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The price-setting newsvendor model is used to address the single period joint 
pricing and inventory control problem. The objective is to set the optimal price 
and replenishment quantity of a single product in order to maximize the expected 
profit. Products with a short selling season and relatively long replenishment lead 
times such as fashion goods are the most relevant application areas of the model. 
The focus of the work is the generalization of the model with respect to the modeling 
of uncertainty in demand. The author presents an analytical and empirical study 
which compares different demand models with a more flexible model based on 
price and inventory optimization. She concludes that using a general model can 
increase the profits significantly.
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Chapter 1 

Introduction 

Supply and demand management are the two crucial activities of a firm which 
are generally performed separately. Managing supply refers to the decisions 
related to the purchasing or production of goods ( and capacity decisions e.g. 
in service industries) and is carried out by the operations/manufacturing 
function with the emphasis of decreasing relevant costs. On the other hand, 
demand management is the duty of the marketing function and includes not 
only observing and communicating the market demand but also influencing 
it by means of positioning, promotions, pricing, etc. 

Traditionally, the manufacturing function is seen in a cost-center role, 
where its main performance indicator is unit manufacturing cost. Marketing 
on the other side is mainly driven by revenue targets. In this way, marketing 
sets prices based on a revenue optimization target and decides about the 
advertising policy. As reaction to that, the market creates demand which has 
to be satisfied by the operations at minimum cost. However, as Karmarkar 
and Lele (2004) points out, ignoring the interactions between these two func-
tions may result in problems like inconsistent or even conflicting objectives 
and the coordination of the two can result in opportunities to improve the 
total system performance. Seeing these opportunities, companies put an 
increasing emphasis on the integration of these two organizational functions. 

This research lies on the interface of these two areas, and within the large 
number of topics in this interface, integrated pricing and inventory decision 
constitutes the focus of the work. With the inventory decision we refer to the 
decision of how much to replenish in order to satisfy the customer demand. 
In a retail setting replenishment is possible through the ordering of finished 
goods from the suppliers while for a manufacturing firm it can as well be 
performed by the production of goods. 

Holding inventories, on one hand, creates cost e.g. in terms of tied capital, 
but on the other hand make it possible to satisfy demand. It is crucial to 
decide on the correct amount of inventory which creates the lowest cost 
while keeping an acceptable service level. However, service level depends on 
the size of demand which in turn depends on the price of the product. The 
pricing decision is generally aimed at maximizing the revenue, but revenue 
is only possible and limited through the amount of inventory. Hence, it is 
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12 Chapter 1. Introduction 

obvious that the pricing and inventory decisions are tightly related, and they 
strongly influence the performance of each other. Consequently, there is an 
increasing effort for developing models which enable deciding on the price 
and ordering/production quantity of an item simultaneously. 

1.1 Joint Pricing and Inventory Control 

The degree of coordination between the marketing and manufacturing func-
tions and their ability of working together can have considerable impact on 
the overall business performance. Using a survey based model Hausman et al. 
(2002) conclude that the harmony between the manufacturing and marketing 
functions is one of the major and often reinforcing factors on competitive 
position which is the most important predictor for profit performance. 

Once the importance of marketing/manufacturing integration is conceptu-
ally established, the detailed identification of the specific conflicts as well as 
the areas where cooperation between those two functions is required. 

Shapiro (1977) and Karmarkar and Lele (2004) provide illustrative ex-
amples about the possible problems in the interface of manufacturing and 
marketing activities. Shapiro (1977) describes in total eight problem fields 
with necessary cooperation and inherent conflicts. In particular, he points 
out the contradicting opinions of the two functions about the correct cus-
tomer service level which is the identifier of the correct inventory level. 
Generally, the marketing department underestimates the costs associated 
with inventories while the operations department oversees the importance of 
customer satisfaction. Thus, if the distribution of goods to the customers 
is under the pure responsibility of the marketing department, while service 
levels are good, the inventory level is too high. Shifting the responsibility 
to the operations department results in lower inventory handling costs but 
poorer customer service. Among a number of other examples, Karmarkar 
and Lele (2004) discuss the effect of seasonal promotional activities on the 
production system. They describe a case study where the marketing depart-
ment offers last minute promotions in order to meet the sales quotas and 
improve the sales figures which are reviewed on a quarterly basis. This sales 
push introduces artificial demand variation and seasonal effects which cause 
problems related with production planning and capacity reservation in the 
manufacturing function. The authors state clearly that if it were recognized 
that increased inventory is not an asset and if the effect on the inventory 
holding cost were assessed correctly in implementing the marketing strategy, 
then the incentive for the sales push would essentially disappear. 
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1.1 Joint Pricing and Inventory Control 13 

Karmarkar (1996) studies the interaction and different levels of integration 
between marketing and operations more in-depth. He argues that "his-
torically the interactions have been handled through mechanisms such as 
costs and constraints or through management process such as meetings and 
negotiations". However, there are several areas where these coordination 
mechanisms are not completely satisfactory and higher degrees of integration 
is necessary. He identifies the simultaneous pricing, production and inventory 
management as one of key issues that require full joint decision making. 

The research on joint pricing and inventory control can be traced back to 
the seminal work of Whitin (1955). He provides an insightful discussion on 
the benefits of treating the two problems simultaneously for a firm facing a 
constant demand rate. Under the same setting, Kunreuther and Richard 
(1971) compares the profits when the two decisions are made sequentially 
and when they are made simultaneously. They show, in a numerical example, 
that the simultaneous decision making can increase the profit as much as 
12.5%. 

Anticipating the benefits of joint pricing and inventory control, the atten-
tion turned to the detailed analysis of models in terms of the structure of 
optimal policies under different settings. The cost minimization approach 
of traditional inventory models and the revenue maximization approach of 
pricing models are now brought into a single objective of profit maximization. 
While for traditional inventory models, demand and price are inputs to the 
analytical models, for the joint optimization the effect of price on demand is 
considered explicitly and price becomes a decision variable. 

One body of literature analyzes the problem when demand is a determinis-
tic function of price. If demand is constant throughout the planning horizon, 
the models are variants of the Economic Order Quantity (EOQ) model with 
the explicit treatment of the price-demand relation, and for more general 
models the main problem is improving the lot-sizing algorithms in order to 
include pricing decisions. A comprehensive review of such models can be 
found in Yano and Gilbert (2004). 

When demand is uncertain, the price-demand relation has to be described 
in more detail. A number of properties of demand ( e.g. mean, variance, 
range) can be affected by price, and different formulations of these properties 
lead to different policies. 

Under uncertain demand a number of papers consider the problem for a 
single period. The question is how much to order at the beginning of a single 
selling season and which selling price to charge. They focus mainly on the 
optimality conditions, the comparison of the optimal policy parameters to 
those under the sequential approach, and the effect of different price-demand 
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14 Chapter 1. Introduction 

relations (see e.g. Young (1978), Petruzzi and Dada (1999), Yao et al. (2006)). 
They show that how the uncertainty enters into the price-demand relation 
has a considerable impact on the optimal policy parameters. This stream of 
research and this specific point of discussion is the main driver of this thesis 
and will be discussed in more detail in the following chapters. 

For multi period models, the product is sold during a number of periods 
and the pricing and/or the inventory decisions are made at the beginning of 
each period. If there is a fixed amount of items available at the beginning 
of the selling season and the decision is about the pricing of the items at 
each period the dynamic pricing models as described by e.g. Gallego and 
van Ryzin (1994), and Bitran and Mondschein (1997) are relevant. A similar 
problem is the revenue management problem where a fixed amount of initial 
capacity is used to satisfy price sensitive demand which can possibly be 
divided into a number of classes (see e.g. Bitran and Caldentey (2003), Talluri 
and van Ryzin (2004)). The dynamic pricing and the revenue management 
problems do not require simultaneous decision making with respect to price 
and inventory but still can be considered as integrative approaches since they 
consider the level of inventory during pricing decision. A natural extension of 
these models is the inclusion of ordering/production decision at the beginning 
of the selling season. Now the initial inventory is also a decision variable yet 
it is fixed at the beginning of the horizon while the prices can be dynamically 
changed. Such models can describe the environments where the items has 
to be ordered before the season which is long enough to change the selling 
price a number of times. The typical application area of such models is the 
discounting/clearance periods observed extensively in the retailing industry 
(see e.g. Smith and Achabal (1998)). 

The most general models allow a new replenishment order at each period 
and the price can be changed at the same time. Under such settings, the 
main interest is on the characterization of the optimal policy. 

When there are no fixed costs associated with ordering/production the 
so-called base-stock list-price policy is optimal. The policy is described by 
an optimal base-stock level and an optimal price for each period. When the 
inventory level is below the optimal base-stock level, enough is ordered to 
bring the inventory level up to the base-stock level and the optimal list price 
is charged. When beginning inventory is more than the optimal base-stock 
level, nothing is ordered and the optimal price depends on the inventory 
level. Under the latter case optimal price is less than the list price, so a 
markdown policy is employed to deplete the inventory and reach the optimal 
level. Karlin and Carr (1962), Zabel (1972), Federgruen and Heching (1999) 
are some of the key papers in this stream of research. 

Emel Arikan - 978-3-631-75394-1
Downloaded from PubFactory at 01/11/2019 05:32:02AM

via free access



1.1 Joint Pricing and Inventory Control 15 

When there are fixed costs, a so called (s,S,p) or (s,S,A,p) policy is optimal. 
Under the (s,S,p) policy whenever the inventory level is belows, enough 
is ordered to bring it up to S. Hence s and S refer to critical inventory 
levels which triggers ordering and sets the order-up-to level respectively, and 
the optimal price depends on the inventory level at the beginning of the 
period. The (s,S,A,p) policy is similar to the (s,S,p) policy but there might 
exist a set, A, of inventory levels where the (s,S) rule does not apply. The 
relation between demand uncertainty and price determines which one of the 
two policies - (s,S,p) or (s,S,A,p) - is optimal. Moreover the analytical 
treatment of the problems also depend to a large extent on this relation, and 
consequently specific uncertainty models are generally analyzed separately 
(see Chen and Simchi-Levi (2004a), Chen et al. (2006), Song et al. (2009), 
Huh and Janakiraman (2008)). 

The models mentioned above study the optimal actions of a single firm 
independent of the firms that he works or competes with. However, a popular 
research field and an application area of the inventory models is supply chain 
coordination. Issues about supply chain coordination aims at increasing the 
system performance of a chain by coordinating the members ( e.g. suppliers 
and retailers) where each member tries to maximize his own benefit. A 
centralized supply chain can be considered as one with the highest degree 
of coordination, and in decentralized supply chains, when there is lack of 
coordination, the level of inventory kept throughout the whole chain might 
be different than the one in the centralized system. 

Several types of contractual forms are identified as being successful in 
supply chain coordination when the retail price of a product is fixed and the 
retailer can affect sales only through the ordering/production decision (see 
Lariviere (1999), Cachon (2003)). However, when the retailer can also decide 
on his selling price, many of these contracts can not coordinate the supply 
chain anymore. Boyac1 and Gallego (2002), Bernstein and Federgruen (2003) 
and Chen et al. (2001) are among many papers that consider the problem 
with deterministic price dependent demand and Bernstein and Federgruen 
(2005), Granot and Yin (2005), Granot and Yin (2007) study the uncertain 
demand case. 

In the meanwhile a growing body of literature is directed at incorporating 
the customer behavior more explicitly in the models. For the multi period 
models, the reaction of customers to changing prices and the effects of 
pricing strategies on the purchasing behavior is included in a number of 
papers. Aviv and Pazgal (2007) considers a dynamic pricing model where 
the consumers develop expectations as to the availability of the product in 
the discount period and depending on these expectations they may postpone 
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16 Chapter 1. Introduction 

their purchases. They show that the benefits of classical dynamic pricing 
strategies diminishes under such strategic customer behavior. A review 
about the modelling of customer behavior in dynamic pricing and revenue 
management problems can be found in Shen and Su (2007). In addition 
to the pricing decisions Su and Zhang (2007) and Cachon and Swinney 
(2009) consider the initial inventory as a decision variable when customers 
are strategic. This stream of research is still quite a recent one with several 
promising research opportunities which includes the inventory and pricing 
problems. 

Yano and Gilbert (2004), Chan et al. (2004) and Elmaghraby and Ke-
skinocak (2003) provide comprehensive reviews on combined pricing and 
inventory models both in the single-period and the multi-period settings. 

1.2 Research Focus 

We will analyze the joint pricing-inventory problem in a single period set-
ting under the newsvendor model. The newsvendor problem assumes that 
only one procurement decision is made before the beginning of the selling 
season and further replenishment during the period is not possible. Fashion 
apparel retailers who must submit orders in advance of a selling season 
with no opportunity for replenishment, manufacturers who have to choose 
the capacity before launch of a new product which will become obsolete 
quickly, or managers who have to decide on a special one time promotion 
typically face the newsvendor problem (Schweitzer and Cachon, 2000). It 
also has wide applicability in service industries such as airlines and hotels 
when the key decision is capacity. While the operational decisions about the 
allocation of the capacity is managed through revenue management tools, 
the newsvendor model can be employed for the one-time capacity decision. 
The shortening product life cycles and the growing share of service industries 
implies/supports the continuing interest in the newsvendor problem. 

The price-taking newsvendor model assumes that the selling price of the 
product is set exogenously. The essence of the price-taking newsvendor 
model is matching the demand and supply by appropriately setting the 
inventory level in the face of uncertainty. The price-setting newsvendor 
model, on the other hand, assumes endogenous prices. In addition to the 
inventory level, he can affect the demand by appropriately setting the selling 
price. While price-taking newsvendor sits on the supply side of the game, 
price-setting newsvendor has control on both sides. While this allows a larger 
action space and improvement opportunities, the interaction of the system 
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1.3 Structure of the Thesis 17 

parameters creates a more complicated setting. The model and the results 
differ considerably under different modelling approaches and assumptions 
about the model parameters. 

The focus of this work is the generalization of the price-setting newsvendor 
model with respect to the modelling of uncertainty. The effect of price on the 
demand variability has a big influence directly on the pricing strategy and 
this in turn affects the inventory decision. How the uncertainty is included in 
the demand model implies the underlying variability pattern. The existing 
literature is concentrated on the two specific models of uncertainty, namely 
the additive and the multiplicative models. However, considering only these 
two models in the newsvendor context has not been questioned. Moreover, 
because the two models have been treated separately, the optimization 
problem does not have a unified analysis under the two models. Our aim is 
to evaluate the adequacy of the additive and multiplicative demand models 
specifically under the newsvendor framework, and analyzing the price-setting 
newsvendor problem in a more generalized setting. 

1.3 Structure of the Thesis 

After defining the frequently used notation and conventions in the next 
Section 1.4 we give an overview of the newsvendor model in Chapter 2 
mainly from a modelling approach. First, we briefly present the price-taking 
newsvendor model in order to introduce the basic concepts. Next, the price-
setting newsvendor model is presented in more detail focusing on the two 
classical demand models - additive and multiplicative. 

In Chapter 3 we present an empirical study which includes demand 
modelling as well as price and inventory optimization. Using the sales 
data of a retailing company, the additive and the multiplicative demand 
models are estimated and their adequacy of representing the data is assessed 
according to some statistical methods. Seeing the need and possibility of 
using a more general demand model we suggest estimating a more flexible 
demand distribution in a simple way. Applying the newsvendor problem 
formulation, the optimal policies under each of the three models as well as 
the policy under the sequential approach are calculated. The performance 
of each model is evaluated by simulating the corresponding policies using 
the same data set. At the end, we conclude that using a general model can 
increase the profits significantly. 

Building on the conclusion of Chapter 3 we continue with an analytical 
study of the price-setting newsvendor model with a general price dependent 
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18 Chapter 1. Introduction 

demand distribution in Chapter 4. First we give a review of the three 
papers which have similar motivations. Then we introduce our model, basic 
assumptions, and two important concepts - failure rate and sales elasticity 
- in Section 4.2. In Section 4.3 we consider the problem of optimizing 
order quantity and price separately, while Section 4.4 is dedicated to the 
joint optimization of the two policy parameters. The optimality conditions 
and structural properties are presented in relation to failure rate and sales 
elasticity. 

In Section 4.6 we provide a numerical study using two examples with 
different demand processes which can not be covered by the additive and 
the multiplicative models. For each example, first we illustrate the concepts 
and analytical findings of the previous sections. Then, we present sensitivity 
analysis on the profit improvement by using the general model instead of 
the additive and the multiplicative models. 

We conclude in Chapter 5 with a summary of the results and directions 
for future research. 

1.4 Notation and Conventions 

Before proceeding with the analysis we present here some of the notations 
and the conventions used throughout the work. In the following Table 1.1, 
we present the notations which are used commonly almost in all chapters, 
but there might appear some additional notation with the corresponding 
definition whenever it is necessary. 

Whereever the superscript A, M, C, and G appear the variable should be 
considered for the Additive, Multiplicative, Combined, and General models 
respectively, e.g. XA(p) is the random demand under additive model, and 
pA is the joint optimal price for additive model. The superscript d for 
deterministic refers to the setting where the optimal price is calculated using 
the mean demand. 

We use the terms increasing/decreasing and positive/negative in the weak 
sense, i.e. increasing means non-decreasing, and positive means non-negative. 
Unless otherwise stated, for the representation of the derivatives we use the 
variable over which the derivative is taken as a subscript to the function, e.g. 

fJ 
lly(P,Y) = fJyll(p,y). 
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1.4 Notation and Conventions 

p 
C 

V 

b 
X(p) 
F(p,x) 

f(p,x) 
p*(y) 
y*(p) 
p 
ii 

d(p) 

u 
cl>(u) 
</>(u) 
h(p,x) 
g(p,x) 
S(p,y) 
c:P(p,y) 
c:Y(p,y) 

Table 1.1: Notation 

per unit selling price, p ~ 0 
per unit ordering/production cost, c > 0 
salvage value per unit of leftover, 0 ~ v < c, (salvage cost if 
V < 0) 
penalty cost per unit of shortage, b ~ 0 
price dependent random demand 
cumulative distribution function of X (p) with p as a parame-
ter 
probability density function of X(p) 
optimal price for a given y 
optimal order quantity for a given price p 
optimal price for the joint optimization i.e. p = p* (ii) 
optimal order quantity for the joint optimization i.e. y = 
y*(p) 
deterministic price dependent demand function decreasing in 
price 
random part of demand 
cumulative distribution function of U 
probability density function of U 
failure rate of demand 
generalized failure rate of demand 
expected sales 
price elasticity of expected sales 
inventory elasticity of expected sales 

19 

If the argument(s) of the derivative include some constants or functions, first 
the derivative is taken and then the argument is placed, e.g. 

Ily(p*(y),y) =: Il(p,y)I ( ). uy p=p• Y 

Hence, we treat Ily(·) as a specific function and evaluate it at the given point. 
If we want to first plug p* (y) and then take the derivative it is explicitly 
written as, 

~ TI(p*(y), y). 
Emel Arikan - 978-3-631-75394-1

Downloaded from PubFactory at 01/11/2019 05:32:02AM
via free access



20 Chapter 1. Introduction 

Lastly, Table 1.2 shows the basic properties of the probability distributions 
which we use in Chapter 3 and Chapter 4. 

Table 1.2: Probability distribution functions 

Parameters Density function Mean & failure 
Variance rate 

Normal µ location 1 ( (x-µ} 2 ) µ IFR ,,.v127rexp -~ 

u scale q2 IGFR 

Log- µ location 1 ( (ln(x)-µ) 2 ) el'+,,.2 /2 DFR 
normal 

,,,,.v127r exp - 2,,.2 

u scale ( e"'2 - 1 )e2µ+,,.2 IGFR 

Gamma a shape x<<>-l)e-(x//3) __ l_ a(3 IFR* /J"r(a} 
(3 scale a/32 IGFR 

(*) for a > 1. IFR/DFR: Increasing/Decreasing Failure Rate, IGFR: Increasing General-
ized Failure Rate 
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Chapter 2 

A Review of the Newsvendor Model 

The newsvendor model is a single period inventory control model. The 
product in question is sold during one season and the ordering (or production) 
quantity should be set before the season starts. The demand during the 
selling period is not known before the season starts. Thus the ordering 
decision is made under uncertainty about the amount of demand. During 
the selling season, it is not possible to order additional units and cover the 
unexpected part of demand. At the end of the season unsatisfied demand is 
lost and the leftover inventory is obsolete. 

One of the application areas of the newsvendor model is the inventory 
management of perishable goods such as fresh produce or newspapers. These 
products are naturally single period products since they have a limited 
useful life. Another area is the fast-changing markets with short life-cycle 
products such as fashion textiles (Fisher and Raman (1996)) or consumer 
electronics. In these industries the production and transportation lead-times 
are generally longer than the market lifetime of the product. In this case, it is 
not possible to order additional units during the selling season. Additionally, 
the newsvendor model is relevant to the capacity management and revenue 
management problems (see e.g. Van Mieghem and Rudi (2002), McGill 
and van Ryzin (1999)), because of the one-time irreversible nature of the 
decisions and the stochastic environment in these problems. 

Other than its applicability, the newsvendor model provides important 
structural results which are not possible to derive in the multi-period setting 
because of the models' complexity. These results help better understand 
the multi-period problems since the newsvendor model is the building block 
of the multi-period models. From a technical point of view, the analytical 
treatment of the multi-period models often include dynamic programming 
models that rely on inductive proofs. The properties of the single period 
problem constitute the starting point for the analysis. Moreover, when 
infinite horizon problems are considered, the stationary policies often turn 
out to share the same characteristics with the single period solutions. 

Traditionally, the newsvendor problem deals only with the inventory 
decision. The selling price and the corresponding demand forecast are 
considered as input parameters for the newsvendor's inventory decision. 
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22 Chapter 2. A Review of the Newsvendor Model 

In this situation the newsvendor acts as a price-taker. However, in many 
situations the newsvendor has a pricing power on his product. The fashion 
retailers or suppliers of popular electronics products can set the price of their 
products and affect their demand. The class of price-setting newsvendors is 
the subject of this research. 

2.1 Price-taking newsvendor model 

For the price-taking newsvendor, the price of the product is an exogenous 
variable. It can be assumed that the newsvendor is a small player in a 
perfectly competitive market and has no power to influence his selling price 
or he is a retailer of a product for which the price is set centrally. Given 
that the selling price is p and the purchasing cost per unit is c, he has to 
decide on the ordering quantity y. 

Demand, X, is a random variable which is realized after the ordering 
decision. It follows a known probability distribution with a strictly increasing 
distribution function F(·), which is independent of price, and the correspond-
ing density function f(·). If demand during the period turns out to be 
less than the ordering quantity the newsvendor ends up with some leftover 
inventory which can not be carried to another selling season. On the other 
hand, if demand is larger than the ordering quantity the unsatisfied demand 
is lost since there is no further replenishment option. Since there is a single 
selling period it is generally assumed that before the ordering decision the 
newsvendor does not have any initial inventory, though the positive initial 
inventory requires just a simple modification of the basic model. 

Since demand is a random variable, the resulting profit is also a random 
variable which depends on the ordering quantity. If y is the ordering quantity 
and x is the demand realization, profit is 

Profit = {px - cy x ~ y 
py-cy x>y 

The objective of the newsvendor is to find the optimum ordering quantity 
y* which maximizes the expected profit II(y) where 

IT(y) = 1Y [px - cy]f(x)dx + loo [PY - cy]f(x)dx 

=(p - c)y - p 1Y F(x)dx. 
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2.1 Price-taking newsvendor model 23 

The first derivative of the expected profit function is 

IIy(Y) = (p - c) - pF(y). 

If we set Ily(Y) equal to zero and solve for y we derive the optimum ordering 
quantity y* as: 

y* = F- 1 ( P ; c) (2.1) 

where p-1 is the inverse distribution function of demand. 

y* is the unique maximizer of expected profit since II(y) is strictly concave 
as can be observed from the negativity of the second derivative: 

IIyy(y) = -pf(y) < 0. 

If there is some initial inventory, because of the concavity of the objective 
function, the optimal policy can be easily modified as follows: if the initial 
inventory is smaller than y* it is optimal to order the difference, and if the 
initial inventory is larger than y* it is optimal not to order at all. This 
result is the building block for the derivation of the base-stock policy in 
multi-period settings. 

The optimum ordering quantity satisfies a balance equation of underage 
and overage costs. The nominator in (2.1), p- c, represents the opportunity 
cost of losing one unit of demand because of ordering too few, so it is defined 
as the underage cost. Similarly, ordering one unit too much costs c which is 
the overage cost and the denominator is the sum of the two costs. Hence 
the optimum ordering quantity can also be represented as follows: 

(2.2) 

where Cu and C0 are the underage and overage costs respectively. Even 
if the cost structure is different, by appropriately setting the overage and 
underage costs the optimum ordering quantity can be found using (2.2) given 
the basic properties of the model still hold. Two common extensions to the 
cost structure are including penalty cost and salvage value. 

If each unit of leftover inventory can be sold out for a salvage value, 
the overage cost should be decreased by that value. If the salvage value 
is negative, that implies a disposal cost per unit of excess inventory. On 
the other hand, if there is per unit penalty cost associated with lost sales, 
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24 Chapter 2. A Review of the Newsvendor Model 

underage cost can be modified such that it includes the penalty cost. In 
both cases the solution in (2.2) can be used to find the ordering quantity. 

The ratio of the overage and underage costs in (2.2) that determines 
y* is often called the critical fractile since it gives the fractile of demand 
distribution which corresponds to the optimum order quantity. Under the 
cost structure that we assume i.e. no salvage value and no penalty cost, the 
critical fractile can be written as: 

p-c Cr=--. 
p 

Cr corresponds to the cycle-service level that the newsvendor aims to 
reach with the order quantity where cycle-service level is the probability of 
matching all the demand. 

The critical fractile can also be interpreted as a measure for the profitability 
of the product. Schweitzer and Cachon (2000) classify products as high-profit 
products if Cr > 1/2 and as low-profit products otherwise. As Cr increases 
the profit margin of the product increases and it becomes more valuable to 
sell one more unit. Thus, if the demand distribution remains the same, the 
expected profit maximizing order quantity y* increases as the profitability 
of the product increases. For example, if there are two products with the 
same cost structure and the same demand distribution, the order quantity 
of the one with the higher price should be larger. 

2.2 Price-setting newsvendor model 

In many applications, the newsvendor has the chance to price his own 
product at least within a specific range of prices. If this is the case, the 
most profitable way is to decide on the price and the ordering quantity 
simultaneously. The selling price p becomes a decision variable and the 
demand is assumed to be dependent on price. 

The need to consider pricing and inventory problems simultaneously was 
first pointed by Whitin (1955). He provides a newsvendor model with 
pricing assuming a stochastic price dependent demand function. He derives 
an optimality condition based on the relation between the expected marginal 
profit and the expected marginal cost. For a uniform demand distribution 
with a price dependent mean, he provides a closed-form expression for the 
optimal price, which is used to find the optimal order quantity. 

The literature on the price-setting newsvendor model is mainly dominated 
by the demand definitions with an additive and/or multiplicative uncertainty. 
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2.2 Price-setting newsvendor model 25 

In this section we will discuss these models in detail and the more general 
models will be discussed in chapter 4. 

2.2.1 Modelling demand with additive and multiplicative 
uncertainty 

Price dependency of demand in an environment with a stochastic demand 
process implies that at each price a different random variable might cor-
respond to demand. Hence, the random demand is now represented as 
X (p), and the distribution function as F(p, x). The common practice is to 
represent X (p) as a combination of a deterministic function and an error 
term. The admissible prices where X (p) is defined satisfy Pmin ~ p ~ Pmax 
where Pmin is generally assumed to be zero or c. Pmax is defined as the price 
at which expected demand is zero and it is possible that Pmax = oo. d(p) 
is a nonnegative deterministic decreasing function of price, i.e. d(p) 2: 0, 
d'(p) < 0, and U is a random variable with distribution function <I>(u) and 
density function </>(u) which are independent of price. 

One of the most important issues about joint pricing and inventory models 
is the relation of d(p) and U. Two typical approaches are to combine the 
two terms in an additive or a multiplicative fashion. The additive models 
correspond to the models where the demand is represented as the sum of 
the deterministic price dependent function and the random (error) term, 

XA(p) = d(p) + U. (2.3) 

On the other hand, the multiplicative models refer to the product of the two 
terms, 

XM (p) = d(p)U. (2.4) 

Under the additive model, probability density function of demand has 
the same shape as the density of the error term but its location is changed, 
while under the multiplicative model, the scale is changed. The distribution 
and the density functions of random demand can be written in terms of the 
corresponding functions of the error term. For the additive model F ( xA, p) = 
<I>(xA - d(p)) and f(xA,p) = </>(xA - d(p)), and for the multiplicative model 
F(xM,p) = <I>(xM /d(p)) and f(xM,p) = </>(xM /d(p))/d(p). 

In the additive case, the mean value of the random term, E[U], is generally 
assumed to be zero, and in the multiplicative case it is one. Thus, under both 
cases expected demand corresponds to the deterministic part, E[X(p)] = d(p). 
It is common to assume d(p) = a - bp with a > 0, b > 0 in the additive 
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26 Chapter 2. A Review of the Newsvendor Model 

models, and d(p) = ap-b with a > 0, b > l in the multiplicative models 
(Petruzzi and Dada, 1999). 

The main difference between additive and multiplicative models is the 
relation of price with the variance, Var, and coefficient of variation, Cv, of 
demand. Under the additive model, the demand variance is 

Var(XA(p)) = Var(U) 

and Cv of demand is 

A Jvar(U) 
Cv(X (p)) = d(p) + E[U]" 

Under the multiplicative model, the demand variance is 

and the Cv is 

Cv(XM (p)) = J~~;~U) = Cv(U). 

Hence, under the additive model the demand variance is constant in 
price while the coefficient of variation is increasing in price. On the other 
hand, under the multiplicative demand model, the coefficient of variation 
of demand equals that of the random term, which is independent of price, 
but the variance of demand is decreasing in price. This difference causes 
different pricing strategies depending on how the uncertainty is modelled. 
This point is the main focus of the earlier papers on the topic. 

The combination of the two models is also considered in the literature 
in order to have a broader range of variability patterns. The demand is 
modelled as: 

(2.5) 

If d1 (p) = l, the formulation corresponds to the additive case, and if 
d2 (p) = 0 it corresponds to the multiplicative case. Under this model, the 
variance and the coefficient of variation of demand is 
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2.2 Price-setting newsvendor model 27 

Both Var and Cv depend on price, which provides a generalization to the 
previous two models. Young (1978) is the first paper that applies the com-
bined demand model. However, in the succeeding works it is still preferred 
to consider the additive model and the multiplicative model separately with 
some exceptions like Chen and Simchi-Levi (2004b) in a multi-period setting. 

When the uncertainty is modelled additively as XA(p) = d(p) + U, some 
conditions are required to guarantee nonnegative demand even if d(p) 2". 0 
for all p. For example, Yao et al. (2006) assume U 2". 0 even if they do 
not explicitly mention it and in order to avoid the infinitely large revenues, 
an upper bound is placed on the admissible prices, so if the revenues are 
increasing in price a finite optimal price is still ensured on the upper price 
bound. 

On the other hand, Karlin and Carr (1962) does not bound the admissible 
prices or the error term and they mention that "Since it is tedious ( though 
not difficult) to establish general conditions ensuring the nonnegativity of 
demand while at the same time retaining the assumption that U is distributed 
independently of the exogenous variable p, ... we shall be interested only in 
characterizing the properties of those solutions of the model for which the 
optimal policies involve positive price and ordering quantities. (We assume 
the existence of such solutions.)" Mills (1959), without mentioning this 
point, does not put any restrictions on the ranges of U or p, so it seems like 
he also takes the approach of Karlin and Carr (1962). 

Petruzzi and Dada (1999) use a specific demand function to study the 
additive model, d(p) = a - bp (a > 0, b > 0). In order to guarantee that 
the positive demand is possible for some prices, they assume a finite lower 
bound on the error term U. However, while this bound ensures some positive 
demand, it does not guarantee the nonnegativity for all possible demand 
realizations in the range. 

For the multiplicative model the random variable U is assumed to be 
nonnegative without any problems mentioned for the additive model. For the 
combined model Young (1978) assumes that the uncertainty is not additive 
for sufficiently large prices in order to avoid the nonnegativity problem. 
However, in this case it is not possible to say the combined model also covers 
the pure additive model. 

It should be mentioned that this problem is not a crucial issue for practical 
applications since the price range is anyhow limited and it is not allowed to 
approach to infinity. 
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28 Chapter 2. A Review of the Newsvendor Model 

2.2.2 Maximizing the expected profit 

When the price affects the demand process, the objective function of the 
newsvendor should be modified appropriately to include this effect. 

Under the additive uncertainty model, the expected profit is written as 

nA(p, y) = jy-d(p) p(d(p) + u)cp(u)du + l,00 pycp(u)du - cy. 
-oo y-d(p) 

(2.6) 

As can be seen from the lower bound of the first integral, we do not assume 
a lower bound on U and write it as Karlin and Carr (1962) did. Of course, 
for a more precise expression the lower and, if necessary, the upper bound 
of the integrals can be different than (minus)infinity. 

When the demand model has the multiplicative uncertainty, the expected 
profit is 

1y/d(p) 100 
TIM (p, y) = p(d(p)u)cp(u)du + pycp(u)du - cy. 

0 y/d(p) 
(2.7) 

The objective is to find the optimal policy i.e. the optimal order quantity 
y and the optimal price p, in order to maximize the expected profit in (2.6) 
or (2.7) depending on the demand model. This requires a joint optimization 
on two decision variables. The general approach is to solve the problem in 
a sequential way. First the quantity (price) is fixed, the price (quantity) is 
optimized and the resulting price p*(y) (quantity y*(p)) is plugged in the 
original expected profit function. The result is a univariate problem along 
the optimal price (quantity) path where the only decision variable is quantity 
(price). This function is then maximized with respect to quantity (price) 
to get the optimal quantity y for the joint maximization problem and the 
optimal price is then p* (y). 

In order to ensure the uniqueness and the existence of an optimal policy a 
series of assumptions are necessary both on the deterministic part of demand, 
d(p), and on the distribution of the random term, <I>(u). 

The first set of assumptions are necessary for the existence of a finite 
optimal price for a given inventory level. If Pmax is finite even if the optimal 
price turns out to be a boundary solution it is still finite. On the other hand, 
if Pmax is infinite the following should hold (see Karlin and Carr (1962), 
Young (1978)): 

lim d(p) = lim pd(p) = 0. 
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2.2 Price-setting newsvendor model 29 

For the uniqueness of an optimal price for a given inventory level, it 
is generally assumed that deterministic revenue is concave in price, i.e. 
2d'(p) + pd"(p) ~ 0 (e.g. Young (1978), Zabel (1970)). However, this 
assumption implies that the models can not cover some commonly used 
demand functions like the isoelastic demand function d(p) = ap-b. A slightly 
weaker assumption is that there exists a unique price which maximizes the 
deterministic profit, i.e. (p - c)d'(p) + d(p) is continuous and has a unique 
positive zero (Karlin and Carr (1962), Petruzzi and Dada (1999)). 

The uniqueness of the optimal price-quantity couple depends on the 
distribution of the random term. Young (1978) shows that if Uhas a PF2 
distribution, i.e. </>( u) is log-concave, or if it has the log-normal distribution, 
the uniqueness property holds. Moreover the results can be extended to 
the combination of additive and multiplicative models. Petruzzi and Dada 
(1999) extends the result to the IFR distributions for the additive and the 
multiplicative models separately. 

Yao et al. ( 2006) presents the most general assumptions for the multiplica-
tive and the additive models. They employ two important concepts: the 
price elasticity of demand and the generalized failure rate (see chapter 4). 
They assume that the deterministic demand function has increasing price 
elasticity and the error term has strictly increasing generalized failure rate. 
Under these conditions both for the additive and the multiplicative models 
the optimal policy is unique. 

2.2.3 Optimal price 

The main focus of the papers on price-setting newsvendor problem is the 
structural properties of the optimal price. The inventory problem is generally 
considered as the result of the pricing decision and does not gain specific 
attention. As mentioned by Yano and Gilbert (2004), the earlier works take 
the deterministic demand functions as the starting point and then bring the 
uncertainty into question. That's why they specifically focus on the effect of 
including uncertainty on pricing strategy. 

Mills (1959) was the first to write the demand function explicitly as an 
additive demand model as in (2.3) and the main consideration is to show 
the effect of uncertainty on the optimal price. The price which optimizes 
the deterministic profit function is defined as the optimal riskless price pd 
such that 

pd = argmax{(p - c)d(p)}. 
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30 Chapter 2. A Review of the Newsvendor Model 

The optimal price which maximizes the expected profit with an additive 
demand function is 

PA= argmax{IlA}. 
p 

Mills shows that the optimal price under uncertainty is always smaller than 
the optimal riskless price, i.e. pA < pd. Thus, introducing uncertainty in an 
additive way decreases the optimal price. 

On the other hand, Karlin and Carr (1962) introduce the uncertainty in a 
multiplicative model and the resulting pricing strategy is opposite of the one 
shown by Mills (1959). Under multiplicative uncertainty the optimal price 
is higher than the riskless price, i.e. pM > pd, where pM = argmaxp{IlM}. 

Young (1978) defined the demand function in a manner that combines 
both additive and multiplicative models, i.e. xc(p) = d1(p)U + d2(P), 
and verifies both results of Mills (1959) and Karlin and Carr (1962), and 
generalizes their results by describing the optimality conditions in terms of 
variance Var, and coefficient of variation Cv: 

1. If Cv of demand is non-increasing in price, optimal price is larger than 
the riskless price. 

2. If Var of demand is non-decreasing in price, optimal price is smaller 
than the riskless price. 

However, when we look at the conditions it can be seen that they are 
still restricted in terms of variability pattern. If we define variability as the 
combined effect of the two measures, Var and Cv, the above points represent 
the following properties: 

1. If Cv of demand is non-increasing, the Var can only be decreasing in 
price. Both measures behave in the same direction, namely they are 
both non-increasing. 

2. If Var is non-decreasing, Cv can only be increasing in price. Hence, 
both measures are non-decreasing in price. 

For the multiplicative model, Var is decreasing when Cv is constant, and 
the first pattern is even a stronger decrease in variability. Likewise, the 
second pattern is the variability pattern of the additive model, and even 
stronger. Thus, the two conditions indicate the extreme cases and not a 
variability pattern where Var and Cv behave differently or where they are 
not monotone in price .. 

Petruzzi and Dada (1999) provide an intuitive explanation to the opposite 
behavior of optimal price under the additive and the multiplicative models 
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2.2 Price-setting newsvendor model 31 

and its relation to variability. The main idea is that price is a measure to 
decrease the demand variability, but it works different under the two models. 
In the additive model, "it is possible to decrease the demand coefficient of 
variation without adversely affecting the demand variance by choosing a 
lower price", on the other hand for the multiplicative model, "it is possible to 
decrease demand variance without adversely affecting the demand coefficient 
of variation by choosing a higher price". As a result, it is intuitive that 
the optimal price should be lower in the additive model and higher in the 
multiplicative model than the deterministic price. 

Throughout the analysis they use a transformation of the profit function 
by defining a safety factor s, and describe the optimal price as a function 
of s. For the additive case s = y - d(p), and for the multiplicative case 
s = y/d(p). In order to find a unifying condition for the additive and the 
multiplicative models they write the profit function as 

fi(s,p) = (p - c)E [Sales(s,p)] - cE [Leftovers(s,p)]. 

If p8 (s) is the base price that maximizes the first part of the function, i.e. 
PB(s) = argmaxp(P - c)E[Sales(s,p)], the relation between the base price 
p 8 ( s) and the optimal price p is the same under both types of uncertainty. 
They show that for the additive demand model 

Pd ~PA= PB(s) 

and for the multiplicative demand model 

PM ~Pd= PB(s). 

Thus even if the relation to the deterministic price is different under the 
additive and the multiplicative uncertainty, the optimal price is larger than 
or equal to the base price for both types of demand uncertainty. 

The problem of defining the lower bound for error distribution and its 
consequence on the optimal price is mentioned by Van Mieghem and Dada 
(1999). For a specific additive demand definition X(p) = -p + u, they show 
that the optimal price can be higher or lower than the riskless price which 
is contradicting with the rest of the literature. They do not assume a lower 
bound on u but they partition the state space for u such that in one of the 
domains u < p and hence demand is negative. They then assume in this 
domain X(p) = 0. However, since the range of this domain depends on 
price the distribution of u becomes dependent on price. This means, on the 
other hand, that the uncertainty is not additive and the result can not be 
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32 Chapter 2. A Review of the Newsvendor Model 

compared to the results under additive models. This example shows the 
problems with defining a pure additive demand model. 

While the effect of uncertainty on price is discussed commonly in the 
literature, there are fewer results about the effect on order quantity. The 
effect depends also on the cost parameters and the properties of the error 
distribution. Hence unifying results are not available. 
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Chapter 3 

An Empirical Study 

The review of the price-setting newsvendor model shows that the analytical 
results and the structural properties of the model depend on the type of 
the price-variability relation. Especially the different variability patterns 
underlying the additive and the multiplicative models influence the pricing 
decision in opposite directions. While the two models present nice technical 
properties and ease of use, when we turn from modelling to application it 
becomes critical to find the most appropriate model for the underlying real 
demand process. 

Within the inventory control literature the relevant properties of the 
demand process are generally assumed to be known. In case of the price-
setting newsvendor model, the parameters of the demand function and 
the probability distribution are considered as given and the estimation 
process is not treated explicitly. On the other hand, the use of additive 
and multiplicative models is motivated by their popularity in the marketing 
literature and in practice for the demand estimation process. 

Especially in the marketing literature when the effect of price on the total 
amount of demand is considered, the most commonly used formulations are 
the additive and the multiplicative models. A linear regression of demand on 
price represents the additive model, and the linear regression of the logarithm 
of demand on the logarithm of price implies the multiplicative model. We 
will refer to the demand models which are used to represent the underlying 
unknown demand process as the additive and the multiplicative form while 
the regression models built to estimate them will be called the linear form 
and the log-linear form, respectively. The two forms of regression models 
are frequently employed for estimating the price-demand relation. In a meta 
analysis of econometric studies between 1960 and 1985 about price elasticity 
of sales Tellis (1988) reports that the linear and the log-linear forms are 
among the most often utilized forms. Extending the work of Tellis (1988) 
with studies up to 1991, the same observation is revealed by Kalyanam 
(1996). However, it is important not to forget the aim of these studies and 
the problem for which these models are used. 

The relevant models from the marketing literature are developed in order 
to estimate price sensitivity of demand and to come up with a pricing policy. 
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The optimal prices are calculated based on expected sales which is assumed 
to be the same as expected demand. This implies two major assumptions; 
1) the variability regarding the impact of price on demand can be captured 
by the functional form selection 2) the inventory level is not considered or 
assumed to be unlimited for the calculation of expected sales. 

If the true demand process follows a multiplicative or an additive form, 
with a log-linear or a linear regression, the effect of price on variance can be 
correctly captured. Without knowing the exact structure of the underlying 
process the selection of the functional form for the regression model becomes 
critical. However, defining the selection criteria and the tests or the methods 
is not trivial. One way of overcoming this problem is to use more flexible 
methods for estimation. For example, Kalyanam (1996) suggests the use of a 
Bayesian mixture model where the different functional forms are considered 
at the same time with some appropriate probabilities and the optimal prices 
are calculated based on this mixture model. However, the goal is still 
maximizing expected revenues assuming that the expected sales is equal to 
the expected demand. 

In such settings, modelling or forecasting mean demand is the main 
question, where the focus is on creating good point forecasts while the effect 
of variance has a secondary role. This is justifiable as long as the profits 
or revenues are determined just by mean demand and stockouts are not 
considered. The effect of variability can be then safely ignored since positive 
and negative deviations from mean demand can compensate in the long 
run. When we start considering a limited available quantity to offer to 
the market, positive and negative demand deviations can not compensate 
anymore because of stockout situations. Hence, variability of demand starts 
having a major impact and we need to consider expected sales instead of 
expected demand for optimization models. 

Nevertheless, one of the motivations for using the additive and the mul-
tiplicative models in the price-setting newsvendor problem is the common 
usage of these models by practitioners and the claim that the two models 
can represent demand in an appropriate way in many cases. In this chapter 
we question this claim and investigate if one of the models represents the 
demand process of different products better than the other. 

For this purpose, we present an empirical study based on sales data from 
a retail chain company for several consumer products. First, we check if the 
properties of the additive and the multiplicative models, especially in terms 
of price-variance relation, hold for the data at hand. In order to estimate the 
demand functions we use regression analysis which is the most commonly 
employed statistical tool for research on pricing (Brown and Dant, 2008). 
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3.1 Description of the data 35 

Second, and more important, we analyze the effect of the different models 
on the resulting profit. We apply the newsvendor model for the ordering 
and pricing decisions by using both demand models, compare the resulting 
policies, and check if the better-fit model (let us define "better-fit model" 
as the model which represents the data better in terms of some statistical 
measures) leads to significantly higher profits. 

It should be underlined that the main interest is the effect of these models 
on the expected and real profits. Fitting of the two models to the empirical 
data will be, of course, evaluated with statistical measures and will give the 
basic comparison criterion. However, if the profit implications of using the 
better or worse fitting model is not significant, the contradicting analytical 
results of the two models with respect to the pricing policy can be considered 
loosely in practical settings. 

As a third point we suggest a more flexible form which can capture different 
forms of variability. The pricing and inventory policy and the profits are 
calculated and compared against the two classical forms. 

3.1 Description of the data 

For our analysis we use weekly sales data of an Austrian retail chain company 
from a number of outlets for several products on the stock-keeping unit 
(SKU) level. We started with 11941 products which are sold at least for 52 
weeks and on average 5 units per week. The sales data do not correspond to 
the real demand since demand during stockouts is not recorded. However, 
an analysis of stockout situations on the real data shows that they occur in 
less than 2% of the selling periods. Therefore, the existing sales data can be 
considered as an indicator for demand. 

At each period, the products can be sold with different prices in different 
outlets. However, our analysis is not on outlet level but on the aggregated 
sales of each product. In order to come up with a single price at a single 
period, a weighted average price is calculated: the price charged at each 
outlet is weighted by the proportion of demand in that outlet to the overall 
demand. For further analysis, prices are fitted to a grid of 10 equally 
distributed steps. 

Next to sales price, the data also contain information about the number of 
market outlets, and a features indicator (binary information to account for 
the effect of advertisement, e.g. by means of newspaper supplements such as 
flyers and leaflets). Just for a quarter of products such advertisement efforts 
were utilized. As we do with price, we also take a weighted average of the 
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binary feature indicator over all outlets. Therefore at the end the variable 
that we use for feature is no more a binary variable but continuous between 
0 and 1. 

Since we are interested in the variability pattern for different prices, we 
want to be able to calculate the variance of demand for a number of different 
price levels. Therefore we eliminated the products where there are less than 
five prices with at least five observations each. For a given price level if 
there are at least five observations we consider that price for calculating the 
demand variance, otherwise there are not enough observations to calculate 
the variance. On the other hand if there are less than five prices with enough 
observations, there are too few prices where we can calculate the variance 
and analyze the effect of price on variance. Because of this reason a total of 
7462 products are eliminated, and finally we proceed with 4479 products for 
the subsequent analysis. 

Note that the products of the company are in fact durable goods,so the 
inventory control policy can be better modelled with a multi-period problem 
formulation. However we use the data to test optimal pricing and inventory 
policies within the newsvendor framework, without comparing our results 
with the applied policy at the retailer. 

3.2 Demand estimation 

As we are interested in the price-demand relation we want to model demand 
only as a function of price. In reality, however, demand depends on a number 
of other factors which should be identified. By cleaning the data from these 
factors we can derive the price dependent part of demand. In the following 
subsections we describe the estimation procedure for a single product, while 
the same procedure is applied to each product. 

3.2.1 Detrending demand data 

The potential factors that can significantly affect demand are chosen as 
trend, seasonality, number of outlets and features (see Natter et al. (2007) 
for a discussion). As the first step, the random demand for the product is 
formulated as a function of these variables: 

(3.1) 
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3.2 Demand estimation 37 

where z is a column vector of normalized independent variables such that the 
average over all observations of each variable is zero, and zT is its transpose, 

T ( . ( 2t1r) ( 2t7r) . ( 2t7r ) ( 2t1r ) ) z = t,sm 52 ,cos 52 ,sm 4_33 ,cos 4_33 ,O,F . (3.2) 

The first term t captures the time trend and the next four terms are the 
seasonality components, with both annual and monthly cycles, 0 is the 
number of outlets and F is the feature variable. The column vector {3 is the 
coefficient vector with parameters /31 ... {37. As it can be seen from (3.2), the 
regressors (the independent variables to the regression model) do not include 
the constant and the price, so the effects of these two are still captured in 
X. Hence, X corresponds to the price dependent demand, i.e. X(p). 

Let S be the vector of sample estimates of /3i for i = 1, ... , 7 and let :h be 
the residuals to estimate x. By using the least squares estimation method 
we solve 

(3.3) 

We use k as an index for a single observation, where total number of 
observations is N. The optimal values for Si are found in order to minimize 
L~=1(xk)2, and they are checked for significance on a 5% level. Note that 
not all the regressors are used to estimate the final model. Starting from the 
most general model, i.e. including all the elements of z, we eliminate the 
insignificant variables step by step. While there are a number of different 
approaches to model building, we find the general-to-simple approach good 
enough for our purposes. The estimates of the coefficients of the insignificant 
variables are set to O in S. 

Now Xk, k = l, ... , N, is the data cleaned from any effect other than price, 
which we need for our further analysis. Using these data we fit an additive 
and a multiplicative demand model again using the linear regression models 
and the least squares estimation method. 

3.2.2 Estimating the additive and the multiplicative models 

From this point on, we fit the prices to a grid of 10 equally distributed steps. 
Let Pmin and Pmax be the minimum and the maximum observed prices. The 
price grid p has the elements Pi =Pi,··· , Pio such that Pi - Pi-1 is the same 
for all i where Pl = Pmin and Pio = Pmax. The price for k th observation, Pk, 
is set to the closest price in the grid. 
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38 Chapter 3. An Empirical Study 

The additive model is formulated as, 

X(p) =a+bp+UA. 

In order to estimate the coefficients a and b the following regression model 
is solved for the respective estimates a and b. 

(3.4) 

The multiplicative model is formulated as, 

and the estimates are obtained through 

(3.5) 

Note that in (3.5) Dk is an estimate for ln(uM). 
After the estimation of the regression coefficients, they are checked to 

ensure that they fit with the basic theoretical assumptions. First af all, 
if for a given product, demand turns out to be increasing in price we do 
not consider that product for further analysis. While there can be some 
class of products (such as luxury goods) where this relation fits with the 
theory, given the product portfolio of the retailer that we consider, it is quite 
unlikely to come up with such products. Moreover the pricing strategy of 
such products are not covered yet by the price-setting newsvendor literature 
and therefore is out of our scope. 

For the linear model, if b turns out to be positive demand is increasing in 
price. Therefore, the linear form is not considered for comparison and in 
the optimization problem for all those products where b is not significantly 
smaller than zero. There are 3223 products, or 72% of all products where the 
regression analysis was applied, which results in a linear demand function 
decreasing in price. 

For the log-linear model, if n turns out to be positive, demand is increasing 
in price. Moreover, if -1 ::; n::; 0 demand is inelastic to price changes. As a 
result, the model results in a profit which is monotonically increasing in price. 
When the only intention is making point estimates of demand or deriving 
properties of demand elasticities, n does not need to be elastic. However, 
when the problem is optimizing prices using the estimates, elasticity is 
required in order to be able to get finite optimal prices. This problem with 
the log-linear model is also mentioned and further discussed by Montgomery 
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Table 3.1: Number of products which satisfy the face validity condition 

Model Num. products % of prod. 
Additive 3223 71.9 

Multiplicative 2343 52.3 
Both 2319 51.7 
None 1232 27.5 

and Bradlow (1999). Hence, if f,, ~ -1, the log-linear form is not considered 
for further analysis. Quite a high number of products, namely 2136 products, 
fall in this case. This corresponds to 48% of the products which are considered 
for the regression analysis. 

These criteria about the two models can be considered as the face validity 
conditions, since the results are compared with theoretical expectations. A 
total of 1232 products fail to satisfy any of these conditions and, therefore, 
these products are not considered for further analysis. On the other hand, 
2319 products satisfy the conditions for both of the models. The number 
and percentage of products satisfying the conditions for the two models are 
given in Table 3.1. 

One of the main problems with time series data is the autocorrelation 
of the residuals across periods. A common cause of autocorrelation is 
model misspecification (Verbeek, 2008, p.105). In marketing, autocorrelation 
from model misspecification is generally the result of omission of a relevant 
explanatory variable (Hanssens et al., 2003, p.215). For example, the prices 
of complementary and substitutable products might have a significant effect 
on demand. However, since we do not know about the interrelations between 
products we are not able to model these effects, which might cause the 
misspecification problem. 

In order to check for autocorrelation we apply the Durbin-Watson test 
which is a popular test for first-order autocorrelation (Verbeek, 2008). For 
the model in (3.4) the test statistic is: 

A non-autocorrelated process results in a test statistic dw = 2. Hence, we 
test for dw being significantly different from 2. We do not check for the 
higher-order autocorrelation since generally the amount of autocorrelation 
diminishes with the lag (Ledolter and Abraham, 2006), and the seasonality 
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Figure 3.1: Histogram of R2 of the linear (left) and the log-linear (right) models 

is cleared in the detrending step which can help reduce the possible seasonal 
autocorrelation. 

The results of the Durbin-Watson test for each model is as follows: out 
of the products satisfying the face validity for the additive model, 1092 
(33.9%) are non-autocorrelated. For the multiplicative model, 623 (26.6%) 
products satisfying the face validity are non-autocorrelated. 550 (23.7%) 
products satisfy the face validity of both models and at the same time are 
non-autocorrelated. For the rest of the chapter, we first report the results 
for all the products that pass the face validity check followed by the results 
for the non-autocorrelated products (which will be denoted as "nae."). 

For all products that passed the face validity check, the histogram of the 
R2 measures are given in Figure 3.1. While it seems like the R2 values 
for the log-linear model are generally higher compared to the linear one, 
we should take into consideration that the linear model is estimated for a 
larger number of products compared to the log-linear model. There are 852 
products with R2 ;::: 0.2 for the linear model, while it is 693 for the log-linear. 
These numbers correspond to 27% of the products for which the linear 
model is estimated and 29% for the log-linear model. When we consider just 
the nae. products, the picture is not very different. Figure 3.2 shows the 
histogram for the R2 values just for the non-autocorrelated products. 

The R2 values seem to be quite low for both models, but the reason is 
not the inadequate fit of the estimates to the real demand data but the fact 
that we are just looking at the price dependent part. Let R;omp denote the Emel Arikan - 978-3-631-75394-1

Downloaded from PubFactory at 01/11/2019 05:32:02AM
via free access



3.3 Selection among the additive and the multiplicative models 41 

~ 
~ 

!! 
~ 

il' il' 
iii i § 
~ ~ 

~ 

! ! 
u. u. 

§ 5! 

0.0 0.2 o., 0.6 o., ,.o 0.0 02 o., 06 " 10 

R' R' 

Figure 3.2: Histogram of R2 of the linear (left) and the log-linear (right) models for 
nae. products 

R2 when we take the complete estimate and compare it with the original 
demand. If we consider the R~omp values we see that they are indeed quite 
reasonable. 

For the additive model we calculate the complete fit of the estimates as 

-.;---N A 

R2 = 1 - L..Jk=l Uk . 

comp Lf=l (Dk - .fJ) 2 

The histogram of R~omp is given in Figure 3.3 which shows an obvious 
improvement over the R2 values in Figure 3.1 and Figure 3.2. 

3.3 Selection among the additive and the 
multiplicative models 

When both the linear and the log-linear forms are candidates for the demand 
model an important question is which one to select since the two forms 
will obviously suggest different pricing and inventory policies. Hence the 
models should be compared against each other in order to identify the most 
representative model. While for a small number of products it is possible to 
manually look at many aspects in detail, once we have a realistic assortment 

Emel Arikan - 978-3-631-75394-1
Downloaded from PubFactory at 01/11/2019 05:32:02AM

via free access



42 Chapter 3. An Empirical Study 

~ ~ -
~ § -

-
f-_ 

~ - 2 --
g >, 

~ 
-

~ ~ 
~- ~ 2 

[ CT 
!! 

f- ---u. 
f-f-_ 

u. 

§ --- ~ 
- ---- _,--f----

~ ~ 

17 17 
0.0 02 0.4 o., o., 0.2 o., 0.6 0.8 , 0 

R' R' 

Figure 3.3: R~omp of the linear model for all products (left) and for nae. products 
(right) 

size with thousands of products we need to select the criteria to base our 
decision on. 

Since the dependent variables of the two models are not the same, it is not 
appropriate to use R2 directly or the likelihood function values as criteria for 
comparison. One possible way of comparison is transforming the estimate 
of the log-linear model back to the original demand level and calculating 
the R2 based on this estimate. However, the transformation is not very 
straight-forward. One has to consider the distribution of the error term and 
the distribution on the estimated coefficients. Thus the result is sensitive to 
the distributional assumptions and there is no clear convenient way of doing 
a comparison on R2 . 

First we employ a standard procedure for comparing linear and log-linear 
models using a general purpose test for model selection. Next, since a 
critical issue in our work is the price-variability relation, we base the model 
comparison on how good the demand variance is captured by each functional 
form. 

3.3.1 A formal test for model selection 

One of the two typical approaches for comparing linear and log-linear forms 
is nesting them under a more general Box-Cox transformation and comparing 
them against this general model (see e.g. Davidson and MacKinnon (2004, 
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p.432)). The second approach is to create an artificial regression model using 
the two models such that both are nested under this artificial model. In 
this section we take the latter approach and use the PE-test suggested by 
MacKinnon et al. (1983) for the comparison. 

The PE-test procedure is based on estimating an artificial compound 
model from the two competing models and testing the null hypothesis Ho 
which states that the correct model is the linear model 

against the alternative H 1 which says that the correct model is the log-linear 
model 

H1 : ln(xk) = ln(m) + nln(pk) + vk. 

Based on the two models the artificial compound model is generated as 

Xk =(a+ bpk) + a{(ln(m) + nln(pk)) - ln(a + bpk))} + ( 

The parameters a and b are the estimates from the linear model in equation 
(3.4) and m and n are the estimates from the log-linear model in equation 
(3.5). The idea is estimating a and reaching a conclusion based on this 
estimate with a standard t-test. If a is significantly different from zero, the 
linear model is rejected, but this does not mean that the log-linear model has 
to be accepted. As an opposite case, if a does not turn out to be significantly 
different from zero, then the linear model is not rejected, but again, we can 
not yet conclude that the log-linear model is not also true. Up to this point 
the test is not very conclusive, hence the same procedure is repeated after 
exchanging the null and the alternative hypothesis. Now Ho corresponds to 
the log-linear model and H 1 to the linear model and the artificial compound 
model is also reformulated accordingly as 

At the end the test might give one of the four possible results as shown in 
Table 3.2. As can be seen, the problem with the PE-test is that in two cases 
(type 3 and 4) the result is not conclusive. The test is not able to really 
compare the two models against each other but "the goal is to assess the 
'truth' of each model's specification and categorically accept or reject each 
of the competing alternatives" (Balasubramanian and Jain, 1994). 

Table 3.2 includes the number of products which fall into each category 
for all products and for the non-autocorrelated products, respectively. Un-
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Table 3.2: Results from PE-test 

Type Conclusion drawn 

1 
2 
3 
4 

Accept linear, reject log-linear 
Reject linear, accept log-linear 
Reject both linear and log-linear 
Reject neither linear nor log-linear 

Nr. and % of products 
all nae. 

281 (12.1%) 
282 (12.2%) 
598 (25.8%) 

1158 (49.9%) 

55 (10.0%) 
49 ( 8.9%) 
69 (12.5%) 

377 (68.5%) 

fortunately many of the products are of type 3 or 4, which are not very 
conclusive. Moreover, the number of products of type 1 and 2 are very close. 
Hence, the conclusion from this test can only be that a priori neither of the 
models is more preferable against the other one. 

Similar results are reported by Bolton (1989) and Kalyanam (1996). Bolton 
(1989) compares the models based on the transformed R2 values while he 
does not comment on how the transformation was done. He concludes that 
the average R2 is approximately equal across models. However, the different 
functional forms have different systematic bias with respect to the estimates. 
Therefore it is crucial to test the alternative forms. On the other hand 
Kalyanam (1996) compares the log-linear model with a semi-log model, i.e. 
a model in the form of ln(xk) = f3o + f31P + E, by using the P-test which is 
based on an artificial compound model like the PE-test. He faces the same 
problem of the low power of the test since for 5 out of 6 comparisons the 
result is of type 4, so no conclusion can be made. 

3.3.2 Selection based on homoskedasticity 

While the PE-test is a formal way of comparing the linear and the log-linear 
models in order to find the true model, evaluating them based on a specific 
criterion can be another legitimate way of comparison. In this section, we 
test how good the models represent the demand variance and use this as a 
criterion for model selection. 

Recall that within the price-setting newsvendor model, the main effect of 
using different demand models come from the different variability patterns 
implied by these models. Under the additive model demand variance is 
assumed to be independent of price, and under the multiplicative one the 
coefficient of variation should be price independent. In order to investigate 
these two properties, we analyze the variance of the residuals of the two 
regression models in (3.4) and (3.5). If the corresponding residuals, Uk and/or 
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Table 3.3: Number and percentage of heteroskedastic products 

Model 

linear 
log-linear 

All products 
B-P test White test 

1566 (48.6%) 
546 (23.3%) 

1435 (44.5%) 
635 (27.1%) 

Nae. products 
B-P test White test 

443 (40.6%) 
93 (14.9%) 

384 (35.2%) 
100 (16.1%) 

f)k, are homoskedastic, i.e. the variance of the residuals is identical through 
the observations, the assumptions of the additive and/or the multiplicative 
models are fulfilled. We check for homoskedasticity of the residuals by using 
some standard tests, namely the Breusch-Pagan test (B-P test) and the 
White test. Both of these tests aim to identify the heteroskedasticity which 
might be caused by one of the independent variables. 

The test by Breusch and Pagan (1979) is based on an auxiliary regression 
of the squared residuals on a function of price. If we consider the additive 
case, the auxiliary regression is: 

where a 2 is a constant independent of the observation and f is any general 
function. If o: = 0, af is the same for all observations and the model is 
homoskedastic. Hence, the null and alternative hypotheses are: 

Ho: o: = 0 

H1: Not Ho. 

The test requires the specification of f and for this purpose we choose the 
simplest variant, where f is a linear function in p. Since the Breusch-Pagan 
test is quite sensitive to the assumption of normality, we use the extension 
introduced by Koenker (1981) and Koenker and Bassett (1982). 

The test by White (1980) is a generalization of the B-P test such that f is 
a linear function of p and p2 . Hence, it can cover non-monotone variance 
changes in price. While this generalization offers an advantage, it results in 
a limited power of the test. 

The results of the two tests are reported in Table 3.3. Note that the tests 
were applied to the products which satisfy face validity, so the number of 
products under the linear and the log-linear models differ (see Table 3.1). 
When we look at the percentages, it can be concluded that the log-linear 
model seems to capture the price-variance relation better than the linear 
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Table 3.4: Comparison based on tests of heteroskedasticity: number and percentage 
of products in each type 

All products 

Type Linear Log-linear B-P test (% 1 ) White test (% 1 ) 

1 Homosked. Heterosked. 271 (18.0%) 248 (18.1%) 
2 Heterosked. Homosked. 964 (64.1%) 740 (54.1%) 
3 Heterosked. Heterosked. 268 (17.8%) 381 (27.8%) 
4 Homosked. Homosked. 817 950 

Nae products 

Type Linear Log-linear B-P test (%1 ) White test (% 1 ) 

1 Homosked. Heterosked. 46 (16.5%) 39 (16.1%) 
2 Heterosked. Homosked. 197 (70.9%) 160 (66.1%) 
3 Heterosked. Heterosked. 35 (12.6%) 43 (17.8%) 
4 Homosked. Homosked. 272 308 

1 Percentage values are calculated based on the sum of products of type 1, 2, and 3. 

model. However, such an interpretation should be taken cautiously since the 
aim and the structure of these tests are not about comparison of functional 
forms. 

For the products which satisfy the face validity for both models, we can 
have a more detailed look in Table 3.4. While the tests are not comparing 
the two models, we use the results to interpret them for a comparison with 
respect to the truth of the model as we did with the PE-test in the previous 
section. In Table 3.4 type 1 and 2 recommend using the linear or the log-
linear model, respectively, if the only criterion would be about variance. 
Type 3 on the other hand includes all those products where neither the linear 
nor the log-linear model is able to capture the full price-variance relation. 
Type 4 products include all those where both the linear and the log-linear 
model result in homoskedastic residuals. Although this last category does not 
sound to be very intuitive, one of the following points can be the explanation: 

1. The demand and its variance does not significantly depend on price. 
2. Because of the low power of the tests the null hypothesis of homoskedas-

ticity is not rejected. 
3. Due to the range of the observed prices and demands, the log-linear 

model might look very similar to the linear one and hence, the test is 
not able to differentiate between them. 
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Figure 3.4: Sample variance of two example products 

4. The variance in fact depends on price in both cases but can not be 
captured with a simple linear relation as in the B-P test or with a 
second order polynomial as in the White test. 

Since the type 4 result is quite vague and inconclusive, we do not include 
it in the calculation of the percentages. When we consider the first three 
types we can conclude that the log-linear model is again performing better 
than the linear one, which is in line with many findings. 

The results are slightly different for the non-autocorrelated products as the 
proportion of type 3 products is smaller while the type 2 is higher for these 
products. Nevertheless the conclusion is not different than the conclusion 
considering all of the products: the log-linear model performs better than 
the linear but for many products it is not possible to conclude for one of the 
models. 

3.3.3 Summary of model selection 

The comparisons based on both the PE-test and homoskedasticity result 
in a large class of products where it is not possible to choose among the 
linear and the log-linear models. First of all, there are a number of products 
which fall in type 3 both in Table 3.2 and Table 3.3 for which neither of 
the models seem to be appropriate. In Figure 3.4 we plot the variance of 
demand for two of these products. The first product does clearly not fit with 
the assumptions of neither of the models since it has an increasing variance, 
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Figure 3.5: Sample variance and coefficient of variation of an example product 

while the second one seems to imply a non-monotone price-variance relation. 
Therefore it is no surprise that they are identified as heteroskedastic under 
both the linear and log-linear forms. 

Another problematic class of products is that one, where the log-linear 
model is identified as homoskedastic (i.e. type 2 in Table 3.3) because the 
variance is decreasing in price, while the coefficient of variation in fact does 
not fit with the multiplicative model. Figure 3.5 shows the Var and Cv of 
one of these products. Since Var(X(p)) is decreasing in p, both the B-P 
test and the White test identified it as homoskedastic under the log-linear 
model. Hence, one can assume that the findings from the multiplicative 
model would apply for this product. However, this might be a misleading 
conclusion because Cv(X(p)) is not really constant in pas implied by the 
multiplicative model. 

3.4 Fitting a general model 

As the previous discussion and analysis remained unsatisfactory with respect 
to several aspects, we see the need for a more general and flexible demand 
definition. There are numerous products where the adequacy of the linear 
and the log-linear forms are questionable, so we try to model demand in a way 
that we can cover the properties of demand for products as in Figure 3.4 and 
3.5. Since our aim is to find the optimal price and inventory level with the 
newsvendor model we do not need a point estimate but a whole distribution. 
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Therefore, already at the estimation step focusing on the distribution seems 
to be reasonable. For now, we leave the discussion of which distribution to 
choose and focus on the specification of the two parameters the mean and 
the variance of the distribution. 

We suggest estimating the variance and the mean of demand for each price 
separately, and using directly the distribution function with these parameters. 
Since we want to be able to capture a more general price-variance relation 
we model Var(X(p)) as: 

(3.6) 

With this variance function, we can capture any monotone price-variance 
relation as well as non-monotone relations with one maximum or minimum 
point. In order to estimate the coefficients in equation (3.6) we use the 
sample variance Var(X(pi)). First we need to calculate the variance of 
sample demand for each Pi E p, but for some Pi we do not have enough 
number of observations to come up with the variance. Hence, we calculate 
the sample variance for Pi if there are at least 5 observations with that price, 
and if there are less than 5 observations the variance is found by a linear 
interpolation of the available variances. Remember from Section 3.1 that 
we just consider products with at least 5 prices where we can calculate the 
variance. In this way we come up with Var(X(pi)) for all i = l,··· ,10. 
Then, we write Var(X(pi)) as a price dependent function: 

(3.7) 

Again with least squares method we estimate the coefficients of the regression 
equation (3. 7). When we apply this procedure the resulting variance functions 
for products in Figure 3.4 are illustrated in Figure 3.6. 

We do not estimate a specific function in order to find out the mean 
demand, and we directly use the average sample demand for each Pi where 
there are at least 5 observations and the others are linearly interpolated. 
At the end, we come up with a variance, Var(X(pi)) and mean E(X(pi)) 
for each price Pi. We will use this model as a benchmark for evaluating the 
potential profit improvements of using a model which is more general than 
the additive and the multiplicative models. 

Up to this point we modelled demand in three different ways and estimated 
the parameters of these models for each product. We evaluated the additive 
and the multiplicative models using statistical tests focusing on the correct 
representation of the variance. In the rest of this chapter we apply the 
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Figure 3.6: Sample variance ( dashed) and fitted variance ( solid) of two example 
products 

price-setting newsvendor model for each product using the three demand 
models. We evaluate and compare the optimal policies resulting from each 
model, and using the empirical observations we simulate the policies to 
calculate and compare what we call the real average profits. 

3.5 Simulation of profits 

In this section we find the optimal price and inventory levels under different 
demand models using the newsvendor formula. Thus we need to calculate 
the expected profits which require specification of the cost parameters. Since 
we do not have access to the information about the real cost structure, we 
made some assumptions: 1) the unit purchasing cost is set as 80% of the 
smallest observed price, i.e. c = 0.80p1 , 2) there is no salvage value for 
leftover inventory and no penalty cost for unsatisfied demand. 

In order to calculate expected profits we need the distribution function of 
demand. Hence, we should specify a price dependent distribution function 
F (p, x) corresponding to each of the three demand models. 

For the additive and the multiplicative models we need the distribution 
of the error terms uA and UM (see equations 2.3 and 2.4) to derive the 
demand distribution. The first step is to estimate the distribution of the 
residuals fl and D from the linear and the log-linear models. While it is 
theoretically possible to find the best fitting distribution separately for each 
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Table 3.5: Summary of the demand distributions under the three models 

Model Distribution Mean Variance 

Additive Normal a+bp Var(UA) 
Multiplicative Log-normal mp" E(UM) mp"Var(UM) 
General Normal Sample mean, E(X(p)) 130 + 131p + 132p2 

product and for each functional form, we assume a normal distribution both 
for ft and II for all the products. 

The distribution of U A is directly estimated as a normal distribution with 
the mean and the variance of ft: 

The distribution of UM is estimated as a log-normal distribution with the 
mean and variance of 11: 

E(UM) = eVar(v)/2 

Var(UM) = eVar(v)(eVar(v) - l). 

Using these parameters the demand distribution under the additive and the 
multiplicative models are derived. The corresponding distribution functions 
are denoted as pA (p, x) and pM (p, x) respectively. For the general model we 
assume a normal distribution with the sample mean and the variance as in 
Equation (3.6) and the distribution function pa (p, x ). Table 3.5 summarizes 
this part showing which distribution is used under each model and lists the 
corresponding mean and variance. 

After specifying the distribution functions and the parameters, first we 
find the optimal inventory level for each price in the observed range, i.e. for 
all Pi, using the explicit formula in equation (2.1). For example, for the 
additive model optimal inventory level satisfies 
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Then we calculate the expected profit for each Pi and find the optimal 
price p by enumerating over all Pi· Then, for the additive model, the optimal 
price and the optimal inventory level are: 

{>A = argmax{IIA(pi)} 
Pi 

We do not exceed the observed range of prices for the search because for 
the unobserved prices it will not be possible to simulate the profits and make 
a comparison among the different policies. The drawback of limiting the 
prices to such a compact range is that for a number of products the optimal 
price of two or three of the models result in the same boundary price. For 
those products the simulated real profits differ only because of the different 
inventory policies but not the pricing policy. 

By simulating the policies using the observed data we calculate the real 
profits which is the average of the simulated profits. Let xA = { xf, ... , xj} 
be the vector of J demand observations where the corresponding price is 
equal to PA. For the additive model 7rA refers to the real profit which is 
calculated by: 

1 
1l'A = J(!>A - c) L min(xf, YA). 

j 

The corresponding real profits for the multiplicative, 7rM, and the general 
model, Kc, are calculated accordingly. In sections 3.5.1 and 3.5.2 we compare 
the three models based on the real profits. 

The traditional way of price and inventory optimization follows a sequen-
tial approach. First, the optimal price is set, probably by the marketing 
department, and then the inventory decision is made given the preset price. 
In order to evaluate the effectiveness of this approach, we apply a sequential 
optimization procedure where the optimal price is calculated based on the 
mean demand and the inventory level is found given the optimal price, and 
compare this procedure with the joint optimization. Using the sequential 
approach the optimal price for the additive model is denoted as pdA where d 
stands for deterministic and the resulting real profit is 7rdA. We compare the 
joint and the sequential procedures for the additive and the multiplicative 
models in section 3.5.3. 
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Figure 3.7: Profit improvement by using the multiplicative model instead of the 
additive, left for all products, right for the nae. products. The last category includes 
all ratios ~ 2. 

3.5.1 Comparison of the additive and the multiplicative models 
based on simulated profits 

In this section we compare the additive and the multiplicative models based 
on the real profits. Figure 3. 7 shows the histogram of profit improvement by 
using the multiplicative model instead of the additive where 

M A A-M 7r - 7r 
7r = 7rA 

Note that, in the figure, we cut off the ratio at 2 and put a mass at 2 to count 
for the larger values. The multiplicative model seems to perform a little 
bit better than the additive one since 1rA-M has a tendency to the positive 
values. When we consider all the products which satisfy the face validity 
conditions of both models, average 1rA-M is 9.5%, and for nae. products it 
is 7.5%. Thus the multiplicative model results in higher profits, but only 
slightly and there is a considerable part ( 45.8%) of all products where the 
additive model gives higher profits. 

Table 3.6 shows for each test the percentage of products in each type 
where the additive model results in a larger profit than the multiplicative 
one. Comparing the results with the PE-test for model comparison we see a 
slightly better performance of the linear (log-linear) model for those products, 
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Table 3.6: Percentage of products where the linear model performs better than the 
log-linear 

Type Conclusion PE-test B-P test White test 
all products 

1 Linear 54.1 51.7 50.8 
2 Log-linear 41.5 43.7 44.1 
3 None 43.4 44.0 44.9 
4 Both 46.1 47.1 46.3 

nae. products 

1 Linear 52.7 47.8 51.3 
2 Log-linear 49.0 43.2 45.6 
3 None 43.5 40.0 39.5 
4 Both 45.6 49.3 47.1 

where also the PE-test concludes that the linear (log-linear) model is the 
better one. This can be observed also by comparing the simulated profits 
with the conclusion drawn from the two tests for homoskedasticity. While 
there is some improvement in real profits when we use one of the methods 
for model selection, the value of them is marginal. The power of using any 
of the methods in order to select the model which results in higher profit 
is not satisfactory. The probability of choosing the better model is close to 
50%. 

The differences between the policy parameters are as expected: 60% of 
the time multiplicative model results in higher profits than the additive one. 
30% of the time the optimal prices are the same, which might be a result of 
discretizing and limiting the admissible prices. Among those cases where 
the optimal price is the same 83% of the time optimal quantity from the 
additive model is larger. 

3.5.2 Comparison with the general model based on simulated 
profits 

When we compare the general model with the two classical models, we see a 
considerable increase in real profits. Figure 3.8 shows for all products, the 
profit improvement by using a general model instead of the additive and the 
multiplicative, 'll"A-G and 7rM-G, respectively. For the non-autocorrelated 
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Figure 3.8: Profit improvement by using the general model instead of the additive 
model (left) and instead of the multiplicative model (right). Last category includes 
ratios 2: 2. 

products, the picture is almost the same. 82% of 1rA-G and 84% of 1rM-G 

are positive which means that the general model increases the profits. 
The estimated mean values of 1rA-G and 1rM -G can be found in Table 3. 7 

with the corresponding 95% confidence interval. There is a considerable 
increase in profit when the general model is used. However, it should be 
noted that the general model that we describe and the comparison method 
can have some bias. Since we do not specify a model for the mean we can 
exactly capture the averages in the sample, but it would not be possible 
to estimate demand for an unobserved price. For such a purpose we need 
to specify a mean function which would decrease the performance of the 
general model. Hence not doing comparisons based on out-of sample prices 
creates an advantage for the general model. However, such an out-of sample 
comparison would be impossible because of data requirements. We have a 
limited number of price observations and keeping some of them out of the 
estimation process would not be practical. In reality even if the numbers do 
not turn out to be that large as reported in Table 3. 7, the results show that 
there is potential for improvement compared to both classical models. 

An interesting issue is the differences in the optimal prices and inventory 
levels suggested by different models. 48% of the time optimal price under 
the additive model is smaller than the optimal price under the general model 
i.e. pA < P°. On the other hand, pM > P° 56% of the time. These numbers 
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Table 3.7: Average profit improvement by using the general model (in %) 

All products 
Avg. Conf. Int. 

47. 7 ( 45.2,50.4) 
47.8 ( 45.2,50.3) 

Nae. products 
Avg. Conf. Int. 

46.4 ( 41.2,52.0) 
47.3 (42.1,52.6) 

are in line with the theory which says that the multiplicative model results 
in higher prices. When we look at the cases where pA = pc, we see that 
94 % of the time yA < fie. The difference is quite considerable since on 
average yA = 0.74fjc. Similarly, 92% of the cases where pM = P result in 
yM < fie, and on average yM = 0.67fjc. Therefore, both for the additive 
and the multiplicative models when the price is the same as the general one, 
the optimal quantity is larger for the general one. 

3.5.3 Comparison of the joint and the sequential optimization 
based on simulated profits 

The comparison of the sequential optimization with the joint optimization, 
shows that there is a statistically significant improvement but the numbers 
are not very high. Figure 3.9 depicts the histogram of the improvement 
under the additive and the multiplicative demand models. For the general 
model it is not reasonable to calculate the optimal price in a sequential 
approach, since we need a function for the price dependent mean demand. 

In Table 3.8 we see the confidence intervals and the average improvement. 
When we consider all products 4-6% profit increase can be expected by 
considering the stochasticity and inventory availability already for the pricing 
decision. However, if we combine the results from the previous section, we 
can say that a larger amount of improvement comes from correctly specifying 

Table 3.8: Average profit improvement of using joint optimization instead of sequential 
optimization, under the additive and the multiplicative models (in %) 

All products Nae. products 
Avg. Conf. Int. Avg. Conf. Int. 

7rdA-A 6.2 (4.2,8.2) 6.5 (2.9,10.4) 
7rdM-M 4.1 (2.7,5.5) 2.8 (0.3,5.6) 
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Figure 3.9: Profit improvement from joint optimization under the additive model (left} 
and the multiplicative model (right}. The last category includes ratios~ 2. 

the stochastic demand process. For the additive model moving from the 
sequential to the joint optimization brings in 6% increase, and moving from 
the classical to a general demand model brings in 48% increase (see table 
3. 7). Overall, this would mean an increase of 59% from the sequential to the 
joint approach with a correctly defined demand process. 

The difference in the structure of the optimal policy is exactly in line 
with the theory: for the multiplicative model, for all cases pM :S pdM and 
for the additive one just 0.6% of the time pA > pdA which is probably a 
discretization issue. 

3.5.4 Optimal policy with a limited inventory level 

In some cases there might be a fixed amount of inventory or capacity for which 
the price should be optimized. The revenue management literature deals 
with this topic considering several aspects, and there is a considerable lot of 
research from the classical airline to retail revenue management. Being aware 
of the more complex nature of this problem and more sophisticated policies, 
in this section we model the problem within the newsvendor framework as 
a single period problem. Our aim is to compare the deterministic optimal 
prices with the stochastic ones and gain insights about factors that effect the 
optimal price. In this section we do not consider the multiplicative model. 

Emel Arikan - 978-3-631-75394-1
Downloaded from PubFactory at 01/11/2019 05:32:02AM

via free access



58 Chapter 3. An Empirical Study 

Since the inventory level is fixed, purchasing cost is not relevant and the 
profit is considered to be the same as revenue. When the inventory level 
is y we calculate the deterministic optimal price as pd = max(Punlim, Plim) 
where Punlim = argmaxp,(Pi(&+bpi)) is the price which maximizes expected 
revenues under unlimited inventory based on mean demand, and Plim = 
min{pil& +bpi~ y} is the price which makes the expected demand equal 
to y. For each product we consider seven inventory levels such that y = 
factor* Punlim where factor = {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4}. 

Our main interest in this section is to gain insights into how the optimal 
prices are determined. Intuitively the optimal price should be where there 
is no gain from increasing or decreasing price for one more unit. Let us 
remember how the revenues are affected by price. When the price is increased 
from p1 to a larger price p2 , per unit revenue would increase, and if we 
can still sell the same amount as we sold under pz revenues would increase. 
However, the condition of selling the same amount is not very realistic. 
Obviously increasing price will decrease expected demand and consequently 
expected sales. Hence, the increasing per unit revenue and decreasing sales 
should satisfy some balance at the optimal price. In order to investigate 
this effect further, we suggest measuring the change in expected sales by 
increasing price for each inventory level as 

( ) S(pi,Y)-S(p;+1,Y) Pi 
c p· y - -

" - S(p;, y) Pi - Pi+l 

where S(pi, y) is the expected sales given Pi and y. S(p;, y) is calculated 
using the normal distribution resulting from the additive model. c(Pi, y) 
measures the percentage change in expected sales by the percentage change 
in price, so it is the price elasticity of expected sales. When we start with a 
price Pi and increase it to Pi+ 1 if the percentage decrease in expected sales is 
larger than the percentage increase in price, the loss is larger than the gain 
and Pi+l can not be the optimal price. On the other hand, if we decrease 
the price to Pi- l and the percentage increase in sales is smaller than the 
decrease in price Pi-1 can not be optimal. Therefore Pi should give the local 
maximum and the change in expected sales and the change in price should 
be equal at Pi, i.e. c(Pi, y) = 1 at the optimal price. We know that for the 
additive model the optimal price is unique, so c(Pi, y) = 1 should be satisfied 
at only one price. That would mean c(Pi, y) is probably monotone increasing 
or decreasing in price. Let us take this discussion as our hypothesis, and try 
to investigate it through the observations. Emel Arikan - 978-3-631-75394-1
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Table 3.9: Price difference between the additive stochastic and deterministic models 
with limited inventory 

Factor 0.2 0.4 0.6 0.8 1 1.2 1.4 

37.0 47.9 41.8 0 0 0 0 
0 0 0.2 29.3 41.5 33.0 21.1 

We want to check if c:(pA, y) = 1 for all quantities and products. However, 
since we use a discrete number of prices it is not realistic to expect that 
c:(pA, y) = 1 exactly. Hence, we compare it with the elasticity of the neighbor 
prices in the grid. Let pA = Pi, then we have two important observations: 

t:(Pi-1,Y) < 1 < t:(PH1,Y) 

(3.8) 

(3.9) 

for all the products and all the inventory levels. (3.8) means that the 
elasticity of sales is increasing in price at least around the optimal price, and 
when we look at the whole price range, we see that this continues to holds 
for each price, so for the additive model c:(p, y) is monotone increasing in 
price for all inventory levels y that we considered. Moreover, from (3.9) we 
conclude that c:(p, y) is close to 1 at the optimal price. 

When we consider the general model, the observations are not that exact 
as for the additive one. The first inequality in (3.8) is satisfied in all cases, 
but the second one is satisfied in only 70% of the time. Similarly, (3.9) is also 
not satisfied for all the cases. Hence, we can conclude that the sales elasticity 
is not necessarily increasing in price for the general model. However, since 
we do build the general model with quite loose assumptions, e.g. we do 
not have any assumptions on the mean. The structure of the results under 
this model might not be very smooth. Therefore we try to investigate the 
monotonicity property by fitting a linear function on the elasticities with 
respect to price and evaluate the slope of this function statistically. We see 
that 92-98% of the cases where price is significant end up with a positive 
price coefficient, i.e. c:(p, y) increases in price. 

Now we can compare the optimal prices in the light of the above discussion. 
Table 3.9 shows the percentage of products where the deterministic price is 
larger than the stochastic one and vice versa among 3223 products. For a 
large number of products the two prices turn out to be the same, for which 
we should consider the effect of limited number of feasible prices. The sales 
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Figure 3.10: Optimal price for the stochastic and deterministic models with limited 
inventory 

elasticity evaluated at the deterministic price explains the differences in 
prices. Whenever pd > pA, t:(l, y) > 1 so at the deterministic price € is 
greater than 1 and in order to decrease it to 1 price should be decreased 
since t: is monotone in price. The similar argument on the other direction 
holds for the cases pd < pA. 

When the price and inventory are jointly optimized it is well known 
that the stochastic optimal price is smaller than the deterministic one (see 
Section 2.2.3). However, we see that when the inventory level is set in 
advance, the relation depends on the inventory level. We can observe a 
structure on the number of products in each category with respect toy. For 
small inventory deterministic price is larger than the stochastic one, and for 
large inventory levels it is the other way around. For most of the products 
the prices look like as depicted in Figure 3.10. 

Such a structure is not observed when we look at the difference in optimal 
price between the additive and the general model in Table 3.10. As inventory 
increases the percentage of both relations increases, which means the number 
of cases where the two prices are equal is decreasing in y. However, there is 
no structure with respect to the direction of the change. 

Lastly, Table 3.11 shows the profit improvements by using the additive 
stochastic model instead of the deterministic one 1rd-A and using the general 
model instead of the additive 1rA-G. The values are not very different than 
the ones in Tables 3. 7 and 3.8 without the inventory limitation. While the 
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Table 3.10: Price difference between the additive and the general models with limited 
inventory 

Factor 0.2 0.4 0.6 0.8 1 1.2 1.4 

PA> PG 9.5 12.9 15.0 16.7 18.4 19.5 20.4 
PG< PA 29.5 35.8 41.3 43.7 46.9 49.1 50.3 

Table 3.11: Average profit improvement of using joint optimization instead of sequen-
tial optimization under the additive model with limited inventory (in %) 

All products 

Factor 0.2 0.4 0.6 0.8 1 1.2 1.4 

7l"d-A 2.6 2.9 1.8 1.4 8.0 7.5 6.7 
7l"A-G 4.6 9.3 15.5 28.2 40.1 47.7 52.5 

Nae products 

Factor 0.2 0.4 0.6 0.8 1 1.2 1.4 
7l"d-A 0.4 0.6 0.5 1.2 4.1 2.0 1.2 
7l"A-G 1.8 6.3 11.6 18.5 24.1 29.3 33.2 

improvement from the deterministic to the stochastic policy is not very 
high, moving from the additive to the general model has a big impact. As 
inventory level increases, i.e. factor increases, the improvement seems to 
increase too. Increasing inventory might mean less restriction and more 
opportunity for profit improvement by changing prices. 

We can summarize the findings in this chapter as follows: 

1. Selection between the additive and the multiplicative models is not 
trivial and the selection based on some statistical criteria does not 
guarantee higher profits. (Table 3.6) 

2. Using a more flexible model removes the selection problem and increases 
profit. (Table 3. 7) 

3. Optimal prices can be found using sales elasticity, and the sales elas-
ticity is increasing in price for most of the products.(Section 3.5.4) 
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62 Chapter 3. An Empirical Study 

The first two observations motivate the analytical study of the price-setting 
newsvendor problem with a general demand definition, and the last one 
supports the main assumption made for the analysis of the model in the 
following Chapter 4. 
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Chapter 4 

Analysis of the Generalized Model 

As we discussed in Chapter 2 using the additive and/or the multiplicative 
models imply restrictions on the demand-price relation, especially with 
respect to the effects of price on demand variability. Moreover, the empirical 
study in Chapter 3 shows that there is a big potential for improvement 
by using a more general model. In this chapter we consider the analytical 
treatment of the price-setting newsvendor problem under such a general 
demand definition. 

While the literature is dominated by the additive and the multiplicative 
uncertainty models, there is a small number of papers in which different 
demand models are analyzed under different approaches. First in Section 4.1 
we give a summary of these papers and then in Section 4.2, we present our 
approach for modelling demand-price relation. Here, we introduce the formal 
definition of sales elasticity that we intuitively describe in Section 3.5.4. Next, 
we present analytical results about the optimality conditions and structural 
properties, and the assumptions leading to these results. A numerical study 
follows where the results are illustrated and some of the assumptions are 
relaxed. 

4.1 Literature review 

The closest model formulation to ours is used by Polatoglu (1991), who 
studies a model without any assumptions on the structure of the demand-
price relation and the inclusion of uncertainty. The distribution function 
of random demand X (p) is defined as a general price dependent function 
F(p, x). Existence and uniqueness of the optimal policy constitute the focus 
of the study. However, especially for the uniqueness problem, the conclusions 
are not very informative and there are no qualitative discussions about the 
assumptions and the results. Moreover, the effects of changing parameters 
and sensitivity analysis are not provided. Their main interest is the analysis 
of the single period problem in order to build the basis for multi period 
problems (which is studied in Polatoglu and Sahin (2000)), and that's why 
the single period problem is not studied in more detail. 
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64 Chapter 4. Analysis of the Generalized Model 

Kocab1y1koglu and Popescu (2005) present a deeper analysis of the problem 
with a general demand model. As in the classical setting they describe the 
random demand as a combination of a deterministic and a random part. 
In addition to the additive and multiplicative forms, the model is also 
applicable for more general structures such as X(p) = log(U - bp). The 
main assumption is the strict concavity of the revenue function in price 
i.e. 2Xp(P) + pXpp(p) < 0 for any risk realization u. This assumption 
allows them to easily show the uniqueness of an optimal price but at the 
same time restricts the analysis to a smaller group of demand definitions. 
Another shortcoming of their model is that it should be possible to separate 
the deterministic and the random part of demand. Even if there is no 
restriction with respect to the form of the demand function, the random 
variable U and its distribution should not be affected by price. Functions 
like X(p) = log(U - bp) still imply the separability of price and the error 
term. Nevertheless, the model allows combinations other than the additive 
and the multiplicative ones. 

The key to their analysis is the concept of lost sales elasticity: 

"'(P, y) = pFp(P, y) . 
1- F(p,y) 

When the inventory level is y, probability of lost sales is 1 - F(p, y), and 
"'(P, y) measures the sensitivity of the probability of lost sales with respect 
to price. The monotonicity of price and order quantity depend on the 
monotonicity of K(p, y). If K(p, y) is increasing in p and y optimal order 
quantity y* (p) is decreasing in price and p* (y) is decreasing in y. The 
uniqueness of a joint optimal solution is also guaranteed by the monotonicity 
of K(p, y). 

Raz and Porteus (2006) approach the problem from a different perspective. 
Instead of working directly with the distribution functions, they formulate a 
function for some fractiles of the distribution. Figure 4.1 shows the demand 
distribution for different prices when F(p, x) = l-e(-O.Olp2 x). Figure 4.2, on 
the other hand, is the inverse distribution as a function of price for different 
fractiles a. 

Raz and Porteus (2006) estimate the inverse distribution function (e.g. 
the curves in 4.2) for a number of fractiles, which means the discretization 
of the distribution. In the main part of their paper, they estimate these 
functions for only a number of prices and use a linear approximation in 
between the prices. The focus is mainly on the solution procedure. For 
each of the linear pieces the optimal price and quantity combination is Emel Arikan - 978-3-631-75394-1
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Figure 4.2: Exponential inverse distr. 
fun., p- 1 (p,a) = -ln(l - a)/p2 

uniquely found and, for the overall problem, the solution from each piece 
is enumerated. Complete enumeration turns out to be necessary because 
of multiple local maximums. Their model allows any demand-price relation 
with different variability patterns, but the results depend mainly on their 
specific estimation and approximation procedure. 

4.2 Model description 

Instead of using the classical approach we integrate price as a parameter of 
the demand distribution. This is more similar to the traditional inventory 
models without pricing decision. We are now dealing directly with the 
distribution of demand and not the distribution of the error term, U. 

In order to characterize X (p) under the classical methods, an appropriate 
deterministic function of price and an error term distribution g-,(u) must be 
specified. Specification of g-,(u) depends on the deterministic part of demand 
and in order to avoid negative demand it has to be bounded. On the other 
hand, in our case a direct approach is used and the question is to specify 
the distribution of demand which is observable to the decision maker. 

We assume that the expected demand E[X(p)] is decreasing in price. Note 
that E[X(p)] can be interpreted as the deterministic part d(p) of the classical 
demand definition. However, we do not require that the demand can be 
separated into a price dependent deterministic term and a price independent 

Emel Arikan - 978-3-631-75394-1
Downloaded from PubFactory at 01/11/2019 05:32:02AM

via free access



66 Chapter 4. Analysis of the Generalized Model 

random term. In this sense our definition is compareable to that of Polatoglu 
(1991) and Polatoglu and Sahin (2000). 

We assume that, as price increases probability of low demand increases 
and consequently expected demand decreases. 

Assumption 1. F(p, x) is increasing in p, which implies F(p1 , x) ~ F(p2 , x) 
and E[X(p1)] s:; E[X(p2)] for Pl ~ P2, i.e. X(p) are ordered with respect 
to p in the sense of first order stochastic dominance. 

When the prices are in a continuous range, Assumption 1 implies Fp(P, x) ~ 
0, for all x ~ 0. Both the additive and the multiplicative models satisfy this 
assumption. 

The important step to the analysis of the newsvendor profit is the analysis 
of the components that create the profit. Even if the demand model attracts 
the most attention in the analysis, what leads to profits is the expected sales. 
Hence, it is essential to understand the interaction of the decision variables, 
i.e. price and inventory, not only with demand but also with sales. 

When demand is considered as a pure deterministic function of price, one 
of the most important aspects of demand is its sensitivity to price changes. 
Price elasticity of demand is the measure for the responsiveness of demand to 
price changes. While studying the profit function, price elasticity of demand 
is the determinant factor since sales and demand are the same. 

When demand is assumed to be stochastic, there appear two complications. 
First, the elasticity of demand is not easy to define since we do not directly 
have a function of price which returns the demand, but we have a function 
that gives probability of observing different levels of demand. Second, the 
responsiveness of sales comes into question in addition to demand, which 
might not have one-to-one correspondence, especially because sales is affected 
also by the inventory level. 

Before moving on to the specific optimization problem we present the two 
basic concepts that are helpful for the understanding of these interactions. 
First we describe what the failure rate of random demand means and how it 
is related to price and inventory levels. Then we analyze the elasticity of 
sales with respect to price and inventory, where we need some properties of 
the failure rate. 
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4.2 Model description 67 

4.2.1 Failure rate and failure rate ordering 

One of the main properties of a distribution function that we use in our 
analysis is the failure rate. Failure rate (hazard rate) of the random demand 
X (p) can be defined as: 

h(p,x) = f(p,x) 
1- F(p,x) 

( 4.1) 

The terminology comes from reliability theory (Barlow and Proschan, 1996). 
If we modify the explanation given by Porteus (2002) (pg.134) in order 
to fit it to our context, the failure rate of a demand distribution can be 
interpreted as the conditional probability that the demand will be at most 
x + dx units given that it is at least x units. The demand distribution is 
said to be IFR (increasing failure rate) if fxh(p, x) > 0 for all x. Uniform, 
Normal, Exponential distributions are IFR while Gamma, Beta, and Weibull 
distributions are IFR with some restrictions on their parameters. 

The generalized failure rate is: 

( )- xf(p,x) 
g p,x - 1 - F(p,x) (4.2) 

If Jxg(p, x) > 0 for all x, the distribution is IGFR (increasing generalized 
failure rate). An IFR distribution is clearly also IGFR, but the opposite 
does not always hold. Especially in the pricing and revenue management 
literature, it is common to assume IGFR distributions (see Ziya et al. (2004) 
and Lariviere (2006)). 

If the stocking quantity is y, the failure rate h(p, y) and the generalized 
failure rate g(p, y) at stocking quantity is described by Lariviere and Porteus 
(2001) as follows: 

The failure rate gives (roughly) the percentage decrease in the 
probability of a stock out from increasing the stocking quantity 
by one unit, the generalized failure rate gives (roughly) the per-
centage decrease in the probability of a stock out from increasing 
the stocking quantity by 1 %. 

Thus, the two functions can be interpreted as a measure for the sensitivity of 
the probability of lost sales with respect to the inventory level. Specifically, 
the generalized failure rate, g(p, y), is the elasticity of (1 - F(p, y)), i.e. the 
probability of lost sales, with respect to y. 
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68 Chapter 4. Analysis of the Generalized Model 

IFR and IGFR properties are related to the effect of changes in demand 
x for a constant price p. On the other hand, the effect of price changes 
leads to the failure rate ordering of the random demand. X(p1) is said to 
be larger than X(p2 ) with respect to failure rate order if h(p1 ,x) 2: h(p2 ,x) 
for p1 2: pz (see e.g. Muller and Stoyan (2002), Shaked and Shanthikumar 
(2007)). If the failure rate of X(p) increases asp increases, we call that 
X(p) has failure rate ordering with respect top, i.e. h(p1 , x) 2 h(pz, x) for 
all p1 2: pz. For a continuous range of prices this means, fPh(p, x) > 0 i.e. 
h(p, x) increases in p. If h(p, x) is increasing in p, g(p, x) is also increasing 
in p. 

Failure rate ordering is a stronger concept than the first order stochastic 
dominance described in Assumption 1 since the former implies the latter 
one. While we use the first order stochastic dominance (Ass. 1) as a general 
assumption throughout the analyses, some of the results depend on failure 
rate ordering. Whenever this is the case we mention it explicitly. 

4.2.2 Elasticity of expected sales 

The key to the analysis of the profit function is the analysis of the expected 
sales with respect to price and the inventory level. Expected sales for price 
p and inventory level y can be defined as: 

S(p,y) = foy[l - F(p,x)]dx. (4.3) 

The sensitivity of S(p, y) with respect top and y determines the structure 
of the optimal policy. Hence we define two measures representing this 
sensitivity: 

1. c:P(p, y) is the price elasticity of expected sales: 

where 

P( ) - -pSp(P, y) 
t: P,Y - S( ) P,Y 

8S(p,y) [Y 
Sp(P, y) = Bp = - Jo Fp(P, x)dx. 

2. c:Y (p, y) is the inventory elasticity of expected sales: 

Y( ) - ySy(P, y) 
t: P, y - S( ) P,Y 

(4.4) 

(4.5) 
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4.2 Model description 69 

where 
8S(p, y) 

Sy(P, y) = oy = l - F(p, y). 

Expected sales S(p, y) increases as the inventory level y increases, so the 
inventory elasticity of sales, c:Y(p,y), is a measure for the degree of this 
increase in expected sales. On the other hand increasing price results in a 
smaller number of expected sales, and the price elasticity of sales, c:P(p, y), 
measures the sensitivity of the decrease in expected sales with respect to an 
increase in price. Both values are the absolute level of sensitivity hence they 
are both positive. 

The definition of price elasticity c:P (p, y) does not require the ordering of 
demand with respect to price in the sense of first order stochastic dominance 
but the second order is necessary. First order stochastic dominance results in 
Fp(P, x) 2". 0 in our context. On the other hand, the second order stochastic 
dominance implies 

1Y Fp(p,x)dx 2". 0. 

The lost-sales elasticity, as defined by Kocab1y1koglu and Popescu (2005), 
requires first order stochastic dominance, because otherwise Fp (p, x) and 
consequently the lost-sales elasticity might become negative for some p 
and/or x. 

The expected profit can be written in terms of expected sales as, 

II(p, y) = pS(p, y) - cy. 

For the analysis of the expected profit with respect to price, the key is the 
structure of c:P(p, y). The following assumption, which can be supported by 
empirical evidence, makes it possible to come up with satisfactory results. 

Assumption 2. Price elasticity of sales, c:P(p, y), increases in price. 

Remember that for the additive model Assumption 2 is satisfied for all 
the products and inventory levels that we considered in the relevant part 
of the empirical study in Section 3.5.4, and for the general model there is 
statistical evidence that it is satisfied for more than 90% of the products 
and inventory levels. 

On the other hand, inventory elasticity can be directly related to the 
properties of the demand distribution. Proposition 1 describes the relation 
between the quantity elasticity and the generalized failure rate of demand. 
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70 Chapter 4. Analysis of the Generalized Model 

Proposition 1. If demand has increasing generalized failure rate, inventory 
elasticity of sales, c:Y(p, y), decreases in the inventory level y. 

Proof. Let us write c:Y(p, y) in terms of the demand distribution as, 

c:Y( ) _ y[l - F(p, y)] 
P,Y - It[l - F(p,x)]dx· 

The nominator can be decomposed into two parts as follows, 

y[l - F(p, y)] = 100 yf(p, x)dx 

= ly[l -F(p,x)]dx -1Y xf(p,x)dx 

so that we can write, 

Y( ) It xf (p, x)dx 
t:: P,Y =1-~------It[l- F(p,x)]dx 

= 1 _ It g(p,x)[l - F(p,x)]dx 
IJ[l - F(p,x)]dx 

When we differentiate c:Y(p, y) with respect toy by using Leibniz rule, we 
conclude that it is decreasing in y. • 

Some of the results that we will present in the following sections depend 
on the failure rate ordering of demand with respect to price. Proposition 2 
shows the relation of failure rate ordering to the two elasticity concepts that 
we described. 

Proposition 2. If the failure rate of demand increases in price, i.e. failure 
rate ordering with respect to price, 

1. the price elasticity of sales, c:P(p, y), increases in inventory level y, 

2. the quantity elasticity of sales, c:Y(p, y), decreases in price p. 

Proof. If the failure rate increases in price, 

oh(p,x) = Fxp(p,x)[l-F(p,x)]+Fp(p,x)Fx(p,x) >O 
op [l-F(p,x)]2 -Emel Arikan - 978-3-631-75394-1
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implying 
Fxp(P, x)[l - F(p, x)] + Fp(P, x)Fx(P, x) ~ 0. 

Let us define 1,,(p, x) as, 

( ) _ pFp(p,x) 
K', p, X - l - F(p, X). 

The first derivative of 1,,(p, x) with respect to x is, 

_8,,,_(P_, x_) = p-Fx~p_(P_, x_)_[l_-_F_(P_, x_)_] +~Fp~(p_,_x_)F_x_(p_, x_) > O 
ox [l-F(p,x)]2 -

so 1,,(p, x) increases in x. 
Now, we can reformulate t:P (p, y) in terms of 1,,(p, x): 

It pFp(P, x)dx 
c:P(p, y) = It[1 - F(p, x)]dx 

It 1,,(p,x)[l - F(p,x)]dx 
It[1 - F(p, x)]dx. 

71 

When we differentiate c:P (p, y) with respect to y by using Leibniz rule, we 
conclude that it is increasing in y. 

For the second part, we use the relation between the first derivative of 
the quantity elasticity and the price elasticity. From the first part of the 
proposition the following equation is positive: 

8EP(p, y) Spy(P, y)S(p, y) - Sy(P, y)Sp(P, y) 
oy = -p s2 

and this implies, 

8EY(p,y) = Spy(p,y)S(p,y)- Sy(p,y)Sp(p,y) < O 
op Y s2 -· 

Hence, c:Y (p, y) decreases in price. D 

In Figure 4.3 and Figure 4.4 we illustrate the concepts and relations 
described in this section. We see that S(p, y) is convex decreasing in p 
(Fig. 4.3) and concave increasing in y (Fig. 4.4). This fact is reflected as an 
increasing c:P(p, y) in p and decreasing c:Y(p, y) in y satisfying the conditions 
described in Assumption 2 and Proposition 1. Note that the implications on 
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Figure 4.3: S(p, y) and cP(p, y) under Gamma distribution with shape = 50p-2 , 

scale=lO 

the absolute change in S(p, y) are the same: the absolute change in S(p, y) 
is decreasing in both p and y. Asp increases S(p, y) might possibly converge 
to zero and as y increases it converges to the mean demand. The relations 
defined in Proposition 2 is observed on the ordering of EP (p, y) with respect 
to y and EY (p, y) with respect to p. 

In some of the further analyses we use the failure rate ordering as condition, 
but the effect of failure rate ordering is through its effect on the elasticities. 
Hence, the same results can be achieved by the corresponding condition on 
EP(p, y) and/or EY(p, y). 

4.3 Non-integrated approach 

In this section we consider the two decisions - pricing and inventory control 
- separately. We call this setting the non-integrated approach since one of 
the decisions is assumed to be made in advance, independent of the second 
decision, or because of some exogenous restrictions the decision maker is not 
able to control both decisions. Other than the relevance to some problem 
settings, the analyses in this section are necessary for the analysis of the 
joint optimization under the integrated approach. 

First, in Section 4.3.1, we study the setting where the newsvendor does 
not decide on price e.g. price is set by the market or set by the marketing 
department before ordering decision. The difference to the classical price-
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taking newsvendor problem described in Section 2.1 is the explicit treatment 
of the effect of price on demand. On the other hand, in Section 4.3.2 we 
analyze solely the pricing problem assuming the inventory level is fixed. A 
typical situation where the problem is relevant can be the sales periods in 
the retailing industry. At the end of the season, a discounted price is charged 
for the remaining inventory. Hence, the price depends on the inventory level 
and no further replenishment is possible. 

4.3.1 Optimizing order quantity 

When the price is not a decision variable but an exogenous variable the 
optimality results of the price-taking newsvendor model continue to hold, 
but the effect of price changes on the optimal ordering quantity becomes 
more complicated. 

Theorem 1. For any given price p expected profit II(p, y) is concave in y 
and the optimum ordering quantity y* (p) is: 

y*(p) = p-1 (p, Cr(p)). (4.6) 

where Cr(p) = (p - c)/p is the critical fractile. 

Proof. The second derivative of II(p, y) with respect to y is negative, i.e. 

Ilyy(P, y) = -pf(p, y) ::; 0. 
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and the first order condition gives ( 4.6). D 

If the leftover inventory can be sold for a salvage value of v ( v < c) and/ or if 
the lost sales cost a shortage penalty of b (b ~ 0), Theorem 1 continues to hold 
but the critical fractile should be changed as Cr(p) = (p - c + b) / (p - v + b). 

Recall that in the price-taking newsvendor model, the optimal order quan-
tity increases as Cr increases, since the profitability of the product increases. 
However, if the profitability of the product increases because of an increase 
in price, it is not clear if the ordering quantity should really increase. Since 
the price-taking newsvendor model assumes a price-independent demand 
distribution, the increase in price does not affect the amount demanded 
but affects only the fractile, and this leads to an increase in the optimum 
ordering quantity. However, the economic intuition tells that an increase 
in price might lead to a decrease in the overall demand, which is captured 
by the stochastic ordering described in Assumption 1 in our model. In that 
case, the increasing profitability and the decreasing demand counteract with 
each other and the resulting change in optimum order quantity depends on 
the interplay of the two opposite affects. 

Contrary to the findings from classical economic theory and also from 
recent price-setting newsvendor models it can be shown that for important 
cases the optimal ordering quantity is not a decreasing function over the 
whole range of admissible prices, but is increasing for small selling prices 
and decreasing for higher prices. 

In Theorem 2 we give a general result concerning the monotonicity of the 
optimal ordering quantity. 

Theorem 2. The optimal ordering quantity y*(p) is increasing in p if 

d 
dp Cr(p) ~ Fp(P, y*(p)) 

and is decreasing otherwise. 

Proof. Optimality of y*(p) implies Cr(p) = F(p,y*(p)) (see (4.6)). By the 
implicit function theorem 

dd Cr(p) = c2 = Fp(P, y*(p)) + Fx(P, y*(p)) dyd*(p), 
p p p 

dy*(p) 
dp 

ffe - Fp(P, y*(p)) 
Fx(P, y*(p)) Emel Arikan - 978-3-631-75394-1
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Since Fx(P, y*(p)) = f(p, y*(p)) ~ 0, 

dyd*(p) ~ 0 <=> c2 = dd Cr(p) ~ Fp(p,y*(p)). 
p p p 

75 

D 

dCr(p}/dp S Fp(p,y*(p)) is equivalent to the condition K(p,y*(p)) ~ 1 
used by Kocab1y1koglu and Popescu (2005). 

Figure 4.5 shows y*(p) as a function of p for different costs. As price 
increases, the profitability Cr(p) = (p - c)/p and consequently the cycle 
service level of the product is increasing which implies higher order quantities. 
However, at the same time, there is a decrease in demand so a lower inventory 
level should be considered. The relative strength of these two effects defines 
the behavior of the optimal order quantity. As can be seen in Figure 4.5 the 
price range where optimal order quantity increases is not necessarily a small, 
negligible range. When c = 2 the increase continues up to p = p0 = 3.3 
which is 65% larger than cost. For c < p < p0 , the increase in profit because 
of increasing profitability dominates the influence of decreasing demand. 
For p0 < p, the influence of the decreasing demand dominates increasing 
profitability, which implies decreasing y*(p). 

With respect to the effect of cost parameters, the results of the price-taking 
newsvendor model continues to hold, but for the sake of completeness we 
repeat them in Theorem 3. 
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76 Chapter 4. Analysis of the Generalized Model 

Theorem 3. The optimal order quantity is decreasing in cost c, increasing 
in salvage value v and shortage penalty cost b. 

Proof. Since F(p, x) is a strictly increasing distribution function, y*(p) = 
p- 1(p, Cr(p)) increases as Cr(p) increases where 

Cr(p) = p-c+b_ 
p-v+b 

The conclusion follows since Cr(p) decreases in c and increases in v and 
~ • 

4.3.2 Optimizing price 

In this section we analyze the pricing problem for a given inventory level. 
The purchasing cost of the inventory can be considered as sunk cost and 
the objective is to maximize revenues. Hence the analysis is the same as 
analyzing the expected revenue function, R(p, y) where 

R(p, y) = p foy [1 - F(p, x)]dx. (4.7) 

When the expected revenue function is shifted down by cost, we get the 
expected profit function. The first derivative of expected revenue with 
respect to price Rp(P, y) is the same as the first derivative of the expected 
profit IIp (p, y) 

Rp(p,y) = IIp(p,y) = foy[l - F(p,x) - pFp(p,x)]dx. (4.8) 

Let p*(y) be the price where the first derivative is equal to zero, i.e. 

IIp(p*(y), y) = foy [1 - F(p*(y),x) - p*(y)Fp(p*(y), y)] = 0. (4.9) 

In order to guarantee that p* (y) is unique and that it is a maximum, the 
second derivative should be smaller than zero 

IIpp(p*(y), y) = - foy [2Fp(p*(y), x) + p*(y)Fpp(p*(y), y)] ::; 0. (4.10) 
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4.3 Non-integrated approach 77 

The question is which properties of the demand distribution are necessary 
in order to fulfill the conditions in (4.9) and (4.10). 

The trivial answer is: if F(p, x) is convex increasing in p both conditions 
are fullfilled. If F(p, x) is convex increasing in p, both Fv(P, x) and Fpp(P, x) 
are positive, and Ilvv(P, y) is smaller than zero for all p. This implies that 
F(p, x) is increasing with increasing increments. However, if random demand 
is not bounded from above or if it is bounded but the upper bound does not 
depend on price, F(p, x) can not be convex for all prices at least for large x. 
Hence, the price and/ or demand should be limited. 

Theorem 4 describes a weaker condition for the uniqueness of the optimal 
solution and provides the condition for the monotonicity of p*(y) in y. 

Theorem 4. If the price elasticity of sales, c:P(p, y), increases in price, 

1. II(p, y) is unimodal in p so the solution to IIv(P, y) is the unique optimal 
price and p*(y) satisfies c:P(p*(y), y) = l. 

2. If, additionally, c:P(p, y), increases in inventory level, then p*(y) de-
creases in y. 

Proof We can write IIv(P, y) as, 

IIv(P,Y) = (l -c:P(p,y)) hy[l -F(p,x)]dx. 

Since 1- F(p, x) is always positive, if c:P(p, y) is increasing in p, IIv(P, y) can 
become zero at most at one point and that point corresponds to p* (y) such 
that c:P(p*(y), y) = l. This completes the first part. 

For the second part, first we write, 

:YIIv(p*(y),y) = 

[-c:~(p*(y), y) dp;~y) - c:~(p*(y), y)] hy [1 - F(p*(y), x)]dx = 0. (4.11) 

If we arrange the terms, 

dp*(y) 
dy 

c:t(p*(y),y) 
c::(p*(y), y). Emel Arikan - 978-3-631-75394-1
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78 Chapter 4. Analysis of the Generalized Model 

Since c:P(p, y) increases in both p and y, 

• 
A sufficient condition for c:P (p, y) being increasing in inventory level y is 

the failure rate ordering with respect to price (see Proposition 2). Hence 
failure rate ordering guarantees the monotonicity of p*(y). In the following 
theorem, Theorem 5, we provide a different analysis of the monotonicity of 
p*(y) under failure rate ordering. 

Lemma 1. Let e(p,x) = 1 - F(p,x) - pFp(p,x). If the failure rate of 
demand h(p, x) increases in price, 

1. e(p, x) has at most one root with respect to X for any given p such 
that e(p,x0 (p)) = 0, and ex(p,x0 (p)) < 0, implying crossing zero from 
above, 

2. if there exists a finite optimal price p* (y) then e(p* (y), y) < 0. 

Proof. We can write e(p,x) as, 

e(p,x) = (1- F(p,x))(l - /'i;(p,x)). 

From Proposition 2 we know that /'i;(p, x) increases in x if h(p, x) increases 
in price. If for a specific price p, e (p, x0 (p)) = 0 for some finite x0 (p) then 
/'i;(p, x0 (p)) = 1 and since /'i;(p, x) increases there can not be any other x 
that makes e(p,x) equal to zero. Hence, for all x ~ x0 (p), /'i;(p,x) ~ 1 and 
e(P, x) :s; 0. This completes the first part. 

For the second part, consider the following, 

Ilp(p*(y),y) = ly e(p*(y),x)dx = 0. 

From the first part we conclude that e(p*(y),x) is either positive for all 
x :s; y or it is first positive and then negative. Since Ilp(p* (y ), y) = 0 it can 
not be always positive and we can write it as, 

1xo(p'(y)) ly 
IIp(p*(y), y) = e(p*(y), x)dx + e(p*(y), x)dx. 
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4.3 Non-integrated approach 79 

Within the borders of the first integral e(p* (y), x) is always positive and in 
the second integral it is always negative, which means e(p* (y), y) < 0 D 

Theorem 5. If h(p, x) increases in p, the optimal price p*(y) decreases in 
the inventory level y. 

Proof. 

:y IIp(p*(y), y) = e(p*(y), y) + !p*(y)IIpp(p*(y), y) = 0 

and 
.!!_p*(y) = - e(p*(y), y) . 
dy IIpp(p*(y), y) 

IIpp (p* (y), y) S O since, by definition, p* (y) is the unique maximizer. If 
h(p, x) increases in p then e(p*(y), y) < 0 from Lemma 1, and hence, 

d 
dyp*(y) S 0. 

D 

Remark 1. Theorem 4 depends on c:P(p, y) being increasing in y for all p. 
Similarly, Theorem 5 employs the failure rate ordering over the whole range 
of p and y, i.e.hp(p,x) ~ 0 for all p and x. However, as long as a unique 
maximizer exists, for the monotonicity of p* (y) it is enough if c:P (p, y) is 
increasing in y when p = p*(y) and/or hp(p,x) ~ 0 for all x Sy evaluated 
at p = p*(y). 

As described in Theorem 5 and Remark 1 failure rate ordering over 
the whole or a specific range of p and x is a sufficient condition for the 
monotonicity of p* (y). 

On the other hand, if failure rate does not depend on price the optimal 
price does not change with inventory level. For example if F(p, x) = 1 -
e(-.>.(!n(x)+pb)) which can also be represented in a separated way as X(p) = 
e(U-pb) where U has an exponential distribution with a mean of 1/ >., failure 
rate of F(p,x) is >./x. This means, K(p,x) is constant in x, and the optimal 
price for any inventory level y is equal to p* such that K(p*, x) = 1. Hence 
the optimal price for the joint optimization is the same as the optimal price 
calculated for any inventory level and hence can be computed easily. 

For the price optimization sometimes the problem is how to ensure a finite 
optimal price, i.e. a finite price which makes ( 4.9) hold. For example if the 
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80 Chapter 4. Analysis of the Generalized Model 

mean demand is represented with the function ap- 1 it is optimal to increase 
price as much as possible so p*(y) = oo. Checking p*(y) where y = oo, can 
help find out if such a problem is existing for the specific models. Since p* (y) 
decreases in y, p* ( oo) is a lower bound for p* (y), and if p* ( oo) = oo optimal 
price for any inventory level is also infinite. When the inventory level is 
infinite, sales is equal to demand and the resulting expected revenue is not 
constrained by inventory, i.e. R(p, oo) = pE [ X (p)] and if this unconstrained 
revenue is increasing in price then the expected revenue for any inventory 
level is also increasing in price. Note that we use increasing in the weak 
sense. If F (p, x) = 1 - e-< ap )x, the unconstrained revenue is independent of 
price: if there is infinite inventory, whatever p is, the expected revenue is a, 
so weakly increasing in price. Since the unconstrained revenue is increasing, 
for any finite inventory level expected revenue strictly increases in price and 
converges to a. 

Since the optimal price for a given inventory level is determined just by the 
revenue function, it is not affected by changes in the ordering or production 
cost. However, if there is any salvage value or penalty cost, optimal price is 
affected by them. 

Theorem 6. The optimal price increases if there is positive salvage value 
and/or penalty cost. 

Proof. Let salvage value be v ?: 0 and penalty cost be b ?: 0, then the 
expected profit function is: 

TI(p, y) = (p - c + b)y - bE[X(p)] - (p - v + b) 1Y F(p, x)dx 

and the first derivative with respect to price is 

(4.12) 

( 4.13) 

If p* (y) is the optimal price without salvage value or penalty cost the first 
integral in (4.13) is zero. The following two integrals are positive, and 
Tip(P, y) is positive which means the profit is still in an increasing phase, so 
the price should be further increased to reach the optimum. • 

When price increases, the amount of expected leftovers increases but if the 
leftover inventory can be sold out for a salvage value, price increase becomes 
less harmful in terms of its effect on leftovers. Likewise, penalty cost makes 
the lost sales more important. Without the penalty cost, i.e. b = 0, the only Emel Arikan - 978-3-631-75394-1
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4.4 Integrated approach 81 

cost of lost sales is the opportunity cost. When b > 0, in order to decrease 
the amount of lost sales, price should be increased so that demand decreases. 

Note that if there is salvage cost i.e. v $ 0, and b = 0 optimal price 
should decrease since leftovers are more costly. If b ~ 0 and v $ 0 the effect 
depends on the relative size of expected lost sales and expected leftovers 
as well as the difference between b and v . Since the leftovers and the lost 
sales depend on the inventory level, the effect might be different for different 
inventory levels. For small y lost sales are more probable and for larger y 
leftovers become more likely. Hence, for small y price should be increased 
while for larger y it should be decreased. 

4.4 Integrated approach 

In this section we analyze the problem where both the price and the order 
quantity are decision variables. The objective is again maximizing expected 
profit, but now the price and the order quantity should be set simultaneously. 
In Section 4.4.1 we deal with the uniqueness of optimal policy and its relation 
to the sales elasticity. We employ the common way of analysis on the optimal 
price or quantity path. In Section 4.4.2 we discuss some structural properties 
of the optimal policy with respect to the monotonicity of optimal quantity 
in price and the effect of cost on the policy parameters. 

4.4.1 Optimality conditions 

In order to check if the joint optimization results in a unique solution, we can 
follow analysis on either of the optimal paths, i.e. II(p• (y ), y) or II(p, y• (p)). 
The first of these two functions take the optimal price function, p*(y), as 
an input and the resulting problem is finding the optimal order quantity 
ii, through this optimal price path. ii is then the optimal quantity for the 
joint optimization problem and the corresponding optimal price is jj = p*(ii)-
Similarly, the second function is a function on the optimal quantity path 
where the problem is finding the optimal price, jj, and the corresponding 
optimal order quantity ii = y• (p). 

The uniqueness of the solution on one of the optimal paths implies the 
uniqueness of the optimal price-quantity combination for the joint optimiza-
tion. The following two theorems show that as long as the properties of 
the sales elasticity continues to hold at least on one of the optimal paths, 
uniqueness can be ensured. 
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82 Chapter 4. Analysis of the Generalized Model 

Theorem 7. If on the optimal price path the inventory elasticity of sales, 
c:Y(p*(y), y), decreases in the inventory level y, the expected profit II(p*(y), y) 
is concave in y. 

Proof In order to prove concavity, we will show that the second derivative 
of profit on the optimal price path is negative, i.e. 

a2 
ay2II(p*(y),y) ::-; 0 

where 

a2 
ay2II(p*(y), y) =p'(y)Sy(p*(y), y) + p*(y)p'(y)Spy(p*(y), y) 

+ p*(y)Syy(p*(y), y) (4.14) 

and 
d 

p'(y) = dyp*(y). 

In the next equations of this proof we will drop the arguments for tractabil-
ity. Sand all its derivatives have the argument (p*(y), y), e.g. S = S(p*(y), y) 
and Spy = Spy(p*(y), y). Moreover, p* = p*(y) and p' = p'(y). Now we can 
write (4.14) as 

::2II(p*(y),y) = p'Sv + p*p'Spy + p* Syy· (4.15) 

We can write the first derivative of c:Y(p*(y), y) with respect toy as follows: 

If c:Y(p*(y),y) is decreasing in y, fvc:Y(p*(y),y) ::-; 0 and, hence, 

yS(p*p'Spy + p' Sy+ p* Syy) + p* Sy(S - ySy) ::-; 0. (4.17) 

S - ySy is always positive since, 

fo\1-F(p,x))dx2:y[l-F(p,y)] forall y and p. 
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Since p* and Sy are also positive, in order to satisfy ( 4.17), the following 
should hold: 

and 

yS(p*p' Spy+ p' Sy+ p* Syy) S 0 

::2 Il(p*(y), y) =p' Sy+ p*p' Spy+ p* Syy 

< -p* Sy(S - ySy) < O. 
- yS -

• 

As shown in Proposition 1 if demand is IGFR £Y(p, y) is increasing in y 
for any p. Hence the condition in Theorem 7 requires that this property 
continues to hold on the optimal price path. The next Theorem 8 looks at 
the problem on the optimal quantity path. 

Theorem 8. If on the optimal quantity path the price elasticity of sales, 
c:P (p, y* (p)), increases in price p, the expected profit Il(p, y* (p)) is unimodal 
in price. 

Proof. For unimodality, the second derivative of Il(p, y*(p)) with respect to 
p should be negative for prices where the first derivative is equal to zero. 
Let us define pas the price(s) at which the following equality holds: 

Ilp (p, y* (p)) = S (p, y* (p)) + pSp (p, y* (p)) = 0. 

We want to ensure that p is unique by showing, 

a2 
a 2Il(p,y*(p))I _ S 0. p p=p 

We will again drop the arguments of S and its derivatives, such that in 
the next equations of this proof, the arguments of S and its derivatives are 
always (p, y* (p)), and, 

y' = dd y*(p)I _. p p=p 
Now we can write 

a2 
a 2Il(p,y*(p))I _ =Sp+y'Sy+Sp+pSpp+fry'Spy, p p=p Emel Arikan - 978-3-631-75394-1
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84 Chapter 4. Analysis of the Generalized Model 

and 

! c:P(p,y*(p))I _= -s;((Sp+Pspp+fiy'Spy)S-(sp+y'Sy)pSp)-up p=p 

If c:P(p, y*(p)) increases in p, 

(Sp+ pSpp + py'Spy)S - (Sp+ y'Sy)pSp::::: 0. (4.18) 

Since S(p,y*(p)) = -pSp(p,y*(p)) we can replace S by -pSp in (4.18) 
and, 

-pSp(Sp + pSpp + py' Spy+ Sp+ y' Sy) ::::: 0. 

Since Sp is always negative, 

fJ2 
~ 2 Il(p, y*(p))[ _=Sp+ pSPP + py' Spy+ Sp+ y' Sy ::::: 0. up p=p 

• 

4.4.2 Structural properties 

From Theorem 2 we conclude that if the pricing and inventory decisions are 
not made simultaneously y* (p) is increasing for small prices and decreasing 
for larger ones. Next result shows that if X(p) has failure rate ordering, the 
combination of fj and jj results in a point at the decreasing range of y* (p). 

Theorem 9. If h(p, x) increases in p, optimal order quantity for the joint 
optimization, fj, is in the decreasing part of y* (p), i.e . 

.!iy*(p)[ ::::: 0 
dp p=fi 

Proof. From Lemma 1 {(p*(y), y) < 0, so 1 - F(p, y*(p)) ::::: pFp(p, y*(p)). 
Since F(p, y*(p)) = Cr(p) = (p - c)/p, 

c2 ::::: Fp(P, y*(p)) 
p 

and from Theorem 2 optimal order quantity is decreasing in price. • 
Figure 4.6 illustrates Theorem 9. The circles on the curves indicate the 

respective jj and fj combinations for three different cost parameters. Since the 
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Figure 4.6: Optimal order quantity y*(p) for F(p,x) = 1 - e-<0 ·01P2"'>. Circles mark 
(p, y) combinations 

demand distribution implies failure rate ordering, Theorem 9 is relevant and 
all these circles turn out to be on the decreasing parts of the corresponding 
curves. 

Our last result on the joint optimization problem is the relation of the 
optimal parameters, p and fj, with the per unit ordering cost c. 

Theorem 10. When per unit ordering/production cost c increases, 

1. optimal quantity fj decreases, 
2. and if h(p, x) increases in p, optimal price p increases. 

Proof. For the first part we need to show that 

{) 
{)cIIy(p*(y),y)::; 0 

where, 
IIy(p*(y), y) = (p*(y) - c) - p*(y)F(p*(y), y)) 

Since p* (y) does not depend on cost at all, 

:CIIy(p*(y),y) = -c::; 0. 
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86 Chapter 4. Analysis of the Generalized Model 

This completes the first part. For the second part, we need to show 

where, 
r•(p) 

IIp(p,y*(p)) = Jo (1- F(p,x) - pFp(p,x))dx. 

From Theorem 3 and Lemma 1, the result follows: 

8 8~~ · BcIIp(p,y*(p)) = ~[1- F(p,y*(p))-pFp(p,y*(p))] 2 0. 

4.5 Sales elasticity for additive and multiplicative 
models 

• 

Since some of our results depend on the assumption of increasing sales 
elasticity in price, i:;P(p, y), in this section we discuss the generality of 
this assumption. Specifically we show its relation to the additive and 
multiplicative models. 

The additive and the multiplicative models are often analyzed with respect 
to the optimal price and the optimal stocking factor ( e.g. Petruzzi and Dada 
(1999), Agrawal and Seshadri (2000), Dana and Petruzzi (2001), Monahan 
et al. (2004)). For the additive model stocking factor is s = y - d(p) and for 
the multiplicative models= y/d(p). A common approach is to maximize 
profit in p and s, and in return finding the corresponding y. Hence, the 
important analytical property is not the concavity (or unimodality) of p for a 
fixed y, but the concavity (or unimodality) of p for a fixed s. In Proposition 3 
we show that, ifs is fixed, i:;P(p, s) increases in pas long as the deterministic 
part has increasing price elasticity. 

-pd'(p) . 
Proposition 3. If d(p) has increasing price elasticity, i.e. d(p) increases 

in p, i:;P(p, s) increases in p for 

1. the additive model where X(p) = XA(p) = d(p) + U 

2. the multiplicative model where X(p) = XM (p) = d(p)U 
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Proof. For the additive model expected sales for a given p and s is, 

sA(p, s) = d(p) - 100 (u - s)¢(u)du 

and the first derivative with respect to p is 

s:(p, s) = d'(p). 

The sales elasticity and its derivative is then, 

E:P(p, s) = :pd'(p) 
d(p) - fs (u - s)¢(u)du 

8 P _ (-d'(p) - pd"(p))SA(p, s) + pd'(p)2 
8pE: (p,s) - SA(p,s)2 

87 

(4.19) 

The only part which can be negative in 4.19 is (-d'(p) - pd"(p)). If it is 
negative, 

(-d'(p) -pd"(p))SA(p,s) ~ (-d'(p) - pd"(p))d(p) 

since SA(p, s) :-S: d(p), and hence 

(-d'(p) - pd" (p))SA(p, s) + pd'(p)2 ~ (-d'(p) - pd"(p))d(p) + pd'(p)2 ~ 0 

since d(p) has increasing price elasticity. For the multiplicative model, 

sM (p, s) = d(p) 1s (1 - cI>(u))du 

S:1 (p, s) = d'(p) 1s (1 - cI>(u))du. 

Hence, the expected sales elasticity is exactly the same as the elasticity of 
d(p); 

p - -pd'(p) 
c (p, s) - d(p) 

and it is increasing in p. • 
As described in Proposition 3, if the stocking factor is fixed, cP(p, s) 

increases in p independent of the distribution of the error term. On the 
other hand, if we have a certain level of inventory y, as the price changes 
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88 Chapter 4. Analysis of the Generalized Model 

stocking factor will also change, so, in that case, it is not possible to assume 
a fixed s. Proposition 4 describes the behavior of sales elasticity for the 
multiplicative model when y is fixed and s can change. 

Proposition 4. For the multiplicative model, c:P(p, y) increases in price if 
d(p) has increasing price elasticity and the error has IGFR. 

Proof. <I>(·) and¢(·) are the cdf and pdf of u respectively, and h(u) is the 
generalized failure rate of u. Expected sales is, 

[Y/d(p) 
S(p, y) = d(p) lo [1 - <I>(u)]du 

and the first derivative is 

, [Y/d(p) d'(p) [ ( Y )] 
Sp(P, y) = d (p) lo [1 - <I>(u)]du - y d(p) 1 - <I> d(p) . 

Lets=~ then 

P( ) _ -pSp(P, y) _ -pd'(p) [l _ [1 - <I>(s)] l 
E P,Y - - s s • S(p, y) d(p) J0 [1 - <I>(u)]du 

If d(p) has increasing price elasticity then, -~1:~p) is increasing in price 
p, where d' (p) is the first derivative of d(p) with respect to p. Since s is 
increasing in p, to show that c:P(p, y) increases in pit is enough to show A(s) 
increases in s, where 

[1 - <I>(s)] 
A(s) = 1 - s J;[1 - <I>(u)]du 

s<I>(s) - J; <I>(u)du 
J;[1 - <I>(u)]du 
J; ucp(u)du 

- J;[1 - <I>(u)]du 
J; h(u)[l - <I>(u)]du 

J;[1 - <I>(u)]du 
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4.6 Numerical study 

Note that the following holds from integration by parts: 

18 u<f;(u)du = sq>(s) -18 q>(u)du 

89 

In order to show that A( s) increases in s we will check its first derivative: 

~As)= [1 - q>(s)] J;[h(s) - h(u)l[l - <I>(u)]du 
ds ( (J;[1 - <I>(u)]du) 2 

Since his an increasing function h(s) - h(u) ~ 0 for all u ~ s, so J8 A(s) is 
positive and A(s) is increasing ins and t:P(p, y) increases in p. • 

As it can be seen from Proposition 3 and Proposition 4 the possibility 
of analyzing the problem with respect to a stocking factor instead of the 
absolute level of inventory simplifies the analysis considerably. However, 
while the two can be used interchangeably for the joint optimization, in case 
of a given inventory level assuming a fixed stocking factor does not help find 
the optimal price. Moreover, in order to be able to do the analysis on the 
stocking factor, it should be possible to separate the deterministic and the 
stochastic parts. 

4.6 Numerical study 

In this section we present some numerical examples in order to illustrate the 
analytical findings of the preceding sections. The analytical results depend 
on some assumptions, especially the uniqueness of optimal price requires the 
price elasticity of sales to be increasing in price, and some of the structural 
properties require failure rate ordering. By numerical examples we also 
aim to investigate problems where not all the assumptions of the preceding 
sections are fulfilled. 

We analyze the effect of different price-variance relations on the policy 
parameters and the expected profits. To do so, we compute the expected 
profits using different distribution functions with increasing, decreasing, or 
constant variances in price. Additionally, we formulate the variance as a 
non-monotone function of price, e.g. an increasing-decreasing or decreasing-
increasing function in price. We compare the resulting policy parameters 
and the profits against the cases where an additive or a multiplicative model 
is used. Moreover, we evaluate the effect of using the mean demand for 
calculating the optimal price which refers to the sequential optimization, 
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i.e. first the optimal price is found using the mean demand and the optimal 
quantity is found from the price-taking newsvendor model given the optimal 
price. 

Throughout the numerical study we use the Gamma and the Log-normal 
distributions since they give the flexibility of specifying the mean and the 
variance independently and assume nonnegative random variables. The 
results of the Gamma distribution is reported here but the Log-normal 
distribution gives qualitatively the same results, e.g. the direction of the 
changes are the same while absolute values might differ. 

We do not consider salvage value or penalty costs, and the unit purchasing 
cost is c = 1 unless otherwise stated. 

The results are presented in the following two sections where Section 4.6.1 
covers the analysis under the monotone variance assumption and in Sec-
tion 4.6.2 the random demand is modelled with a decreasing-increasing 
variance. 

4.6.1 Monotone variance 

Under this setting the mean demand is formulated as E(X(p)) = 500pMS 
with MS < 0, and the variance is Var(X(p)) = 500pvs_ VS and MS 
can be interpreted as the variance sensitivity and the sensitivity of mean 
demand with respect to price p. Var(X(p)) is always a monotone function 
of p such that when VS< 0, Var(X(p)) is decreasing in p and increasing 
when VS > 0. When VS= 0, Var(X(p)) does not depend on p and we 
refer to this case as the additive model. On the other hand, Cv(X(p)) is 
a nondecreasing function of price under any combination of MS and VS 
values. The settings where VS = 2M S is considered as the multiplicative 
counterpart of the model with the specific MS since that implies a constant 
Cv. Figure 4.7 shows E(X(p)), SD(X(p)) = JVar(X(p)), and Cv(X(p)) 
for different values of MS and VS. 

Sales elasticity and failure rate Figure 4.8 shows the price elasticity of 
sales, c:P(p, y) and the failure rate, h(p, y) for MS= -2. As we assume in 
Section 4.2.2, c:P(p, y) increases in p, which assures the unique optimal price 
(see Theorem 4). However, h(p, y) is not monotone increasing in p, i.e. there 
is no failure rate ordering, and the effect of this can also be seen in c:P(p, y) 
since it is not ordered with respect toy. 

As price increases the IFR property of the demand distribution vanishes. 
Depending on VS, h(p, y) curves cross each other at a specific price. This is 
the price where the shape parameter of the Gamma distribution becomes 
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Figure 4.7: Mean, standard deviation, and coefficient of variation under monotone 
variance 

smaller than one. The Gamma distribution with a shape parameter larger 
than one has increasing failure rate and a shape parameter smaller than one 
implies a decreasing failure rate (see Barlow and Proschan (1996)). 

Optimal policy parameters The lack of failure rate ordering could possi-
bly lead to non-monotone p*(y) (see Theorem 5), but the numerical observa-
tions show that p*(y) is still monotone decreasing in y. This observation is 
in line with Remark 1 which states that the failure rate ordering is sufficient 
but not necessary for monotone p* (y) and it is also sufficient if p* (y) is in 
the range where h(p, x) is increasing in p for x ~ y. The circles on h(p, y) 
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93 

curves in Figure 4.8 mark p* (y) for the corresponding y values and they all 
satisfy the condition mentioned in Remark 1. Let us describe this condition 
more in detail in Figure 4.9. 

Figure 4.9 shows c:P(p, y) for VS = I in detail. When we consider a 
quantity level y = 50 we see that p*(50) = 2.64, which is marked. For 
x > 50, h(2.64, x) can be in the increasing as well as decreasing phase with 
respect top depending on x, e.g. fPh(p, 200)lp=2.64 < 0. However, the 
important part is the curves below y = 50, i.e. x ~ 50. For these curves we 
see that h(2.64,x) is always in the increasing phase, i.e. hp(2.64,x) ~ 0 for 
all x ~ 50. The same structure can be observed for any quantity level y, so 
hp(p*(y),x) ~ 0 for any x ~ y, which is enough to satisfy the condition in 
Remark 1 and to guarantee monotone decreasing p*(y) in y. 

Figure 4.10 shows the optimal policy parameters for different levels of 
MS and VS. For any MS when VS= 0, p and y are the solutions to the 
additive model where Var(X(p)) = 500 independent of p. For each MS 
when VS = 2MS, p and y are the solutions to the multiplicative model 
where Cv(X(p)) = 1/v'500 independent of p. In Figure 4.10 the prices that 
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Figure 4.10: p and y with respect to VS under monotone variance 

corresponds to these cases are marked. In line with the theory, the additive 
model results in lower optimal prices compared to the multiplicative ones. 

For a given MS, as VS increases p decreases since for high VS it is possible 
to decrease variance by decreasing prices, while for negative VS values, higher 
prices lead to lower variances. When MS = -3, the mean demand is the 
smallest and it reacts to price changes strongest, and MS = -1.5 gives 
the largest and least sensitive mean demand. As a result, the largest p 
corresponds to MS = -1.5 and the smallest to MS = -3, which can be 
seen from the ordering of the p curves. 

Now the non-monotone order of the fj curves can be explained in relation 
to the change of p with respect to VS. For small VS, p of MS= -1.5 is 
much higher than the others, and the difference between each jj curve is 
considerably large. As MS increases, there are two competing factors: 1) 
mean demand increases for a fixed price, 2) p increases which might cause the 
mean demand to decrease. At small VS ranges because of large differences 
in jj the second factor is dominating and smaller expected demand leads to 
smaller order quantity fj. On the other hand, as VS increases, the difference 
between p on each curve decreases. Then, the first factor becomes more 
important and fj becomes increasing in MS even if jj is also increasing. Emel Arikan - 978-3-631-75394-1
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Effect of sequential optimization and model misspecification In order 
to evaluate the effect of sequential optimization we calculate the deterministic 
optimal price pd, which is the price that maximizes (p - c)E[X(p)], and 
using pd calculate the optimal order quantity y*(pd). The resulting expected 
profit is Il(pd, y* (pd)) and the percentage loss from the maximum expected 
profit is: 

L(Det) = Il(p, y) - Il(pd, y*(pd)) 100. 
Il(p, y) 

For each specific MS, the optimal price and the order quantity when 
VS = 0 refers to the additive solution, (pA, yA). Likewise, the optimal policy 
under the price independent Cv is the multiplicative policy with (.PM, yM). 
If instead of the optimal policy one of these policies is used there is a loss 
on the expected maximum profit as: 

L( Add) = Il(p, y) - Il(pA' yA) . 
Il(p, y) 

L(Mul) = Il(p, y) - Il(pM' yM). 
II(p, y) 

The loss is the result of using a suboptimal policy which is caused by 
specifying the demand model incorrectly. 

Let us start with the discussion about the effect of sequential optimization. 
When both Cv and Var are increasing in price, i.e. VS ~ 0, for all MS 
values pd is considerably higher than p. This is not a surprising result since 
both of the variability measures can be decreased by decreasing price. When 
Cv is increasing and Var is decreasing in price, i.e. VS ::; 0, p is larger or 
smaller than pd depending on MS. For small values of MS, p ~ pd while 
for large MS we observe the opposite relation p ::; pd. 

Analyzing the effect of sequential optimization shows the relation of 
several competing effects with price. The two prevalent effects for both 
the sequential and the integrated approaches are the effects of per unit 
revenues and demand: Given everything else stays constant per unit revenue 
is increasing, while demand is decreasing in price which is captured here with 
the negativity of MS. The sequential as well as the integrated optimization 
balances these two effects. In addition to these two effects, the integrated 
model considers a third one during optimization, namely the possibility 
to reduce variability. Adjusting the price (slightly) allows the integrated 
approach to reduce variance and consequently to increase expected profit. 
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Figure 4.11: Effect of sequential optimization with monotone variance 

This effect, however, is in competition with the two effects mentioned before. 
Hence, the optimization of the integrated model will lead to a balance of all 
of these three effects. 

As it can be seen from Figure 4.11 if variance is an increasing function 
of price, i.e. VS > 0, sequential optimization might lead to considerable 
profit losses which goes almost up to 50%. On the other hand if VS ::; 0, 
the variance is small enough that it can be ignored and the deterministic 
price performs almost without any loss on profits. 

When VS > 0, the loss is ordered with respect to the mean sensitivity. 
Considering the price effect on variance during the pricing decision allows 
using price as a tool to decrease variance. However, when MS= -3 the 
effect of price on the mean demand is quite strong and it does not let 
flexibility for changing prices in order to decrease the variance, so the mean 
sensitivity restricts the optimal prices in a smaller range and as a result 
L(Det) is not very large. On the other hand, when MS= -1.5, there is 
more room to play with prices in order to manipulate variance and, hence, 
joint optimization is now able to perform much better than the sequential 
policy. 

Let us now look at the loss resulting from model misspecification. Fig-
ure 4.12 shows L(Add) and L(Mul) for different VS and MS. Since the 
additive model corresponds to VS= 0, at that point L(Add) = 0 for all 
MS. As VS moves away from zero, the loss starts increasing. On the other 
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hand, the multiplicative model corresponds to VS= 2MS, and the only 
case that we can see in Figure 4.12 is where VS= -3 and MS= -1.5. At 
that point L(Mul) = 0. For the other values of MS the multiplicative model 
corresponds to even lower values of VS. As for the sequential optimization, 
both L(Add) and L(Mul) are ordered with respect to MS as VS gets larger. 
This result can again be explained by the pricing flexibility. 

When VS> 0, L(Mul) is generally larger than L(Add). The multiplicative 
model assumes a decreasing Var in price. When the correct model has both 
increasing Var and Cv, the price charged by the multiplicative model 
becomes too high relative to the correct optimal price. The additive model 
assumes at least an increasing Cv and keeps prices lower in order to avoid 
high Cvs, as a result it resembles more to the correct model. However, the 
loss can still be quite high especially for large MS. 

Comparing Figure 4.11 and 4.12 we see that for VS< 0, L(Det) is smaller 
than L(Add) and/or L(Mul) for some ranges of VS and MS, even though 
the differences are very small. For VS > 0, the additive model seems to be 
the best and the deterministic one performs better than the multiplicative. 
Hence, we conclude that using a wrong stochastic model might be worse 
than using the deterministic one. 
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Figure 4.13: Mean, standard deviation, and coefficient of variation under non-

monotone variance 

4.6.2 Non-monotone variance 

In this section we analyze a demand model where the variance is defined as 
a non-monotone function of price: 

Var(X(p)) = (l5VS((p- 2) 2 -1) + 50) 2 . 

VS is restricted to be positive, since we want to consider the decreasing-
increasing variances. For any VS> 0, Var(X(p)) is increasing in p for small 
prices and is decreasing for higher ones. For VS= 0, Var(X(p)) is again 
independent of price. The model parameters are presented in Figure 4.13. 
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Figure 4.14: cP(p,y) and h(p,y), MS= -2, non-monotone variance, circles mark 
p•(y) 
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Figure 4.15: p* (y) under non-monotone variance 

Sales elasticity and failure rate c:P(p, y) is again increasing in price (see 
Figure 4.14) and h(p,y) is not monotone in price, so the failure rate ordering 
does not exist. On the other hand, unlike the previous example, the IFR 
property holds for any price level, i.e. h(p, y) increases in y, since the shape 
parameter never becomes smaller than one. 

Optimal policy parameters Like the previous example, even if failure 
rate ordering does not hold, the monotonicity properties are the same as 
the analytically derived ones under the assumption of failure rate ordering. 
Specifically the optimal price for a given inventory level p* (y) is decreasing 
in y and the joint optimal price p is increasing in cost c as depicted in 
Figure 4.15 and Figure 4.16 respectively. 

Figure 4.15 shows how the optimal price changes with inventory level. 
When MS= -1.5, p*(y) decreases in VS but when MS= -3 it increases 
in VS for any y, so the curves are ordered in the opposite direction for the 
two cases. The reason behind this difference is the opposite behavior of 
the SD(X(p)) (so Var(X(p))) in the specific ranges of prices where p*(y) 
belongs to. When MS= -1.5, p*(y) is (almost) always larger than 2 and 
when MS= -3 it is smaller than 2. If we look at Figure 4.13, we can see 
that at p = 2, SD(X(p)) reaches its minimum point for all VS. On the 
left of p = 2 it is decreasing and on the right side it is increasing. When 
MS= -1.5, p*(y) for any VS is on the right of p = 2 where smaller prices Emel Arikan - 978-3-631-75394-1
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Figure 4.16: p(c) and y(c) when MS= -2 under non-monotone variance 

lead to lower variances, and this effect is the strongest for VS = 3. As a 
result, VS= 3 gives the smallest price. On the other hand when MS= -3, 
p*(y) is on the left of p = 2, where larger prices lead to lower variances. For 
VS = 3 the possibility of lowering the variance by increasing price is the 
largest so VS = 3 gives the largest price. The complete ordering of p* (y) 
with respect to VS can be explained using the same argumentation line. 

As described in Theorem 10, pis increasing and ii is decreasing in c (see 
Figure 4.16). A closer look at pin Figure 4.16 and Figure 4.13 shows that the 
joint optimal price p can be in the decreasing or increasing part of variance 
depending on c. Hence, it is not possible to conclude some property related 
top and its relation to SD(X(p)) or Var(X(p)). 

Figure 4.17 shows the optimal price p and quantity ii with respect to 
VS. The optimal prices do not change too much with VS, and they change 
in different directions depending on the MS. While p is decreasing for 
MS = -1.5 it is increasing for the other MS values. Since for MS = -1.5, 
p is generally larger than 2 as VS increases the effect of increasing variance 
can be compensated by decreasing prices. On the other hand, for smaller 
MS values, p is generally smaller than 2 in which range variance can be 
decreased by increasing prices. 

The order of pis similar to the case under monotone variance (Fig. 4.10), 
as MS increases expected demand for a given price increases, so p increases. 
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Figure 4.17: p and j} with respect to VS under non-monotone variance 

i} changes in the opposite direction as p. For MS = - 1.5, i} is decreasing 
while for the others it is increasing. 

Effect of sequential optimization and model misspecification The loss 
from sequential optimization and model misspecification is shown in Fig-
ure 4.18. For the effect of model misspecification we just consider the additive 
model as the one corresponding to VS = 0 where the variance is constant in 
price. None of the VS values can correspond to the multiplicative model 
which assumes monotone decreasing variance. 

The loss from the sequential optimization again depends on the effect 
of price on mean and variance, and their interaction. As VS increases, 
1) variance decreases for each price and as variance decreases the role of 
considering stochasticity diminishes, 2) variance sensitivity increases so the 
potential of adjusting price to reduce variance increases. If the first effect is 
stronger the optimal solutions from the sequential and joint optimization 
come closer, and so L(Det) decreases. On the other hand, if the second 
effect is stronger the solutions become more apart and L(Det) increases. As 
VS increases the relative power of the two effects are changing which causes 
the non-monotone shape of L(Det). Unlike L(Det) we see that L(Add) is 
monotone in VS. Since the additive model corresponds to VS= 0, as VS 
increases the model becomes more and more different than the additive one. 
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Figure 4.18: Effect of sequential optimization and model misspecification under non-
monotone variance 

The most important observation from Figure 4.18 is the difference between 
L(Det) and L(Add). Especially for small MS values L(Det) is smaller than 
L(Add) for a large part of VS. If we shift the variance function up without 
changing its shape, the difference gets even larger. This means that for the 
pricing decision using a stochastic model which is not correctly defined might 
be worse than using a deterministic model. 
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Chapter 5 

Conclusion 

In this work we addressed two important managerial decisions, pricing and 
inventory control, under the price-setting newsvendor model. The majority 
of the existing literature treats the problem using the two specific demand 
models, namely the additive and the multiplicative models. The analytical 
findings differ depending on the demand model employed. Therefore, if we 
want to gain insights and make use of these findings the crucial point is the 
correct specification of the demand process, which might not be an easy 
task. 

With an empirical study, we showed that neither the additive nor the 
multiplicative model is able to represent the demand process considerably 
better than the other one. In many cases it is not possible to make a choice 
among the two. Moreover, one has to define some criteria to base the model 
selection. In order to overcome these difficulties we suggested using a more 
flexible demand model. The motivation behind the usage of the additive 
and the multiplicative models within the price-setting newsvendor model 
is their popularity in the marketing literature and in practice. However, 
the problems dealt in the marketing literature and the approach do not 
necessarily overlap with the problem that we are dealing with. In the 
marketing literature generally several factors influencing demand is treated 
next to the effect of pricing. Hence, the demand models are generally richer 
than the ones that we consider in terms of the variables. However, some 
other aspects of demand, which are crucial in our analysis, are ignored or 
considered weakly. To be specific, the estimation of the expected demand 
is not enough for our analysis and we need the complete specification of 
the demand distribution. With this motivation we suggested modelling the 
parameters of the demand distribution and as a simple first step we went on 
with modelling the variance with a more general function which can cover 
the variance implied by the additive and the multiplicative models. The 
simulation study that we conducted using the empirical demand values lets 
us conclude that there is a high potential of improving profits by employing 
a general model. 

Motivated by these facts we formulated the price-setting newsvendor model 
with a general price dependent demand distribution and continued with the 
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106 Chapter 5. Conclusion 

analytical study of the optimization problem. The key questions are the 
conditions leading to a unique profit maximum and the properties of the 
optimal policy. While for a given price the underlying inventory problem is 
a concave maximization problem, for the price optimization this holds only 
for quite restrictive demand formulations. For example, the commonly used 
iso-elastic demand formulation does not lead to a concave price optimization 
problem anymore. Since looking for concavity in order to assure a unique 
optimum is too restrictive we base our analysis on conditions that assure 
unimodality of the profit function in price. 

When the inventory level is fixed, the optimal price is determined by the ef-
fect of price on expected revenues. If demand is assumed to be deterministic, 
the effect of price on demand is reflected on the revenues. Therefore, condi-
tions on price-demand relation, and specifically price elasticity of demand, 
is the determiner of the optimal price. When we consider the stochasticity 
and limited inventory, the effect of price on expected sales determines the 
optimal price. Hence, we introduced the price elasticity of expected sales as 
a measure which captures this relation. Unimodality is assured as long as 
the elasticity of expected sales is increasing in price, which we observed for 
most of the products that we considered in the empirical study. Moreover, if 
the elasticity of expected sales is increasing in price on the optimal quantity 
path uniqueness of the joint optimum is also guaranteed. Similarly, we can 
consider the effect of inventory level on expected sales and introduce the 
inventory elasticity of expected sales. If we analyze the joint optimization 
problem on the optimal price path, increasing inventory elasticity of sales 
guarantees the unique optimum. 

The inventory elasticity of sales is strongly related to the properties of the 
failure rate of demand. If the random demand has increasing generalized 
failure rate, which is a commonly used assumption in the revenue manage-
ment and dynamic pricing literature, inventory elasticity is increasing. The 
structural properties of the optimal price and inventory are also related 
to the properties of the failure rate. Specifically the monotonicity of the 
parameters can be assured under failure rate ordering of random demand 
with respect to price. 

We concluded the analysis with a numerical study that illustrates the 
findings and provides insights to the value of using a general model. The 
analytical findings continue to hold even when some of the assumptions are 
relaxed. An important conclusion from the numerical study is that using 
a deterministic demand model in order to optimize price can be a better 
strategy than using a stochastic model which is not correctly specified. 
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The extensions of this work can be numerous. Each problem setting where 
the classical price-setting newsvendor model is employed can also be treated 
with a general demand model. Among those settings the most interesting 
ones for extensions would be the problems where the demand distribution 
plays an important role. One such field considers objective functions other 
than the expected profit. For example mean-deviation criteria or probability 
of achieving a target profit level are among the objective functions used 
in the classical newsvendor model. For the former, the specification of 
the variance is a key issue, and for the latter one the overall shape of the 
distribution makes a difference. Such formulations are relevant not only as 
objective function but also as constraints. Hence, for these problems settings, 
considering a general demand distribution might be valuable. 

A relevant extension area for the price-setting newsvendor problem is 
formulating it as a distribution free problem. In such problems some param-
eters of the demand distribution is assumed to be known but the complete 
specification is not required. Therefore, it is not necessary to estimate the 
complete demand distribution, and estimating the mean and the variance 
would be enough for the analysis. The objective is not maximizing expected 
profit but some other criteria such as maximizing the minimum profit or 
minimizing the ex-post or ex-ante regret. While the price-taking newsven-
dor problem is studied under the distribution-free approach, combining it 
with the pricing problem has not been considered yet. For the price-taking 
newsvendor model, the decision variable, inventory level does not effect 
the parameters, and the solution procedure roughly considers all possible 
distributions under these parameters. When pricing decision is included, the 
parameters are affected by a decision variable, and the analysis would be 
much challenging with the increased complexity. 
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