must decay considerably within 0.2 to 0.3 msec" (Hunt 1955b, p. 823).

Thus, the various experiments indicated that Hunt's interpretations of
his experimental evidence needed to be reappraised. In retrospect there
were two crucial assumptions made by Hunt that are unlikely to be cor-
rect. The first was that the group Ja excitatory input was recruited linearly
through the group I afferent fiber range. Rail (1955b) had already ques-
tioned this point, and subsequent experimental studies strongly suggest
that it is not correct (e.g., Jack 1978). Linked to this was a problem about
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the measurement of input-output curves when interacting the afferent in-
puts from two sources. It is likely that the method used by Hunt was
ineffective in separating the two pools of motoneurones that could poten-
tially discharge; thus, his recorded input-output curve (which increased
fairly linearly throughout the group I range) was a combination of a con-
vex upward facilitation input-output curve for the conditioned motoneu-
rone pool, and superimposed on this, a concave upward input-output
curve for the effect of the conditioning volley on its motoneurone pool.

This same point is also likely to be the explanation for the time course
of "facilitation" in figure 2 because the conditioning action of a volley can
occur even when the conditioning volley follows the test volley into the
nervous system, owing to the finite time taken to bring the motoneurones
to near discharge. This effect is illustrated in figure 3 under conditions
where the conditioning volley was so weak that it did not discharge its
own motoneurones. By contrast, in the experiments of Brooks and Eccles
illustrated in figure 2, both the "conditioning" and "testing" volleys fired

-2 o 2 4 b 8 IO Msec.

Figure 3
The effect of a weak lateral gastrocnemius-soleus afferent volley on a medial gastrocnemius
test monosynaptic reflex, recorded in the first sacral ventral root. The convention for timing
is that zero time represents simultaneity of the conditioning and testing volleys as they enter
the spinal cord; intervals to the left of zero on the abscissa are for the testing volley leading
the conditioning volley, and vice versa for intervals to the right. In this experiment care was
taken to ensure that there was no discharge of the lateral gastrocnemius-soleus motoneu-
rones, by using a very small group Ja lateral gastrocnemius-soleus conditioning volley, in
contrast to the experiments shown in figure 2 (from Jack 1965).
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their own motoneurones, and in the interval either side of "zero" time both
volleys were acting to condition" (i.e., facilitate) the other pool of neu-
rones. Thus the and fi phases of facilitation ("detonator" and "residual"
facilitation) do not represent two different types of facilitation; rather,
facilitation has the same time course as the excitatory postsynaptic poten-
tial. fi facilitation maps to the, decaying phase of the EPSP and c to the
rising phase. The phase in the left-hand half maps to the fi phase in
the right-hand half of the figure (and vice versa). What both Brooks and
Eccles, and Lloyd, had done had been to make the attribution of both a
and fi phases on one side of the figure to a single conditioning volley,
because they assumed that no effect could be produced before "zero" time.
Once this error is realized, it is clear that "detonator action" or a facilita-
tion could be correlated with the rising phase of the EPSP.

As already mentioned, one notable feature of the Rall and Hunt (1956)
paper was to model a population of nerve cells as a distribution. The
output of the pool that they analyzed was the distribution of the probabil-
ities that individual motoneurones would fire. Lloyd and McIntyre
(1955a) had already suggested that there was a uniform distribution in the
average excitability of the motoneurones and a normal distribution of the
fluctuation of the excitability level about the mean value. Rail and Hunt
were able to define quantitatively "the extent to which excitability fluctua-
tions of a motoneurone pool are correlated and the precise manner in
which the response of the individual motoneurone is linked to the re-
sponse of the population of which it is a member." They observed that for
a particular motoneurone its probability of firing shows a systematic rela-
tionship to the magnitude of response of the motoneurone pool: a larger
response from the pool being matched by a higher probability that the
unit would fire. It is notable that Rudomin and his colleagues (Rudomin
and Dutton 1969; Rudomin, Dutton, and Muñoz-Martinez 1969;
Rudomin and Madrid 1972) are one of the few groups to extend and
develop this pioneering population modeling by Rail and Hunt.

I would like to finish this discussion by briefly outlining how Rail and
Hunt's paper inspired me to address in more detail the issue of "detona-
tor" action of the motoneurone. Despite the observation that the moto-
neurone fired with a latency range of about one millisecond, it could be
objected that this might have arisen as some artifact from intracellular
recording; for example, that the microelectrode, as is now known, might
induce a substantial electrical leak. Thus, in 1959, Lloyd and Wilson ob-
jected to the measurement of latencies of somatic spike potentials and
suggested instead that the criterion should be reflex discharge of the axon.
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Figure 4
The abscissa plots the size (measured in arbitrary units and recorded in the first sacral ventral
root) of a monosynaptic test reflex evoked by maximal group I afferent stimulation of the
biceps-semitendinosus nerve. The mean amplitude was 27, with a range of reflex response
sizes from 8 to 52 (see inset). In addition, the response of a single motoneurone was recorded
from the seventh lumbar ventral root; this motoneurone had an average probability of firing
of about 0.7. As illustrated in the inset, the single motoneurone was more likely to fire
(blackened area of the histogram) when the response of the population of motoneurones was
larger, indicating that the excitability of this single motoneurone was partially correlated
with that of the population. In the main figure the estimated firing probability (open circles)
and mean latency of firing (filled circles) for each class interval of population height is
illustrated. The sigmoid shape of the firing probability curve is similar to those described by
Rail and Hunt (1956). Data from Jack 1960.
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As a check on the intracellular results, I recorded a single motoneurOfle
discharge, as well as that of the population, in the ventral root. The latency
range for the firing of the unit, with constant afferent stimulation, was 1.25
msec (Jack 1960), in complete accord with the intracellular data.

The data recorded included not only whether the unit fired (and, if so,
at what latency) but also the size of the population response. In agreement
with the results of Rail and Hunt, the probability of the unit firing was
partially correlated with the size of the population response. The popula-
tion response sizes were grouped, and, in addition to the firing probability
associated with each size, the mean latency of unit firing was measured. As
illustrated in figure 4, as the firing probability of the unit increases (with
the larger population heights), the mean latency of firing decreases. Fur-
thermore, although the firing probability curve plateaus when it reaches
its maximal value, the mean unit latency continues to decrease. Associated
with these changes in the mean of the unit latencies, there were character-
istic changes in the distribution of the latencies about the mean, going
from Gaussian for p = 1.0 to positively skewed for 0.5 <p < 1.0 to
Gaussian again for p <0.5. It was possible, in a very informal model, to
show that these latency distributions would arise if there were both corre-
lated and uncorrelated variability between the unit and the population,
with the excitatory time course being similar to that of the rising phase of
an EPSP (Jack 1960). Thus, just as Rail's earlier (1955a, 1955b) papers had
clarified the earlier discussion of the relationship between threshold and
zonal aggregation of synapses, so did his later 1956 paper allow a further
examination of this issue for the motoneurone. Doubtless the motoneu-
rone will not prove to be typical of all cells (cf. pyramidal cells or Purkinje
cells), but the vicissitudes of interpretation in the two decades from the late
1930s surely carry forward the lesson that quantitative clarity should be
treasured.
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Fractional Pool Discharge: Monosynaptic Input-Output Relation

My earliest news of Elwood Henneman came in 1954 on the day I pre-
sented my first seminar at the National Institutes of Health (NIH). Based
on my Ph.D. research, this seminar included experimental results and a
model for monosynaptic input-output relations in a motoneuron pool.
One of the points emphasized was the need to scale the output magnitude
(synchronous output volley recorded from the ventral root) relative to an
elusive maximum (i.e., a complete synchronous discharge from all of the
motoneurons in the pool); such scaling provides an estimate of fractional
pool discharge. In the discussion following the seminar, someone men-
tioned that Henneman had also been concerned with estimating fractional
pool discharge. It seems that both he and I had come to pursue this
interest quite independently. We both explored various experimental ap-
proaches to measurement of complete pool discharge, and both recog-
nized that posttetanic potentiation of this monosynaptic reflex (Lloyd,
1949; Eccles and Rall, 1950) provides a valuable means of demonstrating
that the usual unpotentiated output represents incomplete pool discharge
(Rail, 1951, 1954, l955a, 1955b; Henneman, 1954; see also Jefferson and
Benson, 1953).

My interest in this problem arose during an apprenticeship with Profes-
sors J. C. Eccles and A. K. McIntyre in Dunedin, New Zealand (1949-53).
It followed from the pioneering study of the monosynaptic input-output
relation that Lloyd had begun with the segmental reflex (Lloyd, 1943,
1945). On the basis of experiments by Lloyd and Mcintyre in New York,
and our experiments in Dunedin (Brock et al. 1951), I knew that it was
important to restrict the input to a muscle nerve (triceps surae). Compared
with dorsal root stimulation, this had two important advantages: (1)
this restricted the input-output study to a pair of synergic motoneuron
pools, in contrast to the nonfunctional combination of motoneuron pools
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A.2 Editorial Comment with an Excerpt from Rail (1990)

Rail, W. (1990). Perspectives on neuron modeling. In The Segmental Motor System,
ed. M. D. Binder and L. M. Mendel!. New York: Oxford University Press.

Because of space limitations, the editors have chosen not to reprint the
papers of Rail that address the input-output properties of motoneuron
pools involved with the segmental reflex (Rail 1955a,b; Rail and Hunt
1956). The following excerpts from Rail 1990 introduce and summarize in
part the results presented in these papers.
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provided by the segmental reflex (which includes antagonist and incom-
plete pools), and (2) the longer afferent conduction distance (from the
hindlimb) helped to separate the effective portion from the ineffective por-
tion of the input volley, because direct synapses to the motoneuron pool
are made only by the group Ia afferent axons (which have the largest
diameters, lowest electrical thresholds, and highest conduction velocities).
Axons of group Ib and group II are also active in a maximal afferent
volley, but they make no contribution to the effective input of the mono-
synaptic reflex because they make no direct synapses to the motoneuron
pool; these ineffective axons have smaller diameters, higher electrical
thresholds, and lower conduction velocities, such that their contamination
of the experimental input record is greatest for large afferent volleys
produced by large electrical stimuli. However, because groups Ia and Ib
overlap in their threshold distributions, it was essential to determine the
relation between the effective input and the experimental input record
(Rail, 1955b). These points deserve emphasis because they were not recog-
nized in another input-output study (Rosenblueth et al., 1949); con-
sequently, those authors misinterpreted the plateau of their input-output
relation as indicative of output saturation (i.e., complete discharge of their
segmental pool); this error greatly complicated their effort to produce a
theoretical model that could match their input-output curves.

Convincing evidence that the output plateau does not represent satura-
tion (complete pool discharge) was provided by experiments that achieved
four levels of reflex excitability in a single preparation (Rail, 1955b). These
four levels were obtained by means of two depths of anesthesia, each
used with and without brief tetanic conditioning. The four resulting input-
output curves (see the left side of Fig. 1) all show an output plateau for
experimental inputs greater than 70% of the maximum recorded afferent
volley. It is important to understand that each output plateau corresponds
to a different fraction of total pool discharge (approximately 37, 60, 72,
and 84%). In other words, none of these curves showed output saturation;
each plateau resulted from the ineffectiveness of the higher-threshold affer-
ent axons (belonging to groups Ib and II), which contributed most of the
upper 40% of the experimental input record. For small inputs, the effective
component of the input volley (carried only by group Ja axons) grew
linearly with the experimental input record (see the linear part of the
dashed curve at the left in Fig. 1). Then, over the mid-range (from 20 to
70% of maximal experimental input), the normalized effective input curve
bent and reached a maximum where the experimental input record was
only 70% of its maximum. The shape of this dashed curve was verified by
experiments with graded monosynaptic facilitation and with graded sub-
threshold synaptic potentials (of the motoneuron pool) recorded in the
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Figure 1
Output as fractional pool discharge versus two different measures of input. Each input-
output curve shows an output plateau (left); transformed curves show no plateau (right). The
four solid curves in the left graph were fitted to data of output versus the experimental input
record (disphasic amplitude measured from intact dorsal root). The dashed line represents a
normalized curve of "effective input" plotted against the experimental input record; this was
based on observations of graded monosynaptic facilitation and on ventral root synaptic
potentials; the linear relation for small inputs corresponds to recruitment of low-threshold
group Ia fibers in the afferent muscle nerve. The ineffectiveness of increasing the experimental
input volley from 60% to 100% of its maximum can be understood as resulting from the fact
that the higher-threshold afferent fibers are ineffective because they belong to groups II and
Ib and do not make synapses on these motoneurons. The five curves in the right panel are
transformed from the five curves in the left pane; each experimental input value (abscissa, left)
was replaced (in the right) by its effective input value, as defined by the ordinates on the
dashed line in the left panel. This figure combines figures 2 and 6 of Rail 1955b. Straight-line
fitting of the transformed data was shown in figure 4 of Rail 1955a.

ventral root. Once this dashed curve was understood, it was not surprising
that the transformed input-output curves (at the right in Fig. 1) did not
exhibit a plateau, because here the outputs were plotted as functions of the
effective input. This transformation was the key to success in fitting the
data with a relatively simple theoretical model (Rail, 1955a, 1955b).

In this model, it was assumed that the distribution of activated synaptic
knobs could be treated as random over the motoneuron population. Sup-
pose that each neuron has the same number, N, of potential synaptic sites
(e.g., N = 5000) and that each site has the same probability, y, of being
occupied by a synapse belonging to the monosynaptic pathway (e.g., y =
0.02); then the average number of relevant synapses per motoneuron is yN
(e.g., yN = 100). The effective input, fi, ranges from O to 1, and for any
particular value of fi, we assume that fly defines the probability that a
synaptic site receives an activated synapse (belonging to this pathway);
thus, the average number of such activated synapses per motoneuron is
n = ßyN (e.g., n equals lOO, 75, and 50 for fi values of 1, 0.75, and 0.5,
respectively). Because these probabilities were assumed to be independent,
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Figure 2
Schematic illustration of a mathematical model that gives output (w) as fractional pool
discharge versus effective input (ß). At the left, the three input values, ß = 0.5, 0.75, and 1.0,
result in three normal distributions of the motoneuron population with respect to the num-
ber (n) of synapses activated on a motoneuron; these normal distributions are centered about
mean values of 50, 75, and 100, with a standard deviation of 20; the mean threshold value is
shown as 80, for the number of activated synapses needed to fire a motoneuron spike. The
fractional pool discharge is shown as the shaded area under each normal distribution curve;
this is the fraction of the motoneuron population for which the number of activated synapses
exceeds threshold. These fractions are shown as w = 0.84 for ß = 1, w = 0.40 for ß = 0.75,
and ai = 0.05 for ß = 0.5 at the left, and by the open circles on the input-output curve at the
right. (Figure 1 in Rail 1955a.)

the result is a binomial (nearly Poisson) distribution of the motoneuron
population with respect to the number, n, of activated synapses that each
receives; the variance of this distribution is very close to n (e.g., var(n)
loo when ß = 1).

A motoneuron was assumed to fire an impulse when the number of its
simultaneously activated synapses, n, exceeded some threshold number, h.
The value of h was assumed to have a variability that could result both
from inherent variability of motoneuron excitability and from back-
ground synaptic activity in other synapses. Because this variability in h
was assumed to be independent of the variability in n, it was reasonable to
approximate the combined variability of the motoneurons, with respect to
their n - h values, as a normal distribution with a variance, var(n - h) =
var(n) + var(h). In this case, good results were obtained for a normal dis-
tribution with a standard deviation very close to a = yN/5, (e.g., a = 20).

The normal distributions in Fig. 2 are shown with a = 20, but to sim-
plify the diagram, these distributions are shown as though all of the com-
bined variability were in the value of n (the number of synapses activated
on an individual motoneuron). This permitted_the threshold to be shown
as though it were fixed at its average value, h. The diagrams at the left
illustrate how this normal distribution becomes shifted (relative to i) for
different values of effective input (ß = 0.5, 0.75, and 1.0). In each case, the
shaded area of the distribution corresponds to the output, w, as fractional
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pool discharge (w = 0.05,0.40, and 0.84, respectively). The resulting input-
output curve is shown at the right in Fig. 2.

This model has basically two theoretical parameters; both are scaled to
the number yN, the average number of (direct group Ja) synapses per
motoneuron (e.g.. )'N = 100). One of these two parameters is the standard
deviation, a/yN, of the motoneuron population with respect to the differ-
ence variable, n - h (i.e., the difference between the number, n. of synapses
activated on a particular motoneuron and the threshold number, h, re-
quired to fire that neuron). The other basic parameter is the average
threshold value, It was satisfying to find that one of these parame-
ters had the same value for all four of the input-output curves shown in
Fig. 1; i.e., o-/yN = 1/5. Because of this, each input curve could be obtained
by resetting the value of other parameter, J/yN; four values, very close to
0.80, 0.88, 0.95. and 1.07, yielded the four input-output curves of Fig. 1.

The agreement found between theory and experiment thus implied that
the shift to a deeper level of anesthesia (in the experiment) was matched by
an increase in the value of a single model parameter (the average thresh-
old, ), the motoneuron population) without a significant change in the
variance or standard deviation of the population with respect to n - h. In
addition, the effect of brief tetanic conditioning was matched by a decrease
in the effective value of that same model parameter (or by an increase in
the effective value of n). It may be noted that complications, such as possi-
ble departures from a normal distribution, and the possible role of higher
densities of activated synapses in local zones of the soma surface were
addressed in the original paper (Rail, 1955a) and found to result in similar
input-output curves.

Because this model also predicted how the factor of output potentiation
should depend on the level of fractional pool discharge (Fig. 5 of Rail.
1955a), it was pointed out that this could be developed into a method of
estimating fractional pool discharge. Further, an extension of the model to
include distinctions between homonymous and heteronymous synapses
was shown to yield agreement with cross-facilitation' of one motor pool
by input from heteronymous afferents, in contrast to little or no mono-
synaptic cross- discharg&' in the absence of homonymous input (Figs. 6
and 7 of Rail, 1955a). A related modeling effort (Rail and Hunt. 1956) was
able to account for experimental observations of the firing indices of indi-
vidual motoneurons, in relation to motoneuron pool discharge. during
repeated trials, for several different levels of reflex excitability.

Looking back about 33 years, it seems fair to say that these early efforts
did succeed in providing explicit models that correspond reasonably well
with the general concept of spatial summation in motoneuron pools, origi-
nally introduced by Denny-Brown and Sherrington (1928) and discussed
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by Lloyd (1945) in terms of an "excited zone," a "discharge zone," and a
"subliminal fringe." The discharge zone corresponds to the shaded area in
Fig. 2, while the subliminal fringe is composed of motoneurons in a band
just to the left of the vertical threshold line; the excited zone probably
includes the entire population for effective inputs greater than 50% of
maximum.

One result of this study was to show that the shape of the input-output
curve does not require spatial summation to be the very local process
envisaged by Lorente de Nó (1938) and by Lloyd (1945). Moreover, an-
other theoretical model, for passive electrotonic spread over a spherical
soma, led to the conclusion that the membrane depolarization becomes
essentially uniform over the closed soma surface by the time the synaptic
potential reaches its maximum amplitude (Rall, 1953, 1955a, 1959); this
result weighed against the validity of very local spatial summation on
the motoneuron soma surface. It is interesting that the concept of local
synaptic interactions has recently returned in a different context, namely,
for synapses on excitable dendritic spines at distal dendritic locations (Rail
and Segev, 1987, 1988).

In concluding this section on motoneuron populations, it is important
to point out several limitations of these early models. No distinction was
then made between motoneurons of different size or functional type; these
important distinctions have been explored by Henneman and by other
contributors to this volume. The assumption of random synaptic distribu-
tions was a convenience that was justified by ignorance of actual synaptic
distributions. In addition, no distinction was made between different se-
quences of afferent fiber recruitment, and no consideration was given to
distinguishing between synapses at different (proximal to distal) dendritic
locations in the motoneuron population. The task of incorporating such
considerations into a more comprehensive model of a motoneuron pool
provides an interesting challenge for future modeling.
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equivalent cylinder (see Equivalent
cylinder for tree)

excitable spines (see Dendritic spine,
excitable)

input conductance (see Input
conductance)

input resistance (see Input resistance)
passive spines, 286, 420-424
terminal boundary condition, 43, 44

Dendritic
cylinder, 43, 45, 76, 95, 131--133, 209, 249,
250, 251, 253, 370-383

153, 168, 169, 179, 181, 184, 185, 192,
195-202, 208, 209, 216, 218, 288, 312-315,
365, 377, 390, 412, 419, 429, 431, 446

diameter, 10, 27, 28,
145, 208, 219, 251,

61,
310,

62, 132, 133, 144,
363-393

117-119, 125, 130, 131, 133-144, 150,
151, 175,
201, 209,

177,
212,

186,
216,

187,
401

188, 190, 190, 191,
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Dendritic (cont.)
delay, 11,221
dominance, 30, 66, 77-79, 83-89, 97, 124,

264
termination, 28, 43, 181, 368
tree, 4,5,25,37,45-71,74, 108, 117, 130,

144, 149, 208, 290
Dendritic spine
action potentials, 423
chain reaction, 424
excitable, 156, 157, 284, 417-424, 446
morphology, 11,399-424
parameter ranges, 410, 420-424
passive, 117, 420-424
plasticity, 12, 119, 399, 410, 4 12-424
spine-stem resistance, 288, 398, 399, 400,
403, 410, 412-424

synapse, 412-424
synaptic amplification, 410, 420-424
voltage attenuation, 11, 284, 4 12-424

Dendritic to soma conductance ratio, 12,
13, 37, 52-54, 56-59, 64-67, 77, 211

Dendrodendritic synaptic interactions, 10,
12, 14, 15, 108, 154, 155, 160-171, 173,
195-202

Detection of dendritic conductances, 154,
209, 215, 218,244

Dimensionless variables, 127, 148, 178, 218,
219, 371, 372

Dunedin, New Zealand, 6, 7, 9, 27, 31, 432,
441

Eccles, John C., 6-9, 27-31, 39, 55, 61, 63,
65, 66, 74-78, 84-86, 90-93, 107, 108,

133, 143, 149, 150, 151, 156, 208, 402,
429,431-435,441

Electrical transmission, 208
Electrophysiological

data, 38, 54, 62, 107, 124, 180, 183, 210,
252

properties, 107, 149
Electrotonic
decrement, 11,43, 184-186, 188, 197, 235,

241,244, 398
distance, 4, 13, 28, 93, 132, 144, 210, 217,

226, 291, 292, 301, 311, 363, 374, 385
effect on EPSP shape, 217
length (L), 11, 107, 132, 133, 168, 179, 186,

187, 193, 202, 207, 211, 212, 215, 224, 226,
235,238,244,249-277,293,309,311, 312

EPSP. See Excitatory postsynaptic
potential

Equalizing time constants, 250-277
Equivalent Circuit for membrane, 42, 125,

178
Equivalent cylinder for tree, 10, 131, 132,

Excitable dendritic spine. See Dendritic
spine, excitable
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Excitable membrane models. See Action
potential

Excitatory postsynaptic potential (EPSP)
attenuation, 230, 420-424
computations, 420-424
EPSP shape, 9, 209, 222, 236, 237, 244,

255, 284
EPSP shape indices, 210,244

Extracellular potentials
cortical geometry, 183-185, 201
olfactory bulb, 14, 15, 149, 150, 173-202
open or closed field, 183, 184
potential divider effect, 14, 15, 16, 150, 151,

155, 179, 183-185, 189, 192-194, 202
spinal cord motoneuron, 14, 110,111, 112,

113 (see also Motoneuron, cat spinal)

Field potentials, 14, 15. 105
computed, 110,111, 178-180, 184-194,

186, 187, 188, 190, 191, 192, 194
olfactory bulb, 15, 149, 153, 173-202

Geometric ratio (GR), 53, 364, 365, 389-39 1
Graded synaptic interactions, 143, 169, 170
Granule cell, olfactory bulb
computations, 166, 169, 178, 179, 190-193
model, 166, 169, 174, 192, 195, 196
population, 166-169, 170, 171, 175-177,

193, 200-202
Group Ia EPSPs, 31, 208, 209, 212, 213, 434

Hodgkin-Huxley model, 15, 107, 102, 126,
144, 151, 177, 178, 363, 365, 371, 373, 380,
404

Horseradish peroxidase, 211, 212

Inhibitory pathway, reciprocal
dendrodendritic, 16, 153-158, 160-171,
195, 196, 202

Inhibitory postsynaptic potential (IPSP),
27, 86, 92, 160, 233, 243

Inhibitory synapse
distal dendritic location, 107, 117-119,

233, 234, 281, 402
proximal location, 117-119, 140, 141, 402
reversal potential, 402
strategic location, 117-119, 140, 141, 170

Input
conductance, 27, 43, 45-49, 51, 52, 70, 74,

87, 207
location, 107, 117, 118, 170,207,215,216,
230, 236, 238, 243-245

pattern, 117, 122, 124
resistance, 10, 27, 28, 29, 43, 45-49, 51, 52,

70, 74, 87, 207
Interactions, EPS} with hyperpolarization,

29, 74, 93, 94, 209, 215, 218, 234, 236, 237,
244

Intracellular resistivity. See Resistivity,
intracellular

IPSP. See Inhibitory postsynaptic potential

133, 134, 136, 144, 152, 175, 179, 209, 216,
217,
363,

282,
390

283, 287, 328, 290, 291, 308, 309,
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Isopotentiality, soma membrane, 9, 69, 94,
250, 269

Killed-end boundary condition, 43, 44, 46,
271, 275

Length constant (lambda), 28, 41, 249, 374
Local dendritic activity
computation, 11, 166, 169, 178-180,

190-193, 201, 215, 216, 219-244
dendrodendritic synaptic actions (see
Dendrodendritic synaptic interactions)

excitable dendritic spines (see Dendritic
spine, excitable)

Loss current, between compartments, 210,
219, 228, 229, 244

Mathematical
analytical solutions, 37, 67
computations, 136-143, 174, 178-180.

184- 193, 219, 384, 385, 388, 389, 390,
391, 393 (see also Granule cell, olfactory
bulb, computations; Mitral cell,
computations)

formulation, 127-129, 134
models, 39, 40, 107, 124-145, 177, 184,

202, 215, 216, 218, 371, 372
Membrane

active, 75, 107, 168, 177, 178, 186, 190, 197,

Membrane capacitance, 9, 12, 34-36, 88, 89,
91, 97, 101, 102, 127, 176, 217, 219,
255-277

Membrane resistivity, 9, 10, 12, 27, 28.
34-37, 39, 41-54, 64-70, 89, 91, 95, 97,
101, 102, 176, 255-277

Membrane time constant, 9, 34-36, 74-102,
176

Mitral cell
compartmental model, 151, 166-169, 174,

175, 182, 185, 195
computations, 166-169, 178-180,

184-190, 186, 187, 188, 190, 201
experimental field potentials, 149-158,

173-202
population, 166-169, 170, 171, 175-177,

180, 184, 188, 190, 201
Motoneuron. See also Neuronal
cable properties, 215
cat spinal, 9, 14, 54-63, 74, 80, 110, 111,

112,113,208,212,215,287, 308, 319
compartmental model, 15, 39, 133-144
human spinal, 54-61, 63
pool, 8, 430, 432, 435, 436, 441-446
population models, 8, 15, 39-71, 427, 432,

436, 438, 44 1-446
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Neuronal. See also Motoneuron
input conductance (see Input,
conductance)

morphology, 37, 38, 54-60, 62-64
population, 8, 15, 431, 432, 434, 441-446

Nonlinear dendritic properties, 5, 117, 118,
119, 142, 144,401,402,406,420-424

Nonlinear EPSP summation, 208, 231, 232,
244, 314

Nonlinear membrane properties, 129, 130,
144, 178, 208

Nonuniqueness, 207, 226

Olfactory bulb
computations, 151, 153, 155, 156, 174,
178-197 (see also Granule cell, olfactory
bulb, computations; Mitral cell,
computations)

dendrodendritic pathway, 154, 155,
160-171, 195-202

depth distribution of potentials, 187,
191-195, 192

experimental field potentials, 173-202,
180, 181

morphological layers, 173, 180, 190
open field, 182, 183, 184
potential divider effect, 15, 150, 179, 182,

183, 184, 185, 186, 189, 192-194, 202
Optimal range, 417, 418
Optimization. See Optimal range

Passive membrane properties, 74-102
Peeling of exponential decays, 249-277, 309
Plastic changes in dendrites, 4. 119,

412-4 19, 420-424
Point neuron, 3
Postsynaptic conductance, 208
Postsynaptic potential (PSP) shapes, 207,

209, 210, 254
Potential. See also Action potential
electrotonic, 288-326
membrane, 28, 74-102, 208, 250-277
postsynaptic, 160, 207, 209, 244
resting membrane, 100, 125, 126, 128, 131,

218
reversal, 402

Probability distributions, 443, 444

Reflex input-output relation, 429-446
Resistance
input (see Input resistance)
spine-stem (see Dendritic spine, spine-stem
resistance)

Resistivity
intracellular, 39, 132, 176, 177, 179,
255-277, 379, 391

membrane (see Membrane resistivity)
Response functions, 429, 432, 434
Resting membrane properties, 41, 100
Reversal potential, 402

202, 363, 402,
passive, 74, 94,

177, 178, 184,
255-277, 287,
420-424

404,
101,
186,
293

420-424
107, 110,
190, 191,

328, 363,

112,
197,
389,

131,
202,
404,

168,
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Rhythmic activity in olfactory bulb, 200,
202

Sealed end boundary condition, 4, 6, 43, 44,
45, 249-277, 291, 375-376, 377

Separation of variables, 40, 41, 256
Shape index, 12, 211, 222
EPSP shape, 208-210, 211, 212, 215, 220,

223, 244
half-width, 207, 211, 212, 215, 219, 220,

221, 222, 223, 224, 225, 244, 376, 379, 383
plot, 212, 223
theoretical loci, 211, 212
time to peak, 211, 212, 222, 223, 224, 225,

244
Single branch terminal
input resistance, 287-326
response function, 328-358

Soma
compartment, 177, 178, 179, 185, 189, 212,

217, 220, 221, 230, 241
isopotentiality, 9, 69, 94, 250, 269
shunt, 250, 251
voltage clamp, 210, 251
voltage transient, 209

Space constant. See Length constant
Spatiotemporal pattern, 117, 118, 122, 124,

125, 126, 127, 130, 133, 135, 137, 139. 140,
143, 178, 216, 287

discrimination, 124, 137-140
input, 117, 118, 122

Spine-stem resistance. See also Dendritic
spine, spine-stem resistance

operating range, 417, 418
ratio to branch input resistance, 414

Superposition method of solution, 135,
193, 201, 288, 289, 298, 299, 300, 301,
302

Synaptic
amplification, 420-424
background activity, 10, 119, 209, 444
conductance change, 10, 130
efficacy, 11, 280, 420-424
excitation, 11, 13, 15, 27, 30, 66, 75, 108,

inhibition, 15, 27, 75, 108, 118, 122, 123,
126-131, 140, 141, 144, 153-171, 195,
197, 198, 199, 200, 215, 216, 218, 233, 234,
237, 243, 401, 429

integration, Il, 151, 153, 155, 282, 402,
409, 420-424

location, 13, 117-119, 208-210, 215, 220,
226, 233, 234, 243, 244, 245, 281, 288. 417.
420, 446

nonlinearity, 5, 17, 117-119, 401, 402,
420-424

plasticity, 4, 412-419, 420-424
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reversal potential, 402
transients, 217, 219, 220, 238-243
weights, 243, 398, 399, 400, 417-419

Synaptic current
residual phase, 29, 74, 76, 90, 91, 92, 93, 94
time course, 11, 12, 28-31, 34-36, 74, 76,
86,91,92,96,99,100,101,118,181,200,
201,207,212,215,216,233,243,244,429,
433

Taper of diameter, theoretical formulation,
363, 374-377, 384-389, 391-393

Three-halves power of diameter, 28, 37, 51,
131, 132, 133, 144, 145, 282, 290, 364

Time constants
equalizing, 250-257
passive membrane, 29, 30, 34-36, 39, 41,
74-10!, 127-131, 249-277

peeling exponentials, 12, 249-277, 309
system, 212, 273
under voltage clamp, 25 1-277

Time integral of transients, relation to
steady state, 284

Transient analysis, 238-243, 244
Transmitter action, 16, 29, 91, 149, 169, 197

Unit firing probability, 436, 437, 438

Voltage
asymmetry (nonreciprocity), 11,305,308
attenuation along dendrites, 11, 143, 287,
288, 303-326, 328

boundary conditions, 250-277, 296, 298
clamp, 74, 85, 86, 151, 178, 249-277, 296,

298
dependent conductances, 126, 130, 177,

252, 409, 410, 420, 431
isopotentiality, 9, 69, 94, 250, 269
transients, 9, 74-102, 187, 194, 249, 250,

328-3 58
Voltage spread and equalization
over cable length, 253-277
over spherical surface, 9,74-102

118,
137,
198,
401,

122, 123,
151-171,
200, 215,
429

124,
178,

216,

126,
191,

218,

127-131,
192, 195,

233, 234,

136,
196,

237, 243,
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