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Preface

The international conference on Intelligent Human Computer Interaction (IHCI) is a
forum for the presentation of research results and technological advances at the
crossroads of human-computer interaction, artificial intelligence, signal processing, and
computer vision. It brings together engineers and scientists from around the world
focussing on theoretical, practical, and applicational aspects of the field.

The 9th event, IHCI 2017, took place during December 11th–13th, 2017 in Evry,
France. The present proceedings consist of papers presented at the conference.

The call for papers attracted 25 submissions from around the world, which have
been reviewed by at least two and up to four members of the International Program
Committee. Fifteen oral communications have been selected, the authors of which
come from ten countries and four continents. The summary of one of the invited talks is
also included. We thank all the invited speakers, authors, and members of the Program
Committee for their contribution in making IHCI 2017 a stimulating and productive
conference.

Finally, we gratefully acknowledge Telecom SudParis, Pierre and Marie Curie
University, and Evry Val d’Essonne University for jointly sponsoring the conference.
Special thanks go to the Telecom SudParis staff for their assistance and hard work in
organizing the conference on campus and providing the logistics.

October 2017 Patrick Horain
Catherine Achard

Malik Mallem
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Optimizing User Interfaces for Human
Performance

Antti Oulasvirta

School of Electrical Engineering, Aalto University, Espoo, Finland

Abstract. This paper summarizes an invited talk given at the 9th International
Conference on Intelligent Human Computer Interaction (December 2017, Paris).
Algorithms have revolutionized almost every field of manufacturing and engi-
neering. Is the design of user interfaces the next? This talk will give an overview
of what future holds for algorithmic methods in this space. I introduce the idea
of using predictive models and simulations of end-user behavior in combina-
torial optimization of user interfaces, as well as the contributions that inverse
modeling and interactive design tools make. Several research results are pre-
sented from gesture design to keyboards and web pages. Going beyond com-
binatorial optimization, I discuss self-optimizing or “autonomous” UI design
agents.



Simplexity and Vicariance:
On Human Cognition Principles
for Man-Machine Interaction

Alain Berthoz

Collège de France
French Academy of Science and Academy of Technology

Abstract. The study of living bodies reveals that in order to solve complex
problems in an efficient, fast and elegant way, evolution has developed pro-
cesses that are based on principles that are neither trivial nor simple. I called
them “simplexes”. They concern for example detours, modularity, anticipation,
redundancy, inhibition, reduction of dimensionality etc. They often use detours
that seem to add an apparent complexity but which in reality simplifies problem
solving, decision and action. Among these general principles, “vicariance” is
fundamental. It is the ability to solve some problem by different processes
according to the capacity of each one, the context, etc. It is also the ability to
replace a process by another in the case of deficits. It is also the possibility to
create new solutions. Indeed, it is the basis of creative flexibility.

I will give examples borrowed from perception, motor action, memory,
spatial navigation, decision-making, relationship with others and virtual worlds.
I will show its importance for the compensation of neurological deficits and the
design of humanoid robots for example. Finally, I will mention their importance
in the fields of learning and education.



Interpersonal Human-Human
and Human-Robot Interactions

Mohamed Chetouani

Pierre and Marie Curie University, Paris, France

Abstract. Synchrony, engagement and learning are key processes of interper-
sonal interaction. In this talk, we will introduce interpersonal human-human and
human-machine interactions schemes and models with a focus on definitions,
sensing and evaluations at both behavioral and physiological levels. We will
show how these models are currently applied to detect engagement in
multi-party human-robot interactions, detect human’s personality traits and task
learning.
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Optimizing User Interfaces for Human
Performance

Antti Oulasvirta(B)

School of Electrical Engineering, Aalto University, Espoo, Finland
antti.oulasvirta@aalto.fi

Abstract. This paper summarizes an invited talk given at the 9th
International Conference on Intelligent Human Computer Interaction
(December 2017, Paris). Algorithms have revolutionized almost every
field of manufacturing and engineering. Is the design of user interfaces
the next? This talk will give an overview of what future holds for algo-
rithmic methods in this space. I introduce the idea of using predictive
models and simulations of end-user behavior in combinatorial optimiza-
tion of user interfaces, as well as the contributions that inverse modeling
and interactive design tools make. Several research results are presented
from gesture design to keyboards and web pages. Going beyond combina-
torial optimization, I discuss self-optimizing or “autonomous” UI design
agents.

Talk Summary

The possibility of mathematical or algorithmic design of artefacts for human
use has been a topic of interest for at least a century. Present-day user-centered
design is largely driven by human creativity, sensemaking, empathy, and creation
of meaning. The goal of computational methods is to produce a full user inter-
face (e.g., keyboard, menu, web page, gestural input method etc.) that is good
or even “best” for human use with some justifiable criteria. Design goals can
include increases in speed, accuracy, or reduction in errors or ergonomics issues.
Computational methods could speed up the design cycle and improve quality.
Unlike any other design method, some computational methods offer a greater-
than-zero chance of finding an optimal design. Computational design offers not
only better designs, but a new, rigorous understanding of interface design. Algo-
rithms have revolutionized almost every field of manufacturing and engineering.
But why has user interface design remained isolated?

The objective of this talk is to outline core technical problems and solu-
tion principles in computational UI design, with a particular focus on artefacts
designed for human performance. I first outline main approaches to algorithmic
user interface (UI) generation. Some main approaches include: (1) use of psycho-
logical knowledge to derive or optimize designs [1–3], (2) breakdown of complex
design problems to constituent decisions [4], (3) formulation of design problems
as optimization problems [5], (4) use of design heuristics in objective functions
[6], (5) use of psychological models in objective functions [7,8], (6) data-driven
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 3–7, 2017.
https://doi.org/10.1007/978-3-319-72038-8_1



4 A. Oulasvirta

methods to generate designs probabilistically, (7) formulation of logical models
of devices and tasks to drive the transfer and refinement of designs [9], and (8)
learning of user preferences via interactive black-box machine learning methods
[10]. I ask: Why is there no universal approach yet, given the tremendous success
of algorithmic methods across engineering sciences, and what would a universal
approach entail? I argue that successful approaches require solving several hard,
interlinked problems in optimization, machine learning, cognitive and behavioral
sciences, and design research.

I start with an observation of a shared principle across the seemingly different
approaches: The shared algorithmic basis is search: “To optimize” is the act
and process of obtaining the best solution under given circumstances. Design
is about the identification of optimal conditions for human abilities. To design
an interactive system by optimization, a number of decisions is made such that
they constitute as good whole as possible. What differentiates these approaches
is what the design task is, how it is obtained, and how it is solved. Four hard
problems open up.

The first problem is the definition of design problems: algorithmic represen-
tation of the atomic decisions that constitute the design problem. This requires
not only abstraction and mathematical decomposition, but understanding of the
designer’s subjective and practical problem. I show several definitions for com-
mon problems in UI design and discuss their complexity classes. It turns out
that many problems in UI design are exceedingly large, too large for trial-and-
error approaches. To design an interactive layout (e.g., menu), one must fix the
types, colors, sizes, and positions of elements, as well as higher-level properties,
such as which functionality to include. The number of combinations of such
choices easily gets very large. Consider the problem of choosing functionality for
a design: If for n functions there are 2n − 1 candidate designs, we already have
1,125,899,906,842,623 candidates with only 50 functions, and this is not even a
large application.

The second problem is the definition of meaningful objective functions. The
objective function is a function that assigns an objective score to a design can-
didate. It formalizes what is assumed to be ‘good’ or ‘desirable’ – or, inversely,
undesirable when the task is to minimize. In applications in UI design, a key
challenge is to formulate objective functions that encapsulate goodness in both
designer’s and end-users’ terms. In essence, defining the objective function
“equips” the search algorithm with design knowledge that tells what the designer
wants and predicts how users interact and experience. This can be surface fea-
tures of the interface (e.g., visual balance) or expected performance of users
(e.g., ‘task A should be completed as quickly as possible’), users’ subjective
preferences, and so on. However, it is tempting but naive to construct objec-
tive function based on heuristics. Those might be easy to express and compute,
but they might have little value in producing good designs. It must be kept in
mind that the quality of a interface is determined not by the designer, nor some
quality of the interface, but by end-users, in their performance and experiences.
I argue that an objective function should be essentially viewed as a predictor:
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a predictor of quality for end users. It must capture some essential tendencies in
the biological, psychological, behavioral, and social aspects of human conduct.
This fact drives a departure from traditional application areas of operations
research and optimization, where objective functions have been based on natural
sciences and economics. I discuss the construction of objective function based on
theories and models from cognitive sciences, motor control, and biomechanics.

A key issue we face in defining objective functions for interface design is the
emergent nature of interaction: the way the properties of the design and the
user affect outcomes in interaction unfolds dynamically over a period of time in
the actions and reactions of the user. A key issue is people’s ability to adapt
and strategically change. The way they deploy their capacities in interaction
complicates algorithmic design, because every design candidate generated by
an optimizer must be evaluated against how users may adapt to it. I discuss
approaches from bounded agents and computational rationality toward this end.
Computational rationality (CR) [11] assumes an ideal agent performing under
the constraints posed by the environment. This assumption yields good estimates
in performance-oriented activities, but complicates computation remarkably.

The third problem is posed by algorithmic methods. I discuss trade-offs
among modern method, which can be divided into two main classes: (i) heuristics
such as genetic algorithms and (ii) exact methods such as integer programming.
Exact methods offer mathematical guarantees for solutions. However, they insist
on rigorous mathematical analysis and simplification of the objective function,
which has been successful in only few instances in HCI this far. Black-box meth-
ods, in contrast, can attack any design problem but typically demand empirical
tuning of the parameters and offer only approximate optimality. Here the design
of the objective function and design task come to fore. The choice of model-
ing formalism is central, as it determines how design knowledge is encoded and
executed, and how interaction is represented.

Fourth is the definition of task instances. In optimization parlance, task
instance is the task- and designer-specific parametrization of the design task:
“What constitutes a good design in this particular case?” There are two main
sources of information when determining a task instance. To capture a designer’s
intention, interactive optimization can be used. Characteristic of interaction
design is that the objectives can be under-determined and choices subjective
and tacit [12]. The known approaches in design tools can be divided according
to four dimensions: (1) interaction techniques and data-driven approaches for
specification of a design task for an optimizer, (2) control techniques offered for
steering the search process, (3) techniques for selection, exploration and refine-
ment of outputs (designs), (4) level of proactivity taken by the tool, for example
in guiding the designer toward good designs (as determined by an objective func-
tion). Principled approaches like robust optimization or Bayesian analysis can
be used. I discuss lessons learned in this area.

However, the designer may not always be able to report all design-relevant
objectives. For a full specification of a design task, one may need to algorith-
mically elicit what users “want” or “can” from digitally monitorable traces.
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This is known as the inverse modeling problem [13]. I discuss probabilistic meth-
ods for cognitive models. These may disentangle among beliefs, needs, capabili-
ties, and cognitive states of users as causes of their observations. Alternatively,
black box models can be used. The benefit of white-box models, however, is
that they allow the algorithm in some cases to predict the consequences (costs,
benefits) of changing a design on user.

To conclude, perhaps the most daring proposition made here is that essential
aspects of design, which has been considered a nuanced, tacit, and dynamic
activity, can be abstracted, decomposed, and algorithmically solved, moreover
in a way that is acceptable to designers. I review empirical evidence comparing
computationally to manually designed UIs. However, much work remains to be
done to identify scalable and transferable solution principles.

Even more critical is the discussion of what “design” is. Interaction design
is characterized as “the process that is arranged within existing resource con-
straints to create, shape, and decide all use-oriented qualities (structural, func-
tional, ethical, and aesthetic) of a digital artefact for one or many clients” [14].
Some scholars go as far as claiming that interaction design is through-and-
through subjective and experiential [15]. It is about conceptualizing product
ideas and designing their behavior from a user’s perspective. In this regard, com-
putational methods still cover a limited aspect of design. Transcending beyond
optimization, I end with a discussion of what artificially intelligent UI design
might mean. I claim that “AI for Design” must meet at least five defining char-
acteristics of design thinking: (1) agency, (2) problem-solving, (3) sense-making,
(4) speculation, and (5) reflection. So far, no approach exists that – in a unified
fashion and with good results – achieves this.

Acknowledgements. The work of AO has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 637991).
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Abstract. Using a dot-matrix display, it is possible to present geometrical shapes
with different rendering methods: solid shapes, empty shapes, vibrating shapes,
etc. An open question is then: which rendering method allows the fastest and most
reliable recognition performances using touch? This paper presents results of a
user study that we have conducted to address this question. Using a 60 * 60 dot-
matrix display, we asked 40 participants to recognize 6 different geometrical
shapes (square, circle, simple triangle, right triangle, diamond and cross) within
the shortest possible time. Six different methods to render the shapes were tested
depending on the rendering of shape’s outline and inside: static outline combined
with static or vibrant or empty inside, and vibrating outline combined with static
or vibrant or empty inside. The results show that squares, right triangles, and
crosses are more quickly recognized than circles, diamonds, and simple triangles.
Furthermore, the best rendering method is the one that combines static outline
with empty inside.

Keywords: Touch · Dot-matrix display · Graphics · Geometry

1 Introduction

Blind people can have access to digital documents using specific software called “screen
readers”. Screen readers can present in a linear way, either through speech synthesis or
braille, the content of a document or elements of a graphical interface. However, access
to graphics and other two-dimensional information is still severely limited for the blind.
It is not easy for them to explore 2D structures such as mathematical formulas, maps,
electronic circuit diagrams…) using a screen reader. The user is then faced with many
problems such as disorientation and difficulty to memorize and to build a correct mental
model.

The work presented in this paper is a first step of a larger project that aims at defining
new ways for the blind to have access to electronic documents while preserving spatial
layout of the document. The main idea of the project is to use a dot-matrix display to
present the general spatial layout of the document. Each element of the document struc‐
ture (title, paragraph, image, etc.) will be represented by a geometrical form that will
reflect the size and the position of the element in the document. When the user explores
this spatial layout, he/she will be able to access to the detailed content of the element
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that is currently under his/her fingers, through another modality such as speech synthesis
or braille.

As a preliminary step, two questions should be addressed. First, which geometrical
form should be used? Obviously, using rectangles is the first idea that comes in mind
but is it possible to use other forms depending for instance on the information type?
Second, which rendering method allows the best and faster recognition process?

2 Related Work

Different methods exist to translate graphical information into a tactile form to make it
accessible to a blind person [2, 3]. 3D printing, collage, thermoforming and embossed
paper [8] are great for educational purposes but they all have the same drawback: they
produce static documents which prevents useful interactive operations such as zooming
and scrolling. This leads to a drastic reduction of information density due to the limited
resolution of the skin. Furthermore, their quality decreases with use and they require
huge space to be stored.

Other devices that allow refreshable tactile display, exist. They can be classified into
two main categories. The first category concerns the devices that allow a tactile explora‐
tion of a virtual large surface using a small tactile device. A typical example of such
devices is the VTPlayer mouse [9, 10] that can be used as a classical mouse to explore a
virtual surface while receiving tactile stimuli through the index finger thanks to its 4 * 4
Braille dots. The main advantage of this device is its low cost and portability. However,
exploration is generally done using only one finger which leads to important time explo‐
ration before achieving recognition even of very simple shapes.

Another similar device is the Tactograph [11, 12]. The Tactograph includes a
STReSS2 tactile display (see Fig. 1) [5] which allows the production of a variety of
tactile stimuli providing richer rendering of textures using thin strips for stretching the
skin of the finger. However, it still allows only a single finger exploration.

Fig. 1. (a) Active area of the STReSS2 tactile display, (b) STReSS2 mounted on a planar carrier,
and (c) usage of the device. Extracted from Levesque’s website (http://vlevesque.com/papers/
Levesque-HAPTICS08/)

The second category concerns the devices that allow the tactile exploration of a large
physical surface using several fingers of both hands [6, 7]. The surface is generally
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composed by a matrix of a high number of Braille dots which play the same role as
pixels in screens. An example of such device is the dot-matrix display designed by
Shimada et al. [4] which offers 32 × 48 Braille dots. The main drawback of this kind of
devices is their cost.

In this paper, we present a study conducted using a device of this second category
to identify the rendering features that allow the fastest and most reliable recognition of
geometrical shapes. The protocol of this study was inspired by a study conducted by
Levesque and Hayward [1] on a device of the first category (the STReSS2 device).

3 User Study

For this study, we have used a 3600-dot-matrix display (60 × 60 dots) from metec AG.
The display surface is 15 × 15 cm2. The dots can be only in 2 states: up or down. The
device is presented in Fig. 2. It has also a set of buttons (some of them can be used as a
braille keyboard) and a scrollbar.

Fig. 2. The dot-matrix display used in the study

3.1 Experimental Conditions

Shapes. Six different shapes were used in the experiment. We choose the same shapes
as the ones used in [1]. As shown in Fig. 3 these shapes are: square, circle, simple triangle,
right triangle, diamond and cross.

Fig. 3. The six shapes used in the study

Size of shapes. In [1] the shapes were selected to fill a 2 or 3 cm square, leading to two
different sizes: small and large. In our experiment, we used three different sizes: small,
medium, and large. Our small and medium sizes correspond respectively to small and
large sizes of Levesque’s study (2 and 3 cm). Our large size corresponds to a 4-cm
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bounding square. We added this larger size because the dot-matrix display has less
resolution than the STReSS2 tactile display [5]. In the STReSS2 device, the center-to-
center distance between adjacent actuators is 1.2 × 1.4 mm and the actuators can deflect
toward the left or right by 0.1 mm. In our dot-matrix display, the horizontal and vertical
distances between the dots centers are the same and are equal to ~2.5 mm. The diameter
of each dot is ~1 mm. So, we kept the same sizes as in [1] but added a supplementary
(larger) one in case recognition performances would be affected by poorer resolution of
the dot-matrix display.

Rendering of shapes. Six different rendering methods were used during the experiment
depending on the way the outline1 and the inside of the shapes are displayed. Each of
these two elements can be rendered in 3 different ways: static, vibrating, empty. The
vibration effect is obtained by putting the dots up and down alternatively with a 10 Hz
frequency to not damage the device. Theoretically this should lead to 9 different
Rendering Methods (RM) as shown in Table 1.

Table 1. Features of different renderings of shape.

Outline
Inside

Static Vibrating Empty 

Static RM1 RM4 RM7

Vibrating RM2 RM5 RM8

Empty RM3 RM6 RM9

However, if we look deeper at these 9 rendering methods, we can see that 3 of them
(RM7, RM8, RM9) are not pertinent. RM9 displays nothing since both the outline and
the inside of the shape are empty. RM7 represents the same rendering method as RM1
because only the size of the shape is a little smaller if we remove the outline. Similarly,
RM8 and RM5 represent the same rendering method for the same reason. Since the size
factor is evaluated separately, we have decided to not consider RM7 and RM8.
Figure 4 illustrates examples of the 6 RMs that were kept. Note that in [1], only RM1,
RM3 and RM6 were used.

RM1 RM2 RM3 RM4 RM5 RM6

Fig. 4. The six rendering methods used in the study.

1 The width of the outline is composed by the width of one dot, so ~1 mm.
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3.2 Participants

Data were collected from 40 sighted subjects (31 men and 9 women), aged from 18 to
40 (M age = 23.7; SD age = 5.2). Many participants were people with a computer science
background. All participants filled out a background questionnaire, which was used to
gather information on personal statistics such as age and education level. Our sample
was composed by 34 right-handers and 6 left-handers. All participants were naive with
respect to the experimental setup and purpose of the experiment.

3.3 Protocol

First, each participant is invited to sign an informed consent and then an overview of
the experiment is provided. The experiment was conducted in two main phases:

1. A training phase (~5 min) allowing each participant to become familiar with the
geometrical shapes and the rendering methods used during the experiment. The six
geometrical shapes are presented to the subject (who cannot see them thanks to a
raised cover that hides the dot-matrix display) and then we ask him/her to name them.
This step is complete when the subject is able to recognize the six shapes.

2. A phase of test where subjects were asked to recognize and to name shapes as fast
as possible. This phase was decomposed in three continuous sessions (with a short
break between them). The duration of the whole process (3 sessions) was under 1 h
of time.

During the test, shapes varied according to the geometrical form, the size, and the
rendering method. The order of the forms, sizes and rendering methods was randomly
generated across participants. In all, each participant had to recognize 324 shapes
(6 forms × 3 sizes × 6 rendering methods × 3 sessions).

3.4 Measures

For each shape, we recorded time to recognize it (in milliseconds) and participant’s
answer. The participants used a button to display/hide the figure (which starts/stops the
chronometer). The answers were given verbally. We developed a program to extract
dependent variables from the log files that were generated during the test.

4 Results

The results presented in this section are considered statistically significant when
p < 0.05. Results are explicitly referred as a “trend” if p is between 0.05 and 0.1. We
applied the Shapiro-Wilk test to verify that the variables succeed to satisfy normality
assumptions. This is only verified for the recognition time variable. Recognition time
was analyzed by means of ANOVAs2 with shape, shape size, and combination of
rendering methods of shape’s outline and shape’s inside. ANOVAs were calculated

2 Regarding each factor, a one-way ANOVA was conducted for the recognition time.
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using Statistica 9. Post hoc comparisons used the Student’s t-test. A Chi 2 test was
performed for the recognition rate.

4.1 Recognition Rate

We first analyzed the results by considering all answers given by the subjects and we
conducted an analysis of Chi 2. Results show that recognition rate do not vary according
to the geometrical form, the size, and the rendering method. The global mean of the
recognition rate is 95%. Table 2 provides the detailed percentages of recognition in each
category. Chi 2 analysis reveals that shapes are well recognized whatever the geomet‐
rical form, the size, and the rendering.

Table 2. Recognition rate according the shape, the size, and the rendering.

4.2 Recognition Time

Shape effect. We observed a main effect of the geometrical shape on the recognition
time (F(5, 195) = 39,295, p < 0,001 see Fig. 5). Post hoc comparisons suggested that
participants tended to recognize more quickly crosses, squares, and right triangles than
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circles, diamonds, and simple triangles. There was no significant difference between
crosses, squares, and right triangles. In addition, there was no significant difference
between circles, diamonds, and simple triangles.

Fig. 5. Recognition time according the geometrical shapes.

Size effect. We observed a main effect of the size on the recognition time
(F(2, 78) = 86,157; p < 0,001). Post hoc comparisons suggested that participants recog‐
nized more slowly small shapes (Mean = 6219,87; SD = 1996,642) than medium
(Mean = 5300,23; SD = 63838,58) or large shapes (Mean = 5242,80; SD = 1674,63).
There was no significant difference between the medium and large shapes.

Rendering method effect. We observed a main effect of the rendering method on the
recognition time (F(5, 195) = 73,237, p < 0,001 see Fig. 6). Post hoc comparisons
suggested that the best configuration is when the rendering method combines static
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outline with empty inside. Participants recognize faster the shapes with this configura‐
tion compared to other configurations. In addition, post hoc comparisons suggested that
the worst configuration is when the rendering method combines vibrating outline with
vibrating inside. Participants recognize more slowly the shapes with this configuration
compared to other configurations. Finally post comparisons suggested that the recogni‐
tion time varies according to the combination of rendering methods.

5 Discussion

The previous section revealed three important results.

• First, the forms are well recognized regardless of the geometrical shape, the size, or
the rendering method.

• Second the recognition times appears to be significantly better with crosses, squares,
and right triangles than with circles, diamonds, and simple triangles. This result
provides an interesting cue about the exploration strategy that participants followed.
Some of them said that they start by looking for right angles in the shape which help
them to rapidly identify the form (only 1 right angle for right triangles, 4 for squares
and a lot (12) for crosses).

• Third, the rendering methods that include vibrations seem to disrupt the participants
even if there is no impact on the recognition rate. Participants spend more time to
recognize the shapes rendered with vibrations than those rendered with static outline
and empty or static insides. This result differs from Levesque and Hayward study [1]
which obtained better identification for the shapes rendered with vibrations or dots
than the ones rendered with grating. We think that this is due to the better resolution
of the STReSS2 which allows a less “aggressive” perception of the vibrations.

Fig. 7. Recognition rate comparison between the STReSS2 and the dot-matrix display according
to shapes.
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However, and even though the following results should be taken with care due to
different experimental conditions, a comparison with Levesque and Hayward results
shows that recognition of geometrical shapes is better with a dot-matrix display than
with a STReSS2 device in all cases. Figures 7, 8 and 9 show the comparison between
our average recognition rates (Dot-Matrix) and theirs (STReSS2) depending respec‐
tively, on shapes, sizes, and rendering methods.

Fig. 8. Recognition rate comparison between the STReSS2 and the dot-matrix display according
to size.

Fig. 9. Recognition rate comparison between the STReSS2 and the dot-matrix display according
to rendering method.

Concerning the recognition time, Levesque and Hayward found that recognition was
performed in 14,2 s on average, while in our study, recognition is performed in 5,6 s on
average (2,5 × faster).
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6 Conclusion

This article explored several haptic rendering methods to present geometrical shapes
through the touch using several fingers on a large physical surface: the dot-matrix
display. The presented study allowed us to collect 12960 recognition times and 12960
recognition scores (324 shapes × 40 participants). Results show that the best rendering
method is the one that combines static outline with empty inside and that squares, right
triangles, and crosses are more quickly recognized than circles, diamonds, and simple
triangles. These results are interesting for our project concerning spatial access to docu‐
ments by the blind.

The protocol of the presented study was inspired by a similar study conducted by
Levesque and Hayward on a smaller device that allows exploring a virtual surface using
only one finger: the STReSS2 device. The comparison of results shows that the recog‐
nition rates and times on a dot-matrix display are better in all cases. However, further
investigations are needed to determine if this is due to mono-finger vs multi-finger
exploration or for other reasons.

Next step of this work will be to reproduce the same experiment with visually
impaired people. It would be also interesting to study the effects of different vibration
frequencies and different outline widths as well to compare the performances of the dot-
matrix display with those of a vibrotactile device such as in [13].
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Abstract. We present a pipeline for recognizing dynamic freehand ges-
tures on mobile devices based on extracting depth information coming
from a single Time-of-Flight sensor. Hand gestures are recorded with a
mobile 3D sensor, transformed frame by frame into an appropriate 3D
descriptor and fed into a deep LSTM network for recognition purposes.
LSTM being a recurrent neural model, it is uniquely suited for classify-
ing explicitly time-dependent data such as hand gestures. For training
and testing purposes, we create a small database of four hand gesture
classes, each comprising 40× 150 3D frames. We conduct experiments
concerning execution speed on a mobile device, generalization capabil-
ity as a function of network topology, and classification ability ‘ahead of
time’, i.e., when the gesture is not yet completed. Recognition rates are
high (>95%) and maintainable in real-time as a single classification step
requires less than 1 ms computation time, introducing freehand gestures
for mobile systems.

Keywords: Mobile computing · Gestural interaction · Deep learning

1 Introduction

Gestures are a well-known means of interaction on mobile devices such as smart
phones or tablets up to the point that their usability is so well-integrated into
the interface between man and machine that their absence would be unthink-
able. However, this can only be stated for touch gestures as three-dimensional
or freehand gestures have to yet find their way as a means of interaction into
our everyday lives. While freehand gestures are steadily being included as an
additional means of control in different various fields (entertainment industry,
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infotainment systems in cars), within the domain of mobile devices a number of
limitations present obstacles to be overcome in order to make this an unequivo-
cally seamless interaction technique.

First and foremost, data has to be collected be in an unobtrusive man-
ner, hence no sensors attached to the user’s body can be utilized. As mobile
devices have to remain operable independent of the user’s location the number
of employable technologies is drastically reduced. Eligible sensor technology is
mainly limited to Time-of-Flight (TOF) technology as it is not only capable
to provide surrounding information independent of the background illumination
but moreover can do so at high frame rates. This is the presupposition to realize
an interface incorporating freehand gesture control as it allows for the system’s
reaction times to remain at a minimum. TOF technology has to yet be estab-
lished as a standard component in mobile devices (as e.g. in the Lenovo PHAB2
Pro) and it moreover suffers from a comparatively small resolution, potentially
high noise and heat development. Despite these drawbacks it is a viable choice
since the benefits outweigh the disadvantages as will be presented in this con-
tribution. Realizing freehand gestures as an additional means of control not
only overcomes problems such as usage of gloves or the occlusion of the screen
interface during touch gesture interaction. It moreover also allows for increased
expressiveness (with additional degrees of freedom) which in turns allows for a
completely new domain of novel applications to be developed (especially in the
mobile domain). This can be corroborated by the fact that car manufacturers,
which have always been boosting innovations by integrating new technologies
into the vehicle, have recently begun incorporating freehand gestures into the
vehicle interior (e.g. BMW, VW etc.). The automotive environment faces the
same problems such as stark illumination variances, but on the other hand can
compensate difficulties such as high power consumption.

In this contribution we present a light-weight approach to demonstrate how
dynamical hand gesture recognition can be achieved on mobile devices. We col-
lect data from a small TOF sensor attached to a tablet. Machine Learning models
are created by training from a dynamic hand gesture data base. These models
are in turn used to realize a dynamic hand gesture recognition interface capable
of detecting gestures in real-time.

The approach presented in this contribution can be set apart from other work
in the field of Human Activity Recognition (HAR) by the following aspects:
We utilize a single TOF camera in order to retrieve raw depth information
from the surrounding environment. This allows for high frame rate recordings of
nearby interaction while simultaneously making the retrieved data more robust
vs. nearby illumination changes. Moreover, our approach is viable using only
this single sensor, in contrast to other methodology where data coming from
various kinds of sources is fused. Furthermore, data acquired in a non-intrusive
manner allows for full expressiveness in contrast to data coming from sensors
attached to the user’s body. The process as a whole is feasible and realizable in
real-time insofar as that once the model is generated after training, it can be
simply transferred onto a mobile device and utilized with no negative impact on
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the device’s performance. The remaining sections are organized as follows: Work
presented in this contribution is contrasted to state of the art methodology within
the domain of dynamic freehand gesture recognition (Sect. 1.1). The Machine
Learning models are trained on a database described in Sect. 2.1. Data sample/s
are transformed and presented to the LSTM models in the manner outlined in
Sect. 2.2. The LSTM models along with the relevant parameters are subsequently
explained in Sect. 2.3. The experiments implemented in this contribution are laid
out in Sect. 3 along with the description of the parameter search (Sect. 3.1) and
model accuracy (Sect. 3.3). The resulting hand gesture demonstrator is explained
in Sect. 5 along with an explanation of its applicability. Section 6 sums up this
contribution as a whole and provides a critical reflection on open questions along
with an outlook on upcoming future work.

1.1 Dynamic Hand Gesture Detection - An Overview

Recurrent Neural Networks (RNNs) are employed for gesture detection by fus-
ing inputs coming from raw depth data, skeleton information and audio infor-
mation [4]. Recall (0.87) and Precision rates (0.89) peak, as expected, when
information is fused from all three channels. The authors of [5] present DeepCon-
vLSTM, a deep architecture fusing convolutional layers and recurrent layers from
an LSTM for Human Activity Recognition (HAR). Data is provided by attaching
several sensors to the human body and therewith extracting accelerometric, gyro-
scopic and magnetic information. Again, recognition accuracy improves strongly
as more data is fused. Their approach demonstrates how HAR can be improved
with the utilization of LSTM as CNNs seem not to be able to model temporal
information on their own. The authors of [6] utilize BLSTM-RNNs to recog-
nize dynamic hand gestures and compare this approach to standard techniques.
However, again body-attached sensors are employed to extract movement infor-
mation and results are comparatively low regarding the fact that little noise is
present during information extraction. No information is given with regard to
execution time raising the question of real-time applicability.

2 Methods

2.1 The Hand Gesture Database

Data is collected from a TOF sensor at a resolution of 320× 160 pixels. Depth
thresholding removes most of the irrelevant background information, leaving
only hand and arm voxels. Principal-Component Analysis (PCA) is utilized to
crop most of the negligible arm parts. The remaining part of the point cloud
carries the relevant information, i.e., the shape of the hand. Figure 1 shows the
color-coded snapshot of a hand posture.
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Fig. 1. Data and data generation. Left: Sample snapshot of a resulting point cloud
after cropping from the front (left) and side view (right) during a grabbing motion.
The lower snapshot describes the hand’s movement for each viewpoint (left and right
respectively). Right: The Setup - tablet with a picoflexx (indicated with yellow circle).
(Color figure online)

We recorded four different hand gestures from a single person at one location
for our database: close hand, open hand, pinch-in and pinch-out. The latter
gestures are performed by closing/opening two fingers. For a single dynamic
gesture recording, 40 consecutive snapshots (no segmentation or sub-sampling)
are taken from the sensor and cropped by the aforementioned procedure. In this
manner, 150 gesture samples at 40 frames per gesture are present per class in
the database, summing up to a total of 24.000 data samples.

2.2 From Point Clouds to Network Input

Description of a point cloud usually is implemented by so-called descriptors
which, in our case, need to describe the phenomenology of hand, palm and fin-
gers in a precise manner at a certain point in time. The possibilities of describing
point cloud data are confined to either utilizing some form of convexity measure
or calculating the normals for all points in a cloud. Either way, it has to remain
computationally feasible in order to maintain real-time capability. In this con-
tribution, the latter methodology is implemented: for a single point cloud, the
normals for all points are calculated. Then, for two randomly selected points in
a cloud, the PFH metric is calculated [7,8]. This procedure is repeated for up to
5000 randomly selected point pairs extracted from the cloud. Each computation
results in a descriptive value which in turn is binned into a 625-dimensional his-
togram. Therefore, one such histogram provides a description of a single point
cloud snapshot at a single point in time. These histograms form the input for
training and testing the LSTM models.
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2.3 LSTM Model for Gesture Recognition

In our model for dealing with the video frames sequentially, we use a deep RNN
with LSTM model neurons, where the LSTM term for neurons is “memory cell”
and the term for hidden layer is “memory cell”. At the core of each memory cell
is a linear unit supported by a single self-recurrent connection whose weight is
initialized to 1.0. Thus, in the absence of any other input, this self-connection
serves to preserve the cell’s current state from one moment to the next. In
addition to the self-recurrent connection, cells also receive input from input
units and other cell and gates. The key component of a LSTM cell inside the
memory block is its cell state, referred to as Ct or the cell state at time step t.
This cell state remains unique for a cell and any change to the cell state is done
with the help of gates - input gate, output gate and the forget gate. The output
of the gates is a value between 0 and 1, with 0 signifying not “let anything
through the gate” and 1 signifying “let everything through the gate”. The input
gate determines how much of the input to be forwarded to the cell, then the
forget gate calculates how much of the cell’s previous state to keep depending
on how much to let the input affect the cell state, thus, the extent to which a
value remains in the cell state and finally, the output gate computes the output
activation, thereby, determining how much of the activation of the cell to be
output.

At a time step t, the input to the network is xt and ht−1, where the former
is the input and the latter is the output at time step t− 1. For the first time
step, the ht−1 is taken to be 1.0. In the hidden layers or the memory blocks, the
output of one memory block forms the input to the next block. The following
are the equations revolving around the inner complexities of an LSTM model,
where W refers to the weights, b refers to the biases and the σ refers to the
sigmoidal function, outputting a value between 0 and 1:

it = σ(Wixxt + Wihht−1 + bi) (1)

Equation 1 refers to the calculation of the input gate. Final output of the input
gate is a value between 0 and 1.

ft = σ(Wfxxt + Wfhht−1 + bf ) (2)

Equation 2 refers to the calculation of the forget gate. Final output of the forget
gate is a value between 0 and 1.

ot = σ(Woxxt + Wohht−1 + bo) (3)

Equation 3 refers to the calculation of the output gate. Final output of the output
gate is a value between 0 and 1.

gt = tanh(Wgxxt + Wghht−1 + bg) (4)
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Equation 4 refers to the calculation of gt that gives a value between −1 and 1,
specifying the amount of importance of the input that is relevant to the cell
state, where the tanh function outputs a value between −1 and 1. Here, gt refers
to the new candidate values that must be added to the existing or the previous
cell state.

ct = ftct−1 + itgt (5)

Equation 5 refers to the calculation of the new cell state, replacing the old one.

ht = tanh(ct)ot (6)

Equation 6 refers to the calculation of the hidden state or the output of that
particular memory block, which then serves as the input to the next memory
block. The tanh function allows it to output a value between −1 and 1. Further
information about these equations can be found in [1].

The final output of the LSTM network is produced by applying a linear
regression readout layer that transforms the states Ct of the last hidden layer into
class membership estimates, using the standard softmax non-linearity leading to
positive, normalized class membership estimates.

3 Experiments and Observations

The implementation has been done in TensorFlow using Python. There is a total
150 video files for each of the 4 classes of hand gestures. The model is trained on
Ntr = 480 total samples, with 120 samples belonging to each of the 4 classes of
hand gestures. The model is then evaluated using a total of Nte = 120 samples,
with 30 samples belonging to each of the 4 classifying classes. The three parts of
the experiment adhere to this partitioning of the data. In our implementation,
each gesture is represented by a tensor of 40× 625 numbers, while the input of
the deep LSTM network corresponds to the dimension of a single frame, that is
625 numbers.

3.1 Model Parameters

Network training was conducted using the standard tools provided by the Ten-
sorFlow package, namely the Adam optimization algorithm [2,3]. Since the per-
formance of our deep LSTM network depends strongly on network topology and
the precise manner of conducting the training, we performed a search procedure
by varying the principal parameters involved here. These are given in Table 1,
as well as the range in which they were varied.
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Table 1. Principal parameter for network topology and training. The last column
indicated the range of values that were exhaustively tested for these parameters.

Symbol Meaning Variability

B Batch size 2, 5, 10

M # of Memory Blocks (MB) 1–4

C # of LSTM Cells per MB 128, 256, 512

I SGD training iterations A = 100, B = 500, C = 1000

η Learning rate 0.1, 0.001, 0.0001, 0.00001

3.2 Deep LSTM Parameter Search

Initially with B = 2, 5, 10, M is varied from 1 to 4 for each value of B, C is
varied with 128, 256 and 512 for each value of B and M , and I has been varied
between 100, 500 and 1000 for each value of the other three parameters. The
learning rate is kept constant at 0.0001. Thus, for all combinations of the B, M,
C and I, a total of 108 experiments has been carried out.

Now let the predictions for each sample data entered into the model be
denoted by Pi , where i refers to the index of the sample data in the test data.
Pi is calculated for all frames of a test sample i, where the prediction obtained
at the last frame defines Pi . It is also possible to consider Pi for frames <40,
achieving ahead-of-time guesses at the price of potentially reduced accuracy. Pi

is a vector of length 4, since there are 4 classes for classification in the experiment.
We take the argmax of these 4 elements to indicate the predicted class as shown
in Eq. 7. Now to test if the prediction is correct or not it is compared with the
label of the data sample, li.

p̃i = argmax(Pi ) (7)

ξ = 100
#(p̃i = li)

Nte
(8)

Equation 8 refers to the simple formula used for calculating the accuracy.

3.3 Measuring Accuracy as a Function of Observation Time

In the second part of our experimentation, we train the model similar to
Sect. 3.2, however in the testing phase, we calculate the predictions at differ-
ent in-gesture time steps (frames) t. Let Pi,t denote the prediction for sam-
ple i at t < 40. In order to obtain an understanding of how the prediction
varies more frames are processed, we calculate the predictions Pi,t at time steps
t = {10, 20, 25, 30, 39, 40}. Here, we perform class-wise analysis to determine
which classes lend themselves best to ahead-of-time “guessing” which can be
very important in practice.
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3.4 Speedup and Optimization of the Model

The implementation shown so far is focused on accuracy alone. Since mobile
devices in particular lack faster and more capable processing units, the aim of
this part of the article is to speed-up gesture recognition as much as possible
by simplifying the LSTM model, if possible without compromising its accuracy.
To this end, B has been kept constant at 2, while M is taken to be 1 in all the
experiments. The number of memory cells in the single memory block is taken as
either 8 or 10. Now, with such a small network, we are able to greatly speed up
the system as well as minimize the computation complexities involved regarding
the entire model.

4 Experimental Results

4.1 Deep LSTM Parameter Search

With the 108 experiments conducted by varying B, M , C and I, 20 accuracies
have been reported in Table 2, with the idea of covering the diversity of the
experimental setup of 108 experiments.

From the observations, it can be concluded that for a given M , C and I,
the accuracy improves with the increase in the value of B. Thus, B = 10 will
have a greater accuracy on the test data as compared to B = 2 or B = 5. This
can be explained by the fact that for a given I, the model undergoes a total
of (I X B) times of training in this experimental setup. Thus, as the number
of B increases, so does the value (I X B) and consequently the accuracy of
prediction. Now, for a given B, C and I, if M is varied between 1 to 4, it has
been observed that with the increase in the number of hidden layers or M , the
accuracy of prediction improves significantly. This is because, as the number of
layers increases, the network becomes more complex with the ability to take
into account more complex features from the data and hence, account for more
accurate predictions. Similarly, when keeping B, M and I constant and varying
C between 128, 256 and 512, we observe that accuracy increases with the increase
in the number of memory cells in each memory block, thereby bearing a directly
proportional relationship. Similar results were observed when I is varied, keeping

Table 2. Results for exhaustive parameter search in topology space. In total, we con-
ducted 108 experiments by varying the network topology and training parameters. The
best 18 results are shown here. The column headings correspond to the symbols defined
in Table 1.

B 2 5 10 10 5 2 10 5 5 10 10 5 2 5 2 5 5 2

M 1 1 4 3 2 1 3 2 4 1 2 1 4 4 2 4 2 1

C 512 256 128 512 128 256 256 512 128 128 128 512 128 512 512 256 128 128

I C C B B B C B C C B C C C B C C C C

ξ 100 96.7 100 98.3 100 95 96.7 96.7 100 97.5 99.2 100 100 99.2 100 100 95.8 96.7
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Fig. 2. Left: accuracy of prediction of a single test data sample, with B = 2, M = 1, C
= 512 and I = 1000, at different in-gesture time steps t. Right: accuracy of prediction
(taken at the end of a gesture) depending on training iterations for a small LSTM
network size.

B, M and C as constant parameters, which can be explained by the fact that the
model has more time or iterations to adjust its weight in order to bring about
the correct prediction. Further, Table 2 shows the accuracies for the different
combinations of the network parameters.

4.2 Measuring Accuracy as a Function of Observation Time

In this part we calculate different quality measures as a function of the frame t
they are obtained. The graph in Fig. 2 shows that as the number of time steps
increases, the accuracy increases until the maximum accuracy is reached in the
last 5 time steps. Furthermore, we can also evaluate the confidence of each clas-
sification: as classification of test sample i is performed by taking the argmax of
the network output Pi , the confidence of this classification is related to max Pi .
We might expect that the confidence of classification increases with t < 40 as
well as more frames have been processed for higher t. Now, Fig. 3a and b depicts
the average maxima plus standard deviations (measured on test data) as a func-
tion of their class. We observe that, in total coherence to the increase in accuracy
over in-gesture time t, the certainty of predictions increases as well, although we
observe that this is strongly depending on the individual classes, reflecting that
some classes are less ambiguous than others.

4.3 Speedup and Optimization of the Model

We observe that as the size of the network is greatly reduced comprising a single
memory block and the number of memory cells being either 8 or 10, the accuracy
is not as great as observed in Sect. 4.1. Hence, in order to accomplish the same
level of accuracy as obtained in Sect. 4.1, the number of iterations for the training
process was increased. The performances can be referred to in Fig. 2, showing
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(a) Average and standard devia-
tions of prediction maxima plotted
against in-gesture time for classes
1 and 2

(b) Average and standard devia-
tions of prediction maxima plotted
against in-gesture time for classes
3 and 4

Fig. 3. “Ahead of time” classification accuracy for classes 1 and 2 (left) as well as 3
and 4 (right).

that 100% accuracy can be achieved even with small networks, although training
time (and thus the risk of overfitting) increases strongly.

5 System Demonstrator

5.1 Hardware

The system setup consists of a Galaxy Notepro 12.2 Tablet running Android
5.02. A picoflexx TOF sensor from PMD technologies is attached to the tablet
via USB. It has an IRS1145C Infineon 3D Image Sensor IC chip based on pmd
intelligence which is capable of capturing depth images with up to 45 fps. VCSEL
illumination at 850 nm allows for depth measurements to be realized within a
range of up to 4 m, however the measurement errors increase with the distance
of the objects to the camera therefore it is best suited for near-range interac-
tion applications of up to 1 m. The lateral resolution of the camera is 224× 171
resulting in 38304 voxels per recorded point cloud. The depth resolution of the
picoflexx depends on the distance and with reference to the manufacturer’s spec-
ifications is listed as 1% of the distance within a range of 0.5–4 m at 5 fps and 2%
of the distance within a range of 0.1–1 m at 45 fps. Depth measurements utiliz-
ing ToF technology require several sampling steps to be taken in order to reduce
noise and increase precision. As the camera allows several pre-set modes with a
different number of sampling steps we opt for 8 sampling steps taken per frame
as this resulted in the best performance of the camera with the lowest signal-
to-noise ratio. This was determined empirically in line with the positioning of
the device. Several possible angles and locations for positioning the camera are
thinkable due to its small dimensions of 68 mm× 17 mm× 7.25 mm. As we want
to setup a demonstrator to validate our concept the exact position of the camera
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Fig. 4. Graph plotting the time required to crop the hand and reduce the number of
relevant voxels with respect to the number of total points in the cloud.

is not the most important factor however should reflect a realistic setup. In our
situation we opted for placing it at the top right corner when the tablet is placed
in a horizontal position on the table. However, it should be stated here that any
other positioning of the camera would work just as well for the demonstration
presented in this contribution.

5.2 System Performance

One classification step of our model takes about [1.6e−05, 3.8e−05] of compu-
tation time (in s). As Fig. 4 indicates, the time required to crop the cloud to its
relevant parts is linearly dependent on the number of points within the cloud.

This is the main bottleneck of our approach as all other steps within
the pipeline are either constant factors or negligible w.r.t. computation time
required. During real-time tests our systems achieved frame rates of up to 40 fps.

6 Conclusion

We presented a system for real-time hand gesture recognition capable of run-
ning in real time on a mobile device, using a 3D sensor optimized for mobile
use. Based on a small database recorded using this setup, we prove that high
speed and an excellent generalization capacity are achieved by our combined pre-
processing+deep RNN-LSTM approach. As LSTM is a recurrent neural network
model, it can be trained on gesture data in a straightforward fashion, requiring
no segmentation of the gesture, just the assumption of a maximal duration cor-
responding to 40 frames. The preprocessed signals are fed into the network frame
by frame, which has the additional advantage that correct classification is often
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achieved before the gesture is completed. This might make it possible to have an
“educated guess” about the gesture being performed very early on, leading to
more natural interaction, in the same way that humans can anticipate the reac-
tions or statements of conversation partners. In this classification problem, it is
easy to see why “ahead of time” recognition might be possible as the gestures
differ sufficiently from each other from a certain point in time onwards.

A weak point of our investigation is the small size of the gesture database
which is currently being constructed. While this makes the achieved accuracies
a little less convincing, it is nevertheless clear that the proposed approach is
basically feasible, since multiple cross-validation steps using different train/test
subdivisions always gave similar results. Future work will include performance
tests on several mobile devices and corresponding optimization of the used algo-
rithms (i.e., tune deep LSTM for speed rather than for accuracy), so that 3D
hand gesture recognition will become a mode of interaction accessible to the
greatest possible number of mobile devices.
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Abstract. In recent years, unmanned aerial vehicles have received a sig-
nificant attention in the research community, due to their adaptability in
different applications, such as surveillance, disaster response, traffic mon-
itoring, transportation of goods, first aid, etc. Nowadays, even though
UAVs can be equipped with some autonomous capabilities, they often
operate in high uncertainty environments in which supervisory systems
including human in the control loop are still required. Systems envisaging
decision-making capabilities and equipped with flexible levels of auton-
omy are needed to support UAVs controllers in monitoring operations.
The aim of this paper is to build an adjustable autonomy system able to
assist UAVs controllers by predicting mental workload changes when the
number of UAVs to be monitored highly increases. The proposed sys-
tem adjusts its level of autonomy by discriminating situations in which
operators’ abilities are sufficient to perform UAV supervision tasks from
situations in which system suggestions or interventions may be required.
Then, a user study was performed to create a mental-workload predic-
tion model based on operators’ cognitive demand in drone monitoring
operations. The model is exploited to train the system developed to infer
the appropriate level of autonomy accordingly. The study provided pre-
cious indications to be possibly exploited for guiding next developments
of the adjustable autonomy system proposed.
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1 Introduction

In recent years, the field of aerial service robotics applications has seen a rapidly
growing interest in the development of Unmanned Aerial Vehicles (UAVs) equip-
ped with some autonomous capabilities. However, since UAVs often operate in
high uncertainty and dynamic scenarios characterized by unpredictable failures
and parameter disturbances, no totally-autonomous control system has emerged
yet [1]. Supervisory systems including human in the control loop are required to
both monitor UAV operations and assist UAV controllers when critical situations
occur [2,3].

Systems equipped with flexible levels of autonomy (LOAs) and decision-
making capabilities in uncertain environments may be exploited to dynamically
allocate human-machine functions by discriminating situations where operators’
skills are sufficient to perform a given task from situations where system sugges-
tions or interventions may be required [4–6]. The assessment of operator multi-
tasking performance as well as the level of his/her mental effort for monitoring
UAVs, generally termed as “cognitive or mental workload” [7], may be used to
determine which LOA is needed for the system.

By leveraging the above considerations, this paper reports on the activi-
ties that have been carried out at Politecnico di Torino and at TIM JOL Con-
nected Robotics Applications LaB (CRAB) to develop, through an assessment
of humans’ mental workload, an adjustable autonomy system equipped with
some decision-making capabilities in UAV-traffic monitoring scenarios. The sys-
tem, later referred to as “control tower”, was devised to autonomously infer the
appropriate level of autonomy by exploiting a mental workload prediction model
built on operators’ cognitive demand in monitoring a growing number of UAVs
with an increasing level of risk.

A simulation framework was developed to reproduce both swarm of
autonomous drones flying in a 3D virtual urban environment and critical con-
ditions they could be involved into. Afterwards, a user interface showing the
2D map of the city was developed to both display drones’ positions and drones’
flight information and allow human operators to monitor and intervene when
critical conditions occur. A Bayesian Network (BN) classifier was exploited in
this work to build the mental workload prediction model described above. This
classifier was also leveraged as learning probabilistic model due to its capability
to solve decision problems under uncertainty [8].

A user study was carried out with several volunteers, who were asked to
perform some supervision and monitoring tasks of a variable number of drones
with a growing level of risk. During each experiment, participants were asked to
evaluate their perceived mental workload in order to train the system developed
inferring the appropriate level of autonomy accordingly.

The rest of the paper is organized as follows. In Sect. 2, relevant literature in
the area of adaptive autonomy systems is reviewed. In Sect. 3, the architecture of
the system proposed in this study is described. Section 4 provides an overview of
the user interface exploited in this study. Section 5 introduces the methodology
that has been adopted to perform the experimental tests and discusses results
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obtained. Lastly, Sect. 6 concludes the paper by providing possible directions for
future research activities in this field.

2 Related Work

Many studies in aerial robot applications domain have investigated the evalua-
tion and classification of cockpit operator’s workload.

A number of studies have revealed the advantages in exploiting dynamic
function allocations for managing operator workload and maintaining him or
her focused in control loops [9,10]. In literature, several criteria have been inves-
tigated to evaluate human’s cognitive load. The main measurement techniques
have been historically classified into three categories: physiological, subjective,
and performance-based [11]. Different techniques for mental workload assessment
and classification have been proposed in this field.

Many research studies have focused on physiological measurements for assess-
ing operator cognitive load in real time. For instance, Scerbo et al. [12] pro-
posed the EEG power band ratios as example of workload measurement in
adaptive automation. Wilson et al. [13] exploited EEG channels, electrocardio-
graphic (ECG), electrooculographic (EOG), and respiration inputs as cognitive
workload evaluation and an Artificial Neural Network (ANN) as classification
methodology. Magnusson [14] examined the pilots’ Heart Rate (HR), Heart Rate
Variability (HRV), and eye movements in simulator and real flight.

Despite these studies have provided evidences in merging more than one
physiological measurements to improve the accuracy of workload classification
[13,15], such approaches have proved to be very infeasible from a measurement
perspective, affected by the emotional state of the operator and impractical in
aircraft cockpits application due to the need of wearing different devices at the
same time [16].

In parallel to these studies, other approaches were investigated involving
physiological measures in combination with other classes of workload assess-
ment techniques. As a matter of examples, in [8] the authors performed opera-
tor’s workload evaluation in piloting a flying aircraft by using EEG signal with
NASA-TLX questionnaire as subjective measure and a Bayesian Network as
classification method. Di Nocera et al. in [17] have investigate operator’s work-
load evaluation engaged in simulated flight employing the eye fixations measure
and NASA-TLX questionnaire as assessment methodology and Nearest Neigh-
bor algorithm (NN) as classification method. In [16], the authors investigated
different classes of cognitive workload measures by merging cardiovascular activ-
ity and secondary task performance (a performance-based technique), as inputs
to an Artificial Neural Network (ANN) for operator cognitive state classification
during a simulated air traffic control task.

Based on the short but representative review above, it can be observed
that the panorama of mental workload assessment and classification techniques
in aerial robotics applications is quite heterogeneous. By taking into account
advantages and drawbacks of the above solutions, the system proposed in this
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paper combines subjective workload assessment techniques with a probabilistic
Bayesian Network classifier to support UAV controllers in monitoring operations
by autonomously inferring the appropriate LOA for the specific situation.

3 Proposed System

In the following, the adjustable autonomy system will be introduced, by provid-
ing also some implementation details.

3.1 Architecture Overview

The Adjustable Autonomy System Architecture (AASA) implementing the basic
idea inspiring the present paper is illustrated in Fig. 1. It consists of three main
components: UAVs Simulator (left), Bandwidth Simulator (right) and Adjustable
Autonomy Control Tower (down). More specifically, the UAVs Simulator is the
block devoted to load the 3D urban environment and execute the 3D drones
flight simulation in it. A 3D physics engine was also exploited to test different
flying scenarios in conditions as similar as possible to a realistic environment. The
Bandwidth Simulator block was used to reproduce the network transmission rate
of the simulated city. Since drones communicate or send information through the
network, a low bandwidth connection could lead to critical conditions for UAV
controllers. The Adjustable Autonomy Control Tower hosts Alert and Decision
modules. The former determines the state for each drone by mapping the set of
information collected by UAVs and Bandwidth Simulators, i.e., drones’ battery
level, their distance from obstacles, with different levels of risk, later referred
to as “Alert”. Three different levels are used to discriminate the drone’s level
of risk, namely: “Safe”, “Warning” and “Danger”. The latter is responsible for
establishing the appropriate level of autonomy by elaborating both the operator’s
mental workload and his performances via the “Alert” level of each drone.

Fig. 1. Adjustable autonomy system architecture.
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3.2 UAVs Simulator

The UAVs Simulator is the module responsible for performing the 3D drones’
simulation in an urban environment. It consists of three different modules namely
Autopilot, Physics Simulation and Ground Control Station (GCS).

The Autopilot module contains the flight software allowing drones to fly sta-
ble during the flight. More specifically, the Software-In-The-Loop (SITL)1 sim-
ulator was exploited to run the UAV flight code without any specific hardware.
Within this simulation tool, the un-compiled autopilot code, which normally
runs on the drone’s onboard computer, is compiled, simulated and run by the
SITL simulation software itself. In the specific case, the SITL software was used
to run the PX4 Autopilot Flightcode2, an open source UAV firmware of a wide
range of vehicle types.

The Physics Simulation module is responsible for replicating the real world
physics of drones’ flight. In this work, Gazebo3 was exploited as a real-time
physics engine in order to emulate the 3D models of UAVs, their physic properties
and constraints and their sensors (e.g. laser, camera) in a 3D urban environment.
Gazebo runs on Robot Operating System (ROS)4, which is a software framework
developed for performing robotics tasks.

The Ground Control Station (GCS) module contains the software needed
to setup drones’ starting GPS locations, get real-time flight information, plan
and execute drones’ missions. The communication between the PX4 Autopilot
Flightcode and the GCS module is provided by the Micro Air Vehicle ROS
(MAVROS) node with the MAVLink communication protocol. As illustrated in
Fig. 1, MAVProxy node acts as an intermediary between the GCS and UAVs
supporting MAVLink protocol.

Lastly, as illustrated in Fig. 1, this module provides UAVs information data
to the Adjustable Autonomy Module by means of the RosBridge Protocol5. More
specifically, these information regarding drones’ battery level, later abbreviated
b and their distance from obstacles (e.g. buildings), later abbreviated o, are
gathered from the Alert Module to determine the status of each drone.

3.3 Bandwidth Simulator

In this work, the network transmission rate was assumed to depend on two
different variables: population density of the city sites (parks, stadiums, schools,
etc.) and the network coverage. Three different values, in the range [1;3] - where
1 is “Low”, 2 is “Medium” and 3 is “High” - were used to describe the population
density and network coverage levels of the city according to daily time slots and
OpenSignal6 data respectively. A grid on the map was created by storing in
1 http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html.
2 https://px4.io.
3 https://gazebosim.org.
4 https://www.ros.org.
5 https://wiki.ros.org/rosbridge suite.
6 https://opensignal.com.

http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://px4.io
https://gazebosim.org
https://www.ros.org
https://wiki.ros.org/rosbridge_suite
https://opensignal.com
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each cell the population density and coverage values described above in order to
calculate the bandwidth in the considered area. The resulting transmission rate
for each cell was computed according to a linear polynomial function y of the
above values as follow:

Bandwidth =

⎧
⎨

⎩

High if y < 0.5
Medium if 0.5 ≥ y < 1.5
Low if y ≥ 1.5

As illustrated in Fig. 1, the three different calculated bandwidth levels (later
abbreviated n) are sent to the Adjustable Autonomy Module in order to deter-
mine the transmission rate around the drone’s position on the map.

3.4 Adjustable Autonomy Control Tower

The Adjustable Autonomy Control Tower consists of two submodules namely:
Alert Module and Decision Module.

The Alert Module, as illustrated in Fig. 1, receives data from the UAVs and
Bandwidth Simulators as inputs. Each input is associated to three different vari-
ables, namely “High”, “Medium” and “Low” according to Table 1 and each vari-
able is matched with a numeric value in the range [1; 3] - where 1 is “Low” and
3 is “High”.

Table 1. Drones’ information association to variables

Input variables Description Variables/numeric values

o Drone’s distance from an
obstacle

Low= [5–25]m;
Medium= [25–50]m;
High= [50–100]m

b Drone’s battery level Low= [0–20]%;
Medium= [21–60]%;
High= [61–100]%

n Transmission rate around
drone’s position

Output of the bandwidth
simulator

The mathematical formula described in (1) was exploited to compute the
Alert :

y =
1

b − 1
∗ 1
o − 1

∗ 1
n − 1

(1)

where b, o, n, represent the three inputs listed in Table 1 and y represents the
drone’s level of risk. Thus, the resulting Alert was calculated as follows:

Alert =

⎧
⎨

⎩

Danger if b = 1 ∨ o = 1 ∨ n = 1
Warning if 0.15 < y < 1.5
Safe if y ≥ 1.5
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It can be observed in (1) that when one of the input variables value is “Low”,
the Alert assumes the “Danger” value. When the input variables values increase,
then the Alert decreases from “Danger” to “Safe” through the “Warning” level.

The Decision Module represents the core of the devised architecture. It is
responsible for inferring the appropriate level of autonomy by elaborating both
operators’ mental workload and mission outcomes via the number of UAVs
divided by “Alert” state.

A Bayesian Network (BN) classifier, which is a learning probabilistic model
from data, was selected for representing both all variables involved in the study
and their relationships in order to infer conclusions when some variables are
observed. The structure of this model where the estimate LOA of the system is
a direct child of the mission outcomes node via workload node is illustrated in
Fig. 2. It was considered that the probability of changes in operators’ workload
is conditioned on changes in the number of drones in “Alert” state. Thus, the
probability to successfully complete missions is influenced by operators’ cognitive
workload.

The LOAs proposed in this work, were namely: “Warning”, “Suggestion” and
“Autonomous” where the system warns the operator if critical situations occur,
suggests feasible actions to him or monitors and performs actions autonomously
without any human intervention respectively.

Fig. 2. Bayesian Network model inferring the LOA from drones missions outcomes
thus from subjective mental workload features via number of UAVs divided by “Alert”
state.

4 User Interface

In this section, a user interface showing the 2D map of the city for display-
ing drones’ positions and useful information for the human operator is pre-
sented. The devised interface allows the human operator to take control of drones
through different flight commands. Depending on the current LOA of the sys-
tem, the number or type of flight commands displayed dynamically changes thus
defining the “Warning” or “Suggestion” interface.

A wide region of the operator’s display is covered with the 2D map of the city
in which drones are shown in real time. A colored marker on the map is used to
indicate both the drone’s GPS position and its current “Alert” (Fig. 3a). Three
different color are used to depict the drone’s level of risk: green (“Safe”), yellow
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Fig. 3. Warning interface (a), UAVs data summary (b), flight commands in Suggestion
interface (c) and control and display information buttons (d). (Color figure online)

(“Warning”) and red (“Danger”). Drone’s marker color changes from green to
red according to the linear interpolation described in (1). An extensive visual
summary of data about each drone is shown on the panel in the right side of the
interface (Fig. 3b). For each drone is reported its unique name, its battery level,
the bandwidth coverage of the area around its location and its flying altitude.
Right below the map are five controls buttons by which the operator can either
issue flight commands or show information about the map or UAVs are placed
(Fig. 3d). The “Start” button is used to run the UAVs simulation, whereas the
“Options” button is used to show or hide the bandwidth coverage grid of the
city and the drones’ paths. The other three buttons namely, “Land”, “Hovering”,
and “Change Path” are only available in the “Warning” interface and are used
by the human operator to take direct control of the drone. In this modality, the
UAV controller can land, hover or change the drone’s assigned path by defining
the next waypoint with respect to the drone’s current position. On the contrary,
in the “Suggestion” interface, the operator can only select actions among those
suggested from the system in the summary panel on the right of the interface
(Fig. 3c), according to Table 2. The replanning action implemented in this work
provides an alternative path from the actual position of the drone to its target
location by exploiting the Bing Map REST API7 with a route planning request.

5 Experimental Results

As anticipated, the goal of this paper is to build an adjustable autonomy system
exploiting decision-making capabilities able to assist control tower operator by
7 https://msdn.microsoft.com/it-it/library/ff701713.aspx.

https://msdn.microsoft.com/it-it/library/ff701713.aspx
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Table 2. System suggested actions for each drone.

Alert’s input variables Variables values Feasible actions

distanceObstacle Medium ∨ Low Hovering, Replanning, Land

levBattery Medium ∨ Low Land, Return to Launch (RTL)

levBandwidth Medium ∨ Low Replanning, Land

predicting mental workload changes or overload when the number of UAVs to
be monitored highly increases. To this aim, a BN probabilistic model classifier
was defined in this work to learn from data collected through a user study,
how to infer the appropriate level of autonomy in drone-traffic-control tasks.
Participants involved in the study (6 males and 2 females, aged between 24
to 27), were selected from the students of Politecnico di Torino in order to
gather data needed for developing a first prototype of the system. A preliminary
experiment with 4 participants was conducted to establish a prior subdivision
of the number of drones in three different ranges, namely: “Low”, “Medium”,
and “High”. In order to do this, participants were invited to monitor from 1 to
6 UAVs characterized by a level of risk linearly proportional to the number of
drones. Results obtained showed that a number of drones in “Low”, “Medium”
and “High” ranges consists in 1, 2 and from 3 up UAVs respectively.

Afterwards, a brief training phase was performed to instruct participants to
act as a real UAVs controller by performing some supervision and monitoring
tasks of a growing number of drones. They were invited to monitor and eventually
intervene on drones’ behavior by exploiting flight commands showed in the user
interface when critical conditions were warned by the UAVs through an alert.

The experiment was organized in six sessions (1 practice and 5 tests) of two
trials, one in “Warning” mode and the other in “Suggestion” mode by exploiting
the related interface. The above modalities were chosen in a random order so
that to limit the effect of learning. Each trial lasted approximately 4 min.

The first test (labeled T1), consisted of a single flying drone whose path was
designed for avoiding obstacles on its route. The other two tests T2 and T3 were
meant to evaluate the operator’s performance in monitoring two drones flying
in a medium bandwidth zone and at risk of colliding, respectively. The fourth
test (labeled T4) consisted of three drones, two of which at high risk of colliding
and one with a medium battery level. The other test T5 consisted of five drones,
three of which at high risk of colliding. Lastly, T6 consisted of six drones, each
of which required operator’s interventions to successfully complete the mission.
The outcome of each test may be “successfully completed” - if all drones land
correctly in the intended positions - or “failed” - if at least one drone crashes.
Such tasks have been specifically designed to test the operator’s performance in
the possible scenarios he could be involved into in air-traffic management.

During each trial, quantitative data about number of unmanaged drones thus
the outcome of each mission as well as information about the “Alert” status of
each drone were recorded. At the end of each trial, participants were asked to fill
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a NASA Task Load Index (TLX) questionnaire [18] for each action performed on
the drones. This questionnaire was exploited to evaluate operators’ self-assessed
workload on a six-dimensions scale regarding: mental demand, physical demand,
temporal demand, performance, effort, and frustration, with a score from 0 to
100. A global score is then calculated by a weighting procedure to combine
the six individual scale ratings. At the end of each session (after two trials),
participants were also asked to indicate which LOA of the system they preferred
in performing the test. For each participant, the execution of the tests and the
compilation of the questionnaires took about 2 h.

Fig. 4. Results in terms of (a) percentage of participants able to succeed missions and
(b) NASA-TLX average score in the considered missions.

Results obtained in terms of number of completed missions as well as per-
centage of participants able to complete such missions are reported in Fig. 4a.
Whereas results concerning average values of the operators’ perceived workload
scores are illustrated in Fig. 4b. It can be observed that the percentage of par-
ticipants able to complete mission T1 is significantly greater compared to the
missions T5 and T6. Concerning operators’ self-assessed mental workload, the
NASA-TLX average score of mission T6 appeared to be considerably higher
than the others. Moving from these findings, operators’ mental workload score
in managing 1, 2 or more than 3 UAVs may be labeled as “Low”, “Medium”
and “High” workload respectively. These findings corroborate the preliminary
results obtained above by confirming the previous subdivision into three ranges
according to the number of drones.

Results obtained were then exploited to train the Bayesian Network classifier
to learn how to determine the appropriate level of autonomy for the system.
Evaluation from the point of view of accuracy was then performed. For this
purpose, a cross validation technique was used to test the classification model
performance and its ability to predict LOAs on unseen data. According to this
validation methodology, data collected were divided into two different groups,
namely training set - for training the BN - and validation set - for accuracy
validation - as follows: 80% and 20% of the data respectively. Overall data set
contains as many rows as the actions carried out by participants on drones. Each
row consists of the number of UAVs in the three “Alert” states, the operator’s
mental workload level, the outcome of the mission and his/her preferred LOA
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in that situation. An example of a test result is shown in Table 3. Then the
corresponding line for building both training and validation sets is shown in
Table 4. The Bayesian Network training phase was performed by exploiting the
Netica Software8 then the validation methodology was performed by obtaining a
classification LOA accuracy equal to 83.44%. Table 5 shows the confusion matrix
for each level of autonomy considered in this study.

Table 3. Example of a test result with 3 UAVs.

Drone 1 Drone 2 Drone 3 Workload MissionOutcome Decision

Safe Safe Warning 15.36 Success Warning

Table 4. Example of a row in the training or validation set.

#UAVs “Safe” #UAVs “Warning” #UAVs “Danger” Workload MissionOutcome Decision

Medium Low Null Low Success Warning

Table 5. Confusion matrix

TrueWarning TrueSuggestion TrueAutonomous ClassPrecision

Pred. warning 15 1 0 93.75%

Pred. suggestion 1 30 7 78.95%

Pred. autonomous 0 4 19 82.61%

Class recall 93.75% 85.71% 73.08%

6 Conclusions and Future Work

In this work, an adjustable autonomy system exploiting decision-making capa-
bilities was developed to assist UAV operators by predicting the appropriate
LOA relying on operators’ mental workload measurements in drone monitoring
scenarios. A Bayesian Network (BN) classifier was exploited as learning proba-
bilistic model and the NASA-TLX questionnaire as subjective workload assess-
ment technique. Obtained results show the proposed model is able to predict the
appropriate LOA with an accuracy of 83.44%. Future work will focus on alter-
native workload assessment techniques, such as physiological measurements, to
capture cognitive information in real-time and continually with higher reliability
in the measurements.

8 https://www.norsys.com.

https://www.norsys.com


Adjustable Autonomy for UAV Supervision Applications 43

References

1. Chen, H., Wang, X.m., Li, Y.: A survey of autonomous control for UAV. In: Inter-
national Conference on Artificial Intelligence and Computational Intelligence, AICI
2009, vol. 2, pp. 267–271. IEEE (2009)

2. Chen, J.Y., Barnes, M.J., Harper-Sciarini, M.: Supervisory control of unmanned
vehicles. Technical report, DTIC Document (2010)

3. Kopeikin, A., Clare, A., Toupet, O., How, J., Cummings, M.: Flight testing a
heterogeneous multi-UAV system with human supervision. In: AIAA Guidance,
Navigation, and Control Conference, p. 4825 (2012)

4. Jacobs, B., De Visser, E., Freedy, A., Scerri, P.: Application of intelligent aiding
to enable single operator multiple uav supervisory control. Association for the
Advancement of Artificial Intelligence, Palo Alto (2010)

5. Squire, P., Parasuraman, R.: Effects of automation and task load on task switch-
ing during human supervision of multiple semi-autonomous robots in a dynamic
environment. Ergonomics 53(8), 951–961 (2010)

6. Holsapple, R., Baker, J., Chandler, P., Girard, A., Pachter, M.: Autonomous deci-
sion making with uncertainty for an urban intelligence, surveillance and reconnais-
sance (ISR) scenario. In: AIAA Guidance, Navigation and Control Conference and
Exhibit, p. 6310 (2008)

7. Cain, B.: A review of the mental workload literature. Technical report, DTIC
Document (2007)

8. Besson, P., Dousset, E., Bourdin, C., Bringoux, L., Marqueste, T., Mestre, D.,
Vercher, J.L.: Bayesian network classifiers inferring workload from physiological
features: compared performance. In: 2012 IEEE Intelligent Vehicles Symposium
(IV), pp. 282–287. IEEE (2012)

9. Bennett, K.B., Cress, J.D., Hettinger, L.J., Stautberg, D., Haas, M.W.: A theoret-
ical analysis and preliminary investigation of dynamically adaptive interfaces. Int.
J. Aviat. Psychol. 11(2), 169–195 (2001)

10. Kaber, D.B., Riley, J.M.: Adaptive automation of a dynamic control task based on
secondary task workload measurement. Int. J. Cogn. Ergon. 3(3), 169–187 (1999)

11. Miller, S.: Workload measures. National Advanced Driving Simulator, Iowa City
(2001)

12. Mark W, S., Frederick G, F., Raja, P., Francesco Di, N., Lawrence J Prinzel, I.:
The efficacy of psychophysiological measures for implementing adaptive technology
(2001)

13. Wilson, G.F., Monett, C.T., Russell, C.A.: Operator functional state classification
during a simulated ATC task using EEG. In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 41, p. 1382. Sage Publications, Los
Angeles (1997)

14. Magnusson, S.: Similarities and differences in psychophysiological reactions
between simulated and real air-to-ground missions. Int. J. Aviat. Psychol. 12(1),
49–61 (2002)

15. Wilson, G., Harris, D.: Real-time adaptive aiding using psychological operator
state assessment. In: Engineering Psychology and Cognitive Ergonomics. Ashgate,
Aldershot (2001)

16. Kaber, D.B., Perry, C.M., Segall, N., Sheik-Nainar, M.A.: Workload state classifi-
cation with automation during simulated air traffic control. Int. J. Aviat. Psychol.
17(4), 371–390 (2007)



44 F. Bazzano et al.

17. Di Nocera, F., Camilli, M., Terenzi, M.: Using the distribution of eye fixations
to assess pilots’ mental workload. In: Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 50, pp. 63–65. Sage Publications Sage,
Los Angeles (2006)

18. Rubio, S., Dı́az, E., Mart́ın, J., Puente, J.M.: Evaluation of subjective mental
workload: a comparison of SWAT, NASA-TLX, and workload profile methods.
Appl. Psychol. 53(1), 61–86 (2004)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Brain Computer Interfaces



Classification of Motor Imagery Based EEG
Signals Using Sparsity Approach

S. R. Sreeja1(B), Joytirmoy Rabha1, Debasis Samanta1, Pabitra Mitra1,
and Monalisa Sarma2

1 Department of Computer Science and Engineering, Indian Institute
of Technology Kharagpur, Kharagpur, West Bengal, India

sreejasr@iitkgp.ac.in, joydan4123@gmail.com,

dsamanta@sit.iitkgp.ernet.in, pabitra@cse.iitkgp.ernet.in
2 Subir Chowdhury School of Quality and Reliability, Indian Institute

of Technology Kharagpur, Kharagpur, West Bengal, India
monalisa@iitkgp.ac.in

Abstract. The advancement in brain-computer interface systems
(BCIs) gives a new hope to people with special needs in restoring their
independence. Since, BCIs using motor imagery (MI) rhythms provides
high degree of freedom, it is been used for many real-time applications,
especially for locked-in people. The available BCIs using MI-based EEG
signals usually makes use of spatial filtering and powerful classification
methods to attain better accuracy and performance. Inter-subject vari-
ability and speed of the classifier is still a issue in MI-based BCIs. To
address the aforementioned issues, in this work, we propose a new classi-
fication method, spatial filtering based sparsity (SFS) approach for MI-
based BCIs. The proposed method makes use of common spatial pattern
(CSP) to spatially filter the MI signals. Then frequency bandpower and
wavelet features from the spatially filtered signals are used to bulid two
different over-complete dictionary matrix. This dictionary matrix helps
to overcome the issue of inter-subject variability. Later, sparse repre-
sentation based classification is carried out to classify the two-class MI
signals. We analysed the performance of the proposed approach using
publicly available MI dataset IVa from BCI competition III. The pro-
posed SFS method provides better classification accuracy and runtime
than the well-known support vector machine (SVM) and logistic regres-
sion (LR) classification methods. This SFS method can be further used
to develop a real-time application for people with special needs.

Keywords: Electroencephalography (EEG)
Brain computer interface (BCI) · Motor imagery (MI)
Sparisty based classification · BCI for motor impaired users

1 Introduction

Brain-Computer Interface systems (BCIs) provides a direct connection between
the human brain and a computer [20]. BCIs capture neural activities associated
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 47–59, 2017.
https://doi.org/10.1007/978-3-319-72038-8_5
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with an external stimuli or mental tasks, without any involvement of nerves and
muscles and provides an alternative non-muscular communication [21]. The inter-
preted brain activities are directly translated into sequence of commands to carry
out specific tasks such as controlling wheel chairs, home appliances, robotic arms,
speech synthesizer, computers and gaming applications. Although, brain activi-
ties can be measured through non-invasive devices such as functional magnetic
response imaging (fMRI) or magnetoencephalogram (MEG), most common BCI
are based on Electroencephalogram (EEG). EEG-based BCIs facilitates many
real-time applications due to its affordable cost and ease of use [18].

EEG-based BCI systems are mostly build using visually evoked potentials
(VEPs), event-related potentials (ERPs), slow cortical potentials (SCPs) and
sensorimotor rhythms (SMR). Out of these potentials SMR based BCI pro-
vides high degrees of freedom in association with real and imaginary move-
ments of hands, arms, feet and tongue [10]. The neural activities associated
with SMR based motor imagery (MI) BCI are the so-called mu (7–13 Hz) and
beta (13–30 Hz) rhythms [16]. These rhythms are readily measurable in both
healthy and disabled people with neuromuscular injuries. Upon executing real
or imaginary motor movements, it causes amplitude supression or enhancement
of mu rhythm and these phenomena are called event-related desynchronization
(ERD) and event-related synchronization (ERS), respectively [16].

The available MI-based BCI systems makes use of spatial filtering and a
powerful classification methods such as support vector machine (SVM) [17,18],
logistic regression (LR) [13], linear discriminant analysis (LDA) [3] to attain
good accuracy. These classifiers are computationally expensive and makes the
BCI system delay. For real-time BCI applications, the ongoing MI events have
to be detected and classified continuously into control commands as accurately
and quickly. Otherwise, the BCI user especially motor impaired people may
get irritated and bored. Moreover, for the same user, the observed MI patterns
differ from one day to another, or from session to session [15]. This inter-personal
variability of EEG signals also results in degraded performance of the classifier.
The above issues motivates us to design a MI-based BCI system with enhanced
accuracy, speed and no inter-subject variations for people with special needs.

With this purpose in hand, we propose a new spatial filtering based spar-
sity (SFS) approach in this paper to classify MI-based EEG signals for BCIs. In
recent years, sparsity based classification has received a great deal of attention
in image recognition [22] and speech recognition [9] field. In compressive sens-
ing (CS), this sparsity idea was used and according to CS theory, any natural
signal can be epitomized sparsely on definite constraints [5,8]. If the signal and
an over-complete dictionary matrix is given, then the objective of the sparse
representation is to compute the sparse coefficients, so that the signal can be
represented as a sparse linear combination of atoms (columns) in dictionary [14].
If the dictionary matrix is designed from the best extracted feature of MI signal,
it helps to overcome the issue of inter-personal and intra-personal variability,
also enhances the processing speed and accuracy of the classifier.
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Fig. 1. Framework of the proposed SFS system.

The framework of the proposed system is shown in Fig. 1. In our proposed
method, from 10–20 international system of EEG electrode placement, we con-
sidered only few channels located over motor areas for further processing. Later,
the selected channels of EEG data are passed through a band-pass filter between
7–13 Hz and 13–30 Hz, as it is known from literature that most of MI signals
lie within that frequency range. Then CSP is applied to spatially filter the sig-
nals and the features obtained from the filtered signals are used to build the
columns (atoms) of dictionary matrix. This is an important phase in the pro-
posed approach which is responsible for removing inter-personal variability and
enhancement of classification accuracy. Later, sparsity based classification is car-
ried out to discriminate the patterns of two-class MI signals. Furthermore, SFS
method provides better accuracy and speed than the conventional support vector
machine (SVM) and logistic regression (LR) classifier models.

Our paper is organised as follows. In Sect. 2, we present description of the
data and the proposed technique in details. In Sect. 3, the experimental results
and performance evaluation are presented. Finally, conclusions and future work
are outlined in Sect. 4.

2 Data and Method

This section will describe the MI data used in this research and then the pipeline
followed in the proposed method, that is, channel selection, pre-processing and
spatial filtering based sparsity (SFS) classification of EEG-based MI data is
discussed in detail.

2.1 Dataset Description

We used the publicly available dataset IVa from BCI competition III1 to validate
the proposed approach. The dataset consists of EEG recorded data from five
healthy subjects (aa, al, av, aw, ay) who performed right-hand and right-foot MI
tasks during each trial. According to the international 10–20 system, MI signals
were recorded from 118 channels. For each subject, there were 140 trials for each

1 http://www.bbci.de/competition/iii.

http://www.bbci.de/competition/iii
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task, and therefore 280 trials totally. The measured EEG signal was filtered using
a bandpass filter between 0.05–200 Hz. Then the signal was digitized at 1000 Hz
with 16 bit accuracy and it is downsampled to 100 Hz for further processing.

2.2 Channel Selection and Preprocessing

The dataset consists of EEG recordings from 118 channels which is very large
to process. As we are using the EEG signal of two class MI tasks (right-hand
and right-foot), we extract the needed information from premotor cortex, sup-
plementary motor cortex and primary motor cortex [11]. Therefore, from the
118 channels of EEG recording, 30 channels present over the motor cortex are
considered for further processing. Moreover, removal of irrelevant channels helps
to increase the robustness of classification system [19]. The selected channels are
FC2, FC4, FC6, CFC2, CFC4, CFC6, C2, C4, C6, CCP2, CCP4, CCP6, CP2,
CP4, CP6, FC5, FC3, FC1, CFC5, CFC3, CFC1, C5, C3, C1, CCP5, CCP3,
CCP1, CP5, CP3 and CP1. The motor cortex and the areas of motor functions,
the standard 10± 20 system of electrode placement of 128 channel EEG system
and the electrodes selected for processing is shown in Fig. 2. The green and red
circle indicates the selected channels and the red circle indicates the C3 and C4
channels on the left and right side of the scalp respectively.

Fig. 2. (a) Motor cortex of the brain (b) Standard 10± 20 system of electrode place-
ment for 128 channel EEG system. The electrodes in green and red colour are selected
for processing (c) The anterior view of the scalp and the selected channels. (Color figure
online)

From domain knowledge we know that, most brain activities related to motor
imagery are within the frequency band of 7–30 Hz [16]. Bandpass filter can be
used to extract the particular frequency band and also helps to filter out most
of the high frequency noise. The bandpass filter can have as many sub-bands
as one needed [12]. We have experimented with two sub-bands of 7–13 Hz and
13–30 Hz in the two-class MI signal classification problem. The choice of two
sub-bands is due to the fact that mu (μ), beta (β) rhythms reside within those
frequency bands. Then data segmentation is done where we used two second
samples after the display of cue of each trial. Each segmentation is called as an
epoch.
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2.3 Proposed Spatial Filtering Based Sparsity Approach

The proposed spatial filtering based sparsity (SFS) approach follows three steps
such as CSP filtering, design of dictionary matrix and sparsity based classifica-
tion. A detailed explanation of each of these steps are given below.

CSP Filtering: Generally, for binary classification problems, CSP has been
applied widely as it increases the variance of one class while it reduces the
variance for the other class [1]. In this paper, how CSP filtering is applied for
the given two-class MI-based EEG dataset is explained briefly. Let X1 and X2

be the two epochs of a multivariate signal related to right-hand and right-foot
MI classes, respectively. They are both of size (c × n) where c is the number of
channels (30) and n is the number of samples (100 × 2). We denote the CSP
filter by

XCSP
i = WTXi (1)

where i is the number of MI classes, XCSP
i is the spatially filtered signal, W is

the spatial filter matrix and Xi ∈ R
c×n is the input signal to the spatial filter.

The objective of the CSP algorithm is to estimate the filter matrix W. This can
be achieved by finding the vector w, the component of the spatial filter W, by
satisfying the following optimization problem:

max
w

(
wTC1w
wTC2w

)
(2)

where C1 = X1XT
1 and C2 = X2XT

2 . In order to make the computation easier
to find w, we computed X1 and X2 by taking the average of all epochs of each
class. Solving the above equation using Lagrangian method, we finally have the
resulting equation as:

C1w = λC2w (3)

Thus Eq. (2) becomes eigenvalue decomposition problem, where λ is the
eigenvalue corresponds to the eigenvector w. Here, w maximizes the variance
of right-hand class, while minimizing the variance of right-foot class. The eigen-
vectors with the largest eigenvalues for C1 have the smallest eigenvalues for C2.
Since we used 30 EEG channels, we will have 30 eigenvalues and eigenvectors.
Therefore, CSP spatial filter W will have 30 column vectors. From that, we
select the first m and last m columns to use it as 2m CSP filter of WCSP.

WCSP = [w1,w2, ...,wm,wc−m+1, ...,wc] ∈ R
2m×c (4)

Therefore, for the given two-class epochs of MI data, the CSP filtered signals
are defined as follows:

XCSP
1 ∈ R

2m×n := WT
CSPX1

XCSP
2 ∈ R

2m×n := WT
CSPX2

(5)

The above CSP filtering is simultaneously done for the filtered signals under the
sub-bands of 7–13 Hz and 13–30 Hz.
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Designing a Dictionary Matrix: The spatially filtered signals XCSP
1 and

XCSP
2 are obtained for each epoch and for each sub-band. These spatially fil-

tered signals are considered as the training signals in our experiment. Let the
number of total training signals be N , considering each MI class i and each sub-
band. Here, i = 1 for right-hand and i = 2 for right-foot class. The dictionary
matrix can be designed with one type of feature or a combination of different
features. In this work, we designed two types of dictionary matrix, one using
frequency bandpower as feature and the other using wavelet transform energy
as feature for each training signal. Initially, we experimented with many features
like statistical, frequency-domain, wavelet-domain, entropy, auto-regressive coef-
ficients, etc. But we found that bandpower and wavelet energy produces good
differentiable between the two classes when it is plotted over the scalp. Figure 3
shows the spatial representation of bandpower and wavelet energy for two dif-
ferent MI classes. The Fig. 3(a) depicts that the bandpower of right-hand is
scattered throughout the scalp while for right-foot the bandpower is high in the
frontal region. In the same way, in Fig. 3(b) the wavelet energy is distributed
all over the scalp for right-hand and only on a particular region for right-foot.
Hence, these features are sufficiently good enough to discriminate the two MI
classes.

Fig. 3. Scalp plot of (a) bandpower of right-hand and right-foot MI respectively and
(b) wavelet energy for right-hand and right-foot MI respectively.

From each row of the training signal, the second moment or the frequency
bandpower and the wavelet energy using ‘coif1’ wavelet is calculated. This feature
vector of each training signal forms the dictionary matrix. Concatenating the
dictionary matrix of two-classes forms an over-complete dictionary. Since this
dictionary matrix includes all the possible characteristics of the MI signals of
the subjects, the inter-subject variability can be avoided. Figure 4 shows the
dictionary constructed for the proposed approach. Thus, the dictionary matrix
is defined as D := [D1;D2], where Di = [di,1, di,2, di,3, ..., di,N ]. Each atom or
column of the dictionary matrix is defined as di,j ∈ R

2m×1, j = 1, 2, ..., N , having
2m features. So, the dimension of the dictionary matrix D using bandpower as
feature will be 2m × 4N and it is denoted as DBP and the same dimension
remains on using wavelet energy as feature and it is denoted as DWE.
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Fig. 4. Two-class dictionary designed for our proposed SFS approach. Each atom in
the dictionary is obtained from the training signal of each class and each sub-band.

Sparse Representation: After the construction of dictionary matrix, we have
our linear system of equations to get the sparse representation for the input
test signal. The test signal is first converted into a feature vector y ∈ R

m×1,
using the same way as the columns in dictionary D is generated. So the input
vector can be represented as a linear combination of few columns of D and it is
represented as:

y =
∑
i

si,1di,1 + si,2di,2 + ... + si,Ndi,N (6)

where si,j ∈ R, j = 1, 2, ..., N are the sparse coefficients and i = (1, 2) for the
two-class MI signals. In matrix form it can be represented as:

y = Ds (7)

where s = [si,1, si,2..., si,N ]T . The objective of the sparse representation is to
estimate the scalar coefficients, so that we can sparsely represent the test signal as
a linear combination of few atoms of dictionary D [14]. The sparse representation
of an input signal y can be obtained by performing l0 norm minimization as
follows:

min
s

‖s‖0 subject to y = Ds (8)

l0 norm optimization gives us the sparse representation but it is an NP-hard
problem [2]. Therefore, a good alternative is the l1 norm which can also be used
to obtain sparsity. Recent development tells us that the representation obtained
by l1 norm optimization problem achieves the condition of sparsity and it can
be solved in polynomial time [6,7]. Thus the optimization problem in Eq. (8)
becomes:

min
s

‖s‖1 subject to y = Ds (9)

The orthogonal matching pursuit (OMP) is a greedy algorithm used to obtain
sparse representation and is one of the oldest greedy algorithms [4]. It employs
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the concept of orthogonalization to get orthogonal projections at each iteration
and is known to converge in few iterations. For OMP to work in the desired
way, all the feature vectors in dictionary D should be normalized such that
‖Di(j)‖ = 1, where i = (1, 2) are the classes and j = 1, 2, ..., N . Using OMP we
obtained the sparse representation s, for the feature vector y, which will be used
further for classifying MI signals.

Sparsity Based Classification: After a successful minimization of sparse rep-
resentation, the input vector y will be approximated as a sparse vector which
has the same size as the number of atoms in the dictionary D. Each value of
the sparse vector corresponds to the weight given to the corresponding atom of
the dictionary. The dictionary is made of equal number of atoms for each class.
If for example, there are 1400 atoms in the dictionary for a two-class MI, the
first 700 values of the sparse signal tells us the linear relationship between the
input vector and the first class i.e. right-hand MI class and so on. Hence, the
results of the sparse representation can be used for classification by implying
some simple classification rules in the sparse vector s. In this work, we make
use of two classification rules and it is termed as classifier1 and classifier2.
Mathematically, it is defined as follows:

Classifier1(y) = argmax
i=1,2

max (V ar (si)) (10)

Classifier2(y) = argmax
i=1,2

max (nonzero (si)) (11)

where max() is a function that returns the maximum value of a vector, the
function V ar() is used to find the variance of data and nonzero() is used to find
the number of sparse (non-zero) elements in a vector. The class i is determined,
if it has maximum variance or maximum number of non-zero elements.

3 Experimental Results

The performance of the model in our experiment depends on the prediction
performance of the classifier. A k-fold cross validation was performed on the
dataset to split the entire data into k folds, from which k − 1 folds were used to
build the dictionary and one fold for testing the model. Each fold was used for
testing iteratively and the accuracies were calculated. Two different dictionaries
were built: one with bandpower features DBP and the other with energies of
a wavelet transform DWE. Accuracy of a model based on training and testing
test, is a good metric by itself to calculate the performance of the classifier.

3.1 Results of Sparsity Based Classification

We had right-hand and right-foot MI signals that needed to be classified. To
illustrate how sparsity plays an important role in our classification, Fig. 5 shows
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Fig. 5. Sparse representation s obtained for the two sample test signals. Here, the
left figure represents the sparse signal of right-hand class and the right figure for the
right-foot class.

the sparse representation of two sample test signals belonging to two different
classes using DBP as dictionary matrix. Here there are around 1400 atoms in
the dictionary and so the first 700 elements corresponds to the first class and
the rest for the second class. We can clearly see that the sparse representation
is classifying the input signal with high accuracies. Table 1 shows the accuracies
of each of the two classifiers in k-fold cross validation using the dictionaries
DBP and DWE, respectively. The result shows that classifier1 performs better
than classifier2. It also shows us that the sparsity based classification using the
dictionary DWE outperforms the band-power dictionary DBP. The normalized
and non-normalized confusion matrices of each of the classifiers using dictionary
DWE is given in the Fig. 6.

Table 1. k-fold cross validation accuracies for the classifiers using DBP and DWE

dictionary.

k-folds k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 Average

Classifier1 DBP 94.64 94.64 96.42 90.47 94.64 91.66 92.85 92.85 93.45 92.26 93.38

DWE 98.80 97.02 98.21 94.04 98.80 94.64 94.64 96.42 98.21 95.23 96.60

Classifier2 DBP 94.64 95.83 92.26 91.07 93.45 89.88 93.45 91.07 95.64 89.28 92.65

DWE 98.21 97.02 96.42 94.04 98.62 93.20 94.64 97.82 97.21 96.20 96.33

3.2 Comparison with SVM and LR

To evaluate the proposed SFS method, we compared our method using DWE

as dictionary with the conventional SVM [17,18] and LR [13] methods. As
classifier1 gives better accuracy than classifier2, it is used for comparison with
the conventional methods. For real-time BCI applications, speed of the classi-
fier is an important issue. Hence, CPU execution time is estimated for all the
methods. All the classifier algorithms were performed using the same computer
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Fig. 6. Confusion matrix of classifier1 and classifier2 using the dictionary DWE.

and same software Python 2.7, making use of Scikit Learn2 machine learning
package. The accuracies and the CPU execution time obtained for different folds
for the proposed SFS method using classifier1 and DWE as dictionary, and the

Table 2. Comparison of k-fold cross-validation accuracy and CPU execution time
of various folds for the proposed SFS approach, and the conventional SVM and LR
classifier methods.

folds k-fold cross-validation Accuracy (%) CPU execution time (Seconds)

Proposed SFS SVM LR Proposed SFS SVM LR

k= 1 98.80 94.22 93.74 24.02 30.62 31.00

k= 2 97.02 93.10 92.88 25.42 29.99 29.34

k= 3 98.21 93.46 91.79 23.00 28.23 29.21

k= 4 94.04 92.78 91.86 24.50 29.29 30.19

k= 5 98.80 94.60 94.44 24.32 30.83 28.00

k= 6 94.64 91.78 91.32 23.36 29.00 29.75

k= 7 94.64 91.90 91.46 24.17 29.35 28.86

k= 8 96.42 92.45 91.98 24.56 29.43 29.94

k= 9 98.21 93.62 92.85 23.32 29.29 30.32

k= 10 95.23 92.88 92.52 23.96 28.00 29.76

Average 96.60 93.08 92.48 24.06 29.40 29.64

2 http://scikit-learn.org.

http://scikit-learn.org
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conventional SVM and LR are listed in Table 2. The average values obtained indi-
cates that the proposed SFS method delivers high average classification accuracy
and lesser execution time than the SVM and LR methods. Since the proposed
method executes in lesser time with higher accuracy, it can be further used to
build real-time MI-based BCI applications for motor disabled people.

4 Conclusion

In this work, we used a new spatial filtering based sparsity (SFS) approach to
classify two-class MI-based EEG signals for BCI applications. Firstly, the EEG
signal with 118 channels are of high-dimension. To reduce the computational
complexity, constraints are applied on selecting channels. Secondly, to better
discriminate the MI classes, two sub-bands of band-pass filter between 7–13 Hz
and 13–30 Hz are applied to the selected number of channels followed by CSP
filtering. Thirdly, it is important to note that EEG signals produce variations
among users at different sessions. As SFS method requires a dictionary matrix, it
is designed using the bandpower and wavelet features obtained from the spatially
filtered signals. This dictionary matrix helps us to overcome the inter-subject
variability problem. This method also reduces the computational complexity
significantly and increases the speed and accuracy of the BCI system. Hence,
the proposed SFS approach can be served to design a more robust and reliable
MI-based real-time BCI applications like text-entry system, gaming, wheel-chair
control, etc., for motor impaired people. Future work will focus on extending the
sparsity approach for classifying multi-class MI tasks which can be further used
for communication purpose.
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Abstract. The increasing popularity of unmanned aerial vehicles
(UAVs) in critical applications makes supervisory systems based on the
presence of human in the control loop of crucial importance. In UAV-
traffic monitoring scenarios, where human operators are responsible for
managing drones, systems flexibly supporting different levels of auton-
omy are needed to assist them when critical conditions occur. The assess-
ment of UAV controllers’ performance thus their mental workload may
be used to discriminate the level and type of automation required. The
aim of this paper is to build a mental-workload prediction model based on
UAV operators’ cognitive demand to support the design of an adjustable
autonomy supervisory system. A classification and validation procedure
was performed to both categorize the cognitive workload measured by
ElectroEncephaloGram signals and evaluate the obtained patterns from
the point of view of accuracy. Then, a user study was carried out to iden-
tify critical workload conditions by evaluating operators’ performance in
accomplishing the assigned tasks. Results obtained in this study provided
precious indications for guiding next developments in the field.

Keywords: Adjustable autonomy · Mental workload
Supervisory control · Learning model

1 Introduction

In recent years, the unmanned aerial vehicle (UAV) applications domain has
seen a rapid growing interest in the development of systems able to assist human
beings in critical operations [1–3]. Examples of such applications include security
and surveillance, monitoring, search and rescue, disaster management, etc. [4].

Systems able to flexibly support different levels of autonomy (LOAs) accord-
ing to both humans’ cognitive resources and their performance in accomplishing
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Applications LaB (CRAB).
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critical tasks, may be exploited to determine situations in which system inter-
vention may be required [5–7]. The human’s cognitive resources and the ability
of the system to dynamically change the LOA according to the considered con-
text are generally termed as “cognitive or mental workload” [8] and “adjustable
or sliding autonomy” [9], respectively.

In literature, several criteria have been investigated to evaluate human’s
cognitive load. The main measurement techniques have been historically classi-
fied into three categories: physiological, subjective, and performance-based [10].
Physiological measurements are cognitive load assessment techniques based on
the physical response of the body. Subjective measurements are used to eval-
uate humans’ perceived mental workload by exploiting rankings or scales. Per-
formance or objective measurements are used to evaluate humans’ ability to
perform a given task.

By moving from the above considerations, the aim of this paper is to build a
classification and prediction model of UAV operators’ mental workload to sup-
port the design of an adaptive autonomy system able to adjust its level of auton-
omy accordingly. An ElectroEncephaloGram (EEG) signals was used as physio-
logical technique for assessing operators’ mental workload and a Support Vector
Machine (SVM) was leveraged as learning and classification model [11–13].

A 3D simulation framework was exploited in this work to both experiment
different flying scenarios of a swarm of autonomous drones flying in an urban
environment and test the operator’s performance in UAV-traffic management.
A user interface was also used to show the 2D visualization of experimented
environment and allow human operators to interact with UAVs by issuing flight
commands.

A user study was carried out with several volunteers to both evaluate oper-
ators’ performance in accomplishing supervision tasks of a growing number of
drones and gather different workload measurements under critical conditions.

The rest of the paper is organized as follows. In Sect. 2, relevant works con-
cerning workload measurements are reviewed. In Sect. 3, the device exploited
in the study is described. Sections 4 and 5 provide an overview of the overall
simulation framework and report details of the user interface considered in this
work, respectively. Sections 6 and 7 introduce the methodology that has been
adopted to perform the experimental tests and discuss data analysis and the
classification procedure. Lastly, Sect. 8 discusses obtained results and concludes
the paper by providing possible directions for future research activities in this
field.

2 Related Work

Many studies have investigated the relationship between tasks performed by an
individual and its cognitive load. In literature, different techniques have been
proposed for mental workload assessment [10].

For instance, concerning subjective measurements techniques, [14,15] have
exploited the NASA-TLX questionnaire to evaluate users’ perceived workload in
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gaze-writing and robotic manipulation tasks, respectively. Similarly, Squire et al.
[16] have investigated the impact of self-assessed mental workload in simulated
game activities.

Despite, these measurements have been proved to be a reliable way to assess
humans’ mental workload [17], they often require annoying or repetitive inter-
actions to the users by asking them to fill different rankings or scales.

In parallel to these studies, other works have evaluated physiological mea-
surements as mental workload assessment techniques. As a matter of example,
Wilson et al. [18] exploited EEG channels, electrocardiographic (ECG), elec-
trooculographic (EOG), and respiration inputs as cognitive workload evaluation
in air traffic control tasks. Functional Near-Infrared Spectroscopy (fNIRS) and
Heart Rate Variability (HRV) techniques were exploited in [19] and [20] to assess
the human’s mental workload in n-back working memory tasks and ship simula-
tors, respectively. Besserve et al. [21] studied the relation between EEG data and
reaction time (RT) to characterize the level of performance during a cognitive
task, in order to anticipate human mistakes.

Although these studies have provided evidences to improve accuracy in work-
load measurements, they traditionally exploit bulky and expensive equipment
virtually uncomfortable to use in real application scenarios [22]. Data about suit-
ability of alternative devices in physiological measurements are actually required
in order to properly support next advancements in the field. Some activities in
this direction have been already carried out. For instance, Wang et al. [12] have
proved that a small device, as a 14-channel EMOTIV R©Headset, can be suc-
cessful used to characterize the mental workload in a simple memory n-back
task.

The goal of the present paper is to study on results reported in [12] a different
application scenario exploiting EEG signals to build a UAV operators’ mental
workload prediction model in drones monitoring tasks.

3 Emotiv Epoc Headset

This section briefly describes the brain wearables devise EMOTIV Epoc+ R©1

considered in this study by illustrating its hardware and software features. More
specifically, the EMOTIV Epoc+ (Fig. 1a) is a wireless Brain Computer Inter-
face (BCI) device manufactured by Emotiv. The headset consists of 14 wireless
EEG signal acquisition channels at 128 samples/s (Fig. 1b). The recorded EEG
signal is transmitted to an USB dongle for delivering the collected information
to the host workstation. A subscription software, named Pure·EEG is provided
by Emotiv to gather both the raw EEG data and the dense spatial resolution
array containing data at each sampling interval.

4 Simulation Framework

The basic idea inspiring the design of the present framework is to test differ-
ent UAV flying scenarios in an urban environment. Such scenarios simulate
1 https://www.emotiv.com/epoc/.

https://www.emotiv.com/epoc/
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Fig. 1. Emotiv EPOC headset (a) and its 14 recorder positions (b).

potentially critical situations in which drones could be involved in. The logi-
cal components that were assembled to implement the proposed framework are
illustrated in Fig. 2. By digging more in details, the UAVs Simulator is the mod-
ule responsible for simulating swarm of autonomous drones flying in the 3D
virtual environment. It consists of three different modules, namely: Autopilot,
Physics Simulation and Ground Control Station (GCS).

Fig. 2. Logical components of the simulation framework.

The Autopilot module is responsible for running drones flight stability soft-
ware without any specific hardware. More specifically, it exploits the Software-
In-The-Loop (SITL)2 simulator to run the PX4 Autopilot Flightcode3 - an open
source UAV firmware of a wide range of vehicle types. The Physics Simulation
module is the block devoted to load the 3D urban environment and execute the
drone flight simulation in it. Gazebo4 physics engine was exploited in this block

2 http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html.
3 https://px4.io.
4 https://gazebosim.org.

http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://px4.io
https://gazebosim.org
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for modeling and rendering the 3D models of drones with their physic prop-
erties, constraints and sensors (e.g. laser, camera). In particular, Gazebo runs
on Robot Operating System (ROS)5, which is a software framework developed
for performing robotics tasks. Then, the Ground Control Station (GCS) module
contains the software used for setting drones’ starting locations, planning mis-
sions and getting real-time flight information. The communication between the
Autopilot Flightcode and the GCS module is provided by the Micro Air Vehicle
ROS (MAVROS) node with the MAVLink communication protocol (Fig. 2).

Since drones communicate or transmit information through the network, low
bandwidth coverage areas could lead to loss of communication and thus to poten-
tially critical conditions. Hence, a Bandwidth Simulator is developed to estimate,
in the experimented city, the maximum amount of data the network can trans-
mit in the unit of time. The network transmission rate is assumed to depend
on population density of the city sites (parks, stadiums, schools, etc.) and the
network coverage.

Lastly, the Alert Module is the block devoted to determine the level of risk
(later referred to as “Alert”) of each drone by gathering data from both UAVs
and Bandwidth Simulators. Specifically, as in [23,24], the UAVs Simulator pro-
vides drone information regarding both their battery level and their distance
from obstacles (e.g. buildings). The Bandwidth Simulator sends the estimated
network transmission rate in the areas around drones’ positions. The mapping
between these parameters and each drone’s “Alert” is performed through a func-
tion defined as follows: y = (b − 1)−1 ∗ (o − 1)−1 ∗ (n − 1)−1, where b represents
the drone’s battery level, o is its distance from obstacles, n is the estimated
bandwidth coverage around its position and y is its level of risk. Three differ-
ent “Alert” levels are proposed in this work, namely: “Safe”, “Warning” and
“Danger”.

5 User Interface

In this section, the user interface devised for showing the 2D visualization of
experimented environment and useful information allowing human operators to
interact with UAVs is presented.

As illustrated in Fig. 3a, a wide region of the operator’s display is covered
with the 2D map of the city in which the real-time drones’ locations are shown. A
colored marker is used to depict the drone’s GPS position as well as its current
status. Three different colors are used to illustrate the drone’s level of risk:
green (“Safe”), yellow (“Warning”) and red (“Danger”). On the right side of
the interface an extensive visual summary for each drone regarding its unique
name, its battery level, the bandwidth coverage of the area around its location
and its flying altitude, is shown (Fig. 3b). Right below the map five buttons
allowing operators to issue flight commands or show general information about
the map or drones are placed (Fig. 3c). More specifically, the “Start” button
is used to run the 3D simulation, whereas the “Options” button to show or
5 https://www.ros.org.

https://www.ros.org
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Fig. 3. Monitoring interface (a), UAVs summary (b) and control buttons (c).
(Color figure online)

hide the bandwidth coverage of the city and the drones’ paths. The other three
buttons are used by the human operator to land, hover or change the drone’s
path, respectively. In this scenario, it is worth observing that EEG signals could
be affected by the movement of human operators for pressing the above buttons.
Thus, an artifact removal stage is needed in order to remove all undesired signals
as detailed in Sect. 7.1.

6 User Tasks

The goal of this paper is to exploit EEG signals to build a prediction model of the
UAV operators’ mental workload in order to train a system able to autonomously
predict operators’ performance in UAVs monitoring operations. To this aim, an
SVM classification algorithm was exploited to learn the ability of operators to
carry out assigned drone-traffic-control tasks in different flying scenarios. Four
monitoring tasks were experimented in this work, namely: M1, M2, M3 and M4.
In particular, M1 consisted of a single flying drone whose path was designed for
avoiding obstacles on its route. No operator’s action was necessary to successfully
complete the mission. M2 was meant to evaluate the operator’s performance in
monitoring two drones at risk of colliding. Collisions were specifically designed
distant over time in order to allow the operator to be virtually able to deal with
them by keeping the effort to complete the mission relatively low. Mission M3
consisted of five drones, three of which at high risk of colliding. This mission was
intentionally created to be very difficult to complete even though theoretically
still manageable. Lastly, M4 consisted of six drones, each of which required
operator’s interventions to successfully complete the mission. It was devised to
be hardly to complete.
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Furthermore, a mission is considered “successfully completed” when all drones
landed in the intended positions or “failed” when at least one drone crashed.
The number of drones in each mission was also defined relying on a preliminary
experiment which proved no significance difference in operators’ mental workload
in monitoring three or four UAV. Data collected during mission M1 were used
as a mental workload baseline whereas those recorded in M4 as high mental
workload reference.

7 Data Analysis and Classification

This section details the data analysis and classification procedure performed in
this work. It entails the following steps: data pre-processing, feature extraction
and classification.

7.1 Pre-processing

The EEG consists of recording electric signals produced by the activation of
thousands of neurons in the brain. These signals are gathered by electrodes
located over the scalp of a person. However, some spurious signals may affect
the EEG data due the presence of noise or artifacts. In particular, the artifacts
which are signals with no cerebral origin can be divided in two groups. The first
group is related to physiological sources such as eye blinking, ocular movement
and heart beating. The second group consists of mechanical artifacts, such as
the movement of electrodes or cables during data collection [25]. Thus, a pre-
processing stage is needed to remove all undesired signals and noise. It consists
of three different phases, namely: filtering, offset removal and artifact removal.
The EEGlab toolbox under the Matlab environment [26] was exploited in this
phase.

Since the EEG signals frequencies are within 0.5 and 45 Hz, the filtering
phase implements a Finite Impulse Response (FIR) passband filter to remove
signals with high frequencies and increase signal to noise ratio. The offset removal
phase eliminates potential offset residues after the filtering phase. The last
stage exploits the Artifact Subspace Reconstruction (ASR) algorithm for artifact
removal [27].

7.2 Feature Extraction

Given the preprocessed data, relevant features have to be extracted to train the
classification model. For this purpose, temporal ranges of the signals containing
relevant events to be analyzed are defined. In this work, the signal was split
in different time windows as follows: 15 s after the start of the EEG recording
and 15 s before the first failure, divided in 5 s windows. Data recorded during
the idle drone’s takeoff phase was ignored to avoid exploiting related mental
workload measurements as baseline reference in the UAV monitoring experiment.
Data in the range just before and after the first failure were not recorded since
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they may be affected of biases due to the operator’s frustration for failing the
assigned task. For each window the following features were calculated channel
by channel: Power Spectral Density, Mean, Variance, Skewness, Kurtosis, Curve
length, Average non-linear energy and Number of peaks [12]. These features were
then concatenated in order to make each window corresponds to a row of features
appearing in order of channel. Each row was then assigned to a label that states
whether the operator failed or not the task for that particular mission.

7.3 Classification

The aim of this step is to train the classification system considered in this study
with the operators’ mental workload for predicting their performance in UAVs
monitoring operations. Three different models were exploited in this work: two
classifiers for predicting the outcome of each mission for each single subject; in
the third one, overall data gathered from all operators were used, in order to
understand whether a generalized model may be also employed.

A procedure dealing with feature scaling, hyperparameter optimization,
results validation and learning model design, was proposed in order to judge
the model considered from the point of view of accuracy.

Feature Scaling. An important issue in signal processing field, and in particu-
lar with the EEG data is the high variability of the features extracted from each
subject thus their different ranges. An appropriate scaling method is needed in
order to normalize all data into the same range. A z-score scaler was used as
normalization method for subtracting mean values from all measured signals and
then dividing the difference by the population standard deviation [28].

Hyperparameter Optimization and Validation Methodology. Since the
aim of the classification methodology is to have a good accuracy on unseen data,
an appropriate validation method becomes necessary in order to measure the
generalization error of the implemented model. For this purpose, a k-fold cross
validation technique was used to both find the best model with the optimal
parameters and test its performance on new unseen data. It consists of samples
subdivision in k folds, where k− 1 are used in each iteration to train the model,
and the remaining one is used to evaluate the results.

According to this validation methodology, data were divided into three dif-
ferent groups, namely training set, validation set, and test set as follows: 20% as
test set, and the other 80% as training and validation sets. A ten-fold cross vali-
dation is then performed on training and validation sets as follows: samples are
divided in ten folds, nine of which are used in each iteration to train the model,
and the other one is used to evaluate the results. This procedure is then iterated
until all folds are used one time as validation set. The training accuracy is then
evaluated as the mean of all the obtained results in the different iterations. The
parameters leading to the best model performance called “Hyperparameters” are
then selected [29]. Lastly, the model is evaluated using the test set.



68 F. Bazzano et al.

Learning Model. A Support Vector Machine (SVM), which is a learning model
able to infer a function from labeled training data, is exploited in this phase to
deduce from the operator’s EEG workload his ability to succeed or not a mission.
It is implemented with two different kernels: linear and Radial Basis Function
(RBF). The former is used to find the best hyperplane separation in binary
classification problems by tuning the regularization parameter C. The latter is
generally used in problems that are not linearly separable and require to find
also the best value of the γ parameter [13].

The C parameter is used to regularize and control the bias variance trade-
off. The γ parameter is used to define the variance of the Radial Basis Function
(RBF). A grid search using powers of ten from 10−2 to 102 was used to tune the
C parameter through the cross-validation phase. For the γ parameter, powers of
ten from 10−4 to 10 were used by considering that bigger values lead to adjust
better the model to the training set but bring possible problems of variance or
over-fitting. Smaller values may bring bias or under-fitting problems.

8 Results and Discussion

As anticipated, the goal of this paper is to build a UAV operators’ mental work-
load prediction model in order to train a system able to autonomously predict
operators’ performance in UAVs monitoring operations. To this aim, mental
workload data have been collected through a user study.

The study involved 10 participants (8 males and 2 females, aged between
19 to 24), selected from the students of Politecnico di Torino. After a brief
training, participants were invited to perform the four tasks M1, M2, M3 and
M4 in sequence through the user interface. Such tasks have been specifically
designed to test operators’ performance in UAVs monitoring operations with an
increasing drones’ level of risk. Each task, whose length was strictly depending
on the operator’s piloting choices, took from 2 to 7 min. During each experiment
(i.e., all tasks performed), physiological measurements gathered by the EEG
signal through the EMOTIV Epoc+ R©Headset were recorded. The EEG signal
was split in different time windows as detailed in Sect. 7.2. For each window,
the following features were calculated: Power Spectral Density, Mean, Variance,
Skewness, Kurtosis, Curve length, Average non-linear energy and Number of
peaks. These features were then concatenated in order to make each window
correspond to a row of features appearing in order of channel. Each row was then
assigned to a label that states whether the operator failed or not the task for that
particular mission. This procedure was performed to generate an heterogeneous
population in order to build a classifier able to autonomously predict the label
from operators’ mental workload measured by EEG signals.

Results obtained in terms of classification algorithm accuracy are reported
in Table 1 specifying the hyperparameters used to train each single model. The
first ten rows of the table represent the obtained results in the individual model
trained using single subject data. The last row shows the overall results using all
the collected data. By digging more in details, as shown in Table 1, the fifth and
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Table 1. Results concerning the accuracy of the classification algorithm for the
individual and overall models.

Participant ID Model

SVM - linear kernel SVM - RBF kernel

C Accuracy Accuracy C γ Accuracy Accuracy

(validation set) (test set) (validation set) (test set)

1 0.01 0.949 0.933 100 0.0001 0.949 0.933

2 100 0.923 0.973 100 0.0001 0.934 0.973

3 0.01 0.965 1 100 0.0001 0.965 1

4 0.01 0.851 0.965 10 0.0001 0.851 0.93

5 * * * * * * *

6 0.1 0.885 0.895 10 0.001 0.899 0.864

7 * * * * * * *

8 0.01 0.944 0.969 100 0.0001 0.936 0.969

9 0.01 0.986 0.927 10 0.001 0.897 0.864

10 0.01 0.995 1 10 0.001 0.995 1

Overall 0.1 0.852 0.839 10 0.001 0.872 0.856

seventh rows present corrupted data that have been discarded for the validation
purpose. In those cases, participants only completed one mission successfully,
making it very difficult to train the model due to class skewness. As a result, no
individual model was trained using those data. However, they were used in the
overall model.

The accuracy scores obtained with the ten-fold cross-validation phase
(Sect. 7.3) are reported in Table 1 as “Accuracy (Validation set)”. The obtained
accuracy with new unseen data is reported as “Accuracy (Test set)”. It is worth
observing that the accuracy scores in these two columns for the same row are not
largely different. This observation allows to conclude, that the proposed model
is not affected by problems of variance thus performs well if tested with other
participants under the same conditions.

Results regarding the accuracy of the test sets show that the linear kernel
always perform better or equal than the RBF kernel for individual models. On
the contrary, the RBF kernel performs better than linear kernel for the overall
model. Specifically, the SVM with the linear kernel is able to predict the oper-
ator’s performance outcomes thus the level of his/her mental workload with an
average accuracy equal to 95.8% and 83.9% when the model is trained on a single
user and on all collected data, respectively. Whereas, an accuracy equal to 94.1%
and 85.6% is reached with the SVM - RBF kernel when the model is trained
using the single user and overall data, respectively. This may be reasonably due
to the fact that individual models trained using single subject data are simpler
classification problems than those with all collected data.
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In this work, the data analysis and classification procedure was performed
offline on the data collected through the user study. Future works will be aimed
to address alternative procedures in order to allow online evaluation of the data.
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Abstract. In the classification of multichannel electroencephalograph (EEG)
based BCI studies, the spatial and spectral information related to brain activities
associated with BCI paradigms are usually pre-determined as default without
speculation, which can lead to loses effects in practical applications due to indi‐
vidual variability across different subjects. Recent studies have shown that feature
combination of each specifically tailored for different physiological phenomena
such as Readiness Potential (RP) and Event Related Desynchronization (ERD)
might benefit BCI making it robust against artifacts. Hence, the objective is to
design a CSSBP with combined feature vectors, where the signal is divided into
several sub bands using a band pass filter, and this channel and frequency config‐
urations are then modeled as preconditions before learning base learners and
introducing a new heuristic of stochastic gradient boost for training the base
learners under these preconditions. Results showed that Boosting approach using
feature combination clearly outperformed the state-of-the-art algorithms, and
improved the classification performance, resulting in increased robustness.

Keywords: Brain computer interface · Motor imagery · Feature combination
Spatial-spectral precondition · Stochastic gradient boosting
Rehabilitation training

1 Introduction

Brain-computer interfaces (BCIs) provide a communication channel for a user to control
an external device using only one’s brain neural activity. They can be used as a reha‐
bilitation tool for patients with severe neuromuscular disabilities [7], and also a range
of other applications including neural prosthesis, Virtual Reality (VR), internet access
etc. Among different types of neuroimaging techniques, electroencephalogram (EEG)
is among one of the non-invasive methods exploited mostly in BCI experiments. And,
among them event related desynchronization (ERD), visually evoked potential (VEP),
slow cortical potential (SCP), and P300 evoked potentials are widely used for BCI
studies.

Rachel Rajan M. Tech student; S. Thekkan Devassy Asst. Professor.

© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 73–85, 2017.
https://doi.org/10.1007/978-3-319-72038-8_7



In accordance with the topographic patterns of brain rhythm modulations, feature
extraction using Common Spatial Patterns (CSP) algorithm [17] provides subject-
specific and discriminant spatial filters. However, CSP has some limitations, as it is
sensitive to frequency bands related to neural activity, because of that the frequency
band are manually selected or set to a broad band filter. Apart from that, it also results
in overfitting problem when dealt with large number of channels. Hence, the problem
of overfitting the classifier and spatial filter rises due to trivial channel configuration.
Henceforth, a simultaneous optimization of spatial and spectral filter is highly desirable
in BCI studies.

Recent years, motor imagery (MI) based BCI has proven to be an independent system
with high classification accuracy. Most of the MI based BCI use brain oscillations at mu
(8–12 Hz) and beta (13–26 Hz) rhythms, which displays particular areas of event related
desynchronization (ERD) [16] each corresponding to respective MI states (such as right
hand or right foot motion). Apart from that, Readiness-potential (RP) [18] which is a
slow negative event-related potential that appears before a movement is initiated can
also be used as input to BCI to predict future movements. RP is mainly divided into
early RP and late RP. Early RP is slow negative potential that begins 1.5 s before action,
which is immediately followed by late RP that occurs 500 ms before the movement. In
MI based BCI, combining of features vectors [5] i.e., ERD and RP have shown a signif‐
icant boost in the classification performance.

In the literature, several number of sophisticated CSP based algorithms have been
witnessed especially in the BCI study. A brief review has been presented here. Taking
into account of avoid overfitting and selection of optimal frequency bands for CSP
algorithm, various methods were proposed. To avoid overfitting problem, Regularized
CSP (RCSP) [13] was proposed, in which the regularization information was added into
the CSP learning procedure. The Common Spatio-Spectral Pattern (CSSP) [11] is an
extension of CSP algorithm with time delayed sample. However, due to flexibility issues
the Common Sparse Spectral-Spatial Pattern (CSSSP) [6] was presented, where its FIR
filter consists of single time delay parameter. Since, these methods were computationally
expensive, a Spectrally-weighted Common Spatial Pattern (SPEC-CSP) [19] was
designed which alternatively optimizes the temporal filter in frequency domain and then
the spatial filter in the iteration process. To improve the performance of SPEC-CSP,
Iterative Spatio-Spectral Pattern Learning (ISSPL) [22] was proposed which does not
rely on statistical assumptions and optimizes all temporal filters under a common opti‐
mization framework.

Despite of various studies and advanced algorithm, it is still a challenge to extract
optimal spatial spectral filters for BCI studies, so as to be used as a rehabilitation tool
especially for disabled subjects. The spatial and spectral information related to brain
activities associated with BCI paradigms are usually pre-determined as default in EEG
analysis without speculation, which can lead to loses effects in practical applications
due to individual variability across different subjects. Hence, to solve this issue, a CSSBP
[12] with combined feature vectors is designed for BCI based paradigms, since the
combination of features each corresponding to different physiological phenomena such
as Readiness Potential (RP) and Event Related Desynchronization (ERD) can benefit
BCI making it more robust against artifacts from non-Central Nervous System (CNS)
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activity such as eye blinks (EOG) and muscle movements (EMG) [5]. At first, the EEG
signal is first divided into several sub bands using a band pass filter, then the channel
and frequency bands are modeled as preconditions before classifying and a heuristic of
stochastic gradient boost is used to train the base learners under these preconditions.
The effectiveness and robustness of the designed algorithm along with feature combi‐
nation is evaluated on widely used benchmark dataset BCI competition IV (IIa). The
remaining part of the paper is organized as follows; a detailed design of proposed
Boosting Algorithm is given in Sect. 2, performance comparison results shown in
Sect. 3. Finally, conclusion is given in Sect. 4.

2 Proposed Algorithm

Under this section, a combination model of CSSBP (common spatial spectral boosting
pattern) with feature combination is given in detail; it includes modeling the problem,
and learning algorithm for the model. The model consists of five stages, data prepro‐
cessing which includes multiple spectral filtering by decomposing the signal into several
sub bands using a band pass filter and spatial filtering, feature extraction using common
spatial pattern (CSP), feature combination, training the weak classifiers, and pattern
recognition with the help of a combinational model. The architecture of the designed

Fig. 1. Block diagram of proposed boosting pattern
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algorithm is shown in Fig. 1. The EEG data is firstly spatial filtered and band pass filtered
under multiple spatial-spectral preconditions.

Afterwards, the CSP algorithm is applied to extract features of the EEG training
dataset and combine these feature vectors, then the weak classifiers {fm}

M
m=1, are trained

and combined to a weighted combination model. Lastly, a new test sample x̂ is classified
using this combination model.

2.1 Problem Design

During BCI studies, the two main concerns are the channel configuration and frequency
band, which are predefined as default for implementing EEG analysis. But, predefining
these conditions without deliberations leads to poor performance while executing it in
a real scenario due to subject variability in EEG patterns. Hence, an efficient and robust
configuration is desirable in case of practical applications.

To model this problem, let us denote the training dataset as Etrain = (xi, yi)
N
i=1, where

Ei is the ith sample and yi is its corresponding label. The main aim is to find a subset
ω c ν, by using a set of all probable preconditions ν, which generates a combination
model F by incorporating all sub models trained under condition WM (WM ϵ ω) and
reducing the misclassification rate on the train dataset Etrain, given by,

ω = arg minω

1
N

|
|
|
Ei : F

(

xi,ω
)

≠ yi
N

i=1
|
|
|

(1)

In the following part of this section, 2 homogeneous problems are modeled in detail
and then an adaptive boosting algorithm is designed to solve them.

Spatial Channel and Frequency Band Selection. For channel selection, the aim is to
select an optimal channel set S(S ⊂ U), where U is the universal set including all possible
channel subsets for set of channels C so that each subset Um in U satisfies |Um| ≤ |C|
(here |.| is used to represent the size of the corresponding set), which produces an optimal
combination classifier F on the training data by combining base classifiers learned under
different channel set preconditions. Therefore, we get,

F
(

Etrain;S
)

=
∑

Sm∈S
𝛼mfm

(

Etrain;Sm

)

(2)

Where F is the optimal combination model, fm is mth sub model learned with channel
set precondition Sm, Etrain is the training dataset, and 𝛼m is combination parameter. The
original EEG Ei is multiplied with the obtained spatial filter, to obtain a projection of Ei

on channel set Sm, which is the alleged channel selection. In the simulation work, 21
channels were selected, denoted as universal set of all channels, C = (CP6, CP4, CP2,
C6, C4, C2, FC6, FC4, FC2, CPZ, CZ, FCZ, CP1, CP3, CP5, C1, C3, C5, FC1, FC3,
FC5), where each one indicates an electrode channel.

For frequency band selection, the spectra denoted as G is simplified as a closed
interval, where the elements are all integer points (e.g., G is Hz). Here G is split into
various sub-bands B and D as given in [12, 14], which denotes a universal set composed
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of all possible sub-bands. While selection of optimal frequency band, the objective is to
obtain an optimal band set B (B ⊂ D), so that an optimal combination classifier on the
training data is produced.

F
(

Etrain;B
)

=
∑

Bm∈B
𝛼mfm

(

Etrain;Bm

)

(3)

Where fm is mth weak classifier learned by sub-band Bm. In the simulation study, a fifth
order zero phase forward/reverse FIR filter was used to filter the raw EEG signal Ei into
sub bands Bm.

2.2 Model Learning Algorithm

Here, the models of channel selection and frequency selection are combined to form a
two-tuple, ϑm = (Sm, Bm), it is used to denote a spatial-spectral precondition, and ν is
represented as a universal set including all these spatial-spectral preconditions. Lastly,
the combination function can be computed as

F
(

Etrain;ϑ
)

=
∑

ϑm∈ϑ
𝛼mfm

(

Etrain;ϑm
)

(4)

Hence, for each spatial-spectral precondition ϑm ∈ ϑ, the training dataset Etrain is
filtered under ϑm. The CSP features are obtained by the filtered training dataset Etrain and
these features of individual physiological nature were combined using PROB method
[1]. Let us denote the N features by random variables Xi, i = 1,… , N having class labels
as Y ∈ {±1}. An optimal classifier fi is defined for each feature i on the single feature
space Di hence reducing the misclassification rate. Let gi,y denote the density of
fi
(

Xi|Y = y
)

 for each i and labels say y = +1 or −1. Then f is the optimal classifier on
the combined feature space D = (D1, D2,… , DN), and X is the combined random vari‐
able X = (X1, X2,… , XN), densities of f (X |Y = y) is given by gy, hence under the
assumption of equal class prior for x =

(

x1, x2,… , xN
)

∈ D,

fi

(

xi;𝛾(𝜗i)
)

= 1 ↔ f̂i

(

xi,𝛾(𝜗i)
)

:= log

(

gi,1
(

xi

)

gi,−1
(

xi

)

)

> 0 (5)

Where γ is the model parameter determined by 𝜗i and Etrain, and incorporating inde‐
pendence between the features to the above equation results in an optimal decision
function given by,

f (x;𝛾(𝜗)) = 1 ↔ f̂ (x;𝛾(𝜗)) =
∑N

i=1
f̂i

(

xi,𝛾(𝜗i)
)

> 0 (6)

In this, the assumption is that, for each class the features are Gaussian distributed
with equal covariance, i.e., Xi|Y = yN

(

𝜇i,y,
∑

i
)

, with wi: =
∑−1

i
(𝜇i,1 + 𝜇i,−1), then the

classifier,
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f (x;𝛾(𝜗)) = 1 ↔ f̂ (x;𝛾(𝜗)) =
∑N

i=1
[wT

i
xi −

1
2
(

𝜇i,1 + 𝜇i,−1
)T

wi] > 0 (7)

Then obtained weak classifier can be rewritten as fm

(

Etrain;ϑm
)

, which is trained
using the boosting algorithm. Thus, the classification error defined earlier can be
formulated as,

{𝛼, 𝜗}M

0 = min{𝛼,𝜗}M
0

∑N

i=1
L

(

yi,
∑M

m=0
𝛼mfm

(

xi;γ(ϑm)
)
)

(8)

A Greedy approach [8] is used to solve (8), which is given in detail below,

F
(

Etrain, 𝛾 , {𝛼, 𝜗}M

0

)

=
∑M−1

m=0
𝛼mfm

(

Etrain;γ
(

ϑm
))

+ 𝛼MfM

(

Etrain;γ
(

ϑM
))

(9)

Transforming the Eq. (9) into a simple recursion formula we get,

Fm

(

Etrain

)

= Fm−1
(

Etrain

)

+ 𝛼mfm

(

Etrain;γ
(

ϑm
))

(10)

We suppose, Fm−1
(

Etrain

)

 is known, then fm and 𝛼m can be determined by,

Fm

(

Etrain

)

= Fm−1
(

Etrain

)

+ arg minf

∑N

i=1 L
(

yi,
[

Fm−1
(

xi

)

+ 𝛼mfm

(

xi;𝛾(𝜗m)
)])

(11)

The problem in (11) is solved by using a steepest gradient descent [9], and the pseudo-
residuals are given by,

r𝜋(i)m = −∇FL
(

y𝜋(i), F(x𝜋(i))
)

= −[
𝜕L

(

y𝜋(i), F(x𝜋(i))
)

F(x𝜋(i))
]F(x𝜋(i))=Fm−1(x𝜋(i))

(12)

Here, the first N̂ elements of a random permutation of {i}N
i=1 are given by {𝜋(i)}N̂

i=1.
Henceforth, a new set {(x𝜋(i), r𝜋(i)m)}

N
i=1, which signifies a stochastically partly best

descent step direction, is produced and employed to learn γ(ϑm) given by,

γ(ϑm) = arg min𝛾 ,𝜌

∑N̂

i=1

[

r𝜋(i)m − 𝜌f
(

x𝜋(i);𝛾m(ϑm)
)]

(13)

The combination coefficient 𝛼m is obtained with 𝛾m(ϑm) as,

𝛼m = arg min𝛼

∑N

i=1
L
(

yi,
[

Fm−1
(

xi

)

+ 𝛼fm

(

xi;γ
(

ϑm
))])

(14)

Here, each weak classifier fm is trained under a random subset {𝜋(i)}N
i=1 (without

replacement) from the full training data set. This random subset is used instead of the
full sample, to fit the base learner as shown in Eq. (13) and the model update is computed
using Eq. (14) for the current iteration. During the iteration, a self-adjusted training data
pool P is maintained at background, given in detail in Algorithm 1. Then, the number
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of copies is computed using local classification error and these copies of incorrectly
classified samples are then added to the training data pool.

2.3 Algorithm 1: Architecture of Proposed Boosting Algorithm

Input: The EEG training dataset given by {xi, yi}
N
i=1, L(y, x) is the squared error loss

function, number of weak learners denoted by M, and ν is the set of all preconditions.

(1) Initialize the training data pool Po = Etrain = {xi, yi}
N
i=1,

(2) for m = 1 to M.
(3) Generate a random permutation

{π(i)}|Pm−1|

i=1 = randperm(i)|Pm−1|

i=1

(4) Select the first N̂ elements {π(i)}N̂
i=1 as (xi, yi)

N̂
i=1, from Po.

(5) Use this {π(i)}N̂
i=1 elements to optimize new learner fm and its related parameters is

obtained in output as,

Output: F is the optimal combination classifier, weak learners obtained as {fm}
M
m=1,

where {αm}
M
m=1 is the weights of weak learners and {ϑm}

M
m=1 is the preconditions under

which these weak learners are learned.

(6) Input (xi, yi)
N
i=1, and ϑ into a classifier using CSP, extract features and combine

these feature vectors to generate family of weak learners.

(7) Initialize P, F0(Etrain) = arg minα

∑N
i=1 L(yi, α)

(8) Optimalize fm
(

Etrain;γ(ϑm)
)

 as defined in Eq. (10).
(9) Optimalize αm as defined in Eq. (11).

(10) Update Pm using the following steps,

A. Use current local optimal classifier Fm to split the original training set Etrain = (xi, yi)
N
i=1

into two parts TTrue = {xi, yi}i:yi
= Fm(xi), and TFalse = {xi, yi}i:yi

≠ Fm(xi)

Re-adjust the training data pool:

B. For each 
(

xi, yi
)

∈ TFalse do.
C. Select out all 

(

xi, yi
)

∈ Pm−1 as {xn(k), yn(k)}
K
k=1.

D. Copy {xn(k), yn(k)}
K
k=1 with d(d ≥ 1) times so that we get total (d + 1)K duplicated

samples.
E. Return these (d + 1) K samples into Pm−1 and we get a new adjusted pool Pm. And

Fm
(

Etrain
)

= Fm−1
(

Etrain
)

+ αmfm
(

Etrain;γ(ϑm)
)

F. end for.
(11) end for.
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(12) for each fm
(

Etrain;γ(ϑm)
)

, use mapping F ↔ 𝜗, to obtain its corresponding precon‐
dition ϑm.

(13) Return F, 
{

fm
}M

m=1, 
{

αm
}M

m=1, and 
{

ϑm
}M

m=1.

With the help of Early stopping strategy [23], the iteration time M is determined to

avoid overfitting, using N̂ = N, doesn’t introduce randomness, hence smaller N̂
N

 fraction,

incorporates more overall randomness into the process. In this work, N̂
N

= 0.9 and a
comparably satisfactory performance is obtained for the above approximation. While
adjusting P, the copies of incorrectly classified samples, d is computed by the local

classification error, e =
|
|TFalse

|
|

N
 is given by,

d = max(1,
⌊ 1 − e

e+ ∈

⌋

) (15)

Here, the parameter ∈ is called as accommodation coefficient, and e is always less
than 0.5, and decreases during the iterations, so that large weights on samples will be
given which were incorrectly classified by strong learners.

3 Result

The robustness of the designed algorithm was assessed on dataset obtained from BCI
competition IV (IIa) dataset [2]. In order to remove artifacts obtained from eye and
muscle movements, FastICA was employed [15]. For comparing the performance and
efficiency of the designed algorithm, Regularized CSP (RCSP) [13] was used for
feature extraction. In this, model parameter λ for RCSP, were chosen on the training
set using a Hold Out validation procedure. In case of the four-class motor imagery
classification task for dataset II, one-versus-rest (OVR) [21] strategy was employed
for CSP. PROB method [1] was utilized for feature combination which incorporates
independence between ERD and LRP features. Feature selection was done to select
relevant features, since as more features cannot improve the training accuracy. Here

feature selection was done using Fisher score (a variant, J =
‖
‖μ+ − μ−

‖
‖

2

σ+ + σ−

) [10], it

makes selection by measuring the discrimination of individual feature in the feature
vector for classification. Then the features with largest fisher score are selected as
most discriminative features. Linear Discriminant Analysis (LDA) [4] which mini‐
mizes the expected risk of misclassification rate was utilized for classification.

Here, the most optimal channel using [20] for all four MI movements i.e., left hand,
right hand, foot and tongue were CP4, Cz, FC2, and C1. The 2-D topoplot maps of peak
amplitudes of boosting based CSSP filtered EEG in each electrode for subject S1 is
shown in Fig. 2.
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Fig. 2. 2-D topoplot maps of peak amplitude of Boosting based CSSP filtered EEG in each
channel for subject S1 in BCI competition IV (II a) dataset.

To compute the spatial weight for each channel, the quantitative vector,
L =

∑

Si∈S αiSi [17] was used where Si is the channel sets and αi are their weights. The
spectral weights were computed as given in [12] and then projected onto the frequency
bands. In addition, the temporal information were also obtained and visualized. The
training dataset are preprocessed under the spatial-spectral pre-condition ϑm ∈ ϑ, which
results in a new dataset on which spatial filtering is done using CSP to obtain the spatial
patterns. Then the first two components obtained by CSP are projected onto the space
yielding the CSP filtered signal Em. The peak amplitude PmCi for Em and each channel
Ci ∈ C. Then the PmCi is averaged over all set of preconditions ϑm ∈ ϑ, computed as
PCi

= (
1
|𝜗|

)
∑

ϑm∈ϑ
αmPmCi

 where αm is the corresponding weight for the mth condition,

which is then visualized using a 2-D topoplot map. From the topoplot, it can be observed
that the left hand and right hand movement resulted in activation over the right and left
hemisphere of the brain, the foot movement activated the central cortical area and tongue
showed activation in the motor cortex region.

The classification results of the test dataset for the proposed method and the other
competing method i.e., Regularized CSP (RCSP) is detailed as follows. In all the subjects
the maximum number of iterations, M of the boosting algorithm was set to 180, which
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was computed using early stopping strategy so as to avoid overfitting, and ϵ was set to
0.05. The cohen’s kappa values for all 9 subjects in the BCI IV(IIa) dataset is shown in
Fig. 3. In case of dataset 2, the CSSBP outperformed the RCSP algorithm and showed
highest average cohen’s kappa value [3]. From the kappa values, it can be seen that when
feature vectors are combined in RCSP algorithm, there was a significant improvement
in kappa values in all subjects (except for subjects S4 and S6).

Fig. 3. Cohen’s kappa values for all the 9 subjects in BCI IV (II a) dataset, where A is RCSP, B
is RCSP with combined feature vectors, C is Boosting based CSSP (CSSBP), and D is Boosting
based CSSP (CSSBP) with combined feature vectors.

Whereas the proposed method improved the kappa values compared to the above
algorithm and moreover when feature vectors were combined, it outperformed CSSBP
with single feature when compared with combined feature vectors. The statistical anal‐
ysis was done using IBM SPSS ver. 23., it showed significant difference between
designed method and the other methods used for comparison in a Mann-Whitney U test.
For all the cases, the designed method outperformed for level of significance p < 0.05,
as shown in Fig. 4.
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Fig. 4. Boxplots of RCSP and Boosting Approach, where A is RCSP, B is RCSP with combined
feature vectors, C is CSSBP, and D is CSSBP with combined feature vectors for BCI IV (IIa)
dataset (p < 0.05).

4 Conclusion

In this work, a boosting based common spatial-spectral pattern (CSSBP) algorithm with
feature combination has been designed for multichannel EEG classification. Here, the
channel and frequency configurations are divided into multiple spatial-spectral precon‐
ditions by using a sliding window strategy. Under these preconditions, the weak learners
are trained using a boosting approach. The motive is to select the most contributed
channel groups and frequency bands related to neural activity. From the results, it can
be seen that the CSSBP clearly outperformed the other method use for comparison. In
addition, combining the widely used feature vectors ERD and readiness potentials (RP)
significantly improved the classification performance compared to CSSBP and resulted
in increased robustness.

The PROB method was utilized which incorporates independence between ERD and
LRP features enhanced the performance. This can also be used to better explore the
neurophysiological mechanism of underlying brain activities. Feature combination of
different brain tasks in feedback environment, where the subject is trying to adapt with
the feedback scenario might cause the learning process complex and time consuming,
so for that this process needs to investigate further in future online BCI experiments.
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Abstract. Displaying and interacting with Cascaded Menus on mobile
phones is challenging due to the limited screen real estate. In this paper,
we propose the Edge Menu – U-shaped layout displayed along the edges
of the screen. Through the use of transparency and minimum screen
space, the Edge Menu can be overlaid on top of existing items on the
screen. We evaluated the suitability of two versions of the Edge Menu:
List and Nested Menus. We compared the performance of the Edge Menu
to the traditional Linear Menu. We conducted three studies and revealed
that Edge Menu can support the use of single hand and both hands, it
outperforms the regular Linear Menu, and is in average 38.5% faster for
Single hand usage, and 40% faster for Dual hands usage. Edge Menu
using both hands is in average 7.4% faster than Edge Menu using Single
hand. Finally, the Edge Menu in Nested Menus shown to be faster than
Linear Menus in Nested Menus with 22%–36%.

Keywords: Cell phones · Edge Menus · Linear Menus
Nested Menus · Gestures · Mobile interaction · Menu techniques
Mobile phone menus

1 Introduction

Mobile phones are used today to perform various functions and are not limited
to making voice calls only. Users are manipulating images and videos, writing
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 86–106, 2017.
https://doi.org/10.1007/978-3-319-72038-8_8



LINEUp: List Navigation Using Edge Menu 87

documents, broadcasting events, and even creating and editing 3D models on
mobile phones. The processing capabilities of some recent mobile phones is simi-
lar to that of laptops, which makes them suitable for performing any task. How-
ever, the limited screen real estate on mobile presents itself as the biggest obsta-
cle against the utilization of the underlying hardware and sophisticated software
applications. There is currently over 1 billion smartphones worldwide [2]. Hence,
it is no exaggeration to claim that navigating through lists generally is one of
the most frequently performed daily tasks.

In this paper, we describe our work aiming to enhance menu navigation on
mobile phones. We conducted three studies. In the first two studies, we explored
one of the regularly visited lists, Contacts’ List. Since, calling a previously stored
phone number in the Contacts’ List is one of the most commonly performed daily
tasks. Although the current design of the Contacts’ List, in Android and in
iPhone, seems adequate to most users, yet we believe it will be soon challenged
by the rapidly increasing number of entries. As the current trend of merging
social contacts with phone contacts in one list continues to spread, the average
number of entries is expected to rise rapidly. A typical Internet user has about
600 social ties [16]. In Facebook, the mean number of friends among adult users
is 338 and the median comes in at 200 friends [1]. At this rate, Contacts’ Lists
with several hundred entries, will gradually become the norm. At the moment,
finding a contact can be done using speed dial, search by voice, search by typing
name and using the menu. Each of these interaction techniques suits a specific
context. For instance, while search by voice might be the fastest way to dial a
contact, it requires the user to be in a relatively quite environment.

Moreover, many software applications have complex features which are orga-
nized into deeply Nested Menu structures. This renders them unusable on mobile
screens - where the limited screen size would make the display of such menus
impossible.

In our third study, we developed the Edge Menu as a proposed solution to
this problem. The Edge Menu displays each level of a Nested Menu on one side of
the screen and the user alternates between left and right edges while navigating
in the menu using symmetric bi-manual interaction.

In this research, we aim to enhance menu navigation through the following
contributions:

– Investigating the Edge Menu - U-shaped menu.
– A comparison is done between different Layout and Interaction techniques;

Edge Menu and Linear Menu - Circular and Linear Scrolling.
– We did an extended evaluation for Edge Menus; using Nested Edge Menus.

2 Related Work

Menu Navigation is still an open topic that has many usability issues that need
more investigation and research. Our work builds on strands of prior work:
(1) Menus Design, (2) List Navigation task, (3) Contacts’ List usage and (4) Edge
Screen.
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2.1 Menus for Mobile

Several researchers have developed menus which attempt to speed up selection
in large sets of items presented on a small cellphone screen. Kim et al. [22]
developed a 3D Menu which utilizes the depth cue. The researchers’ formal
evaluation reveals that as the number of items gets larger and the task complexity
is increased, the 2D organization of items is better. For a small number of items,
the 3D Menu yields a better performance. Foster and Foxcroft [13] developed the
Barrel Menu which consists of three horizontally rotating menu levels stacked
vertically; the top level represents the main menu items. Selecting an item from a
level is achieved by rotating the level left or right, resulting in the child elements
of the current item being displayed in the menu level below. Francone et al. [14]
developed the Wavelet Menu, which expands upon the initial Marking Menus by
Kurtenbach and Buxton [21]. Bonnet and Appert [7] proposed the Swiss Army
Menu which merges standard widgets, such as a font dialog, into a Radial Menu
layout. Zhao et al. [35] used an Eyes-Free Menu with touch input and reactive
auditory feedback.

2.2 List Navigation

Menus used in mobile phones are influenced by Linear Menus which were orig-
inally created for desktop graphical user interfaces (GUI). Such menus suit
desktop environments, where large screen size can accommodate displaying more
items. However, Linear Menus are not a good option for a mobile phone inter-
face, as the screen is much smaller. Smartphone users are forced to do excessive
scrolling to find an item in a Linear Menu since the screen can only display a
handful of items at a time. Almost all menus are formatted in a linear manner,
listing entries that are arranged from the top to the bottom of the screen. When
presenting a list of items to the user, the available hardware and software have
limited the computer system architecture to a linear format. Pull-Down Menus
and Pop-Up Menus are a typical example of the linear arrangement. Most of
these menus are either static on the screen or are activated from a specific mouse
action [9].

2.3 Contacts’ List

The Contacts’ List has been the focus of several research works. Oulasvirta et
al. [26] recommended augmenting each entry with contextual cues such as user
location, availability of user, time spent in location, frequency of communication
and physical proximity. Jung, Anttila and Blom [19] proposed three special cat-
egory views: communication frequency, birthday date, and new contacts. This
is meant to differentiate potentially important contacts from the rest. Bergman
et al. [6] modified the Contacts’ List to show unused contacts in smaller font
at the bottom of the list. Plessas et al. [27] and Stefanis et al. [29] proposed
using the call log data and a predictive algorithm for deciding which entries are
most likely to be called at any specific time. Campbell et al. [24] utilized an
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EEG signal to identify the user choice. Ankolekar et al. [4] created Friendlee, an
application which utilized call log and social connections to enable faster access
to the sub-social-network reachable via mobile phone, in addition to contacts.

2.4 Utilizing Screen Edge and Bezel

Apple Macintosh was the first to utilize the screen edge by fixating the menu bar
at the top edge of the screen. Wobbrock developed the Edge Keyboard [32,34],
where the character buttons are placed around the screen’s perimeter, and could
be stroked over or tapped like ordinary soft buttons. More recently, screen edge
and bezel have attracted the attention of researchers to enable richer interac-
tions on mobile. Li and Fu [23] developed the BezelCursor which is activated
by performing a swipe from the bezel to the on-screen target. The BezelCusor
supports swiping for command invocation as well as virtual pointing for target
selection in one fluid action. Roth and Turner [28] utilized the iPhone bezel to
create the Bezel Swipe. Crossing a specific area in the screen edge towards the
inside activates a particular functionality. The user continues with the gesture
to complete the desired operation. Chen et al. [10] utilized the bezel to enhance
copy and paste. Based on Fitts’ Law, nearer bigger targets are faster to reach
to, compared to farther smaller ones. Thus, the target’s size is an important
parameter to take into consideration, because the larger the target is; the faster,
easier and more efficient the target’s selection is [11]. Jain and Balakrishnan [18]
have proven the utility of bezel gestures in terms of efficiency and learnability.
Hossain et al. [17] utilized the screen edges to display proxies of off-screen objects
to facilitate their selection. Recently Samsung provided Samsung Galaxy Edge
series, a mobile phone with a 3D melted glass that covered the curves of the
mobile phone [3]. This design has a huge potential, which supports our research
even more; seeking to prove that the Edge Menu Design is more usable than the
regular Linear Menu.

In this work, we aim to evaluate the new Edge Menu design to enhance
the navigation performance on smartphones. Namely we focus on three main
research questions (RQ):

1. Does Edge Menu offer better User Experience than Linear Menu?
2. Does the kind of interaction influence the easiness of navigating through the

menu list and reaching the user’s target?
3. Will Nested Edge Menus speed up selection process while list navigation?

Menu Design and Interaction

Our main goal was to enable the quick selection of an entry in a list and speed
up the navigation in a Nested Menu. While in previous works, researchers rede-
fined the layout of the menu list totally, our strategy is to preserve the linear
organization of entries and focus on speeding up the interaction.

To achieve this, we designed three user studies, for the first two studies we
conducted two experiments that focus in Contacts’ Lists. The main goal of any
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user is to speed up the selection process of the target name. Thus, selecting the
first letter of both the first name and the last name is the most efficient technique
to narrow down the Contacts’ List as quickly as possible. Although not all users
store the first and the last name of a contact, the same technique is applicable
to contacts with just a single entry stored. In the latter case, the first two letters
of the entry will be utilized in the search - this is further to be utilized in further
studies.

Later, for the third study we ran an experiment to enhance the search
in Nested Menus same way we aim to enhance One-Level Menus. Although
redesigning menus might result in efficient interaction, yet our approach would
enable the porting of existing applications to the mobile platforms with less
effort. We formulated three guiding design goals;

– Support Dual-hands and Single-hand interaction
– Minimize finger travel distance
– Utilize screen edges

Although users prefer Single-hand interaction [20], two-handed input has
proven quicker [22,25]. We anticipate that the overwhelming number of contacts
might require the user to utilize two hands to reach the target entry faster. The
second design goal was to minimize finger time travel distance on the screen.
Fitts’ Law teaches that movement time is inversely correlated with distance to
target and to width of target [12]. The third design goal was to make use of the
screen edges since user’s fingers are often located there while holding the phone.
Walker and Smelcer [31] and Froehlich et al. [15] have shown that utilizing an
edge as a stopping barrier improves target acquisition time.

Our design effort yielded a menu fitted to the edges which makes it easily
reachable using single hand and two hands. Two variations were developed to
support the design goals. Since performance difference could be attributed to
more than one factor, we opted for implementing simpler designs supporting
only a single design goal for comparison purposes. In this paper our focus is to
investigate if single and multi-level Edge Menu designs will work better than
Linear Menu designs, with Single hand and Dual hands.

2.5 Layout Design

Linear Menu. Since Android based phones already have a Linear Menu used
in the Contacts’ List application, we were interested in using it as a baseline
and to investigate the difference in performance between the different designs,
(see Fig. 1). We implemented the Linear Menu in our system following the same
interaction style as offered by Android OS. To support selecting both the first
name and the last name, we extended the selection mechanism to accept two
letters instead of one. Thus the user would need to tap twice for the two first
letters. It is worth noting that in Android 2.2, the Contacts’ List had a feature
to select both first and last names. The user would start by selecting the first
letter of the first name, then continue by swiping the finger horizontally for
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Fig. 1. Linear Menu with flicking
support

Fig. 2. Edge Menu with flicking
support

a short distance and next move vertically - either upward or downward - to
select the first letter of the last name. Although this feature was dropped from
later versions of Android, we felt it is more appropriate to utilize an interaction
mechanism which supports selection of the first two letters to be comparable
with our design.

Edge Menu. An Edge Menu consists of a U shaped panel fitted to the left,
right and bottom edges of the screen, (see Figs. 2 and 10). For the purpose of the
Contacts’ List, the menu items are the alphabetical letters and for the purpose
of the Nested Menu, the menu items are the default menu icons. We decided not
to use the upper edge since it is the furthest away from the user’s fingers. For the
first study, we decided to use names with first and last names not first names
only to make the study consistent, the later case will be supported in future
studies. The user taps on the first letter of the first name followed by a tap on
the first letter of the last name. This narrows down the choices for the user.
Scrolling through the results is done by flicking up and down. This menu design
was motivated by the first design goal which is to support both two handed and
single handed interaction, and the third which is to use screen edges.

2.6 Interaction Design

Linear Menu with Wheel. This menu consists of two components: a linear list
of alphabet letters placed in the right edge of the screen and a wheel for scrolling
at the bottom (see Fig. 3). To select an entry, the user starts by choosing the
first letter of the first name and next select the first letter of the second name
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from the menu. Next, the user scrolls through the narrowed down results using
the wheel provided. Holding the phone in one hand, the wheel lies where the user
would rest his thumb. This menu design was motivated by the second design goal
to minimize finger travel distance. We speculated that the slowest part of the
interaction is scrolling up and down to locate an entry. Since the user is unaware
of the exact location of the contact, the employed flicking either overshoots or
undershoots the location of the desired entry. Tu et al. [30] compared flicking
to radial scrolling and found that radial scrolling led to shorter movement time
than flicking for larger target distance. However, it was not clear if using the
thumb is efficient since Wobbrock et al. [33] has reported that the index finger is
generally faster. This menu design was motivated by the second design goal which
is minimize travel distance but focused on the interaction with the narrowed
down list.

Fig. 3. Linear Menu with radial control
for scrolling

Fig. 4. Edge Menu with radial control
for scrolling

Edge Menu with Wheel. This design is similar to the Edge Menu but aug-
mented with a wheel for scrolling through the results list (see Fig. 4). After
choosing the first letter, a wheel is displayed in proximity to the last position
of the user’s finger. The user scrolls through the list of contacts by moving the
finger in a circular motion on the wheel - following the same interaction style as
in the Linear Menu with wheel. Clockwise movement causes scrolling down and
anti-clockwise movement signals scrolling up. The speed of the rotation governs
how fast the scrolling of names occurs. The user does not have to maintain his
finger within the wheel border as any radial movement above or close to it,
activates the scrolling. Finally, the user taps on the desired contact. This menu
design attempts to support the three stated design goals.
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2.7 Pre Study: Observing Mobile Holding Position

We observed people in public areas, while holding their mobile phones, to observe
the most common, comfortable position to hold their mobile phones. After
observing many samples of people, almost all people grabbed their phones in
a position where the phone’s back rests on the users’ palms (see Fig. 5).

Fig. 5. Most habitual holding position of a cellphone

3 Study I: Evaluating Edge Menus Layout
and Interaction Techniques

To answer RQ and to test our hypothesis of whether using Edge Menu instead
of Linear Menu improves the user’s performance or not? We started 3 studies
sequentially.

Our goal with the evaluation was to find which menu is most efficient while
working with a large-size list. A secondary goal was to understand the importance
of our design goals and decide which is most relevant for future design efforts.

3.1 Design

We applied a repeated-measures design, where all participants were exposed to
all conditions. An application displaying the menus and measuring user perfor-
mance was implemented. The study has two independent variables, specifically
the menu type with four levels; Linear Menu, Edge Menu, Linear Menu with
Wheel and Edge Menu with Wheel, and the list size with three levels; 201 entries,
300 entries and 600 entries; and two dependent variables the mean execution
time and error rate. The latter is defined as the percentage of trials with an
incorrect selection of a target name. The mean execution time, is defined as the
time between the display of a target name to the participant and the partici-
pant tapping on that name in the Contacts’ List. The order of the conditions
was counter-balanced to avoid any learning effects. The study time was around
60–120 min plus 3 min for the training trials.
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3.2 Apparatus

Our experimental setup consisted of a Samsung S3 device with a 4.8 in.
(1280× 720) display running Android 4.0.

3.3 Participants and Procedure

We recruited 36 participants (18 females) and (18 males) with an average age of
26 years (SD = 2.27) using university mailing lists. Four of the participants were
left-handed. None of the participants had any previous experience using Edge
Menus. After arriving in the lab and welcoming the participants, they signed a
consent form and received an explanation of the purpose of the study.

We equally divided the participants to 3 groups each with 12 participants.
First group was tested using 201 contacts; we divided them accordingly to
3 blocks, each having 67 trials. Thus each participant performed 804 trials:
(4 menus× 67 trials× 3 blocks). The total number of trials in the experiment
was 9648 (12 participants× 804 trials).

Second group was tested using 300 contacts; we divided them accordingly to
3 blocks, each having 100 trials. Thus each participant performed 1200 trials:
(4 menus× 100 trials× 3 blocks). The total number of trials in the experiment
was 14400 (12 participants× 1200 trials).

Finally, the Third group was tested using 600 contacts; we divided them
accordingly to 3 blocks, each having 200 trials. Thus each participant performed
2400 trials: (4 menus× 200 trials× 3 blocks). The total number of trials in the
experiment was 28800 (12 participants× 2400 trials).

The target names were carefully selected to ensure that the user will need to
navigate in the Contacts’ List before reaching the required name. The alphabet
was divided into 3 sets: the first set contained names starting with letters A
to I, second set contained names starting with letters J to Q, and the last set
contained names starting with letters R to Z, (see Fig. 6). Each block contained
an equal number of names from the three sets. Names were not repeated between
blocks to avoid learning effects. In this experiment a large Contact’s List size
was chosen to evaluate the difference in performance since the user has to scroll
through many target names.

In this experiment we asked the participants to use only single hand while
performing the experiment. Hence, the user uses only one hand to hold the
mobile phone and experiments the Edge Menu and Linear Menu likely.

3.4 Results

We analyzed the Mean Execution Time. Data from the practice trials was not
used in the analysis. A univariate repeated measures ANOVA was carried out
on the remaining data. Significant main effect was found for menu type. Mauch-
ley’s test indicated that the assumption of sphericity had been violated, therefore
degrees of freedom were corrected using Greenhouse-Geisser estimates of spheric-
ity F(2.79, 30.68) = 82.758. p< .0001 Post-hoc analyses were carried out to com-
pare means for menu type. Four statistically significant groups were detected
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Fig. 6. An explanation of each trial’s arrangement

from the analysis, namely: Linear Menu and Linear Menu with wheel, Edge
Menu and Edge menu with wheel. Thus, Linear Menu and Linear Menu with
Wheel performance was similar, but together they were statistically different
from the other three groups. The fastest performance was accomplished using
Edge menu (μ = 5.5 s, σ = 0.15), followed by Edge menu with wheel (μ = 5.9 s,

Fig. 7. Study I: mean execution time
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Table 1. Mean execution time for the four layouts using Single hand

Layout (Mean::SD)

Edge Menu 5.5 s 0.15

Edge Menu with Wheel 5.9 s 0.21

Linear Menu 8.2 s 0.93

Linear Menu with Wheel 8.3 s 0.88

σ = 0.21). Third came the Linear Menu (μ = 8.2, σ = 0.93) and Linear Menu with
wheel (μ = 8.3 s, σ = 0.88) (refer to Table 1 and Fig. 7 for the results). Partici-
pants’ errors in response were very few (2%). There was no significant difference
between the different menu types.

3.5 Discussion

In conclusion, the U-shaped Edge Menu revealed better results than the regular
Linear Menu; regardless the interaction technique used (circular or linear).

In addition to that, since the Edge Menu design spreads out the letters on
three sides of the screen; left, right and bottom, this creates an opportunity
for the user to use either one of his hands to interact or his two hands if the
first letter of the first name and that of the last name reside in different sides.
Although, it is not guaranteed to always have such an allocation. Consequently,
half the Contacts’ List entries were names whose first letters were residing in
the same side and the other half were names whose first letters were residing in
different sides. Therefore in Study II we aim to explore dual hand interaction as
informed by the subjective measures from the participants (questionnaire).

3.6 Post Study: Questionnaire

It was really important to collect the subjective view of participants towards
the design in general after finishing the first study and before doing any further
research.

After the Participants finished the Experiment, a questionnaire was distrib-
uted among them. They were all satisfied by the experience and the options
offered to them. However, the major comment we received was, that the partic-
ipants will be more satisfied by the Edge Menu, if they were able to use both of
their hands while navigating. Based on the information collected by the ques-
tionnaire, we carried the second study, enabling the participants to use both of
their hands while navigating through the list.

4 Study II: Dual vs. Single Handed Interaction

After proving that the Edge Menu outperforms the Linear Menu, while main-
taining the same testing environment and conditions. It was time to prove that
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the Edge Menu can perform even better when using both hands, since the menu
items are distributed along both screen edges (see Fig. 8). In this experiment the
user was asked to use both of his hands while trying the new Edge Menu design
using linear scrolling only. The circular scrolling technique was eliminated in this
study since it wasn’t proven that it is better than the normal linear technique. We
investigated different lengths of lists - different numbers of contacts - to make
sure that our study will almost fit most of the applications. The Experiment
Design, Apparatus and Task were similar to that of Study I.

4.1 Design

This study has 2 independent variables, specifically the menu type with two
levels; Linear Menu and Edge Menu and the list size with three levels; 201
entries, 300 entries and 600 entries, and 2 dependent variables the error rate
and mean execution time. The distribution of the blocks throughout the trial
was same as of the First Study, (see Fig. 6). In each trial, the participant is
instructed to locate and press on a specific contact name. Thus, simulating the
typical interaction that occurs while calling a number.

4.2 Participants and Procedure

Similar to the first study, We recruited 36 participants (18 females) and
(18 males) with an average age of 25 years (SD = 2.24) using university mailing
lists. Six of the participants were left-handed. None of the participants had any
previous experience using Edge Menus. After arriving in the lab and welcoming
the participants, they signed a consent form and received an explanation of the
purpose of the study.

We equally divided the participants to 3 groups each with 12 participants.
First group was tested using 201 contacts; we divided them accordingly to
3 blocks, each having 67 trials. Thus each participant performed 402 trials:
(2 menus× 67 trials× 3 blocks). The total number of trials in the experiment
was 4824 (12 participants× 402 trials).

Fig. 8. Study setup - user while performing a trial
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Second group was tested using 300 contacts; we divided them accordingly
to 3 blocks, each having 100 trials. Thus each participant performed 600 trials:
(2 menus× 100 trials× 3 blocks). The total number of trials in the experiment
was 7200 (12 participants× 600 trials).

Finally, the Third group was tested using 600 contacts; we divided them
accordingly to 3 blocks, each having 200 trials. Thus each participant performed
1200 trials: (2 menus× 200 trials× 3 blocks). The total number of trials in the
experiment was 14400 (12 participants× 1200 trials).

4.3 Results

A paired samples t-test using the execution time of the Edge Menu and that
of Linear Menu for each level of the Contacts’ List size (201 - 300 - 600) was
performed. The results were very promising. For the 201 Contacts level, The
fastest performance was accomplished using Edge Menu, Edge Menu had statis-
tically significant lower execution time (5.15 s) compared to Linear Menu (7.75 s),
t(11) = 4.083, p< .05.

Table 2. Mean execution time for the two layouts using Dual hands

Layout 201 contacts 300 contacts 600 contacts

Edge Menu 5.15 s 5.11 s 5.6 s

Linear Menu 7.75 s 8.5 s 8.7 s

Also, for the 300 contacts, Edge Menu had statistically significant lower exe-
cution time (5.11 s) compared to Linear Menu (8.5 s), t(11) = 6.811, p< .05.
Finally, for the 600 Contacts level, the fastest performance was accomplished
using Edge Menu, Edge Menu had statistically significant lower execution time
(5.6 s) compared to Linear Menu (8.7 s), t(11) = 6.534, p< .05.

Interestingly, results showed that for the 201 contacts, Edge Menu outper-
formed Linear Menu with 33.54%. Similarly, for the 300 contacts, Edge Menu
outperformed Linear Menu with 39.88%. Finally, for the 600 contacts, Edge
Menu outperformed Linear Menu with 35.63%. Impressively, results have shown
slight improvement in performance of the users while using the Edge Menu with
both hands than Edge Menu with Single hand. The average performance of the
2 menu types with different number of trials (201 - 300 - 600 Contacts) have
been recorded (refer to Table 2 and Fig. 9 for the results).

4.4 Discussion

After performing the second study, it was proven that the Edge Menu outper-
forms Linear Menu, specially the Dual Edge Menu, and is worth for usage and
for further research. This was the initial exploration but of course our study is for
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Fig. 9. Study II: mean execution time

limited use case and we envision that this could be extended for wider application
than the Contacts’ List. Therefor, we investigated the extension of the U-shaped
Edge Menu via Nested Menus to allow more content navigation/display.

5 Study III: Evaluating Nested U-Edge Menus

In this Study we extend our design to include Nested Menus. Our goal with
the evaluation was to find which menu is most efficient while working with a
large-size list. A secondary goal was to understand the importance of our design
goals and decide which is most relevant for future design efforts.

5.1 Design

The goal of this study is to compare the performance of the Edge Menu to
a standard Linear Menu, on mobile, in the case of navigating a Nested Menu
structure. We measured two dependent variables; execution time and error rate.
The latter is defined as the percentage of trials with an incorrect selection of an
item. The Execution Time is defined as the time between the communication
of a menu item to the participant till tapping on that target. There were two
independent variables; Menu-Type and Menu-Depth. Menu-Type had two levels;
Linear Menu and Edge Menu. Menu-Depth had four levels; Depth-2, Depth-3,
Depth-4 and Depth-5 - representing Nested Menus with different depths.

5.2 Apparatus

Our experimental setup consisted of a Samsung S3 device with a 4.8 in.
(1280× 720) display running Android 4.0.



100 R. M. Eisa et al.

Fig. 10. Nested Edge Menu. Each level of a Nested Menu is displayed on one side of
the screen.

5.3 Participants and Procedure

Eleven unpaid university students, six males and five females, performed the
experiment (age μ = 21.5).

In each trial, the participant is provided with a target menu item along with
the path to follow to reach to that menu item. The participant task is to navigate
through the menu, (see Fig. 10) and click on the specified menu item.

At the beginning of the experiment, the task was explained to the partici-
pant. Before using each of the two designs, an explanation of the menu and the
interaction was provided and some practice trials were executed. We instructed
participants to use a specific hand posture with each menu type. In the Edge
Menu, the participant was asked to hold the phone using two hands and use the
thumbs to select. Meanwhile, in the Linear Menu, the user holds the phone with
one hand and uses the thumb of that hand to perform the interaction. The study
duration was around 50 min.

The experiment was divided into 3 blocks, each having 20 trials. The
total number of trials in the experiment was; (11 Participants× 2 Menus× 4
Depths× 20 Trials× 3 Blocks = 5,280 trials.

5.4 Results

Error Rate was very small (less than 2%), thus was not included in the analysis.
Since we wanted to compare the performance of the Edge Menu to the Linear
Menu at every nesting level, we conducted a paired samples t-test using the
execution time of the Edge Menu and that of Linear Menu at each Menu-Depth.
For Depth-5, Edge Menu had statistically significant lower execution time (3.88 s)
compared to Linear Menu (6.1 s), t(10) = 3.3, p< .05. Similar results were found
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Fig. 11. Study III: mean execution time

Table 3. Mean execution time for the two layouts using Nested Menus

Layout Depth-2 Depth-3 Depth-4 Depth-5

Edge Menu 3.4 s 3.4 s 3.77 s 3.88 s

Linear Menu 3.5 s 4.42 s 4.95 s 6.1 s

for Depth-4, where Edge Menu mean execution time was (3.77 s) while Linear
Menu was (4.95 s), t(10) = 2.9, p< .05. For Depth-3, Edge Menu mean was (3.4
s) while Linear Menu was (4.42 s), t(10) = 3.4, p< .05. In Depth-2, there was no
statistical significance between the two menus (refer to Table 3 and Fig. 11 for
the results).

5.5 Discussion

In this experiment, the enhancement in performance due to Edge Menu was not
the same at every menu-depth. In Depth-5, Edge Menu caused a decrease of 36%
in execution time, while in Depth-4, it caused a decrease of 24%, and in Depth-3,
the decrease was 22.6%. Thus in conclusion, the gain in performance increases
as the number of levels in the menu increases. We believe that this is because at
the first levels of the menu, the user has almost the same step counts. However,
as we go deeper the step counts from the beginning of the trial increases and the
user needs to interact more. Therefor, at this point the difference between the
Edge Menu results and Linear Menu results are really significant.

6 Summary

In the three studies, our results revealed that Edge Menu is faster, and yields
better performance than the Linear Menu. In the two variations of the Edge
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Menu, the user utilized both hands to simultaneously enter the first letters,
which is an example of a symmetric bi-manual task [5,8]. Using the two hands
outperforms using a Single hand since the time to position a Single hand on
the next target is eliminated. When unifying the testing conditions in the first
experiment, using Single hand while testing both Edge Menu and Linear Menu.
Results showed that Edge Menu outperformed Linear Menu by 32.93%. Similarly,
the Edge Menu with wheel outperformed Linear Menu with wheel by 28.92%. In
the second experiment, in an attempt to enhance the Edge Menu performance
even more and meet the most comfortable position while holding the mobile
phone, the user was asked to use both of his hands while testing the Edge
Menu. Results showed that for the 201 contacts, Edge Menu outperformed Linear
Menu with 33.54%. Also, for the 300 contacts, Edge Menu outperformed Linear
Menu with 39.88%. For the 600 contacts, Edge Menu outperformed Linear Menu
with 35.63%. Interestingly, results have shown slight improvement in Edge Menu
using both hands than Edge Menu using Single hand. In the third study, the
Edge Menu showed a remarkable decrease in the execution time, 36%, 24% and
22.6% for Depth-5, Depth-4 and Depth-3. We believe that the menu’s icons size
contributed to the positive results demonstrated by the Edge Menu. Spreading
out the menu items, across the edge of the screen gives more space to each item.
Each icon activation area along the sides in the Edge Menu was 1.5x as large as
the activation area in the Linear Menu. Our results agree with previous works
that larger activation areas yields faster performance [11] (Fig. 12 and Table 4).

Fig. 12. Average results summary
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Table 4. Summary of the 3 studies’ results

Layout Single hand Dual hands Nested menus

Edge Menu 5.5 s 5.28 s 3.6 s

Linear Menu 8.2 s 8.3 s (Single) 4.7 s

7 Limitations and Future Work

There were several limitations we explored through designing the 3 studies, most
of which have been resolved during performing the experiments. The main chal-
lenge was supporting different lists’ sizes, this we were able to resolve in the
second study by running the experiment on different Contact’s List size. Only
few of the limitations were left for future research. The main goal would be
creating a platform that allows application designers to integrate/convert their
work directly with the Edge Menu. We believe that the source code and research
done in this paper should be available for other researchers in an open source
library, to help out researchers to add their ideas.

8 Conclusion

We developed the Edge Menu which is a U shaped menu fitted to the left, right
and bottom edges of a mobile screen. An Edge Menu is superior to a Linear Menu
by 23% to 40%. However, further research is required to enable the Edge Menu to
support greater set of items - for example, languages with longer alphabet. While
our findings suggest that the two variations of the Edge Menu will yield better
performance in a larger list, this still needs to be verified using a formal study.
The work explored the practicality and feasibility of Edge Menu design. Based
on our user studies and experiments, it is proven that the Edge Menu yields
better performance than the regular Linear Menu. By these results, encouraging
software developers and application designers to start integrating Edge Menu
with their designs instead of Linear Menu, and explore the capabilities offered
by this relatively new design.
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Abstract. Video lectures form a primary part of MOOC instruction
delivery design. They serve as gateways to draw students into the course.
In going over these videos accumulating knowledge, there is a high occur-
rence of cases [1] where the learner forgets about some of the con-
cepts taught and focus more on what is the minimum amount knowl-
edge needed to carry forward to attempt the quizzes and pass. This
is a step backward when we are concerned with giving the learner a
learning outcome that seems to bridge the gap between what he knew
before and after the course to completion. To address this issue, we are
proposing an interaction model that enables the learner to promptly take
notes as and when the video is being viewed. The work contains a func-
tional prototype of the application for taking personalized notes from
MOOC contents. The work [12] is an integration of several world lead-
ing MOOC providers content using application program interface(API)
and a customize interface module for searching courses from multiple
MOOC providers as COURSEEKA and personalised note taking mod-
ule as MOOKbook. This paper largely focuses on a learner’s perspective
towards video based lectures and interaction to find the enhancements
in interaction with longer retention of MOOC contents.

Keywords: MOOC note · Self pace learning · Personalized learning
MOOCbook · MOOC Video Interaction · Enhanced learning outcome

1 Introduction

A MOOC is a model of delivering education in varying degrees, massive, open,
online, and most importantly, a course [13,14]. Most MOOCs have a structure sim-
ilar to traditional online higher education counterparts in which students watch
lectures online and offline, read material assigned to them, participate in online
forums and discussions and complete quizzes and tests on the course material. The
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 109–121, 2017.
https://doi.org/10.1007/978-3-319-72038-8_9



110 S. Deb et al.

online activities can be supplemented by local meet-ups among students who live
near one another (Blended Learning) [3]. The primary form of information deliv-
ery in MOOC format is videos. One of the challenges faced by the online learners of
today is the need of an interface which enables to take notes from the video lectures
[2]. Traditional methods used thus far by the student community are time absorb-
ing and cumbersome in terms of organization. This work is an attempt to address
the issue enabling the learner to focus more on the curriculum than on how to com-
pile and access the materials later. As MOOC courses being accessed through out
world, beyond any geographical region. Inherently it triggers another level of inter-
action andunderstanding difficulty due to cultural, linguistic variation. In addition
to that human learning variation takes a great role in graceful MOOC acceptance,
learning pleasure and learning outcome.

2 Problem Statement

There is a significant concern over what the learners end up learning as compared
to what the MOOC instruction designer intended them to do [4,7]. Many just fall
into the trap of knowing just enough to pass the quizzes and course assessments,
this neglecting any other concepts that learner may have eventually come across
but forgotten about it [8,18]. For the learners who seem to acknowledge this issue
on their own, they tend to view the videos again and again until they feel that
they have substantial command over the topic being taught in these videos [6,9].
Now, while this may be a good practice, this takes an awful amount of time. Also,
watching multiple video lectures on a specific topic may overlap various contents
as well tend to forget [15] the previously viewed contents [10,16]. Instead, if there
was an interface that lets the learner decide on taking essential parts of the video
in a form which can enable them to revise the concepts later and on-demand, it
would make sense. This work designs an integrated MOOC takers note book that
makes an integration of various course providers content on a personalized note
interface [11]. This enables cross reference, transcript copy, still frame capture
and personalize text note. Taking notes are a manifestation of that conscious
effort of peoples natural tendency to forget things with time [19]. Lecture or
handouts given in class by the instructor are all the same but people seem to
remember more when they are actively taking a record of what is happening, on
their own. But there is a flipside to the scenario in digital note taking. People
are more reluctant to take notes verbatim, with every word on the document
[5]. The trade off between digital and conventional notes are discussed in the
experiments presented in [17]. But despite these findings, modern day challenges
make to utilize ones time in the best possible way.

3 MOOCbook a Novel Model

Since videos represent the most significant part of MOOCs, it is a mandate that
the note taking process will revolve around them. The length of the videos varies
from provider to provider, typically ranging from 2–4 min (micro-lectures) to a
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maximum of 15 min. As a video progresses, there are certain checkpoints that
an instructor breaks a topic into and these checkpoints serve as the keynotes for
the topic at hand. For example, a video about supervised learning of machine
learning would typically discuss about the common examples in which it is used,
then explain the algorithm employed, plot the points representing the features
and interpret it, differentiate with other machine learning algorithms and finally
conclude the scenarios and advantages where the algorithm applies.

Fig. 1. MOOKBook work flow

These checkpoints, although important to
the MOOC taker at that instant, seem to fade
away when the next video starts. The MOOC
taker is reluctant on obligating to memory rather
tend only to remember those parts which are
needed to pass the quizzes. To address this issue,
we propose a novel model whereby the MOOC
taker can take notes on the fly when they are
taking the course through watching videos. For
the MOOC taker, the parts of the course which
they intend to take note, it happens to be cer-
tain points in the video. It is assumed that the
video is accompanied by an interactive transcript
that scrolls and highlights what the instructor
is saying at that moment of the video. Dur-
ing the video, there may happen to be equa-
tions, diagrams, graphs and example scenarios

that explains the topic from various perspectives. To take the corresponding
notes by hand, it would take stopping the video, taking the conventional note
book up and writing or drawing whats on the video screen at that instant. This
would take up the valuable time that the MOOC taker has invested already.
The proposed on the go note taking, while the MOOC taker watches the video
is a meta description extraction using a client side scripting on the browser that
the learner is currently using to access the materials. The parts of the lecture
which catches the attention of the learner are simultaneously displayed in the
transcript. A recurrence script extracts transcript with the screen and add the
portions to the notebook on events initiated by the user. The learner can save a
considerable amount of time which they would otherwise be using for taking the
notes conventionally. The user can view the updated note in the browser itself
so that it gives a better perspective of what has been learnt (Fig. 1).

4 Architectural Design

4.1 Design of COURSESEEKA Module

As a starting point in achieving the goals set forth by, an online interface has
been developed where the learners first objective i.e. the need to identify suitable
courses that may address his current learning objective, from an array of courses
enlisted in various course providers, namely coursera, udacity and udemy. edx
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Fig. 2. Fuzzy closeness approximation algo-
rithm in action for filtering a search from
multiple MOOC providers simultaneously

Fig. 3. A retrieved course from (a) Udemy
(b) Coursera

had also been approached for their API on two occasions but both the requests
got rejected. These course providers are fairly popular and have gained trust
among the learning masses as the MOOC movement took place. Also, these have
well defined APIs which enlist course related information that can be obtained
easily. The COURSEEKA interface is based on the architecture as described by
Fig. 5. The interface aims to find courses available from three course providers,
namely courser.org, udacity.com and udemy.com and combine their results into a
single web page where a user can query a course specific search term according to
his learning objective, and the courses will then be filtered accordingly (Figs. 2,
3, 4 and 5).

Fig. 4. MOOKBook multi modal note
generation

Fig. 5. COURSEEKA API stack

http://courser.org
http://udacity.com
http://udemy.com
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4.2 Modified Fuzzy Closeness Approximation Algorithm

Existing interfaces on course search is based on matching the keywords wholly.
While this may seem as a very nave way to get courses recommended to a
learner based on his search term, our web application has a learner centric app-
roach to getting the search results that will suit someone who is willing to man-
age his online MOOC curriculum in a very specific way. His search results are
constrained to be from one of the major MOOC providers (as has been told
already) existing today. Moreover, the search algorithm is based on a modified
fuzzy string closeness approximation algorithm which is clever enough to infer
what the MOOC learner is specifically searching for even if he is halfway through
or even less than what he intends to type.

5 Implementation

5.1 Prototype Specifications

The prototype is a web application that hosts a video with interactive transcript
and has control buttons to preview and append notes. The interface aims to
capture portions of the text of the video content i.e. the transcript along with
screen captures, preview them and append to the notebook inside the webpage
itself. Finally, the user has the option to download the notebook thus formed.
All of this happens using client side scripting, which is relevant since time is of
the essence when the user is taking the note as the video plays. This eliminates
the load off the servers hosting massive amounts of data in the MOOC servers.

5.2 Prototype Demonstration

An initial working prototype has been implemented which uses the three APIs
combined and lists all the courses relevant to a learners interest as they types in a
search query. The search results are then displayed centrally using a Fuzzy String
Closeness Approximation. As an example of working demo, the video course cited
is one of the those featured in the first week of the Machine Learning course
by Professor Andrew Ng of Stanford university, hosted by coursera.org. The
instructor goes about explaining Un-supervised learning in the course. Figure 6
The distinguishable parts of the video are listed as under: 1. Difference between
unsupervised learning and supervised learning (two graphs). 2. Applications of
Supervised Learning (images depicting them). 3. Tackling a problem (cocktail
party problem) using unsupervised learning (image de-picting the scenario). 4.
Cocktail party problem algorithm (code in python) 5. A quiz with options to
choose from. These distinguishable parts are of concern to the learner when
compiling a digital note about the video. The MOOCbook interface is equipped
to take snapshots of these parts and scrape the transcripts of the relevant por-
tions as and when the learner deems it necessary. Figure 6 shows a screen of the
video captured for preview. The snapshot is taken using the videos and videos
interactive transcript JS libraries in tandem. If the preview is deemed good for
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Fig. 6. MOOKBook GUI and interactions Fig. 7. Analytic dashboard

Fig. 8. MOOCBook final note in MS word Fig. 9. Example clickstream data collected
from google analytics

adding to the note, the user then proceeds accordingly. To capture the lecture
discussions relevant to the note being compiled, we have made use of the VTT
file available with the video in courser. The VTT file has timestamps along with
text content, which is scraped using suitable javascript code, and added to the
note. Thus, the cocktail party problem algorithm now has a proposed problem,
a solution with code and relevant transcripts, all in one note, viewable in the
browser itself where the video is still playing. The note thus far compiled, is now
available for download to the client machine using the jquery word export plugin
made using JS. The final note file is a MS Word document (Figs. 7, 8 and 9).

6 Synthesis of Experiments and Result

The system developed for taking notes from MOOCs, namely MOOCbook is
taken up for testing effectiveness. Pretests were concluded before the actual
experiment to establish clear reference point of comparison between treatment
group and control group. To investigate whether the proposed system effectively
generates a learning outcome that lasts even after the video completes, post tests
were conducted between the two groups. The subject matter that is portrayed in
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the two videos which are featured in the system developed is an introduction to
the two major varieties of Machine Learning algorithms. Both the treatment and
the control groups have a basic knowledge of what Machine Learning is about.

6.1 Evaluation Criterion

The current MOOC interfaces available on the Internet featured on MOOC plat-
forms like coursera, udacity etc. are designed to deliver content over multiple
media formats. The primary format, namely videos are designed to be accompa-
nied by in-video quizzes that assess the learners comprehension with the help of
in-video quizzes as well as separate assessments module. But certain parts of the
video are overlooked by the learner because he may be impulsively following the
video to complete the quizzes and the assessments. For this purpose, it happens
that the learner may have peeked into the questions beforehand and accordingly
is inclined to get the answers from the video. So, he is skimming portions of
the video in order to find the answers and thus is not open to effective learning.
The questions to understand how the system enhances the learning outcome of
a learner have been identified as under:

– Question 1: How much time is spent on viewing the video, including activation
of play and pause buttons on the video player?

– Question 2: Whether skimming the video helps in understanding the content?
– Question 3: Did the users feel the need to seek to certain parts of the video

to find answers to questions which are known beforehand the experiment?
– Question 4: Does a digital note assistant help in reviewing and recalling

portions of the content in a way that saves time and thus increase the effective
learning of the MOOC taker?

– Question 5: Did the users who were provided with the MOOCbook module
actually refer the downloaded note?

6.2 Methodology

The participants of this experiment are 6th Semester Under Graduate Engi-
neering students. There are 84 students in total, divided into two groups, one
being a control group and the other being the treatment group. They are shown
two videos each on the system developed. The control group gets to see only
the videos, while the treatment group sees the MOOCbook interface at play,
which enables them to take notes if necessary. Each of the participants are
allotted 40 min for viewing the videos. The combined length of the videos is
(12.29 + 14.13) = 26.42 min. Throughout the duration of the video featured in
MOOCbook, all activities of the user are recorded with the help of Google ana-
lytics that serve as a gateway to learn key insights into how the users inter-
act with the video player while seeing the videos. The data collected through
Google analytics is downloadable and hence form our dataset of study. The data
downloaded from Google analytics is in the form of csv files which are obtained
individually from all the 84 users of the experiment. The effectiveness of the
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MOOCbook interface was tested using independent-samples t-test. It is aimed
to compare means between two unrelated groups on the same continuous vari-
able. In this case, it has been used to understand whether the learning outcome
undergraduate engineering student is increased on the application of MOOC-
book. Thus the independent variable here is “User of MOOCbook or not ”(one
of the groups being users who had MOOCbook interface at their disposal and
the other being who did not use MOOCbook) and the dependent variable is the
“learning outcome ”.

Assumptions. As requirement of independent t-test, the 6 point compliance
of assumptions as detailed under.

1. The dependent variable, namely learning outcome is measurable in a
continuous scale.

2. The independent variable i.e. whether MOOCbook user or not, has two pos-
sibilities viz. either the user is given the MOOCbook interface or the user is
not. Thus there are two categorical, independent groups.

3. There is independence of observations since there is no relationship between
the observations in each group or between the groups themselves.

4. There is no significant outliers, meaning there are no values in the dataset
that does not follow the usual pattern.

5. The dependent variable which is learning outcome is approximately normally
distributed for each group of the independent variable.

6. There is homogeneity of variances.

6.3 Instruments

The various analytical processes aimed at answering the questions identified have
been enlisted here. A short demonstration was performed which walked through
the MOOCbook interface to the participants before the experiment so that they
are familiar with the system. A questionnaire aimed at measuring MOOC aware-
ness among the participants serves as a pretest before the experiment, and two
post tests comprising data analysis of clickstream events generated during exper-
iment and a quiz is aimed at testing effectiveness of the MOOCbook interface.

Pretest. The pretest was carried out before the participants were given access
to the system. The two groups were surveyed about their MOOC awareness. A
questionnaire specific to MOOC awareness was used in this regard.

Post Intervention Tests

1. Clickstream data analysis - To address how behavior of participants differ
on the provision of the MOOCbook interface in terms of interaction with the
video (questions 1–3 of Evaluation Criteria section), the data generated
through clickstream events of the video on the google analytics server was
analyzed.
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2. Learning outcome - To answer the questions 4 and 5 enlisted in Evaluation
Criteria section, a quiz was conducted with the participants and the results
were evaluated.

Null Hypotheses

– H1: There is no significant difference in terms of MOOC taking experience
between the treatment group and the control group.

– H2: There is no significant difference between the participants in terms of the
pattern of clickstream events generated for the videos watched.

– H3: There is no significant difference between treatment and the control group
in terms of learning outcome generated from the experiment.

Pretest Results. Data in Fig. 10 shows that the treatment group pre-test mean
scores was 7.07 (SD = 2.443) while the control group pre-test mean score was 6.88
(SD = 2.098). To ensure the comparison between two groups, a two tailed t-test
was done on the sample for 5% level of significance. The findings are shown
in Fig. 11. The mean difference between the treatment and the control group
in terms of Test Scores is 0.190. The findings (Fig. 11) lead to the conclusion
that there is no significant difference between the treatment and control group
prior to the experimental study conducted. Both groups were found to have
common ground of knowledge when it comes to MOOCs and thus are ideal for
the MOOCbook test scenario. Hence hypothesis H1 failed to be rejected (Fig. 12).

Fig. 10. Pre-test score results of treatment
and control group

Fig. 11. Independent samples test as
pretest

Fig. 12. Normal distribution for pretest
scores

Post Test Results Clickstream Data Analysis. Data in Fig. 13 shows the
summary of clickstream data obtained from 84 participants. The control group
generated analytics data from only the video player interactions like play, pause,
fullscreen etc. while the treatment group was capable of generating note-taking
events like Add Text To Note, Add Image To Note etc. in addition to what control
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group users were allowed. For the purpose of analysis, only the clickstream data
with respect to video player interactions is taken up. The note-taking interactions
will not be taken in the post test analysis. The normal distribution graph of
the post-test-1 scores for the two groups is shown in Fig. 15. To analyze the
hypothesis H2, a two tailed t-test was done on the sample for 5 % level of
significance. The mean difference between the treatment and the control group
in terms of the number of events registered while watching the videos is -32.667.
The findings of the Independent Samples Test is depicted in Tabular data Fig. 14.
The above findings lead to the conclusion that there is a significant difference
between the treatment and control group post the experimental study conducted.
Both groups were found to have interacted in a very different way when it came
to viewing the videos. The number of clickstream events were far higher for the
control group without the notes system than the treatment group with notes
enabled. This leads to the conclusion that hypothesis H2 is false and does not
hold.

Fig. 13. Post-test clickstream results of
treatment and control group

Fig. 14. Independent samples test as post-
test 1

Fig. 15. Normal distribution for post test
1 scores

Learning Outcome. The Post Test 2 is a questionnaire that aims to find the
learning outcome of the participants. The questions contained here are set from
the content of the two videos that are hosted in the MOOCbook system. The
control group once again is devoid of the functionality of taking notes whereas
the treatment group is notes module enabled. The results obtained as shown in
Fig. 16 will be directly connected with how much of the lessons depicted within
the videos are comprehended by the users. Thus the direct measure of how much
a knowledge a learner can retain will be obtained. To analyze the hypothesis H2,
a two tailed t-test was done on the sample for 5% level of significance. The mean
difference between the treatment and the control group in terms of the Qscores
(scores obtained by the participants on the questionnaire) is −2.333. The findings
of the Independent Samples Test is depicted in Fig. 17. The findings lead to the
conclusion that there is a significant difference between the treatment and control
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Fig. 16. Post-test 2 results of treatment and control group

Fig. 17. Independent samples test as post-test 2

group post the experimental study conducted. Both groups were found to have
had a very different learning outcome in terms of understanding the contents
depicted in the videos. The number of correct answers for the quiz questions
were far higher for the treatment group with the notes system enabled than the
control group with notes disabled. This leads to the conclusion that hypothesis
H3 is false and does not hold. Thus the notes module plays a significant part in
terms of making the lessons more content aware to the learners. They are able
to differentiate key points told by the lecturer and form memory mappings of
lesson checkpoints which later help them to retrieve the same, i.e. recall lesson
key points.

7 Conclusion

This work is an attempt to address the issues enabling the learner to focus
more on the curriculum than on how to compile and access the materials later.
A novel model MOOCbook was presented and a working prototype has been
demonstrated for this purpose. The results obtained have provided us with some
insights to get into what people are looking for in terms of enhancing their
learning outcome. One of the major finding was a need of self paced MOOC
note. The empirical experiments conducted and anecdotal response have shown
significant improvement in engagement to accomplish MOOC course as well
enhancement in learning outcome. All the work has been done from a learner’s
perspective. The inclusion of this tool along with MOOC provider’s platforms
will pave the way for enhanced digital learning in the future.
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Abstract. In education, some students lack language comprehension,
language production and language acquisition skills. In this paper we
extracted several psycholinguistics features broadly grouped into lexical
and morphological complexity, syntactic complexity, production units,
syntactic pattern density, referential cohesion, connectives, amounts of
coordination, amounts of subordination, LSA, word information, and
readability from students’ summary speech transcripts. Using these Coh-
Metrix features, comprehenders are classified into two groups: poor com-
prehender and proficient comprehender. It is concluded that a computa-
tional model can be implemented using a reduced set of features and the
results can be used to help poor reading comprehenders for improving
their cognitive reading skills.

Keywords: Psycholinguistics · Natural language processing
Machine learning classification

1 Introduction

Reading is a complex cognitive activity where learners read texts to construct a
meaningful understanding from the verbal symbols i.e. the words and sentences
and the process is called as reading comprehension. In Reading process, the
three main factors - the learner’s context knowledge, the information aroused
by the text, and the reading circumstances together construct a meaningful dis-
course. Previous researches claim that in academic environment several reading
and learning strategies including intensive reading and extensive reading [2],
spaced repetition [7] and top-down and bottom-up processes [1] play vital role
in students developing comprehension skills.

Intensive Reading: It is the more common approach, in which learners read
passages selecting from the same text or various texts about the same subject.
Here, content and linguistic forms are repeated themselves, therefore learners get
several chances to comprehend the meaning of the textual contents. It is usually
classroom based and teacher centric approach where students concentrate on
linguistics, grammatical structures and semantic details of the text to retain in
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 122–136, 2017.
https://doi.org/10.1007/978-3-319-72038-8_10
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memory over a long period of time. Students involve themselves in reading pas-
sages carefully and thoroughly again and again aiming to be able translating the
text in a different language, learning the linguistic details in the text, answering
comprehension questions such as objective type and multiple choice, or knowing
new vocabulary words. Some disadvantages are - (a) it is slow, (b) needs careful
reading of a small amount of difficult text, (c) requires more attention on the
language and its structure, including morphology, syntax, phonetics, and seman-
tics rather than the text, (d) text may be bored to students since it was chosen
by the teacher, and (e) because exercises and assessments are part of compre-
hension evaluation, students may involve in reading only for the preparation for
a test and not for getting any pleasure.

Extensive Reading: On the other hand, extensive reading provides more enjoy-
ments as students read big quantities of own interest contents; focus on to under-
stand main ideas but not on the language and its structure, skipping unfamiliar
and difficult words and reading for summary [12]. The main aim of extensive
reading is to learn foreign language through large amounts of reading and thus
building student confidence and enjoyment. Several Research works claim that
extensive reading facilitating students improving in reading comprehension to
increase reading speed, greater understanding of second language grammar con-
ventions, to improve second language writing, and to motivate for reading at
higher levels [10].

The findings of previous researches suggest that extensive and intensive read-
ing approaches are beneficial, in one way or another, for improving students’
reading comprehension skills.

Psycholinguistic Factors: Psycholinguistics is a branch of cognitive science in
which language comprehension, language production and language acquisition
are studied. It tries to explain the ways in which language is represented and
is processed in the brain; for example, the cognitive processes responsible for
generating a grammatical and meaningful sentence based on vocabulary and
grammatical structures and the processes which are responsible to comprehend
words, sentences etc. Primary concerned linguistic related areas are: Phonology,
morphology, syntax, semantics, and pragmatics. In this field, researchers study
reader’s capability to learn language for example, the different processes required
for the extraction of phonological, orthographic, morphological, and semantic
information by reading a textual document.

More recent work, Coh-Metrix [5] offers to investigate the cohesion of the
explicit text and the coherence of the mental representation of the text. This
metrix provides detailed analysis of language and cohesion features that are
integral to cognitive reading processes such as decoding, syntactic parsing, and
meaning construction.

2 Brief Description of Coh-Metrix Measures

Coh-Metrix is an automatic text analysis tool forwarding traditional theories
of reading and comprehension to next higher level and therefore, can plays
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important role in different disciplines of education such as teaching, readability,
learning etc. The tool analyses and measures features of texts written in English
language through hundreds of measures, all informed by previous researchers
in different disciplines such as computational linguistics, psycholinguistics, dis-
course processes and cognitive sciences. The tool integrates several compu-
tational linguistics components including lexicons, pattern classifiers, part-of-
speech taggers, syntactic parsers, semantic interpreters, WordNet, CELEX Cor-
pus etc. Employing these elements, Coh-Metrix can analyze texts on multi levels
of cohesion including co-referential cohesion, causal cohesion, density of connec-
tives, latent semantic analysis metrics, and syntactic complexity [5].

All measures of the tool have been categorized into following broad groups:

1. Descriptive measures: These measures describe statistical features of text
in form of total number of paragraphs, total number of sentences, total
number of words, average length of paragraphs with standard deviation,
average number of words with standard deviation, mean number of syllables
in words with standard deviation etc.

2. Easability components: For measuring text easability score, the tool
provides several scores including text narrativity, syntactic familiarity, and
Word Concreteness.

3. Referential Cohesion: It is a linguistic cue that helps readers in making
connections between different text units such as clauses, and sentences. It
includes Noun overlap (words overlap in terms of noun), and Argument
overlap (sentences overlap in terms of nouns and pronouns). Coh-Metrix
measures semantically similar pairs such as car/vehicle etc.

4. Latent Semantic Analysis: It is used to implement semantic co-
referentiality for representing deeper world knowledge based on large corpora
of texts.

5. Lexical Diversity: It is the variety of unique words (types) in a text in
relation to number of words (tokens). It refers to variation of Type-token
ratio (TTR).

6. Connectives: It provides clues about text organization and aid reader in
the creation of cohesive links between ideas and clauses. It measures the
cohesive links between different conceptual units using different types of con-
nectives such as causal (because, so), logical (and, or), adversative (whereas),
temporal (until) and additive (moreover). In addition to this, there is a dif-
ference between positive connectives (moreover) and negative connectives
(but).

7. Situation Model: It refers to the level of reader’s mental representation
for a text when a given context is activated.

8. Syntactic Complexity: It is measured using NP density, mean number
of high-level constituents per word, and the incidence of word classes that
indicate analytical difficulty (e.g. and, or, if-then, conditionals).

9. Syntactic Pattern Density: It refers to the density of particular syntactic
patterns, word types, and phrase types. The relative density of noun phrases,
verb phrases, adverbial phrases, and prepositions can affect processing dif-
ficulty of text, especially with respect to other features in a text.
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10. Word Information: It provides density scores for various parts of speech
(POS), including pronouns, nouns, verbs, adjectives, adverbs, cardinal num-
bers, determiners, and possessives.

11. Readability: It provides the readability formulas of Flesch Reading Ease
and Flesch-Kincaid Grade Level [4,9]. Both are two readability tests
designed to indicate how difficult a passage in English is to understand.
These tests use word length and sentence length as core measures; however
they have different weighting factors.

The aim of present work is to identify the linguistic features that can classify
students into two groups - students having proficient comprehension skills and
students with poor comprehension skills from their summary speech transcripts.

3 Participants and Method

A brief description of the participants, materials, and procedure that we used in
this study are described here.

Participants: Twenty undergraduate students (mean age (SD)- 21.4(0.86)) in
information technology major; studied in same batch and performed all acad-
emic activities only in English, whereas their primary languages were different;
participated in this experimental sessions. Students were told that they would
be awarded some course credits for participating in the research. Based on their
academic performance in last four semesters, these students were divided into
two groups - ten as proficient and others as poor comprehenders.

Materials: The reading materials consisted of two passages. One passage (total
sentences- 38, total words- 686, sentence length (mean)- 18.0, Flesch-Kincaid
Grade level- 13.3) had been selected from students’ course book whereas other
was a simple interesting story (total sentences- 42, total words- 716, sentence
length (mean)- 17.0, Flesch-Kincaid Grade level- 3.9). Both passages were writ-
ten in English and were unread until the experiment began. Reading story pas-
sage was simulated extensive reading experience and reading course passage was
simulated intensive reading experience.

Procedure: All experimental sessions were held in a research lab in a set of
5 students. The experiment consisted of two tests. In each test, student had
instructed to read a given passage and then to solve a puzzle and lastly to tell
summary as much detail as they can. Both tests were similar except the reading
material - the story passage was given in first test and the course passage was
given in second test. Students were informed to read the passage on computer
screen as they would normally read. The speech were recorded using a digital
audio recorder software installed in the computer system. The puzzle task was
useful to erase students’ short term memory of read text to ensure that the
summary would come from their long term memory.
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4 Feature Analysis

Feature Extraction: The recorded audio files were transcripted in English
where brief pauses were marked with commas, while long pauses were marked
with full stops (end of sentence) if their places were according to semantic,
syntactic and prosodic features. Repetitions, incomplete words and incompre-
hensible words were not included in transcription. In the experiment, two sets of
transcripts were generated - (a) story transcripts had texts of story summary
audio files and (b) course transcripts had texts of course summary audio files.
Both sets had twenty texts, ten of proficient comprehenders’ audio files and the
other ten of poor comprehenders’ audio files.

For analysing the texts of both sets of transcripts, we used the computa-
tional tool Coh-Metrix. Coh-Metrix 3.0 (http://cohmetrix.com) provided 106
measures; which were categorized into eleven groups as described in Sect. 2.

Feature Selection: In machine learning classifiers including too many features
may lead to overfit the classifier and thus resulting in poor generalization to new
data. So, only necessary features should be selected to train classifiers.

We applied two different approaches for the selection of necessary features
improving the accuracy of the classifiers.

Approach-1: Coh-Metrix provides more than hundreds of measures of text
characteristics and several of them are highly correlated. For example, Pear-
son correlations demonstrated that z score of narrativity was highly correlated
(r = 0.911, p < 0.001) with percentile of narrativity. Of 106 measures of the tool,
52 variables were selected on the basis of two criteria. First, all such variables
which had high correlations with other variables (|r| ≥ 0.80) were discarded
for handling the problem of collinearity. Remaining measures were grouped in
feature sets. Thus, after removing all such redundant variables, the feature set
of story transcripts had 65 measures whereas the feature set of course tran-
scripts had 67 measures. In Table 1, superscripts 1, 2 and 3 indicate measures
presented in only story transcripts, in only course transcripts and in both tran-
scripts respectively. Therefore, in first step, measures indicated with superscripts
1 and 3 were selected for the classification of story transcripts; whereas measures
indicated with superscripts 2 and 3 were selected to classify the course tran-
scripts. In next step, we had selected only those measures which were presented
in both feature sets. Therefore, in second step, 52 common measures indicated
with superscript 3 in Table 1, were selected for the classifications.

Pairwise Comparisons: Pairwise comparisons were conducted to examine dif-
ferences between proficient comprehenders’ text and poor comprehenders’ text
of both sets of transcripts (story and course). These results are reported below.

1. Descriptive measures: Co-Metrix provided eleven descriptive measures in
which six measures were selected as features. Paragraph count, Paragraph
length, Sentence length and Word length had significant difference between

http://cohmetrix.com
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Table 1. A comparison of proficient and poor comprehenders’ transcripts features.
Values shown are mean (standard deviation).

Story transcript Course transcript

Description Proficient Poor Proficient Poor

comprehender comprehender comprehender comprehender

1. Descriptive
3Paragraph count 19.7(5.47) 10.5(4.03) 10.9(2.64) 6.2(2.09)
3Paragraph length
(µ)

1.202(0.14) 1.088(0.11) 1.405(0.26) 1.239(0.23)

3Sentence length (µ) 20.21(3.76) 16.98(3.05) 22.52(5.19) 17.45(5.10)
3Sentence length
(SD)

10.84(2.42) 9.461(2.33) 10.79(2.92) 8.443(3.25)

3Word length (µ,
syllables)

1.215(0.04) 1.196(0.04) 1.596(0.05) 1.568(0.08)

1Word length (µ,
letters)

3.841(0.13) 3.750(0.12) 4.834(0.17) 4.753(0.24)

2. Text Easability Principle Component Scores
3Narrativity(z score) 1.779(0.59) 1.840(0.50) −0.00(0.46) −0.01(0.57)
3Syntactic simplicity
(z score)

−0.04(0.55) 0.072(0.60) −0.51(0.83) −0.55(0.71)

3Word concreteness
(z score)

0.781(0.82) 0.409(1.14) −0.26(0.82) 0.118(1.36)

3Referential
cohesion(z score)

2.452(0.82) 3.274(1.58) 1.146(0.95) 1.316(1.06)

3Referential
cohesion(percentile)

98.29(1.51) 97.55(4.52) 80.46(12.5) 81.97(14.5)

3Deep cohesion
(z score)

1.590(1.05) 3.188(2.01) −0.24(0.70) 1.308(2.38)

1Deep cohesion
(percentile)

87.49(15.0) 95.00(9.63) 41.24(24.3) 70.75(43.1)

3Verb cohesion
(z score)

0.225(0.93) 1.066(1.18) 0.714(1.15) 1.582(1.35)

3Connectivity
(z score)

−4.07(1.79) −3.81(1.40) −3.52(0.86) −3.90(0.53)

1Connectivity
(percentile)

1.392(3.45) 1.062(2.25) 0.169(0.24) 0.014(0.02)

3Temporality
(z score)

0.443(0.55) 1.039(0.88) −0.05(1.30) 0.787(0.90)

3. Referential Cohesion
3Noun overlap,
adjacent sent. (µ)

0.555(0.14) 0.509(0.33) 0.535(0.18) 0.557(0.24)

3Argument overlap,
adj. sent. (µ)

0.681(0.08) 0.653(0.30) 0.727(0.16) 0.686(0.16)

(continued)
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Table 1. (continued)

Story transcript Course transcript

Description Proficient Poor Proficient Poor

comprehender comprehender comprehender comprehender
2Noun overlap, all
sent. (µ)

0.528(0.13) 0.416(0.29) 0.415(0.14) 0.400(0.15)

2Argument overlap,
all sent. (µ)

0.681(0.07) 0.566(0.24) 0.583(0.16) 0.488(0.13)

2Stem overlap, all
sent. (µ)

0.572(0.11) 0.504(0.28) 0.526(0.13) 0.522(0.14)

2Word overlap,
adjacent sent. (µ)

0.192(0.05) 0.231(0.08) 0.147(0.05) 0.149(0.03)

3Word overlap,
adjacent sent.(SD)

0.139(0.02) 0.141(0.04) 0.117(0.04) 0.133(0.04)

2Word overlap, all
sentences (µ)

0.184(0.03) 0.190(0.06) 0.107(0.03) 0.112(0.02)

3Word overlap, all
sentences (SD)

0.155(0.01) 0.159(0.02) 0.107(0.02) 0.125(0.02)

4. LSA
2LSA overlap,
adjacent sent. (µ)

0.356(0.05) 0.382(0.16) 0.282(0.06) 0.261(0.10)

3LSA overlap,
adjacent sent.(SD)

0.218(0.04) 0.197(0.06) 0.170(0.03) 0.182(0.07)

3LSA overlap, all
sent. (µ)

0.271(0.14) 0.232(0.21) 0.256(0.15) 0.175(0.19)

3LSA overlap, all
sent. (SD)

0.180(0.10) 0.066(0.14) 0.168(0.10) 0.103(0.16)

2LSA overlap, adj.
paragraph (µ)

0.409(0.03) 0.391(0.16) 0.321(0.08) 0.330(0.13)

2LSA overlap,
adjacent para. (SD)

0.219(0.02) 0.195(0.06) 0.143(0.04) 0.127(0.04)

3LSA, sentence (µ) 0.440(0.04) 0.390(0.10) 0.351(0.03) 0.274(0.09)
1LSA, sentence (SD) 0.180(0.02) 0.200(0.04) 0.143(0.01) 0.159(0.05)

5. Lexical Diversity
3Lexical diversity
(MTLD)

41.25(3.99) 38.53(8.87) 44.70(12.9) 40.63(10.0)

3Vocabulary
Diversity (VOCD)

44.08(5.99) 30.10(18.9) 55.21(13.2) 35.30(20.5)

6. Connectives
1All connectives 132.8(21.3) 147.8(28.3) 96.39(17.0) 125.0(33.0)
3Adversative and
contrastive conn.

12.91(8.25) 13.11(8.02) 19.03(7.52) 16.17(10.1)

(continued)
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Table 1. (continued)

Story transcript Course transcript

Description Proficient Poor Proficient Poor

comprehender comprehender comprehender comprehender
3Temporal connectives 34.95(12.3) 42.72(12.9) 13.53(6.16) 18.49(18.1)
3Expanded temporal
connectives

28.45(9.37) 30.83(15.5) 3.402(4.34) 9.725(12.2)

7. Situation Model
3Causal verb (CV)
incidence

19.97(5.74) 24.65(10.8) 24.19(9.96) 27.42(15.0)

2Causal particles (CP)
incidence

37.38(14.2) 50.65(20.0) 31.42(8.95) 43.08(12.1)

3Intentional verbs (IV)
incidence

34.20(6.66) 35.94(11.0) 12.43(4.16) 17.94(12.7)

2Ratio of CP to CV 0.811(0.52) 1.144(1.30) 0.333(0.28) 0.941(1.80)
2Ratio of intentional
particle to IV

0.694(0.40) 0.961(0.84) 1.383(0.81) 2.116(2.00)

3LSA verb overlap 0.070(0.03) 0.085(0.04) 0.130(0.07) 0.119(0.08)
3WordNet verb overlap 0.679(0.05) 0.581(0.17) 0.448(0.11) 0.477(0.24)

8. Syntactic Complexity
3Words before main
verb (µ)

3.999(0.94) 3.860(1.06) 4.814(2.26) 3.371(1.87)

3Numbers of modifiers
(µ)

0.652(0.12) 0.523(0.11) 0.867(0.17) 0.803(0.18)

3Sentence syntax
similarity (µ)

0.110(0.03) 0.083(0.02) 0.086(0.02) 0.079(0.03)

9. Syntactic Pattern - Phrase Density (PD)
3Noun PD, incidence 318.3(17.5) 354.0(20.9) 377.0(22.0) 366.7(30.7)
3Verb PD incidence 258.4(18.9) 249.6(20.3) 194.2(25.0) 204.7(46.8)
3Adverbial PD
incidence

52.71(19.3) 41.99(15.4) 28.08(11.9) 19.79(13.4)

3Preposition PD
incidence

92.28(20.2) 87.94(24.3) 115.4(21.1) 122.6(34.3)

3Agentless passive
voice density

2.972(3.35) 1.96(4.76) 10.06(8.84) 12.08(13.5)

3Negation density
incidence

19.62(7.96) 26.21(13.6) 11.60(6.82) 9.287(6.47)

3Gerund density
incidence

17.34(7.35) 13.60(11.6) 9.926(8.20) 15.85(12.3)

3Infinitive density,
incidence

22.69(9.36) 16.78(12.0) 14.65(6.50) 12.78(12.2)

(continued)
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Table 1. (continued)

Story transcript Course transcript

Description Proficient Poor Proficient Poor

comprehender comprehender comprehender comprehender

10. Word Information
3Noun incidence 194.9(22.8) 211.2(30.5) 262.4(33.9) 268.5(67.1)
3Verb incidence 163.1(11.6) 153.7(23.4) 115.1(11.0) 119.2(27.2)
3Adjective incidence 27.02(6.50) 21.28(15.5) 70.28(21.2) 56.61(28.9)
3Adverb incidence 87.22(20.9) 100.1(14.2) 52.92(23.0) 43.46(19.3)
1Pronoun incidence 94.14(23.4) 107.0(23.8) 57.50(17.8) 51.63(28.6)
11st person sing.
pronoun in.

3.603(4.20) 4.647(9.26) 0(0) 0(0)

11st person plural
pronoun in.

3.250(4.61) 1.817(3.94) 0.808(1.33) 1.612(5.10)

12nd person pronoun
incidence

8.069(8.60) 15.82(13.2) 0(0) 0(0)

23rd person singular
pronoun in.

62.65(21.5) 59.28(37.2) 14.43(6.86) 15.04(15.7)

13rd person plural
pronoun in.

12.19(6.30) 20.25(20.7) 33.11(14.3) 34.98(24.9)

1CELEX word
frequency (µ)

2.6(0.10) 2.777(0.13) 2.374(0.14) 2.433(0.19)

3CELEX Log
frequency (µ)

3.319(0.04) 3.349(0.11) 3.155(0.06) 3.212(0.16)

3CELEX Log min.
frequency (µ)

1.384(0.18) 1.449(0.25) 1.234(0.26) 0.945(0.76)

3Age of acquisition
for words (µ)

257.6(8.85) 258.7(35.4) 382.9(17.2) 346.7(123.)

3Familiarity for words
(µ)

569.3(4.59) 572.2(6.70) 574.1(6.57) 577.7(6.66)

2Concreteness for
words (µ)

395.5(21.7) 383.0(25.0) 362.7(15.0) 356.4(23.8)

1Meaningfulness
words (µ)

413.2(7.03) 399.4(14.3) 422.7(13.7) 414.2(17.9)

3Polysemy for words
(µ)

4.563(0.44) 4.610(0.28) 3.887(0.39) 3.980(0.46)

3Hypernymy for
nouns (µ)

6.562(0.36) 6.842(0.98) 6.003(0.34) 5.350(0.77)

3Hypernymy for verbs
(µ)

1.927(0.14) 1.837(0.20) 1.607(0.12) 1.676(0.22)

2Hyper. for nouns
and verbs (µ)

1.589(0.12) 1.705(0.36) 1.788(0.10) 1.610(0.21)

11. Readability
2Flesch reading ease 83.49(6.46) 88.38(5.52) 48.89(7.28) 56.43(6.85)
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proficient comprehenders’ text and poor comprehenders’ text of both sets
of transcripts.

2. Easability components: The tool provided sixteen easability measures in
which eleven measures were selected as features. Deep cohesion, Verb cohe-
sion, Connectivity and Temporality had significant difference between pro-
ficient comprehenders’ text and poor comprehenders’ text of both sets of
transcripts.

3. Referential Cohesion: The tool provided ten referential cohesion measures in
which nine measures were selected as features. The findings from different
overlap measures demonstrated that proficient comprehenders used more
co-referential nouns, pronouns, or NP phrases than poor comprehenders.

4. Latent Semantic Analysis: The tool provided eight LSA measures and all
were selected as features. LSA overlap measures had significant difference
between proficient comprehenders’ text and poor comprehenders’ text of
both sets of transcripts.

5. Lexical Diversity: The tool provided four lexical diversity measures in which
two measures were selected as features. MTLD and VOCD had more signif-
icant difference between proficient comprehenders’ text and poor compre-
henders’ text of both sets of transcripts.

6. Connectives: The tool provided nine lexical connective measures in which
four measures were selected as features. The findings from different con-
nective measures demonstrated that proficient comprehenders used more
connectives, such as in other words, also, however, although etc. than poor
comprehenders; whereas poor comprehenders used comparatively more log-
ical operators such as and, then etc. as well as more temporal connectives,
such as when etc.

7. Situation Model: The tool provided eight situation model measures in which
seven measures were selected as features. Causal verb measures had signif-
icant difference between proficient comprehenders’ text and poor compre-
henders’ text of both sets of transcripts.

8. Syntactic Complexity: The tool provided seven syntactic complexity mea-
sures in which three measures were selected as features. Words before main
verb (mean), Number of modifiers per noun phrase (mean), and Sentence
syntax similarity (mean) had less significant difference between proficient
comprehenders’ text and poor comprehenders’ text of both sets of tran-
scripts.

9. Syntactic Pattern Density: The tool provided eight syntactic pattern density
measures and all were selected as features. Noun phrase density, Verb phrase
density, Adverbial phrase density, Preposition phrase density, Agentless pas-
sive voice density, Negation density, Gerund density, and Infinitive density
had high significant difference between proficient comprehenders’ text and
poor comprehenders’ text of both sets of transcripts.

10. Word Information: The tool provided twenty two word information measures
in which twenty one measures were selected as features. Noun incidence,
Verb incidence, Adjective incidence, and Adverb incidence were highly
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significant. Poor comprehenders’ transcripts had a comparatively greater
proportion of pronouns compared to that of proficient comprehenders.

11. Readability: The tool provided three readability measures in which one mea-
sure was selected as feature. Flesch Reading Ease had significant difference
between proficient comprehenders’ text and poor comprehenders’ text of
both sets of transcripts.

Table 2. A comparison of proficient and poor comprehenders’ features extracted from
story transcripts. Values shown are mean (standard deviation).

Description Proficient comprehender Poor comprehender p-value <

(Story transcript) (Story transcript) 0.05

Descriptive

Number of paragraphs 19.7(5.47) 10.5(4.03) 0.001

Number of sentences 23.1(4.70) 11.7(5.37) 0.00

Number of words 453.6(59.1) 197.8(86.4) 0.00

Number of sentences in a
paragraph (SD)

0.383(0.17) 0.203(0.19) 0.041

Deep cohesion (z score) 1.590(1.05) 3.188(2.01) 0.044

Lexical Diversity

Type-token ratio (all
words)

0.318(0.02) 0.422(0.11) 0.022

Lexical diversity 44.08(5.99) 30.10(18.9) 0.049

Connectives

Logic connectives 52.51(14.8) 81.49(20.8) 0.002

Syntactic Complexity

Mean number of modifiers
per noun-phrase

0.652(0.12) 0.523(0.11) 0.029

Minimum editorial
distance score for words

0.758(0.26) 0.433(0.39) 0.049

Minimum editorial
distance score for lemmas

0.738(0.26) 0.407(0.37) 0.035

Syntactic Pattern Density

Noun phrase density 318.3(17.5) 354.0(20.9) 0.001

Word Information

Average word frequency
for content words

2.6(0.10) 2.777(0.13) 0.004

Meaningfulness content
words (mean)

413.2(7.03) 399.4(14.3) 0.017

Readability

Second language
readability score

29.53(3.27) 33.88(4.30) 0.021
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Approach-2: In this approach, we selected appropriate features from all 106
Coh-Metrix measures by applying Welch’s two-tailed, unpaired t-test on each
measure of both types of comprehenders’ transcripts. All features that were
significant at p < 0.05 were selected for classification. Thus, the feature set of
story transcripts had 15 measures (Table 2) whereas the feature set of course
transcripts had 14 measures (Table 3).

Table 3. A comparison of proficient and poor comprehenders’ features extracted from
course transcripts. Values shown are mean (standard deviation).

Description Proficient comprehender Poor comprehender p-value <

(Course transcript) (Course transcript) 0.05

Descriptive

Number of paragraphs 10.9(2.64) 6.2(2.09) 0.00

Number of sentences 15.5(5.40) 7.7(2.90) 0.001

Number of words 336.9(101.0) 133.3(52.1) 0.00

Sentence length(mean) 22.52(5.19) 17.45(5.10) 0.041

LSA

Latent Semantic Analysis
(mean)

0.351(0.03) 0.274(0.09) 0.028

Lexical Diversity

Type-token ratio (content
word lemmas)

0.618(0.07) 0.741(0.11) 0.009

Type-token ratio (all
words)

0.425(0.04) 0.552(0.12) 0.012

Lexical diversity 55.21(13.2) 35.30(20.5) 0.021

Connectives

All connectives, incidence 96.39(17.0) 125.0(33.0) 0.03

Situation Model

Causal verbs and causal
particles incidence

31.42(8.95) 43.08(12.1) 0.026

Word Information

Hypernymy for nouns
(mean)

6.003(0.34) 5.350(0.77) 0.03

Hypernymy for nouns and
verbs (mean)

1.788(0.10) 1.610(0.21) 0.038

Readability

Flesch reading ease 48.89(7.28) 56.43(6.85) 0.028

Flesch-Kincaid grade
Level

12.03(2.19) 9.724(1.81) 0.02
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5 Classification

We examined several classification methods such as Decision Trees, Multi-Layer
Perceptron, Näıve Bayes, and Logistic Regression using Weka toolkit [6]. 10-fold
cross-validation method had been applied to train these classifiers. The results
of these classifiers are reported in Table 4 in terms of classification accuracy
and root mean square error (RMSE). The classification accuracy refers to the
percentage of samples in the test dataset that are correctly classified (true posi-
tives plus true negatives). Root-mean-square error (RMSE) is frequently used as
measure of the differences between values predicted by a classifier and the values
expected. In this experiment, it provided the mean difference between the pre-
dicted students’ comprehension level and the expected comprehension level. The
baseline accuracy represents the accuracies that would be achieved by assigning
every sample to the larger training size of the two classes. In this experiment,
both classes had 10 training samples, therefore, the baseline accuracy for poor
vs. proficient comprehenders’ transcripts would be achieved by assigning all the
samples in any one group and thus the baseline accuracy of the experiment would
be 0.5 (10/20 = 0.5).

6 Result and Discussion

Table 4 shows the accuracies for classifying poor vs. proficient comprehenders’
transcripts. The classifier accuracies were not as high for approach-1 compared
to approach-2; however, they were above or equal to the baseline for all four clas-
sifiers. Also, common features provided better accuracies as compared to first

Table 4. Accuracies for the four classifiers.

Feature sets # Features Logistic
regression

Näıve Bayes Decision tree Multi-layer
perceptron

Approach-1:

First Step-

Feature set
(Story transcript)

65 60% (0.63) 60% (0.6) 90% (0.3) 80% (0.39)

Feature set
(Course transcript)

67 65% (0.59) 75% (0.46) 50% (0.62) 65% (0.5)

Second Step-

Common feature
(Story transcript)

52 85% (0.4) 80% (0.44) 90% (0.3) 80% (0.38)

Common feature
(course transcript)

52 75% (0.49) 85% (0.4) 65% (0.48) 65% (0.49)

Approach-2:

Story transcript 15 100% (0) 95% (0.22) 100% (0) 90% (0.28)

Course transcript 14 90% (0.31) 75% (0.41) 95% (0.23) 80% (0.44)
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step features (story or course feature set). In this experiment, the reduced set of
features applied in approach-2, provided best results for all four classifiers. How-
ever it was observed that selection of features using approach-2 were dependent
on the participants involved in the experiment as well as the read text; whereas
the features of approach-1 were almost robust against these changes. The major
findings of this study demonstrate that three cohesion indices- lexical diversity,
connectives, and word information, common in both Tables 2 and 3, played a vital
role in the classification of both types of the transcripts. The logistic regression
classifier classified story transcripts and course transcripts with accuracies 100%
and 80% respectively.

Generally in first attempt of reading a new text, science and technology
course does not help most students to develop mental model to represent the
collective conceptual relations between the scientific concepts, due to lack of their
prior domain knowledge. In contrast, story texts carry some general schema such
as name, specific place and chronological details of an event; all these schema
help students to develop mental model by integrating these specific attributes
of the event described in the story [11]. Therefore, students stored the mental
model of story text comparatively in more details in their memory compared to
that of course text; which was reflected in their transcripts. Proficient and poor
both students’ story transcripts contained more noun phrases in comparison to
course transcripts.

Poor comprehenders may not benefit as much as good comprehenders from
reading a complex text because grammatical and lexical linking within the text
increases text length, density, and complexity. As a consequence, reading such
text involves creation and processing of more complex mental model. Compre-
henders with low working-memory capacity experience numerous constraints on
the processing of these larger mental models, resulting in lower comprehension
and recall performance [8]. As a result poor comprehenders’ transcripts consist
of comparatively more sentences with mixed content representing their confused
state of mental models. Therefore, as shown in Table 1, values of the measures of
situation model index were more in poor comprehenders’ transcripts in contrast
to proficients’ transcripts.

The finding in this study also validates a previous study [3], which demon-
strated that less-skilled comprehenders produced narratives that were poor in
terms of both structural coherence and referential cohesion.

In short, the Coh-Metrix analysis of transcripts provides a number of linguis-
tic properties of comprehenders’ narrative speech. Comprehension proficiency
were characterized by greater cohesion, shorter sentences, more connectives,
greater lexical diversity, and more sophisticated vocabulary. It is observed that
lexical diversity, word information, LSA, syntactic pattern, and sentence length
provided the most predictive information of proficient or poor comprehenders.

In conclusion, the current study supports to utilize Coh-Metrix features to
measure comprehender’s ability.
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Abstract. This paper presents LECTOR, a system that helps educators in under‐
standing when students have stopped paying attention to the educational process
and assists them in reengaging the students to the current learning activity.
LECTOR aims to take advantage of the ambient facilities that “smart classrooms”
have to offer by (i) enabling educators to employ their preferred attention moni‐
toring strategies (including any well-established activity recognition techniques)
in order to identify inattentive behaviors and (ii) recommending interventions for
motivating distracted students when deemed necessary. Furthermore, LECTOR
offers an educator friendly design studio that enables teachers to create or modify
the rules that trigger “inattention alarms”, as well as tailor the intervention mech‐
anism to the needs of their course by modifying the respective rules. This paper
presents the rationale behind the design of LECTOR and outlines its key features
and facilities.

Keywords: Smart classroom · Attention monitoring · Ambient intelligence

1 Introduction

In the recent past there has been growing interest in how Information and Communica‐
tion technologies (ICTs) can improve the efficiency and effectiveness of education; it is
acknowledged that when used appropriately, they are potentially powerful tools for
advancing or even reshaping the educational process. In more details, ICTs are claimed
to help expand access to information and raise educational quality by, among others,
helping make learning and teaching a more engaging, active process connected to real
life [27]. Learning with the use of ICTs has been strongly related to concepts such as
distance learning [4], educational games [7], intelligent tutoring systems and e-learning
applications [5]. Additionally, the notion of “smart classrooms”, where activities are
enhanced and augmented through the use of pervasive and mobile computing, sensor
networks, artificial intelligence, etc. [6], has become prevalent in the past decade [30].

However, despite the fact that the educational process is continuously enriched with
engaging activities, it is almost inevitable that students will get distracted either by
internal stimuli (e.g., thoughts and attempts to retrieve information from memory) or
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external stimuli from the physical (e.g., visuals, sounds) or digital environment (e.g.,
irrelevant applications); hence, they might not always be “present” to take advantage of
all the benefits that a “smart classroom” has to offer. This observation highlights the
need for a mechanism that monitors the learners and when necessary, intervenes to
appropriately reset attention levels.

The proposed system, named LECTOR, aims to take advantage of the ambient
facilities that “smart classrooms” have to offer and enable educators to employ their
preferred attention monitoring strategies (including any well-established activity recog‐
nition techniques) in order to identify inattentive behaviors and assist the educator in
reengaging the students to the current learning activity. In more details, the main contri‐
butions of this work are listed below:

• Extensible mechanism for deploying various attention monitoring strategies
aiming to identify inattentive behaviors

• Extensible intervention mechanism for intervening when the students are distracted
from the educational process

• Educator-friendly tools for: (i) refining the inattention models and labeling newly
discovered student activities, as well as (ii) creating new or modifying existing inter‐
vention strategies.

2 Background Theory

Attention is very often considered as a fundamental prerequisite of learning, both within
and outside the classroom environment, since it plays a critical role in issues of moti‐
vation and engagement [20]. However, as passive listeners, people generally find it
difficult to maintain a constant level of attention over extended periods of time, while
pedagogical research reveals that attention lapses are inevitable during a lecture.
McKeachie [16], suggests that student attention will drift during a passive lecture, unless
interactive strategies are used. According to [31], student concentration decays in the
same way during a passive lecture as does that of a human operator monitoring auto‐
mated equipment, with serious implications for learning and performance. Obtaining
and maintaining the students’ attention is an important task in classroom management,
and educators apply various techniques for this purpose, however currently no techno‐
logical support is available to assist educator in monitoring students’ behavior in the
classroom and maximizing students’ engagement at the task at hand. According to
Packard [19], “classroom attention” refers to a complex and fluctuating set of stimulus-
response relationships involving curriculum materials, instructions from the teacher and
some prerequisite student behaviors (e.g., looking, listening, being quiet, etc.). Such
behaviors can be rigorously classified as “appropriate” and “inappropriate” [26]. Appro‐
priate behaviors include attending to the teacher, raising hand and waiting for the teacher
to respond, working in seat on a workbook, following text reading, etc., while inappro‐
priate behaviors include (but are not limited to) getting out of seat, tapping feet, rattling
papers, carrying on a conversation with other students, singing, laughing, turning head
or body toward another person, showing objects or looking at another class mate. Some
of the above behaviors would be in fact disruptive to some educational activities.
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However, the students should not be forced to spend their whole day not being children,
but being quiet, docile, and obedient “young adults” [29]. On the contrary, learning can
be more effective if students’ curiosity, along with their desire to think or act for them‐
selves, remains intact.

Attention aware systems have much to contribute to educational research and prac‐
tice. These systems can influence the delivery of instructional materials, the acquisition
of such materials from presentations (as a function of focused attention), the evaluation
of student performance, and the assessment of learning methodologies (e.g., traditional
teaching, active learning techniques, etc.) [20]. However, existing approaches [3, 17,
22, 23, 28] concentrate mainly on computer-driven educational activities. This work
broadens the perspective by employing attention monitoring in a real classroom and
incorporating a mechanism for suggesting improvements for the learning process; most
importantly though, it empowers educators to customize or even create from scratch
new inattention detection rules (e.g., “if the students whisper while the educator is
writing to the whiteboard…”) and intervention strategies.

3 The Smart Classroom Behind LECTOR

LECTOR is employed inside a technologically augmented classroom where educational
activities are enhanced with the use of pervasive and mobile computing, sensor
networks, artificial intelligence, multimedia computing, middleware and agent-based
software [1, 13, 24]. In more details, the hardware infrastructure includes both commer‐
cial and custom-made artifacts, which are embedded in traditional classroom equipment
and furniture. For example, the classroom contains a commercial touch sensitive inter‐
active whiteboard, technologically augmented student desks [21] that integrates various
sensors (e.g., eye-tracker, camera, microphone, etc.), a personal workstation and a smart
watch for the teacher, as well as various ambient facilities appropriate for monitoring
the overall environment and the learners’ actions (e.g., microphones, user-tracking
devices, etc.).

The software architecture (Fig. 1b) of the smart Classroom follows a stack-based
model where the first layer, namely the AmI-Solertis middleware infrastructure [15], is
responsible for (i) the collection, analysis and storage of the metadata regarding the
environment’s artifacts, (ii) their deployment, execution and monitoring in the AmI-
Solertis-enabled systems to formulate a ubiquitous ecosystem. The next three layers,
namely the ClassMATE, CognitOS and LECTOR frameworks, expose the core libraries
and finally the remaining layer contains the educational applications. Specifically,
ClassMATE [14] is an integrated architecture for pervasive computing environments
that monitors the ambient environment and makes context-aware decisions; it features
a sophisticated, unobtrusive, profiling mechanism in order to provide user related data
to the classroom’s services and applications. Furthermore, CognitOS [18] delivers a
sophisticated environment for educational applications hosting able to present inter‐
ventions that will be dictated by LECTOR.
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Fig. 1. (a) LECTOR’s SENSE-THINK-ACT – LEARN model. (b) The software architecture of
the smart classroom

4 LECTOR Approach

LECTOR introduces a non-invasive multimodal solution, which exploits the potential
of ambient intelligence technologies to observe student actions (SENSE), provides a
framework to employ activity recognition techniques for identifying whether these
actions signify inattentive behavior (THINK) and intervenes –when necessary– by
suggesting appropriate methods for recapturing attention (ACT). According to cognitive
psychology, the sense-think-act cycle stems from the processing nature of human beings
that receive input from the environment (perception), process that information
(thinking), and act upon the decision reached (behavior). Such pattern became the base
for many design principles regarding autonomous agents and traditional AI.

For that to be optimally achieved, the proposed system is able to make informed
decisions using volatile information and reliable knowledge regarding the syllabus
covered so far, the nature of the current activity, the “expected” behavior of the involved
individuals towards it, the behavior of the peers, etc. The aforementioned pieces of
information can be classified under the broader term of Context of Use, defined as
follows: “Any information that can be used to characterize the situation of entities (i.e.,
whether a person, place, or object) that are considered relevant to the interaction between
a user and an application, including the user and the application themselves. Context is
typically the location, identity, and state of people, groups, and computational and phys‐
ical objects” [8]. Based on the above, the SENSE-THINK-ACT model of LECTOR
relies on an extensible modeling component to collect and expose such classroom-
specific information.

This work extends the SENSE-THINK-ACT model by introducing the notion of
LEARN (Fig. 1a). The fact that the nature of this system enables continuous observation
of student activities creates the foundation for a mechanism that provides updated
knowledge to the decision-making components. In more details, the LEARN-ing mech‐
anism is able to (i) assess decisions that resulted in negative outcomes in the past (e.g.,
inattention levels remain high or deteriorate after introducing a mini-quiz intervention
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during a math course) and (ii) incorporate knowledge provided by the teacher (e.g.,
disambiguation of student behavior, rejection of suggested intervention during a specific
course, etc.).

4.1 Motivating Scenarios

Monitoring the Attention Levels of an Entire Classroom. On Monday morning the
history teacher, Mr. James, enters the classroom and announces that the topic of the day
will be the “Battle of Gaugamela”. During the first 15 min the students pay attention to
the teacher who narrates the story; soon enough, the students start losing interest and
demonstrate signs of inattentive behavior. In more details, John is browsing through the
pages of a different book, Mary and Helen are whispering to each other, Peter stares out
the window and Mike struggles to keep his eyes open. When identifying that the entire
classroom demonstrates signs of inattention, the system recommends that the lecture
should be paused and that a mini quiz game should be started. The teacher finishes up
his sentence and decides to accept this intervention. After his confirmation, a set of
questions relevant to the current topic is displayed on the classroom board, while their
difficulty depends on both the students’ prior knowledge and the studied material so far.
During use, the system identifies the topics with the lowest scores and notifies the teacher
to explain them more thoroughly. As soon as the intervention ends, Mr. James resumes
the lecture. At this point, the students’ attention is reset and they begin to pay attention
to the historical facts. As a result, the quiz not only restored their interest, but also
resulted in deeper learning.

Monitoring the Attention Levels of an Individual Student. During the geography
class Kate is distracted by a couple of students standing outside the window. The system
recognizes that behavior and takes immediate action to attract her interest back on the
lecture. To do so, it displays pictures relevant to the current topic on her personal work‐
station while a discreet nudge attracts her attention. A picture displaying a dolphin with
weird colors swimming in the waters of Amazon makes her wondering how it is possible
for a dolphin to survive in a river; she patiently waits for the teacher to complete his
narration to ask questions about that strange creature. That way, Kate becomes motivated
and starts paying attention to the presentation of America’s rivers. At the same time,
Nick is drawing random pictures on his notebook and seems to not pay attention to the
lecture; however, the system already knows that he concentrates more easily when
doodling, and decides not to interpret that behavior as inattention.

4.2 Context of Use

LECTOR’s decision-mechanisms are heavily dependent on contextual information to
(i) identify the actual conditions (student status, lecture progress, task at hand, etc.) that
prevail in a smart classroom at any given time and (ii) act accordingly. The term context
has been used broadly with a variety of meanings for context-aware applications in
pervasive computing [9]. The authors in [10] refer to contexts as any information that
can be detected through low-level sensor readings; for instance, in a home environment
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those reading include the room that the inhabitant is in, the objects that the inhabitant
interacts with, whether the inhabitant is currently mobile, the time of the day when an
activity is being performed, etc.

However, in a smart classroom contextual awareness goes beyond data collected
from sensors. Despite the fact that sensorial readings are important for recognizing
student activities, they are inadequate to signify inattention without information
regarding the nature of the current course, the task at hand, the characteristics of the
learner, etc. This work employs the term Physical Context (PC) to indicate data collected
from sensors, while the term Virtual Learning Context (VLC) is used for any static or
dynamic information regarding the learning process (e.g., student profile, course related
information, etc.) [32].

The exploitation of such contextual information can improve the performance of the
THINK component, which employs activity recognition strategies in order to identify
student activities and classify them as inattentive or not. Despite the fact that activity
recognition mainly relies on sensor readings to detect student activities, the Virtual
Learning Context (VLC) is critical to interpret inattention indicators correctly; as an
example, in general excess noise indicates that students talk to each other instead of
listening to the teacher; however, this is irrelevant during the music class.

Furthermore, VLC is essential for the ACT component; when the system decides to
intervene in order to reset students’ attention, the selection of the appropriate interven‐
tion type depends heavily on the context of use (syllabus covered so far, remaining time,
etc.). As an example, if an intervention occurs during the first ten minutes of a lecture,
where the main topic has not been thoroughly analyzed by the teacher yet, the system
starts a short preview that briefly introduces the lecture’s main points using entertaining
communication channels (e.g., multimedia content).

4.3 Sensorial Data

LECTOR is deployed in a “smart classroom” that incorporates infrastructure able to
monitor the learners’ actions and provide the necessary input to the decision-making
components for estimating their attention levels. To ensure scalability, this work is not
bound to certain technological solutions; it embraces the fundamental concept of
Ambient Intelligence that expects environments to be dynamically formed as devices
constantly change their availability. As a consequence, a key requirement is to ensure
that new sensors and applications can be seamlessly integrated (i.e., extensibility). In
order to do so, LECTOR relies on the AmI-Solertis framework, which provides the
necessary functionality for the intercommunication and interoperability of heteroge‐
neous services hosted in the smart classroom.

As regards the supported input sources, they range from simple converters (or even
chains of converters) that measure physical quantities and convert them to signals, which
can be read by electronic instruments, to software components (e.g., a single module,
an application, a suite of applications, etc.) that monitor human computer interaction
and data exchange. However, a closer look at the sensorial data reveals that it is not the
actual value that matters, but rather the meaning of that value. For instance, the attention
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recognition mechanism does not need to know that a student has turned his head 23°
towards south but that he stares out of the window.

Subsequently, LECTOR equips the developers with an authoring tool that enables
them to provide the algorithms that translate the raw data into meaningful high-level
objects. In more details, through an intuitive wizard (Fig. 2) the developers (i) define
the contextual properties (e.g., Speech, Feelings, Posture, etc.) that will be monitored
by the system, (ii) specify the attributes of those properties (e.g., level, rate, duration,
etc.) and (iii) develop the code that translates the actual values coming directly from the
sensors/applications to those attributes. The in-vitro environment where LECTOR is
deployed employs the following ambient facilities:

• Eye-trackers to observe students’ fixations during studying on a personal computer
(e.g., reading a passage, solving an exercise) to determine the attention level (e.g.,
stares at an insignificant area of the screen), the weaknesses (e.g., the student keeps
reading the same sentence over and over again), the interests (e.g., fascinated with
wild life) and the learning styles (e.g., attempts the easier assignments first) of each
student. The same information can be also provided by custom educational software
(i.e., CognitOS).

• Sophisticated cameras (e.g., RGB-D camera such as Microsoft Kinect) that track
the head pose of the learner and are used as a surrogate for gaze. The combination
of eye-tracking and head pose tracking algorithms offers an accurate overview of
what the students are looking at on the computer screen and on whom or what they
are focused on (e.g., teacher, class board, etc.). Moreover, the use of cameras is ideal
for tracking the body posture and the direction of an individual student, especially
when taking into consideration that they constantly move even while seated. Besides
learners’ orientation, camera input also enables the identification of specific gestures
that indicate whether a student is paying attention to the lecture or not (e.g., a student
raising his hand). Finally, they can be used to analyze whether the students’ capa‐
bilities are compromised due to feelings of fatigue (i.e., Drowsiness, Falling Asleep).

• Microphones are placed on the teacher’s and students’ desks to identify who is
speaking at any time and the overall noise levels of the classroom, which can reliably
indicate inattentive behavior on behalf of the students.

• Pressure-sensitive sensors on each learner’s chair to identify whether the student is
seated or not. This information when combined with data received from strategically
placed distance and motion sensors (e.g., near the class board, near the teacher’s
desk), introduces a primitive localization technique that can be used to estimate the
location and the purpose of a “missing” individual (e.g., a student is off the desk but
near the board thus solving an exercise).

• Wearable sensors that can be used to monitor the students’ physiological signals
(e.g., heart rate, EDA, etc.).

LECTOR currently uses the aforementioned ambient facilities to monitor some
physical characteristics of the students and teachers and translates them, in a context-
dependent manner, into specific activities classified under the following categories:
Focus, Speech, Location, Posture and Feelings, which are considered appropriate cues
that might signify inattention [2, 11, 19, 25].
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4.4 Inattention Alarms

LECTOR’s THINK component (Fig. 3) is responsible for identifying the students who
show signs of inattention. Towards such objective, it constantly monitors their actions
in order to detect (sub-) activities that imply distraction and loss of attention. The deci‐
sion logic that dictates which behaviors signify inattention is expressed via high-level
rules in the “Attention rule set”, which combines various contextual parameters to define
the conditions under which a student is considered distracted. There are two type of rules
in the “Attention rule set”: (i) rules that denote human activities or sub-activities (e.g.,
talking, walking, sitting, etc.) and provide input to (ii) rules that signify inattentive
behaviors (e.g., disturb, chat, cheat, etc.). Through an educator-friendly authoring tool,
namely LECTORstudio [12], the teachers have the opportunity to create or modify the
latter, while -due to their complexity- they can only fine-tune the rules that denote human
(sub-) activities.

Whenever a stimulus is detected by the SENSE component, the THINK component
initiates an exploratory process to determine whether the incoming event indicates that
the student(s) has lost interest in the learning process or not. In order to do so, it employs
the appropriate attention recognition strategies based on the “Attention rule set”. Finally,
at the end of the exploratory process, if the result points to inattentive behavior, SENSE
appropriately informs the ACT component which undertakes to restore student engage‐
ment by selecting an appropriate intervention.

Figure 4 presents the graphical representation of a rule describing the activity
“SHOUTING”, as created in LECTORstudio. Specifically, the purpose of this rule is to
create an exception for the Music course, where students sing, thus raising the noise
levels of the classroom higher than usual; in that case, the activity “SHOUTING” should
be identified when the sound volume captured through the class microphone exceeds
the value of 82 dB.

Fig. 2. Snapshot from the developers’ authoring tool, displaying the process of defining the
‘SOUND’ contextual property.
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Fig. 4. A rule describing the activity “SHOUTING”, as created in LECTORstudio.

4.5 Intervention Rules

As soon as inattentive behavior is detected, the ACT component (Fig. 5) initiates an
exploratory process to identify the most appropriate course of action. Evidently,
selecting a suitable intervention and its proper presentation (appropriate for the device
where it will be delivered) is not a straightforward process, as it requires in-depth anal‐
ysis of both the learners’ profile and the contextual information regarding the current
course. The first step is to consult the “Intervention rule set”, which, similarly to the
“Attention rule set”, is comprised of high-level rules describing the conditions under
which each intervention should be selected (e.g., if all students are distracted during the
math course, recommend an interactive task like a mini-quiz) as well as the appropriate
means of presentation (e.g., if a mini-quiz is selected and the intervention is intended
for all students, display it to the classroom interactive board).

Fig. 3. LECTOR’s THINK component.

LECTOR: Towards Reengaging Students in the Educational Process 145



Fig. 5. LECTOR’s ACT component.

Each intervention rule, upon evaluation, points to a certain intervention strategy into
the “Interventions’ Pool” (IP). The IP includes high-level descriptions of the available
strategies, along with their low-level implementation descriptions. Furthermore, since
inattention can originate either from a single student or the entire classroom, the ACT
component should be able to evaluate and select strategies targeting either an individual
student or a group of students (even the entire class). To this end, the “Interventions’
Pool” should contain interventions of both types, and the decision logic should be able
to select the most appropriate one. After selecting the appropriate intervention, the
system personalizes its content to the targeted student and converts it to a form suitable
for the intended presentation device.

LECTORstudio also permits the teachers to tailor the intervention mechanism to the
needs of their course by modifying the “Intervention Rule Set”. In more details, a teacher
can create custom interventions, customize existing ones in terms of their content,
change the conditions under which an intervention is initiated (e.g., the percentage of
distracted students), etc.

4.6 Intervention Assessment

Both the THINK and ACT components are able to “learn” from previous poor decisions
and refine their logic, while they are open to expert suggestions that can override their
defaults. In order to introduce the notion of LEARN, LECTOR provides mechanisms
that modify the decision-making processes by correlating knowledge gathered through
attention monitoring with student performance and expert input.

To this end, the LEARN component is able to assess the regression of students’
attention lapses -through the respective student profile component- with a formerly
applied intervention to identify whether it had positive results or it failed to reset atten‐
tion. In more details, if the system estimates that a particular intervention will reset
attention in the context of a specific course and applies it, then after a reasonable amount
of time it re-calculates the current attention levels; if it still detects that the students are
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not committed to the learning process, then the selected recommendation is marked as
ineffective in that context. Hence, the ACT component is informed so as to modify its
decision logic accordingly, and from that point forward select different interventions for
that particular course instead of the one that was proven to be unsuccessful.

On top of the automatic application of active learning interventions, the system also
permits additions, modifications, cancellations and ranking of the selected interventions.
This allows the teacher to have the final say regarding the lecture format. To this end,
the LEARN component takes into consideration the teacher’s input and appropriately
inform the ACT component so as to refine the intervention rule set and offer more
effective alternatives when necessary. In more details, the teacher should be able to: (i)
change the recommended intervention with a more appropriate one (e.g., quiz, multi‐
media presentation, discussion, etc.), (ii) rank the recommendation and (iii) abort the
intervention in case it disrupts the flow of the course.

5 Conclusions and Future Work

LECTOR provides a framework and an educator-friendly design studio for the smart
classroom in order to improve the educational process. For that to be achieved, it equips
the environment with a system that is able to monitor the learners’ attention levels
depending on rules created by the teachers themselves and intervenes, when necessary,
to (i) provide a motivating activity to a distracted student or (ii) suggest an alternative
pedagogy that would be beneficial for the entire classroom (e.g., by motivating indi‐
viduals or suggesting different lecture formats, etc.).

Future work includes full-scale evaluation experiments in order validate the system’s
efficacy and usability. In particular, two types of user-based experiments will be
conducted: (i) Experiments for assessing the usability of the design studio for the teach‐
er’s. (ii) Experiments for evaluating the system as a whole. These experiments will be
conducted for an extended period of time inside the smart classroom environment, where
students and teachers will be engaged with several educational activities while the
system will monitor the learners’ attention levels throughout the entire process and
intervene when necessary. The results of this evaluation will be used to identify whether
the system can: (a) appropriately adapt its behavior in order to respect teachers’ input,
and (b) positively affect –through the delivery of personalized interventions– the
students’ motivation level and overall performance.
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Abstract. Developing an early warning model based on mental workload
(MWL) to predict the driver’s performance is critical and helpful, especially for
new or less experienced drivers. This study aims to investigate the correlation
between human’s MWL and work performance and develop the predictive model
in the driving task using driving simulator. The performance measure (number of
errors), subjective rating (NASA Task Load Index) as well as six physiological
indices were assessed and measured. Additionally, the group method of data
handling (GMDH) was used to establish the work performance model. The results
indicate that different complexity levels of driving task have a significant effect
on the driver’s performance, and the predictive performance model integrates
different physiological measures shows the validity of the proposed model is well
with R2 = 0.781. The proposed model is expected to provide a reference value of
their work performance by giving physiological indices. Based on this model, the
driving lesson plans will be proposed to sustain the appropriate MWL as well as
improve work performance.

Keywords: Driving simulator · Work performance · Predictive model

1 Introduction

Reducing road accident is an important issue. Contributing factors to crashes are
commonly classified as human, vehicle or roadway and environmental [1]. Driving is
often heavy mental workload (MWL) tasks, because in order to prevent accidents,
drivers of must continually acquire and process much information from their eyes, ears,
and other sensory organs. The information includes the movements of other vehicles
and pedestrians, road signs and traffic signals, and various situations and changes in the
road environment. These incidents require a lot of driver’s attention. Human errors such
as misperception, information processing errors, and slow decision making are
frequently identified as major reasons can cause the accidents [2]. Therefore, improving
driver’s MWL could be helpful in improving driver performance and reducing the
number of accidents.
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For most drivers, both excessive and low MWL could degrade their performance,
and furthermore, may affect the safety of the driver and others. Because of when the
situation is low-demanding (e.g., in long and boring roads), or conversely when the
situation is high demanding (e.g., in the city with much information to process), drivers
are overloaded with an increase of workload leading to performance impairments [3,
4]. Only with an appropriate level of MWL, the drivers can perform the right tasks.
Therefore, for the purpose of driver’s safety, developing an early warning model based
on MWL to predict the driver’s performance is critical and helpful, especially for new
drivers or little experience in driver training.

MWL refers to the portion of operator information processing capacity or resources
that is actually required to meet system demands [5]. The MWL is induced not only by
cognitive demands of the tasks but also by other factors, such as stress, fatigue and the
level of motivation [6, 7]. In many studies of driving task, the MWL was measured by
subjective measures, such as NASA task load index (NASA-TLX) [8–10]. However, a
major limitation of subjective measures is that they can only assess the overall experi‐
ence of the workload of driving but cannot reflect changes in workload during the
execution of the task. Also, rating scale results also can be affected by characteristics of
respondents, like biases, response sets, errors and protest attitudes [11, 12]. Thus, the
continuous and objective measures (e.g. physiological signal) to assess the MWL in
addition to evaluating the overall workload in driving tasks is necessary [13].

Recently, many driving simulators can measure performance accurately and effi‐
ciently, and they are more and more used in driving education tasks. It is commonly
accepted that the use of driving simulators presents some advantages over the traditional
methods of drive learning because their virtual nature, the risk of damage due to incom‐
petent driving is null [14]. In addition, simulators make it possible to study hazard
anticipation and perception by exposing drivers to dangerous driving tasks, which is an
ethically challenging endeavor in real vehicles [15], and also offers an opportunity to
learn from mistakes in a forgiving environment [16, 17]. In this study, we conducted an
experiment to simulate the car driving tasks to assess the relation between work perform‐
ance, subjective rating, and physiological indices for new drivers. According to these
relationships, the study developed a predictive model by using the group method of data
handling (GMDH) to integrate all physiological indices into a synthesized index. The
physiological indices used in this study were the eye activities (pupil dilation, blink rate,
blink duration, fixation duration) and cardiac activities (heart rate, heart rate variability).
The performance of the task was measured by the number of errors, and the subjective
rating was rated by the NASA-TLX questionnaire.

2 Methodology

2.1 Participants

Twenty-six male engineering students voluntary, age 19.2 ± 1.1 years (mean ± SD)
participated in the experiment. They have very little (less than two months) or no driving
experience. They have normal eyesight (normal or corrected to normal vision in both
eyes) and good health. For ensuring the objectivity of experimental electrocardiography
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(ECG) data, all participants were asked to refrain from caffeine, alcohol, tobacco, and
drug six hours before the experiment. All participants completed and signed an informed
consent form approved by the university and were compensated with extra credit in
extracurricular activities in their course.

2.2 Apparatus

A driving simulator (Keteng steering wheel and City car driving software version 1.4.1)
was used in this study. The city car driving is a car simulator, designed to help users feel
the car driving in a city or a country in different conditions. Special stress in the City
car driving simulator has been laid on the variety of road situations and realistic car
driving.

IView X head mounted eye-tracking device (SensoMotoric Instruments) was used
to record participants’ dominant eye movements. Software configuration has the video
recording and the BeGaze version 3.0 eye movement data analysis, sampling rate
50/60 Hz (optional 200 Hz), tracking resolution, pupil/Corneal reflection <0.1° (typical)
and gaze position accuracy <0.5°–1.0° (typical). ANSWatch TS0411 was used to
measure the heart rate (HR) and HRV (heart rate variability) data.

2.3 Work Performance and Mental Workload Measures

Various MWL measurements have been proposed, and these measurements could be
divided into three categories: performance measure, physiological measures and subjec‐
tive ratings [18]. Performance measures can be classified into many categories such as
accuracy, task time, worst-case performance, etc. [19]. In this study, the number of errors
of driving task was calculated because of some reasons: (1) driving errors to involve
risky behaviors that we need to understand to prevent accidents and fatalities [20]. In
addition, many studies had shown that the number of errors has a sensitive to differences
in the visual environment [21, 22]. (2) in the City car driving software, all driving errors
include such as didn’t follow the speed limit, driving on the red light, no turn signal
when changing the lane, accident and so forth are displayed when driving and counted
after finish the task.

Subjective ratings are designed to collect the opinions from the operators about the
MWL they experience using rating scales. With the low cost and the ease of adminis‐
tration, as well as adaptability, have been found highly useful in driving tasks [20, 23].
In this study, subjective ratings NASA-TLX [24] was used to evaluate the driver’s MWL
because of there are many studies successfully applied to measure MWL in the driving
[8, 9]. NASA-TLX is a multi-dimensional rating scale using six dimensions of workload
to provide diagnostic information about the nature and relative contribution of each
dimension in influencing overall operator workload. Six dimensions to assess MWL
including mental demand (MD), physical demand (PD), temporal demand (TD), own
performance (OP), effort (EF) and frustration (FR).

Physiological measures can be further divided into central nervous system measures
and peripheral nervous system measures [25]. These methods do not require the user to
generate overt responses, they allow a direct and continuous measurement of the current
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workload level, and they have high temporal sensitivity and can thus detect short periods
of elevated workload [26]. Although central nervous system measures (i.e. electrocar‐
diogram) has high reliability in measurement of driver’s MWL [13], the applicability
of these measures is limited due to the expensive instruments so it was not suitable to
the conditions of this experiment. Therefore, the central nervous system measures were
not used in this study.

Eye activity is a technique that captures eye behavior in response to a visual stimulus,
and this technique has become a widely used method to analyze human behavior [27].
Eye response components that have been used as MWL measures include pupil dilation,
blink rate, blink duration and fixations. Human pupil dilation may be used as a measure
of the psychological load because it is related to the amount of cognitive control, atten‐
tion, and cognitive processing required for a given task [28]. It also has been previously
shown to correlate with the cognitive workload, whereby increased frequency of dilation
is associated with increased degree of difficulty of a task [29]. In the driving study, pupil
dilation was able to reflect the load required by tasks [30], and it would measure the
average arousal underlying the cognitive tasks [31]. The blink of the eye, the rapid
closing, and reopening of the eyelid is believed to be an indicator of both fatigue and
workload. It is well known that eye blink rate is a good indicator of fatigue. Blink rate
has been investigated in a series of driver and workload studies with mixed results
attributable to the distinction between mental and visual workload [31]. They suggested
that blink rate is affected by both MWL and visual demand, which act in opposition to
each other, the former leading to blink rate increase, the latter to blink rate decrease.
Besides blink rate, blink duration has been shown to be affected by visual task demand.
Blink duration has been shown to decrease with increases in MWL. The studies
mentioned in Kramer’s review all found shorter blink durations for increasing task
demands (both mental and visual) [32]. Some studies show that blink duration is a
sensitive and reliable indicator of driver visual workload [8, 33]. Eye fixation duration
is also extensively used measures and is believed to increase with increasing mental task
demands [34]. Recently, fixation duration and the number of fixations have also been
investigated in a series of studies about driver hazard perception and they found that
increased fixation durations during hazardous moments, indicating increased
MWL [20].

The heart rate (HR) and heart rate variability (HRV) potentially offer objective,
continuous, and nonintrusive measures of human operator’s MWL [26]. Numerous
studies show that HR reflects the interaction of low MWL and fatigue during driving
[35, 36]. In addition to basic HR, there has also been growing interest in various measures
of HRV. Spectral analysis of HRV enables investigators to decompose HRV into
components associated with different biological mechanisms, such as the sympathetic/
parasympathetic ratio or the low frequency power/high frequency power (LF/HF) ratio,
the mean inter-beat (RR), the standard deviation of normal RR intervals (SDNN), etc.
The SDNN reflects the level of sympathetic activity about parasympathetic activity and
has been found to increase with an increase in the level of MWL [13, 25].
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2.4 Experimental Task

There were three levels of task complexity in this experiment such as high, medium and
low. Special stress in the City car driving simulator has been laid on the variety of road
situations and realistic car driving. The condition setting of task shown in Table 1.

Table 1. Experiment task setting

Condition setting Task complexity
Low Medium High

Type and gears Manual, 6 Manual, 6 Manual, 6
Steering wheel Left Left Left
Vehicular traffic density 10% 20% 40%
Traffic behavior Quiet traffic Usual traffic Fast-moving

traffic
Pedestrian traffic density 20% 20% 40%
Frequency of assignments medium medium medium
Point limit 10 10 10
Sudden change of lane by a car Rare Often Very often
Sudden stop of a car in the traffic Rare Often Very often
Driving out of a car on oncoming lane Often Often Very often
Time and weather Daytime/clear Daytime/clear Nighttime/clear

2.5 Group Method of Data Handling

Actually, there are many methods used to develop the predictive model such as GMDH,
Neural Networks, Logistic regression, Naive Bayes, etc. This study used the GMDH
method [37] to establish a prediction model of work performance. This is a widely used
neural network methodology which requires no assumptions of the relationship between
predictors and responses [38]. The GMDH algorithm has been widely used in various
fields, e.g. nuclear power plants [25], Stirling engine design [39], education [40]. This
study investigated the relationship between seven physiological indices and work
performance on different levels of task complexity.

2.6 Procedure

All participants received about two hours of training. During the training, they were
taught how to use the eye tracking equipment, complete the NASA-TLX questionnaire
and driving simulator. After that, each participant was received about 30 min to practice
by himself on the driving simulator. This practice served the purpose of familiarizing
subjects with the simulator and the general feel of the pedals and steering. The practice
step would end until the participant was sure that he understood all procedures. The
experiment was conducted on the next day.

154 C. C. Tran et al.



Before the experiment, the participant took a 20 min rest, and then wore the meas‐
urement apparatus and proceeded with system adjustment. The initial physiological
indices were acquired as a baseline before the experiment. During experiment, the phys‐
iological indices were collected during each phase (level of task complexity), and the
NASA-TLX questionnaire was conducted after each phase to evaluate the subjective
MWL of different levels of task complexity. Each phase lasted for about 20 min and had
5 min break after each phase. The limitation of driving speed limits in this study was
required less 45 km/h.

The scenario included a normal driving environment in the city (2 km of city roads
with some stop signs or crossing lights). Each participant was made to test the three level
of the task in a randomized order (Fig. 1). They were asked to follow speed limits and
to comply with traffic laws throughout the course of the experiment. Three level of
workload with high, medium and low of task complexity in this experiment shown in
Table 1.

Fig. 1. Driving task in the experiment: (A) Low task; (B) Medium task; (C) High task

3 Results

3.1 Sensitivity with the Workload Level

At alpha level of .05, a MANOVA results showed that there are a statistically significant
difference in task levels, F(16, 136) = 3.52, p < .0005; Wilk’s Λ = .50, partial η2 = .293
with the high observed power of 99.1%. Descriptive statistics was presented in Table 2.
There were significant differences in almost methods between workload levels in this
driving task, however; no significant difference was found in pupil dilation (p = .574) and
fixation duration (p = .143). The number of errors in performance measure showed that the
high task has significantly higher error than the low task by almost 23.3% (Tukey HSD p =
 .036). However, there was no significant difference between the high task and medium task
(Tukey HSD p = .261), and medium task and low task (Tukey HSD p = .561).
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Table 2. Sensitivity with the workload level

Method Task complexity (mean ± SD) F statistic Partial p-value
Low Medium High

Number of errors
(times)

4.1 ± 1.9 4.5 ± 1.8 5.3 ± 1.6 3.241 .080 .045*

NASA-TLX 37.7 ± 11.8 40.0 ± 11.49 53.1 ± 12.8 12.310 .247 .000**
Pupil dilation (px) 50.6 ± 9.2 49.4 ± 8.8 51.1 ± 9.1 1.299 .033 .574
Blink rate (times/min) 46.9 ± 6.1 45.2 ± 5.9 40.5 ± 5.1 8.689 .188 .000**
Blink duration (ms) 134.8 ± 18.9 145.5 ± 21.4 151.4 ± 23.2 4.085 .098 .021*
Fixation duration (s) 46.1 ± 23.7 47.3 ± 17.3 55.6 ± 13.1 1.998 .051 .143
HR (times/min) 77.3 ± 8.1 81.1 ± 8.2 86.1 ± 7.5 8.122 .178 .001*
SDNN (ms) 47.2 ± 17.0 50.3 ± 13.6 57.3 ± 11.7 3.400 .083 .039*

* p ≤ .05, ** p ≤ .001

3.2 Correlation Between the Number of Errors and Other Methods

The analysis of correlation was used to examine the relationship between the number
of errors and other methods as shown in Table 3. It indicated that the number of errors
and the NASA-TLX was positively correlated with each other. The correlation coeffi‐
cient of r = 0.563 was found to be statistically significant at p < 0.01 (two-tailed). Mean
of NASA-TLX score and the number of errors of each participant shown in Fig. 2.

Table 3. Correlation between the number of errors and other methods

Number of errors 1
NASA-TLX .563** 1
Pupil dilation .539** .508** 1
Blink rate −.129 −.287* .037 1
Blink duration .449** .498** .577** −.061 1
Fixation duration .402** .330** .377** −.055 .408** 1
HR .392** .357** .384** −.250* .511** .249* 1
SDNN .150 .200 .259* −.081 .189 .084 .280* 1

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

The statistic also showed that most physiological measures in this study correlate
significantly with the number of errors indicate that physiological measures may assess
the work performance by participants in the driving complex task.
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Fig. 2. Mean of the number of errors and NASA-TLX score of each participant in driving task

3.3 Predicting the Number of Errors by Integrating Physiological Measures

Six physiological indices, including pupil dilation (X1), blink rate (X2), blink duration
(X3), fixation duration (X4), HR (X5) and SDNN (X6) into a synthesized index and to
establish a model of work performance, this study used the GMDH method and the
predictive modeling software DTREG version 10.6. The ratio of training and testing in
this study was selected as 80%:20% to fit in with the available experimental sample size
of 26. Each input variable (Xi) was normalized to a range of 0 and 1 before the training
and testing process begins. The network was trained by using a random training data
set, and the training data was also never used in the test data.

The results indicated that physiological indices of X1, X2, and X5 were the best
significant predictor factors in the performance by the subject. The model is expressed
by Eq. (1) with the mean square error was 1.03, and R2 of the model was 78.1%.

Y= 4.816 + 1.152X5 + 0.588X2 + 0.233X1 − 0.477X2
5 + 0.091X2

2 + 0.095X2
1 − 0.433X5X2

− 0.290X5X1 − 0.163X2X1 + 1.125X5X2X1 − 0.451X3
5 − 0.276X3

2 + 0.027X3
1 − 0.467X5X2

2
− 0.309X5X2

1 − 0.844X2X2
5 + 0.010X2X2

1 + 1.079X1X2
5 + 0.217X1X2

2

(1)

In the validation data, the result showed that the mean target value for predicted
values is 4.62 while mean target value for input data is 4.5 (97.4%). Therefore, this model
was suitable to estimate the performance of different MWL based on physiological
measures in driving tasks.

4 Discussion

The number of errors was calculated as performance measures for the driving tasks in
this study. The evaluation result showed that increasing task complexity makes increase
the number of errors. This result is consistent with numerous studies which had found
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that the human’s performance was affected when the MWL was low [41]. On the other
hand, the NASA-TLX scores showed a significant correlation with the different levels
of MWL. For most of the subjects, the highest NASA-TLX score occurred in the high
task complexity phase whereas the lowest score happened in the low task complexity
phase. This result indicated that these tasks used in this experiment could distinguish
the different levels of MWL.

Eye response measures are useful to reflect temporal distribution workload levels in
driving task. However, no significant difference was found in pupil dilation and fixation
duration. This result indicated that the pupil dilation in this experiment might not repre‐
sent an increased processing need but rather reflects an increased attention and arousal
caused by errors. This finding is consistent with Bradshaw’s study in which he found
that the pupil size change was not linked to the task complexity, but instead to the level
of arousal of participants in problem-solving tasks [42]. Fixation duration index is
extensively used measures and is believed to increase with increasing mental task
demands [34], and Goldberg and Kotval [43] also found a negative correlation between
fixation time and performance. Although the overall significance in fixation duration
between different task levels was not found, there was a significant difference between
the high task and low task. This result could be explained that the difference between
the task levels (low-medium-high) is small.

Cardiac responses such as HR, HRV were used, and these responses seem more
sensitive to the accumulative workload than eye response measures do. The experi‐
mental result indicated that mean of participants’ HR and HRV components increased
when the task complexity increased. These findings were consistent with previous
studies [13, 44]. The participants in driving task needed to continuously exert mental
effort to keep alert, and fatigue may have reduced the participants’ attention. O’Hanlon
[45] found that the initial decrease was changed into a gradual increase in HRV in long-
time continuous driving and Tripathi, Mukundan and Mathew [46] also found that HRV
increased in high-demand vigilance tasks that also require continuous exertion. Another
plausible reason is the interaction influence of respiration on HR and HRV. A cognitive
load promotes oxygen demand by cells and leads to the production of more cardiac
output by increasing HR [47]. During the execution of tasks, participants breathed deep
and long, which will increase.

Finally, this study used GMDH method to construct a model to predict the driver’s
work performance on different workload levels. Although the statistic in table showed
that blink rate and HRV measure no correlates with the number of errors significantly
at the level of .05, the predictive model that integrates different physiological measures
explains 78.1% of the number of errors. With this model, it could provide a reliable
reference tool to predict the work performance of drivers.

4.1 Limitations

Some limitations of this study should be mentioned. First, the experiment has used a
small sample of a student population to evaluate and predict model; the small sample
size reduced the statistical power. These students also do not represent the characteristics
of the people who want to learn the driving car. In addition, in the simulation condition,
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the participants often have psychological comfort because they must suffer the conse‐
quences of their mistakes when the operation fails or does not fulfill the requirements
of the task. This causes for lack of significant differences among the outcomes and
assessment results had limits of reliability. Finally, this result has been not shown the
causal relationship between the physiological measures and the error rate but show a
correlation between them under certain situations.

5 Conclusions

This paper reports the correlation of human’s MWL and work performance in the driving
task using driving simulator based on NASA-TLX and six physiological indices. The
results show that different complexity levels of the driving task have a significant effect
on the new driver’s performance. In six physiological indices were used, three indices
of pupil dilation, blink duration, and HR were the significant predictor factors, and the
validity of this model was very well with R2 = 0.78. Therefore, this model can be used
to predict the new driver’s work performance and maybe apply for actual. Although the
model development process is still in an early phase, it can be used to predict the value
of a new driver or little experience driving people on practice phase procedure.
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Abstract. Conversational user interfaces (CUIs) are rapidly evolving
towards being ubiquitous as human-machine interfaces. Often, CUI back-
ends are powered by a combination of human and machine intelligence, to
address queries efficiently. Depending on the type of conversation issue,
human-to-human conversations in CUIs (i.e. a human end-user convers-
ing with the human in the CUI backend) could involve varying amounts
of emotional content. While some of these emotions could be expressed
through the conversation, others are experienced internally within the
individual. Understanding the relationship between these two emotion
modalities in the end-user could help to analyze and address the conver-
sation issue better. Towards this, we propose an emotion analytic metric
that can estimate experienced emotions based on its knowledge about
expressed emotions in a user. Our findings point to the possibility of
augmenting CUIs with an algorithmically guided emotional sense, which
would help in having more effective conversations with end-users.

Keywords: Conversational user interfaces
Expressed and experienced emotions

1 Introduction

Conversational user interfaces (CUIs) are interactive user interfaces that allow
users to express themselves conversationally, and are often powered by a com-
bination of humans and machines at the back end [1]. Across a wide range of
applications, from assisting with voice-command texting while driving to send-
ing alerts when household consumables need to be ordered, CUIs have become a
part of our everyday lives. In particular, bots within messaging platforms have
witnessed rapid consumer proliferation. These platforms cater to a wide spec-
trum of human queries and messages, both domain-specific as well as general
purpose [2].

Depending on the type of issue being discussed, human-to-human conversa-
tions in CUIs (i.e., conversations between human in the CUI backend and the
human end-user) could involve varying amounts of emotional content. While
some of these emotions could be expressed in the conversation, others are felt
or experienced internally within the individual [12]. An expressed emotion need
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 165–177, 2017.
https://doi.org/10.1007/978-3-319-72038-8_13
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not always correspond to what the user is actually experiencing internally. For
example, one can suppress the internal feelings and express some other emotion
in order to be consistent with certain socio-cultural norms [23]. Since experienced
emotions are felt internally, they may not be easily perceived by others.

Understanding relationship between expressed and experienced emotions
could facilitate better communication between the end-user and human in the
CUI backend [7]. Analyzing experienced emotions could also help in uncovering
certain aspects of an individual that needs attention and care. For example, a
feeling of extreme sadness within an individual could be expressed externally
as anger [6]. Employing this type of emotion metric could enhance both the
scope and usage of CUIs. In this paper, we propose such an emotion metric by
developing a machine learning method to estimate probabilities of experienced
emotions based on the expressed emotions of a user.

Problem Setting: We consider the scenario of textual conversations involving
individuals needing emotional support. For convenience, we refer to individuals
needing support as users. On the other end of the conversation platform are the
human listeners (typically counselors). The human listener chats directly with
the user using a text-only interface and our algorithm (i.e. the machine) analyzes
the texts of the end-user. The machine provides a quantitative assessment of the
experienced emotions in the user’s text. All assessments are specific to the user
under consideration.

The machine first evaluates the conditional probability of experienc-
ing an emotion emon internally given that an emotion emom is explicitly
expressed. In the rest of this paper we represent this conditional probability
as Pt(emon|emom). For example, the probability of experiencing sadness inter-
nally given that anger has been expressed, is represented as Pt(sad|angry). From
these conditional probabilities, the probabilities of various experienced emotions
(P (emon)) are obtained. A detailed explanation of the procedure is described in
Sect. 3.

2 Related Work

CUIs are used for a variety of applications. For example, IBM’s Watson technol-
ogy has been used to create a teaching assistant for a course taught at Georgia
Tech [13], Google chatbot, “Danielle”, can act like book characters [14], and so
on. There are also emotion-based models for chatbots such as [25], wherein the
authors propose to model the emotions of a conversational agent.

A summary of affect computing measures is provided in D’Mello et al. [16].
Mower et al. [27] propose an emotion classification paradigm based on emotion
profiles. There have been efforts to make machines social and emotionally aware
[23]. There are methods to understand sentiments in human-computer dialogues
[18], in naturalistic user behavior [24] and even in handwriting [26]. However, we
are not aware of any work that estimates the underlying, experienced emotions
in text conversations.
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Bayesian theory has been used to understand many kinds of relationships in
domains such as computer vision, natural language processing, economics, medi-
cine, etc. For example, Ba et al. [15] use Bayesian methods for head and pose
estimation. Dang et al. [17] leverage Bayesian framework for metaphor identifi-
cation. Bayesian inference has been used in recent years to develop algorithms
for identifying e-mail spam [28]. More recently, Microsoft Research created a
Bayesian network with the goal of accurately modeling the relative skill of play-
ers in head-to-head competitions [29]. Our work describes a new application of
Bayesian theory, namely, to estimate experienced emotions in text conversations.

3 Method

Let the conditional probability of experiencing an emotion emon given that
an emotion emom is expressed be denoted by Pt(emon|emom). We evaluate
Pt(emon|emom) using a Bayesian framework. These are then normalized over
the space of all expressed emotions emom to obtain the probabilities of various
experienced emotions emon.

First, an emotion recognition algorithm is run on the end-user’s texts to
determine the probabilities of various expressed emotions. These probabilities
serve as priors in the Bayesian framework. Next, we leverage large datasets con-
taining emotional content across many people (such as blogs, etc.) to measure
the similarities between words corresponding to a pair of emotions. This informa-
tion is computed across several people and is reflective of the general relatedness
between two emotion-indicating words (for example, between the words “sad”
and “angry”). This measure is then normalized (across all possible pairs of emo-
tions considered) to constitute the likelihood probability in the Bayesian frame-
work. The priors and likelihoods are then integrated to obtain Pt(emon|emom).
This conditional probability is specific to the end-user under consideration. This
is then normalized over all possible choices of expressed emotions to obtain prob-
abilities of experienced emotions for the end-user under consideration.

While a variety of other approaches could be used for this computation,
our choice of the Bayesian framework is motivated by the following facts. First,
Bayesian models have been successful in characterizing several aspects of human
cognition such as inductive learning, causal inference, language processing, social
cognition, reasoning and perception [30]. Second, Bayesian learning incorporates
the notion of prior knowledge which is a crucial element in human learning.
Finally, these models have been successful in learning from limited data, akin to
human inference [31].

3.1 Estimation of Priors

During the course of the user’s conversation with a human listener, we perform
text analysis at regular time instances to get probabilities of different emotions.
These probabilities are determined based on the occurrences of words represen-
tative of emotions in user’s text. In our setting, we measure the probability of
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the following emotions—happy, sad, angry, scared, surprised, worried, and trou-
bled. We arrived at these seven emotions by augmenting commonly observed
emotions in counseling platforms with those that are widely accepted in psycho-
logical research [32]. These probabilities provide some “prior” information about
the user’s emotions and hence serve as the priors in the Bayesian framework.

Let the prior probability of an emotion i, be denoted by Pp(emoi). Thus, there
are multiple emotion variables, with each of these variables taking a value in the
range [0, 1] indicating their probabilities. We leverage word synsets to obtain
a rich set of words related to each of the emotions that we want to recognize.
Synsets are defined as a set of synonyms for a word. Let the set of synsets across
all the emotion categories be referred to as the emotion vocabulary. The words
in a user’s text are then matched for co-occurrence with the emotion vocabulary
and are weighted (normalized) based on their frequency of occurrence to obtain
probability of an emotion. We found this simple approach quite reliable for our
data. This will give the probabilities for various expressed emotions.

3.2 Estimation of Likelihoods

We estimate similarities between words corresponding to a pair of emotions by
training neural word embeddings on large datasets [9]. This similarity gives a
measure of relatedness between two emotion-indicating words in a general sense.
For example, if the word “sad” has higher similarity with word “anger” than
with the word “worry”, then we assume that the relatedness between emotions
“sad” and “anger” is higher than the relatedness between “sad” and “worry”.
This may not necessarily be true with respect to every user, but is true in an
average sense since the calculation is based on very large datasets of emotional
content across several people. Since this measure is data-dependent, we have to
choose appropriate datasets containing significant emotional content to get reli-
able estimates. We then normalize the similarity scores to obtain the likelihood
probability. The details are as follows:

Specifically, we train a skip-gram model on a large corpus of news articles
(over a million words), blogs and conversations that contain information per-
taining to people’s emotions, behavior, reactions and opinions. As a result, the
model can provide an estimate of relatedness remoi−emoj between two emotions
(emoi and emoj) leveraging information across a wide set of people and con-
texts. This quantity is just capturing the relatedness between any two emotions
in a general sense, and is not specific to a particular user. We compute likeli-
hood probability of observing emotions emoj given emoi, Pl(emoj |emoi) based
on normalizing the similarities remoi−emoj over the space of all possible emotions
under consideration. Thus,

Pl(emoj |emoi) =
remoi−emoj∑

all−emo remoi−emoj

(1)

The emotion pairs considered in Eq. (1) do not necessarily represent expressed or
experienced emotions; the likelihood probability is just a measure of relatedness
between a pair of emotions computed from large datasets.
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3.3 Estimating Conditional Probabilities

We employ a Bayesian framework to integrate emotion priors with the likeli-
hood probabilities. Let Pp(emon) be the prior probability of an emotion emon
as obtained from an emotion analysis algorithm, and Pl(emom|emon), be the
likelihood probability of emom given emon, obtained by using appropriate train-
ing dataset. Then, the posterior probability of experiencing an emon given an
expressed emotion emom is given by

Pt(emon|emom) =
Pl(emom|emon)Pp(emon)

∑
all−emo Pl(emom|emon)Pp(emon)

(2)

The above quantity is specific to the user under consideration.

3.4 Estimating Probabilities of Experienced Emotions

The conditional probabilities computed from Eq. (2) are specific to a user. By
normalizing these conditional probabilities across all possible choices of expressed
emotions, we obtain the probabilities of various experienced emotions. Specifi-
cally,

P (emob) =
∑

a

Pt(emob|emoa)Pp(emoa) (3)

where in emoa is an expressed emotion and emob is an experienced emotion.
The set of expressed and experienced emotions need not be mutually exclusive.

3.5 Dataset

We studied the performance of the algorithm on a dataset consisting of 16 anony-
mous user conversations with a human listener spanning a total of more than
20 h. Conversations between users and human listener dealt with a variety of top-
ics such as relationship issues, emotional wellbeing, friendship problems, etc. On
average, the conversation between a user and the human listener lasted approxi-
mately 30 min. Some of these conversations lasted more than an hour (the longest
was 70 min) while some lasted only 10 min. We divided the conversations into
segments corresponding to the time a user spoke uninterrupted by a human lis-
tener. For convenience we refer to each segment as a “transcript”. Transcripts
numbered A.x are all contiguous parts of the same conversation A. There were
over fifty transcripts in the dataset.

4 Results

We illustrate the performance of the proposed method on some user conversa-
tions. Users converse with a human listener, henceforth abbreviated as “HL”.
All results are specific to the user part of the conversation only and apply to
the specific time interval only. The identities of the users and the human listener
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were anonymized by the conversation platform. It is to be noted that an expe-
rienced emotion could become expressed at a later time, so the set of expressed
and experienced emotions are not mutually exclusive. Also, the algorithm can
compute probabilities of experienced emotions only for those emotions for which
there is a prior.

4.1 Case Studies

Transcript 1.1 (0th–10th min)

user: Hi, can you please help me with anxiety.
hl: I’m sorry you’re feeling anxious. Can you tell me more about it?
user: I have no self confidence and have a girlfriend who I really like. I can’t

cope thinking she is going to find someone better. I am drinking to kill the
anxiety.

hl: It sounds like you’re feeling really anxious about your girlfriend staying with
you. That sounds really difficult.

user: She is out with work tonight and a colleague who she dated for a bit is
there. I don’t know how to cope.

hl: It sounds like you’re feeling really anxious that she is out with other people
including her ex. And you not being there with her is making you feel worse.
I’m sorry - that’s a really hard feeling.

user: Can you help?
hl: I can listen to you. And I really am sorry that you’re feeling so anxious.

Maybe you can tell me more about your relationship and why you are feeling
insecure.

user: I am an insecure person. I am a good looking guy, always get chatted up,
but I have no confidence.

Tables 1 and 2 list the expressed and experienced emotions during the first
10 min of the conversation.

Table 1. Expressed emotions for tran-
script 1.1: 0th–10th min

Expressed emotion Probabilities

Troubled .59375

Worried .40625

Table 2. Experienced emotions for
transcript 1.1: 0th–10th min

Experienced emotion Probabilities

Worried 0.615

Troubled 0.385

Transcript 1.2 (10th–20th min)

user: I Dont know why I am insecure with her, I just feel inadequate.
hl: You feel insecure and inadequate with her. Have you felt like this with other

girlfriends?
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user:Once before but not as bad. She is beautiful.
hl: It sounds like she is really special to you - it’s nice that you have a beautiful

girlfriend.
user: She really is. But I Dont think the same the other way.
hl: I’m not sure I understand what you mean. You mentioned that you were

also good looking.
user: I Dont know if she feels the same. Yes I am. Not by my own admission

but by what people tell me.
hl: So you think she is beautiful but you’re not sure how she feels about you?
user: I Dont know, I think I might be over eager and care for her too much.

Tables 3 and 4 lists the results of the algorithm.

Table 3. Expressed emotions for tran-
script 1.2: 10th–20th min

Expressed emotion Probabilities

Troubled .703

Worried .084

Sad .212

Table 4. Experienced emotions for
transcript 1.2: 10th–20th min

Experienced emotion Probabilities

Worried 0.168

Sad 0.17

Troubled 0.661

Results are listed in Tables 5 and 6. Similar analysis was carried out through-
out the conversation. The following is the last transcript of this conversation.

Table 5. Expressed emotions for tran-
script 1.3: 20th–30th min

Expressed Emotion Probabilities

Sad .923

Scared .068

Table 6. Experienced emotions for
transcript 1.3: 20th–30th min

Experienced Emotion Probabilities

Scared 0.037

Sad 0.9625

Transcript 1.4 (40th–50th min)

user: I Dont have anyone I can confide in.
hl:That sounds lonely. I think many people feel like that which is why it’s nice

that we can be there for each other online.
user: Very lonely. Which is why I’m afraid of losing her. I’ve told her everything

about myself.
hl: it’s nice that you’ve found a confidant in her. and of course now you don’t

want to loose that connection.
user: I made it a point to tell her everything, something which I haven’t done

previous. Its part the reason why in terrified to lose her.
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hl: yeah, it sounds like you feel really open but also very vulnerable because of
everything you’ve shared. that’s hard.

user: I’m very vulnerable. Should I go to the doctor?
hl: I’m not sure. If you’re thinking about it, it might be a good idea. What kind

of advice are you looking for from them?
user: I Dont know, maybe medication
hl: Ah, I see what you’re saying. Medication can help a lot with anxiety for sure.

It sounds like you’re feeling really bad and anxious and really don’t want to
feel like this anymore. I think it’s always good to find out if a doctor can
help with something like that. . .

Tables 7 and 8 provide the assessment of expressed/experienced emotions.

Table 7. Expressed emotions for tran-
script 1.4: 40th–40th min

Expressed Emotion Probabilities

Sad .286

Scared .286

Troubled .214

Worried .213

Table 8. Experienced emotions for
transcript 1.4: 40th–40th min

Experienced emotion Probabilities

Scared .1025

Sad .2995

Troubled .2414

Worried .208

We present another case study. For brevity, we omit the conversation excerpts
of HL (machine analyzes only user texts) and show results for first part of con-
versation. Similar analysis was carried for the rest of the conversation.

Transcript 2.1 (0th–10th min)

user: okay, so I am 18 and my boyfriend is 17. He has BAD anger, it’s never
been anything physical. but he always gets mad over the littlest things and
he always acts like everything bothers him when I say something wrong. . .
but when he does something like that I am supposed to take it as a joke. and
then he gets mad and tries to blow it off when I say something as a joke like
“yep.” “yeah.” “nope I am fine.” and acts short (Tables 9 and 10).

Table 9. Expressed emotions for tran-
script 2.1: 0th–10th min

Expressed Emotion Probabilities

Troubled .227

Sad .4228

Angry .349

Table 10. Experienced emotion for
transcript 2.1: 0th–10th min

Experienced emotion Probabilities

Sad .486

Troubled .19

Angry .322
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Transcript 2.2 (10th–20th min)

user: yeah i just need help getting through that it. yeah. . . and i’m worried
with me going to college it’ll get worse. I guess. . . it’s just hard, not only
that but my mom is freaking out on me and mad at me. all the time when
i haven’t done ANYTHING and that is really stressing me out. . . i don’t
know. . . i really don’t she makes me feel lie i am a failure because i don
have a job or anything and it doesn’t help that she going through a change
because she is 50. . . her and my little brother and stepfather constantly gang
up on me. my brother is the worst. My boyfriend says i should leave since i
am 18 but i have no where to go because i do not have a job nor any money
(Tables 11 and 12).

Machine Observations

Table 11. Expressed emotions for
transcript 2.2: 10th–20th min

Expressed Emotion Probabilities

Worried .2543

Sad .693

Angry .052

Table 12. Experienced emotion for
transcript 2.2: 10th–20th min

Experienced emotion Probabilities

Sad .75

Worried .2

Angry .05

4.2 Analysis

Validation with Human Experts: In order to investigate the effectiveness of the
algorithm, we asked human experts to state the top 3 emotions the user in
any given transcript was experiencing. The human experts were chosen based on
their knowledge and experience in the psychology of active listening. The experts
were not restricted to use the same set of emotions as the machine could identify,
instead they were free to mention anything they found appropriate. To compare
with the machine’s performance, we mapped similar emotion-describing words
into the same category. For example, “anxious” was mapped to “worried”. In
75% of the transcripts, the top emotion chosen by the evaluators matched with
the top experienced emotion as computed by the machine. In the absence of
ground truth (i.e., we did not have information from the user as to what they
were experiencing), this accuracy is reasonable.

It is to be noted that with more information about the user (such as their
conversation history), the machine will be able to uncover more hidden emo-
tions. Also given that human evaluation itself was subjective, machine’s result
can serve as an additional source of information. For example, for the user in
Transcript 2, the machine result suggested that sadness was the highest experi-
enced emotion. Interestingly, none of the human experts identified sadness in the
top 3 experienced emotions. However, given the situation of the user, it may not
be unreasonable to say that sadness is likely underneath all her other emotions.
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Understanding the User: In this study, one of our goals was to understand the
patterns of expressed and experienced emotions in users. Figure 1 is a plot of
the highest expressed and experienced emotions at every time interval for the
user in transcript 1. Throughout, the expressed emotion seems consistent with
the experienced emotions. Also, there isn’t any statistically significant difference
between the degree of expressed and experienced emotions. Figure 2 is a plot of
the lowest expressed and experienced emotions. Except for one time interval ( the
last time interval wherein the lowest expressed emotion is worried and the lowest
experienced emotion is fear), the lowest expressed and experienced emotions are
the same, with no statistically significant difference in their intensity.

Fig. 1. Highest expressed and experi-
enced emotions for user in Transcript 1.

Fig. 2. Lowest expressed and experi-
enced emotions for user in Transcript 1.

Thus, this user is mostly expressing what s/he is experiencing. As another
case study, consider the user in transcript 2. Figure 3 summarizes the highest
expressed and experienced emotions for this user. Figure 4 shows the plot for
lowest expressed and experienced emotions for this user. As can be noticed from
Figs. 3 and 4, this user is always expressing what she is experiencing.

Fig. 3. Highest expressed and experi-
enced emotions for user in Transcript 2.

Fig. 4. Lowest expressed and experi-
enced emotions for user in Transcript 2.

There is generally a gap between what people express and what they experi-
ence. The aforementioned case studies were illustrations wherein one user mostly
expressed what was experienced and the other always expressed what was expe-
rienced. However, there could be cases where people mostly hide certain emo-
tions or never exhibit them. Thus, such quantitative studies of expressed and
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experienced emotions, can be useful in constructing “emotion profiles” of users.
Emotion profiles can be thought of as some characteristic patterns exhibited by
users in expressing and experiencing emotions. Understanding such details can
help both the users as well as counselors assisting them. For example, if some-
one is scared, but only shows anger, it would be helpful to gently show (this
user) that his/her underlying emotion is fear so that s/he can address it bet-
ter. Such insights would also help a counselor in recommending suitable solution
strategies.

5 Conclusions

We presented an approach to understand relationship between expressed emo-
tions and experienced emotions during the course of a conversation. Specifi-
cally, we evaluated the probability of a user experiencing an emotion based on
the knowledge of their expressed emotions. We discussed how the relationship
between the expressed and experienced emotions can be leveraged in understand-
ing a user. Such an emotion analytic can be powerfully deployed in conversation
platforms, that have machines or humans in the backend. We hope our findings
will help in providing personalized solutions to end-users of a CUI by means of
augmenting CUIs with an algorithmically guided emotional sense, which would
help in having more effective conversations with end-users.
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Abstract. Multiword expressions (MWEs) are units in language where multi-
ple words unite without an obvious/known reason. Since MWEs occupy a
prominent amount of space in both written and spoken language materials,
identification of MWEs is accepted to be an important task in natural language
processing.
In this paper, considering MWE detection as a binary classification task, we

propose to use a semi-supervised learning algorithm, standard co-training [1]
Co-training is a semi-supervised method that employs two classifiers with two
different views to label unlabeled data iteratively in order to enlarge the training
sets of limited size. In our experiments, linguistic and statistical features that
distinguish MWEs from random word combinations are utilized as two different
views. Two different pairs of classifiers are employed with a group of experi-
mental settings. The tests are performed on a Turkish MWE data set of 3946
positive and 4230 negative MWE candidates. The results showed that the
classifier where statistical view is considered succeeds in MWE detection when
the training set is enlarged by co-training.

Keywords: Multiword expression � Classification � Co-training

1 Introduction

A learning machine and/or the task of learning requires experience in other words a
training phase to learn. The method to obtain the experience puts the machine learning
methods into 3 main categories: supervised, unsupervised and reinforcement learning
algorithms. In supervised learning, a labeled data set is given to the machine during
training. Following, the machine that gained the ability to label a given sample, may
classify the testing samples. In unsupervised learning, the labels of the samples are not
provided to the machine in training phase. The machine is expected to learn the
structure of samples and varieties in unlabeled sample set and to extract the clusters it
self. In reinforcement learning, the machine interacts with the dynamic environment
and aims to reach a predefined goal. The training of the machine is provided by the
rewards and penalties.

The supervised methods require a sufficient amount of labeled samples for training
to achieve in classification of unlabeled data. However, in many problems it is not
possible to provide that sufficient amount of labeled samples or preparation of such a

© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 178–188, 2017.
https://doi.org/10.1007/978-3-319-72038-8_14



sample set is over costing. In such cases, the machine may be forced to learn from
unlabeled data. This is why, the notion of semi-supervised learning is defined as a
halfway between supervised and unsupervised learning [2].

In semi-supervised learning methods, commonly training is performed iteratively.
In first iteration, a limited number of labeled samples are given to the machine to learn.
After first iteration, the machine labels the unlabeled samples. The samples that are
labeled most reliably are added to the labeled set and the machine is re-trained by this
enlarged labeled set in next iteration. After a number of iterations, it is accepted that the
learning phase is finished and the machine is ready to label unlabeled data set. In other
group of semi-supervised methods, some constraints are defined to supervise the
training phase [2].

The earliest implementation of semi-supervised learning approach is probably the
self-training [2]. In self-training, a single machine, trained by labeled sample set,
enlarges its own labeled set iteratively, by labeling the unlabeled set. An alternative
method to self-training, co-training, is proposed by Blum and Mitchell [1]. The
co-training aims to increase the classification performance by employing two classifiers
that considers different views of the data to label the unlabeled samples during training
phase. There exist several implementations of the method that are used to solve dif-
ferent problems such as word sense disambiguation [3], semantic role labeling [4],
statistical parsing [5], identification of noun phrases [6], opinion detection [7], e-mail
classification [8] and sentiment classification [9].

In this study, we examine the effect of co-training in an important natural pro-
cessing task: multiword expression detection. The notion of multiword expression may
be explained in a variety of different ways. Simply, MWEs are word combinations
where words unite to build a new syntactical/linguistic or semantic unit in language.
Since the words may change their meaning or roles in text while they form MWE,
detection of MWEs has a critical role in language understanding and language gen-
eration studies. For example, the expression “lady killer” is a MWE meaning “an
attractive man”. But if the meanings of the composing words are considered individ-
ually, the expression refers to something completely different. In MWE detection, it is
believed that the links between the composing words of MWEs are stronger than the
links between random combinations of words. The strength of these links is measured
commonly by statistical and/or linguistics features that may be extracted from the given
text or a text collection (e.g. [10–13]).

In a wide group of studies that aim identification of MWEs, the regarding task is
accepted as a classification problem and several machine-learning methods are
employed. For example, in [13] statistical features are considered together by super-
vised methods such as linear logistic regression, linear discriminant analysis and neural
networks. In [12], multiple linguistically-motivated features are employed in neural
networks to identify MWEs in a set of Hebrew bigrams (uninterrupted two word
combinations). Several experiments are performed on Turkish data set with linguistics
features by 10 different classifiers (e.g. J48, sequential minimization, k nearest
neighbor) in [14].

In this study, we aim to examine the performance change in MWE recognition
when co-training is employed. The paper is organized as following. We first present the
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semi-supervised learning and co-training in Sect. 2. In Sect. 3, experimental setup is
given. In Sect. 4 results are presented. And the paper is concluded in Sect. 5.

2 Semi-supervised Learning: Co-training

Semi-supervised methods are proposed in order to overcome the disadvantages of
supervised learning when there is a lack of sufficient amount of labeled samples. The
methods are reported to succeed in some cases when some assumptions such as
smoothness, clustering, manifold and transduction hold.

Semi-supervised methods are mainly categorized in four groups: generative,
low-density, graph-based models and change of representation [2]. In generative
models, the main aim is modeling the class conditional density. Co-training [1] and
expected maximization [15] methods are well-known examples of generative models.
On the other hand, low-density separation methods such as transductive support vector
machine proposed by [16] try to locate decision boundaries in low density regions and
away from the unlabeled samples. The methods presented in [17–19] are the examples
of graph based methods where each node represents a sample and classification is
performed by measuring the distance between nodes. In change of representation
approach, a two-stage training is required. Since labeled samples are considered
without their labels in the first stage, it is accepted that the representation of samples are
changed by this way. In the second stage of training, unlabeled samples are excluded
from the data set and supervised learning is performed with the new measure/kernel.

In this study, the semi-supervised method: co-training is implemented to identify
MWEs. The co-training algorithm, given in Fig. 1, that will be named as standard
co-training is proposed by [1].

Fig. 1. Standard co-training algorithm [1]
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In standard co-training, the main aim is building a classifier trained by L number of
labeled and U number of unlabeled samples where L is known to be a small number. In
order to overcome the disadvantage of having a limited number of labeled samples, L,
[1] proposed to split the feature vector in two groups of features where each group of
features represents a different view of the regarding data set. Each group of
features/split/view is used to train one of the classifiers. The assumptions that guarantee
the success of co-training are explained as [1]

• Both groups of features (splits/views) must be available for classification.
• Given the label, the feature groups must be conditionally independent for each

sample in the data set.

In several studies such as [6, 20], the researchers investigated to what degree these
assumptions and the data set size effect the performance of co-training algorithm. For
example, experimenting on the same problem mentioned in [1, 20] reported that even if
the independency assumption is not satisfied, still co-training performs better than to
alternatively proposed expected maximization algorithm since in each iteration all the
samples are compared to others to determine the most confidently labeled ones in
co-training.

The standard co-training algorithm is implemented to classify web pages in [1]. The
first group of features is built by the words in web pages and the second group includes
the words in the web links. In both classifiers, Naive Bayes algorithm is used and the
tests are performed with p = 1 and n = 3. In [1], it is reported that the proposed
co-training algorithm reaches to higher classification performance compared to
supervised machine learning.

3 Experimental Setup

The experiments to examine performance of co-training in MWE detection require the
following four tasks to be performed:

1. Two different views (two groups of features) of data set must be determined
2. The classifier pairs must be chosen
3. MWE data set composed of both positive and negative samples must be

prepared/selected.
4. Labeled, unlabeled and testing data set sizes must be set.
5. Evaluation measures must be determined.

We propose to use linguistic and statistical features as two different views on MWE
data set. In this study, the linguistic view includes 8 linguistic features listed below:

1. Partial variety in surface forms (PVSF_m and PVSF_n): In MWE detection studies,
it is commonly accepted that MWEs are not observed in a variety of different
surface forms in language. As a result, the histogram presenting the occurrence
frequencies of different surface forms belonging to the same MWE is expected to be
non-uniform [12]. We measured variety in surface forms in two different ways that
are called as PVSF_m and PVSF_n features based on the surface form histogram,
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similar to [12]. Briefly, the Manhattan distance between the actual surface form
histogram of the MWE candidate and the possible/expected uniform histogram is
employed as PVSF_m. The ratio of PVSF_m to total occurrence frequency of the
candidate (in any form) is accepted as PVSF_n.

2. Orthographical variety (OVh and OVa): MWEs may hold orthographical changes
due to the use of some punctuation marks such as hyphen. For example, expression
“e mail” is commonly written as “e-mail”. In this study we considered two punc-
tuation marks and employed a Turkish corpus to obtain the feature values. The first
punctuation mark is the hyphen. OVh value is the proportion of the occurrence
frequencies of candidate that is formed with a hyphen and without a hyphen. The
second orthographical variety feature is OVa. In this feature, the occurrences of the
candidate with and without apostrophe symbol in the second composing word are
counted. The ratio of the occurrences with and without apostrophe is employed as
OVa.

3. Frozen Form: It is a binary feature that is one if the MWE candidate has a single
surface form in corpus and zero other vice.

4. The ratio of Uppercase Letters: The feature is simply the ratio of occurrence
frequency of MWE candidate where capital letters are used to the total frequency of
the candidate in the corpus.

5. The suffix sequence (SS): It is expected that a number of suffixes or suffix sequences
are to be used with MWEs more than random word/word combinations. In order to
determine such suffixes, a set of Turkish idioms is built. The suffixes of length [3
10] (in characters) that are commonly used with the idioms are determined in a
Turkish corpus. And SS value of the MWE candidate is obtained by comparing the
last n characters of the candidate with these suffix sequences. If there exists a match,
the number of characters of regarding suffix is employed as SS feature value.

6. Named Entity Words (NEW): A list of words (3626 words) that are commonly used
in Turkish named entities (e.g. personal names, locations, addresses) is prepared to
obtain NEW feature values. The list includes 5 different categories of named enti-
ties. If a composing word of the given MWE candidate is observed in one of these
categories, NEW value is increased by one. As a result, for each word in MWE
candidate, NEW value may be increased to five theoretically.

The statistical view includes 18 features (Table 1). These features are known to be
commonly used in many studies (e.g. [10, 13, 21]). In Table 1, w1 and w2 represent the
first and the second word in given MWE candidate, respectively.

In Table 1, Pðw1w2Þ is the probability of co-occurrence of two words w1 and w2

sequentially. Pðw1Þ and Pðw2Þ are the occurrence probabilities of first and the second
words. PðwijwjÞ gives the conditional occurrence probability of the word wi given that
the word wj is observed. f ðw1w2Þ, f ðw1Þ, f ðw2Þ are occurrence frequency of the bigram
w1w2, and the words w1 and w2 respectively. The different number of words following
the bigram is represented by vf (w1w2), different number of words preceding and
following the bigram is vb (w1w2) and vf (w1w2), respectively.

In this study, the classifiers SMO (Sequential Minimal Optimization) [22, 23], J48
[24] and logistic regression (Logistic) [25] are employed in classifier pairs as presented
in Table 2. A Turkish MWE data set that includes 8176 samples of MWE candidates
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(3946 positive (MWE labeled) and 4230 negative (non MWE labeled)) is utilized in
experiments.

Table 3 presents the sizes of labeled (L), unlabeled (U) and test (T) data sets. For
example, in experimental setting no 1, 50 samples are used in labeled set, unlabeled set
has 250 samples and test size is set as 100.

The evaluation of the classification is performed by F1 measure. F1 measure is
given as

F1 ¼ 2TP
2TPþFN þFP

ð1Þ

Table 1. Statistical features

Feature Formula

Bigram-backward variety vb w1w2ð Þ
f w1w2ð Þ

Bigram-forward variety vf w1w2ð Þ
f w1w2ð Þ

Bigram–word forward variety vf w1w2ð Þ
vf w2ð Þ

Fager f w1w2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðf w1w2ð Þþ f w1 �w2ð Þ:ðf w1w2ð Þþ f �w1w2ð Þ
p � 1

2maxðf w1�w2ð Þf �w1 w2ð ÞÞ
First Kulcznsky f ðw1w2Þ

f w1 �w2ð Þþ f �w1w2ð Þ
Jaccard f w1w2ð Þ

f w1w2ð Þþ f w1 �w2ð Þþ f �w1w2ð Þ
Joint probability Pðw1w2Þ
Mutual dependency log Pðw1w2Þ2

P w1ð ÞPðw2Þ
Normalized expectation 2f ðw1w2Þ

f w1ð Þþ f ðw2Þ
Neighborhood
unpredictability (NUP) [11]

FNUP w1w2ð Þ ¼ 1� vf w1w2ð Þ�1
vf w2ð Þ�1

BNUP w1w2ð Þ ¼ 1� vb w1w2ð Þ�1
vb w1ð Þ�1

NUP w1w2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FNUPðw1w2Þ2 þBNUPðw1w2Þ2
q

Point-wise mutual information log Pðw1w2Þ
P w1ð ÞPðw2Þ

Piatersky-Shapiro P w1w2ð Þ � P w1ð ÞP w2ð Þ
R cost log 1þ f w1w2ð Þ

f w1w2ð Þþ f w1 �w2ð Þð Þ
� �

þ log 1þ f w1w2ð Þ
f w1w2ð Þþ f �w1w2ð Þð Þ

� �

S cost logð1þ minðf w1 �w2ð Þ;f �w1w2ð Þ
f w1w2ð Þþ 1 Þ

U cost logð1þ min f w1 �w2ð Þ;f �w1w2ð Þð Þþ f ðw1w2Þ
max f w1 �w2ð Þ;f �w1w2ð Þð Þþ f ðw1w2ÞÞ

Second Kulcznsky 1
2 ð f w1w2ð Þ

f w1w2ð Þþ f w1 �w2ð Þð Þ þ f w1w2ð Þ
f w1w2ð Þ þ f �w1w2ð Þð ÞÞ

Second Sokal-Sneath f w1w2ð Þ
f w1w2ð Þþ 2ðf w1 �w2ð Þþ f �w1w2ð ÞÞ

Word forward variety vf w2ð Þ
f w2ð Þ
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where TP is the number of true positives (candidates that are both expected and
predicted to belong to the same class MWE or non-MWE), FN is the number of false
negatives, FP is the number of false positives.

4 Results

The performance of standard co-training, given in Fig. 1, is examined on test settings
by repeating the same experiment 5 times (5 runs) for each setting. The numbers of
positive (p) and negative samples (n) that will be inserted to the labeled data set in each
iteration are set to one. And in each run of the tests, the data set is shuffled to build the
labeled L, unlabeled U and test sets randomly. Table 4 gives the average evaluation
results of the regarding tests. In Table 4,

• Fi, is the average F1 value that is obtained when classifier is trained by the labeled
data set L,

• Fc, is the average F1 value that is obtained when classifier is trained with enlarged
data set (U + L) (the resulting/final training set after co-training),

• Fs, is the average F1 value that is obtained when enlarged data set (U + L) is used
in training with the actual (not expected) labels of the samples.

• CP column includes classifier pairs employed in the study. The first method in CP
cells is the statistical classifier and the second method represents the linguistic
classifier. For example, J48 is statistical and logistic is linguistic classifier.

Table 2. Classifier pair

Classifier pair Linguistics classifier Statistical classifier

1 J48 Logistic
2 SMO SMO

Table 3. Data sets

Setting no L (Labeled set size) U (Unlabeled set size) T (Test set size)

1 50 250 100
2 100 200 100
3 200 100 100
4 50 700 250
5 100 650 250
6 200 550 250
7 500 250 250
8 50 950 300
9 100 900 300
10 200 800 300
11 500 500 300
12 750 250 300
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The shaded regions in Table 4 show the settings in which Fi � Fc, meaning that
when training set is enlarged with co-training, F1 value increases. It is observed that
standard co-training succeeds for all settings in statistical classifier. The cells that hold
bold F1 values represent the settings where Fc � Fs, meaning that the training set that
is enlarged by co-training is more successful in supervising the classifier when com-
pared to the same data set with human annotated labels of samples.

Table 5 gives minimum, average and maximum F1 values of both classifiers for
three different cases:

1. Classification (L): This is the case where labeled set L is employed in training
2. Standard co-training: Standard co-training is employed to enlarge the training set

size to U + L.
3. Classification (U + L): Classifiers are trained by U + L samples that are labeled by

human annotators.

Table 4. Testing results of standard co-training.

   Statistical Classifier Results Linguistic Classifier Results 
CP Test/U+L L Fi Fc Fs Fi Fc Fs 

J48-LO
G

ISTIC
 

100/300 50 0,50 0,60 0,68 0,59 0,58 0,63 
100 0,58 0,62 0,68 0,60 0,57 0,63 
200 0,63 0,66 0,68 0,61 0,63 0,63 

250/750 50 0,52 0,57 0,65 0,61 0,53 0,62 
100 0,57 0,62 0,65 0,60 0,57 0,62 
200 0,55 0,62 0,65 0,60 0,58 0,62 
500 0,61 0,67 0,65 0,61 0,61 0,62 

300/1000 50 0,51 0,57 0,65 0,61 0,55 0,62 
100 0,56 0,61 0,65 0,63 0,56 0,62 
200 0,56 0,63 0,65 0,63 0,60 0,62 
500 0,57 0,66 0,65 0,63 0,62 0,62 
750 0,60 0,64 0,65 0,63 0,62 0,62 

SM
O

-SM
O

 

100/300 50 0,50 0,55 0,71 0,60 0,61 0,66 
100 0,56 0,63 0,71 0,63 0,63 0,66 
200 0,63 0,68 0,71 0,66 0,66 0,66 

250/750 50 0,52 0,55 0,68 0,63 0,58 0,66 
100 0,56 0,58 0,68 0,64 0,64 0,66 
200 0,56 0,60 0,68 0,66 0,65 0,66 
500 0,62 0,68 0,68 0,66 0,66 0,66 

300/1000 50 0,52 0,56 0,68 0,64 0,58 0,67 
100 0,55 0,59 0,68 0,65 0,62 0,67 
200 0,56 0,63 0,68 0,67 0,66 0,67 
500 0,57 0,68 0,68 0,67 0,67 0,67 
750 0,63 0,69 0,68 0,67 0,67 0,67 
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From Table 5, three important outputs are observed. These are:

1. Standard co-training succeeds in training for both classifier pairs in statistical
classifier. On the other hand, it is observed that for linguistic classifier, co-training
generates lower/equal F1 values when compared to training with a limited number
of samples (L).

2. Overall, SMO-SMO classifier pair outperforms J48-Logistic classifier pair in terms
of average and maximum F1 values.

3. The highest performance in co-training (0.69) is obtained with SMO-SMO pair. It is
observed that the increase in F1 value reached to an acceptable level (0.69 –

0.63 = 0.06) for this classifier pair.

5 Conclusion

In this study, we present our efforts to improve the performance of MWE detection by
the use of standard co-training algorithm. The results showed that especially for the
classifier that employs statistical features in classification, performance is improved by
co-training. As a further work, we plan to apply different versions of co-training and
run the tests with different types of classifiers.
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Abstract. The recognition performance of a classifier is affected by var-
ious aspects. A huge influence is given by the input data pre-processing.
In the current paper we analysed the relation between different normali-
sation methods for emotionally coloured speech samples deriving general
trends to be considered during data pre-processing. From the best of
our knowledge, various normalisation approaches are used in the spoken
affect recognition community but so far no multi-corpus comparison was
conducted. Therefore, well-known methods from literature were com-
pared in a larger study based on nine benchmark corpora, where within
each data set a leave-one-speaker-out validation strategy was applied. As
normalisation approaches, we investigated standardisation, range nor-
malisation, and centering. These were tested in two possible options: (1)
The normalisation parameters were estimated on the whole data set and
(2) we obtained the parameters by using emotionally neutral samples
only. For classification Support Vector Machines with linear and poly-
nomial kernels as well as Random Forest were used as representatives
of classifiers handling input material in different ways. Besides further
recommendations we showed that standardisation leads to a significant
improvement of the recognition performance. It is also discussed when
and how to apply normalisation methods.

1 Introduction

The detection of affective user states is an emerging topic in the context of
human-computer interaction (HCI) (cf. [19,24]), as it is known that besides the
pure context additional information on the user’s feelings, moods, and inten-
tions is transmitted during communication. For instance [1] discussed that such
information should be used in HCI for a more general view on the human inter-
locutor.

The detection of emotions from speech can be seen as a challenging issue
since both, the emotions themselves as well as the way humans utter emotions,
introduce variations increasing the difficulty of a distinct assessment (cf. [2,24]).
Furthermore, many up-to-date classification methods analyse data based on the
distances between the given sample points (cf. [24]). As a consequence of the
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 189–201, 2017.
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aforementioned aspects, a data handling which scales the given samples in a
comparable way has to be considered, leading to the question of data normalisa-
tion before classification. Yet, there are many approaches for data normalisation
available (cf. e.g. [26] pp. 45–49) which are used in various studies.

The paper’s aim is to investigate and to compare the different normalisation
methods and to deduce in which situation they perform best. Since we were
mainly interested in the general trend of the recognition results we did not
argue on pure classification results, but derived more general statements. We are
aware that a highly optimised classifier outperforms the systems presented in
this paper. Nevertheless, in such cases, it is hard to identify general statements
we are looking for. Therefore, the presented analyses are based on six normalising
methods, dominantly used in the literature, applied to nine benchmark corpora
well-known in the community of speech based emotion recognition.

The investigation is guided by the following research questions: Q1: Which
normalising methods are usually applied in the community? Q2: Which normal-
isation approach provides the best recognition results? Q3: At which point can
and shall normalisation be applied to the data? Q4: Can we derive recommenda-
tions stating which method(s) shall be used to achieve a reasonable improvement
in the emotion recognition from speech?

Related Work. Normalisation is a pre-processing step which is applied to given
material to handle differences caused by various circumstances. According to our
knowledge, no comparison study on different normalisation methods based on
several benchmark corpora was conducted for emotion recognition from speech.
Nevertheless, various approaches are used in the community which are the foun-
dations of this paper. Furthermore, we found that in the literature a heteroge-
neous terminology is used (cf. e.g. [15,31]). Therefore, we will use in the following
a unique naming of normalisation methods.

In general, two papers present an overview on normalisation: in [26] nor-
malisation techniques in the context of speaker verification are presented. For
emotion recognition from speech, we found a rather brief overview in [31], high-
lighting that the same names often refer to different normalisation approaches.

Regarding the different normalisation techniques, the most prominent version
is the standardisation (cf. [31]), although it is often just called normalisation. In
most cases, papers refer to z-normalisation (cf. [7,9,16,21,22,25]) and further,
to mean-variance-normalisation (cf. [29]).

Range normalisation and centering are, to the best of our knowledge, just
used in the work of [15,31]. In [31], the authors applied these methods only on
six data sets (a subset of corpora presented in Table 1) considering only two
affective states and further, they do not vary the classifier.

Another approach highlighted in [15] is the normalisation based on neutral
data. This idea is invented in [3], and further elaborated in [4]. In [15], the
authors apply this approach on all three presented normalisation methods. As
this is a promising approach keeping the differences between various affective
states (cf. [3]), we included it in our experiments as well.
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Several papers like [11,24,30] do not use any normalisation at all. This prac-
tice is related to the statement that “[f]unctionals provide a sort of normalisa-
tion over time” [24], assuming that normalisation is implicitely provided by the
selected features mainly based on functionals.

In general, the presented works vary in approaches of normalisation, classifi-
cation techniques, and utilised corpora. Therefore, a direct comparison of results
is quite difficult for readers. The closest related papers for comparison are [21,31],
as they refer to subsets of the benchmark corpora we analysed. Otherwise, as
we were interested in the general characteristics of the normalising methods, we
thus did not opt on fully optimised recognition results.

2 Data Sets

This study is focussed on the influence of normalisation approaches on the
classification performance. Therefore, we decided to apply the various meth-
ods described in the literature to data sets widely used in the community. To
cover various characteristics in the experiments, the corpora provide material in
various languages, speaker ages and sexes as well as different emotional classes.
Further, the material is recorded under different conditions reflecting acted and
spontaneous (acoustic) expressions. The individual characteristics of each data
set are presented in Table 1 and will be briefly introduced1 in the following.

Table 1. Overview of the selected emotional speech corpora characteristics including
information on number of classes (# C.) and if the corpus provides material for neutral
speech (Neu.).

The Airplane Behaviour Corpus (ABC) (cf. [23]) is developed for applications
related to public transport surveillance. Certain moods were induced using a
predefined script, guiding subjects through a storyline. Eight speakers – balanced
in sex – aged from 25–48 years (mean 32 years) took part in the recording. The
431 clips have an average duration of 8.4 s presenting six emotions.

1 The explaining text for each corpus is inspired by [27].
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The Audiovisual Interest Corpus (AVIC) (cf. [20]) contains samples of inter-
est. The scenario setup is as follows: A product presenter leads each of the 21
subjects (ten female) through an English commercial presentation. The level of
interest is annotated for every sub-speaker turn.

The Danish Emotional Speech (DES) (cf. [8]) data set contains samples of
five acted emotions. The data used in the experiments are Danish sentences,
words, and chunks expressed by four professional actors (two females) which
were judged according to emotion categories afterwards.

The Berlin Emotional Speech Database (emoDB) (cf. [2]) is a studio recorded
corpus. Ten (five female) professional actors utter ten German sentences with
emotionally neutral content. The resulting 492 phrases were selected using a
perception test and contain in seven predefined categories of acted emotional
expressions (cf. [2]).

The eNTERFACE (cf. [18]) corpus comprises recordings from 42 subjects
(eight female) from 14 nations. It consists of office environment recordings of
pre-defined spoken content in English. Overall, the data set consists of 1277
emotional instances in six induced emotions. The quality of emotional content
spans a much broader variety than in emoDB.

The Belfast Sensitive Artificial Listener (SAL) (cf. [6]) corpus contains 25
audio-visual recordings from four speakers (two female). The depicted HCI-
system were recorded using an interface designed to let users work through a
continuous space of emotional states. In our experiments we used a clustering
provided by [21] mapping the original arousal-valence space into 4 quadrants.

The SmartKom (cf. [28]) multi-modal corpus provides spontaneous speech
including seven natural emotions in German and English given a Wizard-of-Oz
setting. For our experiments, we used only the German part.

The Speech Under Simulated and Actual Stress (SUSAS) (cf. [14]) dataset
contains spontaneous and acted emotional samples, partly masked by field noise.
We chose a corpus’ subset providing 3593 actual stress speech segments recorded
in speaker motion fear and stress tasks. Seven subjects (three female) in roller
coaster and free fall stress situations utter emotionally coloured speech in four
categories.

The Vera-Am-Mittag (VAM) corpus consists of audio-visual recordings taken
from a unscripted German TV talk show (cf. [12]). The employed subset includes
946 spontaneous and emotionally utterances from 47 participants. We trans-
formed the continuous emotion labels into four quadrants according to [21].

3 Normalising Methods

We reviewed the literature according to normalisation methods utilised in speech
based emotion recognition and found four main approaches, but no direct com-
parison amongst them. Furthermore, it can be seen that the utilised methods are
named differently by various authors although employing the same approaches.
Therefore, we structured the methods and harmonised the naming.
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Generally, we defined x as the input value representing, for instance, a speech
feature, μ as the corresponding mean value, and σ as the corresponding variance.

Standardisation is an approach to transform the input material to obtain
standard normally distributed data (μ = 0 and σ = 1). The method is computed
as given in Eq. 1.

xs =
x − μ

σ
(1)

Range Normalisation is also called normalisation and is thus often confused
with common standardisation. Therefore, we chose the term range normalisation
that implies the possibility to vary the transformation interval. In Eq. 2 the
interval is specified by [a, b] and further xmin and xmax are the minimal and
maximal values per feature. In contrast to standardisation (cf. Eq. 1) the mean
and variance are not used by the approach.

xn = a +
(x − xmin)(b − a)

xmax − xmin
(2)

In our experiments we chose the interval [−1, 1] for range normalisation.
The Centering approach frees the given input data from the corresponding

mean (cf. Eq. 3). Therefore, the transformation results in a shift of input data.

xc = x − μ (3)

Neutral Normalisation is an approach where normalisation parameters are
computed based on neutral data, only. It is described in [4], and a logical exten-
sion of the idea to use neutral speech models for emotion classification (cf. [3]).
Neutral normalisation is used for normalisation purpose in [15]. The methods
works as follows: The parameters μ and σ or xmin and xmax, respectively, for
each feature are obtained based on the samples annotated as neutral and are fur-
ther applied on samples with other emotional impressions. In our experiments
this was done separately for each aforementioned normalisation method, namely
standardisation, range normalisation, and centering.

Application of normalisation methods is as follows: The described normal-
ising methods were applied to the training material as well as to the testing
samples. For the test set two practices are possible and both were examined in
our experiments. The first option assumed that both sets are known. Therefore,
each set can be normalised separately, where accordingly optimal parameters (i.e.
μ and σ, for instance) were used. In the second option, the necessary parameters
were extracted only on the training set and applied to the testing set. In this
case, it is assumed that the test samples are unknown, and thus no parameter
estimation can be previously operated.

4 Experimental Setup

To evaluate the influence of normalisation, we conducted a series of classifica-
tion experiments. Since one of our objectives was to obtain reproducible results
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comparable to other studies, we decided to employ established feature sets and
classifiers.

The emobase feature set is well-known in the community of emotion recog-
nition from speech. This set comprises 988 functionals (e.g. mean, minimum,
maximum, etc.) based on acoustic low-level descriptors (e.g. pitch, mel-frequency
cepstral coefficients, line spectral pairs, fundamental frequency, etc.) [10]. The
features are extracted on utterance level, resulting in one vector per utterance.

We decided to employ two different kinds of classifiers: the distance-based
Support Vector Machine (SVM) and the non-distance-based Random Forest
(RF). We expected that normalisation would provide significant improvement
if using SVM, and no or only little improvement if using RF. For SVM, we used
the LibSVM implementation developed by [5] implemented in WEKA [13]. For
RF, we also rely on WEKA.

Since the data sets used in the experiments are very diverse, it would be
difficult to impossible to fine-tune the classifiers to fit all the data. Therefore,
we decided to use standard parameters for both, SVM and RF, without further
fine-tuning. In the case of SVM, we chose a linear kernel (referred to as lin-SVM)
and a polynomial kernel with a degree of 3 (referred to as pol-SVM), both with
cost parameter C = 1.0. In the case of RF, we used 32 features per node, as the
square root of the number of input features (in our case 988) is often used as
default value in different RF implementations, and 1000 trees.

We evaluated the classifiers in a Leave-One-Speaker-Out (LOSO) manner,
using the Unweighted Average Recall (UAR) of all emotions per speaker as
evaluation metric.

5 Results

Figure 1 shows the results at a glance for lin-SVM on two of the nine investigated
corpora (ABC and eNTERFACE). For the ABC corpus, we could see that some
normalising methods such as standardisation performed better than others for
nearly all speakers. For the eNTERFACE corpus, we see that the performance
of the same normalising method varies remarkably depending on the speaker.

Table 2. Classification results (UAR, averaged over all nine corpora, in %) for all
normalising methods (NN - non-normalised, S(-neu) - standardisation (with neutral),
RN(-neu) - range normalisation (with neutral), C(-neu) - centering (with neutral)).
The best classification result is highlighted for each classifier.

NN S RN C S-neu RN-neu C-neu Mean (w/o NN)
UAR for lin-SVM 39.1 49.6 45.9 38.7 47.3 45.1 32.6 43.2 ± 6.4
UAR for pol-SVM 37.4 40.1 22.9 33.5 42.9 27.4 30.3 32.9 ± 7.6
UAR for RF 44.9 47.5 43.2 46.1 45.5 43.2 45.2 45.1 ± 1.7
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Fig. 1. UAR per speaker in (a) ABC and (b) eNTERFACE for lin-SVM.

In Table 2, the results are shown in a more detailed way, comparing the mean
UAR, averaged over all nine corpora for all normalising methods and classifiers.
For two of the three classifiers, standardisation outperformed other methods –
and in the case of lin-SVM, neutral standardisation worked even better. Also,
we see that standardisation and neutral standardisation were the only two nor-
malising methods that always led to an improvement of the classification results.

An interesting point could be found by looking at the mean and standard
deviation of all normalising methods presented in Table 2: For both SVM clas-
sifiers, normalising data in any kind changed the results (on average, +4.1% for
lin-SVM and −4.5% for pol-SVM, absolute) more than in the case of RF (only
0.2%). There were also noticeable differences between the normalising methods,
resulting in a higher standard deviation for both SVM classifiers compared to RF.
Both observations support our hypothesis that in the case of SVM, changing the
distance between data points by applying any normalising method would influ-
ence the classification results, whereas in the case of RF, normalisation would
not change the classification results significantly.

There is another interesting point concerning the results using pol-SVM:
Applying range normalisation significantly impairs the classification, leading to
an UAR drop of 14.5% absolute. Our hypothesis concerning this phenomenon
was that there is a non-linear effect induced by the combination of the polynomial
kernel and high-dimensional data. To investigate this phenomenon, we conducted
a series of additional experiments using polynomial kernels of increasing degrees.
The results are shown in Table 3. We could see that the increasing degree of
the kernel led to a drop in performance – for higher degrees the performance
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Table 3. Mean UAR (in %) with variance on emoDB and SAL for SVMs with polyno-
mial kernel (pol-SVM) presenting the anomaly between usage of range normalisation
(RN) and higher polynomial degrees (d1 . . . d6). For reference the results on non-
normalised material using degrees 1 and 6 are shown.

decreases to chance level. This effect does not occur on non-normalised data, so
we could conclude that it is related to or caused by range normalisation.

For a closer look on multi-corpus evaluation, the classification results in terms
of UAR, obtained employing lin-SVM, are presented in Table 4. Since the data
was not normally distributed, we executed the Mann-Whitney-U-Test (cf. [17])
to calculate significance for all classification outcomes. For five of the nine cor-
pora, the improvements of normalised over non-normalised data were statisti-
cally significant (p < 0.1). But even for the cases where the improvements were
not significant, normalising data led to at least some improvements: For all cor-
pora except SAL, standardisation or standardisation on neutral data achieves
the best results (cf. Table 4). In the case of SAL, range normalisation achieved
the best results – but is only 0.2% better than standardisation. Otherwise, using
inappropriate normalising methods could also impair the results. For example,
in the case of AVIC, eNTERFACE, and SUSAS, all normalising methods except
for standardisation led to minor decreases, although not statistically significant.

Table 4. Results achieved (UAR in %) using lin-SVM on normalised data and non-
normalised baseline. Best results are highlighted gray, results below the baseline are
given in italic. Significance levels: ***p < 0.01, **p < 0.05, *p < 0.1

UAR NN S RN C S-neu RN-neu C-neu
ABC 23.2 44.4*** 43.9*** 23.6 45.6*** 42.1** 21.8

AVIC 46.6 47.5 44.2 45.5

DES 30.3 50.5* 41.0 30.3 47.5* 44.2* 27.4

emoDB 47.4 77.2*** 75.6*** 51.4 72.4*** 70.6*** 48.9
eNTERFACE 81.9 89.3 78.3 76.5

SAL 23.8 31.2 31.4 25.6
SmartKom 16.5 19.0* 16.8 16.6 19.1* 17.4 16.2

SUSAS 53.4 54.4 52.0 50.4 52.0 51.3 48.7

VAM 28.6 32.5* 30.4 28.1
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Concerning normalising training and test set either using independently cal-
culated parameters or using parameters calculated on both data sets, we could
state that there is no significant difference in terms of UAR. There were some
fluctuations in the results depending on the considered corpus, but the differ-
ences occurred in both directions and did not show a trend towards one option,
and they were within the standard deviation. For example, in the case of AVIC,
the maximum difference in the UAR achieved using independent versus com-
bined parameters is 1.5% in favour of the former – with a standard deviation of
6.6% and 8.3% for independently and non-independently calculated normalisa-
tion parameters, respectively.

6 Discussion

In the current section the experimental results (cf. Sect. 5) are reflected consid-
ering the questions Q1 to Q4.

For question Q1, we analyse various works reflecting the state-of-the-art
in the community (cf. Sect. 1). From these, we find that mainly two different
approaches are used, namely standardisation and (range) normalisation. Less
frequently centering is applied to data sets for normalisation purposes. Further,
as presented in [3], the normalisation parameters can also be estimated based on
emotionally neutral samples. This is tested in our experiments as well. We also
find a slight trend towards standardisation in the literature.

Given this overview, we select the three most prominent methods for the
experiments, namely standardisation, range normalisation, and centering (cf.
Sect. 3). Further, they are also applied in the context of neutral normalisation if
possible. Based on our results, the aforementioned trend towards standardisation
is valid, since for eight benchmark corpora (cf. Table 1) standardisation produces
an improvement in the recognition performance. The same statement holds for
neutral normalisation, where standardisation shows the best performance as well
(cf. question Q2). In our experiments we apply the LOSO validation strategy.
Therefore, we have the opportunity to analyse the recognition performance in
a speaker-independent way. As shown in Fig. 1 for ABC and eNTERFACE, the
recognition results depend on the speaker to be tested. Of course, this effect is
seen on the other corpora as well. Nevertheless, we find a relation between nor-
malisation methods and the performance. For corpora containing mainly acted
speech samples, a clustering of particular normalisation methods can be seen
(cf. the gap between lines in Fig. 1(a)). In contrast for data sets providing more
spontaneous emotions such clustering is not feasible. Further, the different meth-
ods are closer to each other in absolute numbers (cf. Fig. 1(b)). From our point
of view, this is related to the lower expressivity of emotions uttered in spon-
taneous conversations, and hence, no particular normalisation approach is able
to improve the recognition performance. As presented in Table 4, we can con-
clude that standardisation provides the best results across the nine benchmark
corpora. In the case of SAL, range normalisation outperforms standardisation
by 0.2%, absolute, only. Based on the Mann-Whitney-U-Test, we show that the



198 R. Böck et al.

improvement of recognition performance is significant for five corpora (at least
p < 0.1). For this, we test the significance against the non-normalised classifi-
cation as well as against the second best results if the difference is low (cf. e.g.
SmartKom in Table 4). This statistical significance emphasises the importance
of suitable normalisation during the classification process.

Regarding the question how the normalisation shall be applied (cf. Q3), we
tested two possible options: For the first one, the test set is normalised inde-
pendently from the training set, for the second one, we normalise the test set
using parameters obtained on the training set. The final results show that the
differences in the recognition results are marginal with no statistical significance
for either method. Therefore, both options are useful for testing purposes, and
thus there is no need to refrain from using separately normalised test samples.

From our experiments, we can derive some recommendations for the appli-
cation of normalisation approaches (cf. question Q4). First, in a multi-corpus
evaluation based on a LOSO strategy standardisation is reasonable since in
most cases (six of nine) this leads to a (significant) improvement of classifi-
cation performances. This is also an indicator that normalisation improves even
classification results based on feature sets mainly consisting of functionals (cf.
emobase in Sect. 4). From our perspective this levels the statement of [24] that
functionals already provide a kind of normalisation. Secondly, there is no need to
favour either handling approach for test sets as no statistical significance in the
differences in performance can be seen. Finally, the classifier influences the effect
obtained by normalisation as well. From Tables 2 and 3 we can see that lin-SVM
achieved better results than the other two classifiers across corpora. For RF, it
was expected that normalisation has almost no influence since the classification
is not distance based, resulting in lower standard deviations across corpora (cf.
Table 2). In contrast, pol-SVM collapses with higher degrees (cf. Table 3), espe-
cially in the case of using range normalisation. We assume that this is related to
a non-linear effect between the polynomial degree and the normalisation method.
This will be further elaborated in future research.

7 Conclusion

In this paper, we have shown that normalising data in emotion recognition from
speech tasks can lead to significant improvements. The extent of these improve-
ments depends on three factors – these are the general trends we already dis-
cussed in Sect. 1. First of all, we have shown that standardisation works best in
almost all cases: Applying it improved the recognition results for all nine cor-
pora, for six corpora it proved to be the best normalising method. Secondly, the
results depend on the used classifier: We have shown that, using lin-SVM, signif-
icant improvements are possible when applying standardisation as well as range
normalisation. But for pol-SVM, range normalisation does not work well. The
final factor is the data itself: For some corpora such as emoDB, improvements
of up to 30% absolute are possible, for other corpora like SmartKom, only slight
improvements of less than 3% absolute are achieved. From these findings we
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can conclude that standardisation in most cases leads to substantially improved
classification results.

Acknowledgments. We acknowledge continued support by the Transregional Collab-
orative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive Techni-
cal Systems” (www.sfb-trr-62.de) funded by the German Research Foundation (DFG).
Further, we thank the project “Mod3D” (grant number: 03ZZ0414) funded by 3Dsen-
sation (www.3d-sensation.de) within the Zwanzig20 funding program by the German
Federal Ministry of Education and Research (BMBF).

References

1. Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical sys-
tems. KI - Künstliche Intelligenz 30(1), 71–75 (2016)

2. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database
of German emotional speech. In: INTERSPEECH-2005, pp. 1517–1520, Lisbon,
Portugal (2005)

3. Busso, C., Lee, S., Narayanan, S.S.: Using neutral speech models for emo-
tional speech analysis. In: INTERSPEECH-2007, pp. 2225–2228. ISCA, Antwerp,
Belgium (2007)

4. Busso, C., Metallinou, A., Narayanan, S.S.: Iterative feature normalization for
emotional speech detection. In: Proceedings of the ICASSP 2011, pp. 5692–5695.
IEEE, Prague, Czech Republic (2011)

5. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2, 1–27 (2011)

6. Douglas-Cowie, E., Cowie, R., Cox, C., Amier, N., Heylen, D.: The sensitive arti-
ficial listner: an induction technique for generating emotionally coloured conver-
sation. In: LREC Workshop on Corpora for Research on Emotion and Affect, pp.
1–4. ELRA, Paris, France (2008)

7. El Ayadi, M., Kamel, M.S., Karray, F.: Survey on speech emotion recognition:
Features, classification schemes, and databases. Pattern Recogn. 44(3), 572–587
(2011)

8. Engbert, I.S., Hansen, A.V.: Documentation of the Danish emotional speech
database DES. Technical report Center for PersonKommunikation, Aalborg Uni-
versity, Denmark (2007)

9. Eyben, F., Scherer, K., Schuller, B., Sundberg, J., Andre, E., Busso, C.,
Devillers, L., Epps, J., Laukka, P., Narayanan, S., Truong, K.: The geneva minimal-
istic acoustic parameter set (GeMAPS) for voice research and affective computing.
IEEE Trans. Affect. Comput. 7(2), 190–202 (2016)
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Abstract. Vigilance or sustained attention is an extremely important
aspect in monotonous and prolonged attention seeking tasks. Recently,
Event Related Potentials (ERPs) of Electroencephalograph (EEG) have
garnered great attention from the researchers for their application in the
task of vigilance assessment. However, till date the studies related to
ERPs and their association with vigilance are in their nascent stage, and
requires more rigorous research efforts. In this paper, we use P200 and
N200 ERPs of EEG for studying vigilance. For this purpose, we perform
Mackworth’s clock test experiment with ten volunteers and measure their
accuracy. From the measured accuracy and recorded EEG signals, we
identify that amplitude of P200 and N200 ERPs is directly correlated
with accuracy and thereby to vigilance task. Thus, both P200 and N200
ERPs can be applied to detect vigilance (in real-time) of people involved
in continuous monitoring tasks.

Keywords: Vigilance detection · Attention monitoring · Human errors
Brain computing interface · Event related potential · EEG signals

1 Introduction

According to Mackworth, “Vigilance is defined as a state of readiness to detect
and respond to small changes occurring at random time intervals in the environ-
ment” [1]. In other words, vigilance or sustained attention is an act of careful
observation of critical or rare events whose negligence may lead to catastrophe
[2]. In today’s world, where emphasis is laid on reducing risks and errors, and
mitigating the chances of accidents, it seems rational to assess the operator vigi-
lance in real time to avoid human errors. Air traffic control, drowsiness detection
in drivers, inspection and quality control, automated navigation, military and
border surveillance, life-guarding, cyber operations, space exploration, etc., [3],
are some major domains where operators are involved in monotonous tasks for
prolonged intervals of time and remaining vigilant is an utmost requirement.
c© The Author(s) 2017
P. Horain et al. (Eds.): IHCI 2017, LNCS 10688, pp. 202–214, 2017.
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However, in [4,5], it has been pointed that sleep deprivation, work overload,
stress, time pressure, drowsiness and prolonged working hours are the major
factors that lead to low vigilance, thereby, human errors.

Till date several concerted efforts have been made in the literature to propose
and design new techniques of vigilance detection with the help of features like,
heart rate variability [6], galvanic skin response [6], pupil diameter, eye blink
frequency [3] and brain activity measurement [7–9] (namely, EEG (Electroen-
cephalogram), MEG (Magnetoencephalogram), fNIRS (functional near infrared
spectroscopy), ECoG (electrocorticogram), fMRI (functional magnetic resonance
imaging), etc.). Although, the techniques mentioned above are good contender
for vigilance detection, yet, they have several serious limitations associated with
them. For instance, eye related features show strong inter-personal and intra-
personal variability, EEG suffers from poor spatial resolution, MEG requires
special operating environment for its functioning, ECoG involves implantation
of electrodes in an invasive manner, fMRI is associated with high equipment
overhead and fNIRS suffers from low spatial resolution.

Amongst the above-mentioned methods, designed for vigilance detection,
EEG is the most commonly studied physiological measure despite of its poor
spatial resolution. The prime reasons behind its tremendous popularity amongst
researchers are: (1) its high time resolution, (2) its non-invasive nature and sim-
plicity of operation and (3) relatively cheap cost compared to other devices. Fur-
thermore, as vigilance deteriorates with time it seems plausible to study the brain
signals in time bound fashion to assess the vigilance status in real-time. In this
regard, the Event Related Potentials (ERPs) present in the EEG signals have suc-
cessfully been utilized to study the changes occurring in the human brain with
passing time [10]. For instance, ERP features namely P100-N200 have been uti-
lized for studying emotional information processing in [11]; frontal midline theta
and N200 ERP have been shown to reflect complementary information about
expectancy and outcome evaluation in [12]; in [13] authors utilized N200 ERP
for word recognition; in [14], N100, P200, N200 and P300 ERP components have
been used to study the impact of depression on attention. Further, ERPs have
also been used for understanding reaction times in response to pictures of peo-
ple depicting pain [15]; in [16] ERPs have been utilized to understand the state
of brain in schizophrenia patients; in [17] authors demonstrated the association of
mMMN, P200 and P500 ERP components with artificial grammar learning in the
primate brain; in [18], N400 and the P200 components have been utilized in the
investigation of semantic and phonological processing in skilled and less-skilled
comprehenders; besides, ERPs have also found utility in studying multisensory
integration (MSI) ability of the brain in school-aged children [19].

From the above literature, we observe that P200 and N200 ERPs (see
Fig. 1) have been instrumental in studying cognitive behaviour of humans and
is prospective for real-time assessment of vigilance. Here, concisely P200 ERP
refers to a positive spike in EEG signals which is generally observed within 150
to 250 ms after the exhibition of a target stimulus (auditory or visual event) [20],
while N200 is a negative potential usually evoked between 180 to 325 ms after



204 S. Samima et al.

the presentation of a specific visual or auditory stimulus following a string of
standard (non-target) stimuli [21,22]. In general, P200 latency is a measure of
stimulus classification speed and its amplitude represents the amount of atten-
tional resources devoted to the task along with the required degree of information
processing, whereas N200 ERP, which is usually evoked only during conscious
stimulus attention before the motor response, is helpful in stimulus identification
and distinction, thereby suggesting its link to the cognitive processes.

Fig. 1. P200 and N200 components in ERP signal of EEG data

In this work we propose (a) to use N200 and P200 ERPs for studying vig-
ilance, (b) observe the correlation of N200 and P200 ERPs with behavioural
accuracy obtained, (c) observe the variation in the amplitude of both N200 and
P200 ERPs under the presence of target and non-target stimuli, (d) observe the
variation in the active areas of the brain before, during and after the experiment
and check whether the hotspots are present in the areas from which P200 and
N200 evoke.

2 Proposed Methodology

In the following, we present our proposed research methodology and steps for
extracting ERPs (P200 and N200) from the EEG signals.

2.1 Experimental Setup

Subjects: Ten healthy, right handed participants with normal or corrected-
to-normal vision, aged between 26 to 33 years volunteered for the experiment
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(see Table 1). To carefully monitor the vigilance of each volunteer, a proper
schedule was maintained. It was ensured that the participants: (a) were not sleep
deprived, (b) were under no medication and (c) had no history of mental illness.
We also took written consent from each participant, which was approved by
the institution’s ethical committee, before conducting the experiment. Further,
we asked each volunteer to do not consume tea or coffee 3 to 4 h prior to the
experiment. Keeping in mind the usual circadian cycle of activeness of each
participant, the experiment was conducted in the morning, that is between 7 am
and 10 am.

Table 1. Participant details

Participant ID. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Age 31 33 26 29 29 29 28 27 29 28

Gender M M M M M M M F F M

Sleep duration (in hours) ∼8 ∼8 12 ∼6 ∼6 ∼7 7 6 7 7

Vigilance Task: To study the variation of vigilance over a long period of
time, we utilized the computerized version of the Mackworth Clock Test as the
experimentation tool, wherein the small circular pointer moves in a circle like
the seconds’ hand of an analog clock. It changes its position approximately after
one second. However, at infrequent and irregular intervals, the pointer can make
a double jump. Here, the task of each participant is to detect and respond to
the double jump of the pointer, indicating the presence of the target event, by
pressing the space bar key of the keyboard.

2.2 Protocol

The participants were comfortably seated in a quiet and isolated room (devoid
of any Wi-Fi connections), wherein a constant room temperature was also main-
tained. Before conducting the actual experiment, each participant was given
proper demonstrations and instructions about the experiment and were asked
to relax for ten minutes. Further, a practice session of five minutes was also
arranged for each participant to make them accustomed to the task. We utilized
a large 20 in. monitor kept at a distance of 65 cm from the user for presenting the
visual stimuli to the participant. The beginning of the experiment was marked
by an EEG recording of an idle session of five minutes followed by the clock
test of 20 min. There were a total of 1200 trials in the experiment. After com-
pletion of the clock test, we again recorded the EEG signals for an idle session
of five minutes. Besides, to keep track of a participant’s responses and to ensure
true marking of the target events, we also recorded the hardware interrupt from
the keyboard. The entire experimental procedure has been pictorially shown in
Fig. 2.
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Fig. 2. The overall experimental procedure

2.3 Data Acquisition

The experiment was designed to be completed in 30 min. Further, all EEG data
recordings were carried out with the help of portable, user friendly and cost
effective Emotiv Epoc+ device which follows the well-known 10–20 international
system. This device comprises of 14 electrodes positioned at AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 locations and has a sampling
rate of 128 Hz. We collected 12000 trials for our experiment with the help of ten
voluntary participants.

2.4 Detection of ERPs

1. Pre-processing : Usually while recording EEG data, due to various external
environmental disturbances, the data gets contaminated with various kinds
of artifacts. The extraction of desired/useful features from the EEG signal
becomes very difficult under the presence of artifacts. Hence, to minimize the
effect of artifacts, it is mandatory to pre-process the recorded raw EEG sig-
nals. For this purpose, filters in the standard frequency range of (0.1–30 Hz)
are used. Thus, filters help in extracting the desired brain activity by reject-
ing the other undesired brain signals within a frequency range of (<0.1 Hz
and >30 Hz). In the present work, we have used the Chebyshev’s high pass
filter (having cut off frequency of 0.1 Hz) to remove all disturbing compo-
nents emerging from breathing and voltage changes in neuronal and non-
neuronal artifacts. Besides, we used Chebyshev’s low pass filter (having cut
off frequency of 30 Hz) to eliminate the noise arising from muscle movements.
Further, to ensure perfect rejection of the strong 50 Hz power supply interfer-
ence, impedance fluctuation, cable defects, electrical noise, and unbalanced
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impedances of the electrodes, we utilized (at the recording time) a notch filter
with null frequency of 50 Hz.

2. Feature Extraction: It is known from the literature that P200 and N200 ERPs
are dominant over parietal, occipital and frontal regions, respectively, of the
brain. Thus to locate these features, we have used the AF3, AF4, F3, F4,
P7, P8, O1 and O2 electrodes. Now, for extracting the features from the
EEG signals, first, the pre-processed EEG data is marked to identify the
type of event (that is, correctly identified event, falsely identified event and
missed event). Next, baseline removal process is carried over this marked data,
followed by epoch averaging (500 ms pre-stimulus and 1000 ms post-stimulus)
to generate the ERP waveforms. Furthermore, to verify the presence of P200
and N200 ERPs we performed ensemble averaging of the target event epochs
and plotted the average waveform.

3 Results and Discussions

The recorded EEG data, of 20 min, has been divided into 10 equal observation
periods of two minutes each to carefully observe the pattern of vigilance changes.
Next, we observed the amplitude and latency variation of P200 and N200 com-
ponent of ERPs for those instances where the user responded correctly to an
occurrence of the target event. Further, we compared the accuracy attained by
each individual, while focusing on the pointer of the clock test and trying to cor-
rectly detect the target, with the amplitude of P200 and N200 ERPs to establish
a correlation amongst them. The variation of amplitude and latency of P200 and
N200 has been reported in Tables 2 and 3, respectively. The amplitude ranges
for P200 and N200 ERP are heuristically defined as follows:

P200 (amplitude) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

very low, for value � 0.1 µV and < 1 µV
low, for value � 1 µV and < 3 µV
moderate, for value � 3 µV and < 7 µV
high, for value � 7 µV

(1)

N200 (amplitude) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

very low, for value � −0.01 µV and < −1 µV
low, for value � −1 µV and < −3 µV
moderate, for value � −3 µV and < −6 µV
high, for value � −6 µV

(2)

To evaluate the performance of the participants in terms of accuracy of detec-
tion, we sub-divided the recorded EEG data into four categories defined as true
alarm (TA), true skip (TS), false alarm (FA) and false skip (FS). In terms of
Mackworth Clock test experiment, true alarm represents correct identification
of target stimuli, true skip represents correct identification of non-target stimuli,
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Table 2. Variation of amplitude and latency of P200 ERP

Observation
interval

Parameters Participant

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

(0–2) min Amplitude (µV) 10.48 10.75 8.44 7.11 2.11 10.45 0.29 8.25 4.87 5.14

Latency (ms) 164.1 195.3 218.8 226.6 234.4 203.1 164.1 195.3 187.5 148.4

(2–4) min Amplitude (µV) 10.91 11.64 11.66 7.09 1.03 12.87 6.75 3.40 10.01 6.31

Latency (ms) 187.5 187.5 203.1 210.9 179.7 187.5 245.6 171.9 218.8 218.8

(4–6) min Amplitude (µV) 7.68 12.67 7.16 8.83 9.02 8.95 4.37 3.22 3.42 11.5

Latency (ms) 203.1 156.3 164.1 242.2 171.9 226.6 164.1 218.8 218.8 164.1

(6–8) min Amplitude (µV) 1.71 1.47 11.35 8.81 7.26 7.20 5.88 1.46 0.40 7.97

Latency (ms) 218.8 210.9 156.3 218.8 156.3 171.9 187.5 234.4 187.5 226.6

(8–10) min Amplitude (µV) 4.63 6.201 4.87 9.94 7.097 6.46 3.52 1.97 5.02 12.78

Latency (ms) 226.6 218.8 156.3 218.8 164.1 234.4 179.7 164.1 187.5 234.4

(10–12) min Amplitude (µV) 11.97 10.99 5.44 6.92 5.47 8.94 6.15 1.02 2.92 6.05

Latency (ms) 226.6 156.6 218.8 171.9 171.9 164.1 195.3 226.6 171.9 187.5

(12–14) min Amplitude (µV) 11.28 11.02 3.12 4.36 3.64 1.16 6.8 2.19 6.62 9.88

Latency (ms) 210.9 164.1 210.9 242.2 187.5 195.3 171.9 187.5 171.9 179.7

(14–16) min Amplitude (µV) 3.22 11.81 2.19 4.86 3.34 3.26 0.99 5.52 6.67 7.61

Latency (ms) 187.5 148.4 164.1 210.9 156.3 156.3 203.1 234.4 210.9 218.8

(16–18) min Amplitude (µV) 11.01 9.95 9.62 3.08 7.2 2.31 2.71 7.94 3.61 8.45

Latency (ms) 179.7 203.1 195.3 242.2 242.2 164.1 187.5 187.5 195.3 203.1

(18–20) min Amplitude (µV) 8.97 6.16 8.43 3.08 6.81 7.09 2.95 2.55 3.73 4.12

Latency (ms) 179.7 226.6 218.8 242.2 195.3 156.3 195.3 187.5 156.3 171.9

Table 3. Variation of amplitude and latency of N200 ERP

Observation

interval

Parameters Participant

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

(0–2) min Amplitude (µV) −6.11 −3.32 −2.75 −5.22 −4.09 −3.51 −2.58 −1.63 −1.25 −6.44

Latency (ms) 273.4 289.1 273.4 281.3 281.3 250 203.1 296.9 265.6 203.1

(2–4) min Amplitude (µV) −4.08 −1.82 −2.06 −2.05 −1.91 −1.97 −3.53 −4.62 −5.11 −1.06

Latency (ms) 203.1 210.9 187.5 273.4 195.3 242.2 320.3 218.8 312.5 250

(4–6) min Amplitude (µV) −1.77 −3.04 −5.03 −0.34 −0.23 −3.26 −1.75 −1.01 −0.06 −4.78

Latency (ms) 234.4 289.1 242.2 304.7 210.9 281.3 203.1 289.1 250 250

(6–8) min Amplitude (µV) −7.19 −1.42 −1.38 −5.09 −2.54 −0.39 −5.72 −0.89 −4.16 −5.28

Latency (ms) 281.3 242.2 296.9 273.4 164.1 195.3 265.6 263.1 210.9 257.8

(8–10) min Amplitude (µV) −1.8 −1.06 −5.11 −5.32 −0.43 −2.09 −1.59 −5.59 −4.18 −4.02

Latency (ms) 257.8 328.6 226.6 265.6 265.6 289.1 218.8 273.4 226.6 312.5

(10–12) min Amplitude (µV) −2.39 −2.46 −5.82 −5.72 −4.07 −0.95 −0.76 −1.17 −2 −3.88

Latency (ms) 304.7 234.4 242.2 242.2 195.3 218.8 218.8 257.8 234.4 234.4

(12–14) min Amplitude (µV) −3.08 −4.96 −1.71 −1.62 −4.04 −6.08 −3.83 −1.26 −0.64 −5.02

Latency (ms) 281.3 273.4 312.5 325 210.9 226.6 273.4 210.9 257.8 234.4

(14–16) min Amplitude (µV) −1.23 −2.92 −7.71 −3.11 −5.55 −2.45 −2.71 −0.19 −6.97 −3.01

Latency (ms) 218.8 210.9 289.1 234.4 250 187.5 273.4 312.5 234.4 242.2

(16–18) min Amplitude (µV) −6.09 −0.70 −5.42 −1.37 −3.76 −1.25 −3.13 −2.4 −4.13 −2.27

Latency (ms) 312.5 289.1 234.4 320.3 304.7 210.9 226.6 273.4 265.6 257.8

(18–20) min Amplitude (µV) −4.38 −4.44 −2.7542 −1.37 −4.17 −1.99 −1.34 −5.82 −2.97 −3.16

Latency (ms) 250 304.7 273.4 320.3 257.8 218.8 242.2 281.3 179.7 195.3
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false alarm represents incorrect key pressed at non-targets and false skip repre-
sents non-identification of the target stimuli. Based on these data, the accuracy
is calculated by using Eq. 3. The accuracy of detection of each individual who
participated in the experiment has been tabulated in Table 4. The latencies of
P200 and N200 ERPs were observed to be within the already known ranges;
however, no particular trend with respect to amplitude has been observed for
the obtained latencies.

Accuracy =
TA + TS

TA + TS + FA + FS
(3)

The accuracy (in %) obtained is divided into four classes which is defined as
follows:

Accuracy (%) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

very low, for value� 0% and< 30%
low, for value� 30% and< 50%
moderate, for value� 50% and< 80%
high, for value� 80% and� 100%

(4)

Table 4. Variation of accuracy (in %) of each participant

Observation
interval

Participant

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

(0–2) min 100 94.34 90.78 97.83 84.75 92.75 80.56 91.12 87.83 93.48

(2–4) min 100 95.84 96 92.75 96 90.19 97.29 86.05 98.25 91.94

(4–6) min 86.37 93.48 90.19 94 93.03 93.67 86.96 80.56 86.36 95.56

(6–8) min 81.48 87.83 85.11 100 98.08 87.17 95.75 92 75 100

(8–10) min 90.78 91.67 96.08 100 89.58 88.24 81.48 88.24 97.78 100

(10–12) min 100 98.08 95.92 97.96 90.69 91.43 93.48 75 91.12 97.5

(12–14) min 95.56 97.23 87.24 77.36 89.48 71.43 97.29 74.51 85.72 98.18

(14–16) min 81.48 92 88.24 93.48 91.49 88.64 71.74 91.18 98.08 89.58

(16–18) min 100 77.36 81.52 75.51 86.36 71.41 74.51 93.48 87.83 88.89

(18–20) min 100 98.11 93.48 88.64 91.89 95.56 71.73 76.47 85.71 88.64

From Tables 2, 3 and 4, and using Eqs. 1, 2 and 4, we can see that for par-
ticipant P2, during an observation interval between (4–6) min the amplitude of
P200 is high (12.67µV) while the amplitude of N200 is low (−3.04µV), thereby
resulting in 93.48% accuracy. In case of participant P6, during an observation
interval between (16–18) min the amplitude of both P200 and N200 is low and is
2.31µV and −1.25µV, respectively, thereby resulting in 71.41% accuracy. In case
of participant P1, during an observation interval between (6–8) min the ampli-
tude of P200 is low (1.71µV) while the amplitude of N200 is high (−7.19µV),
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thereby resulting in 81.48% accuracy. Similarly, in case of participant P1, during
observation interval between (0–2) min the amplitude of both P200 and N200
is high and is 10.48µV and −6.109µV, respectively, thereby resulting in 100%
accuracy. Other values may be verified from the tables in the similar manner
to conclude that both accuracy and ERPs (P200 and N200) are correlated to
each other, such that, whenever the accuracy of detection is high there is a high
amplitude of P200 and N200. In other words, we can say that whenever an indi-
vidual successfully distinguishes the target stimuli amongst all other presented
stimuli, the two ERPs, viz., N200 and P200 are elicited with high amplitude.
Besides, we also show the variation of accuracy and amplitude of P200 and N200
with time for participant P1 in Fig. 3. It can be easily observed from Fig. 3 that
accuracy of target detection and amplitude of both ERPs are correlated.

Fig. 3. Plot showing variation of accuracy and amplitude of P200 and N200 with time

To study the variations in the ERPs under the presence of true alarm (when
the user correctly identifies the target events) and false alarm (when the user
incorrectly identifies the events), we plotted the P200 and N200 ERPs on a single
graph with common origin (see Fig. 4). We observed that there is a considerable
difference in the amplitude of both ERPs under true and false alarm conditions.

Further, Fig. 5 shows the variation in P200 and N200 ERPs under the pres-
ence of target and non-target stimuli.

Figure 6 depicts the variation in the active regions of the brain before, during
and after the completion of the experiment. Here, blue spots visible in pre and
post experiment scalp images show low brain activity, while the red spots visible
during experimentation show an increase in the brain activity of the associated
regions. Besides, from instance 1 we observed that during the experiment - pari-
etal, frontal and some parts of occipital region were highly energized and these
regions showed the presence of P200 and N200 ERPs. Further, from instance 2
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Fig. 4. P200 and N200 peaks during true alarm and false alarm conditions

Fig. 5. Variation of ERPs in target and non-target conditions

Fig. 6. Variation of scalp plot before, during and after experiment (Color figure online)
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we observed that during the experiment frontal region was highly energized and
the region showed the presence of N200 ERP. Through this, we verified that
our experiment successfully evokes the two ERPs from the designated regions.
Hence, we can apply the selected ERPs for vigilance detection.

4 Conclusion

In the literature different features of EEG signals have been utilized to study
vigilance level of human beings. In this work, First, we successfully demonstrated
that both P200 and N200 ERPs are suitable candidates for studying vigilance.
Second, we observed the variation in P200 and N200 amplitude with true alarm
and false alarm. Third, we observed the variation in P200 and N200 amplitude
under the presence of target and non-target stimuli. Fourth, with the help of
scalp plot of Fig. 6 we verified the hot-spots/active regions of the brain from
where the studied ERPs originate.

This work may be applied in real-time analysis of vigilance. Besides, in future
we plan to extend this work to quantize the level of vigilance instead of indicating
its mere presence and absence.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
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source, provide a link to the Creative Commons license and indicate if changes were
made.
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