Juan Garbajosa - Xiaofeng Wang
Ademar Aguiar (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

ﬁ-
\
o™
o
(aa)
=
—

19th International Conference, XP 2018
Porto, Portugal, May 21-25, 2018
Proceedings

v T

@ Springer Open

Lecture Notes
in Business Information Processing 314

Series Editors

Wil M. P. van der Aalst
RWTH Aachen University, Aachen, Germany
John Mylopoulos
University of Trento, Trento, Italy
Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia
Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA
Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

Juan Garbajosa - Xiaofeng Wang
Ademar Aguiar (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

19th International Conference, XP 2018
Porto, Portugal, May 21-25, 2018
Proceedings

@ Springer Open

Editors

Juan Garbajosa Ademar Aguiar
Technical University of Madrid University of Porto
Madrid, Madrid Porto

Spain Portugal

Xiaofeng Wang

Free University of Bozen-Bolzano
Bolzano

Italy

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-91601-9 ISBN 978-3-319-91602-6 (eBook)

https://doi.org/10.1007/978-3-319-91602-6
Library of Congress Control Number: 2018944291

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-0161-3485
http://orcid.org/0000-0001-8424-419X
http://orcid.org/0000-0002-4046-4729

Preface

This volume contains the papers presented at XP 2018, the 19th International Con-
ference on Agile Software Development, held during May 21-25, 2018, in Porto,
Portugal.

XP is the premier agile software development conference combining research and
practice. It is a unique forum where agile researchers, academics, practitioners, thought
leaders, coaches, and trainers get together to present and discuss their most recent
innovations, research results, experiences, concerns, challenges, and trends. XP con-
ferences have been pushing forward the successful evolution and adoption of agile by
teams and organizations, not only in the software industry and academia, but also
beyond. Whether you are new to agile or a seasoned agile practitioner, XP 2018
provided a playful and informal environment to learn and trigger discussions around its
main theme — make, inspect, adapt.

Submissions of unpublished high-quality research papers related to agile and lean
software development were invited for the XP 2018 Research Papers Track. The
submissions received addressed the full spectrum of agile software development,
broadly on agile, on issues of concern to researchers and practitioners alike. Submis-
sions based on empirical studies and including practitioners and academic collabora-
tions were encouraged. We received 62 submissions for the track. After the first
screening by the track chairs, 58 submissions were sent out for single-blinded peer
reviews. Each submission received (on average) three reviews from the Program
Committee members. The committee decided to accept 21 papers, which are included
in these proceedings.

The success of the XP 2018 conference and the Research Papers Track should be
attributed to the passionate and hard work of many people. We greatly appreciate the
contributions from everyone, especially the authors and presenters of all papers, the
Program Committee members, the volunteers, and the sponsors. Last but not least, we
would like to express our sincere thanks to the organizing team of XP 2018, for their
great and constant support to us.

April 2018 Juan Garbajosa
Xiaofeng Wang
Ademar Aguiar

Organization

Conference Chair

Ademar Aguiar Universidade do Porto, Portugal

Research Papers Co-chairs

Juan Garbajosa Universidad Politécnica de Madrid, Spain
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Research Workshops Co-chairs

Stefan Wagner University of Stuttgart, Germany
Rashina Hoda The University of Auckland, New Zealand

Research Posters Co-chairs

Hugo Ferreira Universidade do Porto, Portugal
Davide Taibi Free University of Bozen-Bolzano, Italy

Doctoral Symposium Co-chairs

Pekka Abrahamsson University of Jyviskyld, Finland
Casper Lassenius Aalto University, Finland

Industry and Practice Co-chairs

Jan Coupette Codecentric, Germany
Nils Wloka Codecentric, Germany

Experience Reports Co-chairs

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA
Joseph Yoder The Refactory, USA

Agile in Education and Training Co-chairs

Craig Anslow Victoria University of Wellington, New Zealand
Robert Chatley Imperial College London/Develogical Ltd., UK

VI Organization

Tools and Demos Co-chairs

Seb Rose Cucumber Limited, UK
Allegra Cooper IT CTO, The Vanguard Group, Inc., USA

Tutorials and Workshops Co-chairs

Alan O’Callaghan Emerald Hill Limited, UK
Lachlan Heasman Independent, Australia

Openspace Chair

Charlie Poole Poole Consulting, USA
Panels Chair

Steven Fraser Innoxec, USA

Media Design Chair

Miguel Carvalhais Universidade do Porto, Portugal

Communication Design

Mafalda Marinho Freelancer, Portugal
Rita Ribeiro Freelancer, Portugal

Press and Media Sponsors

Pam Hughes Agile Alliance, USA

Sponsors Liaison

Philip Brock Agile Alliance, USA

Student Volunteers Co-chairs

Diogo Amaral Universidade do Porto, Portugal
André Lago Universidade do Porto, Portugal

Local Arrangements

Pedro Miguel Silva Universidade do Porto, Portugal
Esperanza Jurado Sopefia Badajoz, Spain
Jose Luis Gonzalez Sopena Badajoz, Spain

Organization X

Agile Portugal Liaison

Filipe Correia
Catarina Reis

Universidade do Porto, Portugal
IP Leiria, Portugal

Agile Alliance Liaison

Jutta Eckstein

Steering Committee

Juan Garbajosa
Casper Lassenius
Erik Lundh
Hubert Baumeister
Jutta Eckstein
Michele Marchesi
Nils Wloka

Philip Brock
Steven Fraser

Seb Rose

Institutional Partners

Independent, Germany

Universidad Politécnica de Madrid, Spain
Aalto University, Finland

IngenjorsGladje, Sweden

Technical University of Denmark, Denmark
Independent, Germany

DMI - University of Cagliari, Italy
Codecentric, Germany

Agile Alliance, USA

Innoxec, USA

Cucumber Limited, UK

Universidade do Porto, Portugal

ScaleUp Porto, Portugal
Agile Portugal, Portugal
Agile Alliance, USA

Program Committee

Pekka Abrahamsson
Hubert Baumeister
Jan Bosch

Frangois Coallier
Kieran Conboy
Steve Counsell
Daniela Cruzes
Torgeir Dingsoyr

Christof Ebert
Hakan Erdogmus
Michael Felderer
Brian Fitzgerald
Alfredo Goldman
Tony Gorschek

University of Jyviskyld, Finland

Technical University of Denmark, Denmark

Chalmers University of Technology, Sweden

Ecole de technologie supérieure, Canada

National University of Galway, Ireland

Brunel University, UK

SINTEF, Norway

Norwegian University of Science and Technology,
Norway

Vector Consulting Services, Germany

Carnegie Mellon University, USA

University of Innsbruck, Austria

Lero - Irish Software Engineering Research Centre, Ireland

University of Sao Paulo, Brazil

Blekinge Institute of Technology, Sweden

X Organization

Des Greer
Peggy Gregory
Eduardo Guerra
Rashina Hoda
Helena Holmstrom
Olsson
Sami Hyrynsalmi
Andrea Janes
Fabio Kon
Casper Lassenius
Lech Madeyski
Michele Marchesi
Sabrina Marczak
Frank Maurer
Claudia Melo
Tommi Mikkonen
Alok Mishra
Nils Brede Moe
Juergen Muench
Daniel Méndez
Fernandez
Maria Paasivaara
Kai Petersen
Pilar Rodriguez
Bernhard Rumpe
Hugo Sereno Ferreira
Helen Sharp
Darja Smite
Roberto Tonelli
Ayse Tosun
Stefan Wagner
Hironori Washizaki
Agustin Yague

Additional Reviewers

Amor, Robert
Anslow, Craig
Bajwa, Sohaib Shahid
Bordin, Silvia

Bruel, Pedro

Carroll, Noel

Correia, Filipe
Cukier, Daniel

Da Silva, Tiago Silva

Queen’s University Belfast, UK

University of Central Lancashire, UK
National Institute of Space Research, Brazil
The University of Auckland, New Zealand
University of Malmo, Sweden

Tampere University of Technology, Finland
Free University of Bolzano, Italy

University of Sdo Paulo, Brazil
Massachusetts Institute of Technology, USA
Wroclaw University of Science and Technology, Poland
DMI - University of Cagliari, Italy

PUCRS, Brazil

University of Calgary, Canada

University of Brasilia, Brazil

University of Helsinki, Finland

Atilim University, Turkey

SINTEF, Norway

Reutlingen University, Germany

Technical University of Munich, Germany

Helsinki University of Technology, Finland
Blekinge Institute of Technology/Ericsson AB, Sweden
University of Oulu, Finland

RWTH Aachen University, Germany
University of Porto, Portugal

The Open University, UK

Blekinge Institute of Technology, Sweden
University of Cagliari, Italy

Istanbul Technical University, Turkey
University of Stuttgart, Germany

Waseda University, Japan

Universidad Politécnica de Madrid, Spain

Dennehy, Denis
Diaz, Jessica
Edison, Henry
Gutierrez, Javier
Hansen, Guido
Khanna, Dron
Klotins, Eriks
Kropp, Martin
Lunesu, Maria Ilaria

Melegati, Jorge
Mikalsen, Marius
Netz, Lukas
Nguyen Duc, Anh
Reis, Catarina I.
Rosa, Thatiane
Schmalzing, David

Organization

Serradilla, Francisco
Sibal, Ritu

Solem, Anniken

Stettina, Christoph Johann
Suri, Bharti

Vestues, Kathrine

Wang, Yang

XI

Contents

Agile Requirements

Cosmic User Story Standard. 3
Miguel Ecar, Fabio Kepler, and Jodo Pablo S. da Silva

Improving Mockup-Based Requirement Specification

with End-User Annotations i, 19
Matias Urbieta, Nahime Torres, José Matias Rivero, Gustavo Rossi,
and F. J. Dominguez-Mayo

Agile Testing

Combining STPA and BDD for Safety Analysis and Verification in Agile
Development: A Controlled Experiment. 37
Yang Wang and Stefan Wagner

Software Tester, We Want to Hire You! an Analysis of the Demand
for Soft SKills. e 54
Raluca Florea and Viktoria Stray

Developers’ Initial Perceptions on TDD Practice: A Thematic Analysis
with Distinct Domains and Languages. 68
Joelma Choma, Eduardo M. Guerra, and Tiago Silva da Silva

Myths and Facts About Static Application Security Testing Tools:

An Action Research at Telenor Digital. 86
Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini,
and Daniela Soares Cruzes

Automated Acceptance Tests as Software Requirements: An Experiment
to Compare the Applicability of Fit Tables and Gherkin Language 104
Ernani César dos Santos and Patricia Vilain

Agile Transformation

Interface Problems of Agile in a Non-agile Environment 123
Sven Theobald and Philipp Diebold

Teemu Karvonen, Helen Sharp, and Leonor Barroca

X1V Contents

Technical and Organizational Agile Practices: A Latin-American Survey

Nicolas Paez, Diego Fontdevila, Fernando Gainey,
and Alejandro Oliveros

Agile Software Development — Adoption and Maturity: An Activity

Theory Perspectivet e

Pritam Chita

Scaling Agile

Magne Jorgensen

Learning in the Large - An Exploratory Study of Retrospectives

in Large-Scale Agile Development

Torgeir Dingsoyr, Marius Mikalsen, Anniken Solem,
and Kathrine Vestues

Reporting in Agile Portfolio Management: Routines, Metrics and Artefacts

to Maintain an Effective Oversight

Christoph Johann Stettina and Lennard Schoemaker

Inter-team Coordination in Large-Scale Agile Development: A Case Study

of Three Enabling Mechanisms.

Finn Olav Bjornson, Julia Wijnmaalen, Christoph Johann Stettina,
and Torgeir Dingsoyr

Supporting Large-Scale Agile Development with Domain-Driven Design. . . .

Omer Uludag, Matheus Hauder, Martin Kleehaus, Christina Schimpfle,
and Florian Matthes

Towards Agile Scalability Engineering.

Gunnar Brataas, Geir Kjetil Hanssen, and Georg Reeder

Human-Centric Agile

Stress in Agile Software Development: Practices and Outcomes

Andreas Meier, Martin Kropp, Craig Anslow, and Robert Biddle

Teamwork Quality and Team Performance: Exploring Differences Between

Small and Large Agile Projects.

Yngve Lindsjorn, Gunnar R. Bergersen, Torgeir Dingsoyr,
and Dag 1. K. Sjoberg

146

216

232

Contents

Continuous Experimentation

Challenges and Strategies for Undertaking Continuous Experimentation
to Embedded Systems: Industry and Research Perspectives
David Issa Mattos, Jan Bosch, and Helena Holmstrom Olsson

ICOs Overview: Should Investors Choose an ICO Developed with the Lean
Simona Ibba, Andrea Pinna, Gavina Baralla, and Michele Marchesi

Author Index e

XV

Agile Requirements

®

Check for
updates

Cosmic User Story Standard

Miguel Ecar'®) Fabio Kepler!2, and Joao Pablo S. da Silva!

1 Campus Alegrete, Federal University of Pampa,

810 Tiaraji Avenue, Alegrete, RS, Brazil
miguel@ecarsm.com, {fabiokepler,joaosilva}@unipampa.edu.br
2 Unbabel, Lisbon, Portugal
http://unbabel.com
http://ecarsm.com

Abstract. User Story is a technique widely used in Agile development.
It is characterised as short and high level descriptions of required func-
tionality, written in customer language during the very early requirement
gathering stage and containing just enough information to produce the
estimated implementation effort. The COSMIC method is a second gen-
eration technique for function size measurement. The requirement esti-
mation precision in COSMIC is directly proportional to the requirement
detailing level. Current templates for user stories writing might ignore
important information for COSMIC measurement purposes. This paper
introduces a new template for writing user stories which is more expres-
sive in terms of COSMIC size estimation. We performed a qualitative
survey to introduce this new user story template to the COSMIC com-
munity, intending to capture the COSMIC users opinion in terms of
expressiveness and how valuable it is. The survey points to promising
results considering the COSMIC users opinion about the new template.
This study contributes to agile requirements from the COSMIC users
point of view. This new template may be a step forward in terms of user
story estimation for COSMIC sizing based projects.

Keywords: COSMIC - Functional Size Measurement - User Story
Agile requirements + Agile development

1 Introduction

The area of Software Requirements is concerned with the elicitation, analy-
sis, specification, and validation of software requirements [1]. There are a large
number of styles and techniques for writing software requirements, including,
for example, requirements list, Use Cases (UC), User Stories (US), and Formal
Specification.

The Extreme Programming (XP) software development framework intro-
duced the idea of User Stories (US), which are basically use cases that concisely
capture functional requirements. Developers usually split it up requirements into

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 3-18, 2018.
https://doi.org/10.1007/978-3-319-91602-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_1&domain=pdf

4 M. Ecar et al.

US [2] and typically write user stories on cards to describe each system func-
tionality that the customer desires [3].

User story is one of the most widespread techniques for writing require-
ments in agile environments. User Stories have gained popularity among agile
approaches, being one of the main techniques used when the subject is require-
ments engineering in agile environments. There is a common template to write
user stories, however a number of different extensions have been adding or sup-
pressing information, according to the application context.

Despite this, current requirements specification techniques used in agile soft-
ware development are customer-oriented and, from the developers point of view,
have proven to be insufficient [4]. In other words, there are more information from
the customer point of view written in a too high level than from the developers per-
spective, with some implementation details. Moreover, user stories might reflect
in documentation debt [5], which can cause significant impact in terms of mainte-
nance effort and cost in agile software development projects, which drive develop-
ers to misunderstanding. Thus, it could be detailed and to continue in high level.

Functional Size Measurement (FSM) was proposed in order to obtain better
units of sizing. According to ISO/IEC 14143 [6], FSM was designed to overcome
the limitations of earlier methods of software sizing by shifting the focus away
from measuring how software is implemented to measuring size in terms of the
functions required by the user.

FSM intends to measure software functionality, being independent of tech-
nology, platform and individual. Based on defined measurements procedures it
is possible to define standard, objective, consistency and comparable results [7].

The Common Software Measurement International Consortium (COSMIC)
is a group formed in 1998 which intended to develop the second generation
of FSM [8]. The group objective was to develop a method for measuring user
requirements in conformity with fundamental software engineering principles
and the measurement theory. The method is applicable for measuring business,
real-time and infrastructure software [8]. The term COSMIC is used both for
the group and the method.

The COSMIC method has been designed to accept extensions for partic-
ular domains [9]. A domain for which it has been extended is Agile develop-
ment. According to [10], the agile guideline has the purpose of providing addi-
tional advice beyond the COSMIC Measurement Manual on Agile projects. The
COSMIC method is perfectly suited for measuring software evolving through
iterations and increments as typically found in Agile development without any
adaptation [10].

Sizing software in Agile development requires exactly the same knowledge,
principles and rules of the COSMIC Method when used in any other project
management method [10].

When sizing user stories using the COSMIC method, Message Sequence Dia-
grams may be used as shown in Fig. 1. The vertical line represents a functional
process and horizontal arrows represent data movements. Entries and Reads are
shown as arrows incoming to functional process and Exit and Writes as outgoing
arrows, appearing in the required sequence as top-down order [10].

COSMIC User Story Standard 5

#9 Search books by title
Asa library_user,I want to search for books by title,
with speed and ease-of-use <o that T can find all books

with similar titles.
.\: Library_user (LB)
"7 I Request search by title

| LB.Book_List .
Read (1) Book (1) exit
Functiornal sice.

E X R w
Sub-tdals:-r-rq-@ S clp

Fig. 1. User Story and Message Sequence Diagram. Source: [10]

As can be seen, sizing user stories using the COSMIC method is not a difficult
task. Nevertheless, a precise size estimation is directly proportional to the level
of detail a US is written. Thus, based on the example in Fig. 1, some valuable
information may by missed, such as connections between data groups and direct
user feedback.

This paper introduces a new template for writing user stories which contains
more expressiveness in terms of COSMIC size estimation. The proposed template
specify possible connections between system data groups and express clearly the
presence of user feedback.

We performed a survey to introduce this new user story template to the
COSMIC community. The qualitative survey intended to capture COSMIC users
opinion in terms of expressiveness and how valuable it was.

The rest of the paper is organized as follows. Section 2 shows the background
of the COSMIC method and existing user stories templates. Section 3 presents
the proposed template and its details. Section4 shows the evaluation process
conducted via survey with the COSMIC community and its analysis. Finally,
Sect. 6 draws some conclusions and future works.

2 Background

In this section we present the COSMIC method in Subsect. 2.1 and an overview
of user story templates in Subsect. 2.2.

2.1 COSMIC Method

The COSMIC method was born from the need to measure requirements from
systems such as business application, real-time and infrastructure software,
and some types of scientific or engineering software [8]. This necessity comes
from some IFPUG technique weaknesses. It has become increasingly difficult to
map Albrecht’s function types to modern ways of modelling software require-
ments, especially for software as services, real-time domain, and infrastructure
software [8].

6 M. Ecar et al.

The method is divided in three phases: measurement strategy phase, mapping
phase, and measurement phase. These phases and their definition are shown in
Fig. 2.

Input from measurement sponsor =] Phase 1 Definition of each piece of
Software Context Model » Measurement |— Software to be measured and
FUR > Strategy of the required measurement
FUR Fhas_e 2 FUR in the form of the
i Mapping f—op Generic Software
Generic Software Mode| ———— Phase Model
Phase 3 Functional size of
Measurement — the software in
Phase units of CFP

Fig. 2. The COSMIC measurement process [8]

The Measurement Strategy phase defines what will be measured. It must be
defined in the functional user perspective, such as humans, hardware devices, or
other software which will interact with the software under measurement. First
the measurement purpose is defined, which will lead to defining the scope and
functional users [8]. There are five key parameters to determine in this phase:

— Purpose: helps to determine all the following parameters;

— Scope: defines what is included or excluded in the functionality and what
are the restrictions;

— Level of composition: pieces of software to be measured, for example, the
whole application (level 0), or a primary component in a distributed system
(level 1), or a re-usable component in a service-oriented software (level 2);

— Functional users: must be defined for each piece of software. They are
humans or things which will send or receive data to or from the software;

— Layers: the software architecture; the piece of software must be confined in
one layer.

The Mapping phase consists in creating the functional user requirement COS-
MIC model, it starts from whatever the artefacts are available. The model is cre-
ated applying the COSMIC Generic Software Model, which is defined for four
principles [8].

The first principle is that a software functionality is composed of functional
processes, each functional process corresponds to an event in the functional user
world.

The second phase defines that functional processes are consisted of sub-
processes, they do only two things, they move and manipulate data. Data move-
ments which move data from functional users into functional processes or vice-
versa are called Entries and Exits. Data movements which move data from

COSMIC User Story Standard 7

Boundary
1
. ! .
Functional Us_er s ; Entries | Software
* Hardware devices, ; > bein
« Other software or . measugr]ed
* Humans | Exits
' Reads Writes

Persistent
Storage

Fig. 3. Data movements [8].

persistence storage and vice-versa are called Writes and Reads. As may be
seen in Fig. 3.

The fourth principle says that each data movement moves a single Data
group. Data group is defined as a single object of the functional user interest.

The last principle defines that data manipulation are assumed to be
accounted by the associated data movement. Data manipulation are not mea-
sured separately.

The Measurement Phase consists in taking account data movements, each
data movement is a unit of COSMIC Function Point (CFP). In this phase they
are counted and sum over all functional processes. A single functional process
must have at least two data movements and there is no upper size limit. When
measuring a software enhancement, it must be identified all data movements
added, changed and deleted and sum them over all its functional processes. The
minimum of any modification is 1 CFP [8].

2.2 User Story Overview

The User Stories technique is widely used in Agile development. They are char-
acterised as short and high level description of the required functionality written
in customer language. The traditional story template is: [1]

“As a <role>, I want to <goal/desire>, so that <benefit>".

User Stories are used in the very early stage during requirements gathering.
They contain only enough information to estimate the implementation effort.
They should be written in customer language before the implementation, for
appropriated acceptance [10].

Besides the traditional one, there other User Stories writing templates. The
Table 1 shows some examples.

Template USO01 [11] only introduces a specific use of user stories to express
usability requirements. There is no relevant difference from the traditional
template.

The template US02 [12] also, does not present any significant difference. It
only makes explicit that the object must be present, which is a natural practice
when using the traditional template.

8 M. Ecar et al.

Table 1. Examples of user stories templates.

1D User story template

US01 | “As a <role>, I want <usability requirement>" [11]

US02 | “As a <role>, I want to <action> <object>, so that <business
value>" [12]

US03 | “As a <persona>, I want/need <goal> so that <Nielsen’s heuristic>
will be met” [13]

US04 | “As a <role>, I want <goal/desire>" [14]
US05 | “In order to <receive benefit> as a <role>, I want <goal/desire>" [15]
US06 | “As <who> <when> <where>, I <what> because <why>.” [16]

US07 | “As a <role>, I want to <goal/desire>, <non-functional
requirement>, so that <benefit>" [10]

Template US03 [13] contributes in terms of usability engineering. The last
part, which in traditional template is responsible for expressing feedback or user
expectation, is specific for Nielsen’s heuristic values, which should be met in the
user story.

Template US04 [14] is similar to the traditional template but makes the last
part optional. The user story is shorter and does not provide information about
feedback or user expectation. It may be useful once maintain only the minimum
valuable information.

Template US05 [15] is equivalent to the traditional template but places the
benefit first instead of last.

Template US06 [16], also known as “Five Ws”, adds more relevant informa-
tion from the user perspective, namely, “when” and “where”, compared to the
traditional template.

Template US07 [10] only adds information about non-functional requirements
found in the functional process. Considering the counting example presented in
[10], this information is not relevant for sizing estimation.

3 COSMIC User Story Standard

Based on the user story templates shown in Table 1, we can observe some weak-
nesses and limitation.

First of all, none of existent templates provide information about connections
between data groups or entities. This information is considerably important in
terms of COSMIC estimation, once data movements are detected also considering
connections or links present in the functional process.

Furthermore, current templates, besides providing a place for result or user
expectation specification, it is not specific for feedback. Thus, it may be used to
express user expectation, which might not be related to the functional process,
for example, “As a user, I want to receive by email daily news, so that I am
always up to date to the news.”

COSMIC User Story Standard 9

We propose a template called COSMIC User Story Standard (CUSS). The
main improvement is adding information about connections among the data
groups manipulated in the functional process. Other improvement is related to
user feedback. Some functional processes provide feedback to user, while others
may not provide, so it is clearly presented in US.

The CUSS template is the following:

“As a <who/role>, I want to <what>, linked to <connections>; so/then
be notified about operation status.”
where:

— <who/role> is the Functional User;

— <what> is the verb the represents the action or the functional process;

— <connections> represents other data groups involved in this functional
process;

— “so/then be notified about operation status” is optional statement and rep-
resents the functional user feedback.

The corresponding “context-free grammar” is presented in Fig.4. The ter-
minal symbols are As a, As an, As the, I want to, I can, connected to, so,

US —> AS USER I DOT | AS USER I L DOT |
AS USER 1 FEED DOT |
AS USER I L FEED DOT
I — IWANT METHOD DG
L — LINK PLINK |
LINK PLINK SLINK TLINK |
LINK PLINK TLINK

AS — As a | As an | As the
IWANT —> COMMA i want to | COMMA i can
LINK —> (OMMA connected to

FEED —> SEMICOLON so | SEMICOLON then
FBACK —> FEED be informed about operation status

PLINK —> DG
SLINK —> (COMMA PLINK | COMMA PLINK SLINK
TLINK —> and DG

DOT —> .
COMMA —>
SEMICOLON —> ;

USER —> <list of roles>

METHOD —> <list of verbs/actions>
DG —> <list of data groups>

Fig. 4. Context-free grammar

10 M. Ecar et al.

then, ., ,, ;, and, be informed about operation status, plus any words represent-
ing a role, a verb, or a data group. The non-terminal symbols are I, L, AS,
IWANT, LINK, FEED, FBACK, PLINK, SLINK, TLINK, DOT, COMMA,
SEMICOLON, USER, METHOD, DG. The initial symbol is US.

Examples are presented below.

— As a Manager, I want to remove a book.

— As an user, I can update books; so be notified about operation status.

— As a Manager, I want to add a new book, connected to author.

— As the Manager, I want to save books, connected to author and publishing
company.

— As a Manager, I want to create books, connected to author and publishing
company; then be notified about operation status.

4 FEvaluation

We performed two evaluation strategies. The first one is a survey that was cre-
ated to raise the COSMIC community opinion about the new template and
its advantages and disadvantages. The second evaluation is an example of the
size estimation result after decomposing a requirement using the traditional US
template and using CUSS template.

4.1 Survey

The survey was created to retrieve the COSMIC community opinion about the
proposed US template. The survey is divided in 3 parts. The first part is com-
posed by questions to identify the respondent profile. The second part is com-
posed by open questions about current templates, the proposed template and
the impact in the agile aspect. The last part are closed questions in likert scale
[17], where 0 is “Disagree Strongly” and 4 is “Agree Strongly” about the same
questions from second part.

The survey had 22 responses. The Table2 shows the respondents relation
between certificate holders and years of experience with COSMIC.

Skipping to the third part of the survey, Fig. 5 show the boxplot in likert scale
for the three statements, Question 01 is “Current Templates provide enough
information in term of COSMIC Sizing.” Question 02 is “COSMIC User Story
Standard provides greater expressiveness in term of COSMIC Sizing.” Question
03 is “COSMIC User Story Standard Template compromises the agility aspect
in a process.”

Based on this chart, we can observe that concerning to current US templates
expressiveness, the concentration is around disagree moderately with an outlier
in agree strongly, in other words, we can infer that current US templates do not
have good expressiveness in terms of COSMIC sizing.

Moreover, it is observable that regarding to expressiveness increasing in
CUSS, the concentration is in agree strongly, based on this, we can conclude
that CUSS, is a step forward to have a better US COSMIC size estimation.

COSMIC User Story Standard 11

Table 2. Respondents distribution into groups.

Experience | Certified | Non certified
1 Year 0 1
2 Years 1 1
3 Years 4 0
4 Years 5 0
5 Years 5 0
6 Years 1 0
8 Years 2 0
10 Years 1 0
15 Years 1 0
20 2

Question 1 Question 2 Question 3

Fig. 5. First statement

Further more, the statement about CUSS to disturb the agile aspect, the
chart shows that concentration is around disagree strongly, in other words, we
can conclude that there is no heaviness, from agile point of view, in the infor-
mation added in COSMIC User Story Standard.

Returning to the second part of the survey, we conducted an content analysis
to analyse the answers with a deep interpretation.

The first open question is “Do you think that there is a lack of information in
current User Story Templates? Please discourse about your answer.”, the content
analysis is divided in two groups, “Yes” and “No” answers. The “No” answers
had not further discourse, so there were no classes in it. The “Yes” answers which
had further discourse, were divided in four classes. Table 3 present the content
analysis for the first open question. The percentage is over all answers for this
question.

Based on answers related to lack of information in current US templates, we
can observe that almost 80% of respondents agree that there are gaps in these
templates. From this group, around a half of respondents see no problem in this
information lack, so, around a half from those ones that agree that there are gaps
in current US template see that it could provide more information for COSMIC
size estimation.

12 M. Ecar et al.

Table 3. Content analysis for first question responses.

Group | Class Percent.
No - 22.7%
Yes “Yes, but it is inevitable, expected” 13.6%
Yes “Yes, it is designed to provide basic information” | 27.3%
Yes “Yes, it misses information” 13.6%
Yes Just Yes 22.7%

The second open question is “In your opinion, Cosmic User Story Standard
helps to identify more movements than other templates? Please discourse about
your answer.” The content analysis, was also, based on “Yes” and “No” answers
end their further discourses. The “No” answers were divided in two classes and
“Yes” answers were also divided in two classes as shown in Table 4.

Table 4. Content analysis for second question responses.

Group | Class Percent.
No “User Story is useless, there is no relevance in it” | 13.6%
No “I prefer other template” 4.5%
Yes “Yes, it is a major step forward” 18.2%
Yes “Yes, it is good, great, I like it” 63.6%

Based on the second question content analysis, we can conclude that over 80%
agree that CUSS could help to identify more movements. From the percentage,
around three-quarter classified it as “good” or “great” and one fourth classified
it as “a step forward for US COSMIC sizing”. According to this, we can conclude
that CUSS may be well received by COSMIC community, and in fact, it may
help in early COSMIC size estimation.

The third questions is “Do you think that this addition of information com-
promises the agile aspect? Please discourse about your answer.” Likewise, we
considered “Yes” and “No” answers, and classified its discussion. Table 5 presents
the content analysis for third question.

Based on Table 5, about 95% of the respondents believe that information
added in proposed template does not compromise the agile aspect of user story,
in other words, the information added is light weight and the agile aspect is not
corrupted.

Considering the first question, we can observe in content analysis that among
65% of the respondents considered that there is information lack in current user
story templates, but it is not a problem since user story is designed to express
only basic information.

COSMIC User Story Standard 13

Table 5. Content analysis for third question responses.

Group | Class Percent.
No - 31.8%
No “somehow”, “Why?” 27.3%
No “there is no relation”, “agile keeps agile” 27.3%
No “the addition of information is light weight” | 9.1%
Yes “Certainly” 4.5%

The content analysis for the second question, among 80% consider that the
proposed template is a good improvement in terms of COSMIC sizing, almost
20% considered it a major step forward.

For the third question, based on the content analysis among 95% of the
respondents considered that the information added in proposed user story tem-
plate does not compromise the agile aspect. Considering these answers, almost
60% sad just “No” or were not clear about what they think, while among 37%
considered that it is not a problem.

4.2 Example

The second evaluation consists in an example that shows how it is different
applying the traditional US template versus applying the proposed template
when decomposing a requirement written as epic. The main difference can be
observed in its value in CFP.

The requirement below is about a simple library system.

— The library system should allow a librarian user maintain authors, books.
When a new book is created or edited the author and publisher information
should come from the ones registered in the system. The manager user is also
able to activate and deactivate registered books. The manager user can also
list all booked books per client. The system should allow that client users
book and/or rent books. The librarian user can also send emails about new
books arrival.

The Table 6 presents the user stories written using the traditional template.
The Table 7 shows user stories written using the proposed template.

We can observe that there is a significant difference in the total size of CFP
units.

When using the CUSS template the number of CFP counted is 65, when
using the traditional template the number of CFP counter is 37. This difference
is related to detail level in each template. The proposed template add information
which expose more interaction and consequently more movements.

If the estimation is performed based only on the information available in
the traditional template, the professional should make assumptions about user

14 M. Ecar et al.

Table 6. Example using traditional template

1D US CFP

USO01 | As a Librarian, I want to register a new book, so 2
that it is available for booking and/or loan

US02 | As a Librarian, I want to remove books
USO03 | As a Librarian, I want to list all books

US04 | As a Librarian, I want to update books, so that I can |4
left it up to date

US05 | As a Librarian, I want to register a new author, so 2
that it can be user for book register

US06 | As a Librarian, I want to remove an author
USO07 | As a Librarian, I want to list all authors
USO8 | As a Librarian, I want to update an author, so that I |4
can left it up to date
US09 | As a Manager, I want to activate a book, so that 2
clients can book or rent it
US10 | As a Manager, I want to deactivate a book, so that |2
clients cannot book or rent it

US11 | As a Manager, I want to list all booked books
US12 | As a Client, I can create a new book booking, so that | 3
I can rent it

US13| As a Client, I can create a new book rental, so that I |3
can rent books

US14 | As a Librarian, I want to send emails about new 2
books arrival
Total 37

feedback and possible connections between data groups. The problem is that
these assumption may not be true, so the estimation is over or under precise.

The information added in the proposed template might seem heavy weight,
mainly if we are talking about writing US in requirements gathering. But the
objective of the CUSS template is to be clear about valuable information in
terms of COSMIC sizing.

Moreover, having more information in the very early development stage helps
to have a more precise estimation. It is important for managers that have to
control and estimate cost, time, team and etc.

5 Threats to Validity

The survey was anonymous and open to community, so anyone could respond it,
however, it was published just to COSMIC users and shared via email to specific
group of practitioners. Almost 90% of subjects are COSMIC certified, this factor

COSMIC User Story Standard 15

Table 7. Example using CUSS

ID US CFP

USO1 | As a Librarian, I want to register a new book, connected to 7
author and publisher; then be informed about operation status

USO02 | As a Librarian, I want to remove books; then be informed about |3
operation status

US03 | As a Librarian, I want to list all books, connected to author and | 7
publisher

US04 | As a Librarian, I want to update books, connected to author and | 9
publisher; then be informed about operation status

USO05 | As a Librarian, I want to register a new author; then be 3
informed about operation status

USO06 | As a Librarian, I want to remove an author; then be informed 3
about operation status

USO07 | As a Librarian, I want to list all authors

US08 | As a Librarian, I want to update an author; then be informed 5
about operation status

US09 | As a Manager, I want to activate a book; then be informed 3
about operation status

US10 | As a Manager, I want to deactivate a book; then be informed 3
about operation status

US11 | As a Manager, I want to list all booked books, connected to 5
clients

US12 | As a Client, I can create a new book booking, connected to client | 6
and book; then be informed about operation status

US13 | As a Client, I can create a new book rental, connected to client |6
and book; then be informed about operation status

US14 | As a Librarian, I want to send emails about new books arrival 2
Total 65

increase answers quality and reliability, and even for those ones which are not
certified the answers consistency was satisfactory. We considered all answers, due
to even non certified may have significant contribution. But even so, all subjects
have at least one year of experience with COSMIC in industry.

The survey was conducted comparing well known user story templates to
the proposed one. In the first survey step, the subjects could see examples of
use and the expressiveness difference between well known templates and the
proposed template.

We made a cross validation using two approaches to answer the same ques-
tions. So, each question was asked twice via discursive way and likert scale
[17]. Based on this double check, was could guarantee consistency between the
answers. In other words, we double checked if discursive answers was according
to likert [17] answer, finding solid results.

16 M. Ecar et al.

The COSMIC estimation was performed by a junior professional. So, there
may be not as precise as an expert certified COSMIC professional estimator.

6 Conclusion and Future Work

This work presented a new template for user story writing. This template is
called COSMIC User Story Standard and its purpose is to elevate the user story
expressiveness in terms of COSMIC size estimation.

The information added in this template is related to connections among
data groups in the estimated system, also there is an improvement related to
user feedback. The added information is lightweight and does not make the user
story saturated of information.

In order to raise the need to a new user story writing template, we devel-
oped a survey with COSMIC community to explore its possibilities and get
feedback from potential users. The survey answers were analysed under content
analysis. The result is enthusiastic, the template was well received by COSMIC
community.

Survey content analysis allows us to realise that the information lack in user
story is perceived by COSMIC users, but not necessarily it is seen as a huge
problem.

Furthermore, content analysis also allows us to conclude that the proposed
template is valuable for COSMIC community being classified as great and as a
step forward in terms of COSMIC user story estimation.

Besides, we developed an example of the difference between the estimated
size from user stories decomposed from the same epic and written in both, the
traditional and the proposed, templates. The difference between the total CFP
estimated size using the proposed template and the traditional is huge significant.

As future work, we aims to develop a software based on proposed template
for automated grammar validation and verification. Moreover, we have intention
to use this template as source to automated COSMIC size estimation of user
stories. Furthermore, we pretend to perform empirical evaluation of the proposed
template with experiments and case studies.

Acknowledgments. We thank mister Frank Vogelezang who provided insight and
expertise that greatly assisted the research.

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.L.: Guide to the Soft-
ware Engineering Body of Knowledge: 2004 Version SWEBOK. IEEE Computer
Society, Washington, D.C. (2004)

2. Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., Ahmad, M.O.: Comparing
requirements decomposition within the Scrum, Scrum with Kanban, XP, and
Banana development processes. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 68-83. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6_5

https://doi.org/10.1007/978-3-319-57633-6_5
https://doi.org/10.1007/978-3-319-57633-6_5

10.

11.

12.

13.

14.

15.

16.

17.

COSMIC User Story Standard 17

Maurer, F., Martel, S.: Extreme programming. Rapid development for web-based
applications. IEEE Internet Comput. 6(1), 86-90 (2002)

Medeiros, J., Vasconcelos, A., Gouldao, M., Silva, C., Aratjo, J.: An approach based
on design practices to specify requirements in agile projects. In: Proceedings of the
Symposium on Applied Computing, pp. 1114-1121. ACM (2017)

Mendes, T.S., de F Farias, M.A., Mendonga, M., Soares, H.F., Kalinowski, M.,
Spinola, R.O.: Impacts of agile requirements documentation debt on software
projects: a retrospective study. In: Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, pp. 1290-1295. ACM (2016)

ISO: Information technology—software measurement—functional size measure-
ment (2012)

Akca, A., Tarhan, A.: Run-time measurement of cosmic functional size for Java
business applications: initial results. In: 2012 Joint Conference of the 22nd Inter-
national Workshop on Software Measurement and the 2012 Seventh International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
pp- 226-231, October 2012

Abran, A., Baklizky, D., Davies, L., Fagg, P., Gencel, C., Lesterhuis, A.,
Londeix, B., Soubra, H., Symons, C., Villavicencio, M., Vogelezang, F.,
Woodward, C.: Introduction to the COSMIC method of measuring software. Com-
mon Software Measurement International Consortium (2014)

Abran, A., Baklizky, D., Desharnais, J.M., Fagg, P., Gencel, C., Symons, C.,
Ramasubramani, J.K., Lesterhuis, A., Londeix, B., Nagano, S.I., Santillo, L.,
Soubra, H., Trudel, S., Villavicencio, M., Vogelezang, F., Woodward, C.: COSMIC
measurement manual. Common Software Measurement International Consortium
(2015)

Berardi, E., Buglione, L., Cuadrado-Collego, J., Desharnais, J.M., Gencel, C.,
Lesterhuis, A., Santillo, L., Symons, C., Trudel, S.: Guideline for the use of COS-
MIC FSM to manage agile projects. Common Software Measurement International
Consortium (2011)

Moreno, A.M., Yagiie, A.: Agile user stories enriched with usability. In: Wohlin, C.
(ed.) XP 2012. LNBIP, vol. 111, pp. 168-176. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30350-0-12

Zeaaraoui, A., Bougroun, Z., Belkasmi, M.G., Bouchentouf, T.: User stories tem-
plate for object-oriented applications. In: 2013 Third International Conference on
Innovative Computing Technology (INTECH), pp. 407-410. IEEE (2013)
Choma, J., Zaina, L.A.M., Beraldo, D.: UserX story: incorporating UX aspects
into user stories elaboration. In: Kurosu, M. (ed.) HCI 2016. LNCS, vol. 9731, pp.
131-140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39510-4_13
Cohn, M.: Advantages of the “as a wuser, i want” wuser story tem-
plate (2008). https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-
a-user-i-want-user-story-template. Accessed 9 Sept 2017

Matts, C.: Feature injection: three steps to success (2011). https://www.infoq.com/
articles/feature-injection-success. Accessed 9 Sept 2017

Pupek, D.: Writing user stories the 5 Ws way (2008). http://blog.agilejedi.com/
2008/03/writing-user-stories-5-ws-way-writing.html. Accessed 9 Sept 2017
Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 1-55
(1932)

https://doi.org/10.1007/978-3-642-30350-0_12
https://doi.org/10.1007/978-3-642-30350-0_12
https://doi.org/10.1007/978-3-319-39510-4_13
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
https://www.infoq.com/articles/feature-injection-success
https://www.infoq.com/articles/feature-injection-success
http://blog.agilejedi.com/2008/03/writing-user-stories-5-ws-way-writing.html
http://blog.agilejedi.com/2008/03/writing-user-stories-5-ws-way-writing.html

18 M. Ecar et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

q

Check for
updates

Improving Mockup-Based Requirement
Specification with End-User Annotations

Matias Urbietal’z(@), Nahime Torres> , José Matias Riverol’z,
Gustavo Rossi'?, and F. J. Dominguez-Mayo®

! LIFIA, Facultad de Informatica, UNLP, 50 y 120, La Plata, Argentina
{murbieta,mrivero, gustavo}@lifia. info.unlp. edu. ar
2 CONICET, Buenos Aires, Argentina
3 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
rocionahime. torres@polimit.it
4 IWT2, Computer Languages and Systems Department, University of Seville,
ETSII, Avda. Reina Mercedes S/N, 41012 Seville, Spain
fjdominguez@us. es

Abstract. Agile approaches, one of the key methodologies used in today’s
software projects, often rely on user interface mockups for capturing the goals
that the system must satisfy. Mockups, as any other requirement artifact, may
suffer from ambiguity and contradiction issues when several points of view are
surveyed/elicited by different analysts. This article introduces a novel approach
that enhances mockups with friendly end-user annotations that helps formalizing
the requirements and reducing or identifying conflicts. We present an evaluation
of the approach in order to measure how the use of annotations improves
requirements quality.

Keywords: Requirement - Agile -+ Documentation - Mockup * Annotation

1 Introduction

Eliciting application requirements implies understanding the needs of one or more
stakeholders even in cases where the business domain may be partially or totally
unknown for the analysts who perform the elicitation. Often, requirements are agreed
by stakeholders in such a way that the semantics and meanings of each used term are
well understood. However, when different points of view [6] of the same business
concept exist, ambiguities and/or inconsistencies may arise being them detrimental to
the software requirement specification. Although the use of agile approaches has
become a key factor in project success', the companies practicing these approaches
claim that the minimal documentation provided by user stories is a challenge for the
projects [3]. When the personnel turnover or rapid changes to requirement arises, the
application evolution is severely compromised. Traditionally, conciliation tasks are
performed using meeting-based tools [8] in order to eliminate requirements ambiguity
and inconsistency but in the event of agile approaches the tacit knowledge which is

' 9th Annual State of Agile Survey - http://stateofagile.versionone.com/.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 19-34, 2018.
https://doi.org/10.1007/978-3-319-91602-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://stateofagile.versionone.com/

20 M. Urbieta et al.

mandatory in this task can be lost on personnel turnover or inaccessibility when the
appropriate customer is unavailable. Agile approaches often rely on unit testing for
maintaining the alignment of requirements when these suffer changes but large textual
descriptions present in documents and the requirement change volatility make it
impossible to keep artefacts updated and consistent [1]. When requirement inconsis-
tencies are not detected on time - being this one of the most severe reasons for project
cost overrun [21] -, they may become defects in the application. In this context, the
effort to correct the faults is several orders of magnitude higher than correcting
requirements at the early stages [2].

In practice, agile methodologies reduce the gap between expectations and deliv-
erables by having short development cycles in which a deliverable is released to be
confronted with requirements when an iteration ends. This practice often does not focus
on documenting the solution (class diagrams, deployment diagrams, etc.) as it is done,
for instance, in waterfall or RUP approaches. One of the most important tools for
documentation adopted by agile practitioners is the mockup of user interfaces. By using
this technique, the way in which business scenarios are instantiated relies on light-
weight textual descriptions like User Stories, and wireframes design that easily com-
municate application behavior to stakeholders.

User Interface mockups are a useful tool for describing scenarios where the real-life
data is used for exemplifying the use case instead of abstract descriptions. However, the
information they provide is informal and allows misunderstandings by different
stakeholders. For example, we could consider a marketplace application showing a
product list like the one shown in Fig. 1. For every product, we have an image, a price,
a title, a description, a quantity sold, a location, an icon to indicate if the product is
new, another to indicate if the seller is premium and one that indicates whether the
product has free shipping or not. Although this information is illustrative, it lacks the

Buy Online
a Q X Q (htto7/buyonline com) @
Buy Online Products Offers |Sign in Sign up
7 US $120,50
I Q smartphones I ‘ Search 1 / $120,
Cell Phone - G5
32 Sold
LG G6 Chcoamusa $ 499
The LG G6 utilizes a metal chassis with a glass backing, andis @l Free shipping
1P68-rated for water and dust-resistance. It is available in black,
white, and silver-color finishes. The G6 features a 1440p FullVision Ay New product
1PS LCD display, with a .. Read more (") Premium seller
BB Add to cart
.
4
. 16 Sold USs $165,30
iPhone 6 & use $ 290
The iPhone 6 and iPhone 6 Plus include larger 47 and 65 inches iy New product Smartphone L6
(120 and 140 mm) displays, a faster processor, upgraded
cameras, improved LTE and Wi-Fi connectivity and support for a ('Y
near field.. Read more
BB Add to cart
4
(a) Web Version (b) Mobile Version

Fig. 1. Mockup of an e-commerce application.

Improving Mockup-based Requirement Specification with End-User Annotations 21

precision to formally describe the requirements expected in the early stages of software
development. The mockup’s reader is not able to distinguish if the regular price or the
internet price property is intended to be displayed with the label “$499”. The team
members may interpret different possible behaviors accordingly to their point of view,
experience and background. The developers may define by themselves the missing
information based on this vague definition where any misconception will be detected
later with a costly resolution. This is because the mockup tool is an informal specifi-
cation which lacks of resources to enumerate abstractions such as variables and entities
like UML does.

To make matter worse, as long as new requirements are planned as User Stories in
sprints, one or more conflicts can raise. Inconsistencies may also arise from new
requirements, which introduce new functionality or enhancements to the application or
even from existing requirements that change during the development process. Let’s
suppose that for the use case exposed on Fig. 1, there is a new slightly different
mobile-based user interface. This new mockup is used to describe a new commercial
initiative and it has different business rules that cannot be appreciated by only looking
at the mockup. Despite of the mobile counterpart may seem to be a legitimate design
because much of the shown information is shared by both versions (mobile and web),
there are specific details that belong to the mobile version such as promotional dis-
counts or free-shipping benefits that are imperceptible by the reader at first sight.

To cope with the aforementioned problem, we present in this work as novel con-
tribution a colloquial and user-friendly notation to describe data, navigation, business
and interaction requirements upon mockups specifications. In order to evaluate the
effectiveness of our approach, we include a controlled experiment that assesses the
expressiveness improvement of Mockups using this approach.

The rest of this paper is structured as follows. Section 2 presents some related work
on requirements validation and model consistency checking. Section 3 describes our
approach to annotate mockups using end-user grammar. Section 4 presents an evalu-
ation of our approach. Finally, Sect. 5 concludes this work discussing our main con-
clusions and some further work on this subject.

2 Related Work

The analysis and detection of conflicts, errors, and mistakes in the requirements phase
are the most critical tasks in requirements engineering [7]. In [5], the authors surveyed
the way in which Web engineering approaches deal with main tasks: requirements
capture, requirements definition and requirements validation and conclude that most
approaches use classical requirements techniques to deal with requirements. According
to these, there are four main techniques for requirements validation: reviews, audits,
traceability matrix and prototypes; in the Web engineering literature, requirements
validation is one of the less treated subjects. Besides, none of these techniques offers a
systematic approach for detecting conflicts in requirements. Requirements conflicts
arise despite the way we document them, for example in [22] they define a framework
for quality of user stories and one of the necessary conditions for a US to be of good

22 M. Urbieta et al.

quality is that it has to be unique and free of conflicts. Additionally, a characterization
of conflict in user stories is presented but there is no mention of mockup’s conflicts.

Mockups tools are gaining attention in the requirements engineering field since they
help to build UI specifications in companion with end-users. Also, they help to discover
and define non-Ul requirements in a language that is closer to them, as opposed to plain
textual specifications [11, 13]. Additionally, mockups have been proven to be an
effective method to capture fluid requirements [18] — those that are usually expressed
orally or informally and are an implicit (and usually lost) part of the elicitation process.
The usage of user interfaces prototypes with static structure to define conceptual
models has been already shown in [12]. While authors in this work show how E-R
models can be derived from structured mockups, their approach is not applicable to
informal mockups like the ones that are considered in this work. The ICONIX process
[17] proposes to start with Graphical User Interface (GUI) prototypes as a first
requirements artifact. While this may provide some initial guideline, in that work the
authors do not provide any language or formal guidance to define data requirements. In
[14], authors establish a method to work with Use cases and mockups in conjunction,
however, Use Cases specification require more effort than a lightweight specification.
In [10] the authors explain that sometimes when documenting requirements in agile this
is so customer-oriented, that even if the specification is clear for the customer, they
might not for the developers, having here conflicts between two actors in software
development, and for this they propone Requirement Specification for Developers
(RSD); each RSD can have mockups associated, and when a requirement is changed
the mockup associated has to be reviewed.

Regarding requirement consistency, last years we have been researching different
strategies to capture Web software requirements and validating its consistency and
completeness [4, 19]. These approaches were designed to be plugged into “heavy”
Model-Driven approaches and do not easily fit in agile development processes. In this
work, we aim at introducing tools for the consistency checking of mockups by bor-
rowing concepts from our previous work.

3 Enhancing Mockups with End-User Annotations

After software analysts understand clients’ initial needs, they are able to start sketching
mockups (with direct stakeholder participation if desired) in order to informally
describe how the application will be browsed and will be used later. Mockups can be
modelled using any tool in which the analyst has expertise (for instance, Balsamiq?).
We use as a running example the development and extension of an e-commerce site
(Fig. 1).

Mockups are used as a tool for validating requirements’ interpretation with
stakeholders; they describe how the user interface should look like with illustrative
examples belonging to real life scenarios. When using Mockups, analysts take
advantages of the fact that the language that they use, user interface widgets, are

2 Balsamiq Mockups - https://balsamiq.com/products/mockups/.

https://balsamiq.com/products/mockups/

Improving Mockup-based Requirement Specification with End-User Annotations 23

jargon-free (unlike textual requirements artifacts) and represent a common language
between the analysts and the stakeholders [11, 15]. However, while mockups allow
describing visual and interaction metaphors their solely visual description is not enough
for expressing requirements like validation, navigation/activation, business process
aspects, etc. Because of this, informal annotations are usually used in companion with
mockups to describe those missing aspects. Throughout this section we describe how
we formalize these informal descriptions to solve ambiguities.

3.1 Structural User Interface

The approach presented in this paper extends (using an end-user grammar) the
MockupDD [15] methodology which provides a metamodel for enhancing mockup
widgets with annotations. In the context of MockupDD, mockups are the main,
mandatory requirements specification artifacts which, instead of being discarded as in
traditional development approaches, are reused as a basis to define more complex
software specifications. This reuse is accomplished through (1) the formalization of the
mockup structure and widgets, through what it is called a Structural User Interface
(SUI) model and (2) the introduction of a set of formal annotations over the structure
defined over such model [15]. Every annotation placed over the formalized mockup
represents an independent specification related, for instance, to content, navigation,
behavior or any other aspect that can be specified over a visual representation of the UI.
The semantics defined for every annotation allows formalizing requirements over
mockups. Consequently, it allows generating code or actions interpreted at runtime,
translating them to semi-textual representations to discuss requirements captured over
the mockups with stakeholders. In this case, annotations (called zags from now on) are
only used to formalize and refine requirements and, eventually, to detect conflicts. Our
approach relies on the definition of formal tags which enhance the widgets that com-
poses the UL For a sake of space, in this work we will omit details of the SUI model
since it is not strictly related to the approach — more details about it can be found in
[15].

3.2 End-User Grammar Annotations Catalogue

In this section, we introduce the end-user annotation catalogue for enriching the
mockup specifications that will be used later in the examples. In order to improve
Mockup element description and solve the lack of formality, in this step we use a
Domain Specific Language called End User Grammar (EUG) [15] which focuses on
describing information source, format and information relationships. Each annotation is
a structured colloquial definition which is intelligible to end-users because it does not
present any technical concept that would limit its understanding. Next, we introduce
annotations patterns and their description.

"Mockup Name" view (number) (1)

Defines an ID (number) for a mockup in order to be referenced as a destination for
navigation/activation by other tag.

24 M. Urbieta et al.

a[n] [1ist of] class (2)

Denotes that an object or a list of objects of class Class is shown or can be
manipulated in the UL For instance, a list in a mockup that shows an index of products.

Class’ attribute [which is a datatype | with options : 3)
valuey,...,and valuey]

Specifies that the attribute of an object of class Class (called attribute) is
shown or can be edited through an underlying graphical widget. Optionally, a
datatype can be defined for that attribute (one of Date, String, Integer,
Decimal, Boolean, Integer an enumeration or Blob). If no datatype is
specified, String is assumed. In the event of an enumeration it is possible to list
possible values using “with options oj,07,...,0y" clause.

a Classl has aln][optional][list of] Class2, called
“aReal-Name”

4)

Denotes that an object of Class?2 is shown or can be manipulated through the
underlying element in the UL. However, this element is obtained navigating from an
association called associationName from another element of class Classl.

Subclass is a type of Superclass (5)

Denotes that an object of class Subclass is shown or can be manipulated in the
User Interface and that the class of this object (Subclass) inherits from another one
called Superclass.

Navigates to <destination> (6)
Opens a popup <destination> (7)

Denotes that, when executing a default action over the underlying graphical ele-
ment (e.g., a click) the destination mockup will be shown, navigated to or focused —
destination mockup should be tagged with mockupName view (number) and
<destination> should reference that number

Class's attribute is required (8)

Denotes that a non-empty value for attribute attribute of class Class is
required.

Class’s attribute min value is minimumvalue 9)

Improving Mockup-based Requirement Specification with End-User Annotations 25

Class’s attribute max value is maximumValue (10)

Class’s attribute values must be between minimumvalue

. (11)
and maximumValue

Denotes that the values for attribute attribute in class Class must be less than
or equal to a maximumValue and/or greater than or equal to a minimumValue

Class's attribute matches regularExpresion (12)

The contents of attribute attribute of class Class must be formatted to match

a pattern (regularExpression). For instance, phone numbers and ID data have

specific formatting constraints.

[Saves | Deletes] a Class (13)

Denotes that, when clicking or triggering a default action over the widget an
instance of Class (which is being edited) will be created or deleted; respectively.

Triggers "action description" (14)

Denotes that an arbitrary action (described textually) will be invoked when exe-

cuting the default action over the widget. This construct is used when the expected
behavior is not already defined but needs to be pointed out.

"Product Buy Online —
List" view G Q X Q (htto:/7buyonline com =) @ Product's internet
1) price, which is a
. o ; ints
Buy Onl[ne Products Offers l Signin Sign up iniegen

Product's delivey flag
with options: free, paid

(Producl's name)\ .LQ smartphones H SeorchX
~_"

32 Sold 4
LG G6 checaousa $ 499
The LG G6 utilizes a metal chassis with a glass backing, andis Gl Free smpp\nq‘
68-rated for water and dust-resistance. It is available in black,

P |_—[Product's status with
. e N
ite, and silver-color finishes. The G6 features a 1440p FullVision few product 4 L
IPS LCD display, with a .. Read more oY) Premium sellery P BOISZ3

BB Add to cart

[iPhone B”55, ues $ 290

The iPhone 6 and ELef G Plus include larger 47 and 55 inches iy New product
(120 and 140 geeff displays, a faster processor, upgraded

camerg; foroved LTE and Wi-Fi connectivity and support for o

ngofeld.. Read more

/ BB Add to cart I

Product's location 7

Product's sold
count, which is Q ==
decimal

Product's seller status
with options: premium,
regular, new user

Product's
thumbnail
picture

Navigates
to2

Fig. 2. Descripted mockups using our Colloquial DSL.

26 M. Urbieta et al.

3.3 Colloquial Data Description

Mockups often use a real-life scenario defined with illustrative data to describe what
User eXperience (UX) the application will provide. During this step, analysts must
enrich mockups graphical elements with a template-based colloquial description.

The main advantage of EUG is that it can be easily understood by end-users and
also provides the formality required to be processed and, consequently, allows a better
validation of requirements. Each description expression must match a specific template
with well-defined placeholders that will ease later automate processing.

In Fig. 2, we can see how the mockup presented in Fig. 1a was documented using
the tags. For the sake of space, we present in the examples some simple but illustrative
sets of annotations that specify the requirements, but the sets of tags can be more
exhaustive covering a larger set of elements. In the figure, a mockup built with Bal-
samiq tool is presented where tags are included using markup capabilities provided by
the tool itself. The requirement is first identified with the name ‘“Products list” using
Grammar 1 syntax (presented in Sect. 3.2). Then, from the expression “Product’s
delivery flag with options: free, paid” (Grammar 3) we can identify the Product
business entity that has an attribute called delivery flag that has two possible values:
free and paid. Moreover, some behaviors are related to the “Add to cart” button, which
creates a new instance of Product Purchase object through “Saves a Product Pur-
chase” (Grammar 13) and navigates to a Cart view through “Navigates to 2”
(Grammar 6). The reader should note that the entities considering its attributes and
types as well as actions will be used in the consistency analysis of mockups later.

"Shopping Buy Online
Cart" view < C> X Q () @)
(2)
Buy Online Products Offers | Signin Sign up
fProduct
Your cart Purchase's

quantity

a Product

Purchase has a Product Unit price|Quantity roduct Purchase's

fdeUC‘. called B Free shipping r quantity min value is 1

product to‘ be LG G6 Y Newproduct $499g | @ (+]

purchased' /’ () Premium seller \ Product's internet
/ B price

Total $ 898¢ Purchase's total,
which is a decimal
Proceed to checkout
Product's
avigates
reme
Z

Fig. 3. Checkout mockup

Product's
thumbnail
picture

In Fig. 3, the Shopping Cart mockup is shown. This mockup is navigated to after
the user adds a new product in their Product Purchase clicking in the “Add to
cart” button in mockup depicted in Fig. 2, after the Product Purchase is created. The
Shopping Cart mockup mostly shows a list of Product Purchase and the mockup
mostly describes their properties. But, it also features a relationship between the
Product Purchase and the Product - since a Product Purchase represents a purchase

Improving Mockup-based Requirement Specification with End-User Annotations 27

of specific quantity of an individual Product (Grammar 3). This relationship is
expressed through the “Product Purchase has a Product, called ‘product to be
purchased’” tag (Grammar 4). Finally, it also includes an annotation specifying
that the quantity of a Product Purchase should be 1 as a minimum (Grammar 9).

3.4 Using End-User Grammar to Identifying Requirement
Inconsistencies

A candidate conflict arises when there are syntactic differences between requirements
expressed through mockups. These differences may be common mistakes [4]: (a) as
consequence of an element absence in one mockup but its presence in the other, (b) the
usage of two different widgets for describing the same information which contradict
themselves, or (c) a configuration difference in an element such as the properties values
of a widget. This situation may arise when two different stakeholders have different
views on a single functionality, or when an evolution requirement contradicts an
original one. By annotating mockups, we are able to reason over the specification and,
both manually or using automatic tools when possible, end-user grammar allows to
detect inconsistencies that are not clear with plain mockups — or when using mockups
with colloquial, natural language annotations.

A basic conflict detection can be performed by comparing mockups so as to detect
the absence of elements or elements’ constructions differences. Since Mockups are
containers of widgets, we can apply difference operations of set collections in order to
detect inconsistencies. For example, currently, it has become common for software
products to release both a mobile and a Web version. The arrival of a new mobile
version should have the same business goal although it runs in a different platform with
different interaction and presentation features. For example, in Fig. 4, a different
stakeholder suggests an alternative mockup version to the one presented in Fig. 2.
Although their aim is to present the same underlying concept, they have significant
differences that would be overlooked without our end-user grammar. In Fig. 2, The
Product List mockup defines a Product entity which has Description, Internet Price,
Delivery Flag, Thumbnail, Status, Sold Count, and Location attributes. In Fig. 4, a
different business entity version also called Product comprises a different set of attri-
butes: Description, Internet Price, Delivery Flag, and Thumbnail. We can appreciate
two types of differences: one related to the attribute existence or absence and the other

(.
[—
Product's thumbnail ———— =
marhones) &4 =
LG G6 d
N >< $ 499 & 7 T T
S with options: true an
— L/ false
Samsung Gala:
$2 -]

roduct's internet
price, which is a
decimal

- x

Fig. 4. Annotated Product List mobile version.

28 M. Urbieta et al.

related to the attribute configuration. Regarding the former, there are attributes that
appear in one figure and not in the other, for example: Status, Sold Count and Location.
On the other hand, there are differences related to the type of the attributes, for example
in one of its versions a Product has a Delivery Flag as an enumeration and in the other
it’s a Boolean. Also, the Price is defined as an Integer number in the first version while
in its counterpart it’s a decimal number (Grammar 3).

Once the inconsistencies are detected, conciliation tasks are performed using
meeting-based tools [8] or heuristics [4] to eliminate requirements ambiguity and
inconsistence. For the sake of space, we will not provide a throughout discussion of this
topic.

4 Evaluation

In this section, we conduct an evaluation of the approach to measure how much it
assists in the understanding of mockups following Wohlin et al. guidelines [20]. First,
we define the goals, hypotheses and variables of the experiment. Then, we proceed to
define metrics and materials considered. After that, we detail subjects, instrumentation,
and data collection methods used in the experiment. Then we conduct an analysis of
results and their implication. Finally, we consider threats to validity of the evaluation.

4.1 Goals, Hypotheses and Variables

Following the Goal-Question-Metric (GQM) format as is suggested in [20], we define
the goal of the experiment in the following way:

Analyze Mockups enhanced with end-user’s annotations for the purpose of mea-
sure how requirements documented with mockups are improved with respect to their
expressiveness from the point of view of researchers in the context of software
analysts and developers.

After defining the Goal, now we proceed to define the different questions that will
allow to answer them. We profit from the precision and recall [9] concepts from
information retrieval research field and adapted them to our experiment so as to
measure quality of responses.

Our main Research Questions (RQ) are:

RQI: Do End-user annotations improve the relevancy of the data elements iden-
tified in mockups?

For this RQ, we consider as null hypothesis Hy that there is no difference in the
accuracy of identification of involved data by subjects using only mockups and
annotated mockups. The relevancy is the response variable which will be measured
using a precision metric. The metric is used to assess how many data items identified by
the subject in a mockup are relevant accordingly a leading case. In Eq. 15, the formula
is depicted where the precision is computed given a subject and a mockup.

RelevantResponse (My)(") Response (Subject;)

P(Subject;, My) = (15)

Response (Mf)

Improving Mockup-based Requirement Specification with End-User Annotations 29

As alternative hypothesis H,, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (Ugy) against the basic
support of mockups(imock): Bmock < HEU-

RQ,: Do End-user annotations improve the completeness of the data elements
identified in mockups?.

For this RQ, we consider as null hypothesis Hy that there is no difference in the
accuracy of identification of involved data by subjects using only mockups and
annotated mockups where the completeness is the response variable. The recall metric
is used to assess how many relevant data items are identified by the subjects in a
mockup. In Eq. 16, the Recall formula is presented where the precision is computed
given a subject and a mockup.

RelevantResponse(My) (| Response (Subject;)

R(Subject;, My) = (16)

RelevantResponse (Mf)

As alternative hypothesis H,, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (ugy) against the basic
support of mockups(imock): Mmock < HEU-

4.2 Experiment Design

In order to answer these questions, we designed a between-subject design experiment
where subjects were asked to identify entities and data present in mockups; from now,
Experiment Variable (EV). The subjects were randomly divided into two groups for the
two alternatives of the approach (the experiment’s factor): mockups without any kind
of annotations (Control) and mockups with the use of presented end-user annotations
(Treatment).

In this experiment, we focused on measuring how the communication of require-
ment is improved with annotation and we did not consider evaluating the user expe-
rience related to the tagging task or comparing the performance against other approach.

4.3 Experimental Unit

The requirement gathering task using mockups requires to document mockups and
communicate them, firstly, to stakeholders to validate its definition and later to the
developers in order to start its development. For this task, we have modeled use cases
using mockups for an e-commerce site — which mockups were similar to the ones
depicted in Fig. 1. The main functionalities considered in use cases were system
registration and the view of a product’s details. Both versions used the same mockups
but one of them included the annotations defined in Sect. 4 to enhance their descrip-
tion. Both the modeling and tagging tasks results were validated by senior analysts
prior to the experiment.

To evaluate subject’s understanding of the requirements, we asked them to fill out a
form where they should record each data definition they can extract from the mockups,
its expected data type, any kind of validation and the associated widget. Since mockups
depict scenarios using examples rather than abstract variables or placeholders, they lack

30 M. Urbieta et al.

any kind of formalism so the datatype, validations and any other specification is the
result of the mockup’s reader interpretation. Both the mockup and the form are
available online®.

4.4 Subjects, Instrumentation, and Data Collection

During the experiment, the subjects received a form and a set of mockups. Subjects
were 34 developers from different software companies. On average, they were 31 years
old, had more than 6 years of programming experience and approximately 3.5 years in
requirement analysis tasks. A group of 18 subjects performed the experiment with
mockups annotated with end-user grammar meanwhile a group of 16 subjects per-
formed the experiment based on simple mockups. They were motivated and committed
to the experiment, as we were sponsored by the CEOs and managers that notified the
subjects about the company’s commitment to the research experiment.

The experiment protocol was executed in the same way with all the subjects. First
of all, they received a brief introduction to the material which had to be used during the
experiment. In the case of annotation-based material, the subjects were trained about
the end-user grammar usage. Next, participants were asked to complete an expertise
survey, read the experiment description, study the mockups, and fill out the ques-
tionnaire’s form. Each subject performed fully experiment supervised by a researcher
who ensured similar facilities layout, infrastructure, and subject isolation conditions.
Additionally, the researcher controlled the subject to avoid any answer modification as
long as she advanced in the experiment. To achieve the task of processing the collected
results, we first processed and digitalized responses. Then, we used different scripts
based on Python language (version 3.6.1) and Scipy library (version 0.19.0) to compute
Precision and Recall formulas.

4.5 Analysis and Evaluation of Results and Implication

For the analysis of samples, firstly we defined the Relevant Data Elements
(RDE) present in the mockups to be used to compute precision and recall metrics.
Then, once samples were digitalized, we checked samples against RDE for computing
True Positive (TP), and False Positive (FP) elements. That is to say, those elements that
a subject correctly reported (TP) when checking whether his response is included in the
relevant element set, or erroneously reported (FP). Finally, all samples were processed
using Mann—Whitney U test [20], which is a non-parametric statistical hypothesis test
technique, considering a standard confidence level (o) of 0.05. This technique can be
used with unequal sample size which is the case of this experiment. Additionally, we
computed the effect size using Cliff’s Delta technique.

The analysis was performed mostly in an automated way using Python-based
scripts that resolved the recall and precision calculation, and the hypothesis testing.

In order to answer our research question, we evaluated different possibilities of
computing subject’s responses and the outcome is presented in Table 1. As we asked

3 https://goo.gl/EMJI6K].

https://goo.gl/FMJ6KJ

Improving Mockup-based Requirement Specification with End-User Annotations 31

subjects to identify abstract data present in Ul (the attribute), its data type, and its
owner entity, we considered four evaluation strategies for all the possible combinations
of evaluating such tuple: (i) only the abstract data (attribute) identified in the response,
(i) the attribute and its data type, (iii) the attribute and its owner entity, and (iv) the
attribute, its data type and its owner entity tuple. For example, to evaluate whether the
tuple birthday, String type, and owned by the entity Person is a valid response or not.
For every mentioned evaluation strategy, we calculated Precision (P) and Recall
(R) metrics of subject responses when using both mockups without annotations to
measure how accurate were their answers. For each metric we reported, in Table 1, the
average and standard deviation for each approach (Mockup and Annotation columns
respectively), the Cliff’s delta value for the effect size, and the p-value resulting from
the hypothesis testing that compares the means of both approaches. We can realize how
annotated mockups samples excel in performance in all evaluation type. In all cases,
the p-value was lower than the alpha level 0,05. Therefore, there is enough evidence to
support the alternative hypothesis. That is, the mockup with end-user annotation
improves the

To calculate the effect size, we used cliff’s delta technique which has as a result
value in (—1,1) range. In this case, the values are bigger than 0.474 [16] in all evaluation
types depicting a high meaningfulness.

Additionally, we computed the time required for each individual to complete the
experiment. It is noteworthy that the subjects extracting information from annotated
mockups performed better (requiring less time) than the subjects working on
plain-annotated. For annotated mockups 1 and 2, it took to subject on average 297 s and
880 s; respectively. Conversely, for non-annotated mockups, it required 332 s and 947 s.

The recall metric points out that there is an effective understanding of the pieces of
data comprised by the mockup. The subjects reported a greater number of relevant
elements than those subjects which worked with simple mockups. That means, the
subjects were more accurate with the domain element description. The precision was
also higher having less irrelevant responses than mockups without annotations. This is
another important indication about the responses that they did not combine valid and
invalid information reducing the noise in the communication between clients and
analysts. For example, without the annotations, subjects defined different irrelevant
business entities such Login, User, and Person to compose UI attributes.

Table 1. Sample results

Mockup 1 Mockup 2

Mockup Annotation | Cliff’s | P-value | <0.05 | Mockup Annotation | Cliff’s | P-Value | <0.05
Evaluation Metric | Avg. | Std. | Avg. | Std. | delta Avg. | Std. | Avg. | Std. | delta
(i) Attribute P 048 | 0.16 | 0.65 | 0.19 | 0.55 0.003 v 0.52 | 0.10 | 0.61 | 0.11 | 043 0.020 v

R 0.31 | 0.08 | 0.45 | 0.10 | 0.70 0.000 |/ 0.44 |0.09 | 0.54 | 0.07 | 0.53 0.003 Vv

(ii) Attribute, P 0.33 | 0.15 | 0.55 | 0.18 | 0.69 0.000 v 0.50 | 0.13 | 0.60 | 0.12 | 0.39 0.031 v
Type R 0.21 | 0.09 | 0.38 | 0.11 | 0.77 0.000 v 0.43 | 0.11 | 0.52 | 0.08 | 0.49 0.005 V4
(iii) Attribute, P 0.00 | 0.00 | 047 | 0.29 | 0.78 0.000 v 0.33 |1 0.23 | 0.55 | 0.19 | 0.57 0.003 v
Entity R 0.00 | 0.00 | 0.35 | 0.21 | 0.78 0.000 |/ 0.29 | 0.21 | 0.48 | 0.16 | 0.56 0.002 Vv
(iv) Attribute, P 0.00 | 0.00 | 0.39 | 0.27 | 0.72 0.000 Vv 0.31 | 0.22 | 0.53 | 0.19 | 0.56 0.004 Vv
Type, Entity R 0.00 | 0.00 | 0.28 | 0.19 | 0.72 0.000 v 027 | 0.21 | 047 | 0.15 | 0.58 0.002 Vv

32 M. Urbieta et al.

Summarizing, participants that were subjected to mockups with annotations where
more time-efficient and precise in their answers that those that worked with simple
mockups and oral clarifications (if required).

4.6 Threats to Validity

There are several threats to validity that were considered during the experiment design.
This research presents a preliminary result and for space sake.

Construct Validity. The experiment was designed to measure how the use of end-user
annotations improves the communication of requirements. In order to reduce the
experiment’s complexity and bias introduction possibility, we defined the method
(simple mockups or annotated mockups) as the only variable. The reader must note that
our approach is not being compared with another approach, and, indeed, it is under
evaluation how the annotations extension improves basic mockups.

Internal Validity. To avoid any misunderstanding during the experiment, we pre-
sented each material in a brief introduction before subjects performed the experiment
and during the experiment, any enquiry related to the sentences was answered without
introducing a bias to the sample. The subjects were selected randomly and all of them
were working in software companies in Argentina and Spain. The provided material
was the same to all subject. We also checked that all the users had basic knowledge in
e-commerce application (just a simple users) and had not participated in the devel-
opment or requirement analysis in any application of this kind.

External Validity. The subjects were software engineers who have played the role of
developers and/or analyst during their career. Although their experience levels were
different, they are all exposed to the regular responsibilities of any software practi-
tioners: meet with clients, understand requirements, develop the software and honor
deadlines for software delivery. A broader experiment considering different subject of
different cultures who have worked on different business domains will improve the
generality of our claims.

Conclusion Validity. The experiment was based on objective metrics evaluated with
all gathered data without any exclusion to guaranty that the outcome of the experiment
analysis will be the same and avoiding hypothesis fishing. We used non-parametric
tests which have fewer constraints than parametric ones but make it more complex to
compute the power and effect size. Therefore, we used well-known guidelines for
reporting empirical experiments as checklists for confirming the requirements of the
test techniques. Finally, in order to avoid the impact of random irrelevancies on the
experiment, we used a large number set of samples that helped the irrelevancies to
become diluted.

Improving Mockup-based Requirement Specification with End-User Annotations 33

5 Conclusion and Further Work

We have presented a novel approach for enriching mockups with annotation so that the
mockups improve their expressiveness and understandability minimizing the risk of
requirement’s misunderstanding. The approach is modular, so it can be plugged in any
software engineering approach to ensure application consistency, validate require-
ments, and save time and effort to detect and solve error in latest software development
steps. We have presented some simple examples that illustrate the approach feasibility.
Additionally, we present a preliminary evidence highlighting the benefits of our
approach, but it is required more validation to support stronger claims.

We are currently working on a tool for the processing of annotations so as to
provide a semi-automate syntactic and semantic analysis of inconsistencies. In these
lines, some methodologies like Design Sprint [22] are proposing to build realistic
prototypes to be validated with final users as soon as possible. Then, these method-
ologies propose to see your finished product and customer reactions before making any
expensive commitments. Then, it’s also necessary to explore in future how to adapt and
process these tags notations in general purpose tools like Microsoft PowerPoint and
Keynote.

A user experience evaluation for the tagging task will help to identify improve-
ments that increase the quality of the requirement specification.

References

1. Bjarnason, E., et al.: Challenges and practices in aligning requirements with verification and
validation: a case study of six companies. Empir. Softw. Eng. 19(6), 1809-1855 (2014)

2. Boehm, B., et al.: Developing groupware for requirements negotiations: lessons learned.
IEEE Softw. 18(3), 46-55 (2001)

3. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE
Softw. 25(1), 60-67 (2008)

4. Escalona, M.J., et al.: Detecting Web requirements conflicts and inconsistencies under a
model-based perspective. J. Syst. Softw. 86, 3024-3038 (2013)

5. Escalona, M.J., Koch, N.: Requirements engineering for web applications: a comparative
study. J. Web Eng. 2(3), 193-212 (2003)

6. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints (1996)

7. Lucassen, G., et al.: Improving agile requirements: the Quality User Story framework and
tool. Requir. Eng. 21(3), 383-403 (2016)

8. De Lucia, A., Qusef, A.: requirements engineering in agile software development (2010)

9. Manning, C.D., et al.: Introduction to Information Retrieval. Cambridge University Press,
Cambridge (2008)

10. Medeiros, J., et al.: An approach based on design practices to specify requirements in agile
projects. In: Proceedings of the Symposium on Applied Computing - SAC 2017, pp. 1114—
1121 (2017)

11. Mukasa, K.S., Kaindl, H.: An integration of requirements and user interface specifications.
In: 6th IEEE International Requirements Engineering Conference, pp. 327-328. IEEE
Computer Society, Barcelona (2008)

34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Urbieta et al.

Ramdoyal, R., Cleve, A.: From pattern-based user interfaces to conceptual schemas and
back. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998,
pp. 247-260. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7_19
Ravid, A., Berry, D.M.: A Method for Extracting and Stating software requirements that a
user interface prototype contains. Requir. Eng. 5(4), 225-241 (2000)

Reggio, G., et al.: Improving the quality and the comprehension of requirements: disciplined
use cases and mockups. In: Proceedings - 40th Euromicro Conference Series on Software
Engineering and Advanced Applications, SEAA 2014, pp. 262-266 (2014)

Rivero, J.M., et al.: Mockup-driven development: providing agile support for model-driven
web engineering. Inf. Softw. Technol. 56(6), 670-687 (2014)

Romano, J., et al.: Appropriate statistics for ordinal level data : should we really be using
t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys? In:
Florida Association of Institutional Research Annual Meeting, pp. 1-33 (2006)
Rosenberg, D., et al.: Agile Development with ICONIX Process—People, Process, and
Pragmatism. A-Press, New York (2005)

Schneider, K.: Generating Fast feedback in requirements elicitation. In: Sawyer, P., Paech,
B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 160-174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73031-6_12

Urbieta, M., Escalona, M.J., Robles Luna, E., Rossi, G.: Detecting conflicts and
inconsistencies in web application requirements. In: Harth, A., Koch, N. (eds.) ICWE
2011. LNCS, vol. 7059, pp. 278-288. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27997-3_27

Wohlin, C., et al.: Experimentation in software engineering: an introduction. Kluwer
Academic Publishers, Norwell (2000)

Yang, D., et al.: A survey on software cost estimation in the chinese software industry. In:
Proceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM 2008, p. 253 (2008)

The Design Sprint — GV. http://www.gv.com/sprint/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://dx.doi.org/10.1007/978-3-642-24606-7_19
http://dx.doi.org/10.1007/978-3-540-73031-6_12
http://dx.doi.org/10.1007/978-3-642-27997-3_27
http://dx.doi.org/10.1007/978-3-642-27997-3_27
http://www.gv.com/sprint/
http://creativecommons.org/licenses/by/4.0/

Agile Testing

®

Check for
updates

Combining STPA and BDD for Safety
Analysis and Verification in Agile
Development: A Controlled Experiment

Yang Wang®™) and Stefan Wagner

University of Stuttgart, Stuttgart, Germany
{yang.wang,stefan.wagner }@informatik.uni-stuttgart.de

Abstract. Context: Agile development is in widespread use, even in
safety-critical domains. Motivation: However, there is a lack of an appro-
priate safety analysis and verification method in agile development.
Objective: In this paper, we investigate the use of Behavior Driven Devel-
opment (BDD) instead of standard User Acceptance Testing (UAT) for
safety verification with System-Theoretic Process Analysis (STPA) for
safety analysis in agile development. Method: We evaluate the effect of
this combination in a controlled experiment with 44 students in terms
of productivity, test thoroughness, fault detection effectiveness and com-
munication effectiveness. Results: The results show that BDD is more
effective for safety verification regarding the impact on communication
effectiveness than standard UAT, whereas productivity, test thorough-
ness and fault detection effectiveness show no statistically significant
difference in our controlled experiment. Conclusion: The combination of
BDD and STPA seems promising with an enhancement on communica-
tion, but its impact needs more research.

1 Introduction

Agile practices have been widely used in software industries to develop systems
on time and within budget with improved software quality and customer satis-
faction [1]. The success of agile development has led to a proposed expansion to
include safety-critical systems (SCS) [2]. However, to develop SCS in an agile
way, a significant challenge exists in the execution of safety analysis and veri-
fication [3]. The traditional safety analysis and verification techniques, such as
failure mode effect analysis (FMEA) and fault tree analysis (FTA) are difficult to
apply within agile development. They need a detailed and stable architecture [4].

In 2016, we proposed to use System-Theoretic Process Analysis (STPA) [6]
in agile development for SCS [5]. First, STPA can be started without a detailed
and stable architecture. It can guide the design. In agile development, a safety
analyst starts with performing STPA on a high-level architecture and derives
the relevant safety requirements for further design. Second, Leveson developed
STPA based on the systems theoretic accident modeling and processes (STAMP)
causality model, which considers safety problems based on system theory rather

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 37-53, 2018.
https://doi.org/10.1007/978-3-319-91602-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_3&domain=pdf

38 Y. Wang and S. Wagner

than reliability theory. In today’s complex cyber-physical systems, accidents are
rarely caused by single component or function failures but rather by compo-
nent interactions, cognitively complex human decision-making errors and social,
organizational, and management factors [6]. System theory can address this.

The safety requirements derived from STPA need verification. However, there
is no congruent safety verification in agile development. Most agile practitioners
mix unit test, integration test, field test and user acceptance testing (UAT) to
verify safety requirements [2]. In 2016, we proposed using model checking com-
bined with STPA in a Scrum development process [7]. However, using model
checking, a suitable model is necessary but usually not available in agile devel-
opment. In addition, the formal specification increases the difficulties of commu-
nication, which should not be neglected when developing SCS [8]. BDD, as an
agile technique, is an evolution of test driven development (TDD) and acceptance
test driven development (ATDD). The developers repeat coding cycles inter-
leaved with testing. TDD starts with writing a unit test, while ATDD focuses
on capturing user stories by implementing automated tests. BDD relies on test-
ing system behavior in scenarios by implementing a template: Given[Context],
When[Event], Then[Outcome] [31]. The context describes pre-conditions or sys-
tem states, the event describes a trigger event, and the outcome is an expected
or unexpected system behavior. It could go further into low-level BDD'. Yet, it
has not been used to verify safety requirements. Leveson said [6]: “Accidents are
the result of a complex process that results in system behavior violating the safety
constraints.” Hence, in agile development, we need safety verification to: (1) be
able to guide design at an early stage, (2) strengthen communication and (3)
focus on verifying system behavior. Thus, we believe that BDD might be suitable
for safety verification with STPA for safety analysis in agile development.

Contributions

We propose a possible way to use BDD with STPA for safety verification in agile
development. We investigate its effects regarding productivity, test thoroughness,
fault detection effectiveness and communication effectiveness by conducting a
controlled experiment with the limitation that we execute BDD only in a test-
last way. The results show that BDD is able to verify safety requirements based
on system theory, and is more effective than UAT regarding communication for
safety verification.

2 Related Work

Modern agile development processes for developing safety-critical systems (SCS)
advocate a hybrid mode through alignment with standards like IEC 61508, ISO
26262 and DO-178. There have been many considerable successes [9-11]. How-
ever, a lack of integrated safety analysis and verification to face the changing
architecture through each short iteration is a challenge for using such standards.

! Low-level BDD is possible to define low-level specifications and interwined with TDD
[16].

Combining STPA and BDD in Agile Development 39

In 2016, we proposed to use STPA in a Scrum development process [5]. It showed
a good capability to ensure agility and safety in a student project [12]. However,
we verified the safety requirements only at the end of each sprint by executing
UAT together with TDD in development. A lack of integrated safety verifica-
tion causes some challenges, such as poor verification and communication. The
previous research regarding safety verification in agile development suggested
using formal methods [13,14]. However, they need models and make intuitive
communication harder [7]. In addition, they have not considered specific safety
analysis techniques.

Hence, we propose using BDD to verify safety requirements. BDD is specif-
ically for concentrating on behavior testing [15]. It allows automated testing
against multiple artifacts throughout the iterative development process [17].
Moreover, it bridges the gap between natural language-based business rules and
code language [18]. Okubo et al. [19] mentioned the possibilities of using BDD
for security and privacy acceptance criteria. They define the acceptance criteria
by creating a threat and countermeasure graph to write attack scenarios. They
verify the satisfication of security requirements by testing the countermeasures,
to see whether they can make the attack scenarios or unsecure scenarios fail.
Lai et al. [20] combined BDD with iterative and incremental development specif-
ically for security requirements evaluation. They defined the behavioral scenarios
by using use case diagram and misuse case diagram. STPA encompasses deter-
mining safe or unsafe scenarios. We aim to use BDD verifying these scenarios.

To investigate the effect of using BDD for safety verification, we design a con-
trolled experiment referring to a set of TDD experiments. Erdogmus et al. [23]
conducted an experiment with undergraduate students regarding programmer
productivity and external quality in an incremental development process. For
safety verification in agile development, a high productivity of safety test cases
promotes high safety. Madeyski [26] conducted an experiment comparing “test-
first” and “test-last” programming practices with regard to test thoroughness
and fault detection effectiveness of unit tests. BDD for safety verification covers
also low-level tests. Thus, we decided to investigate productivity, test thorough-
ness and fault detection capability in this experiment. [21,22,28-30] provided
evidence of using these three measures. In addition, George and Williams [29]
focused on the understandability of TDD from the developer’s viewpoint. Using
BDD for safety verification, we notice the importance of communication between
developers and business analysts. We investigate understandability in the mea-
sure of communication effectiveness.

3 STPA Integrated BDD for Safety Analysis
and Verification (STPA-BDD)

In this article, we propose STPA-BDD. We mainly focus on safety verification.
As we can see in Fig.1, we have two main parts: STPA safety analysis and

40 Y. Wang and S. Wagner

. Safety
v & analyst STPA safety analysis
D[i
STPA safety report STPA Safety analysis
unsafe process
control others variables & —
actions algorithms modify
Business step1 ‘Smp 2
analyst BDD safety verification W
Safets 5
arety 3 Amigos safe test -
analyst N AU s Developer Y
(@A) Meeting scenarios cases o
Developer 0 & {}
Y“ BDD Safety verification
passed pending
‘;12 test cases test cases
| selective
H unsafe

......... N]

scenarios

Fig. 1. STPA-BDD concept

BDD safety verification. A safety analyst? (QA) starts performing STPA safety
analysis with a sufficient amount of code3. STPA is executed by firstly identifying
potentially hazardous control actions, and secondly determining how unsafe con-
trol actions (UCAs) could occur. STPA derives the safety requirements, which
constraint the UCAs, as well as system behaviors. Additionally, it explores the
causal factors in scenarios for each UCA. The output from the safety analyst
(QA) is an STPA safety report with system description, control structure, acci-
dents, hazards, UCAs, corresponding safety requirements, process variables and
algorithms.

In BDD safety verification, to generate and test scenarios, the UCAs (in
STPA step 1), process variables and algorithms (in STPA step 2) from the STPA
safety report are needed. We write other data into “others”. BDD safety veri-
fication has two steps: In step 1, the business analyst, the safety analyst (QA)
and the developer establish a “3 Amigos Meeting” to generate test scenarios.
In a BDD test scenario?, we write the possible trigger event for the UCA in
When [Event]. The other process variables and algorithms are arranged in
Given [Context]. Then [Outcome] presents the expected behavior - a safe
control action. In Fig. 2(a), we present an example. The safety analyst (QA) has
provided a UCA as During auto-parking, the autonomous vehicle does not stop
immediately when there is an obstacle upfront. One of the process variables with
relevant algorithms detects the forward distance by using an ultrasonic sensor.
The developer considers a possible trigger as the ultrasonic sensor provides the

2 Since we focus on safety in our research, we assign a safety analyst as the QA role
in our context.

3 More descriptions of STPA for safety analysis are given in [7] concerning an example
of using STPA in an airbag system and [12] concerning the use of STPA in a Scrum
development process.

4 We illustrate a BDD test scenario using only three basic steps “Given” “When”
“Then”. More annotations, such as “And”, can also be added.

Combining STPA and BDD in Agile Development 41

wrong feedback. Thus, a BDD test scenario should test if the ultrasonic sensor
provides the feedback that the forward distance <= threshold (means there is an
obstacle upfront) and whether the vehicle stops. They write this after When.
The context could be the autonomous vehicle is auto-parking. We write them
after Given. Then constraints the safe control action as the autonomous vehi-
cle stops immediately. More possible triggers are expected to be generated after
When to test them. In step 2, after the three amigos discuss and determine the
test scenarios, the developer starts generating them into test cases, as shown
in Fig.2(b). BDD test cases use annotations such as @Given, @When, and
@Then to connect the aforementioned test scenarios with real code. The devel-
oper produces code to fulfill each annotation. We can identify unsafe scenarios
when the test cases fail. We correct the trigger event to pass the test cases to
satisfy the safety requirement.

ﬁD safety verification test scenario — sample \ @\ven("the autonomous vehicle is Sauto-parking”) \

public void theAutonomousVehiclelsAutoParking () {

Narrative: vehicle.autoParking(); }
UCA: During auto-parking, the autonomous vehicle does not
stop immediately when there is an obstacle upfront @When(“the ultrasonic sensor provides the feedback

that the forward distance <= threshold (means there is an
C e L \ g obstacle upfront)”)
ron ue public void theDistanceLessThanThreshold() {

Given the autonomous vehicle is auto-parking if (distance <= threshold) {vehicle.setSpeed (0);} }
When the ultrasonic sensor provides the feedback
that the forward distance <= threshold (means there is an @Then(“the autonomous vehicle $stops immediately”)
obstacle upfront) public void theAutonomousVehicleStopsimmediately() {
wen the autonomous vehicle stops immediately / \ assertEquals(motor.mode, Stop); } /
(a) Test scenario example (b) Test case example

Fig. 2. BDD safety verification example

4 Experiment Design (We follow the guideline
by Wohlin et al. [32].)

4.1 Goal

Analyze BDD? and UATS for safety verification.

For the purpose of comparing their effect.

With respect to productivity by measuring the number of implemented (tested)
user stories per minute; test thoroughness by measuring line coverage; fault detec-
tion effectiveness by measuring a mutation score indicator; communication effec-
tiveness by conducting a post-questionnaire.

From the point of view of the developers and business analysts.

In the context of B.Sc students majoring in software engineering or other
related majors executing acceptance testing.

® We have a limitation in our experiment that we execute BDD only in a test-last way.
More discussion of this issue can be found in Sect. 6.2.
5 To execute a standard UAT, we mainly refer to [38] with fictional business analysts.

42 Y. Wang and S. Wagner

4.2 Context

Participants: The experiment ran off-line in a laboratory setting in an “Intro-
duction to Software Engineering” course at the University of Stuttgart. Since
the course includes teaching BDD and UAT technology, the students are suit-
able subjects for our experiment. We arrange them based on Java programming
experiences (not randomly). According to a pre-questionnaire (see footnote 13),
88.6% of the students are majoring in software engineering. We conclude from
Table 1 that they have attended relevant lectures and handled practical tasks
relating to Java programming, acceptance testing, SCS (with a median value
>= 3 on a scale from 1 to 5). The agile techniques show less competency (with
a median value of 2 on a scale from 1 to 5). We provide a 1-to-1 training, which
lasts 44 h overall, to reduce the weaknesses.

Development environment: We use a simplified Java code with mutants from
a Lego Mindstorms based Autonomous Parking System (APS) and Crossroad
Stop and Go System (CSGS). These two systems are comparable by lines of
code and number of functional modules (see footnote 13). To ease writing test
cases, we use a lejo TDD wrapper, Testable Lejos” to remove deep dependencies
to the embedded environment. The BDD groups (Group Al and Group A2)
operate in an Eclipse IDE together with a JBehave plug-in (based on JUnit)®.
We use Eclipse log files and JUnit test reports for calculating the number of
implemented (tested) user stories. Finally, we use PIT Mutation Testing” to
assess line coverage and a mutation score indicator. The UAT groups (Group Bl
and Group B2) write the test cases in Microsoft Word.

Table 1. Medians of the student’s background

Area Group Al | Group A2 | Group B1 | Group B2
Java programming 3 3 3 3
Acceptance testing 4 5 3 3
Safety-critical systems | 3 4 4 4
Agile techniques 3 3 3 2

Note: The values range from “1” (little experience) to “5” (experienced).
Group Al and Group A2 use BDD, while Group B1 and Group B2 use
UAT.

4.3 Hypotheses

We formulate the null hypotheses as:
Hy prop: There is no difference in productivity between BDD and UAT.
Hy rror: There is no difference in test thoroughness between BDD and UAT.

" http://testablelejos.sourceforge.net,/ .
8 http://jbehave.org/eclipse-integration.html.
9 http://pitest.org)/.

http://testablelejos.sourceforge.net/
http://jbehave.org/eclipse-integration.html
http://pitest.org/

Combining STPA and BDD in Agile Development 43

Hy rapr: There is no difference in fault detection effectiveness between BDD
and UAT.

Hy comi: There is no difference in communication effectiveness between BDD
and UAT.

The alternative hypotheses are:

H, prop: BDD is more productive than UAT when producing safety test cases.
H, rgogr: BDD yields better test thoroughness than UAT.

H, payr: BDD is more effective regarding fault detection than UAT.

H, comg: BDD is more effective regarding communication than UAT.

4.4 Variables

The independent variables are the acceptance testing techniques. The dependent
variables are: (1) productivity (PROD). It is defined as output per unit effort
[23]. In our experiment, the participants test the user stories in the STPA safety
report and produce safety test cases. We assess it via the number of implemented
(tested) user stories'® per minute (NIUS) [23]; (2) test thoroughness (THOR).
Code coverage is an important measure for the thoroughness of test suites includ-
ing safety test suites [27]. Considering a low complexity of our provided systems,
line coverage (LC) [26] is more suitable than branch coverage (BC); (3) fault
detection effectiveness (FAUL). Mutation testing [25] is powerful and effective
to indicate the capability at finding faults [26]. In our experiment, we measure
how well a safety test suite is able to find faults at the code level. We assess
this via a Mutation Score Indicator (MSI) [26]; (4) communication effectiveness
(COME). We assess this via a post-questionnaire with 11 questions for develop-
ers covering topics like understandability and 13 questions for business analysts
covering topics like confidentiality according to Adzic [35]. The results are in a
5-point scale from —2 (negative) to +2 (positive).

4.5 Pilot Study

Six master students majoring in software engineering took part in a pilot study.
We arranged a four-hour training program. The first author observed the opera-
tion and concluded as follows: (1) The STPA safety report was too complicated
to be used by inexperienced students. We used a comprehensive STPA report by
using XSTAMPP!! in the pilot study. However, a lot of unnecessary data, such
as accidents, hazards and safety requirements at the system level, influenced the
understanding. It costs too much time to capture the information. Thus, we sim-
plified the STPA report with the process variables, algorithms, and UCAs. (2)
We used the original Java code from a previous student project. The complex
code affected the quick understanding. After the pilot study, we simplified it.
(3) Training is extremely important. In the pilot study, one participant had not

10 Tn this article, user stories are safety-related user stories.
1 http://www.xstampp.de//.

http://www.xstampp.de/

44 Y. Wang and S. Wagner

taken part in the training program, which led to his experiment being unfinished.
We provide a textual tutorial and system description for each participant as a
backup. (4) We have only used an experiment report to record the measures.
However, the pure numbers sometimes cannot show clear causalities. Thus, we
use a screen video recording in parallel with the experiment report.

4.6 Experiment Operation

As we can see in Fig. 3, we divide the 44 participants into 4 groups. We provide
2 systems and evaluate 2 acceptance testing methods. Group Al uses BDD for
system 1. Group A2 uses BDD for system 2. Group B1 uses UAT for system
1. Group B2 uses UAT for system 2. We use two systems to evaluate the com-
munication between developers and business analysts. The developers are the
participants in each group, while the fictional business analysts are portrayed by
the participants in the other group using various testing methods and systems.

Group Preparation Operation
(~44 hours)

15t 30 minutes 2" 30 minutes 3rd 30 minutes

BDD Execute and
system 1 Pre Training unsafe () modify BDD
APS ’ scenarios) test cases

*Switch roles as
business analysts
t15

P 1§

¢ raining .P i test cases minutes
APS criteria

L
®

CsGs scenarios

A2 BDD Execute and
system 2 pre Training unsafe [#{)———>| modifyBoD > > = p. Post
test cases oo sts
in 15
mi

o Trainin U':T '\ Execute UAT | A
system 2 g acceptance (+() ecute UA
CsGS criteria

) operation report

Questionnaire

Fig. 3. Experiment operation

The experiment consists of 2 phases: preparation and operation. The prepa-
ration was run 2 weeks before the experiment to perform the pre-questionnaire
and training. The operation consists of three sessions (30 min/session). In the 15¢
session, four groups write acceptance test cases. Group Al (BDD) and Group
A2 (BDD) write test scenarios in Eclipse with the Jbehave plug-in as a story file.
Group B1 (UAT) and Group B2 (UAT) write acceptance criteria in plaintext.
We provide 30 unsafe control actions (UCAs) in an STPA safety report. When
the students finish all the 30 UCAs in 30 min, they record the time in minutes.
After the 1 session, the participants record the NIUS and the time in the oper-
ation report. In the 2" session, Group Al (BDD) and Group A2 (BDD) write

Combining STPA and BDD in Agile Development

each test scenario into a test case and run the test case. If it fails, they should
modify the trigger (code) and pass the test case. Group Bl (UAT) and Group
B2 (UAT) review Java code, execute the test cases manually and complete their
acceptance test report. At the end of the 2"¢ session, they run PIT mutation
testing. The LC and MSI are generated automatically in the PIT test report.
They write down the results in the operation report. In the 3"¢ session, the par-
ticipant portrays as a developer for 15 min and a business analyst for 15 min. The
developer is expected to explain his/her testing strategy as clearly as possible,
while the fictional business analyst should try to question the developer. To this
end, they answer a post-questionnaire.

Table 2. Descriptive statistic

Measure|Treatment|Experiment Mean [St.Dev|Min |Median|Max|95% CI lower 95% CI upper
NIUS |BDD Group Al 0.52/0.24 0.26/0.45 1.20| 0.37 0.66
Group A2 0.69|0.19 0.42/0.65 1.00| 0.58 0.80
UAT Group B1 0.58/0.22 0.33/0.57 1.00| 0.45 0.71
Group B2 0.67/0.29 0.27/0.60 1.20| 0.50 0.84
LC BDD Group Al 0.02|0.01 0.01]0.02 0.05| 0.02 0.03
Group A2 0.02/0.01 0.01]0.02 0.04| 0.02 0.03
UAT Group B1 0.02|0.01 0.01/0.01 0.03| 0.01 0.02
Group B2 0.02|0.01 0.01/0.01 0.03| 0.01 0.02
MSI BDD Group Al 0.90/0.38 0.36/1.00 1.33| 0.67 1.13
Group A2 0.93/0.49 0.44/0.83 2.17| 0.63 1.22
UAT Group B1 0.89|0.36 0.42/0.88 1.56| 0.67 1.10
Group B2 0.85/0.46 0.30/0.65 1.63| 0.58 1.12
COME |BDD Group Al 1.27/0.81 |—2.00{1.50 |2.00| 0.79 1.75
Group A2 1.18/0.70 |—1.00/1.00 |2.00| 0.76 1.58
UAT Group B1 |—-0.05|1.20 |—2.00/0.00 |2.00|—0.75 0.66
Group B2 0.01/1.13 |—2.00/0.50 |2.00|—0.67 0.67

Note: St. Dev means standard deviation; CI means

confidence interval. NIUS means number

of implemented (tested) user stories per minute. LC means line coverage. MSI means mutation

score indicator. COME was assessed via questionnaire with the results in a 5-point scale from

—2 (negative) to +2 (positive).

5 Analysis

5.1 Descriptive Analysis

In Table 2, we summarize the descriptive statistics of the gathered measures'2. To
sum up, the results from the two systems in one treatment are almost identical.
BDD and UAT have only small differences regarding NIUS and MSI. However,

2 Raw data is available online: https://doi.org/10.5281/zenodo.1154350.

https://doi.org/10.5281/zenodo.1154350

46 Y. Wang and S. Wagner

12 T : O T
8 o 2.0 -
=}
‘f 1.0 4 0.04 5
@ i i =
1] | |] T
S | | o) £
3 | | 5 & .
2 08 3 $ 0.03 © o
[> T o}
5 8 § 3
g 06 2 T S 10
Py 0.02 - | ket
o] <
3 ‘ H E
E 04 i i
2 0.01 | 3 05 3

T T I I I
8 5 8 3 g8 3
Treatment Treatment Treatment

(a) NIUS (b) LC (c) MSI

Fig. 4. Boxplot for PROD, THOR and FAUL

COME in BDD (Mean = 1.27, 1.18; Std.Dev = 0.81, 0.70) and UAT (Mean =
—0.05, 0.01; Std.Dev = 1.20, 1.13) differ more strongly. LC has a small difference.
In Fig. 4, we show a clear comparison and can see some outliers concerning LC.
In Fig.5, we use an alluvial diagram to show COME. We can conclude that
BDD has a better communication effectiveness than UAT from the perspective
of developers and business analysts respectively (depending on the length of
black vertical bar on the right side of Fig. 5(a) and (b)). On the left side, we list
24 sub-aspects of assessing the communication effectiveness. The boldness of the
colorful lines indicates the degree of impact. A thicker line has a larger impact on
each aspect. We can see six noteworthy values from Fig. 5(a) that BDD is better
than UAT: (4) Test cases have a clear documentation. (5) They could flush out
the functional gaps before development. (6) They have a good understanding of

e e e I (1) The developers have a corect understanding of safety requirements

I (2) The requirements have not been skipped
(2) Test cases are easy to share

I (3) They have 2 good understanding of system
(3) They have more time for experimenting with test cases
I (4) Itis easy to understand test cases

BDD I (5) It is easy to track the development process- 80D

(5) They could flush out functional gaps before development I (6) The developers consider safety requirements deely and initiatively

(6) They have a good understanding of business requirements I {Testesses and Tequiremen's L ogee N

I (8) Itis easy to identify conflicts in business rules and test cases

I (4) Test cases have a clear documentation

(7) Test cases have a good organization and structure

I () They are confident sbout the test cases
I (8) Realistic examples make them think harder.
I (10) The test cases could drive new requirements UAT

I (9) They could build in quality from the start of the development v
I (11) The documentation could keep an effective communication after review
I (10) Acceptance testing could fit well into iterative development I (12) They are clear about the status of acceptance testing
I (11) There is an obvious glue between test cases and code I (13) They could spend less time'on sprint-end acceptance testing but more in parallel with development
(a) Developer’s perspective (b) Business analyst’s perspective

Fig. 5. Alluvial diagram for communication effectiveness

Combining STPA and BDD in Agile Development 47

business requirements. (7) Test cases have a good organization and structure.
(8) Realistic examples make them think harder. (11) There is an obvious glue
between test cases and code. From Fig. 5(b), five noteworthy values show that
BDD is better than UAT: (6) The developers consider safety requirements deeply
and initially. (8) It is easy to identify conflicts in business rules and test cases.
(9) They are confident about the test cases. (12) They are clear about the status
of acceptance testing. (13) They could spend less time on sprint-end acceptance
testing but more in parallel with development. In addition, the other aspects
show also slightly better results when using BDD than UAT.

5.2 Hypothesis Testing

To start with, we evaluate the pre-questionnaire. No statistically significant dif-
ferences between BDD and UAT groups are found concerning Java programming,
acceptance testing, knowledge on SCS and agile techniques (t-test, « =0.05, p
> 0.05 for all test parameters). Furthermore, we test the normality of the data
distribution with Kolmogorov-Smirnov and Shapiro-Wilk tests at o= 0.05. The
results show that the data for NIUS in Group Al, for LC in Group Al, A2, B2
and for MSI in Group Al, A2 are not normally distributed. Thus, we use non-
parametric tests in the analysis. In addition to the use of p-values for hypotheses
testing (a=0.05, one-tailed) from the Mann-Whitney test, Wilcoxon test and
ANOVA test, we include the effect size Cohen’s d. Since we expect BDD to be
better than UAT, we use one-tailed tests. NIUS is not significantly affected by
using the BDD or the UAT approach (system 1: p=0.206; system 2: p=0.359,
non-significant). LC is not significantly affected by using BDD or UAT (sys-
tem 1: p=0.057; system 2: p=0.051, non-significant). MSI shows no statisti-
cally significant difference between using BDD or UAT (system 1: p=0.472;
system 2: p=0.359, non-significant). However, COME is significantly different
(system 1: p < 0.00001; system 2: p < 0.00001, significant). We accept the alterna-
tive hypothesis that BDD shows better communication effectiveness than UAT.
Cohen’s d shows the values around 0.2, which signifies small effects, around 0.5
stands for medium effects and around 0.8 for large effects. Thus, for COME,
system 1 shows a large effect (d =2.908). For LC we have both medium effects
(system 1: d =0.684; system 2: d =0.662). The rest of the effects are small.

6 Threats to Validity

6.1 Internal Validity

First, note that we have four groups in our experiment. To avoid a multiple group
threat, we prepare a pre-questionnaire to investigate the students’ background
knowledge. The results of the t-tests show no statistically significant differences
among the groups concerning each measure. Second, concerning the instrument,
UAT is faster to learn than BDD regarding the use of tools. Even though we
provide a training to narrow the gap, the productivity might have been influ-
enced, since the students have to get familiar with the hierarchy of writing test

48 Y. Wang and S. Wagner

suites in a BDD tool. The artifacts, such as tutorials and operation report, are
designed respectively with the same structure to avoid threats. In addition to
the observation, we save the participants’ workspaces after the experiment and
video recordings for deep analysis. Third, the students majoring in software engi-
neering might identify more with the developer role than the business analyst
role. Thus, we design two comparable systems. The students in each pair use dif-
ferent systems and test approaches to reduce the influence of prior knowledge.
Moreover, we provide a reference [36] on how to perform as a business analyst
in an agile project. We also mention their responsibilities in the training.

6.2 Construct Validity

First, the execution of BDD is a variant. BDD should begin with writing tests
before coding. However, in our experiment, we use BDD for test-last accep-
tance testing rather than test-driven design. Thus, we provide source code with
mutants. The measures we used could be influenced. In BDD test-first, we write
failing test cases first and work on passing all of them to drive coding. Accord-
ing to [39,41], BDD test-first might be as effective as or even more effective
than BDD test-last. Second, the evaluation concerning productivity, test thor-
oughness, fault detection effectiveness and communication effectiveness does not
seem to be enough. As far as we know, our study is the first controlled experi-
ment on BDD. We can base our measurement (PROD, THOR, FAUL) mainly
on TDD controlled experiments and some limited experiments on safety veri-
fication. There might be better ways to capture how well safety is handled in
testing.

6.3 Conclusion Validity

First, concerning violated assumptions of statistical tests, the Mann-Whitney U-
test is robust when the sample size is approximately 20. For each treatment, we
have 22 students. Moreover, we use Wilcoxon W test as well as Z to increase the
robustness. Nevertheless, under certain conditions, non-parametric rank-based
tests can themselves lack robustness [44]. Second, concerning random heterogene-
ity of subjects, we arranged them based on the Java programming experience.
According to the pre-questionnaire, the students are from the same course and
88.6% of them are in the same major.

6.4 External Validity

First, the subjects are students. Although there are some skilled students who
could perform as well as experts, most of them lack professional experience.
This consideration may limit the generalization of the results. To consider this
debatable issue in terms of using students as subjects, we refer to [33]. They
said: conducting experiments with professionals as a first step should not be
encouraged unless high sample sizes are guaranteed. In addition, a long learning

Combining STPA and BDD in Agile Development 49

cycle and a new technology are two hesitations for using professionals. STPA was
developed in 2012, so there is still a lack of experts on the industrial level. BDD
has not been used for verifying safety requirements. Thus, we believe that using
students as subjects is a suitable way to aggregate contributions in our research
area. We also refer to a study by Cleland-Huang and Rahimi, which successfully
ran an SCS project with graduate students [2]. Second, the simplicity of the tasks
poses a threat. We expect to keep the difficulty of the tasks in accordance with
the capability of students. Nevertheless, the settings are not fully representative
of a real-world project.

7 Discussion and Conclusion

The main benefit of our research is that we propose a possible way to use BDD
for safety verification with STPA for safety analysis in agile development. We
validate the combination in a controlled experiment with the limitation that
we used BDD only in a test-last way. The experiment shows some remarkable
results. The productivity has no statistically significant difference between BDD
and UAT. That contradicts our original expectation. We would expect BDD,
as an automated testing method, to be more productive than manual UAT.
Yet, as the students are not experts in our experiment, they need considerable
time to get familiar with the BDD tool. The students use Jbehave to write
BDD test cases in our experiment, which has strict constraints on hierarchy and
naming conventions to connect test scenarios with test cases. UAT should be
easier to learn. We therefore analyzed our video recordings and found that BDD
developers use nearly 25% to 50% of their time to construct the hierarchy and
naming. Scanniello et al. [37] also mentioned this difficulty when students apply
TDD. In the future, we plan to use skilled professionals in test automation to
replicate this study. This could lead to different results. The test thoroughness
and fault detection effectiveness show a non-significant difference between BDD
and UAT. We could imagine that our provided Java code is too simplified to
show a significant difference. The mutants are easily found with a review. These
aspects need further research.

The communication effectiveness shows better results by using BDD than
UAT on 24 aspects. We highlight 11 significant aspects. The developers found
that: BDD has a clear documentation. A clear documentation of accep-
tance test cases is important for communication [42]. The scenarios are writ-
ten in plain English with no hidden test instrumentation. The given-when-then
format is clear for describing test scenarios for safety verification based on sys-
tem theory. The developers using BDD could flush out functional gaps
before development. The communication concerning safety could happen at
the beginning of the development. They discuss safety requirements with the
business analysts and spot the detailed challenges or edge cases before func-
tional development. UAT happens mostly at the end of the development. It
makes the rework expensive and is easy to be cut in safety-critical systems. The
developers using BDD have a good understanding of the business

50 Y. Wang and S. Wagner

requirements. A good understanding of safety requirements helps an effec-
tive communication. They could build a shared understanding in the “3 Amigos
Meeting” to ensure that their ideas about the safety requirements are consistent
with the business analysts. The developers using UAT might understand safety
requirements with a possible bias. BDD test cases have a good organization
and structure. This makes the test cases easy to understand, especially during
maintenance. They include strict naming conventions and a clear hierarchy to
manage test scenarios and test cases. Realistic examples in BDD make the
developers think harder. The safety requirements are abstract with possibly
cognitive diversity, which leave a lot of space for ambiguity and misunderstand-
ing. That negatively influences effective communication. Realistic examples give
us a much better way to explain how safe scenarios really work than pure safety
requirements do. There is an obvious glue between BDD test cases and
code. There is glue code in BDD safety verification, which allows an effective sep-
aration between safety requirements and implementation details. This glue code
supports the understanding and even communication between business analysts
and developers. In addition, it ensures the bidirectional traceability between
safety requirements and test cases. The business analysts thought that: The
developers using BDD consider the safety requirements deeply and
initiatively. The collaboration promotes a sense of ownership of the deliverable
products. That increases an initiative communication. Instead of passively read-
ing the documents, the developers participate in the discussion about writing test
scenarios and are more committed to them. The business analysts are more
confident about the BDD test cases. Confidence promotes effective com-
munication [43]. The business analysts could give a big picture with safety goals
to the developers. Feedback from developers and their realistic unsafe scenarios
give the business analysts confidence that the developers understand the safety
goals correctly. It is easy to identify conflicts in business rules and test
cases when using BDD. BDD has a set of readable test scenarios focusing on
business rules (safety requirements). Each test scenario and test case are directly
connected to the code. The business analysts can pull out test cases related to
a particular business rule. This helps communication, especially when there is
a changing request. The business analysts are clear about the status of
acceptance testing when using BDD. It promotes a state-of-art commu-
nication. That can be attributed to the automated test suites, which might be
connected with a continuous integration server and a project management tool
to receive a verification report automatically. The business analysts could
spend less time on sprint-end acceptance tests but more in parallel
with development. They can verify the safety requirements periodically and
therefore enhance communication throughout the project.

In conclusion, to some extent, BDD is an effective method for verifying safety
requirements in agile development. As this is the first experiment investigating
BDD for safety verification, further empirical research is needed to check our
results. We invite replications of this experiment using our replication package®®.

13 hittps://doi.org/10.5281 /zenodo.846976.

https://doi.org/10.5281/zenodo.846976

Combining STPA and BDD in Agile Development 51

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dyba, T., Dingsgyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50(9-10), 833-859 (2008)

Cleland-Huang, J., Rahimi, M.: A case study: injecting safety-critical thinking into
graduate software engineering projects. In: Proceedings of the 39th International
Conference on Software Engineering: Software Engineering and Education Track.
IEEE (2017)

Arthur, J.D., Dabney, J.B.: Applying standard independent verification and val-
idation (IV&V) techniques within an Agile framework: is there a compatibility
issue? In: Proceedings of Systems Conference. IEEE (2017)

Fleming, C.: Safety-driven early concept analysis and development. Dissertation.
Massachusetts Institute of Technology (2015)

Wang, Y., Wagner, S.: Toward integrating a system theoretic safety analysis in an
agile development process. In: Proceedings of Software Engineering, Workshop on
Continuous Software Engineering (2016)

Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT
Press, Cambridge (2011)

Wang, Y., Wagner, S.: Towards applying a safety analysis and verification method
based on STPA to agile software development. In: IEEE/ACM International Work-
shop on Continuous Software Evolution and Delivery. IEEE (2016)

Martins, L.E., Gorschek, T.: Requirements engineering for safety-critical systems:
overview and challenges. IEEE Softw. 34(4), 49-57 (2017)

Vuori, M.: Agile development of safety-critical software. Tampere University of
Technology, Department of Software Systems (2011)

Stalhane, T., Myklebust, T., Hanssen, G.K.: The application of Safe Scrum to IEC
61508 certifiable software. In: Proceedings of the 11th International Probabilistic
Safety Assessment and Management Conference and the Annual European Safety
and Reliability Conference (2012)

Ge, X., Paige, R.F., McDermid, J.A.: An iterative approach for development of
safety-critical software and safety arguments. In: Proceedings of Agile Conference.
IEEE (2010)

Wang, Y., Ramadani, J., Wagner, S.: An exploratory study of applying a Scrum
development process for safety-critical systems. In: Proceedings of the 18th Inter-
national Conference on Product-Focused Software Process Improvement (2017)
Eleftherakis, G., Cowling, A.J.: An agile formal development methodology. In:
Proceedings of the 1st South-East European Workshop on Formal Methods (2003)
Ghezzi, C., et al.: On requirements verification for model refinements. In: Proceed-
ings of Requirements Engineering Conference. IEEE (2013)

Wynne, M., Hellesoy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Bookshelf, Dallas (2012)

Smart, J.F.: BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning, New York (2015)

Silva, T.R., Hak, J.L.., Winckler, M.: A behavior-based ontology for supporting
automated assessment of interactive systems. In: Proceedings of the 11th Interna-
tional Conference on Semantic Computing. IEEE (2017)

Hummel, M., Rosenkranz, C., Holten, R.: The role of communication in agile sys-
tems development. Bus. Inf. Syst. Eng. 5(5), 343-355 (2013)

Okubo, T., et al.: Security and privacy behavior definition for behavior driven
development. In: Proceedings of the 15th International Conference on Product-
Focused Software Process Improvement (2014)

52

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

Y. Wang and S. Wagner

Lai, S.T., Leu, F.Y., Chu, W.: Combining IID with BDD to enhance the critical
quality of security functional requirements. In: Proceedings of the 9th Interna-
tional Conference on Broadband and Wireless Computing, Communication and
Applications. IEEE (2014)

Fucci, D., Turhan, B.: A replicated experiment on the effectiveness of test-first
development. In: Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement. IEEE (2013)

Fucci, D., et al.: A dissection of test-driven development: does it really matter to
test-first or to test-last? IEEE Trans. Software Eng. 43(7), 597-614 (2017)
Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Trans. Software Eng. 31(3), 226-237 (2005)
Kollanus, S., Isomottonen, V.. Understanding TDD in academic environment:
experiences from two experiments. In: Proceedings of the 8th International Con-
ference on Computing Education Research. ACM (2008)

Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Software
Eng. 4, 279-290 (1977)

Madeyski, L.: The impact of test-first programming on branch coverage and muta-
tion score indicator of unit tests: an experiment. Inf. Softw. Technol. 52(2), 169-184
(2010)

Marick, B.: How to misuse code coverage. In: Proceedings of the 16th International
Conference on Testing Computer Software (1999)

Pancur, M., Ciglari¢, M.: Impact of test-driven development on productivity, code
and tests: a controlled experiment. Inf. Softw. Technol. 53(6), 557-573 (2011)
George, B., Williams, L.: A structured experiment of test-driven development. Inf.
Softw. Technol. 46(5), 337-342 (2004)

Siniaalto, M., Abrahamsson, P.: A comparative case study on the impact of test-
driven development on program design and test coverage. In: Proceedings of 1st
International Symposium on Empirical Software Engineering and Measurement
(2007)

North, D.: JBehave. A framework for behaviour driven development (2012)
Wohlin, C., et al.: Experimentation in Software Engineering. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29044-2

Falessi, D., et al.: Empirical software engineering experts on the use of students
and professionals in experiments. Empirical Softw. Eng. 23(1), 452-489 (2018)
Enoiu, E.P., et al.: A controlled experiment in testing of safety-critical embedded
software. In: Proceedings of the International Conference on Software Testing,
Verification and Validation. IEEE (2016)

Adzic, G.: Bridging the Communication Gap: Specification by Example and Agile
Acceptance Testing. Neuri Limited, London (2009)

Gregorio, D.: How the business analyst supports and encourages collaboration on
agile projects. In: Proceedings of International Systems Conference. IEEE (2012)
Scanniello, G., et al.: Students’ and professionals’ perceptions of test-driven devel-
opment: a focus group study. In: Proceedings of the 31st Annual Symposium on
Applied Computing. ACM (2016)

Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Pearson Education, Boston (2009)

Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of Test
First programming. Inf. Softw. Technol. 51(1), 182-194 (2009)

Madeyski, L.: Impact of pair programming on thoroughness and fault detection
effectiveness of unit test suites. Softw. Process: Improv. Pract. 13(3), 281-295
(2008)

https://doi.org/10.1007/978-3-642-29044-2

41.

42.

43.

44.

Combining STPA and BDD in Agile Development 53

Rafique, Y., Misi¢, V.B.: The effects of test-driven development on external qual-
ity and productivity: a meta-analysis. IEEE Trans. Software Eng. 39(6), 835-856
(2013)

Haugset, B., Stalhane, T.: Automated acceptance testing as an agile requirements
engineering practice. In: Proceedings of the 45th Hawaii International Conference
on System Science. IEEE (2012)

Adler, R.B.: Confidence in Communication: A Guide to Assertive and Social Skills.
Harcourt School (1977)

Kitchenham, B., et al.: Robust statistical methods for empirical software engineer-
ing. Empirical Softw. Eng. 22(2), 579-630 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

)

Check for
updates

Software Tester, We Want to Hire You!
an Analysis of the Demand for Soft Skills

Raluca Florea™ and Viktoria Stray

University of Oslo, Gaustadalléen 23 B, 0373 Oslo, Norway
{ralucamf, stray}@ifi. uio. no

Abstract. One important discussion in the software development field is
related to the skills that people need to have to build successful software
products. This debate is generated on one hand by a large number of failures and
delays of software projects. On the other hand, the debate is triggered by the
need to build even better-quality software in a rapidly changing world. We will
examine to which extent soft skills are relevant when hiring software testers and
if there are any specific skills required for agile testers.

We analyzed 400 job advertisements for testers from 33 countries, out of
which 64% ask for soft skills. Of the advertisements asking for soft skills, there
is, on average, a request for 5 soft skills, 11 testing skills, and 5 technical skills.
Only 30% of the companies ask explicitly for agile testers. However, our
analysis shows no notable differences in skill demands for agile testers and
the rest.

Software companies want to hire testers who can communicate well and have
analytical and problem-solving skills. There is a significant increase in the need
for openness and adaptability, independent-working and team-playing since
2012. In addition, there are new categories of soft skills identified, such as
having work ethics, customer-focus and the ability to work under pressure.

Keywords: Soft skills -+ Competency requirements
Software tester competence - Software testing - Agile software development
Industrial needs

1 Introduction

Software testing is a complex activity that implies mastering both technical and soft
skills. To be a productive software tester, one needs to understand business require-
ments from customers and to communicate them to the developers. Testers need to be
organized, efficient and able to prioritize their work. Furthermore, they have to bear the
pressure of finishing their job as soon as possible, so that the product can be released
[1]. It is essential that they learn fast and master many kinds of responsibilities [2].
Testers need to be especially flexible because they face stress [3] and changes [4]
throughout the development process.

It may also be that testers need soft skills additional to the ones required for
developers or managers [5, 6]. Because of the nature of their job combining different
domains and perspectives, it may be that user focus [7] and critical thinking [8] have to

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 54-67, 2018.
https://doi.org/10.1007/978-3-319-91602-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 55

be traits of efficient software testers. Moreover, the user-centered design and agile
development are already common practices in companies, and the results look
promising. But there are hinders to these practices such as communication breakdowns
or the lack of acknowledgement of user involvement [9], issues deeply connected to
soft skills.

Rivera-Ibarra et al. [10] found that the quality and innovation of software products
strongly depends on the knowledge, abilities, and talent of all the people developing
software. Technical and hard skills have been a long-time focus point for research in
the software development field [11]. Soft skills, human factors, and intrinsic motivation
have recently begun to gain attention, but with a focus on the software developer role
[12]. However, the role of software tester has not been given the same attention. It can
constitute a drawback since building software is a teamwork and essentially a human
activity [13] shaped by the human skills of all contributors into bringing software to
live. Systematic literature reviews in software testing show relevant testing areas or
methods of testing [14], but we did not find information about the soft skills in the
testing world. Other research has looked at soft skills depending on various phases of
development, from requirements engineering to design, implementation and testing
[15]. But this approach does not look at testing as an on-going activity, involved in all
phases of developing software [16]. Nor does it comprise the role of tester as a sum of
all these activities [17].

Soft skills are defined by Lippman et al. [18] as: “The competencies, behaviors,
attitudes, and personal qualities that enable people to effectively navigate their envi-
ronment, work well with others, perform well, and achieve their goals.” It refers to a
combination of people skills, social skills, character traits and attitudes and complement
other skills such as technical and academic skills [18]. We wanted to investigate: what
do companies look for in software testers? What are the soft skills they ask for? How
do these needs evolve? What is specifically required of agile testers? In this study, we
aim to answer the following research questions:

RQ1: What is the trend for soft skills requirements for testers?
RQ?2: Are there specific soft-skill requirements for testers in agile projects?

To answer the first research question, we use a categorization of soft skills proposed
in a study by Ahmed et al. [19], where the authors analyzed 500 job advertisements in
IT positions (developers, designers, system analysts and software testers). By com-
paring with the result of the analysis specifically for software testers from 2012 [19],
we were able to look at the skills requirement trend in the last 5 years. Moreover, to
answer the second research questions, we analyze specifically the ads mentioning agile
methods. Additionally, we make a preliminary analysis of job advertisements not
asking for any soft skills.

This paper is structured as follows: Sect. 2 discusses the way we have collected and
analyzed data. Section 3 presents the results of our findings. We discuss and interpret
the results in Sect. 4 and present the limitations of our study in Sect. 5. In Sect. 6 we
present implications and in Sect. 7 we draw the conclusion and discuss future work.

56 R. Florea and V. Stray

2 Data Collection and Analysis

We collected job advertisements from 33 countries on five continents. The majority of
the ads were collected from the USA, Canada and Norway, see Table 1 for the details.
We chose to use online job-search engines to collect the raw job advertisements. We
decided to use such tools instead of going to specific hiring companies because we
consider the search engines to be an efficient way of including in our analysis a large
number of hiring companies, a great diversity of companies and large visibility to
job-seekers. We investigated which were the most significant job-search engines by
two dimensions: the number of users and the number of jobs posted. According to
commercial web traffic data and analytics services provided by Alexa(Amazon)' and
SymilarWeb?, we chose the five most popular job-search engines, namely Indeed.com,
Monster.com, GlassDoor.com, CareerBuilder.com, and SimplyHired.com.

To obtain a 95% confidence level with a confidence interval of £5% we needed a
minimum of 384 job ads [20]. We thus decided to study 400 job ads. We only selected
the jobs that referred to the role of software testers. We have included therefore jobs
such as testers, QAs, technical testers, usability testers, performance testers, game
testers and financial-system testers. We have not considered jobs referring to other roles
within a software development team, such as developers, architects, technical writers,
or UX designers.

We collected job ads posted in multiple national languages because we consider it to
be relevant to include countries that are important actors in the software development
industry, whose language is not English. We gathered job ads posted in 20 different
languages. We collected 226 job ads that were posted directly in English and 174 job ads
that we translated into English. To make sure we translated the advertisements correctly,
we used two independent online translation tools from Google® and DeepL Translator®,
respectively Etranslator’, to translate and to cross-check the coherence of the transla-
tions. We included only the job ads where the results of translations were the same.
Using in parallel translation tools and comparing the results worked well because most
of the job advertisements were posted in plain language, using standard terms. However,
we still triple-checked with a fluent software professional or native speaker the trans-
lations to English from French, Italian, Spanish, German, Hindi, Vietnamese and all
Scandinavian languages and the translation results provided by the tools were confirmed.

As a last point, it is worth mentioning that the job advertisements were collected
from both in-house software developers, as well as consultancy companies. Both the
public sector and private sectors were represented. For example, Amazon, Norges
Bank, Expedia, Nasdaq, Texas Instruments, Verizon, Motorola Solutions, Fujitsu,
VISA, IBM, Nokia, New South Wales Government, National Bank of Canada,
Accenture, Sogeti and Sopra Steria.

! https://www.alexa.com/.

2 hitps://www.similarweb.com/.

3 https://translate.google.cony/.

4 https://www.deepl.com/translator/.
3 http://www.etranslator.ro/.

http://Indeed.com
http://Monster.com
http://GlassDoor.com
http://CareerBuilder.com
http://SimplyHired.com
https://www.alexa.com/
https://www.similarweb.com/
https://translate.google.com/
https://www.deepl.com/translator/
http://www.etranslator.ro/

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 57

Table 1. Job advertisements collected from each country

Country No. of ads | % of the total ads
USA 96 24,0%
Canada 65 16,3%
Norway 22 5,.5%
UK 20 5,0%
Argentina 17 4,3%
France 17 4,3%
Mexico 15 3,8%
South Africa 14 3,5%
China 14 3,5%
Vietnam 13 3,3%
Greece 13 3,3%
India 12 3,0%
Sweden 10 2,5%
Portugal 10 2,5%
Australia 10 2,5%
Spain 9 2.3%
Italy 8 2,0%
Germany 8 2,0%
Other countries | 27 6,8%
400 100,0 %

2.1 Coding of Soft Skills

In this paper, we examine which categories of soft skills are in most demand from
employers. We determine which categories of soft skills are most popular for tester
roles, compare them with the existing studies and interpret the findings.

We chose to manually analyze the data because the ads have different structures:
some of the job-search engines allow job advertisers to post in their specific format, but
also various job-search engines use different formats for job ads. Last but not least, not
all advertisers have the same understanding of the information that has to be filled-in an
ad. Therefore, we found soft skills in the sections dedicated to requirements, job
attributes, duties. We went manually through each of the job ads and looked for soft
skills requirements. We copied the content of the ads into the following categories:

Country

Job title

Job description
Responsibilities and tasks
Job requirements
Education needed

Other certification needed

Nice to have

Minimum prior experience required

58 R. Florea and V. Stray

Table 2. Definition of the soft skills categories

Skill category

Definition based on [19]

Communication skills
Interpersonal skills
Analytical and
problem-solving skills
Team player
Organizational skills
Fast learner

Ability to work

independently
Innovative

The ability to convey information so that it is well received and
understood

The ability to deal with other people through social
communication and interactions

The ability to understand, articulate and solve complex problems
and make sensible decisions based on available information

The ability to work effectively in a team environment and
contribute toward the desired goal

The ability to efficiently manage various tasks and to remain on
schedule without wasting resources

The ability to learn new concepts, methodologies, and
technologies in a comparatively short timeframe
The ability to carry out tasks with minimal supervision

The ability to come up with new and creative solutions

Open and adaptable to
changes

Others

The ability to accept and adapt to changes when carrying out a
task without showing resistance

Soft skills that do not fit any of the above categories

To map the soft skills, we used the categories defined in an earlier study of job
advertisements in software development [19], as our coding scheme, see Table 2.
Moreover, we added the tenth category: “Other soft skills”, where we coded soft skills
that did not fit any of the other categories, for example, “good sense of humor”,
“multitasking”, “ability to work under pressure” and ‘“customer focus”. We considered
both the soft skills that were required imperatively (mandatory requirements) and the
soft skills that were considered a plus for getting hired (nice to have). We did not
distinguish between different strengths of the same skills. For instance, “strong com-
munication skills” and “excellent communication skills”.

3 Results

Of the 400 ads, 257 ask for soft skills (64,2%). We identified in all ads a total of 1.218
of soft skills, which leads us to an average of 4,73 soft skills per advertisement that
demands soft skills. In comparison, the same ads ask for an average of 11,3 testing
skills, 5,27 technical skills, and 0,7 domain-specific skills. Table 3 shows examples of
soft skills requirements asked for in the ads.

In order to analyse the trend, we use [19] as a proxy for the skills demands in 2012.
Figure 1 shows the results of comparing the soft skills demands in [19] and all the ads
in our study. Focusing on the ranking, in both studies the most important category of
skills is communication. Second, comes analytical and problem-solving skills. We see
similar results for four types of skills: interpersonal, analytical and problem-solving,
organizational and innovation: in [19] and in our research, they are demanded in

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 59

Table 3. Examples of categorized soft skills

Category name

Extracts

Communication skills
Interpersonal skills

Analytical and
problem-solving skills

Team player
Organizational skills

Fast learner
Ability to work
independently

Innovative

Open and adaptable to
changes

Others

“Excellent communication skills with team members and
business contacts”

“Is able to interact with system developers, business analysts and
others”

“Demonstrated ability to analyze and solve technical issues”

“Values teamwork”

“You must be well-organized with the ability to work to
deadlines”

“A passion for learning and testing”

“Must be able to work with minimal or no supervision on
extra-large and multiple concurrent projects and coordinate the
work of others in this environment”

“An ability to think creatively”
“Ability to work in a rapidly changing environment”

“Customer-service orientation”

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

BAhmed etal. [2012] @ Current study - all job ads

36%

Fig. 1. Comparative analysis of soft skills requirements

approximatively the same measure. However, the demand for communication skills has
decreased by 19%. The need for team-playing skills have increased by 14%,
fast-learning skills have increased by 18%, independent-working skills by 23% and
openness and adaptability skills have increased by a spectacular 25%.

60 R. Florea and V. Stray

The category named “Others” contains 121 ads and 161 skil