
u1
u0

u4

u5

u 2

u3

Hans Petter Langtangen · Svein Linge

Finite Diff erence
Computing
with PDEs
A Modern Software Approach Editorial Board

T. J. Barth
M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

16

Texts in Computational
Science and Engineering 16

Editors

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

More information about this series at
http://www.springer.com/series/5151

http://www.springer.com/series/5151

Hans Petter Langtangen � Svein Linge

Finite Difference
Computing with PDEs

AModern Software Approach

Hans Petter Langtangen
Lysaker, Norway

Svein Linge
Process, Energy & Environmental
Technology
University College of Southeast Norway
Porsgrunn, Norway

ISSN 1611-0994
Texts in Computational Science and Engineering
ISBN 978-3-319-55455-6 ISBN 978-3-319-55456-3 (eBook)
DOI 10.1007/978-3-319-55456-3

Library of Congress Control Number: 2017942747

Mathematic Subject Classification (2010): 34, 35, 65, 68

© The Editor(s) (if applicable) and The Author(s) 2017 This book is an open access publication
Open Access This book is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/),which permits use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the orig-
inal author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the work’s Creative Commons li-
cense, unless indicated otherwise in the credit line; if such material is not included in the work’s Creative
Commons license and the respective action is not permitted by statutory regulation, users will need to
obtain permission from the license holder to duplicate, adapt or reproduce the material.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

Preface

There are so many excellent books on finite difference methods for ordinary and
partial differential equations that writing yet another one requires a different view
on the topic. The present book is not so concerned with the traditional academic
presentation of the topic, but is focused at teaching the practitioner how to obtain
reliable computations involving finite difference methods. This focus is based on a
set of learning outcomes:

1. understanding of the ideas behind finite difference methods,
2. understanding how to transform an algorithm to a well-designed computer code,
3. understanding how to test (verify) the code,
4. understanding potential artifacts in simulation results.

Compared to other textbooks, the present one has a particularly strong emphasis
on computer implementation and verification. It also has a strong emphasis on an
intuitive understanding of constructing finite difference methods. To learn about
the potential non-physical artifacts of various methods, we study exact solutions
of finite difference schemes as these give deeper insight into the physical behavior
of the numerical methods than the traditional (and more general) asymptotic error
analysis. However, asymptotic results regarding convergence rates, typically trun-
cation errors, are crucial for testing implementations, so an extensive appendix is
devoted to the computation of truncation errors.

Why finite differences? One may ask why we do finite differences when finite
element and finite volume methods have been developed to greater generality and
sophistication than finite differences and can cover more problems. The finite ele-
ment and finite volume methods are also the industry standard nowadays. Why not
just those methods? The reason for finite differences is the method’s simplicity, both
from a mathematical and coding perspective. Especially in academia, where simple
model problems are used a lot for teaching and in research (e.g., for verification of
advanced implementations), there is a constant need to solve the model problems
from scratch with easy-to-verify computer codes. Here, finite differences are ideal.
A simple 1D heat equation can of course be solved by a finite element package, but
a 20-line code with a difference scheme is just right to the point and provides an

v

vi Preface

understanding of all details involved in the model and the solution method. Every-
body nowadays has a laptop and the natural method to attack a 1D heat equation is
a simple Python or Matlab program with a difference scheme. The conclusion goes
for other fundamental PDEs like the wave equation and Poisson equation as long
as the geometry of the domain is a hypercube. The present book contains all the
practical information needed to use the finite difference tool in a safe way.

Various pedagogical elements are utilized to reach the learning outcomes, and
these are commented upon next.

Simplify, understand, generalize The book’s overall pedagogical philosophy is
the three-step process of first simplifying the problem to something we can under-
stand in detail, and when that understanding is in place, we can generalize and
hopefully address real-world applications with a sound scientific problem-solving
approach. For example, in the chapter on a particular family of equations we first
simplify the problem in question to a 1D, constant-coefficient equation with simple
boundary conditions. We learn how to construct a finite difference method, how to
implement it, and how to understand the behavior of the numerical solution. Then
we can generalize to higher dimensions, variable coefficients, a source term, and
more complicated boundary conditions. The solution of a compound problem is in
this way an assembly of elements that are well understood in simpler settings.

Constructive mathematics This text favors a constructive approach to mathemat-
ics. Instead of a set of definitions followed by popping up a method, we emphasize
how to think about the construction of a method. The aim is to obtain a good intu-
itive understanding of the mathematical methods.

The text is written in an easy-to-read style much inspired by the following quote.

Some people think that stiff challenges are the best device to induce learning, but I am not
one of them. The natural way to learn something is by spending vast amounts of easy,
enjoyable time at it. This goes whether you want to speak German, sight-read at the piano,
type, or do mathematics. Give me the German storybook for fifth graders that I feel like
reading in bed, not Goethe and a dictionary. The latter will bring rapid progress at first,
then exhaustion and failure to resolve.

The main thing to be said for stiff challenges is that inevitably we will encounter them,
so we had better learn to face them boldly. Putting them in the curriculum can help teach
us to do so. But for teaching the skill or subject matter itself, they are overrated. [18, p. 86]
Lloyd N. Trefethen, Applied Mathematician, 1955-.

This book assumes some basic knowledge of finite difference approximations,
differential equations, and scientific Python or MATLAB programming, as often
met in an introductory numerical methods course. Readers without this background
may start with the light companion book “Finite Difference Computing with Expo-
nential Decay Models” [9]. That book will in particular be a useful resource for the
programming parts of the present book. Since the present book deals with partial
differential equations, the reader is assumed to master multi-variable calculus and
linear algebra.

Fundamental ideas and their associated scientific details are first introduced in
the simplest possible differential equation setting, often an ordinary differential
equation, but in a way that easily allows reuse in more complex settings with par-
tial differential equations. With this approach, new concepts are introduced with a

Preface vii

minimum of mathematical details. The text should therefore have a potential for
use early in undergraduate student programs.

All nuts and bolts Many have experienced that “vast amounts of easy, enjoyable
time”, as stated in the quote above, arises when mathematics is implemented on
a computer. The implementation process triggers understanding, creativity, and
curiosity, but many students find the transition from a mathematical algorithm to a
working code difficult and spend a lot of time on “programming issues”.

Most books on numerical methods concentrate on the mathematics of the subject
while details on going from the mathematics to a computer implementation are
less in focus. A major purpose of this text is therefore to help the practitioner by
providing all nuts and bolts necessary for safely going from the mathematics to a
well-designed and well-tested computer code. A significant portion of the text is
consequently devoted to programming details.

Python as programming language While MATLAB enjoys widespread popular-
ity in books on numerical methods, we have chosen to use the Python programming
language. Python is very similar to MATLAB, but contains a lot of modern soft-
ware engineering tools that have become standard in the software industry and that
should be adopted also for numerical computing projects. Python is at present also
experiencing an exponential growth in popularity within the scientific computing
community. One of the book’s goals is to present an up-to-date Python eco system
for implementing finite difference methods.

Program verification Program testing, called verification, is a key topic of the
book. Good verification techniques are indispensable when debugging computer
code, but also fundamental for achieving reliable simulations. Two verification
techniques saturate the book: exact solution of discrete equations (where the ap-
proximation error vanishes) and empirical estimation of convergence rates in prob-
lems with exact (analytical or manufactured) solutions of the differential equa-
tion(s).

Vectorized code Finite difference methods lead to code with loops over large ar-
rays. Such code in plain Python is known to run slowly. We demonstrate, especially
in Appendix C, how to port loops to fast, compiled code in C or Fortran. However,
an alternative is to vectorize the code to get rid of explicit Python loops, and this
technique is met throughout the book. Vectorization becomes closely connected to
the underlying array library, here numpy, and is often thought of as a difficult sub-
ject by students. Through numerous examples in different contexts, we hope that
the present book provides a substantial contribution to explaining how algorithms
can be vectorized. Not only will this speed up serial code, but with a library that can
produce parallel code from numpy commands (such as Numba1), vectorized code
can be automatically turned into parallel code and utilize multi-core processors and
GPUs. Also when creating tailored parallel code for today’s supercomputers, vec-
torization is useful as it emphasizes splitting up an algorithm into plain and simple

1 http://numba.pydata.org

http://numba.pydata.org
http://numba.pydata.org

viii Preface

array operations, where each operation is trivial to parallelize efficiently, rather than
trying to develop a “smart” overall parallelization strategy.

Analysis via exact solutions of discrete equations Traditional asymptotic analy-
sis of errors is important for verification of code using convergence rates, but gives a
limited understanding of how and why a correctly implemented numerical method
may give non-physical results. By developing exact solutions, usually based on
Fourier methods, of the discrete equations, one can obtain a physical understanding
of the behavior of a numerical method. This approach is favored for analysis of
methods in this book.

Code-inspired mathematical notation Our primary aim is to have a clean and
easy-to-read computer code, and we want a close one-to-one relationship between
the computer code and mathematical description of the algorithm. This principle
calls for a mathematical notation that is governed by the natural notation in the
computer code. The unknown is mostly called u, but the meaning of the symbol u
in the mathematical description changes as we go from the exact solution fulfilling
the differential equation to the symbol u that is naturally used for the associated
data structure in the code.

Limited scope The aim of this book is not to give an overview of a lot of methods
for a wide range of mathematical models. Such information can be found in numer-
ous existing, more advanced books. The aim is rather to introduce basic concepts
and a thorough understanding of how to think about computing with finite differ-
ence methods. We therefore go in depth with only the most fundamental methods
and equations. However, we have a multi-disciplinary scope and address the inter-
play of mathematics, numerics, computer science, and physics.

Focus on wave phenomena Most books on finite difference methods, or books
on theory with computer examples, have their emphasis on diffusion phenomena.
Half of this book (Chap. 1, 2, and Appendix C) is devoted to wave phenomena.
Extended material on this topic is not so easy find in the literature, so the book
should be a valuable contribution in this respect. Wave phenomena is also a good
topic in general for choosing the finite difference method over other discretization
methods since one quickly needs fine resolution over the entire mesh and uniform
meshes are most natural.

Instead of introducing the finite difference method for diffusion problems, where
one soon ends up with matrix systems, we do the introduction in a wave phenomena
setting where explicit schemes are most relevant. This slows down the learning
curve since we can introduce a lot of theory for differences and for software aspects
in a context with simple, explicit stencils for updating the solution.

Independent chapters Most book authors are careful with avoiding repetitions of
material. The chapters in this book, however, contain some overlap, because we
want the chapters to appear meaningful on their own. Modern publishing technol-
ogy makes it easy to take selected chapters from different books to make a new book
tailored to a specific course. The more a chapter builds on details in other chapters,
the more difficult it is to reuse chapters in new contexts. Also, most readers find it

Preface ix

convenient that important information is explicitly stated, even if it was already met
in another chapter.

Supplementary materials All program and data files referred to in this book are
available from the book’s primary web site: URL: http://github.com/hplgit/fdm-
book/.

Acknowledgments Professor Kent-Andre Mardal at the University of Oslo has
kindly contributed to enlightening discussions on several issues. Many students
have provided lots of useful feedback on the exposition and found many errors in
the text. Special efforts in this regard were made by Imran Ali, Shirin Fallahi,
Anders Hafreager, Daniel Alexander Mo Søreide Houshmand, Kristian Gregorius
Hustad, Mathilde Nygaard Kamperud, and Fatemeh Miri. The collaboration with
the Springer team, with Dr. Martin Peters, Thanh-Ha Le Thi, and their production
staff has always been a great pleasure and a very efficient process.

Finally, want really appreciate the strong push from the COE of Simula Research
Laboratory, Aslak Tveito, for publishing and financing books in open access format,
including this one. We are grateful for the laboratory’s financial contribution as
well as to the financial contribution from the Department of Process, Energy and
Environmental Technology at the University College of Southeast Norway.

Oslo, July 2016 Hans Petter Langtangen, Svein Linge

http://github.com/hplgit/fdm-book/
http://github.com/hplgit/fdm-book/

Contents

1 Vibration ODEs . 1
1.1 Finite Difference Discretization . 1

1.1.1 A Basic Model for Vibrations 1
1.1.2 A Centered Finite Difference Scheme 2

1.2 Implementation . 4
1.2.1 Making a Solver Function . 4
1.2.2 Verification . 6
1.2.3 Scaled Model . 10

1.3 Visualization of Long Time Simulations 11
1.3.1 Using a Moving Plot Window 11
1.3.2 Making Animations . 13
1.3.3 Using Bokeh to Compare Graphs 15
1.3.4 Using a Line-by-Line Ascii Plotter 18
1.3.5 Empirical Analysis of the Solution 19

1.4 Analysis of the Numerical Scheme . 21
1.4.1 Deriving a Solution of the Numerical Scheme 21
1.4.2 The Error in the Numerical Frequency 22
1.4.3 Empirical Convergence Rates and Adjusted ! 24
1.4.4 Exact Discrete Solution . 24
1.4.5 Convergence . 24
1.4.6 The Global Error . 25
1.4.7 Stability . 26
1.4.8 About the Accuracy at the Stability Limit 27

1.5 Alternative Schemes Based on 1st-Order Equations 29
1.5.1 The Forward Euler Scheme 29
1.5.2 The Backward Euler Scheme 30
1.5.3 The Crank-Nicolson Scheme 30
1.5.4 Comparison of Schemes . 32
1.5.5 Runge-Kutta Methods . 33
1.5.6 Analysis of the Forward Euler Scheme 34

1.6 Energy Considerations . 36
1.6.1 Derivation of the Energy Expression 36
1.6.2 An Error Measure Based on Energy 38

xi

xii Contents

1.7 The Euler-Cromer Method . 40
1.7.1 Forward-Backward Discretization 40
1.7.2 Equivalence with the Scheme for the Second-Order ODE 42
1.7.3 Implementation . 43
1.7.4 The Störmer-Verlet Algorithm 45

1.8 Staggered Mesh . 46
1.8.1 The Euler-Cromer Scheme on a Staggered Mesh 46
1.8.2 Implementation of the Scheme on a Staggered Mesh . . . 48

1.9 Exercises and Problems . 50
1.10 Generalization: Damping, Nonlinearities, and Excitation 57

1.10.1 A Centered Scheme for Linear Damping 57
1.10.2 A Centered Scheme for Quadratic Damping 58
1.10.3 A Forward-Backward Discretization of the Quadratic

Damping Term . 59
1.10.4 Implementation . 59
1.10.5 Verification . 60
1.10.6 Visualization . 61
1.10.7 User Interface . 62
1.10.8 The Euler-Cromer Scheme for the Generalized Model . . 63
1.10.9 The Störmer-Verlet Algorithm for the Generalized Model 64
1.10.10 A Staggered Euler-Cromer Scheme for a Generalized

Model . 64
1.10.11 The PEFRL 4th-Order Accurate Algorithm 65

1.11 Exercises and Problems . 66
1.12 Applications of Vibration Models . 67

1.12.1 Oscillating Mass Attached to a Spring 67
1.12.2 General Mechanical Vibrating System 69
1.12.3 A Sliding Mass Attached to a Spring 70
1.12.4 A Jumping Washing Machine 71
1.12.5 Motion of a Pendulum . 71
1.12.6 Dynamic Free Body Diagram During Pendulum Motion . 74
1.12.7 Motion of an Elastic Pendulum 79
1.12.8 Vehicle on a Bumpy Road . 83
1.12.9 Bouncing Ball . 85
1.12.10 Two-Body Gravitational Problem 85
1.12.11 Electric Circuits . 88

1.13 Exercises . 88

2 Wave Equations . 93
2.1 Simulation of Waves on a String . 93

2.1.1 Discretizing the Domain . 94
2.1.2 The Discrete Solution . 94
2.1.3 Fulfilling the Equation at the Mesh Points 94
2.1.4 Replacing Derivatives by Finite Differences 95
2.1.5 Formulating a Recursive Algorithm 96
2.1.6 Sketch of an Implementation 98

2.2 Verification . 99
2.2.1 A Slightly Generalized Model Problem 99
2.2.2 Using an Analytical Solution of Physical Significance . . 99

Contents xiii

2.2.3 Manufactured Solution and Estimation of Convergence
Rates . 100

2.2.4 Constructing an Exact Solution of the Discrete Equations 102
2.3 Implementation . 104

2.3.1 Callback Function for User-Specific Actions 104
2.3.2 The Solver Function . 105
2.3.3 Verification: Exact Quadratic Solution 106
2.3.4 Verification: Convergence Rates 107
2.3.5 Visualization: Animating the Solution 108
2.3.6 Running a Case . 112
2.3.7 Working with a Scaled PDE Model 113

2.4 Vectorization . 114
2.4.1 Operations on Slices of Arrays 115
2.4.2 Finite Difference Schemes Expressed as Slices 117
2.4.3 Verification . 118
2.4.4 Efficiency Measurements . 119
2.4.5 Remark on the Updating of Arrays 121

2.5 Exercises . 122
2.6 Generalization: Reflecting Boundaries 125

2.6.1 Neumann Boundary Condition 126
2.6.2 Discretization of Derivatives at the Boundary 126
2.6.3 Implementation of Neumann Conditions 127
2.6.4 Index Set Notation . 128
2.6.5 Verifying the Implementation of Neumann Conditions . . 130
2.6.6 Alternative Implementation via Ghost Cells 132

2.7 Generalization: Variable Wave Velocity 135
2.7.1 The Model PDE with a Variable Coefficient 135
2.7.2 Discretizing the Variable Coefficient 136
2.7.3 Computing the Coefficient Between Mesh Points 137
2.7.4 How a Variable Coefficient Affects the Stability 138
2.7.5 Neumann Condition and a Variable Coefficient 138
2.7.6 Implementation of Variable Coefficients 139
2.7.7 A More General PDE Model with Variable Coefficients . 140
2.7.8 Generalization: Damping . 140

2.8 Building a General 1D Wave Equation Solver 141
2.8.1 User Action Function as a Class 142
2.8.2 Pulse Propagation in Two Media 144

2.9 Exercises . 148
2.10 Analysis of the Difference Equations 155

2.10.1 Properties of the Solution of the Wave Equation 155
2.10.2 More Precise Definition of Fourier Representations 157
2.10.3 Stability . 158
2.10.4 Numerical Dispersion Relation 160
2.10.5 Extending the Analysis to 2D and 3D 163

2.11 Finite Difference Methods for 2D and 3D Wave Equations 167
2.11.1 Multi-Dimensional Wave Equations 167
2.11.2 Mesh . 168
2.11.3 Discretization . 169

xiv Contents

2.12 Implementation . 171
2.12.1 Scalar Computations . 172
2.12.2 Vectorized Computations . 174
2.12.3 Verification . 176
2.12.4 Visualization . 177

2.13 Exercises . 181
2.14 Applications of Wave Equations . 183

2.14.1 Waves on a String . 183
2.14.2 Elastic Waves in a Rod . 186
2.14.3 Waves on a Membrane . 186
2.14.4 The Acoustic Model for Seismic Waves 186
2.14.5 Sound Waves in Liquids and Gases 188
2.14.6 Spherical Waves . 189
2.14.7 The Linear Shallow Water Equations 190
2.14.8 Waves in Blood Vessels . 192
2.14.9 Electromagnetic Waves . 194

2.15 Exercises . 195

3 Diffusion Equations . 207
3.1 An Explicit Method for the 1D Diffusion Equation 208

3.1.1 The Initial-Boundary Value Problem for 1D Diffusion . . 208
3.1.2 Forward Euler Scheme . 208
3.1.3 Implementation . 210
3.1.4 Verification . 212
3.1.5 Numerical Experiments . 215

3.2 Implicit Methods for the 1D Diffusion Equation 218
3.2.1 Backward Euler Scheme . 219
3.2.2 Sparse Matrix Implementation 223
3.2.3 Crank-Nicolson Scheme . 224
3.2.4 The Unifying � Rule . 226
3.2.5 Experiments . 227
3.2.6 The Laplace and Poisson Equation 227

3.3 Analysis of Schemes for the Diffusion Equation 229
3.3.1 Properties of the Solution . 229
3.3.2 Analysis of Discrete Equations 233
3.3.3 Analysis of the Finite Difference Schemes 233
3.3.4 Analysis of the Forward Euler Scheme 234
3.3.5 Analysis of the Backward Euler Scheme 236
3.3.6 Analysis of the Crank-Nicolson Scheme 237
3.3.7 Analysis of the Leapfrog Scheme 237
3.3.8 Summary of Accuracy of Amplification Factors 238
3.3.9 Analysis of the 2D Diffusion Equation 239
3.3.10 Explanation of Numerical Artifacts 241

3.4 Exercises . 242
3.5 Diffusion in Heterogeneous Media . 245

3.5.1 Discretization . 245
3.5.2 Implementation . 246
3.5.3 Stationary Solution . 247

Contents xv

3.5.4 Piecewise Constant Medium 247
3.5.5 Implementation of Diffusion in a Piecewise Constant

Medium . 248
3.5.6 Axi-Symmetric Diffusion . 251
3.5.7 Spherically-Symmetric Diffusion 252

3.6 Diffusion in 2D . 254
3.6.1 Discretization . 254
3.6.2 Numbering of Mesh Points Versus Equations and

Unknowns . 255
3.6.3 Algorithm for Setting Up the Coefficient Matrix 259
3.6.4 Implementation with a Dense Coefficient Matrix 260
3.6.5 Verification: Exact Numerical Solution 264
3.6.6 Verification: Convergence Rates 265
3.6.7 Implementation with a Sparse Coefficient Matrix 266
3.6.8 The Jacobi Iterative Method 270
3.6.9 Implementation of the Jacobi Method 273
3.6.10 Test Problem: Diffusion of a Sine Hill 274
3.6.11 The Relaxed Jacobi Method and Its Relation to the

Forward Euler Method . 276
3.6.12 The Gauss-Seidel and SOR Methods 277
3.6.13 Scalar Implementation of the SOR Method 277
3.6.14 Vectorized Implementation of the SOR Method 278
3.6.15 Direct Versus Iterative Methods 282
3.6.16 The Conjugate Gradient Method 285
3.6.17 What Is the Recommended Method for Solving Linear

Systems? . 287
3.7 RandomWalk . 287

3.7.1 RandomWalk in 1D . 288
3.7.2 Statistical Considerations . 288
3.7.3 Playing Around with Some Code 290
3.7.4 Equivalence with Diffusion 293
3.7.5 Implementation of Multiple Walks 294
3.7.6 Demonstration of Multiple Walks 300
3.7.7 Ascii Visualization of 1D RandomWalk 300
3.7.8 RandomWalk as a Stochastic Equation 303
3.7.9 RandomWalk in 2D . 304
3.7.10 RandomWalk in Any Number of Space Dimensions . . . 305
3.7.11 Multiple Random Walks in Any Number of Space

Dimensions . 307
3.8 Applications . 308

3.8.1 Diffusion of a Substance . 308
3.8.2 Heat Conduction . 309
3.8.3 Porous Media Flow . 312
3.8.4 Potential Fluid Flow . 312
3.8.5 Streamlines for 2D Fluid Flow 313
3.8.6 The Potential of an Electric Field 313
3.8.7 Development of Flow Between Two Flat Plates 313
3.8.8 Flow in a Straight Tube . 314

xvi Contents

3.8.9 Tribology: Thin Film Fluid Flow 315
3.8.10 Propagation of Electrical Signals in the Brain 316

3.9 Exercises . 316

4 Advection-Dominated Equations . 323
4.1 One-Dimensional Time-Dependent Advection Equations 323

4.1.1 Simplest Scheme: Forward in Time, Centered in Space . . 324
4.1.2 Analysis of the Scheme . 327
4.1.3 Leapfrog in Time, Centered Differences in Space 328
4.1.4 Upwind Differences in Space 331
4.1.5 Periodic Boundary Conditions 333
4.1.6 Implementation . 333
4.1.7 A Crank-Nicolson Discretization in Time and Centered

Differences in Space . 337
4.1.8 The Lax-Wendroff Method 339
4.1.9 Analysis of Dispersion Relations 340

4.2 One-Dimensional Stationary Advection-Diffusion Equation 344
4.2.1 A Simple Model Problem . 344
4.2.2 A Centered Finite Difference Scheme 345
4.2.3 Remedy: Upwind Finite Difference Scheme 347

4.3 Time-dependent Convection-Diffusion Equations 349
4.3.1 Forward in Time, Centered in Space Scheme 349
4.3.2 Forward in Time, Upwind in Space Scheme 349

4.4 Applications of Advection Equations 350
4.4.1 Transport of a Substance . 350
4.4.2 Transport of Heat in Fluids 350

4.5 Exercises . 351

5 Nonlinear Problems . 353
5.1 Introduction of Basic Concepts . 353

5.1.1 Linear Versus Nonlinear Equations 353
5.1.2 A Simple Model Problem . 354
5.1.3 Linearization by Explicit Time Discretization 355
5.1.4 Exact Solution of Nonlinear Algebraic Equations 356
5.1.5 Linearization . 357
5.1.6 Picard Iteration . 357
5.1.7 Linearization by a Geometric Mean 359
5.1.8 Newton’s Method . 360
5.1.9 Relaxation . 361
5.1.10 Implementation and Experiments 362
5.1.11 Generalization to a General Nonlinear ODE 365
5.1.12 Systems of ODEs . 367

5.2 Systems of Nonlinear Algebraic Equations 368
5.2.1 Picard Iteration . 369
5.2.2 Newton’s Method . 369
5.2.3 Stopping Criteria . 371
5.2.4 Example: A Nonlinear ODE Model from Epidemiology . 372

Contents xvii

5.3 Linearization at the Differential Equation Level 373
5.3.1 Explicit Time Integration . 373
5.3.2 Backward Euler Scheme and Picard Iteration 374
5.3.3 Backward Euler Scheme and Newton’s Method 375
5.3.4 Crank-Nicolson Discretization 377

5.4 1D Stationary Nonlinear Differential Equations 378
5.4.1 Finite Difference Discretization 378
5.4.2 Solution of Algebraic Equations 379

5.5 Multi-Dimensional Nonlinear PDE Problems 384
5.5.1 Finite Difference Discretization 384
5.5.2 Continuation Methods . 386

5.6 Operator Splitting Methods . 387
5.6.1 Ordinary Operator Splitting for ODEs 387
5.6.2 Strang Splitting for ODEs . 388
5.6.3 Example: Logistic Growth 388
5.6.4 Reaction-Diffusion Equation 391
5.6.5 Example: Reaction-Diffusion with Linear Reaction Term 392
5.6.6 Analysis of the Splitting Method 400

5.7 Exercises . 401

A Useful Formulas . 409
A.1 Finite Difference Operator Notation 409
A.2 Truncation Errors of Finite Difference Approximations 410
A.3 Finite Differences of Exponential Functions 411
A.4 Finite Differences of tn . 411

A.4.1 Software . 412

B Truncation Error Analysis . 415
B.1 Overview of Truncation Error Analysis 415

B.1.1 Abstract Problem Setting . 415
B.1.2 Error Measures . 416

B.2 Truncation Errors in Finite Difference Formulas 417
B.2.1 Example: The Backward Difference for u0.t/ 417
B.2.2 Example: The Forward Difference for u0.t/ 418
B.2.3 Example: The Central Difference for u0.t/ 419
B.2.4 Overview of Leading-Order Error Terms in Finite

Difference Formulas . 420
B.2.5 Software for Computing Truncation Errors 421

B.3 Exponential Decay ODEs . 422
B.3.1 Forward Euler Scheme . 422
B.3.2 Crank-Nicolson Scheme . 423
B.3.3 The �-Rule . 424
B.3.4 Using Symbolic Software . 424
B.3.5 Empirical Verification of the Truncation Error 425
B.3.6 Increasing the Accuracy by Adding Correction Terms . . 430
B.3.7 Extension to Variable Coefficients 432
B.3.8 Exact Solutions of the Finite Difference Equations 433
B.3.9 Computing Truncation Errors in Nonlinear Problems . . . 434

xviii Contents

B.4 Vibration ODEs . 434
B.4.1 Linear Model Without Damping 434
B.4.2 Model with Damping and Nonlinearity 437
B.4.3 Extension to Quadratic Damping 438
B.4.4 The General Model Formulated as First-Order ODEs . . . 439

B.5 Wave Equations . 440
B.5.1 Linear Wave Equation in 1D 440
B.5.2 Finding Correction Terms . 441
B.5.3 Extension to Variable Coefficients 442
B.5.4 Linear Wave Equation in 2D/3D 444

B.6 Diffusion Equations . 445
B.6.1 Linear Diffusion Equation in 1D 445
B.6.2 Nonlinear Diffusion Equation in 1D 446

B.7 Exercises . 447

C Software Engineering; Wave Equation Model 451
C.1 A 1D Wave Equation Simulator . 451

C.1.1 Mathematical Model . 451
C.1.2 Numerical Discretization . 451
C.1.3 A Solver Function . 452

C.2 Saving Large Arrays in Files . 455
C.2.1 Using savez to Store Arrays in Files 455
C.2.2 Using joblib to Store Arrays in Files 457
C.2.3 Using a Hash to Create a File or Directory Name 458

C.3 Software for the 1D Wave Equation 459
C.3.1 Making Hash Strings from Input Data 460
C.3.2 Avoiding Rerunning Previously Run Cases 460
C.3.3 Verification . 461

C.4 Programming the Solver with Classes 462
C.4.1 Class Parameters . 463
C.4.2 Class Problem . 465
C.4.3 Class Mesh . 465
C.4.4 Class Function . 468
C.4.5 Class Solver . 471

C.5 Migrating Loops to Cython . 475
C.5.1 Declaring Variables and Annotating the Code 476
C.5.2 Visual Inspection of the C Translation 478
C.5.3 Building the Extension Module 479
C.5.4 Calling the Cython Function from Python 480

C.6 Migrating Loops to Fortran . 480
C.6.1 The Fortran Subroutine . 481
C.6.2 Building the Fortran Module with f2py 482
C.6.3 How to Avoid Array Copying 483

C.7 Migrating Loops to C via Cython . 485
C.7.1 Translating Index Pairs to Single Indices 485
C.7.2 The Complete C Code . 486
C.7.3 The Cython Interface File . 486
C.7.4 Building the Extension Module 487

Contents xix

C.8 Migrating Loops to C via f2py . 488
C.8.1 Migrating Loops to C++ via f2py 489

C.9 Exercises . 490

References . 493

Index . 495

List of Exercises, Problems and Projects

Problem 1.1: Use linear/quadratic functions for verification 50
Exercise 1.2: Show linear growth of the phase with time 51
Exercise 1.3: Improve the accuracy by adjusting the frequency 51
Exercise 1.4: See if adaptive methods improve the phase error 52
Exercise 1.5: Use a Taylor polynomial to compute u1 52
Problem 1.6: Derive and investigate the velocity Verlet method 52
Problem 1.7: Find the minimal resolution of an oscillatory function 52
Exercise 1.8: Visualize the accuracy of finite differences for a cosine function 53
Exercise 1.9: Verify convergence rates of the error in energy 53
Exercise 1.10: Use linear/quadratic functions for verification 53
Exercise 1.11: Use an exact discrete solution for verification 53
Exercise 1.12: Use analytical solution for convergence rate tests 53
Exercise 1.13: Investigate the amplitude errors of many solvers 54
Problem 1.14: Minimize memory usage of a simple vibration solver 54
Problem 1.15: Minimize memory usage of a general vibration solver 56
Exercise 1.16: Implement the Euler-Cromer scheme for the generalized model 56
Problem 1.17: Interpret ŒDtDtu�

n as a forward-backward difference 56
Exercise 1.18: Analysis of the Euler-Cromer scheme 56
Exercise 1.19: Implement the solver via classes 66
Problem 1.20: Use a backward difference for the damping term 66
Exercise 1.21: Use the forward-backward scheme with quadratic damping . . 67
Exercise 1.22: Simulate resonance . 88
Exercise 1.23: Simulate oscillations of a sliding box 88
Exercise 1.24: Simulate a bouncing ball . 88
Exercise 1.25: Simulate a simple pendulum . 89
Exercise 1.26: Simulate an elastic pendulum . 89
Exercise 1.27: Simulate an elastic pendulum with air resistance 90
Exercise 1.28: Implement the PEFRL algorithm 91
Exercise 2.1: Simulate a standing wave . 122
Exercise 2.2: Add storage of solution in a user action function 123
Exercise 2.3: Use a class for the user action function 123
Exercise 2.4: Compare several Courant numbers in one movie 123
Exercise 2.5: Implementing the solver function as a generator 124
Project 2.6: Calculus with 1D mesh functions . 124

xxi

xxii List of Exercises, Problems and Projects

Exercise 2.7: Find the analytical solution to a damped wave equation 148
Problem 2.8: Explore symmetry boundary conditions 148
Exercise 2.9: Send pulse waves through a layered medium 148
Exercise 2.10: Explain why numerical noise occurs 149
Exercise 2.11: Investigate harmonic averaging in a 1D model 149
Problem 2.12: Implement open boundary conditions 149
Exercise 2.13: Implement periodic boundary conditions 151
Exercise 2.14: Compare discretizations of a Neumann condition 151
Exercise 2.15: Verification by a cubic polynomial in space 152
Exercise 2.16: Check that a solution fulfills the discrete model 181
Project 2.17: Calculus with 2D mesh functions 181
Exercise 2.18: Implement Neumann conditions in 2D 182
Exercise 2.19: Test the efficiency of compiled loops in 3D 182
Exercise 2.20: Simulate waves on a non-homogeneous string 195
Exercise 2.21: Simulate damped waves on a string 195
Exercise 2.22: Simulate elastic waves in a rod . 195
Exercise 2.23: Simulate spherical waves . 195
Problem 2.24: Earthquake-generated tsunami over a subsea hill 196
Problem 2.25: Earthquake-generated tsunami over a 3D hill 198
Problem 2.26: Investigate Mayavi for visualization 199
Problem 2.27: Investigate visualization packages 199
Problem 2.28: Implement loops in compiled languages 199
Exercise 2.29: Simulate seismic waves in 2D . 200
Project 2.30: Model 3D acoustic waves in a room 200
Project 2.31: Solve a 1D transport equation . 201
Problem 2.32: General analytical solution of a 1D damped wave equation . . 204
Problem 2.33: General analytical solution of a 2D damped wave equation . . 205
Exercise 3.1: Explore symmetry in a 1D problem 242
Exercise 3.2: Investigate approximation errors from a ux D 0 boundary

condition . 243
Exercise 3.3: Experiment with open boundary conditions in 1D 243
Exercise 3.4: Simulate a diffused Gaussian peak in 2D/3D 244
Exercise 3.5: Examine stability of a diffusion model with a source term 245
Exercise 3.6: Stabilizing the Crank-Nicolson method by Rannacher time

stepping . 316
Project 3.7: Energy estimates for diffusion problems 316
Exercise 3.8: Splitting methods and preconditioning 318
Problem 3.9: Oscillating surface temperature of the earth 319
Problem 3.10: Oscillating and pulsating flow in tubes 320
Problem 3.11: Scaling a welding problem . 320
Exercise 3.12: Implement a Forward Euler scheme for axi-symmetric diffusion 322
Exercise 4.1: Analyze 1D stationary convection-diffusion problem 351
Exercise 4.2: Interpret upwind difference as artificial diffusion 351
Problem 5.1: Determine if equations are nonlinear or not 401
Problem 5.2: Derive and investigate a generalized logistic model 401
Problem 5.3: Experience the behavior of Newton’s method 402
Exercise 5.4: Compute the Jacobian of a 2 � 2 system 402
Problem 5.5: Solve nonlinear equations arising from a vibration ODE 402

List of Exercises, Problems and Projects xxiii

Exercise 5.6: Find the truncation error of arithmetic mean of products 402
Problem 5.7: Newton’s method for linear problems 404
Problem 5.8: Discretize a 1D problem with a nonlinear coefficient 404
Problem 5.9: Linearize a 1D problem with a nonlinear coefficient 404
Problem 5.10: Finite differences for the 1D Bratu problem 404
Problem 5.11: Discretize a nonlinear 1D heat conduction PDE by finite

differences . 405
Problem 5.12: Differentiate a highly nonlinear term 405
Exercise 5.13: Crank-Nicolson for a nonlinear 3D diffusion equation 406
Problem 5.14: Find the sparsity of the Jacobian 406
Problem 5.15: Investigate a 1D problem with a continuation method 406
Exercise B.1: Truncation error of a weighted mean 447
Exercise B.2: Simulate the error of a weighted mean 447
Exercise B.3: Verify a truncation error formula 447
Problem B.4: Truncation error of the Backward Euler scheme 447
Exercise B.5: Empirical estimation of truncation errors 448
Exercise B.6: Correction term for a Backward Euler scheme 448
Problem B.7: Verify the effect of correction terms 448
Problem B.8: Truncation error of the Crank-Nicolson scheme 448
Problem B.9: Truncation error of u0 D f .u; t/ 448
Exercise B.10: Truncation error of ŒDtDtu�

n . 449
Exercise B.11: Investigate the impact of approximating u0.0/ 449
Problem B.12: Investigate the accuracy of a simplified scheme 449
Exercise C.1: Explore computational efficiency of numpy.sum versus built-in

sum . 490
Exercise C.2: Make an improved numpy.savez function 490
Exercise C.3: Visualize the impact of the Courant number 491
Exercise C.4: Visualize the impact of the resolution 491

1Vibration ODEs

Vibration problems lead to differential equations with solutions that oscillate in
time, typically in a damped or undamped sinusoidal fashion. Such solutions put
certain demands on the numerical methods compared to other phenomena whose
solutions are monotone or very smooth. Both the frequency and amplitude of the
oscillations need to be accurately handled by the numerical schemes. The forthcom-
ing text presents a range of different methods, from classical ones (Runge-Kutta and
midpoint/Crank-Nicolson methods), to more modern and popular symplectic (ge-
ometric) integration schemes (Leapfrog, Euler-Cromer, and Störmer-Verlet meth-
ods), but with a clear emphasis on the latter. Vibration problems occur throughout
mechanics and physics, but the methods discussed in this text are also fundamen-
tal for constructing successful algorithms for partial differential equations of wave
nature in multiple spatial dimensions.

1.1 Finite Difference Discretization

Many of the numerical challenges faced when computing oscillatory solutions to
ODEs and PDEs can be captured by the very simple ODE u00 C u D 0. This ODE
is thus chosen as our starting point for method development, implementation, and
analysis.

1.1.1 A Basic Model for Vibrations

The simplest model of a vibrating mechanical system has the following form:

u00 C !2u D 0; u.0/ D I; u0.0/ D 0; t 2 .0; T � : (1.1)

Here, ! and I are given constants. Section 1.12.1 derives (1.1) from physical prin-
ciples and explains what the constants mean.

The exact solution of (1.1) is

u.t/ D I cos.!t/ : (1.2)

1© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_1

2 1 Vibration ODEs

That is, u oscillates with constant amplitude I and angular frequency !. The corre-
sponding period of oscillations (i.e., the time between two neighboring peaks in the
cosine function) is P D 2�=!. The number of periods per second is f D !=.2�/
and measured in the unit Hz. Both f and ! are referred to as frequency, but ! is
more precisely named angular frequency, measured in rad/s.

In vibrating mechanical systems modeled by (1.1), u.t/ very often represents
a position or a displacement of a particular point in the system. The derivative
u0.t/ then has the interpretation of velocity, and u00.t/ is the associated acceleration.
The model (1.1) is not only applicable to vibrating mechanical systems, but also to
oscillations in electrical circuits.

1.1.2 A Centered Finite Difference Scheme

To formulate a finite difference method for the model problem (1.1), we follow the
four steps explained in Section 1.1.2 in [9].

Step 1: Discretizing the domain The domain is discretized by introducing a
uniformly partitioned time mesh. The points in the mesh are tn D n�t , n D
0; 1; : : : ; Nt , where �t D T=Nt is the constant length of the time steps. We in-
troduce a mesh function un for n D 0; 1; : : : ; Nt , which approximates the exact
solution at the mesh points. (Note that n D 0 is the known initial condition, so
un is identical to the mathematical u at this point.) The mesh function un will be
computed from algebraic equations derived from the differential equation problem.

Step 2: Fulfilling the equation at discrete time points The ODE is to be satisfied
at each mesh point where the solution must be found:

u00.tn/C !2u.tn/ D 0; n D 1; : : : ; Nt : (1.3)

Step 3: Replacing derivatives by finite differences The derivative u00.tn/ is to be
replaced by a finite difference approximation. A common second-order accurate
approximation to the second-order derivative is

u00.tn/ � unC1 � 2un C un�1
�t2

: (1.4)

Inserting (1.4) in (1.3) yields

unC1 � 2un C un�1
�t2

D �!2un : (1.5)

We also need to replace the derivative in the initial condition by a finite dif-
ference. Here we choose a centered difference, whose accuracy is similar to the
centered difference we used for u00:

u1 � u�1
2�t

D 0 : (1.6)

1.1 Finite Difference Discretization 3

Step 4: Formulating a recursive algorithm To formulate the computational al-
gorithm, we assume that we have already computed un�1 and un, such that unC1 is
the unknown value to be solved for:

unC1 D 2un � un�1 ��t2!2un : (1.7)

The computational algorithm is simply to apply (1.7) successively for n D
1; 2; : : : ; Nt �1. This numerical scheme sometimes goes under the name Störmer’s
method, Verlet integration1, or the Leapfrog method (one should note that Leapfrog
is used for many quite different methods for quite different differential equations!).

Computing the first step We observe that (1.7) cannot be used for n D 0 since
the computation of u1 then involves the undefined value u�1 at t D ��t . The
discretization of the initial condition then comes to our rescue: (1.6) implies u�1 D
u1 and this relation can be combined with (1.7) for n D 0 to yield a value for u1:

u1 D 2u0 � u1 ��t2!2u0;

which reduces to

u1 D u0 � 1
2
�t2!2u0 : (1.8)

Exercise 1.5 asks you to perform an alternative derivation and also to generalize the
initial condition to u0.0/ D V ¤ 0.

The computational algorithm The steps for solving (1.1) become

1. u0 D I
2. compute u1 from (1.8)
3. for n D 1; 2; : : : ; Nt � 1: compute unC1 from (1.7)

The algorithm is more precisely expressed directly in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark on using w for ! in computer code
In the code, we use w as the symbol for !. The reason is that the authors prefer w
for readability and comparison with the mathematical ! instead of the full word
omega as variable name.

1 http://en.wikipedia.org/wiki/Verlet_integration

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration

4 1 Vibration ODEs

Operator notation We may write the scheme using a compact difference notation
listed in Appendix A.1 (see also Section 1.1.8 in [9]). The difference (1.4) has the
operator notation ŒDtDtu�

n such that we can write:

ŒDtDtuC !2u D 0�n : (1.9)

Note that ŒDtDtu�
n means applying a central difference with step �t=2 twice:

ŒDt.Dtu/�
n D ŒDtu�

nC 1
2 � ŒDtu�

n� 12
�t

which is written out as

1

�t

�
unC1 � un

�t
� u

n � un�1
�t

�
D unC1 � 2un C un�1

�t2
:

The discretization of initial conditions can in the operator notation be expressed
as

Œu D I �0; ŒD2tu D 0�0; (1.10)

where the operator ŒD2tu�
n is defined as

ŒD2tu�
n D unC1 � un�1

2�t
: (1.11)

1.2 Implementation

1.2.1 Making a Solver Function

The algorithm from the previous section is readily translated to a complete Python
function for computing and returning u0; u1; : : : ; uNt and t0; t1; : : : ; tNt , given the
input I , !, �t , and T :

import numpy as np
import matplotlib.pyplot as plt

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

1.2 Implementation 5

We have imported numpy and matplotlib under the names np and plt, respec-
tively, as this is very common in the Python scientific computing community and
a good programming habit (since we explicitly see where the different functions
come from). An alternative is to do from numpy import * and a similar “import
all” for Matplotlib to avoid the np and plt prefixes and make the code as close as
possible to MATLAB. (See Section 5.1.4 in [9] for a discussion of the two types of
import in Python.)

A function for plotting the numerical and the exact solution is also convenient to
have:

def u_exact(t, I, w):
return I*np.cos(w*t)

def visualize(u, t, I, w):
plt.plot(t, u, ’r--o’)
t_fine = np.linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
plt.hold(’on’)
plt.plot(t_fine, u_e, ’b-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’)
plt.ylabel(’u’)
dt = t[1] - t[0]
plt.title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
plt.axis([t[0], t[-1], umin, umax])
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

A corresponding main program calling these functions to simulate a given number
of periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters via the command line can be handy.
Here is a code segment using the ArgumentParser tool in the argparse module
to define option value (–option value) pairs on the command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

6 1 Vibration ODEs

Such parsing of the command line is explained in more detail in Section 5.2.3 in
[9].

A typical execution goes like

Terminal

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

Computing u0 In mechanical vibration applications one is often interested in com-
puting the velocity v.t/ D u0.t/ after u.t/ has been computed. This can be done by
a central difference,

v.tn/ D u0.tn/ � vn D unC1 � un�1
2�t

D ŒD2tu�
n : (1.12)

This formula applies for all inner mesh points, n D 1; : : : ; Nt � 1. For n D 0, v.0/
is given by the initial condition on u0.0/, and for n D Nt we can use a one-sided,
backward difference:

vn D ŒD�t u�n D
un � un�1

�t
:

Typical (scalar) code is

v = np.zeros_like(u) # or v = np.zeros(len(u))
Use central difference for internal points
for i in range(1, len(u)-1):

v[i] = (u[i+1] - u[i-1])/(2*dt)
Use initial condition for u’(0) when i=0
v[0] = 0
Use backward difference at the final mesh point
v[-1] = (u[-1] - u[-2])/dt

Since the loop is slow for large Nt , we can get rid of the loop by vectorizing the
central difference. The above code segment goes as follows in its vectorized version
(see Problem 1.2 in [9] for explanation of details):

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # central difference
v[0] = 0 # boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

1.2.2 Verification

Manual calculation The simplest type of verification, which is also instructive
for understanding the algorithm, is to compute u1, u2, and u3 with the aid of a
calculator and make a function for comparing these results with those from the
solver function. The test_three_steps function in the file vib_undamped.py
shows the details of how we use the hand calculations to test the code:

http://tinyurl.com/nu656p2/vib/vib_undamped.py

1.2 Implementation 7

def test_three_steps():
from math import pi
I = 1; w = 2*pi; dt = 0.1; T = 1
u_by_hand = np.array([1.000000000000000,

0.802607911978213,
0.288358920740053])

u, t = solver(I, w, dt, T)
diff = np.abs(u_by_hand - u[:3]).max()
tol = 1E-14
assert diff < tol

This function is a proper test function, compliant with the pytest and nose testing
framework for Python code, because

� the function name begins with test_
� the function takes no arguments
� the test is formulated as a boolean condition and executed by assert

We shall in this book implement all software verification via such proper test func-
tions, also known as unit testing. See Section 5.3.2 in [9] for more details on how to
construct test functions and utilize nose or pytest for automatic execution of tests.
Our recommendation is to use pytest. With this choice, you can run all test functions
in vib_undamped.py by

Terminal

Terminal> py.test -s -v vib_undamped.py
============================= test session starts ======...
platform linux2 -- Python 2.7.9 -- ...
collected 2 items

vib_undamped.py::test_three_steps PASSED
vib_undamped.py::test_convergence_rates PASSED

=========================== 2 passed in 0.19 seconds ===...

Testing very simple polynomial solutions Constructing test problems where the
exact solution is constant or linear helps initial debugging and verification as one
expects any reasonable numerical method to reproduce such solutions to machine
precision. Second-order accurate methods will often also reproduce a quadratic
solution. Here ŒDtDt t

2�n D 2, which is the exact result. A solution u D t2

leads to u00 C !2u D 2 C .!t/2 ¤ 0. We must therefore add a source in the
equation: u00 C !2u D f to allow a solution u D t2 for f D 2 C .!t/2. By
simple insertion we can show that the mesh function un D t2n is also a solution of
the discrete equations. Problem 1.1 asks you to carry out all details to show that
linear and quadratic solutions are solutions of the discrete equations. Such results
are very useful for debugging and verification. You are strongly encouraged to do
this problem now!

Checking convergence rates Empirical computation of convergence rates yields
a good method for verification. The method and its computational details are ex-

8 1 Vibration ODEs

plained in detail in Section 3.1.6 in [9]. Readers not familiar with the concept should
look up this reference before proceeding.

In the present problem, computing convergence rates means that we must

� perform m simulations, halving the time steps as: �ti D 2�i�t0, i D 1; : : : ;

m � 1, and �ti is the time step used in simulation i ;

� compute the L2 norm of the error, Ei D
q
�ti

PNt�1
nD0 .un � ue.tn//2 in each

case;
� estimate the convergence rates ri based on two consecutive experiments
.�ti�1; Ei�1/ and .�ti ; Ei /, assuming Ei D C.�ti /

r and Ei�1 D C.�ti�1/r ,
where C is a constant. From these equations it follows that r D ln.Ei�1=Ei /=
ln.�ti�1=�ti /. Since this r will vary with i , we equip it with an index and call
it ri�1, where i runs from 1 to m � 1.

The computed rates r0; r1; : : : ; rm�2 hopefully converge to the number 2 in the
present problem, because theory (from Sect. 1.4) shows that the error of the
numerical method we use behaves like �t2. The convergence of the sequence
r0; r1; : : : ; rm�2 demands that the time steps �ti are sufficiently small for the error
model Ei D C.�ti /r to be valid.

All the implementational details of computing the sequence r0; r1; : : : ; rm�2 ap-
pear below.

def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
solver_function(I, w, dt, T) solves each problem, where T
is based on simulation for num_periods periods.
"""
from math import pi
w = 0.35; I = 0.3 # just chosen values
P = 2*pi/w # period
dt = P/30 # 30 time step per period 2*pi/w
T = P*num_periods

dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = np.sqrt(dt*np.sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [np.log(E_values[i-1]/E_values[i])/
np.log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r, E_values, dt_values

The error analysis in Sect. 1.4 is quite detailed and suggests that r D 2. It is
also a intuitively reasonable result, since we used a second-order accurate finite

1.2 Implementation 9

difference approximation ŒDtDtu�
n to the ODE and a second-order accurate finite

difference formula for the initial condition for u0.
In the present problem, when �t0 corresponds to 30 time steps per period, the

returned r list has all its values equal to 2.00 (if rounded to two decimals). This
amazingly accurate result means that all �ti values are well into the asymptotic
regime where the error model Ei D C.�ti /r is valid.

We can now construct a proper test function that computes convergence rates
and checks that the final (and usually the best) estimate is sufficiently close to 2.
Here, a rough tolerance of 0.1 is enough. Later, we will argue for an improvement
by adjusting omega and include also that case in our test function here. The unit
test goes like

def test_convergence_rates():
r, E, dt = convergence_rates(

m=5, solver_function=solver, num_periods=8)
Accept rate to 1 decimal place
tol = 0.1
assert abs(r[-1] - 2.0) < tol
Test that adjusted w obtains 4th order convergence
r, E, dt = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
print ’adjust w rates:’, r
assert abs(r[-1] - 4.0) < tol

The complete code appears in the file vib_undamped.py.

Visualizing convergence rates with slope markers Tony S. Yu has written a
script plotslopes.py2 that is very useful to indicate the slope of a graph, es-
pecially a graph like lnE D r ln�t C lnC arising from the model E D C�tr .
A copy of the script resides in the src/vib3 directory. Let us use it to compare
the original method for u00 C !2u D 0 with the same method applied to the equa-
tion with a modified !. We make log-log plots of the error versus �t . For each
curve we attach a slope marker using the slope_marker((x,y), r) function
from plotslopes.py, where (x,y) is the position of the marker and r and the
slope (.r; 1/), here (2,1) and (4,1).

def plot_convergence_rates():
r2, E2, dt2 = convergence_rates(

m=5, solver_function=solver, num_periods=8)
plt.loglog(dt2, E2)
r4, E4, dt4 = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
plt.loglog(dt4, E4)
plt.legend([’original scheme’, r’adjusted ω’],

loc=’upper left’)
plt.title(’Convergence of finite difference methods’)
from plotslopes import slope_marker
slope_marker((dt2[1], E2[1]), (2,1))
slope_marker((dt4[1], E4[1]), (4,1))

2 http://goo.gl/A4Utm7
3 http://tinyurl.com/nu656p2/vib

http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib
http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib

10 1 Vibration ODEs

Fig. 1.1 Empirical convergence rate curves with special slope marker

Figure 1.1 displays the two curves with the markers. The match of the curve
slope and the marker slope is excellent.

1.2.3 Scaled Model

It is advantageous to use dimensionless variables in simulations, because fewer pa-
rameters need to be set. The present problem is made dimensionless by introducing
dimensionless variables Nt D t=tc and Nu D u=uc, where tc and uc are characteristic
scales for t and u, respectively. We refer to Section 2.2.1 in [11] for all details about
this scaling.

The scaled ODE problem reads

uc

t2c

d 2 Nu
d Nt2 C uc Nu D 0; uc Nu.0/ D I; uc

tc

d Nu
d Nt .0/ D 0 :

A common choice is to take tc as one period of the oscillations, tc D 2�=w, and
uc D I . This gives the dimensionless model

d2 Nu
d Nt2 C 4�

2 Nu D 0; Nu.0/ D 1; Nu0.0/ D 0 : (1.13)

Observe that there are no physical parameters in (1.13)! We can therefore perform
a single numerical simulation Nu.Nt / and afterwards recover any u.t I!; I / by

u.t I!; I / D uc Nu.t=tc/ D I Nu.!t=.2�// :
We can easily check this assertion: the solution of the scaled problem is Nu.Nt / D

cos.2� Nt/. The formula for u in terms of Nu gives u D I cos.!t/, which is nothing
but the solution of the original problem with dimensions.

1.3 Visualization of Long Time Simulations 11

The scaled model can be run by calling solver(I=1, w=2*pi, dt, T). Each
period is now 1 and T simply counts the number of periods. Choosing dt as 1./M
gives M time steps per period.

1.3 Visualization of Long Time Simulations

Figure 1.2 shows a comparison of the exact and numerical solution for the scaled
model (1.13) with �t D 0:1; 0:05. From the plot we make the following observa-
tions:

� The numerical solution seems to have correct amplitude.
� There is an angular frequency error which is reduced by decreasing the time step.
� The total angular frequency error grows with time.

By angular frequency error we mean that the numerical angular frequency differs
from the exact !. This is evident by looking at the peaks of the numerical solution:
these have incorrect positions compared with the peaks of the exact cosine solution.
The effect can be mathematically expressed by writing the numerical solution as
I cos Q!t , where Q! is not exactly equal to !. Later, we shall mathematically quantify
this numerical angular frequency Q!.

1.3.1 Using aMoving Plot Window

In vibration problems it is often of interest to investigate the system’s behavior
over long time intervals. Errors in the angular frequency accumulate and become
more visible as time grows. We can investigate long time series by introducing
a moving plot window that can move along with the p most recently computed
periods of the solution. The SciTools4 package contains a convenient tool for
this: MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows
a demo and a description of its use. The function below utilizes the moving plot

Fig. 1.2 Effect of halving the time step

4 https://github.com/hplgit/scitools

https://github.com/hplgit/scitools
https://github.com/hplgit/scitools

12 1 Vibration ODEs

window and is in fact called by the main function in the vib_undampedmodule if
the number of periods in the simulation exceeds 10.

def visualize_front(u, t, I, w, savefig=False, skip_frames=1):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
Plots are saved to files if savefig is True.
Only each skip_frames-th plot is saved (e.g., if
skip_frame=10, only each 10th plot is saved to file;
this is convenient if plot files corresponding to
different time steps are to be compared).
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow
from math import pi

Remove all old plot files tmp_*.png
import glob, os
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

P = 2*pi/w # one period
umin = 1.2*u.min(); umax = -umin
dt = t[1] - t[0]
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=dt,
yaxis=[umin, umax],
mode=’continuous drawing’)

frame_counter = 0
for n in range(1,len(u)):

if plot_manager.plot(n):
s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig and n % skip_frames == 0:
filename = ’tmp_%04d.png’ % frame_counter
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]
frame_counter += 1

plot_manager.update(n)

We run the scaled problem (the default values for the command-line arguments
–I and –w correspond to the scaled problem) for 40 periods with 20 time steps per
period:

Terminal

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

1.3 Visualization of Long Time Simulations 13

The moving plot window is invoked, and we can follow the numerical and exact
solutions as time progresses. From this demo we see that the angular frequency
error is small in the beginning, and that it becomes more prominent with time. A
new run with �t D 0:1 (i.e., only 10 time steps per period) clearly shows that
the phase errors become significant even earlier in the time series, deteriorating the
solution further.

1.3.2 Making Animations

Producing standard video formats The visualize_front function stores all
the plots in files whose names are numbered: tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. From these files we may make a movie. The Flash
format is popular,

Terminal

Terminal> ffmpeg -r 25 -i tmp_%04d.png -c:v flv movie.flv

The ffmpeg program can be replaced by the avconv program in the above com-
mand if desired (but at the time of this writing it seems to be more momentum in
the ffmpeg project). The -r option should come first and describes the number
of frames per second in the movie (even if we would like to have slow movies,
keep this number as large as 25, otherwise files are skipped from the movie). The
-i option describes the name of the plot files. Other formats can be generated by
changing the video codec and equipping the video file with the right extension:

Format Codec and filename
Flash -c:v flv movie.flv
MP4 -c:v libx264 movie.mp4
WebM -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

The video file can be played by some video player like vlc, mplayer, gxine, or
totem, e.g.,

Terminal

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to use the
HTML5 video tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

14 1 Vibration ODEs

Modern browsers do not support all of the video formats. MP4 is needed to suc-
cessfully play the videos on Apple devices that use the Safari browser. WebM is
the preferred format for Chrome, Opera, Firefox, and Internet Explorer v9+. Flash
was a popular format, but older browsers that required Flash can play MP4. All
browsers that work with Ogg can also work with WebM. This means that to have
a video work in all browsers, the video should be available in the MP4 and WebM
formats. The proper HTML code reads

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.mp4’ type=’video/mp4;
codecs="avc1.42E01E, mp4a.40.2"’>

<source src=’movie.webm’ type=’video/webm;
codecs="vp8, vorbis"’>

</video>

The MP4 format should appear first to ensure that Apple devices will load the video
correctly.

Caution: number the plot files correctly
To ensure that the individual plot frames are shown in correct order, it is im-
portant to number the files with zero-padded numbers (0000, 0001, 0002, etc.).
The printf format %04d specifies an integer in a field of width 4, padded with
zeros from the left. A simple Unix wildcard file specification like tmp_*.png
will then list the frames in the right order. If the numbers in the filenames were
not zero-padded, the frame tmp_11.pngwould appear before tmp_2.png in the
movie.

Playing PNG files in a web browser The scitools movie command can create
a movie player for a set of PNG files such that a web browser can be used to watch
the movie. This interface has the advantage that the speed of the movie can easily
be controlled, a feature that scientists often appreciate. The command for creating
an HTML with a player for a set of PNG files tmp_*.png goes like

Terminal

Terminal> scitools movie output_file=vib.html fps=4 tmp_*.png

The fps argument controls the speed of the movie (“frames per second”).
To watch the movie, load the video file vib.html into some browser, e.g.,

Terminal

Terminal> google-chrome vib.html # invoke web page

1.3 Visualization of Long Time Simulations 15

Click on Start movie to see the result. Moving this movie to some other place
requires moving vib.html and all the PNG files tmp_*.png:

Terminal

Terminal> mkdir vib_dt0.1
Terminal> mv tmp_*.png vib_dt0.1
Terminal> mv vib.html vib_dt0.1/index.html

Making animated GIF files The convert program from the ImageMagick soft-
ware suite can be used to produce animated GIF files from a set of PNG files:

Terminal

Terminal> convert -delay 25 tmp_vib*.png tmp_vib.gif

The -delay option needs an argument of the delay between each frame, measured
in 1/100 s, so 4 frames/s here gives 25/100 s delay. Note, however, that in this
particular example with �t D 0:05 and 40 periods, making an animated GIF file
out of the large number of PNG files is a very heavy process and not considered
feasible. Animated GIFs are best suited for animations with not so many frames
and where you want to see each frame and play them slowly.

1.3.3 Using Bokeh to Compare Graphs

Instead of a moving plot frame, one can use tools that allow panning by the mouse.
For example, we can show four periods of several signals in several plots and then
scroll with the mouse through the rest of the simulation simultaneously in all the
plot windows. The Bokeh5 plotting library offers such tools, but the plots must be
displayed in a web browser. The documentation of Bokeh is excellent, so here we
just show how the library can be used to compare a set of u curves corresponding to
long time simulations. (By the way, the guidance to correct pronunciation of Bokeh
in the documentation6 and onWikipedia7 is not directly compatible with a YouTube
video8 . . .).

Imagine we have performed experiments for a set of �t values. We want each
curve, together with the exact solution, to appear in a plot, and then arrange all plots
in a grid-like fashion:

5 http://bokeh.pydata.org/en/latest
6 http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
7 https://en.wikipedia.org/wiki/Bokeh
8 https://www.youtube.com/watch?v=OR8HSHevQTM

http://bokeh.pydata.org/en/latest
http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM
http://bokeh.pydata.org/en/latest
http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM

16 1 Vibration ODEs

Furthermore, we want the axes to couple such that if we move into the future in
one plot, all the other plots follows (note the displaced t axes!):

A function for creating a Bokeh plot, given a list of u arrays and corresponding t
arrays, is implemented below. The code combines data from different simulations,
described compactly in a list of strings legends.

1.3 Visualization of Long Time Simulations 17

def bokeh_plot(u, t, legends, I, w, t_range, filename):
"""
Make plots for u vs t using the Bokeh library.
u and t are lists (several experiments can be compared).
legens contain legend strings for the various u,t pairs.
"""
if not isinstance(u, (list,tuple)):

u = [u] # wrap in list
if not isinstance(t, (list,tuple)):

t = [t] # wrap in list
if not isinstance(legends, (list,tuple)):

legends = [legends] # wrap in list

import bokeh.plotting as plt
plt.output_file(filename, mode=’cdn’, title=’Comparison’)
Assume that all t arrays have the same range
t_fine = np.linspace(0, t[0][-1], 1001) # fine mesh for u_e
tools = ’pan,wheel_zoom,box_zoom,reset,’\

’save,box_select,lasso_select’
u_range = [-1.2*I, 1.2*I]
font_size = ’8pt’
p = [] # list of plot objects
Make the first figure
p_ = plt.figure(

width=300, plot_height=250, title=legends[0],
x_axis_label=’t’, y_axis_label=’u’,
x_range=t_range, y_range=u_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[0], u[0], line_color=’blue’)
Add exact solution
u_e = u_exact(t_fine, I, w)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)
Make the rest of the figures and attach their axes to
the first figure’s axes
for i in range(1, len(t)):

p_ = plt.figure(
width=300, plot_height=250, title=legends[i],
x_axis_label=’t’, y_axis_label=’u’,
x_range=p[0].x_range, y_range=p[0].y_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size = font_size
p_.yaxis.axis_label_text_font_size = font_size
p_.line(t[i], u[i], line_color=’blue’)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)

Arrange all plots in a grid with 3 plots per row
grid = [[]]
for i, p_ in enumerate(p):

grid[-1].append(p_)
if (i+1) % 3 == 0:

New row
grid.append([])

plot = plt.gridplot(grid, toolbar_location=’left’)
plt.save(plot)
plt.show(plot)

18 1 Vibration ODEs

A particular example using the bokeh_plot function appears below.

def demo_bokeh():
"""Solve a scaled ODE u’’ + u = 0."""
from math import pi
w = 1.0 # Scaled problem (frequency)
P = 2*np.pi/w # Period
num_steps_per_period = [5, 10, 20, 40, 80]
T = 40*P # Simulation time: 40 periods
u = [] # List of numerical solutions
t = [] # List of corresponding meshes
legends = []
for n in num_steps_per_period:

dt = P/n
u_, t_ = solver(I=1, w=w, dt=dt, T=T)
u.append(u_)
t.append(t_)
legends.append(’# time steps per period: %d’ % n)

bokeh_plot(u, t, legends, I=1, w=w, t_range=[0, 4*P],
filename=’tmp.html’)

1.3.4 Using a Line-by-Line Ascii Plotter

Plotting functions vertically, line by line, in the terminal window using ascii char-
acters only is a simple, fast, and convenient visualization technique for long time
series. Note that the time axis then is positive downwards on the screen, so we can
let the solution be visualized “forever”. The tool scitools.avplotter.Plotter
makes it easy to create such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
from math import pi
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))

The call p.plot returns a line of text, with the t axis marked and a symbol + for
the first function (u) and o for the second function (the exact solution). Here we
append to this text a time counter reflecting how many periods the current time
point corresponds to. A typical output (! D 2� , �t D 0:05) looks like this:

1.3 Visualization of Long Time Simulations 19

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2

+| o 14.2
+ | 14.2

+ o | 14.3
+ o | 14.4

+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

1.3.5 Empirical Analysis of the Solution

For oscillating functions like those in Fig. 1.2 we may compute the amplitude and
frequency (or period) empirically. That is, we run through the discrete solution
points .tn; un/ and find all maxima and minima points. The distance between two
consecutive maxima (or minima) points can be used as estimate of the local period,
while half the difference between the u value at a maximum and a nearby minimum
gives an estimate of the local amplitude.

The local maxima are the points where

un�1 < un > unC1; n D 1; : : : ; Nt � 1; (1.14)

and the local minima are recognized by

un�1 > un < unC1; n D 1; : : : ; Nt � 1 : (1.15)

In computer code this becomes

def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the two returned objects are lists of tuples.

20 1 Vibration ODEs

Let .ti ; ei /, i D 0; : : : ;M � 1, be the sequence of all the M maxima points,
where ti is the time value and ei the corresponding u value. The local period can be
defined as pi D tiC1 � ti . With Python syntax this reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array since we probably
want to compute with it, e.g., find the corresponding frequencies 2*pi/p.

Having the minima and the maxima, the local amplitude can be calculated as the
difference between two neighboring minimum and maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py.
Since a[i] and p[i] correspond to the i-th amplitude estimate and the i-th

period estimate, respectively, it is most convenient to visualize the a and p values
with the index i on the horizontal axis. (There is no unique time point associated
with either of these estimate since values at two different time points were used in
the computations.)

In the analysis of very long time series, it is advantageous to compute and plot p
and a instead of u to get an impression of the development of the oscillations. Let
us do this for the scaled problem and �t D 0:1; 0:05; 0:01. A ready-made function

plot_empirical_freq_and_amplitude(u, t, I, w)

computes the empirical amplitudes and periods, and creates a plot where the am-
plitudes and angular frequencies are visualized together with the exact amplitude I
and the exact angular frequency w. We can make a little program for creating the
plot:

from vib_undamped import solver, plot_empirical_freq_and_amplitude
from math import pi
dt_values = [0.1, 0.05, 0.01]
u_cases = []
t_cases = []
for dt in dt_values:

Simulate scaled problem for 40 periods
u, t = solver(I=1, w=2*pi, dt=dt, T=40)
u_cases.append(u)
t_cases.append(t)

plot_empirical_freq_and_amplitude(u_cases, t_cases, I=1, w=2*pi)

http://tinyurl.com/nu656p2/vib/vib_empirical_analysis.py

1.4 Analysis of the Numerical Scheme 21

Fig. 1.3 Empirical angular frequency (left) and amplitude (right) for three different time steps

Figure 1.3 shows the result: we clearly see that lowering �t improves the angular
frequency significantly, while the amplitude seems to be more accurate. The lines
with�t D 0:01, corresponding to 100 steps per period, can hardly be distinguished
from the exact values. The next section shows how we can get mathematical insight
into why amplitudes are good while frequencies are more inaccurate.

1.4 Analysis of the Numerical Scheme

1.4.1 Deriving a Solution of the Numerical Scheme

After having seen the phase error grow with time in the previous section, we shall
now quantify this error through mathematical analysis. The key tool in the analysis
will be to establish an exact solution of the discrete equations. The difference equa-
tion (1.7) has constant coefficients and is homogeneous. Such equations are known
to have solutions on the form un D CAn, whereA is some number to be determined
from the difference equation and C is found as the initial condition (C D I). Recall
that n in un is a superscript labeling the time level, while n in An is an exponent.

With oscillating functions as solutions, the algebra will be considerably simpli-
fied if we seek an A on the form

A D ei Q!�t ;

and solve for the numerical frequency Q! rather than A. Note that i D p�1 is the
imaginary unit. (Using a complex exponential function gives simpler arithmetics
than working with a sine or cosine function.) We have

An D ei Q!�t n D ei Q!tn D cos. Q!tn/C i sin. Q!tn/ :

The physically relevant numerical solution can be taken as the real part of this
complex expression.

22 1 Vibration ODEs

The calculations go as

ŒDtDtu�
n D unC1 � 2un C un�1

�t2

D I A
nC1 � 2An C An�1

�t2

D I

�t2

�
ei Q!.tnC�t/ � 2ei Q!tn C ei Q!.tn��t/�

D Iei Q!tn 1

�t2

�
ei Q!�t C ei Q!.��t/ � 2�

D Iei Q!tn 2

�t2
.cosh.i Q!�t/ � 1/

D Iei Q!tn 2

�t2
.cos. Q!�t/ � 1/

D �Iei Q!tn 4

�t2
sin2

� Q!�t
2

�
:

The last line follows from the relation cosx � 1 D �2 sin2.x=2/ (try cos(x)-1 in
wolframalpha.com9 to see the formula).

The scheme (1.7) with un D Iei Q!�t n inserted now gives

� Iei Q!tn 4

�t2
sin2

� Q!�t
2

�
C !2Iei Q!tn D 0; (1.16)

which after dividing by Iei Q!tn results in

4

�t2
sin2

� Q!�t
2

�
D !2 : (1.17)

The first step in solving for the unknown Q! is

sin2
� Q!�t

2

�
D
�
!�t

2

�2
:

Then, taking the square root, applying the inverse sine function, and multiplying
by 2=�t , results in

Q! D ˙ 2

�t
sin�1

�
!�t

2

�
: (1.18)

1.4.2 The Error in the Numerical Frequency

The first observation following (1.18) tells that there is a phase error since the nu-
merical frequency Q! never equals the exact frequency !. But how good is the
approximation (1.18)? That is, what is the error ! � Q! or Q!=!? Taylor series ex-
pansion for small �t may give an expression that is easier to understand than the
complicated function in (1.18):

9 http://www.wolframalpha.com

http://www.wolframalpha.com
http://www.wolframalpha.com

1.4 Analysis of the Numerical Scheme 23

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

Q! D !
�
1C 1

24
!2�t2

�
CO.�t4/ : (1.19)

The error in the numerical frequency is of second-order in�t , and the error vanishes
as �t ! 0. We see that Q! > ! since the term !3�t2=24 > 0 and this is by far
the biggest term in the series expansion for small !�t . A numerical frequency that
is too large gives an oscillating curve that oscillates too fast and therefore “lags
behind” the exact oscillations, a feature that can be seen in the left plot in Fig. 1.2.

Figure 1.4 plots the discrete frequency (1.18) and its approximation (1.19) for
! D 1 (based on the program vib_plot_freq.py). Although Q! is a function of�t
in (1.19), it is misleading to think of�t as the important discretization parameter. It
is the product!�t that is the key discretization parameter. This quantity reflects the
number of time steps per period of the oscillations. To see this, we set P D NP�t ,
where P is the length of a period, and NP is the number of time steps during a
period. Since P and ! are related by P D 2�=!, we get that !�t D 2�=NP ,
which shows that !�t is directly related to NP .

The plot shows that at least NP � 25 � 30 points per period are necessary for
reasonable accuracy, but this depends on the length of the simulation (T) as the total
phase error due to the frequency error grows linearly with time (see Exercise 1.2).

Fig. 1.4 Exact discrete frequency and its second-order series expansion

http://tinyurl.com/nu656p2/vib/vib_plot_freq.py

24 1 Vibration ODEs

1.4.3 Empirical Convergence Rates and Adjusted!

The expression (1.19) suggests that adjusting omega to

!

�
1 � 1

24
!2�t2

�
;

could have effect on the convergence rate of the global error in u (cf. Sect. 1.2.2).
With the convergence_rates function in vib_undamped.py we can easily
check this. A special solver, with adjusted w, is available as the function
solver_adjust_w. A call to convergence_rates with this solver reveals that
the rate is 4.0! With the original, physical ! the rate is 2.0 – as expected from using
second-order finite difference approximations, as expected from the forthcom-
ing derivation of the global error, and as expected from truncation error analysis
analysis as explained in Appendix B.4.1.

Adjusting ! is an ideal trick for this simple problem, but when adding damping
and nonlinear terms, we have no simple formula for the impact on !, and therefore
we cannot use the trick.

1.4.4 Exact Discrete Solution

Perhaps more important than the Q! D ! C O.�t2/ result found above is the fact
that we have an exact discrete solution of the problem:

un D I cos . Q!n�t/ ; Q! D 2

�t
sin�1

�
!�t

2

�
: (1.20)

We can then compute the error mesh function

en D ue.tn/ � un D I cos .!n�t/ � I cos . Q!n�t/ : (1.21)

From the formula cos 2x � cos 2y D �2 sin.x � y/ sin.x C y/ we can rewrite en

so the expression is easier to interpret:

en D �2I sin
�
t
1

2
.! � Q!/

�
sin

�
t
1

2
.! C Q!/

�
: (1.22)

The error mesh function is ideal for verification purposes and you are strongly
encouraged to make a test based on (1.20) by doing Exercise 1.11.

1.4.5 Convergence

We can use (1.19) and (1.21), or (1.22), to show convergence of the numerical
scheme, i.e., en ! 0 as �t ! 0, which implies that the numerical solution ap-
proaches the exact solution as �t approaches to zero. We have that

lim
�t!0

Q! D lim
�t!0

2

�t
sin�1

�
!�t

2

�
D !;

1.4 Analysis of the Numerical Scheme 25

by L’Hopital’s rule. This result could also been computed WolframAlpha10, or we
could use the limit functionality in sympy:

>>> import sympy as sym
>>> dt, w = sym.symbols(’x w’)
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir=’+’)
w

Also (1.19) can be used to establish that Q! ! ! when �t ! 0. It then follows
from the expression(s) for en that en ! 0.

1.4.6 The Global Error

To achieve more analytical insight into the nature of the global error, we can Taylor
expand the error mesh function (1.21). Since Q! in (1.18) contains �t in the de-
nominator we use the series expansion for Q! inside the cosine function. A relevant
sympy session is

>>> from sympy import *
>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

Series expansions in sympy have the inconvenient O() term that prevents further
calculations with the series. We can use the removeO() command to get rid of the
O() term:

>>> w_tilde_series = w_tilde_series.removeO()
>>> w_tilde_series
dt**2*w**3/24 + w

Using this w_tilde_series expression for Qw in (1.21), dropping I (which is a
common factor), and performing a series expansion of the error yields

>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)

Since we are mainly interested in the leading-order term in such expansions (the
term with lowest power in �t , which goes most slowly to zero), we use the
.as_leading_term(dt) construction to pick out this term:

10 http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0
http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

26 1 Vibration ODEs

>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

The last result means that the leading order global (true) error at a point t is
proportional to !3t�t2. Considering only the discrete tn values for t , tn is related
to �t through tn D n�t . The factor sin.!t/ can at most be 1, so we use this value
to bound the leading-order expression to its maximum value

en D 1

24
n!3�t3 :

This is the dominating term of the error at a point.
We are interested in the accumulated global error, which can be taken as the `2

norm of en. The norm is simply computed by summing contributions from all mesh
points:

jjenjj2
`2
D �t

NtX
nD0

1

242
n2!6�t6 D 1

242
!6�t7

NtX
nD0

n2 :

The sum
PNt

nD0 n
2 is approximately equal to 1

3
N 3
t . Replacing Nt by T=�t and

taking the square root gives the expression

jjenjj`2 D
1

24

r
T 3

3
!3�t2 :

This is our expression for the global (or integrated) error. A primary result from
this expression is that the global error is proportional to �t2.

1.4.7 Stability

Looking at (1.20), it appears that the numerical solution has constant and correct
amplitude, but an error in the angular frequency. A constant amplitude is not nec-
essarily the case, however! To see this, note that if only �t is large enough, the
magnitude of the argument to sin�1 in (1.18) may be larger than 1, i.e., !�t=2 > 1.
In this case, sin�1.!�t=2/ has a complex value and therefore Q! becomes com-
plex. Type, for example, asin(x) in wolframalpha.com11 to see basic properties
of sin�1.x/.

A complex Q! can be written Q! D Q!r C i Q!i . Since sin�1.x/ has a negative
imaginary part for x > 1, Q!i < 0, which means that ei Q!t D e� Q!i t ei Q!r t will lead to
exponential growth in time because e� Q!i t with Q!i < 0 has a positive exponent.

Stability criterion
We do not tolerate growth in the amplitude since such growth is not present in
the exact solution. Therefore, we must impose a stability criterion so that the

11 http://www.wolframalpha.com

http://www.wolframalpha.com
http://www.wolframalpha.com

1.4 Analysis of the Numerical Scheme 27

Fig. 1.5 Growing, unstable solution because of a time step slightly beyond the stability limit

argument in the inverse sine function leads to real and not complex values of Q!.
The stability criterion reads

!�t

2
� 1) �t � 2

!
: (1.23)

With ! D 2� , �t > ��1 D 0:3183098861837907will give growing solutions.
Figure 1.5 displays what happens when �t D 0:3184, which is slightly above the
critical value: �t D ��1 C 9:01 � 10�5.

1.4.8 About the Accuracy at the Stability Limit

An interesting question is whether the stability condition �t < 2=! is unfortu-
nate, or more precisely: would it be meaningful to take larger time steps to speed
up computations? The answer is a clear no. At the stability limit, we have that
sin�1 !�t=2 D sin�1 1 D �=2, and therefore Q! D �=�t . (Note that the ap-
proximate formula (1.19) is very inaccurate for this value of �t as it predicts
Q! D 2:34=pi , which is a 25 percent reduction.) The corresponding period of the
numerical solution is QP D 2�= Q! D 2�t , which means that there is just one time
step �t between a peak (maximum) and a through12 (minimum) in the numerical
solution. This is the shortest possible wave that can be represented in the mesh! In
other words, it is not meaningful to use a larger time step than the stability limit.

Also, the error in angular frequency when �t D 2=! is severe: Figure 1.6
shows a comparison of the numerical and analytical solution with ! D 2� and

12 https://simple.wikipedia.org/wiki/Wave_(physics)

https://simple.wikipedia.org/wiki/Wave_(physics)
https://simple.wikipedia.org/wiki/Wave_(physics)

28 1 Vibration ODEs

Fig. 1.6 Numerical solution with �t exactly at the stability limit

�t D 2=! D ��1. Already after one period, the numerical solution has a through
while the exact solution has a peak (!). The error in frequency when �t is at the
stability limit becomes ! � Q! D !.1 � �=2/ � �0:57!. The corresponding error
in the period is P � QP � 0:36P . The error after m periods is then 0:36mP . This
error has reached half a period when m D 1=.2 � 0:36/ � 1:38, which theoretically
confirms the observations in Fig. 1.6 that the numerical solution is a through ahead
of a peak already after one and a half period. Consequently, �t should be chosen
much less than the stability limit to achieve meaningful numerical computations.

Summary
From the accuracy and stability analysis we can draw three important conclu-
sions:

1. The key parameter in the formulas is p D !�t . The period of oscillations
is P D 2�=!, and the number of time steps per period is NP D P=�t .
Therefore, p D !�t D 2�=NP , showing that the critical parameter is the
number of time steps per period. The smallest possible NP is 2, showing that
p 2 .0; ��.

2. Provided p � 2, the amplitude of the numerical solution is constant.
3. The ratio of the numerical angular frequency and the exact one is Q!=! �
1 C 1

24
p2. The error 1

24
p2 leads to wrongly displaced peaks of the numer-

ical solution, and the error in peak location grows linearly with time (see
Exercise 1.2).

1.5 Alternative Schemes Based on 1st-Order Equations 29

1.5 Alternative Schemes Based on 1st-Order Equations

A standard technique for solving second-order ODEs is to rewrite them as a system
of first-order ODEs and then choose a solution strategy from the vast collection of
methods for first-order ODE systems. Given the second-order ODE problem

u00 C !2u D 0; u.0/ D I; u0.0/ D 0;

we introduce the auxiliary variable v D u0 and express the ODE problem in terms
of first-order derivatives of u and v:

u0 D v; (1.24)

v0 D �!2u : (1.25)

The initial conditions become u.0/ D I and v.0/ D 0.

1.5.1 The Forward Euler Scheme

A Forward Euler approximation to our 2�2 system of ODEs (1.24)–(1.25) becomes

ŒDCt u D v�n; (1.26)

ŒDCt v D �!2u�n; (1.27)

or written out,

unC1 D un C�tvn; (1.28)

vnC1 D vn ��t!2un : (1.29)

Let us briefly compare this Forward Euler method with the centered difference
scheme for the second-order differential equation. We have from (1.28) and (1.29)
applied at levels n and n � 1 that

unC1 D un C�tvn D un C�t.vn�1 ��t!2un�1/ :

Since from (1.28)

vn�1 D 1

�t
.un � un�1/;

it follows that
unC1 D 2un � un�1 ��t2!2un�1;

which is very close to the centered difference scheme, but the last term is evaluated
at tn�1 instead of tn. Rewriting, so that �t2!2un�1 appears alone on the right-hand
side, and then dividing by �t2, the new left-hand side is an approximation to u00 at
tn, while the right-hand side is sampled at tn�1. All terms should be sampled at the
same mesh point, so using !2un�1 instead of !2un points to a kind of mathematical
error in the derivation of the scheme. This error turns out to be rather crucial for the

30 1 Vibration ODEs

accuracy of the Forward Euler method applied to vibration problems (Sect. 1.5.4
has examples).

The reasoning above does not imply that the Forward Euler scheme is not correct,
but more that it is almost equivalent to a second-order accurate scheme for the
second-order ODE formulation, and that the error committed has to do with a wrong
sampling point.

1.5.2 The Backward Euler Scheme

A Backward Euler approximation to the ODE system is equally easy to write up in
the operator notation:

ŒD�t u D v�nC1; (1.30)

ŒD�t v D �!u�nC1 : (1.31)

This becomes a coupled system for unC1 and vnC1:

unC1 ��tvnC1 D un; (1.32)

vnC1 C�t!2unC1 D vn : (1.33)

We can compare (1.32)–(1.33) with the centered scheme (1.7) for the second-
order differential equation. To this end, we eliminate vnC1 in (1.32) using (1.33)
solved with respect to vnC1. Thereafter, we eliminate vn using (1.32) solved with
respect to vnC1 and also replacing nC1 by n and n by n�1. The resulting equation
involving only unC1, un, and un�1 can be ordered as

unC1 � 2un C un�1
�t2

D �!2unC1;
which has almost the same form as the centered scheme for the second-order dif-
ferential equation, but the right-hand side is evaluated at unC1 and not un. This
inconsistent sampling of terms has a dramatic effect on the numerical solution, as
we demonstrate in Sect. 1.5.4.

1.5.3 The Crank-Nicolson Scheme

The Crank-Nicolson scheme takes this form in the operator notation:

ŒDtu D vt �nC 1
2 ; (1.34)

ŒDtv D �!2ut �nC 1
2 : (1.35)

Writing the equations out and rearranging terms, shows that this is also a coupled
system of two linear equations at each time level:

unC1 � 1
2
�tvnC1 D un C 1

2
�tvn; (1.36)

vnC1 C 1

2
�t!2unC1 D vn � 1

2
�t!2un : (1.37)

1.5 Alternative Schemes Based on 1st-Order Equations 31

We may compare also this scheme to the centered discretization of the second-
order ODE. It turns out that the Crank-Nicolson scheme is equivalent to the dis-
cretization

unC1 � 2un C un�1
�t2

D �!2 1
4
.unC1C 2unC un�1/ D �!2un CO.�t2/ : (1.38)

That is, the Crank-Nicolson is equivalent to (1.7) for the second-order ODE, apart
from an extra term of size �t2, but this is an error of the same order as in the finite
difference approximation on the left-hand side of the equation anyway. The fact
that the Crank-Nicolson scheme is so close to (1.7) makes it a much better method
than the Forward or Backward Euler methods for vibration problems, as will be
illustrated in Sect. 1.5.4.

Deriving (1.38) is a bit tricky. We start with rewriting the Crank-Nicolson equa-
tions as follows

unC1 � un D 1

2
�t.vnC1 C vn/; (1.39)

vnC1 D vn � 1
2
�t!2.unC1 C un/; (1.40)

and add the latter at the previous time level as well:

vn D vn�1 � 1
2
�t!2.un C un�1/ : (1.41)

We can also rewrite (1.39) at the previous time level as

vn C vn�1 D 2

�t
.un � un�1/ : (1.42)

Inserting (1.40) for vnC1 in (1.39) and (1.41) for vn in (1.39) yields after some
reordering:

unC1 � un D 1

2

�
�1
2
�t!2.unC1 C 2un C un�1/C vn C vn�1

�
:

Now, vn C vn�1 can be eliminated by means of (1.42). The result becomes

unC1 � 2un C un�1 D ��t2!2 1
4
.unC1 C 2un C un�1/ : (1.43)

It can be shown that

1

4
.unC1 C 2un C un�1/ � un CO.�t2/;

meaning that (1.43) is an approximation to the centered scheme (1.7) for the second-
order ODE where the sampling error in the term �t2!2un is of the same order as
the approximation errors in the finite differences, i.e., O.�t2/. The Crank-Nicolson
scheme written as (1.43) therefore has consistent sampling of all terms at the same
time point tn.

32 1 Vibration ODEs

1.5.4 Comparison of Schemes

We can easily compare methods like the ones above (and many more!) with the aid
of the Odespy13 package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):
v, u numbering for EulerCromer to work well
v, u = u # u is array of length 2 holding our [v, u]
return [-w**2*u, v]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([0, I])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the source
file vib_undamped_odespy.py for details. Observe that keyword arguments in
f(u,t,w=1) can be supplied through a solver parameter f_kwargs (dictionary of
additional keyword arguments to f).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson
schemes is done like this:

solvers = [
odespy.ForwardEuler(f),
Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the computed so-
lutions with the various methods in the solvers list: one plot with u.t/ versus t ,
and one phase plane plot where v is plotted against u. That is, the phase plane
plot is the curve .u.t/; v.t// parameterized by t . Analytically, u D I cos.!t/ and
v D u0 D �!I sin.!t/. The exact curve .u.t/; v.t// is therefore an ellipse, which
often looks like a circle in a plot if the axes are automatically scaled. The important
feature, however, is that the exact curve .u.t/; v.t// is closed and repeats itself for
every period. Not all numerical schemes are capable of doing that, meaning that the
amplitude instead shrinks or grows with time.

13 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py
https://github.com/hplgit/odespy

1.5 Alternative Schemes Based on 1st-Order Equations 33

Fig. 1.7 Comparison of classical schemes in the phase plane for two time step values

Fig. 1.8 Comparison of solution curves for classical schemes

Figure 1.7 show the results. Note that Odespy applies the label MidpointImplicit
for what we have specified as CrankNicolson in the code (CrankNicolson is
just a synonym for class MidpointImplicit in the Odespy code). The Forward
Euler scheme in Fig. 1.7 has a pronounced spiral curve, pointing to the fact that the
amplitude steadily grows, which is also evident in Fig. 1.8. The Backward Euler
scheme has a similar feature, except that the spriral goes inward and the amplitude
is significantly damped. The changing amplitude and the spiral form decreases with
decreasing time step. The Crank-Nicolson scheme looks much more accurate. In
fact, these plots tell that the Forward and Backward Euler schemes are not suitable
for solving our ODEs with oscillating solutions.

1.5.5 Runge-Kutta Methods

We may run two other popular standard methods for first-order ODEs, the 2nd- and
4th-order Runge-Kutta methods, to see how they perform. Figures 1.9 and 1.10
show the solutions with larger �t values than what was used in the previous two
plots.

34 1 Vibration ODEs

Fig. 1.9 Comparison of Runge-Kutta schemes in the phase plane

Fig. 1.10 Comparison of Runge-Kutta schemes

The visual impression is that the 4th-order Runge-Kutta method is very accurate,
under all circumstances in these tests, while the 2nd-order scheme suffers from
amplitude errors unless the time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in Fig. 1.11.
It is clear that the Crank-Nicolson scheme outperforms the 2nd-order Runge-Kutta
method. Both schemes have the same order of accuracy O.�t2/, but their dif-
ferences in the accuracy that matters in a real physical application is very clearly
pronounced in this example. Exercise 1.13 invites you to investigate how the am-
plitude is computed by a series of famous methods for first-order ODEs.

1.5.6 Analysis of the Forward Euler Scheme

We may try to find exact solutions of the discrete equations (1.28)–(1.29) in the
Forward Euler method to better understand why this otherwise useful method has
so bad performance for vibration ODEs. An “ansatz” for the solution of the discrete
equations is

un D IAn;
vn D qIAn;

1.5 Alternative Schemes Based on 1st-Order Equations 35

Fig. 1.11 Long-time behavior of the Crank-Nicolson scheme in the phase plane

where q and A are scalars to be determined. We could have used a complex expo-
nential form ei Q!n�t since we get oscillatory solutions, but the oscillations grow in
the Forward Euler method, so the numerical frequency Q! will be complex anyway
(producing an exponentially growing amplitude). Therefore, it is easier to just work
with potentially complex A and q as introduced above.

The Forward Euler scheme leads to

A D 1C�tq;
A D 1 ��t!2q�1 :

We can easily eliminate A, get q2 C !2 D 0, and solve for

q D ˙i!;

which gives
A D 1˙�ti! :

We shall take the real part of An as the solution. The two values of A are complex
conjugates, and the real part of An will be the same for both roots. This is easy to
realize if we rewrite the complex numbers in polar form, which is also convenient
for further analysis and understanding. The polar form rei� of a complex number
x C iy has r D p

x2 C y2 and � D tan�1.y=x/. Hence, the polar form of the two
values for A becomes

1˙�ti! D
p
1C !2�t2e˙i tan�1.!�t/ :

Now it is very easy to compute An:

.1˙�ti!/n D .1C !2�t2/n=2e˙ni tan�1.!�t/ :

Since cos.�n/ D cos.��n/, the real parts of the two numbers become the same.
We therefore continue with the solution that has the plus sign.

The general solution is un D CAn, where C is a constant determined from the
initial condition: u0 D C D I . We have un D IAn and vn D qIAn. The final

36 1 Vibration ODEs

solutions are just the real part of the expressions in polar form:

un D I.1C !2�t2/n=2 cos.n tan�1.!�t//; (1.44)

vn D �!I.1C !2�t2/n=2 sin.n tan�1.!�t// : (1.45)

The expression .1 C !2�t2/n=2 causes growth of the amplitude, since a number
greater than one is raised to a positive exponent n=2. We can develop a series
expression to better understand the formula for the amplitude. Introducing p D
!�t as the key variable and using sympy gives

>>> from sympy import *
>>> p = symbols(’p’, real=True)
>>> n = symbols(’n’, integer=True, positive=True)
>>> amplitude = (1 + p**2)**(n/2)
>>> amplitude.series(p, 0, 4)
1 + n*p**2/2 + O(p**4)

The amplitude goes like 1C 1
2
n!2�t2, clearly growing linearly in time (with n).

We can also investigate the error in the angular frequency by a series expansion:

>>> n*atan(p).series(p, 0, 4)
n*(p - p**3/3 + O(p**4))

This means that the solution for un can be written as

un D
�
1C 1

2
n!2�t2 CO.�t4/

�
cos

�
!t � 1

3
!t�t2 CO.�t4/

�
:

The error in the angular frequency is of the same order as in the scheme (1.7) for
the second-order ODE, but the error in the amplitude is severe.

1.6 Energy Considerations

The observations of various methods in the previous section can be better inter-
preted if we compute a quantity reflecting the total energy of the system. It turns out
that this quantity,

E.t/ D 1

2
.u0/2 C 1

2
!2u2;

is constant for all t . Checking that E.t/ really remains constant brings evidence
that the numerical computations are sound. It turns out that E is proportional to the
mechanical energy in the system. Conservation of energy is much used to check
numerical simulations, so it is well invested time to dive into this subject.

1.6.1 Derivation of the Energy Expression

We start out with multiplying

u00 C !2u D 0;

1.6 Energy Considerations 37

by u0 and integrating from 0 to T :

TZ
0

u00u0dt C
TZ
0

!2uu0dt D 0 :

Observing that

u00u0 D d

dt

1

2
.u0/2; uu0 D d

dt

1

2
u2;

we get
TZ
0

�
d

dt

1

2
.u0/2 C d

dt

1

2
!2u2

�
dt D E.T / � E.0/ D 0;

where we have introduced

E.t/ D 1

2
.u0/2 C 1

2
!2u2 : (1.46)

The important result from this derivation is that the total energy is constant:

E.t/ D E.0/ :

E.t/ is closely related to the system’s energy
The quantity E.t/ derived above is physically not the mechanical energy of a
vibrating mechanical system, but the energy per unit mass. To see this, we start
with Newton’s second law F D ma (F is the sum of forces,m is the mass of the
system, and a is the acceleration). The displacement u is related to a through
a D u00. With a spring force as the only force we have F D �ku, where k is a
spring constant measuring the stiffness of the spring. Newton’s second law then
implies the differential equation

�ku D mu00) mu00 C ku D 0 :

This equation of motion can be turned into an energy balance equation by finding
the work done by each term during a time interval Œ0; T �. To this end, we multiply
the equation by du D u0dt and integrate:

TZ
0

muu0dt C
TZ
0

kuu0dt D 0 :

The result is
QE.t/ D Ek.t/CEp.t/ D 0;

where

Ek.t/ D 1

2
mv2; v D u0; (1.47)

38 1 Vibration ODEs

is the kinetic energy of the system, and

Ep.t/ D 1

2
ku2 (1.48)

is the potential energy. The sum QE.t/ is the total mechanical energy. The deriva-
tion demonstrates the famous energy principle that, under the right physical
circumstances, any change in the kinetic energy is due to a change in potential
energy and vice versa. (This principle breaks down when we introduce damping
in the system, as we do in Sect. 1.10.)

The equationmu00Cku D 0 can be divided bym and written as u00C!2u D 0
for ! D pk=m. The energy expression E.t/ D 1

2
.u0/2C 1

2
!2u2 derived earlier

is then QE.t/=m, i.e., mechanical energy per unit mass.

Energy of the exact solution Analytically, we have u.t/ D I cos!t , if u.0/ D I
and u0.0/ D 0, so we can easily check the energy evolution and confirm that E.t/
is constant:

E.t/ D 1

2
I 2.�! sin!t/2 C 1

2
!2I 2 cos2 !t D 1

2
!2.sin2 !t C cos2 !t/ D 1

2
!2 :

Growth of energy in the Forward Euler scheme It is easy to show that the energy
in the Forward Euler scheme increases when stepping from time level n to nC 1.

EnC1 D 1

2
.vnC1/2 C 1

2
!2.unC1/2

D 1

2
.vn � !2�tun/2 C 1

2
!2.un C�tvn/2

D .1C�t2!2/En :

1.6.2 An Error Measure Based on Energy

The constant energy is well expressed by its initial value E.0/, so that the error in
mechanical energy can be computed as a mesh function by

enE D
1

2

�
unC1 � un�1

2�t

�2
C 1

2
!2.un/2 � E.0/; n D 1; : : : ; Nt � 1; (1.49)

where

E.0/ D 1

2
V 2 C 1

2
!2I 2;

if u.0/ D I and u0.0/ D V . Note that we have used a centered approximation to
u0: u0.tn/ � ŒD2tu�

n.
A useful norm of the mesh function enE for the discrete mechanical energy can

be the maximum absolute value of enE :

jjenE jj`1 D max
1�n<Nt

jenE j :

1.6 Energy Considerations 39

Alternatively, we can compute other norms involving integration over all mesh
points, but we are often interested in worst case deviation of the energy, and then
the maximum value is of particular relevance.

A vectorized Python implementation of enE takes the form

import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for verification.
The value of e_E_norm is also useful for comparing schemes through their ability
to preserve energy. Below is a table demonstrating the relative error in total energy
for various schemes (computed by the vib_undamped_odespy.py program). The
test problem is u00 C 4�2u D 0 with u.0/ D 1 and u0.0/ D 0, so the period is
1 and E.t/ � 4:93. We clearly see that the Crank-Nicolson and the Runge-Kutta
schemes are superior to the Forward and Backward Euler schemes already after one
period.

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 1 0.025 1:678 � 100
Backward Euler 1 0.025 6:235 � 10�1
Crank-Nicolson 1 0.025 1:221 � 10�2
Runge-Kutta 2nd-order 1 0.025 6:076 � 10�3
Runge-Kutta 4th-order 1 0.025 8:214 � 10�3

However, after 10 periods, the picture is much more dramatic:

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 10 0.025 1:788 � 104
Backward Euler 10 0.025 1:000 � 100
Crank-Nicolson 10 0.025 1:221 � 10�2
Runge-Kutta 2nd-order 10 0.025 6:250 � 10�2
Runge-Kutta 4th-order 10 0.025 8:288 � 10�3

The Runge-Kutta and Crank-Nicolson methods hardly change their energy error
with T , while the error in the Forward Euler method grows to huge levels and a
relative error of 1 in the Backward Euler method points to E.t/ ! 0 as t grows
large.

Running multiple values of �t , we can get some insight into the convergence of
the energy error:

http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

40 1 Vibration ODEs

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 10 0.05 1:120 � 108
Forward Euler 10 0.025 1:788 � 104
Forward Euler 10 0.0125 1:374 � 102
Backward Euler 10 0.05 1:000 � 100
Backward Euler 10 0.025 1:000 � 100
Backward Euler 10 0.0125 9:928 � 10�1
Crank-Nicolson 10 0.05 4:756 � 10�2
Crank-Nicolson 10 0.025 1:221 � 10�2
Crank-Nicolson 10 0.0125 3:125 � 10�3
Runge-Kutta 2nd-order 10 0.05 6:152 � 10�1
Runge-Kutta 2nd-order 10 0.025 6:250 � 10�2
Runge-Kutta 2nd-order 10 0.0125 7:631 � 10�3
Runge-Kutta 4th-order 10 0.05 3:510 � 10�2
Runge-Kutta 4th-order 10 0.025 8:288 � 10�3
Runge-Kutta 4th-order 10 0.0125 2:058 � 10�3

A striking fact from this table is that the error of the Forward Euler method is re-
duced by the same factor as�t is reduced by, while the error in the Crank-Nicolson
method has a reduction proportional to �t2 (we cannot say anything for the Back-
ward Euler method). However, for the RK2 method, halving �t reduces the error
by almost a factor of 10 (!), and for the RK4 method the reduction seems propor-
tional to �t2 only (and the trend is confirmed by running smaller time steps, so for
�t D 3:9 � 10�4 the relative error of RK2 is a factor 10 smaller than that of RK4!).

1.7 The Euler-Cromer Method

While the Runge-Kutta methods and the Crank-Nicolson scheme work well for
the vibration equation modeled as a first-order ODE system, both were inferior
to the straightforward centered difference scheme for the second-order equation
u00 C !2u D 0. However, there is a similarly successful scheme available for the
first-order system u0 D v, v0 D �!2u, to be presented below. The ideas of the
scheme and their further developments have become very popular in particle and
rigid body dynamics and hence are widely used by physicists.

1.7.1 Forward-Backward Discretization

The idea is to apply a Forward Euler discretization to the first equation and a Back-
ward Euler discretization to the second. In operator notation this is stated as

ŒDCt u D v�n; (1.50)

ŒD�t v D �!2u�nC1 : (1.51)

1.7 The Euler-Cromer Method 41

We can write out the formulas and collect the unknowns on the left-hand side:

unC1 D un C�tvn; (1.52)

vnC1 D vn ��t!2unC1 : (1.53)

We realize that after unC1 has been computed from (1.52), it may be used directly
in (1.53) to compute vnC1.

In physics, it is more common to update the v equation first, with a forward
difference, and thereafter the u equation, with a backward difference that applies
the most recently computed v value:

vnC1 D vn ��t!2un; (1.54)

unC1 D un C�tvnC1 : (1.55)

The advantage of ordering the ODEs as in (1.54)–(1.55) becomes evident when con-
sidering complicated models. Such models are included if we write our vibration
ODE more generally as

u00 C g.u; u0; t/ D 0 :
We can rewrite this second-order ODE as two first-order ODEs,

v0 D �g.u; v; t/;
u0 D v :

This rewrite allows the following scheme to be used:

vnC1 D vn ��t g.un; vn; t/;
unC1 D un C�t vnC1 :

We realize that the first update works well with any g since old values un and vn are
used. Switching the equations would demand unC1 and vnC1 values in g and result
in nonlinear algebraic equations to be solved at each time level.

The scheme (1.54)–(1.55) goes under several names: forward-backward scheme,
semi-implicit Euler method14, semi-explicit Euler, symplectic Euler, Newton-
Störmer-Verlet, and Euler-Cromer. We shall stick to the latter name.

How does the Euler-Cromer method preserve the total energy? We may run the
example from Sect. 1.6.2:

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Euler-Cromer 10 0.05 2:530 � 10�2
Euler-Cromer 10 0.025 6:206 � 10�3
Euler-Cromer 10 0.0125 1:544 � 10�3

The relative error in the total energy decreases as�t2, and the error level is slightly
lower than for the Crank-Nicolson and Runge-Kutta methods.

14 http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

42 1 Vibration ODEs

1.7.2 Equivalence with the Scheme for the Second-Order ODE

We shall now show that the Euler-Cromer scheme for the system of first-order equa-
tions is equivalent to the centered finite difference method for the second-order
vibration ODE (!).

We may eliminate the vn variable from (1.52)–(1.53) or (1.54)–(1.55). The vnC1
term in (1.54) can be eliminated from (1.55):

unC1 D un C�t.vn � !2�tun/ : (1.56)

The vn quantity can be expressed by un and un�1 using (1.55):

vn D un � un�1
�t

;

and when this is inserted in (1.56) we get

unC1 D 2un � un�1 ��t2!2un; (1.57)

which is nothing but the centered scheme (1.7)! The two seemingly different numer-
ical methods are mathematically equivalent. Consequently, the previous analysis of
(1.7) also applies to the Euler-Cromer method. In particular, the amplitude is con-
stant, given that the stability criterion is fulfilled, but there is always an angular
frequency error (1.19). Exercise 1.18 gives guidance on how to derive the exact
discrete solution of the two equations in the Euler-Cromer method.

Although the Euler-Cromer scheme and the method (1.7) are equivalent, there
could be differences in the way they handle the initial conditions. Let us look into
this topic. The initial condition u0 D 0 means u0 D v D 0. From (1.54) we get

v1 D v0 ��t!2u0 D �t!2u0;

and from (1.55) it follows that

u1 D u0 C�tv1 D u0 � !2�t2u0 :

When we previously used a centered approximation of u0.0/ D 0 combined with
the discretization (1.7) of the second-order ODE, we got a slightly different result:
u1 D u0 � 1

2
!2�t2u0. The difference is 1

2
!2�t2u0, which is of second order in

�t , seemingly consistent with the overall error in the scheme for the differential
equation model.

A different view can also be taken. If we approximate u0.0/ D 0 by a backward
difference, .u0 � u�1/=�t D 0, we get u�1 D u0, and when combined with (1.7),
it results in u1 D u0 � !2�t2u0. This means that the Euler-Cromer method based
on (1.55)–(1.54) corresponds to using only a first-order approximation to the initial
condition in the method from Sect. 1.1.2.

Correspondingly, using the formulation (1.52)–(1.53) with vn D 0 leads to
u1 D u0, which can be interpreted as using a forward difference approximation for
the initial condition u0.0/ D 0. Both Euler-Cromer formulations lead to slightly dif-
ferent values for u1 compared to the method in Sect. 1.1.2. The error is 1

2
!2�t2u0.

1.7 The Euler-Cromer Method 43

1.7.3 Implementation

Solver function The function below, found in vib_undamped_EulerCromer.py,
implements the Euler-Cromer scheme (1.54)–(1.55):

import numpy as np

def solver(I, w, dt, T):
"""
Solve v’ = - w**2*u, u’=v for t in (0,T], u(0)=I and v(0)=0,
by an Euler-Cromer method.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
v = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

v[0] = 0
u[0] = I
for n in range(0, Nt):

v[n+1] = v[n] - dt*w**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

Verification Since the Euler-Cromer scheme is equivalent to the finite difference
method for the second-order ODE u00 C!2u D 0 (see Sect. 1.7.2), the performance
of the above solver function is the same as for the solver function in Sect. 1.2.
The only difference is the formula for the first time step, as discussed above. This
deviation in the Euler-Cromer scheme means that the discrete solution listed in
Sect. 1.4.4 is not a solution of the Euler-Cromer scheme!

To verify the implementation of the Euler-Cromer method we can adjust v[1]
so that the computer-generated values can be compared with the formula (1.20)
from in Sect. 1.4.4. This adjustment is done in an alternative solver function,
solver_ic_fix in vib_EulerCromer.py. Since we now have an exact solution
of the discrete equations available, we can write a test function test_solver for
checking the equality of computed values with the formula (1.20):

def test_solver():
"""
Test solver with fixed initial condition against
equivalent scheme for the 2nd-order ODE u’’ + u = 0.
"""
I = 1.2; w = 2.0; T = 5
dt = 2/w # longest possible time step
u, v, t = solver_ic_fix(I, w, dt, T)
from vib_undamped import solver as solver2 # 2nd-order ODE
u2, t2 = solver2(I, w, dt, T)
error = np.abs(u - u2).max()
tol = 1E-14
assert error < tol

http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py

44 1 Vibration ODEs

Another function, demo, visualizes the difference between the Euler-Cromer
scheme and the scheme (1.7) for the second-oder ODE, arising from the mismatch
in the first time level.

Using Odespy The Euler-Cromer method is also available in the Odespy package.
The important thing to remember, when using this implementation, is that we must
order the unknowns as v and u, so the u vector at each time level consists of the
velocity v as first component and the displacement u as second component:

Define ODE
def f(u, t, w=1):

v, u = u
return [-w**2*u, v]

Initialize solver
I = 1
w = 2*np.pi
import odespy
solver = odespy.EulerCromer(f, f_kwargs={’w’: w})
solver.set_initial_condition([0, I])

Compute time mesh
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
import numpy as np
t_mesh = np.linspace(0, T, Nt+1)

Solve ODE
u, t = solver.solve(t_mesh)
u = u[:,1] # Extract displacement

Convergence rates We may use the convergence_rates function in the file
vib_undamped.py to investigate the convergence rate of the Euler-Cromer method,
see the convergence_rate function in the file vib_undamped_EulerCromer.py.
Since we could eliminate v to get a scheme for u that is equivalent to the finite
difference method for the second-order equation in u, we would expect the con-
vergence rates to be the same, i.e., r D 2. However, measuring the convergence
rate of u in the Euler-Cromer scheme shows that r D 1 only! Adjusting the initial
condition does not change the rate. Adjusting !, as outlined in Sect. 1.4.2, gives
a 4th-order method there, while there is no increase in the measured rate in the
Euler-Cromer scheme. It is obvious that the Euler-Cromer scheme is dramatically
much better than the two other first-order methods, Forward Euler and Backward
Euler, but this is not reflected in the convergence rate of u.

1.7 The Euler-Cromer Method 45

1.7.4 The Störmer-Verlet Algorithm

Another very popular algorithm for vibration problems, especially for long time
simulations, is the Störmer-Verlet algorithm. It has become the method among
physicists for molecular simulations as well as particle and rigid body dynamics.

The method can be derived by applying the Euler-Cromer idea twice, in a sym-
metric fashion, during the interval Œtn; tnC1�:

1. solve v0 D �!u by a Forward Euler step in Œtn; tnC 1
2
�

2. solve u0 D v by a Backward Euler step in Œtn; tnC 1
2
�

3. solve u0 D v by a Forward Euler step in ŒtnC 1
2
; tnC1�

4. solve v0 D �!u by a Backward Euler step in ŒtnC 1
2
; tnC1�

With mathematics,
vnC

1
2 � vn
1
2
�t

D �!2un;

unC
1
2 � un
1
2
�t

D vnC 1
2 ;

unC1 � unC 1
2

1
2
�t

D vnC 1
2 ;

vnC1 � vnC 1
2

1
2
�t

D �!2unC1 :

The two steps in the middle can be combined to

unC1 � un
�t

D vnC 1
2 ;

and consequently

vnC
1
2 D vn � 1

2
�t!2un; (1.58)

unC1 D un C�tvnC 1
2 ; (1.59)

vnC1 D vnC 1
2 � 1

2
�t!2unC1 : (1.60)

Writing the last equation as vn D vn�
1
2 � 1

2
�t!2un and using this vn in the first

equation gives vnC
1
2 D vn� 12 ��t!2un, and the scheme can be written as two steps:

vnC
1
2 D vn� 12 ��t!2un; (1.61)

unC1 D un C�tvnC 1
2 ; (1.62)

which is nothing but straightforward centered differences for the 2� 2 ODE system
on a staggered mesh, see Sect. 1.8.1. We have thus seen that four different reason-
ings (discretizing u00 C!2u directly, using Euler-Cromer, using Stömer-Verlet, and

46 1 Vibration ODEs

using centered differences for the 2 � 2 system on a staggered mesh) all end up
with the same equations! The main difference is that the traditional Euler-Cromer
displays first-order convergence in�t (due to less symmetry in the way u and v are
treated) while the others are O.�t2/ schemes.

The most numerically stable scheme, with respect to accumulation of rounding
errors, is (1.61)–(1.62). It has, according to [6], better properties in this regard than
the direct scheme for the second-order ODE.

1.8 StaggeredMesh

A more intuitive discretization than the Euler-Cromer method, yet equivalent, em-
ploys solely centered differences in a natural way for the 2 � 2 first-order ODE
system. The scheme is in fact fully equivalent to the second-order scheme for
u00 C !u D 0, also for the first time step. Such a scheme needs to operate on
a staggered mesh in time. Staggered meshes are very popular in many physical
application, maybe foremost fluid dynamics and electromagnetics, so the topic is
important to learn.

1.8.1 The Euler-Cromer Scheme on a StaggeredMesh

In a staggered mesh, the unknowns are sought at different points in the mesh.
Specifically, u is sought at integer time points tn and v is sought at tnC1=2 between
two u points. The unknowns are then u1; v3=2; u2; v5=2, and so on. We typically use
the notation un and vnC

1
2 for the two unknownmesh functions. Figure 1.12 presents

a graphical sketch of two mesh functions u and v on a staggered mesh.
On a staggered mesh it is natural to use centered difference approximations,

expressed in operator notation as

ŒDtu D v�nC 1
2 ; (1.63)

ŒDtv D �!2u�nC1; (1.64)

or if we switch the sequence of the equations:

ŒDtv D �!2u�n; (1.65)

ŒDtu D v�nC 1
2 : (1.66)

Writing out the formulas gives

vnC
1
2 D vn� 12 ��t!2un; (1.67)

unC1 D un C�tvnC 1
2 : (1.68)

We can eliminate the v values and get back the centered scheme based on the
second-order differential equation u00 C !2u D 0, so all these three schemes are
equivalent. However, they differ somewhat in the treatment of the initial conditions.

1.8 Staggered Mesh 47

0 2 4 6

−3

−2

−1

0

1

2

3

4

5

t

u0

u1

u2

u3

u4

u5

v1/2
v3/2

v5/2

v7/2

v9/2

Fig. 1.12 Examples on mesh functions on a staggered mesh in time

Suppose we have u.0/ D I and u0.0/ D v.0/ D 0 as mathematical initial
conditions. This means u0 D I and

v.0/ � 1

2

�
v�

1
2 C v 12

�
D 0;) v�

1
2 D �v 12 :

Using the discretized equation (1.67) for n D 0 yields

v
1
2 D v� 12 ��t!2I;

and eliminating v�
1
2 D �v 12 results in

v
1
2 D �1

2
�t!2I;

and

u1 D u0 � 1
2
�t2!2I;

which is exactly the same equation for u1 as we had in the centered scheme based
on the second-order differential equation (and hence corresponds to a centered dif-
ference approximation of the initial condition for u0.0/). The conclusion is that a
staggered mesh is fully equivalent with that scheme, while the forward-backward
version gives a slight deviation in the computation of u1.

48 1 Vibration ODEs

We can redo the derivation of the initial conditions when u0.0/ D V :

v.0/ � 1

2

�
v�

1
2 C v 12

�
D V;) v�

1
2 D 2V � v 12 :

Using this v�
1
2 in

v
1
2 D v� 12 ��t!2I;

then gives v
1
2 D V � 1

2
�t!2I . The general initial conditions are therefore

u0 D I; (1.69)

v
1
2 D V � 1

2
�t!2I : (1.70)

1.8.2 Implementation of the Scheme on a Staggered Mesh

The algorithm goes like this:

1. Set the initial values (1.69) and (1.70).
2. For n D 1; 2; : : ::

(a) Compute un from (1.68).
(b) Compute vnC

1
2 from (1.67).

Implementation with integer indices Translating the schemes (1.68) and (1.67)
to computer code faces the problem of how to store and access vnC

1
2 , since arrays

only allow integer indices with base 0. We must then introduce a convention: v1C
1
2

is stored in v[n] while v1�
1
2 is stored in v[n-1]. We can then write the algorithm

in Python as

def solver(I, w, dt, T):
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]

return u, t, v, t_v

Note that u and v are returned together with the mesh points such that the complete
mesh function for u is described by u and t, while v and t_v represent the mesh
function for v.

1.8 Staggered Mesh 49

Implementation with half-integer indices Some prefer to see a closer relation-
ship between the code and the mathematics for the quantities with half-integer
indices. For example, we would like to replace the updating equation for v[n]
by

v[n+half] = v[n-half] - dt*w**2*u[n]

This is easy to do if we could be sure that n+halfmeans n and n-halfmeans n-1.
A possible solution is to define half as a special object such that an integer plus
half results in the integer, while an integer minus half equals the integer minus 1.
A simple Python class may realize the half object:

class HalfInt:
def __radd__(self, other):

return other

def __rsub__(self, other):
return other - 1

half = HalfInt()

The __radd__ function is invoked for all expressions n+half ("right add" with
self as half and other as n). Similarly, the __rsub__ function is invoked for
n-half and results in n-1.

Using the half object, we can implement the algorithms in an even more read-
able way:

def solver(I, w, dt, T):
"""
Solve u’=v, v’ = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
by a central finite difference method with time step dt on
a staggered mesh with v as unknown at (i+1/2)*dt time points.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0+half] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*u[n]

return u, t, v[:-1], t_v[:-1]

Verification of this code is easy as we can just compare the computed u with
the u produced by the solver function in vib_undamped.py (which solves
u00 C !2u D 0 directly). The values should coincide to machine precision since
the two numerical methods are mathematically equivalent. We refer to the file

50 1 Vibration ODEs

vib_undamped_staggered.py for the details of a unit test (test_staggered)
that checks this property.

1.9 Exercises and Problems

Problem 1.1: Use linear/quadratic functions for verification
Consider the ODE problem

u00 C !2u D f .t/; u.0/ D I; u0.0/ D V; t 2 .0; T � :

a) Discretize this equation according to ŒDtDtu C !2u D f �n and derive the
equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions
(MMS) with the choice of ue.t/ D ct C d . Find restrictions on c and
d from the initial conditions. Compute the corresponding source term f .
Show that ŒDtDt t�

n D 0 and use the fact that the DtDt operator is linear,
ŒDtDt .ct C d/�n D cŒDtDt t�

n C ŒDtDtd �
n D 0, to show that ue is also a

perfect solution of the discrete equations.
c) Use sympy to do the symbolic calculations above. Here is a sketch of the pro-

gram vib_undamped_verify_mms.py:

import sympy as sym
V, t, I, w, dt = sym.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sym.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sym.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sym.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.
u is a symbolic Python function of t.
"""
return ...

http://tinyurl.com/nu656p2/vib/vib_undamped_staggered.py

1.9 Exercises and Problems 51

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sym.diff(u(t), t).subs(t, 0))

Method of manufactured solution requires fitting f
global f # source term in the ODE
f = sym.simplify(ode_lhs(u))

Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
linear()

Fill in the various functions such that the calls in the main function works.
d) The purpose now is to choose a quadratic function ue D bt2 C ct C d as exact

solution. Extend the sympy code above with a function quadratic for fitting f
and checking if the discrete equations are fulfilled. (The function is very similar
to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?
f) Implement a solver function for computing the numerical solution of this prob-

lem.
g) Write a test function for checking that the quadratic solution is computed cor-

rectly (to machine precision, but the round-off errors accumulate and increase
with T) by the solver function.

Filename: vib_undamped_verify_mms.

Exercise 1.2: Show linear growth of the phase with time
Consider an exact solution I cos.!t/ and an approximation I cos. Q!t/. Define the
phase error as the time lag between the peak I in the exact solution and the corre-
sponding peak in the approximation after m periods of oscillations. Show that this
phase error is linear in m.
Filename: vib_phase_error_growth.

Exercise 1.3: Improve the accuracy by adjusting the frequency
According to (1.19), the numerical frequency deviates from the exact frequency by
a (dominating) amount !3�t2=24 > 0. Replace the w parameter in the algorithm
in the solver function in vib_undamped.py by w*(1 - (1./24)*w**2*dt**2

52 1 Vibration ODEs

and test how this adjustment in the numerical algorithm improves the accuracy (use
�t D 0:1 and simulate for 80 periods, with and without adjustment of !).
Filename: vib_adjust_w.

Exercise 1.4: See if adaptive methods improve the phase error
Adaptivemethods for solving ODEs aim at adjusting�t such that the error is within
a user-prescribed tolerance. Implement the equation u00 C u D 0 in the Odespy15

software. Use the example from Section 3.2.11 in [9]. Run the scheme with a very
low tolerance (say 10�14) and for a long time, check the number of time points in
the solver’s mesh (len(solver.t_all)), and compare the phase error with that
produced by the simple finite difference method from Sect. 1.1.2 with the same
number of (equally spaced) mesh points. The question is whether it pays off to use
an adaptive solver or if equally many points with a simple method gives about the
same accuracy.
Filename: vib_undamped_adaptive.

Exercise 1.5: Use a Taylor polynomial to compute u1

As an alternative to computing u1 by (1.8), one can use a Taylor polynomial with
three terms:

u.t1/ � u.0/C u0.0/�t C 1

2
u00.0/�t2 :

With u00 D �!2u and u0.0/ D 0, show that this method also leads to (1.8).
Generalize the condition on u0.0/ to be u0.0/ D V and compute u1 in this case with
both methods.
Filename: vib_first_step.

Problem 1.6: Derive and investigate the velocity Verlet method
The velocity Verlet method for u00 C !2u D 0 is based on the following ideas:

1. step u forward from tn to tnC1 using a three-term Taylor series,
2. replace u00 by �!2u
3. discretize v0 D �!2u by a Crank-Nicolson method.

Derive the scheme, implement it, and determine empirically the convergence rate.

Problem 1.7: Find the minimal resolution of an oscillatory function
Sketch the function on a given mesh which has the highest possible frequency. That
is, this oscillatory “cos-like” function has its maxima and minima at every two grid
points. Find an expression for the frequency of this function, and use the result
to find the largest relevant value of !�t when ! is the frequency of an oscillating
function and �t is the mesh spacing.
Filename: vib_largest_wdt.

15 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy

1.9 Exercises and Problems 53

Exercise 1.8: Visualize the accuracy of finite differences for a cosine function
We introduce the error fraction

E D ŒDtDtu�
n

u00.tn/

to measure the error in the finite difference approximation DtDtu to u00. Compute
E for the specific choice of a cosine/sine function of the form u D exp .i!t/ and
show that

E D
�

2

!�t

�2
sin2

�
!�t

2

�
:

Plot E as a function of p D !�t . The relevant values of p are Œ0; �� (see
Exercise 1.7 for why p > � does not make sense). The deviation of the curve
from unity visualizes the error in the approximation. Also expand E as a Taylor
polynomial in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.

Exercise 1.9: Verify convergence rates of the error in energy
We consider the ODE problem u00 C!2u D 0, u.0/ D I , u0.0/ D V , for t 2 .0; T �.
The total energy of the solution E.t/ D 1

2
.u0/2 C 1

2
!2u2 should stay constant. The

error in energy can be computed as explained in Sect. 1.6.
Make a test function in a separate file, where code from vib_undamped.py is

imported, but the convergence_rates and test_convergence_rates functions
are copied and modified to also incorporate computations of the error in energy and
the convergence rate of this error. The expected rate is 2, just as for the solution
itself.
Filename: test_error_conv.

Exercise 1.10: Use linear/quadratic functions for verification
This exercise is a generalization of Problem 1.1 to the extended model problem
(1.71) where the damping term is either linear or quadratic. Solve the various
subproblems and see how the results and problem settings change with the gen-
eralized ODE in case of linear or quadratic damping. By modifying the code from
Problem 1.1, sympy will do most of the work required to analyze the generalized
problem.
Filename: vib_verify_mms.

Exercise 1.11: Use an exact discrete solution for verification
Write a test function in a separate file that employs the exact discrete solution (1.20)
to verify the implementation of the solver function in the file vib_undamped.py.
Filename: test_vib_undamped_exact_discrete_sol.

Exercise 1.12: Use analytical solution for convergence rate tests
The purpose of this exercise is to perform convergence tests of the problem (1.71)
when s.u/ D cu, F.t/ D A sin�t and there is no damping. Find the complete
analytical solution to the problem in this case (most textbooks on mechanics or
ordinary differential equations list the various elements you need to write down the
exact solution, or you can use symbolic tools like sympy or wolframalpha.com).

54 1 Vibration ODEs

Fig. 1.13 The amplitude as it changes over 100 periods for RK3 and RK4

Modify the convergence_rate function from the vib_undamped.py program to
perform experiments with the extended model. Verify that the error is of order�t2.
Filename: vib_conv_rate.

Exercise 1.13: Investigate the amplitude errors of many solvers
Use the program vib_undamped_odespy.py from Sect. 1.5.4 (utilize the func-
tion amplitudes) to investigate how well famous methods for 1st-order ODEs
can preserve the amplitude of u in undamped oscillations. Test, for example,
the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson
method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods
(AdamsBashforth2, AdamsBashforth3), and a 2nd-order Backwards scheme
(Backward2Step). The relevant governing equations are listed in the beginning of
Sect. 1.5.

Running the code, we get the plots seen in Fig. 1.13, 1.14, and 1.15. They show
that RK4 is superior to the others, but that also CrankNicolson performs well. In
fact, with RK4 the amplitude changes by less than 0:1 per cent over the interval.
Filename: vib_amplitude_errors.

Problem 1.14: Minimize memory usage of a simple vibration solver
We consider the model problem u00 C !2u D 0, u.0/ D I , u0.0/ D V , solved
by a second-order finite difference scheme. A standard implementation typically
employs an array u for storing all the un values. However, at some time level n+1
where we want to compute u[n+1], all we need of previous u values are from level
n and n-1. We can therefore avoid storing the entire array u, and instead work
with u[n+1], u[n], and u[n-1], named as u, u_n, u_nmp1, for instance. Another
possible naming convention is u, u_n[0], u_n[-1]. Store the solution in a file

1.9 Exercises and Problems 55

Fig. 1.14 The amplitude as it changes over 100 periods for Crank-Nicolson and Backward 2 step

Fig. 1.15 The amplitude as it changes over 100 periods for Adams-Bashforth 2 and 3

for later visualization. Make a test function that verifies the implementation by
comparing with the another code for the same problem.
Filename: vib_memsave0.

56 1 Vibration ODEs

Problem 1.15: Minimize memory usage of a general vibration solver
The program vib.py stores the complete solution u0; u1; : : : ; uNt in memory,
which is convenient for later plotting. Make a memory minimizing version of this
program where only the last three unC1, un, and un�1 values are stored in memory
under the names u, u_n, and u_nm1 (this is the naming convention used in this
book). Write each computed .tnC1; unC1/ pair to file. Visualize the data in the file
(a cool solution is to read one line at a time and plot the u value using the line-
by-line plotter in the visualize_front_ascii function - this technique makes it
trivial to visualize very long time simulations).
Filename: vib_memsave.

Exercise 1.16: Implement the Euler-Cromer scheme for the generalized model
We consider the generalized model problem

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V :

a) Implement the Euler-Cromer method from Sect. 1.10.8.
b) We expect the Euler-Cromer method to have first-order convergence rate. Make

a unit test based on this expectation.
c) Consider a system with m D 4, f .v/ D bjvjv, b D 0:2, s D 2u, F D 0.

Compute the solution using the centered difference scheme from Sect. 1.10.1
and the Euler-Cromer scheme for the longest possible time step �t . We can use
the result from the case without damping, i.e., the largest�t D 2=!, ! � p0:5
in this case, but since b will modify the frequency, we take the longest possible
time step as a safety factor 0.9 times 2=!. Refine �t three times by a factor of
two and compare the two curves.

Filename: vib_EulerCromer.

Problem 1.17: Interpret ŒDtDtu�n as a forward-backward difference
Show that the difference ŒDtDtu�

n is equal to ŒDCt D�t u�
n and D�t D

C
t u�

n. That is,
instead of applying a centered difference twice one can alternatively apply a mixture
of forward and backward differences.
Filename: vib_DtDt_fw_bw.

Exercise 1.18: Analysis of the Euler-Cromer scheme
The Euler-Cromer scheme for the model problem u00C!2u D 0, u.0/ D I , u0.0/ D
0, is given in (1.55)–(1.54). Find the exact discrete solutions of this scheme and
show that the solution for un coincides with that found in Sect. 1.4.

Hint Use an “ansatz” un D I exp .i Q!�t n/ and vn D qun, where Q! and q are
unknown parameters. The following formula is handy:

e i Q!�t C ei Q!.��t/ � 2 D 2 .cosh.i Q!�t/ � 1/ D �4 sin2
� Q!�t

2

�
:

http://tinyurl.com/nu656p2/vib/vib.py

1.10 Generalization: Damping, Nonlinearities, and Excitation 57

1.10 Generalization: Damping, Nonlinearities, and Excitation

We shall now generalize the simple model problem from Sect. 1.1 to include a
possibly nonlinear damping term f .u0/, a possibly nonlinear spring (or restoring)
force s.u/, and some external excitation F.t/:

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V; t 2 .0; T � : (1.71)

We have also included a possibly nonzero initial value for u0.0/. The parametersm,
f .u0/, s.u/, F.t/, I , V , and T are input data.

There are two main types of damping (friction) forces: linear f .u0/ D bu, or
quadratic f .u0/ D bu0ju0j. Spring systems often feature linear damping, while air
resistance usually gives rise to quadratic damping. Spring forces are often linear:
s.u/ D cu, but nonlinear versions are also common, the most famous is the gravity
force on a pendulum that acts as a spring with s.u/ � sin.u/.

1.10.1 A Centered Scheme for Linear Damping

Sampling (1.71) at a mesh point tn, replacing u00.tn/ by ŒDtDtu�
n, and u0.tn/ by

ŒD2tu�
n results in the discretization

ŒmDtDtuC f .D2tu/C s.u/ D F �n; (1.72)

which written out means

m
unC1 � 2un C un�1

�t2
C f

�
unC1 � un�1

2�t

�
C s.un/ D F n; (1.73)

where F n as usual means F.t/ evaluated at t D tn. Solving (1.73) with respect
to the unknown unC1 gives a problem: the unC1 inside the f function makes the
equation nonlinear unless f .u0/ is a linear function, f .u0/ D bu0. For now we shall
assume that f is linear in u0. Then

m
unC1 � 2un C un�1

�t2
C b u

nC1 � un�1
2�t

C s.un/ D F n; (1.74)

which gives an explicit formula for u at each new time level:

unC1 D
�
2mun C

�
b

2
�t �m

�
un�1 C�t2.F n � s.un//

��
mC b

2
�t

��1
:

(1.75)
For the first time step we need to discretize u0.0/ D V as ŒD2tu D V �0 and

combine with (1.75) for n D 0. The discretized initial condition leads to

u�1 D u1 � 2�tV; (1.76)

which inserted in (1.75) for n D 0 gives an equation that can be solved for u1:

u1 D u0 C�t V C �t2

2m
.�bV � s.u0/C F 0/ : (1.77)

58 1 Vibration ODEs

1.10.2 A Centered Scheme for Quadratic Damping

When f .u0/ D bu0ju0j, we get a quadratic equation for unC1 in (1.73). This equa-
tion can be straightforwardly solved by the well-known formula for the roots of a
quadratic equation. However, we can also avoid the nonlinearity by introducing an
approximation with an error of order no higher than what we already have from
replacing derivatives with finite differences.

We start with (1.71) and only replace u00 byDtDtu, resulting in

ŒmDtDtuC bu0ju0j C s.u/ D F �n : (1.78)

Here, u0ju0j is to be computed at time tn. The idea is now to introduce a geometric
mean, defined by

.w2/n � wn� 12 wnC 1
2 ;

for some quantity w depending on time. The error in the geometric mean approxi-
mation is O.�t2/, the same as in the approximation u00 � DtDtu. With w D u0 it
follows that

Œu0ju0j�n � u0.tnC 1
2
/ju0.tn� 12 /j :

The next step is to approximate u0 at tn˙1=2, and fortunately a centered difference
fits perfectly into the formulas since it involves u values at the mesh points only.
With the approximations

u0.tnC1=2/ � ŒDtu�
nC 1

2 ; u0.tn�1=2/ � ŒDtu�
n� 12 ; (1.79)

we get

Œu0ju0j�n � ŒDtu�
nC 1

2 jŒDtu�
n� 12 j D unC1 � un

�t

jun � un�1j
�t

: (1.80)

The counterpart to (1.73) is then

m
unC1 � 2un C un�1

�t2
C b u

nC1 � un
�t

jun � un�1j
�t

C s.un/ D F n; (1.81)

which is linear in the unknown unC1. Therefore, we can easily solve (1.81) with
respect to unC1 and achieve the explicit updating formula

unC1 D �
mC bjun � un�1j��1
� �2mun �mun�1 C bunjun � un�1j C�t2.F n � s.un//� : (1.82)

In the derivation of a special equation for the first time step we run into some
trouble: inserting (1.76) in (1.82) for n D 0 results in a complicated nonlinear
equation for u1. By thinking differently about the problem we can easily get away
with the nonlinearity again. We have for n D 0 that bŒu0ju0j�0 D bV jV j. Using this
value in (1.78) gives

ŒmDtDtuC bV jV j C s.u/ D F �0 : (1.83)

1.10 Generalization: Damping, Nonlinearities, and Excitation 59

Writing this equation out and using (1.76) results in the special equation for the first
time step:

u1 D u0 C�tV C �t2

2m

��bV jV j � s.u0/C F 0
�
: (1.84)

1.10.3 A Forward-Backward Discretization of the Quadratic
Damping Term

The previous section first proposed to discretize the quadratic damping term ju0ju0
using centered differences: ŒjD2t jD2tu�

n. As this gives rise to a nonlinearity in
unC1, it was instead proposed to use a geometric mean combined with centered
differences. But there are other alternatives. To get rid of the nonlinearity in
ŒjD2t jD2tu�

n, one can think differently: apply a backward difference to ju0j, such
that the term involves known values, and apply a forward difference to u0 to make
the term linear in the unknown unC1. With mathematics,

Œˇju0ju0�n � ˇjŒD�t u�njŒDCt u�n D ˇ
ˇ̌̌
ˇu

n � un�1
�t

ˇ̌̌
ˇ u

nC1 � un
�t

: (1.85)

The forward and backward differences both have an error proportional to �t so
one may think the discretization above leads to a first-order scheme. However,
by looking at the formulas, we realize that the forward-backward differences in
(1.85) result in exactly the same scheme as in (1.81) where we used a geometric
mean and centered differences and committed errors of size O.�t2/. Therefore,
the forward-backward differences in (1.85) act in a symmetric way and actually
produce a second-order accurate discretization of the quadratic damping term.

1.10.4 Implementation

The algorithm arising from the methods in Sect.s 1.10.1 and 1.10.2 is very similar to
the undamped case in Sect. 1.1.2. The difference is basically a question of different
formulas for u1 and unC1. This is actually quite remarkable. The equation (1.71)
is normally impossible to solve by pen and paper, but possible for some special
choices ofF , s, and f . On the contrary, the complexity of the nonlinear generalized
model (1.71) versus the simple undamped model is not a big deal when we solve
the problem numerically!

The computational algorithm takes the form

1. u0 D I
2. compute u1 from (1.77) if linear damping or (1.84) if quadratic damping
3. for n D 1; 2; : : : ; Nt � 1:

(a) compute unC1 from (1.75) if linear damping or (1.82) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big differ-
ence being many more terms and if tests on the type of damping:

60 1 Vibration ODEs

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

The complete code resides in the file vib.py.

1.10.5 Verification

Constant solution For debugging and initial verification, a constant solution is
often very useful. We choose ue.t/ D I , which implies V D 0. Inserted in the
ODE, we get F.t/ D s.I / for any choice of f . Since the discrete derivative of
a constant vanishes (in particular, ŒD2tI �

n D 0, ŒDtI �
n D 0, and ŒDtDtI �

n D
0), the constant solution also fulfills the discrete equations. The constant should
therefore be reproduced to machine precision. The function test_constant in
vib.py implements this test.

Linear solution Now we choose a linear solution: ue D ct C d . The initial
condition u.0/ D I implies d D I , and u0.0/ D V forces c to be V . Inserting
ue D V t C I in the ODE with linear damping results in

0C bV C s.V t C I / D F.t/;

while quadratic damping requires the source term

0C bjV jV C s.V t C I / D F.t/ :

http://tinyurl.com/nu656p2/vib/vib.py

1.10 Generalization: Damping, Nonlinearities, and Excitation 61

Since the finite difference approximations used to compute u0 all are exact for a lin-
ear function, it turns out that the linear ue is also a solution of the discrete equations.
Exercise 1.10 asks you to carry out all the details.

Quadratic solution Choosing ue D bt2 C V t C I , with b arbitrary, fulfills the
initial conditions and fits the ODE if F is adjusted properly. The solution also solves
the discrete equations with linear damping. However, this quadratic polynomial in
t does not fulfill the discrete equations in case of quadratic damping, because the
geometric mean used in the approximation of this term introduces an error. Doing
Exercise 1.10 will reveal the details. One can fit F n in the discrete equations such
that the quadratic polynomial is reproduced by the numerical method (to machine
precision).

Catching bugs How good are the constant and quadratic solutions at catching bugs
in the implementation? Let us check that by introducing some bugs.

� Use m instead of 2*m in the denominator of u[1]: code works for constant solu-
tion, but fails (as it should) for a quadratic one.

� Use b*dt instead of b*dt/2 in the updating formula for u[n+1] in case of linear
damping: constant and quadratic both fail.

� Use F[n+1] instead of F[n] in case of linear or quadratic damping: constant
solution works, quadratic fails.

We realize that the constant solution is very useful for catching certain bugs because
of its simplicity (easy to predict what the different terms in the formula should
evaluate to), while the quadratic solution seems capable of detecting all (?) other
kinds of typos in the scheme. These results demonstrate why we focus so much on
exact, simple polynomial solutions of the numerical schemes in these writings.

1.10.6 Visualization

The functions for visualizations differ significantly from those in the undamped
case in the vib_undamped.py program because, in the present general case, we
do not have an exact solution to include in the plots. Moreover, we have no good
estimate of the periods of the oscillations as there will be one period determined by
the system parameters, essentially the approximate frequency

p
s0.0/=m for linear

s and small damping, and one period dictated by F.t/ in case the excitation is
periodic. This is, however, nothing that the program can depend on or make use of.
Therefore, the user has to specify T and the window width to get a plot that moves
with the graph and shows the most recent parts of it in long time simulations.

The vib.py code contains several functions for analyzing the time series signal
and for visualizing the solutions.

62 1 Vibration ODEs

1.10.7 User Interface

The main function is changed substantially from the vib_undamped.pycode, since
we need to specify the new data c, s.u/, and F.t/. In addition, we must set T
and the plot window width (instead of the number of periods we want to simu-
late as in vib_undamped.py). To figure out whether we can use one plot for the
whole time series or if we should follow the most recent part of u, we can use the
plot_empricial_freq_and_amplitude function’s estimate of the number of lo-
cal maxima. This number is now returned from the function and used in main to
decide on the visualization technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)
parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
num_periods = empirical_freq_and_amplitude(u, t)
if num_periods <= 15:

figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the model
problem (1.71). As a demo of vib.py, we consider the case I D 1, V D 0,m D 1,
c D 0:03, s.u/ D sin.u/, F.t/ D 3 cos.4t/, �t D 0:05, and T D 140. The
relevant command to run is

Terminal

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

1.10 Generalization: Damping, Nonlinearities, and Excitation 63

Fig. 1.16 Damped oscillator excited by a sinusoidal function

This results in a moving window following the function16 on the screen. Figure 1.16
shows a part of the time series.

1.10.8 The Euler-Cromer Scheme for the Generalized Model

The ideas of the Euler-Cromer method from Sect. 1.7 carry over to the generalized
model. We write (1.71) as two equations for u and v D u0. The first equation is
taken as the one with v0 on the left-hand side:

v0 D 1

m
.F.t/ � s.u/ � f .v//; (1.86)

u0 D v : (1.87)

Again, the idea is to step (1.86) forward using a standard Forward Euler method,
while we update u from (1.87) with a Backward Euler method, utilizing the recent,
computed vnC1 value. In detail,

vnC1 � vn
�t

D 1

m
.F.tn/ � s.un/ � f .vn//; (1.88)

unC1 � un
�t

D vnC1; (1.89)

16 http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html

http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html
http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html

64 1 Vibration ODEs

resulting in the explicit scheme

vnC1 D vn C�t 1
m
.F.tn/ � s.un/� f .vn//; (1.90)

unC1 D un C�t vnC1 : (1.91)

We immediately note one very favorable feature of this scheme: all the nonlin-
earities in s.u/ and f .v/ are evaluated at a previous time level. This makes the
Euler-Cromer method easier to apply and hence much more convenient than the
centered scheme for the second-order ODE (1.71).

The initial conditions are trivially set as

v0 D V; (1.92)

u0 D I : (1.93)

1.10.9 The Störmer-Verlet Algorithm for the Generalized Model

We can easily apply the ideas from Sect. 1.7.4 to extend that method to the gener-
alized model

v0 D 1

m
.F.t/ � s.u/� f .v//;

u0 D v :
However, since the scheme is essentially centered differences for the ODE system
on a staggered mesh, we do not go into detail here, but refer to Sect. 1.10.10.

1.10.10 A Staggered Euler-Cromer Scheme for a Generalized Model

The more general model for vibration problems,

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V; t 2 .0; T �; (1.94)

can be rewritten as a first-order ODE system

v0 D m�1 .F.t/ � f .v/ � s.u// ; (1.95)

u0 D v : (1.96)

It is natural to introduce a staggered mesh (see Sect. 1.8.1) and seek u at mesh
points tn (the numerical value is denoted by un) and v between mesh points at tnC1=2
(the numerical value is denoted by vnC

1
2). A centered difference approximation to

(1.96)–(1.95) can then be written in operator notation as

ŒDtv D m�1 .F.t/ � f .v/ � s.u//�n; (1.97)

ŒDtu D v�nC 1
2 : (1.98)

1.10 Generalization: Damping, Nonlinearities, and Excitation 65

Written out,

vnC
1
2 � vn� 12
�t

D m�1 .F n � f .vn/ � s.un// ; (1.99)

un � un�1
�t

D vnC 1
2 : (1.100)

With linear damping, f .v/ D bv, we can use an arithmetic mean for f .vn/:
f .vn/ �D 1

2
.f .vn�

1
2 /C f .vnC 1

2 //. The system (1.99)–(1.100) can then be solved

with respect to the unknowns un and vnC
1
2 :

vnC
1
2 D

�
1C b

2m
�t

��1 �
vn�

1
2 C�tm�1

�
F n � 1

2
f .vn�

1
2 /� s.un/

��
;

(1.101)

un D un�1 C�tvn� 12 : (1.102)

In case of quadratic damping, f .v/ D bjvjv, we can use a geometric mean:
f .vn/ � bjvn� 12 jvnC 1

2 . Inserting this approximation in (1.99)–(1.100) and solving
for the unknowns un and vnC

1
2 results in

vnC
1
2 D

�
1C b

m
jvn� 12 j�t

��1 �
vn�

1
2 C�tm�1 .F n � s.un//

�
; (1.103)

un D un�1 C�tvn� 12 : (1.104)

The initial conditions are derived at the end of Sect. 1.8.1:

u0 D I; (1.105)

v
1
2 D V � 1

2
�t!2I : (1.106)

1.10.11 The PEFRL 4th-Order Accurate Algorithm

A variant of the Euler-Cromer type of algorithm, which provides an errorO.�t4/ if
f .v/ D 0, is called PEFRL [14]. This algorithm is very well suited for integrating
dynamic systems (especially those without damping) over very long time periods.
Define

g.u; v/ D 1

m
.F.t/ � s.u/ � f .v// :

66 1 Vibration ODEs

The algorithm is explicit and features these steps:

unC1;1 D un C ��tvn; (1.107)

vnC1;1 D vn C 1

2
.1 � 2�/�tg.unC1;1; vn/; (1.108)

unC1;2 D unC1;1 C 	�tvnC1;1; (1.109)

vnC1;2 D vnC1;1 C ��tg.unC1;2; vnC1;1/; (1.110)

unC1;3 D unC1;2 C .1 � 2.	C �//�tvnC1;2; (1.111)

vnC1;3 D vnC1;2 C ��tg.unC1;3; vnC1;2/; (1.112)

unC1;4 D unC1;3 C 	�tvnC1;3; (1.113)

vnC1 D vnC1;3 C 1

2
.1 � 2�/�tg.unC1;4; vnC1;3/; (1.114)

unC1 D unC1;4 C ��tvnC1 : (1.115)

The parameters � , �, and � have the values

� D 0:1786178958448091; (1.116)

� D �0:2123418310626054; (1.117)

	 D �0:06626458266981849 : (1.118)

1.11 Exercises and Problems

Exercise 1.19: Implement the solver via classes
Reimplement the vib.py program using a class Problem to hold all the physical
parameters of the problem, a class Solver to hold the numerical parameters and
compute the solution, and a class Visualizer to display the solution.

Hint Use the ideas and examples from Sections 5.5.1 and 5.5.2 in [9]. More specif-
ically, make a superclass Problem for holding the scalar physical parameters of a
problem and let subclasses implement the s.u/ and F.t/ functions as methods. Try
to call up as much existing functionality in vib.py as possible.
Filename: vib_class.

Problem 1.20: Use a backward difference for the damping term
As an alternative to discretizing the damping terms ˇu0 and ˇju0ju0 by centered
differences, we may apply backward differences:

Œu0�n � ŒD�t u�n;
Œju0ju0�n � ŒjD�t ujD�t u�n

D jŒD�t u�njŒD�t u�n :
The advantage of the backward difference is that the damping term is evaluated
using known values un and un�1 only. Extend the vib.py code with a scheme

http://tinyurl.com/nu656p2/vib/vib.py

1.12 Applications of VibrationModels 67

based on using backward differences in the damping terms. Add statements to
compare the original approach with centered difference and the new idea launched
in this exercise. Perform numerical experiments to investigate how much accuracy
that is lost by using the backward differences.
Filename: vib_gen_bwdamping.

Exercise 1.21: Use the forward-backward scheme with quadratic damping
We consider the generalized model with quadratic damping, expressed as a system
of two first-order equations as in Sect. 1.10.10:

u0 D v;
v0 D 1

m
.F.t/ � ˇjvjv � s.u// :

However, contrary to what is done in Sect. 1.10.10, we want to apply the idea
of a forward-backward discretization: u is marched forward by a one-sided For-
ward Euler scheme applied to the first equation, and thereafter v can be marched
forward by a Backward Euler scheme in the second equation, see in Sect. 1.7. Ex-
press the idea in operator notation and write out the scheme. Unfortunately, the
backward difference for the v equation creates a nonlinearity jvnC1jvnC1. To lin-
earize this nonlinearity, use the known value vn inside the absolute value factor, i.e.,
jvnC1jvnC1 � jvnjvnC1. Show that the resulting scheme is equivalent to the one in
Sect. 1.10.10 for some time level n 	 1.

What we learn from this exercise is that the first-order differences and the lin-
earization trick play together in “the right way” such that the scheme is as good
as when we (in Sect. 1.10.10) carefully apply centered differences and a geometric
mean on a staggered mesh to achieve second-order accuracy. There is a difference
in the handling of the initial conditions, though, as explained at the end of Sect. 1.7.
Filename: vib_gen_bwdamping.

1.12 Applications of Vibration Models

The following text derives some of the most well-known physical problems that
lead to second-order ODE models of the type addressed in this book. We consider
a simple spring-mass system; thereafter extended with nonlinear spring, damping,
and external excitation; a spring-mass system with sliding friction; a simple and a
physical (classical) pendulum; and an elastic pendulum.

1.12.1 Oscillating Mass Attached to a Spring

The most fundamental mechanical vibration system is depicted in Fig. 1.17. A body
with mass m is attached to a spring and can move horizontally without friction (in
the wheels). The position of the body is given by the vector r.t/ D u.t/i , where i

is a unit vector in x direction. There is only one force acting on the body: a spring
force F s D �kui , where k is a constant. The point x D 0, where u D 0, must

68 1 Vibration ODEs

Fig. 1.17 Simple oscillating mass

therefore correspond to the body’s position where the spring is neither extended nor
compressed, so the force vanishes.

The basic physical principle that governs the motion of the body is Newton’s
second law of motion: F D ma, where F is the sum of forces on the body, m
is its mass, and a D Rr is the acceleration. We use the dot for differentiation with
respect to time, which is usual in mechanics. Newton’s second law simplifies here
to �F s D m Rui , which translates to

�ku D m Ru :
Two initial conditions are needed: u.0/ D I , Pu.0/ D V . The ODE problem is
normally written as

m RuC ku D 0; u.0/ D I; Pu.0/ D V : (1.119)

It is not uncommon to divide by m and introduce the frequency ! D pk=m:

RuC !2u D 0; u.0/ D I; Pu.0/ D V : (1.120)

This is the model problem in the first part of this chapter, with the small difference
that we write the time derivative of u with a dot above, while we used u0 and u00 in
previous parts of the book.

Since only one scalar mathematical quantity, u.t/, describes the complete mo-
tion, we say that the mechanical system has one degree of freedom (DOF).

Scaling For numerical simulations it is very convenient to scale (1.120) and
thereby get rid of the problem of finding relevant values for all the parameters m,
k, I , and V . Since the amplitude of the oscillations are dictated by I and V (or
more precisely, V=!), we scale u by I (or V=! if I D 0):

Nu D u

I
; Nt D t

tc
:

The time scale tc is normally chosen as the inverse period 2�=! or angular fre-
quency 1=!, most often as tc D 1=!. Inserting the dimensionless quantities Nu and

1.12 Applications of VibrationModels 69

Fig. 1.18 General oscillating system

Nt in (1.120) results in the scaled problem

d2 Nu
d Nt2 C Nu D 0; Nu.0/ D 1; NuNt .0/ D ˇ D

V

I!
;

where ˇ is a dimensionless number. Any motion that starts from rest (V D 0) is
free of parameters in the scaled model!

The physics The typical physics of the system in Fig. 1.17 can be described as fol-
lows. Initially, we displace the body to some position I , say at rest (V D 0). After
releasing the body, the spring, which is extended, will act with a force �kI i and
pull the body to the left. This force causes an acceleration and therefore increases
velocity. The body passes the point x D 0, where u D 0, and the spring will then
be compressed and act with a force kxi against the motion and cause retardation.
At some point, the motion stops and the velocity is zero, before the spring force
kxi has worked long enough to push the body in positive direction. The result is
that the body accelerates back and forth. As long as there is no friction forces to
damp the motion, the oscillations will continue forever.

1.12.2 General Mechanical Vibrating System

The mechanical system in Fig. 1.17 can easily be extended to the more general
system in Fig. 1.18, where the body is attached to a spring and a dashpot, and also
subject to an environmental force F.t/i . The system has still only one degree of
freedom since the body can only move back and forth parallel to the x axis. The
spring force was linear, F s D �kui , in Sect. 1.12.1, but in more general cases it
can depend nonlinearly on the position. We therefore set F s D s.u/i . The dashpot,
which acts as a damper, results in a force F d that depends on the body’s velocity
Pu and that always acts against the motion. The mathematical model of the force is
written F d D f . Pu/i . A positive Pu must result in a force acting in the positive x
direction. Finally, we have the external environmental force F e D F.t/i .

Newton’s second law of motion now involves three forces:

F.t/i � f . Pu/i � s.u/i D m Rui :

70 1 Vibration ODEs

The common mathematical form of the ODE problem is

m RuC f . Pu/C s.u/ D F.t/; u.0/ D I; Pu.0/ D V : (1.121)

This is the generalized problem treated in the last part of the present chapter, but
with prime denoting the derivative instead of the dot.

The most common models for the spring and dashpot are linear: f . Pu/ D b Pu
with a constant b 	 0, and s.u/ D ku for a constant k.

Scaling A specific scaling requires specific choices of f , s, and F . Suppose we
have

f . Pu/ D bj Puj Pu; s.u/ D ku; F.t/ D A sin.�t/ :

We introduce dimensionless variables as usual, Nu D u=uc and Nt D t=tc . The scale
uc depends both on the initial conditions and F , but as time grows, the effect of the
initial conditions die out and F will drive the motion. Inserting Nu and Nt in the ODE
gives

m
uc

t2c

d 2 Nu
d Nt2 C b

u2c
t2c

ˇ̌̌
ˇd Nud Nt

ˇ̌̌
ˇ d Nud Nt C kuc Nu D A sin.�tc Nt / :

We divide by uc=t2c and demand the coefficients of the Nu and the forcing term from
F.t/ to have unit coefficients. This leads to the scales

tc D
r
m

k
; uc D A

k
:

The scaled ODE becomes

d2 Nu
d Nt2 C 2ˇ

ˇ̌
ˇ̌d Nu
d Nt
ˇ̌
ˇ̌ d Nu
d Nt C Nu D sin.
 Nt /; (1.122)

where there are two dimensionless numbers:

ˇ D Ab

2mk
;
 D �

r
m

k
:

The ˇ number measures the size of the damping term (relative to unity) and is
assumed to be small, basically because b is small. The � number is the ratio of the
time scale of free vibrations and the time scale of the forcing. The scaled initial
conditions have two other dimensionless numbers as values:

Nu.0/ D Ik

A
;

d Nu
d Nt D

tc

uc
V D V

A

p
mk :

1.12.3 A SlidingMass Attached to a Spring

Consider a variant of the oscillating body in Sect. 1.12.1 and Fig. 1.17: the body
rests on a flat surface, and there is sliding friction between the body and the surface.
Figure 1.19 depicts the problem.

1.12 Applications of VibrationModels 71

Fig. 1.19 Sketch of a body sliding on a surface

The body is attached to a spring with spring force �s.u/i . The friction force
is proportional to the normal force on the surface, �mgj , and given by �f . Pu/i ,
where

f . Pu/ D

8̂<
:̂
��mg; Pu < 0;
�mg; Pu > 0;
0; Pu D 0

:

Here, � is a friction coefficient. With the signum function

sign(x) D

8̂<
:̂
�1; x < 0;

1; x > 0;

0; x D 0

we can simply write f . Pu/ D �mg sign. Pu/ (the sign function is implemented by
numpy.sign).

The equation of motion becomes

m RuC �mgsign. Pu/C s.u/ D 0; u.0/ D I; Pu.0/ D V : (1.123)

1.12.4 A JumpingWashingMachine

A washing machine is placed on four springs with efficient dampers. If the machine
contains just a few clothes, the circular motion of the machine induces a sinusoidal
external force from the floor and the machine will jump up and down if the fre-
quency of the external force is close to the natural frequency of the machine and its
spring-damper system.

1.12.5 Motion of a Pendulum

Simple pendulum A classical problem in mechanics is the motion of a pendulum.
We first consider a simplified pendulum17 (sometimes also called a mathematical

17 https://en.wikipedia.org/wiki/Pendulum

https://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Pendulum

72 1 Vibration ODEs

Fig. 1.20 Sketch of a simple
pendulum

pendulum): a small body of massm is attached to a massless wire and can oscillate
back and forth in the gravity field. Figure 1.20 shows a sketch of the problem.

The motion is governed by Newton’s 2nd law, so we need to find expressions
for the forces and the acceleration. Three forces on the body are considered: an
unknown force S from the wire, the gravity force mg, and an air resistance force,
1
2
CD%Ajvjv, hereafter called the drag force, directed against the velocity of the

body. Here, CD is a drag coefficient, % is the density of air, A is the cross section
area of the body, and v is the magnitude of the velocity.

We introduce a coordinate system with polar coordinates and unit vectors i r and
i � as shown in Fig. 1.21. The position of the center of mass of the body is

r.t/ D x0i C y0j C Li r ;

where i and j are unit vectors in the corresponding Cartesian coordinate system in
the x and y directions, respectively. We have that i r D cos �i C sin �j .

The forces are now expressed as follows.

� Wire force: �Si r
� Gravity force: �mgj D mg.� sin � i � C cos � i r /

� Drag force: � 1
2
CD%Ajvjv i �

Since a positive velocity means movement in the direction of i � , the drag force
must be directed along �i � so it works against the motion. We assume motion in
air so that the added mass effect can be neglected (for a spherical body, the added
mass is 1

2
%V , where V is the volume of the body). Also the buoyancy effect can be

neglected for motion in the air when the density difference between the fluid and
the body is so significant.

1.12 Applications of VibrationModels 73

Fig. 1.21 Forces acting on
a simple pendulum

The velocity of the body is found from r:

v.t/ D Pr.t/ D d

d�
.x0i C y0j C Li r /

d�

dt
D L P�i � ;

since d
d�

i r D i � . It follows that v D jvj D L P� . The acceleration is

a.t/ D Pv.r/ D d

dt
.L P�i � / D L R�i � C L P� d i �

d�
P� D L R�i � �L P�2i r ;

since d
d�

i � D �i r .
Newton’s 2nd law of motion becomes

�Si r Cmg.� sin � i � C cos � i r / � 1
2
CD%AL

2j P� j P� i � D mL R� P� i � � L P�2i r ;

leading to two component equations

�S Cmg cos � D �L P�2; (1.124)

�mg sin � � 1
2
CD%AL

2j P� j P� D mL R� : (1.125)

From (1.124) we get an expression for S D mg cos � C L P�2, and from (1.125) we
get a differential equation for the angle �.t/. This latter equation is ordered as

m R� C 1

2
CD%ALj P�j P� C mg

L
sin � D 0 : (1.126)

Two initial conditions are needed: � D � and P� D ˝. Normally, the pendulum
motion is started from rest, which means˝ D 0.

74 1 Vibration ODEs

Equation (1.126) fits the general model used in (1.71) in Sect. 1.10 if we define
u D � , f .u0/ D 1

2
CD%ALj Puj Pu, s.u/ D L�1mg sinu, and F D 0. If the body is a

sphere with radiusR, we can take CD D 0:4 and A D �R2. Exercise 1.25 asks you
to scale the equations and carry out specific simulations with this model.

Physical pendulum The motion of a compound or physical pendulum where the
wire is a rod with mass, can be modeled very similarly. The governing equation
is Ia D T where I is the moment of inertia of the entire body about the point
.x0; y0/, and T is the sum of moments of the forces with respect to .x0; y0/. The
vector equation reads

r �
�
�Si r Cmg.� sin �i � C cos �i r / � 1

2
CD%AL

2j P� j P�i �

�

D I.L R� P�i � � L P�2i r / :
The component equation in i � direction gives the equation of motion for �.t/:

I R� C 1

2
CD%AL

3j P� j P� CmgL sin � D 0 : (1.127)

1.12.6 Dynamic Free Body DiagramDuring PendulumMotion

Usually one plots the mathematical quantities as functions of time to visualize the
solution of ODE models. Exercise 1.25 asks you to do this for the motion of a
pendulum in the previous section. However, sometimes it is more instructive to look
at other types of visualizations. For example, we have the pendulum and the free
body diagram in Fig. 1.20 and 1.21. We may think of these figures as animations
in time instead. Especially the free body diagram will show both the motion of
the pendulum and the size of the forces during the motion. The present section
exemplifies how to make such a dynamic body diagram. Two typical snapshots
of free body diagrams are displayed below (the drag force is magnified 5 times to
become more visual!).

1.12 Applications of VibrationModels 75

Dynamic physical sketches, coupled to the numerical solution of differential
equations, requires a program to produce a sketch for the situation at each time
level. Pysketcher18 is such a tool. In fact (and not surprising!) Fig. 1.20 and 1.21
were drawn using Pysketcher. The details of the drawings are explained in the Pys-
ketcher tutorial19. Here, we outline how this type of sketch can be used to create an
animated free body diagram during the motion of a pendulum.

Pysketcher is actually a layer of useful abstractions on top of standard plotting
packages. This means that we in fact apply Matplotlib to make the animated free
body diagram, but instead of dealing with a wealth of detailed Matplotlib com-
mands, we can express the drawing in terms of more high-level objects, e.g., objects
for the wire, angle � , body with mass m, arrows for forces, etc. When the position
of these objects are given through variables, we can just couple those variables to
the dynamic solution of our ODE and thereby make a unique drawing for each �
value in a simulation.

Writing the solver Let us start with the most familiar part of the current problem:
writing the solver function. We use Odespy for this purpose. We also work with
dimensionless equations. Since � can be viewed as dimensionless, we only need
to introduce a dimensionless time, here taken as Nt D t=

p
L=g. The resulting di-

mensionless mathematical model for � , the dimensionless angular velocity !, the
dimensionless wire force NS , and the dimensionless drag force ND is then

d!

d Nt D �˛j!j! � sin �; (1.128)

d�

d Nt D !; (1.129)

NS D !2 C cos �; (1.130)

ND D �˛j!j!; (1.131)

with

˛ D CD%�R
2L

2m
;

as a dimensionless parameter expressing the ratio of the drag force and the gravity
force. The dimensionless ! is made non-dimensional by the time, so !

p
L=g is

the corresponding angular frequency with dimensions.
A suitable function for computing (1.128)–(1.131) is listed below.

def simulate(alpha, Theta, dt, T):
import odespy

def f(u, t, alpha):
omega, theta = u
return [-alpha*omega*abs(omega) - sin(theta),

omega]

18 https://github.com/hplgit/pysketcher
19 http://hplgit.github.io/pysketcher/doc/web/index.html

https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html
https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html

76 1 Vibration ODEs

import numpy as np
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([0, Theta])
u, t = solver.solve(

t, terminate=lambda u, t, n: abs(u[n,1]) < 1E-3)
omega = u[:,0]
theta = u[:,1]
S = omega**2 + np.cos(theta)
drag = -alpha*np.abs(omega)*omega
return t, theta, omega, S, drag

Drawing the free body diagram The sketch function below applies Pysketcher
objects to build a diagram like that in Fig. 1.21, except that we have removed the
rotation point .x0; y0/ and the unit vectors in polar coordinates as these objects are
not important for an animated free body diagram.

import sys
try:

from pysketcher import *
except ImportError:

print ’Pysketcher must be installed from’
print ’https://github.com/hplgit/pysketcher’
sys.exit(1)

Overall dimensions of sketch
H = 15.
W = 17.

drawing_tool.set_coordinate_system(
xmin=0, xmax=W, ymin=0, ymax=H,
axis=False)

def sketch(theta, S, mg, drag, t, time_level):
"""
Draw pendulum sketch with body forces at a time level
corresponding to time t. The drag force is in
drag[time_level], the force in the wire is S[time_level],
the angle is theta[time_level].
"""
import math
a = math.degrees(theta[time_level]) # angle in degrees
L = 0.4*H # Length of pendulum
P = (W/2, 0.8*H) # Fixed rotation point

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)
rod_vec = rod.geometric_features()[’end’] - \

rod.geometric_features()[’start’]
unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’m’, mass_pt + L/10*unit_rod_vec)

1.12 Applications of VibrationModels 77

rod_start = rod.geometric_features()[’start’] # Point P
vertical = Line(rod_start, rod_start + point(0,-L/3))

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

set_dashed_thin_blackline(vertical)
set_dashed_thin_blackline(rod)
angle = Arc_wText(r’θ’, rod_start, L/6, -90, a,

text_spacing=1/30.)

magnitude = 1.2*L/2 # length of a unit force in figure
force = mg[time_level] # constant (scaled eq: about 1)
force *= magnitude
mg_force = Force(mass_pt, mass_pt + force*point(0,-1),

’’, text_pos=’end’)
force = S[time_level]
force *= magnitude
rod_force = Force(mass_pt, mass_pt - force*unit_vec(rod_vec),

’’, text_pos=’end’,
text_spacing=(0.03, 0.01))

force = drag[time_level]
force *= magnitude
air_force = Force(mass_pt, mass_pt -

force*unit_vec((rod_vec[1], -rod_vec[0])),
’’, text_pos=’end’,
text_spacing=(0.04,0.005))

body_diagram = Composition(
{’mg’: mg_force, ’S’: rod_force, ’air’: air_force,
’rod’: rod, ’body’: mass
’vertical’: vertical, ’theta’: angle,})

body_diagram.draw(verbose=0)
drawing_tool.savefig(’tmp_%04d.png’ % time_level, crop=False)
(No cropping: otherwise movies will be very strange!)

Making the animated free body diagram It now remains to couple the simulate
and sketch functions. We first run simulate:

from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

78 1 Vibration ODEs

The next step is to run through the time levels in the simulation and make a sketch
at each level:

for time_level, t_ in enumerate(t):
sketch(theta, S, mg, drag, t_, time_level)

The individual sketches are (by the sketch function) saved in files with names
tmp_%04d.png. These can be combined to videos using (e.g.) ffmpeg. A complete
function animate for running the simulation and creating video files is listed below.

def animate():
Clean up old plot files
import os, glob
for filename in glob.glob(’tmp_*.png’) + glob.glob(’movie.*’):

os.remove(filename)
Solve problem
from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

Visualize drag force 5 times as large
drag *= 5
mg = np.ones(S.size) # Gravity force (needed in sketch)

Draw animation
import time
for time_level, t_ in enumerate(t):

sketch(theta, S, mg, drag, t_, time_level)
time.sleep(0.2) # Pause between each frame on the screen

Make videos
prog = ’ffmpeg’
filename = ’tmp_%04d.png’
fps = 6
codecs = {’flv’: ’flv’, ’mp4’: ’libx264’,

’webm’: ’libvpx’, ’ogg’: ’libtheora’}
for ext in codecs:

lib = codecs[ext]
cmd = ’%(prog)s -i %(filename)s -r %(fps)s ’ % vars()
cmd += ’-vcodec %(lib)s movie.%(ext)s’ % vars()
print(cmd)
os.system(cmd)

1.12 Applications of VibrationModels 79

1.12.7 Motion of an Elastic Pendulum

Consider a pendulum as in Fig. 1.20, but this time the wire is elastic. The length of
the wire when it is not stretched is L0, while L.t/ is the stretched length at time t
during the motion.

Stretching the elastic wire a distance�L gives rise to a spring force k�L in the
opposite direction of the stretching. Let n be a unit normal vector along the wire
from the point r0 D .x0; y0/ and in the direction of i � , see Fig. 1.21 for definition
of .x0; y0/ and i � . Obviously, we have n D i � , but in this modeling of an elastic
pendulum we do not need polar coordinates. Instead, it is more straightforward to
develop the equation in Cartesian coordinates.

A mathematical expression for n is

n D r � r0

L.t/
;

where L.t/ D jjr � r0jj is the current length of the elastic wire. The position
vector r in Cartesian coordinates reads r.t/ D x.t/i C y.t/j , where i and j are
unit vectors in the x and y directions, respectively. It is convenient to introduce the
Cartesian components nx and ny of the normal vector:

n D r � r0

L.t/
D x.t/ � x0

L.t/
i C y.t/ � y0

L.t/
j D nxi C nyj :

The stretch �L in the wire is

�t D L.t/ � L0 :

The force in the wire is then �Sn D �k�Ln.
The other forces are the gravity and the air resistance, just as in Fig. 1.21. For

motion in air we can neglect the added mass and buoyancy effects. The main dif-
ference is that we have a model for S in terms of the motion (as soon as we have
expressed �L by r). For simplicity, we drop the air resistance term (but Exer-
cise 1.27 asks you to include it).

Newton’s second law of motion applied to the body now results in

m Rr D �k.L � L0/n �mgj : (1.132)

The two components of (1.132) are

Rx D � k
m
.L � L0/nx; (1.133)

Ry D � k
m
.L � L0/ny � g : (1.134)

80 1 Vibration ODEs

Remarks about an elastic vs a non-elastic pendulum Note that the derivation
of the ODEs for an elastic pendulum is more straightforward than for a classical,
non-elastic pendulum, since we avoid the details with polar coordinates, but instead
work with Newton’s second law directly in Cartesian coordinates. The reason why
we can do this is that the elastic pendulum undergoes a general two-dimensional
motion where all the forces are known or expressed as functions of x.t/ and y.t/,
such that we get two ordinary differential equations. The motion of the non-elastic
pendulum, on the other hand, is constrained: the body has to move along a circular
path, and the force S in the wire is unknown.

The non-elastic pendulum therefore leads to a differential-algebraic equation,
i.e., ODEs for x.t/ and y.t/ combined with an extra constraint .x � x0/2 C .y �
y0/

2 D L2 ensuring that the motion takes place along a circular path. The extra
constraint (equation) is compensated by an extra unknown force�Sn. Differential-
algebraic equations are normally hard to solve, especially with pen and paper.
Fortunately, for the non-elastic pendulum we can do a trick: in polar coordinates
the unknown force S appears only in the radial component of Newton’s second law,
while the unknown degree of freedom for describing the motion, the angle �.t/, is
completely governed by the asimuthal component. This allows us to decouple the
unknowns S and � . But this is a kind of trick and not a widely applicable method.
With an elastic pendulum we use straightforward reasoning with Newton’s 2nd law
and arrive at a standard ODE problem that (after scaling) is easy to solve on a com-
puter.

Initial conditions What is the initial position of the body? We imagine that first
the pendulum hangs in equilibrium in its vertical position, and then it is displaced an
angle �. The equilibrium position is governed by the ODEs with the accelerations
set to zero. The x component leads to x.t/ D x0, while the y component gives

0 D � k
m
.L �L0/ny � g D k

m
.L.0/� L0/� g) L.0/ D L0 Cmg=k;

since ny D �11 in this position. The corresponding y value is then from ny D �1:

y.t/ D y0 � L.0/ D y0 � .L0 Cmg=k/ :

Let us now choose .x0; y0/ such that the body is at the origin in the equilibrium
position:

x0 D 0; y0 D L0 Cmg=k :
Displacing the body an angle � to the right leads to the initial position

x.0/ D .L0 Cmg=k/ sin�; y.0/ D .L0 Cmg=k/.1 � cos�/ :

The initial velocities can be set to zero: x0.0/ D y0.0/ D 0.

1.12 Applications of VibrationModels 81

The complete ODE problem We can summarize all the equations as follows:

Rx D � k
m
.L � L0/nx;

Ry D � k
m
.L � L0/ny � g;

L D
p
.x � x0/2 C .y � y0/2;

nx D x � x0
L

;

ny D y � y0
L

;

x.0/ D .L0 Cmg=k/ sin�;
x0.0/ D 0;
y.0/ D .L0 Cmg=k/.1 � cos�/;

y0.0/ D 0 :

We insert nx and ny in the ODEs:

Rx D � k
m

�
1 � L0

L

�
.x � x0/; (1.135)

Ry D � k
m

�
1 � L0

L

�
.y � y0/� g; (1.136)

L D
p
.x � x0/2 C .y � y0/2; (1.137)

x.0/ D .L0 Cmg=k/ sin�; (1.138)

x0.0/ D 0; (1.139)

y.0/ D .L0 Cmg=k/.1 � cos�/; (1.140)

y0.0/ D 0 : (1.141)

Scaling The elastic pendulummodel can be used to study both an elastic pendulum
and a classic, non-elastic pendulum. The latter problem is obtained by letting k !
1. Unfortunately, a serious problem with the ODEs (1.135)–(1.136) is that for
large k, we have a very large factor k=m multiplied by a very small number 1 �
L0=L, since for large k, L � L0 (very small deformations of the wire). The
product is subject to significant round-off errors for many relevant physical values
of the parameters. To circumvent the problem, we introduce a scaling. This will also
remove physical parameters from the problem such that we end up with only one
dimensionless parameter, closely related to the elasticity of the wire. Simulations
can then be done by setting just this dimensionless parameter.

The characteristic length can be taken such that in equilibrium, the scaled length
is unity, i.e., the characteristic length is L0 Cmg=k:

Nx D x

L0 Cmg=k ; Ny D y

L0 Cmg=k :

We must then also work with the scaled length NL D L=.L0 Cmg=k/.

82 1 Vibration ODEs

Introducing Nt D t=tc , where tc is a characteristic time we have to decide upon
later, one gets

d2 Nx
d Nt2 D �t

2
c

k

m

�
1 � L0

L0 Cmg=k
1

NL
�
Nx;

d2 Ny
d Nt2 D �t

2
c

k

m

�
1 � L0

L0 Cmg=k
1

NL
�
. Ny � 1/� t2c

g

L0 Cmg=k ;
NL D

p
Nx2 C . Ny � 1/2;

Nx.0/ D sin�;

Nx0.0/ D 0;
Ny.0/ D 1 � cos�;

Ny0.0/ D 0 :

For a non-elastic pendulum with small angles, we know that the frequency of the
oscillations are ! D p

L=g. It is therefore natural to choose a similar expression
here, either the length in the equilibrium position,

t2c D
L0 Cmg=k

g
:

or simply the unstretched length,

t2c D
L0

g
:

These quantities are not very different (since the elastic model is valid only for quite
small elongations), so we take the latter as it is the simplest one.

The ODEs become

d2 Nx
d Nt2 D �

L0k

mg

�
1 � L0

L0 Cmg=k
1

NL
�
Nx;

d2 Ny
d Nt2 D �

L0k

mg

�
1 � L0

L0 Cmg=k
1

NL
�
. Ny � 1/ � L0

L0 Cmg=k ;
NL D

p
Nx2 C . Ny � 1/2 :

We can now identify a dimensionless number

ˇ D L0

L0 Cmg=k D
1

1C mg

L0k

;

1.12 Applications of VibrationModels 83

which is the ratio of the unstretched length and the stretched length in equilibrium.
The non-elastic pendulum will have ˇ D 1 (k !1). With ˇ the ODEs read

d2 Nx
d Nt2 D �

ˇ

1 � ˇ
�
1 � ˇNL

�
Nx; (1.142)

d2 Ny
d Nt2 D �

ˇ

1 � ˇ
�
1 � ˇNL

�
. Ny � 1/� ˇ; (1.143)

NL D
p
Nx2 C . Ny � 1/2; (1.144)

Nx.0/ D .1C
/ sin�; (1.145)

d Nx
d Nt .0/ D 0; (1.146)

Ny.0/ D 1 � .1C
/ cos�; (1.147)

d Ny
d Nt .0/ D 0; (1.148)

We have here added a parameter
, which is an additional downward stretch of
the wire at t D 0. This parameter makes it possible to do a desired test: vertical
oscillations of the pendulum. Without
, starting the motion from .0; 0/ with zero
velocity will result in x D y D 0 for all times (also a good test!), but with an initial
stretch so the body’s position is .0;
/, we will have oscillatory vertical motion with
amplitude
 (see Exercise 1.26).

Remark on the non-elastic limit We immediately see that as k ! 1 (i.e., we
obtain a non-elastic pendulum), ˇ ! 1, NL ! 1, and we have very small values
1 � ˇ NL�1 divided by very small values 1 � ˇ in the ODEs. However, it turns
out that we can set ˇ very close to one and obtain a path of the body that within the
visual accuracy of a plot does not show any elastic oscillations. (Should the division
of very small values become a problem, one can study the limit by L’Hospital’s rule:

lim
ˇ!1

1 � ˇ NL�1
1 � ˇ D 1

NL;

and use the limit NL�1 in the ODEs for ˇ values very close to 1.)

1.12.8 Vehicle on a Bumpy Road

We consider a very simplistic vehicle, on one wheel, rolling along a bumpy road.
The oscillatory nature of the road will induce an external forcing on the spring
system in the vehicle and cause vibrations. Figure 1.22 outlines the situation.

To derive the equation that governs the motion, we must first establish the posi-
tion vector of the black mass at the top of the spring. Suppose the spring has length
L without any elongation or compression, suppose the radius of the wheel isR, and
suppose the height of the black mass at the top is H . With the aid of the r0 vector
in Fig. 1.22, the position r of the center point of the mass is

r D r0 C 2Rj C Lj C uj C 1

2
Hj ; (1.149)

84 1 Vibration ODEs

Fig. 1.22 Sketch of one-
wheel vehicle on a bumpy
road

r0

where u is the elongation or compression in the spring according to the (unknown
and to be computed) vertical displacement u relative to the road. If the vehicle
travels with constant horizontal velocity v and h.x/ is the shape of the road, then
the vector r0 is

r0 D vti C h.vt/j ;
if the motion starts from x D 0 at time t D 0.

The forces on the mass is the gravity, the spring force, and an optional damping
force that is proportional to the vertical velocity Pu. Newton’s second law of motion
then tells that

m Rr D �mgj � s.u/ � b Puj :

This leads to
m Ru D �s.u/ � b Pu �mg �mh00.vt/v2 :

To simplify a little bit, we omit the gravity force mg in comparison with the
other terms. Introducing u0 for Pu then gives a standard damped, vibration equation
with external forcing:

mu00 C bu0 C s.u/ D �mh00.vt/v2 : (1.150)

Since the road is normally known just as a set of array values, h00 must be computed
by finite differences. Let�x be the spacing between measured values hi D h.i�x/
on the road. The discrete second-order derivative h00 reads

qi D hi�1 � 2hi C hiC1
�x2

; i D 1; : : : ; Nx � 1 :

We may for maximum simplicity set the end points as q0 D q1 and qNx D qNx�1.
The term �mh00.vt/v2 corresponds to a force with discrete time values

F n D �mqnv2; �t D v�1�x :

This force can be directly used in a numerical model

ŒmDtDtuC bD2tuC s.u/ D F �n :

1.12 Applications of VibrationModels 85

Software for computing u and also making an animated sketch of the mo-
tion like we did in Sect. 1.12.6 is found in a separate project on the web:
https://github.com/hplgit/bumpy. You may start looking at the tutorial20.

1.12.9 Bouncing Ball

A bouncing ball is a ball in free vertically fall until it impacts the ground, but during
the impact, some kinetic energy is lost, and a new motion upwards with reduced
velocity starts. After the motion is retarded, a new free fall starts, and the process is
repeated. At some point the velocity close to the ground is so small that the ball is
considered to be finally at rest.

The motion of the ball falling in air is governed by Newton’s second law F D
ma, where a is the acceleration of the body,m is the mass, and F is the sum of all
forces. Here, we neglect the air resistance so that gravity �mg is the only force.
The height of the ball is denoted by h and v is the velocity. The relations between
h, v, and a,

h0.t/ D v.t/; v0.t/ D a.t/;
combined with Newton’s second law gives the ODE model

h00.t/ D �g; (1.151)

or expressed alternatively as a system of first-order equations:

v0.t/ D �g; (1.152)

h0.t/ D v.t/ : (1.153)

These equations govern the motion as long as the ball is away from the ground by a
small distance
h > 0. When h <
h, we have two cases.

1. The ball impacts the ground, recognized by a sufficiently large negative velocity
(v < �
v). The velocity then changes sign and is reduced by a factor CR, known
as the coefficient of restitution21. For plotting purposes, one may set h D 0.

2. The motion stops, recognized by a sufficiently small velocity (jvj <
v) close to
the ground.

1.12.10 Two-Body Gravitational Problem

Consider two astronomical objects A and B that attract each other by gravitational
forces. A and B could be two stars in a binary system, a planet orbiting a star, or
a moon orbiting a planet. Each object is acted upon by the gravitational force due
to the other object. Consider motion in a plane (for simplicity) and let .xA; yA/ and
.xB; yB/ be the positions of object A and B , respectively.

20 http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
21 http://en.wikipedia.org/wiki/Coefficient_of_restitution

https://github.com/hplgit/bumpy
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
http://en.wikipedia.org/wiki/Coefficient_of_restitution
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
http://en.wikipedia.org/wiki/Coefficient_of_restitution

86 1 Vibration ODEs

The governing equations Newton’s second law of motion applied to each object
is all we need to set up a mathematical model for this physical problem:

mA RxA D F ; (1.154)

mB RxB D �F ; (1.155)

where F is the gravitational force

F D GmAmB

jjrjj3 r;

where
r.t/ D xB.t/ � xA.t/;

and G is the gravitational constant: G D 6:674 � 10�11Nm2=kg2.

Scaling A problem with these equations is that the parameters are very large (mA,
mB , jjrjj) or very small (G). The rotation time for binary stars can be very small
and large as well. It is therefore advantageous to scale the equations. A natural
length scale could be the initial distance between the objects: L D r.0/. We write
the dimensionless quantities as

NxA D xA

L
; NxB D xB

L
; Nt D t

tc
:

The gravity force is transformed to

F D GmAmB

L2jj Nrjj3 Nr; Nr D NxB � NxA;

so the first ODE for xA becomes

d2 NxA
d Nt2 D

GmBt
2
c

L3
Nr
jj Nrjj3 :

Assuming that quantities with a bar and their derivatives are around unity in size, it
is natural to choose tc such that the fraction GmBtc=L2 D 1:

tc D
s

L3

GmB
:

From the other equation for xB we get another candidate for tc with mA instead of
mB . Which mass we choose play a role if mA
 mB or mB
 mA. One solution is
to use the sum of the masses:

tc D
s

L3

G.mA CmB/ :

1.12 Applications of VibrationModels 87

Taking a look at Kepler’s laws22 of planetary motion, the orbital period for a planet
around the star is given by the tc above, except for a missing factor of 2� , but that
means that t�1c is just the angular frequency of the motion. Our characteristic time
tc is therefore highly relevant. Introducing the dimensionless number

˛ D mA

mB
;

we can write the dimensionless ODE as

d2 NxA
d Nt2 D

1

1C ˛
Nr
jj Nrjj3 ; (1.156)

d2 NxB
d Nt2 D

1

1C ˛�1
Nr
jj Nrjj3 : (1.157)

In the limit mA
 mB , i.e., ˛
 1, object B stands still, say NxB D 0, and object
A orbits according to

d2 NxA
d Nt2 D �

NxA
jj NxAjj3 :

Solution in a special case: planet orbiting a star To better see the motion, and
that our scaling is reasonable, we introduce polar coordinates r and � :

NxA D r cos �i C r sin �j ;

which means NxA can be written as NxA D ri r . Since
d

dt
i r D P�i � ;

d

dt
i � D � P�i r ;

we have
d2 NxA
d Nt2 D .Rr � r

P�2/i r C .r R� C 2Pr P�/i � :
The equation of motion for mass A is then

Rr � r P�2 D � 1
r2
;

r R� C 2Pr P� D 0 :

The special case of circular motion, r D 1, fulfills the equations, since the latter
equation then gives P� D const and the former then gives P� D 1, i.e., the motion
is r.t/ D 1, �.t/ D t , with unit angular frequency as expected and period 2� as
expected.

22 https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

88 1 Vibration ODEs

1.12.11 Electric Circuits

Although the term “mechanical vibrations” is used in the present book, we must
mention that the same type of equations arise when modeling electric circuits. The
current I.t/ in a circuit with an inductor with inductance L, a capacitor with capac-
itance C , and overall resistance R, is governed by

RI C R

L
PI C 1

LC
I D PV .t/; (1.158)

where V.t/ is the voltage source powering the circuit. This equation has the same
form as the general model considered in Sect. 1.10 if we set u D I , f .u0/ D bu0
and define b D R=L, s.u/ D L�1C�1u, and F.t/ D PV .t/.

1.13 Exercises

Exercise 1.22: Simulate resonance
We consider the scaled ODE model (1.122) from Sect. 1.12.2. After scaling, the
amplitude of u will have a size about unity as time grows and the effect of the
initial conditions die out due to damping. However, as
 ! 1, the amplitude of u
increases, especially if ˇ is small. This effect is called resonance. The purpose of
this exercise is to explore resonance.

a) Figure out how the solver function in vib.py can be called for the scaled ODE
(1.122).

b) Run
 D 5; 1:5; 1:1; 1 for ˇ D 0:005; 0:05; 0:2. For each ˇ value, present an
image with plots of u.t/ for the four
 values.

Filename: resonance.

Exercise 1.23: Simulate oscillations of a sliding box
Consider a sliding box on a flat surface as modeled in Sect. 1.12.3. As spring force
we choose the nonlinear formula

s.u/ D k

˛
tanh.˛u/ D kuC 1

3
˛2ku3 C 2

15
˛4ku5 CO.u6/ :

a) Plot g.u/ D ˛�1 tanh.˛u/ for various values of ˛. Assume u 2 Œ�1; 1�.
b) Scale the equations using I as scale for u and

p
m=k as time scale.

c) Implement the scaled model in b). Run it for some values of the dimensionless
parameters.

Filename: sliding_box.

Exercise 1.24: Simulate a bouncing ball
Section 1.12.9 presents a model for a bouncing ball. Choose one of the two ODE
formulation, (1.151) or (1.152)–(1.153), and simulate the motion of a bouncing ball.
Plot h.t/. Think about how to plot v.t/.

1.13 Exercises 89

Hint A naive implementation may get stuck in repeated impacts for large time step
sizes. To avoid this situation, one can introduce a state variable that holds the mode
of the motion: free fall, impact, or rest. Two consecutive impacts imply that the
motion has stopped.
Filename: bouncing_ball.

Exercise 1.25: Simulate a simple pendulum
Simulation of simple pendulum can be carried out by using the mathematical model
derived in Sect. 1.12.5 and calling up functionality in the vib.py file (i.e., solve the
second-order ODE by centered finite differences).

a) Scale the model. Set up the dimensionless governing equation for � and expres-
sions for dimensionless drag and wire forces.

b) Write a function for computing � and the dimensionless drag force and the force
in the wire, using the solver function in the vib.py file. Plot these three
quantities below each other (in subplots) so the graphs can be compared. Run
two cases, first one in the limit of � small and no drag, and then a second one
with � D 40 degrees and ˛ D 0:8.

Filename: simple_pendulum.

Exercise 1.26: Simulate an elastic pendulum
Section 1.12.7 describes a model for an elastic pendulum, resulting in a system of
two ODEs. The purpose of this exercise is to implement the scaled model, test the
software, and generalize the model.

a) Write a function simulate that can simulate an elastic pendulum using the
scaled model. The function should have the following arguments:

def simulate(
beta=0.9, # dimensionless parameter
Theta=30, # initial angle in degrees
epsilon=0, # initial stretch of wire
num_periods=6, # simulate for num_periods
time_steps_per_period=60, # time step resolution
plot=True, # make plots or not
):

To set the total simulation time and the time step, we use our knowledge of the
scaled, classical, non-elastic pendulum: u00 Cu D 0, with solution u D � cos Nt .
The period of these oscillations is P D 2� and the frequency is unity. The time
for simulation is taken as num_periods times P . The time step is set as P
divided by time_steps_per_period.
The simulate function should return the arrays of x, y, � , and t , where � D
tan�1.x=.1 � y// is the angular displacement of the elastic pendulum corre-
sponding to the position .x; y/.
If plot is True, make a plot of Ny.Nt/ versus Nx.Nt /, i.e., the physical motion of
the mass at . Nx; Ny/. Use the equal aspect ratio on the axis such that we get a
physically correct picture of the motion. Also make a plot of �.Nt/, where � is

http://tinyurl.com/nu656p2/vib/vib.py

90 1 Vibration ODEs

measured in degrees. If � < 10 degrees, add a plot that compares the solutions
of the scaled, classical, non-elastic pendulum and the elastic pendulum (�.t/).
Although the mathematics here employs a bar over scaled quantities, the code
should feature plain names x for Nx, y for Ny, and t for Nt (rather than x_bar,
etc.). These variable names make the code easier to read and compare with the
mathematics.

Hint 1 Equal aspect ratio is set by plt.gca().set_aspect(’equal’) in Mat-
plotlib (import matplotlib.pyplot as plt) and in SciTools by the command
plt.plot(..., daspect=[1,1,1], daspectmode=’equal’) (provided you
have done import scitools.std as plt).

Hint 2 If you want to use Odespy to solve the equations, order the ODEs like
PNx; Nx;PNy; Ny such that odespy.EulerCromer can be applied.

b) Write a test function for testing that � D 0 and
 D 0 gives x D y D 0 for all
times.

c) Write another test function for checking that the pure vertical motion of the
elastic pendulum is correct. Start with simplifying the ODEs for pure ver-
tical motion and show that Ny.Nt / fulfills a vibration equation with frequencyp
ˇ=.1 � ˇ/. Set up the exact solution.

Write a test function that uses this special case to verify the simulate func-
tion. There will be numerical approximation errors present in the results from
simulate so you have to believe in correct results and set a (low) tolerance that
corresponds to the computed maximum error. Use a small �t to obtain a small
numerical approximation error.

d) Make a function demo(beta, Theta) for simulating an elastic pendulum with
a given ˇ parameter and initial angle �. Use 600 time steps per period to get
every accurate results, and simulate for 3 periods.

Filename: elastic_pendulum.

Exercise 1.27: Simulate an elastic pendulum with air resistance
This is a continuation Exercise 1.26. Air resistance on the body with mass m can
be modeled by the force � 1

2
%CDAjvjv, where CD is a drag coefficient (0.2 for a

sphere), % is the density of air (1.2 kgm�3), A is the cross section area (A D �R2

for a sphere, where R is the radius), and v is the velocity of the body. Include air
resistance in the original model, scale the model, write a function simulate_drag
that is a copy of the simulate function from Exercise 1.26, but with the new ODEs
included, and show plots of how air resistance influences the motion.
Filename: elastic_pendulum_drag.

Remarks Test functions are challenging to construct for the problem with air resis-
tance. You can reuse the tests from Exercise 1.27 for simulate_drag, but these
tests does not verify the new terms arising from air resistance.

1.13 Exercises 91

Exercise 1.28: Implement the PEFRL algorithm
We consider the motion of a planet around a star (Sect. 1.12.10). The simplified
case where one mass is very much bigger than the other and one object is at rest,
results in the scaled ODE model

Rx C .x2 C y2/�3=2x D 0;
Ry C .x2 C y2/�3=2y D 0 :

a) It is easy to show that x.t/ and y.t/ go like sine and cosine functions. Use this
idea to derive the exact solution.

b) One believes that a planet may orbit a star for billions of years. We are now
interested in how accurate methods we actually need for such calculations. A
first task is to determine what the time interval of interest is in scaled units. Take
the earth and sun as typical objects and find the characteristic time used in the
scaling of the equations (tc D

p
L3=.mG/), where m is the mass of the sun, L

is the distance between the sun and the earth, andG is the gravitational constant.
Find the scaled time interval corresponding to one billion years.

c) Solve the equations using 4th-order Runge-Kutta and the Euler-Cromer meth-
ods. You may benefit from applying Odespy for this purpose. With each solver,
simulate 10,000 orbits and print the maximum position error and CPU time as
a function of time step. Note that the maximum position error does not neces-
sarily occur at the end of the simulation. The position error achieved with each
solver will depend heavily on the size of the time step. Let the time step corre-
spond to 200, 400, 800 and 1600 steps per orbit, respectively. Are the results as
expected? Explain briefly. When you develop your program, have in mind that
it will be extended with an implementation of the other algorithms (as requested
in d) and e) later) and experiments with this algorithm as well.

d) Implement a solver based on the PEFRL method from Sect. 1.10.11. Verify its
4th-order convergence using an equation u00 C u D 0.

e) The simulations done previously with the 4th-order Runge-Kutta and Euler-
Cromer are now to be repeated with the PEFRL solver, so the code must be
extended accordingly. Then run the simulations and comment on the perfor-
mance of PEFRL compared to the other two.

f) Use the PEFRL solver to simulate 100,000 orbits with a fixed time step cor-
responding to 1600 steps per period. Record the maximum error within each
subsequent group of 1000 orbits. Plot these errors and fit (least squares) a math-
ematical function to the data. Print also the total CPU time spent for all 100,000
orbits.
Now, predict the error and required CPU time for a simulation of 1 billion years
(orbits). Is it feasible on today’s computers to simulate the planetary motion for
one billion years?

Filename: vib_PEFRL.

Remarks This exercise investigates whether it is feasible to predict planetary mo-
tion for the life time of a solar system.

92 1 Vibration ODEs

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

2Wave Equations

A very wide range of physical processes lead to wave motion, where signals are
propagated through a medium in space and time, normally with little or no per-
manent movement of the medium itself. The shape of the signals may undergo
changes as they travel through matter, but usually not so much that the signals can-
not be recognized at some later point in space and time. Many types of wave motion
can be described by the equation utt D r � .c2ru/C f , which we will solve in the
forthcoming text by finite difference methods.

2.1 Simulation of Waves on a String

We begin our study of wave equations by simulating one-dimensional waves on a
string, say on a guitar or violin. Let the string in the undeformed state coincide with
the interval Œ0; L� on the x axis, and let u.x; t/ be the displacement at time t in the
y direction of a point initially at x. The displacement function u is governed by the
mathematical model

@2u

@t2
D c2 @

2u

@x2
; x 2 .0; L/; t 2 .0; T � (2.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.2)

@

@t
u.x; 0/ D 0; x 2 Œ0; L� (2.3)

u.0; t/ D 0; t 2 .0; T � (2.4)

u.L; t/ D 0; t 2 .0; T � : (2.5)

The constant c and the function I.x/ must be prescribed.
Equation (2.1) is known as the one-dimensional wave equation. Since this PDE

contains a second-order derivative in time, we need two initial conditions. The
condition (2.2) specifies the initial shape of the string, I.x/, and (2.3) expresses
that the initial velocity of the string is zero. In addition, PDEs need boundary
conditions, given here as (2.4) and (2.5). These two conditions specify that the
string is fixed at the ends, i.e., that the displacement u is zero.

The solution u.x; t/ varies in space and time and describes waves that move with
velocity c to the left and right.

93© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_2

94 2 Wave Equations

Sometimes we will use a more compact notation for the partial derivatives to
save space:

ut D @u

@t
; ut t D @2u

@t2
; (2.6)

and similar expressions for derivatives with respect to other variables. Then the
wave equation can be written compactly as utt D c2uxx.

The PDE problem (2.1)–(2.5) will now be discretized in space and time by a
finite difference method.

2.1.1 Discretizing the Domain

The temporal domain Œ0; T � is represented by a finite number of mesh points

0 D t0 < t1 < t2 < � � � < tNt�1 < tNt D T : (2.7)

Similarly, the spatial domain Œ0; L� is replaced by a set of mesh points

0 D x0 < x1 < x2 < � � � < xNx�1 < xNx D L : (2.8)

One may view the mesh as two-dimensional in the x; t plane, consisting of points
.xi ; tn/, with i D 0; : : : ; Nx and n D 0; : : : ; Nt .

Uniform meshes For uniformly distributed mesh points we can introduce the con-
stant mesh spacings �t and �x. We have that

xi D i�x; i D 0; : : : ; Nx; tn D n�t; n D 0; : : : ; Nt : (2.9)

We also have that �x D xi � xi�1, i D 1; : : : ; Nx , and �t D tn � tn�1, n D
1; : : : ; Nt . Figure 2.1 displays a mesh in the x; t plane with Nt D 5, Nx D 5, and
constant mesh spacings.

2.1.2 The Discrete Solution

The solution u.x; t/ is sought at the mesh points. We introduce the mesh func-
tion uni , which approximates the exact solution at the mesh point .xi ; tn/ for i D
0; : : : ; Nx and n D 0; : : : ; Nt . Using the finite difference method, we shall develop
algebraic equations for computing the mesh function.

2.1.3 Fulfilling the Equation at theMesh Points

In the finite difference method, we relax the condition that (2.1) holds at all points
in the space-time domain .0; L/� .0; T � to the requirement that the PDE is fulfilled
at the interior mesh points only:

@2

@t2
u.xi ; tn/ D c2 @

2

@x2
u.xi ; tn/; (2.10)

2.1 Simulation of Waves on a String 95

for i D 1; : : : ; Nx � 1 and n D 1; : : : ; Nt � 1. For n D 0 we have the initial
conditions u D I.x/ and ut D 0, and at the boundaries i D 0;Nx we have the
boundary condition u D 0.

2.1.4 Replacing Derivatives by Finite Differences

The second-order derivatives can be replaced by central differences. The most
widely used difference approximation of the second-order derivative is

@2

@t2
u.xi ; tn/ � unC1i � 2uni C un�1i

�t2
:

It is convenient to introduce the finite difference operator notation

ŒDtDtu�
n
i D

unC1i � 2uni C un�1i

�t2
:

A similar approximation of the second-order derivative in the x direction reads

@2

@x2
u.xi ; tn/ �

uniC1 � 2uni C uni�1
�x2

D ŒDxDxu�
n
i :

Algebraic version of the PDE We can now replace the derivatives in (2.10) and
get

unC1i � 2uni C un�1i

�t2
D c2 u

n
iC1 � 2uni C uni�1

�x2
; (2.11)

or written more compactly using the operator notation:

ŒDtDtu D c2DxDx�
n
i : (2.12)

Interpretation of the equation as a stencil A characteristic feature of (2.11) is
that it involves u values from neighboring points only: unC1i , uni˙1, u

n
i , and u

n�1
i .

The circles in Fig. 2.1 illustrate such neighboring mesh points that contribute to an
algebraic equation. In this particular case, we have sampled the PDE at the point
.2; 2/ and constructed (2.11), which then involves a coupling of u21, u

3
2, u

2
2, u

1
2, and

u23. The term stencil is often used about the algebraic equation at a mesh point, and
the geometry of a typical stencil is illustrated in Fig. 2.1. One also often refers to
the algebraic equations as discrete equations, (finite) difference equations or a finite
difference scheme.

Algebraic version of the initial conditions We also need to replace the deriva-
tive in the initial condition (2.3) by a finite difference approximation. A centered
difference of the type

@

@t
u.xi ; t0/ � u1i � u�1i

2�t
D ŒD2tu�

0
i ;

96 2 Wave Equations

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

Fig. 2.1 Mesh in space and time. The circles show points connected in a finite difference equation

seems appropriate. Writing out this equation and ordering the terms give

u�1i D u1i ; i D 0; : : : ; Nx : (2.13)

The other initial condition can be computed by

u0i D I.xi /; i D 0; : : : ; Nx :

2.1.5 Formulating a Recursive Algorithm

We assume that uni and u
n�1
i are available for i D 0; : : : ; Nx . The only unknown

quantity in (2.11) is therefore unC1i , which we now can solve for:

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
: (2.14)

We have here introduced the parameter

C D c �t
�x

; (2.15)

known as the Courant number.

C is the key parameter in the discrete wave equation
We see that the discrete version of the PDE features only one parameter, C ,
which is therefore the key parameter, together with Nx, that governs the quality
of the numerical solution (see Sect. 2.10 for details). Both the primary physical
parameter c and the numerical parameters�x and�t are lumped together in C .
Note that C is a dimensionless parameter.

2.1 Simulation of Waves on a String 97

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at interior point

Fig. 2.2 Modified stencil for the first time step

Given that un�1i and uni are known for i D 0; : : : ; Nx , we find new values at the
next time level by applying the formula (2.14) for i D 1; : : : ; Nx � 1. Figure 2.1
illustrates the points that are used to compute u32. For the boundary points, i D 0

and i D Nx , we apply the boundary conditions unC1i D 0.
Even though sound reasoning leads up to (2.14), there is still a minor challenge

with it that needs to be resolved. Think of the very first computational step to
be made. The scheme (2.14) is supposed to start at n D 1, which means that
we compute u2 from u1 and u0. Unfortunately, we do not know the value of u1,
so how to proceed? A standard procedure in such cases is to apply (2.14) also
for n D 0. This immediately seems strange, since it involves u�1i , which is an
undefined quantity outside the time mesh (and the time domain). However, we can
use the initial condition (2.13) in combination with (2.14) when n D 0 to eliminate
u�1i and arrive at a special formula for u1i :

u1i D u0i �
1

2
C 2

�
u0iC1 � 2u0i C u0i�1

�
: (2.16)

Figure 2.2 illustrates how (2.16) connects four instead of five points: u12, u
0
1, u

0
2, and

u03.
We can now summarize the computational algorithm:

1. Compute u0i D I.xi/ for i D 0; : : : ; Nx
2. Compute u1i by (2.16) for i D 1; 2; : : : ; Nx � 1 and set u1i D 0 for the boundary

points given by i D 0 and i D Nx ,
3. For each time level n D 1; 2; : : : ; Nt � 1

(a) apply (2.14) to find unC1i for i D 1; : : : ; Nx � 1
(b) set unC1i D 0 for the boundary points having i D 0, i D Nx .

98 2 Wave Equations

The algorithm essentially consists of moving a finite difference stencil through all
the mesh points, which can be seen as an animation in a web page1 or a movie file2.

2.1.6 Sketch of an Implementation

The algorithm only involves the three most recent time levels, so we need only
three arrays for unC1i , uni , and u

n�1
i , i D 0; : : : ; Nx . Storing all the solutions in

a two-dimensional array of size .Nx C 1/ � .Nt C 1/ would be possible in this
simple one-dimensional PDE problem, but is normally out of the question in three-
dimensional (3D) and large two-dimensional (2D) problems. We shall therefore, in
all our PDE solving programs, have the unknown in memory at as few time levels
as possible.

In a Python implementation of this algorithm, we use the array elements u[i] to
store unC1i , u_n[i] to store uni , and u_nm1[i] to store un�1i .

The following Python snippet realizes the steps in the computational algorithm.

Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

u[i] = u_n[i] - \
0.5*C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

for n in range(1, Nt):
Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_n[i] - u_nm1[i] - \
C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

1 http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
2 http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg

http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg
http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg

2.2 Verification 99

2.2 Verification

Before implementing the algorithm, it is convenient to add a source term to the PDE
(2.1), since that gives us more freedom in finding test problems for verification.
Physically, a source term acts as a generator for waves in the interior of the domain.

2.2.1 A Slightly Generalized Model Problem

We now address the following extended initial-boundary value problem for one-
dimensional wave phenomena:

utt D c2uxx C f .x; t/; x 2 .0; L/; t 2 .0; T � (2.17)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.18)

ut .x; 0/ D V.x/; x 2 Œ0; L� (2.19)

u.0; t/ D 0; t > 0 (2.20)

u.L; t/ D 0; t > 0 : (2.21)

Sampling the PDE at .xi ; tn/ and using the same finite difference approximations
as above, yields

ŒDtDtu D c2DxDxuC f �ni : (2.22)

Writing this out and solving for the unknown unC1i results in

unC1i D �un�1i C 2uni C C2.uniC1 � 2uni C uni�1/C�t2f ni : (2.23)

The equation for the first time step must be rederived. The discretization of the
initial condition ut D V.x/ at t D 0 becomes

ŒD2tu D V �0i) u�1i D u1i � 2�tVi ;

which, when inserted in (2.23) for n D 0, gives the special formula

u1i D u0i ��tVi C
1

2
C 2

�
u0iC1 � 2u0i C u0i�1

�C 1

2
�t2f 0i : (2.24)

2.2.2 Using an Analytical Solution of Physical Significance

Manywave problems feature sinusoidal oscillations in time and space. For example,
the original PDE problem (2.1)–(2.5) allows an exact solution

ue.x; t/ D A sin
��
L
x
�
cos

��
L
ct
�
: (2.25)

This ue fulfills the PDE with f D 0, boundary conditions ue.0; t/ D ue.L; t/ D 0,
as well as initial conditions I.x/ D A sin

�
�
L
x
�
and V D 0.

100 2 Wave Equations

How to use exact solutions for verification
It is common to use such exact solutions of physical interest to verify imple-
mentations. However, the numerical solution uni will only be an approximation
to ue.xi ; tn/. We have no knowledge of the precise size of the error in this ap-
proximation, and therefore we can never know if discrepancies between uni and
ue.xi ; tn/ are caused by mathematical approximations or programming errors.
In particular, if plots of the computed solution uni and the exact one (2.25) look
similar, many are tempted to claim that the implementation works. However,
even if color plots look nice and the accuracy is “deemed good”, there can still
be serious programming errors present!

The only way to use exact physical solutions like (2.25) for serious and thor-
ough verification is to run a series of simulations on finer and finer meshes,
measure the integrated error in each mesh, and from this information estimate
the empirical convergence rate of the method.

An introduction to the computing of convergence rates is given in Section
3.1.6 in [9]. There is also a detailed example on computing convergence rates in
Sect. 1.2.2.

In the present problem, one expects the method to have a convergence rate of 2
(see Sect. 2.10), so if the computed rates are close to 2 on a sufficiently fine mesh,
we have good evidence that the implementation is free of programming mistakes.

2.2.3 Manufactured Solution and Estimation of Convergence Rates

Specifying the solution and computing corresponding data One problem with
the exact solution (2.25) is that it requires a simplification (V D 0; f D 0) of
the implemented problem (2.17)–(2.21). An advantage of using a manufactured
solution is that we can test all terms in the PDE problem. The idea of this approach
is to set up some chosen solution and fit the source term, boundary conditions,
and initial conditions to be compatible with the chosen solution. Given that our
boundary conditions in the implementation are u.0; t/ D u.L; t/ D 0, we must
choose a solution that fulfills these conditions. One example is

ue.x; t/ D x.L � x/ sin t :

Inserted in the PDE utt D c2uxx C f we get

�x.L � x/ sin t D �c22 sin t C f) f D .2c2 � x.L � x// sin t :

The initial conditions become

u.x; 0/ DI.x/ D 0;
ut .x; 0/ D V.x/ D x.L � x/ :

Defining a single discretization parameter To verify the code, we compute the
convergence rates in a series of simulations, letting each simulation use a finer mesh
than the previous one. Such empirical estimation of convergence rates relies on an

2.2 Verification 101

assumption that some measure E of the numerical error is related to the discretiza-
tion parameters through

E D Ct�tr C Cx�xp;
where Ct , Cx , r , and p are constants. The constants r and p are known as the
convergence rates in time and space, respectively. From the accuracy in the finite
difference approximations, we expect r D p D 2, since the error terms are of order
�t2 and �x2. This is confirmed by truncation error analysis and other types of
analysis.

By using an exact solution of the PDE problem, we will next compute the error
measure E on a sequence of refined meshes and see if the rates r D p D 2 are
obtained. We will not be concerned with estimating the constants Ct andCx , simply
because we are not interested in their values.

It is advantageous to introduce a single discretization parameter h D �t D Oc�x
for some constant Oc. Since �t and �x are related through the Courant number,
�t D C�x=c, we set h D �t , and then �x D hc=C . Now the expression for the
error measure is greatly simplified:

E D Ct�tr C Cx�xr D Cthr C Cx
� c
C

�r
hr D Dhr; D D Ct C Cx

� c
C

�r
:

Computing errors We choose an initial discretization parameter h0 and run ex-
periments with decreasing h: hi D 2�i h0, i D 1; 2; : : : ; m. Halving h in each
experiment is not necessary, but it is a common choice. For each experiment we
must record E and h. Standard choices of error measure are the `2 and `1 norms
of the error mesh function eni :

E D jjeni jj`2 D

�t�x

NtX
nD0

NxX
iD0
.eni /

2

! 1
2

; eni D ue.xi ; tn/ � uni ; (2.26)

E D jjeni jj`1 D max
i;n
jeni j : (2.27)

In Python, one can compute
P

i .e
n
i /
2 at each time step and accumulate the

value in some sum variable, say e2_sum. At the final time step one can do
sqrt(dt*dx*e2_sum). For the `1 norm one must compare the maximum er-
ror at a time level (e.max()) with the global maximum over the time domain:
e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g.,
the end time T (n D Nt):

E D jjeni jj`2 D

�x

NxX
iD0
.eni /

2

! 1
2

; eni D ue.xi ; tn/ � uni ; (2.28)

E D jjeni jj`1 D max
0�i�Nx

jeni j : (2.29)

The important point is that the error measure (E) for the simulation is represented
by a single number.

102 2 Wave Equations

Computing rates Let Ei be the error measure in experiment (mesh) number i
(not to be confused with the spatial index i) and let hi be the corresponding dis-
cretization parameter (h). With the error model Ei D Dhri , we can estimate r by
comparing two consecutive experiments:

EiC1 D DhriC1;
Ei D Dhri :

Dividing the two equations eliminates the (uninteresting) constant D. Thereafter,
solving for r yields

r D lnEiC1=Ei
ln hiC1=hi

:

Since r depends on i , i.e., which simulations we compare, we add an index to r :
ri , where i D 0; : : : ; m�2, if we havem experiments: .h0; E0/; : : : ; .hm�1; Em�1/.

In our present discretization of the wave equation we expect r D 2, and hence
the ri values should converge to 2 as i increases.

2.2.4 Constructing an Exact Solution of the Discrete Equations

With a manufactured or known analytical solution, as outlined above, we can esti-
mate convergence rates and see if they have the correct asymptotic behavior. Expe-
rience shows that this is a quite good verification technique in that many common
bugs will destroy the convergence rates. A significantly better test though, would
be to check that the numerical solution is exactly what it should be. This will in
general require exact knowledge of the numerical error, which we do not normally
have (although we in Sect. 2.10 establish such knowledge in simple cases). How-
ever, it is possible to look for solutions where we can show that the numerical error
vanishes, i.e., the solution of the original continuous PDE problem is also a solution
of the discrete equations. This property often arises if the exact solution of the PDE
is a lower-order polynomial. (Truncation error analysis leads to error measures that
involve derivatives of the exact solution. In the present problem, the truncation error
involves 4th-order derivatives of u in space and time. Choosing u as a polynomial
of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both the PDE
itself and the discrete equations. Our chosen manufactured solution is quadratic in
space and linear in time. More specifically, we set

ue.x; t/ D x.L� x/
�
1C 1

2
t

�
; (2.30)

which by insertion in the PDE leads to f .x; t/ D 2.1 C t/c2. This ue fulfills the
boundary conditions u D 0 and demands I.x/ D x.L�x/ and V.x/ D 1

2
x.L�x/.

2.2 Verification 103

To realize that the chosen ue is also an exact solution of the discrete equations,
we first remind ourselves that tn D n�t so that

ŒDtDt t
2�n D t2nC1 � 2t2n C t2n�1

�t2
D .nC 1/2 � 2n2 C .n � 1/2 D 2; (2.31)

ŒDtDt t�
n D tnC1 � 2tn C tn�1

�t2
D ..nC 1/ � 2nC .n � 1//�t

�t2
D 0 : (2.32)

Hence,

ŒDtDtue�
n
i D xi.L � xi /

�
DtDt

�
1C 1

2
t

�	n
D xi .L � xi/1

2
ŒDtDt t�

n D 0 :

Similarly, we get that

ŒDxDxue�
n
i D

�
1C 1

2
tn

�
ŒDxDx.xL � x2/�i

D
�
1C 1

2
tn

�
ŒLDxDxx �DxDxx

2�i

D �2
�
1C 1

2
tn

�
:

Now, f n
i D 2.1C 1

2
tn/c

2, which results in

ŒDtDtue � c2DxDxue � f �ni D 0C c22
�
1C 1

2
tn

�
C 2

�
1C 1

2
tn

�
c2 D 0 :

Moreover, ue.xi ; 0/ D I.xi /, @ue=@t D V.xi / at t D 0, and ue.x0; t/ D
ue.xNx ; 0/ D 0. Also the modified scheme for the first time step is fulfilled by
ue.xi ; tn/.

Therefore, the exact solution ue.x; t/ D x.L�x/.1Ct=2/ of the PDE problem is
also an exact solution of the discrete problem. This means that we know beforehand
what numbers the numerical algorithm should produce. We can use this fact to
check that the computed uni values from an implementation equals ue.xi ; tn/, within
machine precision. This result is valid regardless of the mesh spacings�x and�t!
Nevertheless, there might be stability restrictions on �x and �t , so the test can
only be run for a mesh that is compatible with the stability criterion (which in the
present case is C � 1, to be derived later).

Notice
A product of quadratic or linear expressions in the various independent variables,
as shown above, will often fulfill both the PDE problem and the discrete equa-
tions, and can therefore be very useful solutions for verifying implementations.

However, for 1D wave equations of the type utt D c2uxx we shall see that
there is always another much more powerful way of generating exact solutions
(which consists in just setting C D 1 (!), as shown in Sect. 2.10).

104 2 Wave Equations

2.3 Implementation

This section presents the complete computational algorithm, its implementation in
Python code, animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sect. 2.1.5
and 2.1.6 can be encapsulated in a function, taking all the input data for the problem
as arguments. The physical input data consists of c, I.x/, V.x/, f .x; t/, L, and T .
The numerical input is the mesh parameters�t and �x.

Instead of specifying �t and �x, we can specify one of them and the Courant
number C instead, since having explicit control of the Courant number is conve-
nient when investigating the numerical method. Many find it natural to prescribe
the resolution of the spatial grid and set Nx . The solver function can then compute
�t D CL=.cNx/. However, for comparing u.x; t/ curves (as functions of x) for
various Courant numbers it is more convenient to keep �t fixed for all C and let
�x vary according to �x D c�t=C . With �t fixed, all frames correspond to the
same time t , and this simplifies animations that compare simulations with different
mesh resolutions. Plotting functions of x with different spatial resolution is trivial,
so it is easier to let �x vary in the simulations than �t .

2.3.1 Callback Function for User-Specific Actions

The solution at all spatial points at a new time level is stored in an array u of length
Nx C 1. We need to decide what to do with this solution, e.g., visualize the curve,
analyze the values, or write the array to file for later use. The decision about what
to do is left to the user in the form of a user-supplied function

user_action(u, x, t, n)

where u is the solution at the spatial points x at time t[n]. The user_action
function is called from the solver at each time level n.

If the user wants to plot the solution or store the solution at a time point, she
needs to write such a function and take appropriate actions inside it. We will show
examples on many such user_action functions.

Since the solver function makes calls back to the user’s code via such a func-
tion, this type of function is called a callback function. When writing general
software, like our solver function, which also needs to carry out special problem- or
solution-dependent actions (like visualization), it is a common technique to leave
those actions to user-supplied callback functions.

The callback function can be used to terminate the solution process if the user
returns True. For example,

def my_user_action_function(u, x, t, n):
return np.abs(u).max() > 10

2.3 Implementation 105

is a callback function that will terminate the solver function (given below) of the
amplitude of the waves exceed 10, which is here considered as a numerical insta-
bility.

2.3.2 The Solver Function

A first attempt at a solver function is listed below.

import numpy as np

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f == 0 :
f = lambda x, t: 0

if V is None or V == 0:
V = lambda x: 0

u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # Measure CPU time

Load initial condition into u_n
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u

106 2 Wave Equations

for n in range(1, Nt):
Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt**2*f(x[i], t[n])

Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u

cpu_time = time.clock() - t0
return u, x, t, cpu_time

A couple of remarks about the above code is perhaps necessary:

� Although we give dt and compute dx via C and c, the resulting t and x meshes
do not necessarily correspond exactly to these values because of rounding errors.
To explicitly ensure that dx and dt correspond to the cell sizes in x and t, we
recompute the values.

� According to the particular choice made in Sect. 2.3.1, a true value returned from
user_action should terminate the simulation. This is here implemented by a
break statement inside the for loop in the solver.

2.3.3 Verification: Exact Quadratic Solution

We use the test problem derived in Sect. 2.2.1 for verification. Below is a unit test
based on this test problem and realized as a proper test function compatible with the
unit test frameworks nose or pytest.

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2

2.3 Implementation 107

L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1E-13
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error)

When this function resides in the file wave1D_u0.py, one can run pytest to check
that all test functions with names test_*() in this file work:

Terminal

Terminal> py.test -s -v wave1D_u0.py

2.3.4 Verification: Convergence Rates

A more general method, but not so reliable as a verification method, is to compute
the convergence rates and see if they coincide with theoretical estimates. Here we
expect a rate of 2 according to the various results in Sect. 2.10. A general function
for computing convergence rates can be written like this:

def convergence_rates(
u_exact, # Python function for exact solution
I, V, f, c, L, # physical parameters
dt0, num_meshes, C, T): # numerical parameters
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
First define an appropriate user action function
global error
error = 0 # error computed in the user action function

def compute_error(u, x, t, n):
global error # must be global to be altered here
(otherwise error is a local variable, different
from error defined in the parent function)
if n == 0:

error = 0
else:

error = max(error, np.abs(u - u_exact(x, t[n])).max())

108 2 Wave Equations

Run finer and finer resolutions and compute true errors
E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

solver(I, V, f, c, L, dt, C, T,
user_action=compute_error)

error is computed in the final call to compute_error
E.append(error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
Convergence rates for two consecutive experiments
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

Using the analytical solution from Sect. 2.2.2, we can call convergence_rates
to see if we get a convergence rate that approaches 2 and use the final estimate of the
rate in an assert statement such that this function becomes a proper test function:

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

Doing py.test -s -v wave1D_u0.py will run also this test function and show
the rates 2.05, 1.98, 2.00, 2.00, and 2.00 (to two decimals).

2.3.5 Visualization: Animating the Solution

Now that we have verified the implementation it is time to do a real computation
where we also display evolution of the waves on the screen. Since the solver
function knows nothing about what type of visualizations we may want, it calls
the callback function user_action(u, x, t, n). We must therefore write this
function and find the proper statements for plotting the solution.

2.3 Implementation 109

Function for administering the simulation The following viz function

1. defines a user_action callback function for plotting the solution at each time
level,

2. calls the solver function, and
3. combines all the plots (in files) to video in different formats.

def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
):
"""Run solver and visualize u at each time level."""

def plot_u_st(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=%f’ % t[n], show=True)

Let the initial condition stay on the screen for 2
seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, ’r-’)
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axis([0, L, umin, umax])
plt.legend([’t=%f’ % t[n]], loc=’lower left’)

else:
self.lines[0].set_ydata(u)
plt.legend([’t=%f’ % t[n]], loc=’lower left’)
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’tmp_%04d.png’ % n) # for movie making

if tool == ’matplotlib’:
import matplotlib.pyplot as plt
plot_u = PlotMatplotlib()

elif tool == ’scitools’:
import scitools.std as plt # scitools.easyviz interface
plot_u = plot_u_st

import time, glob, os

Clean up old movie frames
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

110 2 Wave Equations

Call solver and do the simulation
user_action = plot_u if animate else None
u, x, t, cpu = solver_function(

I, V, f, c, L, dt, C, T, user_action)

Make video files
fps = 4 # frames per second
codec2ext = dict(flv=’flv’, libx264=’mp4’, libvpx=’webm’,

libtheora=’ogg’) # video formats
filespec = ’tmp_%04d.png’
movie_program = ’ffmpeg’ # or ’avconv’
for codec in codec2ext:

ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\

’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

if tool == ’scitools’:
Make an HTML play for showing the animation in a browser
plt.movie(’tmp_*.png’, encoder=’html’, fps=fps,

output_file=’movie.html’)
return cpu

Dissection of the code The viz function can either use SciTools or Matplotlib for
visualizing the solution. The user_action function based on SciTools is called
plot_u_st, while the user_action function based on Matplotlib is a bit more
complicated as it is realized as a class and needs statements that differ from those
for making static plots. SciTools can utilize both Matplotlib and Gnuplot (and many
other plotting programs) for doing the graphics, but Gnuplot is a relevant choice for
large Nx or in two-dimensional problems as Gnuplot is significantly faster than
Matplotlib for screen animations.

A function inside another function, like plot_u_st in the above code segment,
has access to and remembers all the local variables in the surrounding code in-
side the viz function (!). This is known in computer science as a closure and is
very convenient to program with. For example, the plt and time modules de-
fined outside plot_u are accessible for plot_u_st when the function is called (as
user_action) in the solver function. Some may think, however, that a class in-
stead of a closure is a cleaner and easier-to-understand implementation of the user
action function, see Sect. 2.8.

The plot_u_st function just makes a standard SciTools plot command for
plotting u as a function of x at time t[n]. To achieve a smooth animation, the plot
command should take keyword arguments instead of being broken into separate
calls to xlabel, ylabel, axis, time, and show. Several plot calls will automati-
cally cause an animation on the screen. In addition, we want to save each frame in
the animation to file. We then need a filename where the frame number is padded
with zeros, here tmp_0000.png, tmp_0001.png, and so on. The proper printf con-
struction is then tmp_%04d.png. Section 1.3.2 contains more basic information on
making animations.

The solver is called with an argument plot_u as user_function. If the user
chooses to use SciTools, plot_u is the plot_u_st callback function, but for Mat-
plotlib it is an instance of the class PlotMatplotlib. Also this class makes use of

2.3 Implementation 111

variables defined in the viz function: plt and time. With Matplotlib, one has to
make the first plot the standard way, and then update the y data in the plot at every
time level. The update requires active use of the returned value from plt.plot in
the first plot. This value would need to be stored in a local variable if we were to
use a closure for the user_action function when doing the animation with Mat-
plotlib. It is much easier to store the variable as a class attribute self.lines. Since
the class is essentially a function, we implement the function as the special method
__call__ such that the instance plot_u(u, x, t, n) can be called as a standard
callback function from solver.

Making movie files From the frame_*.png files containing the frames in the ani-
mation we can make video files. Section 1.3.2 presents basic information on how to
use the ffmpeg (or avconv) program for producing video files in different modern
formats: Flash, MP4, Webm, and Ogg.

The viz function creates an ffmpeg or avconv command with the proper ar-
guments for each of the formats Flash, MP4, WebM, and Ogg. The task is greatly
simplified by having a codec2ext dictionary for mapping video codec names to
filename extensions. As mentioned in Sect. 1.3.2, only two formats are actually
needed to ensure that all browsers can successfully play the video: MP4 andWebM.

Some animations having a large number of plot files may not be properly com-
bined into a video using ffmpeg or avconv. A method that always works is to play
the PNG files as an animation in a browser using JavaScript code in an HTML file.
The SciTools package has a function movie (or a stand-alone command scitools
movie) for creating such an HTML player. The plt.movie call in the viz function
shows how the function is used. The file movie.html can be loaded into a browser
and features a user interface where the speed of the animation can be controlled.
Note that the movie in this case consists of the movie.html file and all the frame
files tmp_*.png.

Skipping frames for animation speed Sometimes the time step is small and T
is large, leading to an inconveniently large number of plot files and a slow an-
imation on the screen. The solution to such a problem is to decide on a total
number of frames in the animation, num_frames, and plot the solution only for
every skip_frame frames. For example, setting skip_frame=5 leads to plots of
every 5 frames. The default value skip_frame=1 plots every frame. The total
number of time levels (i.e., maximum possible number of frames) is the length of t,
t.size (or len(t)), so if we want num_frames frames in the animation, we need
to plot every t.size/num_frames frames:

skip_frame = int(t.size/float(num_frames))
if n % skip_frame == 0 or n == t.size-1:

st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is included by n % skip_frame == 0, as well as every
skip_frame-th frame. As n % skip_frame == 0 will very seldom be true for
the very final frame, we must also check if n == t.size-1 to get the final frame
included.

112 2 Wave Equations

A simple choice of numbers may illustrate the formulas: say we have 801 frames
in total (t.size) and we allow only 60 frames to be plotted. As n then runs from
801 to 0, we need to plot every 801/60 frame, which with integer division yields
13 as skip_frame. Using the mod function, n % skip_frame, this operation is
zero every time n can be divided by 13 without a remainder. That is, the if test is
true when n equals 0; 13; 26; 39; : : :; 780; 801. The associated code is included in
the plot_u function, inside the viz function, in the file wave1D_u0.py.

2.3.6 Running a Case

The first demo of our 1D wave equation solver concerns vibrations of a string that
is initially deformed to a triangular shape, like when picking a guitar string:

I.x/ D
(
ax=x0; x < x0;

a.L � x/=.L� x0/; otherwise
: (2.33)

We choose L D 75 cm, x0 D 0:8L, a D 5 mm, and a time frequency � D 440Hz.
The relation between the wave speed c and � is c D ��, where � is the wavelength,
taken as 2L because the longest wave on the string forms half a wavelength. There
is no external force, so f D 0 (meaning we can neglect gravity), and the string is
at rest initially, implying V D 0.

Regarding numerical parameters, we need to specify a�t . Sometimes it is more
natural to think of a spatial resolution instead of a time step. A natural semi-coarse
spatial resolution in the present problem is Nx D 50. We can then choose the
associated �t (as required by the viz and solver functions) as the stability limit:
�t D L=.Nxc/. This is the �t to be specified, but notice that if C < 1, the actual
�x computed in solver gets larger thanL=Nx: �x D c�t=C D L=.NxC /. (The
reason is that we fix �t and adjust �x, so if C gets smaller, the code implements
this effect in terms of a larger �x.)

A function for setting the physical and numerical parameters and calling viz in
this application goes as follows:

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax,

animate=True, tool=’scitools’)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py

2.3 Implementation 113

The associated program has the name wave1D_u0.py. Run the program and watch
the movie of the vibrating string3. The string should ideally consist of straight
segments, but these are somewhat wavy due to numerical approximation. Run the
case with the wave1D_u0.py code and C D 1 to see the exact solution.

2.3.7 Workingwith a Scaled PDEModel

Depending on the model, it may be a substantial job to establish consistent and rel-
evant physical parameter values for a case. The guitar string example illustrates the
point. However, by scaling the mathematical problem we can often reduce the need
to estimate physical parameters dramatically. The scaling technique consists of in-
troducing new independent and dependent variables, with the aim that the absolute
values of these lie in Œ0; 1�. We introduce the dimensionless variables (details are
found in Section 3.1.1 in [11])

Nx D x

L
; Nt D c

L
t; Nu D u

a
:

Here, L is a typical length scale, e.g., the length of the domain, and a is a typical
size of u, e.g., determined from the initial condition: a D maxx jI.x/j.

We get by the chain rule that

@u

@t
D @

@Nt .a Nu/
d Nt
dt
D ac

L

@ Nu
@Nt :

Similarly,
@u

@x
D a

L

@ Nu
@ Nx :

Inserting the dimensionless variables in the PDE gives, in case f D 0,

a2c2

L2
@2 Nu
@Nt2 D

a2c2

L2
@2 Nu
@ Nx2 :

Dropping the bars, we arrive at the scaled PDE

@2u

@t2
D @2u

@x2
; x 2 .0; 1/; t 2 .0; cT=L/; (2.34)

which has no parameter c2 anymore. The initial conditions are scaled as

a Nu. Nx; 0/ D I.L Nx/

and
a

L=c

@ Nu
@Nt . Nx; 0/ D V.L Nx/;

3 http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html
http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html

114 2 Wave Equations

resulting in

Nu. Nx; 0/ D I.L Nx/
maxx jI.x/j ;

@ Nu
@Nt . Nx; 0/ D

L

ac
V.L Nx/ :

In the common case V D 0 we see that there are no physical parameters to be
estimated in the PDE model!

If we have a program implemented for the physical wave equation with dimen-
sions, we can obtain the dimensionless, scaled version by setting c D 1. The initial
condition of a guitar string, given in (2.33), gets its scaled form by choosing a D 1,
L D 1, and x0 2 Œ0; 1�. This means that we only need to decide on the x0 value
as a fraction of unity, because the scaled problem corresponds to setting all other
parameters to unity. In the code we can just set a=c=L=1, x0=0.8, and there is no
need to calculate with wavelengths and frequencies to estimate c!

The only non-trivial parameter to estimate in the scaled problem is the final end
time of the simulation, or more precisely, how it relates to periods in periodic so-
lutions in time, since we often want to express the end time as a certain number of
periods. The period in the dimensionless problem is 2, so the end time can be set to
the desired number of periods times 2.

Why the dimensionless period is 2 can be explained by the following reasoning.
Suppose that u behaves as cos.!t/ in time in the original problem with dimen-
sions. The corresponding period is then P D 2�=!, but we need to estimate !.
A typical solution of the wave equation is u.x; t/ D A cos.kx/ cos.!t/, where A
is an amplitude and k is related to the wave length � in space: � D 2�=k. Both
� and A will be given by the initial condition I.x/. Inserting this u.x; t/ in the
PDE yields �!2 D �c2k2, i.e., ! D kc. The period is therefore P D 2�=.kc/.
If the boundary conditions are u.0; t/ D u.L; t/, we need to have kL D n� for
integer n. The period becomes P D 2L=nc. The longest period is P D 2L=c. The
dimensionless period QP is obtained by dividing P by the time scale L=c, which
results in QP D 2. Shorter waves in the initial condition will have a dimensionless
shorter period QP D 2=n (n > 1).

2.4 Vectorization

The computational algorithm for solving the wave equation visits one mesh point
at a time and evaluates a formula for the new value unC1i at that point. Technically,
this is implemented by a loop over array elements in a program. Such loops may
run slowly in Python (and similar interpreted languages such as R and MATLAB).
One technique for speeding up loops is to perform operations on entire arrays in-
stead of working with one element at a time. This is referred to as vectorization,
vector computing, or array computing. Operations on whole arrays are possible if
the computations involving each element is independent of each other and therefore
can, at least in principle, be performed simultaneously. That is, vectorization not
only speeds up the code on serial computers, but also makes it easy to exploit paral-
lel computing. Actually, there are Python tools like Numba4 that can automatically
turn vectorized code into parallel code.

4 http://numba.pydata.org

http://numba.pydata.org
http://numba.pydata.org

2.4 Vectorization 115

Fig. 2.3 Illustration of sub-
tracting two slices of two
arrays

− −−−

0 1 2 3 4

0 1 2 3 4

2.4.1 Operations on Slices of Arrays

Efficient computing with numpy arrays demands that we avoid loops and compute
with entire arrays at once (or at least large portions of them). Consider this calcula-
tion of differences di D uiC1 � ui :

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computation of d can
therefore alternatively be done by subtracting the array .u0; u1; : : : ; un�1/ from
the array where the elements are shifted one index upwards: .u1; u2; : : : ; un/, see
Fig. 2.3. The former subset of the array can be expressed by u[0:n-1], u[0:-1],
or just u[:-1], meaning from index 0 up to, but not including, the last element
(-1). The latter subset is obtained by u[1:n] or u[1:], meaning from index 1 and
the rest of the array. The computation of d can now be done without an explicit
Python loop:

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]

Indices with a colon, going from an index to (but not including) another index are
called slices. With numpy arrays, the computations are still done by loops, but in
efficient, compiled, highly optimized C or Fortran code. Such loops are sometimes
referred to as vectorized loops. Such loops can also easily be distributed among
many processors on parallel computers. We say that the scalar code above, working
on an element (a scalar) at a time, has been replaced by an equivalent vectorized
code. The process of vectorizing code is called vectorization.

116 2 Wave Equations

Test your understanding
Newcomers to vectorization are encouraged to choose a small array u, say with
five elements, and simulate with pen and paper both the loop version and the
vectorized version above.

Finite difference schemes basically contain differences between array elements
with shifted indices. As an example, consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays
of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that the length of u2 becomes n-2. If u2 is already an array of length n and we
want to use the formula to update all the “inner” elements of u2, as we will when
solving a 1D wave equation, we can write

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

The first expression’s right-hand side is realized by the following steps, involving
temporary arrays with intermediate results, since each array operation can only in-
volve one or two arrays. The numpy package performs (behind the scenes) the first
line above in four steps:

temp1 = 2*u[1:-1]
temp2 = u[:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We need three temporary arrays, but a user does not need to worry about such
temporary arrays.

Commonmistakes with array slices
Array expressions with slices demand that the slices have the same shape. It easy
to make a mistake in, e.g.,

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n]

and write

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[1:n]

2.4 Vectorization 117

Now u[1:n] has wrong length (n-1) compared to the other array slices, causing
a ValueError and the message could not broadcast input array from
shape 103 into shape 104 (if n is 105). When such errors occur one must
closely examine all the slices. Usually, it is easier to get upper limits of slices
right when they use -1 or -2 or empty limit rather than expressions involving
the length.

Another common mistake, when u2 has length n, is to forget the slice in the
array on the left-hand side,

u2 = u[0:n-2] - 2*u[1:n-1] + u[1:n]

This is really crucial: now u2 becomes a new array of length n-2, which is the
wrong length as we have no entries for the boundary values. We meant to insert
the right-hand side array into the original u2 array for the entries that correspond
to the internal points in the mesh (1:n-1 or 1:-1).

Vectorization may also work nicely with functions. To illustrate, we may extend
the previous example as follows:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

Obviously, f must be able to take an array as argument for f(x[1:-1]) to make
sense.

2.4.2 Finite Difference Schemes Expressed as Slices

We now have the necessary tools to vectorize the wave equation algorithm as de-
scribed mathematically in Sect. 2.1.5 and through code in Sect. 2.3.2. There are
three loops: one for the initial condition, one for the first time step, and finally the
loop that is repeated for all subsequent time levels. Since only the latter is repeated
a potentially large number of times, we limit our vectorization efforts to this loop.
Within the time loop, the space loop reads:

for i in range(1, Nx):
u[i] = 2*u_n[i] - u_nm1[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

118 2 Wave Equations

The vectorized version becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(u_n[:-2] - 2*u_n[1:-1] + u_n[2:])

or

u[1:Nx] = 2*u_n[1:Nx]- u_nm1[1:Nx] + \
C2*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1])

The program wave1D_u0v.py contains a new version of the function solver
where both the scalar and the vectorized loops are included (the argument version
is set to scalar or vectorized, respectively).

2.4.3 Verification

We may reuse the quadratic solution ue.x; t/ D x.L � x/.1 C 1
2
t/ for verifying

also the vectorized code. A test function can now verify both the scalar and the
vectorized version. Moreover, we may use a user_action function that compares
the computed and exact solution at each time level and performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0v.py

2.4 Vectorization 119

Lambda functions
The code segment above demonstrates how to achieve very compact code, with-
out degraded readability, by use of lambda functions for the various input pa-
rameters that require a Python function. In essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no state-
ments.

One advantage with lambda functions is that they can be used directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

2.4.4 Efficiency Measurements

The wave1D_u0v.py contains our new solver function with both scalar and vec-
torized code. For comparing the efficiency of scalar versus vectorized code, we need
a viz function as discussed in Sect. 2.3.5. All of this viz function can be reused, ex-
cept the call to solver_function. This call lacks the parameter version, which
we want to set to vectorized and scalar for our efficiency measurements.

One solution is to copy the viz code from wave1D_u0 into wave1D_u0v.py
and add a version argument to the solver_function call. Taking into account
how much animation code we then duplicate, this is not a good idea. Alternatively,
introducing the version argument in wave1D_u0.viz, so that this function can be
imported into wave1D_u0v.py, is not a good solution either, since version has no
meaning in that file. We need better ideas!

Solution 1 Calling viz in wave1D_u0 with solver_function as our new solver
in wave1D_u0v works fine, since this solver has version=’vectorized’ as de-
fault value. The problem arises when we want to test version=’scalar’. The
simplest solution is then to use wave1D_u0.solver instead. We make a new
viz function in wave1D_u0v.py that has a version argument and that just calls
wave1D_u0.viz:

120 2 Wave Equations

def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
version=’vectorized’, # ’scalar’ or ’vectorized’
):
import wave1D_u0
if version == ’vectorized’:

Reuse viz from wave1D_u0, but with the present
modules’ new vectorized solver (which has
version=’vectorized’ as default argument;
wave1D_u0.viz does not feature this argument)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=solver)

elif version == ’scalar’:
Call wave1D_u0.viz with a solver with
scalar code and use wave1D_u0.solver.
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool,
solver_function=wave1D_u0.solver)

Solution 2 There is a more advanced and fancier solution featuring a very useful
trick: we can make a new function that will always call wave1D_u0v.solverwith
version=’scalar’. The functools.partial function from standard Python
takes a function func as argument and a series of positional and keyword arguments
and returns a new function that will call func with the supplied arguments, while
the user can control all the other arguments in func. Consider a trivial example,

def f(a, b, c=2):
return a + b + c

We want to ensure that f is always called with c=3, i.e., f has only two “free”
arguments a and b. This functionality is obtained by

import functools
f2 = functools.partial(f, c=3)

print f2(1, 2) # results in 1+2+3=6

Now f2 calls f with whatever the user supplies as a and b, but c is always 3.
Back to our viz code, we can do

import functools
Call wave1D_u0.solver with version fixed to scalar
scalar_solver = functools.partial(wave1D_u0.solver, version=’scalar’)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=scalar_solver)

2.4 Vectorization 121

The new scalar_solver takes the same arguments as wave1D_u0.scalar and
calls wave1D_u0v.scalar, but always supplies the extra argument version=
’scalar’. When sending this solver_function to wave1D_u0.viz, the latter
will call wave1D_u0v.solverwith all the I, V, f, etc., arguments we supply, plus
version=’scalar’.

Efficiency experiments We now have a viz function that can call our solver
function both in scalar and vectorized mode. The function run_efficiency_
experiments in wave1D_u0v.py performs a set of experiments and reports the
CPU time spent in the scalar and vectorized solver for the previous string vibration
example with spatial mesh resolutions Nx D 50; 100; 200; 400; 800. Running this
function reveals that the vectorized code runs substantially faster: the vectorized
code runs approximatelyNx=10 times as fast as the scalar code!

2.4.5 Remark on the Updating of Arrays

At the end of each time step we need to update the u_nm1 and u_n arrays such that
they have the right content for the next time step:

u_nm1[:] = u_n
u_n[:] = u

The order here is important: updating u_n first, makes u_nm1 equal to u, which is
wrong!

The assignment u_n[:] = u copies the content of the u array into the elements
of the u_n array. Such copying takes time, but that time is negligible compared to
the time needed for computing u from the finite difference formula, even when the
formula has a vectorized implementation. However, efficiency of program code is a
key topic when solving PDEs numerically (particularly when there are two or three
space dimensions), so it must be mentioned that there exists a much more efficient
way of making the arrays u_nm1 and u_n ready for the next time step. The idea is
based on switching references and explained as follows.

A Python variable is actually a reference to some object (C programmers may
think of pointers). Instead of copying data, we can let u_nm1 refer to the u_n object
and u_n refer to the u object. This is a very efficient operation (like switching
pointers in C). A naive implementation like

u_nm1 = u_n
u_n = u

will fail, however, because now u_nm1 refers to the u_n object, but then the name
u_n refers to u, so that this u object has two references, u_n and u, while our
third array, originally referred to by u_nm1, has no more references and is lost.
This means that the variables u, u_n, and u_nm1 refer to two arrays and not three.
Consequently, the computations at the next time level will be messed up, since

122 2 Wave Equations

updating the elements in u will imply updating the elements in u_n too, thereby
destroying the solution at the previous time step.

While u_nm1 = u_n is fine, u_n = u is problematic, so the solution to this
problem is to ensure that u points to the u_nm1 array. This is mathematically wrong,
but new correct values will be filled into u at the next time step and make it right.

The correct switch of references is

tmp = u_nm1
u_nm1 = u_n
u_n = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_nm1, u_n, u = u_n, u, u_nm1

This switching of references for updating our arrays will be used in later implemen-
tations.

Caution
The update u_nm1, u_n, u = u_n, u, u_nm1 leaves wrong content in u at
the final time step. This means that if we return u, as we do in the example
codes here, we actually return u_nm1, which is obviously wrong. It is therefore
important to adjust the content of u to u = u_n before returning u. (Note that the
user_action function reduces the need to return the solution from the solver.)

2.5 Exercises

Exercise 2.1: Simulate a standing wave
The purpose of this exercise is to simulate standing waves on Œ0; L� and illustrate
the error in the simulation. Standing waves arise from an initial condition

u.x; 0/ D A sin
��
L
mx

�
;

wherem is an integer and A is a freely chosen amplitude. The corresponding exact
solution can be computed and reads

ue.x; t/ D A sin
��
L
mx

�
cos

��
L
mct

�
:

a) Explain that for a function sin kx cos!t the wave length in space is � D 2�=k
and the period in time is P D 2�=!. Use these expressions to find the wave
length in space and period in time of ue above.

b) Import the solver function from wave1D_u0.py into a new file where the viz
function is reimplemented such that it plots either the numerical and the exact
solution, or the error.

c) Make animations where you illustrate how the error eni D ue.xi ; tn/�uni devel-
ops and increases in time. Also make animations of u and ue simultaneously.

2.5 Exercises 123

Hint 1 Quite long time simulations are needed in order to display significant dis-
crepancies between the numerical and exact solution.

Hint 2 A possible set of parameters is L D 12, m D 9, c D 2, A D 1, Nx D 80,
C D 0:8. The error mesh function en can be simulated for 10 periods, while
20–30 periods are needed to show significant differences between the curves for the
numerical and exact solution.
Filename: wave_standing.

Remarks The important parameters for numerical quality are C and k�x, where
C D c�t=�x is the Courant number and k is defined above (k�x is proportional
to how many mesh points we have per wave length in space, see Sect. 2.10.4 for
explanation).

Exercise 2.2: Add storage of solution in a user action function
Extend the plot_u function in the file wave1D_u0.py to also store the solutions
u in a list. To this end, declare all_u as an empty list in the viz function, out-
side plot_u, and perform an append operation inside the plot_u function. Note
that a function, like plot_u, inside another function, like viz, remembers all
local variables in viz function, including all_u, even when plot_u is called
(as user_action) in the solver function. Test both all_u.append(u) and
all_u.append(u.copy()). Why does one of these constructions fail to store
the solution correctly? Let the viz function return the all_u list converted to a
two-dimensional numpy array.
Filename: wave1D_u0_s_store.

Exercise 2.3: Use a class for the user action function
Redo Exercise 2.2 using a class for the user action function. Let the all_u list be
an attribute in this class and implement the user action function as a method (the
special method __call__ is a natural choice). The class versions avoid that the
user action function depends on parameters defined outside the function (such as
all_u in Exercise 2.2).
Filename: wave1D_u0_s2c.

Exercise 2.4: Compare several Courant numbers in one movie
The goal of this exercise is to make movies where several curves, correspond-
ing to different Courant numbers, are visualized. Write a program that resembles
wave1D_u0_s2c.py in Exercise 2.3, but with a viz function that can take a list of
C values as argument and create a movie with solutions corresponding to the given
C values. The plot_u function must be changed to store the solution in an array
(see Exercise 2.2 or 2.3 for details), solver must be computed for each value of
the Courant number, and finally one must run through each time step and plot all
the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot
correspond to the same time point. The easiest remedy is to keep the time resolution
constant and change the space resolution to change the Courant number. Note that
each spatial grid is needed for the final plotting, so it is an option to store those grids
too.
Filename: wave_numerics_comparison.

124 2 Wave Equations

Exercise 2.5: Implementing the solver function as a generator
The callback function user_action(u, x, t, n) is called from the solver
function (in, e.g., wave1D_u0.py) at every time level and lets the user work per-
form desired actions with the solution, like plotting it on the screen. We have
implemented the callback function in the typical way it would have been done in C
and Fortran. Specifically, the code looks like

if user_action is not None:
if user_action(u, x, t, n):

break

Many Python programmers, however, may claim that solver is an iterative pro-
cess, and that iterative processes with callbacks to the user code is more elegantly
implemented as generators. The rest of the text has little meaning unless you are
familiar with Python generators and the yield statement.

Instead of calling user_action, the solver function issues a yield statement,
which is a kind of return statement:

yield u, x, t, n

The program control is directed back to the calling code:

for u, x, t, n in solver(...):
Do something with u at t[n]

When the block is done, solver continues with the statement after yield. Note
that the functionality of terminating the solution process if user_action returns a
True value is not possible to implement in the generator case.

Implement the solver function as a generator, and plot the solution at each time
step.
Filename: wave1D_u0_generator.

Project 2.6: Calculus with 1D mesh functions
This project explores integration and differentiation of mesh functions, both with
scalar and vectorized implementations. We are given a mesh function fi on a spatial
one-dimensional mesh xi D i�x, i D 0; : : : ; Nx , over the interval Œa; b�.

a) Define the discrete derivative of fi by using centered differences at internal
mesh points and one-sided differences at the end points. Implement a scalar
version of the computation in a Python function and write an associated unit test
for the linear case f .x/ D 4x � 2:5 where the discrete derivative should be
exact.

b) Vectorize the implementation of the discrete derivative. Extend the unit test to
check the validity of the implementation.

c) To compute the discrete integral Fi of fi , we assume that the mesh function fi
varies linearly between the mesh points. Let f .x/ be such a linear interpolant

2.6 Generalization: Reflecting Boundaries 125

of fi . We then have

Fi D
xiZ
x0

f .x/dx :

The exact integral of a piecewise linear function f .x/ is given by the Trape-
zoidal rule. Show that if Fi is already computed, we can find FiC1 from

FiC1 D Fi C 1

2
.fi C fiC1/�x :

Make a function for the scalar implementation of the discrete integral as a mesh
function. That is, the function should return Fi for i D 0; : : : ; Nx . For a unit test
one can use the fact that the above defined discrete integral of a linear function
(say f .x/ D 4x � 2:5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the unit test to
check the validity of the implementation.

Hint Interpret the recursive formula for FiC1 as a sum. Make an array with each
element of the sum and use the "cumsum" (numpy.cumsum) operation to compute
the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate mesh func-
tions. The class can just define some methods that call the previously imple-
mented Python functions. Here is an example on the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.

2.6 Generalization: Reflecting Boundaries

The boundary condition u D 0 in a wave equation reflects the wave, but u changes
sign at the boundary, while the condition ux D 0 reflects the wave as a mirror and
preserves the sign, see a web page5 or a movie file6 for demonstration.

Our next task is to explain how to implement the boundary condition ux D 0,
which is more complicated to express numerically and also to implement than a
given value of u. We shall present two methods for implementing ux D 0 in a finite
difference scheme, one based on deriving a modified stencil at the boundary, and
another one based on extending the mesh with ghost cells and ghost points.

5 http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
6 http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv

http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv
http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv

126 2 Wave Equations

2.6.1 Neumann Boundary Condition

When a wave hits a boundary and is to be reflected back, one applies the condition

@u

@n
� n � ru D 0 : (2.35)

The derivative @=@n is in the outward normal direction from a general boundary.
For a 1D domain Œ0; L�, we have that

@

@n

ˇ̌̌
ˇ
xDL
D @

@x

ˇ̌̌
ˇ
xDL

;
@

@n

ˇ̌̌
ˇ
xD0
D � @

@x

ˇ̌̌
ˇ
xD0

:

Boundary condition terminology
Boundary conditions that specify the value of @u=@n (or shorter un) are known
as Neumann7 conditions, while Dirichlet conditions8 refer to specifications of u.
When the values are zero (@u=@n D 0 or u D 0) we speak about homogeneous
Neumann or Dirichlet conditions.

2.6.2 Discretization of Derivatives at the Boundary

How can we incorporate the condition (2.35) in the finite difference scheme? Since
we have used central differences in all the other approximations to derivatives in the
scheme, it is tempting to implement (2.35) at x D 0 and t D tn by the difference

ŒD2xu�
n
0 D

un�1 � un1
2�x

D 0 : (2.36)

The problem is that un�1 is not a u value that is being computed since the point is
outside the mesh. However, if we combine (2.36) with the scheme

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
; (2.37)

for i D 0, we can eliminate the fictitious value un�1. We see that un�1 D un1 from
(2.36), which can be used in (2.37) to arrive at a modified scheme for the boundary
point unC10 :

unC1i D �un�1i C 2uni C 2C 2
�
uniC1 � uni

�
; i D 0 : (2.38)

Figure 2.4 visualizes this equation for computing u30 in terms of u20, u
1
0, and u

2
1.

Similarly, (2.35) applied at x D L is discretized by a central difference

unNxC1 � unNx�1
2�x

D 0 : (2.39)

7 http://en.wikipedia.org/wiki/Neumann_boundary_condition
8 http://en.wikipedia.org/wiki/Dirichlet_conditions

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions
http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions

2.6 Generalization: Reflecting Boundaries 127

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

in
de

x
n

index i

Stencil at boundary point

Fig. 2.4 Modified stencil at a boundary with a Neumann condition

Combined with the scheme for i D Nx we get a modified scheme for the boundary
value unC1Nx

:

unC1i D �un�1i C 2uni C 2C 2
�
uni�1 � uni

�
; i D Nx : (2.40)

The modification of the scheme at the boundary is also required for the special
formula for the first time step. How the stencil moves through the mesh and is
modified at the boundary can be illustrated by an animation in a web page9 or a
movie file10.

2.6.3 Implementation of Neumann Conditions

We have seen in the preceding section that the special formulas for the boundary
points arise from replacing uni�1 by uniC1 when computing unC1i from the stencil
formula for i D 0. Similarly, we replace uniC1 by u

n
i�1 in the stencil formula for

i D Nx . This observation can conveniently be used in the coding: we just work
with the general stencil formula, but write the code such that it is easy to replace
u[i-1] by u[i+1] and vice versa. This is achieved by having the indices i+1 and
i-1 as variables ip1 (i plus 1) and im1 (i minus 1), respectively. At the boundary
we can easily define im1=i+1 while we use im1=i-1 in the internal parts of the
mesh. Here are the details of the implementation (note that the updating formula
for u[i] is the general stencil formula):

9 http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
10 http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg

http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg
http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg

128 2 Wave Equations

i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

We can in fact create one loop over both the internal and boundary points and
use only one updating formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

The program wave1D_n0.py contains a complete implementation of the 1D
wave equation with boundary conditions ux D 0 at x D 0 and x D L.

It would be nice to modify the test_quadratic test case from the
wave1D_u0.py with Dirichlet conditions, described in Sect. 2.4.3. However,
the Neumann conditions require the polynomial variation in the x direction to be of
third degree, which causes challenging problems when designing a test where the
numerical solution is known exactly. Exercise 2.15 outlines ideas and code for this
purpose. The only test in wave1D_n0.py is to start with a plug wave at rest and
see that the initial condition is reached again perfectly after one period of motion,
but such a test requires C D 1 (so the numerical solution coincides with the exact
solution of the PDE, see Sect. 2.10.4).

2.6.4 Index Set Notation

To improve our mathematical writing and our implementations, it is wise to intro-
duce a special notation for index sets. This means that we write xi , followed by i 2
Ix , instead of i D 0; : : : ; Nx . Obviously, Ix must be the index set Ix D f0; : : : ; Nxg,
but it is often advantageous to have a symbol for this set rather than specifying all its
elements (all the time, as we have done up to now). This new notation saves writing
and makes specifications of algorithms and their implementation as computer code
simpler.

The first index in the set will be denoted I0x and the last I�1x . When we
need to skip the first element of the set, we use ICx for the remaining subset
ICx D f1; : : : ; Nxg. Similarly, if the last element is to be dropped, we write
I�x D f0; : : : ; Nx � 1g for the remaining indices. All the indices corresponding to
inner grid points are specified by I ix D f1; : : : ; Nx � 1g. For the time domain we
find it natural to explicitly use 0 as the first index, so we will usually write n D 0

and t0 rather than n D I0t . We also avoid notation like xI�1x and will instead use xi ,
i D I�1x .

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py

2.6 Generalization: Reflecting Boundaries 129

The Python code associated with index sets applies the following conventions:

Notation Python
Ix Ix
I0x Ix[0]
I�1x Ix[-1]
I�x Ix[:-1]
ICx Ix[1:]
I ix Ix[1:-1]

Why index sets are useful
An important feature of the index set notation is that it keeps our formulas and
code independent of howwe count mesh points. For example, the notation i 2 Ix
or i D I0x remains the same whether Ix is defined as above or as starting at 1,
i.e., Ix D f1; : : : ;Qg. Similarly, we can in the code define Ix=range(Nx+1)
or Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1] remain correct.
One application where the index set notation is convenient is conversion of code
from a language where arrays has base index 0 (e.g., Python and C) to languages
where the base index is 1 (e.g., MATLAB and Fortran). Another important ap-
plication is implementation of Neumann conditions via ghost points (see next
section).

For the current problem setting in the x; t plane, we work with the index sets

Ix D f0; : : : ; Nxg; It D f0; : : : ; Ntg; (2.41)

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as

unC1i D uni �
1

2
C 2

�
uniC1 � 2uni C uni�1

�
; i 2 I ix; n D 0;

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
; i 2 I ix ; n 2 I it ;

unC1i D 0; i D I0x; n 2 I�t ;
unC1i D 0; i D I�1x ; n 2 I�t :

The corresponding implementation becomes

Initial condition
for i in Ix[1:-1]:

u[i] = u_n[i] - 0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

130 2 Wave Equations

Time loop
for n in It[1:-1]:

Compute internal points
for i in Ix[1:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

Compute boundary conditions
i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

Notice
The program wave1D_dn.py applies the index set notation and solves the 1D
wave equation utt D c2uxx C f .x; t/ with quite general boundary and initial
conditions:

� x D 0: u D U0.t/ or ux D 0
� x D L: u D UL.t/ or ux D 0
� t D 0: u D I.x/
� t D 0: ut D V.x/

The program combines Dirichlet and Neumann conditions, scalar and vectorized
implementation of schemes, and the index set notation into one piece of code. A
lot of test examples are also included in the program:

� A rectangular plug-shaped initial condition. (For C D 1 the solution will be
a rectangle that jumps one cell per time step, making the case well suited for
verification.)

� A Gaussian function as initial condition.
� A triangular profile as initial condition, which resembles the typical initial

shape of a guitar string.
� A sinusoidal variation of u at x D 0 and either u D 0 or ux D 0 at x D L.
� An analytical solution u.x; t/ D cos.m�t=L/ sin. 1

2
m�x=L/, which can be

used for convergence rate tests.

2.6.5 Verifying the Implementation of Neumann Conditions

How can we test that the Neumann conditions are correctly implemented? The
solver function in the wave1D_dn.py program described in the box above ac-
cepts Dirichlet or Neumann conditions at x D 0 and x D L. It is tempting to
apply a quadratic solution as described in Sect. 2.2.1 and 2.3.3, but it turns out that
this solution is no longer an exact solution of the discrete equations if a Neumann
condition is implemented on the boundary. A linear solution does not help since
we only have homogeneous Neumann conditions in wave1D_dn.py, and we are
consequently left with testing just a constant solution: u D const.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py

2.6 Generalization: Reflecting Boundaries 131

def test_constant():
"""
Check the scalar and vectorized versions for
a constant u(x,t). We simulate in [0, L] and apply
Neumann and Dirichlet conditions at both ends.
"""
u_const = 0.45
u_exact = lambda x, t: u_const
I = lambda x: u_exact(x, 0)
V = lambda x: 0
f = lambda x, t: 0

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
msg = ’diff=%E, t_%d=%g’ % (diff, n, t[n])
tol = 1E-13
assert diff < tol, msg

for U_0 in (None, lambda t: u_const):
for U_L in (None, lambda t: u_const):

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18 # long time integration

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’scalar’)

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’vectorized’)

print U_0, U_L

The quadratic solution is very useful for testing, but it requires Dirichlet conditions
at both ends.

Another test may utilize the fact that the approximation error vanishes when the
Courant number is unity. We can, for example, start with a plug profile as initial
condition, let this wave split into two plug waves, one in each direction, and check
that the two plug waves come back and form the initial condition again after “one
period” of the solution process. Neumann conditions can be applied at both ends.
A proper test function reads

def test_plug():
"""Check that an initial plug is correct back after one period."""
L = 1.0
c = 0.5
dt = (L/10)/c # Nx=10
I = lambda x: 0 if abs(x-L/2.0) > 0.1 else 1

132 2 Wave Equations

u_s, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’scalar’)

u_v, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’vectorized’)

tol = 1E-13
diff = abs(u_s - u_v).max()
assert diff < tol
u_0 = np.array([I(x_) for x_ in x])
diff = np.abs(u_s - u_0).max()
assert diff < tol

Other tests must rely on an unknown approximation error, so effectively we are
left with tests on the convergence rate.

2.6.6 Alternative Implementation via Ghost Cells

Idea Instead of modifying the scheme at the boundary, we can introduce extra
points outside the domain such that the fictitious values un�1 and unNxC1 are de-
fined in the mesh. Adding the intervals Œ��x; 0� and ŒL;L C �x�, known as
ghost cells, to the mesh gives us all the needed mesh points, corresponding to
i D �1; 0; : : : ; Nx;Nx C 1. The extra points with i D �1 and i D Nx C 1

are known as ghost points, and values at these points, un�1 and u
n
NxC1, are called

ghost values.
The important idea is to ensure that we always have

un�1 D un1 and unNxC1 D unNx�1;

because then the application of the standard scheme at a boundary point i D 0

or i D Nx will be correct and guarantee that the solution is compatible with the
boundary condition ux D 0.

Some readers may find it strange to just extend the domain with ghost cells
as a general technique, because in some problems there is a completely different
medium with different physics and equations right outside of a boundary. Neverthe-
less, one should view the ghost cell technique as a purely mathematical technique,
which is valid in the limit �x ! 0 and helps us to implement derivatives.

Implementation The u array now needs extra elements corresponding to the ghost
points. Two new point values are needed:

u = zeros(Nx+3)

The arrays u_n and u_nm1must be defined accordingly.

2.6 Generalization: Reflecting Boundaries 133

Unfortunately, a major indexing problem arises with ghost cells. The reason is
that Python indices must start at 0 and u[-1] will always mean the last element
in u. This fact gives, apparently, a mismatch between the mathematical indices
i D �1; 0; : : : ; Nx C 1 and the Python indices running over u: 0,..,Nx+2. One
remedy is to change the mathematical indexing of i in the scheme and write

unC1i D � � � ; i D 1; : : : ; Nx C 1;

instead of i D 0; : : : ; Nx as we have previously used. The ghost points now corre-
spond to i D 0 and i D Nx C 1. A better solution is to use the ideas of Sect. 2.6.4:
we hide the specific index value in an index set and operate with inner and boundary
points using the index set notation.

To this end, we define u with proper length and Ix to be the corresponding
indices for the real physical mesh points (1; 2; : : : ; Nx C 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We first
update the solution at all physical mesh points (i.e., interior points in the mesh):

for i in Ix:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The indexing becomes a bit more complicated when we call functions like V(x)
and f(x, t), as we must remember that the appropriate x coordinate is given as
x[i-Ix[0]]:

for i in Ix:
u[i] = u_n[i] + dt*V(x[i-Ix[0]]) + \

0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt2*f(x[i-Ix[0]], t[0])

It remains to update the solution at ghost points, i.e., u[0] and u[-1] (or
u[Nx+2]). For a boundary condition ux D 0, the ghost value must equal the value
at the associated inner mesh point. Computer code makes this statement precise:

i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

The physical solution to be plotted is now in u[1:-1], or equivalently u[Ix[0]:
Ix[-1]+1], so this slice is the quantity to be returned from a solver function.
A complete implementation appears in the program wave1D_n0_ghost.py.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0_ghost.py

134 2 Wave Equations

Warning
We have to be careful with how the spatial and temporal mesh points are stored.
Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)

“Standard coding” of the initial condition,

for i in Ix:
u_n[i] = I(x[i])

becomes wrong, since u_n and x have different lengths and the index i cor-
responds to two different mesh points. In fact, x[i] corresponds to u[1+i].
A correct implementation is

for i in Ix:
u_n[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect if x is
defined to be the physical points, so x[i]must be replaced by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such that u[i] is
the value at x[i].

The ghost cell is only added to the boundary where we have a Neumann condi-
tion. Suppose we have a Dirichlet condition at x D L and a homogeneousNeumann
condition at x D 0. One ghost cell Œ��x; 0� is added to the mesh, so the index set
for the physical points becomes f1; : : : ; Nx C 1g. A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always) u[Ix[0]:
Ix[-1]+1].

2.7 Generalization: Variable Wave Velocity 135

2.7 Generalization: Variable Wave Velocity

Our next generalization of the 1D wave equation (2.1) or (2.17) is to allow for
a variable wave velocity c: c D c.x/, usually motivated by wave motion in a
domain composed of different physical media. When the media differ in physical
properties like density or porosity, the wave velocity c is affected and will depend
on the position in space. Figure 2.5 shows a wave propagating in one medium
Œ0; 0:7� [Œ0:9; 1� with wave velocity c1 (left) before it enters a second medium
.0:7; 0:9/ with wave velocity c2 (right). When the wave meets the boundary where
c jumps from c1 to c2, a part of the wave is reflected back into the first medium
(the reflected wave), while one part is transmitted through the second medium (the
transmitted wave).

2.7.1 TheModel PDEwith a Variable Coefficient

Instead of working with the squared quantity c2.x/, we shall for notational conve-
nience introduce q.x/ D c2.x/. A 1D wave equation with variable wave velocity
often takes the form

@2u

@t2
D @

@x

�
q.x/

@u

@x

�
C f .x; t/ : (2.42)

This is the most frequent form of a wave equation with variable wave velocity, but
other forms also appear, see Sect. 2.14.1 and equation (2.125).

As usual, we sample (2.42) at a mesh point,

@2

@t2
u.xi ; tn/ D @

@x

�
q.xi /

@

@x
u.xi ; tn/

�
C f .xi ; tn/;

where the only new term to discretize is

@

@x

�
q.xi /

@

@x
u.xi ; tn/

�
D
�
@

@x

�
q.x/

@u

@x

�	n
i

:

Fig. 2.5 Left: wave entering another medium; right: transmitted and reflected wave

136 2 Wave Equations

2.7.2 Discretizing the Variable Coefficient

The principal idea is to first discretize the outer derivative. Define

� D q.x/@u
@x
;

and use a centered derivative around x D xi for the derivative of �:
�
@�

@x

	n
i

�
�iC 1

2
� �i� 12
�x

D ŒDx��
n
i :

Then discretize

�iC 1
2
D qiC 1

2

�
@u

@x

	n
iC 1

2

� qiC 1
2

uniC1 � uni
�x

D ŒqDxu�
n

iC 1
2

:

Similarly,

�i� 12 D qi� 12
�
@u

@x

	n
i� 12
� qi� 12

uni � uni�1
�x

D ŒqDxu�
n

i� 12
:

These intermediate results are now combined to
�
@

@x

�
q.x/

@u

@x

�	n
i

� 1

�x2

�
qiC 1

2

�
uniC1 � uni

� � qi� 12
�
uni � uni�1

��
: (2.43)

With operator notation we can write the discretization as

�
@

@x

�
q.x/

@u

@x

�	n
i

� ŒDx.q
xDxu/�

n
i : (2.44)

Do not use the chain rule on the spatial derivative term!
Many are tempted to use the chain rule on the term @

@x

�
q.x/ @u

@x

�
, but this is not a

good idea when discretizing such a term.
The term with a variable coefficient expresses the net flux qux into a small

volume (i.e., interval in 1D):

@

@x

�
q.x/

@u

@x

�
� 1

�x
.q.x C�x/ux.x C�x/� q.x/ux.x// :

Our discretization reflects this principle directly: qux at the right end of the
cell minus qux at the left end, because this follows from the formula (2.43) or
ŒDx.qDxu/�

n
i .

When using the chain rule, we get two terms quxx C qxux. The typical dis-
cretization is

ŒDxqDxuCD2xqD2xu�
n
i ; (2.45)

Writing this out shows that it is different from ŒDx.qDxu/�
n
i and lacks the phys-

ical interpretation of net flux into a cell. With a smooth and slowly varying q.x/

2.7 Generalization: Variable Wave Velocity 137

the differences between the two discretizations are not substantial. However,
when q exhibits (potentially large) jumps, ŒDx.qDxu/�

n
i with harmonic aver-

aging of q yields a better solution than arithmetic averaging or (2.45). In the
literature, the discretization ŒDx.qDxu/�

n
i totally dominates and very few men-

tion the alternative in (2.45).

2.7.3 Computing the Coefficient BetweenMesh Points

If q is a known function of x, we can easily evaluate qiC 1
2
simply as q.xiC 1

2
/ with

xiC 1
2
D xi C 1

2
�x. However, in many cases c, and hence q, is only known as

a discrete function, often at the mesh points xi . Evaluating q between two mesh
points xi and xiC1 must then be done by interpolation techniques, of which three
are of particular interest in this context:

qiC 1
2
� 1

2
.qi C qiC1/ D Œqx�i (arithmetic mean) (2.46)

qiC 1
2
� 2

�
1

qi
C 1

qiC1

��1
(harmonic mean) (2.47)

qiC 1
2
� .qiqiC1/1=2 (geometric mean) (2.48)

The arithmetic mean in (2.46) is by far the most commonly used averaging tech-
nique and is well suited for smooth q.x/ functions. The harmonic mean is often
preferred when q.x/ exhibits large jumps (which is typical for geological media).
The geometric mean is less used, but popular in discretizations to linearize quadratic
nonlinearities (see Sect. 1.10.2 for an example).

With the operator notation from (2.46) we can specify the discretization of the
complete variable-coefficient wave equation in a compact way:

ŒDtDtu D Dxq
xDxuC f �ni : (2.49)

Strictly speaking, ŒDxq
xDxu�

n
i D ŒDx.q

xDxu/�
n
i .

From the compact difference notation we immediately see what kind of differ-
ences that each term is approximated with. The notation qx also specifies that the
variable coefficient is approximated by an arithmetic mean, the definition being
Œqx�iC 1

2
D .qi C qiC1/=2.

Before implementing, it remains to solve (2.49) with respect to unC1i :

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
1

2
.qi C qiC1/.uniC1 � uni / �

1

2
.qi C qi�1/.uni � uni�1/

�

C�t2f ni :
(2.50)

138 2 Wave Equations

2.7.4 How a Variable Coefficient Affects the Stability

The stability criterion derived later (Sect. 2.10.3) reads �t � �x=c. If c D c.x/,
the criterion will depend on the spatial location. We must therefore choose a �t
that is small enough such that no mesh cell has �t > �x=c.x/. That is, we must
use the largest c value in the criterion:

�t � ˇ �x

maxx2Œ0;L� c.x/
: (2.51)

The parameter ˇ is included as a safety factor: in some problems with a significantly
varying c it turns out that one must choose ˇ < 1 to have stable solutions (ˇ D 0:9
may act as an all-round value).

A different strategy to handle the stability criterion with variable wave velocity
is to use a spatially varying �t . While the idea is mathematically attractive at
first sight, the implementation quickly becomes very complicated, so we stick to a
constant�t and a worst case value of c.x/ (with a safety factor ˇ).

2.7.5 Neumann Condition and a Variable Coefficient

Consider a Neumann condition @u=@x D 0 at x D L D Nx�x, discretized as

ŒD2xu�
n
i D

uniC1 � uni�1
2�x

D 0) uniC1 D uni�1;

for i D Nx . Using the scheme (2.50) at the end point i D Nx with uniC1 D uni�1
results in

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
qiC 1

2
.uni�1 � uni /� qi� 12 .u

n
i � uni�1/

�
C�t2f n

i (2.52)

D � un�1i C 2uni C
�
�t

�x

�2
.qiC 1

2
C qi� 12 /.u

n
i�1 � uni /C�t2f ni (2.53)

� � un�1i C 2uni C
�
�t

�x

�2
2qi .u

n
i�1 � uni /C�t2f ni : (2.54)

Here we used the approximation

qiC 1
2
C qi� 12 D qi C

�
dq

dx

�
i

�x C
�
d2q

dx2

�
i

�x2 C � � �

C qi �
�
dq

dx

�
i

�x C
�
d2q

dx2

�
i

�x2 C � � �

D 2qi C 2
�
d2q

dx2

�
i

�x2 CO.�x4/

� 2qi : (2.55)

2.7 Generalization: Variable Wave Velocity 139

An alternative derivation may apply the arithmetic mean of qn� 12 and qnC 1
2
in

(2.53), leading to the term
�
qi C 1

2
.qiC1 C qi�1/

�
.uni�1 � uni / :

Since 1
2
.qiC1Cqi�1/ D qi CO.�x2/, we can approximate with 2qi .uni�1�uni / for

i D Nx and get the same term as we did above.
A common technique when implementing @u=@x D 0 boundary conditions, is

to assume dq=dx D 0 as well. This implies qiC1 D qi�1 and qiC1=2 D qi�1=2 for
i D Nx . The implications for the scheme are

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
qiC 1

2
.uni�1 � uni /� qi� 12 .u

n
i � uni�1/

�

C�t2f ni (2.56)

D � un�1i C 2uni C
�
�t

�x

�2
2qi� 12 .u

n
i�1 � uni /C�t2f ni : (2.57)

2.7.6 Implementation of Variable Coefficients

The implementation of the scheme with a variable wave velocity q.x/ D c2.x/may
assume that q is available as an array q[i] at the spatial mesh points. The following
loop is a straightforward implementation of the scheme (2.50):

for i in range(1, Nx):
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2, i.e., not as the squared Courant
number, since the wave velocity is variable and appears inside the parenthesis.

With Neumann conditions ux D 0 at the boundary, we need to combine this
scheme with the discrete version of the boundary condition, as shown in Sect. 2.7.5.
Nevertheless, it would be convenient to reuse the formula for the interior points and
just modify the indices ip1=i+1 and im1=i-1 as we did in Sect. 2.6.3. Assuming
dq=dx D 0 at the boundaries, we can implement the scheme at the boundary with
the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])

140 2 Wave Equations

With ghost cells we can just reuse the formula for the interior points also at the
boundary, provided that the ghost values of both u and q are correctly updated to
ensure ux D 0 and qx D 0.

A vectorized version of the scheme with a variable coefficient at internal mesh
points becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

2.7.7 AMore General PDEModel with Variable Coefficients

Sometimes a wave PDE has a variable coefficient in front of the time-derivative
term:

%.x/
@2u

@t2
D @

@x

�
q.x/

@u

@x

�
C f .x; t/ : (2.58)

One example appears when modeling elastic waves in a rod with varying density,
cf. (2.14.1) with %.x/.

A natural scheme for (2.58) is

Œ%DtDtu D Dxq
xDxuC f �ni : (2.59)

We realize that the % coefficient poses no particular difficulty, since % enters the
formula just as a simple factor in front of a derivative. There is hence no need for
any averaging of %. Often, % will be moved to the right-hand side, also without any
difficulty:

ŒDtDtu D %�1Dxq
xDxuC f �ni : (2.60)

2.7.8 Generalization: Damping

Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads
out in space, and energy conservation then requires the amplitude to decrease. This
effect is not present in 1D. Damping is another cause of amplitude reduction. For
example, the vibrations of a string die out because of damping due to air resistance
and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to the
equation (in the same way as friction forces enter a vibrating mechanical system):

@2u

@t2
C b @u

@t
D c2 @

2u

@x2
C f .x; t/; (2.61)

where b 	 0 is a prescribed damping coefficient.
A typical discretization of (2.61) in terms of centered differences reads

ŒDtDtuC bD2tu D c2DxDxuC f �ni : (2.62)

2.8 Building a General 1D Wave Equation Solver 141

Writing out the equation and solving for the unknown unC1i gives the scheme

unC1i D
�
1C 1

2
b�t

��1 �
1

2
b�t � 1

�
un�1i C 2uni

C C2
�
uniC1 � 2uni C uni�1

�C�t2f ni
!
; (2.63)

for i 2 I ix and n 	 1. New equations must be derived for u1i , and for boundary
points in case of Neumann conditions.

The damping is very small in many wave phenomena and thus only evident for
very long time simulations. This makes the standard wave equation without damp-
ing relevant for a lot of applications.

2.8 Building a General 1DWave Equation Solver

The program wave1D_dn_vc.py is a fairly general code for 1D wave propagation
problems that targets the following initial-boundary value problem

utt D .c2.x/ux/x C f .x; t/; x 2 .0; L/; t 2 .0; T � (2.64)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.65)

ut .x; 0/ D V.t/; x 2 Œ0; L� (2.66)

u.0; t/ D U0.t/ or ux.0; t/ D 0; t 2 .0; T � (2.67)

u.L; t/ D UL.t/ or ux.L; t/ D 0; t 2 .0; T � : (2.68)

The only new feature here is the time-dependent Dirichlet conditions, but they
are trivial to implement:

i = Ix[0] # x=0
u[i] = U_0(t[n+1])

i = Ix[-1] # x=L
u[i] = U_L(t[n+1])

The solver function is a natural extension of the simplest solver function in
the initial wave1D_u0.py program, extended with Neumann boundary conditions
(ux D 0), time-varying Dirichlet conditions, as well as a variable wave velocity.
The different code segments needed to make these extensions have been shown and
commented upon in the preceding text. We refer to the solver function in the
wave1D_dn_vc.py file for all the details. Note in that solver function, however,
that the technique of “hashing” is used to check whether a certain simulation has
been run before, or not. This technique is further explained in Sect. C.2.3.

The vectorization is only applied inside the time loop, not for the initial condition
or the first time steps, since this initial work is negligible for long time simulations
in 1D problems.

The following sections explain various more advanced programming techniques
applied in the general 1D wave equation solver.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

142 2 Wave Equations

2.8.1 User Action Function as a Class

A useful feature in the wave1D_dn_vc.py program is the specification of the
user_action function as a class. This part of the programmay need some motiva-
tion and explanation. Although the plot_u_st function (and the PlotMatplotlib
class) in the wave1D_u0.viz function remembers the local variables in the viz
function, it is a cleaner solution to store the needed variables together with the
function, which is exactly what a class offers.

The code A class for flexible plotting, cleaning up files, making movie files, like
the function wave1D_u0.viz did, can be coded as follows:

class PlotAndStoreSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(

self,
casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’ or None
screen_movie=True, # Show movie on screen?
title=’’, # Extra message in title
skip_frame=1, # Skip every skip_frame frame
filename=None): # Name of file with solutions
self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
self.backend = backend
if backend is None:

Use native matplotlib
import matplotlib.pyplot as plt

elif backend in (’matplotlib’, ’gnuplot’):
module = ’scitools.easyviz.’ + backend + ’_’
exec(’import %s as plt’ % module)

self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.skip_frame = skip_frame
self.filename = filename
if filename is not None:

Store time points when u is written to file
self.t = []
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
for filename in filenames:

os.remove(filename)

Clean up old movie frames
for filename in glob.glob(’frame_*.png’):

os.remove(filename)

2.8 Building a General 1D Wave Equation Solver 143

def __call__(self, u, x, t, n):
"""
Callback function user_action, call by solver:
Store solution, plot on screen and save to file.
"""
Save solution u to a file using numpy.savez
if self.filename is not None:

name = ’u%04d’ % n # array name
kwargs = {name: u}
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
np.savez(fname, **kwargs)
self.t.append(t[n]) # store corresponding time value
if n == 0: # save x once

np.savez(’.’ + self.filename + ’_x.dat’, x=x)

Animate
if n % self.skip_frame != 0:

return
title = ’t=%.3f’ % t[n]
if self.title:

title = self.title + ’ ’ + title
if self.backend is None:

native matplotlib animation
if n == 0:

self.plt.ion()
self.lines = self.plt.plot(x, u, ’r-’)
self.plt.axis([x[0], x[-1],

self.yaxis[0], self.yaxis[1]])
self.plt.xlabel(’x’)
self.plt.ylabel(’u’)
self.plt.title(title)
self.plt.legend([’t=%.3f’ % t[n]])

else:
Update new solution
self.lines[0].set_ydata(u)
self.plt.legend([’t=%.3f’ % t[n]])
self.plt.draw()

else:
scitools.easyviz animation
self.plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[x[0], x[-1],

self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

pause
if t[n] == 0:

time.sleep(2) # let initial condition stay 2 s
else:

if self.pause is None:
pause = 0.2 if u.size < 100 else 0

time.sleep(pause)

self.plt.savefig(’frame_%04d.png’ % (n))

144 2 Wave Equations

Dissection Understanding this class requires quite some familiarity with Python
in general and class programming in particular. The class supports plotting with
Matplotlib (backend=None) or SciTools (backend=matplotlib or backend=
gnuplot) for maximum flexibility.

The constructor shows how we can flexibly import the plotting engine as (typ-
ically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_
(note the trailing underscore - it is required). With the screen_movie parameter
we can suppress displaying each movie frame on the screen. Alternatively, for slow
movies associated with fine meshes, one can set skip_frame=10, causing every
10 frames to be shown.

The __call__ method makes PlotAndStoreSolution instances behave like
functions, so we can just pass an instance, say p, as the user_action argument in
the solver function, and any call to user_action will be a call to p.__call__.
The __call__ method plots the solution on the screen, saves the plot to file, and
stores the solution in a file for later retrieval.

More details on storing the solution in files appear in Sect. C.2.

2.8.2 Pulse Propagation in TwoMedia

The function pulse in wave1D_dn_vc.py demonstrates wave motion in heteroge-
neous media where c varies. One can specify an interval where the wave velocity
is decreased by a factor slowness_factor (or increased by making this factor less
than one). Figure 2.5 shows a typical simulation scenario.

Four types of initial conditions are available:

1. a rectangular pulse (plug),
2. a Gaussian function (gaussian),
3. a “cosine hat” consisting of one period of the cosine function (cosinehat),
4. half a period of a “cosine hat” (half-cosinehat)

These peak-shaped initial conditions can be placed in the middle (loc=’center’)
or at the left end (loc=’left’) of the domain. With the pulse in the middle, it splits
in two parts, each with half the initial amplitude, traveling in opposite directions.
With the pulse at the left end, centered at x D 0, and using the symmetry condition
@u=@x D 0, only a right-going pulse is generated. There is also a left-going pulse,
but it travels from x D 0 in negative x direction and is not visible in the domain
Œ0; L�.

The pulse function is a flexible tool for playing around with various wave
shapes and jumps in the wave velocity (i.e., discontinuous media). The code is
shown to demonstrate how easy it is to reach this flexibility with the building blocks
we have already developed:

2.8 Building a General 1D Wave Equation Solver 145

def pulse(
C=1, # Maximum Courant number
Nx=200, # spatial resolution
animate=True,
version=’vectorized’,
T=2, # end time
loc=’left’, # location of initial condition
pulse_tp=’gaussian’, # pulse/init.cond. type
slowness_factor=2, # inverse of wave vel. in right medium
medium=[0.7, 0.9], # interval for right medium
skip_frame=1, # skip frames in animations
sigma=0.05 # width measure of the pulse
):
"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
Use scaled parameters: L=1 for domain length, c_0=1
for wave velocity outside the domain.
L = 1.0
c_0 = 1.0
if loc == ’center’:

xc = L/2
elif loc == ’left’:

xc = 0

if pulse_tp in (’gaussian’,’Gaussian’):
def I(x):

return np.exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == ’cosinehat’:
def I(x):

One period of a cosine
w = 2
a = w*sigma
return 0.5*(1 + np.cos(np.pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):

Half a period of a cosine
w = 4
a = w*sigma
return np.cos(np.pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:

raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0

146 2 Wave Equations

umin=-0.5; umax=1.5*I(xc)
casename = ’%s_Nx%s_sf%s’ % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
skip_frame=skip_frame, screen_movie=animate,
backend=None, filename=’tmpdata’)

Choose the stability limit with given Nx, worst case c
(lower C will then use this dt, but smaller Nx)
dt = (L/Nx)/c_0
cpu, hashed_input = solver(

I=I, V=None, f=None, c=c,
U_0=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action,
version=version,
stability_safety_factor=1)

if cpu > 0: # did we generate new data?
action.close_file(hashed_input)
action.make_movie_file()

print ’cpu (-1 means no new data generated):’, cpu

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

2.8 Building a General 1D Wave Equation Solver 147

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
U_0=0,
U_L=0,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1,
version=’scalar’,
stability_safety_factor=1.0)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

The PlotMediumAndSolution class used here is a subclass of PlotAndStore
Solution where the medium with reduced c value, as specified by the medium
interval, is visualized in the plots.

Comment on the choices of discretization parameters
The argumentNx in the pulse function does not correspond to the actual spatial
resolution of C < 1, since the solver function takes a fixed �t and C , and
adjusts �x accordingly. As seen in the pulse function, the specified �t is
chosen according to the limit C D 1, so if C < 1, �t remains the same, but the
solver function operates with a larger �x and smaller Nx than was specified
in the call to pulse. The practical reason is that we always want to keep �t
fixed such that plot frames and movies are synchronized in time regardless of
the value of C (i.e.,�x is varied when the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(Nx=50, loc=’left’, pulse_tp=’cosinehat’, slowness_factor=2)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be easier
to run the above two statements from the command line with

Terminal

Terminal> python -c ’import wave1D_dn_vc as w; w.pulse(...)’

148 2 Wave Equations

2.9 Exercises

Exercise 2.7: Find the analytical solution to a damped wave equation
Consider the wave equation with damping (2.61). The goal is to find an exact
solution to a wave problem with damping and zero source term. A starting point
is the standing wave solution from Exercise 2.1. It becomes necessary to include a
damping term e�ˇt and also have both a sine and cosine component in time:

ue.x; t/ D e�ˇt sin kx .A cos!t C B sin!t/ :

Find k from the boundary conditions u.0; t/ D u.L; t/ D 0. Then use the PDE
to find constraints on ˇ, !, A, and B . Set up a complete initial-boundary value
problem and its solution.
Filename: damped_waves.

Problem 2.8: Explore symmetry boundary conditions
Consider the simple "plug" wave where ˝ D Œ�L;L� and

I.x/ D
(
1; x 2 Œ�ı; ı�;
0; otherwise

for some number 0 < ı < L. The other initial condition is ut .x; 0/ D 0 and there
is no source term f . The boundary conditions can be set to u D 0. The solution
to this problem is symmetric around x D 0. This means that we can simulate the
wave process in only half of the domain Œ0; L�.

a) Argue why the symmetry boundary condition is ux D 0 at x D 0.

Hint Symmetry of a function about x D x0 means that f .x0 C h/ D f .x0 � h/.

b) Perform simulations of the complete wave problem on Œ�L;L�. Thereafter, uti-
lize the symmetry of the solution and run a simulation in half of the domain
Œ0; L�, using a boundary condition at x D 0. Compare plots from the two solu-
tions and confirm that they are the same.

c) Prove the symmetry property of the solution by setting up the complete initial-
boundary value problem and showing that if u.x; t/ is a solution, then also
u.�x; t/ is a solution.

d) If the code works correctly, the solution u.x; t/ D x.L � x/.1C t
2
/ should be

reproduced exactly. Write a test function test_quadratic that checks whether
this is the case. Simulate for x in Œ0; L

2
� with a symmetry condition at the end

x D L
2
.

Filename: wave1D_symmetric.

Exercise 2.9: Send pulse waves through a layered medium
Use the pulse function in wave1D_dn_vc.py to investigate sending a pulse, lo-
cated with its peak at x D 0, through two media with different wave velocities. The

2.9 Exercises 149

(scaled) velocity in the left medium is 1 while it is 1
sf

in the right medium. Report
what happens with a Gaussian pulse, a “cosine hat” pulse, half a “cosine hat” pulse,
and a plug pulse for resolutions Nx D 40; 80; 160, and sf D 2; 4. Simulate until
T D 2.
Filename: pulse1D.

Exercise 2.10: Explain why numerical noise occurs
The experiments performed in Exercise 2.9 shows considerable numerical noise in
the form of non-physical waves, especially for sf D 4 and the plug pulse or the
half a “cosinehat” pulse. The noise is much less visible for a Gaussian pulse. Run
the case with the plug and half a “cosinehat” pulse for sf D 1, C D 0:9; 0:25, and
Nx D 40; 80; 160. Use the numerical dispersion relation to explain the observa-
tions.
Filename: pulse1D_analysis.

Exercise 2.11: Investigate harmonic averaging in a 1D model
Harmonic means are often used if the wave velocity is non-smooth or discontinuous.
Will harmonic averaging of the wave velocity give less numerical noise for the case
sf D 4 in Exercise 2.9?
Filename: pulse1D_harmonic.

Problem 2.12: Implement open boundary conditions
To enable a wave to leave the computational domain and travel undisturbed through
the boundary x D L, one can in a one-dimensional problem impose the following
condition, called a radiation condition or open boundary condition:

@u

@t
C c @u

@x
D 0 : (2.69)

The parameter c is the wave velocity.
Show that (2.69) accepts a solution u D gR.x � ct/ (right-going wave), but not

u D gL.xCct/ (left-going wave). This means that (2.69) will allow any right-going
wave gR.x � ct/ to pass through the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x D 0

is
@u

@t
� c @u

@x
D 0 : (2.70)

a) A natural idea for discretizing the condition (2.69) at the spatial end point i D
Nx is to apply centered differences in time and space:

ŒD2tuC cD2xu D 0�ni ; i D Nx : (2.71)

Eliminate the fictitious value unNxC1 by using the discrete equation at the same
point.
The equation for the first step, u1i , is in principle also affected, but we can then
use the condition uNx D 0 since the wave has not yet reached the right boundary.

150 2 Wave Equations

b) A much more convenient implementation of the open boundary condition at
x D L can be based on an explicit discretization

ŒDCt uC cD�x u D 0�ni ; i D Nx : (2.72)

From this equation, one can solve for unC1Nx
and apply the formula as a Dirichlet

condition at the boundary point. However, the finite difference approximations
involved are of first order.
Implement this scheme for a wave equation utt D c2uxx in a domain Œ0; L�,
where you have ux D 0 at x D 0, the condition (2.69) at x D L, and an initial
disturbance in the middle of the domain, e.g., a plug profile like

u.x; 0/ D
(
1; L=2� ` � x � L=2C `;
0; otherwise :

Observe that the initial wave is split in two, the left-going wave is reflected at
x D 0, and both waves travel out of x D L, leaving the solution as u D 0

in Œ0; L�. Use a unit Courant number such that the numerical solution is exact.
Make a movie to illustrate what happens.
Because this simplified implementation of the open boundary condition works,
there is no need to pursue the more complicated discretization in a).

Hint Modify the solver function in wave1D_dn.py.

c) Add the possibility to have either ux D 0 or an open boundary condition at the
left boundary. The latter condition is discretized as

ŒDCt u � cDCx u D 0�ni ; i D 0; (2.73)

leading to an explicit update of the boundary value unC10 .
The implementation can be tested with a Gaussian function as initial condition:

g.xIm; s/ D 1p
2�s

e
� .x�m/2

2s2 :

Run two tests:
(a) Disturbance in the middle of the domain, I.x/ D g.xIL=2; s/, and open

boundary condition at the left end.
(b) Disturbance at the left end, I.x/ D g.xI 0; s/, and ux D 0 as symmetry

boundary condition at this end.
Make test functions for both cases, testing that the solution is zero after the
waves have left the domain.

d) In 2D and 3D it is difficult to compute the correct wave velocity normal to the
boundary, which is needed in generalizations of the open boundary conditions
in higher dimensions. Test the effect of having a slightly wrong wave velocity
in (2.72). Make movies to illustrate what happens.

Filename: wave1D_open_BC.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py

2.9 Exercises 151

Remarks The condition (2.69) works perfectly in 1D when c is known. In 2D and
3D, however, the condition reads ut C cxux C cyuy D 0, where cx and cy are
the wave speeds in the x and y directions. Estimating these components (i.e., the
direction of the wave) is often challenging. Other methods are normally used in 2D
and 3D to let waves move out of a computational domain.

Exercise 2.13: Implement periodic boundary conditions
It is frequently of interest to followwave motion over large distances and long times.
A straightforward approach is to work with a very large domain, but that might lead
to a lot of computations in areas of the domain where the waves cannot be noticed.
A more efficient approach is to let a right-going wave out of the domain and at the
same time let it enter the domain on the left. This is called a periodic boundary
condition.

The boundary condition at the right end x D L is an open boundary condition
(see Exercise 2.12) to let a right-going wave out of the domain. At the left end,
x D 0, we apply, in the beginning of the simulation, either a symmetry boundary
condition (see Exercise 2.8) ux D 0, or an open boundary condition.

This initial wave will split in two and either be reflected or transported out of the
domain at x D 0. The purpose of the exercise is to follow the right-going wave. We
can do that with a periodic boundary condition. This means that when the right-
going wave hits the boundary x D L, the open boundary condition lets the wave
out of the domain, but at the same time we use a boundary condition on the left end
x D 0 that feeds the outgoing wave into the domain again. This periodic condition
is simply u.0/ D u.L/. The switch from ux D 0 or an open boundary condition at
the left end to a periodic condition can happen when u.L; t/ >
, where
 D 10�4
might be an appropriate value for determining when the right-going wave hits the
boundary x D L.

The open boundary conditions can conveniently be discretized as explained in
Exercise 2.12. Implement the described type of boundary conditions and test them
on two different initial shapes: a plug u.x; 0/ D 1 for x � 0:1, u.x; 0/ D 0

for x > 0:1, and a Gaussian function in the middle of the domain: u.x; 0/ D
exp .� 1

2
.x � 0:5/2=0:05/. The domain is the unit interval Œ0; 1�. Run these two

shapes for Courant numbers 1 and 0.5. Assume constant wave velocity. Make
movies of the four cases. Reason why the solutions are correct.
Filename: periodic.

Exercise 2.14: Compare discretizations of a Neumann condition
We have a 1D wave equation with variable wave velocity: utt D .qux/x . A Neu-
mann condition ux at x D 0;L can be discretized as shown in (2.54) and (2.57).

The aim of this exercise is to examine the rate of the numerical error when using
different ways of discretizing the Neumann condition.

a) As a test problem, q D 1C .x � L=2/4 can be used, with f .x; t/ adapted such
that the solution has a simple form, say u.x; t/ D cos.�x=L/ cos.!t/ for, e.g.,
! D 1. Perform numerical experiments and find the convergence rate of the
error using the approximation (2.54).

b) Switch to q.x/ D 1C cos.�x=L/, which is symmetric at x D 0;L, and check
the convergence rate of the scheme (2.57). Now, qi�1=2 is a 2nd-order approxi-

152 2 Wave Equations

mation to qi , qi�1=2 D qi C 0:25q00i �x2 C � � � , because q0i D 0 for i D Nx (a
similar argument can be applied to the case i D 0).

c) A third discretization can be based on a simple and convenient, but less accurate,
one-sided difference: ui � ui�1 D 0 at i D Nx and uiC1 � ui D 0 at i D 0.
Derive the resulting scheme in detail and implement it. Run experiments with q
from a) or b) to establish the rate of convergence of the scheme.

d) A fourth technique is to view the scheme as

ŒDtDtu�
n
i D

1

�x

�
ŒqDxu�

n

iC 1
2

� ŒqDxu�
n

i� 12

�
C Œf �ni ;

and place the boundary at xiC 1
2
, i D Nx , instead of exactly at the physical

boundary. With this idea of approximating (moving) the boundary, we can just
set ŒqDxu�

n

iC 1
2

D 0. Derive the complete scheme using this technique. The

implementation of the boundary condition at L � �x=2 is O.�x2/ accurate,
but the interesting question is what impact the movement of the boundary has
on the convergence rate. Compute the errors as usual over the entire mesh and
use q from a) or b).

Filename: Neumann_discr.

Exercise 2.15: Verification by a cubic polynomial in space
The purpose of this exercise is to verify the implementation of the solver func-
tion in the program wave1D_n0.py by using an exact numerical solution for the
wave equation utt D c2uxx C f with Neumann boundary conditions ux.0; t/ D
ux.L; t/ D 0.

A similar verification is used in the file wave1D_u0.py, which solves the same
PDE, but with Dirichlet boundary conditions u.0; t/ D u.L; t/ D 0. The idea
of the verification test in function test_quadratic in wave1D_u0.py is to pro-
duce a solution that is a lower-order polynomial such that both the PDE problem,
the boundary conditions, and all the discrete equations are exactly fulfilled. Then
the solver function should reproduce this exact solution to machine precision.
More precisely, we seek u D X.x/T .t/, with T .t/ as a linear function and X.x/
as a parabola that fulfills the boundary conditions. Inserting this u in the PDE
determines f . It turns out that u also fulfills the discrete equations, because the
truncation error of the discretized PDE has derivatives in x and t of order four and
higher. These derivatives all vanish for a quadratic X.x/ and linear T .t/.

It would be attractive to use a similar approach in the case of Neumann condi-
tions. We set u D X.x/T .t/ and seek lower-order polynomials X and T . To force
ux to vanish at the boundary, we let Xx be a parabola. Then X is a cubic polyno-
mial. The fourth-order derivative of a cubic polynomial vanishes, so u D X.x/T .t/
will fulfill the discretized PDE also in this case, if f is adjusted such that u fulfills
the PDE.

However, the discrete boundary condition is not exactly fulfilled by this choice
of u. The reason is that

ŒD2xu�
n
i D ux.xi ; tn/C

1

6
uxxx.xi ; tn/�x

2 CO.�x4/ : (2.74)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py

2.9 Exercises 153

At the two boundary points, we must demand that the derivative Xx.x/ D 0 such
that ux D 0. However, uxxx is a constant and not zero when X.x/ is a cubic
polynomial. Therefore, our u D X.x/T .t/ fulfills

ŒD2xu�
n
i D

1

6
uxxx.xi ; tn/�x

2;

and not
ŒD2xu�

n
i D 0; i D 0;Nx;

as it should. (Note that all the higher-order terms O.�x4/ also have higher-order
derivatives that vanish for a cubic polynomial.) So to summarize, the fundamen-
tal problem is that u as a product of a cubic polynomial and a linear or quadratic
polynomial in time is not an exact solution of the discrete boundary conditions.

To make progress, we assume that u D X.x/T .t/, where T for simplicity is
taken as a prescribed linear function 1C 1

2
t , andX.x/ is taken as an unknown cubic

polynomial
P3
jD0 aj x

j . There are two different ways of determining the coeffi-
cients a0; : : : ; a3 such that both the discretized PDE and the discretized boundary
conditions are fulfilled, under the constraint that we can specify a function f .x; t/
for the PDE to feed to the solver function in wave1D_n0.py. Both approaches are
explained in the subexercises.

a) One can insert u in the discretized PDE and find the corresponding f . Then one
can insert u in the discretized boundary conditions. This yields two equations
for the four coefficients a0; : : : ; a3. To find the coefficients, one can set a0 D 0
and a1 D 1 for simplicity and then determine a2 and a3. This approach will
make a2 and a3 depend on �x and f will depend on both �x and �t .
Use sympy to perform analytical computations. A starting point is to define u
as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols(’x t c L dx dt’)
i, n = sm.symbols(’i n’, integer=True)

Assume discrete solution is a polynomial of degree 3 in x
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols(’a_0 a_1 a_2 a_3’)
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t as
sympy symbols.
Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python func-
tions for returning the difference approximations ŒDxDxu�

n
i , ŒDtDtu�

n
i , and

ŒD2xu�
n
i . The next step is to set up the residuals for the equations ŒD2xu�

n
0 D 0

and ŒD2xu�
n
Nx
D 0, where Nx D L=�x. Call the residuals R_0 and R_L. Sub-

stitute a0 and a1 by 0 and 1, respectively, in R_0, R_L, and a:

154 2 Wave Equations

R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then about
solving two equations with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
s is dictionary with the unknowns a[2] and a[3] as keys
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new values
since X accesses a.
Compute the source term f from the discretized PDE: f ni D ŒDtDtu �
c2DxDxu�

n
i . Turn u, the time derivative ut (needed for the initial condi-

tion V.x/), and f into Python functions. Set numerical values for L, Nx ,
C , and c. Prescribe the time interval as �t D CL=.Nxc/, which imply
�x D c�t=C D L=Nx. Define new functions I(x), V(x), and f(x,t) as
wrappers of the ones made above, where fixed values of L, c, �x, and �t
are inserted, such that I, V, and f can be passed on to the solver function.
Finally, call solverwith a user_action function that compares the numerical
solution to this exact solution u of the discrete PDE problem.

Hint To turn a sympy expression e, depending on a series of symbols, say x, t,
dx, dt, L, and c, into a plain Python function e_exact(x,t,L,dx,dt,c), one can
write

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)

The ’numpy’ argument is a good habit as the e_exact function will then work
with array arguments if it contains mathematical functions (but here we only do
plain arithmetics, which automatically work with arrays).

b) An alternative way of determining a0; : : : ; a3 is to reason as follows. We first
construct X.x/ such that the boundary conditions are fulfilled: X D x.L � x/.
However, to compensate for the fact that this choice of X does not fulfill the
discrete boundary condition, we seek u such that

ux D @

@x
x.L � x/T .t/ � 1

6
uxxx�x

2;

since this u will fit the discrete boundary condition. Assuming u D
T .t/

P3
jD0 aj x

j , we can use the above equation to determine the coefficients
a1; a2; a3. A value, e.g., 1 can be used for a0. The following sympy code
computes this u:

2.10 Analysis of the Difference Equations 155

def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols(’x t c L dx’)
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
Set u as a 3rd-degree polynomial in space
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols(’a_0 a_1 a_2 a_3’)
u = lambda x, t: X(x)*T(t)
Force discrete boundary condition to be zero by adding
a correction term the analytical suggestion x*(L-x)*T
u_x = x*(L-x)*T(t) - 1/6*u_xxx*dx**2
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
R is a polynomial: force all coefficients to vanish.
Turn R to Poly to extract coefficients:
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
s is dictionary with a[i] as keys
Fix a[0] as 1
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

The next step is to find the source term f_e by inserting u_e in the PDE. There-
after, turn u, f, and the time derivative of u into plain Python functions as in a),
and then wrap these functions in new functions I, V, and f, with the right signa-
ture as required by the solver function. Set parameters as in a) and check that
the solution is exact to machine precision at each time level using an appropriate
user_action function.

Filename: wave1D_n0_test_cubic.

2.10 Analysis of the Difference Equations

2.10.1 Properties of the Solution of theWave Equation

The wave equation
@2u

@t2
D c2 @

2u

@x2

has solutions of the form

u.x; t/ D gR.x � ct/C gL.x C ct/; (2.75)

for any functions gR and gL sufficiently smooth to be differentiated twice. The
result follows from inserting (2.75) in the wave equation. A function of the form
gR.x � ct/ represents a signal moving to the right in time with constant velocity c.
This feature can be explained as follows. At time t D 0 the signal looks like gR.x/.
Introducing a moving horizontal coordinate � D x � ct , we see the function gR.�/

156 2 Wave Equations

is “at rest” in the � coordinate system, and the shape is always the same. Say the
gR.�/ function has a peak at � D 0. This peak is located at x D ct , which means
that it moves with the velocity dx=dt D c in the x coordinate system. Similarly,
gL.x C ct/ is a function, initially with shape gL.x/, that moves in the negative x
direction with constant velocity c (introduce � D x C ct , look at the point � D 0,
x D �ct , which has velocity dx=dt D �c).

With the particular initial conditions

u.x; 0/ D I.x/; @

@t
u.x; 0/ D 0;

we get, with u as in (2.75),

gR.x/C gL.x/ D I.x/; �cg0R.x/C cg0L.x/ D 0 :

The former suggests gR D gL, and the former then leads to gR D gL D I=2.
Consequently,

u.x; t/ D 1

2
I.x � ct/C 1

2
I.x C ct/ : (2.76)

The interpretation of (2.76) is that the initial shape of u is split into two parts, each
with the same shape as I but half of the initial amplitude. One part is traveling to
the left and the other one to the right.

The solution has two important physical features: constant amplitude of the left
and right wave, and constant velocity of these two waves. It turns out that the nu-
merical solution will also preserve the constant amplitude, but the velocity depends
on the mesh parameters �t and �x.

The solution (2.76) will be influenced by boundary conditions when the parts
1
2
I.x � ct/ and 1

2
I.x C ct/ hit the boundaries and get, e.g., reflected back into the

domain. However, when I.x/ is nonzero only in a small part in the middle of the
spatial domain Œ0; L�, which means that the boundaries are placed far away from the
initial disturbance of u, the solution (2.76) is very clearly observed in a simulation.

A useful representation of solutions of wave equations is a linear combination
of sine and/or cosine waves. Such a sum of waves is a solution if the governing
PDE is linear and each sine or cosine wave fulfills the equation. To ease analyti-
cal calculations by hand we shall work with complex exponential functions instead
of real-valued sine or cosine functions. The real part of complex expressions will
typically be taken as the physical relevant quantity (whenever a physical relevant
quantity is strictly needed). The idea now is to build I.x/ of complex wave compo-
nents eikx:

I.x/ �
X
k2K

bke
ikx : (2.77)

Here, k is the frequency of a component,K is some set of all the discrete k values
needed to approximate I.x/ well, and bk are constants that must be determined.
We will very seldom need to compute the bk coefficients: most of the insight we
look for, and the understanding of the numerical methods we want to establish,
come from investigating how the PDE and the scheme treat a single component
eikx wave.

2.10 Analysis of the Difference Equations 157

Letting the number of k values in K tend to infinity, makes the sum (2.77)
converge to I.x/. This sum is known as a Fourier series representation of I.x/.
Looking at (2.76), we see that the solution u.x; t/, when I.x/ is represented as
in (2.77), is also built of basic complex exponential wave components of the form
eik.x˙ct/ according to

u.x; t/ D 1

2

X
k2K

bke
ik.x�ct/ C 1

2

X
k2K

bke
ik.xCct/ : (2.78)

It is common to introduce the frequency in time ! D kc and assume that u.x; t/
is a sum of basic wave components written as eikx�!t . (Observe that inserting such
a wave component in the governing PDE reveals that !2 D k2c2, or ! D ˙kc,
reflecting the two solutions: one (Ckc) traveling to the right and the other (�kc)
traveling to the left.)

2.10.2 More Precise Definition of Fourier Representations

The above introduction to function representation by sine and cosine waves was
quick and intuitive, but will suffice as background knowledge for the following
material of single wave component analysis. However, to understand all details of
how different wave components sum up to the analytical and numerical solutions, a
more precise mathematical treatment is helpful and therefore summarized below.

It is well known that periodic functions can be represented by Fourier series. A
generalization of the Fourier series idea to non-periodic functions defined on the
real line is the Fourier transform:

I.x/ D
1Z
�1

A.k/eikxdk; (2.79)

A.k/ D
1Z
�1

I.x/e�ikxdx : (2.80)

The function A.k/ reflects the weight of each wave component eikx in an infinite
sum of such wave components. That is, A.k/ reflects the frequency content in the
function I.x/. Fourier transforms are particularly fundamental for analyzing and
understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u.x; t/ D
1Z
�1

A.k/ei.kx�!.k/t/dx :

In a finite difference method, we represent u by a mesh function unq , where n
counts temporal mesh points and q counts the spatial ones (the usual counter for
spatial points, i , is here already used as imaginary unit). Similarly, I.x/ is approx-
imated by the mesh function Iq , q D 0; : : : ; Nx . On a mesh, it does not make sense

158 2 Wave Equations

to work with wave components eikx for very large k, because the shortest possible
sine or cosine wave that can be represented uniquely on a mesh with spacing �x is
the wave with wavelength 2�x. This wave has its peaks and throughs at every two
mesh points. That is, the wave “jumps up and down” between the mesh points.

The corresponding k value for the shortest possible wave in the mesh is k D
2�=.2�x/D �=�x. This maximum frequency is known as the Nyquist frequency.
Within the range of relevant frequencies .0; �=�x� one defines the discrete Fourier
transform11, using Nx C 1 discrete frequencies:

Iq D 1

Nx C 1
NxX
kD0

Ake
i2�kq=.NxC1/; q D 0; : : : ; Nx; (2.81)

Ak D
NxX
qD0

Iqe
�i2�kq=.NxC1/; k D 0; : : : ; Nx : (2.82)

TheAk values represent the discrete Fourier transform of the Iq values, which them-
selves are the inverse discrete Fourier transform of the Ak values.

The discrete Fourier transform is efficiently computed by the Fast Fourier trans-
form algorithm. For a real function I.x/, the relevant Python code for computing
and plotting the discrete Fourier transform appears in the example below.

import numpy as np
from numpy import sin, pi

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1*sin(6*pi*x)

Mesh
L = 10; Nx = 100
x = np.linspace(0, L, Nx+1)
dx = L/float(Nx)

Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

2.10.3 Stability

The scheme
ŒDtDtu D c2DxDxu�

n
q (2.83)

11 http://en.wikipedia.org/wiki/Discrete_Fourier_transform

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform

2.10 Analysis of the Difference Equations 159

for the wave equation utt D c2uxx allows basic wave components

unq D ei.kxq� Q!tn/

as solution, but it turns out that the frequency in time, Q!, is not equal to the exact
frequency ! D kc. The goal now is to find exactly what Q! is. We ask two key
questions:

� How accurate is Q! compared to !?
� Does the amplitude of such a wave component preserve its (unit) amplitude, as

it should, or does it get amplified or damped in time (because of a complex Q!)?

The following analysis will answer these questions. We shall continue using q as
an identifier for a certain mesh point in the x direction.

Preliminary results A key result needed in the investigations is the finite differ-
ence approximation of a second-order derivative acting on a complex wave compo-
nent:

ŒDtDte
i!t �n D � 4

�t2
sin2

�
!�t

2

�
ei!n�t :

By just changing symbols (! ! k, t ! x, n! q) it follows that

ŒDxDxe
ikx�q D � 4

�x2
sin2

�
k�x

2

�
eikq�x :

Numerical wave propagation Inserting a basic wave component unq D ei.kxq� Q!tn/
in (2.83) results in the need to evaluate two expressions:

ŒDtDte
ikxe�i Q!t �nq D ŒDtDte

�i Q!t �neikq�x

D � 4

�t2
sin2

� Q!�t
2

�
e�i Q!n�teikq�x (2.84)

ŒDxDxe
ikxe�i Q!t �nq D ŒDxDxe

ikx�qe
�i Q!n�t

D � 4

�x2
sin2

�
k�x

2

�
eikq�xe�i Q!n�t : (2.85)

Then the complete scheme,

ŒDtDte
ikxe�i Q!t D c2DxDxe

ikxe�i Q!t �nq

leads to the following equation for the unknown numerical frequency Q! (after di-
viding by �eikxe�i Q!t):

4

�t2
sin2

� Q!�t
2

�
D c2 4

�x2
sin2

�
k�x

2

�
;

or

sin2
� Q!�t

2

�
D C2 sin2

�
k�x

2

�
; (2.86)

160 2 Wave Equations

where

C D c�t

�x
(2.87)

is the Courant number. Taking the square root of (2.86) yields

sin
� Q!�t

2

�
D C sin

�
k�x

2

�
: (2.88)

Since the exact ! is real it is reasonable to look for a real solution Q! of (2.88). The
right-hand side of (2.88) must then be in Œ�1; 1� because the sine function on the
left-hand side has values in Œ�1; 1� for real Q!. The magnitude of the sine function
on the right-hand side attains the value 1 when

k�x

2
D �

2
Cm�; m 2 Z :

With m D 0 we have k�x D � , which means that the wavelength � D 2�=k

becomes 2�x. This is the absolutely shortest wavelength that can be represented
on the mesh: the wave jumps up and down between each mesh point. Larger values
of jmj are irrelevant since these correspond to k values whose waves are too short
to be represented on a mesh with spacing �x. For the shortest possible wave in the
mesh, sin .k�x=2/ D 1, and we must require

C � 1 : (2.89)

Consider a right-hand side in (2.88) of magnitude larger than unity. The solution
Q! of (2.88) must then be a complex number Q! D Q!rCi Q!i because the sine function
is larger than unity for a complex argument. One can show that for any !i there will
also be a corresponding solution with �!i . The component with !i > 0 gives an
amplification factor e!i t that grows exponentially in time. We cannot allow this and
must therefore require C � 1 as a stability criterion.

Remark on the stability requirement
For smoother wave components with longer wave lengths per length�x, (2.89)
can in theory be relaxed. However, small round-off errors are always present in
a numerical solution and these vary arbitrarily from mesh point to mesh point
and can be viewed as unavoidable noise with wavelength 2�x. As explained,
C > 1 will for this very small noise lead to exponential growth of the shortest
possible wave component in the mesh. This noise will therefore grow with time
and destroy the whole solution.

2.10.4 Numerical Dispersion Relation

Equation (2.88) can be solved with respect to Q!:

Q! D 2

�t
sin�1

�
C sin

�
k�x

2

��
: (2.90)

2.10 Analysis of the Difference Equations 161

The relation between the numerical frequency Q! and the other parameters k, c,
�x, and �t is called a numerical dispersion relation. Correspondingly, ! D kc is
the analytical dispersion relation. In general, dispersion refers to the phenomenon
where the wave velocity depends on the spatial frequency (k, or the wave length
� D 2�=k) of the wave. Since the wave velocity is !=k D c, we realize that the
analytical dispersion relation reflects the fact that there is no dispersion. However,
in a numerical scheme we have dispersive waves where the wave velocity depends
on k.

The special case C D 1 deserves attention since then the right-hand side of
(2.90) reduces to

2

�t

k�x

2
D 1

�t

!�x

c
D !

C
D ! :

That is, Q! D ! and the numerical solution is exact at all mesh points regardless of
�x and �t! This implies that the numerical solution method is also an analytical
solution method, at least for computing u at discrete points (the numerical method
says nothing about the variation of u between the mesh points, and employing the
common linear interpolation for extending the discrete solution gives a curve that
in general deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation when
C < 1, we can study Q! � !, Q!=!, or the similar error measures in wave velocity:
Qc � c and Qc=c, where c D !=k and Qc D Q!=k. It appears that the most convenient
expression to work with is Qc=c, since it can be written as a function of just two
parameters:

Qc
c
D 1

Cp
sin�1 .C sinp/ ;

with p D k�x=2 as a non-dimensional measure of the spatial frequency. In
essence, p tells how many spatial mesh points we have per wave length in space
for the wave component with frequency k (recall that the wave length is 2�=k).
That is, p reflects how well the spatial variation of the wave component is resolved
in the mesh. Wave components with wave length less than 2�x (2�=k < 2�x) are
not visible in the mesh, so it does not make sense to have p > �=2.

We may introduce the function r.C; p/ D Qc=c for further investigation of nu-
merical errors in the wave velocity:

r.C; p/ D 1

Cp
sin�1 .C sinp/ ; C 2 .0; 1�; p 2 .0; �=2� : (2.91)

This function is very well suited for plotting since it combines several parameters
in the problem into a dependence on two dimensionless numbers, C and p.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r.C; p/ as a function of p for various values of C , see Fig. 2.6. Note
that the shortest waves have the most erroneous velocity, and that short waves move
more slowly than they should.

162 2 Wave Equations

Fig. 2.6 The fractional error in the wave velocity for different Courant numbers

We can also easily make a Taylor series expansion in the discretization parameter
p:

>>> import sympy as sym
>>> C, p = sym.symbols(’C p’)
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1

>>> # Pick out the leading order term, but drop the constant 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)

>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0

Note that without the .removeO() call the series gets an O(x**7) term that makes
it impossible to convert the series to a Python function (for, e.g., plotting).

2.10 Analysis of the Difference Equations 163

From the rs_error_leading_order expression above, we see that the leading
order term in the error of this series expansion is

1

6

�
k�x

2

�2
.C 2 � 1/ D k2

24

�
c2�t2 ��x2� ; (2.92)

pointing to an error O.�t2;�x2/, which is compatible with the errors in the differ-
ence approximations (DtDtu andDxDxu).

We can do more with a series expansion, e.g., factor it to see how the factorC �1
plays a significant role. To this end, we make a list of the terms, factor each term,
and then sum the terms:

>>> rs = r(C, p).series(p, 0, 4).removeO().as_ordered_terms()
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function sums the list
>>> rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C D 1makes all the terms in rs vanish. Since
we already know that the numerical solution is exact for C D 1, the remaining
terms in the Taylor series expansion will also contain factors of C � 1 and cancel
for C D 1.

2.10.5 Extending the Analysis to 2D and 3D

The typical analytical solution of a 2D wave equation

utt D c2.uxx C uyy/;

is a wave traveling in the direction of k D kxiCkyj , where i and j are unit vectors
in the x and y directions, respectively (i should not be confused with i D p�1
here). Such a wave can be expressed by

u.x; y; t/ D g.kxx C kyy � kct/

for some twice differentiable function g, or with ! D kc, k D jkj:

u.x; y; t/ D g.kxx C kyy � !t/ :

164 2 Wave Equations

We can, in particular, build a solution by adding complex Fourier components of
the form

e.i.kxxCkyy�!t// :

A discrete 2D wave equation can be written as

ŒDtDtu D c2.DxDxuCDyDyu/�
n
q;r : (2.93)

This equation admits a Fourier component

unq;r D e.i.kxq�xCkyr�y� Q!n�t//; (2.94)

as solution. Letting the operatorsDtDt ,DxDx , andDyDy act on unq;r from (2.94)
transforms (2.93) to

4

�t2
sin2

� Q!�t
2

�
D c2 4

�x2
sin2

�
kx�x

2

�
C c2 4

�y2
sin2

�
ky�y

2

�
(2.95)

or

sin2
� Q!�t

2

�
D C2

x sin
2 px C C2

y sin
2 py; (2.96)

where we have eliminated the factor 4 and introduced the symbols

Cx D c�t

�x
; Cy D c�t

�y
; px D kx�x

2
; py D ky�y

2
:

For a real-valued Q! the right-hand side must be less than or equal to unity in absolute
value, requiring in general that

C2
x C C2

y � 1 : (2.97)

This gives the stability criterion, more commonly expressed directly in an inequality
for the time step:

�t � 1

c

�
1

�x2
C 1

�y2

��1=2
: (2.98)

A similar, straightforward analysis for the 3D case leads to

�t � 1

c

�
1

�x2
C 1

�y2
C 1

�z2

��1=2
: (2.99)

In the case of a variable coefficient c2 D c2.x/, we must use the worst-case value

Nc D
q
max
x2˝

c2.x/ (2.100)

in the stability criteria. Often, especially in the variable wave velocity case, it is
wise to introduce a safety factor ˇ 2 .0; 1� too:

�t � ˇ1Nc
�

1

�x2
C 1

�y2
C 1

�z2

��1=2
: (2.101)

2.10 Analysis of the Difference Equations 165

The exact numerical dispersion relations in 2D and 3D becomes, for constant c,

Q! D 2

�t
sin�1

��
C2
x sin

2 px C C2
y sin

2 py

� 1
2

�
; (2.102)

Q! D 2

�t
sin�1

��
C2
x sin

2 px C C2
y sin

2 py C C2
z sin

2 pz

� 1
2

�
: (2.103)

We can visualize the numerical dispersion error in 2D much like we did in 1D.
To this end, we need to reduce the number of parameters in Q!. The direction of the
wave is parameterized by the polar angle � , which means that

kx D k sin �; ky D k cos � :

A simplification is to set �x D �y D h. Then Cx D Cy D c�t=h, which we call
C . Also,

px D 1

2
kh cos �; py D 1

2
kh sin � :

The numerical frequency Q! is now a function of three parameters:

� C , reflecting the number of cells a wave is displaced during a time step,
� p D 1

2
kh, reflecting the number of cells per wave length in space,

� � , expressing the direction of the wave.

We want to visualize the error in the numerical frequency. To avoid having�t as a
free parameter in Q!, we work with Qc=c D Q!=.kc/. The coefficient in front of the
sin�1 factor is then

2

kc�t
D 2

2kc�th=h
D 1

Ckh
D 2

Cp
;

and Qc
c
D 2

Cp
sin�1

�
C
�
sin2.p cos �/C sin2.p sin �/

� 1
2

�
:

We want to visualize this quantity as a function of p and � for some values of
C � 1. It is instructive to make color contour plots of 1� Qc=c in polar coordinates
with � as the angular coordinate and p as the radial coordinate.

The stability criterion (2.97) becomes C � Cmax D 1=
p
2 in the present 2D

case with the C defined above. Let us plot 1 � Qc=c in polar coordinates for
Cmax; 0:9Cmax; 0:5Cmax; 0:2Cmax. The program below does the somewhat tricky
work in Matplotlib, and the result appears in Fig. 2.7. From the figure we clearly
see that the maximum C value gives the best results, and that waves whose propa-
gation direction makes an angle of 45 degrees with an axis are the most accurate.

166 2 Wave Equations

def dispersion_relation_2D(p, theta, C):
arg = C*sqrt(sin(p*cos(theta))**2 +

sin(p*sin(theta))**2)
c_frac = 2./(C*p)*arcsin(arg)

return c_frac

import numpy as np
from numpy import \

cos, sin, arcsin, sqrt, pi # for nicer math formulas

r = p = np.linspace(0.001, pi/2, 101)
theta = np.linspace(0, 2*pi, 51)
r, theta = np.meshgrid(r, theta)

Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
C_max = 1/sqrt(2)
C = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
fix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
for row in range(2):

for column in range(2):
error = 1 - dispersion_relation_2D(

p, theta, C[row][column])
print error.min(), error.max()
use vmin=error.min(), vmax=error.max()
cax = axes[row][column].contourf(

theta, r, error, 50, vmin=-1, vmax=-0.28)
axes[row][column].set_xticks([])
axes[row][column].set_yticks([])

Add colorbar to the last plot
cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’); plt.savefig(’disprel2D.pdf’)
plt.show()

Fig. 2.7 Error in numerical dispersion in 2D

2.11 Finite Difference Methods for 2D and 3DWave Equations 167

2.11 Finite Difference Methods for 2D and 3DWave Equations

A natural next step is to consider extensions of the methods for various variants of
the one-dimensional wave equation to two-dimensional (2D) and three-dimensional
(3D) versions of the wave equation.

2.11.1 Multi-Dimensional Wave Equations

The general wave equation in d space dimensions, with constant wave velocity c,
can be written in the compact form

@2u

@t2
D c2r2u for x 2 ˝ � Rd ; t 2 .0; T �; (2.104)

where

r2u D @2u

@x2
C @2u

@y2
;

in a 2D problem (d D 2) and

r2u D @2u

@x2
C @2u

@y2
C @2u

@z2
;

in three space dimensions (d D 3).
Many applications involve variable coefficients, and the general wave equation

in d dimensions is in this case written as

%
@2u

@t2
D r � .qru/C f for x 2 ˝ � Rd ; t 2 .0; T �; (2.105)

which in, e.g., 2D becomes

%.x; y/
@2u

@t2
D @

@x

�
q.x; y/

@u

@x

�
C @

@y

�
q.x; y/

@u

@y

�
C f .x; y; t/ : (2.106)

To save some writing and space we may use the index notation, where subscript t ,
x, or y means differentiation with respect to that coordinate. For example,

@2u

@t2
D utt ;

@

@y

�
q.x; y/

@u

@y

�
D .quy/y :

These comments extend straightforwardly to 3D, which means that the 3D versions
of the two wave PDEs, with and without variable coefficients, can be stated as

utt D c2.uxx C uyy C uzz/C f; (2.107)

%utt D .qux/x C .quy/y C .quz/z C f : (2.108)

168 2 Wave Equations

At each point of the boundary @˝ (of ˝) we need one boundary condition in-
volving the unknown u. The boundary conditions are of three principal types:

1. u is prescribed (u D 0 or a known time variation of u at the boundary points,
e.g., modeling an incoming wave),

2. @u=@n D n � ru is prescribed (zero for reflecting boundaries),
3. an open boundary condition (also called radiation condition) is specified to let

waves travel undisturbed out of the domain, see Exercise 2.12 for details.

All the listed wave equations with second-order derivatives in time need two initial
conditions:

1. u D I ,
2. ut D V .

2.11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists of time points

t0 D 0 < t1 < � � � < tNt ;

normally, for wave equation problems, with a constant spacing �t D tnC1 � tn,
n 2 I�t .

Finite difference methods are easy to implement on simple rectangle- or box-
shaped spatial domains. More complicated shapes of the spatial domain require
substantially more advanced techniques and implementational efforts (and a fi-
nite element method is usually a more convenient approach). On a rectangle- or
box-shaped domain, mesh points are introduced separately in the various space di-
rections:

x0 < x1 < � � � < xNx in the x direction;

y0 < y1 < � � � < yNy in the y direction;

z0 < z1 < � � � < zNz in the z direction :

We can write a general mesh point as .xi ; yj ; zk; tn/, with i 2 Ix , j 2 Iy , k 2 Iz ,
and n 2 It .

It is a very common choice to use constant mesh spacings: �x D xiC1 � xi ,
i 2 I�x , �y D yjC1 � yj , j 2 I�y , and �z D zkC1 � zk , k 2 I�z . With equal mesh
spacings one often introduces h D �x D �y D �z.

The unknown u at mesh point .xi ; yj ; zk; tn/ is denoted by uni;j;k. In 2D problems
we just skip the z coordinate (by assuming no variation in that direction: @=@z D 0)
and write uni;j .

2.11 Finite Difference Methods for 2D and 3DWave Equations 169

2.11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by assembling
building blocks for discretization of 1D wave equations, because the multi-
dimensional versions just contain terms of the same type as those in 1D.

Discretizing the PDEs Equation (2.107) can be discretized as

ŒDtDtu D c2.DxDxuCDyDyuCDzDzu/C f �ni;j;k : (2.109)

A 2D version might be instructive to write out in detail:

ŒDtDtu D c2.DxDxuCDyDyu/C f �ni;j ;

which becomes

unC1i;j � 2uni;j C un�1i;j

�t2
D c2 u

n
iC1;j � 2uni;j C uni�1;j

�x2

C c2 u
n
i;jC1 � 2uni;j C uni;j�1

�y2
C f ni;j :

Assuming, as usual, that all values at time levels n and n � 1 are known, we can
solve for the only unknown unC1i;j . The result can be compactly written as

unC1i;j D 2uni;j C un�1i;j C c2�t2ŒDxDxuCDyDyu�
n
i;j : (2.110)

As in the 1D case, we need to develop a special formula for u1i;j where we

combine the general scheme for unC1i;j , when n D 0, with the discretization of the
initial condition:

ŒD2tu D V �0i;j) u�1i;j D u1i;j � 2�tVi;j :

The result becomes, in compact form,

u1i;j D u0i;j � 2�Vi;j C
1

2
c2�t2ŒDxDxuCDyDyu�

0
i;j : (2.111)

The PDE (2.108) with variable coefficients is discretized term by term using the
corresponding elements from the 1D case:

Œ%DtDtu D .Dxq
xDxuCDyq

yDyuCDzq
zDzu/C f �ni;j;k : (2.112)

170 2 Wave Equations

When written out and solved for the unknown unC1i;j;k , one gets the scheme

unC1i;j;k D � un�1i;j;k C 2uni;j;k
C 1

%i;j;k

1

�x2

�
1

2
.qi;j;k C qiC1;j;k/.uniC1;j;k � uni;j;k/

� 1
2
.qi�1;j;k C qi;j;k/.uni;j;k � uni�1;j;k/

�

C 1

%i;j;k

1

�y2

�
1

2
.qi;j;k C qi;jC1;k/.uni;jC1;k � uni;j;k/

� 1
2
.qi;j�1;k C qi;j;k/.uni;j;k � uni;j�1;k/

�

C 1

%i;j;k

1

�z2

�
1

2
.qi;j;k C qi;j;kC1/.uni;j;kC1 � uni;j;k/

� 1
2
.qi;j;k�1 C qi;j;k/.uni;j;k � uni;j;k�1/

�

C�t2f n
i;j;k :

Also here we need to develop a special formula for u1i;j;k by combining the
scheme for n D 0 with the discrete initial condition, which is just a matter of
inserting u�1i;j;k D u1i;j;k � 2�tVi;j;k in the scheme and solving for u1i;j;k.

Handling boundary conditions where u is known The schemes listed above are
valid for the internal points in the mesh. After updating these, we need to visit all
the mesh points at the boundaries and set the prescribed u value.

Discretizing the Neumann condition The condition @u=@n D 0 was imple-
mented in 1D by discretizing it with a D2xu centered difference, followed by
eliminating the fictitious u point outside the mesh by using the general scheme
at the boundary point. Alternatively, one can introduce ghost cells and update a
ghost value for use in the Neumann condition. Exactly the same ideas are reused in
multiple dimensions.

Consider the condition @u=@n D 0 at a boundary y D 0 of a rectangular domain
Œ0; Lx� � Œ0; Ly� in 2D. The normal direction is then in �y direction, so

@u

@n
D �@u

@y
;

and we set

Œ�D2yu D 0�ni;0) uni;1 � uni;�1
2�y

D 0 :

From this it follows that uni;�1 D uni;1. The discretized PDE at the boundary point
.i; 0/ reads

unC1i;0 � 2uni;0C un�1i;0

�t2
D c2 u

n
iC1;0 � 2uni;0 C uni�1;0

�x2
C c2 u

n
i;1 � 2uni;0 C uni;�1

�y2
Cf ni;j :

2.12 Implementation 171

We can then just insert uni;1 for u
n
i;�1 in this equation and solve for the boundary

value unC1i;0 , just as was done in 1D.
From these calculations, we see a pattern: the general scheme applies at the

boundary j D 0 too if we just replace j � 1 by j C 1. Such a pattern is particu-
larly useful for implementations. The details follow from the explained 1D case in
Sect. 2.6.3.

The alternative approach to eliminating fictitious values outside the mesh is to
have uni;�1 available as a ghost value. The mesh is extended with one extra line
(2D) or plane (3D) of ghost cells at a Neumann boundary. In the present example it
means that we need a line with ghost cells below the y axis. The ghost values must
be updated according to unC1i;�1 D unC1i;1 .

2.12 Implementation

We shall now describe in detail various Python implementations for solving a stan-
dard 2D, linear wave equation with constant wave velocity and u D 0 on the
boundary. The wave equation is to be solved in the space-time domain˝ � .0; T �,
where ˝ D .0; Lx/ � .0; Ly/ is a rectangular spatial domain. More precisely, the
complete initial-boundary value problem is defined by

utt D c2.uxx C uyy/C f .x; y; t/; .x; y/ 2 ˝; t 2 .0; T �; (2.113)

u.x; y; 0/ D I.x; y/; .x; y/ 2 ˝; (2.114)

ut .x; y; 0/ D V.x; y/; .x; y/ 2 ˝; (2.115)

u D 0; .x; y/ 2 @˝; t 2 .0; T �; (2.116)

where @˝ is the boundary of ˝, in this case the four sides of the rectangle ˝ D
Œ0; Lx� � Œ0; Ly�: x D 0, x D Lx, y D 0, and y D Ly .

The PDE is discretized as

ŒDtDtu D c2.DxDxuCDyDyu/C f �ni;j ;

which leads to an explicit updating formula to be implemented in a program:

unC1i;j D � un�1i;j C 2uni;j
C C2

x .u
n
iC1;j � 2uni;j C uni�1;j /C C2

y .u
n
i;jC1 � 2uni;j C uni;j�1/

C�t2f ni;j ; (2.117)

for all interior mesh points i 2 I ix and j 2 I iy , for n 2 ICt . The constants Cx and Cy
are defined as

Cx D c �t
�x

; Cy D c �t
�y

:

At the boundary, we simply set unC1i;j D 0 for i D 0, j D 0; : : : ; Ny ; i D Nx ,
j D 0; : : : ; Ny ; j D 0, i D 0; : : : ; Nx ; and j D Ny , i D 0; : : : ; Nx . For the
first step, n D 0, (2.117) is combined with the discretization of the initial condition

172 2 Wave Equations

ut D V , ŒD2tu D V �0i;j to obtain a special formula for u1i;j at the interior mesh
points:

u1i;j D u0i;j C�tVi;j
C 1

2
C 2
x .u

0
iC1;j � 2u0i;j C u0i�1;j /C

1

2
C 2
y .u

0
i;jC1 � 2u0i;j C u0i;j�1/

C 1

2
�t2f ni;j :

(2.118)
The algorithm is very similar to the one in 1D:

1. Set initial condition u0i;j D I.xi ; yj /
2. Compute u1i;j from (2.117)
3. Set u1i;j D 0 for the boundaries i D 0;Nx , j D 0;Ny
4. For n D 1; 2; : : : ; Nt :

(a) Find unC1i;j from (2.117) for all internal mesh points, i 2 I ix , j 2 I iy
(b) Set unC1i;j D 0 for the boundaries i D 0;Nx , j D 0;Ny

2.12.1 Scalar Computations

The solver function for a 2D case with constant wave velocity and boundary
condition u D 0 is analogous to the 1D case with similar parameter values (see
wave1D_u0.py), apart from a few necessary extensions. The code is found in the
program wave2D_u0.py.

Domain and mesh The spatial domain is now Œ0; Lx� � Œ0; Ly�, specified by the
arguments Lx and Ly. Similarly, the number of mesh points in the x and y direc-
tions,Nx andNy , become the arguments Nx and Ny. In multi-dimensional problems
it makes less sense to specify a Courant number since the wave velocity is a vector
and mesh spacings may differ in the various spatial directions. We therefore give
�t explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py

2.12 Implementation 173

Solution arrays We store unC1i;j , uni;j , and u
n�1
i;j in three two-dimensional arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_n = [zeros((Nx+1,Ny+1)), zeros((Nx+1,Ny+1))] # t-dt, t-2*dt

where unC1i;j corresponds to u[i,j], uni;j to u_n[i,j], and un�1i;j to u_nm1[i,j].

Index sets It is also convenient to introduce the index sets (cf. Sect. 2.6.4)

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution Inserting the initial condition I in u_n and making a
callback to the user in terms of the user_action function is a straightforward
generalization of the 1D code from Sect. 2.1.6:

for i in Ix:
for j in Iy:

u_n[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_n, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D case. The
arguments xv and yv will be commented upon in Sect. 2.12.2.

The key finite difference formula (2.110) for updating the solution at a time level
is implemented in a separate function as

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])

174 2 Wave Equations

Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused for the
first step, computing u1i;j :

u = advance_scalar(u, u_n, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the advance_scalar
function to speed up the code since most of the CPU time in simulations is spent in
this function.

Remark: How to use the solution
The solver function in the wave2D_u0.py code updates arrays for the next
time step by switching references as described in Sect. 2.4.5. Any use of u on
the user’s side is assumed to take place in the user action function. However,
should the code be changed such that u is returned and used as solution, have in
mind that you must return u_n after the time limit, otherwise a return u will
actually return u_nm1 (due to the switching of array indices in the loop)!

2.12.2 Vectorized Computations

The scalar code above turns out to be extremely slow for large 2Dmeshes, and prob-
ably useless in 3D beyond debugging of small test cases. Vectorization is therefore
a must for multi-dimensional finite difference computations in Python. For exam-
ple, with a mesh consisting of 30 � 30 cells, vectorization brings down the CPU
time by a factor of 70 (!). Equally important, vectorized code can also easily be
parallelized to take (usually) optimal advantage of parallel computer platforms.

In the vectorized case, we must be able to evaluate user-given functions like
I.x; y/ and f .x; y; t/ for the entire mesh in one operation (without loops). These
user-given functions are provided as Python functions I(x,y) and f(x,y,t), re-
spectively. Having the one-dimensional coordinate arrays x and y is not sufficient
when calling I and f in a vectorized way. We must extend x and y to their vectorized
versions xv and yv:

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]

2.12 Implementation 175

or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2Dmesh, say
sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+1). Calling
I(xv, yv) and f(xv, yv, t[n]) will now return I and f values for the entire
set of mesh points.

With the xv and yv arrays for vectorized computing, setting the initial condition
is just a matter of

u_n[:,:] = I(xv, yv)

One could also have written u_n = I(xv, yv) and let u_n point to a new object,
but vectorized operations often make use of direct insertion in the original array
through u_n[:,:], because sometimes not all of the array is to be filled by such a
function evaluation. This is the case with the computational scheme for unC1i;j :

def advance_vectorized(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = np.sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_n[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
u_yy = u_n[1:-1,:-2] - 2*u_n[1:-1,1:-1] + u_n[1:-1,2:]
u[1:-1,1:-1] = D1*u_n[1:-1,1:-1] - D2*u_nm1[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

Array slices in 2D are more complicated to understand than those in 1D, but
the logic from 1D applies to each dimension separately. For example, when doing
uni;j � uni�1;j for i 2 ICx , we just keep j constant and make a slice in the first index:
u_n[1:,j] - u_n[:-1,j], exactly as in 1D. The 1: slice specifies all the indices
i D 1; 2; : : : ; Nx (up to the last valid index), while :-1 specifies the relevant indices
for the second term: 0; 1; : : : ; Nx � 1 (up to, but not including the last index).

In the above code segment, the situation is slightly more complicated, because
each displaced slice in one direction is accompanied by a 1:-1 slice in the other

176 2 Wave Equations

direction. The reason is that we only work with the internal points for the index that
is kept constant in a difference.

The boundary conditions along the four sides make use of a slice consisting of
all indices along a boundary:

u[: ,0] = 0
u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

In the vectorized update of u (above), the function f is first computed as an array
over all mesh points:

f_a = f(xv, yv, t[n])

We could, alternatively, have used the call f(xv, yv, t[n])[1:-1,1:-1] in the
last term of the update statement, but other implementations in compiled languages
benefit from having f available in an array rather than calling our Python function
f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean
step1 to reuse the formula for the first time step in the same way as we did with
advance_scalar. We refer to the solver function in wave2D_u0.py for the
details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n.
The inclusion of xv and yv makes it easy to, e.g., compute an exact 2D so-
lution in the callback function and compute errors, through an expression like
u - u_exact(xv, yv, t[n]).

2.12.3 Verification

Testing a quadratic solution The 1D solution from Sect. 2.2.4 can be generalized
to multi-dimensions and provides a test case where the exact solution also fulfills
the discrete equations, such that we know (to machine precision) what numbers
the solver function should produce. In 2D we use the following generalization of
(2.30):

ue.x; y; t/ D x.Lx � x/y.Ly � y/
�
1C 1

2
t

�
: (2.119)

This solution fulfills the PDE problem if I.x; y/ D ue.x; y; 0/, V D 1
2
ue.x; y; 0/,

and f D 2c2.1 C 1
2
t/.y.Ly � y/ C x.Lx � x//. To show that ue also solves the

discrete equations, we start with the general results ŒDtDt1�
n D 0, ŒDtDt t�

n D 0,
and ŒDtDt t

2� D 2, and use these to compute

ŒDxDxue�
n
i;j D

�
y.Ly � y/

�
1C 1

2
t

�
DxDxx.Lx � x/

	n
i;j

D yj .Ly � yj /
�
1C 1

2
tn

�
.�2/ :

2.12 Implementation 177

A similar calculation must be carried out for the ŒDyDyue�
n
i;j and ŒDtDtue�

n
i;j

terms. One must also show that the quadratic solution fits the special formula for
u1i;j . The details are left as Exercise 2.16. The test_quadratic function in the
wave2D_u0.py program implements this verification as a proper test function for
the pytest and nose frameworks.

2.12.4 Visualization

Eventually, we are ready for a real application with our code! Look at the
wave2D_u0.py and the gaussian function. It starts with a Gaussian function
to see how it propagates in a square with u D 0 on the boundaries:

def gaussian(plot_method=2, version=’vectorized’, save_plot=True):
"""
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function,
=2 means surf, =3 means Matplotlib, =4 means mayavi,
=0 means no plot.
"""
Clean up plot files
for name in glob(’tmp_*.png’):

os.remove(name)

Lx = 10
Ly = 10
c = 1.0

from numpy import exp

def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5*(x-Lx/2.0)**2 - 0.5*(y-Ly/2.0)**2)

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""

...

Nx = 40; Ny = 40; T = 20
dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,

user_action=plot_u, version=version)

Matplotlib We want to animate a 3D surface in Matplotlib, but this is a really slow
process and not recommended, so we consider Matplotlib not an option as long as
on-screen animation is desired. One can use the recipes for single shots of u, where
it does produce high-quality 3D plots.

Gnuplot Let us look at different ways for visualization. We import SciTools as
st and can access st.mesh and st.surf in Matplotlib or Gnuplot, but this is not
supported except for the Gnuplot package, where it works really well (Fig. 2.8).
Then we choose plot_method=2 (or less relevant plot_method=1) and force the

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py

178 2 Wave Equations

Fig. 2.8 Snapshots of the surface plotted by Gnuplot

backend for SciTools to be Gnuplot (if you have the C package Gnuplot and the
Gnuplot.py Python interface module installed):

Terminal

Terminal> python wave2D_u0.py --SCITOOLS_easyviz_backend gnuplot

It gives a nice visualization with lifted surface and contours beneath. Figure 2.8
shows four plots of u.

Video files can be made of the PNG frames:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec flv movie.flv
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec linx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libtheora movie.ogg

It is wise to use a high frame rate – a low one will just skip many frames. There
may also be considerable quality differences between the different formats.

Movie 1 https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/
mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4

2.12 Implementation 179

Mayavi The best option for doing visualization of 2D and 3D scalar and vector
fields in Python programs is Mayavi, which is an interface to the high-quality pack-
age VTK in C++. There is good online documentation and also an introduction in
Chapter 5 of [10].

To obtain Mayavi on Ubuntu platforms you can write

Terminal

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain Mayavi
for Anaconda you can write

Terminal

conda install mayavi

Mayavi has a MATLAB-like interface called mlab. We can do

import mayavi.mlab as plt
or
from mayavi import mlab

and have plt (as usual) or mlab as a kind of MATLAB visualization access inside
our program (just more powerful and with higher visual quality).

The official documentation of the mlabmodule is provided in two places, one for
the basic functionality12 and one for further functionality13. Basic figure handling14

is very similar to the one we know from Matplotlib. Just as for Matplotlib, all
plotting commands you do in mlab will go into the same figure, until you manually
change to a new figure.

Back to our application, the following code for the user action function with
plotting in Mayavi is relevant to add.

Top of the file
try:

import mayavi.mlab as mlab
except:

We don’t have mayavi
pass

def solver(...):
...

12 http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
13 http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
14 http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html

http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html

180 2 Wave Equations

def gaussian(...):
...
if plot_method == 3:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""
if t[n] == 0:

time.sleep(2)
if plot_method == 1:

Works well with Gnuplot backend, not with Matplotlib
st.mesh(x, y, u, title=’t=%g’ % t[n], zlim=[-1,1],

caxis=[-1,1])
elif plot_method == 2:

Works well with Gnuplot backend, not with Matplotlib
st.surfc(xv, yv, u, title=’t=%g’ % t[n], zlim=[-1, 1],

colorbar=True, colormap=st.hot(), caxis=[-1,1],
shading=’flat’)

elif plot_method == 3:
print ’Experimental 3D matplotlib...not recommended’

elif plot_method == 4:
Mayavi visualization

mlab.clf()
extent1 = (0, 20, 0, 20,-2, 2)
s = mlab.surf(x , y, u,

colormap=’Blues’,
warp_scale=5,extent=extent1)

mlab.axes(s, color=(.7, .7, .7), extent=extent1,
ranges=(0, 10, 0, 10, -1, 1),
xlabel=’’, ylabel=’’, zlabel=’’,
x_axis_visibility=False,
z_axis_visibility=False)

mlab.outline(s, color=(0.7, .7, .7), extent=extent1)
mlab.text(6, -2.5, ’’, z=-4, width=0.14)
mlab.colorbar(object=None, title=None,

orientation=’horizontal’,
nb_labels=None, nb_colors=None,
label_fmt=None)

mlab.title(’Gaussian t=%g’ % t[n])
mlab.view(142, -72, 50)
f = mlab.gcf()
camera = f.scene.camera
camera.yaw(0)

if plot_method > 0:
time.sleep(0) # pause between frames
if save_plot:

filename = ’tmp_%04d.png’ % n
if plot_method == 4:

mlab.savefig(filename) # time consuming!
elif plot_method in (1,2):

st.savefig(filename) # time consuming!

2.13 Exercises 181

Fig. 2.9 Plot with Mayavi

This is a point to get started – visualization is as always a very time-consuming and
experimental discipline. With the PNG files we can use ffmpeg to create videos.

Movie 2 https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/
mayavi/wave2D_u0_gaussian/movie.mp4

2.13 Exercises

Exercise 2.16: Check that a solution fulfills the discrete model
Carry out all mathematical details to show that (2.119) is indeed a solution of the
discrete model for a 2D wave equation with u D 0 on the boundary. One must
check the boundary conditions, the initial conditions, the general discrete equation
at a time level and the special version of this equation for the first time level.
Filename: check_quadratic_solution.

Project 2.17: Calculus with 2D mesh functions
The goal of this project is to redo Project 2.6 with 2D mesh functions (fi;j).

Differentiation The differentiation results in a discrete gradient function, which
in the 2D case can be represented by a three-dimensional array df[d,i,j] where
d represents the direction of the derivative, and i,j is a mesh point in 2D. Use
centered differences for the derivative at inner points and one-sided forward or
backward differences at the boundary points. Construct unit tests and write a corre-
sponding test function.

https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4
https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4

182 2 Wave Equations

Integration The integral of a 2D mesh function fi;j is defined as

Fi;j D
yjZ
y0

xiZ
x0

f .x; y/dxdy;

where f .x; y/ is a function that takes on the values of the discrete mesh function
fi;j at the mesh points, but can also be evaluated in between the mesh points. The
particular variation between mesh points can be taken as bilinear, but this is not
important as we will use a product Trapezoidal rule to approximate the integral over
a cell in the mesh and then we only need to evaluate f .x; y/ at the mesh points.

Suppose Fi;j is computed. The calculation of FiC1;j is then

FiC1;j D Fi;j C
xiC1Z
xi

yjZ
y0

f .x; y/dydx

� �x1
2

0
@

yjZ
y0

f .xi ; y/dy C
yjZ
y0

f .xiC1; y/dy

1
A :

The integrals in the y direction can be approximated by a Trapezoidal rule. A sim-
ilar idea can be used to compute Fi;jC1. Thereafter, FiC1;jC1 can be computed by
adding the integral over the final corner cell to FiC1;j C Fi;jC1 � Fi;j . Carry out
the details of these computations and implement a function that can return Fi;j for
all mesh indices i and j . Use the fact that the Trapezoidal rule is exact for linear
functions and write a test function.
Filename: mesh_calculus_2D.

Exercise 2.18: Implement Neumann conditions in 2D
Modify the wave2D_u0.py program, which solves the 2D wave equation utt D
c2.uxx C uyy/ with constant wave velocity c and u D 0 on the boundary, to have
Neumann boundary conditions: @u=@n D 0. Include both scalar code (for debug-
ging and reference) and vectorized code (for speed).

To test the code, use u D 1:2 as solution (I.x; y/ D 1:2, V D f D 0, and
c arbitrary), which should be exactly reproduced with any mesh as long as the
stability criterion is satisfied. Another test is to use the plug-shaped pulse in the
pulse function from Sect. 2.8 and the wave1D_dn_vc.py program. This pulse is
exactly propagated in 1D if c�t=�x D 1. Check that also the 2D program can
propagate this pulse exactly in x direction (c�t=�x D 1, �y arbitrary) and y
direction (c�t=�y D 1, �x arbitrary).
Filename: wave2D_dn.

Exercise 2.19: Test the efficiency of compiled loops in 3D
Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D.
Set up an efficiency experiment to determine the relative efficiency of pure scalar
Python code, vectorized code, Cython-compiled loops, Fortran-compiled loops, and
C-compiled loops. Normalize the CPU time for each mesh by the fastest version.
Filename: wave3D_u0.

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

2.14 Applications of Wave Equations 183

2.14 Applications of Wave Equations

This section presents a range of wave equation models for different physical phe-
nomena. Although many wave motion problems in physics can be modeled by the
standard linear wave equation, or a similar formulation with a system of first-order
equations, there are some exceptions. Perhaps the most important is water waves:
these are modeled by the Laplace equation with time-dependent boundary condi-
tions at the water surface (long water waves, however, can be approximated by a
standard wave equation, see Sect. 2.14.7). Quantum mechanical waves constitute
another example where the waves are governed by the Schrödinger equation, i.e.,
not by a standard wave equation. Many wave phenomena also need to take nonlin-
ear effects into account when the wave amplitude is significant. Shock waves in the
air is a primary example.

The derivations in the following are very brief. Those with a firm background
in continuum mechanics will probably have enough knowledge to fill in the details,
while other readers will hopefully get some impression of the physics and approxi-
mations involved when establishing wave equation models.

2.14.1 Waves on a String

Figure 2.10 shows a model we may use to derive the equation for waves on a string.
The string is modeled as a set of discrete point masses (at mesh points) with elastic
strings in between. The string has a large constant tension T . We let the mass at
mesh point xi be mi . The displacement of this mass point in the y direction is
denoted by ui .t/.

The motion of mass mi is governed by Newton’s second law of motion. The
position of the mass at time t is xi i C ui .t/j , where i and j are unit vectors in
the x and y direction, respectively. The acceleration is then u00i .t/j . Two forces are

Fig. 2.10 Discrete string model with point masses connected by elastic strings

184 2 Wave Equations

acting on the mass as indicated in Fig. 2.10. The force T � acting toward the point
xi�1 can be decomposed as

T � D �T sin�i � T cos�j ;

where � is the angle between the force and the line x D xi . Let �ui D ui � ui�1
and let �si D

q
�u2i C .xi � xi�1/2 be the distance from mass mi�1 to mass mi .

It is seen that cos� D �ui=�si and sin � D .xi � xi�1/=�s or �x=�si if we
introduce a constant mesh spacing �x D xi � xi�1. The force can then be written

T � D �T �x
�si

i � T �ui
�si

j :

The force T C acting toward xiC1 can be calculated in a similar way:

T C D T �x

�siC1
i C T �uiC1

�siC1
j :

Newton’s second law becomes

miu
00
i .t/j D T C C T �;

which gives the component equations

T
�x

�si
D T �x

�siC1
; (2.120)

miu
00
i .t/ D T

�uiC1
�siC1

� T �ui
�si

: (2.121)

A basic reasonable assumption for a string is small displacements ui and small
displacement gradients �ui=�x. For small g D �ui=�x we have that

�si D
q
�u2i C�x2 D �x

p
1C g2 C�x

�
1C 1

2
g2 CO.g4/

�
� �x :

Equation (2.120) is then simply the identity T D T , while (2.121) can be written as

miu
00
i .t/ D T

�uiC1
�x

� T �ui
�x

;

which upon division by �x and introducing the density %i D mi=�x becomes

%iu
00
i .t/ D T

1

�x2
.uiC1 � 2ui C ui�1/ : (2.122)

We can now choose to approximate u00i by a finite difference in time and get the
discretized wave equation,

%i
1

�t2

�
unC1i � 2uni � un�1i

� D T 1

�x2
.uiC1 � 2ui C ui�1/ : (2.123)

2.14 Applications of Wave Equations 185

On the other hand, we may go to the continuum limit �x ! 0 and replace ui.t/
by u.x; t/, %i by %.x/, and recognize that the right-hand side of (2.122) approaches
@2u=@x2 as �x ! 0. We end up with the continuous model for waves on a string:

%
@2u

@t2
D T @

2u

@x2
: (2.124)

Note that the density % may change along the string, while the tension T is a
constant. With variable wave velocity c.x/ D p

T=%.x/ we can write the wave
equation in the more standard form

@2u

@t2
D c2.x/@

2u

@x2
: (2.125)

Because of the way % enters the equations, the variable wave velocity does not ap-
pear inside the derivatives as in many other versions of the wave equation. However,
most strings of interest have constant %.

The end points of a string are fixed so that the displacement u is zero. The
boundary conditions are therefore u D 0.

Damping Air resistance and non-elastic effects in the string will contribute to re-
duce the amplitudes of the waves so that the motion dies out after some time. This
damping effect can be modeled by a term but on the left-hand side of the equation

%
@2u

@t2
C b @u

@t
D T @

2u

@x2
: (2.126)

The parameter b 	 0 is small for most wave phenomena, but the damping effect
may become significant in long time simulations.

External forcing It is easy to include an external force acting on the string. Say
we have a vertical force Qfij acting on mass mi , modeling the effect of gravity on
a string. This force affects the vertical component of Newton’s law and gives rise
to an extra term Qf .x; t/ on the right-hand side of (2.124). In the model (2.125) we
would add a term f .x; t/ D Qf .x; t/=%.x/.

Modeling the tension via springs We assumed, in the derivation above, that the
tension in the string, T , was constant. It is easy to check this assumption by
modeling the string segments between the masses as standard springs, where the
force (tension T) is proportional to the elongation of the spring segment. Let k
be the spring constant, and set Ti D k�` for the tension in the spring segment
between xi�1 and xi , where �` is the elongation of this segment from the tension-
free state. A basic feature of a string is that it has high tension in the equilibrium
position u D 0. Let the string segment have an elongation �`0 in the equilib-
rium position. After deformation of the string, the elongation is �` D �`0 C�si :
Ti D k.�`0 C �si / � k.�`0 C �x/. This shows that Ti is independent of i .
Moreover, the extra approximate elongation �x is very small compared to �`0,
so we may well set Ti D T D k�`0. This means that the tension is completely
dominated by the initial tension determined by the tuning of the string. The addi-
tional deformations of the spring during the vibrations do not introduce significant
changes in the tension.

186 2 Wave Equations

2.14.2 Elastic Waves in a Rod

Consider an elastic rod subject to a hammer impact at the end. This experiment will
give rise to an elastic deformation pulse that travels through the rod. Amathematical
model for longitudinal waves along an elastic rod starts with the general equation
for deformations and stresses in an elastic medium,

%ut t D r � � C %f ; (2.127)

where % is the density, u the displacement field, � the stress tensor, and f body
forces. The latter has normally no impact on elastic waves.

For stationary deformation of an elastic rod, aligned with the x axis, one has
that �xx D Eux , with all other stress components being zero. The parameter E
is known as Young’s modulus. Moreover, we set u D u.x; t/i and neglect the
radial contraction and expansion (where Poisson’s ratio is the important parameter).
Assuming that this simple stress and deformation field is a good approximation,
(2.127) simplifies to

%
@2u

@t2
D @

@x

�
E
@u

@x

�
: (2.128)

The associated boundary conditions are u or �xx D Eux known, typically u D 0
for a fixed end and �xx D 0 for a free end.

2.14.3 Waves on aMembrane

Think of a thin, elastic membrane with shape as a circle or rectangle. This mem-
brane can be brought into oscillatory motion and will develop elastic waves. We
can model this phenomenon somewhat similar to waves in a rod: waves in a mem-
brane are simply the two-dimensional counterpart. We assume that the material
is deformed in the z direction only and write the elastic displacement field on the
form u.x; y; t/ D w.x; y; t/i . The z coordinate is omitted since the membrane is
thin and all properties are taken as constant throughout the thickness. Inserting this
displacement field in Newton’s 2nd law of motion (2.127) results in

%
@2w

@t2
D @

@x

�
�
@w

@x

�
C @

@y

�
�
@w

@y

�
: (2.129)

This is nothing but a wave equation in w.x; y; t/, which needs the usual initial con-
ditions on w and wt as well as a boundary condition w D 0. When computing
the stress in the membrane, one needs to split � into a constant high-stress compo-
nent due to the fact that all membranes are normally pre-stressed, plus a component
proportional to the displacement and governed by the wave motion.

2.14.4 The Acoustic Model for Seismic Waves

Seismic waves are used to infer properties of subsurface geological structures. The
physical model is a heterogeneous elastic medium where sound is propagated by

2.14 Applications of Wave Equations 187

small elastic vibrations. The general mathematical model for deformations in an
elastic medium is based on Newton’s second law,

%ut t D r � � C %f ; (2.130)

and a constitutive law relating � to u, often Hooke’s generalized law,

� D Kr � u I CG
�
ruC .ru/T � 2

3
r � u I

�
: (2.131)

Here, u is the displacement field, � is the stress tensor, I is the identity tensor, % is
the medium’s density, f are body forces (such as gravity), K is the medium’s bulk
modulus and G is the shear modulus. All these quantities may vary in space, while
u and � will also show significant variation in time during wave motion.

The acoustic approximation to elastic waves arises from a basic assumption that
the second term in Hooke’s law, representing the deformations that give rise to shear
stresses, can be neglected. This assumption can be interpreted as approximating the
geological medium by a fluid. Neglecting also the body forces f , (2.130) becomes

%ut t D r.Kr � u/ : (2.132)

Introducing p as a pressure via

p D �Kr � u; (2.133)

and dividing (2.132) by %, we get

ut t D �1
%
rp : (2.134)

Taking the divergence of this equation, using r � u D �p=K from (2.133), gives
the acoustic approximation to elastic waves:

ptt D Kr �
�
1

%
rp

�
: (2.135)

This is a standard, linear wave equation with variable coefficients. It is common to
add a source term s.x; y; z; t/ to model the generation of sound waves:

ptt D Kr �
�
1

%
rp

�
C s : (2.136)

A common additional approximation of (2.136) is based on using the chain rule
on the right-hand side,

Kr �
�
1

%
rp

�
D K

%
r2p CKr

�
1

%

�
� rp � K

%
r2p;

188 2 Wave Equations

under the assumption that the relative spatial gradient r%�1 D �%�2r% is small.
This approximation results in the simplified equation

ptt D K

%
r2p C s : (2.137)

The acoustic approximations to seismic waves are used for sound waves in the
ground, and the Earth’s surface is then a boundary where p equals the atmospheric
pressure p0 such that the boundary condition becomes p D p0.

Anisotropy Quite often in geological materials, the effective wave velocity c Dp
K=% is different in different spatial directions because geological layers are com-

pacted, and often twisted, in such a way that the properties in the horizontal and
vertical direction differ. With z as the vertical coordinate, we can introduce a ver-
tical wave velocity cz and a horizontal wave velocity ch, and generalize (2.137)
to

ptt D c2zpzz C c2h.pxx C pyy/C s : (2.138)

2.14.5 SoundWaves in Liquids and Gases

Sound waves arise from pressure and density variations in fluids. The starting point
of modeling sound waves is the basic equations for a compressible fluid where we
omit viscous (frictional) forces, body forces (gravity, for instance), and temperature
effects:

%t Cr � .%u/ D 0; (2.139)

%ut C %u � ru D �rp; (2.140)

% D %.p/ : (2.141)

These equations are often referred to as the Euler equations for the motion of a
fluid. The parameters involved are the density %, the velocity u, and the pressure p.
Equation (2.139) reflects mass balance, (2.140) is Newton’s second law for a fluid,
with frictional and body forces omitted, and (2.141) is a constitutive law relating
density to pressure by thermodynamic considerations. A typical model for (2.141)
is the so-called isentropic relation15, valid for adiabatic processes where there is no
heat transfer:

% D %0
�
p

p0

�1=

: (2.142)

Here, p0 and %0 are reference values for p and % when the fluid is at rest, and

is the ratio of specific heat at constant pressure and constant volume (
 D 5=3 for
air).

The key approximation in a mathematical model for sound waves is to assume
that these waves are small perturbations to the density, pressure, and velocity. We

15 http://en.wikipedia.org/wiki/Isentropic_process

http://en.wikipedia.org/wiki/Isentropic_process
http://en.wikipedia.org/wiki/Isentropic_process

2.14 Applications of Wave Equations 189

therefore write
p D p0 C Op;
% D %0 C O%;
u D Ou;

where we have decomposed the fields in a constant equilibrium value, correspond-
ing to u D 0, and a small perturbation marked with a hat symbol. By inserting
these decompositions in (2.139) and (2.140), neglecting all product terms of small
perturbations and/or their derivatives, and dropping the hat symbols, one gets the
following linearized PDE system for the small perturbations in density, pressure,
and velocity:

%t C %0r � u D 0; (2.143)

%0ut D �rp : (2.144)

Now we can eliminate %t by differentiating the relation %.p/,

%t D %0 1

�
p

p0

�1=
�1
1

p0
pt D %0

p0

�
p

p0

�1=
�1
pt :

The product term p1=
�1pt can be linearized as p1=
�10 pt , resulting in

%t � %0

p0
pt :

We then get

pt C
p0r � u D 0; (2.145)

ut D � 1
%0
rp : (2.146)

Taking the divergence of (2.146) and differentiating (2.145) with respect to time
gives the possibility to easily eliminate r � ut and arrive at a standard, linear wave
equation for p:

ptt D c2r2p; (2.147)

where c Dp
p0=%0 is the speed of sound in the fluid.

2.14.6 Spherical Waves

Spherically symmetric three-dimensional waves propagate in the radial direction r
only so that u D u.r; t/. The fully three-dimensional wave equation

@2u

@t2
D r � .c2ru/C f

then reduces to the spherically symmetric wave equation

@2u

@t2
D 1

r2
@

@r

�
c2.r/r2

@u

@r

�
C f .r; t/; r 2 .0;R/; t > 0 : (2.148)

190 2 Wave Equations

One can easily show that the function v.r; t/ D ru.r; t/ fulfills a standard wave
equation in Cartesian coordinates if c is constant. To this end, insert u D v=r in

1

r2
@

@r

�
c2.r/r2

@u

@r

�

to obtain

r

�
dc2

dr

@v

@r
C c2 @

2v

@r2

�
� dc

2

dr
v :

The two terms in the parenthesis can be combined to

r
@

@r

�
c2
@v

@r

�
;

which is recognized as the variable-coefficient Laplace operator in one Cartesian
coordinate. The spherically symmetric wave equation in terms of v.r; t/ now be-
comes

@2v

@t2
D @

@r

�
c2.r/

@v

@r

�
� 1
r

dc2

dr
v C rf .r; t/; r 2 .0;R/; t > 0 : (2.149)

In the case of constant wave velocity c, this equation reduces to the wave equation
in a single Cartesian coordinate called r :

@2v

@t2
D c2 @

2v

@r2
C rf .r; t/; r 2 .0;R/; t > 0 : (2.150)

That is, any program for solving the one-dimensional wave equation in a Cartesian
coordinate system can be used to solve (2.150), provided the source term is multi-
plied by the coordinate, and that we divide the Cartesian mesh solution by r to get
the spherically symmetric solution. Moreover, if r D 0 is included in the domain,
spherical symmetry demands that @u=@r D 0 at r D 0, which means that

@u

@r
D 1

r2

�
r
@v

@r
� v

�
D 0; r D 0 :

For this to hold in the limit r ! 0, we must have v.0; t/ D 0 at least as a necessary
condition. In most practical applications, we exclude r D 0 from the domain and
assume that some boundary condition is assigned at r D
, for some
 > 0.

2.14.7 The Linear ShallowWater Equations

The next example considers water waves whose wavelengths are much larger than
the depth and whose wave amplitudes are small. This class of waves may be gen-
erated by catastrophic geophysical events, such as earthquakes at the sea bottom,
landslides moving into water, or underwater slides (or a combination, as earth-
quakes frequently release avalanches of masses). For example, a subsea earthquake
will normally have an extension of many kilometers but lift the water only a few

2.14 Applications of Wave Equations 191

meters. The wave length will have a size dictated by the earthquake area, which is
much lager than the water depth, and compared to this wave length, an amplitude of
a few meters is very small. The water is essentially a thin film, and mathematically
we can average the problem in the vertical direction and approximate the 3D wave
phenomenon by 2D PDEs. Instead of a moving water domain in three space di-
mensions, we get a horizontal 2D domain with an unknown function for the surface
elevation and the water depth as a variable coefficient in the PDEs.

Let �.x; y; t/ be the elevation of the water surface, H.x; y/ the water depth
corresponding to a flat surface (� D 0), u.x; y; t/ and v.x; y; t/ the depth-averaged
horizontal velocities of the water. Mass andmomentum balance of the water volume
give rise to the PDEs involving these quantities:

�t D �.Hu/x � .Hv/x (2.151)

ut D �g�x; (2.152)

vt D �g�y; (2.153)

where g is the acceleration of gravity. Equation (2.151) corresponds to mass bal-
ance while the other two are derived from momentum balance (Newton’s second
law).

The initial conditions associated with (2.151)–(2.153) are �, u, and v prescribed
at t D 0. A common condition is to have some water elevation � D I.x; y/

and assume that the surface is at rest: u D v D 0. A subsea earthquake usually
means a sufficiently rapid motion of the bottom and the water volume to say that
the bottom deformation is mirrored at the water surface as an initial lift I.x; y/ and
that u D v D 0.

Boundary conditions may be � prescribed for incoming, known waves, or zero
normal velocity at reflecting boundaries (steep mountains, for instance): unx C
vny D 0, where .nx; ny/ is the outward unit normal to the boundary. More so-
phisticated boundary conditions are needed when waves run up at the shore, and
at open boundaries where we want the waves to leave the computational domain
undisturbed.

Equations (2.151), (2.152), and (2.153) can be transformed to a standard, linear
wave equation. First, multiply (2.152) and (2.153) by H , differentiate (2.152) with
respect to x and (2.153) with respect to y. Second, differentiate (2.151) with respect
to t and use that .Hu/xt D .Hut/x and .Hv/yt D .Hvt /y whenH is independent
of t . Third, eliminate .Hut /x and .Hvt /y with the aid of the other two differenti-
ated equations. These manipulations result in a standard, linear wave equation for
�:

�tt D .gH�x/x C .gH�y/y D r � .gHr�/ : (2.154)

In the case we have an initial non-flat water surface at rest, the initial conditions
become � D I.x; y/ and �t D 0. The latter follows from (2.151) if u D v D 0, or
simply from the fact that the vertical velocity of the surface is �t , which is zero for
a surface at rest.

The system (2.151)–(2.153) can be extended to handle a time-varying bottom
topography, which is relevant for modeling long waves generated by underwater
slides. In such cases the water depth function H is also a function of t , due to the
moving slide, and one must add a time-derivative term Ht to the left-hand side of

192 2 Wave Equations

(2.151). A moving bottom is best described by introducing z D H0 as the still-
water level, z D B.x; y; t/ as the time- and space-varying bottom topography, so
that H D H0 � B.x; y; t/. In the elimination of u and v one may assume that the
dependence of H on t can be neglected in the terms .Hu/xt and .Hv/yt . We then
end up with a source term in (2.154), because of the moving (accelerating) bottom:

�tt D r � .gHr�/C Btt : (2.155)

The reduction of (2.155) to 1D, for long waves in a straight channel, or for
approximately plane waves in the ocean, is trivial by assuming no change in y
direction (@=@y D 0):

�tt D .gH�x/x C Btt : (2.156)

Wind drag on the surface Surface waves are influenced by the drag of the wind,
and if the wind velocity some meters above the surface is .U; V /, the wind drag
gives contributions CV

p
U 2 C V 2U and CV

p
U 2 C V 2V to (2.152) and (2.153),

respectively, on the right-hand sides.

Bottom drag The waves will experience a drag from the bottom, often roughly
modeled by a term similar to the wind drag: CB

p
u2 C v2u on the right-hand side

of (2.152) and CB
p
u2 C v2v on the right-hand side of (2.153). Note that in this

case the PDEs (2.152) and (2.153) become nonlinear and the elimination of u and
v to arrive at a 2nd-order wave equation for � is not possible anymore.

Effect of the Earth’s rotation Long geophysical waves will often be affected by
the rotation of the Earth because of the Coriolis force. This force gives rise to a term
f v on the right-hand side of (2.152) and �f u on the right-hand side of (2.153).
Also in this case one cannot eliminate u and v to work with a single equation for
�. The Coriolis parameter is f D 2˝ sin�, where ˝ is the angular velocity of the
earth and � is the latitude.

2.14.8 Waves in Blood Vessels

The flow of blood in our bodies is basically fluid flow in a network of pipes. Unlike
rigid pipes, the walls in the blood vessels are elastic and will increase their diameter
when the pressure rises. The elastic forces will then push the wall back and accel-
erate the fluid. This interaction between the flow of blood and the deformation of
the vessel wall results in waves traveling along our blood vessels.

A model for one-dimensional waves along blood vessels can be derived from
averaging the fluid flow over the cross section of the blood vessels. Let x be a coor-
dinate along the blood vessel and assume that all cross sections are circular, though
with different radiiR.x; t/. The main quantities to compute is the cross section area
A.x; t/, the averaged pressure P.x; t/, and the total volume fluxQ.x; t/. The area
of this cross section is

A.x; t/ D 2�
R.x;t/Z
0

rdr : (2.157)

2.14 Applications of Wave Equations 193

Let vx.x; t/ be the velocity of blood averaged over the cross section at point x. The
volume flux, being the total volume of blood passing a cross section per time unit,
becomes

Q.x; t/ D A.x; t/vx.x; t/ : (2.158)

Mass balance and Newton’s second law lead to the PDEs

@A

@t
C @Q

@x
D 0; (2.159)

@Q

@t
C
 C 2

 C 1

@

@x

�
Q2

A

�
C A

%

@P

@x
D �2�.
 C 2/�

%

Q

A
; (2.160)

where
 is a parameter related to the velocity profile, % is the density of blood, and
� is the dynamic viscosity of blood.

We have three unknowns A, Q, and P , and two equations (2.159) and (2.160).
A third equation is needed to relate the flow to the deformations of the wall. A
common form for this equation is

@P

@t
C 1

C

@Q

@x
D 0; (2.161)

where C is the compliance of the wall, given by the constitutive relation

C D @A

@P
C @A

@t
; (2.162)

which requires a relationship between A and P . One common model is to view the
vessel wall, locally, as a thin elastic tube subject to an internal pressure. This gives
the relation

P D P0 C �hE

.1 � �2/A0
�p

A �
p
A0

�
;

where P0 andA0 are corresponding reference values when the wall is not deformed,
h is the thickness of the wall, and E and � are Young’s modulus and Poisson’s ratio
of the elastic material in the wall. The derivative becomes

C D @A

@P
D 2.1� �2/A0

�hE

p
A0 C 2

�
.1 � �2/A0
�hE

�2
.P � P0/ : (2.163)

Another (nonlinear) deformation model of the wall, which has a better fit with ex-
periments, is

P D P0 exp .ˇ.A=A0 � 1//;
where ˇ is some parameter to be estimated. This law leads to

C D @A

@P
D A0

ˇP
: (2.164)

194 2 Wave Equations

Reduction to the standard wave equation It is not uncommon to neglect the
viscous term on the right-hand side of (2.160) and also the quadratic term with Q2

on the left-hand side. The reduced equations (2.160) and (2.161) form a first-order
linear wave equation system:

C
@P

@t
D �@Q

@x
; (2.165)

@Q

@t
D �A

%

@P

@x
: (2.166)

These can be combined into standard 1D wave PDE by differentiating the first equa-
tion with respect to t and the second with respect to x,

@

@t

�
C
@P

@t

�
D @

@x

�
A

%

@P

@x

�
;

which can be approximated by

@2Q

@t2
D c2 @

2Q

@x2
; c D

s
A

%C
; (2.167)

where the A and C in the expression for c are taken as constant reference values.

2.14.9 Electromagnetic Waves

Light and radio waves are governed by standard wave equations arising from
Maxwell’s general equations. When there are no charges and no currents, as in a
vacuum, Maxwell’s equations take the form

r �EEE D 0;
r �BBB D 0;
r �EEE D �@BBB

@t
;

r �BBB D �0
0 @EEE
@t
;

where
0 D 8:854187817620 � 10�12 (F/m) is the permittivity of free space, also
known as the electric constant, and �0 D 1:2566370614 � 10�6 (H/m) is the perme-
ability of free space, also known as the magnetic constant. Taking the curl of the
two last equations and using the mathematical identity

r � .r �EEE/ D r.r �EEE/� r2EEE D �r2EEE when r �EEE D 0;
gives the wave equation governing the electric and magnetic field:

@2EEE

@t2
D c2r2EEE; (2.168)

@2BBB

@t2
D c2r2BBB; (2.169)

2.15 Exercises 195

with c D 1=
p
�0
0 as the velocity of light. Each component of EEE and BBB fulfills a

wave equation and can hence be solved independently.

2.15 Exercises

Exercise 2.20: Simulate waves on a non-homogeneous string
Simulate waves on a string that consists of two materials with different density. The
tension in the string is constant, but the density has a jump at the middle of the
string. Experiment with different sizes of the jump and produce animations that
visualize the effect of the jump on the wave motion.

Hint According to Sect. 2.14.1, the density enters the mathematical model as % in
%utt D T uxx , where T is the string tension. Modify, e.g., the wave1D_u0v.py
code to incorporate the tension and two density values. Make a mesh function
rho with density values at each spatial mesh point. A value for the tension may
be 150 N. Corresponding density values can be computed from the wave velocity
estimations in the guitar function in the wave1D_u0v.py file.
Filename: wave1D_u0_sv_discont.

Exercise 2.21: Simulate damped waves on a string
Formulate a mathematical model for damped waves on a string. Use data from
Sect. 2.3.6, and tune the damping parameter so that the string is very close to the
rest state after 15 s. Make a movie of the wave motion.
Filename: wave1D_u0_sv_damping.

Exercise 2.22: Simulate elastic waves in a rod
A hammer hits the end of an elastic rod. The exercise is to simulate the resulting
wave motion using the model (2.128) from Sect. 2.14.2. Let the rod have length L
and let the boundary x D L be stress free so that �xx D 0, implying that @u=@x D
0. The left end x D 0 is subject to a strong stress pulse (the hammer), modeled as

�xx.t/ D
(
S; 0 < t � ts ;
0; t > ts

:

The corresponding condition on u becomes ux D S=E for t � ts and zero af-
terwards (recall that �xx D Eux). This is a non-homogeneous Neumann condition,
and you will need to approximate this condition and combine it with the scheme (the
ideas and manipulations follow closely the handling of a non-zero initial condition
ut D V in wave PDEs or the corresponding second-order ODEs for vibrations).
Filename: wave_rod.

Exercise 2.23: Simulate spherical waves
Implement a model for spherically symmetric waves using the method described
in Sect. 2.14.6. The boundary condition at r D 0 must be @u=@r D 0, while the
condition at r D R can either be u D 0 or a radiation condition as described in
Problem 2.12. The u D 0 condition is sufficient if R is so large that the amplitude

196 2 Wave Equations

Fig. 2.11 Sketch of initial water surface due to a subsea earthquake

of the spherical wave has become insignificant. Make movie(s) of the case where
the source term is located around r D 0 and sends out pulses

f .r; t/ D
(
Q exp

�
� r2

2�r2

�
sin!t; sin!t 	 0

0; sin!t < 0
:

Here,Q and ! are constants to be chosen.

Hint Use the program wave1D_u0v.py as a starting point. Let solver compute
the v function and then set u D v=r . However, u D v=r for r D 0 requires special
treatment. One possibility is to compute u[1:] = v[1:]/r[1:] and then set
u[0]=u[1]. The latter makes it evident that @u=@r D 0 in a plot.
Filename: wave1D_spherical.

Problem 2.24: Earthquake-generated tsunami over a subsea hill
A subsea earthquake leads to an immediate lift of the water surface, see Fig. 2.11.
The lifted water surface splits into two tsunamis, one traveling to the right and one
to the left, as depicted in Fig. 2.12. Since tsunamis are normally very long waves,
compared to the depth, with a small amplitude, compared to the wave length, a
standard wave equation is relevant:

�tt D .gH.x/�x/x;

where � is the elevation of the water surface, g is the acceleration of gravity, and
H.x/ is the still water depth.

To simulate the right-going tsunami, we can impose a symmetry boundary at
x D 0: @�=@x D 0. We then simulate the wave motion in Œ0; L�. Unless the ocean
ends at x D L, the waves should travel undisturbed through the boundary x D L.
A radiation condition as explained in Problem 2.12 can be used for this purpose.
Alternatively, one can just stop the simulations before the wave hits the boundary
at x D L. In that case it does not matter what kind of boundary condition we use at
x D L. Imposing � D 0 and stopping the simulations when j�ni j >
, i D Nx � 1,
is a possibility (
 is a small parameter).

2.15 Exercises 197

Fig. 2.12 An initial surface elevation is split into two waves

Fig. 2.13 Sketch of an earthquake-generated tsunami passing over a subsea hill

The shape of the initial surface can be taken as a Gaussian function,

I.xI I0; Ia; Im; Is/ D I0 C Ia exp

�
�
x � Im
Is

�2!
; (2.170)

with Im D 0 reflecting the location of the peak of I.x/ and Is being a measure of
the width of the function I.x/ (Is is

p
2 times the standard deviation of the familiar

normal distribution curve).
Now we extend the problem with a hill at the sea bottom, see Fig. 2.13. The

wave speed c D p
gH.x/ D p

g.H0 � B.x// will then be reduced in the shallow
water above the hill.

One possible form of the hill is a Gaussian function,

B.xIB0;Ba; Bm;Bs/ D B0 C Ba exp

�
�
x � Bm
Bs

�2!
; (2.171)

but many other shapes are also possible, e.g., a "cosine hat" where

B.xIB0;Ba; Bm;Bs/ D B0 C Ba cos
�
�
x �Bm
2Bs

�
; (2.172)

when x 2 ŒBm �Bs;Bm C Bs� while B D B0 outside this interval.

198 2 Wave Equations

Also an abrupt construction may be tried:

B.xIB0;Ba; Bm;Bs/ D B0 C Ba; (2.173)

for x 2 ŒBm � Bs;Bm C Bs� while B D B0 outside this interval.
The wave1D_dn_vc.pyprogram can be used as starting point for the implemen-

tation. Visualize both the bottom topography and the water surface elevation in the
same plot. Allow for a flexible choice of bottom shape: (2.171), (2.172), (2.173),
or B.x/ D B0 (flat).

The purpose of this problem is to explore the quality of the numerical solution �ni
for different shapes of the bottom obstruction. The “cosine hat” and the box-shaped
hills have abrupt changes in the derivative of H.x/ and are more likely to generate
numerical noise than the smooth Gaussian shape of the hill. Investigate if this is
true.
Filename: tsunami1D_hill.

Problem 2.25: Earthquake-generated tsunami over a 3D hill
This problem extends Problem 2.24 to a three-dimensional wave phenomenon, gov-
erned by the 2D PDE

�tt D .gH�x/x C .gH�y/y D r � .gHr�/ : (2.174)

We assume that the earthquake arises from a fault along the line x D 0 in the xy-
plane so that the initial lift of the surface can be taken as I.x/ in Problem 2.24. That
is, a plane wave is propagating to the right, but will experience bending because of
the bottom.

The bottom shape is now a function of x and y. An “elliptic” Gaussian function
in two dimensions, with its peak at .Bmx; Bmy/, generalizes (2.171):

B D B0 C Ba exp

�
�
x � Bmx
Bs

�2
�
�
y � Bmy
bBs

�2!
; (2.175)

where b is a scaling parameter: b D 1 gives a circular Gaussian function with
circular contour lines, while b ¤ 1 gives an elliptic shape with elliptic contour
lines. To indicate the input parameters in the model, we may write

B D B.xIB0;Ba; Bmx; Bmy; Bs; b/ :

The “cosine hat” (2.172) can also be generalized to

B D B0 C Ba cos
�
�
x � Bmx
2Bs

�
cos

�
�
y � Bmy
2Bs

�
; (2.176)

when 0 �px2 C y2 � Bs and B D B0 outside this circle.
A box-shaped obstacle means that

B.xIB0;Ba; Bm;Bs; b/ D B0 C Ba (2.177)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

2.15 Exercises 199

for x and y inside a rectangle

Bmx � Bs � x � Bmx C Bs; Bmy � bBs � y � Bmy C bBs;

and B D B0 outside this rectangle. The b parameter controls the rectangular shape
of the cross section of the box.

Note that the initial condition and the listed bottom shapes are symmetric around
the line y D Bmy . We therefore expect the surface elevation also to be symmetric
with respect to this line. This means that we can halve the computational domain
by working with Œ0; Lx� � Œ0; Bmy�. Along the upper boundary, y D Bmy , we
must impose the symmetry condition @�=@n D 0. Such a symmetry condition
(��x D 0) is also needed at the x D 0 boundary because the initial condition has
a symmetry here. At the lower boundary y D 0 we also set a Neumann condition
(which becomes ��y D 0). The wave motion is to be simulated until the wave hits
the reflecting boundaries where @�=@n D �x D 0 (one can also set � D 0 - the
particular condition does not matter as long as the simulation is stopped before the
wave is influenced by the boundary condition).

Visualize the surface elevation. Investigate how different hill shapes, different
sizes of the water gap above the hill, and different resolutions �x D �y D h and
�t influence the numerical quality of the solution.
Filename: tsunami2D_hill.

Problem 2.26: Investigate Mayavi for visualization
Play with Mayavi code for visualizing 2D solutions of the wave equation with vari-
able wave velocity. See if there are effective ways to visualize both the solution and
the wave velocity scalar field at the same time.
Filename: tsunami2D_hill_mlab.

Problem 2.27: Investigate visualization packages
Create some fancy 3D visualization of the water waves and the subsea hill in
Problem 2.25. Try to make the hill transparent. Possible visualization tools are
Mayavi16, Paraview17, and OpenDX18.
Filename: tsunami2D_hill_viz.

Problem 2.28: Implement loops in compiled languages
Extend the program from Problem 2.25 such that the loops over mesh points, inside
the time loop, are implemented in compiled languages. Consider implementations
in Cython, Fortran via f2py, C via Cython, C via f2py, C/C++ via Instant, and
C/C++ via scipy.weave. Perform efficiency experiments to investigate the relative
performance of the various implementations. It is often advantageous to normalize
CPU times by the fastest method on a given mesh.
Filename: tsunami2D_hill_compiled.

16 http://code.enthought.com/projects/mayavi/
17 http://www.paraview.org/
18 http://www.opendx.org/

http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.opendx.org/
http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.opendx.org/

200 2 Wave Equations

Exercise 2.29: Simulate seismic waves in 2D
The goal of this exercise is to simulate seismic waves using the PDE model (2.138)
in a 2D xz domain with geological layers. Introduce m horizontal layers of thick-
ness hi , i D 0; : : : ; m � 1. Inside layer number i we have a vertical wave velocity
cz;i and a horizontal wave velocity ch;i . Make a program for simulating such 2D
waves. Test it on a case with 3 layers where

cz;0 D cz;1 D cz;2; ch;0 D ch;2; ch;1
 ch;0 :

Let s be a localized point source at the middle of the Earth’s surface (the upper
boundary) and investigate how the resulting wave travels through the medium. The
source can be a localized Gaussian peak that oscillates in time for some time inter-
val. Place the boundaries far enough from the expanding wave so that the boundary
conditions do not disturb the wave. Then the type of boundary condition does not
matter, except that we physically need to have p D p0, where p0 is the atmospheric
pressure, at the upper boundary.
Filename: seismic2D.

Project 2.30: Model 3D acoustic waves in a room
The equation for sound waves in air is derived in Sect. 2.14.5 and reads

ptt D c2r2p;

where p.x; y; z; t/ is the pressure and c is the speed of sound, taken as 340 m/s.
However, sound is absorbed in the air due to relaxation of molecules in the gas.
A model for simple relaxation, valid for gases consisting only of one type of
molecules, is a term c2�sr2pt in the PDE, where �s is the relaxation time. If we
generate sound from, e.g., a loudspeaker in the room, this sound source must also
be added to the governing equation.

The PDE with the mentioned type of damping and source then becomes

pt t D c2rp C c2�sr2pt C f; (2.178)

where f .x; y; z; t/ is the source term.
The walls can absorb some sound. A possible model is to have a “wall layer”

(thicker than the physical wall) outside the room where c is changed such that some
of the wave energy is reflected and some is absorbed in the wall. The absorption of
energy can be taken care of by adding a damping term bpt in the equation:

pt t C bpt D c2rp C c2�sr2pt C f : (2.179)

Typically, b D 0 in the room and b > 0 in the wall. A discontinuity in b or c
will give rise to reflections. It can be wise to use a constant c in the wall to control
reflections because of the discontinuity between c in the air and in the wall, while
b is gradually increased as we go into the wall to avoid reflections because of rapid
changes in b. At the outer boundary of the wall the condition p D 0 or @p=@n D 0
can be imposed. The waves should anyway be approximately dampened to p D 0

this far out in the wall layer.

2.15 Exercises 201

There are two strategies for discretizing the r2pt term: using a center difference
between times n C 1 and n � 1 (if the equation is sampled at level n), or use a
one-sided difference based on levels n and n � 1. The latter has the advantage of
not leading to any equation system, while the former is second-order accurate as the
scheme for the simple wave equation pt t D c2r2p. To avoid an equation system,
go for the one-sided difference such that the overall scheme becomes explicit and
only of first order in time.

Develop a 3D solver for the specified PDE and introduce a wall layer. Test
the solver with the method of manufactured solutions. Make some demonstrations
where the wall reflects and absorbs the waves (reflection because of discontinuity
in b and absorption because of growing b). Experiment with the impact of the �s
parameter.
Filename: acoustics.

Project 2.31: Solve a 1D transport equation
We shall study the wave equation

ut C cux D 0; x 2 .0; L�; t 2 .0; T �; (2.180)

with initial condition
u.x; 0/ D I.x/; x 2 Œ0; L�; (2.181)

and one periodic boundary condition

u.0; t/ D u.L; t/ : (2.182)

This boundary condition means that what goes out of the domain at x D L comes
in at x D 0. Roughly speaking, we need only one boundary condition because the
spatial derivative is of first order only.

Physical interpretation The parameter c can be constant or variable, c D c.x/.
The equation (2.180) arises in transport problems where a quantity u, which could
be temperature or concentration of some contaminant, is transported with the veloc-
ity c of a fluid. In addition to the transport imposed by “travelling with the fluid”, u
may also be transported by diffusion (such as heat conduction or Fickian diffusion),
but we have in the model ut C cux assumed that diffusion effects are negligible,
which they often are.

a) Show that under the assumption of a D const,

u.x; t/ D I.x � ct/ (2.183)

fulfills the PDE as well as the initial and boundary condition (provided I.0/ D
I.L/).
A widely used numerical scheme for (2.180) applies a forward difference in
time and a backward difference in space when c > 0:

ŒDCt uC cD�x u D 0�ni : (2.184)

For c < 0 we use a forward difference in space: ŒcDCx u�
n
i .

202 2 Wave Equations

b) Set up a computational algorithm and implement it in a function. Assume a is
constant and positive.

c) Test the implementation by using the remarkable property that the numerical
solution is exact at the mesh points if �t D c�1�x.

d) Make a movie comparing the numerical and exact solution for the following two
choices of initial conditions:

I.x/ D
h
sin
�
�
x

L

�i2n
(2.185)

where n is an integer, typically n D 5, and

I.x/ D exp
�
� .x � L=2/

2

2�2

�
: (2.186)

Choose�t D c�1�x; 0:9c�1�x; 0:5c�1�x.
e) The performance of the suggested numerical scheme can be investigated by an-

alyzing the numerical dispersion relation. Analytically, we have that the Fourier
component

u.x; t/ D ei.kx�!t/;
is a solution of the PDE if ! D kc. This is the analytical dispersion relation.
A complete solution of the PDE can be built by adding up such Fourier com-
ponents with different amplitudes, where the initial condition I determines the
amplitudes. The solution u is then represented by a Fourier series.
A similar discrete Fourier component at .xp; tn/ is

uqp D ei.kp�x� Q!n�t/;

where in general Q! is a function of k, �t , and �x, and differs from the exact
! D kc.
Insert the discrete Fourier component in the numerical scheme and derive an
expression for Q!, i.e., the discrete dispersion relation. Show in particular that
if �t=.c�x/ D 1, the discrete solution coincides with the exact solution at the
mesh points, regardless of the mesh resolution (!). Show that if the stability
condition

�t

c�x
� 1;

the discrete Fourier component cannot grow (i.e., Q! is real).
f) Write a test for your implementation where you try to use information from the

numerical dispersion relation.
We shall hereafter assume that c.x/ > 0.

g) Set up a computational algorithm for the variable coefficient case and implement
it in a function. Make a test that the function works for constant a.

h) It can be shown that for an observer moving with velocity c.x/, u is constant.
This can be used to derive an exact solution when a varies with x. Show first
that

u.x; t/ D f .C.x/ � t/; (2.187)

2.15 Exercises 203

where

C 0.x/ D 1

c.x/
;

is a solution of (2.180) for any differentiable function f .
i) Use the initial condition to show that an exact solution is

u.x; t/ D I.C�1.C.x/� t//;

with C�1 being the inverse function of C D R
c1dx. Since C.x/ is an integralR x

0
.1=c/dx, C.x/ is monotonically increasing and there exists hence an inverse

function C�1 with values in Œ0; L�.
To compute (2.187) we need to integrate 1=c to obtain C and then compute the
inverse of C .
The inverse function computation can be easily done if we first think discretely.
Say we have some function y D g.x/ and seek its inverse. Plotting .xi ; yi /,
where yi D g.xi/ for some mesh points xi , displays g as a function of x. The
inverse function is simply x as a function of g, i.e., the curve with points .yi ; xi /.
We can therefore quickly compute points at the curve of the inverse function.
One way of extending these points to a continuous function is to assume a lin-
ear variation (known as linear interpolation) between the points (which actually
means to draw straight lines between the points, exactly as done by a plotting
program).
The function wrap2callable in scitools.std can take a set of points and
return a continuous function that corresponds to linear variation between the
points. The computation of the inverse of a function g on Œ0; L� can then be
done by

def inverse(g, domain, resolution=101):
x = linspace(domain[0], domain[L], resolution)
y = g(x)
from scitools.std import wrap2callable
g_inverse = wrap2callable((y, x))
return g_inverse

To compute C.x/ we need to integrate 1=c, which can be done by a Trapezoidal
rule. Suppose we have computed C.xi / and need to compute C.xiC1/. Using
the Trapezoidal rule with m subintervals over the integration domain Œxi ; xiC1�
gives

C.xiC1/ D C.xi /C
xiC1Z
xi

dx

c
� h

0
@1
2

1

c.xi /
C 1

2

1

c.xiC1/
C

m�1X
jD1

1

c.xi C jh/

1
A ;

(2.188)
where h D .xiC1 � xi/=m is the length of the subintervals used for the inte-
gral over Œxi ; xiC1�. We observe that (2.188) is a difference equation which we
can solve by repeatedly applying (2.188) for i D 0; 1; : : : ; Nx � 1 if a mesh
x0; x; : : : ; xNx is prescribed. Note that C.0/ D 0.

204 2 Wave Equations

j) Implement a function for computing C.xi / and one for computing C�1.x/ for
any x. Use these two functions for computing the exact solution I.C�1.C.x/�
t//. End up with a function u_exact_variable_c(x, n, c, I) that returns
the value of I.C�1.C.x/ � tn//.

k) Make movies showing a comparison of the numerical and exact solutions for the
two initial conditions (2.185) and (2.15). Choose �t D �x=max0;L c.x/ and
the velocity of the medium as
(a) c.x/ D 1C
 sin.k�x=L/,
 < 1,
(b) c.x/ D 1C I.x/, where I is given by (2.185) or (2.15).
The PDE ut C cux D 0 expresses that the initial condition I.x/ is transported
with velocity c.x/.

Filename: advec1D.

Problem 2.32: General analytical solution of a 1D damped wave equation
We consider an initial-boundary value problem for the damped wave equation:

utt C but D c2uxx; x 2 .0; L/; t 2 .0; T �
u.0; t/ D 0;
u.L; t/ D 0;
u.x; 0/ D I.x/;
ut .x; 0/ D V.x/ :

Here, b 	 0 and c are given constants. The aim is to derive a general analytical
solution of this problem. Familiarity with the method of separation of variables for
solving PDEs will be assumed.

a) Seek a solution on the form u.x; t/ D X.x/T .t/. Insert this solution in the PDE
and show that it leads to two differential equations for X and T :

T 00 C bT 0 C �T D 0; c2X 00 C �X D 0;
with X.0/ D X.L/ D 0 as boundary conditions, and � as a constant to be
determined.

b) Show that X.x/ is on the form

Xn.x/ D Cn sin kx; k D n�

L
; n D 1; 2; : : :

where Cn is an arbitrary constant.
c) Under the assumption that .b=2/2 < k2, show that T .t/ is on the form

Tn.t/ D e� 12 bt .an cos!t C bn sin!t/; ! D
r
k2 � 1

4
b2; n D 1; 2; : : :

The complete solution is then

u.x; t/ D
1X
nD1

sin kxe�
1
2 bt .An cos!t C Bn sin!t/;

where the constants An and Bn must be computed from the initial conditions.

2.15 Exercises 205

d) Derive a formula for An from u.x; 0/ D I.x/ and developing I.x/ as a sine
Fourier series on Œ0; L�.

e) Derive a formula for Bn from ut.x; 0/ D V.x/ and developing V.x/ as a sine
Fourier series on Œ0; L�.

f) Calculate An and Bn from vibrations of a string where V.x/ D 0 and

I.x/ D
(
ax=x0; x < x0;

a.L � x/=.L� x0/; otherwise :
(2.189)

g) Implement a function u_series(x, t, tol=1E-10) for the series for u.x; t/,
where tol is a tolerance for truncating the series. Simply sum the terms until
janj and jbbj both are less than tol.

h) What will change in the derivation of the analytical solution if we have
ux.0; t/ D ux.L; t/ D 0 as boundary conditions? And how will you solve
the problem with u.0; t/ D 0 and ux.L; t/ D 0?

Filename: damped_wave1D.

Problem 2.33: General analytical solution of a 2D damped wave equation
Carry out Problem 2.32 in the 2D case: utt Cbut D c2.uxxCuyy/, where .x; y/ 2
.0; Lx/ � .0; Ly/. Assume a solution on the form u.x; y; t/ D X.x/Y.y/T .t/.
Filename: damped_wave2D.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

3Diffusion Equations

The famous diffusion equation, also known as the heat equation, reads

@u

@t
D ˛ @

2u

@x2
;

where u.x; t/ is the unknown function to be solved for, x is a coordinate in space,
and t is time. The coefficient ˛ is the diffusion coefficient and determines how fast
u changes in time. A quick short form for the diffusion equation is ut D ˛uxx.

Compared to the wave equation, utt D c2uxx , which looks very similar, the
diffusion equation features solutions that are very different from those of the wave
equation. Also, the diffusion equation makes quite different demands to the numer-
ical methods.

Typical diffusion problems may experience rapid change in the very beginning,
but then the evolution of u becomes slower and slower. The solution is usually very
smooth, and after some time, one cannot recognize the initial shape of u. This is in
sharp contrast to solutions of the wave equation where the initial shape is preserved
in homogeneous media – the solution is then basically a moving initial condition.
The standard wave equation utt D c2uxx has solutions that propagate with speed
c forever, without changing shape, while the diffusion equation converges to a sta-
tionary solution Nu.x/ as t ! 1. In this limit, ut D 0, and Nu is governed by
Nu00.x/ D 0. This stationary limit of the diffusion equation is called the Laplace
equation and arises in a very wide range of applications throughout the sciences.

It is possible to solve for u.x; t/ using an explicit scheme, as we do in Sect. 3.1,
but the time step restrictions soon become much less favorable than for an explicit
scheme applied to the wave equation. And of more importance, since the solution
u of the diffusion equation is very smooth and changes slowly, small time steps are
not convenient and not required by accuracy as the diffusion process converges to a
stationary state. Therefore, implicit schemes (as described in Sect. 3.2) are popular,
but these require solutions of systems of algebraic equations. We shall use ready-
made software for this purpose, but also program some simple iterative methods.
The exposition is, as usual in this book, very basic and focuses on the basic ideas
and how to implement. More comprehensive mathematical treatments and classical
analysis of the methods are found in lots of textbooks. A favorite of ours in this
respect is the one by LeVeque [13]. The books by Strikwerda [17] and by Lapidus
and Pinder [12] are also highly recommended as additional material on the topic.

207© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_3

208 3 Diffusion Equations

3.1 An Explicit Method for the 1D Diffusion Equation

Explicit finite difference methods for the wave equation utt D c2uxx can be used,
with small modifications, for solving ut D ˛uxx as well. The exposition below
assumes that the reader is familiar with the basic ideas of discretization and imple-
mentation of wave equations from Chapter 2. Readers not familiar with the Forward
Euler, Backward Euler, and Crank-Nicolson (or centered or midpoint) discretization
methods in time should consult, e.g., Section 1.1 in [9].

3.1.1 The Initial-Boundary Value Problem for 1D Diffusion

To obtain a unique solution of the diffusion equation, or equivalently, to apply nu-
merical methods, we need initial and boundary conditions. The diffusion equation
goes with one initial condition u.x; 0/ D I.x/, where I is a prescribed function.
One boundary condition is required at each point on the boundary, which in 1D
means that u must be known, ux must be known, or some combination of them.

We shall start with the simplest boundary condition: u D 0. The complete
initial-boundary value diffusion problem in one space dimension can then be spec-
ified as

@u

@t
D ˛ @

2u

@x2
C f; x 2 .0; L/; t 2 .0; T � (3.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (3.2)

u.0; t/ D 0; t > 0; (3.3)

u.L; t/ D 0; t > 0 : (3.4)

With only a first-order derivative in time, only one initial condition is needed, while
the second-order derivative in space leads to a demand for two boundary condi-
tions. We have added a source term f D f .x; t/, which is convenient when testing
implementations.

Diffusion equations like (3.1) have a wide range of applications throughout phys-
ical, biological, and financial sciences. One of the most common applications is
propagation of heat, where u.x; t/ represents the temperature of some substance at
point x and time t . Other applications are listed in Sect. 3.8.

3.1.2 Forward Euler Scheme

The first step in the discretization procedure is to replace the domain Œ0; L�� Œ0; T �
by a set of mesh points. Here we apply equally spaced mesh points

xi D i�x; i D 0; : : : ; Nx;

and
tn D n�t; n D 0; : : : ; Nt :

3.1 An Explicit Method for the 1D Diffusion Equation 209

Moreover, uni denotes the mesh function that approximates u.xi ; tn/ for i D
0; : : : ; Nx and n D 0; : : : ; Nt . Requiring the PDE (3.1) to be fulfilled at a mesh
point .xi ; tn/ leads to the equation

@

@t
u.xi ; tn/ D ˛ @

2

@x2
u.xi ; tn/C f .xi ; tn/ : (3.5)

The next step is to replace the derivatives by finite difference approximations. The
computationally simplest method arises from using a forward difference in time and
a central difference in space:

ŒDCt u D ˛DxDxuC f �ni : (3.6)

Written out,
unC1i � uni

�t
D ˛u

n
iC1 � 2uni C uni�1

�x2
C f ni : (3.7)

We have turned the PDE into algebraic equations, also often called discrete equa-
tions. The key property of the equations is that they are algebraic, which makes
them easy to solve. As usual, we anticipate that uni is already computed such that
unC1i is the only unknown in (3.7). Solving with respect to this unknown is easy:

unC1i D uni C F
�
uniC1 � 2uni C uni�1

�C�tf ni ; (3.8)

where we have introduced the mesh Fourier number:

F D ˛ �t
�x2

: (3.9)

F is the key parameter in the discrete diffusion equation
Note that F is a dimensionless number that lumps the key physical parameter
in the problem, ˛, and the discretization parameters �x and �t into a single
parameter. Properties of the numerical method are critically dependent upon the
value of F (see Sect. 3.3 for details).

The computational algorithm then becomes

1. compute u0i D I.xi/ for i D 0; : : : ; Nx
2. for n D 0; 1; : : : ; Nt :

(a) apply (3.8) for all the internal spatial points i D 1; : : : ; Nx � 1
(b) set the boundary values unC1i D 0 for i D 0 and i D Nx

The algorithm is compactly and fully specified in Python:

import numpy as np
x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0]
F = a*dt/dx**2
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

210 3 Diffusion Equations

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Update u_n before next step
u_n[:]= u

Note that we use a for ˛ in the code, motivated by easy visual mapping between the
variable name and the mathematical symbol in formulas.

We need to state already now that the shown algorithm does not produce mean-
ingful results unless F � 1=2. Why is explained in Sect. 3.3.

3.1.3 Implementation

The file diffu1D_u0.py contains a complete function solver_FE_simple for
solving the 1D diffusion equation with u D 0 on the boundary as specified in the
algorithm above:

import numpy as np

def solver_FE_simple(I, a, f, L, dt, F, T):
"""
Simplest expression of the computational algorithm
using the Forward Euler method and explicit Python loops.
For this method F <= 0.5 for stability.
"""
import time; t0 = time.clock() # For measuring the CPU time

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py

3.1 An Explicit Method for the 1D Diffusion Equation 211

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt*f(x[i], t[n])

Insert boundary conditions
u[0] = 0; u[Nx] = 0

Switch variables before next step
#u_n[:] = u # safe, but slow
u_n, u = u, u_n

t1 = time.clock()
return u_n, x, t, t1-t0 # u_n holds latest u

A faster alternative is available in the function solver_FE, which adds the pos-
sibility of solving the finite difference scheme by vectorization. The vectorized
version replaces the explicit loop

for i in range(1, Nx):
u[i] = u_n[i] + F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) \

+ dt*f(x[i], t[n])

by arithmetics on displaced slices of the u array:

u[1:Nx] = u_n[1:Nx] + F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) \
+ dt*f(x[1:Nx], t[n])

or
u[1:-1] = u_n[1:-1] + F*(u_n[0:-2] - 2*u_n[1:-1] + u_n[2:]) \

+ dt*f(x[1:-1], t[n])

For example, the vectorized version runs 70 times faster than the scalar version in a
case with 100 time steps and a spatial mesh of 105 cells.

The solver_FE function also features a callback function such that the user
can process the solution at each time level. The callback function looks like
user_action(u, x, t, n), where u is the array containing the solution at time
level n, x holds all the spatial mesh points, while t holds all the temporal mesh
points. The solver_FE function is very similar to solver_FE_simple above:

def solver_FE(I, a, f, L, dt, F, T,
user_action=None, version=’scalar’):

"""
Vectorized implementation of solver_FE_simple.
"""
import time; t0 = time.clock() # for measuring the CPU time

212 3 Diffusion Equations

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1) # solution array
u_n = np.zeros(Nx+1) # solution at t-dt

Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
Update all inner points
if version == ’scalar’:

for i in range(1, Nx):
u[i] = u_n[i] +\

F*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) +\
dt*f(x[i], t[n])

elif version == ’vectorized’:
u[1:Nx] = u_n[1:Nx] + \

F*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1]) +\
dt*f(x[1:Nx], t[n])

else:
raise ValueError(’version=%s’ % version)

Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

user_action(u, x, t, n+1)

Switch variables before next step
u_n, u = u, u_n

t1 = time.clock()
return t1-t0

3.1.4 Verification

Exact solution of discrete equations Before thinking about running the functions
in the previous section, we need to construct a suitable test example for verification.
It appears that a manufactured solution that is linear in time and at most quadratic
in space fulfills the Forward Euler scheme exactly. With the restriction that u D 0

for x D 0;L, we can try the solution

u.x; t/ D 5tx.L � x/ :

3.1 An Explicit Method for the 1D Diffusion Equation 213

Inserted in the PDE, it requires a source term

f .x; t/ D 10˛t C 5x.L� x/ :

With the formulas from Appendix A.4 we can easily check that the manufactured u
fulfills the scheme:

ŒDCt u D ˛DxDxuC f �ni D Œ5x.L� x/DCt t D 5t˛DxDx.xL � x2/
C 10˛t C 5x.L � x/�ni

D Œ5x.L� x/ D 5t˛.�2/C 10˛t C 5x.L� x/�ni ;

which is a 0=0 expression. The computation of the source term, given any u, is
easily automated with sympy:

import sympy as sym
x, t, a, L = sym.symbols(’x t a L’)
u = x*(L-x)*5*t

def pde(u):
return sym.diff(u, t) - a*sym.diff(u, x, x)

f = sym.simplify(pde(u))

Now we can choose any expression for u and automatically get the suitable source
term f. However, the manufactured solution u will in general not be exactly repro-
duced by the scheme: only constant and linear functions are differentiated correctly
by a forward difference, while only constant, linear, and quadratic functions are
differentiated exactly by a ŒDxDxu�

n
i difference.

The numerical code will need to access the u and f above as Python func-
tions. The exact solution is wanted as a Python function u_exact(x, t), while
the source term is wanted as f(x, t). The parameters a and L in u and f above
are symbols and must be replaced by float objects in a Python function. This can
be done by redefining a and L as float objects and performing substitutions of
symbols by numbers in u and f. The appropriate code looks like this:

a = 0.5
L = 1.5
u_exact = sym.lambdify(

[x, t], u.subs(’L’, L).subs(’a’, a), modules=’numpy’)
f = sym.lambdify(

[x, t], f.subs(’L’, L).subs(’a’, a), modules=’numpy’)
I = lambda x: u_exact(x, 0)

Here we also make a function I for the initial condition.
The idea now is that our manufactured solution should be exactly reproduced

by the code (to machine precision). For this purpose we make a test function for
comparing the exact and numerical solutions at the end of the time interval:

214 3 Diffusion Equations

def test_solver_FE():
Define u_exact, f, I as explained above

dx = L/3 # 3 cells
F = 0.5
dt = F*dx**2

u, x, t, cpu = solver_FE_simple(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE_simple: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’scalar’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, scalar: %g’ % diff

u, x, t, cpu = solver_FE(
I=I, a=a, f=f, L=L, dt=dt, F=F, T=2,
user_action=None, version=’vectorized’)

u_e = u_exact(x, t[-1])
diff = abs(u_e - u).max()
tol = 1E-14
assert diff < tol, ’max diff solver_FE, vectorized: %g’ % diff

The critical valueF D 0:5

We emphasize that the value F=0.5 is critical: the tests above will fail if F has a
larger value. This is because the Forward Euler scheme is unstable for F > 1=2.

The reader may wonder if F D 1=2 is safe or if F < 1=2 should be required.
Experiments show that F D 1=2 works fine for ut D ˛uxx, so there is no
accumulation of rounding errors in this case and hence no need to introduce any
safety factor to keep F away from the limiting value 0.5.

Checking convergence rates If our chosen exact solution does not satisfy the dis-
crete equations exactly, we are left with checking the convergence rates, just as
we did previously for the wave equation. However, with the Euler scheme here,
we have different accuracies in time and space, since we use a second order ap-
proximation to the spatial derivative and a first order approximation to the time
derivative. Thus, we must expect different convergence rates in time and space. For
the numerical error,

E D Ct�tr C Cx�xp;
we should get convergence rates r D 1 and p D 2 (Ct and Cx are unknown con-
stants). As previously, in Sect. 2.2.3, we simplify matters by introducing a single
discretization parameter h:

h D �t; �x D Khr=p;

3.1 An Explicit Method for the 1D Diffusion Equation 215

where K is any constant. This allows us to factor out only one discretization pa-
rameter h from the formula:

E D CthC Cx.Khr=p/p D QChr ; QC D Ct C CsKr :

The computed rate r should approach 1 with increasing resolution.
It is tempting, for simplicity, to choose K D 1, which gives �x D hr=p , ex-

pected to be
p
�t . However, we have to control the stability requirement: F � 1

2
,

which means
˛�t

�x2
� 1

2
) �x 	 p2˛h1=2;

implying that K D p2˛ is our choice in experiments where we lie on the stability
limit F D 1=2.

3.1.5 Numerical Experiments

When a test function like the one above runs silently without errors, we have some
evidence for a correct implementation of the numerical method. The next step is to
do some experiments with more interesting solutions.

We target a scaled diffusion problem where x=L is a new spatial coordinate and
˛t=L2 is a new time coordinate. The source term f is omitted, and u is scaled by
maxx2Œ0;L� jI.x/j (see Section 3.2 in [11] for details). The governing PDE is then

@u

@t
D @2u

@x2
;

in the spatial domain Œ0; L�, with boundary conditions u.0/ D u.1/ D 0. Two
initial conditions will be tested: a discontinuous plug,

I.x/ D
(
0; jx � L=2j > 0:1
1; otherwise

and a smooth Gaussian function,

I.x/ D e� 1

2�2
.x�L=2/2

:

The functions plug and gaussian in diffu1D_u0.py run the two cases, respec-
tively:

def plug(scheme=’FE’, F=0.5, Nx=50):
L = 1.
a = 1.
T = 0.1
Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py

216 3 Diffusion Equations

def I(x):
"""Plug profile as initial condition."""
if abs(x-L/2.0) > 0.1:

return 0
else:

return 1

cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

def gaussian(scheme=’FE’, F=0.5, Nx=50, sigma=0.05):
L = 1.
a = 1.
T = 0.1
Compute dt from Nx and F
dx = L/Nx; dt = F/a*dx**2

def I(x):
"""Gaussian profile as initial condition."""
return exp(-0.5*((x-L/2.0)**2)/sigma**2)

u, cpu = viz(I, a, L, dt, F, T,
umin=-0.1, umax=1.1,
scheme=scheme, animate=True, framefiles=True)

print ’CPU time:’, cpu

These functions make use of the function viz for running the solver and visualizing
the solution using a callback function with plotting:

def viz(I, a, L, dt, F, T, umin, umax,
scheme=’FE’, animate=True, framefiles=True):

def plot_u(u, x, t, n):
plt.plot(x, u, ’r-’, axis=[0, L, umin, umax],

title=’t=%f’ % t[n])
if framefiles:

plt.savefig(’tmp_frame%04d.png’ % n)
if t[n] == 0:

time.sleep(2)
elif not framefiles:

It takes time to write files so pause is needed
for screen only animation
time.sleep(0.2)

user_action = plot_u if animate else lambda u,x,t,n: None

cpu = eval(’solver_’+scheme)(I, a, L, dt, F, T,
user_action=user_action)

return cpu

Notice that this viz function stores all the solutions in a list solutions in the
callback function. Modern computers have hardly any problem with storing a lot

3.1 An Explicit Method for the 1D Diffusion Equation 217

Fig. 3.1 Forward Euler scheme for F D 0:5

of such solutions for moderate values of Nx in 1D problems, but for 2D and 3D
problems, this technique cannot be used and solutions must be stored in files.

Our experiments employ a time step �t D 0:0002 and simulate for t 2 Œ0; 0:1�.
First we try the highest value of F : F D 0:5. This resolution corresponds to
Nx D 50. A possible terminal command is

Terminal

Terminal> python -c ’from diffu1D_u0 import gaussian
gaussian("solver_FE", F=0.5, dt=0.0002)’

The u.x; t/ curve as a function of x is shown in Fig. 3.1 at four time levels.

Movie 1 https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/
mov-diffu/diffu1D_u0_FE_plug/movie.ogg

We see that the curves have saw-tooth waves in the beginning of the simulation.
This non-physical noise is smoothed out with time, but solutions of the diffusion
equations are known to be smooth, and this numerical solution is definitely not
smooth. Lowering F helps: F � 0:25 gives a smooth solution, see Fig. 3.2 (and
a movie1).

1 http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-diffu/diffu1D_u0_FE_plug/movie.ogg
http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg
http://tinyurl.com/gokgkov/mov-diffu/diffu1D_u0_FE_plug_F025/movie.ogg

218 3 Diffusion Equations

Fig. 3.2 Forward Euler scheme for F D 0:25

Increasing F slightly beyond the limit 0.5, to F D 0:51, gives growing, non-
physical instabilities, as seen in Fig. 3.3.

Instead of a discontinuous initial condition we now try the smooth Gaussian
function for I.x/. A simulation for F D 0:5 is shown in Fig. 3.4. Now the numeri-
cal solution is smooth for all times, and this is true for any F � 0:5.

Experiments with these two choices of I.x/ reveal some important observations:

� The Forward Euler scheme leads to growing solutions if F > 1
2
.

� I.x/ as a discontinuous plug leads to a saw tooth-like noise for F D 1
2
, which is

absent for F � 1
4
.

� The smooth Gaussian initial function leads to a smooth solution for all relevant
F values (F � 1

2
).

3.2 Implicit Methods for the 1D Diffusion Equation

Simulations with the Forward Euler scheme show that the time step restriction,
F � 1

2
, which means �t � �x2=.2˛/, may be relevant in the beginning of the

diffusion process, when the solution changes quite fast, but as time increases, the
process slows down, and a small �t may be inconvenient. With implicit schemes,
which lead to coupled systems of linear equations to be solved at each time level,

3.2 Implicit Methods for the 1D Diffusion Equation 219

Fig. 3.3 Forward Euler scheme for F D 0:51

any size of �t is possible (but the accuracy decreases with increasing �t). The
Backward Euler scheme, derived and implemented below, is the simplest implicit
scheme for the diffusion equation.

3.2.1 Backward Euler Scheme

In (3.5), we now apply a backward difference in time, but the same central differ-
ence in space:

ŒD�t u D DxDxuC f �ni ; (3.10)

which written out reads

uni � un�1i

�t
D ˛u

n
iC1 � 2uni C uni�1

�x2
C f ni : (3.11)

Now we assume un�1i is already computed, but that all quantities at the “new” time
level n are unknown. This time it is not possible to solve with respect to uni because
this value couples to its neighbors in space, uni�1 and u

n
iC1, which are also unknown.

Let us examine this fact for the case when Nx D 3. Equation (3.11) written for

220 3 Diffusion Equations

Fig. 3.4 Forward Euler scheme for F D 0:5

i D 1; : : : ; Nx � 1 D 1; 2 becomes

un1 � un�11

�t
D ˛u

n
2 � 2un1 C un0

�x2
C f n

1 (3.12)

un2 � un�12

�t
D ˛u

n
3 � 2un2 C un1

�x2
C f n

2 : (3.13)

The boundary values un0 and un3 are known as zero. Collecting the unknown new
values un1 and u

n
2 on the left-hand side and multiplying by �t gives

.1C 2F / un1 � Fun2 D un�11 C�tf n1 ; (3.14)

�Fun1 C .1C 2F / un2 D un�12 C�tf n2 : (3.15)

This is a coupled 2 � 2 system of algebraic equations for the unknowns un1 and u
n
2 .

The equivalent matrix form is
1C 2F �F
�F 1C 2F

!
un1
un2

!
D

un�11 C�tf n1
un�12 C�tf n2

!
:

Terminology: implicit vs. explicit methods
Discretization methods that lead to a coupled system of equations for the un-
known function at a new time level are said to be implicit methods. The coun-
terpart, explicit methods, refers to discretization methods where there is a simple

3.2 Implicit Methods for the 1D Diffusion Equation 221

explicit formula for the values of the unknown function at each of the spatial
mesh points at the new time level. From an implementational point of view, im-
plicit methods are more comprehensive to code since they require the solution of
coupled equations, i.e., a matrix system, at each time level. With explicit meth-
ods we have a closed-form formula for the value of the unknown at each mesh
point.

Very often explicit schemes have a restriction on the size of the time step
that can be relaxed by using implicit schemes. In fact, implicit schemes are
frequently unconditionally stable, so the size of the time step is governed by
accuracy and not by stability. This is the great advantage of implicit schemes.

In the general case, (3.11) gives rise to a coupled .Nx � 1/ � .Nx � 1/ system
of algebraic equations for all the unknown uni at the interior spatial points i D
1; : : : ; Nx � 1. Collecting the unknowns on the left-hand side, (3.11) can be written

� Funi�1 C .1C 2F / uni � FuniC1 D un�1i�1 ; (3.16)

for i D 1; : : : ; Nx � 1. One can either view these equations as a system where the
uni values at the internal mesh points, i D 1; : : : ; Nx � 1, are unknown, or we may
append the boundary values un0 and u

n
Nx

to the system. In the latter case, all uni for
i D 0; : : : ; Nx are considered unknown, and we must add the boundary equations
to the Nx � 1 equations in (3.16):

un0 D 0; (3.17)

unNx D 0 : (3.18)

A coupled system of algebraic equations can be written on matrix form, and this
is important if we want to call up ready-made software for solving the system. The
equations (3.16) and (3.17)–(3.18) correspond to the matrix equation

AU D b
where U D .un0; : : : ; unNx /, and the matrix A has the following structure:

A D

0
BBBBBBBBBBBBBBBBBBBBB@

A0;0 A0;1 0 � � � � � � � � � � � � � � � 0

A1;0 A1;1 A1;2
: : :

:::

0 A2;1 A2;2 A2;3
: : :

:::
:::

: : :
: : :

: : : 0
:::

:::
: : :

: : :
: : :

: : :
: : :

:::
::: 0 Ai;i�1 Ai;i Ai;iC1

: : :
:::

:::
: : :

: : :
: : :

: : : 0
:::

: : :
: : :

: : : ANx�1;Nx
0 � � � � � � � � � � � � � � � 0 ANx;Nx�1 ANx;Nx

1
CCCCCCCCCCCCCCCCCCCCCA

:

(3.19)

222 3 Diffusion Equations

The nonzero elements are given by

Ai;i�1 D �F (3.20)

Ai;i D 1C 2F (3.21)

Ai;iC1 D �F (3.22)

in the equations for internal points, i D 1; : : : ; Nx � 1. The first and last equation
correspond to the boundary condition, where we know the solution, and therefore
we must have

A0;0 D 1; (3.23)

A0;1 D 0; (3.24)

ANx;Nx�1 D 0; (3.25)

ANx;Nx D 1 : (3.26)

The right-hand side b is written as

b D

0
BBBBBBBBBB@

b0

b1
:::

bi
:::

bNx

1
CCCCCCCCCCA

(3.27)

with

b0 D 0; (3.28)

bi D un�1i ; i D 1; : : : ; Nx � 1; (3.29)

bNx D 0 : (3.30)

We observe that the matrix A contains quantities that do not change in time.
Therefore, A can be formed once and for all before we enter the recursive formulas
for the time evolution. The right-hand side b, however, must be updated at each
time step. This leads to the following computational algorithm, here sketched with
Python code:

x = np.linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
t = np.linspace(0, T, N+1) # mesh points in time
u = np.zeros(Nx+1) # unknown u at new time level
u_n = np.zeros(Nx+1) # u at the previous time level

3.2 Implicit Methods for the 1D Diffusion Equation 223

Data structures for the linear system
A = np.zeros((Nx+1, Nx+1))
b = np.zeros(Nx+1)

for i in range(1, Nx):
A[i,i-1] = -F
A[i,i+1] = -F
A[i,i] = 1 + 2*F

A[0,0] = A[Nx,Nx] = 1

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

import scipy.linalg

for n in range(0, Nt):
Compute b and solve linear system
for i in range(1, Nx):

b[i] = -u_n[i]
b[0] = b[Nx] = 0
u[:] = scipy.linalg.solve(A, b)

Update u_n before next step
u_n[:] = u

Regarding verification, the same considerations apply as for the Forward Euler
method (Sect. 3.1.4).

3.2.2 Sparse Matrix Implementation

We have seen from (3.19) that the matrix A is tridiagonal. The code segment above
used a full, dense matrix representation of A, which stores a lot of values we know
are zero beforehand, and worse, the solution algorithm computes with all these
zeros. With Nx C 1 unknowns, the work by the solution algorithm is 1

3
.Nx C 1/3

and the storage requirements .Nx C 1/2. By utilizing the fact that A is tridiagonal
and employing corresponding software tools that work with the three diagonals, the
work and storage demands can be proportional to Nx only. This leads to a dramatic
improvement: with Nx D 200, which is a realistic resolution, the code runs about
40,000 times faster and reduces the storage to just 1.5%! It is no doubt that we
should take advantage of the fact that A is tridiagonal.

The key idea is to apply a data structure for a tridiagonal or sparse matrix. The
scipy.sparse package has relevant utilities. For example, we can store only the
nonzero diagonals of a matrix. The package also has linear system solvers that
operate on sparse matrix data structures. The code below illustrates how we can
store only the main diagonal and the upper and lower diagonals.

224 3 Diffusion Equations

Representation of sparse matrix and right-hand side
main = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

Precompute sparse matrix
main[:] = 1 + 2*F
lower[:] = -F
upper[:] = -F
Insert boundary conditions
main[0] = 1
main[Nx] = 1

A = scipy.sparse.diags(
diagonals=[main, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

print A.todense() # Check that A is correct

Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

for n in range(0, Nt):
b = u_n
b[0] = b[-1] = 0.0 # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)
u_n[:] = u

The scipy.sparse.linalg.spsolve function utilizes the sparse storage struc-
ture of A and performs, in this case, a very efficient Gaussian elimination solve.

The program diffu1D_u0.py contains a function solver_BE, which imple-
ments the Backward Euler scheme sketched above. As mentioned in Sect. 3.1.2,
the functions plug and gaussian run the case with I.x/ as a discontinuous plug or
a smooth Gaussian function. All experiments point to two characteristic features of
the Backward Euler scheme: 1) it is always stable, and 2) it always gives a smooth,
decaying solution.

3.2.3 Crank-Nicolson Scheme

The idea in the Crank-Nicolson scheme is to apply centered differences in space
and time, combined with an average in time. We demand the PDE to be fulfilled at
the spatial mesh points, but midway between the points in the time mesh:

@

@t
u
�
xi ; tnC 1

2

�
D ˛ @

2

@x2
u
�
xi ; tnC 1

2

�
C f

�
xi ; tnC 1

2

�
;

for i D 1; : : : ; Nx � 1 and n D 0; : : : ; Nt � 1.
With centered differences in space and time, we get

ŒDtu D ˛DxDxuC f �nC
1
2

i :

http://tinyurl.com/nu656p2/diffu/diffu1D_u0.py

3.2 Implicit Methods for the 1D Diffusion Equation 225

On the right-hand side we get an expression

1

�x2

�
u
nC 1

2

i�1 � 2u
nC 1

2

i C unC 1
2

iC1

�
C f nC 1

2

i :

This expression is problematic since u
nC 1

2

i is not one of the unknowns we compute.

A possibility is to replace u
nC 1

2

i by an arithmetic average:

u
nC 1

2

i � 1

2

�
uni C unC1i

�
:

In the compact notation, we can use the arithmetic average notation ut :

ŒDtu D ˛DxDxu
t C f �nC 1

2

i :

We can also use an average for f
nC 1

2

i :

ŒDtu D ˛DxDxu
t C f t

�
nC 1

2

i :

After writing out the differences and average, multiplying by �t , and collecting
all unknown terms on the left-hand side, we get

unC1i � 1
2
F
�
unC1i�1 � 2unC1i C unC1iC1

� D uni C 1

2
F
�
uni�1 � 2uni C uniC1

�

C 1

2
f nC1i C 1

2
f ni : (3.31)

Also here, as in the Backward Euler scheme, the new unknowns unC1i�1 , u
nC1
i , and

unC1iC1 are coupled in a linear system AU D b, where A has the same structure as in
(3.19), but with slightly different entries:

Ai;i�1 D �1
2
F (3.32)

Ai;i D 1C F (3.33)

Ai;iC1 D �1
2
F (3.34)

in the equations for internal points, i D 1; : : : ; Nx � 1. The equations for the
boundary points correspond to

A0;0 D 1; (3.35)

A0;1 D 0; (3.36)

ANx;Nx�1 D 0; (3.37)

ANx;Nx D 1 : (3.38)

226 3 Diffusion Equations

The right-hand side b has entries

b0 D 0; (3.39)

bi D un�1i C 1

2

�
f n
i C f nC1i

�
; i D 1; : : : ; Nx � 1; (3.40)

bNx D 0 : (3.41)

When verifying some implementation of the Crank-Nicolson scheme by conver-
gence rate testing, one should note that the scheme is second order accurate in both
space and time. The numerical error then reads

E D Ct�tr C Cx�xr ;

where r D 2 (Ct and Cx are unknown constants, as before). When introducing a
single discretization parameter, we may now simply choose

h D �x D �t;

which gives
E D Cthr C Cxhr D .Ct C Cx/hr ;

where r should approach 2 as resolution is increased in the convergence rate com-
putations.

3.2.4 The Unifying � Rule

For the equation
@u

@t
D G.u/;

where G.u/ is some spatial differential operator, the �-rule looks like

unC1i � uni
�t

D �G.unC1i /C .1 � �/G.uni / :

The important feature of this time discretization scheme is that we can implement
one formula and then generate a family of well-known and widely used schemes:

� � D 0 gives the Forward Euler scheme in time
� � D 1 gives the Backward Euler scheme in time
� � D 1

2
gives the Crank-Nicolson scheme in time

In the compact difference notation, we write the � rule as

ŒDtu D ˛DxDxu�
nC� :

We have that tnC� D � tnC1 C .1 � �/tn.

3.2 Implicit Methods for the 1D Diffusion Equation 227

Applied to the 1D diffusion problem, the �-rule gives

unC1i � uni
�t

D ˛

�
unC1iC1 � 2unC1i C unC1i�1

�x2
C .1 � �/u

n
iC1 � 2uni C uni�1

�x2

!

C �f nC1i C .1 � �/f n
i :

This scheme also leads to a matrix system with entries

Ai;i�1 D �F�; Ai;i D 1C 2F�; Ai;iC1 D �F�;

while right-hand side entry bi is

bi D uni C F.1 � �/
uniC1 � 2uni C uni�1

�x2
C�t�f nC1i C�t.1 � �/f n

i :

The corresponding entries for the boundary points are as in the Backward Euler and
Crank-Nicolson schemes listed earlier.

Note that convergence rate testing with implementations of the theta rule must
adjust the error expression according to which of the underlying schemes is ac-
tually being run. That is, if � D 0 (i.e., Forward Euler) or � D 1 (i.e., Back-
ward Euler), there should be first order convergence, whereas with � D 0:5 (i.e.,
Crank-Nicolson), one should get second order convergence (as outlined in previous
sections).

3.2.5 Experiments

We can repeat the experiments from Sect. 3.1.5 to see if the Backward Euler or
Crank-Nicolson schemes have problems with sawtooth-like noise when starting
with a discontinuous initial condition. We can also verify that we can have F > 1

2
,

which allows larger time steps than in the Forward Euler method.
The Backward Euler scheme always produces smooth solutions for any F . Fig-

ure 3.5 shows one example. Note that the mathematical discontinuity at t D 0 leads
to a linear variation on a mesh, but the approximation to a jump becomes better as
Nx increases. In our simulation, we specify�t and F , and set Nx to L=

p
˛�t=F .

SinceNx �
p
F , the discontinuity looks sharper in the Crank-Nicolson simulations

with larger F .
The Crank-Nicolson method produces smooth solutions for small F , F � 1

2
,

but small noise gets more and more evident as F increases. Figures 3.6 and 3.7
demonstrate the effect for F D 3 and F D 10, respectively. Section 3.3 explains
why such noise occur.

3.2.6 The Laplace and Poisson Equation

The Laplace equation, r2u D 0, and the Poisson equation, �r2u D f , occur in
numerous applications throughout science and engineering. In 1D these equations
read u00.x/ D 0 and �u00.x/ D f .x/, respectively. We can solve 1D variants of the

228 3 Diffusion Equations

Fig. 3.5 Backward Euler scheme for F D 0:5

Laplace equations with the listed software, because we can interpret uxx D 0 as the
limiting solution of ut D ˛uxx when u reaches a steady state limit where ut ! 0.
Similarly, Poisson’s equation �uxx D f arises from solving ut D uxx C f and
letting t !1 so ut ! 0.

Technically in a program, we can simulate t !1 by just taking one large time
step: �t !1. In the limit, the Backward Euler scheme gives

�u
nC1
iC1 � 2unC1i C unC1i�1

�x2
D f nC1

i ;

which is nothing but the discretization Œ�DxDxu D f �nC1i D 0 of �uxx D f .
The result above means that the Backward Euler scheme can solve the limit

equation directly and hence produce a solution of the 1D Laplace equation. With
the Forward Euler scheme we must do the time stepping since �t > �x2=˛ is
illegal and leads to instability. We may interpret this time stepping as solving the
equation system from �uxx D f by iterating on a pseudo time variable.

3.3 Analysis of Schemes for the Diffusion Equation 229

Fig. 3.6 Crank-Nicolson scheme for F D 3

3.3 Analysis of Schemes for the Diffusion Equation

The numerical experiments in Sect. 3.1.5 and 3.2.5 reveal that there are some nu-
merical problems with the Forward Euler and Crank-Nicolson schemes: sawtooth-
like noise is sometimes present in solutions that are, from a mathematical point of
view, expected to be smooth. This section presents a mathematical analysis that
explains the observed behavior and arrives at criteria for obtaining numerical solu-
tions that reproduce the qualitative properties of the exact solutions. In short, we
shall explain what is observed in Fig. 3.1–3.7.

3.3.1 Properties of the Solution

A particular characteristic of diffusive processes, governed by an equation like

ut D ˛uxx; (3.42)

is that the initial shape u.x; 0/ D I.x/ spreads out in space with time, along with
a decaying amplitude. Three different examples will illustrate the spreading of u in
space and the decay in time.

230 3 Diffusion Equations

Fig. 3.7 Crank-Nicolson scheme for F D 10

Similarity solution The diffusion equation (3.42) admits solutions that depend on
� D .x � c/=p4˛t for a given value of c. One particular solution is

u.x; t/ D a erf.�/C b; (3.43)

where

erf.�/ D 2p
�

�Z
0

e��
2

d�; (3.44)

is the error function, and a and b are arbitrary constants. The error function lies in
.�1; 1/, is odd around � D 0, and goes relatively quickly to ˙1:

lim
�!�1 erf.�/ D �1;
lim
�!1 erf.�/ D 1;

erf.�/ D �erf.��/;
erf.0/ D 0;
erf.2/ D 0:99532227;
erf.3/ D 0:99997791 :

3.3 Analysis of Schemes for the Diffusion Equation 231

As t ! 0, the error function approaches a step function centered at x D c. For
a diffusion problem posed on the unit interval Œ0; 1�, we may choose the step at
x D 1=2 (meaning c D 1=2), a D �1=2, b D 1=2. Then

u.x; t/ D 1

2

1 � erf

x � 1

2p
4˛t

!!
D 1

2
erfc

x � 1

2p
4˛t

!
; (3.45)

where we have introduced the complementary error function erfc.�/ D 1 � erf.�/.
The solution (3.45) implies the boundary conditions

u.0; t/ D 1

2

�
1 � erf

� �1=2p
4˛t

��
; (3.46)

u.1; t/ D 1

2

�
1 � erf

�
1=2p
4˛t

��
: (3.47)

For small enough t , u.0; t/ � 1 and u.1; t/ � 0, but as t !1, u.x; t/! 1=2 on
Œ0; 1�.

Solution for a Gaussian pulse The standard diffusion equation ut D ˛uxx admits
a Gaussian function as solution:

u.x; t/ D 1p
4�˛t

exp

�
� .x � c/

2

4˛t

�
: (3.48)

At t D 0 this is a Dirac delta function, so for computational purposes one must start
to view the solution at some time t D t
 > 0. Replacing t by t
 C t in (3.48) makes
it easy to operate with a (new) t that starts at t D 0 with an initial condition with
a finite width. The important feature of (3.48) is that the standard deviation � of a
sharp initial Gaussian pulse increases in time according to � D p2˛t , making the
pulse diffuse and flatten out.

Solution for a sine component Also, (3.42) admits a solution of the form

u.x; t/ D Qe�at sin .kx/ : (3.49)

The parametersQ and k can be freely chosen, while inserting (3.49) in (3.42) gives
the constraint

a D �˛k2 :
A very important feature is that the initial shape I.x/ D Q sin .kx/ undergoes a
damping exp .�˛k2t/, meaning that rapid oscillations in space, corresponding to
large k, are very much faster dampened than slow oscillations in space, correspond-
ing to small k. This feature leads to a smoothing of the initial condition with time.
(In fact, one can use a few steps of the diffusion equation as a method for removing
noise in signal processing.) To judge how good a numerical method is, we may look
at its ability to smoothen or dampen the solution in the same way as the PDE does.

232 3 Diffusion Equations

Fig. 3.8 Evolution of the solution of a diffusion problem: initial condition (upper left), 1/100
reduction of the small waves (upper right), 1/10 reduction of the long wave (lower left), and 1/100
reduction of the long wave (lower right)

The following example illustrates the damping properties of (3.49). We consider
the specific problem

ut D uxx; x 2 .0; 1/; t 2 .0; T �;
u.0; t/ D u.1; t/ D 0; t 2 .0; T �;
u.x; 0/ D sin.�x/C 0:1 sin.100�x/ :

The initial condition has been chosen such that adding two solutions like (3.49)
constructs an analytical solution to the problem:

u.x; t/ D e��2t sin.�x/C 0:1e��2104t sin.100�x/ : (3.50)

Figure 3.8 illustrates the rapid damping of rapid oscillations sin.100�x/ and the
very much slower damping of the slowly varying sin.�x/ term. After about t D
0:5 � 10�4 the rapid oscillations do not have a visible amplitude, while we have to
wait until t � 0:5 before the amplitude of the long wave sin.�x/ becomes very
small.

3.3 Analysis of Schemes for the Diffusion Equation 233

3.3.2 Analysis of Discrete Equations

A counterpart to (3.49) is the complex representation of the same function:

u.x; t/ D Qe�at eikx;

where i D p�1 is the imaginary unit. We can add such functions, often referred to
as wave components, to make a Fourier representation of a general solution of the
diffusion equation:

u.x; t/ �
X
k2K

bke
�˛k2t eikx; (3.51)

where K is a set of an infinite number of k values needed to construct the solution.
In practice, however, the series is truncated and K is a finite set of k values needed
to build a good approximate solution. Note that (3.50) is a special case of (3.51)
where K D f�; 100�g, b� D 1, and b100� D 0:1.

The amplitudes bk of the individual Fourier waves must be determined from the
initial condition. At t D 0 we have u � P

k bk exp .ikx/ and find K and bk such
that

I.x/ �
X
k2K

bke
ikx : (3.52)

(The relevant formulas for bk come from Fourier analysis, or equivalently, a least-
squares method for approximating I.x/ in a function space with basis exp .ikx/.)

Much insight about the behavior of numerical methods can be obtained by inves-
tigating how a wave component exp .�˛k2t/ exp .ikx/ is treated by the numerical
scheme. It appears that such wave components are also solutions of the schemes,
but the damping factor exp .�˛k2t/ varies among the schemes. To ease the forth-
coming algebra, we write the damping factor as An. The exact amplification factor
corresponding to A is Ae D exp .�˛k2�t/.

3.3.3 Analysis of the Finite Difference Schemes

We have seen that a general solution of the diffusion equation can be built as a linear
combination of basic components

e�˛k
2t eikx :

A fundamental question is whether such components are also solutions of the finite
difference schemes. This is indeed the case, but the amplitude exp .�˛k2t/ might
be modified (which also happens when solving the ODE counterpart u0 D �˛u).
We therefore look for numerical solutions of the form

unq D Aneikq�x D Aneikx; (3.53)

where the amplification factor A must be determined by inserting the component
into an actual scheme. Note that An means A raised to the power of n, n being the
index in the time mesh, while the superscript n in unq just denotes u at time tn.

234 3 Diffusion Equations

Stability The exact amplification factor isAe D exp .�˛2k2�t/. We should there-
fore require jAj < 1 to have a decaying numerical solution as well. If �1 � A < 0,
An will change sign from time level to time level, and we get stable, non-physical
oscillations in the numerical solutions that are not present in the exact solution.

Accuracy To determine how accurately a finite difference scheme treats one wave
component (3.53), we see that the basic deviation from the exact solution is reflected
in how well An approximates Ane, or how well A approximates Ae. We can plot Ae
and the various expressions for A, and we can make Taylor expansions of A=Ae to
see the error more analytically.

Truncation error As an alternative to examining the accuracy of the damping of
a wave component, we can perform a general truncation error analysis as explained
in Appendix B. Such results are more general, but less detailed than what we get
from the wave component analysis. The truncation error can almost always be
computed and represents the error in the numerical model when the exact solution
is substituted into the equations. In particular, the truncation error analysis tells
the order of the scheme, which is of fundamental importance when verifying codes
based on empirical estimation of convergence rates.

3.3.4 Analysis of the Forward Euler Scheme

The Forward Euler finite difference scheme for ut D ˛uxx can be written as

ŒDCt u D ˛DxDxu�
n
q :

Inserting a wave component (3.53) in the scheme demands calculating the terms

eikq�xŒDCt A�
n D eikq�xAnA � 1

�t
;

and

AnDxDxŒe
ikx�q D An

�
�eikq�x 4

�x2
sin2

�
k�x

2

��
:

Inserting these terms in the discrete equation and dividing by Aneikq�x leads to

A� 1
�t

D �˛ 4

�x2
sin2

�
k�x

2

�
;

and consequently
A D 1 � 4F sin2 p (3.54)

where

F D ˛�t

�x2
(3.55)

is the numerical Fourier number, and p D k�x=2. The complete numerical solu-
tion is then

unq D
�
1 � 4F sin2 p

�n
eikq�x : (3.56)

3.3 Analysis of Schemes for the Diffusion Equation 235

Stability We easily see that A � 1. However, the A can be less than �1, which
will lead to growth of a numerical wave component. The criterion A 	 �1 implies

4F sin2.p=2/ � 2 :

The worst case is when sin2.p=2/ D 1, so a sufficient criterion for stability is

F � 1

2
; (3.57)

or expressed as a condition on �t :

�t � �x2

2˛
: (3.58)

Note that halving the spatial mesh size, �x ! 1
2
�x, requires�t to be reduced by

a factor of 1=4. The method hence becomes very expensive for fine spatial meshes.

Accuracy Since A is expressed in terms of F and the parameter we now call p D
k�x=2, we should also express Ae by F and p. The exponent in Ae is �˛k2�t ,
which equals �Fk2�x2 D �F 4p2. Consequently,

Ae D exp .�˛k2�t/ D exp .�4Fp2/ :

All our A expressions as well as Ae are now functions of the two dimensionless
parameters F and p.

Computing the Taylor series expansion ofA=Ae in terms of F can easily be done
with aid of sympy:

def A_exact(F, p):
return exp(-4*F*p**2)

def A_FE(F, p):
return 1 - 4*F*sin(p)**2

from sympy import *
F, p = symbols(’F p’)
A_err_FE = A_FE(F, p)/A_exact(F, p)
print A_err_FE.series(F, 0, 6)

The result is

A

Ae
D 1 � 4F sin2 p C 2Fp2 � 16F 2p2 sin2 p C 8F 2p4 C � � �

Recalling that F D ˛�t=�x2, p D k�x=2, and that sin2 p � 1, we realize that
the dominating terms in A=Ae are at most

1 � 4˛ �t
�x2

C ˛�t � 4˛2�t2 C ˛2�t2�x2 C � � � :

236 3 Diffusion Equations

Truncation error We follow the theory explained in Appendix B. The recipe is to
set up the scheme in operator notation and use formulas from Appendix B.2.4 to de-
rive an expression for the residual. The details are documented in Appendix B.6.1.
We end up with a truncation error

Rni D O.�t/CO.�x2/ :

Although this is not the true error ue.xi ; tn/ � uni , it indicates that the true error is
of the form

E D Ct�t C Cx�x2

for two unknown constants Ct and Cx .

3.3.5 Analysis of the Backward Euler Scheme

Discretizing ut D ˛uxx by a Backward Euler scheme,

ŒD�t u D ˛DxDxu�
n
q;

and inserting a wave component (3.53), leads to calculations similar to those arising
from the Forward Euler scheme, but since

eikq�xŒD�t A�
n D Aneikq�x 1 � A

�1

�t
;

we get
1 � A�1
�t

D �˛ 4

�x2
sin2

�
k�x

2

�
;

and then
A D �1C 4F sin2 p

��1
: (3.59)

The complete numerical solution can be written

unq D
�
1C 4F sin2 p

��n
eikq�x : (3.60)

Stability We see from (3.59) that 0 < A < 1, which means that all numerical wave
components are stable and non-oscillatory for any �t > 0.

Truncation error The derivation of the truncation error for the Backward Euler
scheme is almost identical to that for the Forward Euler scheme. We end up with

Rni D O.�t/CO.�x2/ :

3.3 Analysis of Schemes for the Diffusion Equation 237

3.3.6 Analysis of the Crank-Nicolson Scheme

The Crank-Nicolson scheme can be written as

ŒDtu D ˛DxDxu
x�
nC 1

2
q ;

or

ŒDtu�
nC 1

2
q D 1

2
˛
�
ŒDxDxu�

n
q C ŒDxDxu�

nC1
q

�
:

Inserting (3.53) in the time derivative approximation leads to

ŒDtA
neikq�x�nC

1
2 D AnC 1

2 eikq�x
A

1
2 � A� 12
�t

D Aneikq�x A � 1
�t

:

Inserting (3.53) in the other terms and dividing by Aneikq�x gives the relation

A � 1
�t

D �1
2
˛
4

�x2
sin2

�
k�x

2

�
.1C A/;

and after some more algebra,

A D 1 � 2F sin2 p

1C 2F sin2 p
: (3.61)

The exact numerical solution is hence

unq D

1 � 2F sin2 p

1C 2F sin2 p

!n
eikq�x : (3.62)

Stability The criteria A > �1 and A < 1 are fulfilled for any �t > 0. Therefore,
the solution cannot grow, but it will oscillate if 1 � 2F sinp < 0. To avoid such
non-physical oscillations, we must demand F � 1

2
.

Truncation error The truncation error is derived in Appendix B.6.1:

R
nC 1

2

i D O.�x2/CO.�t2/ :

3.3.7 Analysis of the Leapfrog Scheme

An attractive feature of the Forward Euler scheme is the explicit time stepping and
no need for solving linear systems. However, the accuracy in time is only O.�t/.
We can get an explicit second-order scheme in time by using the Leapfrog method:

ŒD2tu D ˛DxDxuC f �nq :
Written out,

unC1q D un�1q C 2˛�t

�x2

�
unqC1 � 2unq C unq�1

�
C f .xq; tn/ :

238 3 Diffusion Equations

Fig. 3.9 Amplification factors for large time steps

We need some formula for the first step, u1q , but for that we can use a Forward Euler
step.

Unfortunately, the Leapfrog scheme is always unstable for the diffusion equa-
tion. To see this, we insert a wave component Aneikx and get

A� A�1
�t

D �˛ 4

�x2
sin2 p;

or
A2 C 4F sin2 p A� 1 D 0;

which has roots

A D �2F sin2 p ˙
q
4F 2 sin4 p C 1 :

Both roots have jAj > 1 so the amplitude always grows, which is not in accordance
with the physics of the problem. However, for a PDE with a first-order derivative
in space, instead of a second-order one, the Leapfrog scheme performs very well.
Details are provided in Sect. 4.1.3.

3.3.8 Summary of Accuracy of Amplification Factors

We can plot the various amplification factors against p D k�x=2 for different
choices of the F parameter. Figures 3.9, 3.10, and 3.11 show how long and small
waves are damped by the various schemes compared to the exact damping. As
long as all schemes are stable, the amplification factor is positive, except for Crank-
Nicolson when F > 0:5.

The effect of negative amplification factors is that An changes sign from one
time level to the next, thereby giving rise to oscillations in time in an animation of
the solution. We see from Fig. 3.9 that for F D 20, waves with p 	 �=4 undergo
a damping close to �1, which means that the amplitude does not decay and that the
wave component jumps up and down (flips amplitude) in time. For F D 2 we have
a damping of a factor of 0.5 from one time level to the next, which is very much
smaller than the exact damping. Short waves will therefore fail to be effectively

3.3 Analysis of Schemes for the Diffusion Equation 239

Fig. 3.10 Amplification factors for time steps around the Forward Euler stability limit

Fig. 3.11 Amplification factors for small time steps

dampened. These waves will manifest themselves as high frequency oscillatory
noise in the solution.

A value p D �=4 corresponds to four mesh points per wave length of eikx , while
p D �=2 implies only two points per wave length, which is the smallest number of
points we can have to represent the wave on the mesh.

To demonstrate the oscillatory behavior of the Crank-Nicolson scheme, we
choose an initial condition that leads to short waves with significant amplitude. A
discontinuous I.x/ will in particular serve this purpose: Figures 3.6 and 3.7 corre-
spond to F D 3 and F D 10, respectively, and we see how short waves pollute the
overall solution.

3.3.9 Analysis of the 2D Diffusion Equation

Diffusion in several dimensions is treated later, but it is appropriate to include the
analysis here. We first consider the 2D diffusion equation

ut D ˛.uxx C uyy/;

240 3 Diffusion Equations

which has Fourier component solutions of the form

u.x; y; t/ D Ae�˛k2t ei.kxxCkyy/;

and the schemes have discrete versions of this Fourier component:

unq;r D A�nei.kxq�xCkyr�y/ :

The Forward Euler scheme For the Forward Euler discretization,

ŒDCt u D ˛.DxDxuCDyDyu/�
n
q;r ;

we get
� � 1
�t

D �˛ 4

�x2
sin2

�
kx�x

2

�
� ˛ 4

�y2
sin2

�
ky�y

2

�
:

Introducing

px D kx�x

2
; py D ky�y

2
;

we can write the equation for � more compactly as

� � 1
�t

D �˛ 4

�x2
sin2 px � ˛ 4

�y2
sin2 py;

and solve for �:
� D 1 � 4Fx sin2 px � 4Fy sin2 py : (3.63)

The complete numerical solution for a wave component is

unq;r D A.1 � 4Fx sin2 px � 4Fy sin2 py/nei.kxq�xCkyr�y/ : (3.64)

For stability we demand �1 � � � 1, and �1 � � is the critical limit, since
clearly � � 1, and the worst case happens when the sines are at their maximum.
The stability criterion becomes

Fx C Fy � 1

2
: (3.65)

For the special, yet common, case �x D �y D h, the stability criterion can be
written as

�t � h2

2d˛
;

where d is the number of space dimensions: d D 1; 2; 3.

3.3 Analysis of Schemes for the Diffusion Equation 241

The Backward Euler scheme The Backward Euler method,

ŒD�t u D ˛.DxDxuCDyDyu/�
n
q;r ;

results in
1 � ��1 D �4Fx sin2 px � 4Fy sin2 py;

and
� D .1C 4Fx sin2 px C 4Fy sin2 py/�1;

which is always in .0; 1�. The solution for a wave component becomes

unq;r D A.1C 4Fx sin2 px C 4Fy sin2 py/�nei.kxq�xCkyr�y/ : (3.66)

The Crank-Nicolson scheme With a Crank-Nicolson discretization,

ŒDtu�
nC 1

2
q;r D 1

2
Œ˛.DxDxuCDyDyu/�

nC1
q;r C

1

2
Œ˛.DxDxuCDyDyu/�

n
q;r ;

we have, after some algebra,

� D 1 � 2.Fx sin2 px C Fx sin2 py/
1C 2.Fx sin2 px C Fx sin2 py/

:

The fraction on the right-hand side is always less than 1, so stability in the sense
of non-growing wave components is guaranteed for all physical and numerical pa-
rameters. However, the fraction can become negative and result in non-physical
oscillations. This phenomenon happens when

Fx sin
2 px C Fx sin2 py > 1

2
:

A criterion against non-physical oscillations is therefore

Fx C Fy � 1

2
;

which is the same limit as the stability criterion for the Forward Euler scheme.
The exact discrete solution is

unq;r D A

1 � 2.Fx sin2 px C Fx sin2 py/
1C 2.Fx sin2 px C Fx sin2 py/

!n
ei.kxq�xCkyr�y/ : (3.67)

3.3.10 Explanation of Numerical Artifacts

The behavior of the solution generated by Forward Euler discretization in time (and
centered differences in space) is summarized at the end of Sect. 3.1.5. Can we, from
the analysis above, explain the behavior?

242 3 Diffusion Equations

We may start by looking at Fig. 3.3 where F D 0:51. The figure shows that
the solution is unstable and grows in time. The stability limit for such growth is
F D 0:5 and since the F in this simulation is slightly larger, growth is unavoidable.

Figure 3.1 has unexpected features: we would expect the solution of the diffusion
equation to be smooth, but the graphs in Fig. 3.1 contain non-smooth noise. Turning
to Fig. 3.4, which has a quite similar initial condition, we see that the curves are
indeed smooth. The problem with the results in Fig. 3.1 is that the initial condition
is discontinuous. To represent it, we need a significant amplitude on the shortest
waves in the mesh. However, for F D 0:5, the shortest wave (p D �=2) gives the
amplitude in the numerical solution as .1�4F /n, which oscillates between negative
and positive values at subsequent time levels for F > 1

4
. Since the shortest waves

have visible amplitudes in the solution profile, the oscillations becomes visible.
The smooth initial condition in Fig. 3.4, on the other hand, leads to very small
amplitudes of the shortest waves. That these waves then oscillate in a non-physical
way for F D 0:5 is not a visible effect. The oscillations in time in the amplitude
.1 � 4F /n disappear for F � 1

4
, and that is why also the discontinuous initial

condition always leads to smooth solutions in Fig. 3.2, where F D 1
4
.

Turning the attention to the Backward Euler scheme and the experiments in
Fig. 3.5, we see that even the discontinuous initial condition gives smooth solu-
tions for F D 0:5 (and in fact all other F values). From the exact expression of the
numerical amplitude, .1 C 4F sin2 p/�1, we realize that this factor can never flip
between positive and negative values, and no instabilities can occur. The conclu-
sion is that the Backward Euler scheme always produces smooth solutions. Also,
the Backward Euler scheme guarantees that the solution cannot grow in time (un-
less we add a source term to the PDE, but that is meant to represent a physically
relevant growth).

Finally, we have some small, strange artifacts when simulating the development
of the initial plug profile with the Crank-Nicolson scheme, see Fig. 3.7, where
F D 3. The Crank-Nicolson scheme cannot give growing amplitudes, but it may
give oscillating amplitudes in time. The critical factor is 1 � 2F sin2 p, which for
the shortest waves (p D �=2) indicates a stability limit F D 0:5. With the discon-
tinuous initial condition, we have enough amplitude on the shortest waves so their
wrong behavior is visible, and this is what we see as small instabilities in Fig. 3.7.
The only remedy is to lower the F value.

3.4 Exercises

Exercise 3.1: Explore symmetry in a 1D problem
This exercise simulates the exact solution (3.48). Suppose for simplicity that c D 0.

a) Formulate an initial-boundary value problem that has (3.48) as solution in the
domain Œ�L;L�. Use the exact solution (3.48) as Dirichlet condition at the
boundaries. Simulate the diffusion of the Gaussian peak. Observe that the solu-
tion is symmetric around x D 0.

b) Show from (3.48) that ux.c; t/ D 0. Since the solution is symmetric around
x D c D 0, we can solve the numerical problem in half of the domain, using
a symmetry boundary condition ux D 0 at x D 0. Set up the initial-boundary

3.4 Exercises 243

value problem in this case. Simulate the diffusion problem in Œ0; L� and compare
with the solution in a).

Filename: diffu_symmetric_gaussian.

Exercise 3.2: Investigate approximation errors from a ux D 0 boundary
condition
We consider the problem solved in Exercise 3.1 part b). The boundary condition
ux.0; t/ D 0 can be implemented in two ways: 1) by a standard symmetric finite
difference ŒD2xu�

n
i D 0, or 2) by a one-sided difference ŒDCu D 0�ni D 0. Investi-

gate the effect of these two conditions on the convergence rate in space.

Hint If you use a Forward Euler scheme, choose a discretization parameter h D
�t D �x2 and assume the error goes like E � hr . The error in the scheme is
O.�t;�x2/ so one should expect that the estimated r approaches 1. The question
is if a one-sided difference approximation to ux.0; t/ D 0 destroys this convergence
rate.
Filename: diffu_onesided_fd.

Exercise 3.3: Experiment with open boundary conditions in 1D
We address diffusion of a Gaussian function as in Exercise 3.1, in the domain Œ0; L�,
but now we shall explore different types of boundary conditions on x D L. In real-
life problems we do not know the exact solution on x D L and must use something
simpler.

a) Imagine that we want to solve the problem numerically on Œ0; L�, with a symme-
try boundary condition ux D 0 at x D 0, but we do not know the exact solution
and cannot of that reason assign a correct Dirichlet condition at x D L. One
idea is to simply set u.L; t/ D 0 since this will be an accurate approximation
before the diffused pulse reaches x D L and even thereafter it might be a satis-
factory condition if the exact u has a small value. Let ue be the exact solution
and let u be the solution of ut D ˛uxx with an initial Gaussian pulse and the
boundary conditions ux.0; t/ D u.L; t/ D 0. Derive a diffusion problem for
the error e D ue � u. Solve this problem numerically using an exact Dirichlet
condition at x D L. Animate the evolution of the error and make a curve plot
of the error measure

E.t/ D
vuutR L

0
e2dxR L

0
udx

:

Is this a suitable error measure for the present problem?
b) Instead of using u.L; t/ D 0 as approximate boundary condition for letting the

diffused Gaussian pulse move out of our finite domain, one may try ux.L; t/ D
0 since the solution for large t is quite flat. Argue that this condition gives
a completely wrong asymptotic solution as t ! 0. To do this, integrate the
diffusion equation from 0 to L, integrate uxx by parts (or use Gauss’ divergence

244 3 Diffusion Equations

theorem in 1D) to arrive at the important property

d

dt

LZ
0

u.x; t/dx D 0;

implying that
R L
0
udx must be constant in time, and therefore

LZ
0

u.x; t/dx D
LZ
0

I.x/dx :

The integral of the initial pulse is 1.
c) Another idea for an artificial boundary condition at x D L is to use a cooling

law
� ˛ux D q.u � uS/; (3.68)

where q is an unknown heat transfer coefficient and uS is the surrounding
temperature in the medium outside of Œ0; L�. (Note that arguing that uS is ap-
proximately u.L; t/ gives the ux D 0 condition from the previous subexercise
that is qualitatively wrong for large t .) Develop a diffusion problem for the error
in the solution using (3.68) as boundary condition. Assume one can take uS D 0
“outside the domain” since ue ! 0 as x ! 1. Find a function q D q.t/ such
that the exact solution obeys the condition (3.68). Test some constant values
of q and animate how the corresponding error function behaves. Also compute
E.t/ curves as defined above.

Filename: diffu_open_BC.

Exercise 3.4: Simulate a diffused Gaussian peak in 2D/3D

a) Generalize (3.48) to multi dimensions by assuming that one-dimensional solu-
tions can be multiplied to solve ut D ˛r2u. Set c D 0 such that the peak of the
Gaussian is at the origin.

b) One can from the exact solution show that ux D 0 on x D 0, uy D 0 on y D 0,
and uz D 0 on z D 0. The approximately correct condition u D 0 can be set
on the remaining boundaries (say x D L, y D L, z D L), cf. Exercise 3.3.
Simulate a 2D case and make an animation of the diffused Gaussian peak.

c) The formulation in b) makes use of symmetry of the solution such that we can
solve the problem in the first quadrant (2D) or octant (3D) only. To check that
the symmetry assumption is correct, formulate the problemwithout symmetry in
a domain Œ�L;L�� ŒL;L� in 2D. Use u D 0 as approximately correct boundary
condition. Simulate the same case as in b), but in a four times as large domain.
Make an animation and compare it with the one in b).

Filename: diffu_symmetric_gaussian_2D.

3.5 Diffusion in Heterogeneous Media 245

Exercise 3.5: Examine stability of a diffusion model with a source term
Consider a diffusion equation with a linear u term:

ut D ˛uxx C ˇu :
a) Derive in detail the Forward Euler, Backward Euler, and Crank-Nicolson

schemes for this type of diffusion model. Thereafter, formulate a �-rule to
summarize the three schemes.

b) Assume a solution like (3.49) and find the relation between a, k, ˛, and ˇ.

Hint Insert (3.49) in the PDE problem.

c) Calculate the stability of the Forward Euler scheme. Design numerical experi-
ments to confirm the results.

Hint Insert the discrete counterpart to (3.49) in the numerical scheme. Run exper-
iments at the stability limit and slightly above.

d) Repeat c) for the Backward Euler scheme.
e) Repeat c) for the Crank-Nicolson scheme.
f) How does the extra term bu impact the accuracy of the three schemes?

Hint For analysis of the accuracy, compare the numerical and exact amplification
factors, in graphs and/or by Taylor series expansion.
Filename: diffu_stability_uterm.

3.5 Diffusion in HeterogeneousMedia

Diffusion in heterogeneous media normally implies a non-constant diffusion coef-
ficient ˛ D ˛.x/. A 1D diffusion model with such a variable diffusion coefficient
reads

@u

@t
D @

@x

�
˛.x/

@u

@x

�
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (3.69)

u.x; 0/ D I.x/; x 2 Œ0; L�; (3.70)

u.0; t/ D U0; t > 0; (3.71)

u.L; t/ D UL; t > 0: (3.72)

A short form of the diffusion equation with variable coefficients is ut D .˛ux/x C
f .

3.5.1 Discretization

We can discretize (3.69) by a �-rule in time and centered differences in space:

ŒDtu�
nC 1

2

i D �ŒDx.˛
xDxu/C f �nC1i C .1 � �/ŒDx.˛

xDxu/C f �ni :

246 3 Diffusion Equations

Written out, this becomes

unC1i � uni
�t

D � 1

�x2

�
˛iC 1

2
.unC1iC1 � unC1i / � ˛i� 12 .u

nC1
i � unC1i�1 /

�

C .1 � �/ 1

�x2

�
˛iC 1

2
.uniC1 � uni / � ˛i� 12 .u

n
i � uni�1/

�

C �f nC1i C .1 � �/f n
i ;

where, e.g., an arithmetic mean can to be used for ˛iC 1
2
:

˛iC 1
2
D 1

2
.˛i C ˛iC1/ :

3.5.2 Implementation

Suitable code for solving the discrete equations is very similar to what we created
for a constant ˛. Since the Fourier number has no meaning for varying ˛, we
introduce a related parameterD D �t=�x2.

def solver_theta(I, a, L, Nx, D, T, theta=0.5, u_L=1, u_R=0,
user_action=None):

x = linspace(0, L, Nx+1) # mesh points in space
dx = x[1] - x[0]
dt = D*dx**2
Nt = int(round(T/float(dt)))
t = linspace(0, T, Nt+1) # mesh points in time

u = zeros(Nx+1) # solution array at t[n+1]
u_n = zeros(Nx+1) # solution at t[n]

Dl = 0.5*D*theta
Dr = 0.5*D*(1-theta)

Representation of sparse matrix and right-hand side
diagonal = zeros(Nx+1)
lower = zeros(Nx)
upper = zeros(Nx)
b = zeros(Nx+1)

Precompute sparse matrix (scipy format)
diagonal[1:-1] = 1 + Dl*(a[2:] + 2*a[1:-1] + a[:-2])
lower[:-1] = -Dl*(a[1:-1] + a[:-2])
upper[1:] = -Dl*(a[2:] + a[1:-1])
Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

A = scipy.sparse.diags(
diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1],
shape=(Nx+1, Nx+1),
format=’csr’)

3.5 Diffusion in Heterogeneous Media 247

Set initial condition
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

Time loop
for n in range(0, Nt):

b[1:-1] = u_n[1:-1] + Dr*(
(a[2:] + a[1:-1])*(u_n[2:] - u_n[1:-1]) -
(a[1:-1] + a[0:-2])*(u_n[1:-1] - u_n[:-2]))

Boundary conditions
b[0] = u_L(t[n+1])
b[-1] = u_R(t[n+1])
Solve
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_n, u = u, u_n

The code is found in the file diffu1D_vc.py.

3.5.3 Stationary Solution

As t ! 1, the solution of the problem (3.69)–(3.72) will approach a stationary
limit where @u=@t D 0. The governing equation is then

d

dx

�
˛
du

dx

�
D 0; (3.73)

with boundary conditions u.0/ D U0 and u.L/ D UL. It is possible to obtain an
exact solution of (3.73) for any ˛. Integrating twice and applying the boundary
conditions to determine the integration constants gives

u.x/ D U0 C .UL � U0/
R x
0 .˛.�//

�1d�R L
0
.˛.�//�1d�

: (3.74)

3.5.4 Piecewise Constant Medium

Consider a medium built ofM layers. The layer boundaries are denoted b0; : : : ; bM ,
where b0 D 0 and bM D L. If the layers potentially have different material prop-
erties, but these properties are constant within each layer, we can express ˛ as a

http://tinyurl.com/nu656p2/diffu/diffu1D_vc.py

248 3 Diffusion Equations

piecewise constant function according to

˛.x/ D

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

˛0; b0 � x < b1;
:::

˛i ; bi � x < biC1;
:::

˛M�1; bM�1 � x � bM :

(3.75)

The exact solution (3.74) in case of such a piecewise constant ˛ function is easy
to derive. Assume that x is in the m-th layer: x 2 Œbm; bmC1�. In the integralR x
0
.a.�//�1d� we must integrate through the first m � 1 layers and then add the

contribution from the remaining part x � bm into them-th layer:

u.x/ D U0 C .UL � U0/
Pm�1
jD0 .bjC1 � bj /=˛.bj /C .x � bm/=˛.bm/PM�1

jD0 .bjC1 � bj /=˛.bj /
: (3.76)

Remark It may sound strange to have a discontinuous ˛ in a differential equation
where one is to differentiate, but a discontinuous ˛ is compensated by a discontin-
uous ux such that ˛ux is continuous and therefore can be differentiated as .˛ux/x .

3.5.5 Implementation of Diffusion in a Piecewise Constant Medium

Programming with piecewise function definitions quickly becomes cumbersome
as the most naive approach is to test for which interval x lies, and then start
evaluating a formula like (3.76). In Python, vectorized expressions may help to
speed up the computations. The convenience classes PiecewiseConstant and
IntegratedPiecewiseConstant in the Heaviside module were made to sim-
plify programming with functions like (3.75) and expressions like (3.76). These
utilities not only represent piecewise constant functions, but also smoothed versions
of them where the discontinuities can be smoothed out in a controlled fashion.

The PiecewiseConstant class is created by sending in the domain as a 2-tuple
or 2-list and a data object describing the boundaries b0; : : : ; bM and the corre-
sponding function values ˛0; : : : ; ˛M�1. More precisely, data is a nested list,
where data[i][0] holds bi and data[i][1] holds the corresponding value ˛i ,
for i D 0; : : : ;M � 1. Given bi and ˛i in arrays b and a, it is easy to fill out the
nested list data.

In our application, we want to represent ˛ and 1=˛ as piecewise constant func-
tions, in addition to the u.x/ function which involves the integrals of 1=˛. A class
creating the functions we need and a method for evaluating u, can take the form

class SerialLayers:
"""
b: coordinates of boundaries of layers, b[0] is left boundary
and b[-1] is right boundary of the domain [0,L].
a: values of the functions in each layer (len(a) = len(b)-1).
U_0: u(x) value at left boundary x=0=b[0].
U_L: u(x) value at right boundary x=L=b[0].
"""

http://tinyurl.com/nu656p2/diffu/Heaviside.py

3.5 Diffusion in Heterogeneous Media 249

def __init__(self, a, b, U_0, U_L, eps=0):
self.a, self.b = np.asarray(a), np.asarray(b)
self.eps = eps # smoothing parameter for smoothed a
self.U_0, self.U_L = U_0, U_L

a_data = [[bi, ai] for bi, ai in zip(self.b, self.a)]
domain = [b[0], b[-1]]
self.a_func = PiecewiseConstant(domain, a_data, eps)

inv_a = 1/a is needed in formulas
inv_a_data = [[bi, 1./ai] for bi, ai in zip(self.b, self.a)]
self.inv_a_func = \

PiecewiseConstant(domain, inv_a_data, eps)
self.integral_of_inv_a_func = \

IntegratedPiecewiseConstant(domain, inv_a_data, eps)
Denominator in the exact formula is constant
self.inv_a_0L = self.integral_of_inv_a_func(b[-1])

def __call__(self, x):
solution = self.U_0 + (self.U_L-self.U_0)*\

self.integral_of_inv_a_func(x)/self.inv_a_0L
return solution

A visualization method is also convenient to have. Below we plot u.x/ along
with ˛.x/ (which works well as long as max˛.x/ is of the same size as maxu D
max.U0; UL/).

class SerialLayers:
...

def plot(self):
x, y_a = self.a_func.plot()
x = np.asarray(x); y_a = np.asarray(y_a)
y_u = self.u_exact(x)
import matplotlib.pyplot as plt
plt.figure()
plt.plot(x, y_u, ’b’)
plt.hold(’on’) # Matlab style
plt.plot(x, y_a, ’r’)
ymin = -0.1
ymax = 1.2*max(y_u.max(), y_a.max())
plt.axis([x[0], x[-1], ymin, ymax])
plt.legend([’solution u’, ’coefficient a’], loc=’upper left’)
if self.eps > 0:

plt.title(’Smoothing eps: %s’ % self.eps)
plt.savefig(’tmp.pdf’)
plt.savefig(’tmp.png’)
plt.show()

Figure 3.12 shows the case where

b = [0, 0.25, 0.5, 1] # material boundaries
a = [0.2, 0.4, 4] # material values
U_0 = 0.5; U_L = 5 # boundary conditions

250 3 Diffusion Equations

Fig. 3.12 Solution of the stationary diffusion equation corresponding to a piecewise constant dif-
fusion coefficient

Fig. 3.13 Solution of the stationary diffusion equation corresponding to a smoothed piecewise
constant diffusion coefficient

By adding the eps parameter to the constructor of the SerialLayers class,
we can experiment with smoothed versions of ˛ and see the (small) impact on u.
Figure 3.13 shows the result.

3.5 Diffusion in Heterogeneous Media 251

3.5.6 Axi-Symmetric Diffusion

Suppose we have a diffusion process taking place in a straight tube with radius R.
We assume axi-symmetry such that u is just a function of r and t , with r being the
radial distance from the center axis of the tube to a point. With such axi-symmetry
it is advantageous to introduce cylindrical coordinates r , � , and z, where z is in
the direction of the tube and .r; �/ are polar coordinates in a cross section. Axi-
symmetry means that all quantities are independent of � . From the relations x D
cos � , y D sin � , and z D z, between Cartesian and cylindrical coordinates, one can
(with some effort) derive the diffusion equation in cylindrical coordinates, which
with axi-symmetry takes the form

@u

@t
D 1

r

@

@r

�
r˛.r; z/

@u

@r

�
C @

@z

�
˛.r; z/

@u

@z

�
C f .r; z; t/ :

Let us assume that u does not change along the tube axis so it suffices to compute
variations in a cross section. Then @u=@z D 0 and we have a 1D diffusion equation
in the radial coordinate r and time t . In particular, we shall address the initial-
boundary value problem

@u

@t
D 1

r

@

@r

�
r˛.r/

@u

@r

�
C f .t/; r 2 .0;R/; t 2 .0; T �; (3.77)

@u

@r
.0; t/ D 0; t 2 .0; T �; (3.78)

u.R; t/ D 0; t 2 .0; T �; (3.79)

u.r; 0/ D I.r/; r 2 Œ0; R�: (3.80)

The condition (3.78) is a necessary symmetry condition at r D 0, while (3.79) could
be any Dirichlet or Neumann condition (or Robin condition in case of cooling or
heating).

The finite difference approximation will need the discretized version of the PDE
for r D 0 (just as we use the PDE at the boundary when implementing Neumann
conditions). However, discretizing the PDE at r D 0 poses a problem because of
the 1=r factor. We therefore need to work out the PDE for discretization at r D 0

with care. Let us, for the case of constant ˛, expand the spatial derivative term to

˛
@2u

@r2
C ˛ 1

r

@u

@r
:

The last term faces a difficulty at r D 0, since it becomes a 0=0 expression caused
by the symmetry condition at r D 0. However, L’Hosptial’s rule can be used:

lim
r!0

1

r

@u

@r
D @2u

@r2
:

The PDE at r D 0 therefore becomes

@u

@t
D 2˛ @

2u

@r2
C f .t/ : (3.81)

252 3 Diffusion Equations

For a variable coefficient ˛.r/ the expanded spatial derivative term reads

˛.r/
@2u

@r2
C 1

r
.˛.r/C r˛0.r//@u

@r
:

We are interested in this expression for r D 0. A necessary condition for u to
be axi-symmetric is that all input data, including ˛, must also be axi-symmetric,
implying that ˛0.0/ D 0 (the second term vanishes anyway because of r D 0). The
limit of interest is

lim
r!0

1

r
˛.r/

@u

@r
D ˛.0/@

2u

@r2
:

The PDE at r D 0 now looks like

@u

@t
D 2˛.0/@

2u

@r2
C f .t/; (3.82)

so there is no essential difference between the constant coefficient and variable co-
efficient cases.

The second-order derivative in (3.81) and (3.82) is discretized in the usual way.

2˛
@2

@r2
u.r0; tn/ � Œ2˛DrDru�

n
0 D 2˛

un1 � 2un0 C un�1
�r2

:

The fictitious value un�1 can be eliminated using the discrete symmetry condition

ŒD2ru D 0�n0) un�1 D un1;

which then gives the modified approximation to the term with the second-order
derivative of u in r at r D 0:

4˛
un1 � un0
�r2

: (3.83)

The discretization of the termwith the second-order derivative in r at any internal
mesh point is straightforward:

�
1

r

@

@r

�
r˛
@u

@r

�	n
i

� Œr�1Dr.r˛Dru/�
n
i

D 1

ri

1

�r2

�
riC 1

2
˛iC 1

2
.uniC1 � uni /� ri� 12 ˛i� 12 .u

n
i � uni�1/

�
:

To complete the discretization, we need a scheme in time, but that can be done
as before and does not interfere with the discretization in space.

3.5.7 Spherically-Symmetric Diffusion

Discretization in spherical coordinates Let us now pose the problem from
Sect. 3.5.6 in spherical coordinates, where u only depends on the radial coordinate

3.5 Diffusion in Heterogeneous Media 253

r and time t . That is, we have spherical symmetry. For simplicity we restrict the
diffusion coefficient ˛ to be a constant. The PDE reads

@u

@t
D ˛

r

@

@r

�
r

@u

@r

�
C f .t/; (3.84)

for r 2 .0;R/ and t 2 .0; T �. The parameter
 is 2 for spherically-symmetric
problems and 1 for axi-symmetric problems. The boundary and initial conditions
have the same mathematical form as in (3.77)–(3.80).

Since the PDE in spherical coordinates has the same form as the PDE in
Sect. 3.5.6, just with the
 parameter being different, we can use the same dis-
cretization approach. At the origin r D 0 we get problems with the term

r

@u

@t
;

but L’Hosptial’s rule shows that this term equals
@2u=@r2, and the PDE at r D 0

becomes
@u

@t
D .
 C 1/˛ @

2u

@r2
C f .t/ : (3.85)

The associated discrete form is then

�
Dtu D 1

2
.
 C 1/˛DrDru

t C f t
	nC 1

2

i

; (3.86)

for a Crank-Nicolson scheme.

Discretization in Cartesian coordinates The spherically-symmetric spatial
derivative can be transformed to the Cartesian counterpart by introducing

v.r; t/ D ru.r; t/ :

Inserting u D v=r in
1

r2
@

@r

�
˛.r/r2

@u

@r

�
;

yields

r

�
d˛

dr

@v

@r
C ˛ @

2v

@r2

�
� d˛
dr
v :

The two terms in the parenthesis can be combined to

r
@

@r

�
˛
@v

@r

�
:

The PDE for v takes the form

@v

@t
D @

@r

�
˛
@v

@r

�
� 1
r

d˛

dr
v C rf .r; t/; r 2 .0;R/; t 2 .0; T � : (3.87)

254 3 Diffusion Equations

For ˛ constant we immediately realize that we can reuse a solver in Cartesian co-
ordinates to compute v. With variable ˛, a “reaction” term v=r needs to be added
to the Cartesian solver. The boundary condition @u=@r D 0 at r D 0, implied by
symmetry, forces v.0; t/ D 0, because

@u

@r
D 1

r2

�
r
@v

@r
� v

�
D 0; r D 0 :

3.6 Diffusion in 2D

We now address diffusion in two space dimensions:

@u

@t
D ˛

�
@2u

@x2
C @2u

@x2

�
C f .x; y/; (3.88)

in a domain
.x; y/ 2 .0; Lx/ � .0; Ly/; t 2 .0; T �;

with u D 0 on the boundary and u.x; y; 0/ D I.x; y/ as initial condition.

3.6.1 Discretization

For generality, it is natural to use a �-rule for the time discretization. Standard,
second-order accurate finite differences are used for the spatial derivatives. We
sample the PDE at a space-time point .i; j; nC 1

2
/ and apply the difference approx-

imations:

ŒDtu�
nC 1

2 D �Œ˛.DxDxuCDyDyu/C f �nC1
C .1 � �/Œ˛.DxDxuCDyDyu/C f �n : (3.89)

Written out,

unC1i;j � uni;j
�t

D �

˛

unC1i�1;j � 2unC1i;j C unC1iC1;j

�x2
C unC1i;j�1 � 2unC1i;j C unC1i;jC1

�y2

!
C f nC1i;j

!

C .1 � �/
�
˛

�
uni�1;j � 2uni;j C uniC1;j

�x2
C uni;j�1 � 2uni;j C uni;jC1

�y2

�
C f n

i;j

�
:

(3.90)
We collect the unknowns on the left-hand side

unC1i;j � �
�
Fx.u

nC1
i�1;j � 2unC1i;j C unC1iC1;j /C Fy.unC1i;j�1 � 2unC1i;j C unC1i;jC1/

�

D .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.uni;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j C uni;j ; (3.91)

3.6 Diffusion in 2D 255

Fig. 3.14 3x2 2D mesh

where

Fx D ˛�t

�x2
; Fy D ˛�t

�y2
;

are the Fourier numbers in x and y direction, respectively.

3.6.2 Numbering of Mesh Points Versus Equations and Unknowns

The equations (3.91) are coupled at the new time level nC1. That is, we must solve
a system of (linear) algebraic equations, which we will write as Ac D b, where A
is the coefficient matrix, c is the vector of unknowns, and b is the right-hand side.

Let us examine the equations in Ac D b on a mesh with Nx D 3 and Ny D 2

cells in the respective spatial directions. The spatial mesh is depicted in Fig. 3.14.
The equations at the boundary just implement the boundary condition u D 0:

unC10;0 D unC11;0 D unC12;0 D unC13;0 D unC10;1

D unC13;1 D unC10;2 D unC11;2 D unC12;2 D unC13;2 D 0 :

256 3 Diffusion Equations

We are left with two interior points, with i D 1, j D 1 and i D 2, j D 1. The
corresponding equations are

unC1i;j � �
�
Fx.u

nC1
i�1;j � 2unC1i;j C unC1iC1;j /C Fy.unC1i;j�1 � 2unC1i;j C unC1i;jC1/

�

D .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.uni;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j C uni;j :

There are in total 12 unknowns unC1i;j for i D 0; 1; 2; 3 and j D 0; 1; 2. To
solve the equations, we need to form a matrix system Ac D b. In that system,
the solution vector c can only have one index. Thus, we need a numbering of the
unknowns with one index, not two as used in the mesh. We introduce a mapping
m.i; j / from a mesh point with indices .i; j / to the corresponding unknown p in
the equation system:

p D m.i; j /D j.Nx C 1/C i :

When i and j run through their values, we see the following mapping to p:

.0; 0/! 0; .0; 1/! 1; .0; 2/! 2; .0; 3/! 3;

.1; 0/! 4; .1; 1/! 5; .1; 2/! 6; .1; 3/! 7;

.2; 0/! 8; .2; 1/! 9; .2; 2/! 10; .2; 3/! 11 :

That is, we number the points along the x axis, starting with y D 0, and then
progress one “horizontal” mesh line at a time. In Fig. 3.14 you can see that the
.i; j / and the corresponding single index (p) are listed for each mesh point.

We could equally well have numbered the equations in other ways, e.g., let the
j index be the fastest varying index: p D m.i; j / D i.Ny C 1/C j .

Let us form the coefficient matrix A, or more precisely, insert a matrix element
(according Python’s convention with zero as base index) for each of the nonzero
elements in A (the indices run through the values of p, i.e., p D 0; : : : ; 11):
0
BBBBBBBBBBBBBB@

.0; 0/ 0 0 0 0 0 0 0 0 0 0 0

0 .1; 1/ 0 0 0 0 0 0 0 0 0 0

0 0 .2; 2/ 0 0 0 0 0 0 0 0 0

0 0 0 .3; 3/ 0 0 0 0 0 0 0 0

0 0 0 0 .4; 4/ 0 0 0 0 0 0 0

0 .5; 1/ 0 0 .5; 4/ .5; 5/ .5; 6/ 0 0 .5; 9/ 0 0

0 0 .6; 2/ 0 0 .6; 5/ .6; 6/ .6; 7/ 0 0 .6; 10/ 0

0 0 0 0 0 0 0 .7; 7/ 0 0 0 0

0 0 0 0 0 0 0 0 .8; 8/ 0 0 0

0 0 0 0 0 0 0 0 0 .9; 9/ 0 0

0 0 0 0 0 0 0 0 0 0 .10; 10/ 0

0 0 0 0 0 0 0 0 0 0 0 .11; 11/

1
CCCCCCCCCCCCCCA

:

3.6 Diffusion in 2D 257

Here is a more compact visualization of the coefficient matrix where we insert dots
for zeros and bullets for non-zero elements:0

BBBBBBBBBBBBBBBBBB@

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCCCA

:

It is clearly seen that most of the elements are zero. This is a general feature of
coefficient matrices arising from discretizing PDEs by finite difference methods.
We say that the matrix is sparse.

Let Ap;q be the value of element .p; q/ in the coefficient matrix A, where p and
q now correspond to the numbering of the unknowns in the equation system. We
have Ap;q D 1 for p D q D 0; 1; 2; 3; 4; 7; 8; 9; 10; 11, corresponding to all the
known boundary values. Let p be m.i; j /, i.e., the single index corresponding to
mesh point .i; j /. Then we have

Am.i;j /;m.i;j / D Ap;p D 1C �.Fx C Fy/; (3.92)

Ap;m.i�1;j / D Ap;p�1 D ��Fx; (3.93)

Ap;m.iC1;j / D Ap;pC1 D ��Fx; (3.94)

Ap;m.i;j�1/ D Ap;p�.NxC1/ D ��Fy; (3.95)

Ap;m.i;jC1/ D Ap;pC.NxC1/ D ��Fy; (3.96)

for the equations associated with the two interior mesh points. At these interior
points, the single index p takes on the specific values p D 5; 6, corresponding to
the values .1; 1/ and .1; 2/ of the pair .i; j /.

The above values for Ap;q can be inserted in the matrix:

0
BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 ��Fy 0 0 ��Fx 1C 2�Fx ��Fx 0 0 ��Fy 0 0

0 0 ��Fy 0 0 ��Fx 1C 2�Fx ��Fx 0 0 ��Fy 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCA

:

258 3 Diffusion Equations

The corresponding right-hand side vector in the equation system has the entries bp ,
where p numbers the equations. We have

b0 D b1 D b2 D b3 D b4 D b7 D b8 D b9 D b10 D b11 D 0;

for the boundary values. For the equations associated with the interior points, we
get for p D 5; 6, corresponding to i D 1; 2 and j D 1:

bp D uni;j C .1 � �/
�
Fx.u

n
i�1;j � 2uni;j C uniC1;j /C Fy.uni;j�1 � 2uni;j C uni;jC1/

�

C ��tf nC1i;j C .1 � �/�tf ni;j :

Recall that p D m.i; j / D j.Nx C 1/C j in this expression.
We can, as an alternative, leave the boundary mesh points out of the matrix

system. For a mesh with Nx D 3 and Ny D 2 there are only two internal mesh
points whose unknowns will enter the matrix system. We must now number the
unknowns at the interior points:

p D .j � 1/.Nx � 1/C i;

for i D 1; : : : ; Nx � 1, j D 1; : : : ; Ny � 1.
We can continue with illustrating a bit larger mesh, Nx D 4 and Ny D 3, see

Fig. 3.15. The corresponding coefficient matrix with dots for zeros and bullets for
non-zeroes looks as follows (values at boundary points are included in the equation
system):

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

The coefficientmatrix is banded
Besides being sparse, we observe that the coefficient matrix is banded: it has five
distinct bands. We have the diagonalAi;i , the subdiagonalAi�1;j , the superdiag-
onal Ai;iC1, a lower diagonal Ai;i�.NxC1/, and an upper diagonal Ai;iC.NxC1/.

3.6 Diffusion in 2D 259

Fig. 3.15 4x3 2D mesh

The other matrix entries are known to be zero. With Nx C 1 D Ny C 1 D N ,
only a fraction 5N �2 of the matrix entries are nonzero, so the matrix is clearly
very sparse for relevant N values. The more we can compute with the nonzeros
only, the faster the solution methods will potentially be.

3.6.3 Algorithm for Setting Up the Coefficient Matrix

We looked at a specific mesh in the previous section, formulated the equations, and
saw what the corresponding coefficient matrix and right-hand side are. Now our
aim is to set up a general algorithm, for any choice of Nx and Ny , that produces the
coefficient matrix and the right-hand side vector. We start with a zero matrix and
vector, run through each mesh point, and fill in the values depending on whether the
mesh point is an interior point or on the boundary.

� for i D 0; : : : ; Nx
– for j D 0; : : : ; Ny

 p D j.Nx C 1/C i

260 3 Diffusion Equations

 if point .i; j / is on the boundary:
� Ap;p D 1, bp D 0

 else:
� fill Ap;m.i�1;j /, Ap;m.iC1;j /, Ap;m.i;j /, Ap;m.i;j�1/, Ap;m.i;jC1/, and bp

To ease the test on whether .i; j / is on the boundary or not, we can split the loops a
bit, starting with the boundary line j D 0, then treat the interior lines 1 � j < Ny ,
and finally treat the boundary line j D Ny :
� for i D 0; : : : ; Nx

– boundary j D 0: p D j.Nx C 1/C i , Ap;p D 1
� for j D 0; : : : ; Ny

– boundary i D 0: p D j.Nx C 1/C i , Ap;p D 1
– for i D 1; : : : ; Nx � 1

 interior point p D j.Nx C 1/C i

 fill Ap;m.i�1;j /, Ap;m.iC1;j /, Ap;m.i;j /, Ap;m.i;j�1/, Ap;m.i;jC1/, and bp

– boundary i D Nx: p D j.Nx C 1/C i , Ap;p D 1
� for i D 0; : : : ; Nx

– boundary j D Ny: p D j.Nx C 1/C i , Ap;p D 1
The right-hand side is set up as follows.

� for i D 0; : : : ; Nx
– boundary j D 0: p D j.Nx C 1/C i , bp D 0

� for j D 0; : : : ; Ny
– boundary i D 0: p D j.Nx C 1/C i , bp D 0
– for i D 1; : : : ; Nx � 1

 interior point p D j.Nx C 1/C i

 fill bp

– boundary i D Nx: p D j.Nx C 1/C i , bp D 0
� for i D 0; : : : ; Nx

– boundary j D Ny: p D j.Nx C 1/C i , bp D 0

3.6.4 Implementation with a Dense Coefficient Matrix

The goal now is to map the algorithms in the previous section to Python code.
One should, for computational efficiency reasons, take advantage of the fact that
the coefficient matrix is sparse and/or banded, i.e., take advantage of all the zeros.
However, we first demonstrate how to fill an N � N dense square matrix, where
N is the number of unknowns, here N D .Nx C 1/.Ny C 1/. The dense matrix is
much easier to understand than the sparse matrix case.

import numpy as np

def solver_dense(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5, user_action=None):
"""
Solve u_t = a*(u_xx + u_yy) + f, u(x,y,0)=I(x,y), with u=0
on the boundary, on [0,Lx]x[0,Ly]x[0,T], with time step dt,
using the theta-scheme.
"""

3.6 Diffusion in 2D 261

x = np.linspace(0, Lx, Nx+1) # mesh points in x dir
y = np.linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]

dt = float(dt) # avoid integer division
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # mesh points in time

Mesh Fourier numbers in each direction
Fx = a*dt/dx**2
Fy = a*dt/dy**2

The unC1i;j and uni;j mesh functions are represented by their spatial values at the mesh
points:

u = np.zeros((Nx+1, Ny+1)) # unknown u at new time level
u_n = np.zeros((Nx+1, Ny+1)) # u at the previous time level

It is a good habit (for extensions) to introduce index sets for all mesh points:

Ix = range(0, Nx+1)
Iy = range(0, Ny+1)
It = range(0, Nt+1)

The initial condition is easy to fill in:

Load initial condition into u_n
for i in Ix:

for j in Iy:
u_n[i,j] = I(x[i], y[j])

The memory for the coefficient matrix and right-hand side vector is allocated by

N = (Nx+1)*(Ny+1) # no of unknowns
A = np.zeros((N, N))
b = np.zeros(N)

The filling of A goes like this:

m = lambda i, j: j*(Nx+1) + i

Equations corresponding to j=0, i=0,1,... (u known)
j = 0
for i in Ix:

p = m(i,j); A[p, p] = 1

262 3 Diffusion Equations

Loop over all internal mesh points in y diretion
and all mesh points in x direction
for j in Iy[1:-1]:

i = 0; p = m(i,j); A[p, p] = 1 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
A[p, m(i,j-1)] = - theta*Fy
A[p, m(i-1,j)] = - theta*Fx
A[p, p] = 1 + 2*theta*(Fx+Fy)
A[p, m(i+1,j)] = - theta*Fx
A[p, m(i,j+1)] = - theta*Fy

i = Nx; p = m(i,j); A[p, p] = 1 # Boundary
Equations corresponding to j=Ny, i=0,1,... (u known)
j = Ny
for i in Ix:

p = m(i,j); A[p, p] = 1

Since A is independent of time, it can be filled once and for all before the time loop.
The right-hand side vector must be filled at each time level inside the time loop:

import scipy.linalg

for n in It[0:-1]:
Compute b
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]: # Interior points

p = m(i,j)
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

Solve matrix system A*c = b
c = scipy.linalg.solve(A, b)

Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

Update u_n before next step
u_n, u = u, u_n

We use solve from scipy.linalg and not from numpy.linalg. The difference
is stated below.

3.6 Diffusion in 2D 263

scipy.linalg versus numpy.linalg
Quote from the SciPy documentation2:

scipy.linalg contains all the functions in numpy.linalg plus some other
more advanced ones not contained in numpy.linalg.

Another advantage of using scipy.linalg over numpy.linalg is that it is al-
ways compiled with BLAS/LAPACK support, while for NumPy this is optional.
Therefore, the SciPy version might be faster depending on how NumPy was in-
stalled.

Therefore, unless you don’t want to add SciPy as a dependency to your
NumPy program, use scipy.linalg instead of numpy.linalg.

The code shown above is available in the solver_dense function in the file
diffu2D_u0.py, differing only in the boundary conditions, which in the code can
be an arbitrary function along each side of the domain.

We do not bother to look at vectorized versions of filling A since a dense matrix
is just used of pedagogical reasons for the very first implementation. Vectorization
will be treated when A has a sparse matrix representation, as in Sect. 3.6.7.

How to debug the computation of A and b

A good starting point for debugging the filling of A and b is to choose a very
coarse mesh, say Nx D Ny D 2, where there is just one internal mesh point,
compute the equations by hand, and print out A and b for comparison in the
code. If wrong elements in A or b occur, print out each assignment to elements
in A and b inside the loops and compare with what you expect.

To let the user store, analyze, or visualize the solution at each time level, we
include a callback function, named user_action, to be called before the time loop
and in each pass in that loop. The function has the signature

user_action(u, x, xv, y, yv, t, n)

where u is a two-dimensional array holding the solution at time level n and time
t[n]. The x and y coordinates of the mesh points are given by the arrays x and y,
respectively. The arrays xv and yv are vectorized representations of the mesh points
such that vectorized function evaluations can be invoked. The xv and yv arrays are
defined by

xv = x[:,np.newaxis]
yv = y[np.newaxis,:]

One can then evaluate, e.g., f .x; y; t/ at all internal mesh points at time level n by
first evaluating f at all points,

f_a = f(xv, yv, t[n])

2 http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html

http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html

264 3 Diffusion Equations

and then use slices to extract a view of the values at the internal mesh points:
f_a[1:-1,1:-1]. The next section features an example on writing a user_action
callback function.

3.6.5 Verification: Exact Numerical Solution

A good test example to start with is one that preserves the solution u D 0, i.e.,
f D 0 and I.x; y/ D 0. This trivial solution can uncover some bugs.

The first real test example is based on having an exact solution of the discrete
equations. This solution is linear in time and quadratic in space:

u.x; y; t/ D 5tx.Lx � x/y.y � Ly/ :
Inserting this manufactured solution in the PDE shows that the source term f must
be

f .x; y; t/ D 5x.Lx � x/y.y � Ly/C 10˛t.x.Lx � x/C y.y � Ly// :
We can use the user_action function to compare the numerical solution with

the exact solution at each time level. A suitable helper function for checking the
solution goes like this:

def quadratic(theta, Nx, Ny):

def u_exact(x, y, t):
return 5*t*x*(Lx-x)*y*(Ly-y)

def I(x, y):
return u_exact(x, y, 0)

def f(x, y, t):
return 5*x*(Lx-x)*y*(Ly-y) + 10*a*t*(y*(Ly-y)+x*(Lx-x))

Use rectangle to detect errors in switching i and j in scheme
Lx = 0.75
Ly = 1.5
a = 3.5
dt = 0.5
T = 2

def assert_no_error(u, x, xv, y, yv, t, n):
"""Assert zero error at all mesh points."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-12
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
print msg
assert diff < tol, msg

solver_dense(
I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

A true test function for checking the quadratic solution for several different meshes
and � values can take the form

3.6 Diffusion in 2D 265

def test_quadratic():
For each of the three schemes (theta = 1, 0.5, 0), a series of
meshes are tested (Nx > Ny and Nx < Ny)
for theta in [1, 0.5, 0]:

for Nx in range(2, 6, 2):
for Ny in range(2, 6, 2):

print ’testing for %dx%d mesh’ % (Nx, Ny)
quadratic(theta, Nx, Ny)

3.6.6 Verification: Convergence Rates

For 2D verification with convergence rate computations, the expressions and com-
putations just build naturally on what we saw for 1D diffusion. Truncation error
analysis and other forms of error analysis point to a numerical error formula like

E D Ct�tp C Cx�x2 C Cy�y2;
where p, Ct , Cx , and Cy are constants. Often, the analysis of a Crank-Nicolson
method can show that p D 2, while the Forward and Backward Euler schemes have
p D 1.

When checking the error formula empirically, we need to reduce it to a formE D
Chr with a single discretization parameter h and some rate r to be estimated. For
the Backward Euler method, where p D 1, we can introduce a single discretization
parameter according to

h D �x2 D �y2; h D K�1�t;
where K is a constant. The error formula then becomes

E D CtKhC CxhC Cyh D QCh; QC D CtK C Cx C Cy :
The simplest choice is obviouslyK D 1. With the Forward Euler method, however,
stability requires�t D hK � h=.4˛/, so K � 1=.4˛/.

For the Crank-Nicolson method, p D 2, and we can simply choose

h D �x D �y D �t;
since there is no restriction on�t in terms of �x and �y.

A frequently used error measure is the `2 norm of the error mesh point val-
ues. Section 2.2.3 and the formula (2.26) shows the error measure for a 1D time-
dependent problem. The extension to the current 2D problem reads

E D
0
@�t�x�y

NtX
nD0

NxX
iD0

NyX
jD0

.ue.xi ; yj ; tn/ � uni;j /2
1
A

1
2

:

One attractive manufactured solution is

ue D e�pt sin.kxx/ sin.kyy/; kx D �

Lx
; ky D �

Ly
;

266 3 Diffusion Equations

where p can be arbitrary. The required source term is

f D .˛.k2x C k2y/ � p/ue :
The function convergence_rates in diffu2D_u0.py implements a conver-

gence rate test. Two potential difficulties are important to be aware of:

1. The error formula is assumed to be correct when h ! 0, so for coarse meshes
the estimated rate r may be somewhat away from the expected value. Fine
meshes may lead to prohibitively long execution times.

2. Choosing p D ˛.k2x C k2y/ in the manufactured solution above seems attractive
(f D 0), but leads to a slower approach to the asymptotic range where the error
formula is valid (i.e., r fluctuates and needs finer meshes to stabilize).

3.6.7 Implementation with a Sparse Coefficient Matrix

We used a sparse matrix implementation in Sect. 3.2.2 for a 1D problemwith a tridi-
agonal matrix. The present matrix, arising from a 2D problem, has five diagonals,
but we can use the same sparse matrix data structure scipy.sparse.diags.

Understanding the diagonals Let us look closer at the diagonals in the example
with a 4 � 3 mesh as depicted in Fig. 3.15 and its associated matrix visualized by
dots for zeros and bullets for nonzeros. From the example mesh, we may generalize
to an Nx �Ny mesh.

0 D m.0; 0/ �
1 D m.1; 0/ �
2 D m.2; 0/ �
3 D m.3; 0/ �
Nx D m.Nx; 0/ �
Nx C 1 D m.0; 1/ �
.Nx C 1/C 1 D m.1; 1/ �
.Nx C 1/C 2 D m.2; 1/ �
.Nx C 1/C 3 D m.3; 1/ �
.Nx C 1/C Nx D m.Nx; 1/ �
2.Nx C 1/ D m.0; 2/ �
2.Nx C 1/C 1 D m.1; 2/ �
2.Nx C 1/C 2 D m.2; 2/ �
2.Nx C 1/C 3 D m.3; 2/ �
2.Nx C 1/C Nx D m.Nx; 2/ �
Ny.Nx C 1/ D m.0;Ny/ �
Ny.Nx C 1/C 1 D m.1;Ny/ �
Ny.Nx C 1/C 2 D m.2;Ny/ �
Ny.Nx C 1/C 3 D m.3;Ny/ �
Ny.Nx C 1/CNx D m.Nx;Ny/ �

The main diagonal has N D .Nx C 1/.Ny C 1/ elements, while the sub- and
super-diagonals have N � 1 elements. By looking at the matrix above, we realize
that the lower diagonal starts in row Nx C 1 and goes to row N , so its length
is N � .Nx C 1/. Similarly, the upper diagonal starts at row 0 and lasts to row
N � .Nx C 1/, so it has the same length. Based on this information, we declare the
diagonals by

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py

3.6 Diffusion in 2D 267

main = np.zeros(N) # diagonal
lower = np.zeros(N-1) # subdiagonal
upper = np.zeros(N-1) # superdiagonal
lower2 = np.zeros(N-(Nx+1)) # lower diagonal
upper2 = np.zeros(N-(Nx+1)) # upper diagonal
b = np.zeros(N) # right-hand side

Filling the diagonals We run through all mesh points and fill in elements on the
various diagonals. The line of mesh points corresponding to j D 0 are all on the
boundary, and only the main diagonal gets a contribution:

m = lambda i, j: j*(Nx+1) + i
j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line

Then we run through all interior j D const lines of mesh points. The first and the
last point on each line, i D 0 and i D Nx , correspond to boundary points:

for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1
i = 0; main[m(i,j)] = 1
i = Nx; main[m(i,j)] = 1 # Boundary

For the interior mesh points i D 1; : : : ; Nx � 1 on a mesh line y D const we can
start with the main diagonal. The entries to be filled go from i D 1 to i D Nx � 1
so the relevant slice in the main vector is m(1,j):m(Nx,j):

main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)

The upper array for the superdiagonal has its index 0 corresponding to row 0 in the
matrix, and the array entries to be set go from m.1; j / to m.Nx � 1; j /:

upper[m(1,j):m(Nx,j)] = - theta*Fx

The subdiagonal (lower array), however, has its index 0 corresponding to row 1, so
there is an offset of 1 in indices compared to the matrix. The first nonzero occurs
(interior point) at a mesh line j D const corresponding to matrix row m.1; j /, and
the corresponding array index in lower is then m.1; j /. To fill the entries from
m.1; j / to m.Nx � 1; j / we set the following slice in lower:

lower_offset = 1
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx

For the upper diagonal, its index 0 corresponds to matrix row 0, so there is no
offset and we can set the entries correspondingly to upper:

upper2[m(1,j):m(Nx,j)] = - theta*Fy

268 3 Diffusion Equations

The lower2 diagonal, however, has its first index 0 corresponding to row Nx C 1,
so here we need to subtract the offset Nx C 1:

lower2_offset = Nx+1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy

We can now summarize the above code lines for setting the entries in the sparse
matrix representation of the coefficient matrix:

lower_offset = 1
lower2_offset = Nx+1
m = lambda i, j: j*(Nx+1) + i

j = 0; main[m(0,j):m(Nx+1,j)] = 1 # j=0 boundary line
for j in Iy[1:-1]: # Interior mesh lines j=1,...,Ny-1

i = 0; main[m(i,j)] = 1 # Boundary
i = Nx; main[m(i,j)] = 1 # Boundary
Interior i points: i=1,...,N_x-1
lower2[m(1,j)-lower2_offset:m(Nx,j)-lower2_offset] = - theta*Fy
lower[m(1,j)-lower_offset:m(Nx,j)-lower_offset] = - theta*Fx
main[m(1,j):m(Nx,j)] = 1 + 2*theta*(Fx+Fy)
upper[m(1,j):m(Nx,j)] = - theta*Fx
upper2[m(1,j):m(Nx,j)] = - theta*Fy

j = Ny; main[m(0,j):m(Nx+1,j)] = 1 # Boundary line

The next task is to create the sparse matrix from these diagonals:

import scipy.sparse

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csr’)

Filling the right-hand side; scalar version Setting the entries in the right-hand
side is easier, since there are no offsets in the array to take into account. The right-
hand side is in fact similar to the one previously shown, when we used a dense
matrix representation (the right-hand side vector is, of course, independent of what
type of representation we use for the coefficient matrix). The complete time loop
goes as follows.

import scipy.sparse.linalg

for n in It[0:-1]:
Compute b
j = 0
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

3.6 Diffusion in 2D 269

for j in Iy[1:-1]:
i = 0; p = m(i,j); b[p] = 0 # Boundary
for i in Ix[1:-1]:

p = m(i,j) # Interior
b[p] = u_n[i,j] + \

(1-theta)*(
Fx*(u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +\
Fy*(u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt)

i = Nx; p = m(i,j); b[p] = 0 # Boundary
j = Ny
for i in Ix:

p = m(i,j); b[p] = 0 # Boundary

Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

Fill u with vector c
for i in Ix:

for j in Iy:
u[i,j] = c[m(i,j)]

Update u_n before next step
u_n, u = u, u_n

Filling the right-hand side; vectorized version. Since we use a sparse matrix
and try to speed up the computations, we should examine the loops and see if some
can be easily removed by vectorization. In the filling of A we have already used
vectorized expressions at each j D const line of mesh points. We can very easily
do the same in the code above and remove the need for loops over the i index:

for n in It[0:-1]:
Compute b, vectorized version

Precompute f in array so we can make slices
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])

j = 0; b[m(0,j):m(Nx+1,j)] = 0 # Boundary
for j in Iy[1:-1]:

i = 0; p = m(i,j); b[p] = 0 # Boundary
i = Nx; p = m(i,j); b[p] = 0 # Boundary
imin = Ix[1]
imax = Ix[-1] # for slice, max i index is Ix[-1]-1
b[m(imin,j):m(imax,j)] = u_n[imin:imax,j] + \

(1-theta)*(Fx*(
u_n[imin+1:imax+1,j] -

2*u_n[imin:imax,j] + \
u_n[imin-1:imax-1,j]) +

Fy*(
u_n[imin:imax,j+1] -

2*u_n[imin:imax,j] +
u_n[imin:imax,j-1])) + \

theta*dt*f_a_np1[imin:imax,j] + \
(1-theta)*dt*f_a_n[imin:imax,j]

j = Ny; b[m(0,j):m(Nx+1,j)] = 0 # Boundary

270 3 Diffusion Equations

Solve matrix system A*c = b
c = scipy.sparse.linalg.spsolve(A, b)

Fill u with vector c
u[:,:] = c.reshape(Ny+1,Nx+1).T

Update u_n before next step
u_n, u = u, u_n

The most tricky part of this code snippet is the loading of values from the one-
dimensional array c into the two-dimensional array u. With our numbering of
unknowns from left to right along “horizontal” mesh lines, the correct reordering
of the one-dimensional array c as a two-dimensional array requires first a reshap-
ing to an (Ny+1,Nx+1) two-dimensional array and then taking the transpose. The
result is an (Nx+1,Ny+1) array compatible with u both in size and appearance of
the function values.

The spsolve function in scipy.sparse.linalg is an efficient version of
Gaussian elimination suited for matrices described by diagonals. The algorithm is
known as sparse Gaussian elimination, and spsolve calls up a well-tested C code
called SuperLU3.

The complete code utilizing spsolve is found in the solver_sparse function
in the file diffu2D_u0.py.

Verification We can easily extend the function quadratic from Sect. 3.6.5 to
include a test of the solver_sparse function as well.

def quadratic(theta, Nx, Ny):
...
t, cpu = solver_sparse(

I, a, f, Lx, Ly, Nx, Ny,
dt, T, theta, user_action=assert_no_error)

3.6.8 The Jacobi IterativeMethod

So far we have created a matrix and right-hand side of a linear system Ac D b and
solved the system for c by calling an exact algorithm based on Gaussian elimination.
A much simpler implementation, which requires no memory for the coefficient ma-
trix A, arises if we solve the system by iterative methods. These methods are only
approximate, and the core algorithm is repeated many times until the solution is
considered to be converged.

Numerical scheme and linear system To illustrate the idea of the Jacobi method,
we simplify the numerical scheme to the Backward Euler case, � D 1, so there are

3 http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

3.6 Diffusion in 2D 271

fewer terms to write:

unC1i;j �
�
Fx

�
unC1i�1;j � 2unC1i;j C unC1iC1;j

�
C Fy

�
unC1i;j�1 � 2unC1i;j C unC1i;jC1

��

D uni;j C�tf nC1i;j :

(3.97)
The idea of the Jacobi iterative method is to introduce an iteration, here with in-
dex r , where we in each iteration treat unC1i;j as unknown, but use values from the

previous iteration for the other unknowns unC1i˙1;j˙1.

Iterations Let unC1;ri;j be the approximation to unC1i;j in iteration r , for all relevant i

and j indices. We first solve with respect to unC1i;j to get the equation to solve:

unC1i;j D .1C 2Fx C 2Fy/�1
�
Fx

�
unC1i�1;j C unC1iC1;j

�
C Fy

�
unC1i;j�1 C unC1i;jC1

��

C uni;j C�tf nC1i;j :

(3.98)
The iteration is introduced by using iteration index r , for computed values, on the
right-hand side and r C 1 (unknown in this iteration) on the left-hand side:

u
nC1;rC1
i;j D .1C 2Fx C 2Fy/�1

�
Fx

�
u
nC1;r
i�1;j C unC1;riC1;j

�
C Fy

�
u
nC1;r
i;j�1 C unC1;ri;jC1

��

C uni;j C�tf nC1i;j : (3.99)

Initial guess We start the iteration with the computed values at the previous time
level:

u
nC1;0
i;j D uni;j ; i D 0; : : : ; Nx; j D 0; : : : ; Ny : (3.100)

Relaxation A common technique in iterative methods is to introduce a relaxation,
which means that the new approximation is a weighted mean of the approximation
as suggested by the algorithm and the previous approximation. Naming the quantity
on the left-hand side of (3.99) as unC1;
i;j , a new approximation based on relaxation
reads

unC1;rC1 D !unC1;
i;j C .1 � !/unC1;ri;j : (3.101)

Under-relaxation means ! < 1, while over-relaxation has ! > 1.

Stopping criteria The iteration can be stopped when the change from one iteration
to the next is sufficiently small (�
), using either an infinity norm,

max
i;j

ˇ̌̌
u
nC1;rC1
i;j � unC1;ri;j

ˇ̌̌
�
; (3.102)

or an L2 norm, 0
@�x�yX

i;j

.u
nC1;rC1
i;j � unC1;ri;j /2

1
A

1
2

�
 : (3.103)

Another widely used criterion measures how well the equations are solved by
looking at the residual (essentially b � AcrC1 if crC1 is the approximation to the

272 3 Diffusion Equations

solution in iteration r C 1). The residual, defined in terms of the finite difference
stencil, is

Ri;j D unC1;rC1i;j �

Fx

�
u
nC1;rC1
i�1;j � 2unC1;rC1i;j C unC1;rC1iC1;j

�

C Fy
�
unC1;rC1i;j�1 � 2unC1;rC1i;j C unC1;rC1i;jC1

�!

� uni;j ��tf nC1i;j : (3.104)

One can then iterate until the norm of the mesh function Ri;j is less than some
tolerance: 0

@�x�yX
i;j

R2i;j

1
A

1
2

�
 : (3.105)

Code-friendly notation To make the mathematics as close as possible to what we
will write in a computer program, we may introduce some new notation: ui;j is

a short notation for unC1;rC1i;j , u�i;j is a short notation for unC1;ri;j , and u.s/i;j denotes

unC1�si;j . That is, ui;j is the unknown, u�i;j is its most recently computed approxima-
tion, and s counts time levels backwards in time. The Jacobi method (3.99) takes
the following form with the new notation:

u
i;j D .1C 2Fx C 2Fy/�1
 �
Fx.u

�
i�1;j C u�iC1;j /C Fy.u�i;j�1 C u�i;jC1/

�

C u.1/i;j C�tf nC1i;j

!
:

(3.106)

Generalization of the scheme We can also quite easily introduce the � rule for
discretization in time and write up the Jacobi iteration in that case as well:

u
i;j D .1C 2�.Fx C Fy//�1

�
�
Fx.u

�
i�1;j C u�iC1;j /C Fy.u�i;j�1 C u�i;jC1/

�

C u.1/i;j C ��tf nC1i;j C .1 � �/�tf ni;j
C .1 � �/

�
Fx
�
u
.1/
i�1;j � 2u.1/i;j C u.1/iC1;j

�

C Fy
�
u
.1/
i;j�1 � 2u.1/i;j C u.1/i;jC1

��!
:

(3.107)
The final update of u applies relaxation:

ui;j D !u
i;j C .1 � !/u�i;j :

3.6 Diffusion in 2D 273

3.6.9 Implementation of the Jacobi Method

The Jacobi method needs no coefficient matrix and right-hand side vector, but it
needs an array for u in the previous iteration. We call this array u_, using the
notation at the end of the previous section (at the same time level). The unknown
itself is called u, while u_n is the computed solution one time level back in time.
With a � rule in time, the time loop can be coded like this:

for n in It[0:-1]:
Solve linear system by Jacobi iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary

Interior points
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u_[i-1,j]) +
Fy*(u_[i,j+1] + u_[i,j-1])) + \

u_n[i,j] + \
(1-theta)*(Fx*(
u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +

Fy*(
u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\

+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \
(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # Boundary

elif version == ’vectorized’:
j = 0; u[:,j] = U_0y(t[n+1]) # Boundary
i = 0; u[i,:] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,:] = U_Lx(t[n+1]) # Boundary
j = Ny; u[:,j] = U_Ly(t[n+1]) # Boundary

Internal points
f_a_np1 = f(xv, yv, t[n+1])
f_a_n = f(xv, yv, t[n])
u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(Fx*(

u_[2:,1:-1] + u_[:-2,1:-1]) +
Fy*(

u_[1:-1,2:] + u_[1:-1,:-2])) +\
u_n[1:-1,1:-1] + \

(1-theta)*(Fx*(
u_n[2:,1:-1] - 2*u_n[1:-1,1:-1] + u_n[:-2,1:-1]) +\

Fy*(
u_n[1:-1,2:] - 2*u_n[1:-1,1:-1] + u_n[1:-1,:-2]))\
+ theta*dt*f_a_np1[1:-1,1:-1] + \
(1-theta)*dt*f_a_n[1:-1,1:-1])

274 3 Diffusion Equations

u[1:-1,1:-1] = omega*u_new + (1-omega)*u_[1:-1,1:-1]
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

Update u_n before next step
u_n, u = u, u_n

The vectorized version should be quite straightforward to understand once one has
an understanding of how a standard 2D finite stencil is vectorized.

The first natural verification is to use the test problem in the function quadratic
from Sect. 3.6.5. This problem is known to have no approximation error, but any
iterative method will produce an approximate solution with unknown error. For a
tolerance 10�k in the iterative method, we can, e.g., use a slightly larger tolerance
10�.k�1/ for the difference between the exact and the computed solution.

def quadratic(theta, Nx, Ny):
...
def assert_small_error(u, x, xv, y, yv, t, n):

"""Assert small error for iterative methods."""
u_e = u_exact(xv, yv, t[n])
diff = abs(u - u_e).max()
tol = 1E-4
msg = ’diff=%g, step %d, time=%g’ % (diff, n, t[n])
assert diff < tol, msg

for version in ’scalar’, ’vectorized’:
for theta in 1, 0.5:

print ’testing Jacobi, %s version, theta=%g’ % \
(version, theta)

t, cpu = solver_Jacobi(
I=I, a=a, f=f, Lx=Lx, Ly=Ly, Nx=Nx, Ny=Ny,
dt=dt, T=T, theta=theta,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0,
user_action=assert_small_error,
version=version, iteration=’Jacobi’,
omega=1.0, max_iter=100, tol=1E-5)

Even for a very coarse 4�4mesh, the Jacobi method requires 26 iterations to reach
a tolerance of 10�5, which is quite many iterations, given that there are only 25
unknowns.

3.6.10 Test Problem: Diffusion of a Sine Hill

It can be shown that

ue D Ae�˛�2.L�2x CL�2y /t sin
�
�

Lx
x

�
sin
�
�

Ly
y

�
; (3.108)

is a solution of the 2D homogeneous diffusion equation ut D ˛.uxx C uyy/ in a
rectangle Œ0; Lx�� Œ0; Ly�, for any value of the amplitude A. This solution vanishes

3.6 Diffusion in 2D 275

at the boundaries, and the initial condition is the product of two sines. We may
choose A D 1 for simplicity.

It is difficult to know if our solver based on the Jacobi method works properly
since we are faced with two sources of errors: one from the discretization, E�, and
one from the iterative Jacobi method, Ei . The total error in the computed u can be
represented as

Eu D E� CEi :
One error measure is to look at the maximum value, which is obtained for the mid-
point x D Lx=2 and y D Lx=2. This midpoint is represented in the discrete u if
Nx andNy are even numbers. We can then computeEu asEu D jmaxue�maxuj,
when we know an exact solution ue of the problem.

What aboutE�? If we use the maximum value as a measure of the error, we have
in fact analytical insight into the approximation error in this particular problem.
According to Sect. 3.3.9, the exact solution (3.108) of the PDE problem is also an
exact solution of the discrete equations, except that the damping factor in time is
different. More precisely, (3.66) and (3.67) are solutions of the discrete problem for
� D 1 (Backward Euler) and � D 1

2
(Crank-Nicolson), respectively. The factors

raised to the power n is the numerical amplitude, and the errors in these factors
become

E� D e�˛k2t �

1 � 2.Fx sin2 px C Fx sin2 py/
1C 2.Fx sin2 px C Fx sin2 py/

!n
; � D 1

2
;

E� D e�˛k2t � .1C 4Fx sin2 px C 4Fy sin2 py/�n; � D 1 :

We are now in a position to compute Ei numerically. That is, we can compute the
error due to iterative solution of the linear system and see if it corresponds to the
convergence tolerance used in the method. Note that the convergence is based on
measuring the difference in two consecutive approximations, which is not exactly
the error due to the iteration, but it is a kind of measure, and it should have about
the same size as Ei .

The function demo_classic_iterative in diffu2D_u0.py implements the
idea above (also for the methods in Sect. 3.6.12). The value of Ei is in particular
printed at each time level. By changing the tolerance in the convergence criterion
of the Jacobi method, we can see that Ei is of the same order of magnitude as the
prescribed tolerance in the Jacobi method. For example: E� � 10�2 with Nx D
Ny D 10 and � D 1

2
, as long as maxu has some significant size (maxu > 0:02).

An appropriate value of the tolerance is then 10�3, such that the error in the Jacobi
method does not become bigger than the discretization error. In that case, Ei is
around 5 � 10�3. The corresponding number of Jacobi iterations (with ! D 1)
varies from 31 to 12 during the time simulation (for maxu > 0:02). Changing
the tolerance to 10�5 causes many more iterations (61 to 42) without giving any
contribution to the overall accuracy, because the total error is dominated by E�.

Also, with an Nx D Ny D 20, the spatial accuracy increases and many more
iterations are needed (143 to 45), but the dominating error is from the time dis-
cretization. However, with such a finer spatial mesh, a higher tolerance in the
convergence criterion 10�4 is needed to keep Ei � 10�3. More experiments show

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py

276 3 Diffusion Equations

the disadvantage of the very simple Jacobi iteration method: the number of itera-
tions increases with the number of unknowns, keeping the tolerance fixed, but the
tolerance should also be lowered to avoid the iteration error to dominate the total er-
ror. A small adjustment of the Jacobi method, as described in Sect. 3.6.12, provides
a better method.

3.6.11 The Relaxed Jacobi Method and Its Relation to the Forward
Euler Method

We shall now show that solving the Poisson equation �˛r2u D f by the Jacobi
iterative method is in fact equivalent to using a Forward Euler scheme on ut D
˛r2uC f and letting t !1.

A Forward Euler discretization of the 2D diffusion equation,

ŒDCt u D ˛.DxDxuCDyDyu/C f �ni;j ;
can be written out as

unC1i;j D uni;j C
�t

˛h2

�
uni�1;j C uniC1;j C uni;j�1 C uni;jC1 � 4uni;j C h2fi;j

�
;

where h D �x D �y has been introduced for simplicity. The scheme can be
reordered as

unC1i;j D .1 � !/uni;j C
1

4
!
�
uni�1;j C uniC1;j C uni;j�1 C uni;jC1 � 4uni;j C h2fi;j

�
;

with

! D 4 �t
˛h2

;

but this latter form is nothing but the relaxed Jacobi method applied to

ŒDxDxuCDyDyu D �f �ni;j :
From the equivalence above we know a couple of things about the Jacobi method

for solving �r2u D f :
1. The method is unstable if ! > 1 (since the Forward Euler method is then unsta-

ble).
2. The convergence is really slow as the iteration index increases (coming from the

fact that the Forward Euler scheme requires many small time steps to reach the
stationary solution).

These observations are quite disappointing: if we already have a time-dependent
diffusion problem and want to take larger time steps by an implicit time discretiza-
tion method, we will with the Jacobi method end up with something close to a slow
Forward Euler simulation of the original problem at each time level. Nevertheless,
the are two reasons for why the Jacobi method remains a fundamental building
block for solving linear systems arising from PDEs: 1) a couple of iterations re-
move large parts of the error and this is effectively used in the very efficient class
of multigrid methods; and 2) the idea of the Jacobi method can be developed into
more efficient methods, especially the SOR method, which is treated next.

3.6 Diffusion in 2D 277

3.6.12 The Gauss-Seidel and SORMethods

If we update the mesh points according to the Jacobi method (3.98) for a Backward
Euler discretization with a loop over i D 1; : : : ; Nx � 1 and j D 1; : : : ; Ny � 1,
we realize that when unC1;rC1i;j is computed, unC1;rC1i�1;j and unC1;rC1i;j�1 are already com-

puted, so these new values can be used rather than unC1;ri�1;j and unC1;ri;j�1 (respectively)

in the formula for unC1;rC1i;j . This idea gives rise to the Gauss-Seidel iteration
method, which mathematically is just a small adjustment of (3.98):

unC1;rC1i;j D

.1C 2Fx C 2Fy/�1
 �
Fx
�
u
nC1;rC1
i�1;j C unC1;riC1;j

�C Fy�unC1;rC1i;j�1 C unC1;ri;jC1
��

C uni;j C�tf nC1i;j

!
: (3.109)

Observe that the way we access the mesh points in the formula (3.109) is important:
points with i �1must be computed before points with i , and points with j �1must
be computed before points with j . Any sequence of mesh points can be used in
the Gauss-Seidel method, but the particular math formula must distinguish between
already visited points in the current iteration and the points not yet visited.

The idea of relaxation (3.101) can equally well be applied to the Gauss-Seidel
method. Actually, the Gauss-Seidel method with an arbitrary 0 < ! � 2 has its
own name: the Successive Over-Relaxation method, abbreviated as SOR.

The SOR method for a � rule discretization, with the shortened u and u� nota-
tion, can be written

u
i;j D .1C 2�.Fx C Fy//�1

�.Fx.ui�1;j C u�iC1;j /C Fy.ui;j�1 C u�i;jC1//

C u.1/i;j C ��tf nC1i;j C .1 � �/�tf ni;j
C .1 � �/

�
Fx

�
u
.1/
i�1;j � 2u.1/i;j C u.1/iC1;j

�

C Fy
�
u
.1/

i;j�1 � 2u.1/i;j C u.1/i;jC1
��!

; (3.110)

ui;j D !u
i;j C .1 � !/u�i;j (3.111)

The sequence of mesh points in (3.110) is i D 1; : : : ; Nx � 1, j D 1; : : : ; Ny � 1
(but whether i runs faster or slower than j does not matter).

3.6.13 Scalar Implementation of the SORMethod

Since the Jacobi and Gauss-Seidel methods with relaxation are so similar, we can
easily make a common code for the two:

278 3 Diffusion Equations

for n in It[0:-1]:
Solve linear system by Jacobi/SOR iteration at time level n+1
u_[:,:] = u_n # Start value
converged = False
r = 0
while not converged:

if version == ’scalar’:
if iteration == ’Jacobi’:

u__ = u_
elif iteration == ’SOR’:

u__ = u
j = 0
for i in Ix:

u[i,j] = U_0y(t[n+1]) # Boundary
for j in Iy[1:-1]:

i = 0; u[i,j] = U_0x(t[n+1]) # Boundary
i = Nx; u[i,j] = U_Lx(t[n+1]) # Boundary
for i in Ix[1:-1]:

u_new = 1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[i+1,j] + u__[i-1,j]) +
Fy*(u_[i,j+1] + u__[i,j-1])) + \

u_n[i,j] + (1-theta)*(
Fx*(

u_n[i+1,j] - 2*u_n[i,j] + u_n[i-1,j]) +
Fy*(

u_n[i,j+1] - 2*u_n[i,j] + u_n[i,j-1]))\
+ theta*dt*f(i*dx,j*dy,(n+1)*dt) + \

(1-theta)*dt*f(i*dx,j*dy,n*dt))
u[i,j] = omega*u_new + (1-omega)*u_[i,j]

j = Ny
for i in Ix:

u[i,j] = U_Ly(t[n+1]) # boundary
r += 1
converged = np.abs(u-u_).max() < tol or r >= max_iter
u_[:,:] = u

u_n, u = u, u_n # Get ready for next iteration

The idea here is to introduce u__ to be used for already computed values (u) in the
Gauss-Seidel/SOR version of the implementation, or just values from the previous
iteration (u_) in case of the Jacobi method.

3.6.14 Vectorized Implementation of the SORMethod

Vectorizing the Gauss-Seidel iteration step turns out to be non-trivial. The prob-
lem is that vectorized operations typically imply operations on arrays where the
sequence in which we visit the elements does not matter. In particular, this prin-
ciple makes vectorized code trivial to parallelize. However, in the Gauss-Seidel
algorithm, the sequence in which we visit the elements in the arrays does matter,
and it is well known that the basic method as explained above cannot be parallelized.
Therefore, also vectorization will require new thinking.

The strategy for vectorizing (and parallelizing) the Gauss-Seidel method is to
use a special numbering of the mesh points called red-black numbering: every other

3.6 Diffusion in 2D 279

point is red or black as in a checkerboard pattern. This numbering requires Nx and
Ny to be even numbers. Here is an example of a 6 � 6 mesh:

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

The idea now is to first update all the red points. Each formula for updating a red
point involves only the black neighbors. Thereafter, we update all the black points,
and at each black point, only the recently computed red points are involved.

The scalar implementation of the red-black numbered Gauss-Seidel method is
really compact, since we can update values directly in u (this guarantees that we
use the most recently computed values). Here is the relevant code for the Backward
Euler scheme in time and without a source term:

Update internal points
for sweep in ’red’, ’black’:

for j in range(1, Ny, 1):
if sweep == ’red’:

start = 1 if j % 2 == 1 else 2
elif sweep == ’black’:

start = 2 if j % 2 == 1 else 1
for i in range(start, Nx, 2):
u[i,j] = 1.0/(1.0 + 2*(Fx + Fy))*(

Fx*(u[i+1,j] + u[i-1,j]) +
Fy*(u[i,j+1] + u[i,j-1]) + u_n[i,j])

The vectorized version must be based on slices. Looking at a typical red-black
pattern, e.g.,

r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r
b r b r b r b
r b r b r b r

we want to update the internal points (marking boundary points with x):

x x x x x x x
x r b r b r x
x b r b r b x
x r b r b r x
x b r b r b x
x r b r b r x
x x x x x x x

280 3 Diffusion Equations

It is impossible to make one slice that picks out all the internal red points. Instead,
we need two slices. The first involves points marked with R:

x x x x x x x
x R b R b R x
x b r b r b x
x R b R b R x
x b r b r b x
x R b R b R x
x x x x x x x

This slice is specified as 1::2 for i and 1::2 for j, or with slice objects:

i = slice(1, None, 2); j = slice(1, None, 2)

The second slice involves the red points with R:

x x x x x x x
x r b r b r x
x b R b R b x
x r b r b r x
x b R b R b x
x r b r b r x
x x x x x x x

The slices are

i = slice(2, None, 2); j = slice(2, None, 2)

For the black points, the first slice involves the B points:

x x x x x x x
x r B r B r x
x b r b r b x
x r B r B r x
x b r b r b x
x r B r B r x
x x x x x x x

with slice objects

i = slice(2, None, 2); j = slice(1, None, 2)

3.6 Diffusion in 2D 281

The second set of black points is shown here:

x x x x x x x
x r b r b r x
x B r B r B x
x r b r b r x
x B r B r B x
x r b r b r x
x x x x x x x

with slice objects

i = slice(1, None, 2); j = slice(2, None, 2)

That is, we need four sets of slices. The simplest way of implementing the
algorithm is to make a function with variables for the slices representing i , i � 1,
i C 1, j , j � 1, and j C 1, here called ic (“i center”), im1 (“i minus 1”, ip1 (“i
plus 1”), jc, jm1, and jp1, respectively.

def update(u_, u_n, ic, im1, ip1, jc, jm1, jp1):
return \

1.0/(1.0 + 2*theta*(Fx + Fy))*(theta*(
Fx*(u_[ip1,jc] + u_[im1,jc]) +
Fy*(u_[ic,jp1] + u_[ic,jm1])) +\

u_n[ic,jc] + (1-theta)*(
Fx*(u_n[ip1,jc] - 2*u_n[ic,jc] + u_n[im1,jc]) +\
Fy*(u_n[ic,jp1] - 2*u_n[ic,jc] + u_n[ic,jm1]))+\
theta*dt*f_a_np1[ic,jc] + \
(1-theta)*dt*f_a_n[ic,jc])

The formula returned from update is to be compared with (3.110).
The relaxed Jacobi iteration can be implemented by

ic = jc = slice(1,-1)
im1 = jm1 = slice(0,-2)
ip1 = jp1 = slice(2,None)
u_new[ic,jc] = update(

u_, u_n, ic, im1, ip1, jc, jm1, jp1)
u[ic,jc] = omega*u_new[ic,jc] + (1-omega)*u_[ic,jc]

The Gauss-Seidel (or SOR) updates need four different steps. The ic and jc
slices are specified above. For each of these, we must specify the corresponding
im1, ip1, jm1, and jp1 slices. The code below contains the details.

282 3 Diffusion Equations

Red points
ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

Black points
ic = slice(2,-1,2)
im1 = slice(1,-2,2)
ip1 = slice(3,None,2)
jc = slice(1,-1,2)
jm1 = slice(0,-2,2)
jp1 = slice(2,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

ic = slice(1,-1,2)
im1 = slice(0,-2,2)
ip1 = slice(2,None,2)
jc = slice(2,-1,2)
jm1 = slice(1,-2,2)
jp1 = slice(3,None,2)
u_new[ic,jc] = update(

u_new, u_n, ic, im1, ip1, jc, jm1, jp1)

Relax
c = slice(1,-1)
u[c,c] = omega*u_new[c,c] + (1-omega)*u_[c,c]

The function solver_classic_iterative in diffu2D_u0.py contains a uni-
fied implementation of the relaxed Jacobi and SORmethods in scalar and vectorized
versions using the techniques explained above.

3.6.15 Direct Versus IterativeMethods

Direct methods There are two classes of methods for solving linear systems: di-
rect methods and iterative methods. Direct methods are based on variants of the
Gaussian elimination procedure and will produce an exact solution (in exact arith-
metics) in an a priori known number of steps. Iterative methods, on the other hand,
produce an approximate solution, and the amount of work for reaching a given ac-
curacy is usually not known.

http://tinyurl.com/nu656p2/diffu/diffu2D_u0.py

3.6 Diffusion in 2D 283

The most common direct method today is to use the LU factorization procedure
to factor the coefficient matrix A as the product of a lower-triangular matrixL (with
unit diagonal terms) and an upper-triangular matrix U : A D LU . As soon as we
have L and U , a system of equations LUc D b is easy to solve because of the
triangular nature of L and U . We first solve Ly D b for y (forward substitution),
and thereafter we find c from solving Uc D y (backward substitution). When A is
a dense N �N matrix, the LU factorization costs 1

3
N 3 arithmetic operations, while

the forward and backward substitution steps each require of the orderN2 arithmetic
operations. That is, factorization dominates the costs, while the substitution steps
are cheap.

Symmetric, positive definite coefficient matrices often arise when discretizing
PDEs. In this case, the LU factorization becomes A D LLT , and the associated
algorithm is known as Cholesky factorization. Most linear algebra software offers
highly optimized implementations of LU and Cholesky factorization as well as for-
ward and backward substitution (scipy.linalg is the relevant Python package).

Finite difference discretizations lead to sparse coefficient matrices. An extreme
case arose in Sect. 3.2.1 where A was tridiagonal. For a tridiagonal matrix, the
amount of arithmetic operations in the LU and Cholesky factorization algorithms
is just of the order N , not N3. Tridiagonal matrices are special cases of banded
matrices, where the matrices contain just a set of diagonal bands. Finite difference
methods on regularly numbered rectangular and box-shaped meshes give rise to
such banded matrices, with 5 bands in 2D and 7 in 3D for diffusion problems.
Gaussian elimination only needs to work within the bands, leading to much more
efficient algorithms.

If Ai;j D 0 for j > i C p and j < i � p, p is the half-bandwidth of the
matrix. We have in our 2D problem p D NxC2, while in 3D, p D .NxC1/.NyC
1/ C 2. The cost of Gaussian elimination is then O.Np2/, so with p
 N , we
see that banded matrices are much more efficient to compute with. By reordering
the unknowns in clever ways, one can reduce the work of Gaussian elimination
further. Fortunately, the Python programmer has access to such algorithms through
the scipy.sparse.linalg package.

Although a direct method is an exact algorithm, rounding errors may in practice
accumulate and pollute the solution. The effect grows with the size of the linear
system, so both for accuracy and efficiency, iterative methods are better suited than
direct methods for solving really large linear systems.

Iterative methods The Jacobi and SOR iterative methods belong to a class of it-
erative methods where the idea is to solve Au D b by splitting A into two parts,
A D M � N , such that solving systems Mu D c is easy and efficient. With the
splitting, we get a system

Mu D NuC b;
which suggests an iterative method

MurC1 D Nur C b; r D 0; 1; 2; : : : ;

where urC1 is a new approximation to u in the r C 1-th iteration. To initiate the
iteration, we need a start vector u0.

284 3 Diffusion Equations

The Jacobi and SOR methods are based on splitting A into a lower tridiagonal
partL, the diagonalD, and an upper tridiagonal part U , such thatA D LCDCU .
The Jacobi method corresponds toM D D and N D �L � U . The Gauss-Seidel
method employsM D LCD and N D �U , while the SOR method corresponds
to

M D 1

!
D C L; N D 1 � !

!
D � U :

The relaxed Jacobi method has similar expressions:

M D 1

!
D; N D 1 � !

!
D � L � U :

With the matrix forms of the Jacobi and SORmethods as written above, we could
in an implementation alternatively fill the matrix A with entries and call general
implementations of the Jacobi or SOR methods that work on a system Au D b.
However, this is almost never done since forming the matrix A requires quite some
code and storing A in the computer’s memory is unnecessary. It is much easier to
just apply the Jacobi and SOR ideas to the finite difference stencils directly in an
implementation, as we have shown in detail.

Nevertheless, the matrix formulation of the Jacobi and SOR methods have been
important for analyzing their convergence behavior. One can show that the error
ur � u fulfills ur � u D Gr.u0 � u/, where G D M�1N and Gk is a matrix
exponential. For the method to converge, limr!1 jjGr jj D 0 is a necessary and
sufficient condition. This implies that the spectral radius of G must be less than
one. Since G is directly related to the finite difference scheme for the underlying
PDE problem, one can in principle compute the spectral radius. For a given PDE
problem, however, this is not a practical strategy, since it is very difficult to de-
velop useful formulas. Analysis of model problems, usually related to the Poisson
equation, reveals some trends of interest: the convergence rate of the Jacobi method
goes like h2, while that of SOR with an optimal ! goes like h, where h is the spa-
tial spacing: h D �x D �y. That is, the efficiency of the Jacobi method quickly
deteriorates with the increasing mesh resolution, and SOR is much to be preferred
(even if the optimal ! remains an open question). We refer to Chapter 4 of [16] for
more information on the convergence theory. One important result is that if A is
symmetric and positive definite, then SOR will converge for any 0 < ! < 2.

The optimal ! parameter can be theoretically established for a Poisson problem
as

!o D 2

1Cp1 � %2 ; % D cos.�=Nx/C .�x=�y/2 cos.�=Ny/
1C .�x=�y/2 : (3.112)

This formula can be used as a guide also in other problems.
The Jacobi and the SOR methods have their great advantage of being trivial

to implement, so they are obviously popular of this reason. However, the slow
convergence of these methods limits the popularity to fairly small linear systems
(i.e., coarse meshes). As soon as the matrix size grows, one is better off with more
sophisticated iterative methods like the preconditioned Conjugate gradient method,
which we now turn to.

3.6 Diffusion in 2D 285

Finally, we mention that there is a variant of the SORmethod, called the Symmet-
ric Successive Over-relaxationmethod, known as SSOR, where one runs a standard
SOR sweep through the mesh points and then a new sweep while visiting the points
in reverse order.

3.6.16 The Conjugate Gradient Method

There is no simple intuitive derivation of the Conjugate gradient method, so we refer
to the many excellent expositions in the literature for the idea of the method and
how the algorithm is derived. In particular, we recommend the books [1, 2, 5, 16].
A brief overview is provided in the Wikipedia article4. Here, we just state the pros
and cons of the method from a user’s perspective and how we utilize it in code.

The original Conjugate gradient method is limited to linear systems Au D b,
whereA is a symmetric and positive definite matrix. There are, however, extensions
of the method to non-symmetric matrices.

A major advantage of all conjugate gradient methods is that the matrix A is
only used in matrix-vector products, so we do not need form and store A if we can
provide code for computing a matrix-vector productAu. Another important feature
is that the algorithm is very easy to vectorize and parallelize. The primary downside
of the method is that it converges slowly unless one has an effective preconditioner
for the system. That is, instead of solving Au D b, we try to solve M�1Au D
M�1b in the hope that the method works better for this preconditioned system. The
matrixM is the preconditioner or preconditioning matrix. Now we need to perform
matrix-vector products y D M�1Au, which is done in two steps: first the matrix-
vector product v D Au is carried out and then the systemMy D v must be solved.
Therefore, M must be cheap to compute and systems My D v must be cheap to
solve.

A perfect preconditioner is M D A, but in each iteration in the Conjugate gra-
dient method one then has so solve a system with A as coefficient matrix! A key
idea is to letM be some kind of cheap approximation to A. The simplest precondi-
tioner is to setM D D, whereD is the diagonal of A. This choice means running
one Jacobi iteration as preconditioner. Exercise 3.8 shows that the Jacobi and SOR
methods can also be viewed as preconditioners.

Constructing good preconditioners is a scientific field on its own. Here we shall
treat the topic just very briefly. For a user having access to the scipy.sparse.
linalg library, there are Conjugate gradient methods and preconditioners readily
available:

� For positive definite, symmetric systems: cg (the Conjugate gradient method)
� For symmetric systems: minres (Minimum residual method)
� For non-symmetric systems:

– gmres (GMRES: Generalized minimum residual method)
– bicg (BiConjugate gradient method)
– bicgstab (Stabilized BiConjugate gradient method)

4 https://en.wikipedia.org/wiki/Conjugate_gradient_method

https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method

286 3 Diffusion Equations

– cgs (Conjugate gradient squared method)
– qmr (Quasi-minimal residual iteration)

� Preconditioner: spilu (Sparse, incomplete LU factorization)

The ILU preconditioner is an attractive all-round type of preconditioner that is suit-
able for most problems on serial computers. A more efficient preconditioner is
the multigrid method, and algebraic multigrid is also an all-round choice as pre-
conditioner. The Python package PyAMG5 offers efficient implementations of the
algebraic multigrid method, to be used both as a preconditioner and as a stand-alone
iterative method.

The matrix arising from implicit time discretization methods applied to the dif-
fusion equation is symmetric and positive definite. Thus, we can use the Conjugate
gradient method (cg), typically in combination with an ILU preconditioner. The
code is very similar to the one we created when solving the linear system by sparse
Gaussian elimination, the main difference is that we now allow for calling up the
Conjugate gradient function as an alternative solver.

def solver_sparse(
I, a, f, Lx, Ly, Nx, Ny, dt, T, theta=0.5,
U_0x=0, U_0y=0, U_Lx=0, U_Ly=0, user_action=None,
method=’direct’, CG_prec=’ILU’, CG_tol=1E-5):
"""
Full solver for the model problem using the theta-rule
difference approximation in time. Sparse matrix with
dedicated Gaussian elimination algorithm (method=’direct’)
or ILU preconditioned Conjugate Gradients (method=’CG’ with
tolerance CG_tol and preconditioner CG_prec (’ILU’ or None)).
"""
Set up data structures as shown before

Precompute sparse matrix
...

A = scipy.sparse.diags(
diagonals=[main, lower, upper, lower2, upper2],
offsets=[0, -lower_offset, lower_offset,

-lower2_offset, lower2_offset],
shape=(N, N), format=’csc’)

if method == ’CG’:
if CG_prec == ’ILU’:

Find ILU preconditioner (constant in time)
A_ilu = scipy.sparse.linalg.spilu(A) # SuperLU defaults
M = scipy.sparse.linalg.LinearOperator(

shape=(N, N), matvec=A_ilu.solve)
else:

M = None
CG_iter = [] # No of CG iterations at time level n

Time loop
for n in It[0:-1]:

Compute b, vectorized version

5 https://github.com/pyamg/pyamg

https://github.com/pyamg/pyamg
https://github.com/pyamg/pyamg

3.7 RandomWalk 287

Solve matrix system A*c = b
if method == ’direct’:

c = scipy.sparse.linalg.spsolve(A, b)
elif method == ’CG’:

x0 = u_n.T.reshape(N) # Start vector is u_n
CG_iter.append(0)

def CG_callback(c_k):
"""Trick to count the no of iterations in CG."""
CG_iter[-1] += 1

c, info = scipy.sparse.linalg.cg(
A, b, x0=x0, tol=CG_tol, maxiter=N, M=M,
callback=CG_callback)

Fill u with vector c
Update u_n before next step
u_n, u = u, u_n

The number of iterations in the Conjugate gradient method is of interest, but is
unfortunately not available from the cg function. Therefore, we perform a trick:
in each iteration a user function CG_callback is called where we accumulate the
number of iterations in a list CG_iter.

3.6.17 What Is the RecommendedMethod for Solving Linear
Systems?

There is no clear answer to this question. If you have enough memory and comput-
ing time available, direct methods such as spsolve are to be preferred since they
are easy to use and finds almost an exact solution. However, in larger 2D and in
3D problems, direct methods usually run too slowly or require too much memory,
so one is forced to use iterative methods. The fastest and most reliable methods are
in the Conjugate Gradient family, but these require suitable preconditioners. ILU is
an all-round preconditioner, but it is not suited for parallel computing. The Jacobi
and SOR iterative methods are easy to implement, and popular for that reason, but
run slowly. Jacobi iteration is not an option in real problems, but SOR may be.

3.7 RandomWalk

Models leading to diffusion equations, see Sect. 3.8, are usually based on reasoning
with averaged physical quantities such as concentration, temperature, and velocity.
The underlying physical processes involve complicated microscopic movement of
atoms and molecules, but an average of a large number of molecules is performed
in a small volume before the modeling starts, and the averaged quantity inside this
volume is assigned as a point value at the centroid of the volume. This means that
concentration, temperature, and velocity at a space-time point represent averages
around the point in a small time interval and small spatial volume.

288 3 Diffusion Equations

Random walk is a principally different kind of modeling procedure compared to
the reasoning behind partial differential equations. The idea in random walk is to
have a large number of “particles” that undergo random movements. Averaging can
then be used afterwards to compute macroscopic quantities like concentration. The
“particles” and their random movement represent a very simplified microscopic be-
havior of molecules, much simpler and computationally much more efficient than
direct molecular simulation6, yet the random walk model has been very powerful to
describe a wide range of phenomena, including heat conduction, quantum mechan-
ics, polymer chains, population genetics, neuroscience, hazard games, and pricing
of financial instruments.

It can be shown that random walk, when averaged, produces models that are
mathematically equivalent to diffusion equations. This is the primary reason why
we treat randomwalk in this chapter: two very different algorithms (finite difference
stencils and random walk) solve the same type of problems. The simplicity of
the random walk algorithm makes it particularly attractive for solving diffusion
equations on massively parallel computers. The exposition here is as simple as
possible, and good thorough derivation of the models is provided by Hjorth-Jensen
[7].

3.7.1 RandomWalk in 1D

Imagine that we have some particles that perform random moves, either to the right
or to the left. We may flip a coin to decide the movement of each particle, say head
implies movement to the right and tail means movement to the left. Each move is
one unit length. Physicists use the term random walk for this type of movement.
The movement is also known as drunkard’s walk7. You may try this yourself: flip
the coin and make one step to the left or right, and repeat the process.

We introduce the symbol N for the number of steps in a random walk. Fig-
ure 3.16 shows four different random walks with N D 200.

3.7.2 Statistical Considerations

Let Sk be the stochastic variable representing a step to the left or to the right in step
number k. We have that Sk D �1 with probability p and Sk D 1 with probability
q D 1 � p. The variable Sk is known as a Bernoulli variable8. The expectation of
Sk is

EŒSk� D p � .�1/C q � 1 D 1 � 2p;
and the variance is

Var.Sk/ D EŒS2k � � EŒSk�
2 D 1 � .1 � 2p/2 D 4p.1 � p/ :

6 https://en.wikipedia.org/wiki/Molecular_dynamics
7 https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
8 https://en.wikipedia.org/wiki/Bernoulli_distribution

https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Molecular_dynamics
https://en.wikipedia.org/wiki/The_Drunkard%27s_Walk
https://en.wikipedia.org/wiki/Bernoulli_distribution

3.7 RandomWalk 289

Fig. 3.16 Ensemble of 4 random walks, each with 200 steps

The position after k steps is another stochastic variable

NXk D
k�1X
iD0

Si :

The expected position is

EŒ NXk� D E

k�1X
iD0

Si

!
D

k�1X
iD0

EŒSi � D k.1 � 2p/ :

All the Sk variables are independent. The variance therefore becomes

Var. NXk/ D Var

k�1X
iD0

Si

!
D

k�1X
iD0

Var.Si / D k4p.1 � p/ :

We see that Var. NXk/ is proportional with the number of steps k. For the very im-
portant case p D q D 1

2
, EŒ NXk� D 0 and Var. NXk/ D k.

How can we estimate EŒ NXk� D 0 and Var. NXk/ D N ? We must have many
random walks of the type in Fig. 3.16. For a given k, say k D 100, we find all
the values of NXk , name them Nx0;k , Nx1;k , Nx2;k , and so on. The empirical estimate of
EŒ NXk� is the average,

EŒ NXk� � 1

W

W�1X
jD0
Nxj;k;

290 3 Diffusion Equations

while an empirical estimate of Var. NXk/ is

Var. NXk/ � 1

W

W�1X
jD0

. Nxj;k/2 �
0
@ 1

W

W�1X
jD0
Nxj;k
1
A
2

:

That is, we take the statistics for a given K across the ensemble of random walks
(“vertically” in Fig. 3.16). The key quantities to record are

P
i Nxi;k and

P
i Nx2i;k .

3.7.3 Playing Around with Some Code

Scalar code Python has a random module for drawing random numbers, and this
module has a function uniform(a, b) for drawing a uniformly distributed random
number in the interval Œa; b/. If an event happens with probability p, we can sim-
ulate this on the computer by drawing a random number r in Œ0; 1/, because then
r � p with probability p and r > p with probability 1 � p:

import random
r = random.uniform(0, 1)
if r <= p:

Event happens
else:

Event does not happen

A random walk with N steps, starting at x0, where we move to the left with proba-
bility p and to the right with probability 1 � p can now be implemented by

import random, numpy as np

def random_walk1D(x0, N, p):
"""1D random walk with 1 particle."""
Store position in step k in position[k]
position = np.zeros(N)
position[0] = x0
current_pos = x0
for k in range(N-1):

r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position[k+1] = current_pos

return position

Vectorized code SinceN is supposed to be large and we want to repeat the process
for many particles, we should speed up the code as much as possible. Vectorization
is the obvious technique here: we draw all the random numbers at once with aid
of numpy, and then we formulate vector operations to get rid of the loop over the
steps (k). The numpy.random module has vectorized versions of the functions in

3.7 RandomWalk 291

Python’s built-in random module. For example, numpy.random.uniform(a, b,
N) returns N random numbers uniformly distributed between a (included) and b (not
included).

We can then make an array of all the steps in a random walk: if the random
number is less than or equal to p, the step is �1, otherwise the step is 1:

r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)

The value of position[k] is the sum of all steps up to step k. Such sums are
often needed in vectorized algorithms and therefore available by the numpy.cumsum
function:

>>> import numpy as np
>>> np.cumsum(np.array([1,3,4,6]))
array([1, 4, 8, 14])

The resulting array in this demo has elements 1, 1 C 3 D 4, 1 C 3 C 4 D 8, and
1C 3C 4C 6 D 14.

We can now vectorize the random_walk1D function:

def random_walk1D_vec(x0, N, p):
"""Vectorized version of random_walk1D."""
Store position in step k in position[k]
position = np.zeros(N+1)
position[0] = x0
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
position[1:] = x0 + np.cumsum(steps)
return position

This code runs about 10 times faster than the scalar version. With a parallel numpy
library, the code can also automatically take advantage of hardware for parallel
computing because each of the four array operations can be trivially parallelized.

Fixing the random sequence During software development with random numbers
it is advantageous to always generate the same sequence of random numbers, as this
may help debugging processes. To fix the sequence, we set a seed of the random
number generator to some chosen integer, e.g.,

np.random.seed(10)

Calls to random_walk1D_vecgive positions of the particle as depicted in Fig. 3.17.
The particle starts at the origin and moves with p D 1

2
. Since the seed is the same,

the plot to the left is just a magnification of the first 1000 steps in the plot to the
right.

292 3 Diffusion Equations

Fig. 3.17 1000 (left) and 50,000 (right) steps of a random walk

Verification When we have a scalar and a vectorized code, it is always a good idea
to develop a unit test for checking that they produce the same result. A problem
in the present context is that the two versions apply two different random number
generators. For a test to be meaningful, we need to fix the seed and use the same
generator. This means that the scalar version must either use np.random or have
this as an option. An option is the most flexible choice:

import random

def random_walk1D(x0, N, p, random=random):
...
r = random.uniform(0, 1)

Using random=np.random, the r variable gets computed by np.random.uniform,
and the sequence of random numbers will be the same as in the vectorized version
that employs the same generator (given that the seed is also the same). A proper test
function may be to check that the positions in the walk are the same in the scalar
and vectorized implementations:

def test_random_walk1D():
For fixed seed, check that scalar and vectorized versions
produce the same result
x0 = 2; N = 4; p = 0.6
np.random.seed(10)
scalar_computed = random_walk1D(x0, N, p, random=np.random)
np.random.seed(10)
vectorized_computed = random_walk1D_vec(x0, N, p)
assert (scalar_computed == vectorized_computed).all()

Note that we employ == for arrays with real numbers, which is normally an inad-
equate test due to rounding errors, but in the present case, all arithmetics consists
of adding or subtracting one, so these operations are expected to have no rounding
errors. Comparing two numpy arrays with == results in a boolean array, so we need
to call the all()method to ensure that all elements are True, i.e., that all elements
in the two arrays match each other pairwise.

3.7 RandomWalk 293

3.7.4 Equivalence with Diffusion

The original random walk algorithm can be said to work with dimensionless co-
ordinates Nxi D �N C i , i D 0; 1; : : : ; 2N C 1 (i 2 Œ�N;N �), and Ntn D n,
n D 0; 1; : : : ; N . A mesh with spacings �x and �t with dimensions can be intro-
duced by

xi D X0 C Nxi�x; tn D Ntn�t :
If we implement the algorithm with dimensionless coordinates, we can just use this
rescaling to obtain the movement in a coordinate system without unit spacings.

Let P nC1
i be the probability of finding the particle at mesh point Nxi at time NtnC1.

We can reach mesh point .i; n C 1/ in two ways: either coming in from the left
from .i � 1; n/ or from the right (i C 1; n/. Each has probability 1

2
(if we assume

p D q D 1
2
). The fundamental equation for PnC1

i is

P nC1
i D 1

2
P n
i�1 C

1

2
P n
iC1 : (3.113)

(This equation is easiest to understand if one looks at the random walk as a Markov
process and applies the transition probabilities, but this is beyond scope of the
present text.)

Subtracting P n
i from (3.113) results in

P nC1
i � P n

i D
1

2

�
P n
i�1 � 2P n

i C
1

2
P n
iC1

�
:

Readers who have seen the Forward Euler discretization of a 1D diffusion equation
recognize this scheme as very close to such a discretization. We have

@

@t
P.xi ; tn/ D P nC1

i � P n
i

�t
CO.�t/;

or in dimensionless coordinates

@

@Nt P. Nxi ; Ntn/ � P
nC1
i � P n

i :

Similarly, we have

@2

@x2
P.xi ; tn/ D

P n
i�1 � 2P n

i C 1
2
P n
iC1

�x2
CO.�x2/;

@2

@x2
P. Nxi ; Ntn/ � P n

i�1 � 2P n
i C

1

2
P n
iC1 :

Equation (3.113) is therefore equivalent with the dimensionless diffusion equation

@P

@Nt D
1

2

@2P

@ Nx2 ; (3.114)

or the diffusion equation
@P

@t
D D@

2P

@x2
; (3.115)

294 3 Diffusion Equations

with diffusion coefficient

D D �x2

2�t
:

This derivation shows the tight link between random walk and diffusion. If we
keep track of where the particle is, and repeat the process many times, or run the
algorithms for lots of particles, the histogram of the positions will approximate the
solution of the diffusion equation for the local probability Pn

i .
Suppose all the random walks start at the origin. Then the initial condition for

the probability distribution is the Dirac delta function ı.x/. The solution of (3.114)
can be shown to be

NP . Nx; Nt/ D 1p
4�˛t

e�
x2

4˛t ; (3.116)

where ˛ D 1
2
.

3.7.5 Implementation ofMultiple Walks

Our next task is to implement an ensemble of walks (for statistics, see Sect. 3.7.2)
and also provide data from the walks such that we can compute the probabilities of
the positions as introduced in the previous section. An appropriate representation of
probabilities P n

i are histograms (with i along the x axis) for a few selected values
of n.

To estimate the expectation and variance of the random walks, Sect. 3.7.2 points
to recording

P
j xj;k and

P
j x

2
j;k, where xj;k is the position at time/step level k in

random walk number j . The histogram of positions needs the individual values xi;k
for all i values and some selected k values.

We introduce position[k] to hold
P
j xj;k, position2[k] to hold

P
j .xj;k/

2,
and pos_hist[i,k] to hold xi;k. A selection of k values can be specified by saying
how many, num_times, and let them be equally spaced through time:

pos_hist_times = [(N//num_times)*i for i in range(num_times)]

This is one of the few situations where we want integer division (//) or real division
rounded to an integer.

Scalar version Our scalar implementation of running num_walks random walks
may go like this:

def random_walks1D(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
position = np.zeros(N+1) # Accumulated positions
position[0] = x0*num_walks
position2 = np.zeros(N+1) # Accumulated positions**2
position2[0] = x0**2*num_walks
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]
#print ’save hist:’, post_hist_times

3.7 RandomWalk 295

for n in range(num_walks):
num_times_counter = 0
current_pos = x0
for k in range(N):

if k in pos_hist_times:
#print ’save, k:’, k, num_times_counter, n
pos_hist[n,num_times_counter] = current_pos
num_times_counter += 1

current_pos corresponds to step k+1
r = random.uniform(0, 1)
if r <= p:

current_pos -= 1
else:

current_pos += 1
position [k+1] += current_pos
position2[k+1] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized version We have already vectorized a single random walk. The
additional challenge here is to vectorize the computation of the data for the his-
togram, pos_hist, but given the selected steps in pos_hist_times, we can
find the corresponding positions by indexing with the list pos_hist_times:
position[post_hist_times], which are to be inserted in pos_hist[n,:].

def random_walks1D_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walk = np.zeros(N+1) # Positions of current walk
walk[0] = x0
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
r = np.random.uniform(0, 1, size=N)
steps = np.where(r <= p, -1, 1)
walk[1:] = x0 + np.cumsum(steps) # Positions of this walk
position += walk
position2 += walk**2
pos_hist[n,:] = walk[pos_hist_times]

return position, position2, pos_hist, np.array(pos_hist_times)

Improved vectorized version Looking at the vectorized version above, we still
have one potentially long Python loop over n. Normally, num_walks will be much
larger than N. The vectorization of the loop over N certainly speeds up the program,
but if we think of vectorization as also a way to parallelize the code, all the in-
dependent walks (the n loop) can be executed in parallel. Therefore, we should
include this loop as well in the vectorized expressions, at the expense of using more
memory.

We introduce the array walks to hold the N C 1 steps of all the walks: each row
represents the steps in one walk.

296 3 Diffusion Equations

walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0

Since all the steps are independent, we can just make one long vector of enough
random numbers (N*num_walks), translate these numbers to ˙1, then we reshape
the array such that the steps of each walk are stored in the rows.

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)

The next step is to sum up the steps in each walk. We need the np.cumsum func-
tion for this, with the argument axis=1 for indicating a sum across the columns:

>>> a = np.arange(6).reshape(2,3)
>>> a
array([[0, 1, 2],

[3, 4, 5]])
>>> np.cumsum(a, axis=1)
array([[0, 1, 3],

[3, 7, 12]])

Now walks can be computed by

walks[:,1:] = x0 + np.cumsum(steps, axis=1)

The position vector is the sum of all the walks. That is, we want to sum all the
rows, obtained by

position = np.sum(walks, axis=0)

A corresponding expression computes the squares of the positions. Finally, we need
to compute pos_hist, but that is a matter of grabbing some of the walks (according
to pos_hist_times):

pos_hist[:,:] = walks[:,pos_hist_times]

The complete vectorized algorithm without any loop can now be summarized:

def random_walks1D_vec2(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
walks = np.zeros((num_walks, N+1)) # Positions of each walk
walks[:,0] = x0
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

3.7 RandomWalk 297

r = np.random.uniform(0, 1, size=N*num_walks)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N)
walks[:,1:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:] = walks[:,pos_hist_times]
return position, position2, pos_hist, np.array(pos_hist_times)

What is the gain of the vectorized implementations? One important gain is that
each vectorized operation can be automatically parallelized if one applies a parallel
numpy library like Numba9. On a single CPU, however, the speed up of the vec-
torized operations is also significant. With N D 1000 and 50,000 repeated walks,
the two vectorized versions run about 25 and 18 times faster than the scalar version,
with random_walks1D_vec1 being fastest.

Remark on vectorized code and parallelization Our first attempt on vectoriza-
tion removed the loop over the N steps in a single walk. However, the number of
walks is usually much larger than N , because of the need for accurate statistics.
Therefore, we should rather remove the loop over all walks. It turns out, from our
efficiency experiments, that the function random_walks1D_vec2 (with no loops) is
slower than random_walks1D_vec1. This is a bit surprising and may be explained
by less efficiency in the statements involving very large arrays, containing all steps
for all walks at once.

From a parallelization and improved vectorization point of view, it would be
more natural to switch the sequence of the loops in the serial code such that the
shortest loop is the outer loop:

def random_walks1D2(x0, N, p, num_walks=1, num_times=1, ...):
...
current_pos = x0 + np.zeros(num_walks)
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True

else:
store_hist = False

for n in range(num_walks):
current_pos corresponds to step k+1
r = random.uniform(0, 1)

if r <= p:
current_pos[n] -= 1

else:
current_pos[n] += 1

position [k+1] += current_pos[n]
position2[k+1] += current_pos[n]**2
if store_hist:

pos_hist[n,num_times_counter] = current_pos[n]
return position, position2, pos_hist, np.array(pos_hist_times)

9 http://numba.pydata.org

http://numba.pydata.org
http://numba.pydata.org

298 3 Diffusion Equations

The vectorized version of this code, where we just vectorize the loop over n, be-
comes

def random_walks1D2_vec1(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D2."""
position = np.zeros(N+1) # Accumulated positions
position2 = np.zeros(N+1) # Accumulated positions**2
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

current_pos = np.zeros(num_walks)
current_pos[0] = x0
num_times_counter = -1

for k in range(N):
if k in pos_hist_times:
num_times_counter += 1
store_hist = True # Store histogram data for this k

else:
store_hist = False

Move all walks one step
r = np.random.uniform(0, 1, size=num_walks)
steps = np.where(r <= p, -1, 1)
current_pos += steps
position[k+1] = np.sum(current_pos)
position2[k+1] = np.sum(current_pos**2)
if store_hist:

pos_hist[:,num_times_counter] = current_pos
return position, position2, pos_hist, np.array(pos_hist_times)

This function runs significantly faster than the random_walks1D_vec1 function
above, typically 1.7 times faster. The code is also more appropriate in a paral-
lel computing context since each vectorized statement can work with data of size
num_walks over the compute units, repeated N times (compared with data of size
N, repeated num_walks times, in random_walks1D_vec1).

The scalar code with switched loops, random_walks1D2 runs a bit slower than
the original code in random_walks1D, so with the longest loop as the inner loop,
the vectorized function random_walks1D2_vec1 is almost 60 times faster than the
scalar counterpart, while the code random_walks1D_vec2 without loops is only
around 18 times faster. Taking into account the very large arrays required by the
latter function, we end up with random_walks1D2_vec1 as the preferred imple-
mentation.

Test function During program development, it is highly recommended to carry out
computations by hand for, e.g., N=4 and num_walks=3. Normally, this is done by
executing the program with these parameters and checking with pen and paper that
the computations make sense. The next step is to use this test for correctness in a
formal test function.

First, we need to check that the simulation of multiple random walks reproduces
the results of random_walk1D,random_walk1D_vec1, and random_walk1D_vec2

3.7 RandomWalk 299

for the first walk, if the seed is the same. Second, we run three random walks (N=4)
with the scalar and the two vectorized versions and check that the returned arrays
are identical.

For this type of test to be successful, we must be sure that exactly the same set
of random numbers are used in the three versions, a fact that requires the same ran-
dom number generator and the same seed, of course, but also the same sequence of
computations. This is not obviously the case with the three random_walk1D* func-
tions we have presented. The critical issue in random_walk1D_vec1 is that the first
random numbers are used for the first walk, the second set of random numbers is
used for the second walk and so on, to be compatible with how the random numbers
are used in the function random_walk1D. For the function random_walk1D_vec2
the situation is a bit more complicated since we generate all the random numbers
at once. However, the critical step now is the reshaping of the array returned from
np.where: we must reshape as (num_walks, N) to ensure that the first N random
numbers are used for the first walk, the next N numbers are used for the second
walk, and so on.

We arrive at the test function below.

def test_random_walks1D():
For fixed seed, check that scalar and vectorized versions
produce the same result
x0 = 0; N = 4; p = 0.5

First, check that random_walks1D for 1 walk reproduces
the walk in random_walk1D
num_walks = 1
np.random.seed(10)
computed = random_walks1D(

x0, N, p, num_walks, random=np.random)
np.random.seed(10)
expected = random_walk1D(

x0, N, p, random=np.random)
assert (computed[0] == expected).all()

Same for vectorized versions
np.random.seed(10)
computed = random_walks1D_vec1(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()
np.random.seed(10)
computed = random_walks1D_vec2(x0, N, p, num_walks)
np.random.seed(10)
expected = random_walk1D_vec(x0, N, p)
assert (computed[0] == expected).all()

Second, check multiple walks: scalar == vectorized
num_walks = 3
num_times = N
np.random.seed(10)
serial_computed = random_walks1D(

x0, N, p, num_walks, num_times, random=np.random)

300 3 Diffusion Equations

np.random.seed(10)
vectorized1_computed = random_walks1D_vec1(

x0, N, p, num_walks, num_times)
np.random.seed(10)
vectorized2_computed = random_walks1D_vec2(

x0, N, p, num_walks, num_times)
positions: [0, 1, 0, 1, 2]
Can test without tolerance since everything is +/- 1
return_values = [’pos’, ’pos2’, ’pos_hist’, ’pos_hist_times’]
for s, v, r in zip(serial_computed,

vectorized1_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg

for s, v, r in zip(serial_computed,
vectorized2_computed,
return_values):

msg = ’%s: %s (serial) vs %s (vectorized)’ % (r, s, v)
assert (s == v).all(), msg

Such test functions are indispensable for further development of the code as we
can at any time test whether the basic computations remain correct or not. This
is particularly important in stochastic simulations since without test functions and
fixed seeds, we always experience variations from run to run, and it can be very
difficult to spot bugs through averaged statistical quantities.

3.7.6 Demonstration of Multiple Walks

Assuming now that the code works, we can just scale up the number of steps in each
walk and the number of walks. The latter influences the accuracy of the statistical
estimates. Figure 3.18 shows the impact of the number of walks on the expectation,
which should approach zero. Figure 3.19 displays the corresponding estimate of
the variance of the position, which should grow linearly with the number of steps.
It does, seemingly very accurately, but notice that the scale on the y axis is so much
larger than for the expectation, so irregularities due to the stochastic nature of the
process become so much less visible in the variance plots. The probability of find-
ing a particle at a certain position at time (or step) 800 is shown in Fig. 3.20. The
dashed red line is the theoretical distribution (3.116) arising from solving the dif-
fusion equation (3.114) instead. As always, we realize that one needs significantly
more statistical samples to estimate a histogram accurately than the expectation or
variance.

3.7.7 Ascii Visualization of 1D RandomWalk

If we want to study (very) long time series of random walks, it can be convenient
to plot the position in a terminal window with the time axis pointing downwards.
The module avplotter in SciTools has a class Plotter for plotting functions in
the terminal window with the aid of ascii symbols only. Below is the code required
to visualize a simple random walk, starting at the origin, and considered over when

3.7 RandomWalk 301

Fig. 3.18 Estimated expected value for 1000 steps, using 100 walks (upper left), 10,000 (upper
right), 100,000 (lower left), and 1,000,000 (lower right)

the point x D �1 is reached. We use a spacing�x D 0:05 (so x D �1 corresponds
to i D �20).

def run_random_walk():
from scitools.avplotter import Plotter
import time, numpy as np
p = Plotter(-1, 1, width=75) # Horizontal axis: 75 chars wide
dx = 0.05
np.random.seed(10)

x = 0
while True:

random_step = 1 if np.random.random() > 0.5 else -1
x = x + dx*random_step
if x < -1:

break # Destination reached!
print p.plot(0, x)

Allow Ctrl+c to abort the simulation
try:

time.sleep(0.1) # Wait for interrupt
except KeyboardInterrupt:

print ’Interrupted by Ctrl+c’
break

302 3 Diffusion Equations

Fig. 3.19 Estimated variance over 1000 steps, using 100 walks (upper left), 10,000 (upper right),
100,000 (lower left), and 1,000,000 (lower right)

Observe that we implement an infinite loop, but allow a smooth interrupt of the
program by Ctrl+c through Python’s KeyboardInterrupt exception. This is a
useful recipe that can be used in many occasions!

The output looks typically like

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

* |
* |

3.7 RandomWalk 303

Fig. 3.20 Estimated probability distribution at step 800, using 100 walks (upper left), 10,000
(upper right), 100,000 (lower left), and 1,000,000 (lower right)

Positions beyond the limits of the x axis appear with a value. A long file10 contains
the complete ascii plot corresponding to the function run_random_walk above.

3.7.8 RandomWalk as a Stochastic Equation

The (dimensionless) position in a randomwalk, NXk , can be expressed as a stochastic
difference equation:

NXk D NXk�1 C s; x0 D 0; (3.117)

where s is a Bernoulli variable11, taking on the two values s D �1 and s D 1 with
equal probability:

P.s D 1/ D 1

2
; P.s D �1/ D 1

2
:

The s variable in a step is independent of the s variable in other steps.
The difference equation expresses essentially the sum of independent Bernoulli

variables. Because of the central limit theorem, Xk , will then be normally dis-
tributed with expectation kEŒs� and kVar.s/. The expectation and variance of a
Bernoulli variable with values r D 0 and r D 1 are p and p.1 � p/, respectively.
10 http://bit.ly/1UbULeH
11 https://en.wikipedia.org/wiki/Bernoulli_distribution

http://bit.ly/1UbULeH
https://en.wikipedia.org/wiki/Bernoulli_distribution
http://bit.ly/1UbULeH
https://en.wikipedia.org/wiki/Bernoulli_distribution

304 3 Diffusion Equations

The variable s D 2r � 1 then has expectation 2EŒr �� 1 D 2p� 1 D 0 and variance
22Var.r/ D 4p.1 � p/ D 1. The position Xk is normally distributed with zero
expectation and variance k, as we found in Sect. 3.7.2.

The central limit theorem tells that as long as k is not small, the distribution of
Xk remains the same if we replace the Bernoulli variable s by any other stochastic
variable with the same expectation and variance. In particular, we may let s be a
standardized Gaussian variable (zero mean, unit variance).

Dividing (3.117) by �t gives

NXk � NXk�1
�t

D 1

�t
s :

In the limit �t ! 0, s=�t approaches a white noise stochastic process. With NX.t/
as the continuous process in the limit �t ! 0 (Xk ! X.tk/), we formally get the
stochastic differential equation

d NX D dW; (3.118)

whereW.t/ is a Wiener process12. ThenX is also aWiener process. It follows from
the stochastic ODE dX D dW that the probability distribution ofX is given by the
Fokker-Planck equation13 (3.114). In other words, the key results for random walk
we found earlier can alternatively be derived via a stochastic ordinary differential
equation and its related Fokker-Planck equation.

3.7.9 RandomWalk in 2D

The most obvious generalization of 1D random walk to two spatial dimensions is
to allow movements to the north, east, south, and west, with equal probability 1

4
.

def random_walk2D(x0, N, p, random=random):
"""2D random walk with 1 particle and N moves: N, E, W, S."""
Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

r = random.uniform(0, 1)
if r <= 0.25:

current_pos += np.array([0, 1]) # Move north
elif 0.25 < r <= 0.5:

current_pos += np.array([1, 0]) # Move east
elif 0.5 < r <= 0.75:

current_pos += np.array([0, -1]) # Move south
else:

current_pos += np.array([-1, 0]) # Move west
position[k+1,:] = current_pos

return position

12 https://en.wikipedia.org/wiki/Wiener_process
13 https://en.wikipedia.org/wiki/Fokker-Planck_equation

https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation
https://en.wikipedia.org/wiki/Wiener_process
https://en.wikipedia.org/wiki/Fokker-Planck_equation

3.7 RandomWalk 305

Fig. 3.21 Random walks in 2D with 200 steps: rectangular mesh (left) and diagonal mesh (right)

The left plot in Fig. 3.21 provides an example on 200 steps with this kind of walk.
We may refer to this walk as a walk on a rectangular mesh as we move from any
spatial mesh point .i; j / to one of its four neighbors in the rectangular directions:
.i C 1; j /, .i � 1; j /, .i; j C 1/, or .i; j � 1/.

3.7.10 RandomWalk in Any Number of Space Dimensions

From a programming point of view, especially when implementing a random walk
in any number of dimensions, it is more natural to consider a walk in the diagonal
directions NW, NE, SW, and SE. On a two-dimensional spatial mesh it means that
we go from .i; j / to either .iC1; jC1/, .i�1; jC1/, .iC1; j�1/, or .i�1; j�1/.
We can with such a diagonal mesh (see right plot in Fig. 3.21) draw a Bernoulli
variable for the step in each spatial direction and trivially write code that works in
any number of spatial directions:

def random_walkdD(x0, N, p, random=random):
"""Any-D (diagonal) random walk with 1 particle and N moves."""
Store position in step k in position[k]
d = len(x0)
position = np.zeros((N+1, d))
position[0,:] = x0
current_pos = np.array(x0, dtype=float)
for k in range(N):

for i in range(d):
r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position[k+1,:] = current_pos

return position

A vectorized version is desired. We follow the ideas from Sect. 3.7.3, but each
step is now a vector in d spatial dimensions. We therefore need to drawNd random
numbers in r, compute steps in the various directions through np.where(r <=p,

306 3 Diffusion Equations

40

20

0

–20

–40

–60

–80

–100

–120

40

20

0

–20

–40

–60

–80

–100

–120
–100 –80 –60 –40 –20 0 20 40 60 80 –100 –80 –60 –40 –20 0 20 40 60 80

Fig. 3.22 Four random walks with 5000 steps in 2D

-1, 1) (each step being �1 or 1), and then we can reshape this array to an N � d
array of step vectors. Doing an np.cumsum summation along axis 0 will add the
vectors, as this demo shows:

>>> a = np.arange(6).reshape(3,2)
>>> a
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.cumsum(a, axis=0)
array([[0, 1],

[2, 4],
[6, 9]])

With such summation of step vectors, we get all the positions to be filled in the
position array:

def random_walkdD_vec(x0, N, p):
"""Vectorized version of random_walkdD."""
d = len(x0)
Store position in step k in position[k]
position = np.zeros((N+1,d))
position[0] = np.array(x0, dtype=float)
r = np.random.uniform(0, 1, size=N*d)
steps = np.where(r <= p, -1, 1).reshape(N,d)
position[1:,:] = x0 + np.cumsum(steps, axis=0)
return position

3.7 RandomWalk 307

3.7.11 Multiple RandomWalks in Any Number of Space Dimensions

As we did in 1D, we extend one single walk to a number of walks (num_walks in
the code).

Scalar code As always, we start with implementing the scalar case:

def random_walksdD(x0, N, p, num_walks=1, num_times=1,
random=random):

"""Simulate num_walks random walks from x0 with N steps."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

for n in range(num_walks):
num_times_counter = 0
current_pos = np.array(x0, dtype=float)
for k in range(N):

if k in pos_hist_times:
pos_hist[n,num_times_counter,:] = current_pos
num_times_counter += 1

current_pos corresponds to step k+1
for i in range(d):

r = random.uniform(0, 1)
if r <= p:

current_pos[i] -= 1
else:

current_pos[i] += 1
position [k+1,:] += current_pos
position2[k+1,:] += current_pos**2

return position, position2, pos_hist, np.array(pos_hist_times)

Vectorized code Significant speed-ups can be obtained by vectorization. We get
rid of the loops in the previous function and arrive at the following vectorized code.

def random_walksdD_vec(x0, N, p, num_walks=1, num_times=1):
"""Vectorized version of random_walks1D; no loops."""
d = len(x0)
position = np.zeros((N+1, d)) # Accumulated positions
position2 = np.zeros((N+1, d)) # Accumulated positions**2
walks = np.zeros((num_walks, N+1, d)) # Positions of each walk
walks[:,0,:] = x0
Histogram at num_times selected time points
pos_hist = np.zeros((num_walks, num_times, d))
pos_hist_times = [(N//num_times)*i for i in range(num_times)]

r = np.random.uniform(0, 1, size=N*num_walks*d)
steps = np.where(r <= p, -1, 1).reshape(num_walks, N, d)
walks[:,1:,:] = x0 + np.cumsum(steps, axis=1)
position = np.sum(walks, axis=0)
position2 = np.sum(walks**2, axis=0)
pos_hist[:,:,:] = walks[:,pos_hist_times,:]
return position, position2, pos_hist, np.array(pos_hist_times)

308 3 Diffusion Equations

3.8 Applications

3.8.1 Diffusion of a Substance

The first process to be considered is a substance that gets transported through a
fluid at rest by pure diffusion. We consider an arbitrary volume V of this fluid,
containing the substance with concentration function c.x; t/. Physically, we can
think of a very small volume with centroid x at time t and assign the ratio of the
volume of the substance and the total volume to c.x; t/. This means that the mass
of the substance in a small volume �V is approximately %c�V , where % is the
density of the substance. Consequently, the total mass of the substance inside the
volume V is the sum of all %c�V , which becomes the volume integral

R
V
%cdV .

Let us reason how the mass of the substance changes and thereby derive a PDE
governing the concentration c. Suppose the substance flows out of V with a flux q.
If�S is a small part of the boundary @V of V , the volume of the substance flowing
out through dS in a small time interval �t is %q � n�t�S , where n is an outward
unit normal to the boundary @V , see Fig. 3.23. We realize that only the normal
component of q is able to transport mass in and out of V . The total outflow of the
mass of the substance in a small time interval �t becomes the surface integralZ

@V

%q � n�t dS :

Assuming conservation of mass, this outflow of mass must be balanced by a loss
of mass inside the volume. The increase of mass inside the volume, during a small
time interval�t , is Z

V

%.c.x; t C�t/ � c.x; t//dV;

assuming % is constant, which is reasonable. The outflow of mass balances the loss
of mass in V , which is the increase with a minus sign. Setting the two contributions
equal to each other ensures balance of mass inside V . Dividing by �t givesZ

V

%
c.x; t C�t/ � c.x; t/

�t
dV D �

Z
@V

%q � n dS :

Note the minus sign on the right-hand side: the left-hand side expresses loss of
mass, while the integral on the right-hand side is the gain of mass.

Fig. 3.23 An arbitrary vol-
ume of a fluid

q

V

n

3.8 Applications 309

Now, letting �t ! 0, we have

c.x; t C�t/ � c.x; t/
�t

! @c

@t
;

so Z
V

%
@c

@t
dV C

Z
@V

%q � ndS D 0 : (3.119)

To arrive at a PDE, we express the surface integral as a volume integral using Gauss’
divergence theorem: Z

V

�
%
@c

@t
Cr � .%q/

�
dV D 0 :

Since % is constant, we can divide by this quantity. If the integral is to vanish for an
arbitrary volume V , the integrandmust vanish too, and we get the mass conservation
PDE for the substance:

@c

@t
Cr � q D 0 : (3.120)

A fundamental problem is that this is a scalar PDE for four unknowns: c and
the three components of q. We therefore need additional equations. Here, Fick’s
law comes at rescue: it models how the flux q of the substance is related to the
concentration c. Diffusion is recognized by mass flowing from regions with high
concentration to regions of low concentration. This principle suggests that q is
proportional to the negative gradient of c:

q D �˛rc; (3.121)

where ˛ is an empirically determined constant. The relation (3.121) is known as
Fick’s law. Inserting (3.121) in (3.120) gives a scalar PDE for the concentration c:

@c

@t
D ˛r2c : (3.122)

3.8.2 Heat Conduction

Heat conduction is a well-known diffusion process. The governing PDE is in this
case based on the first law of thermodynamics: the increase in energy of a system
is equal to the work done on the system, plus the supplied heat. Here, we shall
consider media at rest and neglect work done on the system. The principle then
reduces to a balance between increase in internal energy and supplied heat flow by
conduction.

Let e.x; t/ be the internal energy per unit mass. The increase of the internal
energy in a small volume �V in a small time interval �t is then

%.e.x; t C�t/ � e.x; t//�V;

310 3 Diffusion Equations

where % is the density of the material subject to heat conduction. In an arbitrary
volume V , as depicted in Fig. 3.23, the corresponding increase in internal energy
becomes the volume integral

Z
V

%.e.x; t C�t/� e.x; t//dV :

This increase in internal energy is balanced by heat supplied by conduction. Let q

be the heat flow per time unit. Through the surface @V of V the following amount
of heat flows out of V during a time interval�t :

Z
@V

q � n�t dS :

The simplified version of the first law of thermodynamics then states that

Z
V

%.e.x; t C�t/ � e.x; t//dV D �
Z
@V

q � n�t dS :

The minus sign on the right-hand side ensures that the integral there models net
inflow of heat (since n is an outward unit normal, q � n models outflow). Dividing
by �t and notifying that

lim
�t!0

e.x; t C�t/ � e.x; t/
�t

D @e

@t
;

we get (in the limit �t ! 0)

Z
V

%
@e

@t
dV C

Z
@V

q � n�t dS D 0 :

This is the integral equation for heat conduction, but we aim at a PDE. The next
step is therefore to transform the surface integral to a volume integral via Gauss’
divergence theorem. The result is

Z
V

�
%
@e

@t
Cr � q

�
dV D 0 :

If this equality is to hold for all volumes V , the integrand must vanish, and we have
the PDE

%
@e

@t
D �r � q : (3.123)

Sometimes the supplied heat can come from the medium itself. This is the case,
for instance, when radioactive rock generates heat. Let us add this effect. If f .x; t/
is the supplied heat per unit volume per unit time, the heat supplied in a small

3.8 Applications 311

volume is f�t�V , and inside an arbitrary volume V the supplied generated heat
becomes Z

V

f�tdV :

Adding this to the integral statement of the (simplified) first law of thermodynamics,
and continuing the derivation, leads to the PDE

%
@e

@t
D �r � q C f : (3.124)

There are four unknown scalar fields: e and q. Moreover, the temperature T ,
which is our primary quantity to compute, does not enter the model yet. We need
an additional equation, called the equation of state, relating e, V D 1=% D, and T :
e D e.V; T /. By the chain rule we have

@e

@t
D @e

@T

ˇ̌̌
ˇ
V

@T

@t
C @e

@V

ˇ̌̌
ˇ
T

@V

@t
:

The first coefficient @e=@T is called specific heat capacity at constant volume, de-
noted by cv :

cv D @e

@T

ˇ̌̌
ˇ
V

:

The specific heat capacity will in general vary with T , but taking it as a constant is
a good approximation in many applications.

The term @e=@V models effects due to compressibility and volume expansion.
These effects are often small and can be neglected. We shall do so here. Using
@e=@t D cv@T=@t in the PDE gives

%cv
@T

@t
D �r � q C f :

We still have four unknown scalar fields (T and q). To close the system, we need a
relation between the heat flux q and the temperature T called Fourier’s law:

q D �krT;

which simply states that heat flows from hot to cold areas, along the path of greatest
variation. In a solid medium, k depends on the material of the medium, and in multi-
material media one must regard k as spatially dependent. In a fluid, it is common
to assume that k is constant. The value of k reflects how easy heat is conducted
through the medium, and k is named the coefficient of heat conduction.

We now have one scalar PDE for the unknown temperature field T .x; t/:

%cv
@T

@t
D r � .krT /C f : (3.125)

312 3 Diffusion Equations

3.8.3 Porous Media Flow

The requirement of mass balance for flow of a single, incompressible fluid through
a deformable (elastic) porous medium leads to the equation

S
@p

@t
Cr �

�
q � ˛ @u

@t

�
D 0;

where p is the fluid pressure, q is the fluid velocity, u is the displacement (defor-
mation) of the medium, S is the storage coefficient of the medium (related to the
compressibility of the fluid and the material in the medium), and ˛ is another coeffi-
cient. In many circumstances, the last term with u can be neglected, an assumption
that decouples the equation above from a model for the deformation of the medium.
The famous Darcy’s law relates q to p:

q D �K
�
.rp � %g/;

whereK is the permeability of the medium, � is the dynamic viscosity of the fluid,
% is the density of the fluid, and g is the acceleration of gravity, here taken as
g D �gk. Combining the two equations results in the diffusion model

S
@p

@t
D ��1r.Krp/C %g

�

@K

@z
: (3.126)

Boundary conditions consist of specifying p or q � n (i.e., normal velocity) at each
point of the boundary.

3.8.4 Potential Fluid Flow

Let v be the velocity of a fluid. The condition r�v D 0 is relevant for many flows,
especially in geophysics when viscous effects are negligible. From vector calculus
it is known that r�v D 0 implies that v can be derived from a scalar potential field
�: v D r�. If the fluid is incompressible, r � v D 0, it follows that r � r� D 0, or

r2� D 0 : (3.127)

This Laplace equation is sufficient for determining � and thereby describe the fluid
motion. This type of flow is known as potential flow14. One very important appli-
cation where potential flow is a good model is water waves. As boundary condition
we must prescribe v � n D @�=@n. This gives rise to what is known as a pure
Neumann problem and will cause numerical difficulties because � and � plus any
constant are two solutions of the problem. The simplest remedy is to fix the value
of � at a point.

14 https://en.wikipedia.org/wiki/Potential_flow

https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Potential_flow

3.8 Applications 313

3.8.5 Streamlines for 2D Fluid Flow

The streamlines in a two-dimensional stationary fluid flow are lines tangential to
the flow. The stream function15 is often introduced in two-dimensional flow such
that its contour lines, D const, gives the streamlines. The relation between
and the velocity field v D .u; v/ is

u D @

@y
; v D �@

@x
:

It follows that rv D yx � xy D 0, so the stream function can only be used for
incompressible flows. Since

r � v D
�
@v

@y
� @u
@x

�
k � !k;

we can derive the relation
r2 D �!; (3.128)

which is a governing equation for the stream function .x; y/ if the vorticity ! is
known.

3.8.6 The Potential of an Electric Field

Under the assumption of time independence, Maxwell’s equations for the electric
field E become

r �E D �

0
;

r �E D 0;
where � is the electric charge density and
0 is the electric permittivity of free space
(i.e., vacuum). Since r �E D 0, E can be derived from a potential ', E D �r'.
The electric field potential is therefore governed by the Poisson equation

r2' D � �

0
: (3.129)

If the medium is heterogeneous, � will depend on the spatial location r . Also,

0 must be exchanged with an electric permittivity function
.r/.

Each point of the boundary must be accompanied by, either a Dirichlet condition
'.r/ D 'D.r/, or a Neumann condition @'.r/

@n
D 'N .r/.

3.8.7 Development of Flow Between Two Flat Plates

Diffusion equations may also arise as simplified versions of other mathematical
models, especially in fluid flow. Consider a fluid flowing between two flat, parallel

15 https://en.wikipedia.org/wiki/Stream_function

https://en.wikipedia.org/wiki/Stream_function
https://en.wikipedia.org/wiki/Stream_function

314 3 Diffusion Equations

plates. The velocity is uni-directional, say along the z axis, and depends only on
the distance x from the plates; u D u.x; t/k. The flow is governed by the Navier-
Stokes equations,

%
@u

@t
C %u � ru D �rp C �r2uC %f ;

r � u D 0;
where p is the pressure field, unknown along with the velocity u, % is the fluid
density, � the dynamic viscosity, and f is some external body force. The geo-
metric restrictions of flow between two flat plates puts restrictions on the velocity,
u D u.x; t/i , and the z component of the Navier-Stokes equations collapses to a
diffusion equation:

%
@u

@t
D �@p

@z
C �@

2u

@z2
C %fz;

if fz is the component of f in the z direction.
The boundary conditions are derived from the fact that the fluid sticks to the

plates, which means u D 0 at the plates. Say the location of the plates are z D 0

and z D L. We then have

u.0; t/ D u.L; t/ D 0 :

One can easily show that @p=@z must be a constant or just a function of time
t . We set @p=@z D �ˇ.t/. The body force could be a component of gravity, if
desired, set as fz D
g. Switching from z to x as independent variable gives a very
standard one-dimensional diffusion equation:

%
@u

@t
D �@

2u

@x2
C ˇ.t/C %
g; x 2 Œ0; L�; t 2 .0; T � :

The boundary conditions are

u.0; t/ D u.L; t/ D 0;

while some initial condition
u.x; 0/ D I.x/

must also be prescribed.
The flow is driven by either the pressure gradient ˇ or gravity, or a combination

of both. One may also consider one moving plate that drives the fluid. If the plate
at x D L moves with velocity UL.t/, we have the adjusted boundary condition

u.L; t/ D UL.t/ :

3.8.8 Flow in a Straight Tube

Now we consider viscous fluid flow in a straight tube with radiusR and rigid walls.
The governing equations are the Navier-Stokes equations, but as in Sect. 3.8.7, it

3.8 Applications 315

is natural to assume that the velocity is directed along the tube, and that it is axi-
symmetric. These assumptions reduced the velocity field to u D u.r; x; t/i , if the
x axis is directed along the tube. From the equation of continuity, r � u D 0, we
see that u must be independent of x. Inserting u D u.r; t/i in the Navier-Stokes
equations, expressed in axi-symmetric cylindrical coordinates, results in

%
@u

@t
D �1

r

@

@r

�
r
@u

@r

�
C ˇ.t/C %
g; r 2 Œ0; R�; t 2 .0; T � : (3.130)

Here, ˇ.t/ D �@p=@x is the pressure gradient along the tube. The associated
boundary condition is u.R; t/ D 0.

3.8.9 Tribology: Thin Film Fluid Flow

Thin fluid films are extremely important inside machinery to reduce friction be-
tween gliding surfaces. The mathematical model for the fluid motion takes the
form of a diffusion problem and is quickly derived here. We consider two solid
surfaces whose distance is described by a gap function h.x; y/. The space between
these surfaces is filled with a fluid with dynamic viscosity �. The fluid may move
partially because of pressure gradients and partially because the surfaces move. Let
U i C V j be the relative velocity of the two surfaces and p the pressure in the
fluid. The mathematical model builds on two principles: 1) conservation of mass,
2) assumption of locally quasi-static flow between flat plates.

The conservation of mass equation readsr �u, where u is the local fluid velocity.
For thin films the detailed variation between the surfaces is not of interest, sor�u D
0 is integrated (average) in the direction perpendicular to the surfaces. This gives
rise to the alternative mass conservation equation

r � q D 0; q D
h.x;y/Z
0

udz;

where z is the coordinate perpendicular to the surfaces, and q is then the volume
flux in the fluid gap.

Locally, we may assume that we have steady flow between two flat surfaces, with
a pressure gradient and where the lower surface is at rest and the upper moves with
velocity U i C V j . The corresponding mathematical problem is actually the limit
problem in Sect. 3.8.7 as t !1. The limit problem can be solved analytically, and
the local volume flux becomes

q.x; y; z/ D
hZ
0

u.x; y; z/dz D � h3

12�
rp C 1

2
Uhi C 1

2
V hj :

The idea is to use this expression locally also when the surfaces are not flat, but
slowly varying, and if U , V , or p varies in time, provided the time variation is
sufficiently slow. This is a common quasi-static approximation, much used in math-
ematical modeling.

316 3 Diffusion Equations

Inserting the expression for q via p, U , and V in the equation rq D 0 gives a
diffusion PDE for p:

r �
�
h3

12�
rp

�
D 1

2

@

@x
.hU /C 1

2

@

@x
.hV / : (3.131)

The boundary conditions must involve p or q at the boundary.

3.8.10 Propagation of Electrical Signals in the Brain

One can make a model of how electrical signals are propagated along the neu-
ronal fibers that receive synaptic inputs in the brain. The signal propagation is
one-dimensional and can, in the simplest cases, be governed by the Cable equa-
tion16:

cm
@V

@t
D 1

rl

@2V

@x2
� 1

rm
V (3.132)

where V.x; t/ is the voltage to be determined, cm is capacitance of the neuronal
fiber, while rl and rm are measures of the resistance. The boundary conditions are
often taken as V D 0 at a short circuit or open end, @V=@x D 0 at a sealed end, or
@V=@x / V where there is an injection of current.

3.9 Exercises

Exercise 3.6: Stabilizing the Crank-Nicolson method by Rannacher time
stepping
It is well known that the Crank-Nicolson method may give rise to non-physical
oscillations in the solution of diffusion equations if the initial data exhibit jumps
(see Sect. 3.3.6). Rannacher [15] suggested a stabilizing technique consisting of
using the Backward Euler scheme for the first two time steps with step length 1

2
�t .

One can generalize this idea to taking 2m time steps of size 1
2
�t with the Backward

Euler method and then continuing with the Crank-Nicolson method, which is of
second-order in time. The idea is that the high frequencies of the initial solution are
quickly damped out, and the Backward Euler scheme treats these high frequencies
correctly. Thereafter, the high frequency content of the solution is gone and the
Crank-Nicolson method will do well.

Test this idea for m D 1; 2; 3 on a diffusion problem with a discontinuous initial
condition. Measure the convergence rate using the solution (3.45) with the bound-
ary conditions (3.46)–(3.47) for t values such that the conditions are in the vicinity
of ˙1. For example, t < 5a1:6 � 10�2 makes the solution diffusion from a step to
almost a straight line. The program diffu_erf_sol.py shows how to compute
the analytical solution.

Project 3.7: Energy estimates for diffusion problems
This project concerns so-called energy estimates for diffusion problems that can be
used for qualitative analytical insight and for verification of implementations.

16 http://en.wikipedia.org/wiki/Cable_equation

http://en.wikipedia.org/wiki/Cable_equation
http://en.wikipedia.org/wiki/Cable_equation

3.9 Exercises 317

a) We start with a 1D homogeneous diffusion equation with zero Dirichlet condi-
tions:

ut D ˛uxx; x 2 ˝ D .0; L/; t 2 .0; T �; (3.133)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.134)

u.x; 0/ D I.x/; x 2 Œ0; L� : (3.135)

The energy estimate for this problem reads

jjujjL2 � jjI jjL2; (3.136)

where the jj � jjL2 norm is defined by

jjgjjL2 D

vuuut
LZ
0

g2dx : (3.137)

The quantify jjujjL2 or 12 jjujjL2 is known as the energy of the solution, although
it is not the physical energy of the system. A mathematical tradition has intro-
duced the notion energy in this context.
The estimate (3.136) says that the “size of u” never exceeds that of the initial
condition, or more precisely, it says that the area under the u curve decreases
with time.
To show (3.136), multiply the PDE by u and integrate from 0 to L. Use that uut
can be expressed as the time derivative of u2 and that uxxu can integrated by
parts to form an integrand u2x . Show that the time derivative of jjujj2

L2
must be

less than or equal to zero. Integrate this expression and derive (3.136).
b) Now we address a slightly different problem,

ut D ˛uxx C f .x; t/; x 2 ˝ D .0; L/; t 2 .0; T �; (3.138)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.139)

u.x; 0/ D 0; x 2 Œ0; L� : (3.140)

The associated energy estimate is

jjujjL2 � jjf jjL2 : (3.141)

(This result is more difficult to derive.)
Now consider the compound problem with an initial condition I.x/ and a right-
hand side f .x; t/:

ut D ˛uxx C f .x; t/; x 2 ˝ D .0; L/; t 2 .0; T �; (3.142)

u.0; t/ D u.L; t/ D 0; t 2 .0; T �; (3.143)

u.x; 0/ D I.x/; x 2 Œ0; L� : (3.144)

Show that if w1 fulfills (3.133)–(3.135) and w2 fulfills (3.138)–(3.140), then
u D w1 C w2 is the solution of (3.142)–(3.144). Using the triangle inequality
for norms,

jjaC bjj � jjajj C jjbjj;

318 3 Diffusion Equations

show that the energy estimate for (3.142)–(3.144) becomes

jjujjL2 � jjI jjL2 C jjf jjL2 : (3.145)

c) One application of (3.145) is to prove uniqueness of the solution. Suppose u1
and u2 both fulfill (3.142)–(3.144). Show that u D u1�u2 then fulfills (3.142)–
(3.144) with f D 0 and I D 0. Use (3.145) to deduce that the energy must be
zero for all times and therefore that u1 D u2, which proves that the solution is
unique.

d) Generalize (3.145) to a 2D/3D diffusion equation ut D r � .˛ru/ for x 2 ˝.

Hint Use integration by parts in multi dimensions:

Z
˝

ur � .˛ru/ dx D �
Z
˝

˛ru � ru dx C
Z
@˝

u˛
@u

@n
;

where @u
@n
D n � ru, n being the outward unit normal to the boundary @˝ of the

domain˝.

e) Now we also consider the multi-dimensional PDE ut D r � .˛ru/. Integrate
both sides over˝ and use Gauss’ divergence theorem,

R
˝
r�q dx D R

@˝
q �n ds

for a vector field q. Show that if we have homogeneous Neumann conditions
on the boundary, @u=@n D 0, area under the u surface remains constant in time
and Z

˝

u dx D
Z
˝

I dx : (3.146)

f) Establish a code in 1D, 2D, or 3D that can solve a diffusion equation with a
source term f , initial condition I , and zero Dirichlet or Neumann conditions on
the whole boundary.
We can use (3.145) and (3.146) as a partial verification of the code. Choose
some functions f and I and check that (3.145) is obeyed at any time when zero
Dirichlet conditions are used. Iterate over the same I functions and check that
(3.146) is fulfilled when using zero Neumann conditions.

g) Make a list of some possible bugs in the code, such as indexing errors in ar-
rays, failure to set the correct boundary conditions, evaluation of a term at a
wrong time level, and similar. For each of the bugs, see if the verification tests
from the previous subexercise pass or fail. This investigation shows how strong
the energy estimates and the estimate (3.146) are for pointing out errors in the
implementation.

Filename: diffu_energy.

Exercise 3.8: Splitting methods and preconditioning
In Sect. 3.6.15, we outlined a class of iterative methods for Au D b based on
splitting A into A DM �N and introducing the iteration

Muk D Nuk C b :

3.9 Exercises 319

The very simplest splitting is M D I , where I is the identity matrix. Show that
this choice corresponds to the iteration

uk D uk�1 C rk�1; rk�1 D b � Auk�1; (3.147)

where rk�1 is the residual in the linear system in iteration k � 1. The formula
(3.147) is known as Richardson’s iteration. Show that if we apply the simple iter-
ation method (3.147) to the preconditioned systemM�1Au D M�1b, we arrive at
the Jacobi method by choosingM D D (the diagonal of A) as preconditioner and
the SOR method by choosingM D !�1D C L (L being the lower triangular part
of A). This equivalence shows that we can apply one iteration of the Jacobi or SOR
method as preconditioner.

Problem 3.9: Oscillating surface temperature of the earth
Consider a day-and-night or seasonal variation in temperature at the surface of the
earth. How deep down in the ground will the surface oscillations reach? For sim-
plicity, we model only the vertical variation along a coordinate x, where x D 0

at the surface, and x increases as we go down in the ground. The temperature is
governed by the heat equation

%cv
@T

@t
D r � .krT /;

in some spatial domain x 2 Œ0; L�, whereL is chosen large enough such that we can
assume that T is approximately constant, independent of the surface oscillations, for
x > L. The parameters %, cv , and k are the density, the specific heat capacity at
constant volume, and the heat conduction coefficient, respectively.

a) Derive the mathematical model for computing T .x; t/. Assume the surface os-
cillations to be sinusoidal around some mean temperature Tm. Let T D Tm
initially. At x D L, assume T � Tm.

b) Scale the model in a) assuming k is constant. Use a time scale tc D !�1 and a
length scale xc D

p
2˛=!, where ˛ D k=.%cv/. The primary unknown can be

scaled as T�Tm
2A

.
Show that the scaled PDE is

@u

@Nt D
1

2

@2u

@x2
;

with initial condition u. Nx; 0/ D 0, left boundary condition u.0; Nt/ D sin.Nt /,
and right boundary condition u. NL; Nt / D 0. The bar indicates a dimensionless
quantity.
Show that u. Nx; Nt / D e�Nx sin. Nx � Nt / is a solution that fulfills the PDE and the
boundary condition at Nx D 0 (this is the solution we will experience as Nt !1
and L!1). Conclude that an appropriate domain for x is Œ0; 4� if a damping
e�4 � 0:18 is appropriate for implementing Nu � const; increasing to Œ0; 6�
damps Nu to 0.0025.

c) Compute the scaled temperature and make animations comparing two solutions
with NL D 4 and NL D 8, respectively (keep �x the same).

320 3 Diffusion Equations

Problem 3.10: Oscillating and pulsating flow in tubes
We consider flow in a straight tube with radius R and straight walls. The flow is
driven by a pressure gradient ˇ.t/. The effect of gravity can be neglected. The
mathematical problem reads

%
@u

@t
D �1

r

@

@r

�
r
@u

@r

�
C ˇ.t/; r 2 Œ0; R�; t 2 .0; T �; (3.148)

u.r; 0/ D I.r/; r 2 Œ0; R�; (3.149)

u.R; t/ D 0; t 2 .0; T �; (3.150)

@u

@r
.0; t/ D 0; t 2 .0; T �: (3.151)

We consider two models for ˇ.t/. One plain, sinusoidal oscillation:

ˇ D A sin.!t/; (3.152)

and one with periodic pulses,

ˇ D A sin16.!t/ : (3.153)

Note that both models can be written as ˇ D A sinm.!t/, with m D 1 and m D 16,
respectively.

a) Scale the mathematical model, using the viscous time scale %R2=�.
b) Implement the scaled model from a), using the unifying � scheme in time and

centered differences in space.
c) Verify the implementation in b) using a manufactured solution that is quadratic

in r and linear in t . Make a corresponding test function.

Hint You need to include an extra source term in the equation to allow for such
tests. Let the spatial variation be 1�r2 such that the boundary condition is fulfilled.

d) Make animations form D 1; 16 and ˛ D 1; 0:1. Choose T such that the motion
has reached a steady state (non-visible changes from period to period in u).

e) For ˛ � 1, the scaling in a) is not good, because the characteristic time for
changes (due to the pressure) is much smaller than the viscous diffusion time
scale (˛ becomes large). We should in this case base the short time scale on
1=!. Scale the model again, and make an animation form D 1; 16 and ˛ D 10.

Filename: axisymm_flow.

Problem 3.11: Scaling a welding problem
Welding equipment makes a very localized heat source that moves in time. We
shall investigate the heating due to welding and choose, for maximum simplicity, a
one-dimensional heat equation with a fixed temperature at the ends, and we neglect
melting. We shall scale the problem, and besides solving such a problem numeri-
cally, the aim is to investigate the appropriateness of alternative scalings.

3.9 Exercises 321

The governing PDE problem reads

%c
@u

@t
D k @

2u

@x2
C f; x 2 .0; L/; t 2 .0; T /;

u.x; 0/ D Us; x 2 Œ0; L�;
u.0; t/ D u.L; t/ D 0; t 2 .0; T �:

Here, u is the temperature, % the density of the material, c a heat capacity, k the
heat conduction coefficient, f is the heat source from the welding equipment, and
Us is the initial constant (room) temperature in the material.

A possible model for the heat source is a moving Gaussian function:

f D A exp

�1
2

�
x � vt
�

�2!
;

where A is the strength, � is a parameter governing how peak-shaped (or localized
in space) the heat source is, and v is the velocity (in positive x direction) of the
source.

a) Let xc , tc , uc , and fc be scales, i.e., characteristic sizes, of x, t , u, and f ,
respectively. The natural choice of xc and fc is L and A, since these make the
scaled x and f in the interval Œ0; 1�. If each of the three terms in the PDE are
equally important, we can find tc and uc by demanding that the coefficients in
the scaled PDE are all equal to unity. Perform this scaling. Use scaled quantities
in the arguments for the exponential function in f too and show that

Nf D e� 12 ˇ2. Nx�
 Nt /2 ;
where ˇ and
 are dimensionless numbers. Give an interpretation of ˇ and
 .

b) Argue that for large
 we should base the time scale on the movement of the
heat source. Show that this gives rise to the scaled PDE

@ Nu
@Nt D

�1 @
2 Nu
@ Nx2 C

Nf ;

and
Nf D exp

�
�1
2
ˇ2. Nx � Nt /2

�
:

Discuss when the scalings in a) and b) are appropriate.
c) One aim with scaling is to get a solution that lies in the interval Œ�1; 1�. This is

not always the case when uc is based on a scale involving a source term, as we
do in a) and b). However, from the scaled PDE we realize that if we replace Nf
with ı Nf , where ı is a dimensionless factor, this corresponds to replacing uc by
uc=ı. So, if we observe that Nu � 1=ı in simulations, we can just replace Nf by
ı Nf in the scaled PDE.
Use this trick and implement the two scaled models. Reuse software for the
diffusion equation (e.g., the solver function in diffu1D_vc.py). Make a func-
tion run(gamma, beta=10, delta=40, scaling=1, animate=False)

322 3 Diffusion Equations

that runs the model with the given
 , ˇ, and ı parameters as well as an indicator
scaling that is 1 for the scaling in a) and 2 for the scaling in b). The last
argument can be used to turn screen animations on or off.
Experiments show that with
 D 1 and ˇ D 10, ı D 20 is appropriate. Then
max j Nuj will be larger than 4 for
 D 40, but that is acceptable.
Equip the run function with visualization, both animation of Nu and Nf , and plots
with Nu and Nf for t D 0:2 and t D 0:5.

Hint Since the amplitudes of Nu and Nf differs by a factor ı, it is attractive to plot
Nf =ı together with Nu.

d) Use the software in c) to investigate
 D 0:2; 1; 5; 40 for the two scalings.
Discuss the results.

Filename: welding.

Exercise 3.12: Implement a Forward Euler scheme for axi-symmetric
diffusion
Based on the discussion in Sect. 3.5.6, derive in detail the discrete equations for a
Forward Euler in time, centered in space, finite differencemethod for axi-symmetric
diffusion. The diffusion coefficient may be a function of the radial coordinate. At
the outer boundary r D R, we may have either a Dirichlet or Robin condition.
Implement this scheme. Construct appropriate test problems.
Filename: FE_axisym.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

4Advection-Dominated Equations

Wave (Chap. 2) and diffusion (Chap. 3) equations are solved reliably by finite
difference methods. As soon as we add a first-order derivative in space, repre-
senting advective transport (also known as convective transport), the numerics gets
more complicated and intuitively attractive methods no longer work well. We shall
show how and why such methods fail and provide remedies. The present chapter
builds on basic knowledge about finite difference methods for diffusion and wave
equations, including the analysis by Fourier components, truncation error analysis
(Appendix B), and compact difference notation.

Remark on terminology
It is common to refer to movement of a fluid as convection, while advection is the
transport of some material dissolved or suspended in the fluid. We shall mostly
choose the word advection here, but both terms are in heavy use, and for mass
transport of a substance the PDE has an advection term, while the similar term
for the heat equation is a convection term.

Much more comprehensive discussion of dispersion analysis for advection prob-
lems can be found in the book by Duran [3]. This is a an excellent resource for
further studies on the topic of advection PDEs, with emphasis on generalizations to
real geophysical problems. The book by Fletcher [4] also has a good overview of
methods for advection and convection problems.

4.1 One-Dimensional Time-Dependent Advection Equations

We consider the pure advection model

@u

@t
C v @u

@x
D 0; x 2 .0; L/; t 2 .0; T �; (4.1)

u.x; 0/ D I.x/; x 2 .0; L/; (4.2)

u.0; t/ D U0; t 2 .0; T �: (4.3)

In (4.1), v is a given parameter, typically reflecting the transport velocity of a quan-
tity u with a flow. There is only one boundary condition (4.3) since the spatial

323© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_4

324 4 Advection-Dominated Equations

derivative is only first order in the PDE (4.1). The information at x D 0 and the
initial condition get transported in the positive x direction if v > 0 through the
domain.

It is easiest to find the solution of (4.1) if we remove the boundary condition and
consider a process on the infinite domain .�1;1/. The solution is simply

u.x; t/ D I.x � vt/ : (4.4)

This is also the solution we expect locally in a finite domain before boundary con-
ditions have reflected or modified the wave.

A particular feature of the solution (4.4) is that

u.xi ; tnC1/ D u.xi�1; tn/; (4.5)

if xi D i�x and tn D n�t are points in a uniform mesh. We see this relation from

u.i�x; .nC 1/�t/ D I.i�x � v.nC 1/�t/
D I..i � 1/�x � vn�t � v�t C�x/
D I..i � 1/�x � vn�t/
D u..i � 1/�x; n�t/;

provided v D �x=�t . So, whenever we see a scheme that collapses to

unC1i D uni�1; (4.6)

for the PDE in question, we have in fact a scheme that reproduces the analytical
solution, and many of the schemes to be presented possess this nice property!

Finally, we add that a discussion of appropriate boundary conditions for the ad-
vection PDE in multiple dimensions is a challenging topic beyond the scope of this
text.

4.1.1 Simplest Scheme: Forward in Time, Centered in Space

Method A first attempt to solve a PDE like (4.1) will normally be to look for a
time-discretization scheme that is explicit so we avoid solving systems of linear
equations. In space, we anticipate that centered differences are most accurate and
therefore best. These two arguments lead us to a Forward Euler scheme in time and
centered differences in space:

ŒDCt uC vD2xu D 0�ni : (4.7)

Written out, we see that this expression implies that

unC1 D un � 1
2
C.uniC1 � uni�1/;

with C as the Courant number

C D v�t

�x
:

4.1 One-Dimensional Time-Dependent Advection Equations 325

Implementation A solver function for our scheme goes as follows.

import numpy as np
import matplotlib.pyplot as plt

def solver_FECS(I, U0, v, L, dt, C, T, user_action=None):
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

Insert boundary condition
u[0] = U0

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_n, u = u, u_n

Test cases The typical solution u has the shape of I and is transported at velocity
v to the right (if v > 0). Let us consider two different initial conditions, one smooth
(Gaussian pulse) and one non-smooth (half-truncated cosine pulse):

u.x; 0/ D Ae� 12
�
x�L=10

�

�2
; (4.8)

u.x; 0/ D A cos

�
5�

L

�
x � L

10

��
; x <

L

5
else 0 : (4.9)

The parameter A is the maximum value of the initial condition.
Before doing numerical simulations, we scale the PDE problem and introduce
Nx D x=L and Nt D vt=L, which gives

@ Nu
@Nt C

@ Nu
@ Nx D 0 :

326 4 Advection-Dominated Equations

The unknown u is scaled by the maximum value of the initial condition: Nu D
u=max jI.x/j such that j Nu. Nx; 0/j 2 Œ0; 1�. The scaled problem is solved by setting
v D 1, L D 1, and A D 1. From now on we drop the bars.

To run our test cases and plot the solution, we make the function

def run_FECS(case):
"""Special function for the FECS case."""
if case == ’gaussian’:

def I(x):
return np.exp(-0.5*((x-L/10)/sigma)**2)

elif case == ’cosinehat’:
def I(x):

return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)
if n == 0:

lines = plot(x, u)
else:

lines[0].set_ydata(u)
plt.draw()
#plt.savefig()

plt.figure(2)
m = 40
if n % m != 0:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append(’t=%g’ % t[n])
if n > 0:

plt.hold(’on’)

plt.ion()
U0 = 0
dt = 0.001
C = 1
T = 1
solver(I=I, U0=U0, v=1.0, L=L, dt=dt, C=C, T=T,

user_action=plot)
plt.legend(legends, loc=’lower left’)
plt.savefig(’tmp.png’); plt.savefig(’tmp.pdf’)
plt.axis([0, L, -0.75, 1.1])
plt.show()

Bug? Running either of the test cases, the plot becomes a mess, and the printout of
u values in the plot function reveals that u grows very quickly. We may reduce�t
and make it very small, yet the solution just grows. Such behavior points to a bug in
the code. However, choosing a coarse mesh and performing one time step by hand

4.1 One-Dimensional Time-Dependent Advection Equations 327

calculations produces the same numbers as the code, so the implementation seems
to be correct. The hypothesis is therefore that the solution is unstable.

4.1.2 Analysis of the Scheme

It is easy to show that a typical Fourier component

u.x; t/ D B sin.k.x � ct//

is a solution of our PDE for any spatial wave length � D 2�=k and any amplitude
B . (Since the PDE to be investigated by this method is homogeneous and linear,
B will always cancel out, so we tend to skip this amplitude, but keep it here in the
beginning for completeness.)

A general solution may be viewed as a collection of long and short waves with
different amplitudes. Algebraically, the work simplifies if we introduce the complex
Fourier component

u.x; t/ D Aee
ikx;

with
Ae D Be�ikv�t D Be�iCk�x :

Note that jAej � 1.
It turns out that many schemes also allow a Fourier wave component as solution,

and we can use the numerically computed values of Ae (denoted A) to learn about
the quality of the scheme. Hence, to analyze the difference scheme we have just
implemented, we look at how it treats the Fourier component

unq D Aneikq�x :

Inserting the numerical component in the scheme,

ŒDCt Ae
ikq�x C vD2xAe

ikq�x D 0�nq;

and making use of (A.25) results in

�
eikq�x

�
A � 1
�t

C v 1

�x
i sin.k�x/

�
D 0

	n
q

;

which implies
A D 1 � iC sin.k�x/ :

The numerical solution features the formula An. To find out whether An means
growth in time, we rewrite A in polar form: A D Are

i� , for real numbers Ar and
�, since we then have An D Anr e

i�n. The magnitude of An is Anr . In our case,
Ar D .1 C C2 sin2.kx//1=2 > 1, so Anr will increase in time, whereas the exact
solution will not. Regardless of �t , we get unstable numerical solutions.

328 4 Advection-Dominated Equations

4.1.3 Leapfrog in Time, Centered Differences in Space

Method Another explicit scheme is to do a “leapfrog” jump over 2�t in time and
combine it with central differences in space:

ŒD2tuC vD2xu D 0�ni ;

which results in the updating formula

unC1i D un�1i � C.uniC1 � uni�1/ :

A special scheme is needed to compute u1, but we leave that problem for now.
Anyway, this special scheme can be found in advec1D.py.

Implementation We now need to work with three time levels and must modify our
solver a bit:

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
...
u = np.zeros(Nx+1)
u_1 = np.zeros(Nx+1)
u_2 = np.zeros(Nx+1)
...
for n in range(0, Nt):

if scheme == ’FE’:
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C*(u_1[i+1] - u_1[i-1])
elif scheme == ’LF’:

if n == 0:
Use some scheme for the first step
for i in range(1, Nx):

...
else:

for i in range(1, Nx+1):
u[i] = u_2[i] - C*(u_1[i] - u_1[i-1])

Switch variables before next step
u_2, u_1, u = u_1, u, u_2

Running a test case Let us try a coarse mesh such that the smooth Gaussian initial
condition is represented by 1 at mesh node 1 and 0 at all other nodes. This triangular
initial condition should then be advected to the right. Choosing scaled variables as
�t D 0:1, T D 1, and C D 1 gives the plot in Fig. 4.1, which is in fact identical to
the exact solution (!).

Running more test cases We can run two types of initial conditions for C D 0:8:
one very smooth with a Gaussian function (Fig. 4.2) and one with a discontinuity in
the first derivative (Fig. 4.3). Unless we have a very fine mesh, as in the left plots in
the figures, we get small ripples behind the main wave, and this main wave has the
amplitude reduced.

http://github.com/hplgit/fdm-book/blob/master/src/advec/advec1D.py

4.1 One-Dimensional Time-Dependent Advection Equations 329

Fig. 4.1 Exact solution obtained by Leapfrog scheme with�t D 0:1 and C D 1

u u

x x

Fig. 4.2 Advection of a Gaussian function with a leapfrog scheme and C D 0:8, �t D 0:001

(left) and �t D 0:01 (right)

Advection of the Gaussian function with a leapfrog scheme, using C D 0:8 and
�t D 0:01 can be seen in a movie file1. Alternatively, with �t D 0:001, we get
this movie file2.

Advection of the cosine hat function with a leapfrog scheme, using C D 0:8 and
�t D 0:01 can be seen in a movie file3. Alternatively, with �t D 0:001, we get
this movie file4.

1 http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
2 http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
3 http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
4 http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg

http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg

330 4 Advection-Dominated Equations

u u

x x

Fig. 4.3 Advection of half a cosine function with a leapfrog scheme and C D 0:8, �t D 0:001

(left) and �t D 0:01 (right)

Analysis We can perform a Fourier analysis again. Inserting the numerical Fourier
component in the Leapfrog scheme, we get

A2 � i2C sin.k�x/A � 1 D 0;

and

A D �iC sin.k�x/˙
q
1 � C2 sin2.k�x/ :

Rewriting to polar form, A D Are
i� , we see that Ar D 1, so the numerical com-

ponent is neither increasing nor decreasing in time, which is exactly what we want.
However, for C > 1, the square root can become complex valued, so stability is
obtained only as long as C � 1.

Stability
For all the working schemes to be presented in this chapter, we get the stability
condition C � 1:

�t � �x

v
:

This is called the CFL condition and applies almost always to successful schemes
for advection problems. Of course, one can use Crank-Nicolson or Backward
Euler schemes for increased and even unconditional stability (no �t restric-
tions), but these have other less desired damping problems.

We introduce p D k�x. The amplification factor now reads

A D �iC sinp ˙
q
1 � C2 sin2 p;

and is to be compared to the exact amplification factor

Ae D e�ikv�t D e�ikC�x D e�iCp :

Section 4.1.9 compares numerical amplification factors of many schemes with the
exact expression.

4.1 One-Dimensional Time-Dependent Advection Equations 331

Fig. 4.4 Advection of a Gaussian function with a forward in time, upwind in space scheme and
C D 0:8, �t D 0:01 (left) and �t D 0:001 (right)

4.1.4 Upwind Differences in Space

Since the PDE reflects transport of information along with a flow in positive x
direction, when v > 0, it could be natural to go (what is called) upstream and not
downstream in the spatial derivative to collect information about the change of the
function. That is, we approximate

@u

@x
.xi ; tn/ � ŒD�x u�ni D

uni � uni�1
�x

:

This is called an upwind difference (the corresponding difference in the time direc-
tion would be called a backward difference, and we could use that name in space
too, but upwind is the common name for a difference against the flow in advec-
tion problems). This spatial approximation does magic compared to the scheme we
had with Forward Euler in time and centered difference in space. With an upwind
difference,

ŒDCt uC vD�x u D 0�ni ; (4.10)

written out as
unC1i D uni � C.uni � uni�1/;

gives a generally popular and robust scheme that is stable if C � 1. As with the
Leapfrog scheme, it becomes exact if C D 1, exactly as shown in Fig. 4.1. This
is easy to see since C D 1 gives the property (4.6). However, any C < 1 gives a
significant reduction in the amplitude of the solution, which is a purely numerical
effect, see Fig. 4.4 and 4.5. Experiments show, however, that reducing �t or �x,
while keeping C reduces the error.

Advection of the Gaussian function with a forward in time, upwind in space
scheme, using C D 0:8 and �t D 0:01 can be seen in a movie file5. Alternatively,
with �t D 0:005, we get this movie file6.

5 http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
6 http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg

http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg

332 4 Advection-Dominated Equations

u u

x x

Fig. 4.5 Advection of half a cosine function with a forward in time, upwind in space scheme and
C D 0:8, �t D 0:001 (left) and �t D 0:01 (right)

Advection of the cosine hat function with a forward in time, upwind in space
scheme, using C D 0:8 and �t D 0:01 can be seen in a movie file7. Alternatively,
with �t D 0:001, we get this movie file8.

The amplification factor can be computed using the formula (A.23),

A � 1
�t

C v

�x
.1 � e�ik�x/ D 0;

which means
A D 1 � C.1 � cos.p/ � i sin.p// :

For C < 1 there is, unfortunately, non-physical damping of discrete Fourier com-
ponents, giving rise to reduced amplitude of uni as in Fig. 4.4 and 4.5. The damping
seen in these figures is quite severe. Stability requires C � 1.

Interpretation of upwind difference as artificial diffusion
One can interpret the upwind difference as extra, artificial diffusion in the equa-
tion. Solving

@u

@t
C v @u

@x
D � @

2u

@x2
;

by a forward difference in time and centered differences in space,

DCt uC vD2xu D �DxDxu�
n
i ;

actually gives the upwind scheme (4.10) if � D v�x=2. That is, solving the
PDE ut C vux D 0 by centered differences in space and forward difference in
time is unsuccessful, but by adding some artificial diffusion �uxx , the method
becomes stable:

@u

@t
C v @u

@x
D
�
˛ C v�x

2

�
@2u

@x2
:

7 http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
8 http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg

http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg

4.1 One-Dimensional Time-Dependent Advection Equations 333

4.1.5 Periodic Boundary Conditions

So far, we have given the value on the left boundary, un0 , and used the scheme to
propagate the solution signal through the domain. Often, we want to follow such
signals for long time series, and periodic boundary conditions are then relevant
since they enable a signal that leaves the right boundary to immediately enter the
left boundary and propagate through the domain again.

The periodic boundary condition is

u.0; t/ D u.L; t/; un0 D unNx :

It means that we in the first equation, involving un0 , insert u
n
Nx
, and that we in the

last equation, involving unC1Nx
insert unC10 . Normally, we can do this in the simple

way that u_1[0] is updated as u_1[Nx] at the beginning of a new time level.
In some schemes we may need unNxC1 and un�1. Periodicity then means that

these values are equal to un1 and unNx�1, respectively. For the upwind scheme, it
is sufficient to set u_1[0]=u_1[Nx] at a new time level before computing u[1].
This ensures that u[1] becomes right and at the next time level u[0] at the current
time level is correctly updated. For the Leapfrog scheme we must update u[0] and
u[Nx] using the scheme:

if periodic_bc:
i = 0
u[i] = u_2[i] - C*(u_1[i+1] - u_1[Nx-1])

for i in range(1, Nx):
u[i] = u_2[i] - C*(u_1[i+1] - u_1[i-1])

if periodic_bc:
u[Nx] = u[0]

4.1.6 Implementation

Test condition Analytically, we can show that the integral in space under the
u.x; t/ curve is constant:

LZ
0

�
@u

@t
C v @u

@x

�
dx D 0

@

@t

LZ
0

udx D �
LZ
0

v
@u

@x
dx

@u

@t

LZ
0

udx D Œvu�L0 D 0

334 4 Advection-Dominated Equations

as long as u.0/ D u.L/ D 0. We can therefore use the property

LZ
0

u.x; t/dx D const

as a partial verification during the simulation. Now, any numerical method with
C ¤ 1will deviate from the constant, expected value, so the integral is a measure of
the error in the scheme. The integral can be computed by the Trapezoidal integration
rule

dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if u is an array holding the solution.

The code An appropriate solver function for multiple schemes may go as shown
below.

def solver(I, U0, v, L, dt, C, T, user_action=None,
scheme=’FE’, periodic_bc=True):

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx
print ’dt=%g, dx=%g, Nx=%d, C=%g’ % (dt, dx, Nx, C)

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)
u_nm1 = np.zeros(Nx+1)
integral = np.zeros(Nt+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

Insert boundary condition
u[0] = U0

Compute the integral under the curve
integral[0] = dx*(0.5*u_n[0] + 0.5*u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

4.1 One-Dimensional Time-Dependent Advection Equations 335

for n in range(0, Nt):
if scheme == ’FE’:

if periodic_bc:
i = 0
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[Nx])
u[Nx] = u[0]

for i in range(1, Nx):
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

elif scheme == ’LF’:
if n == 0:

Use upwind for first step
if periodic_bc:

i = 0
u_n[i] = u_n[Nx]

for i in range(1, Nx+1):
u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])

else:
if periodic_bc:

i = 0
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[Nx-1])

for i in range(1, Nx):
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[i-1])

if periodic_bc:
u[Nx] = u[0]

elif scheme == ’UP’:
if periodic_bc:

u_n[0] = u_n[Nx]
for i in range(1, Nx+1):

u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])
else:

raise ValueError(’scheme="%s" not implemented’ % scheme)

if not periodic_bc:
Insert boundary condition
u[0] = U0

Compute the integral under the curve
integral[n+1] = dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_nm1, u_n, u = u_n, u, u_nm1

return integral

Solving a specific problem We need to call up the solver function in some kind
of administering problem solving function that can solve specific problems and
make appropriate visualization. The function below makes both static plots, screen
animation, and hard copy videos in various formats.

336 4 Advection-Dominated Equations

def run(scheme=’UP’, case=’gaussian’, C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == ’gaussian’:
def I(x):

return np.exp(-0.5*((x-L/10)/sigma)**2)
elif case == ’cosinehat’:

def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axes().set_aspect(0.15)
plt.savefig(’tmp_%04d.png’ % n)
plt.savefig(’tmp_%04d.pdf’ % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title(’C=%g, dt=%g, dx=%g’ %

(C, t[1]-t[0], x[1]-x[0]))
plt.legend([’t=%.3f’ % t[n]])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.draw()
plt.savefig(’tmp_%04d.png’ % n)

plt.figure(2)
eps = 1E-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.hold(’on’)
plt.draw()
if n > 0:

y = [I(x_-v*t[n]) for x_ in x]
plt.plot(x, y, ’k--’)
if abs(t[n] - 0.6) < eps:

filename = (’tmp_%s_dt%s_C%s’ % \
(scheme, t[1]-t[0], C)).replace(’.’, ’’)

np.savez(filename, x=x, u=u, u_e=y)

4.1 One-Dimensional Time-Dependent Advection Equations 337

plt.ion()
U0 = 0
T = 0.7
v = 1
Define video formats and libraries
codecs = dict(flv=’flv’, mp4=’libx264’, webm=’libvpx’,

ogg=’libtheora’)
Remove video files
import glob, os
for name in glob.glob(’tmp_*.png’):

os.remove(name)
for ext in codecs:

name = ’movie.%s’ % ext
if os.path.isfile(name):

os.remove(name)

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T,
scheme=scheme, user_action=plot)

Finish up figure(2)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)
plt.show()
Make videos from figure(1) animation files
for codec in codecs:

cmd = ’ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s’ % \
(codecs[codec], codec)

os.system(cmd)
print ’Integral of u:’, integral.max(), integral.min()

The complete code is found in the file advec1D.py.

4.1.7 A Crank-NicolsonDiscretization in Time and Centered
Differences in Space

Another obvious candidate for time discretization is the Crank-Nicolson method
combined with centered differences in space:

ŒDtu�
n
i C v

1

2
.ŒD2xu�

nC1
i C ŒD2xu�

n
i / D 0 :

It can be nice to include the Backward Euler scheme too, via the �-rule,

ŒDtu�
n
i C v�ŒD2xu�

nC1
i C v.1 � �/ŒD2xu�

n
i D 0 :

When � is different from zero, this gives rise to an implicit scheme,

unC1i C �

2
C.unC1iC1 � unC1i�1 / D uni �

1 � �
2

C.uniC1 � uni�1/

http://github.com/hplgit/fdm-book/blob/master/src/advec/advec1D.py

338 4 Advection-Dominated Equations

u

x x

u

Fig. 4.6 Crank-Nicolson in time, centered in space, Gaussian profile, C D 0:8, �t D 0:01 (left)
and �t D 0:005 (right)

for i D 1; : : : ; Nx � 1. At the boundaries we set u D 0 and simulate just to the
point of time when the signal hits the boundary (and gets reflected).

unC10 D unC1Nx
D 0 :

The elements on the diagonal in the matrix become:

Ai;i D 1; i D 0; : : : ; Nx :
On the subdiagonal and superdiagonal we have

Ai�1;i D ��
2
C; AiC1;i D �

2
C; i D 1; : : : ; Nx � 1;

with A0;1 D 0 and ANx�1;Nx D 0 due to the known boundary conditions. And
finally, the right-hand side becomes

b0 D unNx
bi D uni �

1 � �
2

C.uniC1 � uni�1/; i D 1; : : : ; Nx � 1
bNx D un0 :

The dispersion relation follows from inserting unq D Aneikx and using the for-
mula (A.25) for the spatial differences:

A D 1 � .1 � �/iC sinp

1C � iC sinp
:

Movie 1 Crank-Nicolson in time, centered in space, C D 0:8, �t D 0:005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/
gaussian/CN/C08_dt0005/movie.ogg

Movie 2 Backward-Euler in time, centered in space, C D 0:8, �t D 0:005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/
cosinehat/BE/C_08_dt005.ogg

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/cosinehat/BE/C_08_dt005.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/cosinehat/BE/C_08_dt005.ogg

4.1 One-Dimensional Time-Dependent Advection Equations 339

x x

u u

Fig. 4.7 Backward-Euler in time, centered in space, half a cosine profile, C D 0:8, �t D 0:01

(left) and �t D 0:005 (right)

Figure 4.6 depicts a numerical solution for C D 0:8 and the Crank-Nicolson
with severe oscillations behind the main wave. These oscillations are damped as the
mesh is refined. Switching to the Backward Euler scheme removes the oscillations,
but the amplitude is significantly reduced. One could expect that the discontinu-
ous derivative in the initial condition of the half a cosine wave would make even
stronger demands on producing a smooth profile, but Fig. 4.7 shows that also here,
Backward-Euler is capable of producing a smooth profile. All in all, there are no
major differences between the Gaussian initial condition and the half a cosine con-
dition for any of the schemes.

4.1.8 The Lax-WendroffMethod

The Lax-Wendroff method is based on three ideas:

1. Express the new unknown unC1i in terms of known quantities at t D tn by means
of a Taylor polynomial of second degree.

2. Replace time-derivatives at t D tn by spatial derivatives, using the PDE.
3. Discretize the spatial derivatives by second-order differences so we achieve a

scheme of accuracy O.�t2/CO.�x2/.

Let us follow the recipe. First we have the three-term Taylor polynomial,

unC1i D uni C�t
�
@u

@t

�n
i

C 1

2
�t2

�
@2u

@t2

�n
i

:

From the PDE we have that temporal derivatives can be substituted by spatial
derivatives:

@u

@t
D �v @u

@x
;

and furthermore,
@2u

@t2
D v2 @

2u

@x2
:

340 4 Advection-Dominated Equations

Inserted in the Taylor polynomial formula, we get

unC1i D uni � v�t
�
@u

@x

�n
i

C 1

2
�t2v2

�
@2u

@x2

�n
i

:

To obtain second-order accuracy in space we now use central differences:

unC1i D uni � v�tŒD2xu�
n
i C

1

2
�t2v2ŒDxDxu�

n
i ;

or written out,

unC1i D uni �
1

2
C.uniC1 � uni�1/C

1

2
C 2.uniC1 � 2uni C uni�1/ :

This is the explicit Lax-Wendroff scheme.

Lax-Wendroffworks because of artificial viscosity
From the formulas above, we notice that the Lax-Wendroff method is nothing
but a Forward Euler, central difference in space scheme, which we have shown
to be useless because of chronic instability, plus an artificial diffusion term of
strength 1

2
�tv2. It means that we can take an unstable scheme and add some

diffusion to stabilize it. This is a common trick to deal with advection problems.
Sometimes, the real physical diffusion is not sufficiently large to make schemes
stable, so then we also add artificial diffusion.

From an analysis similar to the ones carried out above, we get an amplification
factor for the Lax-Wendroff method that equals

A D 1 � iC sinp � 2C 2 sin2.p=2/ :

This means that jAj D 1 and also that we have an exact solution if C D 1!

4.1.9 Analysis of Dispersion Relations

We have developed expressions for A.C; p/ in the exact solution unq D Aneikq�x

of the discrete equations. Note that the Fourier component that solves the original
PDE problem has no damping and moves with constant velocity v. There are two
basic errors in the numerical Fourier component: there may be damping and the
wave velocity may depend on C and p D k�x.

The shortest wavelength that can be represented is � D 2�x. The corresponding
k is k D 2�=� D �=�x, so p D k�x 2 .0; ��.

Given a complex A as a function of C and p, how can we visualize it? The two
key ingredients in A is the magnitude, reflecting damping or growth of the wave,
and the angle, closely related to the velocity of the wave. The Fourier component

Dneik.x�ct/

4.1 One-Dimensional Time-Dependent Advection Equations 341

Fig. 4.8 Dispersion relations for C D 1

has damping D and wave velocity c. Let us express our A in polar form, A D
Are

�i� , and insert this expression in our discrete component unq D Aneikq�x D
Aneikx :

unq D Anr e�i�neikx D Anr ei.kx�n�/ D Anr ei.k.x�ct//;
for

c D �

k�t
:

Now,

k�t D Ck�x

v
D Cp

v
;

so

c D �v

Cp
:

An appropriate dimensionless quantity to plot is the scaled wave velocity c=v:

c

v
D �

Cp
:

Figures 4.8–4.13 contain dispersion curves, velocity and damping, for various
values of C . The horizontal axis shows the dimensionless frequency p of the wave,
while the figures to the left illustrate the error in wave velocity c=v (should ideally
be 1 for all p), and the figures to the right display the absolute value (magnitude) of
the damping factor Ar . The curves are labeled according to the table below.

Label Method
FE Forward Euler in time, centered difference in space
LF Leapfrog in time, centered difference in space
UP Forward Euler in time, upwind difference in space
CN Crank-Nicolson in time, centered difference in space
LW Lax-Wendroff’s method
BE Backward Euler in time, centered difference in space

342 4 Advection-Dominated Equations

Fig. 4.9 Dispersion relations for C D 1

Fig. 4.10 Dispersion relations for C D 0:8

Fig. 4.11 Dispersion relations for C D 0:8

The total damping after some time T D n�t is reflected by Ar.C; p/n. Since
normally Ar < 1, the damping goes like A1=�tr and approaches zero as �t ! 0.
The only way to reduce damping is to increase C and/or the mesh resolution.

We can learn a lot from the dispersion relation plots. For example, looking at
the plots for C D 1, the schemes LW, UP, and LF has no amplitude reduction, but
LF has wrong phase velocity for the shortest wave in the mesh. This wave does not

4.1 One-Dimensional Time-Dependent Advection Equations 343

Fig. 4.12 Dispersion relations for C D 0:5

Fig. 4.13 Dispersion relations for C D 0:5

(normally) have enough amplitude to be seen, so for all practical purposes, there
is no damping or wrong velocity of the individual waves, so the total shape of the
wave is also correct. For the CN scheme, see Fig. 4.6, each individual wave has its
amplitude, but they move with different velocities, so after a while, we see some
of these waves lagging behind. For the BE scheme, see Fig. 4.7, all the shorter
waves are so heavily dampened that we cannot see them after a while. We see only
the longest waves, which have slightly wrong velocity, but visible amplitudes are
sufficiently equal to produce what looks like a smooth profile.

Another feature was that the Leapfrog method produced oscillations, while the
upwind scheme did not. Since the Leapfrog method does not dampen the shorter
waves, which have wrong wave velocities of order 10 percent, we can see these
waves as noise. The upwind scheme, however, dampens these waves. The same
effect is also present in the Lax-Wendroff scheme, but the damping of the interme-
diate waves is hardly present, so there is visible noise in the total signal.

We realize that, compared to pure truncation error analysis, dispersion analysis
sheds more light on the behavior of the computational schemes. Truncation analysis
just says that Lax-Wendroff is better than upwind, because of the increased order in
time, but most people would say upwind is the better one when looking at the plots.

344 4 Advection-Dominated Equations

4.2 One-Dimensional Stationary Advection-Diffusion Equation

Now we pay attention to a physical process where advection (or convection) is in
balance with diffusion:

v
du

dx
D ˛d

2u

dx2
: (4.11)

For simplicity, we assume v and ˛ to be constant, but the extension to the variable-
coefficient case is trivial. This equation can be viewed as the stationary limit of the
corresponding time-dependent problem

@u

@t
C v @u

@x
D ˛ @

2u

@x2
: (4.12)

Equations of the form (4.11) or (4.12) arise from transport phenomena, either
mass or heat transport. One can also view the equations as a simple model problem
for the Navier-Stokes equations. With the chosen boundary conditions, the dif-
ferential equation problem models the phenomenon of a boundary layer, where the
solution changes rapidly very close to the boundary. This is a characteristic of many
fluid flow problems, which makes strong demands to numerical methods. The fun-
damental numerical difficulty is related to non-physical oscillations of the solution
(instability) if the first-derivative spatial term dominates over the second-derivative
term.

4.2.1 A Simple Model Problem

We consider (4.11) on Œ0; L� equipped with the boundary conditions u.0/ D U0,
u.L/ D UL. By scaling we can reduce the number of parameters in the problem.
We scale x by Nx D x=L, and u by

Nu D u � U0
UL � U0 :

Inserted in the governing equation we get

v.UL � U0/
L

d Nu
d Nx D

˛.UL � U0/
L2

d2 Nu
d Nx2 ; Nu.0/ D 0; Nu.1/ D 1 :

Dropping the bars is common. We can then simplify to

du

dx
D
 d

2u

dx2
; u.0/ D 0; u.1/ D 1 : (4.13)

There are two competing effects in this equation: the advection term transports
signals to the right, while the diffusion term transports signals to the left and the
right. The value u.0/ D 0 is transported through the domain if
 is small, and
u � 0 except in the vicinity of x D 1, where u.1/ D 1 and the diffusion transports
some information about u.1/ D 1 to the left. For large
, diffusion dominates

4.2 One-Dimensional Stationary Advection-Diffusion Equation 345

and the u takes on the “average” value, i.e., u gets a linear variation from 0 to 1
throughout the domain.

It turns out that we can find an exact solution to the differential equation problem
and also to many of its discretizations. This is one reason why this model problem
has been so successful in designing and investigating numerical methods for mixed
convection/advection and diffusion. The exact solution reads

ue.x/ D ex=
 � 1
e1=
 � 1 :

The forthcoming plots illustrate this function for various values of
.

4.2.2 A Centered Finite Difference Scheme

The most obvious idea to solve (4.13) is to apply centered differences:

ŒD2xu D
DxDxu�i

for i D 1; : : : ; Nx�1, with u0 D 0 and uNx D 1. Note that this is a coupled system
of algebraic equations involving u0; : : : ; uNx .

Written out, the scheme becomes a tridiagonal system

Ai�1;iui�1 C Ai;iui C AiC1;iuiC1 D 0;

for i D 1; : : : ; Nx � 1
A0;0 D 1;

Ai�1;i D � 1

�x
�
 1

�x2
;

Ai;i D 2
 1

�x2
;

Ai;iC1 D 1

�x
�
 1

�x2
;

ANx;Nx D 1 :
The right-hand side of the linear system is zero except bNx D 1.

Figure 4.14 shows reasonably accurate results with Nx D 20 and Nx D 40 cells
in x direction and a value of
 D 0:1. Decreasing
 to 0:01 leads to oscillatory
solutions as depicted in Fig. 4.15. This is, unfortunately, a typical phenomenon in
this type of problem: non-physical oscillations arise for small
 unless the resolution
Nx is big enough. Exercise 4.1 develops a precise criterion: u is oscillation-free if

�x � 2

:

If we take the present model as a simplified model for a viscous boundary layer in
real, industrial fluid flow applications,
 � 10�6 and millions of cells are required
to resolve the boundary layer. Fortunately, this is not strictly necessary as we have
methods in the next section to overcome the problem!

346 4 Advection-Dominated Equations

Fig. 4.14 Comparison of exact and numerical solution for
 D 0:1 and Nx D 20; 40 with centered
differences

Fig. 4.15 Comparison of exact and numerical solution for
 D 0:01 and Nx D 20; 40 with cen-
tered differences

Solver
A suitable solver for doing the experiments is presented below.

import numpy as np

def solver(eps, Nx, method=’centered’):
"""
Solver for the two point boundary value problem u’=eps*u’’,
u(0)=0, u(1)=1.
"""
x = np.linspace(0, 1, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
u = np.zeros(Nx+1)

Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

4.2 One-Dimensional Stationary Advection-Diffusion Equation 347

Precompute sparse matrix (scipy format)
if method == ’centered’:

diagonal[:] = 2*eps/dx**2
lower[:] = -1/dx - eps/dx**2
upper[:] = 1/dx - eps/dx**2

elif method == ’upwind’:
diagonal[:] = 1/dx + 2*eps/dx**2
lower[:] = 1/dx - eps/dx**2
upper[:] = - eps/dx**2

Insert boundary conditions
upper[0] = 0
lower[-1] = 0
diagonal[0] = diagonal[-1] = 1
b[-1] = 1.0

Set up sparse matrix and solve
diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

u[:] = scipy.sparse.linalg.spsolve(A, b)
return u, x

4.2.3 Remedy: Upwind Finite Difference Scheme

The scheme can be stabilized by letting the advective transport term, which is the
dominating term, collect its information in the flow direction, i.e., upstream or up-
wind of the point in question. So, instead of using a centered difference

du

dx i
� uiC1 � ui�1

2�x
;

we use the one-sided upwind difference

du

dx i
� ui � ui�1

�x
;

in case v > 0. For v < 0 we set

du

dx i
� uiC1 � ui

�x
;

On compact operator notation form, our upwind scheme can be expressed as

ŒD�x u D
DxDxu�i

provided v > 0 (and
 > 0).
We write out the equations and implement them as shown in the program in

Sect. 4.2.2. The results appear in Fig. 4.16 and 4.17: no more oscillations!

348 4 Advection-Dominated Equations

Fig. 4.16 Comparison of exact and numerical solution for
 D 0:1 and Nx D 20; 40 with upwind
difference

Fig. 4.17 Comparison of exact and numerical solution for
 D 0:01 and Nx D 20; 40 with upwind
difference

We see that the upwind scheme is always stable, but it gives a thicker boundary
layer when the centered scheme is also stable. Why the upwind scheme is always
stable is easy to understand as soon as we undertake the mathematical analysis
in Exercise 4.1. Moreover, the thicker layer (seemingly larger diffusion) can be
understood by doing Exercise 4.2.

Exact solution for this model problem
It turns out that one can introduce a linear combination of the centered and up-
wind differences for the first-derivative term in this model problem. One can
then adjust the weight in the linear combination so that the numerical solution
becomes identical to the analytical solution of the differential equation problem
at any mesh point.

4.3 Time-dependent Convection-Diffusion Equations 349

4.3 Time-dependent Convection-Diffusion Equations

Now it is time to combine time-dependency, convection (advection) and diffusion
into one equation:

@u

@t
C v @u

@x
D ˛ @

2u

@x2
: (4.14)

Analytical insight The diffusion is now dominated by convection, a wave, and dif-
fusion, a loss of amplitude. One possible analytical solution is a traveling Gaussian
function

u.x; t/ D B exp

�
�
�
x � vt
4at

��
:

This function moves with velocity v > 0 to the right (v < 0 to the left) due to
convection, but at the same time we have a damping e�16a2t2 from diffusion.

4.3.1 Forward in Time, Centered in Space Scheme

The Forward Euler for the diffusion equation is a successful scheme, but it has
a very strict stability condition. The similar Forward in time, centered in space
strategy always gives unstable solutions for the advection PDE.What happens when
we have both diffusion and advection present at once?

ŒDtuC vD2xu D ˛DxDxuC f �ni :

We expect that diffusion will stabilize the scheme, but that advection will destabilize
it.

Another problem is non-physical oscillations, but not growing amplitudes, due
to centered differences in the advection term. There will hence be two types of
instabilities to consider. Our analysis showed that pure advection with centered
differences in space needs some artificial diffusion to become stable (and then it
produces upwind differences for the advection term). Adding more physical diffu-
sion should further help the numerics to stabilize the non-physical oscillations.

The scheme is quickly implemented, but suffers from the need for small space
and time steps, according to this reasoning. A better approach is to get rid of the
non-physical oscillations in space by simply applying an upwind difference on the
advection term.

4.3.2 Forward in Time, Upwind in Space Scheme

A good approximation for the pure advection equation is to use upwind discretiza-
tion of the advection term. We also know that centered differences are good for the
diffusion term, so let us combine these two discretizations:

ŒDtuC vD�x u D ˛DxDxuC f �ni ; (4.15)

350 4 Advection-Dominated Equations

for v > 0. Use vDCu if v < 0. In this case the physical diffusion and the extra
numerical diffusion v�x=2 will stabilize the solution, but give an overall too large
reduction in amplitude compared with the exact solution.

We may also interpret the upwind difference as artificial numerical diffusion and
centered differences in space everywhere, so the scheme can be expressed as

�
DtuC vD�2xu D ˛

v�x

2
DxDxuC f

	n
i

: (4.16)

4.4 Applications of Advection Equations

There are two major areas where advection and convection applications arise: trans-
port of a substance and heat transport in a fluid. To derive the models, we may look
at the similar derivations of diffusionmodels in Sect. 3.8, but change the assumption
from a solid to fluid medium. This gives rise to the extra advection or convection
term v � ru. We briefly show how this is done.

Normally, transport in a fluid is dominated by the fluid flow and not diffusion,
so we can neglect diffusion compared to advection or convection. The end result is
anyway an equation of the form

@u

@t
C v � ru D 0 :

4.4.1 Transport of a Substance

The diffusion of a substance in Sect. 3.8.1 takes place in a solid medium, but in a
fluid we can have two transport mechanisms: one by diffusion and one by advec-
tion. The latter arises from the fact that the substance particles are moved with the
fluid velocity v such that the effective flux now consists of two and not only one
component as in (3.121):

q D �˛rc C vc :

Inserted in the equation r � q D 0 we get the extra advection term r � .vc/. Very
often we deal with incompressible flows, r � v D 0 such that the advective term
becomes v � rc. The mass transport equation for a substance then reads

@c

@t
C v � rc D ˛r2c : (4.17)

4.4.2 Transport of Heat in Fluids

The derivation of the heat equation in Sect. 3.8.2 is limited to heat transport in
solid bodies. If we turn the attention to heat transport in fluids, we get a material
derivative of the internal energy in (3.123),

De

dt
D �r � q;

4.5 Exercises 351

and more terms if work by stresses is also included, where

De

dt
D @e

@t
C v � re;

v being the velocity of the fluid. The convective term v �re must therefore be added
to the governing equation, resulting typically in

%c

�
@T

@t
C v � rT

�
D r � .krT /C f; (4.18)

where f is some external heating inside the medium.

4.5 Exercises

Exercise 4.1: Analyze 1D stationary convection-diffusion problem
Explain the observations in the numerical experiments from Sect. 4.2.2 and 4.2.3
by finding exact numerical solutions.

Hint The difference equations allow solutions on the form Ai , where A is an un-
known constant and i is a mesh point counter. There are two solutions for A, so the
general solution is a linear combination of the two, where the constants in the linear
combination are determined from the boundary conditions.
Filename: twopt_BVP_analysis1.

Exercise 4.2: Interpret upwind difference as artificial diffusion
Consider an upwind, one-sided difference approximation to a term du=dx in a dif-
ferential equation. Show that this formula can be expressed as a centered difference
plus an artificial diffusion term of strength proportional to �x. This means that
introducing an upwind difference also means introducing extra diffusion of order
O.�x/.
Filename: twopt_BVP_analysis2.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

5Nonlinear Problems

5.1 Introduction of Basic Concepts

5.1.1 Linear Versus Nonlinear Equations

Algebraic equations A linear, scalar, algebraic equation in x has the form

ax C b D 0;

for arbitrary real constants a and b. The unknown is a number x. All other algebraic
equations, e.g., x2 C ax C b D 0, are nonlinear. The typical feature in a nonlinear
algebraic equation is that the unknown appears in products with itself, like x2 or
ex D 1C x C 1

2
x2 C 1

3Š
x3 C : : :

We know how to solve a linear algebraic equation, x D �b=a, but there are no
general methods for finding the exact solutions of nonlinear algebraic equations,
except for very special cases (quadratic equations constitute a primary example). A
nonlinear algebraic equation may have no solution, one solution, or many solutions.
The tools for solving nonlinear algebraic equations are iterative methods, where we
construct a series of linear equations, which we know how to solve, and hope that
the solutions of the linear equations converge to a solution of the nonlinear equation
we want to solve. Typical methods for nonlinear algebraic equation equations are
Newton’s method, the Bisection method, and the Secant method.

Differential equations The unknown in a differential equation is a function and
not a number. In a linear differential equation, all terms involving the unknown
function are linear in the unknown function or its derivatives. Linear here means
that the unknown function, or a derivative of it, is multiplied by a number or a
known function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear terms
where the unknown function or its derivatives are multiplied by each other. For
example, in

u0.t/ D �a.t/u.t/C b.t/;
the terms involving the unknown function u are linear: u0 contains the derivative of
the unknown function multiplied by unity, and au contains the unknown function

353© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_5

354 5 Nonlinear Problems

multiplied by a known function. However,

u0.t/ D u.t/.1 � u.t//;

is nonlinear because of the term �u2 where the unknown function is multiplied by
itself. Also

@u

@t
C u@u

@x
D 0;

is nonlinear because of the term uux where the unknown function appears in a
product with its derivative. (Note here that we use different notations for derivatives:
u0 or du=dt for a function u.t/ of one variable, @u

@t
or ut for a function of more than

one variable.)
Another example of a nonlinear equation is

u00 C sin.u/ D 0;

because sin.u/ contains products of u, which becomes clear if we expand the func-
tion in a Taylor series:

sin.u/ D u � 1
3
u3 C : : :

Mathematical proof of linearity
To really prove mathematically that some differential equation in an unknown u
is linear, show for each term T .u/ that with u D au1Cbu2 for constants a and b,

T .au1 C bu2/ D aT .u1/C bT .u2/ :

For example, the term T .u/ D .sin2 t/u0.t/ is linear because

T .au1 C bu2/ D .sin2 t/.au1.t/C bu2.t//
D a.sin2 t/u1.t/C b.sin2 t/u2.t/
D aT .u1/C bT .u2/ :

However, T .u/ D sin u is nonlinear because

T .au1 C bu2/ D sin.au1 C bu2/ ¤ a sinu1 C b sinu2 :

5.1.2 A Simple Model Problem

A series of forthcoming examples will explain how to tackle nonlinear differential
equations with various techniques. We start with the (scaled) logistic equation as
model problem:

u0.t/ D u.t/.1 � u.t// : (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be solved by
different strategies in the following. Depending on the chosen time discretization
of (5.1), the mathematical problem to be solved at every time level will either be a
linear algebraic equation or a nonlinear algebraic equation. In the former case, the

5.1 Introduction of Basic Concepts 355

time discretization method transforms the nonlinear ODE into linear subproblems
at each time level, and the solution is straightforward to find since linear algebraic
equations are easy to solve. However, when the time discretization leads to nonlin-
ear algebraic equations, we cannot (except in very rare cases) solve these without
turning to approximate, iterative solution methods.

The next subsections introduce various methods for solving nonlinear differen-
tial equations, using (5.1) as model. We shall go through the following set of cases:

� explicit time discretization methods (with no need to solve nonlinear algebraic
equations)

� implicit Backward Euler time discretization, leading to nonlinear algebraic equa-
tions solved by
– an exact analytical technique
– Picard iteration based on manual linearization
– a single Picard step
– Newton’s method

� implicit Crank-Nicolson time discretization and linearization via a geometric
mean formula

Thereafter, we compare the performance of the various approaches. Despite the
simplicity of (5.1), the conclusions reveal typical features of the various methods in
much more complicated nonlinear PDE problems.

5.1.3 Linearization by Explicit Time Discretization

Time discretization methods are divided into explicit and implicit methods. Explicit
methods lead to a closed-form formula for finding new values of the unknowns,
while implicit methods give a linear or nonlinear system of equations that couples
(all) the unknowns at a new time level. Here we shall demonstrate that explicit
methods constitute an efficient way to deal with nonlinear differential equations.

The Forward Euler method is an explicit method. When applied to (5.1), sampled
at t D tn, it results in

unC1 � un
�t

D un.1 � un/;
which is a linear algebraic equation for the unknown value unC1 that we can easily
solve:

unC1 D un C�t un.1 � un/ :
In this case, the nonlinearity in the original equation poses no difficulty in the dis-
crete algebraic equation. Any other explicit scheme in time will also give only
linear algebraic equations to solve. For example, a typical 2nd-order Runge-Kutta
method for (5.1) leads to the following formulas:

u
 D un C�tun.1 � un/;
unC1 D un C�t 1

2
.un.1 � un/C u
.1 � u
/// :

The first step is linear in the unknown u
. Then u
 is known in the next step, which
is linear in the unknown unC1 .

356 5 Nonlinear Problems

5.1.4 Exact Solution of Nonlinear Algebraic Equations

Switching to a Backward Euler scheme for (5.1),

un � un�1
�t

D un.1 � un/; (5.2)

results in a nonlinear algebraic equation for the unknown value un. The equation is
of quadratic type:

�t.un/2 C .1 ��t/un � un�1 D 0;
and may be solved exactly by the well-known formula for such equations. Be-
fore we do so, however, we will introduce a shorter, and often cleaner, notation
for nonlinear algebraic equations at a given time level. The notation is inspired by
the natural notation (i.e., variable names) used in a program, especially in more
advanced partial differential equation problems. The unknown in the algebraic
equation is denoted by u, while u.1/ is the value of the unknown at the previous
time level (in general, u.`/ is the value of the unknown ` levels back in time). The
notation will be frequently used in later sections. What is meant by u should be
evident from the context: u may either be 1) the exact solution of the ODE/PDE
problem, 2) the numerical approximation to the exact solution, or 3) the unknown
solution at a certain time level.

The quadratic equation for the unknown un in (5.2) can, with the new notation,
be written

F.u/ D �tu2 C .1 ��t/u � u.1/ D 0 : (5.3)

The solution is readily found to be

u D 1

2�t

�
�1C�t ˙

q
.1 ��t/2 � 4�tu.1/

�
: (5.4)

Now we encounter a fundamental challenge with nonlinear algebraic equations:
the equation may have more than one solution. How do we pick the right solution?
This is in general a hard problem. In the present simple case, however, we can
analyze the roots mathematically and provide an answer. The idea is to expand the
roots in a series in �t and truncate after the linear term since the Backward Euler
scheme will introduce an error proportional to �t anyway. Using sympy, we find
the following Taylor series expansions of the roots:

>>> import sympy as sym
>>> dt, u_1, u = sym.symbols(’dt u_1 u’)
>>> r1, r2 = sym.solve(dt*u**2 + (1-dt)*u - u_1, u) # find roots
>>> r1
(dt - sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> r2
(dt + sqrt(dt**2 + 4*dt*u_1 - 2*dt + 1) - 1)/(2*dt)
>>> print r1.series(dt, 0, 2) # 2 terms in dt, around dt=0
-1/dt + 1 - u_1 + dt*(u_1**2 - u_1) + O(dt**2)
>>> print r2.series(dt, 0, 2)
u_1 + dt*(-u_1**2 + u_1) + O(dt**2)

5.1 Introduction of Basic Concepts 357

We see that the r1 root, corresponding to a minus sign in front of the square root in
(5.4), behaves as 1=�t and will therefore blow up as �t ! 0! Since we know that
u takes on finite values, actually it is less than or equal to 1, only the r2 root is of
relevance in this case: as �t ! 0, u! u.1/, which is the expected result.

For those who are not well experiencedwith approximatingmathematical formu-
las by series expansion, an alternative method of investigation is simply to compute
the limits of the two roots as �t ! 0 and see if a limit appears unreasonable:

>>> print r1.limit(dt, 0)
-oo
>>> print r2.limit(dt, 0)
u_1

5.1.5 Linearization

When the time integration of an ODE results in a nonlinear algebraic equation,
we must normally find its solution by defining a sequence of linear equations and
hope that the solutions of these linear equations converge to the desired solution of
the nonlinear algebraic equation. Usually, this means solving the linear equation
repeatedly in an iterative fashion. Alternatively, the nonlinear equation can some-
times be approximated by one linear equation, and consequently there is no need
for iteration.

Constructing a linear equation from a nonlinear one requires linearization of
each nonlinear term. This can be done manually as in Picard iteration, or fully al-
gorithmically as in Newton’s method. Examples will best illustrate how to linearize
nonlinear problems.

5.1.6 Picard Iteration

Let us write (5.3) in a more compact form

F.u/ D au2 C buC c D 0;

with a D �t , b D 1 ��t , and c D �u.1/. Let u� be an available approximation
of the unknown u. Then we can linearize the term u2 simply by writing u�u. The
resulting equation, OF .u/ D 0, is now linear and hence easy to solve:

F.u/ � OF .u/ D au�uC buC c D 0 :

Since the equation OF D 0 is only approximate, the solution u does not equal the
exact solution ue of the exact equation F.ue/ D 0, but we can hope that u is closer
to ue than u� is, and hence it makes sense to repeat the procedure, i.e., set u� D u
and solve OF .u/ D 0 again. There is no guarantee that u is closer to ue than u�, but
this approach has proven to be effective in a wide range of applications.

The idea of turning a nonlinear equation into a linear one by using an approx-
imation u� of u in nonlinear terms is a widely used approach that goes under

358 5 Nonlinear Problems

many names: fixed-point iteration, the method of successive substitutions, non-
linear Richardson iteration, and Picard iteration. We will stick to the latter name.

Picard iteration for solving the nonlinear equation arising from the Backward
Euler discretization of the logistic equation can be written as

u D � c

au� C b ; u� u :

The symbols means assignment (we set u� equal to the value of u). The iteration
is started with the value of the unknown at the previous time level: u� D u.1/.

Some prefer an explicit iteration counter as superscript in the mathematical no-
tation. Let uk be the computed approximation to the solution in iteration k. In
iteration k C 1 we want to solve

aukukC1 C bukC1 C c D 0) ukC1 D � c

auk C b ; k D 0; 1; : : :

Since we need to perform the iteration at every time level, the time level counter is
often also included:

aun;kun;kC1 C bun;kC1 � un�1 D 0) un;kC1 D un

aun;k C b ; k D 0; 1; : : : ;

with the start value un;0 D un�1 and the final converged value un D un;k for suffi-
ciently large k.

However, we will normally apply a mathematical notation in our final formulas
that is as close as possible to what we aim to write in a computer code and then it
becomes natural to use u and u� instead of ukC1 and uk or un;kC1 and un;k .

Stopping criteria The iteration method can typically be terminated when the
change in the solution is smaller than a tolerance
u:

ju � u�j �
u;
or when the residual in the equation is sufficiently small (<
r),

jF.u/j D jau2 C buC cj <
r :
A single Picard iteration Instead of iterating until a stopping criterion is fulfilled,
one may iterate a specific number of times. Just one Picard iteration is popular as
this corresponds to the intuitive idea of approximating a nonlinear term like .un/2

by un�1un. This follows from the linearization u�un and the initial choice of u� D
un�1 at time level tn. In other words, a single Picard iteration corresponds to using
the solution at the previous time level to linearize nonlinear terms. The resulting
discretization becomes (using proper values for a, b, and c)

un � un�1
�t

D un.1 � un�1/; (5.5)

which is a linear algebraic equation in the unknown un, making it easy to solve for
un without any need for an alternative notation.

5.1 Introduction of Basic Concepts 359

We shall later refer to the strategy of taking one Picard step, or equivalently,
linearizing terms with use of the solution at the previous time step, as the Picard1
method. It is a widely used approach in science and technology, but with some
limitations if �t is not sufficiently small (as will be illustrated later).

Notice
Equation (5.5) does not correspond to a “pure” finite difference method where
the equation is sampled at a point and derivatives replaced by differences (be-
cause the un�1 term on the right-hand side must then be un). The best interpreta-
tion of the scheme (5.5) is a Backward Euler difference combined with a single
(perhaps insufficient) Picard iteration at each time level, with the value at the
previous time level as start for the Picard iteration.

5.1.7 Linearization by a Geometric Mean

We consider now a Crank-Nicolson discretization of (5.1). This means that the time
derivative is approximated by a centered difference,

ŒDtu D u.1 � u/�nC 1
2 ;

written out as
unC1 � un

�t
D unC 1

2 � .unC 1
2 /2 : (5.6)

The term unC
1
2 is normally approximated by an arithmetic mean,

unC
1
2 � 1

2
.un C unC1/;

such that the scheme involves the unknown function only at the time levels where
we actually intend to compute it. The same arithmetic mean applied to the nonlinear
term gives

.unC
1
2 /2 � 1

4
.un C unC1/2;

which is nonlinear in the unknown unC1. However, using a geometric mean for
.unC

1
2 /2 is a way of linearizing the nonlinear term in (5.6):

.unC
1
2 /2 � ununC1 :

Using an arithmetic mean on the linear unC
1
2 term in (5.6) and a geometric mean

for the second term, results in a linearized equation for the unknown unC1:

unC1 � un
�t

D 1

2
.un C unC1/C ununC1;

which can readily be solved:

unC1 D 1C 1
2
�t

1C�tun � 1
2
�t
un :

360 5 Nonlinear Problems

This scheme can be coded directly, and since there is no nonlinear algebraic equa-
tion to iterate over, we skip the simplified notation with u for unC1 and u.1/ for
un. The technique with using a geometric average is an example of transforming a
nonlinear algebraic equation to a linear one, without any need for iterations.

The geometric mean approximation is often very effective for linearizing
quadratic nonlinearities. Both the arithmetic and geometric mean approxima-
tions have truncation errors of order �t2 and are therefore compatible with the
truncation error O.�t2/ of the centered difference approximation for u0 in the
Crank-Nicolson method.

Applying the operator notation for the means and finite differences, the lin-
earized Crank-Nicolson scheme for the logistic equation can be compactly ex-
pressed as h

Dtu D ut C u2t;g
inC 1

2
:

Remark
If we use an arithmetic instead of a geometric mean for the nonlinear term in
(5.6), we end up with a nonlinear term .unC1/2. This term can be linearized as
u�unC1 in a Picard iteration approach and in particular as ununC1 in a Picard1
iteration approach. The latter gives a scheme almost identical to the one arising
from a geometric mean (the difference in unC1 being 1

4
�tun.unC1 � un/ �

1
4
�t2u0u, i.e., a difference of size �t2).

5.1.8 Newton’s Method

The Backward Euler scheme (5.2) for the logistic equation leads to a nonlinear
algebraic equation (5.3). Now we write any nonlinear algebraic equation in the
general and compact form

F.u/ D 0 :
Newton’s method linearizes this equation by approximating F.u/ by its Taylor se-
ries expansion around a computed value u� and keeping only the linear part:

F.u/ D F.u�/C F 0.u�/.u � u�/C 1

2
F 00.u�/.u � u�/2 C � � �

� F.u�/C F 0.u�/.u � u�/ D OF .u/ :

The linear equation OF .u/ D 0 has the solution

u D u� � F.u�/
F 0.u�/

:

Expressed with an iteration index in the unknown, Newton’s method takes on the
more familiar mathematical form

ukC1 D uk � F.uk/

F 0.uk/
; k D 0; 1; : : :

5.1 Introduction of Basic Concepts 361

It can be shown that the error in iteration k C 1 of Newton’s method is pro-
portional to the square of the error in iteration k, a result referred to as quadratic
convergence. This means that for small errors the method converges very fast, and
in particular much faster than Picard iteration and other iteration methods. (The
proof of this result is found in most textbooks on numerical analysis.) However, the
quadratic convergence appears only if uk is sufficiently close to the solution. Fur-
ther away from the solution the method can easily converge very slowly or diverge.
The reader is encouraged to do Exercise 5.3 to get a better understanding for the
behavior of the method.

Application of Newton’s method to the logistic equation discretized by the Back-
ward Euler method is straightforward as we have

F.u/ D au2 C buC c; a D �t; b D 1 ��t; c D �u.1/;
and then

F 0.u/ D 2auC b :
The iteration method becomes

u D u� C a.u�/2 C bu� C c
2au� C b ; u� u : (5.7)

At each time level, we start the iteration by setting u� D u.1/. Stopping criteria as
listed for the Picard iteration can be used also for Newton’s method.

An alternative mathematical form, where we write out a, b, and c, and use a time
level counter n and an iteration counter k, takes the form

un;kC1 D un;k C �t.un;k/2 C .1 ��t/un;k � un�1
2�tun;k C 1 ��t ; un;0 D un�1; (5.8)

for k D 0; 1; : : :. A program implementation is much closer to (5.7) than to (5.8),
but the latter is better aligned with the established mathematical notation used in
the literature.

5.1.9 Relaxation

One iteration in Newton’s method or Picard iteration consists of solving a linear
problem OF .u/ D 0. Sometimes convergence problems arise because the new solu-
tion u of OF .u/ D 0 is “too far away” from the previously computed solution u�.
A remedy is to introduce a relaxation, meaning that we first solve OF .u
/ D 0 for
a suggested value u
 and then we take u as a weighted mean of what we had, u�,
and what our linearized equation OF D 0 suggests, u
:

u D !u
 C .1 � !/u� :
The parameter ! is known as a relaxation parameter, and a choice ! < 1 may
prevent divergent iterations.

Relaxation in Newton’s method can be directly incorporated in the basic iteration
formula:

u D u� � ! F.u
�/

F 0.u�/
: (5.9)

362 5 Nonlinear Problems

5.1.10 Implementation and Experiments

The program logistic.py contains implementations of all the methods described
above. Below is an extract of the file showing how the Picard and Newton methods
are implemented for a Backward Euler discretization of the logistic equation.

def BE_logistic(u0, dt, Nt, choice=’Picard’,
eps_r=1E-3, omega=1, max_iter=1000):

if choice == ’Picard1’:
choice = ’Picard’
max_iter = 1

u = np.zeros(Nt+1)
iterations = []
u[0] = u0
for n in range(1, Nt+1):

a = dt
b = 1 - dt
c = -u[n-1]

if choice == ’Picard’:

def F(u):
return a*u**2 + b*u + c

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = omega*(-c/(a*u_ + b)) + (1-omega)*u_
k += 1

u[n] = u_
iterations.append(k)

elif choice == ’Newton’:

def F(u):
return a*u**2 + b*u + c

def dF(u):
return 2*a*u + b

u_ = u[n-1]
k = 0
while abs(F(u_)) > eps_r and k < max_iter:

u_ = u_ - F(u_)/dF(u_)
k += 1

u[n] = u_
iterations.append(k)

return u, iterations

The Crank-Nicolson method utilizing a linearization based on the geometric
mean gives a simpler algorithm:

http://tinyurl.com/nu656p2/nonlin/logistic.py

5.1 Introduction of Basic Concepts 363

def CN_logistic(u0, dt, Nt):
u = np.zeros(Nt+1)
u[0] = u0
for n in range(0, Nt):

u[n+1] = (1 + 0.5*dt)/(1 + dt*u[n] - 0.5*dt)*u[n]
return u

We may run experiments with the model problem (5.1) and the different strate-
gies for dealing with nonlinearities as described above. For a quite coarse time
resolution, �t D 0:9, use of a tolerance
r D 0:1 in the stopping criterion in-
troduces an iteration error, especially in the Picard iterations, that is visibly much
larger than the time discretization error due to a large�t . This is illustrated by com-
paring the upper two plots in Fig. 5.1. The one to the right has a stricter tolerance

 D 10�3, which causes all the curves corresponding to Picard and Newton iteration
to be on top of each other (and no changes can be visually observed by reducing
r
further). The reason why Newton’s method does much better than Picard iteration
in the upper left plot is that Newton’s method with one step comes far below the

r tolerance, while the Picard iteration needs on average 7 iterations to bring the
residual down to
r D 10�1, which gives insufficient accuracy in the solution of the
nonlinear equation. It is obvious that the Picard1 method gives significant errors in

Fig. 5.1 Impact of solution strategy and time step length on the solution

364 5 Nonlinear Problems

Fig. 5.2 Comparison of the number of iterations at various time levels for Picard and Newton
iteration

addition to the time discretization unless the time step is as small as in the lower
right plot.

The BE exact curve corresponds to using the exact solution of the quadratic
equation at each time level, so this curve is only affected by the Backward Euler
time discretization. TheCN gm curve corresponds to the theoretically more accurate
Crank-Nicolson discretization, combined with a geometric mean for linearization.
This curve appears more accurate, especially if we take the plot in the lower right
with a small �t and an appropriately small
r value as the exact curve.

When it comes to the need for iterations, Fig. 5.2 displays the number of iter-
ations required at each time level for Newton’s method and Picard iteration. The
smaller �t is, the better starting value we have for the iteration, and the faster the
convergence is. With �t D 0:9 Picard iteration requires on average 32 iterations
per time step, but this number is dramatically reduced as �t is reduced.

However, introducing relaxation and a parameter ! D 0:8 immediately reduces
the average of 32 to 7, indicating that for the large�t D 0:9, Picard iteration takes
too long steps. An approximately optimal value for ! in this case is 0.5, which
results in an average of only 2 iterations! An even more dramatic impact of !
appears when�t D 1: Picard iteration does not convergence in 1000 iterations, but
! D 0:5 again brings the average number of iterations down to 2.

5.1 Introduction of Basic Concepts 365

Remark The simple Crank-Nicolson method with a geometric mean for the
quadratic nonlinearity gives visually more accurate solutions than the Backward
Euler discretization. Even with a tolerance of
r D 10�3, all the methods for
treating the nonlinearities in the Backward Euler discretization give graphs that
cannot be distinguished. So for accuracy in this problem, the time discretization
is much more crucial than
r . Ideally, one should estimate the error in the time
discretization, as the solution progresses, and set
r accordingly.

5.1.11 Generalization to a General Nonlinear ODE

Let us see how the various methods in the previous sections can be applied to the
more generic model

u0 D f .u; t/; (5.10)

where f is a nonlinear function of u.

Explicit time discretization Explicit ODE methods like the Forward Euler
scheme, Runge-Kutta methods and Adams-Bashforth methods all evaluate f at
time levels where u is already computed, so nonlinearities in f do not pose any
difficulties.

Backward Euler discretization Approximating u0 by a backward difference leads
to a Backward Euler scheme, which can be written as

F.un/ D un ��t f .un; tn/� un�1 D 0;

or alternatively
F.u/ D u ��t f .u; tn/� u.1/ D 0 :

A simple Picard iteration, not knowing anything about the nonlinear structure of f ,
must approximate f .u; tn/ by f .u�; tn/:

OF .u/ D u ��t f .u�; tn/ � u.1/ :

The iteration starts with u� D u.1/ and proceeds with repeating

u
 D �t f .u�; tn/C u.1/; u D !u
 C .1 � !/u�; u� u;

until a stopping criterion is fulfilled.

Explicit vs implicit treatment of nonlinear terms
Evaluating f for a known u� is referred to as explicit treatment of f , while
if f .u; t/ has some structure, say f .u; t/ D u3, parts of f can involve the
unknown u, as in the manual linearization .u�/2u, and then the treatment of
f is “more implicit” and “less explicit”. This terminology is inspired by time
discretization of u0 D f .u; t/, where evaluating f for known u values gives
explicit schemes, while treating f or parts of f implicitly, makes f contribute
to the unknown terms in the equation at the new time level.

366 5 Nonlinear Problems

Explicit treatment of f usually means stricter conditions on �t to achieve
stability of time discretization schemes. The same applies to iteration techniques
for nonlinear algebraic equations: the “less” we linearize f (i.e., the more we
keep of u in the original formula), the faster the convergence may be.

We may say that f .u; t/ D u3 is treated explicitly if we evaluate f as .u�/3,
partially implicit if we linearize as .u�/2u and fully implicit if we represent f
by u3. (Of course, the fully implicit representation will require further lineariza-
tion, but with f .u; t/ D u2 a fully implicit treatment is possible if the resulting
quadratic equation is solved with a formula.)

For the ODE u0 D �u3 with f .u; t/ D �u3 and coarse time resolution
�t D 0:4, Picard iteration with .u�/2u requires 8 iterations with
r D 10�3 for
the first time step, while .u�/3 leads to 22 iterations. After about 10 time steps
both approaches are down to about 2 iterations per time step, but this example
shows a potential of treating f more implicitly.

A trick to treat f implicitly in Picard iteration is to evaluate it as f .u�; t/u=u�.
For a polynomial f , f .u; t/ D um, this corresponds to .u�/mu=u� D
.u�/m�1u. Sometimes this more implicit treatment has no effect, as with
f .u; t/ D exp.�u/ and f .u; t/ D ln.1C u/, but with f .u; t/ D sin.2.uC 1//,
the f .u�; t/u=u� trick leads to 7, 9, and 11 iterations during the first three steps,
while f .u�; t/ demands 17, 21, and 20 iterations. (Experiments can be done
with the code ODE_Picard_tricks.py.)

Newton’s method applied to a Backward Euler discretization of u0 D f .u; t/

requires computation of the derivative

F 0.u/ D 1 ��t @f
@u
.u; tn/ :

Starting with the solution at the previous time level, u� D u.1/, we can just use the
standard formula

u D u� � ! F.u
�/

F 0.u�/
D u� � !u

� ��t f .u�; tn/ � u.1/
1 ��t @

@u
f .u�; tn/

: (5.11)

Crank-Nicolson discretization The standard Crank-Nicolson scheme with arith-
metic mean approximation of f takes the form

unC1 � un
�t

D 1

2

�
f .unC1; tnC1/C f .un; tn/

�
:

We can write the scheme as a nonlinear algebraic equation

F.u/ D u � u.1/ ��t 1
2
f .u; tnC1/ ��t 1

2
f .u.1/; tn/ D 0 : (5.12)

A Picard iteration scheme must in general employ the linearization

OF .u/ D u � u.1/ ��t 1
2
f .u�; tnC1/ ��t 1

2
f .u.1/; tn/;

http://tinyurl.com/nu656p2/nonlin/ODE_Picard_tricks.py

5.1 Introduction of Basic Concepts 367

while Newton’s method can apply the general formula (5.11) with F.u/ given in
(5.12) and

F 0.u/ D 1 � 1
2
�t
@f

@u
.u; tnC1/ :

5.1.12 Systems of ODEs

We may write a system of ODEs

d

dt
u0.t/ D f0.u0.t/; u1.t/; : : : ; uN .t/; t/;

d

dt
u1.t/ D f1.u0.t/; u1.t/; : : : ; uN .t/; t/;

:::

d

dt
um.t/ D fm.u0.t/; u1.t/; : : : ; uN .t/; t/;

as
u0 D f .u; t/; u.0/ D U0; (5.13)

if we interpret u as a vector u D .u0.t/; u1.t/; : : : ; uN .t// and f as a vector func-
tion with components .f0.u; t/; f1.u; t/; : : : ; fN .u; t//.

Most solution methods for scalar ODEs, including the Forward and Backward
Euler schemes and the Crank-Nicolson method, generalize in a straightforward way
to systems of ODEs simply by using vector arithmetics instead of scalar arithmetics,
which corresponds to applying the scalar scheme to each component of the system.
For example, here is a backward difference scheme applied to each component,

un0 � un�10

�t
D f0.un; tn/;

un1 � un�11

�t
D f1.un; tn/;
:::

unN � un�1N

�t
D fN .un; tn/;

which can be written more compactly in vector form as

un � un�1
�t

D f .un; tn/ :

This is a system of algebraic equations,

un ��t f .un; tn/ � un�1 D 0;

368 5 Nonlinear Problems

or written out
un0 ��t f0.un; tn/� un�10 D 0;

:::

unN ��t fN .un; tn/� un�1N D 0 :

Example We shall address the 2 � 2 ODE system for oscillations of a pendulum
subject to gravity and air drag. The system can be written as

P! D � sin � � ˇ!j!j; (5.14)

P� D !; (5.15)

where ˇ is a dimensionless parameter (this is the scaled, dimensionless version of
the original, physical model). The unknown components of the system are the angle
�.t/ and the angular velocity !.t/. We introduce u0 D ! and u1 D � , which leads
to

u00 D f0.u; t/ D � sin u1 � ˇu0ju0j;
u01 D f1.u; t/ D u0 :

A Crank-Nicolson scheme reads

unC10 � un0
�t

D � sin u
nC 1

2

1 � ˇunC 1
2

0 junC 1
2

0 j

� � sin

�
1

2
.unC11 C u1n/

�
� ˇ1

4
.unC10 C un0/junC10 C un0 j; (5.16)

unC11 � un1
�t

D unC 1
2

0 � 1

2
.unC10 C un0/ : (5.17)

This is a coupled system of two nonlinear algebraic equations in two unknowns
unC10 and unC11 .

Using the notation u0 and u1 for the unknowns unC10 and unC11 in this system,

writing u.1/0 and u.1/1 for the previous values un0 and un1 , multiplying by �t and
moving the terms to the left-hand sides, gives

u0 � u.1/0 C�t sin
�
1

2
.u1 C u.1/1 /

�
C 1

4
�tˇ.u0 C u.1/0 /ju0 C u.1/0 j D 0; (5.18)

u1 � u.1/1 �
1

2
�t.u0 C u.1/0 / D 0 : (5.19)

Obviously, we have a need for solving systems of nonlinear algebraic equations,
which is the topic of the next section.

5.2 Systems of Nonlinear Algebraic Equations

Implicit time discretization methods for a system of ODEs, or a PDE, lead to sys-
tems of nonlinear algebraic equations, written compactly as

F.u/ D 0;

5.2 Systems of Nonlinear Algebraic Equations 369

where u is a vector of unknowns u D .u0; : : : ; uN /, and F is a vector function:
F D .F0; : : : ; FN /. The system at the end of Sect. 5.1.12 fits this notation with
N D 1, F0.u/ given by the left-hand side of (5.18), while F1.u/ is the left-hand
side of (5.19).

Sometimes the equation system has a special structure because of the underlying
problem, e.g.,

A.u/u D b.u/;
with A.u/ as an .N C 1/� .N C 1/matrix function of u and b as a vector function:
b D .b0; : : : ; bN /.

We shall next explain how Picard iteration and Newton’s method can be applied
to systems like F.u/ D 0 and A.u/u D b.u/. The exposition has a focus on
ideas and practical computations. More theoretical considerations, including quite
general results on convergence properties of these methods, can be found in Kelley
[8].

5.2.1 Picard Iteration

We cannot apply Picard iteration to nonlinear equations unless there is some spe-
cial structure. For the commonly arising case A.u/u D b.u/ we can linearize the
product A.u/u to A.u�/u and b.u/ as b.u�/. That is, we use the most previously
computed approximation in A and b to arrive at a linear system for u:

A.u�/u D b.u�/ :
A relaxed iteration takes the form

A.u�/u
 D b.u�/; u D !u
 C .1 � !/u� :

In other words, we solve a system of nonlinear algebraic equations as a sequence of
linear systems.

Algorithm for relaxed Picard iteration
Given A.u/u D b.u/ and an initial guess u�, iterate until convergence:

1. solve A.u�/u
 D b.u�/ with respect to u

2. u D !u
 C .1 � !/u�
3. u� u

“Until convergence” means that the iteration is stopped when the change in
the unknown, jju � u�jj, or the residual jjA.u/u � bjj, is sufficiently small, see
Sect. 5.2.3 for more details.

5.2.2 Newton’s Method

The natural starting point for Newton’s method is the general nonlinear vector equa-
tion F.u/ D 0. As for a scalar equation, the idea is to approximate F around a

370 5 Nonlinear Problems

known value u� by a linear function OF , calculated from the first two terms of a
Taylor expansion of F . In the multi-variate case these two terms become

F.u�/C J.u�/ � .u � u�/;

where J is the Jacobian of F , defined by

Ji;j D @Fi

@uj
:

So, the original nonlinear system is approximated by

OF .u/ D F.u�/C J.u�/ � .u � u�/ D 0;

which is linear in u and can be solved in a two-step procedure: first solve J ıu D
�F.u�/ with respect to the vector ıu and then update u D u� C ıu. A relaxation
parameter can easily be incorporated:

u D !.u� C ıu/C .1 � !/u� D u� C !ıu :

Algorithm for Newton’smethod
Given F.u/ D 0 and an initial guess u�, iterate until convergence:

1. solve J ıu D �F.u�/ with respect to ıu
2. u D u� C !ıu
3. u� u

For the special system with structure A.u/u D b.u/,

Fi D
X
k

Ai;k.u/uk � bi .u/;

one gets

Ji;j D
X
k

@Ai;k

@uj
uk C Ai;j � @bi

@uj
: (5.20)

We realize that the Jacobian needed in Newton’s method consists ofA.u�/ as in the
Picard iteration plus two additional terms arising from the differentiation. Using the
notation A0.u/ for @A=@u (a quantity with three indices: @Ai;k=@uj), and b0.u/ for
@b=@u (a quantity with two indices: @bi=@uj), we can write the linear system to be
solved as

.AC A0uC b0/ıu D �AuC b;
or

.A.u�/C A0.u�/u� C b0.u�//ıu D �A.u�/u� C b.u�/ :
Rearranging the terms demonstrates the difference from the system solved in each
Picard iteration:

A.u�/.u� C ıu/ � b.u�/„ ƒ‚ …
Picard system

C
.A0.u�/u� C b0.u�//ıu D 0 :

5.2 Systems of Nonlinear Algebraic Equations 371

Here we have inserted a parameter
 such that
 D 0 gives the Picard system and

 D 1 gives the Newton system. Such a parameter can be handy in software to
easily switch between the methods.

Combined algorithm for Picard and Newton iteration
Given A.u/, b.u/, and an initial guess u�, iterate until convergence:

1. solve .AC
.A0.u�/u� C b0.u�///ıu D �A.u�/u� C b.u�/ with respect
to ıu

2. u D u� C !ıu
3. u� u

 D 1 gives a Newton method while
 D 0 corresponds to Picard iteration.

5.2.3 Stopping Criteria

Let jj � jj be the standard Euclidean vector norm. Four termination criteria are much
in use:

� Absolute change in solution: jju � u�jj �
u
� Relative change in solution: jju � u�jj �
ujju0jj, where u0 denotes the start

value of u� in the iteration
� Absolute residual: jjF.u/jj �
r
� Relative residual: jjF.u/jj �
r jjF.u0/jj
To prevent divergent iterations to run forever, one terminates the iterations when the
current number of iterations k exceeds a maximum value kmax.

The relative criteria are most used since they are not sensitive to the characteristic
size of u. Nevertheless, the relative criteria can be misleading when the initial start
value for the iteration is very close to the solution, since an unnecessary reduction
in the error measure is enforced. In such cases the absolute criteria work better. It is
common to combine the absolute and relative measures of the size of the residual,
as in

jjF.u/jj �
rr jjF.u0/jj C
ra; (5.21)

where
rr is the tolerance in the relative criterion and
ra is the tolerance in the
absolute criterion. With a very good initial guess for the iteration (typically the
solution of a differential equation at the previous time level), the term jjF.u0/jj is
small and
ra is the dominating tolerance. Otherwise,
rr jjF.u0/jj and the relative
criterion dominates.

With the change in solution as criterion we can formulate a combined absolute
and relative measure of the change in the solution:

jjıujj �
ur jju0jj C
ua : (5.22)

The ultimate termination criterion, combining the residual and the change in
solution with a test on the maximum number of iterations, can be expressed as

jjF.u/jj �
rr jjF.u0/jj C
ra or jjıujj �
ur jju0jj C
ua or k > kmax :

(5.23)

372 5 Nonlinear Problems

5.2.4 Example: A Nonlinear ODEModel from Epidemiology

A very simple model for the spreading of a disease, such as a flu, takes the form of
a 2 � 2 ODE system

S 0 D �ˇSI; (5.24)

I 0 D ˇSI � �I; (5.25)

where S.t/ is the number of people who can get ill (susceptibles) and I.t/ is the
number of people who are ill (infected). The constants ˇ > 0 and � > 0 must be
given along with initial conditions S.0/ and I.0/.

Implicit time discretization A Crank-Nicolson scheme leads to a 2� 2 system of
nonlinear algebraic equations in the unknowns SnC1 and I nC1:

SnC1 � Sn
�t

D �ˇŒSI �nC 1
2 � �ˇ

2
.SnI n C SnC1I nC1/; (5.26)

I nC1 � I n
�t

D ˇŒSI �nC 1
2 � �InC 1

2 � ˇ

2
.SnI n C SnC1I nC1/� �

2
.I n C I nC1/ :

(5.27)

Introducing S for SnC1, S.1/ for Sn, I for I nC1 and I .1/ for I n, we can rewrite the
system as

FS.S; I / D S � S.1/ C 1

2
�tˇ.S.1/I .1/ C SI/ D 0; (5.28)

FI .S; I / D I � I .1/ � 1
2
�tˇ.S.1/I .1/ C SI/C 1

2
�t�.I .1/ C I / D 0 : (5.29)

A Picard iteration We assume that we have approximations S� and I� to S and
I , respectively. A way of linearizing the only nonlinear term SI is to write I�S in
the FS D 0 equation and S�I in the FI D 0 equation, which also decouples the
equations. Solving the resulting linear equations with respect to the unknowns S
and I gives

S D S.1/ � 1
2
�tˇS.1/I .1/

1C 1
2
�tˇI�

;

I D I .1/ C 1
2
�tˇS.1/I .1/ � 1

2
�t�I .1/

1 � 1
2
�tˇS� C 1

2
�t�

:

Before a new iteration, we must update S� S and I� I .

Newton’s method The nonlinear system (5.28)–(5.29) can be written as F.u/ D 0
with F D .FS ; FI / and u D .S; I /. The Jacobian becomes

J D

@
@S
FS

@
@I
FS

@
@S
FI

@
@I
FI

!
D

1C 1

2
�tˇI 1

2
�tˇS

� 1
2
�tˇI 1 � 1

2
�tˇS C 1

2
�t�

!
:

5.3 Linearization at the Differential Equation Level 373

The Newton system J.u�/ıu D �F.u�/ to be solved in each iteration is then

1C 1

2
�tˇI� 1

2
�tˇS�

� 1
2
�tˇI� 1 � 1

2
�tˇS� C 1

2
�t�

!
ıS

ıI

!

D

S� � S.1/ C 1
2
�tˇ.S.1/I .1/ C S�I�/

I� � I .1/ � 1
2
�tˇ.S.1/I .1/ C S�I�/C 1

2
�t�.I .1/ C I�/

!
:

Remark For this particular system of ODEs, explicit time integration methods
work very well. Even a Forward Euler scheme is fine, but (as also experienced more
generally) the 4-th order Runge-Kutta method is an excellent balance between high
accuracy, high efficiency, and simplicity.

5.3 Linearization at the Differential Equation Level

The attention is now turned to nonlinear partial differential equations (PDEs) and
application of the techniques explained above for ODEs. The model problem is a
nonlinear diffusion equation for u.x; t/:

@u

@t
D r � .˛.u/ru/C f .u/; x 2 ˝; t 2 .0; T �; (5.30)

�˛.u/@u
@n
D g; x 2 @˝N ; t 2 .0; T �; (5.31)

u D u0; x 2 @˝D; t 2 .0; T � : (5.32)

In the present section, our aim is to discretize this problem in time and then
present techniques for linearizing the time-discrete PDE problem “at the PDE level”
such that we transform the nonlinear stationary PDE problem at each time level
into a sequence of linear PDE problems, which can be solved using any method
for linear PDEs. This strategy avoids the solution of systems of nonlinear algebraic
equations. In Sect. 5.4 we shall take the opposite (and more common) approach:
discretize the nonlinear problem in time and space first, and then solve the resulting
nonlinear algebraic equations at each time level by the methods of Sect. 5.2. Very
often, the two approaches are mathematically identical, so there is no preference
from a computational efficiency point of view. The details of the ideas sketched
above will hopefully become clear through the forthcoming examples.

5.3.1 Explicit Time Integration

The nonlinearities in the PDE are trivial to deal with if we choose an explicit time
integration method for (5.30), such as the Forward Euler method:

ŒDCt u D r � .˛.u/ru/C f .u/�n;
or written out,

unC1 � un
�t

D r � .˛.un/run/C f .un/;

374 5 Nonlinear Problems

which is a linear equation in the unknown unC1 with solution

unC1 D un C�tr � .˛.un/run/C�tf .un/ :

The disadvantage with this discretization is the strict stability criterion �t �
h2=.6max˛/ for the case f D 0 and a standard 2nd-order finite difference dis-
cretization in 3D space with mesh cell sizes h D �x D �y D �z.

5.3.2 Backward Euler Scheme and Picard Iteration

A Backward Euler scheme for (5.30) reads

ŒD�t u D r � .˛.u/ru/C f .u/�n :

Written out,
un � un�1

�t
D r � .˛.un/run/C f .un/ : (5.33)

This is a nonlinear PDE for the unknown function un.x/. Such a PDE can be
viewed as a time-independent PDE where un�1.x/ is a known function.

We introduce a Picard iteration with k as iteration counter. A typical linearization
of the r � .˛.un/run/ term in iteration kC1 is to use the previously computed un;k

approximation in the diffusion coefficient: ˛.un;k/. The nonlinear source term is
treated similarly: f .un;k/. The unknown function un;kC1 then fulfills the linear
PDE

un;kC1 � un�1
�t

D r � �˛.un;k/run;kC1�C f .un;k/ : (5.34)

The initial guess for the Picard iteration at this time level can be taken as the solution
at the previous time level: un;0 D un�1.

We can alternatively apply the implementation-friendly notation where u corre-
sponds to the unknown we want to solve for, i.e., un;kC1 above, and u� is the most
recently computed value, un;k above. Moreover, u.1/ denotes the unknown function
at the previous time level, un�1 above. The PDE to be solved in a Picard iteration
then looks like

u � u.1/
�t

D r � .˛.u�/ru/C f .u�/ : (5.35)

At the beginning of the iteration we start with the value from the previous time
level: u� D u.1/, and after each iteration, u� is updated to u.

Remark on notation
The previous derivations of the numerical scheme for time discretizations of
PDEs have, strictly speaking, a somewhat sloppy notation, but it is much used
and convenient to read. A more precise notation must distinguish clearly be-
tween the exact solution of the PDE problem, here denoted ue.x; t/, and the
exact solution of the spatial problem, arising after time discretization at each time
level, where (5.33) is an example. The latter is here represented as un.x/ and is
an approximation to ue.x; tn/. Then we have another approximation un;k.x/ to

5.3 Linearization at the Differential Equation Level 375

un.x/ when solving the nonlinear PDE problem for un by iteration methods, as
in (5.34).

In our notation, u is a synonym for un;kC1 and u.1/ is a synonym for un�1,
inspired by what are natural variable names in a code. We will usually state
the PDE problem in terms of u and quickly redefine the symbol u to mean the
numerical approximation, while ue is not explicitly introduced unless we need
to talk about the exact solution and the approximate solution at the same time.

5.3.3 Backward Euler Scheme and Newton’sMethod

At time level n, we have to solve the stationary PDE (5.33). In the previous section,
we saw how this can be done with Picard iterations. Another alternative is to apply
the idea of Newton’s method in a clever way. Normally, Newton’s method is defined
for systems of algebraic equations, but the idea of the method can be applied at the
PDE level too.

Linearization via Taylor expansions Let un;k be an approximation to the un-
known un. We seek a better approximation on the form

un D un;k C ıu : (5.36)

The idea is to insert (5.36) in (5.33), Taylor expand the nonlinearities and keep
only the terms that are linear in ıu (which makes (5.36) an approximation for un).
Then we can solve a linear PDE for the correction ıu and use (5.36) to find a new
approximation

un;kC1 D un;k C ıu
to un. Repeating this procedure gives a sequence un;kC1, k D 0; 1; : : : that hopefully
converges to the goal un.

Let us carry out all the mathematical details for the nonlinear diffusion PDE
discretized by the Backward Euler method. Inserting (5.36) in (5.33) gives

un;k C ıu � un�1
�t

D r � .˛.un;k C ıu/r.un;k C ıu//C f .un;k C ıu/ : (5.37)

We can Taylor expand ˛.un;k C ıu/ and f .un;k C ıu/:

˛.un;k C ıu/ D ˛.un;k/C d˛

du
.un;k/ıuCO.ıu2/ � ˛.un;k/C ˛0.un;k/ıu;

f .un;k C ıu/ D f .un;k/C df

du
.un;k/ıuCO.ıu2/ � f .un;k/C f 0.un;k/ıu :

Inserting the linear approximations of ˛ and f in (5.37) results in

un;k C ıu � un�1
�t

D r � .˛.un;k/run;k/C f .un;k/
C r � .˛.un;k/rıu/C r � .˛0.un;k/ıurun;k/
C r � .˛0.un;k/ıurıu/C f 0.un;k/ıu : (5.38)

376 5 Nonlinear Problems

The term ˛0.un;k/ıurıu is of order ıu2 and therefore omitted since we expect the
correction ıu to be small (ıu � ıu2). Reorganizing the equation gives a PDE for
ıu that we can write in short form as

ıF.ıuIun;k/ D �F.un;k/;
where

F.un;k/ D un;k � un�1
�t

�r � .˛.un;k/run;k/C f .un;k/; (5.39)

ıF.ıuIun;k/ D � 1

�t
ıuCr � .˛.un;k/rıu/

C r � .˛0.un;k/ıurun;k/C f 0.un;k/ıu : (5.40)

Note that ıF is a linear function of ıu, and F contains only terms that are known,
such that the PDE for ıu is indeed linear.

Observations
The notational form ıF D �F resembles the Newton system J ıu D �F for
systems of algebraic equations, with ıF as J ıu. The unknown vector in a linear
system of algebraic equations enters the system as a linear operator in terms of a
matrix-vector product (J ıu), while at the PDE level we have a linear differential
operator instead (ıF).

Similarity with Picard iteration We can rewrite the PDE for ıu in a slightly dif-
ferent way too if we define un;k C ıu as un;kC1.

un;kC1 � un�1
�t

D r � .˛.un;k/run;kC1/C f .un;k/
C r � .˛0.un;k/ıurun;k/C f 0.un;k/ıu : (5.41)

Note that the first line is the same PDE as arises in the Picard iteration, while the
remaining terms arise from the differentiations that are an inherent ingredient in
Newton’s method.

Implementation For coding we want to introduce u for un, u� for un;k and u.1/

for un�1. The formulas for F and ıF are then more clearly written as

F.u�/ D u� � u.1/
�t

�r � .˛.u�/ru�/C f .u�/; (5.42)

ıF.ıuIu�/ D � 1

�t
ıuCr � .˛.u�/rıu/

Cr � .˛0.u�/ıuru�/C f 0.u�/ıu : (5.43)

The form that orders the PDE as the Picard iteration terms plus the Newton method’s
derivative terms becomes

u � u.1/
�t

D r � .˛.u�/ru/C f .u�/
C
.r � .˛0.u�/.u � u�/ru�/C f 0.u�/.u � u�// : (5.44)

The Picard and full Newton versions correspond to
 D 0 and
 D 1, respectively.

5.3 Linearization at the Differential Equation Level 377

Derivation with alternative notation Some may prefer to derive the linearized
PDE for ıu using the more compact notation. We start with inserting un D u�Cıu
to get

u� C ıu � un�1
�t

D r � .˛.u� C ıu/r.u� C ıu//C f .u� C ıu/ :
Taylor expanding,

˛.u� C ıu/ � ˛.u�/C ˛0.u�/ıu;
f .u� C ıu/ � f .u�/C f 0.u�/ıu;

and inserting these expressions gives a less cluttered PDE for ıu:

u� C ıu � un�1
�t

D r � .˛.u�/ru�/C f .u�/
Cr � .˛.u�/rıu/Cr � .˛0.u�/ıuru�/
Cr � .˛0.u�/ıurıu/C f 0.u�/ıu :

5.3.4 Crank-NicolsonDiscretization

A Crank-Nicolson discretization of (5.30) applies a centered difference at tnC 1
2
:

ŒDtu D r � .˛.u/ru/C f .u/�nC 1
2 :

The standard technique is to apply an arithmetic average for quantities defined be-
tween two mesh points, e.g.,

unC
1
2 � 1

2
.un C unC1/ :

However, with nonlinear terms we have many choices of formulating an arithmetic
mean:

Œf .u/�nC
1
2 � f

�
1

2
.un C unC1/

�
D Œf .ut /�nC 1

2 ; (5.45)

Œf .u/�nC
1
2 � 1

2
.f .un/C f .unC1// D

h
f .u/

t
inC 1

2
; (5.46)

Œ˛.u/ru�nC 1
2 � ˛

�
1

2
.un C unC1/

�
r
�
1

2
.un C unC1/

�
D
˛.ut /rut �nC 1

2 ;

(5.47)

Œ˛.u/ru�nC 1
2 � 1

2
.˛.un/C ˛.unC1//r

�
1

2
.un C unC1/

�
D
h
˛.u/

trut
inC 1

2
;

(5.48)

Œ˛.u/ru�nC 1
2 � 1

2
.˛.un/run C ˛.unC1/runC1/ D

h
˛.u/rut

inC 1
2
: (5.49)

A big question is whether there are significant differences in accuracy between
taking the products of arithmetic means or taking the arithmetic mean of products.
Exercise 5.6 investigates this question, and the answer is that the approximation is
O.�t2/ in both cases.

378 5 Nonlinear Problems

5.4 1D Stationary Nonlinear Differential Equations

Section 5.3 presented methods for linearizing time-discrete PDEs directly prior to
discretization in space. We can alternatively carry out the discretization in space of
the time-discrete nonlinear PDE problem and get a system of nonlinear algebraic
equations, which can be solved by Picard iteration or Newton’s method as presented
in Sect. 5.2. This latter approach will now be described in detail.

We shall work with the 1D problem

� .˛.u/u0/0 C au D f .u/; x 2 .0; L/; ˛.u.0//u0.0/ D C; u.L/ D D :

(5.50)
The problem (5.50) arises from the stationary limit of a diffusion equation,

@u

@t
D @

@x

�
˛.u/

@u

@x

�
� auC f .u/; (5.51)

as t ! 1 and @u=@t ! 0. Alternatively, the problem (5.50) arises at each time
level from implicit time discretization of (5.51). For example, a Backward Euler
scheme for (5.51) leads to

un � un�1
�t

D d

dx

�
˛.un/

dun

dx

�
� aun C f .un/ : (5.52)

Introducing u.x/ for un.x/, u.1/ for un�1, and defining f .u/ in (5.50) to be f .u/ in
(5.52) plus un�1=�t , gives (5.50) with a D 1=�t .

5.4.1 Finite Difference Discretization

The nonlinearity in the differential equation (5.50) poses no more difficulty than a
variable coefficient, as in the term .˛.x/u0/0. We can therefore use a standard finite
difference approach when discretizing the Laplace term with a variable coefficient:

Œ�Dx˛DxuC au D f �i :

Writing this out for a uniform mesh with points xi D i�x, i D 0; : : : ; Nx , leads to

� 1

�x2

�
˛iC 1

2
.uiC1 � ui/ � ˛i� 12 .ui � ui�1/

�
C aui D f .ui / : (5.53)

This equation is valid at all the mesh points i D 0; 1; : : : ; Nx � 1. At i D Nx
we have the Dirichlet condition ui D 0. The only difference from the case with
.˛.x/u0/0 and f .x/ is that now ˛ and f are functions of u and not only of x:
.˛.u.x//u0/0 and f .u.x//.

The quantity ˛iC 1
2
, evaluated between two mesh points, needs a comment. Since

˛ depends on u and u is only known at the mesh points, we need to express ˛iC 1
2

in terms of ui and uiC1. For this purpose we use an arithmetic mean, although a

5.4 1D Stationary Nonlinear Differential Equations 379

harmonic mean is also common in this context if ˛ features large jumps. There are
two choices of arithmetic means:

˛iC 1
2
� ˛

�
1

2
.ui C uiC1/

�
D Œ˛.ux/�iC 1

2 ; (5.54)

˛iC 1
2
� 1

2
.˛.ui /C ˛.uiC1// D

h
˛.u/

x
iiC 1

2
: (5.55)

Equation (5.53) with the latter approximation then looks like

� 1

2�x2
..˛.ui /C ˛.uiC1//.uiC1 � ui / � .˛.ui�1/C ˛.ui//.ui � ui�1//

C aui D f .ui /;
(5.56)

or written more compactly,

Œ�Dx˛
xDxuC au D f �i :

At mesh point i D 0 we have the boundary condition ˛.u/u0 D C , which is
discretized by

Œ˛.u/D2xu D C �0;
meaning

˛.u0/
u1 � u�1
2�x

D C : (5.57)

The fictitious value u�1 can be eliminated with the aid of (5.56) for i D 0. Formally,
(5.56) should be solved with respect to ui�1 and that value (for i D 0) should be
inserted in (5.57), but it is algebraically much easier to do it the other way around.
Alternatively, one can use a ghost cell Œ��x; 0� and update the u�1 value in the
ghost cell according to (5.57) after every Picard or Newton iteration. Such an ap-
proach means that we use a known u�1 value in (5.56) from the previous iteration.

5.4.2 Solution of Algebraic Equations

The structure of the equation system The nonlinear algebraic equations (5.56)
are of the form A.u/u D b.u/ with

Ai;i D 1

2�x2
.˛.ui�1/C 2˛.ui /˛.uiC1//C a;

Ai;i�1 D � 1

2�x2
.˛.ui�1/C ˛.ui//;

Ai;iC1 D � 1

2�x2
.˛.ui /C ˛.uiC1//;

bi D f .ui / :

The matrix A.u/ is tridiagonal: Ai;j D 0 for j > i C 1 and j < i � 1.

380 5 Nonlinear Problems

The above expressions are valid for internal mesh points 1 � i � Nx � 1. For
i D 0 we need to express ui�1 D u�1 in terms of u1 using (5.57):

u�1 D u1 � 2�x

˛.u0/
C : (5.58)

This value must be inserted in A0;0. The expression for Ai;iC1 applies for i D 0,
and Ai;i�1 does not enter the system when i D 0.

Regarding the last equation, its form depends on whether we include the Dirich-
let condition u.L/ D D, meaning uNx D D, in the nonlinear algebraic equation
system or not. Suppose we choose .u0; u1; : : : ; uNx�1/ as unknowns, later re-
ferred to as systems without Dirichlet conditions. The last equation corresponds
to i D Nx�1. It involves the boundary value uNx , which is substituted byD. If the
unknown vector includes the boundary value, .u0; u1; : : : ; uNx /, later referred to as
system including Dirichlet conditions, the equation for i D Nx � 1 just involves the
unknown uNx , and the final equation becomes uNx D D, corresponding to Ai;i D 1
and bi D D for i D Nx .

Picard iteration The obvious Picard iteration scheme is to use previously com-
puted values of ui in A.u/ and b.u/, as described more in detail in Sect. 5.2.
With the notation u� for the most recently computed value of u, we have the
system F.u/ � OF .u/ D A.u�/u � b.u�/, with F D .F0; F1; : : : ; Fm/, u D
.u0; u1; : : : ; um/. The index m is Nx if the system includes the Dirichlet condition
as a separate equation and Nx � 1 otherwise. The matrix A.u�/ is tridiagonal, so
the solution procedure is to fill a tridiagonal matrix data structure and the right-
hand side vector with the right numbers and call a Gaussian elimination routine for
tridiagonal linear systems.

Mesh with two cells It helps on the understanding of the details to write out all the
mathematics in a specific case with a small mesh, say just two cells (Nx D 2). We
use u�i for the i-th component in u�.

The starting point is the basic expressions for the nonlinear equations at mesh
point i D 0 and i D 1:

A0;�1u�1 C A0;0u0 C A0;1u1 D b0; (5.59)

A1;0u0 C A1;1u1 C A1;2u2 D b1 : (5.60)

Equation (5.59) written out reads

1

2�x2

�
� .˛.u�1/C ˛.u0//u�1

C .˛.u�1/C 2˛.u0/C ˛.u1//u0

� .˛.u0/C ˛.u1//
�
u1 C au0 D f .u0/ :

5.4 1D Stationary Nonlinear Differential Equations 381

We must then replace u�1 by (5.58). With Picard iteration we get

1

2�x2

�
� .˛.u��1/C 2˛.u�0 /C ˛.u�1 //u1

C .˛.u��1/C 2˛.u�0 /C ˛.u�1 //
�
u0 C au0

D f .u�0 / �
1

˛.u�0 /�x
.˛.u��1/C ˛.u�0 //C;

where

u��1 D u�1 �
2�x

˛.u�0 /
C :

Equation (5.60) contains the unknown u2 for which we have a Dirichlet con-
dition. In case we omit the condition as a separate equation, (5.60) with Picard
iteration becomes

1

2�x2

�
� .˛.u�0 /C ˛.u�1 //u0

C .˛.u�0 /C 2˛.u�1 /C ˛.u�2 //u1

� .˛.u�1 /C ˛.u�2 //
�
u2 C au1 D f .u�1 / :

We must now move the u2 term to the right-hand side and replace all occurrences
of u2 by D:

1

2�x2

�
� .˛.u�0 /C ˛.u�1 //u0

C .˛.u�0 /C 2˛.u�1 /C ˛.D//
�
u1 C au1

D f .u�1 /C
1

2�x2
.˛.u�1 /C ˛.D//D :

The two equations can be written as a 2 � 2 system:

B0;0 B0;1

B1;0 B1;1

!
u0

u1

!
D

d0

d1

!
;

where

B0;0 D 1

2�x2
.˛.u��1/C 2˛.u�0 /C ˛.u�1 //C a; (5.61)

B0;1 D � 1

2�x2
.˛.u��1/C 2˛.u�0 /C ˛.u�1 //; (5.62)

B1;0 D � 1

2�x2
.˛.u�0 /C ˛.u�1 //; (5.63)

B1;1 D 1

2�x2
.˛.u�0 /C 2˛.u�1 /C ˛.D//C a; (5.64)

382 5 Nonlinear Problems

d0 D f .u�0 / �
1

˛.u�0 /�x
.˛.u��1/C ˛.u�0 //C; (5.65)

d1 D f .u�1 /C
1

2�x2
.˛.u�1 /C ˛.D//D : (5.66)

The system with the Dirichlet condition becomes

0
B@
B0;0 B0;1 0

B1;0 B1;1 B1;2

0 0 1

1
CA
0
B@
u0

u1

u2

1
CA D

0
B@
d0

d1

D

1
CA ;

with

B1;1 D 1

2�x2
.˛.u�0 /C 2˛.u�1 /C ˛.u2//C a; (5.67)

B1;2 D � 1

2�x2
.˛.u�1 /C ˛.u2///; (5.68)

d1 D f .u�1 / : (5.69)

Other entries are as in the 2 � 2 system.

Newton’s method The Jacobian must be derived in order to use Newton’s method.
Here it means that we need to differentiate F.u/ D A.u/u � b.u/ with respect to
the unknown parameters u0; u1; : : : ; um (m D Nx or m D Nx � 1, depending on
whether the Dirichlet condition is included in the nonlinear system F.u/ D 0 or
not). Nonlinear equation number i has the structure

Fi D Ai;i�1.ui�1; ui /ui�1CAi;i .ui�1; ui ; uiC1/uiCAi;iC1.ui ; uiC1/uiC1�bi .ui / :

Computing the Jacobian requires careful differentiation. For example,

@

@ui
.Ai;i .ui�1; ui ; uiC1/ui / D @Ai;i

@ui
ui C Ai;i @ui

@ui

D @

@ui

�
1

2�x2
.˛.ui�1/C 2˛.ui/C ˛.uiC1//C a

�
ui

C 1

2�x2
.˛.ui�1/C 2˛.ui /C ˛.uiC1//C a

D 1

2�x2
.2˛0.ui /ui C ˛.ui�1/C 2˛.ui /C ˛.uiC1//

C a :

5.4 1D Stationary Nonlinear Differential Equations 383

The complete Jacobian becomes

Ji;i D @Fi

@ui
D @Ai;i�1

@ui
ui�1 C @Ai;i

@ui
ui C Ai;i C @Ai;iC1

@ui
uiC1 � @bi

@ui

D 1

2�x2
.�˛0.ui /ui�1 C 2˛0.ui /ui C ˛.ui�1/C 2˛.ui/C ˛.uiC1//

C a � 1

2�x2
˛0.ui /uiC1 � b0.ui /;

Ji;i�1 D @Fi

@ui�1
D @Ai;i�1

@ui�1
ui�1 C Ai�1;i C @Ai;i

@ui�1
ui � @bi

@ui�1

D 1

2�x2
.�˛0.ui�1/ui�1 � .˛.ui�1/C ˛.ui//C ˛0.ui�1/ui /;

Ji;iC1 D @Ai;iC1
@ui�1

uiC1 C AiC1;i C @Ai;i

@uiC1
ui � @bi

@uiC1

D 1

2�x2
.�˛0.uiC1/uiC1 � .˛.ui/C ˛.uiC1//C ˛0.uiC1/ui / :

The explicit expression for nonlinear equation number i , Fi .u0; u1; : : :/, arises from
moving the f .ui / term in (5.56) to the left-hand side:

Fi D � 1

2�x2
..˛.ui /C ˛.uiC1//.uiC1 � ui/ � .˛.ui�1/C ˛.ui//.ui � ui�1//

C aui � f .ui / D 0 :
(5.70)

At the boundary point i D 0, u�1 must be replaced using the formula (5.58).
When the Dirichlet condition at i D Nx is not a part of the equation system, the
last equation Fm D 0 for m D Nx � 1 involves the quantity uNx�1 which must
be replaced by D. If uNx is treated as an unknown in the system, the last equation
Fm D 0 has m D Nx and reads

FNx.u0; : : : ; uNx / D uNx �D D 0 :

Similar replacement of u�1 and uNx must be done in the Jacobian for the first and
last row. When uNx is included as an unknown, the last row in the Jacobian must
help implement the condition ıuNx D 0, since we assume that u contains the right
Dirichlet value at the beginning of the iteration (uNx D D), and then the Newton
update should be zero for i D 0, i.e., ıuNx D 0. This also forces the right-hand side
to be bi D 0, i D Nx.

We have seen, and can see from the present example, that the linear system in
Newton’s method contains all the terms present in the system that arises in the
Picard iteration method. The extra terms in Newton’s method can be multiplied by
a factor such that it is easy to program one linear system and set this factor to 0 or
1 to generate the Picard or Newton system.

384 5 Nonlinear Problems

5.5 Multi-Dimensional Nonlinear PDE Problems

The fundamental ideas in the derivation of Fi and Ji;j in the 1D model problem are
easily generalized to multi-dimensional problems. Nevertheless, the expressions
involved are slightly different, with derivatives in x replaced by r, so we present
some examples below in detail.

5.5.1 Finite Difference Discretization

A typical diffusion equation

ut D r � .˛.u/ru/C f .u/;

can be discretized by (e.g.) a Backward Euler scheme, which in 2D can be written

h
D�t u D Dx˛.u/

x
DxuCDy˛.u/

y
DyuC f .u/

in
i;j
:

We do not dive into the details of handling boundary conditions now. Dirichlet and
Neumann conditions are handled as in corresponding linear, variable-coefficient
diffusion problems.

Writing the scheme out, putting the unknown values on the left-hand side and
known values on the right-hand side, and introducing�x D �y D h to save some
writing, one gets

uni;j �
�t

h2

1

2
.˛.uni;j /C ˛.uniC1;j //.uniC1;j � uni;j /

� 1
2
.˛.uni�1;j /C ˛.uni;j //.uni;j � uni�1;j /

C 1

2
.˛.uni;j /C ˛.uni;jC1//.uni;jC1 � uni;j /

� 1
2
.˛.uni;j�1/C ˛.uni;j //.uni;j � uni�1;j�1/

!
��tf .uni;j / D un�1i;j :

This defines a nonlinear algebraic system on the form A.u/u D b.u/.

Picard iteration The most recently computed values u� of un can be used in ˛
and f for a Picard iteration, or equivalently, we solve A.u�/u D b.u�/. The result
is a linear system of the same type as arising from ut D r � .˛.x/ru/C f .x; t/.

The Picard iteration scheme can also be expressed in operator notation:

h
D�t u D Dx˛.u�/

x
DxuCDy˛.u�/

y
DyuC f .u�/

in
i;j
:

5.5 Multi-Dimensional Nonlinear PDE Problems 385

Newton’s method As always, Newton’s method is technically more involved than
Picard iteration. We first define the nonlinear algebraic equations to be solved, drop
the superscript n (use u for un), and introduce u.1/ for un�1:

Fi;j D ui;j � �t
h2

1

2
.˛.ui;j /C ˛.uiC1;j //.uiC1;j � ui;j /

� 1
2
.˛.ui�1;j /C ˛.ui;j //.ui;j � ui�1;j /

C 1

2
.˛.ui;j /C ˛.ui;jC1//.ui;jC1 � ui;j /

� 1
2
.˛.ui;j�1/C ˛.ui;j //.ui;j � ui�1;j�1/

!

��t f .ui;j /� u.1/i;j D 0 :
It is convenient to work with two indices i and j in 2D finite difference discretiza-
tions, but it complicates the derivation of the Jacobian, which then gets four indices.
(Make sure you really understand the 1D version of this problem as treated in
Sect. 5.4.1.) The left-hand expression of an equation Fi;j D 0 is to be differen-
tiated with respect to each of the unknowns ur;s (recall that this is short notation for
unr;s), r 2 Ix , s 2 Iy :

Ji;j;r;s D @Fi;j

@ur;s
:

The Newton system to be solved in each iteration can be written as

X
r2Ix

X
s2Iy

Ji;j;r;sıur;s D �Fi;j ; i 2 Ix; j 2 Iy :

Given i and j , only a few r and s indices give nonzero contribution to the Jaco-
bian since Fi;j contains ui˙1;j , ui;j˙1, and ui;j . This means that Ji;j;r;s has nonzero
contributions only if r D i ˙ 1, s D j ˙ 1, as well as r D i and s D j . The
corresponding terms in Ji;j;r;s are Ji;j;i�1;j , Ji;j;iC1;j , Ji;j;i;j�1, Ji;j;i;jC1 and Ji;j;i;j .
Therefore, the left-hand side of the Newton system,

P
r

P
s Ji;j;r;sıur;s collapses to

Ji;j;r;sıur;s D Ji;j;i;j ıui;j C Ji;j;i�1;j ıui�1;j C Ji;j;iC1;j ıuiC1;j C Ji;j;i;j�1ıui;j�1
C Ji;j;i;jC1ıui;jC1 :

The specific derivatives become

Ji;j;i�1;j D @Fi;j

@ui�1;j

D �t

h2
.˛0.ui�1;j /.ui;j � ui�1;j /C ˛.ui�1;j /.�1//;

Ji;j;iC1;j D @Fi;j

@uiC1;j

D �t

h2
.�˛0.uiC1;j /.uiC1;j � ui;j / � ˛.ui�1;j //;

386 5 Nonlinear Problems

Ji;j;i;j�1 D @Fi;j

@ui;j�1

D �t

h2
.˛0.ui;j�1/.ui;j � ui;j�1/C ˛.ui;j�1/.�1//;

Ji;j;i;jC1 D @Fi;j

@ui;jC1

D �t

h2
.�˛0.ui;jC1/.ui;jC1 � ui;j / � ˛.ui;j�1// :

The Ji;j;i;j entry has a few more terms and is left as an exercise. Inserting the
most recent approximation u� for u in the J and F formulas and then forming
J ıu D �F gives the linear system to be solved in each Newton iteration. Boundary
conditions will affect the formulas when any of the indices coincide with a boundary
value of an index.

5.5.2 ContinuationMethods

Picard iteration or Newton’s method may diverge when solving PDEs with severe
nonlinearities. Relaxation with ! < 1 may help, but in highly nonlinear problems
it can be necessary to introduce a continuation parameter � in the problem: � D 0
gives a version of the problem that is easy to solve, while � D 1 is the target
problem. The idea is then to increase � in steps, �0 D 0;�1 < � � � < �n D 1, and
use the solution from the problem with �i�1 as initial guess for the iterations in the
problem corresponding to �i .

The continuation method is easiest to understand through an example. Suppose
we intend to solve

�r � .jjrujjqru/ D f;
which is an equation modeling the flow of a non-Newtonian fluid through a channel
or pipe. For q D 0 we have the Poisson equation (corresponding to a Newtonian
fluid) and the problem is linear. A typical value for pseudo-plastic fluids may be
qn D �0:8. We can introduce the continuation parameter � 2 Œ0; 1� such that
q D qn�. Let f�`gn`D0 be the sequence of � values in Œ0; 1�, with corresponding q
values fq`gn`D0. We can then solve a sequence of problems

�r � �jjru`jjq`ru`� D f; ` D 0; : : : ; n;

where the initial guess for iterating on u` is the previously computed solution u`�1.
If a particular �` leads to convergence problems, one may try a smaller increase
in �: �
 D 1

2
.�`�1 C �`/, and repeat halving the step in � until convergence is

reestablished.

5.6 Operator Splitting Methods 387

5.6 Operator Splitting Methods

Operator splitting is a natural and old idea. When a PDE or system of PDEs contains
different terms expressing different physics, it is natural to use different numerical
methods for different physical processes. This can optimize and simplify the overall
solution process. The idea was especially popularized in the context of the Navier-
Stokes equations and reaction-diffusion PDEs. Common names for the technique
are operator splitting, fractional step methods, and split-step methods. We shall
stick to the former name. In the context of nonlinear differential equations, operator
splitting can be used to isolate nonlinear terms and simplify the solution methods.

A related technique, often known as dimensional splitting or alternating direction
implicit (ADI) methods, is to split the spatial dimensions and solve a 2D or 3D
problem as two or three consecutive 1D problems, but this type of splitting is not to
be further considered here.

5.6.1 Ordinary Operator Splitting for ODEs

Consider first an ODE where the right-hand side is split into two terms:

u0 D f0.u/C f1.u/ : (5.71)

In case f0 and f1 are linear functions of u, f0 D au and f1 D bu, we have
u.t/ D Ie.aCb/t , if u.0/ D I . When going one time step of length �t from tn to
tnC1, we have

u.tnC1/ D u.tn/e.aCb/�t :
This expression can be also be written as

u.tnC1/ D u.tn/ea�t eb�t ;

or

u
 D u.tn/ea�t ; (5.72)

u.tnC1/ D u
eb�t : (5.73)

The first step (5.72) means solving u0 D f0 over a time interval �t with u.tn/ as
start value. The second step (5.73) means solving u0 D f1 over a time interval �t
with the value at the end of the first step as start value. That is, we progress the
solution in two steps and solve two ODEs u0 D f0 and u0 D f1. The order of the
equations is not important. From the derivation above we see that solving u0 D f1
prior to u0 D f0 can equally well be done.

The technique is exact if the ODEs are linear. For nonlinear ODEs it is only an
approximate method with error �t . The technique can be extended to an arbitrary
number of steps; i.e., we may split the PDE system into any number of subsystems.
Examples will illuminate this principle.

388 5 Nonlinear Problems

5.6.2 Strang Splitting for ODEs

The accuracy of the splitting method in Sect. 5.6.1 can be improved from O.�t/
to O.�t2/ using so-called Strang splitting, where we take half a step with the f0
operator, a full step with the f1 operator, and finally half another step with the f0
operator. During a time interval �t the algorithm can be written as follows.

du

dt
D f0.u
/; u
.tn/ D u.tn/; t 2

�
tn; tn C 1

2
�t

	
;

du

dt
D f1.u

/; u

.tn/ D u

�
tnC 1

2

�
; t 2 Œtn; tn C�t�;

du

dt
D f0.u

/; u

�
tnC 1

2

�
D u

.tnC1/; t 2

�
tn C 1

2
�t; tn C�t

	
:

The global solution is set as u.tnC1/ D u

.tnC1/.
There is no use in combining higher-order methods with ordinary splitting since

the error due to splitting is O.�t/, but for Strang splitting it makes sense to use
schemes of order O.�t2/.

With the notation introduced for Strang splitting, we may express ordinary first-
order splitting as

du

dt
D f0.u
/; u
.tn/ D u.tn/; t 2 Œtn; tn C�t�;

du

dt
D f1.u

/; u

.tn/ D u
.tnC1/; t 2 Œtn; tn C�t�;

with global solution set as u.tnC1/ D u

.tnC1/.

5.6.3 Example: Logistic Growth

Let us split the (scaled) logistic equation

u0 D u.1 � u/; u.0/ D 0:1;
with solution u D .9e�t C 1/�1, into

u0 D u � u2 D f0.u/C f1.u/; f0.u/ D u; f1.u/ D �u2 :
We solve u0 D f0.u/ and u0 D f1.u/ by a Forward Euler step. In addition, we add
a method where we solve u0 D f0.u/ analytically, since the equation is actually
u0 D u with solution et . The software that accompanies the following methods is
the file split_logistic.py.

Splitting techniques Ordinary splitting takes a Forward Euler step for each of the
ODEs according to

u
;nC1 � u
;n
�t

D f0.u
;n/; u
;n D u.tn/; t 2 Œtn; tn C�t�; (5.74)

u

;nC1 � u

;n
�t

D f1.u

;n/; u

;n D u
;nC1; t 2 Œtn; tn C�t�; (5.75)

with u.tnC1/ D u

;nC1.

http://tinyurl.com/nu656p2/nonlin/split_logistic.py

5.6 Operator Splitting Methods 389

Strang splitting takes the form

u
;nC
1
2 � u
;n
1
2
�t

D f0.u
;n/; u
;n D u.tn/; t 2
�
tn; tn C 1

2
�t

	
; (5.76)

u

;nC1 � u

;n
�t

D f1.u

;n/; u

;n D u
;nC 1
2 ; t 2 Œtn; tn C�t�; (5.77)

u

;nC1 � u

;nC 1
2

1
2
�t

D f0
�
u

;nC

1
2

�
; u

;nC

1
2 D u

;nC1;

t 2
�
tn C 1

2
�t; tn C�t

	
: (5.78)

Verbose implementation The following function computes four solutions aris-
ing from the Forward Euler method, ordinary splitting, Strang splitting, as well as
Strang splitting with exact treatment of u0 D f0.u/:

import numpy as np

def solver(dt, T, f, f_0, f_1):
"""
Solve u’=f by the Forward Euler method and by ordinary and
Strang splitting: f(u) = f_0(u) + f_1(u).
"""
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
u_FE = np.zeros(len(t))
u_split1 = np.zeros(len(t)) # 1st-order splitting
u_split2 = np.zeros(len(t)) # 2nd-order splitting
u_split3 = np.zeros(len(t)) # 2nd-order splitting w/exact f_0

Set initial values
u_FE[0] = 0.1
u_split1[0] = 0.1
u_split2[0] = 0.1
u_split3[0] = 0.1

for n in range(len(t)-1):
Forward Euler method
u_FE[n+1] = u_FE[n] + dt*f(u_FE[n])

--- Ordinary splitting ---
First step
u_s_n = u_split1[n]
u_s = u_s_n + dt*f_0(u_s_n)
Second step
u_ss_n = u_s
u_ss = u_ss_n + dt*f_1(u_ss_n)
u_split1[n+1] = u_ss

--- Strang splitting ---
First step
u_s_n = u_split2[n]
u_s = u_s_n + dt/2.*f_0(u_s_n)

390 5 Nonlinear Problems

Second step
u_sss_n = u_s
u_sss = u_sss_n + dt*f_1(u_sss_n)
Third step
u_ss_n = u_sss
u_ss = u_ss_n + dt/2.*f_0(u_ss_n)
u_split2[n+1] = u_ss

--- Strang splitting using exact integrator for u’=f_0 ---
First step
u_s_n = u_split3[n]
u_s = u_s_n*np.exp(dt/2.) # exact
Second step
u_sss_n = u_s
u_sss = u_sss_n + dt*f_1(u_sss_n)
Third step
u_ss_n = u_sss
u_ss = u_ss_n*np.exp(dt/2.) # exact
u_split3[n+1] = u_ss

return u_FE, u_split1, u_split2, u_split3, t

Compact implementation We have used quite many lines for the steps in the split-
ting methods. Many will prefer to condense the code a bit, as done here:

Ordinary splitting
u_s = u_split1[n] + dt*f_0(u_split1[n])
u_split1[n+1] = u_s + dt*f_1(u_s)
Strang splitting
u_s = u_split2[n] + dt/2.*f_0(u_split2[n])
u_sss = u_s + dt*f_1(u_s)
u_split2[n+1] = u_sss + dt/2.*f_0(u_sss)
Strang splitting using exact integrator for u’=f_0
u_s = u_split3[n]*np.exp(dt/2.) # exact
u_ss = u_s + dt*f_1(u_s)
u_split3[n+1] = u_ss*np.exp(dt/2.)

Results Figure 5.3 shows that the impact of splitting is significant. Interestingly,
however, the Forward Euler method applied to the entire problem directly is much
more accurate than any of the splitting schemes. We also see that Strang splitting is
definitely more accurate than ordinary splitting and that it helps a bit to use an exact
solution of u0 D f0.u/. With a large time step (�t D 0:2, left plot in Fig. 5.3), the
asymptotic values are off by 20–30%. A more reasonable time step (�t D 0:05,
right plot in Fig. 5.3) gives better results, but still the asymptotic values are up to
10% wrong.

As technique for solving nonlinear ODEs, we realize that the present case study
is not particularly promising, as the Forward Euler method both linearizes the orig-
inal problem and provides a solution that is much more accurate than any of the
splitting techniques. In complicated multi-physics settings, on the other hand, split-
ting may be the only feasible way to go, and sometimes you really need to apply
different numerics to different parts of a PDE problem. But in very simple prob-
lems, like the logistic ODE, splitting is just an inferior technique. Still, the logistic

5.6 Operator Splitting Methods 391

Fig. 5.3 Effect of ordinary and Strang splitting for the logistic equation

ODE is ideal for introducing all the mathematical details and for investigating the
behavior.

5.6.4 Reaction-Diffusion Equation

Consider a diffusion equation coupled to chemical reactions modeled by a nonlinear
term f .u/:

@u

@t
D ˛r2uC f .u/ :

This is a physical process composed of two individual processes: u is the concen-
tration of a substance that is locally generated by a chemical reaction f .u/, while
u is spreading in space because of diffusion. There are obviously two time scales:
one for the chemical reaction and one for diffusion. Typically, fast chemical re-
actions require much finer time stepping than slower diffusion processes. It could
therefore be advantageous to split the two physical effects in separate models and
use different numerical methods for the two.

A natural spitting in the present case is

@u

@t
D ˛r2u
; (5.79)

@u

@t
D f .u

/ : (5.80)

Looking at these familiar problems, we may apply a � rule (implicit) scheme for
(5.79) over one time step and avoid dealing with nonlinearities by applying an ex-
plicit scheme for (5.80) over the same time step.

Suppose we have some solution u at time level tn. For flexibility, we define a �
method for the diffusion part (5.79) by

ŒDtu

 D ˛.DxDxu

 CDyDyu

/�nC� :

We use un as initial condition for u
.

392 5 Nonlinear Problems

The reaction part, which is defined at each mesh point (without coupling values
in different mesh points), can employ any scheme for an ODE. Here we use an
Adams-Bashforth method of order 2. Recall that the overall accuracy of the splitting
method is maximumO.�t2/ for Strang splitting, otherwise it is justO.�t/. Higher-
order methods for ODEs will therefore be a waste of work. The 2nd-order Adams-
Bashforth method reads

u

;nC1i;j D u

;ni;j C
1

2
�t
�
3f .u

;ni;j ; tn/� f .u

;n�1i;j ; tn�1/

�
: (5.81)

We can use a Forward Euler step to start the method, i.e, compute u

;1i;j .
The algorithm goes like this:

1. Solve the diffusion problem for one time step as usual.
2. Solve the reaction ODEs at each mesh point in Œtn; tn C�t�, using the diffusion

solution in 1. as initial condition. The solution of the ODEs constitutes the
solution of the original problem at the end of each time step.

We may use a much smaller time step when solving the reaction part, adapted to
the dynamics of the problem u0 D f .u/. This gives great flexibility in splitting
methods.

5.6.5 Example: Reaction-Diffusion with Linear Reaction Term

The methods above may be explored in detail through a specific computational
example in which we compute the convergence rates associated with four different
solution approaches for the reaction-diffusion equation with a linear reaction term,
i.e. f .u/ D �bu. The methods comprise solving without splitting (just straight
Forward Euler), ordinary splitting, first order Strang splitting, and second order
Strang splitting. In all four methods, a standard centered difference approximation
is used for the spatial second derivative. The methods share the error model E D
Chr , while differing in the step h (being either �x2 or �x) and the convergence
rate r (being either 1 or 2).

All code commented below is found in the file split_diffu_react.py. When
executed, a function convergence_rates is called, from which all convergence
rate computations are handled:

def convergence_rates(scheme=’diffusion’):

F = 0.5 # Upper limit for FE (stability). For CN, this
limit does not apply, but for simplicity, we
choose F = 0.5 as the initial F value.

T = 1.2
a = 3.5
b = 1
L = 1.5
k = np.pi/L

http://tinyurl.com/nu656p2/nonlin/split_diffu_react.py

5.6 Operator Splitting Methods 393

def exact(x, t):
’’’exact sol. to: du/dt = a*d^2u/dx^2 - b*u’’’
return np.exp(-(a*k**2 + b)*t) * np.sin(k*x)

def f(u, t):
return -b*u

def I(x):
return exact(x, 0)

global error # error computed in the user action function
error = 0

Convergence study
def action(u, x, t, n):

global error
if n == 1: # New simulation, - reset error

error = 0
else:

error = max(error, np.abs(u - exact(x, t[n])).max())

E = []
h = []
Nx_values = [10, 20, 40, 80] # i.e., dx halved each time
for Nx in Nx_values:

dx = L/Nx
if scheme == ’Strang_splitting_2ndOrder’:

print ’Strang splitting with 2nd order schemes...’
In this case, E = C*h**r (with r = 2) and since
h = dx = K*dt, the ratio dt/dx must be constant.
To fulfill this demand, we must let F change
when dx changes. From F = a*dt/dx**2, it follows
that halving dx AND doubling F assures dt/dx const.
Initially, we simply choose F = 0.5.

dt = F/a*dx**2
#print ’dt/dx:’, dt/dx
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # global time
Strang_splitting_2ndOrder(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx)
prepare for next iteration (make F match dx/2)
F = F*2 # assures dt/dx const. when dx = dx/2

else:
In these cases, E = C*h**r (with r = 1) and since
h = dx**2 = K*dt, the ratio dt/dx**2 must be constant.
This is fulfilled by choosing F = 0.5 (for FE stability)
and make sure that F, dx and dt comply to F = a*dt/dx**2.
dt = F/a*dx**2
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # global time

394 5 Nonlinear Problems

if scheme == ’diffusion’:
print ’FE on whole eqn...’
diffusion_theta(I, a, f, L, dt, F, t, T,

step_no=0, theta=0,
u_L=0, u_R=0, user_action=action)

h.append(dx**2)
elif scheme == ’ordinary_splitting’:

print ’Ordinary splitting...’
ordinary_splitting(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx**2)
elif scheme == ’Strang_splitting_1stOrder’:

print ’Strang splitting with 1st order schemes...’
Strang_splitting_1stOrder(I=I, a=a, b=b, f=f, L=L, dt=dt,

dt_Rfactor=1, F=F, t=t, T=T,
user_action=action)

h.append(dx**2)
else:

print ’Unknown scheme requested!’
sys.exit(0)

#print ’dt/dx**2:’, dt/dx**2

E.append(error)
Nx *= 2 # Nx doubled gives dx/2

print ’E:’, E
print ’h:’, h

Convergence rates
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,len(Nx_values))]
print ’Computed rates:’, r

if __name__ == ’__main__’:

schemes = [’diffusion’,
’ordinary_splitting’,
’Strang_splitting_1stOrder’,
’Strang_splitting_2ndOrder’]

for scheme in schemes:
convergence_rates(scheme=scheme)

Now, with respect to the error (E D Chr), the Forward Euler scheme, the or-
dinary splitting scheme and first order Strang splitting scheme are all first order
(r D 1), with a step h D �x2 D K�1�t , where K is some constant. This implies
that the ratio �t

�x2
must be held constant during convergence rate calculations. Fur-

thermore, the Fourier number F D ˛�t
�x2

is upwards limited to F D 0:5, being the
stability limit with explicit schemes. Thus, in these cases, we use the fixed value
of F and a given (but changing) spatial resolution �x to compute the correspond-
ing value of �t according to the expression for F . This assures that �t

�x2
is kept

constant. The loop in convergence_rates runs over a chosen set of grid points

5.6 Operator Splitting Methods 395

(Nx_values) which gives a doubling of spatial resolution with each iteration (�x
is halved).

For the second order Strang splitting scheme, we have r D 2 and a step h D
�x D K�1�t , where K again is some constant. In this case, it is thus the ratio
�t
�x

that must be held constant during the convergence rate calculations. From the
expression for F , it is clear then that F must change with each halving of �x. In
fact, if F is doubled each time �x is halved, the ratio �t

�x
will be constant (this

follows, e.g., from the expression for F). This is utilized in our code.
A solver diffusion_theta is used in each of the four solution approaches:

def diffusion_theta(I, a, f, L, dt, F, t, T, step_no, theta=0.5,
u_L=0, u_R=0, user_action=None):

"""
Full solver for the model problem using the theta-rule
difference approximation in time (no restriction on F,
i.e., the time step when theta >= 0.5). Vectorized
implementation and sparse (tridiagonal) coefficient matrix.
Note that t always covers the whole global time interval, whether
splitting is the case or not. T, on the other hand, is
the end of the global time interval if there is no split,
but if splitting, we use T=dt. When splitting, step_no
keeps track of the time step number (for lookup in t).
"""

Nt = int(round(T/float(dt)))
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

u = np.zeros(Nx+1) # solution array at t[n+1]
u_1 = np.zeros(Nx+1) # solution at t[n]

Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

Precompute sparse matrix (scipy format)
Fl = F*theta
Fr = F*(1-theta)
diagonal[:] = 1 + 2*Fl
lower[:] = -Fl #1
upper[:] = -Fl #1
Insert boundary conditions
diagonal[0] = 1
upper[0] = 0
diagonal[Nx] = 1
lower[-1] = 0

396 5 Nonlinear Problems

diags = [0, -1, 1]
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

#print A.todense()

Allow f to be None or 0
if f is None or f == 0:

f = lambda x, t: np.zeros((x.size)) \
if isinstance(x, np.ndarray) else 0

Set initial condition
if isinstance(I, np.ndarray): # I is an array

u_1 = np.copy(I)
else: # I is a function

for i in range(0, Nx+1):
u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, step_no+0)

Time loop
for n in range(0, Nt):

b[1:-1] = u_1[1:-1] + \
Fr*(u_1[:-2] - 2*u_1[1:-1] + u_1[2:]) + \
dt*theta*f(u_1[1:-1], t[step_no+n+1]) + \
dt*(1-theta)*f(u_1[1:-1], t[step_no+n])

b[0] = u_L; b[-1] = u_R # boundary conditions
u[:] = scipy.sparse.linalg.spsolve(A, b)

if user_action is not None:
user_action(u, x, t, step_no+(n+1))

Update u_1 before next step
u_1, u = u, u_1

u is now contained in u_1 (swapping)
return u_1

For the no splitting approach with Forward Euler in time, this solver handles both
the diffusion and the reaction term. When splitting, diffusion_theta takes care
of the diffusion term only, while the reaction term is handled either by a Forward
Euler scheme in reaction_FE, or by a second order Adams-Bashforth scheme
from Odespy. The reaction_FE function covers one complete time step dt during
ordinary splitting, while Strang splitting (both first and second order) applies it with
dt/2 twice during each time step dt. Since the reaction term typically represents a
much faster process than the diffusion term, a further refinement of the time step is
made possible in reaction_FE. It was implemented as

5.6 Operator Splitting Methods 397

def reaction_FE(I, f, L, Nx, dt, dt_Rfactor, t, step_no,
user_action=None):

"""Reaction solver, Forward Euler method.
Note the at t covers the whole global time interval.
dt is either one complete,or one half, of the step in the
diffusion part, i.e. there is a local time interval
[0, dt] or [0, dt/2] that the reaction_FE
deals with each time it is called. step_no keeps
track of the (global) time step number (required
for lookup in t).
"""

u = np.copy(I)
dt_local = dt/float(dt_Rfactor)
Nt_local = int(round(dt/float(dt_local)))
x = np.linspace(0, L, Nx+1)

for n in range(Nt_local):
time = t[step_no] + n*dt_local
u[1:Nx] = u[1:Nx] + dt_local*f(u[1:Nx], time)

BC already inserted in diffusion step, i.e. no action here
return u

With the ordinary splitting approach, each time step dt is covered twice. First
computing the impact of the reaction term, then the contribution from the diffusion
term:

def ordinary_splitting(I, a, b, f, L, dt,
dt_Rfactor, F, t, T,
user_action=None):

’’’1st order scheme, i.e. Forward Euler is enough for both
the diffusion and the reaction part. The time step dt is
given for the diffusion step, while the time step for the
reaction part is found as dt/dt_Rfactor, where dt_Rfactor >= 1.
’’’
Nt = int(round(T/float(dt)))
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
u = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

In the following loop, each time step is "covered twice",
first for reaction, then for diffusion
for n in range(0, Nt):

Reaction step (potentially many smaller steps within dt)
u_s = reaction_FE(I=u, f=f, L=L, Nx=Nx,

dt=dt, dt_Rfactor=dt_Rfactor,
t=t, step_no=n,
user_action=None)

398 5 Nonlinear Problems

u = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,
t=t, T=dt, step_no=n, theta=0,
u_L=0, u_R=0, user_action=None)

if user_action is not None:
user_action(u, x, t, n+1)

return

For the two Strang splitting approaches, each time step dt is handled by first
computing the reaction step for (the first) dt/2, followed by a diffusion step dt,
before the reaction step is treated once again for (the remaining) dt/2. Since first
order Strang splitting is no better than first order accurate, both the reaction and
diffusion steps are computed explicitly. The solver was implemented as

def Strang_splitting_1stOrder(I, a, b, f, L, dt, dt_Rfactor,
F, t, T, user_action=None):

’’’Strang splitting while still using FE for the reaction
step and for the diffusion step. Gives 1st order scheme.
The time step dt is given for the diffusion step, while
the time step for the reaction part is found as
0.5*dt/dt_Rfactor, where dt_Rfactor >= 1. Introduce an
extra time mesh t2 for the reaction part, since it steps dt/2.
’’’
Nt = int(round(T/float(dt)))
t2 = np.linspace(0, Nt*dt, (Nt+1)+Nt) # Mesh points in diff
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1)
u = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

for n in range(0, Nt):
Reaction step (1/2 dt: from t_n to t_n+1/2)
(potentially many smaller steps within dt/2)
u_s = reaction_FE(I=u, f=f, L=L, Nx=Nx,

dt=dt/2.0, dt_Rfactor=dt_Rfactor,
t=t2, step_no=2*n,
user_action=None)

Diffusion step (1 dt: from t_n to t_n+1)
u_sss = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,

t=t, T=dt, step_no=n, theta=0,
u_L=0, u_R=0, user_action=None)

Reaction step (1/2 dt: from t_n+1/2 to t_n+1)
(potentially many smaller steps within dt/2)
u = reaction_FE(I=u_sss, f=f, L=L, Nx=Nx,

dt=dt/2.0, dt_Rfactor=dt_Rfactor,
t=t2, step_no=2*n+1,
user_action=None)

if user_action is not None:
user_action(u, x, t, n+1)

return

5.6 Operator Splitting Methods 399

The second order version of the Strang splitting approach utilizes a second order
Adams-Bashforth solver for the reaction part and a Crank-Nicolson scheme for the
diffusion part. The solver has the same structure as the one for first order Strang
splitting and was implemented as

def Strang_splitting_2ndOrder(I, a, b, f, L, dt, dt_Rfactor,
F, t, T, user_action=None):

’’’Strang splitting using Crank-Nicolson for the diffusion
step (theta-rule) and Adams-Bashforth 2 for the reaction step.
Gives 2nd order scheme. Introduce an extra time mesh t2 for
the reaction part, since it steps dt/2.
’’’
import odespy
Nt = int(round(T/float(dt)))
t2 = np.linspace(0, Nt*dt, (Nt+1)+Nt) # Mesh points in diff
dx = np.sqrt(a*dt/F)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1)
u = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u[i] = I(x[i])

reaction_solver = odespy.AdamsBashforth2(f)

for n in range(0, Nt):
Reaction step (1/2 dt: from t_n to t_n+1/2)
(potentially many smaller steps within dt/2)
reaction_solver.set_initial_condition(u)
t_points = np.linspace(0, dt/2.0, dt_Rfactor+1)
u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u_s = u_AB2[-1,:] # pick sol at last point in time

Diffusion step (1 dt: from t_n to t_n+1)
u_sss = diffusion_theta(I=u_s, a=a, f=0, L=L, dt=dt, F=F,

t=t, T=dt, step_no=n, theta=0.5,
u_L=0, u_R=0, user_action=None)

Reaction step (1/2 dt: from t_n+1/2 to t_n+1)
(potentially many smaller steps within dt/2)
reaction_solver.set_initial_condition(u_sss)
t_points = np.linspace(0, dt/2.0, dt_Rfactor+1)
u_AB2, t_ = reaction_solver.solve(t_points) # t_ not needed
u = u_AB2[-1,:] # pick sol at last point in time

if user_action is not None:
user_action(u, x, t, n+1)

return

When executing split_diffu_react.py, we find that the estimated conver-
gence rates are as expected. The second order Strang splitting gives the least error
(about 4e�5) and has second order convergence (r D 2), while the remaining three
approaches have first order convergence (r D 1).

400 5 Nonlinear Problems

5.6.6 Analysis of the SplittingMethod

Let us address a linear PDE problem for which we can develop analytical solutions
of the discrete equations, with and without splitting, and discuss these. Choosing
f .u/ D �ˇu for a constant ˇ gives a linear problem. We use the Forward Euler
method for both the PDE and ODE problems.

We seek a 1D Fourier wave component solution of the problem, assuming ho-
mogeneous Dirichlet conditions at x D 0 and x D L:

u D e�˛k2t�ˇt sin kx; k D �

L
:

This component fits the 1D PDE problem (f D 0). On complex form we can write

u D e�˛k2t�ˇtCikx;
where i D p�1 and the imaginary part is taken as the physical solution.

We refer to Sect. 3.3 and to the book [9] for a discussion of exact numerical
solutions to diffusion and decay problems, respectively. The key idea is to search for
solutions Aneikx and determine A. For the diffusion problem solved by a Forward
Euler method one has

A D 1 � 4F sinp;

where F D ˛�t=�x2 is the mesh Fourier number and p D k�x=2 is a dimen-
sionless number reflecting the spatial resolution (number of points per wave length
in space). For the decay problem u0 D �ˇu, we have A D 1 � q, where q is a
dimensionless parameter for the resolution in the decay problem: q D ˇ�t .

The original model problem can also be discretized by a Forward Euler scheme,

ŒDCt u D ˛DxDxu � ˇu�ni :
Assuming Aneikx we find that

uni D .1 � 4F sinp �q/n sin kx :
We are particularly interested in what happens at one time step. That is,

uni D .1 � 4F sin2 p/un�1i :

In the two stage algorithm, we first compute the diffusion step

u

;nC1
i D .1 � 4F sin2 p/un�1i :

Then we use this as input to the decay algorithm and arrive at

u

;nC1 D .1 � q/u
;nC1 D .1 � q/.1 � 4F sin2 p/un�1i :

The splitting approximation over one step is therefore

E D 1 � 4F sinp �q � .1 � q/.1 � 4F sin2 p/ D �q.2 � F sin2 p/ :

5.7 Exercises 401

5.7 Exercises

Problem 5.1: Determine if equations are nonlinear or not
Classify each term in the following equations as linear or nonlinear. Assume that u,
u, and p are unknown functions and that all other symbols are known quantities.

1. mu00 C ˇju0ju0 C cu D F.t/
2. ut D ˛uxx
3. utt D c2r2u
4. ut D r � .˛.u/ru/C f .x; y/
5. ut C f .u/x D 0
6. ut C u � ru D �rp C rr2u, r � u D 0 (u is a vector field)
7. u0 D f .u; t/
8. r2u D �eu

Filename: nonlinear_vs_linear.

Problem 5.2: Derive and investigate a generalized logistic model
The logistic model for population growth is derived by assuming a nonlinear growth
rate,

u0 D a.u/u; u.0/ D I; (5.82)

and the logistic model arises from the simplest possible choice of a.u/: r.u/ D
%.1�u=M/, whereM is the maximum value of u that the environment can sustain,
and % is the growth under unlimited access to resources (as in the beginning when u
is small). The idea is that a.u/ � % when u is small and that a.t/! 0 as u!M .

An a.u/ that generalizes the linear choice is the polynomial form

a.u/ D %.1 � u=M/p; (5.83)

where p > 0 is some real number.

a) Formulate a Forward Euler, Backward Euler, and a Crank-Nicolson scheme for
(5.82).

Hint Use a geometric mean approximation in the Crank-Nicolson scheme:
Œa.u/u�nC1=2 � a.un/unC1.
b) Formulate Picard and Newton iteration for the Backward Euler scheme in a).
c) Implement the numerical solution methods from a) and b). Use logistic.py

to compare the case p D 1 and the choice (5.83).
d) Implement unit tests that check the asymptotic limit of the solutions: u ! M

as t !1.

Hint You need to experiment to find what “infinite time” is (increases substantially
with p) and what the appropriate tolerance is for testing the asymptotic limit.

e) Perform experiments with Newton and Picard iteration for the model (5.83). See
how sensitive the number of iterations is to �t and p.

Filename: logistic_p.

http://tinyurl.com/nu656p2/nonlin/logistic.py

402 5 Nonlinear Problems

Problem 5.3: Experience the behavior of Newton’s method
The program Newton_demo.py illustrates graphically each step in Newton’s
method and is run like

Terminal

Terminal> python Newton_demo.py f dfdx x0 xmin xmax

Use this program to investigate potential problems with Newton’s method when
solving e�0:5x2 cos.�x/ D 0. Try a starting point x0 D 0:8 and x0 D 0:85 and
watch the different behavior. Just run

Terminal

Terminal> python Newton_demo.py ’0.2 + exp(-0.5*x**2)*cos(pi*x)’ \
’-x*exp(-x**2)*cos(pi*x) - pi*exp(-x**2)*sin(pi*x)’ \
0.85 -3 3

and repeat with 0.85 replaced by 0.8.

Exercise 5.4: Compute the Jacobian of a 2 � 2 system
Write up the system (5.18)–(5.19) in the form F.u/ D 0, F D .F0; F1/, u D
.u0; u1/, and compute the Jacobian Ji;j D @Fi=@uj .

Problem 5.5: Solve nonlinear equations arising from a vibration ODE
Consider a nonlinear vibration problem

mu00 C bu0ju0j C s.u/ D F.t/; (5.84)

where m > 0 is a constant, b 	 0 is a constant, s.u/ a possibly nonlinear function
of u, and F.t/ is a prescribed function. Such models arise from Newton’s second
law of motion in mechanical vibration problems where s.u/ is a spring or restoring
force, mu00 is mass times acceleration, and bu0ju0j models water or air drag.

a) Rewrite the equation for u as a system of two first-order ODEs, and discretize
this system by a Crank-Nicolson (centered difference) method. With v D u0,
we get a nonlinear term vnC

1
2 jvnC 1

2 j. Use a geometric average for vnC
1
2 .

b) Formulate a Picard iteration method to solve the system of nonlinear algebraic
equations.

c) Explain how to apply Newton’s method to solve the nonlinear equations at each
time level. Derive expressions for the Jacobian and the right-hand side in each
Newton iteration.

Filename: nonlin_vib.

Exercise 5.6: Find the truncation error of arithmetic mean of products
In Sect. 5.3.4 we introduce alternative arithmetic means of a product. Say the prod-
uct is P.t/Q.t/ evaluated at t D tnC 1

2
. The exact value is

ŒPQ�nC
1
2 D P nC 1

2QnC 1
2 :

http://tinyurl.com/nu656p2/nonlin/Newton_demo.py

5.7 Exercises 403

There are two obvious candidates for evaluating ŒPQ�nC
1
2 as a mean of values of P

and Q at tn and tnC1. Either we can take the arithmetic mean of each factor P and
Q,

ŒPQ�nC
1
2 � 1

2
.P n C P nC1/

1

2
.Qn CQnC1/; (5.85)

or we can take the arithmetic mean of the product PQ:

ŒPQ�nC
1
2 � 1

2
.P nQn C P nC1QnC1/ : (5.86)

The arithmetic average of P.tnC 1
2
/ is O.�t2/:

P
�
tnC 1

2

�
D 1

2
.P n C P nC1/CO.�t2/ :

A fundamental question is whether (5.85) and (5.86) have different orders of ac-
curacy in �t D tnC1 � tn. To investigate this question, expand quantities at tnC1
and tn in Taylor series around tnC 1

2
, and subtract the true value ŒPQ�nC

1
2 from the

approximations (5.85) and (5.86) to see what the order of the error terms are.

Hint You may explore sympy for carrying out the tedious calculations. A general
Taylor series expansion of P.t C 1

2
�t/ around t involving just a general function

P.t/ can be created as follows:

>>> from sympy import *
>>> t, dt = symbols(’t dt’)
>>> P = symbols(’P’, cls=Function)
>>> P(t).series(t, 0, 4)
P(0) + t*Subs(Derivative(P(_x), _x), (_x,), (0,)) +
t**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/2 +
t**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/6 + O(t**4)
>>> P_p = P(t).series(t, 0, 4).subs(t, dt/2)
>>> P_p
P(0) + dt*Subs(Derivative(P(_x), _x), (_x,), (0,))/2 +
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 +
dt**3*Subs(Derivative(P(_x), _x, _x, _x), (_x,), (0,))/48 + O(dt**4)

The error of the arithmetic mean, 1
2
.P.� 1

2
�t/C P.� 1

2
�t// for t D 0 is then

>>> P_m = P(t).series(t, 0, 4).subs(t, -dt/2)
>>> mean = Rational(1,2)*(P_m + P_p)
>>> error = simplify(expand(mean) - P(0))
>>> error
dt**2*Subs(Derivative(P(_x), _x, _x), (_x,), (0,))/8 + O(dt**4)

Use these examples to investigate the error of (5.85) and (5.86) for n D 0. (Choos-
ing n D 0 is necessary for not making the expressions too complicated for sympy,
but there is of course no lack of generality by using n D 0 rather than an arbitrary
n - the main point is the product and addition of Taylor series.)
Filename: product_arith_mean.

404 5 Nonlinear Problems

Problem 5.7: Newton’s method for linear problems
Suppose we have a linear system F.u/ D Au � b D 0. Apply Newton’s method to
this system, and show that the method converges in one iteration.
Filename: Newton_linear.

Problem 5.8: Discretize a 1D problem with a nonlinear coefficient
We consider the problem

..1C u2/u0/0 D 1; x 2 .0; 1/; u.0/ D u.1/ D 0 : (5.87)

Discretize (5.87) by a centered finite difference method on a uniform mesh.
Filename: nonlin_1D_coeff_discretize.

Problem 5.9: Linearize a 1D problem with a nonlinear coefficient
We have a two-point boundary value problem

..1C u2/u0/0 D 1; x 2 .0; 1/; u.0/ D u.1/ D 0 : (5.88)

a) Construct a Picard iteration method for (5.88) without discretizing in space.
b) Apply Newton’s method to (5.88) without discretizing in space.
c) Discretize (5.88) by a centered finite difference scheme. Construct a Picard

method for the resulting system of nonlinear algebraic equations.
d) Discretize (5.88) by a centered finite difference scheme. Define the system

of nonlinear algebraic equations, calculate the Jacobian, and set up Newton’s
method for solving the system.

Filename: nonlin_1D_coeff_linearize.

Problem 5.10: Finite differences for the 1D Bratu problem
We address the so-called Bratu problem

u00 C �eu D 0; x 2 .0; 1/; u.0/ D u.1/ D 0; (5.89)

where � is a given parameter and u is a function of x. This is a widely used model
problem for studying numerical methods for nonlinear differential equations. The
problem (5.89) has an exact solution

ue.x/ D �2 ln

cosh..x � 1

2
/�=2/

cosh.�=4/

!
;

where � solves
� D
p
2� cosh.�=4/ :

There are two solutions of (5.89) for 0 < � < �c and no solution for � > �c .
For � D �c there is one unique solution. The critical value �c solves

1 D
p
2�c

1

4
sinh.�.�c/=4/ :

A numerical value is �c D 3:513830719.

5.7 Exercises 405

a) Discretize (5.89) by a centered finite difference method.
b) Set up the nonlinear equations Fi.u0; u1; : : : ; uNx / D 0 from a). Calculate the

associated Jacobian.
c) Implement a solver that can compute u.x/ using Newton’s method. Plot the

error as a function of x in each iteration.
d) Investigate whether Newton’s method gives second-order convergence by com-

puting jjue�ujj=jjue�u�jj2 in each iteration, where u is solution in the current
iteration and u� is the solution in the previous iteration.

Filename: nonlin_1D_Bratu_fd.

Problem 5.11: Discretize a nonlinear 1D heat conduction PDE by finite
differences
We address the 1D heat conduction PDE

%c.T /Tt D .k.T /Tx/x;
for x 2 Œ0; L�, where % is the density of the solid material, c.T / is the heat capacity,
T is the temperature, and k.T / is the heat conduction coefficient. T .x; 0/ D I.x/,
and ends are subject to a cooling law:

k.T /TxjxD0 D h.T /.T � Ts/; �k.T /TxjxDL D h.T /.T � Ts/;
where h.T / is a heat transfer coefficient and Ts is the given surrounding tempera-
ture.

a) Discretize this PDE in time using either a Backward Euler or Crank-Nicolson
scheme.

b) Formulate a Picard iteration method for the time-discrete problem (i.e., an iter-
ation method before discretizing in space).

c) Formulate a Newton method for the time-discrete problem in b).
d) Discretize the PDE by a finite difference method in space. Derive the matrix and

right-hand side of a Picard iteration method applied to the space-time discretized
PDE.

e) Derive the matrix and right-hand side of a Newton method applied to the dis-
cretized PDE in d).

Filename: nonlin_1D_heat_FD.

Problem 5.12: Differentiate a highly nonlinear term
The operatorr�.˛.u/ru/with ˛.u/ D jrujq appears in several physical problems,
especially flow of Non-Newtonian fluids. The expression jruj is defined as the
Euclidean norm of a vector: jruj2 D ru � ru. In a Newton method one has to
carry out the differentiation @˛.u/=@cj , for u DPk ck k . Show that

@

@uj
jrujq D qjrujq�2ru � r j :

Filename: nonlin_differentiate.

406 5 Nonlinear Problems

Exercise 5.13: Crank-Nicolson for a nonlinear 3D diffusion equation
Redo Sect. 5.5.1 when a Crank-Nicolson scheme is used to discretize the equations
in time and the problem is formulated for three spatial dimensions.

Hint Express the Jacobian as Ji;j;k;r;s;t D @Fi;j;k=@ur;s;t and observe, as in the 2D
case, that Ji;j;k;r;s;t is very sparse: Ji;j;k;r;s;t ¤ 0 only for r D i ˙ i , s D j ˙ 1, and
t D k ˙ 1 as well as r D i , s D j , and t D k.
Filename: nonlin_heat_FD_CN_2D.

Problem 5.14: Find the sparsity of the Jacobian
Consider a typical nonlinear Laplace term like r � ˛.u/ru discretized by centered
finite differences. Explain why the Jacobian corresponding to this term has the same
sparsity pattern as the matrix associated with the corresponding linear term ˛r2u.

Hint Set up the unknowns that enter the difference equation at a point .i; j / in 2D
or .i; j; k/ in 3D, and identify the nonzero entries of the Jacobian that can arise
from such a type of difference equation.
Filename: nonlin_sparsity_Jacobian.

Problem 5.15: Investigate a 1D problem with a continuation method
Flow of a pseudo-plastic power-law fluid between two flat plates can be modeled
by

d

dx

�0

ˇ̌̌
ˇdudx

ˇ̌̌
ˇ
n�1

du

dx

!
D �ˇ; u0.0/ D 0; u.H/ D 0;

where ˇ > 0 and �0 > 0 are constants. A target value of n may be n D 0:2.

a) Formulate a Picard iteration method directly for the differential equation prob-
lem.

b) Perform a finite difference discretization of the problem in each Picard iteration.
Implement a solver that can compute u on a mesh. Verify that the solver gives
an exact solution for n D 1 on a uniform mesh regardless of the cell size.

c) Given a sequence of decreasing n values, solve the problem for each n using
the solution for the previous n as initial guess for the Picard iteration. This
is called a continuation method. Experiment with n D .1; 0:6; 0:2/ and n D
.1; 0:9; 0:8; : : : ; 0:2/ and make a table of the number of Picard iterations versus
n.

d) Derive a Newton method at the differential equation level and discretize the
resulting linear equations in each Newton iteration with the finite difference
method.

e) Investigate if Newton’s method has better convergence properties than Picard
iteration, both in combination with a continuation method.

5.7 Exercises 407

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

AUseful Formulas

A.1 Finite Difference Operator Notation

u0.tn/ � ŒDtu�
n D unC

1
2 � un� 12
�t

(A.1)

u0.tn/ � ŒD2tu�
n D unC1 � un�1

2�t
(A.2)

u0.tn/ D ŒD�t u�n D
un � un�1

�t
(A.3)

u0.tn/ � ŒDCt u�n D
unC1 � un

�t
(A.4)

u0.tnC� / D Œ NDtu�
nC� D unC1 � un

�t
(A.5)

u0.tn/ � ŒD2�
t u�

n D 3un � 4un�1 C un�2
2�t

(A.6)

u00.tn/ � ŒDtDtu�
n D unC1 � 2un C un�1

�t2
(A.7)

u
�
tnC 1

2

�
� Œut �nC 1

2 D 1

2
.unC1 C un/ (A.8)

u
�
tnC 1

2

�2 � Œu2t;g�nC 1
2 D unC1un (A.9)

u
�
tnC 1

2

�
� Œut;h�nC 1

2 D 2
1

unC1 C 1
un

(A.10)

u.tnC� / � Œut;� �nC� D �unC1 C .1 � �/un; (A.11)

tnC� D � tnC1 C .1 � �/tn�1 (A.12)

Some may wonder why � is absent on the right-hand side of (A.5). The fraction
is an approximation to the derivative at the point tnC� D � tnC1 C .1 � �/tn.

409© The Editor(s) (if applicable) and The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3

410 A Useful Formulas

A.2 Truncation Errors of Finite Difference Approximations

u0e.tn/ D ŒDtue�
n C Rn D u

nC 1
2

e � un� 12e

�t
CRn;

Rn D � 1
24
u000e .tn/�t

2 CO.�t4/ (A.13)

u0e.tn/ D ŒD2tue�
n CRn D unC1e � un�1e

2�t
CRn;

Rn D �1
6
u000e .tn/�t

2 CO.�t4/ (A.14)

u0e.tn/ D ŒD�t ue�n C Rn D
une � un�1e

�t
CRn;

Rn D �1
2
u00e.tn/�t CO.�t2/ (A.15)

u0e.tn/ D ŒDCt ue�n CRn D
unC1e � une

�t
CRn;

Rn D 1

2
u00e.tn/�t CO.�t2/ (A.16)

u0e.tnC� / D Œ NDtue�
nC� CRnC� D unC1e � une

�t
C RnC� ;

RnC� D �1
2
.1 � 2�/u00e.tnC� /�t C

1

6
..1 � �/3 � �3/u000e .tnC� /�t2

CO.�t3/ (A.17)

u0e.tn/ D ŒD2�
t ue�

n CRn D 3une � 4un�1e C un�2e
2�t

CRn;

Rn D 1

3
u000e .tn/�t

2 CO.�t3/ (A.18)

u00e.tn/ D ŒDtDtue�
n CRn D unC1e � 2une C un�1e

�t2
CRn;

Rn D � 1
12
u0000e .tn/�t

2 CO.�t4/ (A.19)

ue.tnC� / D Œuet;� �nC� CRnC� D �unC1e C .1 � �/une C RnC� ;
RnC� D �1

2
u00e.tnC� /�t

2�.1 � �/C O.�t3/ : (A.20)

A.3 Finite Differences of Exponential Functions 411

A.3 Finite Differences of Exponential Functions

Complex exponentials Let un D exp .i!n�t/ D ei!tn .

ŒDtDtu�
n D un 2

�t
.cos!�t � 1/ D � 4

�t
sin2

�
!�t

2

�
; (A.21)

ŒDCt u�
n D un 1

�t
.exp .i!�t/ � 1/; (A.22)

ŒD�t u�
n D un 1

�t
.1 � exp .�i!�t//; (A.23)

ŒDtu�
n D un 2

�t
i sin

�
!�t

2

�
; (A.24)

ŒD2tu�
n D un 1

�t
i sin .!�t/ : (A.25)

Real exponentials Let un D exp .!n�t/ D e!tn .

ŒDtDtu�
n D un 2

�t
.cos!�t � 1/ D � 4

�t
sin2

�
!�t

2

�
; (A.26)

ŒDCt u�
n D un 1

�t
.exp .i!�t/ � 1/; (A.27)

ŒD�t u�
n D un 1

�t
.1 � exp .�i!�t//; (A.28)

ŒDtu�
n D un 2

�t
i sin

�
!�t

2

�
; (A.29)

ŒD2tu�
n D un 1

�t
i sin .!�t/ : (A.30)

A.4 Finite Differences of tn

The following results are useful when checking if a polynomial term in a solution
fulfills the discrete equation for the numerical method.

ŒDCt t �
n D 1; (A.31)

ŒD�t t �
n D 1; (A.32)

ŒDt t�
n D 1; (A.33)

ŒD2t t �
n D 1; (A.34)

ŒDtDt t�
n D 0 : (A.35)

412 A Useful Formulas

The next formulas concern the action of difference operators on a t2 term.

ŒDCt t
2�n D .2nC 1/�t; (A.36)

ŒD�t t
2�n D .2n � 1/�t; (A.37)

ŒDt t
2�n D 2n�t; (A.38)

ŒD2t t
2�n D 2n�t; (A.39)

ŒDtDt t
2�n D 2 : (A.40)

Finally, we present formulas for a t3 term:

ŒDCt t
3�n D 3.n�t/2 C 3n�t2 C�t2; (A.41)

ŒD�t t
3�n D 3.n�t/2 � 3n�t2 C�t2; (A.42)

ŒDt t
3�n D 3.n�t/2 C 1

4
�t2; (A.43)

ŒD2t t
3�n D 3.n�t/2 C�t2; (A.44)

ŒDtDt t
3�n D 6n�t : (A.45)

A.4.1 Software

Application of finite difference operators to polynomials and exponential functions,
resulting in the formulas above, can easily be computed by some sympy code (from
the file lib.py):

from sympy import *
t, dt, n, w = symbols(’t dt n w’, real=True)

Finite difference operators

def D_t_forward(u):
return (u(t + dt) - u(t))/dt

def D_t_backward(u):
return (u(t) - u(t-dt))/dt

def D_t_centered(u):
return (u(t + dt/2) - u(t-dt/2))/dt

def D_2t_centered(u):
return (u(t + dt) - u(t-dt))/(2*dt)

def D_t_D_t(u):
return (u(t + dt) - 2*u(t) + u(t-dt))/(dt**2)

op_list = [D_t_forward, D_t_backward,
D_t_centered, D_2t_centered, D_t_D_t]

http://tinyurl.com/nu656p2/formulas/lib.py

A.4 Finite Differences of t n 413

def ft1(t):
return t

def ft2(t):
return t**2

def ft3(t):
return t**3

def f_expiwt(t):
return exp(I*w*t)

def f_expwt(t):
return exp(w*t)

func_list = [ft1, ft2, ft3, f_expiwt, f_expwt]

To see the results, one can now make a simple loop over the different types of
functions and the various operators associated with them:

for func in func_list:
for op in op_list:

f = func
e = op(f)
e = simplify(expand(e))
print e
if func in [f_expiwt, f_expwt]:

e = e/f(t)
e = e.subs(t, n*dt)
print expand(e)
print factor(simplify(expand(e)))

BTruncation Error Analysis

Truncation error analysis provides a widely applicable framework for analyzing the
accuracy of finite difference schemes. This type of analysis can also be used for
finite element and finite volume methods if the discrete equations are written in
finite difference form. The result of the analysis is an asymptotic estimate of the
error in the scheme on the formChr , where h is a discretization parameter (�t ,�x,
etc.), r is a number, known as the convergence rate, and C is a constant, typically
dependent on the derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But maybe even
more important, a powerful verification method for computer codes is to check
that the empirically observed convergence rates in experiments coincide with the
theoretical value of r found from truncation error analysis.

The analysis can be carried out by hand, by symbolic software, and also nu-
merically. All three methods will be illustrated. From examining the symbolic
expressions of the truncation error we can add correction terms to the differential
equations in order to increase the numerical accuracy.

In general, the term truncation error refers to the discrepancy that arises from
performing a finite number of steps to approximate a process with infinitely many
steps. The term is used in a number of contexts, including truncation of infinite
series, finite precision arithmetic, finite differences, and differential equations. We
shall be concerned with computing truncation errors arising in finite difference for-
mulas and in finite difference discretizations of differential equations.

B.1 Overview of Truncation Error Analysis

B.1.1 Abstract Problem Setting

Consider an abstract differential equation

L.u/ D 0;

where L.u/ is some formula involving the unknown u and its derivatives. One
example is L.u/ D u0.t/Ca.t/u.t/�b.t/, where a and b are constants or functions
of time. We can discretize the differential equation and obtain a corresponding

415

416 B Truncation Error Analysis

discrete model, here written as

L�.u/ D 0 :

The solution u of this equation is the numerical solution. To distinguish the numer-
ical solution from the exact solution of the differential equation problem, we denote
the latter by ue and write the differential equation and its discrete counterpart as

L.ue/ D 0;
L�.u/ D 0 :

Initial and/or boundary conditions can usually be left out of the truncation error
analysis and are omitted in the following.

The numerical solution u is, in a finite difference method, computed at a col-
lection of mesh points. The discrete equations represented by the abstract equation
L�.u/ D 0 are usually algebraic equations involving u at some neighboring mesh
points.

B.1.2 Error Measures

A key issue is how accurate the numerical solution is. The ultimate way of address-
ing this issue would be to compute the error ue � u at the mesh points. This is
usually extremely demanding. In very simplified problem settings we may, how-
ever, manage to derive formulas for the numerical solution u, and therefore closed
form expressions for the error ue � u. Such special cases can provide considerable
insight regarding accuracy and stability, but the results are established for special
problems.

The error ue � u can be computed empirically in special cases where we know
ue. Such cases can be constructed by the method of manufactured solutions, where
we choose some exact solution ue D v and fit a source term f in the governing
differential equation L.ue/ D f such that ue D v is a solution (i.e., f D L.v/).
Assuming an error model of the form Chr , where h is the discretization parame-
ter, such as �t or �x, one can estimate the convergence rate r . This is a widely
applicable procedure, but the validity of the results is, strictly speaking, tied to the
chosen test problems.

Another error measure arises by asking to what extent the exact solution ue fits
the discrete equations. Clearly, ue is in general not a solution of L�.u/ D 0, but we
can define the residual

R D L�.ue/;
and investigate how close R is to zero. A small R means intuitively that the discrete
equations are close to the differential equation, and then we are tempted to think
that un must also be close to ue.tn/.

The residual R is known as the truncation error of the finite difference scheme
L�.u/ D 0. It appears that the truncation error is relatively straightforward to
compute by hand or symbolic software without specializing the differential equation
and the discrete model to a special case. The resulting R is found as a power

B.2 Truncation Errors in Finite Difference Formulas 417

series in the discretization parameters. The leading-order terms in the series provide
an asymptotic measure of the accuracy of the numerical solution method (as the
discretization parameters tend to zero). An advantage of truncation error analysis,
compared to empirical estimation of convergence rates, or detailed analysis of a
special problem with a mathematical expression for the numerical solution, is that
the truncation error analysis reveals the accuracy of the various building blocks in
the numerical method and how each building block impacts the overall accuracy.
The analysis can therefore be used to detect building blocks with lower accuracy
than the others.

Knowing the truncation error or other error measures is important for verifica-
tion of programs by empirically establishing convergence rates. The forthcoming
text will provide many examples on how to compute truncation errors for finite
difference discretizations of ODEs and PDEs.

B.2 Truncation Errors in Finite Difference Formulas

The accuracy of a finite difference formula is a fundamental issue when discretizing
differential equations. We shall first go through a particular example in detail and
thereafter list the truncation error in the most common finite difference approxima-
tion formulas.

B.2.1 Example: The Backward Difference for u0.t/

Consider a backward finite difference approximation of the first-order derivative u0:

ŒD�t u�
n D un � un�1

�t
� u0.tn/ : (B.1)

Here, un means the value of some function u.t/ at a point tn, and ŒD�t u�n is the
discrete derivative of u.t/ at t D tn. The discrete derivative computed by a finite
difference is, in general, not exactly equal to the derivative u0.tn/. The error in the
approximation is

Rn D ŒD�t u�n � u0.tn/ : (B.2)

The common way of calculating Rn is to

1. expand u.t/ in a Taylor series around the point where the derivative is evaluated,
here tn,

2. insert this Taylor series in (B.2), and
3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in �t . The error Rn is
commonly referred to as the truncation error of the finite difference formula.

The Taylor series formula often found in calculus books takes the form

f .x C h/ D
1X
iD0

1

iŠ

d if

dxi
.x/hi :

418 B Truncation Error Analysis

In our application, we expand the Taylor series around the point where the finite
difference formula approximates the derivative. The Taylor series of un at tn is
simply u.tn/, while the Taylor series of un�1 at tn must employ the general formula,

u.tn�1/ D u.t ��t/ D
1X
iD0

1

iŠ

d iu

dt i
.tn/.��t/i

D u.tn/ � u0.tn/�t C 1

2
u00.tn/�t2 CO.�t3/;

where O.�t3/ means a power-series in �t where the lowest power is �t3. We
assume that �t is small such that �tp � �tq if p is smaller than q. The details
of higher-order terms in �t are therefore not of much interest. Inserting the Taylor
series above in the right-hand side of (B.2) gives rise to some algebra:

ŒD�t u�
n � u0.tn/ D u.tn/ � u.tn�1/

�t
� u0.tn/

D u.tn/ � .u.tn/� u0.tn/�t C 1
2
u00.tn/�t2 CO.�t3//

�t
� u0.tn/

D �1
2
u00.tn/�t CO.�t2/;

which is, according to (B.2), the truncation error:

Rn D �1
2
u00.tn/�t CO.�t2/ : (B.3)

The dominating term for small�t is � 1
2
u00.tn/�t , which is proportional to�t , and

we say that the truncation error is of first order in �t .

B.2.2 Example: The Forward Difference for u0.t/

We can analyze the approximation error in the forward difference

u0.tn/ � ŒDCt u�n D
unC1 � un

�t
;

by writing
Rn D ŒDCt u�n � u0.tn/;

and expanding unC1 in a Taylor series around tn,

u.tnC1/ D u.tn/C u0.tn/�t C 1

2
u00.tn/�t2 CO.�t3/ :

The result becomes

R D 1

2
u00.tn/�t CO.�t2/;

showing that also the forward difference is of first order.

B.2 Truncation Errors in Finite Difference Formulas 419

B.2.3 Example: The Central Difference for u0.t/

For the central difference approximation,

u0.tn/ � ŒDtu�
n; ŒDtu�

n D unC
1
2 � un� 12
�t

;

we write
Rn D ŒDtu�

n � u0.tn/;
and expand u.tnC 1

2
/ and u.tn� 12 / in Taylor series around the point tn where the

derivative is evaluated. We have

u
�
tnC 1

2

�
Du.tn/C u0.tn/1

2
�t C 1

2
u00.tn/

�
1

2
�t

�2
C

1

6
u000.tn/

�
1

2
�t

�3
C 1

24
u0000.tn/

�
1

2
�t

�4
C

1

120
u0000.tn/

�
1

2
�t

�5
CO.�t6/;

u
�
tn� 12

�
Du.tn/ � u0.tn/1

2
�t C 1

2
u00.tn/

�
1

2
�t

�2
�

1

6
u000.tn/

�
1

2
�t

�3
C 1

24
u0000.tn/

�
1

2
�t

�4
�

1

120
u00000.tn/

�
1

2
�t

�5
CO.�t6/ :

Now,

u
�
tnC 1

2

�
� u

�
tn� 12

�
D u0.tn/�t C 1

24
u000.tn/�t3 C 1

960
u00000.tn/�t5 CO.�t7/ :

By collecting terms in ŒDtu�
n � u0.tn/ we find the truncation error to be

Rn D 1

24
u000.tn/�t2 CO.�t4/; (B.4)

with only even powers of �t . Since R � �t2 we say the centered difference is of
second order in �t .

420 B Truncation Error Analysis

B.2.4 Overview of Leading-Order Error Terms in Finite Difference
Formulas

Here we list the leading-order terms of the truncation errors associated with several
common finite difference formulas for the first and second derivatives.

ŒDtu�
n D unC

1
2 � un� 12
�t

D u0.tn/CRn; (B.5)

Rn D 1

24
u000.tn/�t2 C O.�t4/ (B.6)

ŒD2tu�
n D unC1 � un�1

2�t
D u0.tn/CRn; (B.7)

Rn D 1

6
u000.tn/�t2 CO.�t4/ (B.8)

ŒD�t u�
n D un � un�1

�t
D u0.tn/CRn; (B.9)

Rn D �1
2
u00.tn/�t CO.�t2/ (B.10)

ŒDCt u�
n D unC1 � un

�t
D u0.tn/CRn; (B.11)

Rn D 1

2
u00.tn/�t CO.�t2/ (B.12)

Œ NDtu�
nC� D unC1 � un

�t
D u0.tnC� /CRnC� ; (B.13)

RnC� D 1

2
.1 � 2�/u00.tnC� /�t � 1

6
..1 � �/3 � �3/u000.tnC� /�t2 CO.�t3/

(B.14)

ŒD2�
t u�

n D 3un � 4un�1 C un�2
2�t

D u0.tn/CRn; (B.15)

Rn D �1
3
u000.tn/�t2 CO.�t3/ (B.16)

ŒDtDtu�
n D unC1 � 2un C un�1

�t2
D u00.tn/CRn; (B.17)

Rn D 1

12
u0000.tn/�t2 CO.�t4/ (B.18)

It will also be convenient to have the truncation errors for various means or
averages. The weighted arithmetic mean leads to

Œut;� �nC� D �unC1 C .1 � �/un D u.tnC� /CRnC� ; (B.19)

RnC� D 1

2
u00.tnC� /�t2�.1 � �/C O.�t3/ : (B.20)

B.2 Truncation Errors in Finite Difference Formulas 421

The standard arithmetic mean follows from this formula when � D 1
2
. Expressed at

point tn we get

Œut �n D 1

2

�
un�

1
2 C unC 1

2

�
D u.tn/CRn; (B.21)

Rn D 1

8
u00.tn/�t2 C 1

384
u0000.tn/�t4 CO.�t6/ : (B.22)

The geometric mean also has an error O.�t2/:
h
u2
t;g
in D un� 12 unC 1

2 D .un/2 CRn; (B.23)

Rn D �1
4
u0.tn/2�t2 C 1

4
u.tn/u

00.tn/�t2 C O.�t4/ : (B.24)

The harmonic mean is also second-order accurate:

ut;h

�n D un D 2
1

u
n� 1

2

C 1

u
nC 1

2

CRnC 1
2 ; (B.25)

Rn D �u
0.tn/2

4u.tn/
�t2 C 1

8
u00.tn/�t2 : (B.26)

B.2.5 Software for Computing Truncation Errors

We can use sympy to aid calculations with Taylor series. The derivatives can be
defined as symbols, say D3f for the 3rd derivative of some function f . A truncated
Taylor series can then be written as f + D1f*h + D2f*h**2/2. The following
class takes some symbol f for the function in question and makes a list of symbols
for the derivatives. The __call__method computes the symbolic form of the series
truncated at num_terms terms.

import sympy as sym

class TaylorSeries:
"""Class for symbolic Taylor series."""
def __init__(self, f, num_terms=4):

self.f = f
self.N = num_terms
Introduce symbols for the derivatives
self.df = [f]
for i in range(1, self.N+1):

self.df.append(sym.Symbol(’D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N+1):

terms += sym.Rational(1, sym.factorial(i))*self.df[i]*h**i
return terms

422 B Truncation Error Analysis

We may, for example, use this class to compute the truncation error of the For-
ward Euler finite difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

The truncation error consists of the terms after the first one (u0).
The module file trunc/truncation_errors.py contains another class

DiffOp with symbolic expressions for most of the truncation errors listed in
the previous section. For example:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

The indexing of diffop applies names that correspond to the operators: Dtp for
DCt , Dtm forD�t , Dt forDt , D2t forD2t , DtDt forDtDt .

B.3 Exponential Decay ODEs

We shall now compute the truncation error of a finite difference scheme for a dif-
ferential equation. Our first problem involves the following linear ODE that models
exponential decay,

u0.t/ D �au.t/ : (B.27)

B.3.1 Forward Euler Scheme

We begin with the Forward Euler scheme for discretizing (B.27):

ŒDCt u D �au�n : (B.28)

http://tinyurl.com/nu656p2/trunc/truncation_errors.py

B.3 Exponential Decay ODEs 423

The idea behind the truncation error computation is to insert the exact solution ue
of the differential equation problem (B.27) in the discrete equations (B.28) and find
the residual that arises because ue does not solve the discrete equations. Instead, ue
solves the discrete equations with a residual Rn:

ŒDCt ue C aue D R�n : (B.29)

From (B.11)–(B.12) it follows that

ŒDCt ue�
n D u0e.tn/C

1

2
u00e.tn/�t CO.�t2/;

which inserted in (B.29) results in

u0e.tn/C
1

2
u00e.tn/�t CO.�t2/C aue.tn/ D Rn :

Now, u0e.tn/ C aune D 0 since ue solves the differential equation. The remaining
terms constitute the residual:

Rn D 1

2
u00e.tn/�t CO.�t2/ : (B.30)

This is the truncation error Rn of the Forward Euler scheme.
Because Rn is proportional to �t , we say that the Forward Euler scheme is of

first order in �t . However, the truncation error is just one error measure, and it is
not equal to the true error une � un. For this simple model problem we can compute
a range of different error measures for the Forward Euler scheme, including the true
error une � un, and all of them have dominating terms proportional to �t .

B.3.2 Crank-Nicolson Scheme

For the Crank-Nicolson scheme,

ŒDtu D �au�nC 1
2 ; (B.31)

we compute the truncation error by inserting the exact solution of the ODE and
adding a residual R,

ŒDtue C auet D R�nC 1
2 : (B.32)

The term ŒDtue�
nC 1

2 is easily computed from (B.5)–(B.6) by replacing n with nC 1
2

in the formula,

ŒDtue�
nC 1

2 D u0e
�
tnC 1

2

�
C 1

24
u000e
�
tnC 1

2

�
�t2 CO.�t4/ :

The arithmetic mean is related to u.tnC 1
2
/ by (B.21)–(B.22) so

Œaue
t �nC

1
2 D ue

�
tnC 1

2

�
C 1

8
u00e.tn/�t

2 CO.�t4/ :

424 B Truncation Error Analysis

Inserting these expressions in (B.32) and observing that u0e.tnC 1
2
/ C aunC 1

2
e D 0,

because ue.t/ solves the ODE u0.t/ D �au.t/ at any point t , we find that

RnC
1
2 D

�
1

24
u000e
�
tnC 1

2

�
C 1

8
u00e.tn/

�
�t2 CO.�t4/ : (B.33)

Here, the truncation error is of second order because the leading term in R is pro-
portional to �t2.

At this point it is wise to redo some of the computations above to establish the
truncation error of the Backward Euler scheme, see Exercise B.4.

B.3.3 The �-Rule

We may also compute the truncation error of the �-rule,

Œ NDtu D �aut;� �nC� :

Our computational task is to find RnC� in

Œ NDtue C auet;� D R�nC� :

From (B.13)–(B.14) and (B.19)–(B.20) we get expressions for the terms with ue.
Using that u0e.tnC� /C aue.tnC� / D 0, we end up with

RnC� D
�
1

2
� �

�
u00e.tnC� /�t C

1

2
�.1 � �/u00e.tnC� /�t2

C 1

2
.�2 � � C 3/u000e .tnC� /�t2 CO.�t3/ : (B.34)

For � D 1
2
the first-order term vanishes and the scheme is of second order, while

for � ¤ 1
2
we only have a first-order scheme.

B.3.4 Using Symbolic Software

The previously mentioned truncation_errormodule can be used to automate the
Taylor series expansions and the process of collecting terms. Here is an example on
possible use:

from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE

B.3 Exponential Decay ODEs 425

Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’] + a*u
BE = diffop[’Dtm’] + a*u
theta = diffop[’barDt’] + a*diffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE,

’theta’: theta-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3u*dt**2/24,
’theta’: -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

B.3.5 Empirical Verification of the Truncation Error

The task of this section is to demonstrate how we can compute the truncation error
R numerically. For example, the truncation error of the Forward Euler scheme
applied to the decay ODE u0 D �ua is

Rn D ŒDCt ue C aue�n : (B.35)

If we happen to know the exact solution ue.t/, we can easily evaluate Rn from the
above formula.

To estimate how R varies with the discretization parameter �t , which has been
our focus in the previous mathematical derivations, we first make the assumption
that R D C�tr for appropriate constants C and r and small enough �t . The rate
r can be estimated from a series of experiments where �t is varied. Suppose we
havem experiments .�ti ; Ri /, i D 0; : : : ; m� 1. For two consecutive experiments
.�ti�1; Ri�1/ and .�ti ; Ri /, a corresponding ri�1 can be estimated by

ri�1 D ln.Ri�1=Ri /
ln.�ti�1=�ti /

; (B.36)

for i D 1; : : : ; m � 1. Note that the truncation error Ri varies through the mesh, so
(B.36) is to be applied pointwise. A complicating issue is that Ri and Ri�1 refer to
different meshes. Pointwise comparisons of the truncation error at a certain point in
all meshes therefore requires any computed R to be restricted to the coarsest mesh

426 B Truncation Error Analysis

and that all finer meshes contain all the points in the coarsest mesh. Suppose we
have N0 intervals in the coarsest mesh. Inserting a superscript n in (B.36), where n
counts mesh points in the coarsest mesh, n D 0; : : : ; N0, leads to the formula

rni�1 D
ln.Rni�1=R

n
i /

ln.�ti�1=�ti /
: (B.37)

Experiments are most conveniently defined by N0 and a number of refinements m.
Suppose each mesh has twice as many cells Ni as the previous one:

Ni D 2iN0; �ti D TN �1i ;

where Œ0; T � is the total time interval for the computations. Suppose the computed
Ri values on the mesh withNi intervals are stored in an array R[i] (R being a list of
arrays, one for each mesh). Restricting this Ri function to the coarsest mesh means
extracting every Ni=N0 point and is done as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rni .
In addition to estimating r for the pointwise values of R D C�tr , we may also

consider an integrated quantity on mesh i ,

RI;i D

�ti

NiX
nD0
.Rni /

2

! 1
2

�
TZ
0

Ri .t/dt : (B.38)

The sequence RI;i , i D 0; : : : ; m � 1, is also expected to behave as C�tr , with the
same r as for the pointwise quantity R, as �t ! 0.

The function below computes the Ri and RI;i quantities, plots them and com-
pares with the theoretically derived truncation error (R_a) if available.

import numpy as np
import scitools.std as plt

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).

B.3 Exponential Decay ODEs 427

The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None]*m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i]/N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append(’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i], log=’y’)
plt.hold(’on’)
legends_R_a.append(’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error’)
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)

428 B Truncation Error Analysis

Convergence rates
r_R_I = convergence_rates(dt, R_I)
print ’R integrated in time; r:’,
print ’ ’.join([’%.1f’ % r for r in r_R_I])
R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in parallel,
using plt.figure(i) to create and switch to figure number i. Figure numbers
start at 1. A logarithmic scale is used on the y axis since we expect that R as a
function of time (or mesh points) is exponential. The reason is that the theoretical
estimate (B.30) contains u00e, which for the present model goes like e�at . Taking the
logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas, but the
statements for computing the convergence rates might deserve an explanation. The
generic help function convergence_rate(h, E) computes and returns ri�1, i D
1; : : : ; m � 1 from (B.37), given �ti in h and Rni in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the sequence of
rates r0; r1; : : : ; rm�2 for the model RI � �tr , while the statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm�2 for Rn � �tr at each mesh point tn in the coarsest
mesh. This latter computation deserves more explanation. Since R[i][n] holds the
estimated truncation error Rni on mesh i , at point tn in the coarsest mesh, R[:,n]
picks out the sequence Rni for i D 0; : : : ; m � 1. The convergence_rate func-
tion computes the rates at tn, and by indexing [-1] on the returned array from
convergence_rate, we pick the rate rm�2, which we believe is the best estimation
since it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py. Let us apply
this function to estimate the truncation error of the Forward Euler scheme. We need
a function decay_FE(dt, N) that can compute (B.35) at the points in a mesh with
time step dt and N intervals:

http://tinyurl.com/nu656p2/trunc/trunc_empir.py

B.3 Exponential Decay ODEs 429

Fig. B.1 Estimated truncation error at mesh points for different meshes

import numpy as np
import trunc_empir

def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N*dt, N+1)
u_e = I*np.exp(-a*t) # exact solution, I and a are global
u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n+1] - u[n])/dt + a*u[n]

Theoretical expression for the trunction error
R_a = 0.5*I*(-a)**2*np.exp(-a*t)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I = 1; a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become 1.1, 1.0, and
1.0 for this sequence of four meshes. All the rates forRn, computed as r_R, are also
very close to 1 at all mesh points. The agreement between the theoretical formula
(B.30) and the computed quantity (ref(B.35)) is very good, as illustrated in Fig. B.1
and B.2. The program trunc_decay_FE.pywas used to perform the simulations
and it can easily be modified to test other schemes (see also Exercise B.5).

http://tinyurl.com/nu656p2/trunc/trunc_decay_FE.py

430 B Truncation Error Analysis

Fig. B.2 Difference between theoretical and estimated truncation error at mesh points for different
meshes

B.3.6 Increasing the Accuracy by Adding Correction Terms

Nowwe ask the question: can we add terms in the differential equation that can help
increase the order of the truncation error? To be precise, let us revisit the Forward
Euler scheme for u0 D �au, insert the exact solution ue, include a residual R, but
also include new terms C :

ŒDCt ue C aue D C CR�n : (B.39)

Inserting the Taylor expansions for ŒDCt ue�n and keeping terms up to 3rd order in
�t gives the equation

1

2
u00e.tn/�t �

1

6
u000e .tn/�t

2 C 1

24
u0000e .tn/�t

3 CO.�t4/ D Cn CRn :

Can we find Cn such that Rn is O.�t2/? Yes, by setting

Cn D 1

2
u00e.tn/�t;

we manage to cancel the first-order term and

Rn D 1

6
u000e .tn/�t

2 CO.�t3/ :

The correction term Cn introduces 1
2
�tu00 in the discrete equation, and we have

to get rid of the derivative u00. One idea is to approximate u00 by a second-order ac-
curate finite difference formula, u00 � .unC1�2unCun�1/=�t2, but this introduces

B.3 Exponential Decay ODEs 431

an additional time level with un�1. Another approach is to rewrite u00 in terms of u0
or u using the ODE:

u0 D �au) u00 D �au0 D �a.�au/ D a2u :

This means that we can simply set Cn D 1
2
a2�tun. We can then either solve the

discrete equation �
DCt u D �auC

1

2
a2�tu

	n
; (B.40)

or we can equivalently discretize the perturbed ODE

u0 D �Oau; Oa D a
�
1 � 1

2
a�t

�
; (B.41)

by a Forward Euler method. That is, we replace the original coefficient a by the
perturbed coefficient Oa. Observe that Oa! a as �t ! 0.

The Forward Euler method applied to (B.41) results in

�
DCt u D �a

�
1 � 1

2
a�t

�
u

	n
:

We can control our computations and verify that the truncation error of the scheme
above is indeed O.�t2/.

Another way of revealing the fact that the perturbed ODE leads to a more ac-
curate solution is to look at the amplification factor. Our scheme can be written
as

unC1 D Aun; A D 1 � Oa�t D 1 � p C 1

2
p2; p D a�t;

The amplification factor A as a function of p D a�t is seen to be the first three
terms of the Taylor series for the exact amplification factor e�p . The Forward Euler
scheme for u D �au gives only the first two terms 1 � p of the Taylor series for
e�p . That is, using Oa increases the order of the accuracy in the amplification factor.

Instead of replacing u00 by a2u, we use the relation u00 D �au0 and add a term
� 1
2
a�tu0 in the ODE:

u0 D �au� 1
2
a�tu0)

�
1C 1

2
a�t

�
u0 D �au :

Using a Forward Euler method results in

�
1C 1

2
a�t

�
unC1 � un

�t
D �aun;

which after some algebra can be written as

unC1 D 1 � 1
2
a�t

1C 1
2
a�t

un :

432 B Truncation Error Analysis

This is the same formula as the one arising from a Crank-Nicolson scheme applied
to u0 D �au! It is now recommended to do Exercise B.6 and repeat the above
steps to see what kind of correction term is needed in the Backward Euler scheme
to make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but the ideas
and techniques are the same. The discrete equation reads

ŒDtu D �au�nC 1
2 ;

and the truncation error is defined through

ŒDtue C auet D C CR�nC 1
2 ;

where we have added a correction term. We need to Taylor expand both the dis-
crete derivative and the arithmetic mean with aid of (B.5)–(B.6) and (B.21)–(B.22),
respectively. The result is

1

24
u000e
�
tnC 1

2

�
�t2 CO.�t4/C a

8
u00e
�
tnC 1

2

�
�t2 CO.�t4/ D CnC 1

2 CRnC 1
2 :

The goal now is to make CnC 1
2 cancel the �t2 terms:

CnC 1
2 D 1

24
u000e
�
tnC 1

2

�
�t2 C a

8
u00e.tn/�t

2 :

Using u0 D �au, we have that u00 D a2u, and we find that u000 D �a3u. We can
therefore solve the perturbed ODE problem

u0 D �Oau; Oa D a
�
1 � 1

12
a2�t2

�
;

by the Crank-Nicolson scheme and obtain a method that is of fourth order in �t .
Exercise B.7 encourages you to implement these correction terms and calculate
empirical convergence rates to verify that higher-order accuracy is indeed obtained
in real computations.

B.3.7 Extension to Variable Coefficients

Let us address the decay ODE with variable coefficients,

u0.t/ D �a.t/u.t/C b.t/;
discretized by the Forward Euler scheme,

ŒDCt u D �auC b�n : (B.42)

The truncation error R is as always found by inserting the exact solution ue.t/ in
the discrete scheme:

ŒDCt ue C aue � b D R�n : (B.43)

B.3 Exponential Decay ODEs 433

Using (B.11)–(B.12),

u0e.tn/ �
1

2
u00e.tn/�t CO.�t2/C a.tn/ue.tn/ � b.tn/ D Rn :

Because of the ODE,

u0e.tn/C a.tn/ue.tn/ � b.tn/ D 0;

we are left with the result

Rn D �1
2
u00e.tn/�t CO.�t2/ : (B.44)

We see that the variable coefficients do not pose any additional difficulties in this
case. Exercise B.8 takes the analysis above one step further to the Crank-Nicolson
scheme.

B.3.8 Exact Solutions of the Finite Difference Equations

Having a mathematical expression for the numerical solution is very valuable in pro-
gram verification, since we then know the exact numbers that the program should
produce. Looking at the various formulas for the truncation errors in (B.5)–(B.6)
and (B.25)–(B.26) in Sect. B.2.4, we see that all but two of the R expressions con-
tain a second or higher order derivative of ue. The exceptions are the geometric and
harmonic means where the truncation error involves u0e and even ue in case of the
harmonic mean. So, apart from these two means, choosing ue to be a linear func-
tion of t , ue D ct C d for constants c and d , will make the truncation error vanish
since u00e D 0. Consequently, the truncation error of a finite difference scheme will
be zero since the various approximations used will all be exact. This means that the
linear solution is an exact solution of the discrete equations.

In a particular differential equation problem, the reasoning above can be used to
determine if we expect a linear ue to fulfill the discrete equations. To actually prove
that this is true, we can either compute the truncation error and see that it vanishes,
or we can simply insert ue.t/ D ct C d in the scheme and see that it fulfills the
equations. The latter method is usually the simplest. It will often be necessary to
add some source term to the ODE in order to allow a linear solution.

Many ODEs are discretized by centered differences. From Sect. B.2.4 we see
that all the centered difference formulas have truncation errors involving u000e or
higher-order derivatives. A quadratic solution, e.g., ue.t/ D t2 C ct C d , will
then make the truncation errors vanish. This observation can be used to test if a
quadratic solution will fulfill the discrete equations. Note that a quadratic solution
will not obey the equations for a Crank-Nicolson scheme for u0 D �au C b be-
cause the approximation applies an arithmetic mean, which involves a truncation
error with u00e.

434 B Truncation Error Analysis

B.3.9 Computing Truncation Errors in Nonlinear Problems

The general nonlinear ODE
u0 D f .u; t/; (B.45)

can be solved by a Crank-Nicolson scheme

ŒDtu D f t
�nC

1
2 : (B.46)

The truncation error is as always defined as the residual arising when inserting the
exact solution ue in the scheme:

ŒDtue � f t D R�nC 1
2 : (B.47)

Using (B.21)–(B.22) for f
t
results in

Œf
t
�nC

1
2 D 1

2
.f .une; tn/C f .unC1e ; tnC1//

D f
�
u
nC 1

2
e ; tnC 1

2

�
C 1

8
u00e
�
tnC 1

2

�
�t2 C O.�t4/ :

With (B.5)–(B.6) the discrete equations (B.47) lead to

u0e
�
tnC 1

2

�
C 1

24
u000e
�
tnC 1

2

�
�t2 � f

�
u
nC 1

2
e ; tnC 1

2

�

� 1
8
u00e
�
tnC 1

2

�
�t2 CO.�t4/ D RnC 1

2 :

Since u0e.tnC 1
2
/� f .unC 1

2
e ; tnC 1

2
/ D 0, the truncation error becomes

RnC
1
2 D

�
1

24
u000e
�
tnC 1

2

�
� 1
8
u00e
�
tnC 1

2

��
�t2 :

The computational techniques worked well even for this nonlinear ODE.

B.4 Vibration ODEs

B.4.1 Linear Model Without Damping

The next example on computing the truncation error involves the following ODE
for vibration problems:

u00.t/C !2u.t/ D 0 : (B.48)

Here, ! is a given constant.

B.4 Vibration ODEs 435

The truncation error of a centered finite difference scheme Using a standard,
second-ordered, central difference for the second-order derivative in time, we have
the scheme

ŒDtDtuC !2u D 0�n : (B.49)

Inserting the exact solution ue in this equation and adding a residual R so that
ue can fulfill the equation results in

ŒDtDtue C !2ue D R�n : (B.50)

To calculate the truncation error Rn, we use (B.17)–(B.18), i.e.,

ŒDtDtue�
n D u00e.tn/C

1

12
u0000e .tn/�t

2 C O.�t4/;

and the fact that u00e.t/C !2ue.t/ D 0. The result is

Rn D 1

12
u0000e .tn/�t

2 CO.�t4/ : (B.51)

The truncation error of approximating u0.0/ The initial conditions for (B.48)
are u.0/ D I and u0.0/ D V . The latter involves a finite difference approximation.
The standard choice

ŒD2tu D V �0;
where u�1 is eliminated with the aid of the discretized ODE for n D 0, involves
a centered difference with an O.�t2/ truncation error given by (B.7)–(B.8). The
simpler choice

ŒDCt u D V �0;
is based on a forward difference with a truncation error O.�t/. A central question
is if this initial error will impact the order of the scheme throughout the simulation.
Exercise B.11 asks you to perform an experiment to investigate this question.

Truncation error of the equation for the first step We have shown that the trun-
cation error of the difference used to approximate the initial condition u0.0/ D 0 is
O.�t2/, but we can also investigate the difference equation used for the first step.
In a truncation error setting, the right way to view this equation is not to use the
initial condition ŒD2tu D V �0 to express u�1 D u1 � 2�tV in order to eliminate
u�1 from the discretized differential equation, but the other way around: the fun-
damental equation is the discretized initial condition ŒD2tu D V �0 and we use the
discretized ODE ŒDtDt C !2u D 0�0 to eliminate u�1 in the discretized initial
condition. From ŒDtDt C !2u D 0�0 we have

u�1 D 2u0 � u1 ��t2!2u0;

which inserted in ŒD2tu D V �0 gives

u1 � u0
�t

C 1

2
!2�tu0 D V : (B.52)

436 B Truncation Error Analysis

The first term can be recognized as a forward difference such that the equation can
be written in operator notation as

�
DCt uC

1

2
!2�tu D V

	0
:

The truncation error is defined as

�
DCt ue C

1

2
!2�tue � V D R

	0
:

Using (B.11)–(B.12) with one more term in the Taylor series, we get that

u0e.0/C
1

2
u00e.0/�t C

1

6
u000e .0/�t

2 C O.�t3/C 1

2
!2�tue.0/� V D Rn :

Now, u0e.0/ D V and u00e.0/ D �!2ue.0/ so we get

Rn D 1

6
u000e .0/�t

2 C O.�t3/ :

There is another way of analyzing the discrete initial condition, because elimi-
nating u�1 via the discretized ODE can be expressed as

ŒD2tuC�t.DtDtu � !2u/ D V �0 : (B.53)

Writing out (B.53) shows that the equation is equivalent to (B.52). The truncation
error is defined by

ŒD2tue C�t.DtDtue � !2ue/ D V C R�0 :
Replacing the difference via (B.7)–(B.8) and (B.17)–(B.18), as well as using
u0e.0/ D V and u00e.0/ D �!2ue.0/, gives

Rn D 1

6
u000e .0/�t

2 C O.�t3/ :

Computing correction terms The idea of using correction terms to increase the
order of Rn can be applied as described in Sect. B.3.6. We look at

ŒDtDtue C !2ue D C CR�n;
and observe that Cn must be chosen to cancel the �t2 term in Rn. That is,

Cn D 1

12
u0000e .tn/�t

2 :

To get rid of the 4th-order derivative we can use the differential equation: u00 D
�!2u, which implies u0000 D !4u. Adding the correction term to the ODE results in

u00 C !2
�
1 � 1

12
!2�t2

�
u D 0 : (B.54)

B.4 Vibration ODEs 437

Solving this equation by the standard scheme

�
DtDtuC !2

�
1 � 1

12
!2�t2

�
u D 0

	n
;

will result in a scheme with truncation error O.�t4/.
We can use another set of arguments to justify that (B.54) leads to a higher-order

method. Mathematical analysis of the scheme (B.49) reveals that the numerical
frequency Q! is (approximately as �t ! 0)

Q! D !
�
1C 1

24
!2�t2

�
:

One can therefore attempt to replace ! in the ODE by a slightly smaller ! since the
numerics will make it larger:

"
u00 C

�
!

�
1 � 1

24
!2�t2

��2
u D 0

#n
:

Expanding the squared term and omitting the higher-order term �t4 gives exactly
the ODE (B.54). Experiments show that un is computed to 4th order in �t . You
can confirm this by running a little program in the vib directory:

from vib_undamped import convergence_rates, solver_adjust_w

r = convergence_rates(
m=5, solver_function=solver_adjust_w, num_periods=8)

One will see that the rates r lie around 4.

B.4.2 Model with Damping and Nonlinearity

The model (B.48) can be extended to include damping ˇu0, a nonlinear restoring
(spring) force s.u/, and some known excitation force F.t/:

mu00 C ˇu0 C s.u/ D F.t/ : (B.55)

The coefficient m usually represents the mass of the system. This governing equa-
tion can be discretized by centered differences:

ŒmDtDtuC ˇD2tuC s.u/ D F �n : (B.56)

The exact solution ue fulfills the discrete equations with a residual term:

ŒmDtDtue C ˇD2tue C s.ue/ D F C R�n : (B.57)

438 B Truncation Error Analysis

Using (B.17)–(B.18) and (B.7)–(B.8) we get

ŒmDtDtue C ˇD2tue�
n D mu00e.tn/C ˇu0e.tn/
C
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2 CO.�t4/ :

Combining this with the previous equation, we can collect the terms

mu00e.tn/C ˇu0e.tn/C !2ue.tn/C s.ue.tn// � F n;

and set this sum to zero because ue solves the differential equation. We are left with
the truncation error

Rn D
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2 C O.�t4/; (B.58)

so the scheme is of second order.
According to (B.58), we can add correction terms

Cn D
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2;

to the right-hand side of the ODE to obtain a fourth-order scheme. However, ex-
pressing u0000 and u000 in terms of lower-order derivatives is now harder because the
differential equation is more complicated:

u000 D 1

m
.F 0 � ˇu00 � s0.u/u0/;

u0000 D 1

m
.F 00 � ˇu000 � s00.u/.u0/2 � s0.u/u00/;

D 1

m
.F 00 � ˇ 1

m
.F 0 � ˇu00 � s0.u/u0/� s00.u/.u0/2 � s0.u/u00/ :

It is not impossible to discretize the resulting modified ODE, but it is up to debate
whether correction terms are feasible and the way to go. Computing with a smaller
�t is usually always possible in these problems to achieve the desired accuracy.

B.4.3 Extension to Quadratic Damping

Instead of the linear damping term ˇu0 in (B.55) we now consider quadratic damp-
ing ˇju0ju0:

mu00 C ˇju0ju0 C s.u/ D F.t/ : (B.59)

A centered difference for u0 gives rise to a nonlinearity, which can be linearized us-
ing a geometric mean: Œju0ju0�n � jŒu0�n� 12 jŒu0�nC 1

2 . The resulting scheme becomes

ŒmDtDtu�
n C ˇjŒDtu�

n� 12 jŒDtu�
nC 1

2 C s.un/ D F n : (B.60)

B.4 Vibration ODEs 439

The truncation error is defined through

ŒmDtDtue�
n C ˇjŒDtue�

n� 12 jŒDtue�
nC 1

2 C s.une/ � F n D Rn : (B.61)

We start with expressing the truncation error of the geometric mean. According
to (B.23)–(B.24),

jŒDtue�
n� 12 jŒDtue�

nC 1
2 D ŒjDtuejDtue�

n � 1
4
u0e.tn/

2�t2

C 1

4
ue.tn/u

00
e.tn/�t

2 CO.�t4/ :

Using (B.5)–(B.6) for theDtue factors results in

ŒjDtuejDtue�
n

D
ˇ̌̌
ˇu0e C 1

24
u000e .tn/�t

2 CO.�t4/
ˇ̌̌
ˇ
�
u0e C

1

24
u000e .tn/�t

2 CO.�t4/
�
:

We can remove the absolute value since it essentially gives a factor 1 or �1 only.
Calculating the product, we have the leading-order terms

ŒDtueDtue�
n D .u0e.tn//2 C

1

12
ue.tn/u

000
e .tn/�t

2 CO.�t4/ :

With
mŒDtDtue�

n D mu00e.tn/C
m

12
u0000e .tn/�t

2 CO.�t4/;

and using the differential equation on the formmu00 C ˇ.u0/2 C s.u/ D F , we end
up with

Rn D
�
m

12
u0000e .tn/C

ˇ

12
ue.tn/u

000
e .tn/

�
�t2 CO.�t4/ :

This result demonstrates that we have second-order accuracy also with quadratic
damping. The key elements that lead to the second-order accuracy is that the dif-
ference approximations are O.�t2/ and the geometric mean approximation is also
O.�t2/.

B.4.4 The General Model Formulated as First-Order ODEs

The second-order model (B.59) can be formulated as a first-order system,

v0 D 1

m
.F.t/ � ˇjvjv � s.u// ; (B.62)

u0 D v : (B.63)

The system (B.63)–(B.63) can be solved either by a forward-backward scheme (the
Euler-Cromer method) or a centered scheme on a staggered mesh.

440 B Truncation Error Analysis

A centered scheme on a staggered mesh We now introduce a staggered mesh
where we seek u at mesh points tn and v at points tnC 1

2
in between the u points.

The staggered mesh makes it easy to formulate centered differences in the system
(B.63)–(B.63):

ŒDtu D v�n� 12 ; (B.64)�
Dtv D 1

m
.F.t/ � ˇjvjv � s.u//

	n
: (B.65)

The term jvnjvn causes trouble since vn is not computed, only vn�
1
2 and vnC

1
2 . Us-

ing geometric mean, we can express jvnjvn in terms of known quantities: jvnjvn �
jvn� 12 jvnC 1

2 . We then have

ŒDtu�
n� 12 D vn� 12 ; (B.66)

ŒDtv�
n D 1

m

�
F.tn/� ˇ

ˇ̌̌
vn�

1
2

ˇ̌̌
vnC

1
2 � s.un/

�
: (B.67)

The truncation error in each equation fulfills

ŒDtue�
n� 12 D ve

�
tn� 12

�
CRn� 12u ;

ŒDtve�
n D 1

m

�
F.tn/ � ˇ

ˇ̌̌
ve

�
tn� 12

�ˇ̌̌
ve

�
tnC 1

2

�
� s.un/

�
CRnv :

The truncation error of the centered differences is given by (B.5)–(B.6), and the
geometric mean approximation analysis can be taken from (B.23)–(B.24). These
results lead to

u0e
�
tn� 12

�
C 1

24
u000e
�
tn� 12

�
�t2 CO.�t4/ D ve

�
tn� 12

�
CRn� 12u ;

and

v0e.tn/ D
1

m
.F.tn/ � ˇjve.tn/jve.tn/CO.�t2/ � s.un//CRnv :

The ODEs fulfilled by ue and ve are evident in these equations, and we achieve
second-order accuracy for the truncation error in both equations:

R
n� 12
u D O.�t2/; Rnv D O.�t2/ :

B.5 Wave Equations

B.5.1 Linear Wave Equation in 1D

The standard, linear wave equation in 1D for a function u.x; t/ reads

@2u

@t2
D c2 @

2u

@x2
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (B.68)

B.5 Wave Equations 441

where c is the constant wave velocity of the physical medium in Œ0; L�. The equation
can also be more compactly written as

utt D c2uxx C f; x 2 .0; L/; t 2 .0; T � : (B.69)

Centered, second-order finite differences are a natural choice for discretizing the
derivatives, leading to

ŒDtDtu D c2DxDxuC f �ni : (B.70)

Inserting the exact solution ue.x; t/ in (B.70) makes this function fulfill the equa-
tion if we add the term R:

ŒDtDtue D c2DxDxue C f C R�ni : (B.71)

Our purpose is to calculate the truncation error R. From (B.17)–(B.18) we have
that

ŒDtDtue�
n
i D ue;t t .xi ; tn/C

1

12
ue;t t t t .xi ; tn/�t

2 CO.�t4/;

when we use a notation taking into account that ue is a function of two variables
and that derivatives must be partial derivatives. The notation ue;t t means @2ue=@t2.

The same formula may also be applied to the x-derivative term:

ŒDxDxue�
n
i D ue;xx.xi ; tn/C

1

12
ue;xxxx.xi ; tn/�x

2 C O.�x4/ :

Equation (B.71) now becomes

ue;t t C 1

12
ue;t t t t .xi ; tn/�t

2 D c2ue;xx C c2 1
12
ue;xxxx.xi ; tn/�x

2 C f .xi ; tn/
CO.�t4;�x4/CRni :

Because ue fulfills the partial differential equation (PDE) (B.69), the first, third, and
fifth term cancel out, and we are left with

Rni D
1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 C O.�t4;�x4/; (B.72)

showing that the scheme (B.70) is of second order in the time and space mesh
spacing.

B.5.2 Finding Correction Terms

Can we add correction terms to the PDE and increase the order of Rni in (B.72)?
The starting point is

ŒDtDtue D c2DxDxue C f C C CR�ni : (B.73)

442 B Truncation Error Analysis

From the previous analysis we simply get (B.72) again, but now with C :

Rni C Cn
i D

1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 C O.�t4;�x4/ :
(B.74)

The idea is to let Cn
i cancel the�t2 and �x2 terms to make Rni D O.�t4;�x4/:

Cn
i D

1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 :

Essentially, it means that we add a new term

C D 1

12

�
utt t t�t

2 � c2uxxxx�x2
�
;

to the right-hand side of the PDE. We must either discretize these 4th-order deriva-
tives directly or rewrite them in terms of lower-order derivatives with the aid of the
PDE. The latter approach is more feasible. From the PDE we have the operator
equality

@2

@t2
D c2 @

2

@x2
;

so
utt t t D c2uxxt t ; uxxxx D c�2ut txx :

Assuming u is smooth enough, so that uxxt t D uttxx, these relations lead to

C D 1

12
..c2�t2 ��x2/uxx/t t :

A natural discretization is

Cn
i D

1

12
..c2�t2 ��x2/ŒDxDxDtDtu�

n
i :

Writing out ŒDxDxDtDtu�
n
i as ŒDxDx.DtDtu/�

n
i gives

1

�t2

�
unC1iC1 � 2uniC1C un�1iC1

�x2

� 2u
nC1
i � 2uni C un�1i

�x2
C unC1i�1 � 2uni�1 C un�1i�1

�x2

�
:

Now the unknown values unC1iC1 , u
nC1
i , and unC1i�1 are coupled, and we must solve a

tridiagonal system to find them. This is in principle straightforward, but it results
in an implicit finite difference scheme, while we had a convenient explicit scheme
without the correction terms.

B.5.3 Extension to Variable Coefficients

Now we address the variable coefficient version of the linear 1D wave equation,

@2u

@t2
D @

@x

�
�.x/

@u

@x

�
;

B.5 Wave Equations 443

or written more compactly as

utt D .�ux/x : (B.75)

The discrete counterpart to this equation, using arithmetic mean for � and centered
differences, reads h

DtDtu D Dx�
x
Dxu

in
i
: (B.76)

The truncation error is the residual R in the equation
h
DtDtue D Dx�

x
Dxue C R

in
i
: (B.77)

The difficulty with (B.77) is how to compute the truncation error of the term
ŒDx�

x
Dxue�

n
i .

We start by writing out the outer operator:

h
Dx�

x
Dxue

in
i
D 1

�x

�h
�
x
Dxue

in
iC 1

2

�
h
�
x
Dxue

in
i� 12

�
: (B.78)

With the aid of (B.5)–(B.6) and (B.21)–(B.22) we have

ŒDxue�
n

iC 1
2

D ue;x
�
xiC 1

2
; tn

�
C 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2 CO.�x4/;

h
�
x
i
iC 1

2

D �
�
xiC 1

2

�
C 1

8
�00
�
xiC 1

2

�
�x2 CO.�x4/;

h
�
x
Dxue

in
iC 1

2

D
�
�
�
xiC 1

2

�
C 1

8
�00
�
xiC 1

2

�
�x2 CO.�x4/

�

�
�
ue;x

�
xiC 1

2
; tn

�
C 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2 CO.�x4/

�

D �
�
xiC 1

2

�
ue;x

�
xiC 1

2
; tn

�
C �

�
xiC 1

2

� 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2

C ue;x
�
xiC 1

2
; tn

� 1
8
�00
�
xiC 1

2

�
�x2 C O.�x4/

D Œ�ue;x �niC 1
2

C Gn

iC 1
2

�x2 CO.�x4/;

where we have introduced the short form

Gn

iC 1
2

D 1

24
ue;xxx

�
xiC 1

2
; tn

�
�
�
xiC 1

2

�
C ue;x

�
xiC 1

2
; tn

� 1
8
�00
�
xiC 1

2

�
:

Similarly, we find that
h
�
x
Dxue

in
i� 12
D Œ�ue;x�ni� 12 CG

n

i� 12
�x2 CO.�x4/ :

Inserting these expressions in the outer operator (B.78) results in

h
Dx�

x
Dxue

in
i
D 1

�x

�h
�
x
Dxue

in
iC 1

2

�
h
�
x
Dxue

in
i� 12

�

D 1

�x

�
Œ�ue;x�

n

iC 1
2

CGn

iC 1
2

�x2 � Œ�ue;x�ni� 12 �G
n

i� 12
�x2 CO.�x4/

�

D ŒDx�ue;x�
n
i C ŒDxG�

n
i �x

2 C O.�x4/ :

444 B Truncation Error Analysis

The reason forO.�x4/ in the remainder is that there are coefficients in front of this
term, say H�x4, and the subtraction and division by�x results in ŒDxH�

n
i �x

4.
We can now use (B.5)–(B.6) to express the Dx operator in ŒDx�ue;x�

n
i as a

derivative and a truncation error:

ŒDx�ue;x�
n
i D

@

@x
�.xi/ue;x.xi ; tn/C 1

24
.�ue;x/xxx.xi ; tn/�x

2 CO.�x4/ :

Expressions like ŒDxG�
n
i �x

2 can be treated in an identical way,

ŒDxG�
n
i �x

2 D Gx.xi ; tn/�x2 C 1

24
Gxxx.xi ; tn/�x

4 CO.�x4/ :

There will be a number of terms with the �x2 factor. We lump these now into
O.�x2/. The result of the truncation error analysis of the spatial derivative is there-
fore summarized as

h
Dx�

x
Dxue

in
i
D @

@x
�.xi /ue;x.xi ; tn/CO.�x2/ :

After having treated the ŒDtDtue�
n
i term as well, we achieve

Rni D O.�x2/C 1

12
ue;t t t t .xi ; tn/�t

2 :

The main conclusion is that the scheme is of second-order in time and space also in
this variable coefficient case. The key ingredients for second order are the centered
differences and the arithmetic mean for �: all those building blocks feature second-
order accuracy.

B.5.4 Linear Wave Equation in 2D/3D

The two-dimensional extension of (B.68) takes the form

@2u

@t2
D c2

�
@2u

@x2
C @2u

@y2

�
C f .x; y; t/; .x; y/ 2 .0; L/ � .0;H/; t 2 .0; T �;

(B.79)
where now c.x; y/ is the constant wave velocity of the physical medium Œ0; L� �
Œ0;H �. In compact notation, the PDE (B.79) can be written

utt D c2.uxx Cuyy/C f .x; y; t/; .x; y/ 2 .0; L/� .0;H/; t 2 .0; T �; (B.80)
in 2D, while the 3D version reads

utt D c2.uxx C uyy C uzz/C f .x; y; z; t/; (B.81)

for .x; y; z/ 2 .0; L/ � .0;H/ � .0; B/ and t 2 .0; T �.
Approximating the second-order derivatives by the standard formulas (B.17)–

(B.18) yields the scheme

ŒDtDtu D c2.DxDxuCDyDyuCDzDzu/C f �ni;j;k : (B.82)

B.6 Diffusion Equations 445

The truncation error is found from

ŒDtDtue D c2.DxDxue CDyDyue CDzDzue/C f CR�ni;j;k : (B.83)

The calculations from the 1D case can be repeated with the terms in the y and z
directions. Collecting terms that fulfill the PDE, we end up with

Rni;j;k D
�
1

12
ue;t t t t�t

2 � c2 1
12

�
ue;xxxx�x

2 C ue;yyyy�x2 C ue;zzzz�z2
�	n
i;j;k

CO.�t4;�x4;�y4;�z4/ :
(B.84)

B.6 Diffusion Equations

B.6.1 Linear Diffusion Equation in 1D

The standard, linear, 1D diffusion equation takes the form

@u

@t
D ˛ @

2u

@x2
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (B.85)

where ˛ > 0 is a constant diffusion coefficient. A more compact form of the
diffusion equation is ut D ˛uxx C f .

The spatial derivative in the diffusion equation, ˛uxx, is commonly discretized
as ŒDxDxu�

n
i . The time-derivative, however, can be treated by a variety of methods.

The Forward Euler scheme in time Let us start with the simple Forward Euler
scheme:

ŒDCt u D ˛DxDxuC f �ni :
The truncation error arises as the residual R when inserting the exact solution ue in
the discrete equations:

ŒDCt ue D ˛DxDxue C f CR�ni :

Now, using (B.11)–(B.12) and (B.17)–(B.18), we can transform the difference op-
erators to derivatives:

ue;t .xi ; tn/C 1

2
ue;t t .tn/�t CO.�t2/

D ˛ue;xx.xi ; tn/C ˛

12
ue;xxxx.xi ; tn/�x

2 CO.�x4/C f .xi ; tn/CRni :

The terms ue;t .xi ; tn/�˛ue;xx.xi ; tn/�f .xi ; tn/ vanish because ue solves the PDE.
The truncation error then becomes

Rni D
1

2
ue;t t .tn/�t CO.�t2/ � ˛

12
ue;xxxx.xi ; tn/�x

2 CO.�x4/ :

446 B Truncation Error Analysis

The Crank-Nicolson scheme in time The Crank-Nicolson method consists of us-
ing a centered difference for ut and an arithmetic average of the uxx term:

ŒDtu�
nC 1

2

i D ˛ 1
2

�
ŒDxDxu�

n
i C ŒDxDxu�

nC1
i

�C f nC 1
2

i :

The equation for the truncation error is

ŒDtue�
nC 1

2

i D ˛ 1
2

�
ŒDxDxue�

n
i C ŒDxDxue�

nC1
i

�C f nC 1
2

i CRnC 1
2

i :

To find the truncation error, we start by expressing the arithmetic average in terms
of values at time tnC 1

2
. According to (B.21)–(B.22),

1

2

�
ŒDxDxue�

n
i C ŒDxDxue�

nC1
i

� D ŒDxDxue�
nC 1

2

i C 1

8
ŒDxDxue;t t �

nC 1
2

i �t2

CO.�t4/ :

With (B.17)–(B.18) we can express the difference operator DxDxu in terms of a
derivative:

ŒDxDxue�
nC 1

2

i D ue;xx
�
xi ; tnC 1

2

�
C 1

12
ue;xxxx

�
xi ; tnC 1

2

�
�x2 CO.�x4/ :

The error term from the arithmetic mean is similarly expanded,

1

8
ŒDxDxue;t t �

nC 1
2

i �t2 D 1

8
ue;t txx

�
xi ; tnC 1

2

�
�t2 CO.�t2�x2/ :

The time derivative is analyzed using (B.5)–(B.6):

ŒDtu�
nC 1

2

i D ue;t
�
xi ; tnC 1

2

�
C 1

24
ue;t t t

�
xi ; tnC 1

2

�
�t2 CO.�t4/ :

Summing up all the contributions and notifying that

ue;t

�
xi ; tnC 1

2

�
D ˛ue;xx

�
xi ; tnC 1

2

�
C f

�
xi ; tnC 1

2

�
;

the truncation error is given by

R
nC 1

2

i D 1

8
ue;xx

�
xi ; tnC 1

2

�
�t2 C 1

12
ue;xxxx

�
xi ; tnC 1

2

�
�x2

C 1

24
ue;t t t

�
xi ; tnC 1

2

�
�t2 C O.�x4/CO.�t4/CO.�t2�x2/ :

B.6.2 Nonlinear Diffusion Equation in 1D

We address the PDE
@u

@t
D @

@x

�
˛.u/

@u

@x

�
C f .u/;

B.7 Exercises 447

with two potentially nonlinear coefficients q.u/ and ˛.u/. We use a Backward Euler
scheme with arithmetic mean for ˛.u/,

h
D�u D Dx˛.u/

x
DxuC f .u/

in
i
:

Inserting ue defines the truncation error R:

h
D�ue D Dx˛.ue/

x
Dxue C f .ue/CR

in
i
:

The most computationally challenging part is the variable coefficient with ˛.u/,
but we can use the same setup as in Sect. B.5.3 and arrive at a truncation error
O.�x2/ for the x-derivative term. The nonlinear term Œf .ue/�

n
i D f .ue.xi ; tn//

matches x and t derivatives of ue in the PDE. We end up with

Rni D �
1

2

@2

@t2
ue.xi ; tn/�t C O.�x2/ :

B.7 Exercises

Exercise B.1: Truncation error of a weighted mean
Derive the truncation error of the weighted mean in (B.19)–(B.20).

Hint Expand unC1e and une around tnC� .
Filename: trunc_weighted_mean.

Exercise B.2: Simulate the error of a weighted mean
We consider the weighted mean

ue.tn/ � �unC1e C .1 � �/une :
Choose some specific function for ue.t/ and compute the error in this approxima-
tion for a sequence of decreasing �t D tnC1 � tn and for � D 0; 0:25; 0:5; 0:75; 1.
Assuming that the error equals C�tr , for some constants C and r , compute r for
the two smallest �t values for each choice of � and compare with the truncation
error (B.19)–(B.20).
Filename: trunc_theta_avg.

Exercise B.3: Verify a truncation error formula
Set up a numerical experiment as explained in Sect. B.3.5 for verifying the formulas
(B.15)–(B.16).
Filename: trunc_backward_2level.

Problem B.4: Truncation error of the Backward Euler scheme
Derive the truncation error of the Backward Euler scheme for the decay ODE u0 D
�au with constant a. Extend the analysis to cover the variable-coefficient case
u0 D �a.t/uC b.t/.
Filename: trunc_decay_BE.

448 B Truncation Error Analysis

Exercise B.5: Empirical estimation of truncation errors
Use the ideas and tools from Sect. B.3.5 to estimate the rate of the truncation error of
the Backward Euler and Crank-Nicolson schemes applied to the exponential decay
model u0 D �au, u.0/ D I .

Hint In the Backward Euler scheme, the truncation error can be estimated at mesh
points n D 1; : : : ; N , while the truncation error must be estimated at midpoints
tnC 1

2
, n D 0; : : : ; N � 1 for the Crank-Nicolson scheme. The truncation_

error(dt, N) function to be supplied to the estimate function needs to care-
fully implement these details and return the right t array such that t[i] is the time
point corresponding to the quantities R[i] and R_a[i].
Filename: trunc_decay_BNCN.

Exercise B.6: Correction term for a Backward Euler scheme
Consider the model u0 D �au, u.0/ D I . Use the ideas of Sect. B.3.6 to add a
correction term to the ODE such that the Backward Euler scheme applied to the
perturbed ODE problem is of second order in �t . Find the amplification factor.
Filename: trunc_decay_BE_corr.

Problem B.7: Verify the effect of correction terms
Make a program that solves u0 D �au, u.0/ D I , by the �-rule and computes
convergence rates. Adjust a such that it incorporates correction terms. Run the
program to verify that the error from the Forward and Backward Euler schemes
with perturbed a isO.�t2/, while the error arising from the Crank-Nicolson scheme
with perturbed a is O.�t4/.
Filename: trunc_decay_corr_verify.

Problem B.8: Truncation error of the Crank-Nicolson scheme
The variable-coefficient ODE u0 D �a.t/uCb.t/ can be discretized in two different
ways by the Crank-Nicolson scheme, depending on whether we use averages for a
and b or compute them at the midpoint tnC 1

2
:

ŒDtu D �aut C b�nC 1
2 ; (B.86)h

Dtu D �auC bt
inC 1

2
: (B.87)

Compute the truncation error in both cases.
Filename: trunc_decay_CN_vc.

Problem B.9: Truncation error of u0 D f .u; t/

Consider the general nonlinear first-order scalar ODE

u0.t/ D f .u.t/; t/ :

Show that the truncation error in the Forward Euler scheme,

ŒDCt u D f .u; t/�n;

B.7 Exercises 449

and in the Backward Euler scheme,

ŒD�t u D f .u; t/�n;

both are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson scheme,

ŒDtu D f .u; t/�nC 1
2 ;

is somewhat more involved: Taylor expand une, u
nC1
e , f .une; tn/, and f .u

nC1
e ; tnC1/

around tnC 1
2
, and use that

df

dt
D @f

@u
u0 C @f

@t
:

Check that the derived truncation error is consistent with previous results for the
case f .u; t/ D �au.
Filename: trunc_nonlinear_ODE.

Exercise B.10: Truncation error of ŒDtDtu�n

Derive the truncation error of the finite difference approximation (B.17)–(B.18) to
the second-order derivative.
Filename: trunc_d2u.

Exercise B.11: Investigate the impact of approximating u0.0/

Section B.4.1 describes two ways of discretizing the initial condition u0.0/ D V for
a vibration model u00 C !2u D 0: a centered difference ŒD2tu D V �0 or a forward
difference ŒDCt u D V �0. The program vib_undamped.py solves u00 C !2u D 0

with ŒD2tu D 0�0 and features a function convergence_rates for computing
the order of the error in the numerical solution. Modify this program such that it
applies the forward difference ŒDCt u D 0�0 and report how this simpler and more
convenient approximation impacts the overall convergence rate of the scheme.
Filename: trunc_vib_ic_fw.

Problem B.12: Investigate the accuracy of a simplified scheme
Consider the ODE

mu00 C ˇju0ju0 C s.u/ D F.t/ :
The term ju0ju0 quickly gives rise to nonlinearities and complicates the scheme.
Why not simply apply a backward difference to this term such that it only involves
known values? That is, we propose to solve

ŒmDtDtuC ˇjD�t ujD�t uC s.u/ D F �n :

Drop the absolute value for simplicity and find the truncation error of the scheme.
Perform numerical experiments with the scheme and compared with the one based
on centered differences. Can you illustrate the accuracy loss visually in real com-
putations, or is the asymptotic analysis here mainly of theoretical interest?
Filename: trunc_vib_bw_damping.

http://tinyurl.com/nu656p2/vib/vib_undamped.py

CSoftware Engineering; Wave Equation Model

C.1 A 1DWave Equation Simulator

C.1.1 Mathematical Model

Let ut , utt , ux, uxx denote derivatives of u with respect to the subscript, i.e., utt is
a second-order time derivative and ux is a first-order space derivative. The initial-
boundary value problem implemented in the wave1D_dn_vc.py code is

utt D .q.x/ux/x C f .x; t/; x 2 .0; L/; t 2 .0; T � (C.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (C.2)

ut .x; 0/ D V.t/; x 2 Œ0; L� (C.3)

u.0; t/ D U0.t/ or ux.0; t/ D 0; t 2 .0; T � (C.4)

u.L; t/ D UL.t/ or ux.L; t/ D 0; t 2 .0; T � : (C.5)

We allow variable wave velocity c2.x/ D q.x/, and Dirichlet or homogeneous
Neumann conditions at the boundaries.

C.1.2 Numerical Discretization

The PDE is discretized by second-order finite differences in time and space, with
arithmetic mean for the variable coefficient

ŒDtDtu D Dxq
xDxuC f �ni : (C.6)

The Neumann boundary conditions are discretized by

ŒD2xu�
n
i D 0;

at a boundary point i . The details of how the numerical scheme is worked out are
described in Sect. 2.6 and 2.7.

451

452 C Software Engineering; Wave EquationModel

C.1.3 A Solver Function

The general initial-boundary value problem (C.1)–(C.5) solved by finite difference
methods can be implemented as shown in the following solver function (taken
from the file wave1D_dn_vc.py). This function builds on simpler versions de-
scribed in Sect. 2.3, 2.4 2.6, and 2.7. There are several quite advanced constructs
that will be commented upon later. The code is lengthy, but that is because we pro-
vide a lot of flexibility with respect to input arguments, boundary conditions, and
optimization (scalar versus vectorized loops).

def solver(
I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=None, version=’scalar’,
stability_safety_factor=1.0):
"""Solve u_tt=(c^2*u_x)_x + f on (0,L)x(0,T]."""

--- Compute time and space mesh ---
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time

Find max(c) using a fake mesh and adapt dx to C and dt
if isinstance(c, (float,int)):

c_max = c
elif callable(c):

c_max = max([c(x_) for x_ in np.linspace(0, L, 101)])
dx = dt*c_max/(stability_safety_factor*C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

Make c(x) available as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

Call c(x) and fill array c
c_ = np.zeros(x.shape)
for i in range(Nx+1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

--- Wrap user-given f, I, V, U_0, U_L if None or 0 ---
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

C.1 A 1D Wave Equation Simulator 453

if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

--- Make hash of all input data ---
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

Simulation is already run
return -1, hashed_input

--- Allocate memomry for solutions ---
u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # CPU time measurement

--- Valid indices for space and time mesh ---
Ix = range(0, Nx+1)
It = range(0, Nt+1)

--- Load initial condition into u_n ---
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

--- Special formula for the first step ---
for i in Ix[1:-1]:

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \

0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)

454 C Software Engineering; Wave EquationModel

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

Update data structures for next step
#u_nm1[:] = u_n; u_n[:] = u # safe, but slower
u_nm1, u_n, u = u_n, u, u_nm1

--- Time loop ---
for n in It[1:-1]:

Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

else:
raise ValueError(’version=%s’ % version)

Insert boundary conditions
i = Ix[0]
if U_0 is None:

Set boundary values
x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1

C.2 Saving Large Arrays in Files 455

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \

0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \
dt2*f(x[i], t[n])

else:
u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

Update data structures for next step
u_nm1, u_n, u = u_n, u, u_nm1

cpu_time = time.clock() - t0
return cpu_time, hashed_input

C.2 Saving Large Arrays in Files

Numerical simulations produce large arrays as results and the software needs to
store these arrays on disk. Several methods are available in Python. We recommend
to use tailored solutions for large arrays and not standard file storage tools such as
pickle (cPickle for speed in Python version 2) and shelve, because the tailored
solutions have been optimized for array data and are hence much faster than the
standard tools.

C.2.1 Using savez to Store Arrays in Files

Storing individual arrays The numpy.storez function can store a set of arrays
to a named file in a zip archive. An associated function numpy.load can be used
to read the file later. Basically, we call numpy.storez(filename, **kwargs),
where kwargs is a dictionary containing array names as keys and the corresponding
array objects as values. Very often, the solution at a time point is given a natural
name where the name of the variable and the time level counter are combined, e.g.,
u11 or v39. Suppose n is the time level counter and we have two solution arrays, u
and v, that we want to save to a zip archive. The appropriate code is

import numpy as np
u_name = ’u%04d’ % n # array name
v_name = ’v%04d’ % n # array name
kwargs = {u_name: u, v_name: v} # keyword args for savez
fname = ’.mydata%04d.dat’ % n
np.savez(fname, **kwargs)
if n == 0: # store x once

np.savez(’.mydata_x.dat’, x=x)

Since the name of the array must be given as a keyword argument to savez, and the
name must be constructed as shown, it becomes a little tricky to do the call, but with

456 C Software Engineering; Wave EquationModel

a dictionary kwargs and **kwargs, which sends each key-value pair as individual
keyword arguments, the task gets accomplished.

Merging zip archives Each separate call to np.savez creates a new file (zip
archive) with extension .npz. It is very convenient to collect all results in one
archive instead. This can be done by merging all the individual .npz files into a
single zip archive:

def merge_zip_archives(individual_archives, archive_name):
"""
Merge individual zip archives made with numpy.savez into
one archive with name archive_name.
The individual archives can be given as a list of names
or as a Unix wild chard filename expression for glob.glob.
The result of this function is that all the individual
archives are deleted and the new single archive made.
"""
import zipfile
archive = zipfile.ZipFile(

archive_name, ’w’, zipfile.ZIP_DEFLATED,
allowZip64=True)

if isinstance(individual_archives, (list,tuple)):
filenames = individual_archives

elif isinstance(individual_archives, str):
filenames = glob.glob(individual_archives)

Open each archive and write to the common archive
for filename in filenames:

f = zipfile.ZipFile(filename, ’r’,
zipfile.ZIP_DEFLATED)

for name in f.namelist():
data = f.open(name, ’r’)
Save under name without .npy
archive.writestr(name[:-4], data.read())

f.close()
os.remove(filename)

archive.close()

Here we remark that savez automatically adds the .npz extension to the names of
the arrays we store. We do not want this extension in the final archive.

Reading arrays from zip archives Archives created by savez or the merged
archive we describe above with name of the form myarchive.npz, can be con-
veniently read by the numpy.load function:

import numpy as np
array_names = np.load(‘myarchive.npz‘)
for array_name in array_names:

array_names[array_name] is the array itself
e.g. plot(array_names[’t’], array_names[array_name])

C.2 Saving Large Arrays in Files 457

C.2.2 Using joblib to Store Arrays in Files

The Python package joblib has nice functionality for efficient storage of arrays on
disk. The following class applies this functionality so that one can save an array,
or in fact any Python data structure (e.g., a dictionary of arrays), to disk under a
certain name. Later, we can retrieve the object by use of its name. The name of the
directory under which the arrays are stored by joblib can be given by the user.

class Storage(object):
"""
Store large data structures (e.g. numpy arrays) efficiently
using joblib.

Use:

>>> from Storage import Storage
>>> storage = Storage(cachedir=’tmp_u01’, verbose=1)
>>> import numpy as np
>>> a = np.linspace(0, 1, 100000) # large array
>>> b = np.linspace(0, 1, 100000) # large array
>>> storage.save(’a’, a)
>>> storage.save(’b’, b)
>>> # later
>>> a = storage.retrieve(’a’)
>>> b = storage.retrieve(’b’)
"""
def __init__(self, cachedir=’tmp’, verbose=1):

"""
Parameters

cachedir: str

Name of directory where objects are stored in files.
verbose: bool, int

Let joblib and this class speak when storing files
to disk.

"""
import joblib
self.memory = joblib.Memory(cachedir=cachedir,

verbose=verbose)
self.verbose = verbose
self.retrieve = self.memory.cache(

self.retrieve, ignore=[’data’])
self.save = self.retrieve

def retrieve(self, name, data=None):
if self.verbose > 0:

print ’joblib save of’, name
return data

The retrive and save functions, which do the work, seem quite magic. The idea
is that joblib looks at the name parameter and saves the return value data to disk
if the name parameter has not been used in a previous call. Otherwise, if name is
already registered, joblib fetches the data object from file and returns it (this is an
example of a memoize function, see Section 2.1.4 in [11] for a brief explanation]).

458 C Software Engineering; Wave EquationModel

C.2.3 Using a Hash to Create a File or Directory Name

Array storage techniques like those outlined in Sect. C.2.2 and C.2.1 demand the
user to assign a name for the file(s) or directory where the solution is to be stored.
Ideally, this name should reflect parameters in the problem such that one can rec-
ognize an already run simulation. One technique is to make a hash string out of the
input data. A hash string is a 40-character long hexadecimal string that uniquely
reflects another potentially much longer string. (You may be used to hash strings
from the Git version control system: every committed version of the files in Git is
recognized by a hash string.)

Suppose you have some input data in the form of functions, numpy arrays, and
other objects. To turn these input data into a string, we may grab the source code
of the functions, use a very efficient hash method for potentially large arrays, and
simply convert all other objects via str to a string representation. The final string,
merging all input data, is then converted to an SHA1 hash string such that we rep-
resent the input with a 40-character long string.

def myfunction(func1, func2, array1, array2, obj1, obj2):
Convert arguments to hash
import inspect, joblib, hashlib
data = (inspect.getsource(func1),

inspect.getsource(func2),
joblib.hash(array1),
joblib.hash(array2),
str(obj1),
str(obj2))

hash_input = hashlib.sha1(data).hexdigest()

It is wise to use joblib.hash and not try to do a str(array1), since that string
can be very long, and joblib.hash is more efficient than hashlib when turning
these data into a hash.

Remark: turning function objects into their source code is unreliable!
The idea of turning a function object into a string via its source code may look
smart, but is not a completely reliable solution. Suppose we have some function

x0 = 0.1
f = lambda x: 0 if x <= x0 else 1

The source code will be f = lambda x: 0 if x <= x0 else 1, so if the
calling code changes the value of x0 (which f remembers - it is a closure), the
source remains unchanged, the hash is the same, and the change in input data
is unnoticed. Consequently, the technique above must be used with care. The
user can always just remove the stored files in disk and thereby force a recom-
putation (provided the software applies a hash to test if a zip archive or joblib
subdirectory exists, and if so, avoids recomputation).

C.3 Software for the 1D Wave Equation 459

C.3 Software for the 1DWave Equation

We use numpy.storez to store the solution at each time level on disk. Such ac-
tions must be taken care of outside the solver function, more precisely in the
user_action function that is called at every time level.

We have, in the wave1D_dn_vc.py code, implemented the user_action call-
back function as a class PlotAndStoreSolutionwith a __call__(self, x, t,
t, n) method for the user_action function. Basically, __call__ stores and
plots the solution. The storage makes use of the numpy.savez function for sav-
ing a set of arrays to a zip archive. Here, in this callback function, we want to
save one array, u. Since there will be many such arrays, we introduce the array
names ’u%04d’ % n and closely related filenames. The usage of numpy.savez in
__call__ goes like this:

from numpy import savez
name = ’u%04d’ % n # array name
kwargs = {name: u} # keyword args for savez
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
self.t.append(t[n]) # store corresponding time value
savez(fname, **kwargs)
if n == 0: # store x once

savez(’.’ + self.filename + ’_x.dat’, x=x)

For example, if n is 10 and self.filename is tmp, the above call to savez
becomes savez(’.tmp_u0010.dat’, u0010=u). The actual filename becomes
.tmp_u0010.dat.npz. The actual array name becomes u0010.npy.

Each savez call results in a file, so after the simulation we have one file
per time level. Each file produced by savez is a zip archive. It makes sense
to merge all the files into one. This is done in the close_file method in the
PlotAndStoreSolution class. The code goes as follows.

class PlotAndStoreSolution:
...
def close_file(self, hashed_input):

"""
Merge all files from savez calls into one archive.
hashed_input is a string reflecting input data
for this simulation (made by solver).
"""
if self.filename is not None:

Save all the time points where solutions are saved
savez(’.’ + self.filename + ’_t.dat’,

t=array(self.t, dtype=float))
Merge all savez files to one zip archive
archive_name = ’.’ + hashed_input + ’_archive.npz’
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
merge_zip_archives(filenames, archive_name)

We use various ZipFile functionality to extract the content of the individual files
(each with name filename) and write it to the merged archive (archive). There
is only one array in each individual file (filename) so strictly speaking, there is

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

460 C Software Engineering; Wave EquationModel

no need for the loop for name in f.namelist() (as f.namelist() returns a
list of length 1). However, in other applications where we compute more arrays at
each time level, savez will store all these and then there is need for iterating over
f.namelist().

Instead of merging the archives written by savez we could make an alternative
implementation that writes all our arrays into one archive. This is the subject of
Exercise C.2.

C.3.1 Making Hash Strings from Input Data

The hashed_input argument, used to name the resulting archive file with all so-
lutions, is supposed to be a hash reflecting all import parameters in the problem
such that this simulation has a unique name. The hashed_input string is made
in the solver function, using the hashlib and inspect modules, based on the
arguments to solver:

Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()

To get the source code of a function f as a string, we use inspect.get-
source(f). All input, functions as well as variables, is then merged to a string
data, and then hashlib.sha1makes a unique, much shorter (40 characters long),
fixed-length string out of data that we can use in the archive filename.

Remark
Note that the construction of the data string is not fool proof: if, e.g., I is a
formula with parameters and the parameters change, the source code is still the
same and data and hence the hash remains unaltered. The implementation must
therefore be used with care!

C.3.2 Avoiding Rerunning Previously Run Cases

If the archive file whose name is based on hashed_input already exists, the sim-
ulation with the current set of parameters has been done before and one can avoid
redoing the work. The solver function returns the CPU time and hashed_input,
and a negative CPU time means that no simulation was run. In that case we should
not call the close_file method above (otherwise we overwrite the archive with
just the self.t array). The typical usage goes like

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

C.3 Software for the 1D Wave Equation 461

action = PlotAndStoreSolution(...)
dt = (L/Nx)/C # choose the stability limit with given Nx
cpu, hashed_input = solver(

I=lambda x: ...,
V=0, f=0, c=1, U_0=lambda t: 0, U_L=None, L=1,
dt=dt, C=C, T=T,
user_action=action, version=’vectorized’,
stability_safety_factor=1)

action.make_movie_file()
if cpu > 0: # did we generate new data?

action.close_file(hashed_input)

C.3.3 Verification

Vanishing approximation error Exact solutions of the numerical equations are
always attractive for verification purposes since the software should reproduce such
solutions to machine precision. With Dirichlet boundary conditions we can con-
struct a function that is linear in t and quadratic in x that is also an exact solution of
the scheme, while with Neumann conditions we are left with testing just a constant
solution (see comments in Sect. 2.6.5).

Convergence rates A more general method for verification is to check the conver-
gence rates. We must introduce one discretization parameter h and assume an error
model E D Chr , where C and r are constants to be determine (i.e., r is the rate
that we are interested in). Given two experiments with different resolutions hi and
hi�1, we can estimate r by

r D ln.Ei=Ei�1/
ln.hi=hi�1/

;

where Ei is the error corresponding to hi and Ei�1 corresponds to hi�1. Sec-
tion 2.2.2 explains the details of this type of verification and how we introduce
the single discretization parameter h D �t D Oc�t , for some constant Oc. To com-
pute the error, we had to rely on a global variable in the user action function. Below
is an implementation where we have a more elegant solution in terms of a class: the
error variable is not a class attribute and there is no need for a global error (which
is always considered an advantage).

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

462 C Software Engineering; Wave EquationModel

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

The returned sequence r should converge to 2 since the error analysis in Sect. 2.10
predicts various error measures to behave like O.�t2/ C O.�x2/. We can
easily run the case with standing waves and the analytical solution u.x; t/ D
cos. 2�

L
t/ sin. 2�

L
x/. The call will be very similar to the one provided in the

test_convrate_sincos function in Sect. 2.3.4, see the file wave1D_dn_vc.py
for details.

C.4 Programming the Solver with Classes

Many who know about class programming prefer to organize their software in terms
of classes. This gives a richer application programming interface (API) since a func-
tion solver must have all its input data in terms of arguments, while a class-based
solver naturally has a mix of method arguments and user-supplied methods. (Well,
to be more precise, our solvers have demanded user_action to be a function pro-
vided by the user, so it is possible to mix variables and functions in the input also
with a solver function.)

We will next illustrate how some of the functionality in wave1D_dn_vc.pymay
be implemented by using classes. Focusing on class implementation aspects, we re-
strict the example case to a simpler wave with constant wave speed c. Applying the
method of manufactured solutions, we test whether the class based implementation
is able to compute the known exact solution within machine precision.

We will create a class Problem to hold the physical parameters of the problem
and a class Solver to hold the numerical solution parameters besides the solver
function itself. As the number of parameters increases, so does the amount of
repetitive code. We therefore take the opportunity to illustrate how this may be
counteracted by introducing a super class Parameters that allows code to be pa-
rameterized. In addition, it is convenient to collect the arrays that describe the mesh

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py

C.4 Programming the Solver with Classes 463

in a special Mesh class and make a class Function for a mesh function (mesh point
values and its mesh). All the following code is found in wave1D_oo.py.

C.4.1 Class Parameters

The classes Problem and Solver both inherit class Parameters, which handles
reading of parameters from the command line and has methods for setting and
getting parameter values. Since processing dictionaries is easier than process-
ing a collection of individual attributes, the class Parameters requires each class
Problem and Solver to represent their parameters by dictionaries, one compul-
sory and two optional ones. The compulsory dictionary, self.prm, contains all
parameters, while a second and optional dictionary, self.type, holds the asso-
ciated object types, and a third and optional dictionary, self.help, stores help
strings. The Parameters class may be implemented as follows:

class Parameters(object):
def __init__(self):

"""
Subclasses must initialize self.prm with
parameters and default values, self.type with
the corresponding types, and self.help with
the corresponding descriptions of parameters.
self.type and self.help are optional, but
self.prms must be complete and contain all parameters.
"""
pass

def ok(self):
"""Check if attr. prm, type, and help are defined."""
if hasattr(self, ’prm’) and \

isinstance(self.prm, dict) and \
hasattr(self, ’type’) and \
isinstance(self.type, dict) and \
hasattr(self, ’help’) and \
isinstance(self.help, dict):
return True

else:
raise ValueError(

’The constructor in class %s does not ’\
’initialize the\ndictionaries ’\
’self.prm, self.type, self.help!’ %
self.__class__.__name__)

def _illegal_parameter(self, name):
"""Raise exception about illegal parameter name."""
raise ValueError(

’parameter "%s" is not registered.\nLegal ’\
’parameters are\n%s’ %
(name, ’ ’.join(list(self.prm.keys()))))

http://tinyurl.com/nu656p2/softeng2/wave1D_oo.py

464 C Software Engineering; Wave EquationModel

def set(self, **parameters):
"""Set one or more parameters."""
for name in parameters:

if name in self.prm:
self.prm[name] = parameters[name]

else:
self._illegal_parameter(name)

def get(self, name):
"""Get one or more parameter values."""
if isinstance(name, (list,tuple)): # get many?

for n in name:
if n not in self.prm:

self._illegal_parameter(name)
return [self.prm[n] for n in name]

else:
if name not in self.prm:

self._illegal_parameter(name)
return self.prm[name]

def __getitem__(self, name):
"""Allow obj[name] indexing to look up a parameter."""
return self.get(name)

def __setitem__(self, name, value):
"""
Allow obj[name] = value syntax to assign a parameter’s value.
"""
return self.set(name=value)

def define_command_line_options(self, parser=None):
self.ok()
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)

C.4 Programming the Solver with Classes 465

C.4.2 Class Problem

Inheriting the Parameters class, our class Problem is defined as:

class Problem(Parameters):
"""
Physical parameters for the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced when c is const.
"""

def __init__(self):
self.prm = dict(L=2.5, c=1.5, T=18)
self.type = dict(L=float, c=float, T=float)
self.help = dict(L=’1D domain’,

c=’coefficient (wave velocity) in PDE’,
T=’end time of simulation’)

def u_exact(self, x, t):
L = self[’L’]
return x*(L-x)*(1+0.5*t)

def I(self, x):
return self.u_exact(x, 0)

def V(self, x):
return 0.5*self.u_exact(x, 0)

def f(self, x, t):
c = self[’c’]
return 2*(1+0.5*t)*c**2

def U_0(self, t):
return self.u_exact(0, t)

U_L = None

C.4.3 Class Mesh

The Mesh class can be made valid for a space-time mesh in any number of space
dimensions. To make the class versatile, the constructor accepts either a tuple/list of
number of cells in each spatial dimension or a tuple/list of cell spacings. In addition,
we need the size of the hypercube mesh as a tuple/list of 2-tuples with lower and
upper limits of the mesh coordinates in each direction. For 1D meshes it is more
natural to just write the number of cells or the cell size and not wrap it in a list. We
also need the time interval from t0 to T. Giving no spatial discretization information
implies a time mesh only, and vice versa. The Mesh class with documentation and
a doc test should now be self-explanatory:

466 C Software Engineering; Wave EquationModel

import numpy as np

class Mesh(object):
"""
Holds data structures for a uniform mesh on a hypercube in
space, plus a uniform mesh in time.

======== ==
Argument Explanation
======== ==
L List of 2-lists of min and max coordinates

in each spatial direction.
T Final time in time mesh.
Nt Number of cells in time mesh.
dt Time step. Either Nt or dt must be given.
N List of number of cells in the spatial directions.
d List of cell sizes in the spatial directions.

Either N or d must be given.
======== ==

Users can access all the parameters mentioned above, plus
‘‘x[i]‘‘ and ‘‘t‘‘ for the coordinates in direction ‘‘i‘‘
and the time coordinates, respectively.

Examples:

>>> from UniformFDMesh import Mesh
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>>
>>> # Simple time mesh
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3

"""
def __init__(self,

L=None, T=None, t0=0,
N=None, d=None,
Nt=None, dt=None):

if N is None and d is None:
No spatial mesh
if Nt is None and dt is None:

raise ValueError(
’Mesh constructor: either Nt or dt must be given’)

if T is None:
raise ValueError(
’Mesh constructor: T must be given’)

C.4 Programming the Solver with Classes 467

if Nt is None and dt is None:
if N is None and d is None:

raise ValueError(
’Mesh constructor: either N or d must be given’)

if L is None:
raise ValueError(
’Mesh constructor: L must be given’)

Allow 1D interface without nested lists with one element
if L is not None and isinstance(L[0], (float,int)):

Only an interval was given
L = [L]

if N is not None and isinstance(N, (float,int)):
N = [N]

if d is not None and isinstance(d, (float,int)):
d = [d]

Set all attributes to None
self.x = None
self.t = None
self.Nt = None
self.dt = None
self.N = None
self.d = None
self.t0 = t0

if N is None and d is not None and L is not None:
self.L = L
if len(d) != len(L):

raise ValueError(
’d has different size (no of space dim.) from ’
’L: %d vs %d’, len(d), len(L))

self.d = d
self.N = [int(round(float(self.L[i][1] -

self.L[i][0])/d[i]))
for i in range(len(d))]

if d is None and N is not None and L is not None:
self.L = L
if len(N) != len(L):

raise ValueError(
’N has different size (no of space dim.) from ’
’L: %d vs %d’, len(N), len(L))

self.N = N
self.d = [float(self.L[i][1] - self.L[i][0])/N[i]

for i in range(len(N))]

if Nt is None and dt is not None and T is not None:
self.T = T
self.dt = dt
self.Nt = int(round(T/dt))

if dt is None and Nt is not None and T is not None:
self.T = T
self.Nt = Nt
self.dt = T/float(Nt)

if self.N is not None:
self.x = [np.linspace(

self.L[i][0], self.L[i][1], self.N[i]+1)
for i in range(len(self.L))]

if Nt is not None:
self.t = np.linspace(self.t0, self.T, self.Nt+1)

468 C Software Engineering; Wave EquationModel

def get_num_space_dim(self):
return len(self.d) if self.d is not None else 0

def has_space(self):
return self.d is not None

def has_time(self):
return self.dt is not None

def dump(self):
s = ’’
if self.has_space():

s += ’space: ’ + \
’x’.join([’[%g,%g]’ % (self.L[i][0], self.L[i][1])

for i in range(len(self.L))]) + ’ N=’
s += ’x’.join([str(Ni) for Ni in self.N]) + ’ d=’
s += ’,’.join([str(di) for di in self.d])

if self.has_space() and self.has_time():
s += ’ ’

if self.has_time():
s += ’time: ’ + ’[%g,%g]’ % (self.t0, self.T) + \

’ Nt=%g’ % self.Nt + ’ dt=%g’ % self.dt
return s

We rely on attribute access – not get/set functions!
Java programmers, in particular, are used to get/set functions in classes to access
internal data. In Python, we usually apply direct access of the attribute, such as
m.N[i] if m is a Mesh object. A widely used convention is to do this as long as
access to an attribute does not require additional code. In that case, one applies
a property construction. The original interface remains the same after a property
is introduced (in contrast to Java), so user will not notice a change to properties.

The only argument against direct attribute access in class Mesh is that the
attributes are read-only so we could avoid offering a set function. Instead, we
rely on the user that she does not assign new values to the attributes.

C.4.4 Class Function

A class Function is handy to hold a mesh and corresponding values for a scalar
or vector function over the mesh. Since we may have a time or space mesh, or a
combined time and space mesh, with one or more components in the function, some
if tests are needed for allocating the right array sizes. To help the user, an indices
attribute with the name of the indices in the final array u for the function values is
made. The examples in the doc string should explain the functionality.

C.4 Programming the Solver with Classes 469

class Function(object):
"""
A scalar or vector function over a mesh (of class Mesh).

========== ===
Argument Explanation
========== ===
mesh Class Mesh object: spatial and/or temporal mesh.
num_comp Number of components in function (1 for scalar).
space_only True if the function is defined on the space mesh

only (to save space). False if function has values
in space and time.

========== ===

The indexing of ‘‘u‘‘, which holds the mesh point values of the
function, depends on whether we have a space and/or time mesh.

Examples:

>>> from UniformFDMesh import Mesh, Function
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>> f = Function(m)
>>> f.indices
[’x0’]
>>> f.u.shape
(5,)
>>> f.u[4] # space point 4
0.0
>>>
>>> # Simple time mesh for two components
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>> f = Function(m, num_comp=2)
>>> f.indices
[’time’, ’component’]
>>> f.u.shape
(9, 2)
>>> f.u[3,1] # time point 3, comp=1 (2nd comp.)
0.0
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>> f = Function(m)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0

470 C Software Engineering; Wave EquationModel

>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1],[-1,1]], d=[0.5,1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3
>>> f = Function(m, num_comp=2, space_only=False)
>>> f.indices
[’time’, ’x0’, ’x1’, ’component’]
>>> f.u.shape
(11, 3, 3, 2)
>>> f.u[2,1,2,0] # time step 2, space point (1,2), comp=0
0.0
>>> # Function with space data only
>>> f = Function(m, num_comp=1, space_only=True)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
"""

def __init__(self, mesh, num_comp=1, space_only=True):
self.mesh = mesh
self.num_comp = num_comp
self.indices = []

Create array(s) to store mesh point values
if (self.mesh.has_space() and not self.mesh.has_time()) or \

(self.mesh.has_space() and self.mesh.has_time() and \
space_only):
Space mesh only
if num_comp == 1:

self.u = np.zeros(
[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))])

self.indices = [
’x’+str(i) for i in range(len(self.mesh.N))]

else:
self.u = np.zeros(

[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))] +

[num_comp])
self.indices = [

’x’+str(i)
for i in range(len(self.mesh.N))] +\
[’component’]

if not self.mesh.has_space() and self.mesh.has_time():
Time mesh only
if num_comp == 1:

self.u = np.zeros(self.mesh.Nt+1)
self.indices = [’time’]

else:
Need num_comp entries per time step
self.u = np.zeros((self.mesh.Nt+1, num_comp))
self.indices = [’time’, ’component’]

C.4 Programming the Solver with Classes 471

if self.mesh.has_space() and self.mesh.has_time() \
and not space_only:
Space-time mesh
size = [self.mesh.Nt+1] + \

[self.mesh.N[i]+1
for i in range(len(self.mesh.N))]

if num_comp > 1:
self.indices = [’time’] + \

[’x’+str(i)
for i in range(len(self.mesh.N))] +\

[’component’]
size += [num_comp]

else:
self.indices = [’time’] + [’x’+str(i)

for i in range(len(self.mesh.N))]
self.u = np.zeros(size)

C.4.5 Class Solver

With the Mesh and Function classes in place, we can rewrite the solver function,
but we make it a method in class Solver:

class Solver(Parameters):
"""
Numerical parameters for solving the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced, provided c is const.
We simulate in [0, L/2] and apply a symmetry condition
at the end x=L/2.
"""

def __init__(self, problem):
self.problem = problem
self.prm = dict(C = 0.75, Nx=3, stability_safety_factor=1.0)
self.type = dict(C=float, Nx=int, stability_safety_factor=float)
self.help = dict(C=’Courant number’,

Nx=’No of spatial mesh points’,
stability_safety_factor=’stability factor’)

from UniformFDMesh import Mesh, Function
introduce some local help variables to ease reading
L_end = self.problem[’L’]
dx = (L_end/2)/float(self[’Nx’])
t_interval = self.problem[’T’]
dt = dx*self[’stability_safety_factor’]*self[’C’]/ \

float(self.problem[’c’])
self.m = Mesh(L=[0,L_end/2],

d=[dx],
Nt = int(round(t_interval/float(dt))),
T=t_interval)

The mesh function f will, after solving, contain
the solution for the whole domain and all time steps.
self.f = Function(self.m, num_comp=1, space_only=False)

472 C Software Engineering; Wave EquationModel

def solve(self, user_action=None, version=’scalar’):
...use local variables to ease reading
L, c, T = self.problem[’L c T’.split()]
L = L/2 # compute with half the domain only (symmetry)
C, Nx, stability_safety_factor = self[

’C Nx stability_safety_factor’.split()]
dx = self.m.d[0]
I = self.problem.I
V = self.problem.V
f = self.problem.f
U_0 = self.problem.U_0
U_L = self.problem.U_L
Nt = self.m.Nt
t = np.linspace(0, T, Nt+1) # Mesh points in time
x = np.linspace(0, L, Nx+1) # Mesh points in space

Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

Treat c(x) as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

Call c(x) and fill array c
c_ = np.zeros(x.shape)
for i in range(Nx+1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

Wrap user-given f, I, V, U_0, U_L if None or 0
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

C.4 Programming the Solver with Classes 473

y y
hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

Simulation is already run
return -1, hashed_input

use local variables to make code closer to mathematical
notation in computational scheme
u_1 = self.f.u[0,:]
u = self.f.u[1,:]

import time; t0 = time.clock() # CPU time measurement

Ix = range(0, Nx+1)
It = range(0, Nt+1)

Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

Special formula for the first step
for i in Ix[1:-1]:

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \

0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

474 C Software Engineering; Wave EquationModel

for n in It[1:-1]:
u corresponds to u^{n+1} in the mathematical scheme
u_2 = self.f.u[n-1,:]
u_1 = self.f.u[n,:]
u = self.f.u[n+1,:]

Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

else:
raise ValueError(’version=%s’ % version)

Insert boundary conditions
i = Ix[0]
if U_0 is None:

Set boundary values
x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

cpu_time = time.clock() - t0
return cpu_time, hashed_input

C.5 Migrating Loops to Cython 475

def assert_no_error(self):
"""Run through mesh and check error"""
Nx = self[’Nx’]
Nt = self.m.Nt
L, T = self.problem[’L T’.split()]
L = L/2 # only half the domain used (symmetry)
x = np.linspace(0, L, Nx+1) # Mesh points in space
t = np.linspace(0, T, Nt+1) # Mesh points in time

for n in range(len(t)):
u_e = self.problem.u_exact(x, t[n])
diff = np.abs(self.f.u[n,:] - u_e).max()
print ’diff:’, diff
tol = 1E-13
assert diff < tol

Observe that the solutions from all time steps are stored in the mesh function,
which allows error assessment (in assert_no_error) to take place after all solu-
tions have been found. Of course, in 2D or 3D, such a strategy may place too high
demands on available computer memory, in which case intermediate results could
be stored on file.

Running wave1D_oo.py gives a printout showing that the class-based imple-
mentation performs as expected, i.e. that the known exact solution is reproduced
(within machine precision).

C.5 Migrating Loops to Cython

We now consider the wave2D_u0.py code for solving the 2D linear wave equa-
tion with constant wave velocity and homogeneous Dirichlet boundary conditions
u D 0. We shall in the present chapter extend this code with computational
modules written in other languages than Python. This extended version is called
wave2D_u0_adv.py.

The wave2D_u0.py file contains a solver function, which calls an advance_*
function to advance the numerical scheme one level forward in time. The func-
tion advance_scalar applies standard Python loops to implement the scheme,
while advance_vectorized performs corresponding vectorized arithmetics with
array slices. The statements of this solver are explained in Sect. 2.12, in particular
Sect. 2.12.1 and 2.12.2.

Although vectorization can bring down the CPU time dramatically compared
with scalar code, there is still some factor 5-10 to win in these types of applications
by implementing the finite difference scheme in compiled code, typically in Fortran,
C, or C++. This can quite easily be done by adding a little extra code to our program.
Cython is an extension of Python that offers the easiest way to nail our Python loops
in the scalar code down to machine code and achieve the efficiency of C.

Cython can be viewed as an extended Python language where variables are
declared with types and where functions are marked to be implemented in C. Mi-
grating Python code to Cython is done by copying the desired code segments to

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_adv.py

476 C Software Engineering; Wave EquationModel

functions (or classes) and placing them in one or more separate files with extension
.pyx.

C.5.1 Declaring Variables and Annotating the Code

Our starting point is the plain advance_scalar function for a scalar implementa-
tion of the updating algorithm for new values unC1i;j :

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.
pyx. The relevant Cython implementation arises from declaring variables with
types and adding some important annotations to speed up array computing in
Cython. Let us first list the complete code in the .pyx file:

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_n,
np.ndarray[DT, ndim=2, mode=’c’] u_nm1,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):

C.5 Migrating Loops to Cython 477

cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = 2*u_n[i,j] - u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code with
loops into Cython.

1. Variables are declared with types: for example, double v in the argument list
instead of just v, and cdef double v for a variable v in the body of the func-
tion. A Python float object is declared as double for translation to C by
Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving
� the type np.ndarray,
� the data type of the elements, here 64-bit floats, abbreviated as DT through

ctypedef np.float64_t DT (instead of DT we could use the full name of
the data type: np.float64_t, which is a Cython-defined type),

� the dimensions of the array, here ndim=2 and ndim=1,
� specification of contiguous memory for the array (mode=’c’).

3. Functions declared with cpdef are translated to C but are also accessible from
Python.

4. In addition to the standard numpy import we also need a special Cython import
of numpy: cimport numpy as np, to appear after the standard import.

5. By default, array indices are checked to be within their legal limits. To speed
up the code one should turn off this feature for a specific function by placing
@cython.boundscheck(False) above the function header.

6. Also by default, array indices can be negative (counting from the end), but this
feature has a performance penalty and is therefore here turned off by writing
@cython.wraparound(False) right above the function header.

7. The use of index sets Ix and Iy in the scalar code cannot be successfully trans-
lated to C. One reason is that constructions like Ix[1:-1] involve negative

478 C Software Engineering; Wave EquationModel

indices, and these are now turned off. Another reason is that Cython loops
must take the form for i in xrange or for i in range for being trans-
lated into efficient C loops. We have therefore introduced Ix_start as Ix[0]
and Ix_end as Ix[-1] to hold the start and end of the values of index i . Similar
variables are introduced for the j index. A loop for i in Ix is with these new
variables written as for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython
We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to declare
numpy arrays in Cython. There is a simpler, alternative syntax, employing typed
memory views1, where the declaration looks like double [:,:]. However, the
full support for this functionality is not yet ready, and in this text we use the full
array declaration syntax.

C.5.2 Visual Inspection of the C Translation

Cython can visually explain how successfully it translated a code from Python to C.
The command

Terminal

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a
web browser to illustrate which lines of the code that have been translated to C.
Figure C.1 shows the illustrated code. Yellow lines indicate the lines that Cython

Fig. C.1 Visual illustration of Cython’s ability to translate Python to C

1 http://docs.cython.org/src/userguide/memoryviews.html

http://docs.cython.org/src/userguide/memoryviews.html
http://docs.cython.org/src/userguide/memoryviews.html

C.5 Migrating Loops to Cython 479

did not manage to translate to efficient C code and that remain in Python. For
the present code we see that Cython is able to translate all the loops with array
computing to C, which is our primary goal.

You can also inspect the generated C code directly, as it appears in the file
wave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
familiarity with writing Python extension modules in C by hand. Deep down in the
file we can see in detail how the compute-intensive statements have been translated
into some complex C code that is quite different from what a human would write
(at least if a direct correspondence to the mathematical notation was intended).

C.5.3 Building the ExtensionModule

Cython code must be translated to C, compiled, and linked to form what is known
in the Python world as a C extension module. This is usually done by making a
setup.py script, which is the standard way of building and installing Python soft-
ware. For an extension module arising from Cython code, the following setup.py
script is all we need to build and install the module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current directory
as the file wave2D_u0_loop_cy.so. This file acts as a normal Python module that
can be imported and inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function advance (the
module also features the imported numpy module under the name np as well as
many standard Python objects with double underscores in their names).

480 C Software Engineering; Wave EquationModel

The setup.pyfile makes use of the distutilspackage in Python and Cython’s
extension of this package. These tools know how Python was built on the com-
puter and will use compatible compiler(s) and options when building other code in
Cython, C, or C++. Quite some experience with building large program systems
is needed to do the build process manually, so using a setup.py script is strongly
recommended.

Simplified build of a Cython module
When there is no need to link the C code with special libraries, Cython offers a
shortcut for generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0_adv.py
code we do not use pyximport and require an explicit build process of this and
many other modules.

C.5.4 Calling the Cython Function from Python

The wave2D_u0_loop_cymodule contains our advance function, which we now
may call from the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1]: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_n, u_nm1, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency For a mesh consisting of 120�120 cells, the scalar Python code requires
1370 CPU time units, the vectorized version requires 5.5, while the Cython version
requires only 1! For a smaller mesh with 60 � 60 cells Cython is about 1000 times
faster than the scalar Python code, and the vectorized version is about 6 times slower
than the Cython version.

C.6 Migrating Loops to Fortran

Instead of relying on Cython’s (excellent) ability to translate Python to C, we can
invoke a compiled language directly and write the loops ourselves. Let us start with
Fortran 77, because this is a language with more convenient array handling than
C (or plain C++), because we can use the same multi-dimensional indices in the
Fortran code as in the numpy arrays in the Python code, while in C these arrays
are one-dimensional and require us to reduce multi-dimensional indices to a single
index.

C.6 Migrating Loops to Fortran 481

C.6.1 The Fortran Subroutine

We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f for im-
plementing the updating formula (2.117) and setting the solution to zero at the
boundaries:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_n(i-1,j) - 2*u_n(i,j) + u_n(i+1,j)
u_yy = u_n(i,j-1) - 2*u_n(i,j) + u_n(i,j+1)
u(i,j) = 2*u_n(i,j) - u_nm1(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0
end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which
here specifies that u is both an input argument and an object to be returned from
the advance routine. Or more precisely, Fortran is not able return an array from
a function, but we need a wrapper code in C for the Fortran subroutine to enable
calling it from Python, and from this wrapper code one can return u to the calling
Python code.

Tip: Return all computed objects to the calling code
It is not strictly necessary to return u to the calling Python code since the
advance function will modify the elements of u, but the convention in Python

http://github.com/hplgit/fdm-book/blob/master/src/softeng2/wave2D_u0_loop_f77.f

482 C Software Engineering; Wave EquationModel

is to get all output from a function as returned values. That is, the right way of
calling the above Fortran subroutine from Python is

u = advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran sub-
routine is called from Fortran, reads

advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

C.6.2 Building the FortranModule with f2py

The nice feature of writing loops in Fortran is that, without much effort, the tool
f2py can produce a C extension module such that we can call the Fortran version
of advance from Python. The necessary commands to run are

Terminal

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90
specification of the extension module in the file wave2D_u0_loop_f77.pyf. The
second command makes f2py generate all necessary wrapper code, compile our
Fortran file and the wrapper code, and finally build the module. The build process
takes place in the specified subdirectory build_f77 so that files can be inspected
if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1makes
f2py write a message for every array that is copied in the communication between
Fortran and Python, which is very useful for avoiding unnecessary array copying
(see below). The name of the module file is wave2D_u0_loop_f77.so, and this
file can be imported and inspected as any other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!
Printing the doc strings of the module and its functions is extremely important
after having created a module with f2py. The reason is that f2pymakes Python
interfaces to the Fortran functions that are different from how the functions are

C.6 Migrating Loops to Fortran 483

declared in the Fortran code (!). The rationale for this behavior is that f2py
creates Pythonic interfaces such that Fortran routines can be called in the same
way as one calls Python functions. Output data from Python functions is always
returned to the calling code, but this is technically impossible in Fortran. Also,
arrays in Python are passed to Python functions without their dimensions be-
cause that information is packed with the array data in the array objects. This
is not possible in Fortran, however. Therefore, f2py removes array dimensions
from the argument list, and f2py makes it possible to return objects back to
Python.

Let us follow the advice of examining the doc strings and take a close look at the
documentation f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_n : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_nm1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional argu-
ments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran function
to be called from Python and make sure the call syntax is exactly as listed in the
documentation.

C.6.3 How to Avoid Array Copying

Multi-dimensional arrays are stored as a stream of numbers in memory. For a two-
dimensional array consisting of rows and columns there are two ways of creating
such a stream: row-major ordering, which means that rows are stored consecutively
in memory, or column-major ordering, which means that the columns are stored one
after each other. All programming languages inherited from C, including Python,
apply the row-major ordering, but Fortran uses column-major storage. Thinking of
a two-dimensional array in Python or C as a matrix, it means that Fortran works
with the transposed matrix.

484 C Software Engineering; Wave EquationModel

Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran sub-
routine corresponds to the element u[i,j] in the underlying numpy array (without
the extra code, u(i,j) in Fortran would access u[j,i] in the numpy array). Tech-
nically, f2py takes a copy of our numpy array and reorders the data before sending
the array to Fortran. Such copying can be costly. For 2D wave simulations on a
60 � 60 grid the overhead of copying is a factor of 5, which means that almost the
whole performance gain of Fortran over vectorized numpy code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding Fortran
storage, we declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_n = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_nm1 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an extra
option for making f2py report on array copying:

Terminal

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes a copying.
There are two principal reasons for copying array data: either the array does not
have Fortran storage or the element types do not match those declared in the Fortran
code. The latter cause is usually effectively eliminated by using real*8 data in the
Fortran code and float64 (the default float type in numpy) in the arrays on the
Python side. The former reason is more common, and to check whether an array
before a Fortran call has the right storage one can print the result of isfortran(a),
which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A typical
problem in the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new
array with C storage. An undesired copy of f_a will be produced when sending
f_a to a Fortran routine. There are two remedies, either direct insertion of data in
an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)

C.7 Migrating Loops to C via Cython 485

The former remedy is most efficient if the asarray operation is to be performed a
large number of times.

Efficiency The efficiency of this Fortran code is very similar to the Cython code.
There is usually nothing more to gain, from a computational efficiency point of
view, by implementing the complete Python program in Fortran or C. That will just
be a lot more code for all administering work that is needed in scientific software,
especially if we extend our sample program wave2D_u0.py to handle a real scien-
tific problem. Then only a small portion will consist of loops with intensive array
calculations. These can be migrated to Cython or Fortran as explained, while the
rest of the programming can be more conveniently done in Python.

C.7 Migrating Loops to C via Cython

The computationally intensive loops can alternatively be implemented in C code.
Just as Fortran calls for care regarding the storage of two-dimensional arrays, work-
ing with two-dimensional arrays in C is a bit tricky. The reason is that numpy arrays
are viewed as one-dimensional arrays when transferred to C, while C programmers
will think of u, u_n, and u_nm1 as two dimensional arrays and index them like
u[i][j]. The C code must declare u as double* u and translate an index pair
[i][j] to a corresponding single index when u is viewed as one-dimensional. This
translation requires knowledge of how the numbers in u are stored in memory.

C.7.1 Translating Index Pairs to Single Indices

Two-dimensional numpy arrays with the default C storage are stored row by row.
In general, multi-dimensional arrays with C storage are stored such that the last
index has the fastest variation, then the next last index, and so on, ending up
with the slowest variation in the first index. For a two-dimensional u declared as
zeros((Nx+1,Ny+1)) in Python, the individual elements are stored in the follow-
ing order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair .i; j / translates to i.Ny C 1/C j .
So, where a C programmer would naturally write an index u[i][j], the indexing
must read u[i*(Ny+1) + j]. This is tedious to write, so it can be handy to define
a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier to debug.

486 C Software Engineering; Wave EquationModel

Be careful with macro definitions
Macros just perform simple text substitutions: idx(hello,world) is expanded
to (hello)*(Ny+1) + world. The parentheses in (i) are essential – us-
ing the natural mathematical formula i*(Ny+1) + j in the macro definition,
idx(i-1,j) would expand to i-1*(Ny+1) + j, which is the wrong formula.
Macros are handy, but require careful use. In C++, inline functions are safer and
replace the need for macros.

C.7.2 The Complete C Code

The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_n[idx(i-1,j)] - 2*u_n[idx(i,j)] + u_n[idx(i+1,j)];
u_yy = u_n[idx(i,j-1)] - 2*u_n[idx(i,j)] + u_n[idx(i,j+1)];
u[idx(i,j)] = 2*u_n[idx(i,j)] - u_nm1[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

C.7.3 The Cython Interface File

All the code above appears in the file wave2D_u0_loop_c.c. We need to compile
this file together with C wrapper code such that advance can be called from Python.
Cython can be used to generate appropriate wrapper code. The relevant Cython
code for interfacing C is placed in a file with extension .pyx. This file, called
wave2D_u0_loop_c_cy.pyx2, looks like

import numpy as np
cimport numpy as np
cimport cython

2 http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx

http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c.c
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx

C.7 Migrating Loops to C via Cython 487

cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_n, double* u_nm1, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_n,
np.ndarray[double, ndim=2, mode=’c’] u_nm1,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_n[0,0], &u_nm1[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C
header file, wave2D_u0_loop_c.h,

extern void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arguments. The
name advance is already used for the C function so the function to be called from
Python is named advance_cwrap. The contents of this function is simply a call
to the advance version in C. To this end, the right information from the Python
objects must be passed on as arguments to advance. Arrays are sent with their C
pointers to the first element, obtained in Cython as &u[0,0] (the & takes the address
of a C variable). The Nx and Ny arguments in advance are easily obtained from the
shape of the numpy array u. Finally, u must be returned such that we can set u =
advance(...) in Python.

C.7.4 Building the ExtensionModule

It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={’build_ext’: build_ext},
)

http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c.h

488 C Software Engineering; Wave EquationModel

All we need to specify is the .c file(s) and the .pyx interface file. Cython is au-
tomatically run to generate the necessary wrapper code. Files are then compiled
and linked to an extension module residing in the file wave2D_u0_loop_c_cy.so.
Here is a session with running setup.py and examining the resulting module in
Python

Terminal

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2)

Efficiency In this example, the C and Fortran code runs at the same speed, and
there are no significant differences in the efficiency of the wrapper code. The over-
head implied by the wrapper code is negligible as long as there is little numerical
work in the advance function, or in other words, that we work with small meshes.

C.8 Migrating Loops to C via f2py

An alternative to using Cython for interfacing C code is to apply f2py. The C
code is the same, just the details of specifying how it is to be called from Python
differ. The f2py tool requires the call specification to be a Fortran 90 module
defined in a .pyf file. This file was automatically generated when we interfaced a
Fortran subroutine. With a C function we need to write this module ourselves, or
we can use a trick and let f2py generate it for us. The trick consists in writing the
signature of the C function with Fortran syntax and place it in a Fortran file, here
wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny

return
end

C.8 Migrating Loops to C via f2py 489

Note that we need a special f2py instruction, through a Cf2py comment line, to
specify that all the function arguments are C variables. We also need to tell that the
function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the complete
contents of the function body, it can easily generate the Fortran 90 module specifi-
cation based solely on the signature above:

Terminal

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files
instead of Fortran files:

Terminal

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string to
see the exact call syntax from the Python side. This doc string is identical for the C
and Fortran versions of advance.

C.8.1 Migrating Loops to C++ via f2py

C++ is a much more versatile language than C or Fortran and has over the last
two decades become very popular for numerical computing. Many will therefore
prefer to migrate compute-intensive Python code to C++. This is, in principle, easy:
just write the desired C++ code and use some tool for interfacing it from Python.
A tool like SWIG3 can interpret the C++ code and generate interfaces for a wide
range of languages, including Python, Perl, Ruby, and Java. However, SWIG is a
comprehensive tool with a correspondingly steep learning curve. Alternative tools,
such as Boost Python4, SIP5, and Shiboken6 are similarly comprehensive. Simpler
tools include PyBindGen7.

A technically much easier way of interfacing C++ code is to drop the possibility
to use C++ classes directly from Python, but instead make a C interface to the C++
code. The C interface can be handled by f2py as shown in the example with pure C
code. Such a solution means that classes in Python and C++ cannot be mixed and
that only primitive data types like numbers, strings, and arrays can be transferred
between Python and C++. Actually, this is often a very good solution because it

3 http://swig.org/
4 http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
5 http://riverbankcomputing.co.uk/software/sip/intro
6 http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
7 http://code.google.com/p/pybindgen/

http://swig.org/
http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/
http://swig.org/
http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/

490 C Software Engineering; Wave EquationModel

forces the C++ code to work on array data, which usually gives faster code than if
fancy data structures with classes are used. The arrays coming from Python, and
looking like plain C/C++ arrays, can be efficiently wrapped in more user-friendly
C++ array classes in the C++ code, if desired.

C.9 Exercises

Exercise C.1: Explore computational efficiency of numpy.sum versus built-in
sum
Using the task of computing the sum of the first n integers, we want to compare
the efficiency of numpy.sum versus Python’s built-in function sum. Use IPython’s
%timeit functionality to time these two functions applied to three different argu-
ments: range(n), xrange(n), and arange(n).
Filename: sumn.

Exercise C.2: Make an improved numpy.savez function
The numpy.savez function can save multiple arrays to a zip archive. Unfortunately,
if we want to use savez in time-dependent problems and call it multiple times (once
per time level), each call leads to a separate zip archive. It is more convenient to
have all arrays in one archive, which can be read by numpy.load. Section C.2
provides a recipe for merging all the individual zip archives into one archive. An
alternative is to write a new savez function that allows multiple calls and storage
into the same archive prior to a final closemethod to close the archive and make it
ready for reading. Implement such an improved savez function as a class Savez.

The class should pass the following unit test:

def test_Savez():
import tempfile, os
tmp = ’tmp_testarchive’
database = Savez(tmp)
for i in range(4):

array = np.linspace(0, 5+i, 3)
kwargs = {’myarray_%02d’ % i: array}
database.savez(**kwargs)

database.close()

database = np.load(tmp+’.npz’)

expected = {
’myarray_00’: np.array([0. , 2.5, 5.]),
’myarray_01’: np.array([0., 3., 6.])
’myarray_02’: np.array([0. , 3.5, 7.]),
’myarray_03’: np.array([0., 4., 8.]),
}

for name in database:
computed = database[name]
diff = np.abs(expected[name] - computed).max()
assert diff < 1E-13

database.close
os.remove(tmp+’.npz’)

C.9 Exercises 491

Hint Study the source code8 for function savez (or more precisely, function
_savez).
Filename: Savez.

Exercise C.3: Visualize the impact of the Courant number
Use the pulse function in the wave1D_dn_vc.py to simulate a pulse through two
media with different wave velocities. The aim is to visualize the impact of the
Courant number C on the quality of the solution. Set slowness_factor=4 and
Nx=100.

Simulate forC D 1; 0:9; 0:75 andmake an animation comparing the three curves
(use the animate_archives.py program to combine the curves and make anima-
tions on the screen and video files). Perform the investigations for different types
of initial profiles: a Gaussian pulse, a “cosine hat” pulse, half a “cosine hat” pulse,
and a plug pulse.
Filename: pulse1D_Courant.

Exercise C.4: Visualize the impact of the resolution
We solve the same set of problems as in Exercise C.3, except that we now fix C D 1
and instead study the impact of �t and �x by varying the Nx parameter: 20, 40,
160. Make animations comparing three such curves.
Filename: pulse1D_Nx.

8 https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py

https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py
https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py

References

1. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1996.
2. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, second edition, 1994. http://www.netlib.org/linalg/html_
templates/Templates.html.

3. D. Duran. Numerical Methods for Fluid Dynamics - With Applications to Geophysics.
Springer, second edition, 2010.

4. C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and
General Techniques. Springer, second edition, 2013.

5. C. Greif and U. M. Ascher. A First Course in Numerical Methods. Computational Science and
Engineering. SIAM, 2011.

6. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, 1993.

7. M. Hjorth-Jensen. Computational Physics. Institute of Physics Publishing, 2016.
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/
lectures2015.pdf.

8. C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.
9. H. P. Langtangen. Finite Difference Computing with Exponential Decay Models. Lecture

Notes in Computational Science and Engineering. Springer, 2016. http://hplgit.github.io/
decay-book/doc/web/.

10. H. P. Langtangen. A Primer on Scientific Programming with Python. Texts in Computational
Science and Engineering. Springer, fifth edition, 2016.

11. H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations. Simula Springer Brief
Series. Springer, 2016. http://hplgit.github.io/scaling-book/doc/web/.

12. L. Lapidus and G. F. Pinder. Numerical Solution of Partial Differential Equations in Science
and Engineering. Wiley, 1982.

13. R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM, 2007.

14. I. P. Omelyan, I. M. Mryglod, and R. Folk. Optimized forest-ruth- and suzuki-like algo-
rithms for integration of motion in many-body systems. Computer Physics Communication,
146(2):188–202, 2002.

15. R. Rannacher. Finite element solution of diffusion problems with irregular data. Numerische
Mathematik, 43:309–327, 1984.

16. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003. http://
www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf.

17. J. Strikwerda. Numerical Solution of Partial Differential Equations in Science and Engineer-
ing. SIAM, second edition, 2007.

18. L. N. Trefethen. Trefethen’s index cards - Forty years of notes about People, Words and Math-
ematics. World Scientific, 2011.

493

http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/lectures2015.pdf
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/scaling-book/doc/web/
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

Index

1st-order ODE, 29
2nd-order ODE, 29
3D visualization, 177

A
accuracy, 234
Adams-Bashforth, 392
ADI methods, 387
advec1D.py, 328
alternating mesh, 46
amplification factor, 234
angular frequency, 1
animation, 13
animation speed, 110
argparse (Python module), 62
ArgumentParser (Python class), 62
arithmetic mean, 137, 359
array computing, 115
array slices, 115
array slices (2D), 174
array updating, 121
as_ordered_terms, 161
assert, 7
averaging

arithmetic, 137
geometric, 58, 137
harmonic, 137

B
Bernoulli variable, 288
Bokeh, 15
boundary condition

open (radiation), 149
boundary conditions

Dirichlet, 126
Neumann, 126
periodic, 151

boundary layer, 344

C
C extension module, 479

C/Python array storage, 483
cable equation, 316
__call__, 110
callback function, 104, 263
centered difference, 2
central difference approximation, 208
CFL condition, 329
Cholesky factorization, 282
class serial layers, 248
clock, 210
closure, 110
coefficients

variable, 140
column-major ordering, 483
conjugate gradient method, 285
constrained motion, 79
continuation

method, 386
parameter, 386

continuation method, 406
correction terms, 430
cosine hat, 144
cosine pulse

half-truncated, 325
coupled system, 221, 367
Courant number, 160
cumsum, 290
cylindrical coordinates, 251, 314
Cython, 475
cython -a (Python-C translation in HTML),

478

D
Darcy’s law, 312
decay ODE, 422
declaration of variables in Cython, 477
dense coefficient matrix, 260
diags, 223, 246
diff, 212
difference equations, 95

495

496 Index

differential-algebraic equation, 79
diffu1D_u0.py, 210, 223
diffu1D_vc.py, 246
diffu2D_u0.py, 266
diffusion

artificial, 331
diffusion coefficient, 207

non-constant, 245
piecewise constant, 247

diffusion equation
1D, 207
1D, boundary condition, 208
1D, Crank-Nicolson scheme, 224
1D, dense matrix, 223
1D, discrete equations, 208
1D, explicit scheme, 208
1D, Forward Euler scheme, 208
1D, Fourier number, 208
1D, Implementation, 246
1D, implementation (FE), 210
1D, implementation (sparse), 223
1D, implicit schemes, 218
1D, initial boundary value problem, 208
1D, initial condition, 208
1D, mesh Fourier number, 208
1D, numerical experiments, 215
1D, sparse matrix, 223
1D, theta rule, 226
1D, tridiagonal matrix, 223
1D, verification (BE), 223
1D, verification (CN), 226
1D, verification (FE), 212
2D, 254
2D, banded matrix, 258
2D, implementation, 260
2D, implementation (sparse), 266
2D, numbering of mesh points, 255
2D, sparse matrix, 257
2D, verification (conv. rates), 265
2D, verification (exact num. sol.), 264
axi-symmetric diffusion, 251
diffusion coefficient, 207
implementation, 248
numerical Fourier number, 234
source term, 208
spherically-symmetric diffusion, 252
stationary solution, 207, 247
truncation error, 234

diffusion limit of random walk, 293
dimensional splitting, 387
dimensionless number, 208
Dirac delta function, 231
Dirichlet conditions, 126
discontinuous initial condition, 227
discontinuous medium, 144
discontinuous plug, 223
discrete derivative, 417

discrete Fourier transform, 157
discretization of domain, 2
discretization parameter, 100, 144
dispersion relation, 337

analytical, 160
numerical, 160

distutils, 479
DOF (degree of freedom), 68
domain, 208
dynamic viscosity, 312

E
efficiency measurements, 119
energy estimates (diffusion), 316
energy principle, 36
equation of state, 309
error

global, 25
error function (erf), 229

complementary, 229
error mesh function, 24
error norm, 7, 25, 38
Euler-Cromer scheme, 40, 439
expectation, 288
explicit discretization methods, 208
extract_leading_order, 161

F
factor, 161
fast Fourier transform (FFT), 157
FD operator notation, 4
Fick’s law, 308
finite difference scheme, 94, 95
finite differences

backward, 417
centered, 2, 419
forward, 418

fixed-point iteration, 357
Flash (video format), 13
Fokker-Planck equation, 304
forced vibrations, 57
Fortran 77, 480
Fortran 90, 482
Fortran array storage, 483
Fortran subroutine, 481
forward difference approximation, 208
forward-backward scheme, 40
Fourier series, 157
Fourier transform, 157
Fourier’s law, 309
fractional step methods, 387
free body diagram

animated, 74
dynamic, 74

frequency (of oscillations), 1
friction, 315
functools, 119

Index 497

G
Gaussian elimination, 223
Gaussian function, 144
Gaussian pulse, 325
Gauss-Seidel method, 277
geometric mean, 58, 137, 359
ghost

cells, 132
points, 132
values, 132

Gnuplot, 177
Gnuplot.py, 177

H
harmonic average, 137
hash, 457
heat capacity, 309
heat conduction

coefficient of, 311
heat equation, 207
homogeneous Dirichlet conditions, 126
homogeneous Neumann conditions, 126
HTML5 video tag, 13
Hz (unit), 1

I
ImageMagic, 15
incompressible fluid, 311
index set notation, 128, 173
initial condition

triangular, 328
interior spatial points, 221
internal energy, 309
interpolation, 137
interrupt a program by Ctrl+c, 300
iterative methods, 270, 353

J
Jacobi iterative method, 270
Jacobian, 369
joblib, 457

K
kinetic energy, 36

L
lambda function (Python), 118
lambdify, 161
Laplace equation, 207, 227
leading order term, 161
Leapfrog method, 3
Leapfrog scheme, 237
limit, 356
linalg, 223, 246, 260, 262
linear system, 224, 270, 369
linearization, 357

explicit time integration, 355

fixed-point iteration, 357
Picard iteration, 357
successive substitutions, 357

load, 455
logistic growth, 388
logistic.py, 362
LU factorization, 282

M
making movies, 13
manufactured solution, 100
mass balance, 311
material derivative, 350
matrix

equation, 221
form, 221
half-bandwidth, 282
positive definite, 285

Mayavi, 179
mechanical energy, 36
mechanical vibrations, 1
memoize function, 457
mesh

finite differences, 2, 94
parameters, 155
uniform, 94

mesh function, 2, 94, 208
mesh points, 208
mlab, 179
MP4 (video format), 13

N
Navier-Stokes equations, 313
Neumann conditions, 126
neuronal fibers, 316
newaxis, 174, 263
Newton’s 2nd law, 36
noise

removing, 231
sawtooth-like, 229

nonlinear restoring force, 57
nonlinear spring, 57
norm, 25
nose, 6, 106
Numba, 114
Nyquist frequency, 157

O
ODE_Picard_tricks.py, 365
Odespy, 32, 392
Ogg (video format), 13
open boundary condition, 149
operator splitting, 387
oscillations, 1

P
padding zeros, 110

498 Index

parallelism, 114
PDE

algebraic version, 94
pendulum

elastic, 79
physical, 74
simple, 71

period (of oscillations), 1
periodic boundary conditions, 151
phase plane plot, 32
Picard iteration, 357
plotslopes.py, 9
Plotter class (SciTools), 300
plug, 144
Poisson equation, 227
potential energy, 36
preconditioning, 285, 318
pulse propagation, 144
Pysketcher, 74
pytest, 6, 106

Q
quadratic convergence, 360
quadratic solution, 106, 118

R
radiation condition, 149
radioactive rock, 309
random, 290
random walk, 287
ready-made software, 221
red-black numbering, 278
relaxation, 271
relaxation (nonlinear equations), 361
relaxation parameter, 361
removeO, 161
reshape, 174
resonance, 88
Richardson iteration, 318
round-off error, 81
row-major ordering, 483

S
sampling (a PDE), 95
savez, 455
sawtooth-like noise, 227
scalar code, 115
scaling, 81
scaling equations, 113
SciTools, 11
scitools movie command, 14
scitools.avplotter, 300
seed (random numbers), 291
semi-explicit Euler, 40
semi-implicit Euler, 40
series, 161
setup.py, 479

signal processing, 231
simplify, 212
single Picard iteration technique, 358
skipping frames, 110
slice, 115
slope marker (in convergence plots), 9
smooth Gaussian function, 223
smoothing, 231
solver_BE, 223
solver_dense, 260
solver_FE, 212
solver_FECS, 325
solver_FE_simple, 210
source term, 99
sparse, 223, 246
sparse Gaussian elimination, 269
special method, 110
spectral radius, 283
spherical coordinates, 252
split_diffu_react.py, 392
split_logistic.py, 388
split-step methods, 387
splitting ODEs, 387
spring constant, 36
spsolve, 223, 246, 269
stability, 234, 329
stability criterion, 26, 160
staggered Euler-Cromer scheme, 46
staggered mesh, 46, 439
stationary fluid flow, 313
stationary solution, 207
steady state, 227
stencil

1D wave equation, 94
Neumann boundary, 126

step function, 229
stiffness, 36
stochastic difference equation, 303
stochastic ODE, 304
stochastic variable, 288
Stoermer’s method, 3
Stoermer-Verlet algorithm, 45
stopping criteria (nonlinear problems), 358,

371
storez, 455
Strang splitting, 388
stream function, 313
stress, 350
subs, 212
successive over-relaxation (SOR), 277
successive substitutions, 357
SuperLU, 269
switching references, 121
symmetric successive over-relaxation (SSOR),

285
symplectic scheme, 41
sympy, 22, 356, 412

Index 499

system of algebraic equations, 367

T
Taylor series, 161, 235, 356
test function, 6, 106, 212
time, 210
time step

spatially varying, 138
todense, 223
transport phenomena, 344
truncation error

Backward Euler scheme, 417
correction terms, 430
Crank-Nicolson scheme, 419
Forward Euler scheme, 418
general, 415
table of formulas, 420

trunc_decay_FE.py, 425

U
uniform, 290
unit testing, 6, 106
upwind difference, 331

V
vectorization, 6, 114, 115, 290
vectorized

code, 114
computing, 114
loops, 114

verification, 292, 433
convergence rates, 7, 44, 99, 100, 107, 214,

265, 392, 415, 461
hand calculations, 6
polynomial solution, 7, 106

Verlet integration, 3
vib_empirical_analysis.py, 19
vib_EulerCromer.py, 43
vib_plot_freq.py, 22
vib.py, 59
vibration ODE, 1
vib_undamped_EulerCromer.py, 43
vib_undamped_odespy.py, 32
vib_undamped.py, 4
vib_undamped_staggered.py, 49
video formats, 13

viscous boundary layer, 345
viscous effects, 312
visualization of 2D scalar fields, 177

W
wave

complex component, 155
damping, 140
reflected, 135
transmitted, 135
variable velocity, 135
velocity, 93

wave equation
1D, 93
1D, analytical properties, 155
1D, discrete, 96
1D, exact numerical solution, 158
1D, finite difference method, 94
1D, implementation, 104
1D, stability, 160
2D, implementation, 171

wave1D_dn.py, 128
wave1D_dn_vc.py, 141, 451
wave1D_n0_ghost.py, 132
wave1D_n0.py, 127
wave1D_oo.py, 462
wave1D_u0.py, 105
wave1D_u0v.py, 117
wave2D_u0_adv.py, 475
wave2D_u0_loop_c.c, 486
wave2D_u0_loop_c_f2py_signature.f,

488
wave2D_u0_loop_c.h, 486
wave2D_u0_loop_cy.pyx, 476
wave2D_u0_loop_f77.f, 481
wave2D_u0.py, 172, 475
waves

on a string, 93
WebM (video format), 13
where, 290
Wiener process, 304
wrapper code, 481

Z
zeros, 6
zip archive, 455

Editorial Policy

§1. Textbooks on topics in the field of computational science and engineering will
be considered. They should be written for courses in CSE education. Both graduate
and undergraduate textbooks will be published in TCSE. Multidisciplinary topics
and multidisciplinary teams of authors are especially welcome.

§2. Format: Only works in English will be considered. For evaluation pur-
poses, manuscripts may be submitted in print or electronic form, in the latter case,
preferably as pdf- or zipped ps-files. Authors are requested to use the LaTeX style
files available from Springer at: https://www.springer.com/gp/authors-editors/book-
authors-editors/manuscript-preparation/5636 (Click on �! Templates �! LaTeX
�! monographs)
Electronic material can be included if appropriate. Please contact the publisher.

§3. Those considering a book which might be suitable for the series are strongly
advised to contact the publisher or the series editors at an early stage.

General Remarks

Careful preparation of manuscripts will help keep production time short and ensure
a satisfactory appearance of the finished book.

The following terms and conditions hold:

Regarding free copies and royalties, the standard terms for Springer mathematics
textbooks hold. Please write to martin.peters@springer.com for details.

Authors are entitled to purchase further copies of their book and other Springer
books for their personal use, at a discount of 40% directly from Springer-Verlag.

https://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
https://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636

Series Editors

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:
Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations – A Gentle Introduction to Numerical
Simulations with Python.

16. H. P. Langtangen, S. Linge, Finite Difference Computing with PDEs – A Modern Software Ap-
proach.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

www.springer.com/series/5151
www.springer.com/series/7417

Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M.Bruaset, E.Quak (eds.),Advances in Software Tools for Scientific Comput-
ing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory, Com-
putation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in Practical
Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.),Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.

24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing – CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.),Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox
ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.

50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation: Ap-
plications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.),Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.),Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II – Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.

76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insur-
ance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers, Computa-
tional and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis – Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media – Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic Differ-
entiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs – HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.),Meshfree Methods for Partial Differential Equations VII.

101. R. Hoppe (ed.), Optimization with PDE Constraints – OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications – ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering – CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial Dif-
ferential Equations – ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H.P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models

112. B. Karazösen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur (eds.), Numerical Mathemat-
ics and Advanced Applications – ENUMATH 2015.

113. H.-J. Bungartz, P. Neumann, W.E. Nagel (eds.), Software for Exascale Computing – SPPEXA 2013-
2015.

114. G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis (eds.), Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations.

115. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VIII.

116. C.-O. Lee, X.-C. Cai, D. E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B.Widlund (eds.),Domain
Decomposition Methods in Science and Engineering XXIII.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527

	Preface
	Contents
	List of Exercises, Problems and Projects
	1 Vibration ODEs
	1.1 Finite Difference Discretization
	1.2 Implementation
	1.3 Visualization of Long Time Simulations
	1.4 Analysis of the Numerical Scheme
	1.5 Alternative Schemes Based on 1st-Order Equations
	1.6 Energy Considerations
	1.7 The Euler-Cromer Method
	1.8 Staggered Mesh
	1.9 Exercises and Problems
	1.10 Generalization: Damping, Nonlinearities, and Excitation
	1.11 Exercises and Problems
	1.12 Applications of Vibration Models
	1.13 Exercises

	2 Wave Equations
	2.1 Simulation of Waves on a String
	2.2 Verification
	2.3 Implementation
	2.4 Vectorization
	2.5 Exercises
	2.6 Generalization: Reflecting Boundaries
	2.7 Generalization: Variable Wave Velocity
	2.8 Building a General 1D Wave Equation Solver
	2.9 Exercises
	2.10 Analysis of the Difference Equations
	2.11 Finite Difference Methods for 2D and 3D Wave Equations
	2.12 Implementation
	2.13 Exercises
	2.14 Applications of Wave Equations
	2.15 Exercises

	3 Diffusion Equations
	3.1 An Explicit Method for the 1D Diffusion Equation
	3.2 Implicit Methods for the 1D Diffusion Equation
	3.3 Analysis of Schemes for the Diffusion Equation
	3.4 Exercises
	3.5 Diffusion in Heterogeneous Media
	3.6 Diffusion in 2D
	3.7 Random Walk
	3.8 Applications
	3.9 Exercises

	4 Advection-Dominated Equations
	4.1 One-Dimensional Time-Dependent Advection Equations
	4.2 One-Dimensional Stationary Advection-Diffusion Equation
	4.3 Time-dependent Convection-Diffusion Equations
	4.4 Applications of Advection Equations
	4.5 Exercises

	5 Nonlinear Problems
	5.1 Introduction of Basic Concepts
	5.2 Systems of Nonlinear Algebraic Equations
	5.3 Linearization at the Differential Equation Level
	5.4 1D Stationary Nonlinear Differential Equations
	5.5 Multi-Dimensional Nonlinear PDE Problems
	5.6 Operator Splitting Methods
	5.7 Exercises

	A Useful Formulas
	A.1 Finite Difference Operator Notation
	A.2 Truncation Errors of Finite Difference Approximations
	A.3 Finite Differences of Exponential Functions
	A.4 Finite Differences of tn

	B Truncation Error Analysis
	B.1 Overview of Truncation Error Analysis
	B.2 Truncation Errors in Finite Difference Formulas
	B.3 Exponential Decay ODEs
	B.4 Vibration ODEs
	B.5 Wave Equations
	B.6 Diffusion Equations
	B.7 Exercises

	C Software Engineering; Wave Equation Model
	C.1 A 1D Wave Equation Simulator
	C.2 Saving Large Arrays in Files
	C.3 Software for the 1D Wave Equation
	C.4 Programming the Solver with Classes
	C.5 Migrating Loops to Cython
	C.6 Migrating Loops to Fortran
	C.7 Migrating Loops to C via Cython
	C.8 Migrating Loops to C via f2py
	C.9 Exercises

	References
	Index

