
Joint Pricing and 
Inventory Control under 
Reference Price Effects

F O R S C H U N G S E R G E B N I S S E  D E R  
W I R T S C H A F T S U N I V E R S I TÄT  W I E N

Lisa Gimpl-Heersink

Lisa Gimpl-Heersink - 978-3-631-75380-4
Downloaded from PubFactory at 01/11/2019 05:41:29AM

via free access



In this work, we address the problem of simultaneously determining a pricing and 
inventory replenishment strategy under reference price effects. This reference price 
effect models the fact that consumers not only react sensitively to the current price, 
but also to deviations from a reference price formed on the basis of past purchases. 
Immediate effects of price reductions on profits have to be weighted against the 
resulting losses in future periods. By providing an analytical analysis and numerical 
simulations we study how the additional dynamics of the consumers’ willingness 
to pay affect an optimal pricing and inventory control model and whether a simple 
policy such as a base-stock-list-price policy holds in such a setting.
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Abstract 

In many finns the pricing and inventory control functions are separated: the marketing de-
partment detennines optimal prices first and then logistics decides on optimal stocking quan-
tities, taking demand as exogenous and only considering incremental costs. However, a 
number of theoretical models suggest a joint detennination of inventory levels and prices, as 
prices also affect stocking risks. In this work, we address the problem of simultaneously de-
tennining a pricing and inventory replenishment strategy under reference price effects. This 
reference price effect models the empirically well established fact that consumers not only 
react sensitively to the current price, but also to deviations from a reference price fonned on 
the basis of past purchases. The current price is then perceived as a discount or surcharge 
relative to this reference price. Thus, immediate effects of price reductions on profits have 
to be weighted against the resulting losses in future periods. We study how the additional 
dynamics of the consumers' willingness to pay affect an optimal pricing and inventory con-
trol model and whether a simple policy such as a base-stock-list-price policy holds in such a 
setting. 

For a one-period planning horizon we analytically prove the optimality of a base-stock-
list-price policy with respect to the reference price under general conditions. We then extend 
this result to the two-period time horizon for the linear and loss-neutral demand function 
and to the multi-period case under even more restrictive assumptions. However, numerical 
simulations suggest that a base-stock-list-price policy is also optimal for the multi-period 
setting under more general conditions. We furthennore show by numerical investigations that 
the presence of reference price effects decreases the incentive for price discounts to deal with 
overstocked situations. Moreover, we find that the potential benefits from simultaneously 
detennining optimal prices and stocking quantities compared to a sequential procedure can 
increase considerably, when reference price effects are included in the model. This makes an 
integration of pricing and inventory control with reference price effects by all means worth 
the effort. 
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1. Introduction 

1.1. Problem description 

Recent years have witnessed increased interest on the part of retail and manufacturing com-
panies in investigating innovative pricing strategies in order to boost their operations and 
bottom line. In the past, e.g. grocery, drug or fashion apparel stores would fix a product's 
price over a relatively long time period and mainly focus on their inventory management in 
order to obtain a better match between supply and demand. This static pricing strategy was 
mainly due to the lack of information about their customers' taste, willingness to pay and 
the fact that high transaction costs - so-called menu costs - were associated with changing 
prices. Driven in large part by advances in information technology and e-commerce, a more 
sophisticated approach of changing a product's price found its way into retail and manufac-
turing industries. Here, the seller changes prices dynamically over time, based on factors like 
demand information, supply availability, production schedules and the time of sale. With the 
goal of balancing demand and supply, dynamic pricing methods were first applied by indus-
tries where the short term capacity is hard to change, such as airlines, hotels, cruise ships, etc. 
(see Talluri and van Ryzin (2004) for more detail). Nowadays, the business model of dynam-
ically changing the prices of a product is an important revolution in retail and manufacturing 
industries and is already strongly practiced by e.g. Dell Computers and Amazon. There is 
growing understanding that both pricing as well as replenishment decisions are essential for 
increasing a firm's profitability and thus should be coordinated. Nevertheless they are tra-
ditionally mostly determined by separate functional areas of a company's organization: the 
marketing department sets prices, the market determines the quantity demanded, and the lo-
gistics unit produces the quantity demanded. However, research work such as Whitin ( 1955) 
has already shown that the simultaneous determination of price and ordering or production 
quantity can yield substantial revenue increases. The coordination of price decisions and 
other aspects of the supply chain such as production and distribution is thus not only useful, 
but also essential. Coordinating these decisions means optimizing the system rather than its 
individual elements and not only potentially increases profits but also reduces variability in 
demand or production, resulting in more efficient supply chains. Enabled by powerful IT 
systems that can store and estimate thousands of demand models and compute integrated 
optimal policies today, reengineering efforts are being initiated in many companies to elimi-
nate the organizational barriers between distinct functional areas within the same enterprise 
by creating new entities with such designations as 'Revenue Management', 'Dynamic Pric-
ing' or 'Smart Pricing'. 
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14 CHAPTER l. INTRODUCTION 

1.2. Research intention 

Looking at the state-of-the-art methodological literature, we find that relevant work divides 
into two rather distinct streams: The operations oriented stream (see chapter 2) and the 
marketing oriented stream (see chapter 3). Eliashberg and Steinberg ( 1993) give a nice com-
parison of the two streams: Operations management (or production management) deals with 
organizing and controlling the direct resources to produce the goods and services provided 
by an organization to customers. Marketing in contrast deals with the process of planning 
and executing pricing, promotion and distribution of goods and services in order to create 
exchanges that satisfy individual and organizational objectives. The interface between mar-
keting and operations management is being recognized as a legitimate research domain and 
has experienced increased emphasis in the past. Nevertheless, as already stated above, in 
most firms the marketing and production functions are organizationally separate. A possible 
explanation could be that marketing is typically concerned with revenue maximization by 
setting prices and advertising policies. Here, relatively realistic demand models are being 
used, which for example account for intertemporal demand correlations by incorporating 
both current price and reference price, which is formed on the bases of past purchases. How-
ever, they underlay a rather simplistic cost structure which does not account for supply chain 
management interactions by e.g. assuming stationary variable costs. Operations manage-
ment is typically concerned with cost minimization, meaning that production is required to 
produce the needed output at minimum costs. Thus rich cost models, well describing a firm's 
possible cost structure, are being used. Costs are assumed to be non-stationary, which means 
that they can vary over time and fixed costs can be in included in the model. Furthermore, 
production decisions are integrated in the model (not only pricing but also inventory deci-
sions), which is not the case in purely marketing-orientated work. The limitation of these 
models is that they rely on rather simplistic demand assumptions. Demand is, for example, 
modeled as a function of the current price only. In any case, both prevalent research streams 
consider only a partial picture of the relevant system. Typically, a coordinated decision-
making problem results in better performance of the system. The magnitude of the improve-
ment depends on how the objective functions are defined for the two separate departments 
and which department is assumed to act first. 

Identifying this prevailing research gap leads us to address the problem of simultaneously 
determining a pricing and inventory replenishment strategy by combining these two literature 
streams described above: we want to take the rich and non-stationary cost models commonly 
used in operations research and combine them with demand models, which account for in-
tertemporal demand correlation and so far have been mainly applied by marketing. Both 
price and ordering quantity are to be dynamically adjusted according to the prevailing in-
ventory, the consumers' willingness to pay and the remaining length of the finite selling 
horizon. The integration of reference price effects with inventory control models has not 
been reported so far in literature. Hence, by developing such an integrated inventory control 
and pricing model, we will probe into the issue of whether using a reference price model to 
describe demand will significantly increase the benefits of integrating marketing and logistic 
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1.3. STRUCTURE OF THE THESIS 15 

decisions and when it makes sense to apply such models. In this thesis we generally focus on 
linear demand models, which are detrended and seasonally adjusted. Furthermore, we only 
consider monopolistic pricing, ensuring mathematical tractability. These assumptions are 
not unrealistic, because price optimization by a firm is only possible in imperfect markets. 
In the case of monopolistic competition a firm faces a range of prices where competitors do 
not react. The linear demand function is a local approximation conditional on competitor's 
prices which remain unchanged if the price stays within this permissible range (see Phillips 
(2005), Chapter I). Not only are these models important in retail, where price-dependent 
demand plays a significant role, but also in manufacturing environments with a different un-
derlying cost structure, in which production and distribution decisions can be complemented 
with pricing strategies in order to improve the firm's bottom line. Within this work we are 
going to examine how the additional dynamics affect an optimal policy and whether variants 
of a simple policy such as a base-stock-list-price policy still hold in such a setting. Further-
more, we are going to find conditions under which it is possible to show analytically the 
existence of a unique optimal solution. We want to state here that the main focus of this dis-
sertation is a mathematical analysis, which justifies that most problem definitions are taken 
from literature. However, we will still try to motivate an economic understanding of dynamic 
market models and supply chain decisions, wherever possible. Via numerical simulation we 
shall explore the size of potential benefits of such models, as well as how optimal policies 
evolve over time and how optimal solutions vary with changes in the model parameters. 

1.3. Structure of the thesis 

We will here give a short outline of the structure of this thesis. Chapter 2 and chapter 3 are 
devoted to a brief review of the current state-of-the-art literature, relevant to this work, as 
well as some minor new results. The main new results will be presented in chapters 4 to 6. 

Chapter 2 gives an overview of the models used in operations research so far. For di-
dactical reasons we first introduce the theory of solely inventory control models in section 
2.2, which are then expanded to the multi-period setting in section 2.3. For each of the two 
sections, we first focus on one-period models, which are then extended to the multi-period 
setting. We not only present the well known critical fractile solution for the classical lost-
sales version of the newsvendor problem, but also adapt the solution to the backlogging case 
including inventory holding and backlogging costs. Furthermore, the base-stock-list-price 
policy is introduced in chapter 2 and shown to be optimal for the most commonly used de-
mand models. We also provide a steady-state solution for the joint pricing and inventory 
control model in subsection 2.3.3, which has not been seen in literature so far. 

Chapter 3 is devoted to marketing models that mainly focus on price optimization. The 
concept of reference price effects is introduced and structural properties of the optimal solu-
tions are given for loss-neutral and loss-averse customer behavior. We show by a numerical 
example that for loss-seeking customer behavior, the optimal solution does not converge and 
thus a cycling pricing policy is optimal. As in chapter 2, we provide a steady-state solution 
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16 CHAPTER I. INTRODUCTION 

for the case of non-zero proportional ordering costs, which is an extension to the solution 
found by Popescu and Wu (2007). 

In chapter 4 we combine the two models presented in chapter 2 and chapter 3 and introduce 
an integrated model including reference price effects, which will lay the foundation for the 
rest of this work. 

Chapter 5 is dedicated to an analytical analysis of the model introduced in chapter 4. This 
chapter consists of three parts: the one-period case, the two-period case and the multi-period 
case. For the one-period case in section 5.1, we can prove the optimality of a base-stock-list-
price-policy and provide implicit solutions for the optimal price and stocking quantity with 
respect to reference price under very general conditions. However, it is not so easy to extend 
this property to a multi-period setting. By integrating the solution of the one-period case into 
section 5.2, we find that for the linear demand a base-stock-list-price policy also holds for 
the two-period case. The mathematics behind this result is extensive and tedious, which is 
why we chose to present purely the technical results in the appendix A. In section 5.3 we 
prove the optimality of a base-stock policy under rather restrictive assumptions. Adjusting 
the proof technique for a more general setting is definitely worthwhile considering for further 
research. 

Chapter 6 is devoted to simulations and numerical investigations. By the means of numer-
ical optimization, in section 6.1 we extend the results from section 5.2 to the multi-period 
setting for the special case of linear demand and loss-neutral customer behavior. We further-
more investigate the influence of different demand distributions and coefficients of variations. 
In section 6.2, we study the potential increase of profit by simultaneously determining opti-
mal prices and stocking quantities compared to a sequential optimization, where prices are 
set first by the marketing department of a company and then the production unit decides on 
the optimal stocking quantity, without being able to change prices. In section 6.3, we provide 
some numerical results for loss-averse and loss-seeking customer behavior and the case of 
non-zero fixed ordering costs. 

The last and concluding chapter 7 of this thesis provides an overview of conclusions and 
recommendations for further research. 
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2. Models in Operations Research 
Literature 

Operations research has a significant impact on inventory management in recent decades. 
The theory of inventory management deals with the management of stock levels of goods, 
with the intent of effectively meeting demands for those goods. Traditional inventory models 
(see sections 2.2.1 and 2.3.2) assume that a commodity's price is exogenously determined 
and thus only address the two fundamental issues: when should a replenishment order be 
placed, and what quantity should be ordered. Hence the objective is to minimize costs. Re-
cent developments in the area of revenue management have demonstrated that major benefits 
can be derived by complementing a replenishment strategy with the dynamic adjustment of 
the the commodity's price (see sections 2.2.2 and 2.3.3). Since demand for a product varies 
as a function of price in practice (see e.g. Phillips (2005)), the objective therefore changes 
from minimizing costs to maximizing profits under dynamic pricing strategies. In the pres-
ence of demand uncertainty, a common approach for risk neutral companies is to minimize 
expected costs or maximize expected profits. Alternative risk averse approaches using e.g. 
Value at Risk measures instead of expected values can be found in literature, but are not the 
focus of this thesis. The complexity of the model depends on the assumptions, one makes 
about demand and the underlaying cost structure. 

According to Porteus (1990) and Lee and Nahmias ( 1993), there are several reasons for 
holding inventories: The key motive is definitely to hedge against uncertainty in the face 
of stochastic demand. Holding stocks in response to this unpredictable variability means 
higher holding costs but lower shortage costs, which are in general significantly higher than 
holding costs. Moreover economies of scale are an important reason for keeping inventories. 
Economies of scale occur when there is a fixed setup cost (e.g. setup time, changeover time, 
etc.) for each order that does not depend on the lot size and often arises when there are quan-
tity discounts or learning. Last but not least, it may be advantageous to retain inventories in 
anticipation of a price rise. Inventories may also be stockpiled in advance of sales increases. 
If demand is expected to raise, it may be more economical to build up large inventories in ad-
vance, rather than to increase production capacity at a future time. However, large build-ups 
of inventory are often a result of poor sales. 

For a good overview and recent reviews on inventory models, we refer the reader to Por-
teus (1990), Lee and Nahmias (1993), Zipkin (2000), Eliashberg and Steinberg (1993), El-
maghraby and Keskinocak (2003), Chan et al. (2004) and Simchi-Levi et al. (2005). 
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18 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

2.1. Problem description 

Consider a retailer or manufacturer who maintains an inventory of a particular product. Since 
customer demand is random, the decision maker only has a vague idea about the actual 
demand occurring at a given time. This information is described by a probability distribution 
of demand. Depending on this knowledge, the retailer or manufacturer has to decide at what 
point to reorder or produce a new batch of products and in succession how many items of 
the product the batch should comprise. Typically, such reordering decisions involve two 
different kinds of costs: a fixed amount, independent of the size of the order (e.g. cost of 
sending a vehicle from the warehouse to the retailer), and a variable amount proportional 
to the number of products ordered. In the face of uncertainty about the actual demand, this 
decision will generally lead to over- or underproduction, with resultant excess inventories 
incurring unnecessary holding costs (typically accruing at a constant rate per unit of product 
by unit of time), or inability to meet consumer needs, respectively. 

The literature shows two ways of coping with unmet consumer demands: either the lost 
sales case where demand that cannot be met immediately is lost forever, or the backlogging 
case, where demand for the product in excess of the amount stocked will be backlogged. This 
means that these customers will return next period for the product, in addition to the usual 
(random) number of customers who generate demand then. The inability to meet consumer 
needs when they occur results in potentially long term loss of customers for which artificial 
penalty costs called backlogging costs will be charged. The decision maker has to determine 
an optimal inventory policy to minimize the expected cost of ordering and holding inventory. 
In some situations, especially the one of interest in our work, the price at which the product 
is sold to the customer is also a decision variable. In this case demand is not only random 
but is also affected by the selling price. The retailer's or manufacturer's objective is thus 
to find an inventory and pricing strategy maximizing expected profits over the length of the 
planning horizon. 

In this work we mainly focus on the retailing environment, where inventory decisions 
represent ordering decisions. However, the same argumentation can be expanded to the 
manufacturing setting, where inventory decisions become procurement decisions under a 
different cost structure, respectively. 

2.2. One-period models 

2.2.1. Inventory control 

The one-period model, mostly called the newsvendor model in the literature, is the basis for 
most discrete time stochastic inventory models. It applies when the product's useful life is 
only one planning period and the product becomes obsolete at the end of this single period. 
This would be the case when a product perishes or spoils quickly, such as fresh produce (e.g. 
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2.2. ONE-PERIOD MODELS 19 

eggs, refrigerated orange juice, diary items), certain short-lived style goods such as many 
fashion style and seasonal goods, or newspapers (hence the name 'newsvendor' model). 
These models are more interesting for their structural importance than their applicability. 
However, dynamic, multi-period models depend critically on them. 

An unknown quantity D of a single product will be demanded during a single period. 
While the product-specific distribution of demand is known - we denote its cumulative dis-
tribution function by <I>(·) - the actual number of units demanded will not be known until 
after the decision y, which denotes the order-up-to level. Suppose the initial inventory on 
hand at the start of the period is x :::: 0, then the order quantity is given by y - x. Under 
most commonly used demand distributions, it is impossible to always be assured of meet-
ing all demand, so the prospect of unmet demands must be accepted. For the newsvendor 
model, unsatisfied demand is typically assumed to be lost, for which shortage costs s :::: 0 
are allocated. The tradeoff in such a model is between ordering too many and too few. If we 
order too many, then we have some leftover y - D if y > D, and we paid for more than we 
need. If we order too few, then we could have sold more if we had bought more. Additional 
information available to the decision maker includes the proportional (variable) production/ 
ordering costs c, incurred for each item ordered, the selling price p and the per unit salvage 
value v (or salvage cost if v < 0, respectively), incurring for each unit purchased but not 
sold. Clearly theses variables should satisfy 

p > C > V. (2.2.1) 

otherwise the problem can be solved trivially. A brief summary of the introduced notation is 
given in table 2.1. 

Since demand is a random variable, and we consider a risk-neutral decision maker, the 
decision of how many units to order is based on expected profits which need to be maximized 
when solving for optimality: The stochastic profit, IT(y, D) can be described as 

IT(y. D) = { pD + v(y - D) - c(y - x), D :Sy 
. PY - s(D - y) - c(y - x). D > y. 

(2.2.2) 

which, by u denoting each actual demand realization, yields the expected profit 

E[IT(y. D)] = lx [pu + v(y - u)] </>(u)du + lx [py - s(u - y)] </>(u)du - c(y - x). 

(2.2.3) 

By adding and subtracting the quantity pg" u</>(u)du to E[IT(y. D)], we get 

E[IT(y. D)] = pE[D]+(p+s) lx (y-u)</>(u)du+v lyx (y-u)<t>(u)du-c(y-x). (2.2.4) 

where E[D] denotes expected demand. We now differentiate E[TI(y. D)] with respect to y 
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20 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

I Variable I Characteristics I Description 

D D?: 0 unit(s) demanded in the period (random variable) 

<I>(·) 1?:<l>(•)?:0 cumulative distribution function (cdf) of demand 

</>( ·) <P(y) = J!00 </>( u )du probability density function (pdf) of demand 

E E = D- E[D], perturbation of demand (random variable) under ad-
E[c] = 0 ditive demand uncertainty with mean 0 

F(·) F(u) = <P(E[D]+u) cdf of demand perturbation 

f(-) F(y) = J!00 f(u)du probability density function of demand perturbation 

p p>0 per unit sales price 

y y ?: 0 inventory level after ordering 

X xSy inventory level before ordering 

z z = y-E[D] safety stock 

C p>c>0 per unit production/ ordering cost 

V c> V per unit salvage value ( or salvage cost if v < 0) 

s s?: 0 per unit shortage costs 

r 1?:,>0 discount factor 

b b>(l-,)c per unit backlog penalty costs 

h h ?: 0 per unit holding costs 

Table 2.1.: Notation: Newsvendor models 

(by applying Leibniz integral rule) and set this equal to zero: 

d 
dy E[TI(y, D)] = (p + s) [1 - <l>(y)] + v<l>(y) - c = 0, (2.2.5) 

which leads to the optimal inventory level after ordering y* : 

y* = cp-l (p + S - C), 
p+s-v 

(2.2.6) 

if x < y* . Otherwise it is optimal not to order. Such a policy yields a global maximum for 
the expected profit, since the selling price p being greater than the salvage value v and the 
unit shortage costs s being nonnegative result in the expected profit being strictly concave: 

d2 
dy2 E[TI(y, D)] = -[p + s - v]</>(y) < 0. 
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Inventory before ordering x 

Figure 2.1.: Base-stock policy 
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From this concavity property it becomes clear that y• is the unique optimum when x < y* . 
Moreover, concavity in y ensures that it is optimal not to place an order ( y• = x ), if x 2: y•, 
because the expected profit is strictly decreasing for any y > x 2: y* . In the literature, such 
a policy is often called a base-stock policy. 

Definition 2.1 (Base-stock policy). A base-stock (order-up-to) policy is characterized by an 
order-up-to level, often referred to as the base-stock level s• . If the initial inventory level 
before ordering x is below the base-stock level, an order is placed to raise the inventory 
level up to the base-stock level. Otherwise, no order is placed (figure 2.1 gives a graphical 
description of such a policy): 

{s· 
y*(x) = X 

.x < s· 

. X 2: S*. 
(2.2.7) 

For later investigations, some slightly different notation will be convenient, which we thus 
introduce here: When uncertainty in demand is modeled additively as 

D(t) = E[D(f)] + t. (2.2.8) 

where f denotes the random perturbation of demand with mean zero and a cumulative dis-
tribution function F(c), then it becomes clear that <I>(D) = F(D(t) - E[D(t)]). The 
following theorem thus follows directly from equation (2.2.6). 

Theorem 2.1. Let demand D(c) be modeled additively, such that D(c) = E[D(E)] +c, with 
E[D(c)] being the mean demand and f a random variable with mean zero and following 

Lisa Gimpl-Heersink - 978-3-631-75380-4
Downloaded from PubFactory at 01/11/2019 05:41:29AM

via free access



22 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

a cumulated distribution function F( ·) . Then for the lost sales case an order-up-to policy 
with the optimal base-stock level S* is given by 

S* = F-1 (p + 8 - c) + E[D(c)], 
p+s-v 

(2.2.9) 

where p denotes the unit selling price, c the unit ordering costs with O < c < p, s 2: 0 the 
unit shortage costs, and v < c the unit salvage value. 

Remark 2.1. Cu = (p + s - c) represents the opportunity cost of underestimating demand 
and C0 = ( c - v) the cost of overestimating demand. The above ratio Cu/ ( C,, + C0 ) in 
equation (2.2.9) is known as the critical fractile. Intuitively, it corresponds to the safety factor 
at which the expected profit lost from being one unit short is equal to that from being one 
unit over. 

Logistics employs a different model if demand in excess of the amount stocked is back-
logged. In this case, customers will return after the end of the period where there is one more 
chance to place an order for the outstanding items, which are then instantaneously delivered 
to the customers (see e.g. Porteus ( 1990) for newsvendor models with partial backlogging or 
Khouja (1996) for newsvendor models with an emergency supply option). But, at the same 
time, backlogging costs b 2: 0 , are charged as penalty costs for the inability to meet con-
sumer needs when they occur. In case of overproduction with resultant excess of inventories 
at the end of the period, holding costs h 2: 0 occur. These could be interpreted as carrying 
charges until the remaining items can be sold, e.g. to a discount store for some salvage value 
v . Holding and backlogging costs are charged for the period when they occur, whereas any 
financial flow after the end of the period (reordering/salvaging opportunity) is discounted by 
a discount factor O < 'Y :S 1 . A brief summary of the newly introduced variables is given in 
table 2.1. To insure that it is not optimal to not order anything at all and merely accumulate 
backlog penalty costs, b > ( 1 - 'Y )c is also assumed. Note that since holding costs and 
salvage value always occur together ( h - "(V) and backlogging costs are always associated 
with ordering costs after the end of the period ( b + "(C ), they both could be integrated in 
one variable each, which is usually the case in literature. However, we here choose to keep 
them both in preparation for the multi-period inventory model. Maximizing expected profits 
yields the following theorem. 

Theorem 2.2. Let demand D(c) again be modeled additively, such that D(c) = E[D(c)] + 
c, with E[D(c)] being the mean demand and E a random variable with mean zero and 
fallowing a cumulated distribution function F ( ·) . Then for the backlogging case an order-
up-to policy with the optimal base-stock level S* is also given by 

S* = F-1 ( b - (l - 1)c ) + E[D(c)], 
h+b-1(v-c) 

(2.2.10) 

where p denotes the unit selling price, c the unit ordering costs with O < c < p, "( the 
discount factor with O < 'Y :S 1, b > (l - 1)c the unit backlogging costs, h 2: 0 the unit 
holding costs and v < c the unit salvage value. 
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2.2. ONE-PERIOD MODELS 23 

Proof Let u denote the realization of the random variable E and differentiate the expected 
one period profit 

j y-E[D(,)] 

E[II(y,E)] = pE[D(c)] - c(y - x) - (h - 1v) -x (y - E[D(c)] - u)f(u)du 

- (b + 1c) f x (E[D(E)] + u - y)f(u}du 
y-E[D(,)] 

(2.2.11) 

with respect to the inventory y. This leads to 

BE[~~y,c)] = -c-(h-1v)F(y-E[D(t)])- (b+,c)F(y- E[D(c)]) + (b-1c). (2.2.12) 

Setting this equal to zero and solving for y gives the desired result, since with c > v, 'Y > O 

and h, b 2 0, it follows that the expected profit E[II(y, c)] again is strictly concave in y 
( d2E[II(y, c)]/dy2 = -(h + b + 1(c - v))f(y - E[D(c)]) < 0 ). • 

Remark 2.2. Note that the above result can only be obtained for backlogging costs b being 
independent of price p. 

Remark 2.3. The critical fractile (b-(l -1 )c)/(h +b-1( v-c)) has a similar interpretation 
as in equation 2.2. 9: it corresponds to the order quantity at which the expected profit lost from 
being one unit short is equal to that from being one unit over. Here C,, = ( b - ( 1 - 'Y )c) 
denotes the opportunity cost of underestimating demand and C0 = ( h + c - '")'V) the cost 
of overestimating demand. The above ratio is again given by Cu/( C,, + C0 ). Note that in 
the backlogging case p does not appear in the critical fractile. This is because the items are 
sold in any case. Today, the situation characterized by formula (2.2. IO) is more prevalent in 
practice, as due to competition, firms are more willing to incur substantial backlogging costs 
than to lose customers in the future due to unsatisfied demand. 

2.2.2. Joint pricing and inventory control 

We now apply the newsvendor problem to analyze firms who jointly set a selling price and 
a stocking quantity prior to facing the random demand in a single period. Such an extended 
model incorporates the price as a decision variable which provides an excellent vehicle for 
examining how operational problems interact with marketing issues to influence decision 
making at the corporate level. One of the first attempts to address marketing-production 
joint decision making was presented by Whitin ( 1955), who formulated a news vendor model 
with price effects. He adapts the model described in the section 2.2.1 in such a way that the 
probability distribution of demand depends on the selling price, where price is a decision 
variable rather than an external parameter, and found that a gain can be achieved by more 
closely coordinating marketing and logistics. A good survey on price setting newsvendor 
models can be found in Petruzzi and Dada ( 1999). We now redefine the additive demand 
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24 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

from equation (2.2.8) in such a way that the mean demand is now a function of the selling 
price: 

D(p, c) = E[D(p, c)] + c, (2.2.13) 

whereby in the following expected demand is assumed to be a non-negative linear function 

E[D(p,c)] =/Jo+ /31p, with /Jo > 0 and /31 < 0. Since in contrast to equation (2.2.3) 
u here describes the realization of the random variable E, each actual demand realization is 
now given by u + E[D(p, c)]. By furthermore defining the safety stock z = y- E[D(p, c)], 
the goal function from equation (2.2.3) becomes 

E[II(z,p, c)] = [~ (p(E[D(p, c)] + u) + v(z - u))f(u)du-

-['° (p(E[D(p, c)] + z) - s(u - z))f(u)du - c(E[D(p, c)] + z - x). 

(2.2.14) 

Petruzzi and Dada (l 999) show by simple differentiation (as we did in section 2.2.1) that 
E[II(z,p, c)] is concave in p for a given z, which guarantees that the sequential process 
of first optimizing p for a given z and then searching over the resulting optimal trajectory 
to maximize E[II(z,p(z), c)] in the safety stock z yields the optimal solution. In this case 
the optimal price for the integrated problem is given by (see Petruzzi and Dada (1999) for 
details) 

p*(z) = P° + ~~), (2.2.15) 

where p0 denotes the optimal riskless price 

(2.2.16) 

which is obtained by differentiating the marketing goal function (p - c)E[D(p,c)] with 
respect to p and setting the result equal to zero (Phillips (2005), Chapter 1)). Furthermore, 
8(z) = f.00 (u - z)f(u)du denotes the expected lost sales when a safety stock z is chosen. 
Since /31 < 0 and 0(z) is nonnegative this theorem follows: 

Theorem 2.3. In the lost sales case the optimal risk less price p0 is higher than the optimal 
price p* incorporating risk. 

Remark 2.4. In the integrated setting the price is used to reduce the coefficient of variation 
of demand, and the difference between the optimal price set by marketing in isolation is 
decreasing with increased price sensitivity (slope of the demand function /31 ) and demand 
uncertainty. However, as Petruzzi and Dada ( 1999) show, this effect is reversed if random-
ness is modeled in a multiplicative way as D(p, c) = E[D(p, c)]c. 
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2.3. MULTI-PERIOD MODELS 25 

Let us now look at the backlogging case, which so far did not attract interest in literature. 
By again defining z = y - E[D(p, t)] as the safety stock, the goal function from equation 
(2.2.11) becomes 

E[TI(z,p,t)] = pE[D(p,c)] - c(E[D(p,c)] + z - x)-

- (h - 1v) [~ (z - u)f(u)du - (b + 1c) ix (u - z)f(u)du. 
(2.2.17) 

It is easy to see that the price no longer influences expected holding or backlogging costs. 
This differs from the lost sales case, where we lose sales if demand exceeds stock and hence 
expected revenues are reduced by p fzx(z - u)J(u)du (compare equation (2.2.4)). Differ-
entiating the expected profit (2.2.11) with respect to price yields 

oE[TI1~ P, c)] = E[D(p. c)] + (p - c)E[Dp(P, t)], (2.2.18) 

where E[Dp(P, t)] = BEl~:-<ll. Setting (2.2.18) equal to zero and solving for p leads to the 
following theorem. 

Theorem 2.4. In the backlogging case, the optimal price p* for the integrated problem is 
the same as the optimal price p0 obtained by the sequential method: 

Remark 2.5. In the backlogging case, we can set the price independently of the inventory 
decision. Thus, while the sequential approach is not optimal in the lost-sales case, no gain 
is achieved by joint optimization in the backlogging case, which is, as already stated above, 
more prevalent in practice. 

2.3. Multi-period models 

We are now ready to consider the finite horizon multi-period version of the problem setting 
described in the last section, which was first introduced and solved by Arrow et al. (1951 ). 
The backlogging version of the system described in section 2.2 will now be operated over 
T periods. What makes the problem more complicated than solving T copies of the single-
period problem is that any leftover stock at the end of one period is retained and can be 
offered for sale the following period (see figure 2.2 for a sample inventory path). The in-
ventory level x 1 is reviewed at regular intervals (e.g. each week or month), an appropriate 
quantity y1 - x1 is ordered and a per unit selling price Pt charged after each review at the 
beginning of a new period t . For easier tractability and clarity of the formulas we assume 
that all input variables are stationary and thus not anticipated to change over time (most of 
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26 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

the results presented in the following also hold in the time variant case). Each unit of positive 
leftover stock at the end of each period incurs holding costs h . If the demand exceeds the 
inventory on hand, then the additional demand is backlogged and is filled when the addi-
tional inventory becomes available - the backlogged units are viewed as negative inventory. 
This means that these customers will return the next period for the product, in addition to the 
usual random number of customers. A per unit backlogging cost b, b > 1 - "(C is charged 
as a penalty cost. The newly arising demands Dt in different periods are assumed to be 
statistically independent and identically distributed according to general stochastic demand 
functions as in the above section. The ordering cost function includes both a per unit variable 
cost c and a fixed setup cost k, which is incurred if an order is placed ( Yt > Xt ), regardless 
of the size. If no order is placed, no setup costs are incurred. Orders placed are essentially 
received immediately (received in time to meet demand that arises in that period). All costs 
are expressed in beginning-of-period cash units; cash flows occurring in subsequent time 
periods are discounted by a one-period discount factor 'Y E (0, 1]. After the last period, 
the remaining inventory is salvaged at a per unit salvage value v or backlogged demand is 
satisfied and thus a final order is placed. For an overview of the variables introduced in this 
section we refer the reader to table 2.2 at the end of this section. The objective of the dy-
namic version of the backlogging inventory model is to maximize total expected discounted 
profits V(xi), when the initial inventory on stock before ordering at the beginning of the 
planning horizon is x 1 : 

T 

V(x1) = L "ft-I max (P1E[Dt] - c(yi - Xt) - k8(y1 - Xt) - G(yt,Pt)) + 'YT L(xT+1), 
t=I y,?_x,,(p,) 

(2.3.1) 
with 8(u) = 1, if u > 0 and D(u) = 0, otherwise. Moreover, G(yt,Pt) denotes the 
expected inventory holding/ backlogging costs in period t and L(xr+1) the salvage value/ 
reordering costs at the end of the planning horizon: 

G(Yt, Pt) = E[h rnax(yt - Dt, 0) + b max(Dt - Yt, O)], 

L(xr+1) = v rnax(xr+1 , 0) + cmin(xr+1, 0). 

(2.3.2) 

(2.3.3) 

If the demand distribution functions are discretized, according to Jung et al. (2004) the 
evolution of demands over time can be represented by a tree-like structure (see figure 2.3). 
Starting from each node, there can be several possible demand realizations, expressed as 
branches stemming from that node. Assuming m possible next-period demand realizations 
at each node, the total number of scenarios will amount to m T . At each period t each node 
is associated with the realization of demand, the decision variables and the state variables. 
Complete enumeration would amount to an exponential complexity of O(mT), where 0(-) 
denotes the Big O notation, which describes the runtime complexity of an algorithm. There-
fore a stochastic dynamic programming approach with the significantly lower complexity of 
O(Tm) is described in the following to model the planning process as it reacts to demand 
realizations unfolding over time. 
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Inventory 
Level 

YI YT 

Time period t 

Figure 2.2.: Inventory path over time 

2.3.1. Dynamic programing formulation 

27 

Dynamic programs deal with situations where decisions are made in stages. In a stochastic 
setting dealing with random parameters, the outcome of each decision is not fully predictable 
but can be anticipated to some extent before the next decision is made. The objective in 
dynamic programs is either to minimize or to maximize a certain value which can be expected 
costs or profits, respectively. A key aspect of such environments is that decisions cannot be 
viewed in isolation since one must balance the desire for high (respectively low) present 
values against the undesirability of low (respectively high) future values. The technique of 
dynamic programming captures this tradeoff. At each stage it ranks decisions based on the 
sum of the present values and the expected future values, assuming optimal decision making 
for subsequent stages. The states of the system summarize past information that is relevant 
for future optimization. 

The principle of dynamic programming was popularized by Richard Bellman in the forties 
and is to decompose such a complicated problem into a sequence of equivalent single period 
problems. One need only specify the optimal value of starting the next period (as a function 
of the starting state) and continue over the remainder of the planning horizon as the 'salvage' 
value function. In the case of dynamic models, it usually amounts to working backwards. 
A good review on how stochastic dynamic programming models, also referred to as Markov 
decision processes or stochastic control problems, apply to economic literature can be found 
in e.g. Stokey et al. (1989), Puterman (1994), Porteus (2002), Miranda and Fackler (2002), 
Heyman and Sobel (2004) and Bertsekas (2005). 

Dynamic programing using backward recursion will be an appropriate technique for solv-
ing the above multi-period maximization problem. Thus, equation (2.3.1) reformulated in 
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1U 

Figure 2.3.: Evolution of sample paths 

terms of dynamic programming becomes: 

time period 
t = I 

time period 
t = i 

time period 
t=T 

(2.3.4) 

J1(Xt, Yt, Pt) = PtE[Dt] - c(yt - Xt) - ko(yt - Xt) - G(yt, Pt)+ ,E[½+1 (Yt - D1)], (2.3.5) 

where the value function ½(x) denotes the maximum expected discounted profit for periods 
t, . .. , T (profit-to-go function) when starting period t with initial inventory level Xt and 
Vr+1 = L(xr+il = vmax(xr+1,0) +cmin(xr+1,0)]. Note that again G(y1,p1) denotes 
the expected holding/ backlogging costs G(y1, Pt) = E[h ma.x((y1 - Dt, 0) + b ma.x((D1 -

y1), O)]. Equation (2.3.4) describes the system in the state Xt, the inventory level before 
ordering, and the action(s) Yt, the inventory level after ordering (and the price Pt). Note 
that the admissible action space is restricted to [xt, oo), since only nonnegative orders are 
permitted. State and action (decision) variables are related via the following transition func-
tion: 

Xt+I = Yt - Dt- (2.3.6) 

Equation (2.3.6) gives the gross quantity of stock on hand at the beginning of period t, which 
equals the inventory on hand after ordering at the beginning of the previous time period less 
the total quantity actually sold during that period (see figure 2.2). A brief idea of the system 
dynamics is given in figure 2.4. 

In the study of stochastic dynamic programming models, researchers often attempt to 
establish certain structural properties of the value function in the state variables, like for 
instance monotonicity, convexity or supermodularity. Properties such as convexity, can be 
enough to specify the general form of the optimal policy. Establishing the existence of op-
timal policies with a special structure is of great practical importance, since they are highly 
appealing to decision makers, are easy to implement and enable efficient computation. In 
such cases specialized algorithms can be developed to search only among policies that have 
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Figure 2.4.: System dynamics 

29 

Slate 
···········• 
,1't+2 

the same form as the optimal policy, which speeds up computation time significantly. When 
the optimality of e.g. monotone decision rules is known, efficient backward induction algo-
rithms (see Puterman (1994), section 4.7.6) can be developed by constantly restricting the 
action space. Furthermore, such properties canhelp in developing a qualitative understanding 
of the model by describing how the results will change with changes in the model param-
eters. For a good review and general results on structural properties of stochastic dynamic 
programs we refer the reader to e.g Smith and McCardle (2002), Puterman (1994 ), Topkis 
(1998), Bertsekas (2005), Bertsekas (2001) and Heyman and Sobel (2004). 

The following two subsections will be devoted to review of some types of simple forms 
of optimal policies that have already been found in literature and also provide some intuitive 
understanding of the structural results, which will be useful for a better understanding of 
the integrated model in chapter 5 and 6. Furthermore, we will include a brief convergence 
analysis. 

2.3.2. Inventory control 

Bellman and Glicksberg (1955) were the first to show that the optimal total cost function is 
convex in inventory on stock before ordering for certain stationary assumptions, which means 
that a constant stock level is optimal (often referred to as base-stock level, see definition 2.1 
on page 21 ). Wagner and Whitin ( 1958) presented a nice forward algorithm for a solution 
of the dynamic version of the economic lot size model. In the following we give the reader 
an idea of how structural properties are maintained by induction from one time period to the 
next and so lead to a base-stock policy. Since in this section we focus on solely optimizing 
the inventory level Yt in each time period, we let demand be exogenously given by D1 = 
E[D(,)] + <t (see section 2.2.1). Furthermore, in this thesis we consider only models where 
fixed ordering costs are not included ( k = 0 ). We thus reformulate the dynamic program 
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(2.3.4) in the following way: 

½(x) = max {J1(x, y)}, 
y?_x 

J1(x, y) = pE[D(c1)] - c(y - x) - G(y) + 1E[½+1(Y - D(c))] 

with 

(2.3.7) 

(2.3.8) 

l y-E[D(<)] 1-00 
G(y) = h (y-E[D(c)]-u)f(u)du+b (E[D(c)]+u-y)f(u)du (2.3.9) 

-oo y-E[D(,)] 

and Vr+1(x)=vmax(x,0)+cmin(x,0). 

To prove that a base-stock policy is optimal, we establish the following lemma, which can 
be found on page 525 in Heyman and Sobel (2004): 

Lemma 2.1 (Concavity preservation under Maximization). If X is a convex set, Y(x) a 
nonempty set for every x EX, C := {(x, y)lx EX, y E Y(x)} a convex set and g(x, y) a 
(jointly) concave function on C, 

f(x) = max g(x, y) 
yEY(x) 

and g(x, y) < oo for every x E X, then f is a concave function on X. 

Theorem 2.5. Let a multi-period inventory control model be given by the dynamic program 
defined in equation (2.3. 7), whereby v = c is assumed and thus Vr +1 ( x) = ex. Then the 
following holds for any time period t = 1 ... T: 

I. J1 ( x, y) is jointly concave in x and y . 

2. ½(x) is concave in x. 
3. A base-stock policy with order-up-to level s; is optimal in time period t. 

Proof The proof follows the principle of induction. By applying Leibnitz' integration rule 
we find -G(y) to be concave in y: 

- d~~y) = b - (h + b)F(y - E[D(c)]), (2.3.10) 

- d2~~y) = -(h + b)f(y - E[D(c)]) S 0. (2.3.11) 

Since -G(y) does not depend on x we can also say that -G(y) is jointly concave in x 
and y. Moreover, Vo(x) and the first term in equation (2.3.8) are trivially jointly concave. 
The second term -c(y - x) is linear in both variables x and y and thus jointly concave, 
too. Since any positive linear combinations of jointly concave functions are again jointly 
concave,itisnowclearthat Jy(x,y) isjointlyconcave. By knowing that {(x,y)IY 2 x} is 
a convex set, lemma 2.1 can be applied and therefore Vr(x) is concave in x. The function 
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Figure 2.5.: Base-stock path over time 
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]y(x, y) being jointly concave furthermore yields the optimality of a base-stock policy (see 
section 2.2.1) for time period t = T. Assume now ½+ 1 ( x) is concave in x . By the same 
argumentation as used above for t = T, J1(x, y) is then shown to be jointly concave in x 
and y, which yields that ½(x) is concave in x. Thus we showed that base-stock policy is 
optimal for any time period t . • 
Remark 2.6. A terminal value V0 (x) = ex means that leftover units at the end of the plan-
ning horizon can be salvaged at same costs for which they were originally bought. This 
assumption is common in literature since it guarantees an easy analytical tractability. 

Figure 2.5 shows that for the finite horizon case with no salvage value ( v = O ), the 
optimal base-stock level decreases over time. That is because towards the end of the planning 
horizon, since time remaining is getting shorter, the risk of not selling the inventory on stock 
increases, against which costs the decision maker hedges by a diminishing base-stock level. 
Of course there is no risk in the case where the per unit salvage value equals the per unit 
ordering costs ( v = c ). In this case, if some inventory on stock is not sold by the end of 
the planning horizon, it can be salvaged by the same amount of money as it was ordered. 
Here, a myopic policy which looks only at the single period backlogging problem described 
in subsection 2.2.1 is optimal in every period, regardless of the time horizon T (see Veinott 
(1965)). 

Theorem 2.6. If the dynamic program (2.3.7) admits a steady state, then it is given by 

(2.3.12) 
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Proof. We can rewrite equation (2.3.1) for an infinite time horizon as follows: 

00 

V(xi) = L 'l max {P1+1E[D(tt+1)] - c(Y1+1 - X1+1) - G(Yt+il}, 
t=O Ytt-J~Xt-tl 

where x 1 denotes the starting inventory level at the beginning of the time-horizon. We now 
replace x 1+1 = Yt - D(p1) for all t 2: 1 and then rearrange the sum in such a way that we 
are left only with terms indexed by t + I in the t -th summand: 

00 

V(xi) = cx1 + L 'l max {p*E[D(t1+1)] - c((l -1)Yt+1 + 1D(t1+i)) - G(Y1+1)}. 
t=O Yt+t~Xt+l 

(2.3. I 3) 
As we assume that we are in a steady state we replace the time dependent y1 by in time in-
variant y. Since the profit function V ( x 1 ) is a concave function in y, the optimal inventory 
level after ordering y* can now be obtained by differentiating V(xi) with respect to y and 
setting the result equal to zero. Using (2.3.10) we thus obtain 

8 I -8 V(x1) = -(-(1 - 1)c + b - (h + b)F(y - ED(p*))) = 0, 
y I - 1' 

(2.3.14) 

which results in equation (2.3.12). • 
Remark 2.7. In most examples under consideration, a steady state is attained very quickly 
(in figure 2.5 the steady state is already reached in period 17, where T = 25.) Note that a 
possible steady state S:X, is attained at the beginning of the planning horizon. 

Remark 2.8. The steady state base-stock level S:X, is increasing in both discount factor 1' 
and backlogging costs b, since F- 1(·) is increasing in these parameters. This is intuitive, 
because the seller, by keeping higher inventory levels, wants to hedge against higher back-
logging costs, or reordering costs in a subsequent time period, respectively. Furthermore, 
a higher demand uncertainty also results in higher safety stock levels and hence in higher 
base-stock levels. Figure 2.6 gives an illustration of this correlation by varying one of the 
parameters h = 0.005,b = 0.4,1' = 1,E[D(t)] = 45 and CJ= 40 in each row (demand 
is assumed to follow a normal distribution with mean E[D(t)] and standard deviation CJ). 

Numerical results also show that for more heavy tailed distributed demands (like the beta 
or the log-normal distribution) base-stock levels are higher to prepare for the higher risk of 
large demands. 

Scarf ( 1960) and Veinott ( I 966) later extend the above theory to the case of nonzero fixed 
ordering costs. They prove that the optimal total cost function is k-convex 1 (under the as-
sumption of convex holding/ shortage costs), inducing that the optimal policy in each period 
is an ( s, S) -type policy: If the inventory level at the beginning of the period t is below the 
reorder point, St , an order is placed to raise the inventory level to the order-up-to level, S1 . 

Otherwise no order is placed. Since we are not focusing on the case of nonzero fixed ordering 

1 J(x) is k-convex, if J((l - .X)x1 + .Xx2 ) '.o (1- .X)f(xi) + Aj(x2 ) + .Xk \fx 1,x2 EX and .XE [O, l]. 
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h=0.005, y=1, D(e)-N(45,40) 

40 64 81 103 Base-stock 

h=0.005, b=0.4, y=1, D(e)~N(45,cr): 

s;=lO s;=20 s;=4o s;=6o 

59 74 103 132 Base-stock 

h=0.005, b=0.4, D(e)~N(45,40) 

s;-0.1, s~=o.s5 s~~og, s;~1 

64 79 103 135 Base-stock 

Figure 2.6.: Steady state base-stocks under various parameters 

costs in this thesis, we will omit further details here. Moreover, we just state for the matter of 
completeness that Zheng ( 1991) gives a simple proof for the optimality of an ( s, S) -policy 
for the infinite horizon case, which does not depend on results of the finite-horizon problem 
(like an earlier proof conducted by Iglehart ( 1963)). 

2.3.3. Joint pricing and inventory control 

One of the first attempts to address marketing-production joint decision-making was pre-
sented by Whitin ( 1955), who for a multi-period approach used a deterministic model. 
Thomas ( 1970) then extended the famous Wagner and Whitin ( 1958) forward algorithm 
to the marketing-production domain where price is included as a decision variable (still in 
a deterministic setting). In a subsequent paper, Thomas (1974) considers a stochastic ver-
sion of his model. There he considers the problem of of jointly setting price and production 
levels in a series of T periods, where price is modeled as a parameter in the probability 
distribution of demand. He is the first to formulate the problem as a dynamic program from 
which a optimal policy was derived numerically. Following the work of Porteus ( 1982) and 
Gallego and Van Ryzin (1994), Federgruen and Heching (1999) prove, assuming that the 
underlying demand function is linear and that the ordering cost is proportional to the amount 
ordered and thus does not include a fixed cost component, that a base-stock-list-price policy 
is optimal. That is, in each period the optimal policy is characterized by an order-up-to level, 
referred to as the base-stock, and a price which depends on the initial inventory level at the 
beginning of the period. If the initial inventory level is below the base-stock level, an order 
is placed to raise the inventory level to the base-stock level and the ordinary price (the list 
price) is charged. Otherwise, no order is placed and a discount price is offered, which is a 
non-increasing function of the initial inventory. 

Lisa Gimpl-Heersink - 978-3-631-75380-4
Downloaded from PubFactory at 01/11/2019 05:41:29AM

via free access



34 CHAPTER 2. MODELS IN OPERATIONS RESEARCH LITERATURE 

Since in this section we focus on a joint optimization of inventory level Yt and selling 

price Pt in each time period t, we again define demand additively as Dt = E[D(Pt, E )] +Et, 
whereby in the following expected demand is assumed to be a linear function E[D(p, E)] = 
/30 + {31p, with /30 > 0 and /31 < 0 (see section 2.2.2). As in subsection 2.3.2, we for easier 
tractability consider the special case of zero fixed ordering costs ( k = 0 ). We thus define 
the underlying dynamic program as follows: 

½(x) = max{Ji(x,y,p)}, 
y?.x,p 

Jt(x, y,p) = pE[D(p, Et)] - c(y - x) - G(y,p) + 1E[½+1(Y - D(p, E))] 

with 

(2.3.15) 

(2.3.16) 

l y-E[D(p,<)] 1-00 
G(p, y) = h (y-E[D(p, E)]-u)f(u)du+b (E[D(p, E)]+u-y)f(u)du 

-oo y-E[D(p,<)] 
(2.3.17) 

and Vr+i(x)=vmax(x,0)+cmin(x,0). 

Theorem 2.7. Let a multi-period inventory control model be given by the dynamic program 
defined in equation (2.3.15), whereby v = c is assumed and thus Vr+ 1(x) = ex. Then the 
following holds for any time period t = 1 ... T: 

I. lt(x,y,p) isjointlyconcavein x and y and p. 

2. ½(x) is concave in x. 

3. A base-stock policy with order-up-to level s; is optimal in time period t. 

Proof. The proof technique is identical to the one suggested in theorem 2.5, only that this 
time joint concavity in the two decision variables y and p is used to show the optimality of 
a base-stock policy. When comparing theorem 2.7 to theorem I in Federgruen and Heching 
(1999), note that there the optimal profit is reduced by the proportional costs of the stock 
on hand, ex, and thus concavity in x is trivially given, since then the value function before 
maximization J(y,p) no longer depends on x. • 

We now turn our attention to the list-price property, which we define in the following: 

Definition 2.2 (Base-stock-list-price policy). A base-stock-list-price policy strongly relates 
to a base-stock policy (see definition 2.1 ). If the initial inventory level is below the base-stock 
level, an order is placed to raise the inventory level to the base-stock level and a so-called 
list-price is charged. Otherwise, no order is placed and a discount price is offered, which 
is a non-increasing function of the initial inventory (see figure 2.1 and 2.7 for a graphical 
description of such a policy): 

{s· 
y*(x) = X 

,x < s· 
,x :c:: s·, (2.3. I 8) 
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Figure 2.7.: List-price policy 

{
p• 

p*(x) = p*(x) 
.x < s· 
.x 2 s·. 

where p*(x) :S P* and p*(x) non-increasing in x. 
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(2.3.19) 

Definition 2.3 (Submodularity). A submodular/subadditive function is a function f(x. y) 
that has monotone decreasing differences, which means that for all x+ 2': x- E X and y+ 2': 
y- E Y the following holds: f (x+, y+) + f (x-, y-) :S f(x+, y-) + f (x-, y+). As a conse-
quence, if J(x, y) is differentiable, f(x, y) is submodular whenever 8J(x. y)/(8x8y) :S 0. 
f(x. y) is called supermodular/superadditive, if - f(x. y) is submodular. 

Theorem 2.8. Let a multi-period inventory control model be given by the dynamic program 
defined in equation (2.3.15) with v = c, then the optimal price p;(x) is non-increasing in 
x for any time period t = l ... T. 

Proof To prove this theorem it suffices by theorem 8-4 in Heyman and Sobel (2004) to 
show that J1(x, y,p) is submodular in y and p (see definition 2.3) for any time period 
t = l ... T. 

Since the sum of submodular functions is submodular, we need to show submodularity 
of each of the terms in 2.3.16. The first and second terms are trivially submodular since 
they depend only on one of the two variables y and p. In order to show that G(y. p) has 
monotone decreasing differences we define H(x) to be actual holding/backlogging costs in 
inventory level x after demand such that E[H(y - D(p, €1))] = G(y. p). Note that since 
b. h > 0 the function H(x) is convex. To show that H(y - D(p, €1)) is submodular in y 
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and p we consider an arbitrary pair of inventory levels (y-, y+) and any pair of price levels 
(p-, p+) with y- < y+ and p- < p+. We furthermore define 

x++ = y+ - D(p+, Et), 
x+- = y+ - D(p-, Et), 

x-+ = y- - D(p+,Et), 
x-- = y- - D(p-, Et)-

(2.3.20) 

From /31 < 0 it follows naturally that x-+ > x--. By convexity of H(·) we have: 

H(x++) - H(x-+) = H(x-+ + y+ - y-) - H(x-+) 2 
::::: H(x-- + y+ - y-) - H(x--) = H(x+-) - H(x--). 

(2.3.21) 

Thus by definition 2.3, it is obvious that H(y - D(p, Et)) is supermodular in y and p. 
Since taking expected values preserves the submodularity property, it is clear that -G(y, p) 
is submodular. Finally, the submodularity proof for the last term in 2.3.16 is identical to the 
one of -G(y,p),as ½+1 (x) isconcavein x bytheorem2.7. • 
Remark 2.9. The optimality of a list-price policy can be motivated by the intuition that hold-
ing costs of unnecessarily high inventory levels x can be reduced by accelerating demand 
via reducing the selling price p . 

Similar to theorem 2.6, we can find a possible steady state for the joint pricing and inven-
tory control model (2.3.15). 

Theorem 2.9. If the dynamic program (2.3.15) admits a steady state, then it is given by 

p~ = (2.3.22) 

S• ( •) E[D( • )] F-1 (b-(1-,)c) ooPoo= Poo,E+ h+b · (2.3.23) 

Proof. The optimal total discounted profit for an infinite time-horizon is given by (compare 
equation (2.3.1 )): 

00 

V(xi) = L ,t max {P1+1E[D(Pt+1,E1+i)] - c(Yt+I - Xt+il- G(Y1+1,P1+il}. 
t=O Yt+I~Xt+I,Pt+l 

(2.3.24) 
Again, we rearrange the above infinite sum, replace the time variant variables Yt and Pt by 
their time invariant counterparts y and p , and obtain 

00 

V(x1 ) = cx1 + L 11 [pE[D(p, E)] - c((l - ,)y + ,D(p, E)) - G(y,p)]. (2.3.25) 
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Figure 2.8.: Base-stock and list-price evolution over time 
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Since the profit function V(xi) is concave in y (see theorem 2.6), the optimization problem 
in the two variables p and y can be reduced to an optimization problem in a single variable 
p. This can be done by first solving for the optimal value of y as a function of p and then 
substituting the result y;.;(p) back into V(xi) and solving in p. y;.;(p) can be obtained in 
the same manner as in theorem 2.6, with the only difference that now p also is a decision 

variable. For convenience we call y0 = F-1 ( b-~1.;b-r)c) . We now use the optimal inventory 

afterordering y;.;(p) = E[D(p. ,)] +y0 (compare theorem 2.6) as an input for y in equation 
(2.3.25). This yields 

X 

V(x1) = cx1 + L '/ [pE[D(p,,)] - c(E[D(p,,)] + y°) - G((E[D(p.,)] + y°).p)]. 
t=O 

(2.3.26) 

From equation (2.3.17) we have G(y;.; (p), p) = h J!: (y0 -u)f (u)du+b Jy:;:( u-l)f ( u)du, 
which is a constant and no longer depends on p. As V ( x 1 ) is concave in p, it suffices to 
solve 

a aE[D(p. t)J 
op V(xi) = E[D(p, ,)] + op (p - c) = 0. (2.3.27) 

In the case of the linear demand function D(p, ,) = /30 + f]1p +£,equation (2.3.22) follows 
directly. • 
Remark 2.10. Note that the optimal steady state price (2.3.22) equals the optimal riskless 
price (2.2.16) from section 2.2.2. 

A sample evolution of the base-stock and list-price over time for /30 = 100, 31 = -20. c = 

0.5. b = 0.4, h = 0.005, v = 0 and T = 15 is depicted in figure 2.8. One can see that while 
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Figure 2.9.: Price trajectories for different time periods 

the list-price stays constant over time (or is non-decreasing for other parameter settings), 
the tendency to lower inventory increases over time in the case of salvage value v = 0 . 
Furthermore, it can be observed that at the beginning of the time horizon, a base-stock that 
is greater than the expected demand, is kept in order to hedge against expensive backlogging 
costs. Towards the end of the time horizon, the risk increases of not selling inventories 
on stock, which motivates decreasing base-stock levels. Note that in the last time period a 
negative safety stock Sf - E[D(PT, er)] < 0 is observed. 

Figure 2.9 shows the optimal price p*(x1) in inventory before ordering x1 for different 
time periods and the above parameter setting. It is easy to see that the optimal policy is a list-
price policy in any time period t. Furthermore, it can be seen that the tendency to give price 
discounts at lower inventory levels before ordering increases over time. This is intuitive 
since, as described above, the model aims at reducing inventory levels towards the end of 
the time horizon and a lower price for higher inventory levels results in a higher expected 
demand which then results in lower inventory levels after demand is realized. 

Chen and Simchi-Levi (2004a) later extend the above described results for more general 
demand functions and the case of nonzero fixed ordering costs. They prove that the optimal 
profit function is k-concave (symmetric k-concave) and find that (s,S,p)-policy is opti-
mal. In such a policy the inventory is managed by the classical ( s, S )-policy and price is 
determined based on the inventory level at the beginning of each period. In a different paper, 
Chen and Simchi-Levi (2004b) investigate the infinite horizon problem. Since we are neither 
focusing on the case of nonzero fixed ordering costs nor on the infinite horizon in this thesis, 
we omit further details on those contributions here. For the convenience of the reader we 
give a brief overview of the notation used in this section in table 2.2. 
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2.3. MULTI-PERIOD MODELS 39 

I Variable I Characteristics I Description 

T T 2 1 length of the planning horizon 

t T 2 t 2 1 time period 

Dt Dt 2 0 unit(s) demanded in period t (random variable) 

ft ft= Dt-E[Dt], iid. perturbation of demand in period t (random vari-
E[f1] = 0 able) under additive demand uncertainty with mean 0 

F(·) 12'.F(u)2'.0 cdf of demand perturbation 

!(·) F(y) = f!:xo f(u)du probability density function of demand perturbation 

Pt Pt> 0 per unit sales price in period t 

Yt Yt 2 0 inventory level after ordering in period t 

Xt Xt ~ Yt inventory level before ordering 

C p > C > () per unit production/ ordering cost 

k k 2 O fixed ordering (setup) cost 

V c>v per unit salvage value (or salvage cost if v < 0) 

' 12'.,>0 discount factor 

b b > (1 - 1 )c per unit backlog penalty costs 

h h2'.0 per unit holding costs 

Vi(x) expected optimal profit-to-go function 

Table 2.2.: Notation: Multi-period models 
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3. Models in Marketing Literature 

3.1. Problem description 

Research in marketing demonstrates that in markets with repeated interactions, demand not 
only depends on the current price but is also sensitive to the firm's pricing history and thus 
accounts for intertemporal demand correlations. The aim of these approaches is to assess 
optimal prices with respect to maximizing total expected profit, taking demand fulfillment for 
granted. Since consumers have a memory, the carrier of price is not only based on its absolute 
level, but rather on its deviation from some reference level resulting from the pricing history. 
As customers revisit the firm, they develop price expectations, which become a benchmark 
against which current prices are compared. A formulation that captures this effect is the so-
called reference price, which is a standard price against which consumers evaluate the actual 
prices of products they are considering (see e.g. Winer ( 1986), Greenleaf ( 1995), Kopalle 
et al. (1996 ), Briesch et al. (1997), Fibich et al. (2003 ), Mazumdar et al. (2005 ), Natter et al. 
(2006)). If the price is below the reference price, the observed price is lower than anticipated, 
resulting in a perceived gain. This would make a purchase more attractive and raise demand. 
Similarly, the opposite situation would result in a perceived loss, reducing the probability of 
a purchase (people are less likely to buy products after prices have gone up). An important 
consequence of this reference price formation is that although frequent price discounts may 
be beneficial in the short run, they may be dangerous in the long run when consumers get 
used to these discounts and reference prices drop. The reduced price becomes anticipated and 
loses its effectiveness, whereas the non-promoted price becomes unanticipated and would be 
perceived as a loss. Thus, the optimal price policy becomes dynamic, with the reference 
price being the state variable. Popescu and Wu (2007) e.g. show that if the reference level is 
initially high, an optimizing firm will often consistently price below this level, which has the 
effect of a skimming strategy. Similarly, a low initial reference level leads to the optimality 
of a penetration type strategy. The reference price effect can be integrated into the demand 
model by modeling the reference price as the weighted sum of the previous reference price 
and the previous price set (exponential smoothing) and by adding an additional term to the 
response function where a positive reference gap (current price is lower than the reference 
price) increases demand, while a negative reference gap decreases demand (see equation 
(3.2.1 )). 
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42 CHAPTER 3. MODELS IN MARKETING LITERATURE 

3.2. Model formulation and dynamic program 

I Variable I Characteristics I Description 

T T2:l length of the planning horizon 

t T2:t2:l time period 

Dt Dt 2 0 unit(s) demanded and sold in period t 
lt tt = Dt-E[Dt], iid. perturbation of demand in period t under additive 

E[t1] = 0 demand uncertainty with mean 0 

Pt P2Pt2'E_ per unit sales price in period t 
Tt f 2: Tt 2: [. per unit reference price in period t 
C p>c>O per unit production/ ordering cost 

a l>a2:0 memory parameter 

'Y 1>"(2:0 discount factor 

½(r) expected optimal profit-to-go function 

Table 3.1.: Notation: Marketing models 

The above described marketing model aims at setting optimal prices without considering 
inventory decisions by taking demand fulfillment for granted. As in chapter 2, we consider 
a finite horizon, stochastic, single item and periodic review model under a monopolistic 
setting. Demand perturbations in consecutive periods are independent and their distribution 
depends on the item's price and the consumer's reference price, which is based on the pricing 
history. Including reference price effects, we redefine the additive demand function used in 
chapter 2 in the following way: 

Definition 3.1. The stochastic demand is modeled by the piecewise linear function 

Di(Pt, r1, ti) = f3o + f31 · Pt + f32 · ma.x{pt - r1, O} + {33 · min{p1 - rt, O} + tt, (3.2.1) 

where rt denotes the reference pricing in period t, Et is iid. according to an arbitrary 
probability density function f(,) with mean E[tt] = 0 and {30 2 0 and f31, f32, {33 :S O. 
Price Pt and reference price rt are restricted to an arbitrary finite interval [p_, fl] and [r., f] 
such that E[D(Pt, rt, tt)] 2 0 and p_ 2 c. 

Rem11rk 3.1. Note that {30 2: 0, {31, {32, {33 ::; 0 ensure thatthe demand function is decreasing 
in price and increasing in reference price. Moreover, p_ :S Pt '.Sp and r. s rt sf guarantee 
that the expected demand is non-negative and finite. Furthermore, we create a monopolistic 
framework by restricting the price interval by an upper and a lower bound p E [p_, p] . 
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If equation (3.2.1) is symmetric with respect to the effect of gains and losses ( /32 = (33 ), 

buyers are loss-neutral and the demand function is smooth. For loss-averse consumers, the 
demand function is steeper for losses than for gains ( /32 < /33 ) and consumers respond more 
to surcharges than to discounts. In other words, a loss decreases expected demand more than 
an equivalently sized gain would increase demand (see figure 3.1 ). This behavior is predicted 
by Prospect Theory (see e.g. Winer ( 1986)). If /32 > /33 , consumers are loss-seeking. As 
Slonim and Garbarino (2002) show, /32 > /33 can also arise on the aggregate level when in 
fact the consumers behave according to Prospect Theory but stockpile when prices are low. 
We will focus on the loss-neutral and loss-averse case, which yield closed-formed steady 
state solutions, while the optimal pricing policy in the loss-seeking case cycles (see Popescu 
and Wu (2007) and figure 3.8). 

The reference price r1 in equation (3.2.1) is given by some updating mechanism based on 
past prices such that recent occasions have greater effects than more distant ones and a higher 
previous price results in a higher current reference price. In the literature we observe several 
ways a reference price can be formed. One introduced by Krishnamurthi et al. (1992) is to 
operationalize reference price as the one-period lagged price for a brand: r1 = p1_ 1 . Another 
way could be summing past prices (see e.g. Winer ( 1986)). Exponential smoothing (intro-
duced in the adaptive expectations framework by Nerlove ( 1985)) is the most commonly used 
and empirically validated reference price mechanism in literature (see e.g. Winer (1986), 
Greenleaf ( 1995), Kopalle et al. (1996), Fibich et al. (2003), Popescu and Wu (2007)): 

Definition 3.2. Let Pt denote the observed selling price and r1 the reference price for a 
specific brand in period t, then a reference price updating mechanism is given by 

(3.2.2) 
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time-period I 

Figure 3.2.: Formation of reference price 

where O '.S a < 1 denotes the memory parameter and captures how strongly the reference 
price depends on past prices (see figure 3.2). 

Remark 3.2. Note that lower values a represent a shorter term memory. In particular, if 
a = 0, the reference price is the one-period lagged price ( rt = Pt-I) as in Krishnamurthi 
et al. (1992). 

The memory parameter a used in equation (3.2.2) is estimated in such a way that the 
highest possible R2 (quantifying the goodness of fit) for equation (3.2.1) is obtained in 
ordinary least square regression. Statistical parameter estimation is beyond the scope of 
this thesis, but there is considerable literature on empirical studies (e.g. Greenleaf (1995), 
Tellis (1988), Bijmolt et al. (2005), Ho and Zhang (2004), Popescu and Wu (2007), Natter 
et al. (2006), etc.) finding that a demand model like equation (3.2.1) fits empirical data very 
weJI and giving estimated parameter values for their models based on time-series data. E.g. 
Greenleaf (1995) and KopaJie et al. (1996) find furthermore that estimated parameters of a 
range from [O, 0.925]. For a more detailed exposition of reference price mechanisms, see 
e.g. Kopalle and Lindsey-Mullikin (2003) and Moon et al. (2006). 

Similar to chapter 2, pricing decisions Pt , where p_ '.S Pt '.S fi , are made at the beginning 
of each period t with the objective of maximizing total expected discounted profit over the 
entire planning horizon T. In marketing models, demand fulfillment is taken for granted and 
thus no inventory decisions are considered. Costs c in each time period t are again assumed 
to be time invariant. Therefore the maximum total expected discounted profit V(ri), when 
the initial reference price at the beginning of the planning horizon is given by r 1 and cash 
flows occurring in subsequent time periods are discounted by a one-period discount factor 
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1 E [O, 1) , is given as follows: 

T 
V(ri) = max L 1 1- 1(p1 - c)E [D(Pt, r1, i-:t)]. 

p,.E[r.p] t=l 

45 

(3.2.3) 

Similar to section 2.3, the decision which price to charge in each period is made in stages 
and cannot be viewed in isolation. Here again, the desire for high present profits, obtained 
by charging relatively low prices, must be balanced against the undesirability of low future 
profits, resulting from the formation of a low reference price as a consequence of the earlier 
price discounts. As the reference price summarizes past information which is relevant for 
future optimization, dynamic programming, which was introduced in section 2.3.1, is an 
appropriate technique for solving this problem. We thus rewrite equation (3.2.3) in terms of 
the Bellman equation: 

\/i(r1) = max {E [(p - c)D(p, r1, c1)] + 1E [Vi+1(etr1 + (1 - a)p)]}, 
pE[r.jj] 

(3.2.4) 

with Vr+1 = 0. Note that state variables r1 and decision variables p1 are related via 
equation (3.2.2). For the convenience of the reader, the notation used in this chapter is 
briefly summarized in table 3.1 at the beginning of this section. 

3.3. Results 

3.3.1. Loss-neutral customer behavior 

An important consequence of the reference price formation described above is that although 
frequent price discounts may be beneficial in the short run, they may be dangerous in the long 
run when consumers get used to these discounts and reference prices drop. The reduced price 
becomes anticipated and loses its effectiveness, whereas the non-promoted price becomes 
unanticipated and would be perceived as a loss. As in section 2.3, we are interested in a 
possible steady state. Convergence analysis leads to the following theorem: 

Theorem 3.1. If the dynamic program (3.2.4) admits a steady state, then for the linear 
demand function defined in equation (3.2.1) and the loss-neutral case ( /32 = ;33 ) it is given 
by: 

• (/31c- /3o)(l - a1) + ,82(1 - 1)c 
Px= 2/31(1-lq)+/32(1-1) . 

(3.3.1) 

Proof The optimal total expected discounted profit for an infinite time horizon is given by 
(compare (3.2.3)): 

(3.3.2) 
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46 CHAPTER 3. MODELS IN MARKETING LITERATURE 

where r 1 denotes the starting reference price in the current period. Substituting the transition 
function (3.2.2) as we did when proving theorem 2.6 and 2.9, is not sufficient here since 
rt+1 = a(rt) + (1 - a)pt still depends on the reference price rt. Thus we substitute Pt = p 
and express the reference price rt+1 in terms of the starting reference price r 1 and p: 

rt+1 = at(r1 - p) + p. (3.3.3) 

This yields 
0G 

V(ri) = L 'Yt [(p - c)E[D(p, at(r1 - p) + p)l] , (3.3.4) 
t=O 

which for the linear demand and loss-neutral case becomes 

00 

V(r1) = L 'Yt [(p- c)(/30 + /J1P- a 1/32(r1 - p))]. (3.3.5) 
t=O 

Differentiating V(ri) with respect to p and setting equal to 0 yields 

2/31 p + _§__(2p _ ri) + /Jo - c/31 _ ~ = O. 
1-'Y 1-a'Y 1-'Y 1-a'Y 

(3.3.6) 

Using the assumption that the reference price is in a steady state r we set r1 = r for all t. 
From equation (3.2.2) it is clear that r 1 = r = p. Since V ( r 1) is concave, solving equation 
(3.3.6) yields the steady state price (3.3.1) for the loss neutral case. • 

For non-differentiable demand functions and non-negative ordering costs the proof of the-
orem 3.1 needs to be adjusted to a variational approach used in (Popescu and Wu 2007, Proof 
of theorem I). For consistency we give a short sketch of the proof in the following: 

Theorem 3.2. If the dynamic program (3.2.4) admits a steady state, then for loss-neutral 
customer behavior ( /32 = /33) it is given by: 

8((p - c)E[D(p, p, c)]) = ( (p - c)(l - 'Y)) ( 8(E[D(p, r, c)] - E[D(p,p, c)]) I ) . 
8p 1 - O:,' 8(r - p) p=r 

(3.3.7) 

Proof The proof of (Popescu and Wu 2007, theorem I) is adjusted in such a way that the 
one-period expected profit IT(p, r) is given by IT(p, r) = 1r(p) + IT R(p, r) , where now 
1r(p) = (p - c)E[D(p, p, E )] denotes the expected profit in a market where consumers do not 
form reference effects and ITR(p, r) = (p - c)R(r - p, r) denotes the expected reference 
profit, with R(r-p, r) being the reference effect R(r-p, r) = E[D(p, r, c)]-E[D(p, p, c)]. 
Hence the value function under policy p( o) becomes 

V,,(r) = 1r(r-o)+(r-o-c)R(o, r)+'Y1r(r+ao)+'Y(r+ao-c)R(-o, r-(1-a)o)+'Y2V(r). 
(3.3.8) 
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Figure 3.3.: Optimal price and reference price path 

Subtracting V(r) from V0(r) yields 

½(r) - V(r) = 1r(r - o) - 1r(r) + 1 (1r(r + o:b) - 1r(r))+ 
+ (r -o - c)R(o.r) + ,(r + o:b - c)R(-b,r - (1- a)o) :S: 0. 

Dividing by o, and letting b go to zero, we rearrange terms to obtain 

(1- o:1 )1r'(r) ~ (r - c}(l - 1 ).X(r), 

47 

(3.3.9) 

(3.3.10) 

where .X(r) = Rx(O, r). The same argument for the feasible policy p(-b) yields the oppo-
site inequality. Combining those two inequalities, an interior steady state must solve 

(1 - o:1 )1r'(p) = (p- c)(l - 1 ).\(p). (3.3.11) 

which by substituting the above definitions for 1r(p) and .\(p) results in (3.3.7). • 

Popescu and Wu (2007) show (in theorem 2 and lemma 4) that if the system admits a 
steady state, the optimal price path converges monotonously (under certain assumptions) 
to a constant steady state which they only give for the case of zero ordering costs and we 
in the above theorem extended to the case of c ~ 0. Furthermore, Kopalle et al. ( 1996) 
and Popescu and Wu (2007) show for time invariant parameters that if the reference level is 

initially high, an optimizing firm should consistently price below this level, which has the 
effect of a skimming strategy. Similarly, a low initial reference level leads to the optimality 

of a penetration type strategy. A numerical example for /30 = 100, /31 = -20, /32 = /33 = 
-40, o = 0.5, 1 = 0.5 and c = 4 is given in figure 3.3, where prices and reference 
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48 CHAPTER 3. MODELS IN MARKETING LITERATURE 

prices are restricted to the interval Pt, rt E [4.2, 4.4] to ensure nonnegative demand for any 
combination of Pt and r1. 

Remark 3.3. Note that the numerical example in figure 3.3 was obtained for a finite planning 
horizon T = 40 . When considering a finite planning horizon, it is observed that prices are 
lowered towards the end of the horizon in order to benefit from reference effects. Keeping 
consumers' price expectations high is not reasonable when the end of a product's life cycle 
is reached and the remaining future selling periods do not suffice to outweigh the loss of 
profit a price promotion would induce in the promotion period. In this chapter we mainly 
focus on a steady state analysis (according to Popescu and Wu (2007)) and use a planning 
horizon T = 40 for numerical calculations, but only plot the results for a period of T = 25 
in order to eliminate the transient behavior at the end of the horizon and thus simulate an 
infinite horizon behavior. 

In the following we give some upper and lower bounds for the optimal steady state price 
p~ and a sensitivity analysis in its parameters a, 'Y and /32 • 

Theorem 3.3. The optimal steady state price p~ is decreasing in the memory parameter a, 
increasing in the discount factor 'Y and decreasing in the reference effect l/32 1. Furthermore, 
it satisfies 

(3.3. 12) 

where p' denotes the myopic, one period profit optimizing price ( 'Y = 0) and Rx, denotes 
the optimal price in the absence of reference price ( /32 = 0 ). 

Proof Since by definition 3.1 prices p are assumed to be greater than costs c and expected 
demand is assumed to be non-negative, it is clear that /30 + /31 c ~ 0. We furthermore know 
that the expected demand is increasing in reference price ( /32 ::; 0 ) and the discount factor 
'Y is bounded by [0, 1). By differentiating p~ with respect to a, 'Y and /32 , we thus obtain 

8p~ "(/32(1 - 'Y)(/30 + /31c) < 0 (3.3.13) 
8a (2/31(1 - a"()+ /32(1 - 'Y))2 ' 

8p~ -/32(1 - a)(/30 + /31c) 0 (3.3.14) 
O"f (2/31(1-a"()+/32(1-"())2 > ' 

8p~ (1 - "()(l - a'Y)(/30 + /31c) 
(3.3.15) 

8/32 (2/31(1- a"()+ /32(1- 'Y))2 > O, 

which shows that the optimal steady state price p~ is decreasing in a, increasing in 'Y and 
decreasing in l/321. Since p~ increases in 'Y, the first part of equation (3.3.12), p* S p~, 
is clearly satisfied. Analogously, p";,,_, S Rx, holds because p~ is decreasing in the reference 

effect l/321. D 

Remark 3.4. Note that Rx, equals the optimal steady state price given in equation (2.3.22) 
of section 2.3.3. 
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Figure 3.4.: Optimal and myopic pricing prices 
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Remark 3.5. We observe that p* s p* from the above theorem states that the prices charged 
by a myopic firm are oblivious of their eroding effect on future demand, hence future profits, 
and thus are lesser than or equal to the optimal price. By charging higher prices, current 
profits are traded off for future long-term profitability from higher reference prices. Further-
more, p* S rx shows that the optimal price in the absence of a reference price is always 
greater than or equal to the optimal price obtained from the model including reference ef-
fects, respectively. This means that in the Jong run, strategic firms should charge lower prices 
when consumers form reference effects, than when they do not. 

Figure 3.4 shows for our base scenario (!30 = 100. 31 = -20, /32 = /33 = -40. o: = 

0.5, -y = 0.5 and c = 4) how the optimal prices p; and the myopic prices p; evolute over 
time until they reach their steady states p~ = 4.:3 and p~ = 4.25. Figure 3.5 numerically 
underlays the results of theorem 3.3 and shows how the optimal steady state prices p~ vary 
with changes in the input parameters /32 , -y and a. Furthermore, note that the optimal 
steady state price in absence of reference price is given by rx = 4.5. 

We now extend the above results to the Joss-averse case ( /32 < {33 ) and give the reader an 
idea about what happens in the loss-seeking case ( /32 > /33 ). 

3.3.2. Loss-averse and loss-seeking customer behavior 

This section investigates the transient and long term behavior of the optimal dynamic pricing 
policy under Joss-averse customer behavior. 

Theorem 3.4. All optimal price paths p; and reference price paths r; solving (3.2.4) for 
the loss-averse case /32 < /33 converge monotonically to a steady state p~ ( r1), depending 
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/>,.=f,3, a= 0.5, 1 = 0.5: 

4.25 4.3 4.38 4.5 

/>,.=f,3 = -40, a= 0.5: 

4.25 4.28 4.33 4.5 

/>,.=/% = -40, 1 = 0.5: 

4.25 4.29 4.314.33 

Figure 3.5.: Steady state prices under various parameters 

on the initial reference price r1 : 

{

p* _ (/J1c-/Jo)(l-01)+/J,2(l-1)c 
P - 2/J1(l-01)+/J2(l-1) 

p* (r ) = p* = (/J,c-/Jn)(l-01)+/J:i(l---,)c 
oo 1 s 2/31(1-01)+/J:i(l-1) 

r1 

if r1 SP; 
if r1 2 p; 
else, 

price 

price 

price 

(3.3.16) 

where p; denotes a penetration type and p; denotes a skimming type steady state solution. 

For a proof of theorem 3.4 we refer the reader to (Popescu and Wu 2007, theorem 4 ). 

Remark 3.6. From equation (3.3.16) it becomes clear that in the loss-averse case there ex-
ists more than one steady state, depending on the initial reference price r 1 . If initial price 
expectations are lower than p;, the optimal pricing strategy initially starts with a low price 
and monotonously increases prices until the steady state p; is reached. If initial price ex-
pectations are higher than p; , the optimal pricing strategy initially starts with a high price 
and monotonously decreases prices until the steady state p; is reached. For initial price ex-
pectations lying between the two possible steady states p; and p; , a constant pricing policy 
of the customer's initial price expectation r 1 is optimal. 

Figure 3.6 gives a numerical example of optimal price paths p; over time for different 
starting reference prices r 1 , where /30 = 100, (31 = -20, /32 = -50, /33 = -30, a = 
0.5, 1 = 0.5 and c = 4 . An intuitive explanation of why in the loss-averse case there exists 
more than one steady state, depending on the initial reference price r 1 , is provided in figure 
3.7. The figure shows that for initial reference prices p; S r 1 S p; the decision variable 
p*(ri) equals the state variable r 1 and thus the steady state is already reached. Letting 
r 1 2 p; or r 1 s p;, the optimal prices p; and reference prices r; converge monotonously 
over time until they reach the steady state p; or p;, respectively. 

If buyers are loss seeking ( (32 > (33 ) and thus respond more to discounts than to sur-
charges, then problem (3.2.4) admits no steady state and the optimal pricing policy cycles 
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Figure 3.8.: Optimal price path (loss-seeking) 

(see figure 3.8). This type of asymmetry is inconsistent with prospect theory, but has found 
some empirical validation in the marketing literature ( e.g. Greenleaf ( 1995) and Slonim and 
Garbarino (2002)). 
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4. Integrated Model with Reference 
Price Effects 

4.1. Introduction 

In the previous chapters we gave the reader a review of the state-of-the-art methodological 
literature and found that it divides into two rather distinct streams: The operations oriented 
stream described in chapter 2 and the marketing oriented stream described in chapter 3. 

Operations management oriented work, introduced in chapter 2, mainly deals with de-
termining optimal production decisions and thus usually describes a firm's possible cost 
structure very well: costs are assumed to be non-stationary, meaning that they can vary over 
time and fixed costs can be in included in the model. The limitation of this model is that it 
clearly relies on rather simplistic demand assumptions. Demand is modeled as a function 
of the current price only, not taking into account past prices, which clearly also influence 
customers' buying decisions. 

The strength of the marketing models, introduced in chapter 3, is its rich demand model, 
which accounts for intertemporal demand correlations by incorporating both current price 
and the firm's pricing history in the model. Yet, it has serious limitations as it uses a very 
simplistic cost structure which does not account for supply chain management interactions 
(e.g. stationary variable costs). But what is even more restricting, is that marketing takes de-
mand fulfillment for granted. Thus, although the demand function is defined stochastically 
(see definition 3.1 ), the problem, by maximizing expected profits, diminishes to a determin-
istic setting. In conclusion, both prevalent research streams consider only a partial picture of 
the relevant system. 

This work is devoted to combining the two above described literature streams: we want 
to use the rich cost models commonly used in operations research and combine them with 
demand models, which account for intertemporal demand correlation and have been mainly 
applied by marketing so far. 

4.2. Model formulation 

When using mathematics to solve real world problems our main aim is to obtain a mathemat-
ical model that describes or represents the real situation as well as possible. The formulation 
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54 CHAPTER 4. INTEGRATED MODEL WITH REFERENCE PRICE EFFECTS 

of a mathematical model is a challenging task: first the scientist needs to understand the 
problem and then has to identify generalizable principles and processes such that a complex 
system can be simplified/reduced to a tractable level that makes the essential structure of the 
system clear. Variables have to be defined and relationships between these variables have 
to be established. The key to a good model lies in which and how simplifications are intro-
duced; it is very important to understand what aspects of the system the model is intended 
to describe, and at which the model's limitations are as a result of the simplification. Hence, 
we now turn to the formulation of an integrated inventory control and pricing model, com-
bining the strength and benefiting from the dynamics of each of the two models introduced 
in chapter 2 and 3. This new model should be much better capable of representing the real 
world situation. 

We consider a monopolistic retailer or manufacturer who maintains an inventory of a 
particular product and prior to facing random demand in each period t of a finite horizon 
T jointly determines a selling price and a stocking quantity. The integrated model with 
reference price effects is a combination of the two models introduced in chapter 2 and chapter 
3. Thus, we only briefly describe the variables used and refer the reader to the two previous 
chapters for further detail. Demand perturbations ct in different periods is assumed to be 
statistically independent and identically distributed according to general stochastic demand 
functions. We furthermore assume that consumers have a memory and demand not only 
depends on the current selling price Pt, but also on a reference level r1 resulting from 
the pricing history (see chapter 3). The inventory level Xt is reviewed at regular intervals 
(periodic review model), and an appropriate Yt - Xt is ordered and a per unit selling price Pt 
charged after each review at the beginning of a new period t. As in the previous chapters, 
we assume that all input variables are stationary and thus do not change over time. The 
ordering costs include a per unit variable cost c 2': 0 and a fixed setup cost k 2': 0 which 
is incurred only if an order is placed ( Yt > Xt ). Again, as in chapter 2, orders placed are 
essentially received immediately (received in time to meet demand that arises in that period). 
Costs are expressed in beginning-of-period cash units, cash flows occurring in subsequent 
time periods are discounted by one period discount factor 'YE (0, 1). Each unit of positive 
left over stock at the end of each period incurs holding costs h 2': 0 . If demand exceeds the 
inventory on hand, per unit backlogging (penalty) costs b are charged and demand is filled 
when the additional inventory becomes available. To insure that it is not optimal to never 
order anything and merely accumulate backlog penalty costs, we assume that b > (l - 'Y )c. 
After the last period, a final order is placed to fulfill backlogged demand. Furthermore, 
we for simplicity of the model assume that leftover units at the end of the horizon can be 
salvaged at the original ordering costs ( v = c in chapter 2). For the convenience of the 
reader the notation is summarized in table 4.1. 

In the following, we model demand additively as in chapter 3 such that it is decreasing in 
price Pt . Furthermore, consumers perceive a gain and thus demand increases, if the current 
price is lower than the reference price (Pt < Tt) and consumers perceive a loss and demand 
decreases, if the current price is higher than the reference price (Pt > Tt ). 
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4.2. MODEL FORMULATION 55 

Variable Characteristics Description 

T T 2 1 length of the planning horizon 

t T2t2l time period 

D(pt, Tt, Et) Di 2 0 unit(s) demanded in period t (random variable) 

F(·) 1 2 F(u) 2 0 cdf of demand perturbation Et 

f (·) F(y) = fx J(u)du pdf of demand perturbation Et 

Pt P 2 Pt 2 P per unit sales price in period t 
Tt T 2°: Tt 2°: J::. per unit reference price in period t 

Yt Yt 2 0 inventory level after ordering in period t 
Xt Xt ~ Yt inventory level before ordering 

C p2c20 per unit production/ ordering cost 

k k 2 O fixed ordering (setup) cost 

' 1 > , > 0 discount factor 

Q l>o20 memory parameter 

b b > (l - 1 )c per unit backlog penalty costs 

h h 2 O per unit holding costs 

Vt(Xt, rt) expected optimal profit-to-go function 

Table 4.1.: Notation: Integrated model 

Definition 4.1. The stochastic demand is modeled by the piecewise linear function 

D(p1,rt,Et) = /3o + /31 ·Pt+ /32 - max{pt - rt,O} + (33 · min{Pt - r1,0} + Ei. (4.2.1) 

where r1 denotes the reference pricing in period t, Et is iid. according to an arbitrary 
probability function with mean E[Et] = O, where / ( ·) denotes its density function and 
F( ·) its distribution function. Furthermore /30 2 0, /31 < 0 and /32• /33 ~ O ensure that 
demand is decreasing in price and non-decreasing in reference price. Moreover we assume 
that the expected demand E[D(p1 , ft, Et)] is non-negative. 

Reference price rt is formed by exponential smoothing as in chapter 3. For the conve-
nience of the reader we again give the definition here: 

Definition 4.2. Let Pt denote the observed selling price and rt the reference price for a 
specific brand in period t, then for the memory parameter O ~ o < 1 a reference price 
updating mechanism is given by r1+1 =Oft+ (1 - o)pt. 
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56 CHAPTER 4. INTEGRATED MODEL WITH REFERENCE PRICE EFFECTS 

As in the previous chapters the objective is to maximize expected profit over the entire 
planning horizon T. The maximum total expected discounted profit v(x1, r 1), when the 
initial inventory level at the beginning of the planning horizon is given by x 1 and the initial 
reference price is given by r 1 , is given as follows: 

T 

v(x1, r1) = L ,t-1 max (PtE [D(Pt, rt, Et)] - c(yt - x1) - ko(yt - x1) - G(yt, Pt, rt)), 
t=l Yt2Xt,Pt 

(4.2.2) 
whereby cash flows occurring in subsequent time periods are again discounted by a one-
period discount factor I E (0, 1) and J( u) = 1, if u > 0 and o(u) = 0, otherwise. 
Furthermore Gt(Yt, Pt, rt) denotes the expected holding and backlogging cost: 

l y,-E[D(p,,r,,<,)] 

G(yt, Pt, rt) = h -oc (Yt - E[D(Pt, Tt, Et)] - u)f (u)du+ 

+ b1-oc (E[D(Pt, Tt, Et)]+ u - Yt)f(u)du. 
y,-E[D(p,,r,,<t)] 

(4.2.3) 

Similar to section 2.3, the decision, which price to charge in each period and how much 
to order, is made in stages. Again the desire for high present profits, obtained by charging 
relatively low prices, must be balanced against the undesirability of low future profits. As 
described in section 2.3.1 this tradeoff is very well captured by the technique of dynamic 
programming. 

4.3. Dynamic program 

We now reformulate problem (4.2.2) in terms of dynamic programming using backward 
recursion as in section 2.3.1. The corresponding Bellman equation can be written as: 

with the terminal value 
(4.3.3) 

where G(Yt, Pt, r1) is defined as in equation (4.2.3). 

The system (4.3.1) is described in the states Xt, the inventory level before ordering, and 
Tt, the reference price level and the actions (decisions) Yt, the inventory level after ordering, 
and Pt , the per unit selling price. Note that the admissible actions are restricted to Yt E 

[x1, oo), since only non-negative orders are permitted and Pt E ~,p], such that expected 
demand is non-negative and a monopolistic framework is created. 
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4.3. DYNAMIC PROGRAM 

Decisions: Yt+l,Pt+t = 
argmax Jt+l (Xt+l, Yt+I, Pt+I, rt+1) 

States 

Y,+1~:t1+1, 
Pt-t-1 

Stage t + 1 

Transition States 

Xt+I, rt+i x,=Yt+1-Dt+1(Pt+t,r1+1,£t+1) x,, r, 
r,=ar,+1 + (1 - a)P1+1 

Return: 
max Jt+1(Xt+I, Yt+t, Pt+I, rt+t) 

:V1+1?z1+1, 
Pi+t 

Decisions: Yt, Pt = 
argmax J,(xt,Yt,Pt, r,) 

y,?_x,, 
p, 

Stage t 

Transition 

x,_1=y,-D,(p,, r,,£,) 

r,_1=ar, + (1-a)p, 

Return: 
max J,(x,, Yt, Pt, r1) 
u,,?:z., 

p, 

Figure 4.1.: System dynamics 

57 

States 

Xt-1,rt-1 

For the convenience of the reader, the stages, states and decisions are summarized again 
in table 4.2. 

I Characteristic I Variable I Description 

Stages t time periods 

States x, inventory before ordering in stage t 
r, reference price in stage t 

Decisions Yt = Y1(x1, r1) inventory after ordering in stage t 
Pt = Pt(Xt, r1) per unit selling price in stage t 

Table 4.2.: Characteristics of the dynamic program 

State and decision variables are related via the transition functions 

rt+1 = ar1 + (1 - a)Pt-

(4.3.4) 

(4.3.5) 

Note that equation (4.3.4) gives the gross quantity of stock at the beginning of period t + 1, 
which equals the inventory on hand after ordering at the beginning of period t less the total 
quantity actually sold during that period ( we refer the reader to figure 2.2 for a graphical 
illustration). Equation (4.3.5) gives the consumers' reference price in period t + 1 which is 
formed from past prices by exponential smoothing with a memory parameter a (see figure 
3.2). A brief idea of the system dynamics is given in figure 4.1. 

In the following we focus on the special case of zero fixed ordering costs ( k = 0 like in 
section 2.3.2 and 2.3.3). We then transform the above dynamic program in such a way that 
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58 CHAPTER 4. INTEGRATED MODEL WITH REFERENCE PRICE EFFECTS 

we subtract the variable ordering costs ext from the value function Vt(Xt, Tt). Hence, by 
letting ½(x1, r1) = Vt(Xt, Tt) - cx1 equation (4.3.2) becomes 

J1(Yt,Pt, Tt) = PtE[D(Pt, Tt, Et)] - CYt - G(yt, Pt, Tt)+ 
+1E[½+1(Yt - D(p1,r1,Et),o:r1 + (1- o:)pt) +c(yt - D(Pt,Tt,Et))) = 
= PtE[D(Pt, Tt, Et)] - cyt - G(yt, Pt, Tt)+ 
+1E[½+1(yt - D(Pt,Tt,Et),o:r1 + (1- o:)pt)l +1c(y1 - E[D(Pt,Tt,Et)]), 

(4.3.6) 

and hence by omitting redundant subscripts equations (4.3. l) to (4.3.3) can be written as 

½(x,r) = max{J1(y,p,r)}, 
y?_x,p 

lt(Y,P, r) = (p - 1c)E[D(p, r, E)] - c(l - 'Y)Y - G(y,p, r)+ 
+ 1E [½+1 (y - D(p, r, E), o:r + (1 - o:)p)], 

Vn1(x,r) = 0, 

where again G(y, p, r) is defined as in equation (4.2.3). 

(4.3.7) 

(4.3.8) 

(4.3.9) 

Remark 4.1. Solving the transformed model (4.3.7) to (4.3.9) yields great computational 
efficiency, since lt(Y,P, r) now depends on only three variables instead of four in equation 
(4.3.1). Furthermore, as lt(Y, p, r) no longer depends on the inventory level before ordering 
x, joint concavity in x follows trivially for the analytical proof of a base-stock policy and 
does not have to be stated explicitly as we did in theorem 2.5 and 2.7. 
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5. Analytical Analysis of the 
Integrated Model 

The system of the integrated model consists of two state and two decision variables (see table 
4.2) and is thus much more complex than the one discussed in chapter 2. This complicates 
an analytical analysis significantly and we can only prove structural results under restrictive 
assumptions. We start off by analyzing the single-period problem (newsvendor model) and 
then extend some of the obtained results to the two-period case. However, even in this 
simplest version of the model, we only consider loss neutral customer behavior ( /32 = /33 ) 

to ensure analytical tractability. Thus the demand model (4.2.1) reduces to 

(5.0.1) 

Furthermore, for section 5.2 we assume that the random variable £, which follows an arbi-
trary probability function f (·),is continuous and differentiable in order to avoid additional 
complexity of the analytical analysis for the two period model. At the end of this chapter, for 
the multi-period case we give an extension of the proof of Federgruen and Heching ( 1999) 
and show the optimality of a base-stock policy in the integrated model. After all, those re-
sults are not of extreme practical relevance, since several assumptions on the demand and 
revenues have to be made, which many commonly used demand functions including the lin-
ear one, defined in equation (5.0.1 ), do not fulfill. However, we will provide an extensive 
numerical study in chapter 6, where we show that in the cases analyzed the obtained results 
still hold under much less restrictive assumptions. 

5.1. One-period model 

We will start our analysis of equation (4.3.1) with the last period. The optimality of a base-
stock-list-price policy follows directly from Federgruen and Heching (1999), since the refer-
ence price r is only an additional parameter for the one period case. In this section however, 
we will provide an alternative proof and give implicit solutions for the optimal price and 
inventory level with respect to reference price, which will be used to extend the base-stock-
list-price result to a two-period setting in section 5.2. To simplify the notation we in the 
following write, where not stated differently, D for D(p. r, £) and E[D] for E[D(p, r, c)]. 
Furthermore E[Dy], E[Dp], E[Dr] denote the derivatives of expected demand E[D) with 
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60 CHAPTER 5. ANALYTICAL ANALYSIS OF THE INTEGRATED MODEL 

respect to y, p, r . According to chapter 4, the expected one-period profit is given by 

E[Il(x, y,p, r, t:)] = pE[D] - c(y - x) - G(y,p, r), (5.1.1) 

with expected holding and backlogging costs 

j y-E[D] loo 
G(y,p,r)=h (y-E[D]-u)J(u)du+b (E[D]+u-y)J(u)du. (5.1.2) 

-oo ~~~ 

Lemma 5.1. The expected profit E[Il(x, y,p, r, t:)] is jointly concave and submodular (see 
definition 2.3) in y and p. Funhermore, E[TT(x, y,p, r, t:)] is strictly concave in p. 

Proof By applying Leibniz's integration rule we obtain the following partial derivatives: 

oE[TT(xa~,p,r,t:)] = (b- c) - (h + b)F(y - E[D]), 

a2E[Il(~;,P, r, t:)] = -(h + b)J(y - E[D]), 

oE[Il(xa~,p,r,t:)] = E[D] + (p-b)E[Dp] + (h + b)E[Dp]F(y- E[D]), 

82E[Il(~;,P, r,t:)] = 2E[Dp] + (p- b)E[Dpp] - (h + b)E[Dp]2f(y - E[D])+ 

+ (h + b)E[Dpp]F(y - E[D]), 

a2 E[Il~;it r, t:)] = (h + b)E[Dp]J(y - E[D]). 

(5.1.3) 

(5.1.4) 

(5.1.5) 

(5.1.6) 

(5.1.7) 

From equation (4 2 I) it is easy to see that 82 E[II(x,y,p,r,,)) < 0 and 82 E[II(x,y,p,r,,)) < 0 .. , 8y2 - 8p2 
and hence the expected profit E[IT(x,y,p,r,t:)] is concave in y and strictly concave in 
p. Furthermore, E[TT(x,y,p,r,t:)] is submodular in y and p by definition 2.3, since 
82 EIIIJ~p,r,,)) ::; 0. Moreover the determinant of the Hesse matrix is 

82 E[IT(x, y, p, r, t:)] 82 E[IT(x, y, p, r, t:)] 82 E[Il(x, y, p, r, t:)] 
ay2 ap2 apay 

= -(h + b)f(y - E[D]) · (2E[Dp] + (p - b)E[Dpp] + (h + b)E[Dpp]F(y - E[D])) > 0. 
(5.1.8) 

Hence, the Hesse matrix is positive definite, which ensures that E[Il(x, y, p, r, t:)] is jointly 
concave in p and y . • 

For later investigations we also need some structural properties of the expected holding 
and backlogging cost function G(y, p, r), which we provide in the following. 
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5.1. ONE-PERIOD MODEL 61 

Lemma 5.2. The expected holding and backlogging costs G(y,p,r) defined in equation 
(5.1.2) are convex in y but not necessarily in p. Furthennore, G(y. p, r) is supennodular 
in y and p. 

Proof. The partial derivatives of G(y. p, r) with respect to y and p are given by: 

BG(y,p, r, t) = -b + (h + b)F(y - E[D]). 
8y 

a2G(~~~, r. t) = (h + b)J(y - E[D]) 2'. <L 

BG(y8;· r, t) = bE[Dp] - (h + b)E[Dp]F(y - E[D]), 

(5.1.9) 

(5.1. IO) 

(5.1.11) 

82G(~~~, r. t:) = bE[Dpp] + (h + b)E[Dp] 2 f(y - E[D]) - (h + b)E[Dpp]F(y - E[D]). 

(5.1.12) 

Equation (4.2.1) ensures that G(y, p. r) is convex in y. Note that G(y, p,r) is not nec-
essarily convex in p. Furthermore, 

82G~:~ r. t) = -(h + b)E[Dp]f(y - E[D]) 2'. IL 

which ensures the supermodularity in p and y. 

(5.1.13) 

• 

The above two lemmas lead to an optimal pricing and ordering policy (compare section 
2.2). 

Theorem 5.1 (Base-stock-list-price policy). For the linear demand function defined in equa-
tion (5.0.1) and the system (4.3.1) to (4.3.3) and b > ( 1 - 1 )c, the optimal policy for the 
one-period case is a base-stock-list-price policy, where y*(x. r) and p*(x. r) are given by 

*( . ) { S*(P*(r). r) .. x < S*(P*(r). r) y x.r = 
x . else 

(5.1.14) 

p*(x.r) = { P*(r.) .x < S*(P*(r)),r) 
· p*(x. r) . else (5.1.15) 

where the base-stock level s• ( P* ( r), r) is given by 

(5.1.16) 

and the list-price P* ( r) is the unique solution to 

E[D(P*(r),u)] + (P*(r)- c)E[Dp(P*(r),r,c)] = 0. (5.1.17) 
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62 CHAPTER 5. ANALYTICAL ANALYSIS OF THE INTEGRATED MODEL 

Furthermore, the discounted price p*(x, r) is given implicitly by 

E[D(p*(x, r), r, c)] + (p*(x, r) - "(C - b)E[Dp(p*(x, r ), r, c)]+ 
+(h + b)E[Dp(p*(x, r), r, c)]F(x - E[D(p*(x, r), r, t:)]) = 0. (5.l.18) 

Proof The expected total profit J(x, y, p, r) from equation (4.3.2) can be expressed in terms 
of the expected one-period profit E[II(x, y,p, r, E)] such that 

J(x,y,p,r) = E[II(x,y,p,r,t:)] +1c(y- E[D(p,r,c)]). (5.1.19) 

Since y - E[D(p,r,t:)] is trivially jointly concave in y and p, it follows directly from 
lemma 5.1 that the expected total profit J(x, y, p, r) is jointly concave in y and p. Thus 
the optimization problem over the two variables y and p can be reduced to an optimization 
problem over the single variable y as a function of p with subsequent substitution of the 
result back into J ( x, y, p, r) , which is thereafter solved for p. We in the following show 
the optimality of a base-stock policy and provide an optimal order-up-to level S*(r) as a 
function of price p and then continue with the price optimization. By setting equation 

BJ(x, Y,P, r) = (b - (l - 1)c) - (h + b)F(y - E[D]) 
8y 

equal to zero we obtain the solution to maxy J(x, y, p, r) which is denoted by 

_ 1 (b - (1 - 1)c) y(x,r,p)=F h+b +E[D(p,r,t:)]. 

(5.1.20) 

(5.1.21) 

Since y(x, r,p) is not necessarily greater or equal to x, but the model only allows for non-
negative orders (y 2 x), (5.l.21) gives the optimal solution to ma.xy2xJ(x,y,p,r) only 
in the case y(x, r, p) 2 x. ln the case of y(x, r, p) < x the optimal policy is not to order 
( argmaxy?.xJ(x, y, p, r) = x ), since J(x, y, p, r) is concave in y. Thus a base-stock policy 
(compare definition 2.1) with order-up-to-level 

• _ 1 (b-(l-1)c) S (p,r)=F h+b +E[D(p,r,t:)] (5.1.22) 

is optimal. 

For proving equations (5.1. I 7) and (5.1.18) we now need to distinguish between the two 
cases x < S*(p, r) and x 2 S*(p, r). 

Let X < S*(p, r). For notational convenience we denote y0 := p-l e-l1;b'J)C), which 

yields S*(p, r) = y0 + E[D(p, r, c)]. In order to find the optimal list-price p we substitute 
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5.1. ONE-PERIOD MODEL 63 

y = S* (p, r) into J (x, y, p, r) which by using equation (5.1.1) and equation (5.1. I 9) gives 

J(x, S*(p, r),p, r,) = pE[D(p, r, t)] - c((l - 1 )y0 + E[D(p, r, t)] - x)-
y') X 

- h Lx (y° - u)f(u)du - b Iv,, (u - y0 )J(u)du. 
(5.1.23) 

By differentiating (5.1.23) with respect to p we obtain 

oJ(x,S*(p,r),p,r) = E[D( _ )] ( _ )E[D ( )] op p. r, E + p C p P, r, E , (5.1.24) 

Since J(x, y, p, r) is jointly concave in p and y, equation (5.1.17) follows directly by 
setting equation (5.1.24) equal to zero. 

Let x > S*(p, r) which yields y*(x, r, p) = x. Then substituting y = x gives 

J(x,x,p, r) = (p - ,c)E[D(p, u)] + ,cx-

j x-EID(p.r.,)J 

- h -x (x - E[D(p, u)] - u)f(u)du- (5.1.25) 

- b1x (E[D(p, u)) + u - x)f(u)du. 
x-EjD(p.r.,)] 

Differentiation with respect to p results in 

oJ(x.x.p.r) I ll ( l I ll op . = E D(p, r. E + p - ,c - b E Dp(P, r, E + 
(5.1.26) 

+ (h + b)E[Dp(p. r, t))F(x - E[D(p. r, t)]). 

Since J(x, y. p, r) is jointly concave in p and y equation (5.1.18) results from setting equa-
tion (5.1.26) equal to zero. 

In order to prove the optimality of a list-price policy, we need to show that p*(x. r) is 
unique and non-increasing in x. By equation (5.1.19) and demand D(p, r, E) being concave 
in p it follows by lemma 5.1 that J(x, y, p, r) is strictly concave in p and thus the optimal 
price p*(x.r) is unique. Furthennore, J(x,y.p.r) issubmodularin y and p. It follows 
from theorem 2.8.1 in Topkis (I 998) that the optimal price p* (y, r) is non-increasing in y 
and hence in x. Substituting the optimal list price p = P*(r) in equation (5.1.22) verifies 
equation (5.1.16). • 

Remark 5.1. By the assumption b > (l - 1 )c in theorem 5.1 we exclude the trivial solution 
of not placing any orders and accumulating backlogging costs until the end of the planning 

horizon T (compare section 2.2.1 ). Thus F-1 ( b-~;b-y)c) is well defined and bounded by 

[O, 1). 

Remark 5.2. Note that lemma 5.1 and 5.2 as well as theorem 5.1 also hold for more general 
demand functions D(p, r, E), which are decreasing in price p, non-decreasing in reference 
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p 
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P'(r) -

i P' (!.) 
0 

Inventory before ordering x 

------------r >~.,..---..-<"-
0 - !. Reference price r 

Figure 5.1.: List-price policy in reference price 

price r and concave in both p and r. The demand function defined in (4.2.1) of course 
fulfills these assumptions. 

Figure 5.1 and figure 5.2 give a graphical description of the policy, which we showed to be 
optimal in the above theorem. They are an extension to figure 2.1 and figure 2. 7 in chapter 
2, with the difference that now the optimal decisions depend on two states: the inventory 
before ordering x and the reference price r. Note that the dependency of the optimal price 
p* and optimal inventory level after ordering y• on reference price r adds an additional 
dimension to the solution space. It becomes clear that in contrast to chapter 2, the base-stock 
level S*(r) and the optimal price p*(x, r) depend on the consumers' price expectation r. 
Looking at figures 5.1 and 5.2, the question arises whether new structural properties of the 
optimal policies in the reference price r can be formulated. This leads to the following 
theorem, where for the one period case and loss-neutral customer behavior we show that 
both the optimal pricing and ordering policy are non-decreasing in the reference price r. 

To prove theorem 5.2 we introduce the theory of implicit differentiation (Heuser 1981, 
theorem 170.1) in the lemma below. 

Lemma 5.3 (Implicit differentiation). Let G c ]Rn and H C ]Rm nonempty open sets 
and E E G and 1) E H. Furthennore let F : G x H ---> ]Rm be a continuous function 
with F(E,TJ) = 0, F'(E,TJ) is well defined and !~(E,TJ) invenible. Ifthereexistsa fl-
neighborhood U c G of E, an E -neighborhood V C H of 1) and a continuous junction 
f : U ---> V with f(E) = 1) and F(x, J(x)) = 0 for all x E U then f is differentiable at 
E and f'(E) is given by 

(5.1.27) 
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Figure 5.2.: Base-stock policy in reference price 

65 

Theorem 5.2. For the linear demand function (5.0.1) and the system defined in (4.3.1) to 
(4.3.3), both the optimal base-stock Level S*(p*, r) and the optimal pricing policy p*(x. r) 
are non-decreasing in the reference price r. 

Proof Since for the linear demand function ( 4.2.1) the second and mixed partial derivatives 
of demand D(p, r, €) are zero ( Dpp(p. r, €) = 0, D,,(p. r, €) = 0, Dpr(p, r, €) = 0 ), we by 
lemma 5.3 obtain the partial derivative of the optimal price p*(x, r): 

op*(x,r) -{ -;l/;!1 .:r < S*(P*(r),r) 
OT - _ E[D,f-(h+b)E[D1,JE[D,JF'(x-E[Dl) > S*(P*( ) ) 

2E[D1,j-(h+b)E[D,,J' F'(x-E[DI) · X T , T 
(5.1.28) 

where we use the short notation D = D(p*(x, r), r. €), Dp = Dp(p*(x, r), r, €) and D, = 
D,(p*(x, r), r, €). Since Dv(P- r. €) < 0 and D,(p. r, €) 2". 0 for all p and r, it is easy to 
see that equation (5.1.28) is always greater than zero and thus the optimal price p*(x. r) is 
non-decreasing in the reference price r. From equations (5.1.16) and (5.1.28) it follows that 
the base-stock S* (p*, r) is also non-decreasing in r : 

as· ( . ) E[ (P*( ) )] E[D,(P*(r). u)] [ ( *( 1 8r p , r = - DP r . r, f 2E[Dp(P•(r). u)] +ED, P r), T.E) 

E[D,(P*(r). r, ,)] 
= --'----'--'---~ > 0. 2 -

(5.1.29) 

• 
Remark 5.3. Theorem 5.2 shows that for loss-neutral customer behavior ( /32 = /33 ), the opti-
mal price p*(x, r) as well as the base-stock level S*(r) are non-decreasing in the reference 
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Figure 5.3.: List-price in reference price 

price r. As illustrated in figure 5.3, one can see that this result can be extended to loss-
averse customer behavior for the optimal price p*(x, r). However, the base-stock S*(r) is 
only increasing in reference price in the loss neutral case. This is not true in the case of loss-
aversion, where the base-stock S*(r) is not monotonous in reference price (see figure 5.4). 
While in the loss-neutral case the list-price P* ( r) is a smooth (continuous) function in r , 
since expected demand is a smooth function in p and r due to (32 = (33 , in the loss-averse 
case expected demand is a kinked function in p and r (with two different slopes depending 
on p :S r or p > r, respectively) and therefore the list-price P*(r) is a kinked function 
in r. Note that this relation results in a list-price P* ( r) that is threefold: P* ( r) < r, 
P*(r) = r and P*(r) > r. It is clear that for all reference prices r with P*(r) = r the 
corresponding base-stock level S*(r, r) from equation (5.1.22) is decreasing, since 

as· 
Tr(r, r) = f31 < 0 (5.1.30) 

and thus an optimal inventory policy is no longer monotonous in reference price r for loss-
averse customer behavior (see figure 5.4). 

From the above remark it becomes clear that loss-averse customer behavior already adds 
considerable complexity to the model in the one-period case and thus significant additional 
dynamics in the multi-period setting. In this thesis we mainly concentrate on the loss neutral 
case. 
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-loss-neutral case (p2=p3) 

---loss-averse case (p2<p3) 

P•(r)=r 

Reference price r 

Figure 5.4.: Base-stock in reference price 

5.2. Two-period model 

We are now in the position to add one period to the planning horizon and study the two period 
case. This is not only a theoretical exercise but also has significant practical relevance on its 
own: due to shortening life-cycles an increasing fraction of a retailer's assortment consists 
of products where there is only one reorder possibility. Due to long production lead times 
there is as a consequence only one possibility for reordering after the initial order is placed, 
which motivates the application of a two-time-period model. 

The dynamic program defined in (4.3.1) to (4.3.3) will be used in this section for t = l. 2. 
Corresponding to (4.3.4) and (4.3.5) the transition functions are given by 

X2 = x2(Y1-P1,r1.ci) = Y1 - D1(P1,r1.c1}, 

r2 = r2(P1,ri) = ar1 + (1 - a)p1. 

(5.2.1) 

(5.2.2) 

where the subscript ' 1 ' denotes the first time period and ' 2 ' the second time period. Thus 
Vi(x2, r2) is rewritten as Vi(x2(Y1 • P1. r1, €1 ), r2(P1, ri)). 

In Federgruen and Heching (1999), joint concavity of the value function J1(x1.y1.p1 ) 

is used to show the optimality of a base-stock policy. However, this approach does not 
work in the case of reference prices. In this case, V2(x2(Y1-P1, r1. c1). r2(P1, ri)) is not 
necessarily concave in p1 and therefore we cannot conclude with further investigations that 
11 ( x 1, Y1. pi) is jointly concave in Y1 and p1 . 

Lemma 5.4. For the linear demand function (5.0.1 ), the system defined in (4.3.1) to (4.3.3) 
and T = 2, the value function of the second time period v2(x2(Y1, P1, r1. €1 ). r2(P1. ri)) is 
not necessarily concave in the selling price of the first time period p1 . 
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Proof. Since J(x2, Y2, P2, r2) = E[Il(x2, Y2,P2, r2, c2)] + ')'c(y - E[D(p2, r2, c2)]), the ex-
pected profit of the last time-period J2(x2, y2, p2, r2) is jointly concave in inventory level 
y2 and price p2 by lemma 5.1 and thus a base-stock-policy is optimal (see theorem 5.1 ). 
Hence, the last period's optimal profit can be rewritten by substituting h by h - ')'C and b 
by b +')'c: 

( ) {
½*(r2) , X2 S Sz(r2) 

V2 X2, T2 = m2(x2, r2) , else 

{ E[Il2(x2, S*(r2), P*h), r2, c2)l, 
= E[Il2(X2, X2, p2(x2, r2), r2, c2)l, 

x2 s s2h) 
else. 

(5.2.3) 

Substituting the transition functions (5.2.1) and (5.2.2), the optimal value function be-

comes v2(x2, r2) = v2(x2(Y1, P1, r1, c1 ), r2(P1, ri)). Note that the holding costs in the sec-
ond time-period are given by h - ')'C, and the backlogging costs by b + ')'C, respectively 
( compare page 22). Thus by substituting h by h - ')'C and b by b + ')'C, the total optimal 
profit v2(x2, r2) is given by E[Il2(x2, y*(x2, r2), p2(x2, r2), r2(P1, ri), c2)]. 

Although ½*h) = E[I12(x2, S*(r2), P*h),r2,c2)] is concave in p1 by lemma A.2 in 
the appendix A, this is not true for UJ2(x2, r2) = E[Il2(x2, x2, p2(x2, r2), r2, E2)]. Lemma 
A.3 shows that 32QJ2(x2 , r2 )/3p~ is not necessarily less than zero. Hence, concavity is not 
guaranteed for QJi(x2 , r 2) in p1 and thus we cannot conclude that the optimal profit of the 
secondtimeperiod v2(x2(y1,P1,r1,E1),r2(p1,r1)) is concave in PI· • 

case S*(r1) > 0: y:,E(D]-S*(r1) Y2-E(D] 

n~+1mi n~+.,.vt n~+1V{ u2 

case S*(ri) = 0: y,E[D] 

n~+1Vj n~ +7Vi u2 

case S*(r1) < 0: y,E(D] y,E(D]-S•(ri) 

n~+1mi n~+1Vj n~+1Vt' u2 

Figure 5.5.: Switches between functions Il1(x1, y1,p1, r1, Ei) and v2(x2, r2) 

In order to prove that a base-stock policy is still optimal in the first-time period, we will 
show that 11 (y1 ,p1, x1, ri) is jointly concave in y1 and P1, although Vi(x2, r2) is not 
jointly concave in y1 and p1 (see lemma 5.4). Using equation (4.3.2), the expected profit of 
the first period can be written as 
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5.2. TWO-PERIOD MODEL 69 

By using the short notation E[D(p1 , TI, ci)] = E[D], profit of the first time period then 
becomes 

( -{I1~(x1,Y1,PI.,r1,.EI) I11 X1,Y1,PI,r1,ci) - b 
I11 (x1, Y1, P1. r1, c1) 

{
PI(E[D] + c1) - c(y1 - xi) - h(y1 - E[D) - c1) 

PI(E[D] + c1) - c(y1 - x1) - b(E[D] + c1 - Y1) 

,c1 < Y1 - E[D) 
,cI 2 YI - E[D] 

,CJ< YI - E[D) 
,EJ 2 YI - E[D]. 

(5.2.4) 

Similarly we distinguish between the possible realizations of v2(x2(y1 , p1, ri). r2(p1, ri)): 

v2(x2(Y1,PI, rI, ci), r2(P1, ri)) = 

{
V2*(r2(P1,ri)) .c1 2 Y1 - E[D] - S*h) 
m;(x2(Y1,PI,rI,CI),r2(P1,rI)) ,CI< YI - E[D) - S*(r2) = 

{ 
J2(Xz. S*(r2), P2 *h), r2) . EI 2 Y1 - E[D] - S*(r2) 

J2(x2, x2, P2(r2), r2) . c1 < Yi - E[D) - S*(rz). 
(5.2.5) 

We now exchange the order of summation and taking expected values such that 

From the formula above it is easy to see that we need to distinguish between the three 
cases S*(r2) > 0, S*(r2 ) = 0 and S*(r2) < 0 (see figure 5.5). Let S*(r2) > 0, then 
JI (x1, YI-PI· r1) becomes 

(5.2.7) 
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For S*(r2) = 0 the profit function J1(x1, Y1,Pi, ri) can be written as 

J1(x1, Y1,P1, r1) = 

j y,-EID] 
= _

00 
(TI}(x1, Y1,P1, r1, u1) + 1'1.U2(x2(Y1,P1, r1, ui), r2(P1, ri))) f(u1)du1 

+ 100 (nt(x1,Y1,P1,r1,ui) +1'½*(r2(P1,ri))) f(ui)du1. 
y1-EID] 

(5.2.8) 

We now consider the case S* ( r 2) < 0, which yields 

(5.2.9) 

We will now show that the four possible summands are jointly concave in y1 and p1 • 

Lemma 5.5. For the linear demand function defined in equation (5.0.1), the system (4.3.1) 
to (4.3.3) and a two-period setting T = 2 each of the functions 

TI}(x1, Y1, P1, r1, c1) + 1'½*h(P1, r1) ), 

ilt(x1, Y1,P1, r1, c1) + 1'V2*(r2(PI, ri)), 

Il}(x1, Y1,P1, r1, c1) + ,'I.U2(x2(Y1,P1, r1, ci), r2(P1, ri)), 

m (x1, YI, PI, T1, CJ) + ,,i.u;(x2(Y1, PI, T1, ci), r2(P1, ri)) 

is jointly concave in y1 and P1 . 

(5.2.10) 

(5.2.11) 

(5.2.12) 

(5.2.13) 

Proof. The first two functions are trivially jointly concave in y1 and p1 , since the two 
possible realizations of the profit function in the first time-period Il}(x1, y1, p1 , r1, ci) and 
m(x1, Y1,P1, r1, ci) are jointly concave by lemma A.I in appendix A and ½*(r2(P1, r1)) is 
jointly concave by lemma A.2 with a discount factor 1' > 0. 

The situation is not so clear for the second two functions, since the expected optimal 
profit 1.U2(x2(y1,Pi,r1,c1),r2(p1,r1)) is not necessarily concave in P1 by equation (A.IO) 
in lemma A.3 and thus I.U2 ( x2 (y1, p1, r1, c 1), r2 (P1, ri)) is not jointly concave in Y1 and P1 . 
However, in the following we will show that the joint concavity of the first time period's 
profits TI1 ( x1, y1, p1, r 1, € i) is strong enough to dominate the non-concavity of the future 
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5.2. TWO-PERIOD MODEL 71 

profit. It is easy to see that the 'misbehavior' of non-concavity will be worse, the larger the 
discount factor "I is. Hence, without loss of generality, we examine the case of no discount 
( "I = 1) in the following analysis. 

As a first step we will now show that I11 (x1. y1, p1, r1, E1) + m2(x2, r2) is concave in 
the selling price p1 . By using lemma A. I and lemma A.3 from appendix A, as well as the 
assumptions that /31 , /32 S 0 and 0 S a: < 1 , we can calculate the following for linear 
demand function (5.0.1): 

B2(I11 (x1' YI' PI' r1. Ei) + m2(X2(Y1- Pl' r1' EJ ), r2(P1' ri))) 
Bpi 

2(2,81 + (1 - a:),62)[(h + b)(/31 - /32) 2 + ((a:-3)/32 - 2,6i)/(2f(x2 - E[D(p2. r2,E2)1)] 
(/31 + /32)(2/ f(x2 - E[D(p2, r2. E2)]) - (h + b)(/31 + /32)) 

(5.2.14) 

which is less than or equal to zero and thus proves concavity in p1 . It remains to show joint 
concavity in y1 and p1 . For this purpose we evaluate, by again using lemmas A. I and A.3, 
the determinant of the Hesse matrix of I11 (x1, Y1, P1- r1, Ei)+m2(x2(Y1, P1, r1, E1 ), r2(P1, ri)) 
for the linear demand function (5.0.1 ), where H[·] denotes the Hesse matrix: 

( B2I11(X1,Y1,P1,r1.E1) + B2m2(X2(Y1-P1,r1.E1l,r2(P1,ril)). 
Bpi Bpi 

( B2I11(X1,Y1-P1,r1,E1) B2m;(x2(Y1,P1, r1. Ei), r2(P1, ri)))-
B 2 + B 2 Y1 Y1 (5.2.15) 

( B2I11 (x1, Y1-P1, r1, Ei) + B2m;(x2(Y1, Pl. r1, Ei). r2(P1, ri))) 2 

By1 Bpi By1 Bpi 

(8(/31 + /32 ) 2 - (1 - a:)2f3i)(h + b) > 0. 
(/31 + /32)(2/ f(x2 - E[D(P2- r2)]) - (h + b)(/31 + /32)) -

The above equation shows that the Hesse matrix of I11 (x1, Y1, Pi, r1, ti) + m2(x2. r2) is 
positive semi-definite, which yields joint concavity in the decision variables y1 and p1 and 
proves the lemma. • 

It now remains to be shown that the profit functions of the first and second time-period, 
respectively, are continuous and concave in their points of non-differentiability. 

Lemma 5.6. The two functions I11 (x1, Y1, P1- r1, ti) and v2(x2(y1 . P1, r1, E1), r2(p1, ri)) de-
fined piecewise in equations (5.2.4) and (5.2.5) are continuous and concave in y1 and p1 in 
their points of non-differentiability. 
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Proof. For proving the above lemma 5.6 it suffices to show the following properties for any 
value of c1 = y1 - E[D(p1, r1, c1)]: 

(5.2. 16) 

Jim [8IT1(X1,Y1,P1 -O,r1,c1) _ 8IT1(X1,Y1,P1 +o,r1,c1)] > 0 
o-o 8p1 8p1 - , 

Jim -------- - -------- > 0. [8IT1(x1,Y1 -O,P1,r1,c1) 8IT1(x1,Y1 -8,p1,r1,ci)] 
o-o 8y1 8y1 -

(5.2.17) 

Furthermore, we need to show for any value of c1 = y1 - E[D(p1, r1, ci)] - S*(r2(P1, r1)) 
that the following equations hold true: 

lim [v2(x2(Y1 -O,P1, r1, c1), r2(P1, ri) - v2(x2(Y1 +o, Pi, r1, ci), r2(P1, r1))] = 0, o-o 
(5.2. 18) 

Jim [8v2(x2(Y1, P1 -o, r1, c1), r2(P1 -o, ri)) _ 8v2(x2(Y1, P1 +o, r1, c1 ), r2(P1 +o, ri))] = O, 
~ ~ ~ 

Jim [8v2(x2(Y1 -o, Pi, r1, ci), r2(P1, ri)) 8v2(x2(Y1 +o, P1, r1, c1 ), r2(P1, ri))] = O. 
o-o 8y1 8y1 

(5.2.19) 

Equations (5.2.16) and (5.2.18) show the functions' continuity and equations (5.2.17) and 
(5.2.19) the functions' concavity in y1 and p1 • Lemma A.5 and lemma A.6 in appendix A 
shows that the above equations indeed hold. • 

We will now show that the function Il1(x1, y1, Pl, r1, ci) is jointly concave in Y1 and P1 
at the kink c1 = Y1 - E[D(p1, r1, c1)]. 

Lemma 5.7. The profit function of the first time period II1(x1, Y1,P1, r1, c1) defined piece-
wise in equation (5.2.4) is jointly concave in Y1 and P1. 

Proof. We know by lemma A. I in appendix A that the functions Il~(x1 , y1 , p1 , r1 , ti) and 
ITt ( x1, Y1, P1, ri, c1) are both jointly concave in Y1 and p1 . It now remains to be shown 
that I11(x1,y1,p1,r1,ci) is jointly concave at the kink c1 = Y1 - E[D(p1,r1,c1)]. We for 
convenience reformulate equation (5.2.4) in the following way: 
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with 

,E1 < Y1 - E[D(p1,r1,Ei)] 

,E1 2 Y1 - E[D(p1,r1,E1)]. 

73 

(5.2.21) 
It is clear that p1 (E[D(p1, r1, £i)] + fi) - c(y1 - xi) is jointly concave in Y1 and P1 . Let 
{(y1,pi): fh = E[D(p1,r1,£i)]+<1} and {(jj1.p1): il1 i= E[D(.P1,r1,Ei)]+E1}. It is easy 
to see from equation (5.2.21) and b, h 2 O that 

(5.2.22) 

Since y1 - E[D(p1,r1,E1)] - £1 is linear in y1 it follows directly that g(y1,p1,r1,£i) is 
jointly convex and thus Il1(x1, y1,p1. r1,c1) jointly concave in Y1 and P1 at the kink E1 = 
Y1 - E[ D(p1, r1. E 1)] and therefore anywhere. • 

We are now ready to show the optimality of a base-stock-list-price policy, for which we 
introduce another useful lemma, which can be found in Heuser ( 1981 ). 

Lemma 5.8 (Heuser ( 1981 ), theorem 166.1 ). Let the function f : C C IRn - IR ( G being 
an open set) be differentiable in G 1• Then the derivative in direction a= (a 1 , ... , an) exists 
and is given by 

BJ(x) = ta/f(x)_ 
Ba i=I Bx, 

(5.2.23) 

Theorem 5.3 (Base-stock-list-price policy). For the linear demand function defined in equa-
tion (5.0.1) and the system (4.3.1) to (4.3.3). the following holds for t = L 2 of a two-period 
setting T = 2: 

I. A base-stock-list-price policy is optimal. 

2. The profit function lt(yt, Pt, Xt, rt) is jointly concave in Yt and Pt. 

3. The profit function lt(Yt, Pt, x1, rt) is submodular in Yt and Pt. 

Proof The above statement is true for the second time period t = 2 by theorem 5.1. It 
remains to be shown that 11 (x1. y1, p1, r1) is jointly concave and submodular in y1 and p1 . 

In lemma 5.5 we showed that the functions defined in equations (5.2.10) to (5.2.13) are 
each jointly concave in y1 and p1 • We now need to show that the junctions of those 
functions are indeed jointly concave. It is convenient that we already know from equa-
tion (A.20) and (A.21) in lemma A.6 in appendix A that when V2*(r2(p1,ri}) switches to 
Q12(x2(Y1. P1. r1 .t:1), r2(P1, ri}), the difference of its slopes with respect to y1 and p1 is 
zero and thus by v2(x2(Y1. p1. r1, Ei). r2(p1. r 1)) being continuous, it is also differentiable 

1 A function f is differentiable in G <;;: IR" , if the panial derivatives of f with respect to x 1• • . • x,. exist 
for any point x E G . 
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74 CHAPTER 5. ANALYTICAL ANALYSIS OF THE INTEGRATED MODEL 

with respect to Y1 and P1. By Lemma 5.8 it follows that v2(x2(Y1,P1, r1, c1), r2(P1, ri)) is 
differentiable in any direction a= a 1y1 + a2p1 and thus is a smooth function. Therefore the 
problem of showing that the junctions of (5.2.10) to (5.2.13) are jointly concave reduces to 
the verification that the junction of the two piecewise functions 

II~(x1, Y1, P1, r1, c1) + ,v2(x2(Y1, Pi, r1, c1), r2(P1, ri)) 

IJt(x1, Y1, P1, r1, ci) + ,v2(x2(Y1, P1, r1, E1 ), r2(P1, ri)) 

is indeed jointly concave, which follows from lemma 5.7. 

(5.2.24) 

(5.2.25) 

It now remains to be shown that J1 (xi, Y1, P1, ri) is submodular in Y1 and P1 and thus 
[J2J1(X1,Y1,P1,T1)/(8y18P1) '.S 0. Sincewehave 82I11(x1,Y1,P1,r1,E1)/(8y18P1) = 0 by 
equation (A.3) in lemma A.I, 82V2*(r2(p1, r1))/(8y18p1) = 0 by equation (A.7) in lemma 
A.2 and 821lJ2(x2(Y1,P1,r1,E1),r2(P1,ri))/(8y18pi) '.S O by equation (A.12) in lemma 
A.3, and submodularity is maintained by integration it is clear that 11 ( x 1, y1, p1, ri) = 
E[II1(x1,Y1,P1,r1,E1)] +,v2(x2(Y1,P1,r1,t1),r2(P1,ri)) issubmodularin Yi and Pt. By 
theorem 8-4 in Heyman and Sobel (2004) submodularity in y1 and p1 suffices to show that 
the optimal price Pt(x1 , ri) is non-increasing in x1 and a list-price policy is optimal. • 

5.3. Multi-period model 

Under some restrictive assumptions we are able to extend the above attained base-stock 
property to the multi-period-case. For the ease of proving we now consider the transformed 
model given by equations (4.3.7) to (4.3.9) in chapter 4. Furthermore, we introduce the 
following assumptions: 

Assumption 5.1. In each time period t = 1, ... , T the following holds: The demand func-
tion D1(p, r, c) is non-increasing in p, non-decreasing in r and jointly concave in p and r, 
while the revenues pD1 (p, r, t) are assumed to be jointly concave in p and r . Furthermore, 
G1(y, p, r) is assumed to be jointly convex in y, p and r. 

Lemma 5.9. The expected profit-to-go function ½( r, x) is non-increasing in x for all r 
and t = 1, ... , T. 

Proof Let X1 < X2. Then ½(r,xi) = maxy2x 1 ,pJt(Y,P,r) 2 maxy2x,,pJt(Y,P,r) 
½(r, X2). • 
Theorem 5.4 (Base-stock policy). For the system (4.3.7) to (4.3.9) and assumption 5.1, the 
following holds for any time period t = 1, ... , T: 

1. J1(y,p,r) isjointlyconcavein y,p and r. 
2. ½(x,r) isjointlyconcavein x and r. 
3. A base-stock policy with order-up-to level s; ( x, r) is optimal in time period t. 
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5.3. MULTI-PERIOD MODEL 75 

Proof The proof technique is similar to the one suggested in theorem 2.5 and is conducted 
by induction. Vr+ 1 (x, r) = O is trivially jointly concave in x and r and thus Jy(y, p. r) is 
jointly concave in y, p and r by assumption 5.1. We now assume that ½+1 (x, r) is jointly 
concave in x and r and Jt+ 1 (y, p, r) is jointly concave in y, p and r. 

By defining r(p, r) and x(y. p,r. ,) as 

r(p. r) = o:r + (1 - o:)p, 

x(y. p. r. ,) = y - Dt(P- r.t), 

the following holds for any pair (y1 , Y2), (p1. P2) and ( r1, r2) : 

x( Y1 + Y2. Pl + P2. T1 + T2. t) = Y1 + Y2 _ Dt (Pl + P2. r1 + r2. ·) < 
2 2 2 2 2 2-

Y1 + Y2 1 
- 2- - 2(Di(p1, r1. 1:) + Di(p2. r2, 1:)) = 

(5.3.1) 

(5.3.2) 

~(Y1 - Dt (P1, T1, t)) + ~(yz - Dt (p2, r2, t)) = ~X(Y1, Pl· T1, 1:) + ~x(y2,P2, r2, t). 

(5.3.3) 

since D1 (p, r, 1:) is jointly concave in p and r by assumption 5.1. Thus we obtain 

V. ( -(Y1+Y2 P1+P2 r1+r2 )-(P1+P2 r1+r2)) > 
t+I X 2 • 2 • 2 • t . r 2 . 2 -

( l _ 1 _ _ P1 + P2 r1 + r2 ) 
½+1 2x(y1,P1,r1,1:) + 2x(yz.p2,r2,1:),r(-2-, - 2-) = 

½+1 Gx(y1, PI, T1, t) + ~X(Y2-P2, T2, 1:). ~r(p1, ri) + ~r(pz, r2)) ~ 

~ Vt+1 (x(y1, Pl, r1, 1:), r(Pl, ri)) + ~ Vt+1 (x(y2, P2- r2, t). r(pz. r2)). 

(5.3.4) 

The first inequality of (5.3.4) holds, due to Lemma 5.9 and the following equality since 
r( P• ;e:,, r, ;r,) = ½r(p1, ri) + ½r(p2, r 2). The second inequality of (5.3.4) follows from 
½+ 1 ( x, r) being jointly concave in x and r by the induction assumption. It is clear that 
equation (5.3.4) guarantees that ½+1 (x(y.p, r, c). r(p, r)) and thus E [½+1(x, r)] is jointly 
concave in p, y and r. Since the first three terms of (4.3.8) are jointly concave in y. p and 
r byassuption5.I, J1(y,p,r) isjointlyconcavein y.p and r. 
We now show that Vi ( x, r) is jointly concave in x and r. From ( 4.3. 7) we know that 

v.(x1+x2r1+r2)-. {J( r1+r2)} 
t 2 . 2 - >I):'~;, t y.p. 2 . 

y_ , .p 
(5.3.5) 

Since J1(y. p. r) is jointly concave in y and p a base-stock policy with a base-stock level 
S*(r) and an optimal price p*(x, r) is optimal and thus the optimal profit Vi(x, r) can be 
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76 CHAPTER 5. ANALYTICAL ANALYSIS OF THE INTEGRATED MODEL 

written as 
Vt(x, r) = lt(S*(r),p*(x, r), r). (5.3.6) 

It furthennore follows that 

(5.3.7) 

The first inequality of (5.3.7) holds since p* (x1!"'', ri!'') and max (S* ('1!''), xi!"'') 
are the global optima of Vi ( "'1 !"'', '1 !'') . Any other solution, particularly p•(x,,r,)~p•(x2 ,r2 ) 

and max(S•(,i),x,)~max(S•(,2 l,x2 ) will thus be less or equal to the optimal solution. lt(Y,P, r) 
being jointly concave in y,p and r explains the second inequality of (5.3.7). • 

Remark 5.4. Note that for the linear demand function defined in equation (5.0. l) the revenues 
pD1(p, r, ,) are not jointly concave in p and r and thus assumption 5.1 does not hold. 

Similar to sections 2.3.3 and 3.3 we can find a possible steady state for the integrated 
pricing and inventory control model given by equations (4.3.1) to (4.3.3). 

Theorem 5.5. If the system (4.3. l) to (4.3.3) admits a steady state, then for the linear demand 
function defined in equation (5.0. l) and the loss-neutral case ( /32 = /33) it is given by 

• (/31c - /3o)(l - o:,) + /32(1 - ,)c 
Poe= 2/31(1 - o:,) + /32(1 - 1 ) ' 

(5.3.8) 

• E[D( • • )] F_ 1 (b - (1 - ,)c) Yoe= Poc,Poo,t + h+b . (5.3.9) 

Proof. The proof is a combination of the proofs of theorem 2.9 in section 2.3.3 and theorem 
3.1 in section 3.3. As in the proof of the joint pricing and inventory without reference effect 
case, we first find the steady state inventory. Again the optimal total discounted profit for an 
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5.3. MULTI-PERIOD MODEL 77 

infinite time horizon is given by (compare equation (4.2.2)): 

X 

V(x1, ri) = cx1 + L 'l max [P1+1E[D(P1+1, r1+1, Ei+i)] - c(l - -YlY1+1 + 
t=O Yt I I ,Pt./ I (5.3. f Q) 

+-;cD(P1+1, r1+1, E1+1) - G(Y1+1,P1+1, r1+1)], 

where 

ly, 1 ,-E[D(p,, ,.r,, ,.,,, ,)] 
G(Y1+1,P1+1,T1+il = h -x (Yt+i - E[D(P1+1,r1+1,E1+ill- u)J(u)du 

+ blx (u - Y1+1 - E[D(P1+1,r1+1,E1+1)])J(u)du. 
y, 1 1 -E[D(p, 1 1 .r, 1 t -<t t 1] 

(5.3.11) 

Differentiation with respect to y and using the same arguments as in the proof of theorem 
2.9, we get the steady state base-stock equation (5.3.9) depending on the price. Note that 
the reference price has to be equal to the price as this is necessary for the steady state price. 
The steady state price in formula (5.3.8) is found analogously to the proof of the steady state 
for the reference price model (see theorem 3.1) after substituting y;._ (p) for y in the infinite 
sum (5.3.10) and differentiating with respect to the price p. This yields exactly the same 
steady state price p;._ as in theorem 3.1. • 

a 0 0.33 0.66 I 

p; 2.70 2.67 2.61 2.00 
s· 

0 
47 49 51 53 

/32 0 -20 -40 -60 

P;, 2.75 2.65 2.55 2.47 
s· /3, 38 40 44 46 

r' 0.75 0.85 0.95 I 

p; 2.38 2.49 2.65 2.75 
s· 'r 62 67 76 90 

Table 5.1.: Steady-state base stock and list price 

Remark 5.5. Note that the optimal steady state price P:.C in equation (5.3.8) is the same as 
in theorem 2.9 in section 2.3.3 and the optimal steady state base-stock level y~ in equation 
(5.3.9) corresponds to the optimal steady state price obtained in theorem 3.1 in section 3.3. 
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78 CHAPTER 5. ANALYTICAL ANALYSIS OF THE INTEGRATED MODEL 

As in section 2.3.3 and 3.3 one can study the behavior of the steady state solutions (see 
table 5.1) for the integrated model under consideration in this chapter. 

Remark 5.6. From remark 5.5 it is clear that a sensitivity analysis of the steady state price 
p~ of equation (5.3.8) is identical to the one described in theorem 3.3 in section 3.3 and thus 
the optimal steady state price p~ is decreasing in the memory parameter a , increasing in 
the discount factor , and decreasing in the reference effect j,621. 

Since F-1 c-~1;b-y)c) is independent of both a and l,621, p~ is decreasing in a and l,B2I 
and expected demand is decreasing in price, it is clear that E[D(p~, p~, c)] is increasing in 
a and j,621. As a consequence, y;., is increasing in a and j,621. However, for the discount 
factor 1 , we cannot make a definite statement about the behavior of the steady state base-
stock y;.,, as the safety stock is increasing in I while E[D(p~,P~, c)] is decreasing in 1 . 
As a result, in case of small uncertainty in demand the base-stock is decreasing in I whereas 
for large uncertainty the base-stock is increasing in 1 . A numerical example is given in table 
5.1. 
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6. Simulations and Numerical 
Investigations 

The functional equations described in (4.3.1) to (4.3.3) and (4.3.7) to (4.3.9) in chapter4 lack 
a closed-form solution, except in a very limited number of special cases, like the one-period 
case presented in section 5.1. Hence, the main focus of chapter 5 was on showing that an 
optimal solution theoretically exists and is unique, which then resulted in a simple optimal 
pricing and inventory control policy, like a base-stock-list-price policy. In this chapter we 
complement these analytical results with a numerical study. We shall relax some of the rather 
strong assumptions of chapter 5 in order to assess the robustness of its implications and give 
explicit optimal solutions. Furthermore we will investigate, how the optimal inventory and 
pricing paths evolve over time and give a qualitative understanding of the obtained results. 
Moreover we aim at examining whether the model's solutions have some additional structural 
properties in the reference price. 

We shall study a discrete time, discrete state Markov decision model, since the model 
under consideration is a periodic review model, and demand realization can only be integer 
values (we cannot sell a fraction of an item). We already described in chapter 4 that we are 
facing a two-dimensional state space (comprising an 'internal' state describing the produc-
tion system and an 'external' state related to the market) and a two-dimensional action space 
(reflecting both marketing and production/logistic decisions). Thus we are likely to run into 
the 'curse of dimensionality' (the tendency for the solution time to grow exponentially with 
the dimensionality of the state or action space) where some theoretical insights to efficient 
computer programming are required and the art of programming lies in finding a trade-off 
between memory-intensive and run time-intensive computational methods. 

All results of this chapter are obtained by a dynamic program using backward recursion 
developed in the numerical computing environment MATLAB. The Compecon MATLAB 
toolbox, provided by Miranda and Fackler (2002) and especially designed to solve stochas-
tic dynamic economic models, could not be used for the integrated model including reference 
price effects due to the memory intensive data structure of their algorithms for higher dimen-
sional state spaces. Therefore we developed a new algorithm particularly suitable for our 
setting described in chapter 4. In order to guarantee numerical stability and control round-
off errors, we implemented a spline interpolation on the value function with respect to the 
state and decision space, which also reduced computation times significantly. 

By systematically varying the demand parameters /30 , /31 , /32 , the memory parameter 
a, the discount factor , , the costs c, b and h, and the length of the planning horizon T 
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80 CHAPTER 6. SIMULATIONS AND NUMERICAL INVESTIGATIONS 

we find strong evidence that a base-stock-list-price policy is optimal under any considered 
setting. Hence, we only present illustrative examples in sections 6.1 to 6.3. 

6.1. Loss-neutral customer behavior 

6.1.1. The optimal policy's structure 

As a first step we will concentrate on loss-neutral customer behavior ( (32 = (33 ), which we 
investigated analytically in chapter 5. Although there we could only show the optimality of 
a base-stock-list-price policy for a two-period problem, we now find that this structure also 
extends to any time period of a finite time horizon with length T > 2 . Extensive numerical 
studies give strong evidence that the expected profit J1(y, p, r) is jointly concave in any time 
period 1 S t S T in inventory level after ordering y and selling price p for any reference 
price r and thus a base-stock-list-price policy is optimal for any time-period t. Furthermore, 
we observe that the steady state solutions (5.3.8) and (5.3.9), derived analytically in section 
5.3, are already attained within a relatively short planning horizon ( T = 15 for the below 
base scenario). 

Figures 6.2 to 6.9 on page 82 and following pages give an illustrative example for the 
following base scenario: Expected loss-neutral demand is given by the parameters (30 = 
100, (31 = -20 and (32 = -40, whereas random demand follows a normal distribution with 
fixed standard deviation u = 20. Because of the cost of capital, maintenance, insurance, 
loss and damage, the per period holding cost rates amount to approximately one percent of 
the ordering costs: c = 0.5 and h = 0.005. High service levels are ensured by setting the 
backlogging cost rates about the same magnitude as the ordering costs: b = 0.4. Moreover, 
a memory parameter is given by a= 0.5, the discount factor is set to 'Y = 0.8 and the total 
length of the planning horizon is given by T = 15. We want to mention here that all the 
results described below hold for any other tested parameter setting and interestingly, also for 
non-linear expected demand functions. 

Figures 6.2 to 6.5 are examples for time period t = 10 . Figure 6.2 shows that the expected 
profit J1(y,p, r) is jointly concave in inventory y and price p. Moreover, it can be seen 
in figure 6.3 that the optimal expected profit Vi(x, r) is jointly concave in inventory x and 
reference price r and increasing in both x and r. Therefore a base-stock-list-price policy 
is optimal for any reference price r (see figures 6.4 and 6.5). Thus, for simplicity, the 
two three-dimensional graphs of the optimal inventory level y*(x, r) and the optimal price 
p'(x, r) can be reduced to two two-dimensional graphs of the base-stock level S'(r) and 
list-price P'(r), which can be seen to be increasing in reference price r (see figures 6.8 and 
6.9). 

We now take a closer look at the behavior of the optimal decisions y* and p* in the state 
variables x and r over time. In section 2.3.3 we observed that for the model introduced by 
Federgruen and Heching (1999) price discounts were given at a higher inventory level, the 
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Figure 6.1.: Diverse demand probability density functions 
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81 

more time there was left in the planning horizon (see figure 2.9). This does not necessar-
ily hold for the integrated model. Here, due to negative carry over effects, price discounts 
are generally smaller and are given as soon as the inventory level before ordering is higher 
than the base-stock level (see figure 6.7). Since we give smaller discounts, we have to react 
earlier in time in order to move the inventory level before ordering below the steady state 
level and thus reach a possible steady state. The model in section 2.3.3 aimed at reducing 
base-stocks over time and thus list-prices were increasing over time as a consequence. For 
a fixed standard deviation of demand, list-prices tended to be constant over time (see figure 
2.8). In contrast, the integrated model including reference price effects behaves qualitatively 
completely differently. Here, similar to figure 3.3, list-prices are decreasing over time in 
order to benefit from the reference price effects and are increasing in reference price r (see 
figure 6.9). With decreasing prices over time (see figure 6.7 and 6.9) and also the result-
ing reference price effect, expected demands are increasing, necessitating higher base-stock 
levels over time (see figure 6.6 and 6.8). 

6.1.2. The influence of the demand distribution 

In this subsection we want to investigate the influence of different demand distributions and 
coefficients of variations. 

Fig. 6.1 illustrates the different shapes of the demand's probability density functions for 
several demand distributions (truncated normal, log-normal, negative binomial, and beta) 
with the same mean and variance. Note that the log-normal, negative binomial, and beta 
distributions have considerably heavier tails than the corresponding truncated normal and 
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uniform distributions, respectively. All three of them are skewed to the left (their mode is 
smaller than the expected value) and allow only for positive demands, therefore there is no 
need for truncating negative demands as in the case of the normal distribution. 

In addition to studying the effects of different demand distributions with the same mean 
and variance, we also probe the influence of different variable demand variations. Instead of 
considering a fixed variance a2 as in section 6.1.1, we analyze the effect, when the stochas-
tic term 1: of the demand function (e.g. (5.0.l)) follows the truncated normal distribution 
function with mean zero and variance a2 = c.v. • E[D(p,r,1:)], where c.v. denotes the 
coefficient of variation. Note that for a constant coefficient of variation c. v. and price p, 
higher reference prices r result in a higher expected demand and thus a greater demand 
variation a2 • 

Extensive numerical studies show that whatever demand distribution or coefficient of vari-
ation is used, again a base-stock-list-price policy is found to be optimal. Thus in the fol-
lowing we only consider the effects on the base-stock and list-price levels. For obtaining 
figures 6.10 to 6.15, again the base scenario from section 6.1.1 with /Jo = 100, /31 = -20, 
{32 = -40, a = 0.5, c = 0.5, h = 0.005 and b = 0.4 is presumed. The effect of dis-
counting prospective cash flows is excluded by setting 'Y = 1 . Furthermore, a coefficient of 
variation c.v. = I is used, where not denoted differently. 

We now analyze the last time period of the planning horizon t = 15. Since it is very costly 
to have unsold inventory on hand after the last time period, the main aim here is to reduce 
as much as possible the risk of not selling the inventory on stock in the last time period. 
The higher degree of system uncertainty is - that is, either a high coefficient of variation 
or a heavy tail distribution, the more the retailer aims to decrease the standard deviation 
of demand. This can be obtained by reducing the mean demand, since then the standard 
deviation is reduced by the same proportion. As demand is a decreasing function in price it 
is to respond to an increase in system uncertainty by increasing prices (see figure 6.11 and 
6.15). This in tum results in a decreasing optimal base-stock level (see figure 6.10 and 6.14 ). 
Furthermore, note that in contrast to section 5.1, list-prices in the last time-period do depend 
on the demand distribution and variation (see figure 6.11 and 6.15), since now the variation 
of demand is not fixed but depends on price and reference price. 

However, in earlier time periods, the dominating objective is not to clear stock, but to 
optimize long-term profits. In order not to incur expensive backlogging cost, the aim is to 
have sufficient inventory in stock. As we discussed above, it is clear that for a heavy tail 
distribution the risk of high demands is higher than for symmetric distribution functions. 
Thus the optimal policy is to increase the inventory stock level for a higher degree of system 
uncertainty (see figure 6.12), which in tum results in lower optimal prices (see figure 6.13 ). 
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Figure 6.10.: Base-stock in reference price for diverse demand distributions ( t = 15) 
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6.2. Joint versus sequential optimization 

Research such as Whitin ( 1955) has already shown that the simultaneous determination of 
price and ordering or production quantity can yield substantial revenue increase. The coordi-
nation of price and production decisions potentially increases profit and thus results in more 
efficient supply chains. In this section we shall explore the size of possible benefits when 
using joint optimization compared to sequential optimization via numerical simulations. In 
subsection 6.2. l we will give a short review with extensions of the results obtained by Fed-
ergruen and Heching (1999), while in subsection 6.2.2 we investigate how benefits change, 
when reference price effects are included in the model. 

6.2.1. Classical operations research models 

Consider the following ad-hoc, but not unrealistic, mode of operation in which the marketing 
and production decisions are made in stages. The model is decomposed such that marketing 
seeks to maximize its objective function first and the production decision is made second. 
The reason for the suboptimality of the separated model is that the two parties, marketing 
and production, are considering two different objective functions. Since marketing is taking 
demand fulfillment for granted, its objective reduces to maximizing expected revenues. In 
contrast, production also takes into consideration inventory costs. Thus the optimal produc-
tion decision always depends on the actual inventory in stock. 

Figure 6.16 depicts the gains of jointly determining an optimal price and inventory level 
versus the sequential procedure, where marketing first determines the profit-optimal price 
Pi = -({30-{31c)/(2{31 ) and then the production unit decides on an optimal stocking quantity 
without having the option of changing the price. The largest benefits of joint optimization are 
obtained towards the end of, or for a short planning horizon. In contrast to the comparisons in 
Federgruen and Heching ( 1999), who base all numerical results on a coefficient of variation, 
we always use a constant standard deviation in this section (not depending on price). This 
erodes a lot of the benefit when using a dynamic pricing model. Figure 6.17 shows relatively 
low benefits for low stock before ordering, which can be much higher for substantially larger 
inventory levels before ordering. The closer we get to the end of the planning horizon, the 
earlier this effect can be observed. This is intuitive as the seller tries to reduce the risk of 
being left with unsold stock at the end of the planning horizon. 

6.2.2. Integrated model with reference price effects 

In this subsection we investigate the differences between a sequential and a joint optimization 
approach for integrated models including reference price effects, introduced in chapter 4. As 
in subsection 6.2.1 we will explore the size of possible benefits when using simultaneous 
compared to decomposed optimization. 
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I Sequential Optimization: I I Joint Optimization: I 
Marketing: 

max,, E;=o1'((Pt+l - c)E[D(Pt+l, Tt+J)]] 

=> p*(r) = [pi(r1), ... ,pr(rr)] max,,,,p E;=o 1'((Pt+1)E(D(Pt+1, r,+1)]+ 
• r* = [ri,, .. ,rj-,] +c(Yt+l - Xt+J))-

-G(Yt+1,Pt+I, r1+1)] 

Production: => y'(x, r) = [yj(x1, r1), ... ,yr(xr, rr)] 
max., L:'=01'[(P,+1lE[D(p,+i, r,+1ll+ => p'(x,r) = [pi(x1,r1), ... ,pi-(xr,rr)] 

+c(y,+1 - x,+1))-
-G(Yt+hPt+1ll 

=> y*(x) = [yi(x1), ... ,yy(xr)] 

Optimal total expected profit: seqVy(x1, r1) I Optimal total expected profit: joint v;(x1, r1) I 

Figure 6.18.: Sequential optimization of price and inventory vs. joint optimization 

Figure 6.18 describes that in a sequential approach first the marketing/sales department 
determines an optimal price without considering any inventory decisions and taking demand 
fulfillment for granted. It is clear that the optimal price p* ( r) in the decomposed model 
only depends on reference price r . This price is then passed on to the production unit of the 
company, which then decides on an optimal stocking quantity without being able to change 
the price. Here the optimal stocking quantity y* ( x) of course only depends on the inventory 
level before ordering x. In the joint approach, both decisions are taken simultaneously and 
thus the optimal price p* ( x, r) and the optimal stocking quantity y* ( x, r) are both a function 
of inventory x and reference price r . Hence, with this better possibility of reacting to the 
system dynamics, it is obvious that a simultaneous optimization yields higher profits than 
a sequential procedure although the sequential approach is already highly sophisticated by 
incorporating non-stationary prices, which vary over time. 

To obtain figures 6.19 to 6.24, the parameter set in table 6.1 is used. In figure 6.19 and 
6.20, we compare the optimal base-stock and price/reference price paths for the sequential 
and joint approach from figure 6.18. For the time being, we assume r1 = p'oc, and x 1 = 0 
to avoid having a transient phase at the beginning of the planning horizon. Furthermore, we 
assume that the actual demand realization D(Pt, Tt, Et) = E[D(Pt, Tt, t 1)] in any time period 
t. Using joint optimization, price p; and base-stock y; leave their steady states later in time. 
This is because we have the opposing strategies of benefitting from the reference effects by 
lowering prices towards the end of the planning horizon (see figure 3.3) and aiming at a 
clearance of stock at the end of the planning horizon (see figure 2.8). 
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The question now is how such a joint optimization of price and inventory increases the 
benefits over the sequential optimization. Figure 6.21 shows that similar to figure 6.16, 
we get the largest benefits of joint optimization towards the end of, or for a short planning 
horizon. In contrast to the comparisons in Federgruen and Heching ( 1999), who base all nu-
merical results on a coefficient of variation, we always use a constant standard deviation (not 
depending on price). As in subsection 6.2.1, this generally results in relatively low benefits. 
Again, higher benefits can be obtained for substantially larger inventory levels before order-
ing (see figure 6.22 for the last time period t = 50 ). Similar to figure 6. 17, this effect can 
be observed for any time period t . However, in comparison to the model without reference 
effects (compare subsection 6.2.1), for smaller t this effect only appears for inventory levels 
before ordering much higher than 200. This is because the pricing strategy under reference 
price effect enables us to clear higher stock levels in later time periods. 

I Variable I Value I Description 

/Jo 100 intercept of the underlying demand model 

/31 -20 scaling factor of the price effect 

/32 -40 scaling factor of the reference price effect 

a 0.8 memory parameter 

' 0.9 discount factor 

C 0.5 per unit production/ ordering costs 

h 0.005 per unit holding costs 

b 0.4 per unit backlog penalty costs 

T 50 length of the planning horizon 

Table 6.1.: Sample parameter set 

Figure 6.23 shows that the benefit of the joint model with reference effect is at least 10 
times the benefit of the model without reference effect, and is considerably higher when the 
reference effect increases. While in the classical setting, price is only varied to control inven-
tory, here price has its own dynamics, and incorporating the influence of the reference price 
increases the benefits of integrating pricing and inventory control significantly. Moreover, 
a significant difference to the model of subsection 6.2.1 is that while there the benefit con-
verges to zero for long planning horizons, here the benefit converges to a value considerably 
higher than zero (depending on the parameters chosen). This effect is more prominent the 
more the starting reference price differs from the optimal steady state price (see figure 6.24). 
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6.3. Extensions 

In this section we will give some extensions that are worth considering, but beyond the 
scope of this thesis. As they could be a subject of further research, we have chosen to give a 
preliminary idea of the results and difficulties here. We are going to address the issue of loss-
averse and loss-seeking customer behavior and then give a brief description of what happens 
when fixed ordering costs are included in the model. 

For loss-averse customer behavior, where consumers respond more to surcharges than to 
discounts ( /32 < (33 ), we already found in section 5.1 that a base-stock-list-price policy is 
optimal (see figures 6.25 and 6.26 for the last time period t = 15 ). However, we could also 
show in section 5.1, that although the optimal price is increasing in reference price, this no 
longer holds true for the optimal inventory level. We can see in figures 6.27 and 6.28 that 
this behavior extends to any other time period. Since the optimal price path is monotonous 
over time according to Popescu and Wu (2007) (compare section 3.3.2), the optimal price 
thus converges monotonously to a steady state, which depends on the initial reference price 
level (see figure 3.6). Thus there are grounds for the supposition that the same is true for the 
base-stock level. 

In the case of loss-seeking customers, where the demand function is deeper for gains 
than for losses and consumers stockpile when prices are low ( /32 > /33 ), we can see by 
the example of figures 6.29 and 6.30 that a base-stock-list-price policy is again optimal. In 
contrast to the above discussed loss-averse customer behavior, the base-stock and list-price 
levels not only lose their monotonicity in reference price, but also continuity. As already 
described in section 3.3.2, the jump discontinuity in the optimal price results in cycling 
policy over time and thus it stands to reason that the optimal stocking quantity will also 
cycle over time. 

As a last extension we consider the case where the ordering costs also include a fixed 
cost component for loss-neutral customer behavior. In contrast to section 6.1.1 we find that 
here a simple base-stock-list-price-policy is not optimal. Chen and Simchi-Levi (2004a) 
have already shown for an integrated pricing and inventory control model without reference 
prices, that in the case of fixed ordering costs an ( s, S, p) - policy is optimal: If the inventory 
level at the beginning of period t is below the reorder point, St, an order is placed to raise 
the inventory level to the order-up-to level, St , and a price Pt is charged. Otherwise no 
order is placed and a different price Pt(x) is offered, which is decreasing in inventory level 
x. Figures 6.33 and 6.34 show that this result extends to the integrated model including 
reference price effects. In the case of included fixed ordering costs, in contrast to loss-
seeking customer behavior, a jump discontinuity happens in inventory level x instead of in 
reference price r (see figures 6.35 and 6.36). 
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Figure 6.27.: Base-stock in reference price for different time periods (loss-averse) 

2.5~----~-----~-----~-----~-----~ 

-Time-period t=10 
2.4 ---Time-period t=8 

······ Time-period t=1 

2.3 

2.2 

2 

1.9 

1.8 

1T2 

/ 

1.8 2.1 
Reference price 

/ 
/ 

_.;.>:;;:;::::;.;;•;;:;;:;;;;.;;.;;:::;;.·;.. 

·" / 

2.4 

Figure 6.28.: List-price in reference price for different time periods (loss-averse) 

2.7 

Lisa Gimpl-Heersink - 978-3-631-75380-4
Downloaded from PubFactory at 01/11/2019 05:41:29AM

via free access



100 CHAPTER 6. SIMULATIONS AND NUMERICAL INVESTIGATIONS 

200-

; 180-. . 
; 160-, 
0 . 

~ 140 " 
~ 
i 120 ...: 
E . 
'E_ 100~ 
0 

80 
200 

0 
Inventory before ordering x 

-100 1.5 
Reference price r 

Figure 6.29.: Optimal inventory in reference price and inventory (loss-seeking) 
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Figure 6.31.: Base-stock in reference price for different time periods (loss-seeking) 
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Figure 6.34.: Optimal price in reference price and inventory (incl. fixed costs) 
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7. Summary, Conclusion and Future 
Research 

This thesis addressed the problem of simultaneously determining a pricing and inventory re-
plenishment strategy by combining two literature streams: the operations orientated stream 
and the marketing orientated stream. In order to benefit from the strengths of both research 
areas, we combined the rich costs models, commonly used in operations research, with 
sophisticated demand models, mainly applied by marketing so far. The integration of the 
consumers' willingness to pay with pricing and inventory control models increases the di-
mension of state space of the underlying dynamic program, which substantially increases the 
model's complexity. Within this context we studied how the additional dynamics affect an 
optimal policy and whether a simple policy such as a base-stock-list-price policy still holds 
in such a setting. 

For the one-period case we could analytically prove the optimality of a base-stock-list-
price policy under very general conditions. Furthermore, we showed additional structural 
properties in state space, describing the consumers' willingness to pay. However, due to the 
added complexity of the model, an extension even to the two-period version of the problem 
evoked major complications in analytical tractability, since the value function is no longer 
'well behaved' and thus commonly used proof techniques could not be applied. With tedious 
and extensive mathematical investigations, for the linear and loss-neutral demand function 
we proved the optimality of a base-stock-list-price policy in the two-period setting. We 
also suggested a way of proving the optimality of a base-stock policy for the multi-period 
case, which only holds under very restrictive assumptions. However, we were able to give 
useful and explicit steady-state solutions for the multi-period setting, provided that such a 
steady-state exists. Extensive numerical studies suggest that the optimal solutions converge 
relatively quickly in time (for reasonable parameter settings, a convergence could even be 
observed within fifteen time periods). 

Using numerical simulations, we extended the results obtained analytically to more gen-
eral settings, such as a larger planning horizon, more general demand functions, or a more 
complex cost structure. Moreover, we investigated the potential increase of profit by si-
multaneously determining optimal prices and stocking quantities compared to a sequential 
optimization, where prices are set first by the marketing department of a company and then 
the production unit decides on the optimal stocking quantity, without being able to change 
prices. We found that the benefits increase considerably when reference price effects are in-
cluded in the model. By using constant standard deviations of demand, we achieved at least 
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ten times the benefit attained by a joint model without reference prices, which makes an in-
tegration of pricing and inventory control with reference price effects by all means worth the 
effort. 

In this work, first steps were attempted toward obtaining analytical structural results. How-
ever, due to the complexity of the model, general proofs could only be given under rather 
restrictive assumptions. For further research, it would be worthwhile investigating, whether 
the attained results also hold for more general demand functions and multi-period finite plan-
ning horizons. Furthermore, it would be interesting to see whether the results obtained for 
the finite horizon case can also be extended to the infinite horizon case. We suggest that more 
work be done for the case of non-zero fixed ordering costs and loss-averse customer behav-
ior. We also recommend that more efficient algorithms be developed that would be more 
applicable in practice, since by facing a two-dimensional state and action space computation 
times soon become very run time intensive. 
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A. Auxiliary Calculations 

Lemma A.I. The one-period-profit-functions TT}(x1, Y1-P1, r1, c1) and nt(x1, Y1, P1, r1. c1) 
are both jointly concave in Y1 and P1 and for the one period profit TT1 (x1, Y1-P1, r1, ci) we 
obtain the following results: 

Proof Equation (5.2.4) yields 

82 TTJ(x1, Y1-P1. r1. ci) a 2 = IL Y1 
a2n1(X1,Y1,P1-r1,E1) = 0. 

8y18P1 

8TT}(x1. Y1, P1, r1, ci) _ D( . ) 8D(P1- r1, c1) h8D(p1, r,, ci) 
" - P1, r1 , E 1 + P1 " + " • up1 UP1 UP1 

for c1 < Y1 - E[D1(P1, r1. ci)] and 

ant(x1, Y1, Pl· r1. c1) - D(· . ) 8D(P1. r1. ci) - b8D(p1, r1, ci) 
c, - Pl , r1 , t I + Pl O O · up1 Pl Pl 

for c1 2 Y1 - E[D1 (p1, r1, c1 )] . Furthermore it follows directly that 

(A. I) 

(A.2) 

(A.3) 

a2m(x1,Y1,P1,r1,c1) _ 8D(P1,r1,ci) 82D(p1,r1.ci) hcJ2D(p1.r1,ci) a 2 - 2 a + P1 a 2 + a 2 s: o. 
~ ~ ~ ~ 

a2nt(x1, YI, Pl, r1, ci) - 28D(p1, r1, Ei) 82 D(p1, r1, ci) - ba2 D(p1, r1, ci) < 
a 2 - a + Pi a 2 a 2 - o. P1 P1 P1 P1 

For the linear demand function (5.0.1) it is clear at a2n1 (X1, Y1-P1, 1'1, Ei)/opf = 2(,61 +,62). 
The partial first and second derivatives with respect to y1 similarily reduce to: 

an1(X1,Y1,P1,r1.Ei)=-c-{ h .. E1<Y1-E[D1(P1,r1,.ci)]_ 
8y1 -b .t12Y1-E[D1(P1,r1.ci)]. 
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Since 8TI1 (x1, y1, p1 , r1, c1) / 8y1 is a constant, it is clear that the mixed partial second deriva-
tive reduces to zero. 

82TI1(X1,Y1,P1,r1,E1) = 0. 
8y18P1 

Moreover, the determinant of the Hesse matrix is given by 

a2E[TI1(x1,Y1,P1,r1,E1)]82E[TI1(x1,Y1,P1,r1,E1)] _ 82E[TI1(x1,Y1,P1,r1,E1)] = O 
ayr ap? ap1 ay1 · 

Hence, the Hesse matrix is positive semi-definite, which ensures that E[TI1 (x1, y1 ,p1, r1, c1)] 
is jointly concave in p1 and Y1 . D 

Lemma A.2. The expected optimal profit of the second time period ½*(r2(p1, ri)) is jointly 
concave in y1 and p1 • Furthermore, we obtain the following results for the optimal list 
price P2(r2(P1, r1)) and the optimal profit ½*(r2(P1, ri)): 

8P2*h(P1,r1)) 
8p1 

,62(1 - a) 
2(,61 + ,62) ' 

82ll;*(r2(P1, ri)) .BW - a)2 

apl 2(,31 + .B2) ' 

82V2*(r2(P1,ri)) =O 
ayr , 

82V2*(r2(P1, ri)) = O 
8y18p1 . 

Proof Differentiating A*( r2(p1 , ri)) implicitly with respect to p1, yields 

8P2 *(r2(P1, ri)) 
8p1 

0E[D(P2,r2,<2)) +- ( _ c) o2 E[D(p-2,r2,<2)] 
or2 P2 op2 or, 

For the linear demand function (5.0.1) the above result simplifies to 

8P2 *(r2(P1, ri)) 
8p1 

0E[D(p2,r2,<2)] 
or2 

20E[D(P2.T2,<2)] 
OP2 

,62(1 - a) 
2(,61 + ,62). 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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We now use these results to find the partial derivatives of V/(r2(p1, rt)): 

aV2*h(P1, ri)) 

8p1 
aE[IT(x2(Y1, Pt, r1 , CJ), s;( r2(P1, r1)), P;( r2(P1, rt)), r2(P1, rt). c2)] 

ap1 
aP2(r2(P1,r1)) • 

= a -E[D(P2 (r2(P1,ri)).r2(P1,ri),c2)]+ 
Pt 

(P.*( ( _ )) ) aE[D(P2(r2(P1,ri)),r2(P1,r1),c2)] 
+ 2 r2 Pt• r1 - C2 · a · 

Pt 

From above we already know that aP2(r2(p1, ri))/op1 reduces to a constant. Furthermore 
we obtain 

ap1 2 

This simplifies the calculation of the second order derivatives: 

82V2*(r2(P1, rt)) 

8pi 
a2 E[I12(x2(Y1, P1. r1. E1). S/h(P1, rt)), P/(r2(P1, rt)), r2(p1, ri))] 

api 
= 2 8P2 *(r2(P1, rt)) . 8E[D(P2 *(r2(P1, rt)), r2(P1- rt), c2)] 

ap1 8p1 
= 2 .82(1 - a) (1 - a),82 = ,Bi(! - a)2 

2(,81 + .82) 2 2(,81 + .82) ' 

8V2*(r2(P1, ri)) 8E[IT2(x2(Y1, Pt. r1, c1 ), S2(r2(P1, ri) ), P2 *(r2(P1, rt)), r2(P1. ri). c2)] 
---'~---"--"- = -~--'---"-------'----''-'---"----'-'---"-"--'-----'-''-----"----'---'-' = C 
~ ~ . 

a 2 V2*(r2(P1, ri)) a2 E[I12(x2(Y1, P1- r1, c1 ), S.i(r2(P1, ri) ). P2(r2(P1- ri)), r2(P1- ri))] 
-~c---'=-?-- 2 0. 

ay1 ay1 

a2V2*h(P1, ri)) = () 
8y18p, . 

Hence, the determinant of the Hesse matrix is given by 

Since by the above equation the Hesse matrix is positive semi-definite V2*(r2 (p1• ri)) is 
jointly concave in y1 and p1 • • 

Lemma A.3. Using the short notation x2 = x2(Y1, P1, r,. c1). r 2 = r2(p1. r 1) and E['.D]* = 

E[D(p2(x2, r2)- r2, c2)] we obtain the following results for the optimal price p2(x2. r 2) and 
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the optimal profit to go Q12(x2, r2): 

(1 - a)f32/f(x2 - E[::D]*) + (h + b)(/31 + /32)(/31 + a/32) 
(/31 + /32)[2/ f(x2 - E[::D]•) - (h + b)(/31 + /3-i)] 

8p2*(x2, r2) -(h + b) 
8y1 2/ f (x2 - E[::D]•) - (h + b)(/31 + /32)' 

(h + b)(/31 + /32)2(/31 + a/32) + (1 - a)2/3V f(x2 - E[::D]*) 
(/31 + /32)(2/ f(x2 - E[::D]•) - (h + b)(/31 + /32)) 

82Q12(X2, r2) 

Yf 
82Q12(X2, r2) 

P1Y1 

2(h+b) <O 
2/ f(x2 - E[::D]•) - (h + b)(/31 + /32) - ' 

(h + b)(2/31 + (1 + a)/32) < 0 
2/ f(x2 - E[::D]•) - (h + b)(/31 + /32) - . 

(A.8) 

(A.9) 

(A.10) 

(A.I I) 

(A.12) 

Proof. By differentiating p2*(x2, r 2) implicitly with respect to x2 we obtain for the linear 
demand (5.0.1) 

8p2*(x2, r2) -(h + b)E[Dp,(pi, r2, E2)]f(x2 - E[::D]*) 
8x2 2E[DP2 (pi, r2, t:2)] - (h + b) (E[Dp,2 (p2, r2, t:2)])2 f (x2 - E[::D]*) 

-(h + b) < 0 
[2/ f (x2 - E[::D]*) - (h + b)(/31 + /32)] - . 

Likewise we obtain 

8pz(X2, r2) -E[D,,(pi, r2, t:2)] (1 - (h + b)E[DP2 M, r2, t:2)lf (x2 - E[::D]*)) 
8r2 = 2E[Dp2 (p;, r2, t:2)] - (h + b) (E[DP2 (p2, r2, t:2)])2 J(x2 - E[::D]•) 

/32/ f(x2 - E[::D]*) - (h + b)(/31 + /32)/32 < O. 
(/31 + /32)[2/ f (x2 - E[::D]•) - (h + b)(/31 + /32)] -

We now differentiate p2(x2 , r 2 ) with respect to the price of the first time period p1 and 
inventory level of the first period Y1 . 

8p2(x2, r2) 8p2(x2, r2) 8x2 8p2(x2, r2) 8r2 ---=--- +---8p1 8x2 8p1 8r2 8PI 
= _ ap;(x2, r2) (/31 + /32) + ap;(x2, r2) (1 _ a) 

8x2 8r2 
(1 - a)/32/ f(x2 - E[::D]*) + (h + b)(/31 + /32)(/31 + a/32) 

(/31 + /32)[2/ f(x2 - E[::D]•) - (h + b)(/31 + /32)] 

8p2*(x2, r2) 8p2*(x2, r2) -(h + b) 
8y1 8x2 2/ J(x2 - E[::D]•) - (h + b)(/31 + /32). Lisa Gimpl-Heersink - 978-3-631-75380-4
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By substituting h by h - 1c the optimal expected profit of the second time period is given 
by equation (5.2.3): 

Equation (5.1.1) gives: 

E[TI(x2. X2, P2 *(x2, r2), r2, c2)] = P2 *(h r2)E[:D]* -

l x,-E['.D]' 

- (h - ,c) -x (x2 - E[:D]* - u) J(u)du-

- (b + 1c) lx (E[:D]*-x2+u)/(u)du. 
x,-E['.D)' 

In order to differentiate E[TI(x2, x2 • P2*(x2, r2), r2. t2)] with respect to p1 we need some 
further technical results: 

0E[D(p2*(x2, r2), r2), t2] = oE[D(pi. r2, c2)] op2*(x2, r2) + oE[D(p2, r2, c2)] 8r2 
~ ~ ~ ~ ~ 

(1 - cr.)/32/f(x2 - E[:D]*) - (h + b)(/31 + /32)2 

2/ f(x2 - E['.D]*) - (h + b)(/31 + /32) 

8E[D(p2*(x2, r2), r2, t2)] 
8y1 

8E[D(p2. r2, t2)] 8p2*(x2. r2) 
8p2 8y1 

-(h + b)(/31 + /32) 
2/ f(x2 - E[:D]•) - (h + b)(/31 + /32). 

Accordingly, one can easily calculate 

8(x2 - E[D(p2*(x2. r2, t2l, r2)]) 
8p1 

8(x2 - E[D(p2*(x2, r2), r2. t2)]) 
8y1 

{2/31 + /32(1 + er.))/ f(x2 - E[:D]*) 
[ l > 0. 

2/ f(x2 - E '.D •) - (h + b)(/31 + /32) -

2/ f(x2 - E[:D]*) ------~---- > 0. 
2/ f(x2 - E[:D]*) - (h + b)(/31 + /3-i) -

Since from above we know that 8E[D(p2*(x2,r2),r2.c2)]/8p1 reduces to a constant, it is 
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easy to calculate the second-order derivative: 

82 E[Il(x2, X2, P2*(x2, r2), r2, E2)] 
8pf 

= 2 8p2 *(x2, r2) 8E[D2(P2*, r2, •2))] _ (h + b) (8(x2 - E['.D]*)) 2 f(x2 _ E['.D]*) = 
8p1 8p1 8p1 

(h + b)(/31 + /32)2(/31 + a/32) + (1 - a)2/3i/ f(x2 - E['.D]*) 
(/31 + /32)(2/ f(x2 - E['.D]•) - (h + b)(/31 + /32)) 

Furthermore, differentiating 2J2(x2 , r 2 ) with respect to y1 yields 

Since 8E[D(p2*(x2 , r 2), r 2 , c2)]/8y1 also reduces to a constant, again it is easy to calculate 
the second-order derivative: 

82 E[Il(x2, X2, P2(X2, r2), r2, E2)] 
ayr 

= 28p2*(x2, r2) 8E['.D]* _ (h + b) (8x2 - E['.D]*) 2 f(x2 _ E['.D]*) = 
8y1 8y1 8y1 

2(h+b) <O. 
2/ f(x2 - E['.D]*) - (h + b)(/31 + /32) -

For the mixed second-order-derivatives of 2J2(x2, r2) we obtain 

82 E[Il(x2, x2, p2(x2, r2), r2, •2)] 
8p18Y1 

8pz(X2, r2) 8E[D(P2, r2, t2))] 8pz(X2, r2) 8E[D(pz, r2, c2))] =--------+--------8p1 8y1 8y1 8p1 
_ (h + b) 8x2 - E['.D]* 8x2 - E['.D]* f(x 2 _ E['.D]*) = 

8p1 8y1 
(h + b)(2/31 + (1 + a)/32) < 0 

2/ f(x2 - E['.D]*) - (h + b)(/31 + /32) - . 

• 

Lemma A.4. Let x 2(y1,p1, r1, c1) = S2*(r2) - 8, with a constant 8. Then the list-price 
equals the optimal discounted price for any realization of Y1 , P1 , r1 and E 1 : 

(A.13) 
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Proof. In the case of b ~ 0, using the above assumptions, the profit of the second time-
period reduces to 

E[IT(x2(y1,P1, r1, ti), S2*(r2(P1, r1))),P2, r2, c2] = 
y" 

=p2E[D2(P2, r2, t2)] - c(S2 • - X2) - (h - 1c) ix (y0 - u)f(u)du-

- (b +-ye) 1x (u - y0)J(u)du = 
y" l y" 

=p2E[D2(P2, r2, t2)] - c(b) - (h - ,c) -x (y0 - u)f(u)du-

- (b + ,'C) 1x (u - y0 )J(u)du. 
y" 

In case of b ::; O 

E[II(x2, x2, P2, r2, t2)] = 
y(J-8 

=p2E[D2(P2, r2, t2)] - (h - 1c) ix (y0 - b - u)f(u)du-

- (b + ,'C) 1x (u - y0 + b)f(u)du. 
yU-J 

Differentiation yields 

which gives the optimal value for P2 *(r2(P2, r2)) and p2(x2(Y1-P1, r1, Ei), r2(P1- r1 )) , by 
setting the above equa~ion equal to zero and substituting r 2 = ar1 + ( 1 - a )p1 : 

• • • -/3o + /32(1 - a)p1 + /32ar1 
p2(x2. r2(p1, r1 )) = P2 h(P1, r1)) = P2(x2,r2(P1, r1)) = 2(/3i + /32) · 

D 

Lemma A.S. For the linear demand function (5.0.1), t 1 = y1 - E[D(p1, r 1,ti)] and a 
constant b > 0 the following holds for the profit of the first period IT1 ( x1. y1. p1, r 1, E i) : 

(A.14) 

(A.15) 
Lisa Gimpl-Heersink - 978-3-631-75380-4

Downloaded from PubFactory at 01/11/2019 05:41:29AM
via free access



114 APPENDIX A. AUXILIARY CALCULATIONS 

l~i [ 8II1 (x1, y\;::-b, r1, c1) _ 8II1 (x1, y\;:: +o, r1, c1)] = -(/3i + {32 )(h + b) 2'. 0, 

(A.16) 

Jim [8II1(x1,Y1-0,p1,r1,c1) _ 8II1(x1,Y1+0,p1,r1,c1)] = (h+b) 2'.0. (A.l?) 
s-o oy1 8y1 

Proof Let c1 = y1 - E[D(p1, r1, c1)], Y1 be fixed and o > 0 a constant. Note that for 
linear demand E[D(p1 + o, r1, ci)] = E[D(p1, r1, c1)] + (/31 + {32)o. 
Substituting p1 by p1 - o lets us approach the kink at c1 = Y1 - E[D(p1, r1, ci)] from the 
left side in p1 • Hence the inventory before ordering in the second time-period x2 becomes 

X2 = Y1 - E[D(p1 - O,r1,c1)]- £1 

= Y1 - E[D(p1 - b,r1,c1)]-y1 + E[D(p1,r1,c1)] 

= Yi - E[D(p1, r1, c1)] + (/31 + /32)<5 - Y1 + E[D(p1, r1, c1)] 

= (/31 + /32)0 :::; 0. 

Since X2 S: 0 it is clear that II1(X1, Y1,P1 - b, r1, c1) = m(x1, Y1,P1 - b, r1, c1) · 
Substituting p1 by p1 + o lets us approach the kink at c1 = y1 - E[D(p1, r1, c1)] from the 
right side in p1 . Hence, the inventory before ordering becomes x2 = -(/31 + {32)o 2: 0, 
which gives II1(x1,Y1,P1 + b,r1,cil = rrt(x1,Y1,P1 + b,r1,c1)- We are now ready to 
calculate 

which gives 

Jim [II1 (x1, Y1, P1 - o, r1, c1) - II1 (x1, Y1, P1 + O, r1, c1)] = 
s-o 
Jim [IJt(x1, Y1,P1 - o, r1, c1) - II~(x1, Y1,P1 + O, r1, c1)], 
s-o 

- c(y1 - x1) - b(E[D(p1, r1, c1) + (/31 + /32)0 + c1 - Y1) -

- (P1 - b)(E [D(p1, r1, c1)] - (/31 + /32)<5 + ci) + c(y1 - xi)+ 
+ h(y1 - E[D(p1,r1,c1)] + (/31 + /32)0 - c1)]. 

By substituting c1 = y1 - E[D(p1, r1, c1)] we obtain 

Jim [IJt(x1,Y1,P1 -O,r1,c1)- IT~(x1,Y1,P1 + o,r1,c1)] = 
s-o 
lim [-2y1b + 2(/31 + /32)P1b - (b - h)(/31 + /32)0] = 0, 
s-o 

which proves equation (A.14 ). 
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Furthermore we obtain 

which results in 

= !im [E[D(p1 - 8,r1, Ei)j + E1 + (/31 + .82HP1 - c5 - b)]-o-o 
- Jim [E[D(p1 + 8. r1. ,i)] + E1 + (.81 + .82HP1 + c5 + h}] = 

o-o 
= lim [E[D(P1, r1, E1)] - (.81 + .82)8 - (.81 + .82)(0 + b) -

6-0 

- E[D(p1, r1, E1)] - (.81 + .82)8 - (.81 + .82)(8 + h}] = 
= Jim [-2(.81 + .82)8 - (.81 + .82)(h + b)] = -(.81 + .82)(h + b) 2 O. 

6-0 

ensuring concavity in p1 and thus proving (A.16 ). 

115 

Now let y1 = y1 -8 with c5 > 0 in order to approach the kink at , 1 = y1 - E[D(p1• r1• ,i)] 
from the left side in y1 . Hence x2 becomes 

X2 = Y1 - O - E[D(P1 - 8, r1, E1)] - E1 

= Y1 - o - E[D(p1. r1. ti)] - Y1 + E[D(p1, r1, ti)] = -o S: 0. 

Since X2 s: () we have Il1(X1, Yl - 0,Pl, r1. Ei) = m(x1. Y1 - o.p1. r1. EI}. 
Let y1 = y1 + o. Then similarly to above we obtain x 2 = o 2 O, which hence gives 
II1(x1,Y1 + O,P1,r1,Ei) = IT}(x1, Y1 + 6,PJ.r1.Ei). We are now ready to calculate 

!im[I11(X1,Y1 - o,p1.r1,Ei)-IT1(X1.y1 +O,p1,r1.Ei)] = 
o-0 

!im [rrt(x1. YI - 6, Pl· Tj. Ej) - IT~(X1, Y1 + 0, Pl, r1, ,i)] , 
o-0 

which gives 

lim [P1 (E [D(p1 .r1- E1 )] + E1) - c(y1 + o - xi)-
o-o 

- b(E[D(p1, r1. Ei) + 6 + E1 - yi) -
- P1(E [D(p1, r1. E1)] + ,i) + c(y1 - 6 - x1)+ 
+h(Y1 - O - E[D(p1, r1,Ei)] - E1)] = 

lim [-2co + (h + b)(y1 - o - E[D(P1. r1. E1 )] - t1 )] . 
o-o 
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Substituting <1 = Y1 - E[D(p1,r1,<1)] gives 

Jim [m(x1, Yl - b, Pl, r1, ci) - TI~(X1, Y1 + b,pl, r1, <1)] = ,-o 
Jim [-(2c + h + b)b] = 0, ,-o 

which results in equation (A.15). 

Furthermore, we obtain 

which ensures concavity in y1 and thus proves (A.17). 

• 
Lemma A.6. For the linear demand function (5.0.1), a constant b > 0 and <1 = Y1 -
E[D(p1, r1, c1)] - S*(r2(p1, ri)) the following holds for the optimal expected profit of the 
second time period v2(x2(Y1, P1, r1, <1), r2(P1, r1)): 

Jim [v2(x2(Y1, P1 -b, r1, <1), r2(P1 -b, ri) - v2(x2(Y1, P1 +b, r1, <1), r2(P1 +b, ri))] = 0, ,-o 
(A.18) 

Jim [v2(x2(Y1 -b, P1, r1, ci), r2(P1, ri) - v2(x2(Y1 +b, P1, r1, ci), r2(P1, r1) )] = 0, ,-o 
(A.19) 

Jim [8v2(x2(Y1, P1 -b, r1, <1 ), r2(P1 -b, r1)) 8v2(x2(Y1, P1 +b, r1, ci), r2(P1 +b, ri))] = 0 
~ ~ ~ , 

(A.20) 

Jim [8v2(x2(Y1 -b, P1, r1, <1), r2(P1, ri)) 8v2(x2(Y1 +b, P1, r1, <1), r2(p1, ri))] = 0. 
,-o 8y1 8y1 

(A.21) 

Proof. Let c1 = Y1 -E[D(p1,r1,<1)]-S*(r2(P1,ri))), Y1 be fixed and b > 0 a con-
stant. Substituting p1 by p1 - b lets us approach the kink at <1 = Y1 - E[D(p1, r1, <1)] -
S*(r2(p1, r1))) from the left side in p1. As in lemma A.5, the inventory before ordering in 
the second time period x2 (y1, p1 - b, r1, <1) becomes 

X2 = Y1 - E[D(p1 - b, r1, <1)] - <1 

= Y1 - E[D(p1, r1, c1)] + (/31 + /32)b - Yi + E[D(p1, r1, <1)] + S*(r2(P1, r1))) 

= S* ( r2(P1, ri))) + (/31 + /32)b. 
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Substituting Pi by p1 + o lets us approach the kink at E1 = y1 - E[D(p1, r 1, ti}] -
S*(r2(Pi, ri))) from the right side in p1 • Similarly to above x 2(y1 , p1 + o, r 1. Ei) becomes 

and thus 

We are now ready to prove equation (A. 18), which by the above results becomes 

Furthermore, we can see by Lemma A.4 that 

P2*(r2(P1 - o,ri)) 

p/(x2(Y1,P1 +o,r1,E1),r2(P1 +o.ri)) 

which yields the useful properties that 

P/(r2(p1, ri)) - ((1 - 0).820)/(2(/31 + .82)), 

A*h(P1, ri)) + ((1 - o)/320)/(2(.81 + f32)), 

E[D(P2 *(r2(P1 -o, ri) ), r2(P1 -o, ri), c2)] = E[ D(P2 *(r2(P1, r1 )), r2(P1, ri), E2)] + 0(6) 

E[D(P2 *(r2(p1 +o, ri)), r2(P1 +o, r1), £2)] = E[D(P2 *(r2(P1. ri)), r2(P1, ri), c2)] + 0(6). 

where O(o) and O(o) aretwofunctionsof o with li1110_ 0 0(o) = o and li1110_ 0 0(o) = o. 
Using equations (5.1.1) and (5.1.16), we by letting y0 = F- 1 ( ~~~) we obtain 

S*(r2(P1 - o, ri))) - E[D(P2*h(P1 - 6,ri)), r2(P1 - 6,ri),£2)] = 
= y0 + E[D(P2 *(r2(P1 - 6, ri)). r2(P1 - o. r1 ). £2)]-

- E[D(A*(r2(P1 - o.ri)),r2(P1 -o,ri),c2)] = y°. 

Moreover, note that for linear demand (5.0.1) E[D(p-6, r. c)] = E[D(p. r,c)] -6(,81 + ;32), 

which gives 

v;( r2(p1 - 0. ri)) 

=E[I1(S*h(P1, ri))) + (.81 + .82)6, S*(r2(P1 -o. ri))). P2*(r2(P1 -o. r1)), r2(p1 -6, ri), Ei] 

=P/(r2(P1 - o. ri))E[D(P/(r2(P1 - o. ri)). r2(P1 - o. ri). c2)]-

- 2c(B1 + ,8,i)6 - G(S*(r2(P1 - 6. ri) ), P/(r2(P1 - 6. r1 )). r2) 

=P/(r2(P1- ri))E[D(P2 *(r2(P1• ri) ), r2(P1, ri), £2)] + O(o)P2 *(r2(P1, ri))-

- 2c(/11 + /12)0 - G(S*(r2(P1 - o. ri)), P2*(r2(P1 - 5. ri}). r2) 
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!112(x2(Y1, P1 + <5, r1, t:1), r2(P1 + <5, ri)) = E[II(x~'H, x~'H, p2(~' H, r~'H), r~1+0, t:2] 

=p2*(~1+0 , ~ 1H)E[D(p2(~1+6, r~1+6), rrH, t:2)]-

- G(S*(r2(P1,ri))-(/31 +/32)'5,p2(x~1+6,r~1+0),r2) 

=P2 *h(P1, ri))E[D(P2 *(r2(P1, ri)), r2(P1, ri), t:1)] + O(J)P2 *(r2(P1, ri))-

- G(S*(r2(P1, r1)) - (/31 + /32)<5, P2(r2(P1 + <5, r1)), r2), 

since p2(x2(Y1,P1 + <5, r1, t:1), r2(P1 + <5, r1)) = P2(r2(P1 + <5, ri)) by lemma A.4. 
From the above two equations and by the fact that G(y,p, r) is a continuous function and 
lim,~o 0( <5) = 0, lim,~o 0( <5) = 0, it is easy to see that 

which proves equation (A.18). From equation (5.l.11) it is easy to see that for P2 
P2 ( r2 (P1, r1)) the following holds: 

8G(S*h(P1, ri)), P2 *h(P1, r1)), r2) 
8p1 

= (/31 + f32)(b - (h + b)F(S*h(P1, ri)) - E[D(P2 *, r2, c2)])), 

8G(S*(r2(P1,ri))- (/31 +f32)<5,P2*(r2(p1 +<5,ri)),r2) 
8p1 

= (/31 + f32)(b - (h + b)F(S*h(PI, r1)) - (/31 + /32)<5 - E[D(A*, r2, c2)] - 0(<5))). 

By the continuity of F(-) it follows directly that 

1. [8G(S*(r2(P1, ri)), P2 *(r2(P1, ri) ), r2) 
llll ,~o 8p1 

_ 8G(S*(r2(P1, r1)) - (/31 + /32)'5, P2*(r2(P1 + <5, ri)), r2)] 
8p1 

equals zero and thus 

which proves equation (A.20). 
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Similarly to the proof above, we now let y1 = y1 - 8 in order to approach the kink from 
the left side with respect to Y1 . x2(y1 - 8, P1, r1, E i) becomes 

X2 = Yi -8 - E[D(p1,r1,ci)] - E1 

= Y1 - 8 - E[D(p1, r1, <1)] - Y1 + E[D(P1- r1, <1)] + S*(r2(P1, ri))) 

= S*(r2(P1, ri))) - 8 :S S*(r2(P1-ri))). 

Thus v2(x2(Y1 - 8,P1, r1, <1), r2(P1-ri)) = V2*(r2(P1-r1)). 
Substituting y1 by y1 + 8 lets us approach the kink from the right side with respect to y1 . 

Similarly to above x2(y1 + 8,p1 , r 1• Ei) becomes 

and thus 

We are now ready to prove equation (A.19) , which by the above results becomes 

Analogue to above we obtain 

V;( r2(P1. rt)) 

=E[IT(S*h(P1, ri))) - 8. S*(r2(P1, ri)) ). P2 *h(P1, rt)). r2(P1, ri), <2) 

=P2 *(r2(P1Ji) )E[D(P2 *(r2(P1, rt)). r2(P1, ri). <2)] - co-
- G(S*(r2(P1-ril), P2*h(P1- ri)), r2) 

m;(x2(Y1 +8,Pt,r1,ci).r2(P1+,ri)) = 

= E[IT(S*(rilp1, ri) )) + 8, S*h(P1Ji)) + 6. p;(x~+8 , r2(P1- ri) ), r2(P1- ri). ci] 

= P2 *(r2(P2, r2))E[D(P2 *h(P2- r2)), r2(P1, rt). <2)]-

- G(S*(r2(P1, ri)) + 8. P2 *(r2(P1- ri) ), r2)-

since p2(x2(Y1 + 8, Pi, r1, ct}, r2(P1, ri)) = P2(r2(P1, ri)) by lemma A.4. 
From the above two equations and by the fact that G(y. p, r) is a continuous function it is 
again easy to see that 

which proves equation (A.19). From equation (5.1.9) we see that for P2 = P2( r2(p1• r 1 )) 
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the following holds: 

8G(S*(r2(P1, ri)), P2 *(r2(p1, ri)), r2) 

8y1 
= -b + (h + b)F(S*(rz(Pi, ri)) - E[D(Pz*, r2, c2)]), 

8G(S*(r2(P1, ri)) + 8, P2 *(r2(P1, ri)), r2) 
8y1 

= -b + (h + b)F(S*(rz(Pi, ri)) + 8 - E[D(P2 *, r2, cz)]). 

By the continuity of F( •) it follows directly that 

equals zero and thus 

I. [8G(S*(r2(P1, ri)), P2*(r2(P1, ri)), r2) 
llll 

.5-+0 8y1 
_ 8G(S*(r2(P1, ri)) + 8, P2*h(P1, ri)), r2)] 

8y1 

which proves equation (A.21). • 
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