
LN
BI

P
31

4

19th International Conference, XP 2018
Porto, Portugal, May 21–25, 2018
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Juan Garbajosa · Xiaofeng Wang
Ademar Aguiar (Eds.)

Lecture Notes
in Business Information Processing 314

Series Editors

Wil M. P. van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

Juan Garbajosa • Xiaofeng Wang
Ademar Aguiar (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming
19th International Conference, XP 2018
Porto, Portugal, May 21–25, 2018
Proceedings

Editors
Juan Garbajosa
Technical University of Madrid
Madrid, Madrid
Spain

Xiaofeng Wang
Free University of Bozen-Bolzano
Bolzano
Italy

Ademar Aguiar
University of Porto
Porto
Portugal

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-91601-9 ISBN 978-3-319-91602-6 (eBook)
https://doi.org/10.1007/978-3-319-91602-6

Library of Congress Control Number: 2018944291

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-0161-3485
http://orcid.org/0000-0001-8424-419X
http://orcid.org/0000-0002-4046-4729

Preface

This volume contains the papers presented at XP 2018, the 19th International Con-
ference on Agile Software Development, held during May 21–25, 2018, in Porto,
Portugal.

XP is the premier agile software development conference combining research and
practice. It is a unique forum where agile researchers, academics, practitioners, thought
leaders, coaches, and trainers get together to present and discuss their most recent
innovations, research results, experiences, concerns, challenges, and trends. XP con-
ferences have been pushing forward the successful evolution and adoption of agile by
teams and organizations, not only in the software industry and academia, but also
beyond. Whether you are new to agile or a seasoned agile practitioner, XP 2018
provided a playful and informal environment to learn and trigger discussions around its
main theme – make, inspect, adapt.

Submissions of unpublished high-quality research papers related to agile and lean
software development were invited for the XP 2018 Research Papers Track. The
submissions received addressed the full spectrum of agile software development,
broadly on agile, on issues of concern to researchers and practitioners alike. Submis-
sions based on empirical studies and including practitioners and academic collabora-
tions were encouraged. We received 62 submissions for the track. After the first
screening by the track chairs, 58 submissions were sent out for single-blinded peer
reviews. Each submission received (on average) three reviews from the Program
Committee members. The committee decided to accept 21 papers, which are included
in these proceedings.

The success of the XP 2018 conference and the Research Papers Track should be
attributed to the passionate and hard work of many people. We greatly appreciate the
contributions from everyone, especially the authors and presenters of all papers, the
Program Committee members, the volunteers, and the sponsors. Last but not least, we
would like to express our sincere thanks to the organizing team of XP 2018, for their
great and constant support to us.

April 2018 Juan Garbajosa
Xiaofeng Wang
Ademar Aguiar

Organization

Conference Chair

Ademar Aguiar Universidade do Porto, Portugal

Research Papers Co-chairs

Juan Garbajosa Universidad Politécnica de Madrid, Spain
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Research Workshops Co-chairs

Stefan Wagner University of Stuttgart, Germany
Rashina Hoda The University of Auckland, New Zealand

Research Posters Co-chairs

Hugo Ferreira Universidade do Porto, Portugal
Davide Taibi Free University of Bozen-Bolzano, Italy

Doctoral Symposium Co-chairs

Pekka Abrahamsson University of Jyväskylä, Finland
Casper Lassenius Aalto University, Finland

Industry and Practice Co-chairs

Jan Coupette Codecentric, Germany
Nils Wloka Codecentric, Germany

Experience Reports Co-chairs

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA
Joseph Yoder The Refactory, USA

Agile in Education and Training Co-chairs

Craig Anslow Victoria University of Wellington, New Zealand
Robert Chatley Imperial College London/Develogical Ltd., UK

Tools and Demos Co-chairs

Seb Rose Cucumber Limited, UK
Allegra Cooper IT CTO, The Vanguard Group, Inc., USA

Tutorials and Workshops Co-chairs

Alan O’Callaghan Emerald Hill Limited, UK
Lachlan Heasman Independent, Australia

Openspace Chair

Charlie Poole Poole Consulting, USA

Panels Chair

Steven Fraser Innoxec, USA

Media Design Chair

Miguel Carvalhais Universidade do Porto, Portugal

Communication Design

Mafalda Marinho Freelancer, Portugal
Rita Ribeiro Freelancer, Portugal

Press and Media Sponsors

Pam Hughes Agile Alliance, USA

Sponsors Liaison

Philip Brock Agile Alliance, USA

Student Volunteers Co-chairs

Diogo Amaral Universidade do Porto, Portugal
André Lago Universidade do Porto, Portugal

Local Arrangements

Pedro Miguel Silva Universidade do Porto, Portugal
Esperanza Jurado Sopeña Badajoz, Spain
Jose Luis Gonzalez Sopeña Badajoz, Spain

VIII Organization

Agile Portugal Liaison

Filipe Correia Universidade do Porto, Portugal
Catarina Reis IP Leiria, Portugal

Agile Alliance Liaison

Jutta Eckstein Independent, Germany

Steering Committee

Juan Garbajosa Universidad Politécnica de Madrid, Spain
Casper Lassenius Aalto University, Finland
Erik Lundh IngenjörsGlädje, Sweden
Hubert Baumeister Technical University of Denmark, Denmark
Jutta Eckstein Independent, Germany
Michele Marchesi DMI - University of Cagliari, Italy
Nils Wloka Codecentric, Germany
Philip Brock Agile Alliance, USA
Steven Fraser Innoxec, USA
Seb Rose Cucumber Limited, UK

Institutional Partners

Universidade do Porto, Portugal
ScaleUp Porto, Portugal
Agile Portugal, Portugal
Agile Alliance, USA

Program Committee

Pekka Abrahamsson University of Jyväskylä, Finland
Hubert Baumeister Technical University of Denmark, Denmark
Jan Bosch Chalmers University of Technology, Sweden
François Coallier École de technologie supérieure, Canada
Kieran Conboy National University of Galway, Ireland
Steve Counsell Brunel University, UK
Daniela Cruzes SINTEF, Norway
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Christof Ebert Vector Consulting Services, Germany
Hakan Erdogmus Carnegie Mellon University, USA
Michael Felderer University of Innsbruck, Austria
Brian Fitzgerald Lero - Irish Software Engineering Research Centre, Ireland
Alfredo Goldman University of São Paulo, Brazil
Tony Gorschek Blekinge Institute of Technology, Sweden

Organization IX

Des Greer Queen’s University Belfast, UK
Peggy Gregory University of Central Lancashire, UK
Eduardo Guerra National Institute of Space Research, Brazil
Rashina Hoda The University of Auckland, New Zealand
Helena Holmström

Olsson
University of Malmo, Sweden

Sami Hyrynsalmi Tampere University of Technology, Finland
Andrea Janes Free University of Bolzano, Italy
Fabio Kon University of São Paulo, Brazil
Casper Lassenius Massachusetts Institute of Technology, USA
Lech Madeyski Wroclaw University of Science and Technology, Poland
Michele Marchesi DMI - University of Cagliari, Italy
Sabrina Marczak PUCRS, Brazil
Frank Maurer University of Calgary, Canada
Claudia Melo University of Brasília, Brazil
Tommi Mikkonen University of Helsinki, Finland
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF, Norway
Juergen Muench Reutlingen University, Germany
Daniel Méndez

Fernández
Technical University of Munich, Germany

Maria Paasivaara Helsinki University of Technology, Finland
Kai Petersen Blekinge Institute of Technology/Ericsson AB, Sweden
Pilar Rodríguez University of Oulu, Finland
Bernhard Rumpe RWTH Aachen University, Germany
Hugo Sereno Ferreira University of Porto, Portugal
Helen Sharp The Open University, UK
Darja Smite Blekinge Institute of Technology, Sweden
Roberto Tonelli University of Cagliari, Italy
Ayse Tosun Istanbul Technical University, Turkey
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Agustin Yague Universidad Politécnica de Madrid, Spain

Additional Reviewers

Amor, Robert
Anslow, Craig
Bajwa, Sohaib Shahid
Bordin, Silvia
Bruel, Pedro
Carroll, Noel
Correia, Filipe
Cukier, Daniel
Da Silva, Tiago Silva

Dennehy, Denis
Díaz, Jessica
Edison, Henry
Gutierrez, Javier
Hansen, Guido
Khanna, Dron
Klotins, Eriks
Kropp, Martin
Lunesu, Maria Ilaria

X Organization

Melegati, Jorge
Mikalsen, Marius
Netz, Lukas
Nguyen Duc, Anh
Reis, Catarina I.
Rosa, Thatiane
Schmalzing, David

Serradilla, Francisco
Sibal, Ritu
Solem, Anniken
Stettina, Christoph Johann
Suri, Bharti
Vestues, Kathrine
Wang, Yang

Organization XI

Contents

Agile Requirements

Cosmic User Story Standard. 3
Miguel Ecar, Fabio Kepler, and João Pablo S. da Silva

Improving Mockup-Based Requirement Specification
with End-User Annotations . 19

Matias Urbieta, Nahime Torres, José Matias Rivero, Gustavo Rossi,
and F. J. Dominguez-Mayo

Agile Testing

Combining STPA and BDD for Safety Analysis and Verification in Agile
Development: A Controlled Experiment . 37

Yang Wang and Stefan Wagner

Software Tester, We Want to Hire You! an Analysis of the Demand
for Soft Skills . 54

Raluca Florea and Viktoria Stray

Developers’ Initial Perceptions on TDD Practice: A Thematic Analysis
with Distinct Domains and Languages . 68

Joelma Choma, Eduardo M. Guerra, and Tiago Silva da Silva

Myths and Facts About Static Application Security Testing Tools:
An Action Research at Telenor Digital. 86

Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini,
and Daniela Soares Cruzes

Automated Acceptance Tests as Software Requirements: An Experiment
to Compare the Applicability of Fit Tables and Gherkin Language 104

Ernani César dos Santos and Patrícia Vilain

Agile Transformation

Interface Problems of Agile in a Non-agile Environment 123
Sven Theobald and Philipp Diebold

Enterprise Agility: Why Is Transformation so Hard? 131
Teemu Karvonen, Helen Sharp, and Leonor Barroca

Technical and Organizational Agile Practices: A Latin-American Survey 146
Nicolás Paez, Diego Fontdevila, Fernando Gainey,
and Alejandro Oliveros

Agile Software Development – Adoption and Maturity: An Activity
Theory Perspective . 160

Pritam Chita

Scaling Agile

Do Agile Methods Work for Large Software Projects?. 179
Magne Jørgensen

Learning in the Large - An Exploratory Study of Retrospectives
in Large-Scale Agile Development . 191

Torgeir Dingsøyr, Marius Mikalsen, Anniken Solem,
and Kathrine Vestues

Reporting in Agile Portfolio Management: Routines, Metrics and Artefacts
to Maintain an Effective Oversight . 199

Christoph Johann Stettina and Lennard Schoemaker

Inter-team Coordination in Large-Scale Agile Development: A Case Study
of Three Enabling Mechanisms. 216

Finn Olav Bjørnson, Julia Wijnmaalen, Christoph Johann Stettina,
and Torgeir Dingsøyr

Supporting Large-Scale Agile Development with Domain-Driven Design 232
Ömer Uludağ, Matheus Hauder, Martin Kleehaus, Christina Schimpfle,
and Florian Matthes

Towards Agile Scalability Engineering. 248
Gunnar Brataas, Geir Kjetil Hanssen, and Georg Ræder

Human-Centric Agile

Stress in Agile Software Development: Practices and Outcomes 259
Andreas Meier, Martin Kropp, Craig Anslow, and Robert Biddle

Teamwork Quality and Team Performance: Exploring Differences Between
Small and Large Agile Projects. 267

Yngve Lindsjørn, Gunnar R. Bergersen, Torgeir Dingsøyr,
and Dag I. K. Sjøberg

XIV Contents

Continuous Experimentation

Challenges and Strategies for Undertaking Continuous Experimentation
to Embedded Systems: Industry and Research Perspectives 277

David Issa Mattos, Jan Bosch, and Helena Holmström Olsson

ICOs Overview: Should Investors Choose an ICO Developed with the Lean
Startup Methodology? . 293

Simona Ibba, Andrea Pinna, Gavina Baralla, and Michele Marchesi

Author Index . 309

Contents XV

Agile Requirements

Cosmic User Story Standard

Miguel Ecar1(B), Fabio Kepler1,2, and João Pablo S. da Silva1

1 Campus Alegrete, Federal University of Pampa,
810 Tiarajú Avenue, Alegrete, RS, Brazil

miguel@ecarsm.com, {fabiokepler,joaosilva}@unipampa.edu.br
2 Unbabel, Lisbon, Portugal

http://unbabel.com

http://ecarsm.com

Abstract. User Story is a technique widely used in Agile development.
It is characterised as short and high level descriptions of required func-
tionality, written in customer language during the very early requirement
gathering stage and containing just enough information to produce the
estimated implementation effort. The COSMIC method is a second gen-
eration technique for function size measurement. The requirement esti-
mation precision in COSMIC is directly proportional to the requirement
detailing level. Current templates for user stories writing might ignore
important information for COSMIC measurement purposes. This paper
introduces a new template for writing user stories which is more expres-
sive in terms of COSMIC size estimation. We performed a qualitative
survey to introduce this new user story template to the COSMIC com-
munity, intending to capture the COSMIC users opinion in terms of
expressiveness and how valuable it is. The survey points to promising
results considering the COSMIC users opinion about the new template.
This study contributes to agile requirements from the COSMIC users
point of view. This new template may be a step forward in terms of user
story estimation for COSMIC sizing based projects.

Keywords: COSMIC · Functional Size Measurement · User Story
Agile requirements · Agile development

1 Introduction

The area of Software Requirements is concerned with the elicitation, analy-
sis, specification, and validation of software requirements [1]. There are a large
number of styles and techniques for writing software requirements, including,
for example, requirements list, Use Cases (UC), User Stories (US), and Formal
Specification.

The Extreme Programming (XP) software development framework intro-
duced the idea of User Stories (US), which are basically use cases that concisely
capture functional requirements. Developers usually split it up requirements into

c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-91602-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_1&domain=pdf

4 M. Ecar et al.

US [2] and typically write user stories on cards to describe each system func-
tionality that the customer desires [3].

User story is one of the most widespread techniques for writing require-
ments in agile environments. User Stories have gained popularity among agile
approaches, being one of the main techniques used when the subject is require-
ments engineering in agile environments. There is a common template to write
user stories, however a number of different extensions have been adding or sup-
pressing information, according to the application context.

Despite this, current requirements specification techniques used in agile soft-
ware development are customer-oriented and, from the developers point of view,
have proven to be insufficient [4]. In other words, there are more information from
the customer point of view written in a too high level than from the developers per-
spective, with some implementation details. Moreover, user stories might reflect
in documentation debt [5], which can cause significant impact in terms of mainte-
nance effort and cost in agile software development projects, which drive develop-
ers to misunderstanding. Thus, it could be detailed and to continue in high level.

Functional Size Measurement (FSM) was proposed in order to obtain better
units of sizing. According to ISO/IEC 14143 [6], FSM was designed to overcome
the limitations of earlier methods of software sizing by shifting the focus away
from measuring how software is implemented to measuring size in terms of the
functions required by the user.

FSM intends to measure software functionality, being independent of tech-
nology, platform and individual. Based on defined measurements procedures it
is possible to define standard, objective, consistency and comparable results [7].

The Common Software Measurement International Consortium (COSMIC)
is a group formed in 1998 which intended to develop the second generation
of FSM [8]. The group objective was to develop a method for measuring user
requirements in conformity with fundamental software engineering principles
and the measurement theory. The method is applicable for measuring business,
real-time and infrastructure software [8]. The term COSMIC is used both for
the group and the method.

The COSMIC method has been designed to accept extensions for partic-
ular domains [9]. A domain for which it has been extended is Agile develop-
ment. According to [10], the agile guideline has the purpose of providing addi-
tional advice beyond the COSMIC Measurement Manual on Agile projects. The
COSMIC method is perfectly suited for measuring software evolving through
iterations and increments as typically found in Agile development without any
adaptation [10].

Sizing software in Agile development requires exactly the same knowledge,
principles and rules of the COSMIC Method when used in any other project
management method [10].

When sizing user stories using the COSMIC method, Message Sequence Dia-
grams may be used as shown in Fig. 1. The vertical line represents a functional
process and horizontal arrows represent data movements. Entries and Reads are
shown as arrows incoming to functional process and Exit and Writes as outgoing
arrows, appearing in the required sequence as top-down order [10].

COSMIC User Story Standard 5

Fig. 1. User Story and Message Sequence Diagram. Source: [10]

As can be seen, sizing user stories using the COSMIC method is not a difficult
task. Nevertheless, a precise size estimation is directly proportional to the level
of detail a US is written. Thus, based on the example in Fig. 1, some valuable
information may by missed, such as connections between data groups and direct
user feedback.

This paper introduces a new template for writing user stories which contains
more expressiveness in terms of COSMIC size estimation. The proposed template
specify possible connections between system data groups and express clearly the
presence of user feedback.

We performed a survey to introduce this new user story template to the
COSMIC community. The qualitative survey intended to capture COSMIC users
opinion in terms of expressiveness and how valuable it was.

The rest of the paper is organized as follows. Section 2 shows the background
of the COSMIC method and existing user stories templates. Section 3 presents
the proposed template and its details. Section 4 shows the evaluation process
conducted via survey with the COSMIC community and its analysis. Finally,
Sect. 6 draws some conclusions and future works.

2 Background

In this section we present the COSMIC method in Subsect. 2.1 and an overview
of user story templates in Subsect. 2.2.

2.1 COSMIC Method

The COSMIC method was born from the need to measure requirements from
systems such as business application, real-time and infrastructure software,
and some types of scientific or engineering software [8]. This necessity comes
from some IFPUG technique weaknesses. It has become increasingly difficult to
map Albrecht’s function types to modern ways of modelling software require-
ments, especially for software as services, real-time domain, and infrastructure
software [8].

6 M. Ecar et al.

The method is divided in three phases: measurement strategy phase, mapping
phase, and measurement phase. These phases and their definition are shown in
Fig. 2.

Fig. 2. The COSMIC measurement process [8]

The Measurement Strategy phase defines what will be measured. It must be
defined in the functional user perspective, such as humans, hardware devices, or
other software which will interact with the software under measurement. First
the measurement purpose is defined, which will lead to defining the scope and
functional users [8]. There are five key parameters to determine in this phase:

– Purpose: helps to determine all the following parameters;
– Scope: defines what is included or excluded in the functionality and what

are the restrictions;
– Level of composition: pieces of software to be measured, for example, the

whole application (level 0), or a primary component in a distributed system
(level 1), or a re-usable component in a service-oriented software (level 2);

– Functional users: must be defined for each piece of software. They are
humans or things which will send or receive data to or from the software;

– Layers: the software architecture; the piece of software must be confined in
one layer.

The Mapping phase consists in creating the functional user requirement COS-
MIC model, it starts from whatever the artefacts are available. The model is cre-
ated applying the COSMIC Generic Software Model, which is defined for four
principles [8].

The first principle is that a software functionality is composed of functional
processes, each functional process corresponds to an event in the functional user
world.

The second phase defines that functional processes are consisted of sub-
processes, they do only two things, they move and manipulate data. Data move-
ments which move data from functional users into functional processes or vice-
versa are called Entries and Exits. Data movements which move data from

COSMIC User Story Standard 7

Fig. 3. Data movements [8].

persistence storage and vice-versa are called Writes and Reads. As may be
seen in Fig. 3.

The fourth principle says that each data movement moves a single Data
group. Data group is defined as a single object of the functional user interest.

The last principle defines that data manipulation are assumed to be
accounted by the associated data movement. Data manipulation are not mea-
sured separately.

The Measurement Phase consists in taking account data movements, each
data movement is a unit of COSMIC Function Point (CFP). In this phase they
are counted and sum over all functional processes. A single functional process
must have at least two data movements and there is no upper size limit. When
measuring a software enhancement, it must be identified all data movements
added, changed and deleted and sum them over all its functional processes. The
minimum of any modification is 1 CFP [8].

2.2 User Story Overview

The User Stories technique is widely used in Agile development. They are char-
acterised as short and high level description of the required functionality written
in customer language. The traditional story template is: [1]

“As a <role>, I want to <goal/desire>, so that <benefit>”.
User Stories are used in the very early stage during requirements gathering.

They contain only enough information to estimate the implementation effort.
They should be written in customer language before the implementation, for
appropriated acceptance [10].

Besides the traditional one, there other User Stories writing templates. The
Table 1 shows some examples.

Template US01 [11] only introduces a specific use of user stories to express
usability requirements. There is no relevant difference from the traditional
template.

The template US02 [12] also, does not present any significant difference. It
only makes explicit that the object must be present, which is a natural practice
when using the traditional template.

8 M. Ecar et al.

Table 1. Examples of user stories templates.

ID User story template

US01 “As a <role>, I want <usability requirement>” [11]

US02 “As a <role>, I want to <action> <object>, so that <business
value>” [12]

US03 “As a <persona>, I want/need <goal> so that <Nielsen’s heuristic>
will be met” [13]

US04 “As a <role>, I want <goal/desire>” [14]

US05 “In order to <receive benefit> as a <role>, I want <goal/desire>” [15]

US06 “As <who> <when> <where>, I <what> because <why>.” [16]

US07 “As a <role>, I want to <goal/desire>, <non-functional
requirement>, so that <benefit>” [10]

Template US03 [13] contributes in terms of usability engineering. The last
part, which in traditional template is responsible for expressing feedback or user
expectation, is specific for Nielsen’s heuristic values, which should be met in the
user story.

Template US04 [14] is similar to the traditional template but makes the last
part optional. The user story is shorter and does not provide information about
feedback or user expectation. It may be useful once maintain only the minimum
valuable information.

Template US05 [15] is equivalent to the traditional template but places the
benefit first instead of last.

Template US06 [16], also known as “Five Ws”, adds more relevant informa-
tion from the user perspective, namely, “when” and “where”, compared to the
traditional template.

Template US07 [10] only adds information about non-functional requirements
found in the functional process. Considering the counting example presented in
[10], this information is not relevant for sizing estimation.

3 COSMIC User Story Standard

Based on the user story templates shown in Table 1, we can observe some weak-
nesses and limitation.

First of all, none of existent templates provide information about connections
between data groups or entities. This information is considerably important in
terms of COSMIC estimation, once data movements are detected also considering
connections or links present in the functional process.

Furthermore, current templates, besides providing a place for result or user
expectation specification, it is not specific for feedback. Thus, it may be used to
express user expectation, which might not be related to the functional process,
for example, “As a user, I want to receive by email daily news, so that I am
always up to date to the news.”

COSMIC User Story Standard 9

We propose a template called COSMIC User Story Standard (CUSS). The
main improvement is adding information about connections among the data
groups manipulated in the functional process. Other improvement is related to
user feedback. Some functional processes provide feedback to user, while others
may not provide, so it is clearly presented in US.

The CUSS template is the following:
“As a <who/role>, I want to <what>, linked to <connections>; so/then

be notified about operation status.”
where:

– <who/role> is the Functional User;
– <what> is the verb the represents the action or the functional process;
– <connections> represents other data groups involved in this functional

process;
– “so/then be notified about operation status” is optional statement and rep-

resents the functional user feedback.

The corresponding “context-free grammar” is presented in Fig. 4. The ter-
minal symbols are As a, As an, As the, I want to, I can, connected to, so,

Fig. 4. Context-free grammar

10 M. Ecar et al.

then, ., ,, ;, and, be informed about operation status, plus any words represent-
ing a role, a verb, or a data group. The non-terminal symbols are I, L, AS,
IWANT, LINK, FEED, FBACK, PLINK, SLINK, TLINK, DOT, COMMA,
SEMICOLON, USER, METHOD, DG. The initial symbol is US.

Examples are presented below.

– As a Manager, I want to remove a book.
– As an user, I can update books; so be notified about operation status.
– As a Manager, I want to add a new book, connected to author.
– As the Manager, I want to save books, connected to author and publishing

company.
– As a Manager, I want to create books, connected to author and publishing

company; then be notified about operation status.

4 Evaluation

We performed two evaluation strategies. The first one is a survey that was cre-
ated to raise the COSMIC community opinion about the new template and
its advantages and disadvantages. The second evaluation is an example of the
size estimation result after decomposing a requirement using the traditional US
template and using CUSS template.

4.1 Survey

The survey was created to retrieve the COSMIC community opinion about the
proposed US template. The survey is divided in 3 parts. The first part is com-
posed by questions to identify the respondent profile. The second part is com-
posed by open questions about current templates, the proposed template and
the impact in the agile aspect. The last part are closed questions in likert scale
[17], where 0 is “Disagree Strongly” and 4 is “Agree Strongly” about the same
questions from second part.

The survey had 22 responses. The Table 2 shows the respondents relation
between certificate holders and years of experience with COSMIC.

Skipping to the third part of the survey, Fig. 5 show the boxplot in likert scale
for the three statements, Question 01 is “Current Templates provide enough
information in term of COSMIC Sizing.” Question 02 is “COSMIC User Story
Standard provides greater expressiveness in term of COSMIC Sizing.” Question
03 is “COSMIC User Story Standard Template compromises the agility aspect
in a process.”

Based on this chart, we can observe that concerning to current US templates
expressiveness, the concentration is around disagree moderately with an outlier
in agree strongly, in other words, we can infer that current US templates do not
have good expressiveness in terms of COSMIC sizing.

Moreover, it is observable that regarding to expressiveness increasing in
CUSS, the concentration is in agree strongly, based on this, we can conclude
that CUSS, is a step forward to have a better US COSMIC size estimation.

COSMIC User Story Standard 11

Table 2. Respondents distribution into groups.

Experience Certified Non certified

1 Year 0 1

2 Years 1 1

3 Years 4 0

4 Years 5 0

5 Years 5 0

6 Years 1 0

8 Years 2 0

10 Years 1 0

15 Years 1 0

20 2

Fig. 5. First statement

Further more, the statement about CUSS to disturb the agile aspect, the
chart shows that concentration is around disagree strongly, in other words, we
can conclude that there is no heaviness, from agile point of view, in the infor-
mation added in COSMIC User Story Standard.

Returning to the second part of the survey, we conducted an content analysis
to analyse the answers with a deep interpretation.

The first open question is “Do you think that there is a lack of information in
current User Story Templates? Please discourse about your answer.”, the content
analysis is divided in two groups, “Yes” and “No” answers. The “No” answers
had not further discourse, so there were no classes in it. The “Yes” answers which
had further discourse, were divided in four classes. Table 3 present the content
analysis for the first open question. The percentage is over all answers for this
question.

Based on answers related to lack of information in current US templates, we
can observe that almost 80% of respondents agree that there are gaps in these
templates. From this group, around a half of respondents see no problem in this
information lack, so, around a half from those ones that agree that there are gaps
in current US template see that it could provide more information for COSMIC
size estimation.

12 M. Ecar et al.

Table 3. Content analysis for first question responses.

Group Class Percent.

No - 22.7%

Yes “Yes, but it is inevitable, expected” 13.6%

Yes “Yes, it is designed to provide basic information” 27.3%

Yes “Yes, it misses information” 13.6%

Yes Just Yes 22.7%

The second open question is “In your opinion, Cosmic User Story Standard
helps to identify more movements than other templates? Please discourse about
your answer.” The content analysis, was also, based on “Yes” and “No” answers
end their further discourses. The “No” answers were divided in two classes and
“Yes” answers were also divided in two classes as shown in Table 4.

Table 4. Content analysis for second question responses.

Group Class Percent.

No “User Story is useless, there is no relevance in it” 13.6%

No “I prefer other template” 4.5%

Yes “Yes, it is a major step forward” 18.2%

Yes “Yes, it is good, great, I like it” 63.6%

Based on the second question content analysis, we can conclude that over 80%
agree that CUSS could help to identify more movements. From the percentage,
around three-quarter classified it as “good” or “great” and one fourth classified
it as “a step forward for US COSMIC sizing”. According to this, we can conclude
that CUSS may be well received by COSMIC community, and in fact, it may
help in early COSMIC size estimation.

The third questions is “Do you think that this addition of information com-
promises the agile aspect? Please discourse about your answer.” Likewise, we
considered “Yes” and “No” answers, and classified its discussion. Table 5 presents
the content analysis for third question.

Based on Table 5, about 95% of the respondents believe that information
added in proposed template does not compromise the agile aspect of user story,
in other words, the information added is light weight and the agile aspect is not
corrupted.

Considering the first question, we can observe in content analysis that among
65% of the respondents considered that there is information lack in current user
story templates, but it is not a problem since user story is designed to express
only basic information.

COSMIC User Story Standard 13

Table 5. Content analysis for third question responses.

Group Class Percent.

No - 31.8%

No “somehow”, “Why?” 27.3%

No “there is no relation”, “agile keeps agile” 27.3%

No “the addition of information is light weight” 9.1%

Yes “Certainly” 4.5%

The content analysis for the second question, among 80% consider that the
proposed template is a good improvement in terms of COSMIC sizing, almost
20% considered it a major step forward.

For the third question, based on the content analysis among 95% of the
respondents considered that the information added in proposed user story tem-
plate does not compromise the agile aspect. Considering these answers, almost
60% sad just “No” or were not clear about what they think, while among 37%
considered that it is not a problem.

4.2 Example

The second evaluation consists in an example that shows how it is different
applying the traditional US template versus applying the proposed template
when decomposing a requirement written as epic. The main difference can be
observed in its value in CFP.

The requirement below is about a simple library system.

– The library system should allow a librarian user maintain authors, books.
When a new book is created or edited the author and publisher information
should come from the ones registered in the system. The manager user is also
able to activate and deactivate registered books. The manager user can also
list all booked books per client. The system should allow that client users
book and/or rent books. The librarian user can also send emails about new
books arrival.

The Table 6 presents the user stories written using the traditional template.
The Table 7 shows user stories written using the proposed template.

We can observe that there is a significant difference in the total size of CFP
units.

When using the CUSS template the number of CFP counted is 65, when
using the traditional template the number of CFP counter is 37. This difference
is related to detail level in each template. The proposed template add information
which expose more interaction and consequently more movements.

If the estimation is performed based only on the information available in
the traditional template, the professional should make assumptions about user

14 M. Ecar et al.

Table 6. Example using traditional template

ID US CFP

US01 As a Librarian, I want to register a new book, so
that it is available for booking and/or loan

2

US02 As a Librarian, I want to remove books 2

US03 As a Librarian, I want to list all books 3

US04 As a Librarian, I want to update books, so that I can
left it up to date

4

US05 As a Librarian, I want to register a new author, so
that it can be user for book register

2

US06 As a Librarian, I want to remove an author 2

US07 As a Librarian, I want to list all authors 3

US08 As a Librarian, I want to update an author, so that I
can left it up to date

4

US09 As a Manager, I want to activate a book, so that
clients can book or rent it

2

US10 As a Manager, I want to deactivate a book, so that
clients cannot book or rent it

2

US11 As a Manager, I want to list all booked books 3

US12 As a Client, I can create a new book booking, so that
I can rent it

3

US13 As a Client, I can create a new book rental, so that I
can rent books

3

US14 As a Librarian, I want to send emails about new
books arrival

2

Total 37

feedback and possible connections between data groups. The problem is that
these assumption may not be true, so the estimation is over or under precise.

The information added in the proposed template might seem heavy weight,
mainly if we are talking about writing US in requirements gathering. But the
objective of the CUSS template is to be clear about valuable information in
terms of COSMIC sizing.

Moreover, having more information in the very early development stage helps
to have a more precise estimation. It is important for managers that have to
control and estimate cost, time, team and etc.

5 Threats to Validity

The survey was anonymous and open to community, so anyone could respond it,
however, it was published just to COSMIC users and shared via email to specific
group of practitioners. Almost 90% of subjects are COSMIC certified, this factor

COSMIC User Story Standard 15

Table 7. Example using CUSS

ID US CFP

US01 As a Librarian, I want to register a new book, connected to
author and publisher; then be informed about operation status

7

US02 As a Librarian, I want to remove books; then be informed about
operation status

3

US03 As a Librarian, I want to list all books, connected to author and
publisher

7

US04 As a Librarian, I want to update books, connected to author and
publisher; then be informed about operation status

9

US05 As a Librarian, I want to register a new author; then be
informed about operation status

3

US06 As a Librarian, I want to remove an author; then be informed
about operation status

3

US07 As a Librarian, I want to list all authors 3

US08 As a Librarian, I want to update an author; then be informed
about operation status

5

US09 As a Manager, I want to activate a book; then be informed
about operation status

3

US10 As a Manager, I want to deactivate a book; then be informed
about operation status

3

US11 As a Manager, I want to list all booked books, connected to
clients

5

US12 As a Client, I can create a new book booking, connected to client
and book; then be informed about operation status

6

US13 As a Client, I can create a new book rental, connected to client
and book; then be informed about operation status

6

US14 As a Librarian, I want to send emails about new books arrival 2

Total 65

increase answers quality and reliability, and even for those ones which are not
certified the answers consistency was satisfactory. We considered all answers, due
to even non certified may have significant contribution. But even so, all subjects
have at least one year of experience with COSMIC in industry.

The survey was conducted comparing well known user story templates to
the proposed one. In the first survey step, the subjects could see examples of
use and the expressiveness difference between well known templates and the
proposed template.

We made a cross validation using two approaches to answer the same ques-
tions. So, each question was asked twice via discursive way and likert scale
[17]. Based on this double check, was could guarantee consistency between the
answers. In other words, we double checked if discursive answers was according
to likert [17] answer, finding solid results.

16 M. Ecar et al.

The COSMIC estimation was performed by a junior professional. So, there
may be not as precise as an expert certified COSMIC professional estimator.

6 Conclusion and Future Work

This work presented a new template for user story writing. This template is
called COSMIC User Story Standard and its purpose is to elevate the user story
expressiveness in terms of COSMIC size estimation.

The information added in this template is related to connections among
data groups in the estimated system, also there is an improvement related to
user feedback. The added information is lightweight and does not make the user
story saturated of information.

In order to raise the need to a new user story writing template, we devel-
oped a survey with COSMIC community to explore its possibilities and get
feedback from potential users. The survey answers were analysed under content
analysis. The result is enthusiastic, the template was well received by COSMIC
community.

Survey content analysis allows us to realise that the information lack in user
story is perceived by COSMIC users, but not necessarily it is seen as a huge
problem.

Furthermore, content analysis also allows us to conclude that the proposed
template is valuable for COSMIC community being classified as great and as a
step forward in terms of COSMIC user story estimation.

Besides, we developed an example of the difference between the estimated
size from user stories decomposed from the same epic and written in both, the
traditional and the proposed, templates. The difference between the total CFP
estimated size using the proposed template and the traditional is huge significant.

As future work, we aims to develop a software based on proposed template
for automated grammar validation and verification. Moreover, we have intention
to use this template as source to automated COSMIC size estimation of user
stories. Furthermore, we pretend to perform empirical evaluation of the proposed
template with experiments and case studies.

Acknowledgments. We thank mister Frank Vogelezang who provided insight and
expertise that greatly assisted the research.

References

1. Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L.L.: Guide to the Soft-
ware Engineering Body of Knowledge: 2004 Version SWEBOK. IEEE Computer
Society, Washington, D.C. (2004)

2. Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., Ahmad, M.O.: Comparing
requirements decomposition within the Scrum, Scrum with Kanban, XP, and
Banana development processes. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.)
XP 2017. LNBIP, vol. 283, pp. 68–83. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57633-6 5

https://doi.org/10.1007/978-3-319-57633-6_5
https://doi.org/10.1007/978-3-319-57633-6_5

COSMIC User Story Standard 17

3. Maurer, F., Martel, S.: Extreme programming. Rapid development for web-based
applications. IEEE Internet Comput. 6(1), 86–90 (2002)

4. Medeiros, J., Vasconcelos, A., Goulão, M., Silva, C., Araújo, J.: An approach based
on design practices to specify requirements in agile projects. In: Proceedings of the
Symposium on Applied Computing, pp. 1114–1121. ACM (2017)

5. Mendes, T.S., de F Farias, M.A., Mendonça, M., Soares, H.F., Kalinowski, M.,
Sṕınola, R.O.: Impacts of agile requirements documentation debt on software
projects: a retrospective study. In: Proceedings of the 31st Annual ACM Sym-
posium on Applied Computing, pp. 1290–1295. ACM (2016)

6. ISO: Information technology—software measurement—functional size measure-
ment (2012)

7. Akca, A., Tarhan, A.: Run-time measurement of cosmic functional size for Java
business applications: initial results. In: 2012 Joint Conference of the 22nd Inter-
national Workshop on Software Measurement and the 2012 Seventh International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
pp. 226–231, October 2012

8. Abran, A., Baklizky, D., Davies, L., Fagg, P., Gencel, C., Lesterhuis, A.,
Londeix, B., Soubra, H., Symons, C., Villavicencio, M., Vogelezang, F.,
Woodward, C.: Introduction to the COSMIC method of measuring software. Com-
mon Software Measurement International Consortium (2014)

9. Abran, A., Baklizky, D., Desharnais, J.M., Fagg, P., Gencel, C., Symons, C.,
Ramasubramani, J.K., Lesterhuis, A., Londeix, B., Nagano, S.I., Santillo, L.,
Soubra, H., Trudel, S., Villavicencio, M., Vogelezang, F., Woodward, C.: COSMIC
measurement manual. Common Software Measurement International Consortium
(2015)

10. Berardi, E., Buglione, L., Cuadrado-Collego, J., Desharnais, J.M., Gencel, C.,
Lesterhuis, A., Santillo, L., Symons, C., Trudel, S.: Guideline for the use of COS-
MIC FSM to manage agile projects. Common Software Measurement International
Consortium (2011)

11. Moreno, A.M., Yagüe, A.: Agile user stories enriched with usability. In: Wohlin, C.
(ed.) XP 2012. LNBIP, vol. 111, pp. 168–176. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30350-0 12

12. Zeaaraoui, A., Bougroun, Z., Belkasmi, M.G., Bouchentouf, T.: User stories tem-
plate for object-oriented applications. In: 2013 Third International Conference on
Innovative Computing Technology (INTECH), pp. 407–410. IEEE (2013)

13. Choma, J., Zaina, L.A.M., Beraldo, D.: UserX story: incorporating UX aspects
into user stories elaboration. In: Kurosu, M. (ed.) HCI 2016. LNCS, vol. 9731, pp.
131–140. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39510-4 13

14. Cohn, M.: Advantages of the “as a user, i want” user story tem-
plate (2008). https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-
a-user-i-want-user-story-template. Accessed 9 Sept 2017

15. Matts, C.: Feature injection: three steps to success (2011). https://www.infoq.com/
articles/feature-injection-success. Accessed 9 Sept 2017

16. Pupek, D.: Writing user stories the 5 Ws way (2008). http://blog.agilejedi.com/
2008/03/writing-user-stories-5-ws-way-writing.html. Accessed 9 Sept 2017

17. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55
(1932)

https://doi.org/10.1007/978-3-642-30350-0_12
https://doi.org/10.1007/978-3-642-30350-0_12
https://doi.org/10.1007/978-3-319-39510-4_13
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
https://www.infoq.com/articles/feature-injection-success
https://www.infoq.com/articles/feature-injection-success
http://blog.agilejedi.com/2008/03/writing-user-stories-5-ws-way-writing.html
http://blog.agilejedi.com/2008/03/writing-user-stories-5-ws-way-writing.html

18 M. Ecar et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Improving Mockup-Based Requirement
Specification with End-User Annotations

Matias Urbieta1,2(&), Nahime Torres3, José Matias Rivero1,2,
Gustavo Rossi1,2, and F. J. Dominguez-Mayo4

1 LIFIA, Facultad de Informática, UNLP, 50 y 120, La Plata, Argentina
{murbieta,mrivero,gustavo}@lifia.info.unlp.edu.ar

2 CONICET, Buenos Aires, Argentina
3 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

rocionahime.torres@polimit.it
4 IWT2, Computer Languages and Systems Department, University of Seville,

ETSII, Avda. Reina Mercedes S/N, 41012 Seville, Spain
fjdominguez@us.es

Abstract. Agile approaches, one of the key methodologies used in today’s
software projects, often rely on user interface mockups for capturing the goals
that the system must satisfy. Mockups, as any other requirement artifact, may
suffer from ambiguity and contradiction issues when several points of view are
surveyed/elicited by different analysts. This article introduces a novel approach
that enhances mockups with friendly end-user annotations that helps formalizing
the requirements and reducing or identifying conflicts. We present an evaluation
of the approach in order to measure how the use of annotations improves
requirements quality.

Keywords: Requirement � Agile � Documentation � Mockup � Annotation

1 Introduction

Eliciting application requirements implies understanding the needs of one or more
stakeholders even in cases where the business domain may be partially or totally
unknown for the analysts who perform the elicitation. Often, requirements are agreed
by stakeholders in such a way that the semantics and meanings of each used term are
well understood. However, when different points of view [6] of the same business
concept exist, ambiguities and/or inconsistencies may arise being them detrimental to
the software requirement specification. Although the use of agile approaches has
become a key factor in project success1, the companies practicing these approaches
claim that the minimal documentation provided by user stories is a challenge for the
projects [3]. When the personnel turnover or rapid changes to requirement arises, the
application evolution is severely compromised. Traditionally, conciliation tasks are
performed using meeting-based tools [8] in order to eliminate requirements ambiguity
and inconsistency but in the event of agile approaches the tacit knowledge which is

1 9th Annual State of Agile Survey - http://stateofagile.versionone.com/.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 19–34, 2018.
https://doi.org/10.1007/978-3-319-91602-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_2&domain=pdf
http://stateofagile.versionone.com/

mandatory in this task can be lost on personnel turnover or inaccessibility when the
appropriate customer is unavailable. Agile approaches often rely on unit testing for
maintaining the alignment of requirements when these suffer changes but large textual
descriptions present in documents and the requirement change volatility make it
impossible to keep artefacts updated and consistent [1]. When requirement inconsis-
tencies are not detected on time - being this one of the most severe reasons for project
cost overrun [21] -, they may become defects in the application. In this context, the
effort to correct the faults is several orders of magnitude higher than correcting
requirements at the early stages [2].

In practice, agile methodologies reduce the gap between expectations and deliv-
erables by having short development cycles in which a deliverable is released to be
confronted with requirements when an iteration ends. This practice often does not focus
on documenting the solution (class diagrams, deployment diagrams, etc.) as it is done,
for instance, in waterfall or RUP approaches. One of the most important tools for
documentation adopted by agile practitioners is the mockup of user interfaces. By using
this technique, the way in which business scenarios are instantiated relies on light-
weight textual descriptions like User Stories, and wireframes design that easily com-
municate application behavior to stakeholders.

User Interface mockups are a useful tool for describing scenarios where the real-life
data is used for exemplifying the use case instead of abstract descriptions. However, the
information they provide is informal and allows misunderstandings by different
stakeholders. For example, we could consider a marketplace application showing a
product list like the one shown in Fig. 1. For every product, we have an image, a price,
a title, a description, a quantity sold, a location, an icon to indicate if the product is
new, another to indicate if the seller is premium and one that indicates whether the
product has free shipping or not. Although this information is illustrative, it lacks the

(a) Web Version (b) Mobile Version

Fig. 1. Mockup of an e-commerce application.

20 M. Urbieta et al.

precision to formally describe the requirements expected in the early stages of software
development. The mockup’s reader is not able to distinguish if the regular price or the
internet price property is intended to be displayed with the label “$499”. The team
members may interpret different possible behaviors accordingly to their point of view,
experience and background. The developers may define by themselves the missing
information based on this vague definition where any misconception will be detected
later with a costly resolution. This is because the mockup tool is an informal specifi-
cation which lacks of resources to enumerate abstractions such as variables and entities
like UML does.

To make matter worse, as long as new requirements are planned as User Stories in
sprints, one or more conflicts can raise. Inconsistencies may also arise from new
requirements, which introduce new functionality or enhancements to the application or
even from existing requirements that change during the development process. Let’s
suppose that for the use case exposed on Fig. 1, there is a new slightly different
mobile-based user interface. This new mockup is used to describe a new commercial
initiative and it has different business rules that cannot be appreciated by only looking
at the mockup. Despite of the mobile counterpart may seem to be a legitimate design
because much of the shown information is shared by both versions (mobile and web),
there are specific details that belong to the mobile version such as promotional dis-
counts or free-shipping benefits that are imperceptible by the reader at first sight.

To cope with the aforementioned problem, we present in this work as novel con-
tribution a colloquial and user-friendly notation to describe data, navigation, business
and interaction requirements upon mockups specifications. In order to evaluate the
effectiveness of our approach, we include a controlled experiment that assesses the
expressiveness improvement of Mockups using this approach.

The rest of this paper is structured as follows. Section 2 presents some related work
on requirements validation and model consistency checking. Section 3 describes our
approach to annotate mockups using end-user grammar. Section 4 presents an evalu-
ation of our approach. Finally, Sect. 5 concludes this work discussing our main con-
clusions and some further work on this subject.

2 Related Work

The analysis and detection of conflicts, errors, and mistakes in the requirements phase
are the most critical tasks in requirements engineering [7]. In [5], the authors surveyed
the way in which Web engineering approaches deal with main tasks: requirements
capture, requirements definition and requirements validation and conclude that most
approaches use classical requirements techniques to deal with requirements. According
to these, there are four main techniques for requirements validation: reviews, audits,
traceability matrix and prototypes; in the Web engineering literature, requirements
validation is one of the less treated subjects. Besides, none of these techniques offers a
systematic approach for detecting conflicts in requirements. Requirements conflicts
arise despite the way we document them, for example in [22] they define a framework
for quality of user stories and one of the necessary conditions for a US to be of good

Improving Mockup-based Requirement Specification with End-User Annotations 21

quality is that it has to be unique and free of conflicts. Additionally, a characterization
of conflict in user stories is presented but there is no mention of mockup’s conflicts.

Mockups tools are gaining attention in the requirements engineering field since they
help to build UI specifications in companion with end-users. Also, they help to discover
and define non-UI requirements in a language that is closer to them, as opposed to plain
textual specifications [11, 13]. Additionally, mockups have been proven to be an
effective method to capture fluid requirements [18] – those that are usually expressed
orally or informally and are an implicit (and usually lost) part of the elicitation process.
The usage of user interfaces prototypes with static structure to define conceptual
models has been already shown in [12]. While authors in this work show how E-R
models can be derived from structured mockups, their approach is not applicable to
informal mockups like the ones that are considered in this work. The ICONIX process
[17] proposes to start with Graphical User Interface (GUI) prototypes as a first
requirements artifact. While this may provide some initial guideline, in that work the
authors do not provide any language or formal guidance to define data requirements. In
[14], authors establish a method to work with Use cases and mockups in conjunction,
however, Use Cases specification require more effort than a lightweight specification.
In [10] the authors explain that sometimes when documenting requirements in agile this
is so customer-oriented, that even if the specification is clear for the customer, they
might not for the developers, having here conflicts between two actors in software
development, and for this they propone Requirement Specification for Developers
(RSD); each RSD can have mockups associated, and when a requirement is changed
the mockup associated has to be reviewed.

Regarding requirement consistency, last years we have been researching different
strategies to capture Web software requirements and validating its consistency and
completeness [4, 19]. These approaches were designed to be plugged into “heavy”
Model-Driven approaches and do not easily fit in agile development processes. In this
work, we aim at introducing tools for the consistency checking of mockups by bor-
rowing concepts from our previous work.

3 Enhancing Mockups with End-User Annotations

After software analysts understand clients’ initial needs, they are able to start sketching
mockups (with direct stakeholder participation if desired) in order to informally
describe how the application will be browsed and will be used later. Mockups can be
modelled using any tool in which the analyst has expertise (for instance, Balsamiq2).
We use as a running example the development and extension of an e-commerce site
(Fig. 1).

Mockups are used as a tool for validating requirements’ interpretation with
stakeholders; they describe how the user interface should look like with illustrative
examples belonging to real life scenarios. When using Mockups, analysts take
advantages of the fact that the language that they use, user interface widgets, are

2 Balsamiq Mockups - https://balsamiq.com/products/mockups/.

22 M. Urbieta et al.

https://balsamiq.com/products/mockups/

jargon-free (unlike textual requirements artifacts) and represent a common language
between the analysts and the stakeholders [11, 15]. However, while mockups allow
describing visual and interaction metaphors their solely visual description is not enough
for expressing requirements like validation, navigation/activation, business process
aspects, etc. Because of this, informal annotations are usually used in companion with
mockups to describe those missing aspects. Throughout this section we describe how
we formalize these informal descriptions to solve ambiguities.

3.1 Structural User Interface

The approach presented in this paper extends (using an end-user grammar) the
MockupDD [15] methodology which provides a metamodel for enhancing mockup
widgets with annotations. In the context of MockupDD, mockups are the main,
mandatory requirements specification artifacts which, instead of being discarded as in
traditional development approaches, are reused as a basis to define more complex
software specifications. This reuse is accomplished through (1) the formalization of the
mockup structure and widgets, through what it is called a Structural User Interface
(SUI) model and (2) the introduction of a set of formal annotations over the structure
defined over such model [15]. Every annotation placed over the formalized mockup
represents an independent specification related, for instance, to content, navigation,
behavior or any other aspect that can be specified over a visual representation of the UI.
The semantics defined for every annotation allows formalizing requirements over
mockups. Consequently, it allows generating code or actions interpreted at runtime,
translating them to semi-textual representations to discuss requirements captured over
the mockups with stakeholders. In this case, annotations (called tags from now on) are
only used to formalize and refine requirements and, eventually, to detect conflicts. Our
approach relies on the definition of formal tags which enhance the widgets that com-
poses the UI. For a sake of space, in this work we will omit details of the SUI model
since it is not strictly related to the approach – more details about it can be found in
[15].

3.2 End-User Grammar Annotations Catalogue

In this section, we introduce the end-user annotation catalogue for enriching the
mockup specifications that will be used later in the examples. In order to improve
Mockup element description and solve the lack of formality, in this step we use a
Domain Specific Language called End User Grammar (EUG) [15] which focuses on
describing information source, format and information relationships. Each annotation is
a structured colloquial definition which is intelligible to end-users because it does not
present any technical concept that would limit its understanding. Next, we introduce
annotations patterns and their description.

"Mockup Name" view (number) ð1Þ

Defines an ID (number) for a mockup in order to be referenced as a destination for
navigation/activation by other tag.

Improving Mockup-based Requirement Specification with End-User Annotations 23

a½n� ½list of� class ð2Þ

Denotes that an object or a list of objects of class Class is shown or can be
manipulated in the UI. For instance, a list in a mockup that shows an index of products.

Class0 attribute ½which is a datatype j with options :
value1; . . .;and valueN� ð3Þ

Specifies that the attribute of an object of class Class (called attribute) is
shown or can be edited through an underlying graphical widget. Optionally, a
datatype can be defined for that attribute (one of Date, String, Integer,
Decimal, Boolean, Integer an enumeration or Blob). If no datatype is
specified, String is assumed. In the event of an enumeration it is possible to list
possible values using “with options o1;o2; . . .;oN” clause.

a Class1 has a[n][optional][list of] Class2, called

“aReal-Name”

ð4Þ

Denotes that an object of Class2 is shown or can be manipulated through the
underlying element in the UI. However, this element is obtained navigating from an
association called associationName from another element of class Class1.

Subclass is a type of Superclass ð5Þ

Denotes that an object of class Subclass is shown or can be manipulated in the
User Interface and that the class of this object (Subclass) inherits from another one
called Superclass.

Navigates to \destination[ð6Þ

Opens a popup \destination[ð7Þ

Denotes that, when executing a default action over the underlying graphical ele-
ment (e.g., a click) the destination mockup will be shown, navigated to or focused –

destination mockup should be tagged with mockupName view (number) and
<destination> should reference that number

Class0s attribute is required ð8Þ

Denotes that a non-empty value for attribute attribute of class Class is
required.

Class0s attribute min value is minimumValue ð9Þ

24 M. Urbieta et al.

Class0s attribute max value is maximumValue ð10Þ
Class0s attribute values must be between minimumValue

and maximumValue
ð11Þ

Denotes that the values for attribute attribute in class Class must be less than
or equal to a maximumValue and/or greater than or equal to a minimumValue

Class0s attribute matches regularExpresion ð12Þ

The contents of attribute attribute of class Class must be formatted to match
a pattern (regularExpression). For instance, phone numbers and ID data have
specific formatting constraints.

½Saves j Deletes� a Class ð13Þ

Denotes that, when clicking or triggering a default action over the widget an
instance of Class (which is being edited) will be created or deleted; respectively.

Triggers "action description" ð14Þ

Denotes that an arbitrary action (described textually) will be invoked when exe-
cuting the default action over the widget. This construct is used when the expected
behavior is not already defined but needs to be pointed out.

Fig. 2. Descripted mockups using our Colloquial DSL.

Improving Mockup-based Requirement Specification with End-User Annotations 25

3.3 Colloquial Data Description

Mockups often use a real-life scenario defined with illustrative data to describe what
User eXperience (UX) the application will provide. During this step, analysts must
enrich mockups graphical elements with a template-based colloquial description.

The main advantage of EUG is that it can be easily understood by end-users and
also provides the formality required to be processed and, consequently, allows a better
validation of requirements. Each description expression must match a specific template
with well-defined placeholders that will ease later automate processing.

In Fig. 2, we can see how the mockup presented in Fig. 1a was documented using
the tags. For the sake of space, we present in the examples some simple but illustrative
sets of annotations that specify the requirements, but the sets of tags can be more
exhaustive covering a larger set of elements. In the figure, a mockup built with Bal-
samiq tool is presented where tags are included using markup capabilities provided by
the tool itself. The requirement is first identified with the name “Products list” using
Grammar 1 syntax (presented in Sect. 3.2). Then, from the expression “Product’s
delivery flag with options: free, paid” (Grammar 3) we can identify the Product
business entity that has an attribute called delivery flag that has two possible values:
free and paid. Moreover, some behaviors are related to the “Add to cart” button, which
creates a new instance of Product Purchase object through “Saves a Product Pur-
chase” (Grammar 13) and navigates to a Cart view through “Navigates to 2”
(Grammar 6). The reader should note that the entities considering its attributes and
types as well as actions will be used in the consistency analysis of mockups later.

In Fig. 3, the Shopping Cart mockup is shown. This mockup is navigated to after
the user adds a new product in their Product Purchase clicking in the “Add to
cart” button in mockup depicted in Fig. 2, after the Product Purchase is created. The
Shopping Cart mockup mostly shows a list of Product Purchase and the mockup
mostly describes their properties. But, it also features a relationship between the
Product Purchase and the Product - since a Product Purchase represents a purchase

Fig. 3. Checkout mockup

26 M. Urbieta et al.

of specific quantity of an individual Product (Grammar 3). This relationship is
expressed through the “Product Purchase has a Product, called ‘product to be
purchased’” tag (Grammar 4). Finally, it also includes an annotation specifying
that the quantity of a Product Purchase should be 1 as a minimum (Grammar 9).

3.4 Using End-User Grammar to Identifying Requirement
Inconsistencies

A candidate conflict arises when there are syntactic differences between requirements
expressed through mockups. These differences may be common mistakes [4]: (a) as
consequence of an element absence in one mockup but its presence in the other, (b) the
usage of two different widgets for describing the same information which contradict
themselves, or (c) a configuration difference in an element such as the properties values
of a widget. This situation may arise when two different stakeholders have different
views on a single functionality, or when an evolution requirement contradicts an
original one. By annotating mockups, we are able to reason over the specification and,
both manually or using automatic tools when possible, end-user grammar allows to
detect inconsistencies that are not clear with plain mockups – or when using mockups
with colloquial, natural language annotations.

A basic conflict detection can be performed by comparing mockups so as to detect
the absence of elements or elements’ constructions differences. Since Mockups are
containers of widgets, we can apply difference operations of set collections in order to
detect inconsistencies. For example, currently, it has become common for software
products to release both a mobile and a Web version. The arrival of a new mobile
version should have the same business goal although it runs in a different platform with
different interaction and presentation features. For example, in Fig. 4, a different
stakeholder suggests an alternative mockup version to the one presented in Fig. 2.
Although their aim is to present the same underlying concept, they have significant
differences that would be overlooked without our end-user grammar. In Fig. 2, The
Product List mockup defines a Product entity which has Description, Internet Price,
Delivery Flag, Thumbnail, Status, Sold Count, and Location attributes. In Fig. 4, a
different business entity version also called Product comprises a different set of attri-
butes: Description, Internet Price, Delivery Flag, and Thumbnail. We can appreciate
two types of differences: one related to the attribute existence or absence and the other

Fig. 4. Annotated Product List mobile version.

Improving Mockup-based Requirement Specification with End-User Annotations 27

related to the attribute configuration. Regarding the former, there are attributes that
appear in one figure and not in the other, for example: Status, Sold Count and Location.
On the other hand, there are differences related to the type of the attributes, for example
in one of its versions a Product has a Delivery Flag as an enumeration and in the other
it’s a Boolean. Also, the Price is defined as an Integer number in the first version while
in its counterpart it’s a decimal number (Grammar 3).

Once the inconsistencies are detected, conciliation tasks are performed using
meeting-based tools [8] or heuristics [4] to eliminate requirements ambiguity and
inconsistence. For the sake of space, we will not provide a throughout discussion of this
topic.

4 Evaluation

In this section, we conduct an evaluation of the approach to measure how much it
assists in the understanding of mockups following Wohlin et al. guidelines [20]. First,
we define the goals, hypotheses and variables of the experiment. Then, we proceed to
define metrics and materials considered. After that, we detail subjects, instrumentation,
and data collection methods used in the experiment. Then we conduct an analysis of
results and their implication. Finally, we consider threats to validity of the evaluation.

4.1 Goals, Hypotheses and Variables

Following the Goal-Question-Metric (GQM) format as is suggested in [20], we define
the goal of the experiment in the following way:

Analyze Mockups enhanced with end-user’s annotations for the purpose of mea-
sure how requirements documented with mockups are improved with respect to their
expressiveness from the point of view of researchers in the context of software
analysts and developers.

After defining the Goal, now we proceed to define the different questions that will
allow to answer them. We profit from the precision and recall [9] concepts from
information retrieval research field and adapted them to our experiment so as to
measure quality of responses.

Our main Research Questions (RQ) are:
RQ1: Do End-user annotations improve the relevancy of the data elements iden-

tified in mockups?
For this RQ, we consider as null hypothesis H0 that there is no difference in the

accuracy of identification of involved data by subjects using only mockups and
annotated mockups. The relevancy is the response variable which will be measured
using a precision metric. The metric is used to assess how many data items identified by
the subject in a mockup are relevant accordingly a leading case. In Eq. 15, the formula
is depicted where the precision is computed given a subject and a mockup.

P Subjectj;Mf
� � ¼ RelevantResponse Mf

� �T
Response ðSubjectjÞ

Response Mf
� � ð15Þ

28 M. Urbieta et al.

As alternative hypothesis Ha, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (µEU) against the basic
support of mockups(µMOCK): µMOCK � µEU.

RQ2: Do End-user annotations improve the completeness of the data elements
identified in mockups?.

For this RQ, we consider as null hypothesis H0 that there is no difference in the
accuracy of identification of involved data by subjects using only mockups and
annotated mockups where the completeness is the response variable. The recall metric
is used to assess how many relevant data items are identified by the subjects in a
mockup. In Eq. 16, the Recall formula is presented where the precision is computed
given a subject and a mockup.

R Subjectj;Mf
� � ¼ RelevantResponse Mf

� �T
Response ðSubjectjÞ

RelevantResponse Mf
� � ð16Þ

As alternative hypothesis Ha, we consider there is an improvement in the mean of
the response accuracy of subjects using end-user annotations (µEU) against the basic
support of mockups(µMOCK): µMOCK � µEU.

4.2 Experiment Design

In order to answer these questions, we designed a between-subject design experiment
where subjects were asked to identify entities and data present in mockups; from now,
Experiment Variable (EV). The subjects were randomly divided into two groups for the
two alternatives of the approach (the experiment’s factor): mockups without any kind
of annotations (Control) and mockups with the use of presented end-user annotations
(Treatment).

In this experiment, we focused on measuring how the communication of require-
ment is improved with annotation and we did not consider evaluating the user expe-
rience related to the tagging task or comparing the performance against other approach.

4.3 Experimental Unit

The requirement gathering task using mockups requires to document mockups and
communicate them, firstly, to stakeholders to validate its definition and later to the
developers in order to start its development. For this task, we have modeled use cases
using mockups for an e-commerce site – which mockups were similar to the ones
depicted in Fig. 1. The main functionalities considered in use cases were system
registration and the view of a product’s details. Both versions used the same mockups
but one of them included the annotations defined in Sect. 4 to enhance their descrip-
tion. Both the modeling and tagging tasks results were validated by senior analysts
prior to the experiment.

To evaluate subject’s understanding of the requirements, we asked them to fill out a
form where they should record each data definition they can extract from the mockups,
its expected data type, any kind of validation and the associated widget. Since mockups
depict scenarios using examples rather than abstract variables or placeholders, they lack

Improving Mockup-based Requirement Specification with End-User Annotations 29

any kind of formalism so the datatype, validations and any other specification is the
result of the mockup’s reader interpretation. Both the mockup and the form are
available online3.

4.4 Subjects, Instrumentation, and Data Collection

During the experiment, the subjects received a form and a set of mockups. Subjects
were 34 developers from different software companies. On average, they were 31 years
old, had more than 6 years of programming experience and approximately 3.5 years in
requirement analysis tasks. A group of 18 subjects performed the experiment with
mockups annotated with end-user grammar meanwhile a group of 16 subjects per-
formed the experiment based on simple mockups. They were motivated and committed
to the experiment, as we were sponsored by the CEOs and managers that notified the
subjects about the company’s commitment to the research experiment.

The experiment protocol was executed in the same way with all the subjects. First
of all, they received a brief introduction to the material which had to be used during the
experiment. In the case of annotation-based material, the subjects were trained about
the end-user grammar usage. Next, participants were asked to complete an expertise
survey, read the experiment description, study the mockups, and fill out the ques-
tionnaire’s form. Each subject performed fully experiment supervised by a researcher
who ensured similar facilities layout, infrastructure, and subject isolation conditions.
Additionally, the researcher controlled the subject to avoid any answer modification as
long as she advanced in the experiment. To achieve the task of processing the collected
results, we first processed and digitalized responses. Then, we used different scripts
based on Python language (version 3.6.1) and Scipy library (version 0.19.0) to compute
Precision and Recall formulas.

4.5 Analysis and Evaluation of Results and Implication

For the analysis of samples, firstly we defined the Relevant Data Elements
(RDE) present in the mockups to be used to compute precision and recall metrics.
Then, once samples were digitalized, we checked samples against RDE for computing
True Positive (TP), and False Positive (FP) elements. That is to say, those elements that
a subject correctly reported (TP) when checking whether his response is included in the
relevant element set, or erroneously reported (FP). Finally, all samples were processed
using Mann–Whitney U test [20], which is a non-parametric statistical hypothesis test
technique, considering a standard confidence level (a) of 0.05. This technique can be
used with unequal sample size which is the case of this experiment. Additionally, we
computed the effect size using Cliff’s Delta technique.

The analysis was performed mostly in an automated way using Python-based
scripts that resolved the recall and precision calculation, and the hypothesis testing.

In order to answer our research question, we evaluated different possibilities of
computing subject’s responses and the outcome is presented in Table 1. As we asked

3 https://goo.gl/FMJ6KJ.

30 M. Urbieta et al.

https://goo.gl/FMJ6KJ

subjects to identify abstract data present in UI (the attribute), its data type, and its
owner entity, we considered four evaluation strategies for all the possible combinations
of evaluating such tuple: (i) only the abstract data (attribute) identified in the response,
(ii) the attribute and its data type, (iii) the attribute and its owner entity, and (iv) the
attribute, its data type and its owner entity tuple. For example, to evaluate whether the
tuple birthday, String type, and owned by the entity Person is a valid response or not.
For every mentioned evaluation strategy, we calculated Precision (P) and Recall
(R) metrics of subject responses when using both mockups without annotations to
measure how accurate were their answers. For each metric we reported, in Table 1, the
average and standard deviation for each approach (Mockup and Annotation columns
respectively), the Cliff’s delta value for the effect size, and the p-value resulting from
the hypothesis testing that compares the means of both approaches. We can realize how
annotated mockups samples excel in performance in all evaluation type. In all cases,
the p-value was lower than the alpha level 0,05. Therefore, there is enough evidence to
support the alternative hypothesis. That is, the mockup with end-user annotation
improves the

To calculate the effect size, we used cliff’s delta technique which has as a result
value in (–1,1) range. In this case, the values are bigger than 0.474 [16] in all evaluation
types depicting a high meaningfulness.

Additionally, we computed the time required for each individual to complete the
experiment. It is noteworthy that the subjects extracting information from annotated
mockups performed better (requiring less time) than the subjects working on
plain-annotated. For annotated mockups 1 and 2, it took to subject on average 297 s and
880 s; respectively. Conversely, for non-annotatedmockups, it required 332 s and 947 s.

The recall metric points out that there is an effective understanding of the pieces of
data comprised by the mockup. The subjects reported a greater number of relevant
elements than those subjects which worked with simple mockups. That means, the
subjects were more accurate with the domain element description. The precision was
also higher having less irrelevant responses than mockups without annotations. This is
another important indication about the responses that they did not combine valid and
invalid information reducing the noise in the communication between clients and
analysts. For example, without the annotations, subjects defined different irrelevant
business entities such Login, User, and Person to compose UI attributes.

Table 1. Sample results

Mockup 1 Mockup 2

Mockup Annotation Cliff’s
delta

P-value <0.05 Mockup Annotation Cliff’s
delta

P-Value <0.05

Evaluation Metric Avg. Std. Avg. Std. Avg. Std. Avg. Std.

(i) Attribute P 0.48 0.16 0.65 0.19 0.55 0.003
p

0.52 0.10 0.61 0.11 0.43 0.020
p

R 0.31 0.08 0.45 0.10 0.70 0.000
p

0.44 0.09 0.54 0.07 0.53 0.003
p

(ii) Attribute,
Type

P 0.33 0.15 0.55 0.18 0.69 0.000
p

0.50 0.13 0.60 0.12 0.39 0.031
p

R 0.21 0.09 0.38 0.11 0.77 0.000
p

0.43 0.11 0.52 0.08 0.49 0.005
p

(iii) Attribute,
Entity

P 0.00 0.00 0.47 0.29 0.78 0.000
p

0.33 0.23 0.55 0.19 0.57 0.003
p

R 0.00 0.00 0.35 0.21 0.78 0.000
p

0.29 0.21 0.48 0.16 0.56 0.002
p

(iv) Attribute,
Type, Entity

P 0.00 0.00 0.39 0.27 0.72 0.000
p

0.31 0.22 0.53 0.19 0.56 0.004
p

R 0.00 0.00 0.28 0.19 0.72 0.000
p

0.27 0.21 0.47 0.15 0.58 0.002
p

Improving Mockup-based Requirement Specification with End-User Annotations 31

Summarizing, participants that were subjected to mockups with annotations where
more time-efficient and precise in their answers that those that worked with simple
mockups and oral clarifications (if required).

4.6 Threats to Validity

There are several threats to validity that were considered during the experiment design.
This research presents a preliminary result and for space sake.

Construct Validity. The experiment was designed to measure how the use of end-user
annotations improves the communication of requirements. In order to reduce the
experiment’s complexity and bias introduction possibility, we defined the method
(simple mockups or annotated mockups) as the only variable. The reader must note that
our approach is not being compared with another approach, and, indeed, it is under
evaluation how the annotations extension improves basic mockups.

Internal Validity. To avoid any misunderstanding during the experiment, we pre-
sented each material in a brief introduction before subjects performed the experiment
and during the experiment, any enquiry related to the sentences was answered without
introducing a bias to the sample. The subjects were selected randomly and all of them
were working in software companies in Argentina and Spain. The provided material
was the same to all subject. We also checked that all the users had basic knowledge in
e-commerce application (just a simple users) and had not participated in the devel-
opment or requirement analysis in any application of this kind.

External Validity. The subjects were software engineers who have played the role of
developers and/or analyst during their career. Although their experience levels were
different, they are all exposed to the regular responsibilities of any software practi-
tioners: meet with clients, understand requirements, develop the software and honor
deadlines for software delivery. A broader experiment considering different subject of
different cultures who have worked on different business domains will improve the
generality of our claims.

Conclusion Validity. The experiment was based on objective metrics evaluated with
all gathered data without any exclusion to guaranty that the outcome of the experiment
analysis will be the same and avoiding hypothesis fishing. We used non-parametric
tests which have fewer constraints than parametric ones but make it more complex to
compute the power and effect size. Therefore, we used well-known guidelines for
reporting empirical experiments as checklists for confirming the requirements of the
test techniques. Finally, in order to avoid the impact of random irrelevancies on the
experiment, we used a large number set of samples that helped the irrelevancies to
become diluted.

32 M. Urbieta et al.

5 Conclusion and Further Work

We have presented a novel approach for enriching mockups with annotation so that the
mockups improve their expressiveness and understandability minimizing the risk of
requirement’s misunderstanding. The approach is modular, so it can be plugged in any
software engineering approach to ensure application consistency, validate require-
ments, and save time and effort to detect and solve error in latest software development
steps. We have presented some simple examples that illustrate the approach feasibility.
Additionally, we present a preliminary evidence highlighting the benefits of our
approach, but it is required more validation to support stronger claims.

We are currently working on a tool for the processing of annotations so as to
provide a semi-automate syntactic and semantic analysis of inconsistencies. In these
lines, some methodologies like Design Sprint [22] are proposing to build realistic
prototypes to be validated with final users as soon as possible. Then, these method-
ologies propose to see your finished product and customer reactions before making any
expensive commitments. Then, it’s also necessary to explore in future how to adapt and
process these tags notations in general purpose tools like Microsoft PowerPoint and
Keynote.

A user experience evaluation for the tagging task will help to identify improve-
ments that increase the quality of the requirement specification.

References

1. Bjarnason, E., et al.: Challenges and practices in aligning requirements with verification and
validation: a case study of six companies. Empir. Softw. Eng. 19(6), 1809–1855 (2014)

2. Boehm, B., et al.: Developing groupware for requirements negotiations: lessons learned.
IEEE Softw. 18(3), 46–55 (2001)

3. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE
Softw. 25(1), 60–67 (2008)

4. Escalona, M.J., et al.: Detecting Web requirements conflicts and inconsistencies under a
model-based perspective. J. Syst. Softw. 86, 3024–3038 (2013)

5. Escalona, M.J., Koch, N.: Requirements engineering for web applications: a comparative
study. J. Web Eng. 2(3), 193–212 (2003)

6. Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints (1996)
7. Lucassen, G., et al.: Improving agile requirements: the Quality User Story framework and

tool. Requir. Eng. 21(3), 383–403 (2016)
8. De Lucia, A., Qusef, A.: requirements engineering in agile software development (2010)
9. Manning, C.D., et al.: Introduction to Information Retrieval. Cambridge University Press,

Cambridge (2008)
10. Medeiros, J., et al.: An approach based on design practices to specify requirements in agile

projects. In: Proceedings of the Symposium on Applied Computing - SAC 2017, pp. 1114–
1121 (2017)

11. Mukasa, K.S., Kaindl, H.: An integration of requirements and user interface specifications.
In: 6th IEEE International Requirements Engineering Conference, pp. 327–328. IEEE
Computer Society, Barcelona (2008)

Improving Mockup-based Requirement Specification with End-User Annotations 33

12. Ramdoyal, R., Cleve, A.: From pattern-based user interfaces to conceptual schemas and
back. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998,
pp. 247–260. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24606-7_19

13. Ravid, A., Berry, D.M.: A Method for Extracting and Stating software requirements that a
user interface prototype contains. Requir. Eng. 5(4), 225–241 (2000)

14. Reggio, G., et al.: Improving the quality and the comprehension of requirements: disciplined
use cases and mockups. In: Proceedings - 40th Euromicro Conference Series on Software
Engineering and Advanced Applications, SEAA 2014, pp. 262–266 (2014)

15. Rivero, J.M., et al.: Mockup-driven development: providing agile support for model-driven
web engineering. Inf. Softw. Technol. 56(6), 670–687 (2014)

16. Romano, J., et al.: Appropriate statistics for ordinal level data : should we really be using
t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys? In:
Florida Association of Institutional Research Annual Meeting, pp. 1–33 (2006)

17. Rosenberg, D., et al.: Agile Development with ICONIX Process—People, Process, and
Pragmatism. A-Press, New York (2005)

18. Schneider, K.: Generating Fast feedback in requirements elicitation. In: Sawyer, P., Paech,
B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 160–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73031-6_12

19. Urbieta, M., Escalona, M.J., Robles Luna, E., Rossi, G.: Detecting conflicts and
inconsistencies in web application requirements. In: Harth, A., Koch, N. (eds.) ICWE
2011. LNCS, vol. 7059, pp. 278–288. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27997-3_27

20. Wohlin, C., et al.: Experimentation in software engineering: an introduction. Kluwer
Academic Publishers, Norwell (2000)

21. Yang, D., et al.: A survey on software cost estimation in the chinese software industry. In:
Proceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement - ESEM 2008, p. 253 (2008)

22. The Design Sprint — GV. http://www.gv.com/sprint/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

34 M. Urbieta et al.

http://dx.doi.org/10.1007/978-3-642-24606-7_19
http://dx.doi.org/10.1007/978-3-540-73031-6_12
http://dx.doi.org/10.1007/978-3-642-27997-3_27
http://dx.doi.org/10.1007/978-3-642-27997-3_27
http://www.gv.com/sprint/
http://creativecommons.org/licenses/by/4.0/

Agile Testing

Combining STPA and BDD for Safety
Analysis and Verification in Agile

Development: A Controlled Experiment

Yang Wang(B) and Stefan Wagner

University of Stuttgart, Stuttgart, Germany
{yang.wang,stefan.wagner}@informatik.uni-stuttgart.de

Abstract. Context: Agile development is in widespread use, even in
safety-critical domains. Motivation: However, there is a lack of an appro-
priate safety analysis and verification method in agile development.
Objective: In this paper, we investigate the use of Behavior Driven Devel-
opment (BDD) instead of standard User Acceptance Testing (UAT) for
safety verification with System-Theoretic Process Analysis (STPA) for
safety analysis in agile development. Method: We evaluate the effect of
this combination in a controlled experiment with 44 students in terms
of productivity, test thoroughness, fault detection effectiveness and com-
munication effectiveness. Results: The results show that BDD is more
effective for safety verification regarding the impact on communication
effectiveness than standard UAT, whereas productivity, test thorough-
ness and fault detection effectiveness show no statistically significant
difference in our controlled experiment. Conclusion: The combination of
BDD and STPA seems promising with an enhancement on communica-
tion, but its impact needs more research.

1 Introduction

Agile practices have been widely used in software industries to develop systems
on time and within budget with improved software quality and customer satis-
faction [1]. The success of agile development has led to a proposed expansion to
include safety-critical systems (SCS) [2]. However, to develop SCS in an agile
way, a significant challenge exists in the execution of safety analysis and veri-
fication [3]. The traditional safety analysis and verification techniques, such as
failure mode effect analysis (FMEA) and fault tree analysis (FTA) are difficult to
apply within agile development. They need a detailed and stable architecture [4].

In 2016, we proposed to use System-Theoretic Process Analysis (STPA) [6]
in agile development for SCS [5]. First, STPA can be started without a detailed
and stable architecture. It can guide the design. In agile development, a safety
analyst starts with performing STPA on a high-level architecture and derives
the relevant safety requirements for further design. Second, Leveson developed
STPA based on the systems theoretic accident modeling and processes (STAMP)
causality model, which considers safety problems based on system theory rather
c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-319-91602-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_3&domain=pdf

38 Y. Wang and S. Wagner

than reliability theory. In today’s complex cyber-physical systems, accidents are
rarely caused by single component or function failures but rather by compo-
nent interactions, cognitively complex human decision-making errors and social,
organizational, and management factors [6]. System theory can address this.

The safety requirements derived from STPA need verification. However, there
is no congruent safety verification in agile development. Most agile practitioners
mix unit test, integration test, field test and user acceptance testing (UAT) to
verify safety requirements [2]. In 2016, we proposed using model checking com-
bined with STPA in a Scrum development process [7]. However, using model
checking, a suitable model is necessary but usually not available in agile devel-
opment. In addition, the formal specification increases the difficulties of commu-
nication, which should not be neglected when developing SCS [8]. BDD, as an
agile technique, is an evolution of test driven development (TDD) and acceptance
test driven development (ATDD). The developers repeat coding cycles inter-
leaved with testing. TDD starts with writing a unit test, while ATDD focuses
on capturing user stories by implementing automated tests. BDD relies on test-
ing system behavior in scenarios by implementing a template: Given[Context],
When[Event], Then[Outcome] [31]. The context describes pre-conditions or sys-
tem states, the event describes a trigger event, and the outcome is an expected
or unexpected system behavior. It could go further into low-level BDD1. Yet, it
has not been used to verify safety requirements. Leveson said [6]: “Accidents are
the result of a complex process that results in system behavior violating the safety
constraints.” Hence, in agile development, we need safety verification to: (1) be
able to guide design at an early stage, (2) strengthen communication and (3)
focus on verifying system behavior. Thus, we believe that BDD might be suitable
for safety verification with STPA for safety analysis in agile development.

Contributions
We propose a possible way to use BDD with STPA for safety verification in agile
development. We investigate its effects regarding productivity, test thoroughness,
fault detection effectiveness and communication effectiveness by conducting a
controlled experiment with the limitation that we execute BDD only in a test-
last way. The results show that BDD is able to verify safety requirements based
on system theory, and is more effective than UAT regarding communication for
safety verification.

2 Related Work

Modern agile development processes for developing safety-critical systems (SCS)
advocate a hybrid mode through alignment with standards like IEC 61508, ISO
26262 and DO-178. There have been many considerable successes [9–11]. How-
ever, a lack of integrated safety analysis and verification to face the changing
architecture through each short iteration is a challenge for using such standards.

1 Low-level BDD is possible to define low-level specifications and interwined with TDD
[16].

Combining STPA and BDD in Agile Development 39

In 2016, we proposed to use STPA in a Scrum development process [5]. It showed
a good capability to ensure agility and safety in a student project [12]. However,
we verified the safety requirements only at the end of each sprint by executing
UAT together with TDD in development. A lack of integrated safety verifica-
tion causes some challenges, such as poor verification and communication. The
previous research regarding safety verification in agile development suggested
using formal methods [13,14]. However, they need models and make intuitive
communication harder [7]. In addition, they have not considered specific safety
analysis techniques.

Hence, we propose using BDD to verify safety requirements. BDD is specif-
ically for concentrating on behavior testing [15]. It allows automated testing
against multiple artifacts throughout the iterative development process [17].
Moreover, it bridges the gap between natural language-based business rules and
code language [18]. Okubo et al. [19] mentioned the possibilities of using BDD
for security and privacy acceptance criteria. They define the acceptance criteria
by creating a threat and countermeasure graph to write attack scenarios. They
verify the satisfication of security requirements by testing the countermeasures,
to see whether they can make the attack scenarios or unsecure scenarios fail.
Lai et al. [20] combined BDD with iterative and incremental development specif-
ically for security requirements evaluation. They defined the behavioral scenarios
by using use case diagram and misuse case diagram. STPA encompasses deter-
mining safe or unsafe scenarios. We aim to use BDD verifying these scenarios.

To investigate the effect of using BDD for safety verification, we design a con-
trolled experiment referring to a set of TDD experiments. Erdogmus et al. [23]
conducted an experiment with undergraduate students regarding programmer
productivity and external quality in an incremental development process. For
safety verification in agile development, a high productivity of safety test cases
promotes high safety. Madeyski [26] conducted an experiment comparing “test-
first” and “test-last” programming practices with regard to test thoroughness
and fault detection effectiveness of unit tests. BDD for safety verification covers
also low-level tests. Thus, we decided to investigate productivity, test thorough-
ness and fault detection capability in this experiment. [21,22,28–30] provided
evidence of using these three measures. In addition, George and Williams [29]
focused on the understandability of TDD from the developer’s viewpoint. Using
BDD for safety verification, we notice the importance of communication between
developers and business analysts. We investigate understandability in the mea-
sure of communication effectiveness.

3 STPA Integrated BDD for Safety Analysis
and Verification (STPA-BDD)

In this article, we propose STPA-BDD. We mainly focus on safety verification.
As we can see in Fig. 1, we have two main parts: STPA safety analysis and

40 Y. Wang and S. Wagner

unsafe
control
actions

process
variables &
algorithms

STPA safety analysis

BDD safety verification

passed
test cases

pending
test cases

failed
test cases

unsafe
scenarios

modify

STPA safety report

selective

safe
scenarios

test
cases

Safety
analyst

(QA)

3 Amigos
Meeting Developer

Business
analyst
Safety
analyst

(QA)

Developer

STPA Safety analysis

BDD Safety verification

others

Step 1 Step 2

Fig. 1. STPA-BDD concept

BDD safety verification. A safety analyst2 (QA) starts performing STPA safety
analysis with a sufficient amount of code3. STPA is executed by firstly identifying
potentially hazardous control actions, and secondly determining how unsafe con-
trol actions (UCAs) could occur. STPA derives the safety requirements, which
constraint the UCAs, as well as system behaviors. Additionally, it explores the
causal factors in scenarios for each UCA. The output from the safety analyst
(QA) is an STPA safety report with system description, control structure, acci-
dents, hazards, UCAs, corresponding safety requirements, process variables and
algorithms.

In BDD safety verification, to generate and test scenarios, the UCAs (in
STPA step 1), process variables and algorithms (in STPA step 2) from the STPA
safety report are needed. We write other data into “others”. BDD safety veri-
fication has two steps: In step 1, the business analyst, the safety analyst (QA)
and the developer establish a “3 Amigos Meeting” to generate test scenarios.
In a BDD test scenario4, we write the possible trigger event for the UCA in
When [Event]. The other process variables and algorithms are arranged in
Given [Context]. Then [Outcome] presents the expected behavior - a safe
control action. In Fig. 2(a), we present an example. The safety analyst (QA) has
provided a UCA as During auto-parking, the autonomous vehicle does not stop
immediately when there is an obstacle upfront. One of the process variables with
relevant algorithms detects the forward distance by using an ultrasonic sensor.
The developer considers a possible trigger as the ultrasonic sensor provides the

2 Since we focus on safety in our research, we assign a safety analyst as the QA role
in our context.

3 More descriptions of STPA for safety analysis are given in [7] concerning an example
of using STPA in an airbag system and [12] concerning the use of STPA in a Scrum
development process.

4 We illustrate a BDD test scenario using only three basic steps “Given” “When”
“Then”. More annotations, such as “And”, can also be added.

Combining STPA and BDD in Agile Development 41

wrong feedback. Thus, a BDD test scenario should test if the ultrasonic sensor
provides the feedback that the forward distance <= threshold (means there is an
obstacle upfront) and whether the vehicle stops. They write this after When.
The context could be the autonomous vehicle is auto-parking. We write them
after Given. Then constraints the safe control action as the autonomous vehi-
cle stops immediately. More possible triggers are expected to be generated after
When to test them. In step 2, after the three amigos discuss and determine the
test scenarios, the developer starts generating them into test cases, as shown
in Fig. 2(b). BDD test cases use annotations such as @Given, @When, and
@Then to connect the aforementioned test scenarios with real code. The devel-
oper produces code to fulfill each annotation. We can identify unsafe scenarios
when the test cases fail. We correct the trigger event to pass the test cases to
satisfy the safety requirement.

(a) Test scenario example (b) Test case example

Fig. 2. BDD safety verification example

4 Experiment Design (We follow the guideline
by Wohlin et al. [32].)

4.1 Goal

Analyze BDD5 and UAT6 for safety verification.
For the purpose of comparing their effect.
With respect to productivity by measuring the number of implemented (tested)
user stories per minute; test thoroughness by measuring line coverage; fault detec-
tion effectiveness by measuring a mutation score indicator; communication effec-
tiveness by conducting a post-questionnaire.
From the point of view of the developers and business analysts.
In the context of B.Sc students majoring in software engineering or other
related majors executing acceptance testing.
5 We have a limitation in our experiment that we execute BDD only in a test-last way.

More discussion of this issue can be found in Sect. 6.2.
6 To execute a standard UAT, we mainly refer to [38] with fictional business analysts.

42 Y. Wang and S. Wagner

4.2 Context

Participants: The experiment ran off-line in a laboratory setting in an “Intro-
duction to Software Engineering” course at the University of Stuttgart. Since
the course includes teaching BDD and UAT technology, the students are suit-
able subjects for our experiment. We arrange them based on Java programming
experiences (not randomly). According to a pre-questionnaire (see footnote 13),
88.6% of the students are majoring in software engineering. We conclude from
Table 1 that they have attended relevant lectures and handled practical tasks
relating to Java programming, acceptance testing, SCS (with a median value
>= 3 on a scale from 1 to 5). The agile techniques show less competency (with
a median value of 2 on a scale from 1 to 5). We provide a 1-to-1 training, which
lasts 44 h overall, to reduce the weaknesses.

Development environment : We use a simplified Java code with mutants from
a Lego Mindstorms based Autonomous Parking System (APS) and Crossroad
Stop and Go System (CSGS). These two systems are comparable by lines of
code and number of functional modules (see footnote 13). To ease writing test
cases, we use a lejo TDD wrapper, Testable Lejos7 to remove deep dependencies
to the embedded environment. The BDD groups (Group A1 and Group A2)
operate in an Eclipse IDE together with a JBehave plug-in (based on JUnit)8.
We use Eclipse log files and JUnit test reports for calculating the number of
implemented (tested) user stories. Finally, we use PIT Mutation Testing9 to
assess line coverage and a mutation score indicator. The UAT groups (Group B1
and Group B2) write the test cases in Microsoft Word.

Table 1. Medians of the student’s background

Area Group A1 Group A2 Group B1 Group B2

Java programming 3 3 3 3

Acceptance testing 4 5 3 3

Safety-critical systems 3 4 4 4

Agile techniques 3 3 3 2

Note: The values range from “1” (little experience) to “5” (experienced).
Group A1 and Group A2 use BDD, while Group B1 and Group B2 use
UAT.

4.3 Hypotheses

We formulate the null hypotheses as:
H0 PROD: There is no difference in productivity between BDD and UAT.
H0 THOR: There is no difference in test thoroughness between BDD and UAT.
7 http://testablelejos.sourceforge.net/.
8 http://jbehave.org/eclipse-integration.html.
9 http://pitest.org/.

http://testablelejos.sourceforge.net/
http://jbehave.org/eclipse-integration.html
http://pitest.org/

Combining STPA and BDD in Agile Development 43

H0 FAUL: There is no difference in fault detection effectiveness between BDD
and UAT.
H0 COME : There is no difference in communication effectiveness between BDD
and UAT.
The alternative hypotheses are:
H1 PROD: BDD is more productive than UAT when producing safety test cases.
H1 THOR: BDD yields better test thoroughness than UAT.
H1 FAUL: BDD is more effective regarding fault detection than UAT.
H1 COME : BDD is more effective regarding communication than UAT.

4.4 Variables

The independent variables are the acceptance testing techniques. The dependent
variables are: (1) productivity (PROD). It is defined as output per unit effort
[23]. In our experiment, the participants test the user stories in the STPA safety
report and produce safety test cases. We assess it via the number of implemented
(tested) user stories10 per minute (NIUS) [23]; (2) test thoroughness (THOR).
Code coverage is an important measure for the thoroughness of test suites includ-
ing safety test suites [27]. Considering a low complexity of our provided systems,
line coverage (LC) [26] is more suitable than branch coverage (BC); (3) fault
detection effectiveness (FAUL). Mutation testing [25] is powerful and effective
to indicate the capability at finding faults [26]. In our experiment, we measure
how well a safety test suite is able to find faults at the code level. We assess
this via a Mutation Score Indicator (MSI) [26]; (4) communication effectiveness
(COME). We assess this via a post-questionnaire with 11 questions for develop-
ers covering topics like understandability and 13 questions for business analysts
covering topics like confidentiality according to Adzic [35]. The results are in a
5-point scale from −2 (negative) to +2 (positive).

4.5 Pilot Study

Six master students majoring in software engineering took part in a pilot study.
We arranged a four-hour training program. The first author observed the opera-
tion and concluded as follows: (1) The STPA safety report was too complicated
to be used by inexperienced students. We used a comprehensive STPA report by
using XSTAMPP11 in the pilot study. However, a lot of unnecessary data, such
as accidents, hazards and safety requirements at the system level, influenced the
understanding. It costs too much time to capture the information. Thus, we sim-
plified the STPA report with the process variables, algorithms, and UCAs. (2)
We used the original Java code from a previous student project. The complex
code affected the quick understanding. After the pilot study, we simplified it.
(3) Training is extremely important. In the pilot study, one participant had not

10 In this article, user stories are safety-related user stories.
11 http://www.xstampp.de/.

http://www.xstampp.de/

44 Y. Wang and S. Wagner

taken part in the training program, which led to his experiment being unfinished.
We provide a textual tutorial and system description for each participant as a
backup. (4) We have only used an experiment report to record the measures.
However, the pure numbers sometimes cannot show clear causalities. Thus, we
use a screen video recording in parallel with the experiment report.

4.6 Experiment Operation

As we can see in Fig. 3, we divide the 44 participants into 4 groups. We provide
2 systems and evaluate 2 acceptance testing methods. Group A1 uses BDD for
system 1. Group A2 uses BDD for system 2. Group B1 uses UAT for system
1. Group B2 uses UAT for system 2. We use two systems to evaluate the com-
munication between developers and business analysts. The developers are the
participants in each group, while the fictional business analysts are portrayed by
the participants in the other group using various testing methods and systems.

Group

A1
system 1
APS

B1
system 1
APS

A2
system 2
CSGS

B2
system 2
CSGS

Preparation
(~44 hours)

Training

1st 30 minutes 2nd 30 minutes 3rd 30 minutes

BDD
unsafe

scenarios

UAT
acceptance

criteria
Training

Training

Training

Execute and
modify BDD
test cases

Execute UAT
test cases

Execute UAT
test cases

Review Review

Questionnaire Operation report

*Switch roles as
business analysts
in the first 15
minutes

*Switch roles as
business analysts
in the second 15
minutes

*Switch roles as
business analysts
in the first 15
minutes

*Switch roles as
business analysts
in the second 15
minutes

Operation

Pre

Pre

Pre

Pre

Post

Post

Post

Post
UAT

acceptance
criteria

BDD
unsafe

scenarios

Execute and
modify BDD
test cases

Fig. 3. Experiment operation

The experiment consists of 2 phases: preparation and operation. The prepa-
ration was run 2 weeks before the experiment to perform the pre-questionnaire
and training. The operation consists of three sessions (30 min/session). In the 1st

session, four groups write acceptance test cases. Group A1 (BDD) and Group
A2 (BDD) write test scenarios in Eclipse with the Jbehave plug-in as a story file.
Group B1 (UAT) and Group B2 (UAT) write acceptance criteria in plaintext.
We provide 30 unsafe control actions (UCAs) in an STPA safety report. When
the students finish all the 30 UCAs in 30 min, they record the time in minutes.
After the 1st session, the participants record the NIUS and the time in the oper-
ation report. In the 2nd session, Group A1 (BDD) and Group A2 (BDD) write

Combining STPA and BDD in Agile Development 45

each test scenario into a test case and run the test case. If it fails, they should
modify the trigger (code) and pass the test case. Group B1 (UAT) and Group
B2 (UAT) review Java code, execute the test cases manually and complete their
acceptance test report. At the end of the 2nd session, they run PIT mutation
testing. The LC and MSI are generated automatically in the PIT test report.
They write down the results in the operation report. In the 3rd session, the par-
ticipant portrays as a developer for 15 min and a business analyst for 15 min. The
developer is expected to explain his/her testing strategy as clearly as possible,
while the fictional business analyst should try to question the developer. To this
end, they answer a post-questionnaire.

Table 2. Descriptive statistic

Measure Treatment Experiment Mean St.Dev Min Median Max 95% CI lower 95% CI upper

NIUS BDD Group A1 0.52 0.24 0.26 0.45 1.20 0.37 0.66

Group A2 0.69 0.19 0.42 0.65 1.00 0.58 0.80

UAT Group B1 0.58 0.22 0.33 0.57 1.00 0.45 0.71

Group B2 0.67 0.29 0.27 0.60 1.20 0.50 0.84

LC BDD Group A1 0.02 0.01 0.01 0.02 0.05 0.02 0.03

Group A2 0.02 0.01 0.01 0.02 0.04 0.02 0.03

UAT Group B1 0.02 0.01 0.01 0.01 0.03 0.01 0.02

Group B2 0.02 0.01 0.01 0.01 0.03 0.01 0.02

MSI BDD Group A1 0.90 0.38 0.36 1.00 1.33 0.67 1.13

Group A2 0.93 0.49 0.44 0.83 2.17 0.63 1.22

UAT Group B1 0.89 0.36 0.42 0.88 1.56 0.67 1.10

Group B2 0.85 0.46 0.30 0.65 1.63 0.58 1.12

COME BDD Group A1 1.27 0.81 −2.00 1.50 2.00 0.79 1.75

Group A2 1.18 0.70 −1.00 1.00 2.00 0.76 1.58

UAT Group B1 −0.05 1.20 −2.00 0.00 2.00 −0.75 0.66

Group B2 0.01 1.13 −2.00 0.50 2.00 −0.67 0.67

Note: St. Dev means standard deviation; CI means confidence interval. NIUS means number

of implemented (tested) user stories per minute. LC means line coverage. MSI means mutation

score indicator. COME was assessed via questionnaire with the results in a 5-point scale from

−2 (negative) to +2 (positive).

5 Analysis

5.1 Descriptive Analysis

In Table 2, we summarize the descriptive statistics of the gathered measures12. To
sum up, the results from the two systems in one treatment are almost identical.
BDD and UAT have only small differences regarding NIUS and MSI. However,
12 Raw data is available online: https://doi.org/10.5281/zenodo.1154350.

https://doi.org/10.5281/zenodo.1154350

46 Y. Wang and S. Wagner

(a) NIUS (b) LC (c) MSI

Fig. 4. Boxplot for PROD, THOR and FAUL

COME in BDD (Mean = 1.27, 1.18; Std.Dev = 0.81, 0.70) and UAT (Mean =
−0.05, 0.01; Std.Dev = 1.20, 1.13) differ more strongly. LC has a small difference.
In Fig. 4, we show a clear comparison and can see some outliers concerning LC.
In Fig. 5, we use an alluvial diagram to show COME. We can conclude that
BDD has a better communication effectiveness than UAT from the perspective
of developers and business analysts respectively (depending on the length of
black vertical bar on the right side of Fig. 5(a) and (b)). On the left side, we list
24 sub-aspects of assessing the communication effectiveness. The boldness of the
colorful lines indicates the degree of impact. A thicker line has a larger impact on
each aspect. We can see six noteworthy values from Fig. 5(a) that BDD is better
than UAT: (4) Test cases have a clear documentation. (5) They could flush out
the functional gaps before development. (6) They have a good understanding of

(a) Developer’s perspective (b) Business analyst’s perspective

Fig. 5. Alluvial diagram for communication effectiveness

Combining STPA and BDD in Agile Development 47

business requirements. (7) Test cases have a good organization and structure.
(8) Realistic examples make them think harder. (11) There is an obvious glue
between test cases and code. From Fig. 5(b), five noteworthy values show that
BDD is better than UAT: (6) The developers consider safety requirements deeply
and initially. (8) It is easy to identify conflicts in business rules and test cases.
(9) They are confident about the test cases. (12) They are clear about the status
of acceptance testing. (13) They could spend less time on sprint-end acceptance
testing but more in parallel with development. In addition, the other aspects
show also slightly better results when using BDD than UAT.

5.2 Hypothesis Testing

To start with, we evaluate the pre-questionnaire. No statistically significant dif-
ferences between BDD and UAT groups are found concerning Java programming,
acceptance testing, knowledge on SCS and agile techniques (t-test, α = 0.05, p
> 0.05 for all test parameters). Furthermore, we test the normality of the data
distribution with Kolmogorov-Smirnov and Shapiro-Wilk tests at α = 0.05. The
results show that the data for NIUS in Group A1, for LC in Group A1, A2, B2
and for MSI in Group A1, A2 are not normally distributed. Thus, we use non-
parametric tests in the analysis. In addition to the use of p-values for hypotheses
testing (α = 0.05, one-tailed) from the Mann-Whitney test, Wilcoxon test and
ANOVA test, we include the effect size Cohen’s d. Since we expect BDD to be
better than UAT, we use one-tailed tests. NIUS is not significantly affected by
using the BDD or the UAT approach (system 1: p=0.206; system 2: p = 0.359,
non-significant). LC is not significantly affected by using BDD or UAT (sys-
tem 1: p = 0.057; system 2: p = 0.051, non-significant). MSI shows no statisti-
cally significant difference between using BDD or UAT (system 1: p = 0.472;
system 2: p = 0.359, non-significant). However, COME is significantly different
(system 1: p < 0.00001; system 2: p < 0.00001, significant). We accept the alterna-
tive hypothesis that BDD shows better communication effectiveness than UAT.
Cohen’s d shows the values around 0.2, which signifies small effects, around 0.5
stands for medium effects and around 0.8 for large effects. Thus, for COME,
system 1 shows a large effect (d = 2.908). For LC we have both medium effects
(system 1: d = 0.684; system 2: d = 0.662). The rest of the effects are small.

6 Threats to Validity

6.1 Internal Validity

First, note that we have four groups in our experiment. To avoid a multiple group
threat, we prepare a pre-questionnaire to investigate the students’ background
knowledge. The results of the t-tests show no statistically significant differences
among the groups concerning each measure. Second, concerning the instrument,
UAT is faster to learn than BDD regarding the use of tools. Even though we
provide a training to narrow the gap, the productivity might have been influ-
enced, since the students have to get familiar with the hierarchy of writing test

48 Y. Wang and S. Wagner

suites in a BDD tool. The artifacts, such as tutorials and operation report, are
designed respectively with the same structure to avoid threats. In addition to
the observation, we save the participants’ workspaces after the experiment and
video recordings for deep analysis. Third, the students majoring in software engi-
neering might identify more with the developer role than the business analyst
role. Thus, we design two comparable systems. The students in each pair use dif-
ferent systems and test approaches to reduce the influence of prior knowledge.
Moreover, we provide a reference [36] on how to perform as a business analyst
in an agile project. We also mention their responsibilities in the training.

6.2 Construct Validity

First, the execution of BDD is a variant. BDD should begin with writing tests
before coding. However, in our experiment, we use BDD for test-last accep-
tance testing rather than test-driven design. Thus, we provide source code with
mutants. The measures we used could be influenced. In BDD test-first, we write
failing test cases first and work on passing all of them to drive coding. Accord-
ing to [39,41], BDD test-first might be as effective as or even more effective
than BDD test-last. Second, the evaluation concerning productivity, test thor-
oughness, fault detection effectiveness and communication effectiveness does not
seem to be enough. As far as we know, our study is the first controlled experi-
ment on BDD. We can base our measurement (PROD, THOR, FAUL) mainly
on TDD controlled experiments and some limited experiments on safety veri-
fication. There might be better ways to capture how well safety is handled in
testing.

6.3 Conclusion Validity

First, concerning violated assumptions of statistical tests, the Mann-Whitney U-
test is robust when the sample size is approximately 20. For each treatment, we
have 22 students. Moreover, we use Wilcoxon W test as well as Z to increase the
robustness. Nevertheless, under certain conditions, non-parametric rank-based
tests can themselves lack robustness [44]. Second, concerning random heterogene-
ity of subjects, we arranged them based on the Java programming experience.
According to the pre-questionnaire, the students are from the same course and
88.6% of them are in the same major.

6.4 External Validity

First, the subjects are students. Although there are some skilled students who
could perform as well as experts, most of them lack professional experience.
This consideration may limit the generalization of the results. To consider this
debatable issue in terms of using students as subjects, we refer to [33]. They
said: conducting experiments with professionals as a first step should not be
encouraged unless high sample sizes are guaranteed. In addition, a long learning

Combining STPA and BDD in Agile Development 49

cycle and a new technology are two hesitations for using professionals. STPA was
developed in 2012, so there is still a lack of experts on the industrial level. BDD
has not been used for verifying safety requirements. Thus, we believe that using
students as subjects is a suitable way to aggregate contributions in our research
area. We also refer to a study by Cleland-Huang and Rahimi, which successfully
ran an SCS project with graduate students [2]. Second, the simplicity of the tasks
poses a threat. We expect to keep the difficulty of the tasks in accordance with
the capability of students. Nevertheless, the settings are not fully representative
of a real-world project.

7 Discussion and Conclusion

The main benefit of our research is that we propose a possible way to use BDD
for safety verification with STPA for safety analysis in agile development. We
validate the combination in a controlled experiment with the limitation that
we used BDD only in a test-last way. The experiment shows some remarkable
results. The productivity has no statistically significant difference between BDD
and UAT. That contradicts our original expectation. We would expect BDD,
as an automated testing method, to be more productive than manual UAT.
Yet, as the students are not experts in our experiment, they need considerable
time to get familiar with the BDD tool. The students use Jbehave to write
BDD test cases in our experiment, which has strict constraints on hierarchy and
naming conventions to connect test scenarios with test cases. UAT should be
easier to learn. We therefore analyzed our video recordings and found that BDD
developers use nearly 25% to 50% of their time to construct the hierarchy and
naming. Scanniello et al. [37] also mentioned this difficulty when students apply
TDD. In the future, we plan to use skilled professionals in test automation to
replicate this study. This could lead to different results. The test thoroughness
and fault detection effectiveness show a non-significant difference between BDD
and UAT. We could imagine that our provided Java code is too simplified to
show a significant difference. The mutants are easily found with a review. These
aspects need further research.

The communication effectiveness shows better results by using BDD than
UAT on 24 aspects. We highlight 11 significant aspects. The developers found
that: BDD has a clear documentation. A clear documentation of accep-
tance test cases is important for communication [42]. The scenarios are writ-
ten in plain English with no hidden test instrumentation. The given-when-then
format is clear for describing test scenarios for safety verification based on sys-
tem theory. The developers using BDD could flush out functional gaps
before development. The communication concerning safety could happen at
the beginning of the development. They discuss safety requirements with the
business analysts and spot the detailed challenges or edge cases before func-
tional development. UAT happens mostly at the end of the development. It
makes the rework expensive and is easy to be cut in safety-critical systems. The
developers using BDD have a good understanding of the business

50 Y. Wang and S. Wagner

requirements. A good understanding of safety requirements helps an effec-
tive communication. They could build a shared understanding in the “3 Amigos
Meeting” to ensure that their ideas about the safety requirements are consistent
with the business analysts. The developers using UAT might understand safety
requirements with a possible bias. BDD test cases have a good organization
and structure. This makes the test cases easy to understand, especially during
maintenance. They include strict naming conventions and a clear hierarchy to
manage test scenarios and test cases. Realistic examples in BDD make the
developers think harder. The safety requirements are abstract with possibly
cognitive diversity, which leave a lot of space for ambiguity and misunderstand-
ing. That negatively influences effective communication. Realistic examples give
us a much better way to explain how safe scenarios really work than pure safety
requirements do. There is an obvious glue between BDD test cases and
code. There is glue code in BDD safety verification, which allows an effective sep-
aration between safety requirements and implementation details. This glue code
supports the understanding and even communication between business analysts
and developers. In addition, it ensures the bidirectional traceability between
safety requirements and test cases. The business analysts thought that: The
developers using BDD consider the safety requirements deeply and
initiatively. The collaboration promotes a sense of ownership of the deliverable
products. That increases an initiative communication. Instead of passively read-
ing the documents, the developers participate in the discussion about writing test
scenarios and are more committed to them. The business analysts are more
confident about the BDD test cases. Confidence promotes effective com-
munication [43]. The business analysts could give a big picture with safety goals
to the developers. Feedback from developers and their realistic unsafe scenarios
give the business analysts confidence that the developers understand the safety
goals correctly. It is easy to identify conflicts in business rules and test
cases when using BDD. BDD has a set of readable test scenarios focusing on
business rules (safety requirements). Each test scenario and test case are directly
connected to the code. The business analysts can pull out test cases related to
a particular business rule. This helps communication, especially when there is
a changing request. The business analysts are clear about the status of
acceptance testing when using BDD. It promotes a state-of-art commu-
nication. That can be attributed to the automated test suites, which might be
connected with a continuous integration server and a project management tool
to receive a verification report automatically. The business analysts could
spend less time on sprint-end acceptance tests but more in parallel
with development. They can verify the safety requirements periodically and
therefore enhance communication throughout the project.

In conclusion, to some extent, BDD is an effective method for verifying safety
requirements in agile development. As this is the first experiment investigating
BDD for safety verification, further empirical research is needed to check our
results. We invite replications of this experiment using our replication package13.

13 https://doi.org/10.5281/zenodo.846976.

https://doi.org/10.5281/zenodo.846976

Combining STPA and BDD in Agile Development 51

References

1. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Inf. Softw. Technol. 50(9–10), 833–859 (2008)

2. Cleland-Huang, J., Rahimi, M.: A case study: injecting safety-critical thinking into
graduate software engineering projects. In: Proceedings of the 39th International
Conference on Software Engineering: Software Engineering and Education Track.
IEEE (2017)

3. Arthur, J.D., Dabney, J.B.: Applying standard independent verification and val-
idation (IV&V) techniques within an Agile framework: is there a compatibility
issue? In: Proceedings of Systems Conference. IEEE (2017)

4. Fleming, C.: Safety-driven early concept analysis and development. Dissertation.
Massachusetts Institute of Technology (2015)

5. Wang, Y., Wagner, S.: Toward integrating a system theoretic safety analysis in an
agile development process. In: Proceedings of Software Engineering, Workshop on
Continuous Software Engineering (2016)

6. Leveson, N.: Engineering a Safer World: Systems Thinking Applied to Safety. MIT
Press, Cambridge (2011)

7. Wang, Y., Wagner, S.: Towards applying a safety analysis and verification method
based on STPA to agile software development. In: IEEE/ACM International Work-
shop on Continuous Software Evolution and Delivery. IEEE (2016)

8. Martins, L.E., Gorschek, T.: Requirements engineering for safety-critical systems:
overview and challenges. IEEE Softw. 34(4), 49–57 (2017)

9. Vuori, M.: Agile development of safety-critical software. Tampere University of
Technology, Department of Software Systems (2011)

10. St̊alhane, T., Myklebust, T., Hanssen, G.K.: The application of Safe Scrum to IEC
61508 certifiable software. In: Proceedings of the 11th International Probabilistic
Safety Assessment and Management Conference and the Annual European Safety
and Reliability Conference (2012)

11. Ge, X., Paige, R.F., McDermid, J.A.: An iterative approach for development of
safety-critical software and safety arguments. In: Proceedings of Agile Conference.
IEEE (2010)

12. Wang, Y., Ramadani, J., Wagner, S.: An exploratory study of applying a Scrum
development process for safety-critical systems. In: Proceedings of the 18th Inter-
national Conference on Product-Focused Software Process Improvement (2017)

13. Eleftherakis, G., Cowling, A.J.: An agile formal development methodology. In:
Proceedings of the 1st South-East European Workshop on Formal Methods (2003)

14. Ghezzi, C., et al.: On requirements verification for model refinements. In: Proceed-
ings of Requirements Engineering Conference. IEEE (2013)

15. Wynne, M., Hellesoy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Bookshelf, Dallas (2012)

16. Smart, J.F.: BDD in Action: Behavior-Driven Development for the Whole Software
Lifecycle. Manning, New York (2015)

17. Silva, T.R., Hak, J.L., Winckler, M.: A behavior-based ontology for supporting
automated assessment of interactive systems. In: Proceedings of the 11th Interna-
tional Conference on Semantic Computing. IEEE (2017)

18. Hummel, M., Rosenkranz, C., Holten, R.: The role of communication in agile sys-
tems development. Bus. Inf. Syst. Eng. 5(5), 343–355 (2013)

19. Okubo, T., et al.: Security and privacy behavior definition for behavior driven
development. In: Proceedings of the 15th International Conference on Product-
Focused Software Process Improvement (2014)

52 Y. Wang and S. Wagner

20. Lai, S.T., Leu, F.Y., Chu, W.: Combining IID with BDD to enhance the critical
quality of security functional requirements. In: Proceedings of the 9th Interna-
tional Conference on Broadband and Wireless Computing, Communication and
Applications. IEEE (2014)

21. Fucci, D., Turhan, B.: A replicated experiment on the effectiveness of test-first
development. In: Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement. IEEE (2013)

22. Fucci, D., et al.: A dissection of test-driven development: does it really matter to
test-first or to test-last? IEEE Trans. Software Eng. 43(7), 597–614 (2017)

23. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Trans. Software Eng. 31(3), 226–237 (2005)

24. Kollanus, S., Isomöttönen, V.: Understanding TDD in academic environment:
experiences from two experiments. In: Proceedings of the 8th International Con-
ference on Computing Education Research. ACM (2008)

25. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Software
Eng. 4, 279–290 (1977)

26. Madeyski, L.: The impact of test-first programming on branch coverage and muta-
tion score indicator of unit tests: an experiment. Inf. Softw. Technol. 52(2), 169–184
(2010)

27. Marick, B.: How to misuse code coverage. In: Proceedings of the 16th International
Conference on Testing Computer Software (1999)

28. Pančur, M., Ciglarič, M.: Impact of test-driven development on productivity, code
and tests: a controlled experiment. Inf. Softw. Technol. 53(6), 557–573 (2011)

29. George, B., Williams, L.: A structured experiment of test-driven development. Inf.
Softw. Technol. 46(5), 337–342 (2004)

30. Siniaalto, M., Abrahamsson, P.: A comparative case study on the impact of test-
driven development on program design and test coverage. In: Proceedings of 1st
International Symposium on Empirical Software Engineering and Measurement
(2007)

31. North, D.: JBehave. A framework for behaviour driven development (2012)
32. Wohlin, C., et al.: Experimentation in Software Engineering. Springer, Heidelberg

(2012). https://doi.org/10.1007/978-3-642-29044-2
33. Falessi, D., et al.: Empirical software engineering experts on the use of students

and professionals in experiments. Empirical Softw. Eng. 23(1), 452–489 (2018)
34. Enoiu, E.P., et al.: A controlled experiment in testing of safety-critical embedded

software. In: Proceedings of the International Conference on Software Testing,
Verification and Validation. IEEE (2016)

35. Adzic, G.: Bridging the Communication Gap: Specification by Example and Agile
Acceptance Testing. Neuri Limited, London (2009)

36. Gregorio, D.: How the business analyst supports and encourages collaboration on
agile projects. In: Proceedings of International Systems Conference. IEEE (2012)

37. Scanniello, G., et al.: Students’ and professionals’ perceptions of test-driven devel-
opment: a focus group study. In: Proceedings of the 31st Annual Symposium on
Applied Computing. ACM (2016)

38. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Pearson Education, Boston (2009)

39. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of Test
First programming. Inf. Softw. Technol. 51(1), 182–194 (2009)

40. Madeyski, L.: Impact of pair programming on thoroughness and fault detection
effectiveness of unit test suites. Softw. Process: Improv. Pract. 13(3), 281–295
(2008)

https://doi.org/10.1007/978-3-642-29044-2

Combining STPA and BDD in Agile Development 53

41. Rafique, Y., Mǐsić, V.B.: The effects of test-driven development on external qual-
ity and productivity: a meta-analysis. IEEE Trans. Software Eng. 39(6), 835–856
(2013)

42. Haugset, B., St̊alhane, T.: Automated acceptance testing as an agile requirements
engineering practice. In: Proceedings of the 45th Hawaii International Conference
on System Science. IEEE (2012)

43. Adler, R.B.: Confidence in Communication: A Guide to Assertive and Social Skills.
Harcourt School (1977)

44. Kitchenham, B., et al.: Robust statistical methods for empirical software engineer-
ing. Empirical Softw. Eng. 22(2), 579–630 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Software Tester, We Want to Hire You!
an Analysis of the Demand for Soft Skills

Raluca Florea(&) and Viktoria Stray

University of Oslo, Gaustadalléen 23 B, 0373 Oslo, Norway
{ralucamf,stray}@ifi.uio.no

Abstract. One important discussion in the software development field is
related to the skills that people need to have to build successful software
products. This debate is generated on one hand by a large number of failures and
delays of software projects. On the other hand, the debate is triggered by the
need to build even better-quality software in a rapidly changing world. We will
examine to which extent soft skills are relevant when hiring software testers and
if there are any specific skills required for agile testers.
We analyzed 400 job advertisements for testers from 33 countries, out of

which 64% ask for soft skills. Of the advertisements asking for soft skills, there
is, on average, a request for 5 soft skills, 11 testing skills, and 5 technical skills.
Only 30% of the companies ask explicitly for agile testers. However, our
analysis shows no notable differences in skill demands for agile testers and
the rest.
Software companies want to hire testers who can communicate well and have

analytical and problem-solving skills. There is a significant increase in the need
for openness and adaptability, independent-working and team-playing since
2012. In addition, there are new categories of soft skills identified, such as
having work ethics, customer-focus and the ability to work under pressure.

Keywords: Soft skills � Competency requirements
Software tester competence � Software testing � Agile software development
Industrial needs

1 Introduction

Software testing is a complex activity that implies mastering both technical and soft
skills. To be a productive software tester, one needs to understand business require-
ments from customers and to communicate them to the developers. Testers need to be
organized, efficient and able to prioritize their work. Furthermore, they have to bear the
pressure of finishing their job as soon as possible, so that the product can be released
[1]. It is essential that they learn fast and master many kinds of responsibilities [2].
Testers need to be especially flexible because they face stress [3] and changes [4]
throughout the development process.

It may also be that testers need soft skills additional to the ones required for
developers or managers [5, 6]. Because of the nature of their job combining different
domains and perspectives, it may be that user focus [7] and critical thinking [8] have to

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 54–67, 2018.
https://doi.org/10.1007/978-3-319-91602-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_4&domain=pdf

be traits of efficient software testers. Moreover, the user-centered design and agile
development are already common practices in companies, and the results look
promising. But there are hinders to these practices such as communication breakdowns
or the lack of acknowledgement of user involvement [9], issues deeply connected to
soft skills.

Rivera-Ibarra et al. [10] found that the quality and innovation of software products
strongly depends on the knowledge, abilities, and talent of all the people developing
software. Technical and hard skills have been a long-time focus point for research in
the software development field [11]. Soft skills, human factors, and intrinsic motivation
have recently begun to gain attention, but with a focus on the software developer role
[12]. However, the role of software tester has not been given the same attention. It can
constitute a drawback since building software is a teamwork and essentially a human
activity [13] shaped by the human skills of all contributors into bringing software to
live. Systematic literature reviews in software testing show relevant testing areas or
methods of testing [14], but we did not find information about the soft skills in the
testing world. Other research has looked at soft skills depending on various phases of
development, from requirements engineering to design, implementation and testing
[15]. But this approach does not look at testing as an on-going activity, involved in all
phases of developing software [16]. Nor does it comprise the role of tester as a sum of
all these activities [17].

Soft skills are defined by Lippman et al. [18] as: “The competencies, behaviors,
attitudes, and personal qualities that enable people to effectively navigate their envi-
ronment, work well with others, perform well, and achieve their goals.” It refers to a
combination of people skills, social skills, character traits and attitudes and complement
other skills such as technical and academic skills [18]. We wanted to investigate: what
do companies look for in software testers? What are the soft skills they ask for? How
do these needs evolve? What is specifically required of agile testers? In this study, we
aim to answer the following research questions:

RQ1: What is the trend for soft skills requirements for testers?
RQ2: Are there specific soft-skill requirements for testers in agile projects?

To answer the first research question, we use a categorization of soft skills proposed
in a study by Ahmed et al. [19], where the authors analyzed 500 job advertisements in
IT positions (developers, designers, system analysts and software testers). By com-
paring with the result of the analysis specifically for software testers from 2012 [19],
we were able to look at the skills requirement trend in the last 5 years. Moreover, to
answer the second research questions, we analyze specifically the ads mentioning agile
methods. Additionally, we make a preliminary analysis of job advertisements not
asking for any soft skills.

This paper is structured as follows: Sect. 2 discusses the way we have collected and
analyzed data. Section 3 presents the results of our findings. We discuss and interpret
the results in Sect. 4 and present the limitations of our study in Sect. 5. In Sect. 6 we
present implications and in Sect. 7 we draw the conclusion and discuss future work.

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 55

2 Data Collection and Analysis

We collected job advertisements from 33 countries on five continents. The majority of
the ads were collected from the USA, Canada and Norway, see Table 1 for the details.
We chose to use online job-search engines to collect the raw job advertisements. We
decided to use such tools instead of going to specific hiring companies because we
consider the search engines to be an efficient way of including in our analysis a large
number of hiring companies, a great diversity of companies and large visibility to
job-seekers. We investigated which were the most significant job-search engines by
two dimensions: the number of users and the number of jobs posted. According to
commercial web traffic data and analytics services provided by Alexa(Amazon)1 and
SymilarWeb2, we chose the five most popular job-search engines, namely Indeed.com,
Monster.com, GlassDoor.com, CareerBuilder.com, and SimplyHired.com.

To obtain a 95% confidence level with a confidence interval of ±5% we needed a
minimum of 384 job ads [20]. We thus decided to study 400 job ads. We only selected
the jobs that referred to the role of software testers. We have included therefore jobs
such as testers, QAs, technical testers, usability testers, performance testers, game
testers and financial-system testers. We have not considered jobs referring to other roles
within a software development team, such as developers, architects, technical writers,
or UX designers.

We collected job ads posted in multiple national languages because we consider it to
be relevant to include countries that are important actors in the software development
industry, whose language is not English. We gathered job ads posted in 20 different
languages. We collected 226 job ads that were posted directly in English and 174 job ads
that we translated into English. To make sure we translated the advertisements correctly,
we used two independent online translation tools from Google3 and DeepL Translator4,
respectively Etranslator5, to translate and to cross-check the coherence of the transla-
tions. We included only the job ads where the results of translations were the same.
Using in parallel translation tools and comparing the results worked well because most
of the job advertisements were posted in plain language, using standard terms. However,
we still triple-checked with a fluent software professional or native speaker the trans-
lations to English from French, Italian, Spanish, German, Hindi, Vietnamese and all
Scandinavian languages and the translation results provided by the tools were confirmed.

As a last point, it is worth mentioning that the job advertisements were collected
from both in-house software developers, as well as consultancy companies. Both the
public sector and private sectors were represented. For example, Amazon, Norges
Bank, Expedia, Nasdaq, Texas Instruments, Verizon, Motorola Solutions, Fujitsu,
VISA, IBM, Nokia, New South Wales Government, National Bank of Canada,
Accenture, Sogeti and Sopra Steria.

1 https://www.alexa.com/.
2 https://www.similarweb.com/.
3 https://translate.google.com/.
4 https://www.deepl.com/translator/.
5 http://www.etranslator.ro/.

56 R. Florea and V. Stray

http://Indeed.com
http://Monster.com
http://GlassDoor.com
http://CareerBuilder.com
http://SimplyHired.com
https://www.alexa.com/
https://www.similarweb.com/
https://translate.google.com/
https://www.deepl.com/translator/
http://www.etranslator.ro/

2.1 Coding of Soft Skills

In this paper, we examine which categories of soft skills are in most demand from
employers. We determine which categories of soft skills are most popular for tester
roles, compare them with the existing studies and interpret the findings.

We chose to manually analyze the data because the ads have different structures:
some of the job-search engines allow job advertisers to post in their specific format, but
also various job-search engines use different formats for job ads. Last but not least, not
all advertisers have the same understanding of the information that has to be filled-in an
ad. Therefore, we found soft skills in the sections dedicated to requirements, job
attributes, duties. We went manually through each of the job ads and looked for soft
skills requirements. We copied the content of the ads into the following categories:

• Country
• Job title
• Job description
• Responsibilities and tasks
• Job requirements
• Education needed
• Other certification needed
• Minimum prior experience required
• Nice to have

Table 1. Job advertisements collected from each country

Country No. of ads % of the total ads

USA 96 24,0%
Canada 65 16,3%
Norway 22 5,5%
UK 20 5,0%
Argentina 17 4,3%
France 17 4,3%
Mexico 15 3,8%
South Africa 14 3,5%
China 14 3,5%
Vietnam 13 3,3%
Greece 13 3,3%
India 12 3,0%
Sweden 10 2,5%
Portugal 10 2,5%
Australia 10 2,5%
Spain 9 2,3%
Italy 8 2,0%
Germany 8 2,0%
Other countries 27 6,8%

400 100,0%

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 57

To map the soft skills, we used the categories defined in an earlier study of job
advertisements in software development [19], as our coding scheme, see Table 2.
Moreover, we added the tenth category: “Other soft skills”, where we coded soft skills
that did not fit any of the other categories, for example, “good sense of humor”,
“multitasking”, “ability to work under pressure” and “customer focus”. We considered
both the soft skills that were required imperatively (mandatory requirements) and the
soft skills that were considered a plus for getting hired (nice to have). We did not
distinguish between different strengths of the same skills. For instance, “strong com-
munication skills” and “excellent communication skills”.

3 Results

Of the 400 ads, 257 ask for soft skills (64,2%). We identified in all ads a total of 1.218
of soft skills, which leads us to an average of 4,73 soft skills per advertisement that
demands soft skills. In comparison, the same ads ask for an average of 11,3 testing
skills, 5,27 technical skills, and 0,7 domain-specific skills. Table 3 shows examples of
soft skills requirements asked for in the ads.

In order to analyse the trend, we use [19] as a proxy for the skills demands in 2012.
Figure 1 shows the results of comparing the soft skills demands in [19] and all the ads
in our study. Focusing on the ranking, in both studies the most important category of
skills is communication. Second, comes analytical and problem-solving skills. We see
similar results for four types of skills: interpersonal, analytical and problem-solving,
organizational and innovation: in [19] and in our research, they are demanded in

Table 2. Definition of the soft skills categories

Skill category Definition based on [19]

Communication skills The ability to convey information so that it is well received and
understood

Interpersonal skills The ability to deal with other people through social
communication and interactions

Analytical and
problem-solving skills

The ability to understand, articulate and solve complex problems
and make sensible decisions based on available information

Team player The ability to work effectively in a team environment and
contribute toward the desired goal

Organizational skills The ability to efficiently manage various tasks and to remain on
schedule without wasting resources

Fast learner The ability to learn new concepts, methodologies, and
technologies in a comparatively short timeframe

Ability to work
independently

The ability to carry out tasks with minimal supervision

Innovative The ability to come up with new and creative solutions
Open and adaptable to
changes

The ability to accept and adapt to changes when carrying out a
task without showing resistance

Others Soft skills that do not fit any of the above categories

58 R. Florea and V. Stray

approximatively the same measure. However, the demand for communication skills has
decreased by 19%. The need for team-playing skills have increased by 14%,
fast-learning skills have increased by 18%, independent-working skills by 23% and
openness and adaptability skills have increased by a spectacular 25%.

Table 3. Examples of categorized soft skills

Category name Extracts

Communication skills “Excellent communication skills with team members and
business contacts”

Interpersonal skills “Is able to interact with system developers, business analysts and
others”

Analytical and
problem-solving skills

“Demonstrated ability to analyze and solve technical issues”

Team player “Values teamwork”
Organizational skills “You must be well-organized with the ability to work to

deadlines”
Fast learner “A passion for learning and testing”
Ability to work
independently

“Must be able to work with minimal or no supervision on
extra-large and multiple concurrent projects and coordinate the
work of others in this environment”

Innovative “An ability to think creatively”
Open and adaptable to
changes

“Ability to work in a rapidly changing environment”

Others “Customer-service orientation”

Fig. 1. Comparative analysis of soft skills requirements

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 59

The category named “Others” contains 121 ads and 161 skills that did not fit into the
predefined categories in [19], see Table 4. When we analyzed these skills, we found that
the first and most important was having work ethics. Here we included skills such as
integrity, trustworthiness, ethical behavior, honesty, respectability, credibility. The other
large categories of other skills were customer focus, proactivity and responsibility.

Out of the 400 analyzed jobs, 120 specify that the role is for an agile working
environment. That is, there is mentioned “agile, Scrum, Kanban or Lean” in the
advertisement. To see if there were particular requirements for agile software testers,
we analyzed the 120 ads in more detail. We found that 91 ads ask for a total of 429 soft
skills, which leads to an average of 4,71 soft skills per job ad. There are 64,2% of all
ads asking soft skills and 75.8% agile ads asking for soft skills. The average number of
skills is, however, similar. Referring to the “Others” category, most ads ask for work
ethics (8%), customer focus (7%) and be proactive (5%).

The analysis shows that 257 ads out of 400 are asking for soft skills. The per-
centage is good (64,2%), in the sense that more than half of the job advertisers rec-
ognize the need for soft skills from their testers and verbalize the need in their job
advertisements. However, 144 job ads do not ask for soft skills. Job ads coming from
Canada and the USA ask in the biggest proportion of soft skills: Canada with 80% and
the USA with 74%. China, Vietnam and Portugal have a moderate number of job ads
not asking for soft skills (around 30% each). The rest of the studied countries have less
than half of their ads mentioning soft skills.

Table 4. Analysis of the “Others” soft skills category, all job ads

Other skills No % Definition Example

Work ethic 24 9% One that demonstrates
professionalism in their work.
A person that one can trust and
work results that one can rely
on

“Perform all work with the
highest industry and ethical
standards”

Customer focus 20 7% The ability to understand and
to act towards serving the
clients’ needs

“Customer-service
orientation”

Proactive 19 7% The ability to identify work to
be done and start doing it,
rather than just respond to
management’s requirements to
complete work tasks

“Pro-activeness,
accountability and results
orientation”

Responsible 12 4% The ability to be trusted;
delivering valid, definitive and
well-grounded work results

“Ownership and responsibility
of work”

Works under
pressure

12 4% The ability to perform job
duties under the mental distress
of multiple matters requiring
immediate attention

“Ability to multi-task under
tight deadlines and report
status”

(continued)

60 R. Florea and V. Stray

4 Discussion

Our findings show that while more than half of the advertisers ask for soft skills, the
percentage is smaller than the ones asking for testing skills or technical skills.
Therefore, even though the human factors contribute the most to the success of soft-
ware projects [21], the demand for soft skills still lags significantly behind the demand

Fig. 2. Soft skills particularities for agile testers

Table 4. (continued)

Other skills No % Definition Example

Critical-thinking 8 3% The ability to understand
information in order to
identify, construct and evaluate
arguments

“Critical thinking: use logic
and reasoning to identify
strengths and weaknesses of
alternative solutions”

Motivated 8 3% One that has a reason for doing
something

“Thrive in self-motivated
innovation-driven
environments”

Detail-oriented 6 2% One that pays attention to
details and makes a conscious
effort to understand causes
instead of just effects

“Detail-oriented and
analytical individual”

Quality-oriented 6 2% One that understands the
product’s ability to satisfy the
customers’ needs

“With a focus on improving
development team productivity
and enhancing product
quality.”

Committed 6 2% The ability to give time and
energy to something one
believes in

“The successful candidate will
be a self-motivated and
committed individual”

121 36%

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 61

for testing and technical skills. The results are however is in line with the findings in
[22], which underlines this paradox when hiring in the software industry.

To answer our first research question: What is the trend for soft skills requirements
for testers? we compared the result of our analysis with a similar study from 2012 [19].
In the set of findings [19], by analysing the trends in requirements for soft skills, we
observe that there is a stronger need for team-playing skills, fast-learning skills,
independent-work skills and openness and adaptability skills. Agile software devel-
opment puts an emphasis on teamwork having a central role in software development,
therefore, being a team-player is essential. There is little literature on fast-learning
skills. However, we can assume that, given the rapidly changing tasks and require-
ments, testers have to learn fast concepts, tools or even whole new domains, such as
accounting or statistics to perform their work.

We know that independent-working skills are directly related to how much activity
is required of the learner. If one can work independently, then the burden of super-
vision, control, and feedback for the individual learner or the team is decreased [23].
Therefore, independent-learning is a desirable skill, in order to decrease the burden on
the team.

Both openness and adaptability are traits that need to be fostered within develop-
ment teams, and the explanation is it makes it easier for team members to admit their
own mistakes, to negotiate, listen and facilitate [6]. Therefore, it is explainable that the
request for these skills has increased, as a consequence of the desire of software
companies to go overpass mistakes sooner and with fewer consequences.

It is unclear why the demand for communication skills has such a significant fall.
Even the agile manifesto makes communication a central part of software development.
Therefore, an explanation for a down-trend in the demand for communication is that
has become such a common trait that the job advertisers do not specifically mention it.

Concerning new categories of skills required of testers, the most important is work
ethics. Job advertisers specifically ask for integrity and trustworthiness, in both rela-
tions with customers and team members. They ask for a work done with profession-
alism first and foremost. Customer focus is a close second. There are specific
requirements for testers to test through the customers’ perspective and to keep into
account customers’ needs. An interpretation of the agile manifesto [24] sets the cus-
tomer as an integral part of the development team; therefore more customer-focus is not
surprising. Testers are specifically asked to be proactive, in the sense of picking-up and
fulfilling job tasks, rather than wait and be told what to do. It can be a sign that there is
a tendency in the software development to move away from micro-management to
autonomous teams [25].

Job advertisers seem to exhibit a trend now in asking for responsibility-related
skills; they emphasize the candidate to be able to deliver definitive work and
well-grounded work results. We can translate this requirement by that work half-done
is not accepted. One has to finish their job, and one has to prove that their work results
are correct. Other notable new demands are the ability to work under pressure, the
ability of critical-thinking, be motivated, committed, detail-oriented and
quality-oriented. We consider it to be a positive signal the small number of requests for
multitasking (4%), as this practice, especially inter-projects, is often associated with a
loss of effectiveness [26].

62 R. Florea and V. Stray

Our second research question was “Are there specific soft-skill requirements for
testers in agile projects?”. Only 30% of the companies mentioned agile in the
advertisement. Since a recent study found that at least 70% of developers work in agile
projects [27], we would expect the number of agile testing ads to be higher. One
explanation for the low number is that nowadays so many projects work with agile
methods, that employers do not specify it anymore in the job ads.

The agile ads are slightly more oriented towards interpersonal skills, organizational
skills and openness and adaptability skills. It is explicable from the perspective of agile
development, where the focus is on people talking to each other, self-organizing teams
and facing changes at a faster pace. Regarding particular requests for agile testers, it
seems that more ads are asking for soft skills. It can be that in an agile environment the
need for soft skills is more visible, therefore the demand for soft skills is more often
expressed. The results show that there are no significantly different requirements for the
agile testers: the soft skills requirements are relatively similar.

5 Limitations

The time span of the data collected is 2 months, December 2016 – January 2017. We
have made a choice not to look at job ads in printed newspapers because the majority of
job-ads in the software industry are published online. We have decided to choose a
confidence level of 95% with a confidence interval of ±5%, which we consider to be
satisfactory enough. If we were to have selected a confidence level of 99% with an
interval of ±1%, we would have had to analyze over 16.600 jobs.

A limitation of the study can be the fact that two categories of skills, as grouped by
Ahmed et al. [19], contain a combination of two skills. These categories are “analytical
and problem-solving” and “openness and adaptability”. We have adopted that way of
grouping the soft skills because we aimed at a comparative analysis with [19].

Last, a limitation is that the number of the job ads we have collected per country
does not reflect directly the importance the country has in software development. This
limitation comes from the fact that we do not have figures for how many jobs in
software development or testing exist for the majority of countries.

6 Implications

Practitioners can use our results to identify which soft skills they should practice or
enhance. Based on our findings, companies can identify their gaps in soft skills
requirements. An analysis from 2009 shows that IT executives prefer soft skills and
competencies for their employees [28] and that companies seek for more rounded
practitioners with well-developed soft skills [29]. Soft skills, an essential factor in the
way people collaborate, play a major part in team norms, in the sense of shared
expectations of how to behave and interact with team members. Team norms have an
important role in affecting team performance in software teams [30]. Therefore, teams
having more insight regarding their team members’ soft skills can have a positive
influence on the team performance.

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 63

Soft skills have a strong influence on certain parts of the test activities. While soft
skills might not affect unit or integration testing, it is likely that the soft skills shape the
way testers conceive and perform the kinds of tests having the user at their center, i.e.
user experience and accessibility testing [31].

The Computer Science and Information Systems universities can have a significant
contribution to practicing and shaping students’ soft skills. We notice that indifferent of
the environment in which software testers work, the demand for and the importance of
soft skills stay the same. Therefore, universities should aim to train all categories of
skills identified in our study. While categories such as communication, analytical and
problem-solving, organizational, individual-working, and work under pressure skills
are partly addressed through the way students are trained and evaluated in the courses
they attend, it is important for universities to include in the tasks for the students to
train their interpersonal, innovation, fast-learning or team-playing skills. Also, uni-
versities and colleges can include in their teaching examples regarding work ethics,
customer-focus, well-grounded work results. It would also be a valuable addition for to
students to be able to practice, through exercises, their attention to detail, mindfulness
towards quality, critical thinking. The universities could encourage the students to be
pro-active and committed. The reason is that soft skills are often seen by practitioners
more important than hard skills in new graduates, therefore the need to introduce soft
skills in the curriculum [32].

7 Conclusion and Future Work

Given the fact that more than half of the job advertisements ask explicitly for soft skills,
we can conclude that employers consider them as qualities that affect the job perfor-
mance of software testers. The most important soft skill for software testers is having
good communication skills. The demand for soft skills seems to be stable over the
years. However, we found that the trends in these demands are changing. There is an
increase in the skills requirements regarding being a team-player, fast-learner,
independent-working and having openness and adaptability skills. The trend could
point to an increase in the number of responsibilities for testers. It may be that software
testers now have to be involved in more aspects of the development pipeline: from
creating software to managing it, quality-check it, building it and releasing it. It could
also mean that projects themselves have changed the structure, becoming smaller and
more open to changes, and people working on them must adapt to this new way of
developing software.

Additionally, we identified new skills that employers want software testers to have:
work ethics, customer focus, pro-activeness, responsibility, ability to work under
pressure, focus on details, focus on quality and commitment. Exhibiting profession-
alism in one’s work, delivering finished work and trustable results get more into the
focus of employers.

We expected that testers working in agile environments are requested for signifi-
cantly more team-playing, communication, interpersonal and fast learning skills. But
the results show that these requirements are the same for all kinds of job ads. A possible
explanation is that nowadays so many projects work in an agile manner, that they do

64 R. Florea and V. Stray

not specify it anymore in the job ads. But we can also say that, indifferent of the
development model adopted, the relevant soft skills for testers remain unchanged.

Future work should get a better insight into the soft skills required in agile projects
by interviewing agile project members. Other possible questions are: how will the
trends in soft-skills requirements evolve in the next years? Will the agile tester be
required for more specialized soft skills? Will the new categories of soft skills gain
even more importance? What are the new trends in soft skills requested from devel-
opers: do they correspond to the new categories of soft skills asked from software
testers? Future work should also investigate why some employers do not ask for any
soft skills in their advertisements for software testers.

References

1. Cohen, C.F., Birkin, S.J., Garfield, M.J., Webb, H.W.: Managing conflict in software testing.
Commun. ACM 47(1), 76–81 (2004)

2. Joseph, D., Ang, S., Chang, R.H., Slaughter, S.A.: Practical intelligence in IT: assessing soft
skills of IT professionals. Commun. ACM 53(2), 149–154 (2010)

3. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation (Adobe Reader). Pearson Education, London (2010)

4. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of requirements volatility during software
development life cycle. In: Proceedings of the 2004 Australian Software Engineering
Conference. IEEE (2004)

5. Kumar, S., Hsiao, J.K.: Engineers learn “soft skills the hard way”: planting a seed of
leadership in engineering classes. Leadersh. Manag. Eng. 7(1), 18–23 (2007)

6. Sukhoo, A., Barnard, A., Eloff, M.M., Van der Poll, J.A., Motah, M.: Accommodating soft
skills in software project management. Issues Inform. Sci. Inform. Technol. (IISIT) 2, 691–
703 (2005)

7. Black, R.: Pragmatic Software Testing: Becoming An Effective and Efficient Test
Professional. Wiley, Hoboken (2007)

8. Halpern, D.F.: Teaching critical thinking for transfer across domains: disposition, skills,
structure training, and metacognitive monitoring. Am. Psychol. 53(4), 449 (1998)

9. Bordin, S., De Angeli, A.: Focal points for a more user-centred agile development. In: Sharp,
H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 3–15. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33515-5_1

10. Rivera-Ibarra, J.G., Rodríguez-Jacobo, J., Serrano-Vargas, M.A.: Competency framework
for software engineers. In: 2010 23rd IEEE Conference on Software Engineering Education
and Training (CSEE&T). IEEE (2010)

11. Mayer, R.E., Dyck, J.L., Vilberg, W.: Learning to program and learning to think: what’s the
connection? Commun. ACM 29(7), 605–610 (1986)

12. Kuusinen, K., Petrie, H., Fagerholm, F., Mikkonen, T.: Flow, intrinsic motivation, and
developer experience in software engineering. In: Sharp, H., Hall, T. (eds.) XP 2016.
LNBIP, vol. 251, pp. 104–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33515-5_9

13. Storey, M.-A.D., Čubranić, D., German, D.M.: On the use of visualization to support
awareness of human activities in software development: a survey and a framework. In:
Proceedings of the 2005 ACM symposium on Software visualization. ACM (2005)

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 65

http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/978-3-319-33515-5_9
http://dx.doi.org/10.1007/978-3-319-33515-5_9

14. Garousi, V., Mäntylä, M.V.: A systematic literature review of literature reviews in software
testing. Inform. Softw. Technol. 80, 195–216 (2016)

15. Holtkamp, P., Jokinen, J.P., Pawlowski, J.M.: Soft competency requirements in requirements
engineering, software design, implementation, and testing. J. Syst. Softw. 101, 136–146
(2015)

16. Graham, D., Van Veenendaal, E., Evans, I.: Foundations of Software Testing: ISTQB
Certification. Cengage Learning EMEA, Boston (2008)

17. Dustin, E.: Effective Software Testing: 50 Ways to Improve Your Software Testing.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

18. Lippman, L.H., Ryberg, R., Carney, R., Moore, K.A.: Workforce Connections: Key “Soft
Skills” That Foster Youth Workforce Success: Toward A Consensus Across Fields. Child
Trends, Washington, DC (2015)

19. Ahmed, F., Capretz, L.F., Campbell, P.: Evaluating the demand for soft skills in software
development. IT Prof. 14(1), 44–49 (2012)

20. Cohen, J.: Statistical power analysis. Curr. Dir. Psychol. Sci. 1(3), 98–101 (1992)
21. Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering, Anniversary,

2nd edn. Pearson Education, London (1995)
22. Litecky, C.R., Arnett, K.P., Prabhakar, B.: The paradox of soft skills versus technical skills

in IS hiring. J. Comput. Inform. Syst. 45(1), 69–76 (2004)
23. van Hout-Wolters, B., Simons, R.J., Volet, S.: Active learning: self-directed learning and

independent work. In: Simons, R.J., van der Linden, J., Duffy, T. (eds.) New Learning,
pp. 21–36. Springer, Dordrecht (2000). https://doi.org/10.1007/0-306-47614-2_2

24. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.: Manifesto for Agile Software
Development (2001)

25. Kirkman, B.L., Rosen, B.: Beyond self-management: antecedents and consequences of team
empowerment. Acad. Manag. J. 42(1), 58–74 (1999)

26. Stettina, C.J., Smit, M.N.W.: Team portfolio scrum: an action research on multitasking in
multi-project scrum teams. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP, vol. 251, pp. 79–
91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_7

27. Stray, V., Moe, N.B., Bergersen, G.R.: Are daily stand-up meetings valuable? A survey of
developers in software teams. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017.
LNBIP, vol. 283, pp. 274–281. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57633-6_20

28. Stevenson, D.H., Starkweather, J.A.: PM critical competency index: IT execs prefer soft
skills. Int. J. Proj. Manag. 28(7), 663–671 (2010)

29. Turner, R., Lowry, G.: Towards a profession of information systems and technology: the
relative importance of “hard” and “soft” skills for IT practitioners. In: Issues and Trends of
Information Technology Management in Contemporary Organizations, pp. 676–678 (2002)

30. Stray, V., Fægri, T.E., Moe, N.B.: Exploring norms in agile software teams. In:
Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 458–467. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49094-6_31

31. Bai, A., Mork, H.C., Stray, V.: A cost-benefit analysis of accessibility testing in agile
software development results from a multiple case study. Int. J. Adv. Softw. 10(1 & 2), 2017
(2017)

32. Turner, R., Lowry, G.: The third dimension of the IS curriculum: the importance of soft
skills for IT practitioners. In: Proceedings of ACIS 2001, p. 62 (2001)

66 R. Florea and V. Stray

http://dx.doi.org/10.1007/0-306-47614-2_2
http://dx.doi.org/10.1007/978-3-319-33515-5_7
http://dx.doi.org/10.1007/978-3-319-57633-6_20
http://dx.doi.org/10.1007/978-3-319-57633-6_20
http://dx.doi.org/10.1007/978-3-319-49094-6_31
http://dx.doi.org/10.1007/978-3-319-49094-6_31

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills 67

http://creativecommons.org/licenses/by/4.0/

Developers’ Initial Perceptions on TDD
Practice: A Thematic Analysis with
Distinct Domains and Languages

Joelma Choma1(B), Eduardo M. Guerra1(B), and Tiago Silva da Silva2(B)

1 National Institute for Space Research, São José dos Campos, Brazil
jh.choma@hotmail.com, guerraem@gmail.com

2 Federal University of São Paulo, São José dos Campos, Brazil
silvadasilva@gmail.com

Abstract. Test-Driven Development (TDD) is one of the most popular
agile practices among software developers. To investigate the software
developers’ initial perceptions when applying TDD, we have performed
an exploratory study. This study was carried out with participants who
had about ten years of professional experience (on average), the majority
of whom with no experience using TDD. The study is in the context of
an agile project course at the postgraduate level of a research institute.
Participants individually developed medium size projects addressed to
different domains and using different programming languages. Through a
structured questionnaire with open and semi-open questions, we collected
information on TDD effects such as the perceived benefits, encountered
difficulties, and developer’s opinion about the quality improvement of
the software. Afterward, we conducted a thematic analysis of the quali-
tative data. Most participants noticed improvements in code quality, but
few have a more comprehensive view of the effects of TDD on software
design. Our findings suggest that after overcoming the initial difficulties
to understand where to start, and know how to create a test for a feature
that does not yet exist, participants gain greater confidence to implement
new features and make changes due to broad test coverage.

Keywords: Test-driven development · Test-first programming
TDD · Qualitative study · Thematic analysis

1 Introduction

Test-driven development (TDD) [3] is a technique for designing and develop-
ing software widely adopted by agile software development teams. TDD was
proposed by Kent Beck in the late 1990s as a practice of the Extreme Program-
ming. Motivating the programmer to think about many aspects of the feature
before coding it, this technique suggests an incremental development in short
cycles by first writing unit tests and then writing enough code to satisfy them
[14]. TDD consists of small iterations by following three steps: (1) write a test for
c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 68–85, 2018.
https://doi.org/10.1007/978-3-319-91602-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_5&domain=pdf

Developers’ Initial Perceptions on TDD Practice 69

the next bit of functionality you want to add; (2) write the functional code until
the test passes; and (3) refactor both new and old code to make it well-structured
[3]. TDD focuses on unit tests to ensure the system works correctly [8]. By fol-
lowing this method of testing before coding, the software can be incrementally
developed without a need for detailed designing it upfront [15].

Many studies have highlighted the benefits of TDD in software quality by
comparing it with other software development approaches. Other studies sought
to understand how TDD is addressed as design and development practice by
software developers. As a result of this type of investigation, some studies point
out that programmers experienced in TDD report that this practice increases
the confidence in the result of their work and ensures a good design and fewer
defects in code [7]. As a consequence, these factors collaborate to increase the
quality of software [22].

Nevertheless, programmers considered novices to the TDD might experience
difficulties when applying this practice for the first time. As an effect of these
initial challenges, programmers can become unmotivated because they do not
feel productive using TDD [2]. Understanding the purpose of testing is one of
the main difficulties reported by developers [9]. Despite the difficulties, most of
them recognize that when traditionally developing software – i.e., testing only at
the end – they are subject to spending more time searching for bugs and trying
to evolve the software.

In this paper, we present the results of an exploratory study involving soft-
ware developers, many of them with many years of professional experience, but
that had never tried programming using TDD. This study was carried out in
the context of an agile project course at the postgraduate level of a research
institute. Our goal is to gain insights into the initial perceptions of developers
regarding the TDD effects on design and development practice.

Unlike many studies that usually propose simpler activities to evaluate the
use of TDD involving, for example, the coding of a single class or function;
our study offered to the participants to develop projects with complete fea-
tures. Thus, participants developed medium size projects (i) addressed to differ-
ent domains and (ii) using different programming languages. From the partici-
pants’ projects, we collected information about their perceptions concerning the
perceived benefits, encountered difficulties, and their opinion about the quality
improvement of the software attributed to the use of TDD.

The remainder of this paper is organized as follows. In Sect. 2 we review
related work. In Sect. 3 we describe the empirical study. In Sect. 4 we present
the results of the thematic analysis. In Sect. 5 we discuss our findings. Finally,
Sect. 6 presents the conclusions, limitations, and future work.

2 Related Work

A growing number of empirical studies have been conducted both in academic
or industrial settings to investigate the effects of TDD over the software quality
(internal and external), productivity, and test quality [9,18,23].

70 J. Choma et al.

Gupta and Jalote [15], in an academic setting, evaluated the impact of TDD
on activities like designing, coding, and testing. By comparing it with the con-
ventional code development, their results suggest that TDD can be more efficient
regarding development efforts and developer’s productivity. However, the study
participants reported higher confidence in code design for traditional approach
than needed for the TDD approach.

Janzen and Saiedian [17] conducted some experiments to compare the effects
of TDD against Test-Last-Development (TLD) approach, involving students in
undergraduate courses (early programmers) and professional training courses
(mature developers). Their study revealed that mature developers are much
more willing to adopt TDD than early programmers. However, they identified
confounding factors between the two groups which may have interfered in their
results – such as project size, TDD exposure time, programming language, and
individual and paired programming style.

In an industrial setting, George and Williams [13] complemented a study
about efficiency and quality of test cases with a survey to gather perceptions
from 24 professional pair-programmers about their experiences using TDD. On
average, the survey results indicate that 80% of professional programmers con-
sider TDD an effective practice; and 78% claimed that practice improves pro-
grammers’ productivity. Also, their results indicated that the practice of TDD
facilitates a more straightforward design, and the lack of initial design is not an
obstacle. However, for some of the programmers, they found that the transition
to the TDD mindset is the most significant difficulty.

In an experiment involving teams composed of 3–6 undergraduate students,
Huang and Holcombe [16] evaluated TDD effectiveness focusing on aspects
related to productivity, coding effort, testing effort, and external quality. One
result of the comparative study is that TDD programmers spent a higher per-
centage of time on testing and a lower portion of time on coding than TLD
programmers. Moreover, they found that, statistically, TDD programmers nei-
ther delivered software of higher quality nor were more productive, although
their productivity was on average 70% higher than that of TLD. In this study,
they used external clients’ assessment as a measure of quality rather than defect
rate.

Vu et al. [24] also examined the TDD effects on both the internal and external
quality of the software and the programmers’ perception of the methodology.
They carried out an experiment with 14 upper-level undergraduate and graduate
students, who were divided into three teams. Two of the three teams utilized
TDD while the remaining team utilized a TLD. In contrast to several previous
studies, their results indicated that the TDD did not outperform TLD in many
of the measures; and concerning the programmer’s perception, although were
not significant, the results indicated a preference for TDD.

Aniche and Gerosa [1] carried out a qualitative study with 25 software practi-
tioners, aiming mainly to investigate developers’ perceptions of how the practice
of TDD influences class design. Most of the interviewees were professionally
experienced and had some practice in TDD. As a result, they found that the

Developers’ Initial Perceptions on TDD Practice 71

constant need of writing a unit test for each piece of the software forces develop-
ers to create testable classes. For this reason, developers agreed that the practice
of TDD helps them to improve their class design.

Scanniello et al. [21] also conducted a qualitative investigation on practi-
cal aspects related to TDD and its application with focus groups, in which 13
master students and five professional software developers discussed their expe-
rience in the programming using TDD. Among the findings, they reported that
applying TDD can be tricky without the knowledge of advanced unit testing
techniques – e.g., mock objects; and that participants admit that refactoring
is often neglected. When TDD is compared to TLD, they found that novices
believed that TDD improves productivity, whereas professionals consider that
TDD decreases productivity in developing software. Romano et al. [20] conducted
an ethnographically-informed study with 14 graduate students and six profes-
sionals software developers, to understand the values, beliefs, and assumptions of
TDD. From their observations, they found that, in most cases, developers wrote
production code in a quick-and-dirty way to pass the tests, and often ignored
refactoring.

In analyzing the studies mentioned above, we have noted that most of them
compare the effects of TDD to a test-last approach. Nevertheless, there is no
consensus on their results, since each experience involves different contexts and
other potential influence factors, as observed by Janzen and Saiedian [17]. In
our study, we are not directly comparing TDD with any other approach, but
we are taking into account the participants’ prior experience with traditional
approaches (e.g., TLD). Notably, there are few qualitative investigations explor-
ing the TDD effects from the viewpoint of the developers [20,21]. In this study,
we also are interested in exploring and knowing the opinion of the developers
about the use of TDD, its effects and other factors that imply in its application.
However, we intend to capture perceptions and draw conclusions regardless of
the programming language or application domain.

3 Empirical Study

This section first describes the study context and participants’ profile recruited.
Secondly, we present some characteristics of the projects implemented by the
participants using TDD. Finally, we outline the methods of collection and anal-
ysis employed in this study.

Subjects and context. The 19 subjects involved in this study were recruited
in the context of the postgraduate course of Agile Projects from the National
Institute for Space Research in Brazil, in the third period of 2015 and 2016.
Participants were experienced professionals – had about ten years on average of
experience in software development.

During the course, all subjects received the same training about TDD based
on Java programming language and JUnit framework. The training consisted of
face-to-face classes and practical exercises applied in Java. However, the concepts
have been taught to be applied using any language. Based on these concepts and

72 J. Choma et al.

practical exercises, the subjects had to develop an application using TDD indi-
vidually. We have established that each subject was responsible for defining the
type and goal of the application, and for choosing the programming language,
the IDE and the unit test tools. This variability of projects would allow us to
mitigate a bias observed in other studies, and to bring the implemented soft-
ware closer to real needs. The subjects had around two months to develop the
application in their work environment. After the development period, the partic-
ipants were asked about their experience using TDD. However, it is important
to point out that neither the answers nor the software delivered was considered
for evaluation, to allow the participants greater freedom of speech.

As shown in the Table 1, subjects had at least two years of experience in
programming. However, most of them had between 5 and 22 years of experience
and good skill with the language of programming chosen for the project. For
analysis, we have considered more experienced those subjects with more than
five years of experience. There were only five subjects with shallow knowledge
about the language used in their projects. Regarding experience with TDD, only

Table 1. Projects characterization

Project Programming
language

Programmers’
experience
(years)

S1 System for decoding avionics data bus Python 2

S2 Model-based Testing Tool Java 3

S3 Annotation Validation System Java 5

S4 System for E-Commerce Java 5

S5 Implementation of parametric curves C++ 5

S6 System for generation of geospatial data C++ 15

S7 Management system for coffee shop C++ 9

S8 Extraction of historical software metrics JavaScript 13

S9 Web service for conversion of XML models Java 10

S10 Implementation of training algorithm Java 14

S11 System for weather forecast data gathering PHP 12

S12 Drawing application for digraphs Java 12

S13 API for mathematical calculus Java 22

S14 Framework for gamification Java 2

S15 API for searching of code-annotations Java 5

S16 Metadata-based framework Java 7

S17 Classification of remote sensing images C++ 11

S18 Framework for Adaptive Object Models Java 19

S19 API for mining of software dependencies Java 10

Developers’ Initial Perceptions on TDD Practice 73

two subjects had previously used TDD but had minimal experience of it in their
practice.

Projects characterization. The participants had defined their projects with
different purposes, i.e., all projects were different from each other. Table 1 shows
a brief description of each project. As displayed in Table 1, many of them were
focused on applications for the field of space science and technology. As for
the programming language, 12 projects were developed in Java; and the other
languages used were C++ (4), Python (1), PHP (1) and JavaScript (1). About
the type of project, 12 participants reported that their projects were part of
their academic research; 3 participants developed part of the real projects that
they had been developing in the industry, and other 3 participants developed
personal projects. Of all the projects, twelve of them used as their starting point
an existing code, while the others seven were built from scratch.

Data gathering and analysis. In this field study, a structured questionnaire
with open, semi-open and closed-ended questions was used as the principal means
of data collection from the software projects carried out by the study partici-
pants. For the open and semi-open questions, in particular, we have using a
thematic analysis technique [4], through which we looked for themes/patterns
across qualitative data to capture the critical points about developers’ percep-
tions regarding the TDD practice.

Thematic analysis (TA), such as proposed by Braun and Clarke [5], is a the-
oretically flexible approach to analyzing qualitative data widely used to arrange
and describe a data set in rich detail, and also to interpreter various aspects of
the research topic. According to them, this approach can be used as a realist
method to reports experiences, meanings and the reality of participants; or as a
constructionist method to examine how events, realities, meanings, experiences
are the effects of a range of discourses and behaviors.

Further, TA can be used to analyze different types of data; to work with
large or small data-sets, and to produce data-driven or theory-driven analyses
[6]. Thus, to accomplish the analysis of the participants’ answers, we carried
out a thematic analysis following the six steps proposed by Braun and Clarke
[5]: (i) familiarizing with the data; (ii) generating initial codes; (iii) searching for
themes; (iv) themes review and refinement; (v) defining and naming themes; and
(vi) writing the final report. The first author performed the thematic analysis,
and then the other two authors reviewed the themes and helped in refining them.

4 Findings

In this section, we first present some information about the projects developed by
the study participants, and then we describe the results of the thematic analysis
grouped into five topics related to the questionnaire: (i) difficulties in applying
TDD; (ii) test failures and unexpected situations; (iii) key benefits of TDD; (iv)
software design; and (v) mock objects. The results of the thematic analysis are
presented in tables. The questions asked the participants are under the headings

74 J. Choma et al.

of each table. For each question, we present the themes and sub-themes that
have emerged from participants’ answers. Alongside each theme and sub-theme,
we included the number of participants who mentioned something about them.
Also, we included some participants’ quotations. Such quotations, originally in
Portuguese, were translated into English by the authors.

Projects size and test coverage. Once the applications had different purposes
(see Table 1), our intention was not to compare the projects with each other.
However, we collected some software metrics, which have been provided to us by
the participants, to obtain information on the size of the applications, and on
the coverage of tests. Table 2 presents the metrics related to: (i) total of hours
spent in implementation; (ii) number of lines of code; (iii) number of classes
(or functions, or modules); (iv) number of methods; (v) number of lines in the
test code; (vi) number of classes (or files) in the test code; and (vii) number of
methods in the test code. Additionally, Table 2 also shows the percentage of test
coverage, and the tools used to support programmers in the unit tests.

Fig. 1. Development time and total lines of code

Regarding development time, about 84% of the projects took in the range of
9 to 72 h to be implemented considering the production code and the unit tests
(see Fig. 1). The amount of LOC of production ranged from 103 to 11,316; while
the number of LOC of tests ranged from 101 to 4,588. Given the total number
of LOC (production and testing), almost half of the projects (47%) range from
1,000 to 2,000 lines of code. As for the code coverage, 12 projects (about 63%)
reached over 80% coverage. We point out that testing coverage is evidence that
reinforces the use of TDD by participants.

Difficulties in applying TDD. Analyzing the participants’ answers, we iden-
tified four themes on difficulties encountered by developers when developing the
software through TDD: (i) the lack of culture and skill; (ii) difficulties related
to unit testing; (iii) difficulties related to using TDD for software design; and
(iv) difficulties with mock objects. There were other difficulties mentioned by

Developers’ Initial Perceptions on TDD Practice 75

Table 2. Software metrics

TIME LOC NOC NOM t-LOC t-NOC t-NOM Coverage % Tool

S1 30 132 5 17 246 5 20 100.0 PyUnit

S2 9 2669 11 42 400 1 8 96.2 JUnit

S3 50 103 7 27 136 6 52 85.3 JUnit

S4 60 1214 47 236 959 19 55 95.8 JUnit

S5 30 359 9 125 603 8 41 96.7 GTest

S6 72 1627 38 296 1,619 12 49 75.7 Gtest

S7 176 11,316 146 2,320 2,762 1 38 80.0 QTestLib

S8 15 830 6 85 654 4 44 98.7 Mocha

S9 16 843 9 27 307 2 25 87.2 JUnit

S10 9 285 4 28 140 3 11 98.4 JUnit

S11 14 463 9 32 101 3 11 71.4 PHPUnit

S12 32 1,109 26 108 579 3 43 57.6 JUnit

S13 60 809 19 62 376 13 58 85.1 JUnit

S14 30 3,231 41 169 4,588 14 237 79.1 JUnit

S15 100 1,442 8 63 428 1 21 58.8 JUnit

S16 70 1,228 69 256 390 163 144 83.0 JUnit

S17 60 547 2 14 544 3 24 100.0 GTest

S18 40 2,000 3 10 2,000 3 10 78.5 JUnit

S19 140 1,674 56 415 536 7 69 49.0 JUnit

TIME - Total of spent hours in implementation; LOC - Number of lines of code;
NOC - Number of classes (or functions, or modules); NOM - Number of methods;
t-LOC - Number of lines in the test code; t-NOC - Number of classes in the test code;
t-NOM - Number of methods in the test code

the participants, which were more related to other technical problems than to
the development method itself. Table 3 presents the themes and sub-themes that
emerged from our analysis of difficulties reported by participants. There was only
one participant who mentioned that he had no difficulty in applying TDD.

Test failures and unexpected situations. During the tests, participants had
to deal with some sort of unexpected situation. As an answer to this question,
we found that 42.1% of participants (8 of 19) pointed out that such situations
occurred when a new test passed when it should have failed; for 68.4% of partic-
ipants (13 of 19) when a previous test failed unexpectedly when a new feature
was being introduced; for 57.9% of participants (11 of 19) when a code refactor-
ing generated failure in some test; and for 78.9% of participants (15 of 19) when
an error discovered in another way motivated them to add a new automated
test. Table 4 presents the themes and sub-themes related to the test failures and
unexpected situations reported by participants. In this case, the sub-themes refer
to the facts leading to the unexpected situations.

76 J. Choma et al.

Table 3. Difficulties in applying TDD

Question: What major difficulties did you have in the development?

Themes Sub themes Quotes

Lack of culture and
skill (n =14)

create test first
(n= 6)

“The biggest difficulty was thinking
about the test before having the
functionality, that is, I don’t know
how to get started.” [S3]

control on the size
of steps (n =3)

“To follow the steps, instead I wanted
to implement the main functionality
as soon as possible.” [S5]

low
productivity(n= 3)

“Due to lack of knowledge of TDD, in
the beginning, it was required more
time to get the job done.” [S16]

keep pace (n =2) “... keep pace with TDD (write test /
red bar / feature / green bar /
refactor); sometimes I got caught
“unconsciously” jumping phases.” [S8]

Unit testing (n= 10) test quality (n =8) “To define the scope of the tests: some
tests required implementation of more
than one function.” [S8]

support tool
(n= 2)

“In the case of Java IDE, there is a lot
of support, but in languages like PHP,
I found it harder because of IDE did
not give me so much support.” [S4]

Software design
(n= 3)

how to design
using TDD (n= 3)

“To think about how the API will
behave before you design it.” [S14]

Mock objects (n =2) use or not use
(n= 2)

“In this way, many “mock objects”
would need to be created to isolate the
behavior that is carried out by my
study, being that this mining code is
very repetitive, but it is very small
and very little would be effectively
tested.” [S19]

Key benefits of TDD. Concerning the perceived benefits of TDD, we identi-
fied four themes: (i) testing coverage, (ii) code quality, (iii) software design, and
(iv) baby steps. Table 5 presents the themes and sub-themes that emerged from
our analysis of benefits reported by participants. The most benefits are related
to what the test coverage provides the developer, such as a safe refactoring, con-
fidence to evolve and change the code, bug prevention, and consistency of code
working correctly. The quality of the code is another benefit much-mentioned and
perceived by almost all participants. Curiously, one of the developers reported
that he could not identify improvements in code quality using TDD compared
to Test Last. Instead, he mentioned only a greater comfort in implementing
new features since the tests were in place, and a reduction in time to identify
flaws introduced in the code. Software design and baby steps were two topics
identified, but in fact were little mentioned.

Developers’ Initial Perceptions on TDD Practice 77

Table 4. Test failures and unexpected situations

Question: Tell us about unexpected situations that occurred during testing.

Themes Sub themes Quotes

New test passes
unexpectedly (n = 8)

implementation errors
(n = 4)

“Upon verification, I noticed
errors in the implementation
that were later corrected.” [S17]

bad writing test (n= 3) “In some cases, the tests needed
more manipulation, in others of
better-elaborated assertions.”
[S19]

incomplete method
(n = 1)

“I did not realize that one of
the methods was still
incomplete.” [S2]

A previous test failed
unexpectedly (n = 11)

insertion of new rules
(n = 6)

“Faced with a new functionality,
part of the implementation that
previously passed the test,
stopped working, because it
became necessary to implement
more functional rules.” [S12]

in the integration (n = 5) “The tests failed during the
integration of the two
frameworks.” [S16]

Refactoring generates
failures (n= 8)

changing methods (n =2) “It happened several times,
after moving some method or
changing the operation of some
method.” [S1]

implementation failure
(n = 3)

“Thus, it was necessary to
adjust these tests to the new
situation, and in other cases fix
the implementation.” [S12]

data structures (n= 2) “It occurred mainly when data
structures were changed.” [S6]

addition of a new pattern
(n = 1)

“Some tests failed when a new
pattern (responsibility chain)
was added.” [S3]

New test for new
discovered bugs
(n = 15)

unthought cases (n =11) “Changing some tests to reject,
I realized that it was the case to
add one more test to cover that
situation.” [S1]

artifact errors (n =2) “The encoding of the imported
file did not match the header
encoding declaration.” [S11]

mock objects (n = 1) “I discovered the error by
performing tests using mocks
objects.” [S16]

in the integration (n = 1) “It happened during the
integration of the class that
makes the requisitions.” [S8]

78 J. Choma et al.

Table 5. Key benefits of TDD

Question: What are the key benefits you noticed when using TDD?

Themes Sub themes Quotes

Test coverage
(n = 31)

safe refactoring
(n = 10)

“The code can be refactored
with minimal impact.” [S13]

confidence (n= 9) “Due to the increased
coverage afforded by TDD
usage, the changes become
easier and safer.” [S17]

preventing bugs
(n = 9)

“By validating the code in
small parts from the
beginning of development, it
ends up reducing greatly the
appearance of bugs and
failures.” [S10]

consistency (n = 3) “The tests previously created
ensure the structure and
consistency of the code, i.e.
the code that was working
kept working.” [S2]

Code quality
(n = 21)

clean, clear, and
simpler (n = 11)

“TDD has helped me to
improve the code making it
more readable.” [S16]

lean programming
(n = 7)

“I coded only what was
needed, avoiding to treat
every imaginable situation.”
[S6]

maintainability
(n = 3)

“TDD allows greater
maintainability.” [S1]

Software design
(n = 4)

less coupled classes
(n = 3)

“The classes were less
coupled, so I was able to
understand the behavior of
the class without depending
on the total execution of the
system.” [S4]

less complicated
integration (n = 1)

“Integration of separately
created modules was
performed in a less
complicated way.” [S2]

Baby steps (n= 3) thinking in a
simpler way (n = 3)

“Because of the baby steps, I
was forced to think in a
simpler way, which ended up
reducing the complexity of
what I had envisioned.” [S4]

Developers’ Initial Perceptions on TDD Practice 79

Software design. When asked if participants had used TDD for software
design, we found three types of situations. In the first situation, 42.1% of partici-
pants (8 of 19) defined the software design through TDD. In the second situation,
31.6% of participants (6 of 19) already had part of their classes and methods
defined. Thus they used TDD only for the development and internal design of
the classes. Moreover, in the third situation, 26.3% participants (5 of 19) defined
during the TDD only the methods and the interaction issues since the classes
already were defined. Table 6 presents the themes and sub-themes that emerged
on software design.

Mock objects. Mock objects allow developers to write the code under test as
if it had everything it needs from its environment, guiding interface design by
the services that an object requires, not just those it provides [11]. In our study,
we found that nine participants (47.4%) used this expedient, while other ten
participants (52.6%) did not use it. Table 7 presents the themes and sub-themes

Table 6. TDD for software design

Question: How did you use TDD for software design activity?

Themes Sub themes Quotes

For entire software
design (n = 11)

bottom-up
development (n = 7)

“After the test possibilities
were exhausted for first
created class, I thought of
the next class and created a
test file for it. I was creating
new tests, always generating
classes associated with the
other classes with tests
previously created.” [S5]

lots of refactoring
(n= 2)

“The process required a lot
of refactoring, changes in the
name of modules and
methods, extraction of
functionalities and so on.”
[S8]

slow, but efficient
(n= 1)

“This insecurity made the
whole process very slow, but
I practically did not have to
change any tests - in relation
to the purpose of the test.”
[S10]

mock objects (n = 1) “In the file search module in
the file system, the tests were
directed to use the Observer
pattern, including the use of
mock.” [S6]

(continued)

80 J. Choma et al.

Table 6. (continued)

Question: How did you use TDD for software design activity?

Themes Sub themes Quotes

For the internal
design of the classes
(n = 6)

new functionalities
(n = 1)

“I decided to apply the TDD
for the implementation of the
new functionalities of the
software.” [S3]

decoupled objects
(n = 1)

“By using TDD, I needed to
develop decoupled objects.”
[S4]

methods validation
(n = 1)

“The unit tests served to
validate the operation of the
methods.” [S7]

patterns and
refactoring (n = 3)

“The class layout is equaled
to the interfaces.” [S16]

For methods design
(n = 5)

integration problems
(n = 1)

“At the time of integration, I
saw interface problems
between classes that required,
for example, changes in
method returns.” [S1]

previous sketching
of classes (n = 4)

“I listed of the activities my
software could perform in
increasing order of
complexity; and for each of
these activities would, in
principle, correspond to a
test.” [S2]

about the use of mock objects by participants. For participants who used mock,
the sub-themes highlight what purpose they were used for. As mentioned earlier,
one of the difficulties of the participants was deciding whether or not to use mocks
in their projects. Then, nine participants decided that it was unnecessary, and
one participant was able to conclude that it would be an effort without effect.

5 Discussion

TDD requires a new mindset because it recommends some practices which are
not common among developers, such as test-first, baby steps, and continuous
improvement of the design via refactoring. Like George and Williams [13], we
also found that transitioning to the TDD mindset is difficult. Developers are
slow to get pace because they take time to know where to start, and how to
create a test case for something that does not yet exist.

If, on the one hand, thinking about the test before implementing the code –
without having a design up front – can cause insecurity to the developer; on the

Developers’ Initial Perceptions on TDD Practice 81

Table 7. Use of mock objects

Question: Have you used mock objects in your project?

Themes Sub themes Quotes

Using mocks
(n= 10)

behavior simulation
(n= 6)

“I found it essential to
simulate the behavior of
other classes and to verify if
the iteration between the
objects was done as
expected.” [S4]

isolating classes
(n= 2)

“It helped me to verify what
kind of dependency I would
need to use between classes.”
[S10]

external components
(n= 2)

“It was very useful for testing
a class that interacts with an
external component.” [S6]

Not using mocks
(n= 10)

unnecessary (n = 9) “Maybe I could create a
mock for the graphical
interface but I found it
unnecessary since the
manipulation of the classes
could be done without it.”
[S12]

without effect
(n= 1)

“The case where I could have
used to isolate the tested
behaviors, I would not have
the expected result.” [S19]

other hand, a more considerable effort to create the tests before implementation
can be offset by less spent time in the bug fixes. There is little empirical evidence
showing if TDD, in fact, increases or decreases productivity [19]. In our study,
we can infer that the lack of practice surely is one of the aspects that can impact
productivity. Moreover, for this reason, developers often do not feel productive
when using TDD for the first time.

As suggested by Kent Beck [3], baby steps consist of to write tests for the
least possible functionality, simplest code to pass the test, and always do only
one refactoring at a time. This practice encourages developers to evolve the
software through small steps. According to Fucci et al. [12], an incremental
test-last and TDD “could be substitutes and equally effective provided that
they are performed at the same level of granularity and uniformity”. Thus, they
suggested that the quality assurance might not be tied to its test-first nature,
but on granularity effect.

Although baby steps are a key factor, we found that various developers ini-
tially have difficulty setting the size of the steps. In particular, we noticed that

82 J. Choma et al.

the less experienced developers struggle more against the anxiety because they
want to implement the requirements as soon as possible. On the other hand, more
experienced developers know to assess when baby steps are the best option. Some
participants realized that baby steps could help to reduce the complexity of the
design. Also, in the developers’ perception, problems including failures and bugs
tend to be easier to solve when they are discovered because of development in
small steps.

Once they overcome the initial difficulties, the participants gain greater con-
fidence to implement new features and make changes, since everything built so
far was already tested. Therefore, the test coverage is the most significant benefit
perceived by them – bringing a safety in refactoring (less traumatic) and helping
to prevent bugs [18]. These effects encourage the continuous improvement of the
code. But, this is not always done at every step, as recommended in TDD. In
line with the Scanniello et al.’s [21] findings, we also noticed that, sometimes,
refactoring was only performed after a set of tests and implemented features.
We underline how important is this issue to be addressed in the TDD training
and coaching, and focusing more on realistic situations.

The quality of the code regarding readability and simplicity is also one of the
forces of TDD perceived by developers – providing a leaner programming and
better software maintainability. By writing tests before code, programmers would
be “forced” to make better design decisions during development [9]. According
to Turhan et al. [23], incremental and straightforward design are expected to
emerge when using the TDD. Although some developers mentioned less-coupled
classes, few developers realize the influence of TDD on design activity. This
probably happened because the effect over software design is considered an indi-
rect consequence, as pointed out by Aniche and Gerosa [1]. For instance, one
participant claimed that decoupling was an effect of the use of mock objects.

Developers can gain a broad understanding of the requirements, since before
writing the tests they need to think about how features should work. Further-
more, the test cases can be used to explain the code itself [13]. A better under-
standing of the code certainly helps in its maintenance. However, we noticed that
few developers directly perceive a positive effect of TDD on software maintain-
ability. Nevertheless, we believe that such benefit seems to be better perceived
in the long run, or by more experienced developers, as pointed out by Dogša and
Batič [10].

6 Conclusion, Limitations and Future Work

The major concern of existing studies has been to evaluate the effects of TDD
compared to other development approaches; however, few studies seek to under-
stand such effects more deeply from the viewpoint of developers. This study
contributes empirical evidence on the use of TDD from developer’s perspective.
Unlike other studies, the design of this study involved a variability of projects
with different sizes and purposes, and using different programming languages
and support tools. Our findings are in agreement with the results of several
related studies.

Developers’ Initial Perceptions on TDD Practice 83

We have found that, in the participant’s vision, the adoption of TDD hap-
pens slowly due learning curve and change of mindset. But, like any new practice
that involves non-routine, knowledge work, this is an issue already expected. For
them, in the beginning, the main difficulties are to know where to start, and then
to know how to create a test for a feature that does not yet exist. Regarding per-
ceived benefits, we found that participants gain greater confidence to implement
new features and make changes due to broad test coverage. Most participants
noticed improvements in code quality, but few have a broader view of the effects
of TDD on software design. Less experienced developers have difficulty applying
baby steps because tend to be more eager to view the all features implemented.
Many of them cannot assess when using mock objects is appropriate to the
project.

Regarding the limitations of this study, we have to consider that generaliz-
ability of qualitative research findings is usually not an expected attribute, since
qualitative research studies are meant to study a specific issue or phenomenon,
involving a certain population, and focused in a particular context. In our study,
for example, although the study participants have different profiles and personal
experiences, some traits of culture can be typical of the Brazilian developers.
Therefore, we can not assume that our results apply outside the specific setting
in which it was run. Besides, the number of participants in this study may not
be sufficient to generalize the results.

Another validity concern is the possibility of researcher’s influence on the
qualitative data analysis. To mitigate this threat, we have adopted the thematic
analysis as a systematic method following a pre-established protocol. Also, the
results of the analysis were reviewed by the other two authors. Regarding study
participant’s, despite most developers had no previous experience with TDD, it
may be that one’s personal experience has influenced their particular opinions
and perceptions. In future work, this issue can be better analyzed.

Acknowledgements. We would like to thank the support granted by Brazilian fund-
ing agencies CAPES and FAPESP (grant 2014/16236-6, São Paulo Research Founda-
tion).

References

1. Aniche, M., Gerosa, M.A.: Does test-driven development improve class design?
a qualitative study on developers’ perceptions. J. Braz. Comput. Soc. 21(1), 15
(2015)

2. Aniche, M.F., Ferreira, T.M., Gerosa, M.A.: What concerns beginner test-driven
development practitioners: a qualitative analysis of opinions in an agile conference.
In: 2nd Brazilian Workshop on Agile Methods (2011)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
Reading (2003)

4. Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and
Code Development. Sage, Thousand Oaks (1998)

5. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

84 J. Choma et al.

6. Clarke, V., Braun, V.: Teaching thematic analysis: overcoming challenges and
developing strategies for effective learning. Psychologist 26(2), 120–123 (2013)

7. Crispin, L.: Driving software quality: how test-driven development impacts software
quality. IEEE Softw. 23(6), 70–71 (2006)

8. Deng, C., Wilson, P., Maurer, F.: FitClipse: a fit-based eclipse plug-in for exe-
cutable acceptance test driven development. In: Concas, G., Damiani, E., Scotto,
M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 93–100. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73101-6 13

9. Desai, C., Janzen, D., Savage, K.: A survey of evidence for test-driven development
in academia. ACM SIGCSE Bull. 40(2), 97–101 (2008)

10. Dogša, T., Batič, D.: The effectiveness of test-driven development: an industrial
case study. Softw. Qual. J. 19(4), 643–661 (2011)

11. Freeman, S., Mackinnon, T., Pryce, N., Walnes, J.: Mock roles, objects. In: Com-
panion to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pp. 236–246. ACM (2004)

12. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A dissection of the
test-driven development process: does it really matter to test-first or to test-last?
IEEE Trans. Softw. Eng. 43(7), 597–614 (2017)

13. George, B., Williams, L.: A structured experiment of test-driven development. Inf.
Softw. Technol. 46(5), 337–342 (2004)

14. Guerra, E., Aniche, M.: Achieving quality on software design through test-
driven development. In: Software Quality Assurance: In Large Scale and Complex
Software-Intensive Systems, p. 201 (2015)

15. Gupta, A., Jalote, P.: An experimental evaluation of the effectiveness and effi-
ciency of the test driven development. In: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, ESEM 2007,
pp. 285–294. IEEE Computer Society, Washington, DC (2007). https://doi.org/
10.1109/ESEM.2007.20

16. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of test
first programming. Inf. Softw. Technol. 51, 182–194 (2009)

17. Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development accep-
tance. In: 29th International Conference on Software Engineering (ICSE 2007), pp.
719–722. IEEE (2007)

18. Jeffries, R., Melnik, G.: Guest editors’ introduction: TDD-the art of fearless pro-
gramming. IEEE Softw. 24(3), 24–30 (2007)

19. Pančur, M., Ciglarič, M.: Impact of test-driven development on productivity, code
and tests: a controlled experiment. Inf. Softw. Technol. 53(6), 557–573 (2011)

20. Romano, S., Fucci, D., Scanniello, G., Turhan, B., Juristo, N.: Results from an
ethnographically-informed study in the context of test driven development. In:
Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering, p. 10. ACM (2016)

21. Scanniello, G., Romano, S., Fucci, D., Turhan, B., Juristo, N.: Students’ and profes-
sionals’ perceptions of test-driven development: a focus group study. In: Proceed-
ings of the 31st Annual ACM Symposium on Applied Computing, pp. 1422–1427.
ACM (2016)

22. Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., Erdogmus, H.: What do
we know about test-driven development? IEEE Softw. 27(6), 16–19 (2010)

https://doi.org/10.1007/978-3-540-73101-6_13
https://doi.org/10.1109/ESEM.2007.20
https://doi.org/10.1109/ESEM.2007.20

Developers’ Initial Perceptions on TDD Practice 85

23. Turhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F.: How effective is
test-driven development. In: Making Software: What Really Works, and Why We
Believe It, pp. 207–217 (2010)

24. Vu, J.H., Frojd, N., Shenkel-Therolf, C., Janzen, D.S.: Evaluating test-driven devel-
opment in an industry-sponsored capstone project. In: 2009 Sixth International
Conference on Information Technology: New Generations, ITNG 2009, pp. 229–
234. IEEE (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Myths and Facts About Static
Application Security Testing Tools:

An Action Research at Telenor Digital

Tosin Daniel Oyetoyan1(B), Bisera Milosheska2, Mari Grini2,
and Daniela Soares Cruzes1

1 Department of Software Engineering, Safety and Security,
SINTEF Digital, Trondheim, Norway

{tosin.oyetoyan,danielac}@sintef.no
2 Telenor Digital, Oslo, Norway

{bisera.milosheska,mari}@telenordigital.com

Abstract. It is claimed that integrating agile and security in practice is
challenging. There is the notion that security is a heavy process, requires
expertise, and consumes developers’ time. These contrast with the agile
vision. Regardless of these challenges, it is important for organizations to
address security within their agile processes since critical assets must be
protected against attacks. One way is to integrate tools that could help
to identify security weaknesses during implementation and suggest meth-
ods to refactor them. We used quantitative and qualitative approaches
to investigate the efficiency of the tools and what they mean to the
actual users (i.e. developers) at Telenor Digital. Our findings, although
not surprising, show that several barriers exist both in terms of tool’s
performance and developers’ perceptions. We suggest practical ways for
improvement.

Keywords: Security defects · Agile · Static analysis
Static application security testing · Software security

1 Introduction

The need and urgency for quality software is higher than any other time in our
history because of the rate of interconnection and dependence on software. Soci-
ety, systems, and businesses are driven by software systems that are integrated
into a complex system of systems (e.g. automation systems, business systems,
Internet of Things, mobile devices). This is changing the threat landscape contin-
uously. Unfortunately, the rise in consumer software technologies and methodolo-
gies for delivering them are not matched with an increase in security investment.
This is evidenced in large-scale vulnerability reports and regular breaches [1].

Information gathering, exploits and hacking tools [e.g. Kali Linux] are now
easily accessible and the ability for an attacker to cause serious damage is more

c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 86–103, 2018.
https://doi.org/10.1007/978-3-319-91602-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_6&domain=pdf

Myths and Facts About Static Application Security Testing Tools 87

real than ever. On the other side, developers do not code with the mindset of
an attacker because they care more about delivering functionalities. Common
coding mistakes and inadvertent programming errors are weaknesses that often
evolve into exploitable vulnerabilities1. It is claimed that, about 70-percent of
reported attacks are performed at the application layer rather than the network
layer [12].

Integrating static analysis tool could be envisaged to help developers code
defensively [26]. Tools are important in agile development that values continuous
delivery [21]. Static analysis tools (SATs) play important role to ensure product
meets the quality requirements. SATs exercise application source code and check
them for violations [8]. With respect to security, the decision to implement static
analysis tools has to be guided. Using a static analysis tool does not imply an
automatic improvement in the security of the code. For instance, teams may use
such tools for checking styles, method quality, and maintenance related issues
(e.g. duplicated code). These do not translate directly to security, as elegant
code can still be vulnerable to attacks [20].

The security group at Telenor Digital is focused on integrating security activ-
ities in their agile teams. Telenor Digital is a community within Telenor Group,
a Norwegian based international telecom operator, working to position Telenor
as a digital service provider. As a result, the community researches into new
possibilities and develops the next-generation digital solutions for Telenor cus-
tomers transnationally. Telenor Digital is distributed in Oslo, Trondheim, and
Bangkok. Each team has autonomy in its processes and leverages agile develop-
ment methodologies.

One of the steps the security group has taken is to collaborate with the
SoS-Agile project2, which investigates how to meaningfully integrate software
security into agile software development activities. The method of choice for the
project is Action Research [16]. The combination of scientific and practical objec-
tives align with the basic tenet of action research, which is to merge theory and
practice in a way that real-world problems are solved by theoretically informed
actions in collaboration between researchers and practitioners [16]. Therefore,
the approach taken has considered the usefulness of the results both for the
companies and for research.

Since traditional security engineering process is often associated with addi-
tional development efforts and as a result often invokes resentment among agile
development teams [5]. It is thus important for the security group to approach
development teams in a way that guarantees successful integration. This paper
investigates the efficiency and developers’ perceptions of static application secu-
rity testing (SAST) tool within the agile teams at Telenor Digital. Our findings
have implications for both practice and research. They show the challenges faced
by developers, enumerate practical improvement approaches, and contribute to
the body of knowledge about the performance of static analysis tools.

1 https://cwe.mitre.org/.
2 http://www.sintef.no/sos-agile.

https://cwe.mitre.org/
http://www.sintef.no/sos-agile

88 T. D. Oyetoyan et al.

The rest of this paper is structured as follows: In Sect. 2, we present the
background to the study and our research questions. In Sect. 3, we describe our
case study and present the results. Section 4 discusses the implications of the
study for both practice and research. We present the limitations to the study in
Sect. 5 and conclude in Sect. 6.

2 Background

Different studies have investigated why developers do not use static analysis tool
to find bugs e.g. [18] or how developers interact with such tools when diagnos-
ing potential security vulnerabilities e.g. [23]. Findings show that false positives
and the way warnings are presented are barriers to use. Similarly, deep interac-
tion by developers with tool’s result and several questions they asked highlight
another challenge of cognitively demanding tasks that could threaten the use of
such tool [23]. Baca et al. [4] evaluated the use of a commercial static analysis
tool to improve security in an industrial settings. They found that, although
the tool reported some relevant warnings, it was hard for developers to classify
them. In addition, developers corrected false positive warnings, which created
vulnerabilities in previously safe code. Hofer [17] has used some other metrics to
guide tools’ selection such as installation, configuration, support, reports, errors
found, and whether the tools can handle a whole project rather than parsing
single files.

Other researchers have also performed independent quantitative evaluation
of static analysis tools with regards to their performances to detect security
weaknesses. The Center for Assured Software (CAS) [19] developed a bench-
mark testsuite with “good code” and “flawed code” across different languages
to evaluate the performance of static analysis tools. They assessed 5 commer-
cial tools and reported the highest recall of 0.67 and highest precision of 0.45.
Goseva-Popstojanova and Perhinschi [15] investigated the capabilities of 3 com-
mercial tools. Their findings showed that the capability of the tools to detect
vulnerabilities was close to or worse than average. Dı́az and Bermejo [10] com-
pared the performance of nine tools mostly commercial tools using the SAMATE
security benchmark test suites. They found an average recall of 0.527 and aver-
age precision of 0.7. They found also that the tools detected different kinds of
weaknesses. Charest [7] compared 4 tools against 4 out of the 112 CWEs in the
SAMATE Juliet test case. The best average performance in terms of recall was
0.46 for CWE89 with an average precision of 0.21.

The methodology employed by the security group and the SoS-Agile research
team combined both the qualitative and quantitative approaches. Although, we
could learn from the reported studies in the literature, we could not directly
apply these results to the organization’s case because of context issue. First,
the set of tools that are to be evaluated against the benchmark of our choice
are mostly not within the set reported in the literature and in many cases the
names of the tools are not disclosed. Second, tools’ evolution over time is also a
context factor that makes it reasonable to re-evaluate them even if they have been

Myths and Facts About Static Application Security Testing Tools 89

previously evaluated. Third, the developers in the organization could express
specific challenges that might not have been mentioned in the literature but
would be important if the security team wants to succeed with introducing a
static analysis tool.

Therefore, there are 2 research questions that are of interest to the secu-
rity group at Telenor Digital and the SoS-Agile research team with regards to
integrating SAST tools in the organization:

RQ1. What are the capabilities of the SAST tools in order to make
informed decision for the development team? Implementing SAST tools in
a meaningful and useful ways requires evaluating various tools independently in
order to make informed decision. We disregard statements from vendors as they
can overrate the capability of their tools. We do not distinguish between open
source and commercial tools because implementing inefficient tools irrespective
of license type has implications with respect to cost, time, and long-term per-
ception/future adoption.

Furthermore, different classes of weaknesses are of interest. For instance,
how does a SAST tool perform with regards to authentication and authoriza-
tion weaknesses or with regards to control flow management weaknesses. Such
understanding is crucial to know the strengths and weaknesses so that even if
a tool is adopted, our knowledge of its strengths would prevents overestimation
and a false sense of security and our knowledge of its weaknesses would guide
further testing activities later in the development lifecycle.

RQ2. How do developers perceive static analysis tools with respect
to successful implementation and long-term adoption by teams? Under-
standing the desired features in SAST tools that could increase the chance of
adoption would be important. Likewise, understanding the challenges and devel-
opers’ fears regarding new security tools that could lessen the chance of adoption
would also be useful. By using this complimentary information, managements
have better possibility to improve the chance of adoption by the team.

3 Case Study

We have used quantitative and qualitative approaches to investigate our research
questions. For RQ1, we performed an independent evaluation using a bench-
marking approach [2,19] of open source SAST tools and a commercial SAST
tool being considered for adoption at the organization. For RQ2, we interviewed
6 developers in one of the teams regarding their perceptions about SAST tool.

3.1 Evaluating Static Analysis Tools

Our approach to evaluate SAST tools includes the selection of benchmark test-
suites, selection of static analysis tools, running the analysis tools on the test-
suites, and presenting the results using performance metrics. Evaluating tools
using natural code is very challenging [14]. One challenge is reviewing each result
of the tool to determine whether it is correct or not. This is a time consuming

90 T. D. Oyetoyan et al.

activity with no guarantee of correctness. Another is the difficulty to compare
results from different tools since they report differently. We thus decided to use
an artificial benchmark test suite.

Benchmark for Evaluating SAST Tools: Different benchmark test suites
exist for testing security tools. Common examples are the OWASP Benchmark
[2] and the NIST test suites [19]. We decided for NIST dataset because it is not
only limited to top 10 vulnerabilities unlike OWASP benchmark test dataset.
In addition, NIST dataset is designed for all range of weaknesses and not only
limited to web-based weaknesses like OWASP.

NIST Test Suite: The National Institute of Standards and Technology (NIST)
Software Assurance Reference Dataset (SARD) Project [19] provides a collection
of test suites intended to evaluate the performance of different SAST tools. The
test suite uses the common weaknesses and enumeration (CWE) dictionary by
MITRE (see footnote 1) and contains artificial bad and good files/methods. The
bad file/method contains the actual weakness to be tested by the tool. The good
file/method contains no exploitable weakness. Figure 1 shows an example of a
test case that is vulnerable to cross-site scripting (XSS) attack since the user-
supplied value stored in the variable “data” is not properly sanitized before being
displayed. However, Fig. 2 shows a fix by using a hardcoded value for “data”
(trusted input). Although, the sink still contains the weakness that could lead
to XSS attack, no user-supplied value is passed to the variable “data”. Therefore,
this weakness cannot be exploited. This simple design is valuable to differentiate
between tools that only perform string pattern matching against those that use
more sophisticated approaches (e.g. control/data-flow analysis). We have used
the Juliet Test Suite v1.2 with a total of 26,120 test cases covering 112 different
weaknesses (CWEs). In order to compare the tools at a higher granularity level,
the CWEs are aggregated into 13 categories as shown in Table 1.

Fig. 1. Bad source and bad sink method for XSS - CWE80

Myths and Facts About Static Application Security Testing Tools 91

Fig. 2. Good source and bad sink method for XSS - CWE80

Selected Static Analysis Tools: We have evaluated 5 open source tools (Find-
Bugs, FindSecBugs, SonarQube, JLint, and Lapse+) and a mainstream commer-
cial tool. Commercial tools use proprietary license and are thus challenging for
research purposes. The open source tools are selected based on language support,
ease of installation and that they can be used to find security flaws. Additionally,
FindBugs, FindSecBugs, and SonarQube are widely adopted. The commercial
static analysis tool is being considered for adoption at Telenor Digital.

Automated Analysis and Comparison: Tools report results in different for-
mats and thus makes the comparison of tools a somewhat cumbersome process.
We need to create a uniform format to compare the results from the tools. We
adopted the approach by Wagner and Sametinger [24] and transformed each
report into a CSV file, where each line contains details about each detected flaw,
such as: name of the scanner (tool), abbreviation of the flaw reported by the
scanner, name of the file and line number where the flaw was located, as well
as the message reported by the scanner. To map the reported flaws from each
scanner to their possible CWE codes, we used the CWE XML-mapping file as
shown in Fig. 3 for each scanner (tool). This file contains the tool’s code for a
reported flaw and their possible CWE equivalent. Where vendors do not provide
this information, we look for the best possible matching from the CWE database.
The flaws reported in the CSV reports for each tool are then mapped to CWE
numbers using the scanner’s CWE XML-mapping files.

We automate some parts of the process and manually process the other parts
due to how the tools can be configured and accessed (e.g. through a command
line, user interface or integrated development environment) and the different
operating systems they support. For example, only FindBugs, FindSecBugs, and
SonarQube could be executed via command line on OS X platform. JLint is only
compatible with Windows OS and for Lapse+, we have to generate the result
through the IDE.

We have used the tool in [24] for tools accessible via command line. The tool
did not perform recursive scanning of files in subfolders and thus missed several

92 T. D. Oyetoyan et al.

Table 1. Weakness categories [13]

Weakness class Description Examples

Authentication and
Access Control

Testing for unauthorized
access to a system

CWE-620: Unverified
Password Change

Code Quality Issues not typically security
related but could lead to
performance and
maintenance issues

CWE-478: Omitted Default
Case in a Switch

Control Flow
Management

Timing and synchronization
issues

CWE-362: Race Condition

Encryption and
Randomness

Weak or wrong encryption
algorithms

CWE-328: Reversible
One-Way Hash

Error Handling Failure to handle errors
properly that could lead to
unexpected consequences

CWE-252: Unchecked Return
Value

File Handling Checks for proper file
handling during read and
write operations to a file on
the hard-disk

CWE-23: Relative Path
Traversal

Information Leaks Unintended leakage of
sensitive information

CWE-534: Information Leak
Through Debug Log Files

Initialization and
Shutdown

Checks for proper initializing
and shutting down of
resources

CWE-415: Double Free

Injection Input validation weaknesses CWE-89: SQL Injection

Malicious Logic Implementation of a program
that performs an
unauthorized or harmful
action (e.g. worms,
backdoors)

CWE-506: Embedded
Malicious Code

Miscellaneous Other weaknesses types not
in the defined categories

CWE-482: Comparing
instead of Assigning

Number Handling Incorrect calculations,
number storage, and
conversion weaknesses

CWE-369: Divide by Zero

Pointer and
Reference Handling

Proper pointer and reference
handling

CWE-476: Null Pointer
Dereference

of the test suite files. We fixed this serious bug and provided an extension of
the tool3. For Lapse+ and Commercial tool, we processed the reports separately
and converted them to the uniform CSV format because of platform differences.

3 Bisera Milosheska and Tosin Daniel Oyetoyan. Analyzetoolextended. https://github.
com/biseram/AnalyzeToolExtended.

https://github.com/biseram/AnalyzeToolExtended
https://github.com/biseram/AnalyzeToolExtended

Myths and Facts About Static Application Security Testing Tools 93

Fig. 3. XML mapping of tools to CWE

Lastly, we developed additional Java tool to compute the performance metrics
to fit the metrics originally defined by CAS [13].

3.2 Performance Metrics

We use the following performance metrics [13].
True Positive (TP): The number of cases where the tool correctly reports the
flaw that is the target of the test case.
False Positive (FP): The number of cases where tool reports a flaw with a
type that is the target of the test case, but the flaw is reported in non-flawed
code.
False Negative (FN): This is not a tool result. A false negative result is added
for each test case for which there is no true positive.
Discrimination: The number of cases where tool correctly reports the flaw and
does not report the non-flaw (i.e. TP = 1 and FP = 0). The discrimination rate
is usually equal or lower than the TP rate (Recall).
Blank (Incidental flaws): This represents tool’s result where none of the types
above apply. More specifically, either the tool’s result is not in a test case file or
the tool’s result is not associated with the test case in which it is reported.

– Recall = TP
TP+FN

– Precision = TP
TP+FP

– DiscriminationRate = #Discriminations
TP+FN

It is possible to have both TP and FP in the same file as shown in Fig. 2. In
this case, the tool is not sophisticated enough to discriminate for instance when
data source is hardcoded and therefore does not need to be sanitized. When we
compute discrimination, we are only concerned with cases when the tool reports
TP. We set the discrimination to 1 if it does not report FP on the same file.

We adopt the “strict” metrics defined by CAS [13] as they truly reflect real-
world situation. For instance, Wagner and Sametinger [24] modified this metrics
by accepting tools’ detection in the “non-flaw” part of the code as valid as
long as they are reported in the target CWE file. While this modification may
make a tool’s performance look better, in the true sense, it does not reflect
how developers interact with tool’s report. Precision of reported issue in a file
is important otherwise it might lead to confusion and cognitive stress when
developers try to make sense of it.

94 T. D. Oyetoyan et al.

3.3 Results of Tools’ Evaluation

We report the evaluation results of the 6 tools on Juliet Test Suite v1.2. As
shown in Table 2 and Fig. 4, FindSecBugs records the highest recall of 18.4%
with approximately 90% precision. It also has the highest discrimination rate,
which is slightly lower than its recall. Lapse+ follows with a detection rate of
9.76% but with poor discrimination rate of 0.41%. However, when we break down
the result into different weakness categories, this number was found only in “File
Handling” and “Injection” weaknesses. The results from the Commercial tool is
not as competitive as it ranked third. However, results in the categories revealed
certain areas where the tool could be ahead of others.

The tools reported several other warnings, which are recorded under “inci-
dental flaws”. These warnings are not the target of the test but they indicate the
“noise” levels of the tools. Many of the warnings could be categorized as “trivial”
when compared with security issues. An example is warning about code styling.

We made the following observations under each weakness category (see
Table 3):

Authentication and Authorization: FindSecBugs has the best detection rate
of 57.20% and followed by “Commercial” tool with 29.39%. The discrimination
rate is as good as the detection rate for all the tools. Both JLint and Lapse+
did not detect any weakness in this category.

Number Handling: None of the tools could detect the weaknesses under this
category. The tools report different issues in the “Number Handling” CWE files,

Table 2. Number of identified weaknesses by tools from a total of 26120 flaws

Tool TP FP #Discrimination Incidental flaws

SonarQube 1292 1275 200 237845

Commercial 2038 3834 1085 360212

FindSecBugs 4811 604 4338 41637

Lapse+ 2550 2736 108 18950

JLint 125 26 104 586

FindBugs 426 98 341 22245

Fig. 4. Overall performance results from the tools

Myths and Facts About Static Application Security Testing Tools 95

Table 3. Performance of tools against weakness categories

SonarQube Commercial Lapse+ FindBugs Jlint FindSecBugs

CWE Class #Flaws Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision Recall Disc.Rate Precision

Authentication and Access Control 701 0,43 0,43 100,00 29,39 22,97 45,78 0,00 0,00 0,00 0,14 0,14 100,00 0,00 0,00 0,00 57,20 54,35 92,61

Code Quality 500 0,40 0,40 66,67 5,20 4,00 16,77 0,00 0,00 0,00 6,80 6,80 94,44 0,60 0,60 100,00 6,80 6,80 94,44

Control Flow Management 599 0,00 0,00 0,00 0,50 0,50 3,49 0,00 0,00 0,00 5,68 5,68 100,00 0,00 0,00 0,00 5,68 5,68 100,00

Encryption and Randomness 622 16,40 7,88 65,8 1,93 0,96 7,55 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 22,83 2,73 52,01

Error Handling 142 25,35 11,97 65,45 0,00 0,00 0,00 0,00 0,00 0,00 11,97 11,97 100,00 0,00 0,00 0,00 0,00 0,00 0,00

File Handling 946 0,00 0,00 0,00 0,00 0,00 0,00 58,35 2,54 48,94 3,59 3,59 97,14 0,00 0,00 0,00 3,59 3,59 97,14

Information Leaks 188 0,00 0,00 0,00 9,57 9,57 26,47 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Initialization and Shutdown 3175 0,54 0,35 73,91 0,03 0,03 5,00 0,00 0,00 0,00 0,57 0,57 94,74 0,00 0,00 0,00 0,57 0,57 100,00

Injection 10602 9,68 0,88 47,99 16,07 7,91 37,27 18,85 0,79 48,05 1,16 1,16 96,09 0,00 0,00 0,00 38,00 34,91 90,19

Malicious Logic 408 0,00 0,00 0,00 1,23 0,74 9,26 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 4,17 4,17 100,00

Miscellaneous 88 0,00 0,00 0,00 9,09 9,09 40,00 0,00 0,00 0,00 8,09 8,09 100,00 19,32 19,32 100,00 0,00 0,00 0,00

Number Handling 7626 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

Pointer and Reference Handling 523 20,27 4,78 55,78 10,52 4,97 20,30 0,00 0,00 0,00 24,28 8,03 58,80 20,08 16,06 80,15 19,50 19,50 100,00

which are not the actual weaknesses. This was alarming and indicates that man-
ual code review in addition to automatic analysis by tool should be performed
for number handling weaknesses (e.g. division by zero).

File Handling: Lapse+ produced the best detection rate of 58.35%. However,
only 2.54% (discrimination rate) is correctly identified without flagging warning
simultaneously in the “bad code” construct. Apart from Lapse+, only FindBugs
and FindSecBugs could detect weaknesses in this category with a detection rate
of 3.59%.

Miscellaneous: JLint recorded the best performance under miscellaneous (e.g.
CWE-482: Comparing instead of Assigning) category with a recall and discrim-
ination rate of 19.32%. Commercial tool and FindBugs have detection rates of
9.09% and 8.09% respectively. SonarQube, Lapse+ and FindSecBugs did not
detect any weakness in this category.

Code Quality: The tools’ performance is surprisingly low in this category. The
highest recall of 6.8% were recorded by FindSecBugs and FindBugs.

Control Flow Management: FindBugs, FindSecBugs, and Commercial tool
detected some issues in this category. However, FindSecBugs and FindBugs
detection rate is 11.36 times better than the commercial tool.

Encryption and Randomness: FindSecBugs has the highest detection rate
of 22.83% but with very low discrimination rate of 2.73%. SonarQube detected
16.40% issues, while Commercial tool detected 1.93% issues. The remaining 3
tools did not find any issue in this category.

Error Handling: Only SonarQube and FindBugs detected weaknesses in this
category. SonarQube has a detection rate of 25.35% and FindBugs has 11.97%
detection rate.

Information Leaks: Only the Commercial tool detected weaknesses in this
category with a detection rate of 9.57%

96 T. D. Oyetoyan et al.

Initialization and Shutdown: The performances of the tools are very poor in
this category. Four tools (SonarQube, Commercial, FindBugs, and FindSecBugs)
detected some weaknesses with the highest detection rate of 0.57%.

Injection: JLint did not find any issue in this category. FindSecBugs has the
highest detection rate of 38%, followed by Lapse+ at 18.85% but with poor
discrimination rate of 0.79% and Commercial tool with 16.07%.

Malicious Logic: Only Commercial tool and FindSecBugs detected weaknesses
under this category. The highest detection rate is 4.17% by FindSecBugs while
commercial tool only detected 1.23% of the weaknesses.

Pointer and Reference Handling: Lapse+ did not detect any weakness in
this category. FindBugs, SonarQube, FindSecBugs, and JLint have relatively
similar detection rate of about 20%. However, only FindSecBugs showed the
best discrimination power of 19.5%. Commercial tool detection rate is 50% lower
than the rest of the tools.

3.4 Interview

We have interviewed 6 out of the 8 developers in the selected team. The interview
was divided into 5 sections. The first part covered the professional background
such as job title, years of programming experience, and whether they had security
related experiences. The second part covered personal opinion on their expecta-
tions and challenges with implementing SAST tools. It also included questions
about their current practices. The third covered their development approaches.
For instance software development methodology, release cycles, and refactoring
practices. The fourth part concerned questions about development environments
and the last part covered team’s quality assurance and security practices.

3.5 Practices and Demography

The team is composed of developers that specialize in separate functionalities,
such as business support, system integration, hosting, setup and infrastructure.
They use a combination of Scrum and Kanban and perform sprint review every
two weeks.

The goals of the review are to: keep track of project objectives, define the
scope of the next sprint, define a set of tasks that should be included in the
next iteration, and perform time estimation for those tasks. From privacy and
information security point of view, the developers mentioned that they store
sensitive personal data; such as personal messages and voice conversations and
these assets are the most critical part of their software. Any security weakness
that leads to an unauthorized disclosure or modification of the customers’ highly
sensitive information can be damaging to the customers and their business.

Quality assurance is performed in multiple phases starting from the design
phase of the software development life-cycle (SDLC), when the team discusses

Myths and Facts About Static Application Security Testing Tools 97

potential issues. The team codes mainly in Java and uses common coding stan-
dards for Java and additional standards proposed at Telenor Digital. They per-
form code review, unit and acceptance testing. Lastly they perform continuous
refactoring of their code.

Despite all these practices, there is no specific focus on security testing of
the products. Potential security threats are discussed during the design phase
of the SDLC and bad practices are avoided while coding. The team is, however,
aware of some design issues they have to fix, such as securing confidential and
sensitive logs and as a result, they desire to have automatic security analysis
on a regular basis. The developers are free to choose the development software
platform they are most comfortable with. Therefore, they develop on all the three
major OS platforms: OS X, Windows and Linux. They use various integrated
development environments (IDEs), such as IntelliJ, NetBeans, Emacs, Eclipse,
and Sublime. Their software is mostly written in Java, but they also develop
parts of it in JavaScript, shell script and Python. Jenkins4 is used as a build
server for continuous integration.

3.6 Experience with Static Analysis Tools and Security

The team is composed of developers with 4 to 37 years of development experience
(see Table 4). The developers mentioned that they have used a static analysis
tool called sonar before. However, this tool was used for checking code quality
such as styling, standards, and large methods. One developer said: “. . .We use
something called Sonar, . . . , It’s good for finding complexity in software, like
referential loops . . . , Bad style, non-conformance to coding standard, methods
that are large or complex, . . . ”. The developers stated not to have used the tool
to find specific security weaknesses. Although they are somehow familiar with
vulnerabilities, nearly all indicated little experience with using static analysis
tools specifically for security audits.

Table 4. Professional background and experiences

Title Programming experience
(years)

Familiarity with security
vulnerabilities (scale: 1–5)

Software engineer 4 2

Senior software engineer 18 3

Senior software engineer 37 3

Senior software engineer 20 3–4

Senior software engineer 20 3

Software engineer 6 4

4 Jenkins is a self-contained, open source automation server, which can be used to
automate all sorts of tasks such as building, testing, and deploying software.

98 T. D. Oyetoyan et al.

3.7 Perceptions of the Developers About SAST Tools

Setting Up the Tool and Getting it to Work. The developers fear the effort
to setup a third party SAST tool and get it to work seamlessly in their devel-
opment and build environments. One of the developers who has experience with
previous tool said: “. . .Making the things actually work, that usually is the worst
thing. The hassle-factor is not to be underestimated. . . ”. Both Emanuelsson and
Nilsson [11] and Hofer [17] report on installation as a seemingly important metric
when choosing a static analysis tool.

Invasiveness and Disruption to Regular Workflow. Alerts may distract
and interrupt the developer’s flow and can also be a time consuming activity.
The developers are clear about the fact that acting on the issues reported from
the tool would depend on whether it does not overburden them. They fear that
the tool may disrupt the flow of their work. One of the developers said: “. . . It
depends a lot on the tool and how easy it is to use and how it flows into your
regular workflow,. . . ”

False Positives or Trivial Issues. The developers were unanimous about
their concerns with false positives. They are concerned about the tool reporting
high number of trivial or unnecessary issues. For instance, one of the developers
said: “. . .At least from my experience with the Sonar tool is that it sometimes
complains about issues that are not really issues. . . ”

Cognitive Effort to Understand Tool’s Messages. This is a concern to the
developers. They would want to use the tool with minimum amount of cognitive
effort. It should not be very difficult to understand the message or vocabulary
used by the tool. A developer said: “. . .What I fear is if they make it necessary
to engage mentally a lot in the tool, as to the messages it uses then I would be
reluctant to use it. . . ”

Broad Range of Programming Languages. The developers point out the
challenge of supporting several programming languages. They develop using sev-
eral languages and foresee that it might be challenging to generate static analysis
warnings for each of the languages. A developer said: “. . .We have several soft-
ware languages that we write in. Predominantly Java and Javascript. But also
some C++ as well. So to target each of those different languages would be an
issue . . . ”

Huge Technical Debts. One of the challenges expressed is having a huge tech-
nical debt after running an implemented static analysis tool. The team rushed
their products into the market the previous year and thus fears the possibility
that the tool would flag many issues for refactoring. A developer says: “. . . and
the problem is that when you set it up at this stage of the project we have a
huge design debt, because I guess things were implemented quickly, rushed before
summer last year. . . ”

Myths and Facts About Static Application Security Testing Tools 99

4 Discussions and Implications

Based on the results from the interview and independent tools evaluation, we
discuss the implications of our findings.

One Tool Is Not Enough: We found that using one SAST tool is not enough
to cover the whole range of security weaknesses at the implementation phase.
This is synonymous with the findings by Austin and Williams [3] that compares
different techniques across implementation and verification stages. It becomes
obvious that developers have to tradeoff on some of their requirements. For
instance, full language support might not be covered by one single tool and a
single tool that covers many languages might suffer from low performances in
many of them. Future research should focus on how to harmonize results from
different tools for maximum performance.

Tools’ Capability Is Low: The capability of the tools is generally low with
regards to detecting security weaknesses in the Juliet Java code. The commercial
tool, although highly rated in the market is not an exception. This is very chal-
lenging for developers, as they need to focus on important security warnings and
disregard the noise. One helpful way we found is to filter the results by using the
CWE tag provided by some of the tools. For example, FindSecBugs, SonarQube
and the Commercial tool provide support for this feature.

Static Analysis Results Are Non-functional Requirements: Developers
have hidden bias when it comes to fixing issues reported by static analysis tools.
Statements such as: “. . . if you are just looking for functionality and spend a lot
of time on making your system secure or safe and doing things that you are not
getting paid for or the customers are not willing to pay for. . . ” and “. . .And of
course in itself is not productive, nobody gives you a hug after fixing SonarQube
reports,. . . ” demonstrate the challenges and need for making security as part
of the development process and in a seamless manner. It shows a need for a
top down approach where product owners (POs) are able to prioritize security
and include it in the developers’ workflow. Since static analysis reports are non-
functional requirements and not features, they never become user story in many
cases in agile settings. However, it is possible to adopt the approach in Rindell
et al. [22] by moving relevant tool’s report into the product backlog.

Do Not Underestimate Integration Effort: Developers are wary of tools
that take lots of effort to integrate. This is understandable, as it has cost impli-
cation both at the present and in the future. For instance, it would require
increased effort to upgrade such tool if something breaks in it. An approach
taken by Telenor Digital is to dedicate a resource person as responsible for tools’
implementations, configurations, and maintenance. This is beneficial as it pre-
vents the “hassle-factor” and allows the agile team to focus squarely on business
delivery.

100 T. D. Oyetoyan et al.

Developers Are Positive to Have a SAST Tool: On the other hand, the
developers agree that implementing a SAST tool would improve the security
of their product. Some are very enthusiastic to learn new things and to get
immediate feedback when mistakes are made and learn more about language
and platform internals. These would be possible if the tools are able to point out
real issues, if it is possible to mark part of the code that should not be scanned,
if it is automated and easy to use, if it is not cognitively demanding to interact
with the tool, and if the tools report in a way that developers understand.

Collaboration Between Researchers and Practitioners: Practitioners
sometimes view research-oriented studies to be costly and time consuming. As
a result, practitioners could be skeptical to collaborate. However, collaboration
between researchers and practitioners can be important and useful drivers to
meaningfully improve security in practice. From the perspective of the security
group at Telenor Digital, the study was valuable to provide insights both qualita-
tively and quantitatively and to also drive future decisions. The statement by the
head of the security team confirmed this: “. . .But I have in particular now noted
that it might not be sufficient with only one tool and that it might be more impor-
tant than we anticipated before this study to understand strengths and weaknesses
of the different available tools for static analysis. I also noticed that several open
source tools seem to have strengths worthwhile taking into account.. . . ”

Advice for Future Integrators: One major challenge with integrating secu-
rity activities in agile is the dichotomy between the security professionals and
developers [6]. Security activities are often perceived by developers to be time
consuming. While the traditional assurance practice dictates to maintain inde-
pendence between security professionals and developers in order to be objective
and neutral [25]. This is confirmed through the use of third-party consultants
by some of the teams at Telenor Digital to perform penetration testing for their
applications [9]. The security team at Telenor Digital has similar challenges with
bridging this gap. The approach used in this study was helpful to allow the secu-
rity team understands how the developers perceive security activities and what
are the important factors that could motivate to adopt them.

It is also important to warn that there is a cost for implementing inefficient
tools. If there is no benefit from the tool, developers would not use it and this
may also affect future possibility to adopt new tool. It is very important to
let developers become aware of the strengths and weaknesses of the tools early
so that they can have a realistic expectation. It is obvious that today’s SAST
tools still need lots of improvements to become better with catching implemen-
tation security bugs. However, it is very helpful when developers are part of the
decision making such that they know the capability of the tools. This collective
“ownership” culture of agile method [6,25] is the approach undertaken at Telenor
Digital to introduce and implement a new static application security testing tool
for their agile teams.

Myths and Facts About Static Application Security Testing Tools 101

5 Limitations

Size and Subjectivity: Interview subjects are few with different experiences
and perceptions about static analysis tools. We can therefore not generalize the
results.

Type of Benchmark: We have used artificial Java code for our evaluation, it
is thus possible that real-code and different languages produce different results.

Size of Tools: We have used a few number of tools including a very popular
commercial tool, however, other tools may present different results to what we
have reported.

Size/Type of Organization: The organization where this study is carried out
is medium-sized and as a result, stakeholders in smaller organizations or startups
may express different perceptions.

Literature Review: Our pre-study review was conducted informally and not
systematically.

6 Conclusion

We have investigated developers’ perceptions and efficiency of static analysis
tools for finding security bugs. We found several barriers exist for adoption by
teams such as tools’ low performance, technical debts when implemented late,
non-functional nature of security bugs, and the need for many tools. However,
teams are positive to use SAST tool to reduce security bugs. We recommend
onboarding development teams to learn about the capability of prospective tools
and to create synergy between them and the security team.

Acknowledgements. The work in this paper was carried out at Telenor Digital with
support by the SoS-Agile team. The SoS-Agile project is supported by the Research
Council of Norway through the project SoS-Agile: Science of Security in Agile Software
Development (247678/O70).

References

1. Bugtraq mailing list. http://seclists.org/bugtraq/. Accessed 10 May 2017
2. Owasp. benchmark. https://www.owasp.org/index.php/Benchmark. Accessed 20

Oct 2016
3. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnerabil-

ity discovery techniques. In: 2011 International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 97–106. IEEE (2011)

4. Baca, D., Carlsson, B., Petersen, K., Lundberg, L.: Improving software security
with static automated code analysis in an industry setting. Softw. Pract. Exp.
43(3), 259–279 (2013)

5. ben Othmane, L., Angin, P., Weffers, H., Bhargava, B.: Extending the agile devel-
opment process to develop acceptably secure software. IEEE Trans. Dependable
Secur. Comput. 11(6), 497–509 (2014)

http://seclists.org/bugtraq/
https://www.owasp.org/index.php/Benchmark

102 T. D. Oyetoyan et al.

6. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Proceedings of
the 2004 Workshop on New Security Paradigms, pp. 47–54. ACM (2004)

7. Charest, N.R.T., Wu, Y.: Comparison of static analysis tools for Java using the
Juliet test suite. In: 11th International Conference on Cyber Warfare and Security,
pp. 431–438 (2016)

8. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Privacy 2(6),
76–79 (2004)

9. Soares Cruzes, D., Felderer, M., Oyetoyan, T.D., Gander, M., Pekaric, I.: How is
security testing done in agile teams? A cross-case analysis of four software teams.
In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
201–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 13

10. Dı́az, G., Bermejo, J.R.: Static analysis of source code security: assessment of tools
against samate tests. Inf. Softw. Technol. 55(8), 1462–1476 (2013)

11. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. Electron. Notes Theor. Comput. Sci. 217, 5–21 (2008)

12. Fong, E., Okun, V.: Web application scanners: definitions and functions. In: 40th
Annual Hawaii International Conference on System Sciences, 2007, HICSS 2007,
pp. 280b–280b. IEEE (2007)

13. Center for Assured Software. CAS static analysis tool study - method-
ology. https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool
%20Study%20Methodology.pdf. Accessed 20 Oct 2016

14. Center for Assured Software. Juliet test suite v1.2 for c/c++ user guide. https://
samate.nist.gov/SRD/resources/Juliet Test Suite v1.2 for C Cpp - User Guide.
pdf. Accessed 20 Oct 2016

15. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Inf. Softw. Technol. 68, 18–33 (2015)

16. Greenwood, D.J., Levin, M.: Introduction to Action Research: Social Research for
Social Change. SAGE Publications, Thousand Oaks (2006)

17. Hofer, T.: Evaluating static source code analysis tools. Technical report (2010)
18. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software devel-

opers use static analysis tools to find bugs? In: 2013 35th International Conference
on Software Engineering (ICSE), pp. 672–681. IEEE (2013)

19. Okun, V., Delaitre, A., Black, P.E.: NIST SAMATE: static analysis tool exposition
(sate) iv, March 2012. https://samate.nist.gov/SATE.html

20. Oyetoyan, T.D., Soares Cruzes, D., Jaatun, M.G.: An empirical study on the rela-
tionship between software security skills, usage and training needs in agile settings.
In: 2016 11th International Conference on Availability, Reliability and Security
(ARES), pp. 548–555. IEEE (2016)

21. Phillips, A., Sens, M., de Jonge, A., van Holsteijn, M.: The IT Managers Guide to
Continuous Delivery: Delivering Software in Days. BookBaby, Pennsauken (2014)

22. Rindell, K., Hyrynsalmi, S., Leppänen, V.: Case study of security development
in an agile environment: building identity management for a government agency.
In: 2016 11th International Conference on Availability, Reliability and Security
(ARES), pp. 556–563. IEEE (2016)

23. Smith, J., Johnson, B., Murphy-Hill, E., Chu, B., Lipford, H.R.: Questions devel-
opers ask while diagnosing potential security vulnerabilities with static analysis.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, pp. 248–259. ACM (2015)

24. Wagner, A., Sametinger, J.: Using the Juliet test suite to compare static security
scanners. In: 2014 11th International Conference on Security and Cryptography
(SECRYPT), pp. 1–9. IEEE (2014)

https://doi.org/10.1007/978-3-319-57633-6_13
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SRD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_User_Guide.pdf
https://samate.nist.gov/SATE.html

Myths and Facts About Static Application Security Testing Tools 103

25. Wäyrynen, J., Bodén, M., Boström, G.: Security engineering and extreme pro-
gramming: an impossible marriage? In: Zannier, C., Erdogmus, H., Lindstrom, L.
(eds.) XP/Agile Universe 2004. LNCS, vol. 3134, pp. 117–128. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27777-4 12

26. Zheng, J., Williams, L., Nagappan, N., Snipes, W., Hudepohl, J.P., Vouk, M.A.:
On the value of static analysis for fault detection in software. IEEE Trans. Softw.
Eng. 32(4), 240–253 (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-27777-4_12
http://creativecommons.org/licenses/by/4.0/

Automated Acceptance Tests as Software
Requirements: An Experiment to Compare

the Applicability of Fit Tables
and Gherkin Language

Ernani César dos Santos(&) and Patrícia Vilain(&)

Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
ernani.santos@posgrad.ufsc.br,

patricia.vilain@ufsc.br

Abstract. It is estimated that 85% of the defects in the developed software are
originated from ambiguous, incomplete and wishful thinking software require-
ments. Natural language is often used to write software requirements specifica-
tions as well as user requirements. However, natural language specifications can
be confusing and hard to understand. Some agile methodologists consider that
acceptance tests are more precise and accurate sources of information about the
customer’s needs than descriptions in natural language. Several studies have
addressed the use of acceptance tests as software requirements specification.
Therefore, none of the previous studies has performed experiments to compare
the applicability of different acceptance testing techniques in order to support an
organization in the selection of one technique over another. This paper addresses
this problem reporting an experiment conducted with undergraduate students in
Computer Science. This experiment compares the applicability of two acceptance
testing techniques (Fit tables and Gherkin language) as software requirements
specification. This research tries to answer three questions: (a) Which technique
is the easiest to learn in order to specify acceptance test scenarios? (b) Which
technique requires less effort to specify acceptance tests? (c) Which technique is
the best one to communicate software requirements? The results show that there
is no sufficient evidence to affirm that one technique is easier to specify test
scenarios or better to communicate software requirements. Whereas, the com-
parison of effort in terms of time to specify acceptance testing shows that the
mean time to specify test scenarios using Gherkin language is lower than
Fit tables.

Keywords: Acceptance testing � Software requirements � Fit tables
Gherkin language � FitNesse � Cucumber � TDD � ATDD � BDD

1 Introduction

Software system functionalities are specified through requirements engineering arti-
facts, which are a valuable starting point for the software development [1]. Natural
language is often used to write system requirements specifications as well as user

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 104–119, 2018.
https://doi.org/10.1007/978-3-319-91602-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_7&domain=pdf

requirements [2]. According to [1], most of the software requirements specifications are
written in natural language.

However, natural language specifications can be confusing and hard to understand.
Various problems can arise when requirements are written in natural language, for
example, readers and writers can use the same word for different concepts, or even, it is
possible to express the same concept in completely different ways [2]. In addition, it is
estimated that 85% of the defects in the developed software are originated from
ambiguous, incomplete, and wishful thinking software requirements [3].

Some agile methodologists utilize acceptance tests as a way to specify software
requirements [3–6] instead of using more common artifacts based on natural language.
They consider that acceptance tests are more precise and accurate sources of infor-
mation about the customer’s needs than descriptions in natural language [7].

Besides the improvement over requirements specification expressed in natural
language, acceptance tests also collaborate to the requirements gathering process,
because they promote integration between stakeholders and software engineers during
the writing of test scenarios of the application to be developed.

Several studies have addressed the use of acceptance tests as software requirements
specification. However, none of the previous studies has performed experiments using
more than one technique to compare the applicability of them as software requirements
in the same project in order to support organizations in the selection of one technique
over another. This paper addresses this problem reporting an experiment conducted
with undergraduate students of the Computer Science program at the Federal
University of Santa Catarina to compare the use of a tabular notation for acceptance test
scenarios versus a textual scenario notation, which are Fit tables and Gherkin language,
respectively.

The rest of this paper is organized as follows. Section 2 presents the related works.
Section 3 presents an overview of the main concepts related to this paper. Section 4
defines the design of our experimentation and the research questions. In Sect. 5 we
propose answers for each research question and discuss the results. Section 6 presents
the threats to the validity. Section 7 presents the conclusion and future works.

2 Related Works

In [4] two experiments were conducted using the tables of the Framework for Inte-
grated Test (Fit). The results show that when software requirements are written in
natural language and complemented by Fit tables, they become four times easier to
understand by developers than when Fit tables are not used. However, the authors
claim that Fit tables do not replace textual requirements, but rather, they suggest that
these tables bridge the gaps of software requirements specification which are written
exclusively using natural language, reducing the ambiguity and misinterpretation of
them.

In [5] an experiment with master students was performed. The experiment aims to
verify the use of executable Fit acceptance test scenarios as software requirements in
maintenance and evolution tasks. The results indicate that Fit tables help developers to

Automated Acceptance Tests as Software Requirements 105

perform the maintenance tasks correctly and they also show that these tables may be
used to perform regression tests.

Melnik et al. [7] have performed an experiment to show that non-technical users,
working together with software engineers, can use acceptance test scenarios as a way to
communicate and to validate software business requirements. The acceptance testing
technique used in this experimentation was the Fit tables. Although the experimenta-
tion concludes that non-technical users can specify clearly software requirements using
Fit tables, it points out that users have difficulty in learning how to specify test sce-
narios using this notation. Additionally, this study shows that some non-technical users
do not approve the use of Fit tables as an artifact to specify requirements.

A user-centered language called BehaviorMap is proposed in [8]. This language is
based on behavior models written in Gherkin language that aims to specify behavioral
user scenarios in a cognitive way. In this study, an experiment was conducted with 15
individuals to verify the understandability of the BehaviorMap. The results show that
BehaviorMap scenarios are easier to understand in relation to textual scenarios,
especially when considering scenarios with higher complexity.

The use of acceptance test scenarios as an artifact to specify software requirements
were also analyzed in [9], which performed an experiment to verify the capability of
non-technical users in creating user scenarios of a puzzle game using acceptance
testing. The acceptance testing technique used in this experimentation was the User
Scenario through User Interaction Diagram (US-UID). The experimentation has
pointed out that non-technical users could create US-UID scenarios of the application
correctly with a few hours of training.

These previous studies have focused on verifying the applicability of acceptance
tests as an artifact to clarify software requirements specifications written in natural
language or have checked their applicability as software requirements specifications
rather than using artifacts such as user stories or use cases. However, none of them
compared the applicability of two different notations to express acceptance tests and
their adherence to communicate software requirements. This study compares the use of
a tabular notation, Fit tables, versus a textual scenario notation, Gherkin language, in
terms of: ease of learning, ease of use, effort required to specify acceptance tests
scenarios, and capability to communicate software requirements.

3 Background

Test-driven development (TDD) is a software development approach which tests are written
before beginning the development of the SUT, this practice becomes widely established
after 1999 by Kent Beck. This practice is performed in five steps, as follows [13]:

1. Write a new test case.
2. Run all test cases and see the new one fails.
3. Write just enough code to make the test pass.
4. Re-run the test cases and see them all pass.
5. Refactor code to remove duplication.

106 E. C. dos Santos and P. Vilain

In 2002, Ward Cunningham introduced the concept of Fit Tables. In this approach,
users write acceptance tests using Fit tables, and programmers write fixtures (glue
code) to connect these tables with the future source code of the SUT. The remaining
process of this approach is equivalent to steps 2 through 5 of the TDD. This process is
called Acceptance test-driven development (ATDD) because acceptance tests are
written before the SUT [14].

Acceptance testing is a black box testing that aims to determine if a software system
meets customer requirements from user’s point of view [3, 7, 9]. As defined in the
IEEE Standard 1012-1986 [10], acceptance testing is a “formal testing conducted to
determine whether or not a system satisfies its acceptance criteria and to enable the
customer to determine whether or not to accept the system”.

Fit is an example of framework to express acceptance test scenarios. Using this
framework, the acceptance tests are written in the form of tables, which are called Fit
tables. Besides Fit tables are used to represent test scenarios, they are also used for
reporting the results of tests [11]. Figure 1 shows an example of Fit report table, which
was used to perform several tests in a functionality to calculate discount over an
amount. The first column of this table, named amount, represents an input, whereas, the
second columns, which name is followed by parenthesis, represent the expected output.
When a test fails, the expected and actual output values are showed to the user [11].

Behavior-driven development (BDD) is an agile software development approach
that enhances the paradigm of TDD for acceptance testing. In the BDD approach, the
behavior of the SUT is described through user stories and acceptance tests before
beginning its development. Scenarios representing the user stories are described using
BDD languages, such as Gherkin language [12].

Gherkin language is a domain specific language (DSL) that can express the
behavior and the expected outcome of the SUT [12]. It uses some words as commands,
such as Given, When and Then. The word Given expresses the inputs or pre-conditions
to perform a test, the word When expresses conditions or specified behavior, and the
word Then expresses expected outputs or expected changes due to the specified
behavior. As with the Fit tables, Gherkin language also needs a glue code to connect

Fig. 1. Fit table report sample [11].

Automated Acceptance Tests as Software Requirements 107

the features (a set of test scenarios) with the source code of the SUT [12]. An example
of the syntax of this language is as follows:

Scenario: Pop element
Given a non-empty Stack
When a stack has N elements
And element E is on top of the stack
Then a pop operation returns E
And the new size of the stack is N-1

4 Experiment Definition

In this section, we report the experiment definition, design, and planning, following the
guidelines proposed in [15, 16], as well the experiments conducted in [3, 4]. The
objective of this experimentation is to compare the applicability of Fit tables and
Gherkin language to communicate requirements in a software development process
regarding specification effort and requirements consistency. The perspective is to adopt
Fit tables or Gherkin language to express software system requirements in outsourcing
contracts for software development. The context of the experiment consists of under-
graduate students (subjects) and a Java application (object). The participants (subjects)
involved in the experiment are undergraduate students in the last years of the Computer
Science program. The object of this study is a human resource (HR) management
application named HRS, which supports functionalities such as compliance, payroll,
personnel files, and benefits administration.

4.1 Experiment Participants

The participants were 18 students from a course called Special Topics in Technology
Applications I, in the last years of the bachelor’s degree in Computer Science at UFSC.
The students have already attended courses on software programming and software
engineering, and they had a medium knowledge and expertise level in programming
and software engineering topics. The most of them have been taking part of trainee
programs. The participants have never taken any course or professional experience in
Fit or Gherkin language. Although the experiment was conducted as a mandatory
activity of the course, the students were not graded based on the artifacts produced, but
rather, they were graded based on their participation. Also, students were advised that
the activities were parts of an experiment to compare the applicability of two accep-
tance testing techniques as artifacts to communicate software requirements.

4.2 Experiment Material

The experiment was performed on a set of four requirements for the HRS application.
We granted access permission for each participant to access a web directory that
contains a textual description of the application, instructions to set up the application
project (download the zipped Java project and import it into the Eclipse IDE), a time

108 E. C. dos Santos and P. Vilain

sheet and a questionnaire. The timesheet was used by the participants to take note of the
time spent in each task of the experiment. The questionnaire is a set of 24 questions to
investigate the background of the participants and to perform a qualitative analysis of
the performed tasks. The answers for these questions are five-point scales, such as 1 =
Strongly agree, 2 = Agree, 3 = Not certain, 4 = Disagree, 5 = Strongly disagree.

The development environment was set up by the participants, who received a
tutorial to guide this activity. The tutorial content is:

• Installation and configuration of Java Enterprise;
• Installation and configuration of the standalone version of Fit wiki and its

dependencies;
• Installation and configuration of Eclipse IDE with the Cucumber plugin;
• Quick-start examples to validate all development environments.

4.3 Hypothesis Definition

Considering Fit tables and Gherkin language as available acceptance testing tech-
niques, this experiment addresses the following research questions:

– RQ1. Which of these acceptance tests techniques is easier to learn?
– RQ2. Which of these acceptance tests techniques requires less effort (in time) to

specify acceptance test scenarios?
– RQ3. Which of these acceptance tests techniques is the best one to communicate

software requirements, as a form of expressing consistent requirements?

Once the research questions are formulated, it is possible to turn it into null
hypotheses to be tested in the experiment:

– H0a the correctness of acceptance test scenarios specified by participants who
attended a three-hour lecture about Fit tables and Gherkin language is the same for
both acceptance testing techniques.

– H0b the effort to specify acceptance test scenarios is the same for both techniques.
– H0c the correctness of software functionalities specified using Fit tables and

Gherkin language and implemented by the participants is the same using both
acceptance testing techniques.

On the other hand, the alternative hypotheses are:

– H1a the correctness of acceptance test scenarios specified by participants who
attended a three-hour lecture about Fit tables and Gherkin language is different
when both acceptance testing techniques are used.

– H1b the effort to specify acceptance test scenarios using Fit tables is not the same
when Gherkin language is used.

– H1c the correctness of software functionalities implemented by the participants is
different when both acceptance testing techniques are used.

Automated Acceptance Tests as Software Requirements 109

The dependent variables of our study are:

– ATS#. Acceptance tests of requirement # were specified: {correctly, incorrectly};
– ATST#. The participants need {?} minutes to specify acceptance test scenarios of

requirement #;
– AR#. The delivered source code implemented based on the acceptance test sce-

narios of requirement # is executable and it was accepted by the business stake-
holder: {yes, no};

Where the symbol “#” represents a change software requirement identified from
SR1 to SR4 in Table 1, and the symbol “?” represents an integer value.

The number of acceptance test scenarios that were specified correctly (ATS#) was
obtained from the evaluation of artifacts delivery by participants. This evaluation was
performed by a researcher who is expert in acceptance tests and he does not have any
connection with the experimentation. The time needed to specify acceptance test
scenarios of each requirement (ATST#) has been measured by asking participants to fill
it in the timesheet. The number of requirements correctly coded (AR#) was obtained
from the evaluation of executable source code delivered by participants. This evalua-
tion was conducted by a business stakeholder, who accepted or not the delivered
functionality through black box testing. If the business stakeholder accepts the deliv-
ered functionality, the coded requirement is considered correct. Otherwise, it is con-
sidered incorrect. This person has not been involved with the specification of
acceptance test scenarios that were used by participants to develop the set of required
software changes.

4.4 Experiment Design

We divided the experiment into two parts. Part 1 addresses the specification of
acceptance test scenarios. Part 2 addresses the implementation of new requirements for
the HRS application using the acceptance test scenarios to represent the requirements.

In both parts, we have four objects and two treatments. The objects are the new
requirements of the HRS application, as shown in Table 2. The treatments are the
following:

• (F) Software requirements specified as acceptance test scenarios using Fit Tables.
• (G) Software requirements specified as acceptance test scenarios using Gherkin

language.

Table 1. Objects of the experiment

Id Requirement

SR1 Rectification of personnel profile information
SR2 Calculation of salary bonus per person
SR3 Exclusion of personnel profile information
SR4 Calculation the average of salary bonus per position

110 E. C. dos Santos and P. Vilain

The participants were split into two groups, which were identified by the letters A
and B. In Part 1, the group A specified two software requirements as acceptance test
scenarios using Fit tables, meanwhile, the group B specified two software requirements
as acceptance test scenarios using Gherkin language. Table 2 shows, for each group,
which treatment was used to specify which software requirement.

In Part 2 of this experiment, the set of software requirements specified by group A
were send to group B, and vice versa. Then, as shown in Table 3, the group A
developed requirements SR3 and SR4, which were specified by group B using Gherkin
language, whereas, the group B developed requirements SR1 and SR2, which were
specified by group A using Fit tables. Before performing this exchange of acceptance
test scenarios between the groups, an expert verified the correctness and conciseness of
each scenario. Test scenarios that presented problems were replaced by others, which
were correct and express the same set of requirements. This intervention was necessary
to prevent false negatives in the analysis of capability of executable acceptance tests to
communicate software requirements.

4.5 Training

Participants have been trained in meaning and usage of the following subjects:

• a half-hour lecture about acceptance testing, TDD, ATDD, and BDD;
• one-and-a-half-hour lecture about Fit tables and FitNesse, including how to con-

figure this framework and practice exercises;
• one-and-a-half-hour lecture about Gherkin language and Cucumber, including how

to configure this framework and practice exercises.

Table 2. Experiment design of Part 1 – Specification of acceptance test scenarios. At the top of
this table, SR1, SR2, SR3, and SR4 are abbreviations to the objects listed in Table 1.

Participants Objects and treatments
SR1 SR2 SR3 SR4

Group A (F) (F) – –

Group B – – (G) (G)

Table 3. Experiment design of Part 2 – implementation of new requirements.

Participants Objects and treatments
SR1 SR2 SR3 SR4

Group A – – (G) (G)
Group B (F) (F) – –

Automated Acceptance Tests as Software Requirements 111

4.6 Experiment Procedure

The experimentation was carried out as explained in the following. First, the partici-
pants were given a short introduction to the experimentation, then they were randomly
assigned to one of the two groups. After this, they received the timesheet and the
questionnaire, described in Sect. 4.2.

Then, the experiment was conduct according to the following steps:

– (1) Participants had 20 min to check if their environment to specify acceptance
tests, which was previously set up in the training section, was working. In this step,
they also answered the six first questions of the questionnaire.

– (2) Participants read an overview of the HRS application and received a document
with the description of two new requirements for this application.

– (3) For each requirement:
– (3.a) Participants filled the start time in their time sheets.
– (3.b) Participants had to understand the requirements; if they had any doubt a

business stakeholder was available to clarify them.
– (3.c) Participants had to specify the requirement using the acceptance testing

technique assign to them.
– (3.d) When finished, participants had to mark the stop time on their time sheet.
– (4) Then, participants had to answer the next eight questions of the questionnaire

and to send the produced artifact to a web repository. The artifacts were identified
by a random numeric id and only the researchers knew who uploaded them.

– (5) An expert in acceptance testing evaluated all uploaded artifacts and marked the
ones that were inconsistent or incomplete. This mark was visible only to the
researchers.

– (6) In the sixth step, the second part of our experiment was started. Participants had
20 min to check if their environment to develop the next tasks was working. After
this, they had to download acceptance tests artifacts produced by a participant of the
other group.

– (7) Then, participants had to answer two questions in the questionnaire related to
their view about the downloaded artifacts.

– (8) The researchers had to verify which participants downloaded acceptance tests
that, according to the expert evaluation, were incorrect. Then, they exchanged the
incorrect acceptance tests by correct tests that express the same requirements using
the same acceptance testing technique.

– (9) Then, for each acceptance test scenario (requirement):
– (9.a) Participants had to fill the start time in their time sheets.
– (9.b) Participants had to understand by themselves the acceptance test.
– (9.c) Participants had to develop the new requirement of the HRS application

expressed by the acceptance tests.
– (9.d) When finished, participants had to mark the stop time on their time sheet.
– (10) Then, participants had to answer the next eight questions of the questionnaire

and to send the produced source code to a web repository. The artifacts were
identified by a random numeric id, and only researchers knew who uploaded them.

112 E. C. dos Santos and P. Vilain

This procedure was carried out in two sections. The first with three and a half-hour
of duration and the second one with two hours of duration.

5 Results and Data Analysis

In this Section, we show and discuss the results achieved from the experiment. The
experiment data and charts are available at www.leb.inf.ufsc.br/index.php/xp2018/.

5.1 Consistency and Correctness of the Acceptance Test Scenarios

Table 4 is the contingency table for the dependents variables (see Sect. 4.3) from
ATSSR1 to ATSSR4. The first line of this table shows the number of tasks performed
using Fit tables as acceptance testing technique: 17 tasks were completed, and only one
task failed. The second line shows the number of tasks performed using Gherkin
language as acceptance testing technique: 13 tasks were completed, and five tasks
failed. The tasks performed by the same participant were considered as independent
measures.

We applied the Fisher’s test in the data presented in Table 4. This test returned a
p-value of 0.1774. The result is not significant at p < 0.05. Thus, H0a is accepted, there
is no statistically significant influence of the treatment on the acceptance test scenarios
specification.

Although we cannot obtain the answer of RQ1 with Fisher’s test, we suppose that
extra training sections and practical exercises could decrease the number of incorrect
specification around zero because the errors identified in the test scenarios specified by
participants in both techniques are basic mistakes. Thus, we found that the complexity
to learn both acceptance testing techniques by software developers is the same.

5.2 Time to Complete Acceptance Test Scenarios Specifications

Table 5 presents the time, in minutes, spent by participants to complete the specifi-
cation task of each requirement. The underlined time values in this table refer to test
scenarios that were specified incorrectly by participants. The tasks performed by the
same participant were considered as independent measures, and the distribution of
requirements and treatments were conducted as shown in Table 2.

We used the Shapiro-Wilk normality test to check if the data collected from the
experiment for the two treatments have a normal distribution. Then, we performed a

Table 4. Contingency table for correct specifications of acceptance tests

Acceptance test
scenarios were specified:

Treatment Correctly Incorrectly

Fit Tables (T) 17 1
Gherkin Language (G) 13 5

Automated Acceptance Tests as Software Requirements 113

http://www.leb.inf.ufsc.br/index.php/xp2018/

t-test that returned a p-value of 0.0291. We also performed the same test excluding the
underlined values and we obtained a p-value of 0.0334. The results are significant at p
< 0.05. Thus, in both tests H0b is rejected and the alternative hypotheses are accepted.
Therefore, there is a difference, in terms of the mean time spent to specify acceptance
tests, between Fit tables and Gherkin language.

Answering the RQ2, we found that the effort, in terms of the meantime, to specify
acceptance tests using Gherkin language (40 min) is lower than using Fit
Tables (64 min).

5.3 Applicability of Acceptance Test Scenarios to Communicate Software
Requirements

Table 6 is the contingency table for the dependents variables (see Sect. 4.3) from
ARSR1 to ARSR4. The first line of this table shows the number of tasks implemented
based on the requirements specified using Fit tables: 13 tasks were successfully
completed, and five tasks failed. The second line shows the number of tasks using
Gherkin Language: 10 tasks were successfully completed, and eight tasks failed.

We applied the Fisher’s test in the data presented in Table 6. This test returned a
p-value of 0.4887. The result is not significant at p < 0.05. Thus, H0c is accepted,
therefore, there is no statistically significant influence of the treatment on the devel-
opment of software requirements expressed by acceptance test scenarios using both
techniques.

Table 5. A list of time spent to develop new software requirements in the HRS application.

Treatment Time list (in minutes)

Fit tables (F) {20, 21, 21, 23, 35, 36, 40, 45, 50, 65, 66, 77, 79, 88, 108, 120,
126, 135}

Gherkin Language (G) {15, 16, 17, 15, 39, 30, 30, 30, 45, 35, 60, 28, 40, 40, 70, 57, 84,
75}

Table 6. Contingency table for correct development of software requirements expressed
by acceptance tests

The delivered source
code implemented
based on the
acceptance test
scenarios is
executable and it was
accepted by the
business stakeholder:

Treatment Yes No

Fit Tables (T) 13 5
Gherkin Language (G) 10 8

114 E. C. dos Santos and P. Vilain

Then, addressing the RQ3, we cannot assume based on the Fisher’s test result that a
technique is better than another to communicate requirements. In addition, in the same
way that we suppose that extra training could improve acceptance test scenarios
specification, it also could improve requirements communication. However, despite
these experimentation evidences, we claim that Gherkin language scenarios commu-
nicate requirements better than Fit tables because we observe that tables are weak in
details and depending on the software requirement a complementary textual description
is required to communicate a requirement completely, whereas, in Gherkin language
the acceptance test scenarios are complemented on default by a textual description.

5.4 Experiment Questionnaire

In this section, we discuss six questions of the questionnaire that we applied in the
experiment. The questions were answered on a five-point scale, where one maps to
Strongly agree, two maps to Agree, three maps to Not certain, four maps to Disagree,
and five maps to Strongly disagree. Question 1 (Q1) and question 3 (Q3) were applied
to group A, whereas question 2 (Q2) and question 4 (Q4) were applied to group B.
Questions 5 (Q5) and 6 (Q6) were applied to both groups.

Q1. I experienced no difficulty in specifying acceptance test scenarios using Fit
tables. Half of the participants strongly agree (22.22%) or agree (27.78%) with this
statement and 22.22% are not certain, whereas, the rest of the participants disagree
(5.56%) or strongly disagree (22.22%).

Although the results presented in Sect. 5.1 shows that the major part of the
acceptance tests was specified correctly, we observed, through this questionnaire, that
participants had difficulty to specify the acceptance tests. So, we realized that in a next
experiment we should dedicate more time performing training lectures intending to
decrease the time spent by participants to specify acceptance tests and to increase the
quality of acceptance test scenarios using Fit tables.

Q2. I experienced no difficulty in specifying acceptance test scenarios using
Gherkin language. This result was different than we expected. The percentage of
participants who answered that they strongly disagree (16.67%) or disagree (16.67%)
with this statement is greater than the percentage of who answered that strongly agree
(5.56%) or agree (16.67%). The rest of participants (44.44%) are not certain about this
statement.

Our initial belief was that participants who used Gherkin language had experi-
mented less difficulty to create acceptance test scenarios than ones that used Fit tables
because Gherkin language is similar to English spoken language. However, the results
obtained from the questionnaire tend to be the opposite. As concluded in Q1, the
participants should spend more time with the lecture and exercises to improve their
experience with Gherkin Language.

Q3. I experienced no difficulty in implementing new requirements in the HRS
application, which specification were expressed as acceptance test scenarios
writing through Fit tables. The major part of participants reported that they had
difficulty in the implementation tasks, 55.56% answered that strongly disagree

Automated Acceptance Tests as Software Requirements 115

(27.78%) and disagree (27.78%) with this assertion, whereas 38.89% of the participants
are not certain, 5.56% agree and 0.00% strongly agree with this assertion.

Q4. I experienced no difficulty in implementing new requirements in the HRS
application, which specification were expressed as acceptance test scenarios
writing through Gherkin Language. The major part of participants reported that they
had difficulty in the implementation tasks, 27.78% and 33.33% answered respectively
that strongly disagree and disagree with this assertion, whereas, 27.78% of the par-
ticipants are not certain, 5.56% agree and 5.56% strongly agree with this assertion.

Although only a few participants agree or strongly agree with this assertion, the
percentage is two times bigger than the percentage of the same group in Q3. We assign
this to the fact that acceptance test scenarios written in Gherkin language are more
verbose than tables, which becomes Gherkin language easier to understand than Fit
tables. However, as presented in Sect. 5.3, there is no evidence that one technique is
better than another to communicate software requirements.

Q5. I will use acceptance testing to validate software in future projects. The
number of participants (27.78%) that agree with this assertion is greater than the
number of participants that disagree (11.11%) or strongly disagree (11.11%). However,
50.00% are in doubt about using acceptance testing to validate software.

Q6. I will use acceptance test scenarios to communicate requirements for future
projects. 33.33% of the participants did not approve the use of acceptance tests as
requirements and they would not like to take part in projects that use this approach.
38.89% of the participants are not certain about this assertion, the rest of the partici-
pants, 27.78%, agree with this assertion.

In both Q5 and Q6, the number of participants that are in doubt about using
acceptance testing to validate software or to communicate requirements is greater than
the number of participants that are certainly that will use or will not use it in the future.
We think that the high number of participants that are in doubt is due to the inexpe-
rience in acceptance testing, which is in agreement with the background questionnaire
where 100% of participants answered they had never seen it before.

6 Threats to the Validity

Although we assigned different requirements to groups A and B in the same part of our
experiment, we choose requirements that have similar business logic and complexity.
However, the complexity of the requirements could affect results, mainly regarding
time.

An expert in acceptance testing verified the artifacts produced by participants in
part 1 and a business stakeholder verified the artifacts produced in part 2. These two
individuals had an important role in our experimentation because they decided what is
or not correct. However, we could carry out our experiment without these individuals
in a different way:

116 E. C. dos Santos and P. Vilain

– using the acceptance tests specified by an expert as input for part 2, avoiding that
some mistakes in the acceptance test scenarios created by other participants were
unnoticed by the expert;

– using automated acceptance tests, or even JUnit tests, to validate if the code
implemented by the participants meets the user needs.

However, we choose this approach to approximate our experiment to a real-world
scenario, where there is a variation on the style of acceptance tests scenarios written,
such as vocabulary, idioms, and level of details.

Another issue is the time sheets. It is very difficult to ensure that all participants are
marking the time spent in each task. During the experiment, we checked if the forms
have been filled correctly and asked the participants to fill out the forms very carefully.
Finally, the small sample size may limit the capability of statistical tests. In this study,
the time was compared using t-test, and for contingency tables, we used Fisher’s exact
test.

7 Conclusion

In this study, we have experimented to compare the applicability of acceptance tests,
which were written using Fit tables and Gherkin language, as software requirements.
The results show that there is no sufficient evidence to affirm that one technique is
easier to use than another or one technique communicates software requirements better
than another. Whereas, the comparison of effort regarding time to specify acceptance
testing shows that the mean time to specify test scenarios using Gherkin Language is
lower than using Fit tables.

Additionally, the questionnaire applied shows that participants had difficulty to
specify and understand acceptance tests writing in both techniques. We assign this
difficulty because neither of the participants had used Fit tables and Gherkin language
before. Despite only a few participants answered that is easy to understand require-
ments expressed by acceptance tests, they have pointed out Gherkin language scenarios
as easier to understand than Fit tables.

Finally, the number of participants who agreed with the possibility of using these
acceptance testing techniques as software requirements in future projects is very similar
to the numbers of those participants who disagree with this possibility. We assign this
result to the participants’ inexperience in acceptance testing, which resulted in a poor
impression about the application of these techniques in real-world projects. As future
works, we intend to improve our experimental design to carry it out with others
acceptance testing techniques and include other personas like non-technical users and
software engineers.

Automated Acceptance Tests as Software Requirements 117

References

1. Sarmiento, E., Leite, J.C.S.P., Almentero, E.: C&L: Generating model-based test cases from
natural language requirements descriptions. In: 2014 IEEE 1st International Workshop on
Requirements Engineering and Testing (RET), pp. 32–38 (2014)

2. Sommerville, I.: Software Engineering. 9th edn. Pearson Education, Boston (2015)
3. Torchiano, M., Ricca, F., Penta, M.D.: “Talking tests”: a preliminary experimental study on

fit user acceptance tests. In: First International Symposium on Empirical Software
Engineering and Measurement (ESEM 2007), pp. 464–466 (2007)

4. Ricca, F., Torchiano, M., Penta, M.D., Ceccato, M., Tonella, P.: Using acceptance tests as a
support for clarifying requirements: A series of experiments. Inf. Softw. Technol. 51, 270–
283 (2009)

5. Ricca, F., Torchiano, M., Penta, M.D., Ceccato, M., Tonella, P.: On the use of executable fit
tables to support maintenance and evolution tasks. In: Third International ERCIM
Symposium on Software Evolution, pp. 83–92 (2007)

6. Clerissi, D., Leotta, M., Reggio, G., Ricca, F.: A lightweight semi-automated acceptance
test-driven development approach for web applications. In: Bozzon, A., Cudre-Maroux, P.,
Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 593–597. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-38791-8_55

7. Melnik, G., Maurer, F.: The practice of specifying requirements using executable acceptance
tests in computer science courses. In: Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications,
pp. 365–370. ACM, San Diego (2005)

8. Wanderley, F., Silva, A., Araújo, J.: Evaluation of BehaviorMap: a user-centered behavior
language. In: 2015 IEEE 9th International Conference on Research Challenges in
Information Science (RCIS), pp. 309–320 (2015)

9. Longo, D.H., Vilain P.: Creating user scenarios through user interaction diagrams by
non-technical customers. In: Proceedings of the International Conference on Software
Engineering and Knowledge Engineering, SEKE, pp. 330–335 (2015)

10. IEEE: IEEE Standard for Software Verification and Validation Plans. IEEE Std 1012-1986.
IEEE (1986)

11. Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated
Tests. Pearson Education, Upper Saddle River (2005)

12. Rose, S., Wynne, M., Hellesøy, A.: The Cucumber for Java Book: Behaviour-Driven
Development for Testers and Developers. 1st edn. Pragmatic Bookshelf (2015)

13. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional, Boston
(2003)

14. Deng, C., Wilson, P., Maurer, F.: FitClipse: a fit-based eclipse plug-in for executable
acceptance test driven development. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.)
XP 2007. LNCS, vol. 4536, pp. 93–100. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73101-6_13

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering – An Introduction. Springer, Heidelberg (2012)

16. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Academic
Publishers, Boston (2001)

118 E. C. dos Santos and P. Vilain

http://dx.doi.org/10.1007/978-3-319-38791-8_55
http://dx.doi.org/10.1007/978-3-540-73101-6_13
http://dx.doi.org/10.1007/978-3-540-73101-6_13

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Automated Acceptance Tests as Software Requirements 119

http://creativecommons.org/licenses/by/4.0/

Agile Transformation

Interface Problems of Agile in a Non-agile
Environment

Sven Theobald and Philipp Diebold(&)

Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{sven.theobald,philipp.diebold}@iese.fraunhofer.de

Abstract. Agile is the widespread software development approach. But many
projects are still working with traditional methods. In addition, non-technical
business units continue working in traditional ways. Thus, problems arise on the
interface of agile and traditional due to their fundamental differences. To prevent
potential problems, one must be aware of the existing interfaces and common
pitfalls. Based on a literature search and workshops, we identified existing
interfaces, collected and grouped problems. We present the identified problems
and propose a matrix that facilitates classification of interface problems. This
matrix can be used to identify and classify more problems as well as under-
standing and preventing problems on the interface of agile and traditional.

Keywords: Agile � Traditional � Plan-based � Non-agile environment
Hybrid organization � Interface � Problems � Challenges � Classification
Agile transition

1 Introduction

Agile is widespread, especially on team level [1]. But other studies show that complete
agile enterprises are quite rare. This is mainly the case because at least the supporting
functions, such as marketing or human resources, are still operating in their established
ways. Thus, the agile parts of an organization do have at least those interfaces to these
traditional environments. Alignment between agile and traditional approaches is
challenging [2]. There is a lack of guidance for problems at those interfaces, although
many practitioners confirmed that these problems exist. Understanding and addressing
them is viable to make use of the benefits provided by agile, and to support agile
initiatives to progress towards an agile organization. This work discusses which
interfaces exist, presents the problem fields and proposes a problem classification.

2 Related Work

An interface problem is a (potential) problem or challenge occurring on the interface of
agile and traditional approaches, e.g., caused by the conflicting underlying principles,
culture, or processes. There exists literature reporting problems with agile, e.g., [1, 3],
or [4]. Interface problems are already mentioned, but the borders to other organizational

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 123–130, 2018.
https://doi.org/10.1007/978-3-319-91602-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_8&domain=pdf

internal or external entities surrounding the agile team are not explicitly considered.
The following literature focused on interface problems.

In interviews with 21 agile practitioners, two problem categories resulted [5]:
Increased IT landscape complexity, caused by concurrent development streams, sep-
arated layer development and different processes. The other one was lack of business
involvement, caused by a centralized it department and a traditional project organi-
zation. Mitigation strategies were proposed to address the identified challenges.

Based on interviews with seven German practitioners, problems in agile projects
within traditionally organized corporations were identified [6]. The study is limited to
the viewpoint of agile teams, especially on global software engineering. Among the 8
identified problems, 3 had an non-agile environment: “wrong application of agile”,
“lack of acceptance of agile principles” and “difficulties in translating agile […] into
their non-agile counterparts.” Further interface problems are mentioned, such as
“fragmented documentation in agile” or “combined usage of paper and electronic
media”.

With the aim of analyzing how agile and lean approaches are adopted at scale, a
literature review was conducted focusing on challenges and success factors [7] con-
sidering interfaces to other organizational units. We identified 17 of their challenges as
interface problems. The groups with the highest number of interface problems were
“integrating non-development functions”, “hierarchical management and organiza-
tional boundaries” and “coordination challenges in multi-team environment”.

Kusters et al. [8] identified challenges and risks that appear in hybrid organizations.
The focus was on project and program level issues that impact the coordination and
cooperation. 22 issues were classified in six groups: Organization and structure,
business processes and control, culture and management style, development and test-
ing, involvement of stakeholders, documentation and communication.

Motivation has to be considered when interfacing with non-agile surroundings [9].
Agile team members might get frustrated by missing or unsynchronized feedback from
traditional stakeholders, or when having to work in a traditional way after experienced
agile projects. More interface problems were mentioned, such as a fixed budget and
project plan at the project start or having to adapt to the surrounding stage-gate process.

Kuusinen et al. [10] already went one step further and identified strategies to
mitigate such problems. The information was collected from a survey and a work-
shop. The themes were grouped in two categories, one for organizational themes and
one for change themes. Most strategies are generic and can be applied at different
interfaces.

3 Research Method

Our overall research goal is described in the GQM-goal-template [11] as following:
Identify and analyze common existing problems on the interface of agile in a non-agile
environment in order to create a classification in the context of organizations developing
software or systems from the perspective of research and practice. Because this goal
covers several different aspects, we needed to refine it into several research questions
(RQs). For this reason, these are the RQs refining our study goal:RQ1 - Which interfaces

124 S. Theobald and P. Diebold

of agile entities to a non-agile environment exist?RQ2 -Which problems do appear on the
identified interfaces? RQ3 - How to classify and group these problems?

The research procedure contained the following steps: (1) We started with a brief
research on the state of the art in existent literature. (2) Second, we performed a workshop
with five IESE employees, all experienced in agile and some in systems engineering.
(3) Third, we had the possibility to discuss this topic at the Automotive Agile
PEP-Conference.Wewere able to collect further problems from practitioners and discuss
most important problems to identify concrete solutions. (4) Afterwards, an initial clas-
sification was developed. (5) Finally, this classification was used to categorize the iden-
tified problems on specific interfaces according to the dimensions of the classification.

4 Results

The results are presented along the RQs. Thus, we first present the different interfaces,
where problems might arise. Then we present an overview over the problems, identified
and categorized into different problem fields. Finally, a matrix that supports classifi-
cation of interface problems and solutions is presented and discussed.

4.1 Existing Interfaces (RQ1)

The first step was to identify all possible situations where agile approaches could
interface with traditional development. The identified interfaces can be categorized into
company-internal (I) and external (E) interfaces, see Table 1:

Table 1. Presenting the interfaces (name, external/internal interface, description/example)

Name E/I Description/Example

Project–Team I The coordination between agile and non-agile teams in large
projects appears to be a challenge, e.g. the synchronization
between agile software teams and hardware teams

Organization -
Project

I In larger organizations, projects collaborate with different
organizational units, e.g. the line management demanding
traditional reporting or synchronization with other organizational
parts like human resources or operations. Agile projects have a
different mind-set and information demands than traditional
organizational units

To Customer E Successful collaboration with customers and other stakeholders is
important, e.g. for requirements clarification or meetings.
Working with traditional customers is challenging for an agile
project

To Subcontractor E Traditional subcontractors slow down the agile process and
complicate synchronization. Also, agile subcontractors of
traditional teams might cause issue

To Reg.
authority

E The requirements posed by regulatory authorities have to be
considered. Regulated organizations have to provide evidences
for the fulfillment of regulations, leading to a focus on
documentation

Interface Problems of Agile in a Non-agile Environment 125

4.2 Existing Problem Fields (RQ2)

In total, 169 problems were assigned to various interfaces during our data collection.
Different categories emerged when grouping similar problems into the so called
problem fields. Example problems will be given either in the description of the problem
fields or in the problem classification (cf. Sect. 4.3).

Project Planning. Traditional plans are specified upfront, e.g. in detailed milestone- or
Gantt-charts and only updated when necessary. Thus, it is difficult to synchronize with
agile plans which are only detailed for a short period of time and which are adapted
each iteration. Traditional project managers perceive Agile as lacking the right amount
of risk management, traceability, requirements management and quality assurance.
Breaking down dependencies between agile and traditional teams is challenging.

Controlling, Reporting & Approval. Similarly, traditional project managers demand
a different kind of reporting and expect different artifacts than delivered by agile. This
leads to effort for a second report or the transformation of agile reports. The regular
reprioritization and de-scoping done by agile teams is perceived as lack of control.
There might be differences between the formal approval of delivered artifacts, espe-
cially concerning safety aspects in system development. KPIs might differ, e.g., indi-
vidual performance is measured while often team productivity is measured in Agile.

Contracting & Budgeting. Contracting between a traditional customer and agile
projects is a common challenge. The customer usually expects to have certainty of
time, scope and budget at the beginning of the project. The approval of the product
depends on the contractually defined features from the start of the project, even if the
scope was changed to optimize business value. Traditional customers are often not able
to provide the team with a representative who collaborates with the team on a daily
basis and is knowledgeable enough to take over product responsibility.

Process Requirements. Especially regulated domains have to stick to standards and
regulations prescribing how their process has to look like. Original Equipment Man-
ufacturers demand certain development approaches by their suppliers. Regulations
demand upfront planning, heavyweight documentation of requirements or proofs of
risk management. Standards like Automotive SPICE or ISO 26262 are relevant in the
automotive context, and it is still not clear how agile processes cover these standards.

Tooling & Infrastructure. Traditional and agile teams have different needs for tools
and infrastructure. Some projects are forced to use the organizational tool chains,
although these might not fit to agile. The agile way of using paper-based media like a
whiteboard, physical task boards or burn charts is a problem in distributed projects.

Coordination & Integration. Dependencies and integration of products developed by
several teams need to be synchronized. It is a challenge to coordinate agile iterations
with the stage-gate process of traditional (system) development. The communication
needs of agile teams are often not met by other non-agile business units (e.g., mar-
keting, sales, operations, customer service) who are not used to direct involvement.
Therefore, long reaction time slows down the agile teams. For distributed teams,
especially over time zones, agile collaboration creates more challenges due to the

126 S. Theobald and P. Diebold

regular collaboration and feedback loops. From the technical point of view, depen-
dencies in the architecture of several teams might become a problem, since agile
architectures emerge during the project, while traditional architectures are extensively
planned upfront and expected not to change. Also, dependencies between fast software
and slower hardware development have to be tackled, as well as collaboration with
dedicated quality assurance teams.

Staffing. The typical traditional organizational structure is functional, hence the
knowledge is distributed in silos. An agile team contains all roles necessary to conduct
the project, so there are no borders between different functional teams handing over
products or artifacts to another silo. Traditional teams are overfilled with team mem-
bers, each one working only partially on the project. Agile suggests that team members
are dedicated to only one product, and teams are only as big as they have to be. There is
a change in role profiles, since agile demands different skills from team members as
well as from managers. Developers in agile teams are expected to be T-shaped, having
expertise in a specific field while being able to collaborate with other disciplines.

4.3 Problem Classification (RQ3)

Using the concepts of interfaces and problem fields allows classifying existing prob-
lems along two dimensions: Which interface does the problem occur at? Which
problem field does the problem belong to?

Some of the identified problems might occur on several interfaces and it might be
possible that one problem fits to several problem fields, because some problem fields
have borders to each other. Based on the resulting classification matrix, each problem
(and solution) can be related to one (or more) cells of the following classification
matrix (cf. Table 2). As an example for the classification, synchronization between an
agile software team and a traditional system development project happens in the
problem field Coordination & Integration on the interface Project – Team.

A comparison of the number of problems occurring on the different interfaces helps
to assess which interfaces are more relevant, since they contain the most problems.
Especially the interface Organization - Project contains a wide range of problems
(n = 64), since multiple organizational units have to cooperate with a software team,
e.g., human resources, sales, operations, marketing, etc. Thus, there are many instances
of the organizational unit, therefore more possibilities to find problems. The high
number of problems on the Project - Team interface (n = 50) is understandable, since
this is where most organizations currently are [1]. Some pilot teams are already agile,
but have to work with traditional teams to deliver a common product. Although the
interface To Customer is very specific, surprisingly many problems were found
(n = 28). This shows that many customers still lack the understanding of agile and have
to learn how to collaborate with agile teams. There are also quite many problems on the
interface To Subcontractor (n = 27). None were identified yet on the interface To
Regulatory Authorities.

Regarding the problem fields, a comparison of the amount of problems in each
problem field might show which field is causing the most problems. Coordination &
Integration is the biggest problem field (n = 39), potentially because it is very broad

Interface Problems of Agile in a Non-agile Environment 127

and many things can be classified as the very general term collaboration. Contract &
Budgeting (n = 31) and Project Planning (n = 27) were also two problem fields with a
high amount of problems, followed by Staffing (=23) and Controlling, Reporting &
Approval (n = 20). Process Requirements (n = 15) and Tooling & Infrastructure
(n = 14) were the problem fields with the smallest number of problems.

Some combinations of problem fields and interfaces are more common. That means
that certain problem fields are more likely to cause problems on a certain interface.
Coordination & Integration problems happen most often on the interface Project –
Team. Staffing issues are most likely to occur on the interface Organization & Project,
often with the human resource department representing the organization. Contracting
problems occur mainly on the interface To Customer or To Subcontractor. Controlling
is challenging on the interface Organization – Project. Further, Project Planning is
relevant for both Organization - Project and Project – Team interfaces. Tooling
problems are most likely to occur on the interface between a Team and the overall
Project.

4.4 Limitations

Except for the data from literature, data is mostly representing the automotive domain.
IESE experiences are based on agile projects often conducted with automotive com-
panies or suppliers and the participants of the workshop were mainly from this domain.
This poses a threat to the generalization of results to other domains. The literature
review was not conducted as a systematic literature review, and did only consider a few
of the first sources that were identified. This led to a limited amount of identified

Table 2. Matrix presenting the two dimensions and the total number of identified problems
(from literature, from IESE, from conference workshop).

Problem fields Interfaces

Organization-Project Project -
Team

To
Customer/
Stakeholders

To Reg.
Authority

To
Subcontractor

Project Planning 11 (8, 3, 0) 10 (6, 2, 2) 4 (1, 2, 1) 2 (0, 2, 0)
Controlling,
Reporting &
Approval

10 (8, 1, 1) 5 (3, 2, 0) 4 (2, 2, 0) 1 (0, 1, 0)

Contract &
Budgeting

7 (0, 2, 5) 1 (1, 0, 0) 12 (3, 3, 6) 11 (1, 1, 9)

Process
Requirements

8 (3, 1, 4) 4 (3, 1, 0) 2 (0, 2, 0) 1 (0, 1, 0)

Tooling &
Infrastructure

3 (2, 1, 0) 6 (2, 2, 2) 1 (0, 1, 0) 4 (0, 2, 2)

Coordination &
Integration

9 (8, 1, 0) 21 (11, 4,
6)

4 (2, 2, 0) 5 (1, 1, 3)

Staffing 16 (11, 3, 2) 3 (0, 3, 0) 1 (0, 1, 0) 3 (0, 3, 0)

128 S. Theobald and P. Diebold

problems, which limits the validity of the classification matrix and the possibility to
analyze which problem fields or interfaces cause the most problems.

5 Conclusion and Future Work

Although general problems with agile are covered by research, there is few related
work investigating problems on the interface of agile and traditional approaches. We
collected those interface problems with a literature review and within workshops,
categorized them into problem fields, and finally suggested a classification matrix. The
results support practitioners in considering and mitigating potential problems, and help
researchers align their research efforts on the most common and important problems.
Of course, the classification matrix has to be refined, evaluated and improved with the
help of further data. This data will be identified in interviews with practitioners or from
reviewing literature.

References

1. VersionOne: 11th Annual State of Agile Report. https://www.versionone.com/
2. Thamhain, H.J.: Can we manage agile in traditional project environments? In: 2014 Portland

International Conference on Management of Engineering & Technology (PICMET),
pp. 2497–2505. IEEE, July 2014

3. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 72–78 (2005)

4. Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges that
challenge: engaging with agile practitioners’ concerns. IST 77, 92–104 (2016)

5. Van Waardenburg, G., Van Vliet, H.: When agile meets the enterprise. IST 55(12), 2154–
2171 (2013)

6. Richter, I., Raith, F., Weber, M.: Problems in agile global software engineering projects
especially within traditionally organised corporations. In: Proceedings of International C*
Conference on Computer Science & Software Engineering, pp. 33–43. ACM, July 2016

7. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. JSS 119, 87–108 (2016)

8. Kusters, R., van de Leur, Y., Rutten, W., Trienekens, J.: When agile meets waterfall -
investigating risks and problems on the interface between agile and traditional software
development in a hybrid development organization, pp. 271–278 (2017)

9. Gren, L., Torkar, R., Feldt, R.: Work motivational challenges regarding the interface
between agile teams and a non-agile surrounding organization: a case study. In: Agile
Conference, 2014, pp. 11–15. IEEE, July 2014

10. Kuusinen, K., Gregory, P., Sharp, H., Barroca, L.: Strategies for doing agile in a non-agile
environment. In: Proceedings of ESEM, p. 5. ACM, September 2016

11. Basili, V., Caldiera, G., Rombach, D.: The goal question metric approach. In: Encyclopedia
of Software Engineering, vol. 2, pp. 528–532 (1994)

Interface Problems of Agile in a Non-agile Environment 129

https://www.versionone.com/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

130 S. Theobald and P. Diebold

http://creativecommons.org/licenses/by/4.0/

Enterprise Agility: Why Is Transformation
so Hard?

Teemu Karvonen(&), Helen Sharp, and Leonor Barroca

The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
{teemu.karvonen,helen.sharp,

leonor.barroca}@open.ac.uk

Abstract. Enterprise agility requires capabilities to transform, sense and seize
new business opportunities more quickly than competitors. However, acquiring
those capabilities, such as continuous delivery and scaling agility to product
programmes, portfolios and business models, is challenging in many organisa-
tions. This paper introduces definitions of enterprise agility involving business
management and cultural lenses for analysing large-scale agile transformation.
The case organisation, in the higher education domain, leverages collaborative
discovery sprints and an experimental programme to enable a bottom-up
approach to transformation. Meanwhile the prevalence of bureaucracy and
organisational silos are often contradictory to agile principles and values. The
case study results identify transformation challenges based on observations from
a five-month research period. Initial findings indicate that increased focus on
organisational culture and leveraging of both bottom-up innovation and sup-
portive top-down leadership activities, could enhance the likelihood of a suc-
cessful transformation.

Keywords: Enterprise agility � Enterprise agile � Organisational transformation
Organisational culture � Leadership

1 Introduction

Empirical studies of large-scale agile have instigated academic debate regarding
transformation challenges and agile principles applicability in a large-scale context [1–
3]. Studies of Continuous Software Engineering and DevOps [4, 5] are also prime
examples of how the software development domain is approaching aspects of agility
beyond software development teams. Continuous activities related to budgeting, pro-
duct management and business-value-related decisions are made in shorter cycles to
enable research and development (R&D) capability for rapid delivery and customer
experimentation [5].

Meanwhile, agility (i.e. organisational adaptability and flexibility [6, 7]) is impacting
contemporary business strategies and practices for managing product programmes and
business portfolios also in a non-IT context. Strategic business management [6] views
agility as an organisational capability related to management under deep uncertainty,
resource fluidity and continuous business model renewal.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 131–145, 2018.
https://doi.org/10.1007/978-3-319-91602-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_9&domain=pdf

Large-scale agile development [1, 2] and enterprise agility [6, 8] can be viewed
through multiple lenses. These lenses may include but are not limited to agile
budgeting, agile manufacturing, agile production, agile strategic management, agile
business models, agile culture and organisational theories related to agility. While
many principles of enterprise agility can be found in the literature (e.g. Beyond
Budgeting [9], Lean Enterprise [10] etc.), empirical studies [1–3, 11, 12] have indicated
that it is still rather challenging for most organisations to perform such a holistic and
sustainable transformation. Why is transformation so hard? Given that enterprise agility
involves not just software development, but the whole organisation, investigations of
enterprise agility must address several aspects related to business, development and
operations [4]. Leadership and cultural aspects have especially been identified as key
challenges in earlier studies of large-scale agile transformations, e.g. [2, 3]. This paper
explores enterprise agility by investigating transformation activities in a large organi-
sation in the higher education domain. For this investigation, we focus particularly on
transformation, leadership and cultural aspects related to enterprise agility. We apply
the Competing Values Framework (CVF) [13] to analyse characteristics of organisa-
tional culture and its implications to enterprise agility transformation. As the investi-
gated case organisation operates in the higher education domain, this work contributes
to understanding how agile methods and principles are interpreted and adapted in
non-IT domains. One of the key contributions of this paper therefore is that it provides
empirical evidence of challenges in non-IT agile transformation. Another key contri-
bution is to introduce ideas and concepts from strategic management into the debate
around non-IT agile transformation.

2 Background and Related Work

Large-scale agile development is becoming increasingly relevant to projects and
product programmes in many industrial domains. Recent studies of adopting agile
principles in large organisational contexts have indicated both organisational chal-
lenges and success factors related to organisational transformation towards agile [2, 3].
However, investigations of large-scale agile transformation are often focused on
aspects of software development projects. Many studies of large-scale agile develop-
ment focus on agile development activities that involve multiple teams (typically more
than two teams). According to Dingsøyr et al. [1], ‘enterprise agile’ is more than simply
considering multiple teams and requires a more comprehensive view of the business.

This paper aims to study agility from this more comprehensive point of view. It
applies business management and organisational culture definitions and models to
analyse enterprise agility. Enterprise agility views agility beyond software i.e. as a
holistic ‘transformation of organisations’, including business, operations and cultural
aspects. Several authors have suggested ‘lean thinking’ [4, 14] as a useful lens for
analysing enterprise agility. Lean production principles, made famous by Toyota Motor
Company, have inspired also many agile software development researchers. Recent
studies on ‘continuous delivery’, ‘DevOps’ and ‘experimentation-driven development’
[4, 5, 14] have provided more evidence on how business, development and operations
can benefit from establishing continuous integrative activities throughout a value stream.

132 T. Karvonen et al.

The research in this paper is largely motivated by an increased understanding of
commonly addressed agile practitioner’s challenges related to people’s ‘mindsets’ and
‘organisational culture’. However, research in this area is also considered to be very
challenging, due to its multidisciplinary aspects. Challenges are also related to
empirical validation of enduring (sustainable) agile transformation, rather than a
short-term transient phase of transformation. In practice, understanding organisational
agile transformation requires a comprehensive investigation of organisational culture,
business strategies, technologies and architectures, organisational structure and pro-
cesses, business models and how they can be efficiently integrated and synchronised
into contextually relevant continuous incremental cycles.

Agile frameworks, such as AgilePfM [15], SAFe [16] and LeSS [17] are nowadays
increasingly adopted in large-scale software-intensive product development. These
frameworks can provide a useful baseline for coordinating large-scale development and
delivery cycles. Large-scale transformations, however, typically involve many con-
textual and cultural variations that have to be addressed by local change management
activities. Moreover, different industry domains, such as public sector and non-IT
businesses may have to adapt framework terminology and principles that originate
from the software development context. Consequently, some organisations are
increasingly leveraging aspects of bottom-up innovation, communities of practice and
experimentations related to agile transformation [3].

The benefits of understanding organisational culture have been addressed by many
authors in the business management discipline [13, 18, 19]. Cultural characteristics
may either accelerate or hinder transformation towards enterprise agility. Meanwhile,
the ‘ability to change organisational culture’ has been identified as one of the key
factors related to large-scale agile development [2]. A recent trend of adapting agile and
lean principles to large-scale projects and organisational level e.g. ‘enterprise agile’ [8]
and ‘Continuous *’ [4] (i.e. ‘BizDev’ and ‘DevOps’ activities) clearly necessitates a
deeper understanding of the cultural change required, and learning new ways to lead
transformation.

2.1 Defining Enterprise Agility

In terms of being able to analyse challenges related to transformation, we first need to
define ‘the goal of agile transformation’, i.e. what are the organisational characteristics
that are associated with enterprise agility. The agile software development literature has
indicated various interpretations of agility in software development. Laanti et al.’s [20]
review of definitions indicated that there is currently no uniform definition for agility in
agile software development nor in agile project management. Consequently, they state
that it is increasingly important that researchers and practitioners themselves carefully
specify what they mean by agile. Since our research is conducted in a non-IT context
we focus primarily on how the management discipline has defined agility (Table 1).
Moreover, we believe that incorporating business management definitions is useful in
investigations related to large-scale software development. However, there is no uni-
form definition for agility in business management either.

Enterprise agility as a research topic has been debated in management literature for
at least three decades, although it is also referred to nowadays as ‘flexibility’ to

Enterprise Agility: Why Is Transformation so Hard? 133

Table 1. Dimensions of enterprise agility

Author Dimensions of enterprise agility

Teece et al. [6] Dynamic capabilities:
Sensing - Identification, development, co-development, and assessment of
technological opportunities (and threats) in relation to customer needs (the “sensing”
of unknown futures)
Seizing - Mobilization of resources to address needs and opportunities and capture
value from doing so (“seizing”)
Transforming - Continued renewal (“transforming” or “shifting”)

Overby et al. [8] Sensing and responding capabilities:
Sensing environmental change – competitive market opportunities; evolving
conditions; environmental change
AND
Responding Readily – seize with speed and surprise; respond efficiently and
effectively

Doz et al. [7] Strategic meta-capabilities:
Strategic sensitivity: the sharpness of perception of, and the intensity of awareness of
and attention to, strategic development. Anticipating, experimenting, distancing,
abstracting, reframing
Leadership unity: the ability of the top team to make bold, fast decisions, without
being bogged down in top-level ‘win-lose’ politics. Dialoguing, revealing,
integrating, aligning, caring
Resource fluidity: the internal capability to reconfigure capabilities and redeploy
resources rapidly. Decoupling, modularizing, dissociating, switching, grafting

Beyond
Budgeting [22]

Leadership principles:
Purpose – Engage and inspire people around bold and noble causes; not around
short-term financial targets
Values – Govern through shared values and sound judgement: not through detailed
rules and regulations
Transparency – Make information open for self-regulation, innovation, learning and
control: don’t restrict it
Organisation – Cultivate a strong sense of belonging and organize around
accountable teams; avoid hierarchical control and bureaucracy
Autonomy – Trust people with freedom to act: don’t punish everyone if someone
should abuse it
Customers – Connect everyone’s work with customer needs; avoid conflicts of
interest
Management processes:
Rhythm – Organise management processes dynamically around business rhythms
and events; not around the calendar year only
Targets – Set directional, ambitious and relative goals: avoid fixed and cascaded
targets
Plans and forecasts – Make planning and forecasting lean and unbiased processes:
not rigid and political exercises
Resource allocation – Foster a cost-conscious mindset and make resources available
as needed; not through detailed annual budget allocations
Performance evaluation – Evaluate performance holistically and with peer feedback
for learning and development; not based on measurement only and not for rewards
only
Rewards – Reward shared success against competition; not against fixed
performance contracts

134 T. Karvonen et al.

distinguish it from the rise of the ‘agility’ terminology [6]. Consequently, in this paper
we use those two terms interchangeably, and when referring to agile software devel-
opment specifically then we are explicit about it. The business management literature
identifies four dimensions of agility: economic, organisational, operational and
strategic [21]. We consider these dimensions to be complementary and useful view-
points for analysing enterprise agility. The economic agility viewpoint has been
addressed, for example, in conjunction with theories for management of financial
buffers against demand uncertainties or external market shocks. The operational agility
viewpoint deals with aspects of manufacturing system flexibility, e.g. ability to adapt
the manufacturing system to different environmental conditions and a variety of pro-
duct features. Agile software development literature referenced by Laanti [20] captures
especially operational agility aspects related to software component development,
e.g. management of rapidly changing business requirements and iterative delivery
practices. The organisational agility viewpoint deals with models of organisation (e.g.
organisation of individuals and teams) and labour flexibility in rapidly changing
environment [21].

Business management literature views strategic agility through culture [19], lead-
ership [7] and dynamic capabilities [6] that enable an organisation to sense and seize
opportunities, manage deep business uncertainty and to be able to perform rapid
changes in the business environment. According to Toni et al. [21] strategic flexibility
(or agility) consists of four distinct categories: (1) speed and variation of the com-
petitive priorities, (2) range of strategic options, (3) rapidity of movement from one
business to another, and (4) variety of the possible new businesses.

Continuous business model renewal [7] and continuous business model ‘stress
testing’ [23] are considered as important elements of leadership processes related to
enabling enterprise agility. In addition to continuous evaluation of risks and uncer-
tainties related to the business model, Bowman et al. [23], Doz et al. [7] and Teece et al.
[6] have addressed the leadership role in conjunction with business model innovation
and ability to continuously evaluate opportunistically alternatives related to elements of
a business model [24]. Table 1 summarises their viewpoints on dimensions of agile
capabilities and leadership activities for enabling enterprise agility.

2.2 Organisational Culture

Schein [19] and Cameron et al. [13] have both addressed the impact of leadership in
conjunction with the evolution of an organisational culture. According to Schein [19]
leadership impacts largely on existing culture and is the key element for shaping the
new culture. Relationships between agile methods and culture have been investigated
also in various case studies [25, 26].

In this study we apply the Competing Values Framework (CVF) [13] to identify the
characteristics of agile culture, and to represent the existing organisational culture of
the case organisation. Figure 1 illustrates the CVF dimensions and four major culture
types: (1) the hierarchy culture, (2) the market culture, (3) the clan culture, and (4) the
adhocracy culture. According to Cameron et al. [13] most organisations have one or
two most dominating culture types and CVF allows the diagnosis of an organisation’s
cultural profile.

Enterprise Agility: Why Is Transformation so Hard? 135

Based on our brief review of papers that have applied CVF in agile software
development [27, 28], agility is typically associated with the ‘adhocracy’ culture, the
top-right quadrant of the CVF model [27] in Fig. 1. However, as far as we know, there
is no single preferred or idealistic profile for agile culture, because different organi-
sations and business situations require multiple different cultural traits to exist in
parallel for the organisation to be effective [26].

Organisational values, closely related to organisational culture, have often been
addressed in conjunction with agile methods. For example Beck and Andres [29] stated
that introducing Extreme Programming (XP) in organisations with values such as
“secrecy, isolation, complexity, timidity, and disrespect” is ineffective and moreover,
“will cause trouble rather than improvements”. Consequently, transformation towards
agile necessitates understanding of organisational values that are part of the organi-
sational culture. Organisational culture has often been identified as one of the main
challenges in adoption of agile values and principles. Consequently, organisations may
benefit from analysing the existing organisational culture even before they decide to
start their transformation journey towards agile [18].

2.3 Summary of Approaches for Achieving Enterprise Agility

This section summarises approaches for achieving large-scale enterprise agility as
described in related literature. Approaches are not exclusive and they may co-exist in
organisations.

Fig. 1. Competing Values Framework [13]

136 T. Karvonen et al.

Scaled Framework-Driven Approach (Incremental Diffusion of Operational
Agility). The scaled framework-driven approach achieves agility through incremental
adoption of agile methods and frameworks e.g. agile maturity models [30], agile
management frameworks and agile development methods (DSDM, AgilePM, SAFe,
Scrum, LeSS, Kanban, Scrumban etc.). These frameworks focus often on describing
operational aspects of the organisation, e.g. how to orchestrate development functions,
optimising flow value stream, and re-organising value creation activities and delivery
cycles. Olsson et al. [31] stated that software enterprise transformation is typically
initiated by individual R&D teams, that start exploring agile methods usage in
team-level activities. The next steps in transformation are characterised by increased
integration, and activities and interactions between verification and validation, pro-
gramme management and customer. Frameworks such as AgilePfM [15], SAFe [16]
and LeSS [17] aim to provide guidance on how to manage portfolios, projects and the
collaboration of multiple agile software development teams. However, as pointed out
by Paasivaara et al. [3] and Dikert et al. [2], empirical evidence on the validity of these
frameworks is largely missing.

Business-Driven Approach (Strategic Orientation Towards Agility). The business-
driven approach takes a business level viewpoint such as business model stress testing
[23] and continuous business model renewal [7, 32]. This could mean for example
strategic orientation towards leveraging state-of-the-art digital services and architec-
tures for doing business and/or continuously evaluating alternative revenue streams and
channels for deploying customer value. The main difference between this and the
‘scaled framework-driven approach’ is that rather than focusing on better-faster-
cheaper development i.e. ‘doing the thing right’, the business-driven approach views
agility more broadly through organisational strategy and business model flexibility i.e.
‘doing the right thing’. Doz et al. [7] pointed out that “many companies fail, not
because they do something wrong or mediocre, but because they keep doing what used
to be the right thing for too long, and fall victim to the rigidity of their business model”.
This viewpoint of agility is valid in particular for organisations in highly competitive,
non-regulated and global markets.

Sustainable Agility Approach (Cultural Orientation Towards Agility). The sus-
tainable agility approach addresses agility through a cultural understanding and ori-
entation in adoption of agile values for sustainable operational excellence. The link
between sustainable operational excellence, culture and agility has been addressed by
Carvalho et al. [18]. Continuous and sustainable aspects of transformation, have been
addressed also in conjunction with lean principles [14]. This approach focuses on
orientation towards a holistic viewpoint, sustainability and long-term objectives in
transformation. Organisational culture is seen as the main point of interest in planning
and orchestrating transformation activities. While this approach may leverage also
business- and framework-driven approaches in transformation they are seen as sec-
ondary to, for example, people’s behaviours and values that are appreciated in all
transactions for example with customers and between internal stakeholders. This
approach can be characterised by the notion that enduring enterprise agility is achieved
as a result of culturally aligned, highly motivated, and empowered people working
together towards a common cause, rather than as a result of business model renewal or

Enterprise Agility: Why Is Transformation so Hard? 137

adoption of an agile method or framework. Continuous business model renewal and
adoption of an agile framework are outcomes of transformation rather than causes of
enterprise agility.

3 Case Organisation and Study Design

The case organisation is large and distributed; it has approximately 9000 employees.
Organisational change in the case organisation involves many areas, such a new
strategy and various change programmes that are characterised by organisational
adaptability, agility and operational efficiency. In this paper, we focus on change
related to the design and development of curriculum elements (text, video, books etc.).
We define the unit of analysis as the module production process. Module production
activities involve multiple organisational units and stakeholders from academic fac-
ulties to media production functions. Module production can be considered as the
primary channel for delivering value to the organisation’s internal and external
stakeholders.

Data collection was carried out in a five-month period in 2017–2018, and included
meetings with managers in charge of module production and participation in
team-work sessions referred to as ‘agile discovery sprints’. In addition, internal reports
and plans were available, which provided a broader understanding of the research
context and evidence of the organisational strategy, culture, transformation actions and
objectives of the organisational transformation.

‘Agile discovery sprints’ work sessions took place between November and
December 2017. Agile discovery sprints involved 37 people from various module
production roles who had volunteered to study and experiment with agile methods use
in the organisation. Volunteers were assigned to five teams to explore how agile
development methods and principles could be applied in the module design and pro-
duction process. Teams were following the Google design sprints [33] for planning and
demoing findings within and between teams. Each team had a predefined theme/topic
related to agile methods and principles. Topics were: (1) AgilePM, (2) Scrumban,
(3) Kanban, (4) Agile Principles & Values, and (5) Agile Teams and Organisation.
People in these teams were empowered to make decisions related to how they worked
and what aspects they considered most interesting, e.g. most challenging or most
prominent approaches for increasing agility in the organisation.

Discovery sprints were facilitated by two agile change agents i.e. facilitators that
organised and coordinated agile discovery sprint activities, including inviting volun-
teers to participate, assignment of people in teams, and definition of topics for each
team. Facilitators were involved in each team’s sessions throughout the increment.
Facilitators made sure that teams were able to progress in their assigned themes and
they acted as agile coaches providing answers to questions related to agile methods and
principles. The chosen facilitators were also experts in module design and production,
and hence, they had good understanding of existing processes, organisational structures
and the main constraints. One of the facilitators was interviewed after the first
two-month increment. The semi-structured interview (of about an hour) focused on

138 T. Karvonen et al.

understanding the key impacts and results, challenges and lessons learned during the
discovery sprints.

Researchers (authors of this paper) participated altogether in 16 discovery sprint
sessions (each session lasted 1–2 h) and made field notes and took pictures and videos
that were further used in qualitative analysis [34]. Researchers also participated in team
activities and discussions both online and face-to-face. Hence, the researchers impacted
the outcomes of the working sessions. Each team used a Trello board for coordination
of the team’s tasks, communication and consolidation of working material, documents,
discussions and so on. All material in the Trello boards (such as cards and attachments)
were also used in the data analysis.

Thematic analysis [34] was applied in relation to the research question ‘What are
the challenges related to agile transformation in this case organisation?’ The analysis
proceeded in phases. After data collection, the first author of this paper performed a
consistent reading of all collected data and identified the main patterns related to
transformation challenges. These patterns (themes) were further validated by discussing
with other authors who also participated in data collection. CVF culture types (Fig. 1)
definitions were used as a lens for analysing aspects of organisational culture in the
case organisation and possible implications related to transformation challenges. In
addition to our empirical data, this analysis also drew on an internal report that had
been commissioned to characterise the organisation’s culture1.

4 Findings

The case organisation had recently launched a new strategy that emphasised ‘organi-
sational adaptability’ and ‘customer orientation’. Transformation urgency was justified
by increased competition and operational efficiency. A key part of the latter motivation
was a reduction in costs associated with module production. Hence, the enterprise agility
changes we investigated were focused mainly on internal operational agility improve-
ment (e.g. ‘doing the thing right’) rather than strategic orientation towards sensing and
seizing new business opportunities and threats (e.g. ‘doing the right thing’).

Considering the organisation’s culture, a complex organisational structure and
multiple management layers had created siloes and barriers between people working in
different units. Organisational culture was also characterised by ‘tribes’ that sometimes
had difficult and suspicious relationships. In this study organisational barriers could be
identified between the module production unit and content providers (one production
manager commented that “we worry about the buy-in from module teams… people
choose to attend or not”). Module design and production requires close collaboration
between curriculum content creation (e.g. learning modules) and colleagues whose role
it is to prepare materials for presentation, e.g. editing books, website design and
maintenance, processing of digital media content and management of budget and
quality of the production process. Facilitators’ and sprint volunteers’ comments

1 Internal report on characteristics of the case organisation’s culture. Report was made by external
consultants and it was based on data collected from staff surveys, and focus groups held between
2013–2015.

Enterprise Agility: Why Is Transformation so Hard? 139

throughout the collected data emphasised the organisation as ‘highly hierarchical’.
Hence, we consider the most dominant existing culture in the case organisation cur-
rently to be the hierarchy culture, i.e. bottom left in Fig. 1. Hierarchy culture was most
clearly manifested by existing strong reliance on defined processes, bureaucratic
management practices and organisational structures. The internal report on organisa-
tional culture had also indicated that many elements of bureaucratic processes char-
acterise the way of working in the case organisation.

Although the dominant culture was hierarchical, the culture report indicated the
existence of the ‘clan’ culture (top left in Fig. 1). Employees often bypassed formal
procedures and used their personal networks to get tasks done, which could indicate the
existence of underlying elements of the clan culture. Both clan and hierarchy cultures
indicate that the case organisation currently values stability, internal focus and inte-
gration more than external focus and flexibility. Although not part of the module
production process, several team members mentioned that some sub-units in the wider
organisation, such as IT, had already adopted elements of market and adhocracy cul-
ture. Consequently, although we could not find any concrete evidence of market and
adhocracy culture in our study, they might exist as sub-cultures in smaller units and
teams. Problems may however arise when these agile teams have to collaborate with
less agile hierarchical organisational units. We elaborate more on this problem in the
next section that focuses on transformation challenges.

4.1 Transformation Challenges

The most commonly-encountered transformation challenges referred to by team
members and facilitators are consolidated into four themes that we elaborate in this
section. The main challenge as we perceived in this study is related to the prevailing
hierarchical culture. A need for organisational transformation towards ‘adaptive
organisation and culture’ had been communicated the year before our study was
conducted, as one of the strategic objectives. Consequently, it has been largely initiated
as a top-down organisational activity. We could already see multiple top-down activ-
ities such as transformation programmes and people nominated in change management
positions. This is an indication of ‘command and control’ i.e. a prevalent top-down
approach for coordinating transformation. However, challenges related to Theme 1
(below) indicated that currently these top-down activities were not properly aligned and
coordinated.

The discovery sprint activity that we studied was a clear indication of an initiative to
enable also bottom-up activity for agile transformation. In CVF terms this would indi-
cate a transition towards an adhocracy culture. The main challenge, however, focuses on
how to enable a sustainable bottom-up activity in a prevalent hierarchy culture. We
believe that transformation towards an adhocracy culture would have to demonstrate
quickly both tangible improvements and a positive atmosphere among employees and
managers in all levels of the organisation. In addition, as highlighted by one of the
facilitators there is an urgent need for establishing an ‘organisational brain’ i.e. a learning
repository - a community and body of knowledge that is able to keep a record of
innovations and best practices related to agile transformation: “When you talk to people,
tacitly there is loads and loads of knowledge there, but we are not leveraging it”.

140 T. Karvonen et al.

Online tools and communities were considered as important enablers for establishing
this kind of activity. We identified the following challenges related to organisational
transformation in the case organisation:

Theme 1: Synchronising Separate Change Programmes and Activities. Although
the case organisation had already launched multiple activities related to new tools and
processes that would help it to become more agile, these activities needed a stronger
top-down effort for synchronisation, alignment and continuous sharing of learnings and
best-practices. “Current organisation has not been ready for the way we orchestrate
change activities to work together. The governance has not been in place”.

Theme 2: Leveraging Incrementally Both a Bottom-Up Approach and Knowledge
from Local Experts in the Transformation. ‘Experimental test and learn’ and ‘scale
up incremental’ approaches were considered to be important in order to enable the
transformation to have a sustainable change effect in the organisation. However, as
noted in our data, senior management was expecting a faster schedule and action plan,
that would indicate a hastier ‘big bang’ approach in transformation. Consequently, one
of the main challenges is to align the top-down (hasty) and bottom-up (slow) trans-
formation approaches.

Theme 3: Establishing Long-Lasting Module Production Team Structures, Agile
Roles and Empowerment of Teams. Discovery sprint session results indicated that
the current organisational structure was based largely on functional siloes i.e. different
production specialists, content providers, infrastructure and support units were all
operating rather independently. Module design and production requires a co-operation
between multiple units. Hence, current ways of working were considered to have
multiple operational disadvantages such as waiting, bureaucracy and overproduction of
the content. Cross-functional longer-lived team structures were considered as a potential
solution for the problem. Agile methods such as AgilePM, Scrum, Kanban and
Scrumban outline guidelines, however adapting their practices and terminology to
non-IT module production was considered to be challenging. The most acute problems
were related to which agile method to adopt, how to form teams, how to redefine old
roles and define new roles and how to ensure empowerment of teams. A prevailing
hierarchical culture also caused challenges to enable empowerment of people and teams.

Theme 4: Adoption of the Mentality for Continuous Product Improvements and
Minimum Marketable Products in Module Design and Production. Several dis-
covery sprint team results indicated that the existing way of working was considered to
emphasise effort and resources that were used for creating the first version of the
module, i.e. maintenance and change beyond the initial version was difficult. This
approach was considered to be generally too slow and expensive. Transformation
towards an agile organisation was considered to require shorter increments and faster
delivery that would leverage module experimentation and increased use of customer
feedback. In addition, content structure would have to increasingly support modularity
and re-use. Challenges were identified in the definition of quality criteria, referred to
also as ‘good enough’, in order for the ‘cheaper and faster’ operational target to not
jeopardise quality of the modules and customer experience.

Enterprise Agility: Why Is Transformation so Hard? 141

5 Limitations and Future Work

The main limitation of our current study is that the level of understanding of this
organisation’s transformation and culture is focused on the module production process.
As this is the unit of analysis, we have so far not identified activities related to business
model renewal; this is for a later stage in the project. Such a study may require several
years to provide a reliable and accurate picture of the case organisation. On the other
hand, agile transformation could be a long-term journey that has multiple phases and
stages of adoption. We intend to continue the study by using elements of an ethno-
graphic research approach [35]. In addition we are planning to use the Organisational
Culture Assessment Instrument (OCAI) [13] for diagnosing the organisational culture
profiles of CVF with different sub-units and roles in the organisation.

A second limitation of this study is that we have not yet captured senior level
management viewpoints in this investigation. Consequently, it could be highly
appropriate to investigate how senior management perceives the transformation and the
organisational culture. Earlier studies by Cameron et al. [13] have indicated that
sometimes the top management team has different perceptions of the culture. Moreover,
understanding how top management perceives the ideal future culture would provide
further insight.

In terms of the reliability of the findings we consider that our findings are still
preliminary. The current number of actors (*40 people) who participated in this
research is rather moderate. Consequently, we aim to extend the research by incor-
porating semi-structured interviews from different sub-units and roles. We consider that
preliminary findings reported in this paper are a useful baseline for planning the
ongoing investigation.

6 Discussion and Conclusion

Our research objective was to explore challenges related to transformation towards
enterprise agility. Our empirical findings indicated especially change coordination as a
main challenge in the case organisation. As suggested by related earlier studies [36],
successful large-scale transformation necessitates coordination as well as unanimous
buy-in from leaders in top- and middle levels of the organisation. As part of data
collection, we participated in discovery sprint sessions that aimed to enable experi-
mental, bottom-up aspects of transformation. Paasivaara et al.’s [3] case study indicated
that the experimental transformation approach was applied also in Ericsson’s agile
transformation. Based on our findings, we believe that consistent use of agile discovery
sprints practice can help the case organisation significantly to change staff mindsets and
organisational culture. Moreover, an ‘agile way of implementing agile’, as suggested
by earlier studies [2, 3], can increase the likelihood of a successful and sustainable
transformation. However, in parallel, organisations must also sustain a certain level of
control and coordination, so that bottom-up innovation and creativity are not only tacit
but commonly shared knowledge that can benefit other units in the organisation.

In addition, we reviewed definitions of enterprise agility from management liter-
ature and summarised approaches for achieving organisational agility. Our brief

142 T. Karvonen et al.

literature review has indicated that definitions of enterprise agility can involve multiple
different viewpoints that may be useful from an empirical research point of view (e.g.
economic, strategic, organisational and operational). In addition, we’ve noticed that
enterprise agility transformation journeys can take multiple different routes and have
multiple different goals. We believe that future research, especially on large-scale agile
software development, could use these particular lenses for analysing transformation
activities. Earlier studies on agile methodologies and frameworks have largely focused
on describing operational aspects of agility such as product development and delivery
processes. Existing empirical studies [2] of large-scale agile have indicated challenges
related to lack of strategic investments and an inability to change culture and leadership
behaviour. Consequently, we believe that focusing on, for example, organisational
culture and strategic agility lenses could provide more in-depth knowledge on how to
mitigate and overcome these challenges and how to evaluate risks associated with
large-scale transformation.

To summarise our findings for practitioners, there are multiple dimensions related
to enterprise agility as well as various ways to transform. Agile change can focus on
operational, strategic or cultural aspects of agility, however, holistic transformation
towards enterprise agility necessitates a very sophisticated and unique interplay of all of
these elements. Hence, existing recommendations (i.e. practices, models, tools and
frameworks) related to effective change management, such as [37, 38] need to be
supplemented for an agile transformation context.

This paper has addressed contemporary challenges related to transformation to
‘enterprise agility’ in a large organisation in the higher education domain. Enterprise
agility transformation is so hard because it requires many different considerations
(lenses) to be applied all at once. Moreover, the size of the organisation increases the
difficulty of the transformation. Our challenges relate to leadership, organisational
culture, and integration of the different perspectives that have to be taken into account.
We suggest that current enterprise agility frameworks need to look towards aspects of
these other lenses if successful transformation is to be achieved. In our experience,
organisational culture frameworks such as CVF can help researchers and practitioners
to articulate cultural traits and define transformation direction and objectives related to
adoption of agile values and mindset.

Acknowledgements. We would like to thank all our collaborators. This work was supported by
The Agile Business Consortium (www.agilebusiness.org).

References

1. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation.
Empir. Softw. Eng. 23, 490–520 (2017)

2. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

3. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile transformation
at Ericsson: a case study. Empir. Softw. Eng. 1–47 (2018)

Enterprise Agility: Why Is Transformation so Hard? 143

http://www.agilebusiness.org

4. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

5. Bosch, J.: Continuous software engineering: an introduction. In: Bosch, J. (ed.) Continuous
Software Engineering, pp. 3–13. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11283-1_1

6. Teece, D., Peteraf, M., Leih, S.: Dynamic capabilities and organizational agility: risk,
uncertainty, and strategy in the innovation economy. Calif. Manag. Rev. 58, 13–35 (2016)

7. Doz, Y.L., Kosonen, M.: Embedding strategic agility: a leadership agenda for accelerating
business model renewal. Long Range Plann. 43, 370–382 (2010)

8. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the enabling role of
information technology. Eur. J. Inf. Syst. 15, 120–131 (2006)

9. Beyond Budgeting Institute: Beyond Budgeting Institute - the adaptive management model.
https://bbrt.org/

10. Humble, J., Molesky, J., O’Reilly, B.: Lean Enterprise: How High Performance Organi-
zations Innovate at Scale. O’Reilly Media, Inc., Sebastopol (2015)

11. Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed organization: a
case study. In: 2016 IEEE 11th International Conference on Global Software Engineering
(ICGSE), pp. 74–83. IEEE (2016)

12. Maples, C.: Enterprise agile transformation: the two-year wall. In: 2009 Agile Conference,
pp. 90–95. IEEE (2009)

13. Cameron, K.S., Quinn, R.E.: Diagnosing and Changing Organizational Culture: Based on
the Competing Values Framework. Jossey-Bass, San Francisco (2011)

14. Poppendieck, M., Cusumano, M.A.: Lean software development: a tutorial. IEEE Softw. 29,
26–32 (2012)

15. Agile Business Consortium: Agile Portfolio Management. Agile Business Consortium
Limited, Ashford (2017)

16. Scaled Agile Inc.: Scaled Agile Framework – SAFe for Lean Enterprises. http://www.
scaledagileframework.com/

17. The LeSS Company B.V.: Overview - Large Scale Scrum (LeSS). https://less.works/
18. Carvalho, A.M., Sampaio, P., Rebentisch, E., Carvalho, J.Á., Saraiva, P.: Operational

excellence, organisational culture and agility: the missing link? Total Qual. Manag. Bus.
Excell. 1–20 (2017)

19. Schein, E.H.: Organizational Culture and Leadership. Jossey-Bass, San Francisco (2010)
20. Laanti, M., Similä, J., Abrahamsson, P.: Definitions of agile software development and agility.

In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364,
pp. 247–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8_22

21. Toni, D.A., Tonchia, S.: Definitions and linkages between operational and strategic
flexibilities. Omega 33, 525–540 (2005)

22. Beyond Budgeting Institute: The 12 Beyond Budgeting principles - see the list here. https://
bbrt.org/the-beyond-budgeting-principles/

23. Bouwman, H., Heikkilä, J., Heikkilä, M., Leopold, C., Haaker, T.: Achieving agility using
business model stress testing. Electron. Mark. 1–14 (2017)

24. Teece, D.: Business models, business strategy and innovation. Long Range Plann. 43, 172–
194 (2010)

25. Strode, D.E., Huff, S.L., Tretiakov, A.: The impact of organizational culture on agile method
use. In: 2009 42nd Hawaii International Conference on System Sciences, pp. 1–9. IEEE
(2009)

26. Robinson, H., Sharp, H.: Organisational culture and XP: three case studies. In: Agile
Development Conference (ADC 2005), pp. 49–58. IEEE Computer Society (2005)

144 T. Karvonen et al.

http://dx.doi.org/10.1007/978-3-319-11283-1_1
http://dx.doi.org/10.1007/978-3-319-11283-1_1
https://bbrt.org/
http://www.scaledagileframework.com/
http://www.scaledagileframework.com/
https://less.works/
http://dx.doi.org/10.1007/978-3-642-39179-8_22
https://bbrt.org/the-beyond-budgeting-principles/
https://bbrt.org/the-beyond-budgeting-principles/

27. Iivari, J., Iivari, N.: The relationship between organizational culture and the deployment of
agile methods. Inf. Softw. Technol. 53, 509–520 (2011)

28. Muller, S.D., Ulrich, F.: The competing values of hackers: the culture profile that spawned
the computer revolution. In: 2015 48th Hawaii International Conference on System Sciences,
pp. 3434–3443. IEEE (2015)

29. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. The XP Series,
2nd edn. Addison-Wesley, Boston (2004)

30. Wendler, R.: Development of the organizational agility maturity model. In: Proceedings of
the 2014 Federated Conference on Computer Science and Information Systems, pp. 1197–
1206 (2014)

31. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to heaven” - a mulitiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: 2012 38th EUROMICRO Conference on IEEE Software
Engineering and Advanced Applications (SEAA), pp. 392–399 (2012)

32. Helaakoski, H., Iskanius, P., Peltomaa, I., Kipina, J.: Agile business model in the steel
product industry sector. In: 2006 IEEE International Conference on Management of
Innovation and Technology, pp. 1010–1014. IEEE (2006)

33. Google: The Design Sprint — GV. http://www.gv.com/sprint/
34. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101

(2006)
35. Sharp, H., Dittrich, Y., de Souza, C.R.B.: The role of ethnographic studies in empirical

software engineering. IEEE Trans. Softw. Eng. 42, 786–804 (2016)
36. Nightingale, D.J., Srinivasan, J.: Beyond the Lean Revolution Achieving Successful and

Sustainable Enterprise Transformation. American Management Association, New York
(2011)

37. Kotter, J.P.: Sense of Urgency. Harvard Business Press, Boston (2008)
38. Manns, M.L., Rising, L.: Fearless Change: Patterns for Introducing New Ideas. Addison-

Wesley, Boston (2005)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Enterprise Agility: Why Is Transformation so Hard? 145

http://www.gv.com/sprint/
http://creativecommons.org/licenses/by/4.0/

Technical and Organizational Agile Practices:
A Latin-American Survey

Nicolás Paez(&) , Diego Fontdevila , Fernando Gainey ,
and Alejandro Oliveros

Universidad Nacional de Tres de Febrero, Caseros, Argentina
nicopaez@computer.org,

{dfontevila,fgainey,aoliveros}@untref.edu.ar

Abstract. Background: Agile Software Development is widely used nowadays
and to measure its real usage we need to analyze how its practices are used.
These practices have been categorized by several authors and some practitioners
have suggested that technical practices have a lower usage level than organi-
zational practices. Objective: In this study we aim to understand the actual usage
of technical and organizational agile practices in the Latin-American Agile
community. Method: We conducted a three-stage survey in conferences of the
Latin-American Agile Community. Results: Organizational practices are much
more used than technical ones. The number of practices used is a direct function
of organization experience using agile. The difference between technical and
organizational practices reduces with the experience of the organization using
agile. Team size and project duration seem to have no effect in the number of
practices used.

Keywords: Agile practices � Practices categories � Practices usage

1 Introduction

Agile Software Development is now mainstream and as usual with mainstream there is
so much marketing and buzzwords around it that it is not easy to understand what is
really happening. There is so many people talking and writing about agile, but what is
really happening? what are practitioners really doing?. Agile is a mindset and like any
mindset is abstract and sometimes difficult to understand. So to have a usage measure
we focus our study on practices since they are a concrete way to obtain evidence about
the actual way software development is performed.

In the context of software development, practices can be categorized into technical
and organizational. This categorization has been applied by researchers and practi-
tioners, although it takes slightly different forms: Meyer uses technical and
organizational/managerial [1] while Pantiuchina et al. use speed and quality [2]. A right
balance between technical and organizational practices seems reasonable, given that
technical practices support product quality and effectiveness, while organizational
practices in general affect cost, schedule and team sustainability. Projects severely
lacking in any of these two aspects are more likely to fail (Chow et al. identify
engineering practices as one of the three main success factors in agile projects [3]).

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 146–159, 2018.
https://doi.org/10.1007/978-3-319-91602-6_10

http://orcid.org/0000-0002-0453-4259
http://orcid.org/0000-0002-6786-3404
http://orcid.org/0000-0002-4885-1723
http://orcid.org/0000-0002-2251-9052
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_10&domain=pdf

Furthermore, cost-effectiveness might probably depend heavily on a balanced approach
taking into account costs, quality and productivity. Popular approaches like CMMI and
Scrum promote adoption paths that start with organizational practices. CMMI Level 2
focuses on project management, while Level 3 brings in more technical process areas,
such as Product integration, Technical solution, Validation and Verification [4]. Scrum
does not include any technical practices, but Scrum teams are encouraged to add
technical practices as they evolve their process. This approach makes sense from an
organic maturation perspective, but risks incomplete implementations. We believe that
is why some technical practices, like Software Configuration Management, are con-
sidered hygienic and non-negotiable by mature teams (in CMMI SCM is a Level 2
Process Area).

Some authors suggest that in companies that claim to be agile, organizational
practices are more used than technical practices. In 2009 Martin Fowler coined the term
Flaccid Scrum [5] to refer to those projects that embrace Scrum but without paying
attention to technical practices, which after a while turns their code base into a mess.

More recently Joshua Kerievsky described a similar situation: adoption of agile
practices leaving out technical practices [6]. Our motivation for this study is based on
our own experience as practitioners and the preceding discussions about the perception
that technical practices are not widely used.

The overall research questions that guide our study are:

• Q1: What is the usage rate of practices in actual software development projects?
• Q2: Is there any difference between the usage rate of technical and organizational

practices?

By usage rate we mean the number of projects that make regular use of a practice over
the total number of projects. We focused on projects developed by practitioners in the
Latin-American Agile community, because our own experiences as members of this
community motivated us to better understand it, and because it allowed us to reach
industry practitioners.

The rest of the paper is organized in the following way: Sect. 2 mentions related
work, Sect. 3 explains how we carried our study, Sect. 4 presents our results and
findings, Sect. 5 lists the possible threats to the validity and finally Sect. 6 presents
conclusions and future work.

2 Related Work

There are several studies focused on agile practices and their actual adoption in industry,
and studies that focus on methods but also assess practices. We explicitly exclude studies
dealingwith the specifics of each practice, since that is beyond the scope of this work. The
advantage of practice-focused research is that it allows finer grained study of actual
software development processes beyond the overall process framework or method. For
example, the HELENA Survey is an initiative that focuses on hybrid development
methods, i.e. it mixes agile and non-agile practices, and as such, it covers a wide spectrum
of practices, from full agile to traditional approaches [7, 8].

Technical and Organizational Agile Practices 147

Diebold et al. have studied what practitioners vary when using Scrum [9], their
results show that very few, only one out of ten of the companies studied, actually
perform most of the practices that make up Scrum “by the book”. This resonates with
our experience and results, since Scrum is a simple framework with few practices and
still not all its practices have the same level of adoption. The authors note that the daily
scrums are more widely used than retrospectives.

There are several studies on regional agile communities of practice. A study of the
Spanish agile community, also conducted during an Open Space agile conference,
produced results very similar to our own, and it also included a comparison with the
state of practice of several European organizations [10]. The study involved approxi-
mately 100 participants.

In Brazil, a more general study on the historical evolution of the agile community
included both academia and industry, but did not analyze specific practices [11]. Also
in Brazil, Melo et al. have published a technical report with the results of a survey on
agile methods that includes information on practices usage, but the list of practices
covered is different from ours [12].

Kropp et al. [13] have conducted the Swiss Agile Survey for several years, and
their results show that agile practice adoption grows with agile experience, which is
consistent with our own results [14, 15].

Industry surveys also show significant differences in practice adoption [16–18]. For
example, Ambler’s online survey, based on 123 online responses, shows TDD as the
hardest to implement agile practice [16], which is consistent with its very low level of
adoption in our studies.

Several studies have also focused on practice categorization. Bertrand Meyer
categorizes agile practices in technical and organizational in his extensive review of
agile [1]. Pantiuchina et al. distinguish between speed and quality practices, roughly
matching our categorization of organizational and technical practices [2]. Kropp et al.
distinguish between technical and collaborative practices (they also differentiate a few
advanced practices, like limited work in progress and BDD) [13]. Their categorization
also roughly matches our own, with their collaborative category corresponding to our
organizational one.

Some practices are consistently categorized across studies, but some are catego-
rized differently by different researchers. For example, Meyer considers Continuous
Integration to be organizational, while we regard it as technical, same as Kropp et al.
On the other hand, Kropp et al. consider the Burndown chart to be a technical practice,
while we would consider it organizational. In general, there is no explicit criteria set
forth by authors for practice categorization (Table 1).

Considering empirical studies on success factors, Van Kelle et al. found that the
level of practice adoption, value congruence and transformational leadership were the
most significant predictors of project success [19]. Chow et al. have identified agile
software engineering techniques, delivery strategy and team capability as the top three
critical success factors [3]. Aldahmash et al. have used technical and organizational
(and also people and process) as categories for critical success factors in agile software
development [20].

148 N. Paez et al.

Finally, the partial results of the first two stages of our work were presented in the
Argentinean National Congress of Systems Engineering [14, 15].

3 Methodology

In this section we present the methodology applied, the study description, our working
definition of the technical and organizational categories, and the criteria applied to
categorize practices.

3.1 Technical and Organizational Categorization

As we have discussed, the distinction between technical and organizational practices
and the hypothesis of their different rates of adoption were the initial drivers of our
research.

To classify practices, we have applied the following criterion: is a given practice
specific to software projects or could it potentially be used in other contexts?
Accordingly, we can distinguish between those practices that are specific to software
projects, regarded as “technical practices”, and those that are not specific to software
projects and that can be used in other kinds of projects, regarded as “organizational
practices”. We called the latter group “organizational” because they deal with how
people organize and coordinate their activities. By applying these criteria, the following
classification emerged:

• Technical Practices: Continuous Integration, Emergent Design, Pair Programming,
Test Automation and Test-Driven Development.

• Organizational Practices: Frequent Release, Iterative Process, Retrospectives,
Collective Ownership and Self-Organization.

In most cases, the criterion allowed us to assign a category without ambiguity, but in
the case of Collective Ownership, also known as Collective Code Ownership, the
reference to “code” presented a challenge. It deals with code ownership (i.e. who can
modify which parts of the code), not with the actual modification of the code. The
purpose of the practice is to reduce the concentration of knowledge about certain
components, thus making the team more robust and less dependent on any single
person (a popular informal metric, the team’s “truck number” or “truck factor” high-
lights this purpose). This led us to a corollary criterion: when in doubt, focus on the
practice’s purpose over form. Table 2 shows the rationale for our categorization.

Table 1. Practice categorization overview.

Categories Meyer Kropp Pantiuchina

Technical Technical Technical Quality
Non-technical Organizational (Managerial) Collaborative Speed

Technical and Organizational Agile Practices 149

3.2 Study Description

We organized our study in three stages. In each stage we followed the same
methodology, that is: we identified a set of practices to study, we designed a ques-
tionnaire to survey practices’ usage and we ran the survey in a conference organized by
the agile community. In each stage we extended the number of practices under study
and based on that we updated the questionnaire to include new questions and also the
feedback obtained in the previous stage.

We focused our study on core agile practices. To identify those practices, we
considered 4 main sources: the agile manifesto [21], the book Agile! by Bertrand
Meyer [1], the work of Alistair Cockburn [22] and our own experience. Alistair
Cockburn is one of the authors of the agile manifesto and is very involved in the agile
community. On the other hand, Meyer is a well-known academic and engineer with an
extensive experience far beyond agile. We consider this mix of sources a good balance
in order to develop an objective analysis.

In Stage 1 we selected six practices: Continuous Integration, Frequent Release,
Iterative Process, Retrospectives, Test Automation and Test-Driven Development.

In Stage 2 we extended the list of practices to eight by adding: Coding Standards
and Self-Organization.

Finally, in Stage 3 we extended the list to ten practices: we added Pair-
Programming, Emergent Design and we removed Coding Standards because we con-
sider it to be a very common practice nowadays even beyond agile contexts and we
added Collective Ownership, which we consider a more significant practice and more
aligned with agile principles like shared responsibility and self-organization.

Table 2. Practice categorization and rationale.

Practice Category Rationale

Continuous
integration

Tech Continuously integrated software version is verified
automatically, by tests and static analysis

Emergent design Tech Design decisions about the product are software specific
Pair
programming

Tech Programmers write and review software in pairs with the
purpose of improving code quality and shared knowledge

Test automation Tech Automated tests are software created to verify other
software under test

Test-driven
development

Tech Is a very precise method for developing software

Collective
ownership

Org Determines that any developer may modify any part of the
code base, promoting team robustness. The goal is to ensure
that no one person becomes a bottleneck for changes

Frequent release Org Completed work is frequently delivered to end users to
obtain feedback and maximize value

Iterative process Org The final product is created by successive refinements
Retrospectives Org The team meets periodically with the purpose of reflecting

and committing to improving the process
Self-organization Org Team members are responsible for assigning themselves

tasks and managing their process

150 N. Paez et al.

In this article we present the results of the final and third stage of our study. In this
stage we ran our survey in the context of Ágiles 2017, the Latin-American Agile
Conference [23]. Table 3 shows the contextual information of each stage of our study.

In every case we ran the survey in person, that is: we attended the conference and
asked each person to complete the survey. When asking someone to complete the
survey we explained that all answers should be based on one project that met that
following criteria:

• The project should be representative of the organization
• It should be a project in which the person had been actively involved
• It should be a recent project, that means the project should have been completed

within the past year

We implemented the questionnaire simultaneously in paper and online (using Google
forms) allowing the respondents to pick the format they preferred. In order to simplify
the processing of the answers, once the conference was over we loaded all the answers
through the online questionnaire. Once we had all the answers in the online ques-
tionnaire we exported them to a spreadsheet to continue with the data analysis.

In this third stage we distributed 150 paper copies of the questionnaire, many of
which we waited around for people to complete. We obtained 80 responses out of these
paper questionnaires, 2 of which were incomplete and were excluded. We also pro-
moted around the conference a link to the online questionnaire. We obtained only 31
online responses, but 2 of them were discarded when we confirmed they belonged to
duplicated projects. The resulting total number of valid responses was 107.

In all cases the questionnaire was divided into 2 main sections: the first one tar-
geting demographic information and the second one targeting practices. For each
practice under study we included 2 questions: a direct question and a validation
question.

Figure 1 shows the direct question for the retrospective practice while Fig. 2 shows
the corresponding validation question.

Table 3. Comparison of the 3 stages of the study.

Property Stage 1 Stage 2 Stage 3

Conference Agile Open
Camp 2016

Agile Open
Camp 2017

Ágiles 2017

Location Bariloche,
Argentina

Cajón del Maipo,
Chile

Santiago de Chile,
Chile

Data points collected after
depuration

44 49 107

Date March 2016 May 2017 October 2017
Participants in the
Conference

98 79 *800

Number of practices under
study

6 8 10

Technical and Organizational Agile Practices 151

It is worth mentioning that although the questions shown in Figs. 1 and 2 are in
English, the whole survey was written in Spanish.

4 Results and Findings

In this section we present the study results and relevant findings.

4.1 Demographics

In Fig. 3 we can observe that there is a balanced mix of technical and non-technical
people. We consider technical roles to be those of developer, architect and tester. We
consider non-technical roles to be those of product owner, scrum master, agile coach,
project leader, analyst and manager.

Do you do Retrospectives?
• Yes
• No
• No, but we have another mechanism to detect improvement opportunities
• Don’t know / don’t answer

Fig. 1. Direct question

How frequently do you do Retrospectives?
• We don’t do retrospectives
• Everyday
• Every week
• Every 2 weeks
• At the end of each phase of the project
• At the end of the project
• Other (please specify):

Fig. 2. Validation question

Fig. 3. Roles of respondents

152 N. Paez et al.

Figure 4 shows personal and organizational experience using agile. It is worth
mentioning that over 40% of respondents belong to organizations with more than 3
years of experience with agile while over 50% belong to organizations with less than 3
years. Regarding personal experience, 50.4% of respondents report more than 3 years
of experience with agile. The coincidence between personal and organizational expe-
rience suggests that many respondents were motivated change agents (they attended an
agile conference) and promoted agile in their organizations from the beginning.

For project characteristics, Figs. 5 and 6 show team size and project duration
information, in both cases the responses are varied and most of them are consistent with
standard agile recommendations.

Fig. 4. Experience using agile

Fig. 5. Team size

Technical and Organizational Agile Practices 153

As sources for their agile knowledge, most respondents (86%) report to have
learned about agile on their own, 63% report to have learned in private courses, and
only 15% report to have learned about agile as part of their formal education. This
question was a multiple-option one, that is why the total exceeds 100%.

Respondents reside in Chile (48.6%) followed by Argentina (17.8%), Colombia
(12.1%), Peru (8.4%), Ecuador (4.7%),México (3.7%), Uruguay (2.8) and others (1.9%).

Regarding the reference method, Scrum is the most used one (60%), followed by
Scrum in combination with Extreme Programming (17.8%), Kanban (9.3%), Extreme
Programming (2.8%) and others combinations (10.1%).

4.2 Ranking of Practices

Table 4 presents the ranking of practice usage. There are four practices with a usage
rate over 60% and all of them are organizational practices. At the same time, the
technical practice with higher usage rate is Test Automation with 60%. All other
technical practices have a usage rate below 50%.

Fig. 6. Project duration

Table 4. Raw ranking of practice usage.

Practice % usage Category

Iterative process 83 (89/107) Organizational
Frequent release 83 (89/107) Organizational
Retrospectives 71 (76/107) Organizational
Self-organization 63 (67/107) Organizational
Test automation 60 (64/107) Technical
Emergent design 44 (47/107) Technical
Continuous integration 38 (40/107) Technical
Collective ownership 38 (40/107) Organizational
Pair programming 35 (37/107) Technical
Test-driven development 20 (21/107) Technical

154 N. Paez et al.

When doing the calculation to create the ranking of practice usage we found
interesting situations worth mentioning here:

• Test-Driven Development is the least used practice with just 20%, but there is an
additional 28% of respondents that reported that “someone in their teams does
Test-Driven Development”. We didn’t consider these answers when calculating the
ranking because our unit of study is the project and having someone in the project
practicing Test-Driven Development is not enough for us to consider Test-Driven
Development a project practice.

• Iterative process is one of the top practices in our ranking with 83% of usage. In
most cases (74.8%) the iteration length is 2 weeks.

• Test Automation is used by 60% of respondents but it is interesting to note that
there is an additional 22% of respondents that reported to have outdated automated
tests. That is: they have automated tests that are rarely updated when the features
under test are changed. We didn’t consider these cases for the calculation of the
ranking because outdated tests do not add value.

• Collective Ownership is used by 38% of respondents, but we found that an addi-
tional 28% answered “No” or “Don’t know/Don’t answer” when asked “Does your
team use the Collective Ownership practice?”. At the same time that same group
reported that any team member was able to modify any part of the code of the
project, which is the core idea of the Collective Ownership practice. This situation
leads us to think that this portion of respondents may be using the practice even
though they do not know it by name. This additional 28% would round the total
usage of Collective Ownership to 66% which would position this practice in the top
section of the ranking together with the rest of the organizational practices.

• Retrospectives are used by 71% of respondents, but an additional 12% answered
that they performed retrospectives “At the end of each project phase”. Given that a
phase can be an arbitrary long period, we cannot establish cadence so we did not
consider these answers as following the standard practice. It is interesting that
including these answers would rank Retrospectives at 83%, the same usage rate as
the top ranked practices, Iterative Process and Frequent Release.

4.3 Quartile Analysis

The average number of practices used when considering the whole sample is 5.5, but
when performing a drill-down analysis considering the different quartiles we observed
some interesting findings. The higher the number of practices used, the more balanced
the relationship between technical and organizational ones. In the first quartile this
relationship is 1 to 4.4, that is, 1 technical practice is used every 4 organizational
practices. The same relationship decreases to 1.2 in the fourth quartile (Table 5).

Technical and Organizational Agile Practices 155

4.4 Factors Influencing Practice Adoption

In order to understand the factors influencing the adoption of practices we consider 4
items: organizational experience using agile, team size, project duration and reference
methods used.

We didn’t observe any relationship when analyzing the number of practices used
and the team size and project duration.

We did find a possible relationship between the count of practices in use and the
organizational experience. As shown in Table 6 the count of practices tends to increase
with the organizational experience with Agile. This result is consistent with some other
studies [13, 14].

We also found a possible relationship between the count of practices and the reference
method used. Those projects based on Scrum in combination with XP use in average 6.5
practices while those using just Scrum, use 5. This situation can be explained because of
the set of practices under study and the focus of each method. Scrum is a purely orga-
nizational process framework, whereas XP is a balanced technical/organizational
method. Also, in our set of practices, 4 out of 10 (all organizational) practices are
described in Scrum, while 9 out of 10 practices are described in XP.

When analyzing the respondents using Test-Driven Development, the least used
practice, we see that the average number of practices is 7.5. At the same time, when
doing the same analysis for Frequent Release and Iterative Process, the most used
practices, we see that the average number of practices are 5.7 and 5.8 respectively. This
situation suggests that Test-Driven Development could be considered a “late adoption
practice” while Frequent Release and Iterative Process could be considered as “early
adoption practices”. Another possible interpretation could be that Frequent Release and
Iterative Process represent a better benefit/cost relation than Test-Driven Development.

Table 5. Quartile analysis.

Quartile Avg practices
used

Avg org practices
used

Avg tech practices
used

Org/tech practices
used

1 2.9 2.6 0.59 4.41
2 4.7 3.4 1.2 2.83
3 6.0 3.7 2.3 1.61
4 8.3 4.5 3.7 1.22

Table 6. Average practice usage vs organizational agile experience.

Organizational experience using agile Average practices used

Less than 1 year 4.4
Between 1 and 3 years 5.1
Between 3 and 10 years 6.0
More than 10 years 7.0

156 N. Paez et al.

Frequent Release and Iterative Process are easier to implement than Test-Driven
Development and at the same time are more visible and with greater/direct impact than
Test-Driven Development.

5 Threats to Validity

Our study of the Latin-American Agile Community is based on a survey filled by
practitioners that attended a conference, it is the most important conference of the
community but entrance is open so the attendants may not be strict representatives of
the community.

The gathered information is based on the perception of the respondents about the
projects they were involved in.

The sample was not random, we asked attendants to complete the survey in person
in the opening of some sessions.

From a regional perspective we lack data points covering the Brazilian community.
The categorization has been performed by other authors in the past with different

results, that is, there is no agreed upon criteria for practice categorization.

6 Conclusions and Future Work

Organizational practices show a much higher rate of usage than technical practices.
This situation has been confirmed in the three stages of our study [14, 15]. Also, as the
number of used practices increases, the relationship between technical and organiza-
tional practice usage becomes more balanced.

The number of practices used is a direct function of organization experience. At the
same time the difference between the technical and organizational practices decreases
with organization experience. Team size and project duration seem to have no effect.
This is consistent with the generalized community perception that agile, although
apparently simple at first sight and appealing for many organizations, requires long
term commitment to improvement.

In future work we will explore the reasons for this difference in the usage rate of
technical vs organizational practices. We suspect there may be some factors related to
formal education since the percentage of respondents with formal agile education is
very low (15%). We also tend to see technical practices ignored in agile training sought
by customers and adoption programs in industry. We recommend more balanced
approaches, with simpler technical practices like continuous integration as good can-
didates for initial adoption.

This research is conducted as part of a larger research project on process and
practice usability. We consider processes and practices as tools that people use to
organize and define their activities, and usability characterizes good interactions
between people and their tools. Future research could analyze if usability factors may
be influencing the rate of usage for each practice [24].

Technical and Organizational Agile Practices 157

This study has focused on core/traditional agile practices and it could be interesting
to study if the findings of this work apply also to newer practices like continuous
delivery and specification by example.

References

1. Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer, New York (2014). https://
doi.org/10.1007/978-3-319-05155-0

2. Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P.: Are software
startups applying agile practices? The state of the practice from a large survey. In:
Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp. 167–183.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_11

3. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects.
J. Syst. Softw. 81(6), 961–971 (2008). https://doi.org/10.1016/j.jss.2007.08.020

4. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI® for Development, Version 1.3.
Addison-Wesley Professional (2011)

5. Fowler, M.: Flaccid Scrum. https://martinfowler.com/bliki/FlaccidScrum.html. Accessed 18
Jan 2018

6. Kerievsky, J.: Stop Calling them Technical Practices. https://www.linkedin.com/pulse/stop-
calling-them-technical-practices-joshua-kerievsky/?published=t. Accessed 18 Jan 2018

7. Kuhrmann, M., Münch, J., Diebold, P., Linssen, O., Prause, C.: On the use of hybrid
development approaches in software and systems development. In: Proceedings of the
Annual Special Interest Group Meeting Projektmanagement und Vorgehensmodelle
(PVM) Lecture Notes in Informatics (LNI), vol. 263 (2016)

8. Paez, N., Fontdevila, D., Oliveros, A.: HELENA study: Initial observations of software
development practices in Argentina. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 443–
449. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_34

9. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: What do practitioners vary in using
Scrum? In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212,
pp. 40–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2_4

10. Rodriguez, P., Musat Salvador, D., Yagüe Panadero, A., Turhan, B., Rohunnen, A., Kuvaja, P.,
Oivo, M.: Adopción de Metodologías Ágiles: un estudio comparativo entre España y Europa.
Revista Española en Innovación, Calidad e Ingeniería del Software 6(4), 6–28 (2010). ISSN
1885-4486

11. Melo, O., Santos, C.V., Katayama, E.: The evolution of agile software development in
Brazil. J. Braz. Comput. Soc. 19(4), 523–552 (2013)

12. Melo, O., Santos, C.V., Corbucci, H., Katayama, E., Goldman, A., Kon, F.: Métodos ágeis
no Brasil: estado da prática em times e organizações. Relatório Técnico RT-MAC-2012-03.
Departamento de Ciência da Computação. IME-USP, May 2012. http://www.agilcoop.org.
br/files/metodos_ageis_brasil_estado_da_pratica_em_times_e_organizacoes.pdf. Accessed
12 Mar 2018

13. Kropp, M., Meier, A., Biddle, R.: Agile practices, collaboration and experience. In:
Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T.
(eds.) PROFES 2016. LNCS, vol. 10027, pp. 416–431. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49094-6_28

14. Paez, N., Fontdevila, D., Oliveros, A.: Characterizing technical and organizational practices
in the Agile Community. In: Proceedings of CONAIISI, Salta, Argentina, (2016)

158 N. Paez et al.

http://dx.doi.org/10.1007/978-3-319-05155-0
http://dx.doi.org/10.1007/978-3-319-05155-0
http://dx.doi.org/10.1007/978-3-319-57633-6_11
http://dx.doi.org/10.1016/j.jss.2007.08.020
https://martinfowler.com/bliki/FlaccidScrum.html
https://www.linkedin.com/pulse/stop-calling-them-technical-practices-joshua-kerievsky/?published=t
https://www.linkedin.com/pulse/stop-calling-them-technical-practices-joshua-kerievsky/?published=t
http://dx.doi.org/10.1007/978-3-319-69926-4_34
http://dx.doi.org/10.1007/978-3-319-18612-2_4
http://www.agilcoop.org.br/files/metodos_ageis_brasil_estado_da_pratica_em_times_e_organizacoes.pdf
http://www.agilcoop.org.br/files/metodos_ageis_brasil_estado_da_pratica_em_times_e_organizacoes.pdf
http://dx.doi.org/10.1007/978-3-319-49094-6_28
http://dx.doi.org/10.1007/978-3-319-49094-6_28

15. Paez, N., Gainey, F., Oliveros, A., Fontdevila, D.: An empirical study on the usage of
technical and organizational practices in the Agile Community. In: Proceedings of
CONAIISI, Santa Fe, Argentina (2017)

16. Ambler, S.: Agile Practices Survey Results, July 2009. http://www.ambysoft.com/surveys/
practices2009.html. Accessed 19 Jan 2018

17. Version One: State of Agile Development Survey, Version One (2016)
18. Scrum Alliance: The 2015 State of Scrum Report, Scrum Alliance (2015)
19. Van Kelle, E., Visser, J., Plaat, A., Van Der Wijst, P.: An empirical study into social success

factors for agile software development. In: Proceedings of the 8th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE 2015, pp. 77–80 (2015)

20. Aldahmash, A., Gravell, A.M., Howard, Y.: A review on the critical success factors of agile
software development. In: Stolfa, J., Stolfa, S., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI
2017. CCIS, vol. 748, pp. 504–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-64218-5_41

21. Beck, K., et al.: Manifesto for Agile Software Development (2001). http://agilemanifesto.
org/

22. Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams.
Addison-Wesley Professional, Boston (2004)

23. Ágiles Conference Homepage. http://www.agiles.org/agiles-20xx. Accessed 19 Jan 2018
24. Fontdevila, D., Genero, M., Oliveros, A.: Towards a usability model for software

development process and practice. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 137–
145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_11

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Technical and Organizational Agile Practices 159

http://www.ambysoft.com/surveys/practices2009.html
http://www.ambysoft.com/surveys/practices2009.html
http://dx.doi.org/10.1007/978-3-319-64218-5_41
http://dx.doi.org/10.1007/978-3-319-64218-5_41
http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.agiles.org/agiles-20xx
http://dx.doi.org/10.1007/978-3-319-69926-4_11
http://creativecommons.org/licenses/by/4.0/

Agile Software Development – Adoption
and Maturity: An Activity Theory Perspective

Pritam Chita(&)

Edinburgh Napier University, Edinburgh, UK
p.chita@napier.ac.uk

Abstract. This paper suggests that Activity Theory is a useful lens for exam-
ining aspects of agile software development adoption and maturity. Imple-
menting agile approaches is influenced by many factors and attention is focused
on individual and collective software development activity within an organi-
sation’s socially constructed environment. The research aim is to examine
specific organisational, historical, cultural and social hindrances and facilitators
that impact individual and collective learning opportunities and subsequent
implementation of agile practices. This paper reports on the initial stages of
research that consisted of a series of interviews and a survey. The results
indicate that socially constructed hindrances and tensions are wide spread and
vary in the levels at which they occur. They also correlate with many of the
factors that influence agile maturity that have already been identified within the
literature. This study contributes to research by integrating elements of learning
theory and agile software development practice.

Keywords: Agile � Maturity � Learning � Activity theory � Expansive learning

1 Introduction

Much of the literature regarding Agile approaches identifies success factors and
challenges at different levels that impact on the transition to and development of agile
practices [14, 15]. They don’t however provide detailed accounts of the different social
and environmental causal factors & tensions behind these challenges and the beha-
vioural, historical and learning elements that influence, impede or facilitate them. Many
of these studies do draw attention to the need for further research in this area as well as
the lack of suitable analytical techniques. Vijaysarathy and Turk [66] dialectical per-
spective provides insights into the role of detracting factors and their interactions with
enablers and they stress the need to examine these factors at work and the dialectical
interplay between them.

Dennehy and Conboy [12] point to multiple studies that highlight the critical role of
culture and team dynamics and the need to study software development within the
environment within which it is to be implemented. Given the inter-related and complex
nature of the environment faced by organisations undertaking Agile approaches, this
study draws on Engestrom’s Activity Theory (AT) framework [16] as a wide-ranging
integrative analytical tool. Derived from Cultural-Historical Analytical Theory
(CHAT), the framework facilitates the examination of multiple aspects of work practice

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 160–176, 2018.
https://doi.org/10.1007/978-3-319-91602-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_11&domain=pdf

including the tensions, contradictions and friction that can arise when new initiatives
and practices are developed. Activity Theory has a focus on expansive learning [16]
which starts with questioning the existing practice, then proceeds to actions of ana-
lyzing its contradictions and modelling a vision for a new approach and then to actions
of examining and implementing the new model into practice.

Importantly the resolution of these contradictions can be viewed as drivers of
change and an opportunity to reflect and learn as well as identifying new ways of
structuring activities [12]. Therefore this study identifies the occurrences of contra-
dictions and tensions as organisations seek to implement agile approaches and this
focus provides a means of understanding change and action [18, 38].

This paper is organised as follows. Section 2 links learning with maturity and
addresses issues regards agile maturity. Section 3 introduces Activity Theory and
Expansive learning and the notion of contradictions within activities. Section 4 dis-
cusses the application of Activity Theory to the Agile software development domain
and discusses the findings of the research conducted to date. Finally, Sect. 5 discusses
planned future research and concludes the paper.

2 Agile Maturity

The Capability Maturity Model integration (CMMi) is probably the most well-known
maturity model which Meyer [47] indicates is a collection of best practices that are
specified precisely to facilitate an assessment of compliance so that organisations can
reach identified goals, He identifies that the three elements of Goals, Practices &
Assessment are at the centre of the maturity model approach. CMMi is predominantly
an American approach whilst the ISO/IEC 15504 SPICE (Software Process
Improvement & Capability Determination) is a European equivalent focused specifi-
cally at software development elements. As indicated by Paulk [57] an organisation
with these well-defined processes is much more likely to produce software that con-
sistently meets user’s requirements. Therefore there appears to be a sound rationale to
attempt to link agile practices to traditional maturity model.

However as Meyer [47] also points out, this is in marked contrast to the general
perception of agile advocates who view the two as incompatible and this has given rise
to a substantial number of agile maturity models [44]. Fritzsche and Keil [23] attempted
to determine which CMMi processes are supported by agile methods with some
adjustments and which processes are in conflict. They indicate that CMMi level 2 can
be obtained by agile methods (Scrum & XP). Apart from two process areas, agile
methods can achieve Level 3. However levels 4 & 5 are not possible without adopting
additional practices [64] or “without making changes to the methods that contradict
agility” [23].

A recent review of Agile maturity models [32] identified that the agile maturity
model literature was predominantly divided into two major groups. The first was
concerned with the co-existence of agile methods in an environment where CMMi was
present [45] and the second related to improving agile implementations without the
consideration of other process improvement frameworks. In this latter group the intent
is to provide an equivalent maturity model for agile implementations [55, 56, 63].

Agile Software Development – Adoption and Maturity 161

This rise in the number of agile maturity models has been critiqued by Gren et al.
[28] who advocate instead more effort to validate existing ones to facilitate their use by
practitioners. They also question the idea of separate maturity models for Agile
methods and indeed the whole notion of maturity and state that

“We generally do not believe a hierarchical model of practice is a good model for agility in
organisations. For example, why would technical excellence be on the highest level and col-
laborative planning on the lowest? We do not believe it makes sense to state that collaborative
planning is a prerequisite for technical excellence” [28].

Fontana et al. [21] point to another issue with the use of agile maturity models.
They note that agile practices are customized for specific contexts where teams adopted
different practices based on different circumstances. These circumstances do not lend
themselves to the prescriptive practices & processes of maturity models and their
associated requirements. Instead they proposed a generic checklist (“Agile Compass”)
that could be used to assess maturity without specifying practices and where “teams
achieve maturity via an evolutionary pursuit of specific outcomes” [22].

Consequently there is a growing appreciation of the factors involved in agile
maturity that go beyond sets of practices to consider some form of cultural assessment
that might also be included as part of the assessment process [28]. The literature varies
from academic articles with large lists of personnel and human resource success factors
for adopting agile [9, 14] to industry surveys of the State of Agile [65]. These articles
do identify a wide range of cultural, organisational and people factors as key elements
of the transition process. In particular Nerur et al. [50] examined the challenges of
migrating to agile methods and emphasized that culture exerts considerable influence
on decision-making processes, problem-solving strategies, innovative practices and
social negotiations. Of interest is their indication that neither culture nor mind-sets can
easily be changed pointing out that facilitating this shift will require the “right blend of
autonomy and cooperation”.

In addition to the shift in emphasis to cultural and human factors is another recent
consideration of transitioning to agile and the development of agile practices in a more
incremental and responsive manner. Heidenberg et al. [31] developed a method based
on multiple case studies in a large organisation that helps to pilot agile. They indicate
that systematic piloting can be used to build experience and assist in the deployment of
agile approaches. Ganesh and Thangasamy [25] indicate that a general guiding prin-
ciple for implementation should be to maintain the facility to respond to changing
requirements rather than following a specific set of practices. Gandomani and Nafchi
[24] pick up this principle and propose a framework for Agile transformation and
adoption loosely based on the PDCA (Plan, Do, Check, Act) or later PDSA (Plan, Do,
Study, Act) approach also known as the Deming wheel [11] which is itself a form of
the scientific method “Hypothesis – experiment – evaluate”.

This approach closely aligns with the agile philosophy of incremental and iterative
development and involves continuous learning on the part of all stakeholders. The
authors indicate that “the outcome of the iterations are adopted practices and not
deliverable product elements” [24]. This is contrasted with other adoption and transi-
tion frameworks which the authors claim are too complex and inflexible and require
significant organisational overhead.

162 P. Chita

2.1 Agile Maturity and Learning

Several articles particularly stress the important role of an organisation’s ability to
nurture learning, team work, personal empowerment and self-organisation [51, 62].
Misra et al. [48] undertake a large survey focused on success factors rather than
“challenges” in adopting agile software development. In particular the identification of
a “Learning & Training” factor is interesting as it was assessed by the authors by
examining the “willingness to continuously learn from one another and train the team
members through mentoring and professionally guided discussions” [48].

There is an emphasis on continuous learning from participating individuals and
these “challenges” and “success factors” are typical of a number of studies in this area.
Maier et al. [46] review agile maturity models and agile improvement and adoption
frameworks/grids on the basis of work orientation, mode of assessment and intent.
They also query what it is that actually makes organisational capabilities mature and
they identify “Emphasis on Learning” as one of four elements that are typical. Maier
et al. [46] draw on Argyris and Schon’s [1] concepts of single & double loop learning
to discriminate between different levels of maturity.

Korsaa et al. [40] support this focus on the people & learning aspects in amongst all
the process and practice improvement focus of CMMi and SPICE initiatives. They
assert that improving software processes does depend upon the organisation’s ability to
support empowered individuals through a learning environment. This is key as it
recognizes the importance of individuals being empowered to learn as a means of
achieving improvements in the delivery of software. They recognize that the human
aspect is crucial for process improvement as it is entirely dependent upon the indi-
vidual’s motivation to change the way they work. Korsaa et al. [40] also compare the
work of Michael Hammer [29] and Jacobsen et al. [33] and conclude that both per-
spectives place the individual central in process analysis making individuals respon-
sible for changes and improvements. This is most likely to take place within a learning
organisation culture that supports continuous improvement.

Boehm [4] points out that as agile projects do not put the emphasis on documen-
tation then the implication is that much of the project knowledge will not be held
explicitly and will be held tacitly within individual’s minds. Following a survey of
agile professionals, Rejab et al. [59] identify five approaches to distributing (sharing)
knowledge and expertise within agile teams from hands-on learning to apprentice–
master models and coaching & mentoring. In terms of facilitating this knowledge
sharing, Kahkonen [35] advocates that Agile project management approaches need to
incorporate practices that lead to the creation of Communities of Practice (CoPs) and
has found them to be useful in aspects of Agile methods as well as ultimately assisting
with the agility of the organisation.

Similarly, Jugdev and Mathur [34] identify Project Reviews and Communities of
Practice as vehicles for gathering and sharing project learning and more recently there
has been a significant focus on CoPs with Paasivaara and Lassenius [53] and Paasi-
vaara and Lassenius [54] identifying the existence of multiple examples of the adoption
of Communities of Practice within a large distributed Agile project management
environment (Ericsson). They identified varied examples of Communities of Practice
occurring including Coaching CoPs, Development CoPs and specific feature driven

Agile Software Development – Adoption and Maturity 163

CoPs. The authors conclude that these CoPs supported the process of implementing
Agile Project Management and were central to easing the problems of the Agile
transformation process. From an organisational perspective it would be prudent to
encourage the development of these CoPs but there is some concern that they can be
formally fostered although Kahkonen [35] is confident that although such ad hoc
situated learning approaches arise naturally, organisations can nevertheless influence
their development and this view is also supported by Wenger et al. [68].

Newell and David [52] examined learning in IT projects and the influence of
situated practice learning compared to the use of formal project management
methodologies. They contend that social processes distort the traditional project
management elements such as plans and visions but that this distortion is not neces-
sarily negative and in fact may realize greater benefits than simply focusing on effective
work practices. They note that this is not poor management but a realisation that ad-hoc
processes can be the norm and will influence and modify formal processes as people
will learn & modify new practices & approaches in their own way [52].

Continuing the ad-hoc processes premise, Gherardi [26] proposes a similar
approach of “learning-in-organisations” which is essentially constructivist - whereby
people will construct their own understanding and knowledge of the world through
experience and on reflecting on those experiences. Anything new that is experienced
has to be reconciled with past experiences therefore individuals are actively creating
their own knowledge. Gherardi [27] makes the following points.

• Learning occurs through practice (a domain of knowing and doing) where a net-
work is socially woven around a domain of knowledge. The knowledge, the subject
(person), the object (what is being done such as software development) are pro-
duced together within a situated practice.

• The locus of knowledge and learning is situated in practice (which connects
knowing with doing). This is distinct from Communities of Practice which
emphasize the collaboration and social and situated aspects of learning [42].

Given the emphasis on individuals within the agile approach [21] it is suggested
that agile improvements and maturity will have much to do with an individual’s
learning opportunities which in itself will be a function of their work practices (both
historical & current), interactions & collaborative activities and the organisational and
social elements and infrastructure that impacts on these aspects. Gherardi [27] notes
that the use of Activity Theory within a situated practice context could help understand
where knowledge is socially constructed and how it is constructed both actively and
passively.

3 Activity Theory (AT)

Instead of solely focusing on mental processes, Activity Theory (AT) considers the
relevance of actually undertaking the activity and the important influence of the envi-
ronmental mix such as culture, language, peers, teachers and artifacts. The Activity
Theory perspective of Vygotsky [67] and Leont’ev [43] was extended by Engestrom [16]
beyond the single activity and whereas Leont’ev regards the subject of the activity as an

164 P. Chita

individual, Engestrom sees the unit of analysis as collective activity rather than as
individual activity [36] and the object (motive) is shared by a group or a community.
Bodker [6] does clarify this somewhat and indicates that although these activities are
regarded as collective, each activity is conducted through the actions of individuals
directed towards an object.

Engestrom [16] argues that the collective perspective is a useful tool for studying
organisational change and this gives rise to the well-known triangular diagram illus-
trated in Fig. 1 below which has been adapted to represent software delivery activity. It
is this collective directed activity perspective that is utilized in this study to examine
learning within agile teams as they pursue improvements in agile approaches and gives
rise to increasing “agile maturity”.

The main focus of attention is the line through the middle of the triangle from the
Project Delivery Team node to the Object/Purpose node that represents the focus or
purpose of the activity/work. In addition, activities both mediate and are mediated
(affected/influenced) by the node representing Tools/Techniques/Resources that are
used as part of the activity as well as by the Community/Stakeholders context node
within which the activity takes place. For example the software development activity is
mediated by the tools used such as Kanban Boards or conformance with a planned
work package specification. Similarly the software development activity is mediated by
the community & social group context such as whether clients are closely involved
within the development activity.

This perspective has a further dimension where the relationship between the Project
Delivery Team node and the Community/Stakeholders node is mediated by the node
representing Rules/Norms/Organisation. Similarly the relationship between the

Fig. 1. Example project delivery activity (after Engestrom [17])

Agile Software Development – Adoption and Maturity 165

Community/Stakeholders node and the Object/Purpose is mediated by the
Actor/Roles/Responsibilities node that reflects how work & responsibilities are divided
and & allocated.

This can be developed further to include multiple perspectives and networks of
interacting activities and Fig. 2 below shows the interaction of two neighbouring
activities which for instance could be the activity of a development team in an IT
department interacting with the activity of a client in another organisational function.

De Souza and Redmiles [13] have applied Activity Theory (AT) to a software
development environment and they regard AT as useful as it is open-ended and allows
for the introduction of new ideas. Other sources have commented on a significant
strength of Activity Theory is its ability to address almost any situation and provide a
broader perspective that caters for a variety of factors at multiple levels “Some of the
power of activity theory lies in the way it ties insights into larger wholes to provide a
clarifying framework for the bigger picture” [36]. In addition Mursu et al. [49] apply
Activity Theory to an Information Systems development activity and identify its
compositional elements such as the actors, activity levels and rules & norms (Mursu
et al. [49] after Korpela et al. [39]). This analysis would form a useful starting point
when applying Activity Theory to agile software development activity

In their Activity Theory based study of software development environments,
Barthelmess and Anderson [7] focus on improving support for collaboration and
conclude that each situation will be different and individuals will do things their own
way. Perhaps this perspective sheds some light on why often cited lists of success
factors [14] prove effective in one environment but are ineffective in another. It also
might be indicative as to why there are so many different and varied agile maturity
models and perspectives on what constitutes agile maturity and such points have been
made extensively elsewhere [22, 52]. What an Activity Theory perspective does
facilitate is a more detailed examination of the socially constructed environmental mix
within which each individual organisation’s context contributes to and enables the
practice and activity of collaborative software development.

Korsaa et al. [40] point to another complication in the difference between the
process that may be prescribed by an organisation and the process that is actually

Fig. 2. Activity interactions [17]

166 P. Chita

applied and followed by the performers. This causes difficulty in translating successful
processes to other teams as the prescribed process will vary from that which is actually
followed by the successful team. This further suggests a deeper level of analysis is
required of actual practices at a collective and individual activity levels.

3.1 Activity Theory and Expansive Learning

Engestrom [18] indicates that the subjects of learning are contained within these
activities and they are inter-connected. Activities have their own internal contradictions
and resolutions that will result in learning taking place and also there will be contra-
dictions between activities as teams and organisations adapt and learn new practices
and processes.

According to Engestrom [16] the introduction of a new technology, work practice
or system can impact a collaborative activity and initiate a new process of learning by
giving rise to new questions tensions and contradictions that lead to expansive learning
where the object and the motive of the activity are re-conceptualized to embrace a
radically wider horizon of possibilities than previously envisaged which he terms
“expansive learning”.

Engestrom identifies a problem with traditional approaches to learning that
pre-suppose that the knowledge or skill to be learnt is itself well known, well-defined
and stable [16]. Engestrom [18] indicates that learning in modern organisations doesn’t
correlate with this view and that people are continually learning something that is new,
undefined and not stable.

“In important transformations of our personal lives and organisational practices we must learn
new forms of activity which are not yet there. They are literally learned as they are created.
There is no competent teacher. Standard learning theories have little to offer if one wants to
understand these processes” [18].

For example with reference to a learning approach based on Communities of
Practice (CoPs), Engestrom [19] indicates that the motivation comes from participation
in culturally valued collaborative practices where something useful is produced.
Engestrom’s view is that this works well for novices in a field transiting to valued
experts in stable practices but argues that the motivations for risky expansive learning
associated with major transformation is not well explained by mere participation and
the gradual acquisition of mastery [19].

It is suggested that it is exactly this kind of situation and learning processes that
occur during the implementation and development of Agile practices where individuals
and organisations are faced with highly variable approaches and perspectives that are
not easily described or evaluated [5]. Due to the necessary emphasis on human and
cultural elements within Agile practices unlike traditional maturity models (CMMi)
where the emphasis is on clearly specified processes and practices [21] in Engestrom’s
terms these new Agile practices to be learned “are not yet there” [18].

Engestrom indicates that learning new practices comes from identifying and
understanding contradictions and conflicts within existing activities [17] and follow a
cycle of expansive learning as illustrated in Fig. 3 below.

Agile Software Development – Adoption and Maturity 167

This is described more fully as follows:

1. Questioning: This is the important trigger point in expansive learning where there
is a conflicting contradiction/tension that leads to the questioning of existing
standard practice. A Primary Contradiction will emerge from within a node of an
activity system.

2. Secondary Contradictions: This step leads to deeper analysis and more detailed
questioning of the historical and cultural aspects. This is likely to emerge between
two or more nodes within an activity system.

3. Modeling: This is where a new solution (activity/practice) is modelled.
4. New Model: This is where the new model (activity/practice) is validated.
5. Implementation model: This is likely to give rise to a new set of contradictions

between the old and the new activity. Tertiary Contradictions will emerge between
a new system and a previous instance.

6. Reflection on the process and alignment with neighbouring activities. Quaternary
Contradictions emerge between a new re-organised activity and its neighbouring
activities

7. Consolidating new Practice: The activity/practice previously unknown is now
consolidated and becomes the norm.

Barab et al. [2] explain that as tensions enter the activity they are the driving forces
behind the contradictions and disturbances which lead to the activity/practice changing
and developing. These contradictions are best understood as tensions amongst the
different elements of the activity system. Through understanding the interplay within
these dualities, researchers can better understand and support the development and
innovation & learning within the activity system. Barab et al. [3] indicate that con-
tradictions within an activity/practice are potential opportunities for intervention and

Fig. 3. Strategic learning actions and corresponding contradictions in the cycle of expansive
learning [18].

168 P. Chita

improvement. They see contradictions as providing elements or functions of a growing
& expanding activity system and can be viewed as a “gap-analysis” exercise.

3.2 Contradictions Within Activities

Kaptelinin and Nardi [36] indicate that activities are virtually always in the process of
working through contradictions and that these contradictions are the sources of devel-
opment. These contradictions have formed the basis of several studies within the Infor-
mation Systems (IS) domain and as indicated byHasan et al. [30] in reference to past work
by Kuutti and Virkkunen [41] they have mostly focused on Quaternary contradictions
between different activities. This focusmaywell relate to the typical relationship between
the two activities/practices of software development and user/client. Hasan et al. [30]
indicate that in the Information systems HCI domain the focus has been on Secondary
contradictions within an activity between the subject and tools/techniques nodes.

Regards the occurrence of Tertiary contradictions Mursu et al. (2007) provide a
description of contradictions within the information systems function which they
indicate is between the object and motive of the “dominant form of the central activity”
and the object and motive of a “culturally more advanced form of the central activity”.
They indicate that these Tertiary contradictions occur when work practices are
re-organised and the old mode of operation is rebelling against the newer one (Mursu
et al. 2007). This is of particular relevance to this study as it is asserted that the
“dominant form of the central activity” can be regarded as a repeated software
development activity and the “culturally more advanced form” could be a more mature/
improved/more agile form of the software development practice and would involve a
significant change to the practice. It may be argued that perceived higher levels of agile
maturity are exactly what a “culturally more advanced form of the central activity”
would look like. The following section outlines the research conducted and focuses on
the identification of these contradictions, their frequency of occurrence and their cor-
relation with similar events within the literature.

4 Research Conducted

A mixed methods approach has been adopted which is underpinned by a pragmatic
research philosophy [10]. This fits well with the Activity Theory framework which can
aid analysis of both qualitative and quantitative data [20]. The intention is to identify
occurrences of frictions and hindrances which could then be mapped to different levels
of contradictions. Empirical research was conducted with five interviews with Agile
professionals who were - a consultant agile coach, a portfolio & programme manager at
a large public sector organisation, two scrum masters at a software supplier and a web
developer at an educational institute. This was followed up by a questionnaire survey of
45 attendees at a Project and Programme Management Conference. The questions were
open-ended and aimed to identify the difficulties & problems that respondents had with
adopting and developing agile development practices. Collected data was transcribed
and the text was analyzed for tensions among components of the activity system which
were then grouped into the different levels of contradictions.

Agile Software Development – Adoption and Maturity 169

The first set of contradictions to be experienced are likely to be Primary contra-
dictions within the Project Delivery Team and the Tool/Techniques/Resources nodes
as the project delivery team acquaint themselves and grapple with new approach/tools/
techniques. A combined analysis of the interviews transcripts and survey results
identified a total of 57 references to contradictions. Figure 4 below indicates some
typical primary contradictions within the nodes that were identified. Primary contra-
dictions were the most often cited (22) and relate to many of the key people challenges
in implementing Agile approaches.

Within the literature, there are many examples of these types of contradictions that
occur as people and technical challenges [9, 14].

Secondary contradictions are cited almost as frequently (21) representing friction &
tension between the nodes of the activity as the Project Delivery Team engaged in
different behavioural norms and cultural practices, involving other stakeholders as well
as adopting new roles & responsibilities.

“And that was the way to do it and we said no we don’t want the roles we just want equal team
members and so basically our software engineers and a scrum master and that’s it. This was
only possible because we had higher support”

(Scrum master at a software supplier)

Work by Schatz and Abdelshafi [61] and Chan and Thong [8] in their discussion of
organisational characteristics and work habits has highlighted these types of issues and
problems. Figure 5 below indicates the Secondary contradictions between nodes that
occurred as deeper questioning and analysis took place.

Fig. 4. Primary contradictions: within nodes – a questioning of practice

170 P. Chita

As the impact of the adoption of Agile approaches gains traction within the
organisation these Primary & Secondary contradictions are supplemented by Tertiary
and Quaternary ones as the implications and effects of the adopted Agile practice
extend beyond the project delivery team and impact on other organisational activities
and practices.

Interestingly Tertiary contradictions represented the lowest (5) level of occurrences
of all the contradictions. This is similar to instances in the literature where for example
a study by Rauf and Al Ghafees [58] indicated that most organisations do not follow
any agile method completely. They adopt a mix of agile practices and traditional
approaches. This could be indicative of significant Tertiary contradiction where the
“old mode of operation is rebelling against the new one” [49].

Similarly, case study analysis of agile implementations, undertaken by Rose [60]
indicates that some organisations embrace agile principles without the wholesale
abandonment of the already established traditional approaches. His research also noted
that there was some symbolic re-labelling of some traditional elements using agile
terminology. He notes that this was detrimental to moving forward with agile
approaches as labelling acts as a departure point for organisational transformations and
notes that “the path to innovation is not navigable when labels do not accurately reflect
either the status quo or the transformed state” [60].

Such maneuverings can be viewed from a Tertiary contradiction perspective and as
Rose [60] indicates there is a further opportunity for research. Of particular interest
would be an understanding as to why the occurrence of Tertiary contradictions is low in
comparison with the Primary & Secondary contradiction. Is it because software teams
are unaware of what “culturally more advanced forms” of agile practice are?

Fig. 5. Secondary contradictions: between nodes - involves a deeper level of analysis

Agile Software Development – Adoption and Maturity 171

Quaternary contradictions also occur at a fairly low level (9) compared to Primary
& Secondary contradictions. Some of the work by Boehm and Turner [5] on man-
agement challenges and business process conflicts are indicative of these types of
contradictions. Again it is expected that these types of contradictions are more likely to
occur when project delivery teams have matured and their activities begin to impact on
other organisation functions such as finance and human resources.

Implementing Agile approaches demands a much more social, cultural, behavioural
and organisational change perspectives than hitherto envisioned [50]. It is not a simple
matter of transplanting agile tools and techniques. In many instances it requires major
organisational, behavioural, learning and social changes and these are extremely
demanding (and disruptive) changes that organisations find difficulties in embracing.

This initial study has used Activity Theory as an analytical framework that can
identify the many causal & influencing elements from an historical, cultural, learning
and behavioural perspective that might contribute to an organisation’s difficulties and
problems when developing and improving agile delivery approaches. The use of
Activity Theory serves to indicate the multiple elements involved and the complex
levels of interactions that can occur. It may also be indicative of attempts to undertake
an initiative or practice which may well not be appropriate given the specific social &
environmental mix and circumstances of the organisations concerned. The research
conducted so far is somewhat limited due to its high level nature and the large
cross-section of participants. More detailed analysis is needed to be able to thoroughly
examine the complex interactions & influences of cultural and socially constructed
factors.

5 Further Research

The next steps for this research programme are detailed case study analysis of
organisation’s project delivery activities using a mix of observation, interview and
survey methods. To date there are four participating organisations that are looking to
develop and scale their agile activities and the rationale for undertaking this research is
that:

• Moving up or improving an organisation’s agile maturity requires collective &
individual learning & development.

• The learning and development within an agile context is somewhat different as it
involves organisational specific and tailored practices that “are not yet there” [18].

• This will involve individual & organisational movement along Engestrom’s
expansive learning cycle.

• To identify specifically how expansive learning is likely, it will be necessary to
examine project delivery activity in some depth within the wider organisational,
historical and cultural context.

• Identifying and resolving contradictions maybe indicative of where the hindrances
are to organisational improvement and development in terms of agile maturity.

For each participating organisation detailed analysis will be undertaken of the full
activity system that surrounds and impacts an organisation’s project delivery capability.

172 P. Chita

Undertaking organisational and project delivery analysis from an ethnographic
perspective can be a substantial task. In particular due to Activity Theory’s wide–
ranging and all-encompassing perspective it can be somewhat difficult to determine an
appropriate approach or perspective to take. Literature that does address the application
of Activity Theory is varied in terms of the elements of Activity Theory that have been
selected and there is little guidance and information available on its application. An
“Activity Checklist” has been suggested by Kaptelinin et al. [37] which although is
based within the HCI domain, does provide a series of pointers to consider and
questions to ask that can assist in direction as well as drawing attention to potential
influential areas and factors to consider.

In a simplified form this analysis makes a contribution to the gap in the literature on
how concepts from workplace learning could be applied to the learning processes and
activities inherent in project management as indicated by Jugdev and Mathur [34]. This
analysis has served to indicate an approach based on learning theory that helps with
identifying and analyzing the multiple and varied factors that influence an organisa-
tion’s progression towards some form of agile maturity. These learning processes and
developments are likely to be different within an agile context due to the fact that the
new organisation specific and tailored practices “are not yet there” [18]. Individual and
collective learning will play a key part in this “maturing” process and that the use of
Activity Theory is an important analytical tool to help contextualize and understand the
learning processes through the identification of contradictions and tensions within the
project delivery activity. A focus on contradictions, tensions and frictions within and
between activities is useful as it points to obstructive elements and tensions within
practice that impede & hinder improvement and development.

References

1. Argyris, C., Schon, D.: Organizational Learning: A Theory of Action Perspective.
Addison-Wesley, Reading (1978)

2. Barab, S.A., Barnett, M., Yamagata-Lynch, L., Squire, K., Keating, T.: Using activity theory
to understand the systemic tensions characterizing a technology-rich introductory astronomy
course. Mind Cult. Act. 9(2), 76–107 (2002)

3. Barab, S.A., Evans, M.A., Baek, E.: Activity theory as a lens for characterizing the
participatory unit. In: Jonassen, D.H. (ed.) Handbook of Research on Educational
Communities and Technology, pp. 199–214. Lawrence Erlbaum Associates, Mahwah (2004)

4. Boehm, B.: Get ready for Agile methods with care. Computer 35(1), 64–69 (2002)
5. Boehm, B., Turner, R.: Management challenges in implementing agile processes in

traditional development organisations. IEEE Softw. 22(5), 30–39 (2005)
6. Bodker, S.: Creating conditions for participation: conflicts and resources in systems

development. Hum. Comput. Interact. 11(3), 215–236 (1996)
7. Barthelmess, P., Anderson, K.M.: A view of software development environments based on

activity theory. Comput. Support. Coop. Work (CSCW) 11(1–2), 13–37 (2002)
8. Chan, F.K.Y., Thong, J.Y.L.: Acceptance of agile methodologies: A critical review and

conceptual framework. Decis. Support Syst. 46, 803–814 (2009)
9. Conboy, K., Coyle, S., Lero, X.W., Pikkarainen, M.: People over process: key challenges in

agile development. IEEE Softw. (2011)

Agile Software Development – Adoption and Maturity 173

10. Creswell, J.W.: A Concise Introduction to Mixed Methods Research. SAGE, London (2015)
11. Deming, W.E.: The New Economics. MIT Press, Cambridge (1993)
12. Dennehy, D., Conboy, K.: Going with the flow: an activity theory analysis of flow

techniques in software development. J. Syst. Softw. 133, 160–173 (2017)
13. De Souza, C.R., Redmiles, D.F.: Opportunities for extending activity theory for studying

collaborative software development. In: Workshop on Applying Activity Theory to CSCW
Research and Practice, in Conjunction with ECSCW (2003)

14. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

15. Dingsoyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012)

16. Engestrom, Y.: Learning by Expanding: An Activity-Theoretical Approach to Develop-
mental Research. Cambridge University Press, Cambridge (1987)

17. Engestrom, Y.: Activity theory as a framework for analyzing and redesigning work.
Ergonomics 43(7), 960–974 (2000)

18. Engestrom, Y.: Expansive learning at work: towards an activity theoretical reconceptual-
ization. J. Educ. Work 14(1), 133–156 (2001)

19. Engestrom, Y.: Expansive learning: Toward an activity-theoretical reconceptualization. In:
Illeris, K. (Ed.) Contemporary Theories of Learning: Learning Theorists… in their Own
Words, pp. 53–74. Routledge, London (2009)

20. Engestrom, T., Miettinen, R., Punamaki, R.L. (eds.) Perspectives on Activity Theory.
Cambridge University Press. Cambridge (1999)

21. Fontana, R.M., Fontana, I.M., Garbuio, P.A., Reinehr, S., Malucelli, A.: Process versus
people: how should agile software development maturity be defined? J. Syst. Softw. 1(97),
140–155 (2014)

22. Fontana, R.M., Reinehr, S., Malucelli, A.: Agile compass: a tool for identifying maturity in
agile software-development teams. IEEE Softw. 32(6), 20–23 (2015)

23. Fritzsche, M., Keil, P.: Agile methods and CMMI: compatibility or conflict? e-Inform.
Softw. Eng. J. 1(1) (2007)

24. Gandomani, T.J., Nafchi, M.Z.: an empirically-developed framework for agile transition and
adoption: a grounded theory approach. J. Syst. Softw. 107, 204–219 (2015)

25. Ganesh, N., Thangasamy, S.: Lessons learned in transforming from traditional to agile
development. J. Comput. Sci. 8(3), 389–392 (2012)

26. Gherardi, S.: From organizational learning to practice-based knowing. Hum. Relat. 54, 131–
139 (2001)

27. Gherardi, S.: Knowing and learning in practice-based studies: an introduction. Learn. Organ.
16(5), 352–359 (2009)

28. Gren, L., Torkar, R., Feldt, R.: The prospects of a quantitative measurement of agility: A
validation study on an agile maturity model. J. Syst. Softw. 107, 38–49 (2015)

29. Hammer, M.: The process audit. Harvard Bus. Rev. 85(4), 111–119 (2007)
30. Hasan, H., Smith, S., Finnegan, P.: An activity theoretic analysis of the mediating role of

information systems in tackling climate change adaptation. Inf. Syst. J. 27, 271–308 (2017)
31. Heidenberg, J., Matinlassi, M., Pikkarainen, M., Hirkman, P., Partanen, J.: Systematic

piloting of agile methods in the large: two cases in embedded systems development. In: Ali
Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 47–61.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13792-1_6

32. Henriques, V., Tanner, M.: A systematic literature review of agile and maturity model
research. Interdisc. J. Inf. Knowl. Manage. 12, 53–73 (2017)

33. Jacobsen, I., Ng, P.-W., Spence, I.: Enough of Processes: Let’s Do Practices. Dr. Dobbs J. 32
(5) (2007)

174 P. Chita

http://dx.doi.org/10.1007/978-3-642-13792-1_6

34. Jugdev, K., Mathur, G.: Bridging situated learning theory to the resource based view of
project management. Int. J. Project Manage. 6(4), 633–653 (2013)

35. Kahkonen, T.: Agile methods for large organisations - building communities of practice. In:
Proceedings of the Agile Development Conference, pp. 2–10 (2004)

36. Kaptelinin, V., Nardi, B.A.: Acting with Technology: Activity Theory and Interaction
Design. MIT Press, Cambridge (2006)

37. Kaptelinin, V., Nardi, B., Macaulay, C.: The activity checklist: a tool for representing the
“space” of context. Interactions (1999)

38. Karanasios, S., Allen, D.: Mobile technology in mobile work: contradictions and
congruences in activity systems. Eur. J. Inf. Syst. 23(5), 529–542 (2014)

39. Korpela, M., Mursu, A., Soriyan, H.A.: Information systems development as an activity.
CSCW 11, 111–128 (2002)

40. Korsaa, M., Johansen, J., Schweigert, T. Vohwinkel, D., Messnarz, R., Nevalainen, R., Biro,
M.: The people aspects in modern process improvement management approaches. Softw.
Evol. Process (2013)

41. Kuutti, K., Virkkunen, J.: Organisational memory and learning network organisation: the
case of Finnish labour protection inspectors. In: Proceedings of the Twenty-Eighth Hawaii
International Conference on Systems Science, vol. 4, pp. 313–322. IEEE (1995)

42. Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press, Cambridge (1991)

43. Leont’ev, A.N.: Activity, Consciousness and Personality. Prentice-Hall, Englewood Cliffs
(1978)

44. Leppanen, M.: A comparative analysis of agile maturity models. Inf. Syst. Dev. 329–343
(2013)

45. Lukasiewicz, K., Miler, J.: Improving agility and discipline of software development with
the Scrum and CMMI. IET Softw. 6(5), 416–422 (2012)

46. Maier, A.M., Moultrie, J., Clarkson, P.J.: Assessing organizational capabilities: reviewing
and guiding the development of maturity grids. IEEE Trans. Eng. Manag. 59(1), 138–159
(2012)

47. Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-319-05155-0

48. Misra, S.C., Kumar, V., Kumar, U.: Important success factors in adopting agile software
development practices. J. Syst. Softw. 82, 1869–1890 (2009)

49. Mursu, A., Luukkonen, I., Toivanen, M., Korpela, M.: Activity theory in information
systems research and practice: theoretical underpinnings for an information systems
development model. Inf. Res. Int. Electron. J. 12(3) (2007)

50. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 73–78 (2005)

51. Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodologies: the
traditional goal of optimisation and control is making way for learning and innovation.
Commun. ACM 50(3), 79–83 (2007)

52. Newell, S., David, G.: Learning in IT projects-the importance of situated practice as well as
formal project methodologies. In: OLKC Conference at University of Warwick (2006)

53. Paasivaara, M., Lassenius, C.: Agile coaching for global software development. J. Soft.
Evol. Process. 26, 404–418 (2014a)

54. Paasivaara, M., Lassenius, C.: Communities of practice in a large distributed agile software
development organisation – case ericsson. Inf. Softw. Technol. 56, 1556–1577 (2014b)

55. Packlick, J.: The agility maturity map – a goal oriented approach to agile improvement. In:
Agile Conference (2007)

Agile Software Development – Adoption and Maturity 175

http://dx.doi.org/10.1007/978-3-319-05155-0
http://dx.doi.org/10.1007/978-3-319-05155-0

56. Patel, C., Ramachandran, M.: Agile Maturity Model (AMM): a software process
improvement framework for agile software development practices. Int. J. Softw. Eng.
2(1), 3–28 (2009)

57. Paulk, M.: Using the Software CMM with Good Judgement. Research Showcase @CMU.
Carnegie Mellon University (1999)

58. Rauf, A., AlGhafees, M.: Gap analysis between state of practice & state of art practices in
agile software development. In: Agile Conference (2015)

59. Rejab, M.M., Noble, J., Allan, G.: Distributing expertise in agile software projects. In: Agile
Conference (2014)

60. Rose, D.: Symbolic innovation in agile transformation. In: Agile Conference (2015)
61. Schatz, B., Abdelshafi, I.: Primavera gets agile: a successful transition to agile development.

IEEE Softw. 22(3), 26–42 (2005)
62. Sheffield, J., Lemetayer, J.: Factors associated with the software development agility of

successful projects. Int. J. Project Manage. 31, 459–472 (2013)
63. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to the adopting agile practice: the

agile adoption framework. Innovations Syst. Softw. Eng. 3(3), 203–216 (2007)
64. Silva, F.S., Soares, F.S.F., Peres, A.L., de Azevedo, I.M., Vasconcelos, A.P.L.F., Kamei, F.

K., Meira, S.R.L.: Using CMMI together with agile software development: a systematic
review. Inf. Softw. Technol. 58, 20–43 (2015)

65. Version One: The 11th Annual State of Agile Report Version One (2017)
66. Vijayasarathy, L., Turk, D.: Drivers of agile software development use: dialectic interplay

between benefits and hindrances. Inf. Softw. Technol. 54, 137–148 (2012)
67. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes.

Harvard University Press, Cambridge (1978)
68. Wenger, E., McDermott, R., Snyder, W.M.: Cultivating Communities of Practice. Harvard

Business Review Press, Cambridge (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

176 P. Chita

http://creativecommons.org/licenses/by/4.0/

Scaling Agile

Do Agile Methods Work for Large
Software Projects?

Magne Jørgensen(&)

Simula Research Laboratory, 1364 Fornebu, Norway
magnej@simula.no

Abstract. Is it true that agile methods do not scale well and are mainly useful
for smaller software projects? Or is it rather the case that it is particularly in the
context of larger, typically more complex software projects that the use of agile
methods is likely to make the difference between success and failure? To find
out more about this, we conducted a questionnaire-based survey analyzing
information about 101 Norwegian software projects. Project success was mea-
sured as the combined performance of the project regarding delivered client
benefits, cost control, and time control. We found that that projects using agile
methods performed on average much better than those using non-agile methods
for medium and large software projects, but not so much for smaller projects.
This result gives support for the claim that agile methods are more rather than
less successful compared to traditional methods when project size increases.
There may consequently be more reasons to be concerned about how non-agile,
rather than how agile methods, scale.

Keywords: Agile development methods � Project size � Project success

1 Introduction

Much has been written about the extent to which agile methods are suitable for large
software projects. An early attempt to summarize what we know about agile methods
and their success when used in large software projects, authored by Dybå and Dingsøyr
[1], concludes: “The evidence […] suggests that agile methods not necessarily are the
best choice for large projects.” Similarly, the review published by Jalali and Wohlin [2]
finds: “[…] there is not sufficient evidence to conclude that Agile is efficiently appli-
cable in large distributed projects.” More recent reviews, see for example [3, 4],
emphasize challenges related to the use of agile methods for large software projects
and, similarly to the previous reviews, report little or no evidence to support the use of
agile methods for large software projects. Not only is much of the research literature
sceptical about the use of agile methods for large software projects, but several soft-
ware professionals also seem to think that agile methods are mainly for smaller soft-
ware projects.1 It is, in addition, not difficult to find examples of failed, large-scale agile

1 For an example of an opinion-based argumentation ofwhy agile is not useful for large projects, see blog.
inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/. This
blog post concludes that “Large-scale development projects are serious business: agile development
has no place here.”

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 179–190, 2018.
https://doi.org/10.1007/978-3-319-91602-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_12&domain=pdf
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/
http://blog.inf.ed.ac.uk/sapm/2014/02/14/agile-methodologies-in-large-scale-projects-a-recipe-for-disaster/

software projects.2 A comprehensive review of experience reports and case studies on
the challenges and success factors regarding the introduction of agile in large-scale
software development can be found in [5].

There are also reported cases where agile methods have been successfully used for
large software projects, see for example [6], and reports where agile methods are
claimed to have had a positive impact on the outcome of large software projects, see for
example [7, 8]. Finally, there are guidelines on how to succeed with large-scale agile
projects, such as [9], which claim to be based on the successful completion of large
software projects using agile methods.

These diverging results and opinions on the use of agile on large software project
may appear to be confusing. There are, however, several reasons why we should not
expect consistent results and opinions about the effect of using agile methods on larger
software projects:

• We do not have a clear, commonly agreed upon understanding of what it means to
work agile. Agile is not a well-defined method, but rather a set of values, principles,
and practices. There are consequently many good and bad ways of implementing
and using agile methods. There may, in addition, be external factors that complicate
the use of good agile, such as the use of fixed price contracts or insufficient
involvement by the client [10]. The same problems are present for non-agile
methods, which may include an even larger variety of practices. There are good and
bad ways of using most software development methods and it is frequently not clear
when it is the inexperience and lack of skill in using a method and when it is
inherent flaws in a method that contribute to software project failures.

• The development method is only one of many factors affecting the success of a
software project. Other factors, especially the level of provider and client compe-
tence, may be even more important to explain the outcome of large software
projects.

• We do not agree on what a large software project is. A large software project may
be defined relatively to those that an organization is used to completing or with
absolute measures such as budget size, number of developers, complexity, or
number of development teams [11]. In addition, the difference between a large
project (e.g., a project consisting of two teams and costing 10 million Euros) and a
mega-large project (e.g., a project consisting of ten teams and costing 100 million
Euros) may be substantial.

• We see it when we believe it (confirmation bias). People are good at summarizing
experience in a way that defends their beliefs. As documented in [12], those who
believe in the benefits of agile will tend to find evidence supporting the use of agile
even in random project data without any true patterns connecting development
method and project success. One example of how to confirm a strong belief in agile

2 See, for example, the UK National Audit Office report: www.nao.org.uk/wp-content/uploads/2013/
09/10132-001-Universal-credit.pdf. It is from the report not clear to what extent they think that it was
agile development itself, the actual implementation and use of agile or the project’s lack of expe-
rience with the use of agile that contributed to the failure of the project.

180 M. Jørgensen

http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf
http://www.nao.org.uk/wp-content/uploads/2013/09/10132-001-Universal-credit.pdf

(or other) development methods is to categorize a software project as non-agile, or
at least not using agile methods properly, if it fails, i.e., if it works it is agile, if it
fails it is not true agile.

Despite the above methodological problems we may be able to find out more about
the scalability of agile methods by systematically collecting empirical evidence. If large
software projects using agile methods typically perform better than projects using other
methods, then this supports the claim that agile methods do scale to larger projects. It
may give this information even if we do not know exactly how agile was implemented
and used by the projects, are unable to use a commonly accepted and good definition of
what a large project is, and there are other factors that also matter for success. Many
companies may have adopted agile methods just recently, which means that if we find
that agile software projects perform worse, but perhaps not much worse, than non-agile
as the project size increases, we may not be able to conclude that agile methods will not
work on larger software projects. It may then improve as their competence in using the
methods improves.

In this paper we empirically compare agile and non-agile software development
projects by surveying a set of projects, collecting information about their size (as
measured by their budget), their use of development methods, and their degree of
success. The research question of our study is:

As indicated earlier in this section, there are many studies on the use of agile
methods on large-scale software projects, and there are many strong opinions about
which method is the better to use on large projects. In spite of this, we have been
unable to find peer-reviewed research articles empirically analysing size-dependent
differences in success of projects using agile and non-agile development methods.
A non-peer reviewed study by the Standish Group from 20163 reports that projects
using agile development methods performed better than those using waterfall-based
methods for small, medium, and large project sizes, and particularly the largest pro-
jects. For the largest projects, the failure rate was 42% for waterfall projects and 23%
for agile projects. For the smallest project, the difference is smaller, with an 11% failure
rate for waterfall and a 4% failure rate for agile projects. This study indicates that agile
methods is not only well suited for large projects, but also increasingly more suited as
the project size increases. This is, to our knowledge, the only related work we can
compare our results with.

How is the relationship between project size, as measured by its budget, and success
affected by the development method?

3 There are reasons to be sceptical about the results published by the Standish Group; see our
comments on their survey methods on a previous survey in [13]. In its 2016 report the Standish
Group (www.standishgroup.com), improved the definition of success to include not only being on
time, on cost, and with the specified functionality, but also that the project delivers satisfactory
results (blog.standishgroup.com/post/23). Satisfactory results include, they claim, client value. This
improvement, given that it is properly integrated in their survey and that they have improved their
sampling of projects, may make their recent results more valid and useful.

Do Agile Methods Work for Large Software Projects? 181

http://www.standishgroup.com
http://blog.standishgroup.com/post/23

The remaining article is organized as follows. Section 2 describes the survey
design, limitations, and results. Section 3 briefly discusses the results and concludes.

2 The Survey

2.1 Survey Design

The respondents of the survey were participants at a seminar on management of
software development projects in Oslo, Norway, March 2015.4 All participants were
asked to provide information about their last project, including:

• The respondent’s role in the project.
• The project’s outcome in terms of client benefits, cost control, and time control.
• The project’s budget.
• The project’s use of agile practices, and the respondent’s assessment of how agile

the project had been.

We received information about 108 projects. An examination of the responses
showed that seven of them did not include the required information regarding one or
more of the variables used in our analysis. Removing these left 101 valid responses in
the data set.

Characteristics of the respondents and their projects include:

• Role: 56% of the respondents were from the client side and 44% from the provider
side.

• Client benefits: 35% were categorized as “successful,” 55% as “acceptable,” and
10% as “unsuccessful” or “failed.”

• Cost control: 30% were categorized as “successful,” 32% as “acceptable,” and 38%
as “unsuccessful” or “failed.”

• Time control: 37% were categorized as “successful,” 32% as “acceptable,” and 31%
as “unsuccessful” or “failed.”

• Budget: 48% of the projects had a budget less than 1 million Euros, 25% between 1
and 10 million Euros, and 27% more than 10 million Euros.5

• Agile practices: When asked to rank their project with respect to how agile it was
from 1 (very agile) to 5 (not agile at all), 17% responded with 1, 25% with 2, 40%
with 3, 14% with 4, and 4% with 5.

The participants were asked to name the agile practices they had used in their last
project. Comparing those descriptions, emphasizing the use of product backlogs,
frequent/continuous delivery to client, the use of scrum or similar management pro-
cesses, autonomous teams, and the use of velocity to track progress, with responses
regarding the degree of agility of the project using the scale from 1 to 5, we found it

4 Results from this survey have not been published earlier, but the design and project performance
measures are similar to those in the survey published in [14].

5 The original survey was in Norwegian and used Norwegian Kroner (NOK) as currency. The
Euro-values are the approximate values corresponding to the NOK-values.

182 M. Jørgensen

reasonable to cluster the projects as “agile” if the response was 1 or 2, “partly agile” if
the response was 3, and “not agile” if the response was 4 or 5. There were, however, no
simple connection between the self-assessed degree of agility (using the scale from 1 to
5) and the implemented agile practices. This makes the development category
boundaries, especially the boundary between agile and partly agile, to some extent
fuzzy and subjective. While this may limit the strength of the analysis, it is clear from
the analysis that those categorized as agile on average have more agile practices than
those categorized as partly agile. While we believe that this is sufficient for meaningful
analyses, it is important to be aware of that degree of agility in our study is based on the
respondents subjective assessment.6

Our measure of a project’s level of success used a combination of three success
dimensions: client benefits, cost control, and time control. To be categorized as “ac-
ceptable”, we require a score of at least “acceptable” on all three dimensions. Fifty-four
percent of the projects were categorized as acceptable using this definition. Notice that
the inverse of “acceptable” (46% = 100% − 54%) is the set of projects assessed to
have a non-acceptable outcome on at least one of the success dimensions, i.e., the set of
“problematic” projects. To be categorized as “successful,” we require that all three
dimensions should be assessed as “successful.” Only 12% of the projects belonged to
that category.

2.2 Limitations

The survey has a number of limitations that it is important to be aware of when
interpreting the results, including:

• Representativeness. Our sample consists only of Norwegian software projects and is
a convenience sample based on input from people visiting a seminar on software
project management. The common use of agile methods in our data set suggests that
many of the companies represented by the participants had (possibly much)
experience in the use of agile methods. From more in-depth studies of software
projects in similar contexts, see [10], and common sense we know that companies
tend to have more problems in the initial phase when they introduce agile methods
compared to subsequent projects. The level of agile maturity and other largely
unknown sample characteristics, may affect how valid it is to extrapolate our results
to other context.

• Perception, not measurement: Several of the survey questions, particularly those
related to project outcome, are based on the respondents’ perceptions, not measured
data. This has some drawbacks, for example, different people may have different
viewpoints regarding the same project. It may also have some advantages. The
degree of success in time control, for example, may be more meaningfully assessed
subjectively. In one context, a 10% time overrun may point to a time control failure,
while in another context, the same overrun may be acceptable.

6 The set of agile practises, combined with the project’s own assessment of degree of agility, of a
project and other project data used in the analyses will be sent to interested readers upon request to
the author.

Do Agile Methods Work for Large Software Projects? 183

• Role bias. We decided to join the responses of those on the client and the provider
side, even though there may have been systematic differences in their responses. For
example, those in the client role seem to have been less critical than those in the
provider role when assessing the outcome of the projects. Using our measure of
acceptable outcomes, those on the client side found 66% of the projects to be
acceptable, while the figure was 46% when assessed by those on the provider side.
Those on the client and the provider side gave however approximately the same
average score regarding client benefits, i.e., 37% of the projects assessed by the
clients were successful regarding client benefits, while the figure was 32% when
assessed by the providers. If the role bias is not dependent on the degree of use of
agile methods, which we believe is the case, joining the responses of the two roles
will not affect the direction of the interaction effect reported later in this paper.

• Correlation vs. causation. There may be systematic differences in the non-measured
characteristics of the agile and the non-agile software projects. In particular, it may
be that the client and/or provider competence was higher for those using one type of
development method, e.g., providers and clients using agile methods may have been
more competent than those using non-agile methods. This will exaggerate the effect
of a development method if the most competent clients and providers are more
likely to choose the better development method. As with role bias, the direction of
the interaction effects from project size is less likely to be affected by such
differences.

• Few observations. There are few projects for several combinations of development
method and project size category, in particular for the non-agile projects. The low
statistical power means that tests of the statistical significance of the interaction
effect on the development method are not feasible. It also implies that there are
limitations regarding the robustness of our results and that small to medium large
differences in success rates are caused by random variance in outcomes. Our results
should consequently be understood as initial, exploratory results to be followed up
with more empirical research.

• Size vs. complexity. We categorize project size based on the project’s budget. While
the budget is likely to reflect the amount of effort spent, it does not necessarily
reflect the complexity of the project. There may consequently be relevant differ-
ences between large and simple, and large and complex software projects that our
analysis is unable to identify.

2.3 Results

The results section emphasizes key takeaways from our study, especially those related
to the connection between project size, development method and project outcome.

Table 1 gives the proportion of observations per budget and development method
category. It shows that agile and partly agile methods are frequently used even for the
largest projects. They are used in 33% and 56% of the largest projects, respectively.
While this does not say anything about the usefulness or harm of using agile methods
as project size increases, it documents that many of the software professionals involved
considered agile and partly agile development methods to be useful for larger projects.
Notice the increase in use of partly agile as the project size increases from medium

184 M. Jørgensen

to large. This may suggest that some software professionals believe less in working
fully agile when projects get large.

Table 2 and Figs. 1, 2, 3, 4 and 5 show the interacting effect of development
methods on the connection between project size and:

(i) Proportion of acceptable projects (Fig. 1)
(ii) Proportion of successful projects (Fig. 2)
(iii) Mean score for client benefits (Fig. 3)
(iv) Mean score for cost control (Fig. 4)
(v) Mean score for time control (Fig. 5)

The scores of the success dimensions are coded with 4 for successful, 3 for
acceptable, 2 for unsuccessful, and 1 for failed projects. This scale is, according to
measurement theory, an ordinal scale. We believe, nevertheless, that the mean scores
(which strictly speaking require at least an interval scale) give a good indication of the
typical outcome regarding client benefits, cost control, and time control.

Our results do not support the claim that projects using agile or partly agile methods
do worse than non-agile methods on larger projects. Quite the opposite, the data indicates
that large projects using agile or partly agile methods were more likely to be assessed as
acceptable than medium large projects using these methods. The non-agile projects
performed reasonably well for the smallest projects, just a little worse than the agile and
partly agile projects, but very badly on the medium and large software projects. In fact,
among the non-agile projects of medium and large size, there were no projects in our data
set that met the criterion of being perceived acceptable or better on all success criteria.
Although consisting of a small sample, only nine projects used non-agile methods for
medium and large projects; this weakly indicates that it is non-agile rather than agile
methods that have most problems with larger software projects. This result—i.e., that
non-agile methods score relatively poorly compared to agile projects and that the per-
formance difference increases as the project size increases—is similar to that reported in
the Standish Group’s Chaos Report for 2016.

For most of the measures, there were not much difference in the assessed outcome
for projects using agile and only partly agile. The most notable exceptions were pro-
jects assessed to be successful in all three dimensions (Fig. 2), wherein agile performed
better than partly agile for large, but worse for medium large projects.

Table 1. Proportion use of development method per budget size category

Budget size Agile Partly agile Not agile # projects

Small 37% (18) 42% (20) 21% (10) 48
Medium 58% (15) 19% (5) 23% (6) 26
Large 33% (9) 56% (15) 11% (3) 27
projects 42 40 19 101

Do Agile Methods Work for Large Software Projects? 185

Table 2. Success with use of development method per budget size category

Budget size Agile Partly agile Not agile

Total success (% acceptable)

Small 72% 60% 60%
Medium 46% 40% 0%
Large 67% 60% 0%

Total success (% successful)

Small 28% 10% 10%
Medium 7% 20% 0%
Large 11% 7% 0%

Client benefits (mean score)

Small 3.5 3.1 3.1
Medium 3.3 3.4 3.0
Large 3.4 2.8 2.3

Cost control (mean score)

Small 3.2 2.9 2.9
Medium 3.5 2.8 1.8
Large 3.4 2.9 1.0

Time control (mean score)

Small 3.3 3.3 2.8
Medium 2.9 2.6 1.7
Large 2.8 2.9 2.5

Fig. 1. Proportion of acceptable projects

186 M. Jørgensen

Fig. 2. Proportion of successful projects

Fig. 3. Client benefits

Do Agile Methods Work for Large Software Projects? 187

Fig. 4. Cost control

Fig. 5. Time control

188 M. Jørgensen

3 Discussion and Conclusion

There are reasonable arguments both in favour and against good performance of agile
methods on large projects. An example of an argument in favour of their use is that it is
increasingly more unlikely that requirements will remain stable as the size of the
software project increases. The understanding of needs is likely to change during the
course of the project, and there will most likely be external changes leading to
requirement changes. Agile development methods, implementing a process where
change is a more integrated part, may consequently be better able to deal with the high
requirement volatility of many large projects [10, 14]. An example of an argument
sometimes used against the use of agile methods on large software projects is that the
lack of upfront planning and architectural thinking, make projects more risky with
increasing size.7 Consequently, it is possible to analytically argue in favour of both
agile and more plan-driven, non-agile software development methods. To find out
which argumentation in practice is the stronger, and whether agile methods typically
are good for large projects, requires empirical evidence.

The results from this study do this and provide evidence about how projects with
agile practices perform on important success criteria. As pointed out in Sect. 2.2 there
are several threats to the validity of our results, but the results do give some evidence in
support of that the typical medium and large software projects using agile practices
perform acceptably on essential success criteria. This was not the case for typical
software projects using non-agile methods in our data set. Consequently, our data
suggests that the question is not so much whether agile methods work well for large
software projects, but rather how well non-agile software development methods work
for such projects. Large projects are inherently risky, and our data suggests that the
failure risk is reduced rather than increased with the use of agile methods instead of
non-agile methods.

References

1. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic
review. Inf. Softw. Technol. 50(9), 833–859 (2008)

2. Jalali, S., Wohlin, C.: Global software engineering and agile practices: a systematic review.
J. Softw. Evol. Process 24(6), 643–659 (2012)

3. Khalid, H., et al.: Systematic literature review of agile scalability for large scale projects. Int.
J. Adv. Comput. Sci. Appl. (IJACSA) 6(9), 63–75 (2015)

4. Turk, D., France, R., Rumpe, B.: Limitations of agile software processes. arXiv preprint
arXiv:1409.6600 (2014)

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

7 See for example: www.6point6.co.uk/an-agile-agenda, which predicts that UK is wasting 37 billion
GBP annually on failed agile projects. This number is based on a survey of CIOs, suggesting a 12%
complete failure rate of agile projects. They did not calculate the waste on failed non-agile projects.

Do Agile Methods Work for Large Software Projects? 189

http://arxiv.org/abs/1409.6600
http://www.6point6.co.uk/an-agile-agenda

6. Dingsøyr, T., et al.: Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation. Empir. Softw. Eng. 23, 490–520
(2016)

7. Lagerberg, L., et al.: The impact of agile principles and practices on large-scale software
development projects: a multiple-case study of two projects at ericsson. In: ESEM 2013.
IEEE, Baltimore (2013)

8. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34(6), 98–103 (2017)
9. Elshamy, A., Elssamadisy, A.: Applying agile to large projects: new agile software

development practices for large projects. In: Concas, G., Damiani, E., Scotto, M., Succi, G.
(eds.) XP 2007. LNCS, vol. 4536, pp. 46–53. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73101-6_7

10. Jørgensen, M., Mohagheghi, P., Grimstad, S.: Direct and indirect connections between type
of contract and software project outcome. Int. J. Proj. Manag. 35(8), 1573–1586 (2017)

11. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What Is large in large-scale? A taxonomy of scale for
agile software development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273–276. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-13835-0_20

12. Jørgensen, M.: Myths and over-simplifications in software engineering. Lect. Notes Softw.
Eng. 1(1), 7–11 (2013)

13. Jørgensen, M., Moløkken-Østvold, K.: How large are software cost overruns? A review of
the 1994 CHAOS report. Inf. Softw. Technol. 48(4), 297–301 (2006)

14. Jørgensen, M.: A survey on the characteristics of projects with success in delivering client
benefits. Inf. Softw. Technol. 78, 83–94 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

190 M. Jørgensen

http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-540-73101-6_7
http://dx.doi.org/10.1007/978-3-319-13835-0_20
http://creativecommons.org/licenses/by/4.0/

Learning in the Large - An Exploratory Study
of Retrospectives in Large-Scale

Agile Development

Torgeir Dingsøyr1,3(&), Marius Mikalsen1, Anniken Solem2,
and Kathrine Vestues3

1 Department of Software Engineering, Safety and Security,
SINTEF, 7465 Trondheim, Norway

{torgeir.dingsoyr,marius.mikaelsen}@sintef.no
2 SINTEF Technology and Society, SINTEF, 7465 Trondheim, Norway

anniken.solem@sintef.no
3 Department of Computer and Information Science,

Norwegian University of Science and Technology, Trondheim, Norway
kathrine.vestues@ntnu.no

Abstract. Many see retrospectives as the most important practice of agile
software development. Previous studies of retrospectives have focused on pro-
cess and outcome at team level. In this article, we study how a large-scale agile
development project uses retrospectives through an analysis of retrospective
reports identifying a total of 109 issues and 36 action items as a part of a
longitudinal case study. We find that most of the issues identified relate to
team-level learning and improvement, and discuss these findings in relation to
current advice to improve learning outcome in large-scale agile development.

Keywords: Agile software development � Software engineering
Teamwork � Team performance � Post mortem review � Reflection
Learning � Process improvement

1 Introduction

Retrospective meetings are extremely important in agile methods. The Agile Practice
Guide describes them as “the single most important practice in agile development” [1]
and in his much read book on Scrum and XP, Kniberg states that retrospectives are the
“number-one-most-important thing in Scrum” [2]. According to the 11th State of Agile
report [3], the retrospective is the third most used agile practice. We find many sug-
gestions on how to conduct retrospectives in the agile practitioner literature such as [4,
5] and online1.

The purpose of retrospectives is to explore the work results of a team in an iteration
or a phase in order to “learn about, improve, and adapt its process” [1]. The advice
offered in the agile community has mainly focused on learning and improvement for

1 See for example https://plans-for-retrospectives.com/en/?id=32-64-113-13-67 and http://www.
funretrospectives.com/ and https://labs.spotify.com/2017/12/15/spotify-retro-kit/.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 191–198, 2018.
https://doi.org/10.1007/978-3-319-91602-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_13&domain=pdf
https://plans-for-retrospectives.com/en/?id=32-64-113-13-67
http://www.funretrospectives.com/
http://www.funretrospectives.com/
https://labs.spotify.com/2017/12/15/spotify-retro-kit/

the team, while such practices also have a potential to provide learning both on the
individual level and for a larger project or organization.

In this article, we focus on the practice of learning and improving through retro-
spectives in large-scale agile development. The research agenda for large-scale agile
development has identified knowledge-sharing as an important topic [6]. This is a
particularly challenging area of work, as such projects consists of several development
teams with dependencies between teams and typically involve complex integration
with existing ICT systems in projects that are critical for companies or societies [7].

We structure this article as follows: First, we provide background on studies of
retrospective practices and prior studies on analysing content and effect of retrospec-
tives and formulate research questions. Second, we present an exploratory case study
and method for analysis of retrospectives. Third, we discuss what the retrospectives
have addressed and what could be done to improve the learning outcome of retro-
spectives in the large and suggest directions for future research.

2 Background

Given the importance of retrospectives in agile development, the topic has received
relatively little attention in scientific studies. A review of previous studies on IT ret-
rospectives finds a multitude of definitions of retrospectives, descriptions of a number
of outcomes, different practices described, and “no project retrospective measurements
given to confirm […] whether outcomes have been successfully achieved” [8].

Kniberg [2] describes a retrospective practice as a team exercise lasting 1–3 h
where a team identifies what has been «good», what «could have been bet-
ter» and «improvements», and suggest voting on the improvements to focus on in the
next iteration. The practices described in the research literature [8] typically involve
additional steps, for example including root cause analysis in order to analyse topics
identified before deciding on action items to include in the next iteration.

In a study of retrospective practices at team level, Lethinen et al. [9] found that
most discussions were related to topics close to and controllable by the team, but that
topics that could not be resolved at the team level due to their complexity nevertheless
recurred over time.

Many previous studies have seen retrospectives as an arena for reflection to enable
learning and process improvement [10]. Andryiani et al. [11] studied retrospectives
with a framework describing stages of reflection as reporting, responding, relating,
reasoning and reconstructing. A finding is that agile teams may not achieve all levels of
reflection simply by performing retrospective meetings. The study found that “im-
portant aspects discussed in retrospective meetings include identifying and discussing
obstacles, discussing feelings, analysing previous action points, identifying back-
ground reasons, identifying future action points and generating a plan” [11].

We have not been able to identify studies of retrospectives in large-scale devel-
opment, but a blog post describes how Spotify conducted large-scale retrospectives2

2 https://labs.spotify.com/2015/11/05/large-scale-retros/.

192 T. Dingsøyr et al.

https://labs.spotify.com/2015/11/05/large-scale-retros/

in «one big room» in a format similar to world café [12]. Advice in one of the
large-scale development frameworks, Large-Scale Scrum (LeSS),3 is to hold
an «overall retrospective» after team retrospectives, to discuss cross-team and
system-wide issues, and to create improvement experiments.

We do not know of studies investigating the learning effect of retrospectives, but a
summary of relevant theories of learning such as Argyris and Schön’s theory of
learning and Wenger’s communities of practice can be found in one overview article
[13], which discusses learning on individual-, team-, and organizational level. Argyris
and Schön distinguish between smaller improvement («single loop learning») and more
thorough learning («double loop learning»).

In this explorative study, we ask the following research questions: 1. How are
retrospectives used in a large-scale agile development project? 2. What could be done
to improve the learning outcome of retrospectives in large-scale agile projects?

3 Method

We are currently conducting a longitudinal case study [14] of a large-scale develop-
ment project. The case was selected as it is one of the largest development projects in
Scandinavia, and is operating in a complex environment with heavy integration with
other ICT systems.

The customer organization has 19 000 employees, and close to 300 ICT systems.
A new solution will require changes to 26 other systems. The project uses a stage-gate
delivery model with 4 stages (analysis of needs, solution description, construction, and
approval, similar to a previous project described in [15]). We followed the first release,
with 37 developers in four development teams. Teams had a Scrum-master, one or two
application architects, one or two testers, and up to ten developers. The project uses the
Scrum-method, with three-week iterations, starting with a planning meeting and ending
with a demo and retrospective.

The project has three main releases, and this article is based on an analysis of
minutes of meetings from 10 retrospectives in the first release. The minutes include
iterations 3 to 9, with an exception of iteration 6, when no retrospective was held due to
summer holidays. The minutes cover a 5-month period.

We have limited the study to an analysis of retrospective minutes from two of the
four teams. The minutes describe who were present in the face-to-face meeting, a list of
issues that went well, a list of issues that could be improved and most often a list of
action items. The length of the minutes varied from half a page to two pages. The
minutes were posted in the project wiki.

We all read three minutes individually, and then jointly established a set of cate-
gories, taken from the Scrum guide4, which describes the purpose of the sprint retro-
spective as an arena for inspecting how the last sprint went with regards to the
categories «people», «relationships» (merged with people), «process», and «tools».

3 https://less.works/less/framework/index.html.
4 http://www.scrumguides.org/.

Learning in the Large - An Exploratory Study of Retrospectives 193

https://less.works/less/framework/index.html
http://www.scrumguides.org/

We added the categories «project» and «other teams» to specifically address the
large-scale level. These categories were used to code issues and action items.

4 Results

The analysis of minutes from retrospectives in Table 1 shows the issues recorded by
the teams during the seven iterations. Most issues were related to «process»
(41) and «people and relationships» (30). In the following, we describe issues that
emerged in selected categories, and then present the resulting action items as recorded
in the minutes.

Due to space limitations, the following results describe the issues we found relating
to the categories that shed most light on how large-scale agile development influences
the teams. These are «process» (41 reported issues), «project» (10 reported issues)
and «other teams» (7 reported issues).

In terms of process, there were issues such as that the build breaks too often, design
takes too much capacity from the team, that they would like more consistent use of
branching in Git (tool for version control and code sharing), and that frequent check-ins
makes it difficult to terminate feature-branches. The following excerpt illustrates how
process issues manifest: “A lot of red in Jenkins [a continuous integration tool], which
makes it difficult to branch from «develop»”. Other issues were concerned with quality
control and routines in the team, such as the need for better control and routines for
branching of the code, need for more code reviews, too many and messy Jira (issue
tracker) tasks, and architects have limited time to follow up on development. Issues
concerning lack of structure for bug reporting were reported as such: “Structure con-
cerning tests, bugs are reported in all possible ways – Mails – Skype – face to face,
very difficult to follow up and have continuity in test/bugfix etc.”

Project issues are related to the overall organisation of the project as a whole. Such
issues were far less frequently reported, and those we found included having updated
requirements for user stories when entering sprints, that solutions designs should be
more detailed, product backlog elements should be ready before sprint start, and
addressing how developers move between teams. The following illustrates how one

Table 1. Issues that went well and issues that could be better. In total 109 issues were recorded
during seven iterations for two teams. Roughly 40% of issues were statements on issues that went
well and 60% about issues that could be improved.

Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 8 Iteration 9 Iteration 10 Sum

Process 7 3 7 8 5 7 4 41

People &
relationships

1 1 13 5 4 6 0 30

Other topics 1 2 3 0 2 2 2 12

Project 0 0 4 0 1 3 2 10

Tools 1 0 3 1 1 1 2 9

Other teams 2 0 1 2 2 0 0 7

194 T. Dingsøyr et al.

team reports the need for more technical meetings between teams on a project level:
“Review of code/project, all meetings are about organisation, but it should be one
meeting about how our code/setup/project looks from a technical perspective”.

Finally, for the category other teams, i.e. how teams interact in a multi-team setting,
we found how there were issues with regard to how teams “takes instructions” from
several different parties, and how there was challenges in detecting dependencies in the
code before you develop and test. The following excerpt from the retrospective minutes
illustrates how one team is not involved sufficiently in the planning of refactoring: “We
want to be notified in advance when there are big refactorings or other significant
changes in the codebase, before it happens”.

The retrospective minutes also contains actions decided on by the teams. In total,
the two teams identified 36 action items, where most were related to «process» and
to «other topics». We show the distribution and provide examples of action items in
Table 2.

5 Discussion

We return to discuss our two research questions, starting with how are retrospectives
used in a large-scale agile development project?

We found that retrospectives were used at team level, where short meetings were
facilitated by the scrum master and reported in minutes on the project wiki. Minutes
were available to everyone in the project, including customer representatives.

Our analysis of topics addressed in the retrospectives shows that most of the issues
identified as either «working well» or «could be improved» related to process, fol-
lowed by people and relationships. In the «large-scale» categories project and other
teams we found in total 17 issues of the total 109. However, as shown in the results,
many of the issues described as process were related to the scale of the project, such as
identifying challenges with the merging of code or detailing of specifications before
development would start. We find, however, that teams mainly deal with team-internal
issues in retrospectives.

Table 2. Action items from retrospective minutes according to topic.

Topic Number Example action items

Process 13 “Review and assign quality assurance tasks during daily
stand-up.”

Other topics 7 “We need a course on the «react» technology.”
Tools 5 “More memory on the application development image.”
People and
relationships

5 “Organise an introduction round for new team members.”

Project 4 “Have backlog items ready before an iteration starts.”
Other teams 2 “Be more aware of dependencies when assigning tasks, make

sure that other teams we depend on really give priority to these
tasks.”

Learning in the Large - An Exploratory Study of Retrospectives 195

The analysis of the action items shows that 6 of the 36 action items identified
during the work on the release were in the «large-scale» categories. However, we see
that some of the action items in the other categories are related to scale. One example is
the item “organizing an introduction round for new team members” in the category
people and relations, which describes an action item which would not be necessary on
a single-team project. However, our impression is also here that most action items
concern issues at the team level.

We have not been able to conduct an analysis of the effect of retrospectives at team
level. We consider that such meetings give room to develop a common understanding
of development process, tasks and what knowledge people in the team possess, what in
organizational psychology is referred to as shared mental models [13] and have been
shown to relate to team performance. A common critique of retrospectives is that teams
meet and talk, but little of what is talked about is acted upon. We have not been able to
assess how many of the 36 identified action items were acted upon, but found in one
minute that “all action items suggested to the project management has been imple-
mented”. The 36 action items identified can be considered small improvement actions.
Given the short time spent on retrospectives, they do not seem to facili-
tate «deep» learning («double loop» learning in Argyris and Schön’s framework).
Having minutes public could also lead to critique being toned down or removed
completely.

This leads us to discussing our second research question - what could be done to
improve the learning outcome of retrospectives in large-scale agile projects?

In the background we pinpointed particular challenges of large-scale agile devel-
opment such as dealing with a high number of people and many dependencies [7].
A retrospective can be used for a number of purposes. Prior studies in organizational
psychology suggest that in projects with many teams, the coordination between teams
are more important than coordination within teams [16]. It is reason to believe it would
be beneficial to focus attention on inter-team issues in large projects. The LeSS
framework suggests organizing inter-team retrospectives directly after the team retro-
spectives. Alternatively, teams can be encouraged to particularly focus on inter-team
issues as part of the team retrospectives. A challenge in the project studied is that the
contract model used may hinder changes, for example the contract model specifies
handover phases between companies involved in the analysis of needs phase and the
solution description and development phase. However, given the limitations, it is
important that the project adjusts work practice also on inter-team level to optimize use
of limited resources.

This exploratory study has several limitations, where one is that we have only
analysed minutes available on the project wiki from two of four teams.

6 Conclusion

Many in the agile community regard retrospectives as the single most important
practice in agile development. It is therefore interesting to know more about how
retrospectives are practiced in large-scale development where there is a dire need to
learn and improve as many participants are new to the project, the customer

196 T. Dingsøyr et al.

organization, and to the development domain. We found that short retrospectives were
conducted at team level and mostly addressed issues at the team-level. The action items
mainly addressed team level issues. Most actions also seem to relate to smaller
improvements, what Argyris and Schön call «single-loop learning».

A large-scale project will benefit from learning and improvement on the project
level, and this would be strengthened by following the advice from LeSS by facilitating
retrospectives at the project level. Further, to shift learning effects towards «dou-
ble-loop learning», we suggest that more time is devoted to the retrospectives.

In the future, we would like to initiate retrospectives at the inter-team level, explore
the types of issues that are raised, and also gain more knowledge about perceptions of
retrospectives by interviewing project participants.

Acknowledgement. This work was conducted in the project Agile 2.0 supported by the
Research Council of Norway through grant 236759 and by the companies Kantega, Kongsberg
Defence & Aerospace, Sopra Steria, Statoil and Sticos.

References

1. Project Management Institute and Agile Allience: Agile Practice Guide: Project Manage-
ment Institute (2017)

2. Kniberg, H.: Scrum and XP from the Trenches, 2nd edn. InfoQ (2015)
3. Version One: 11th State of Agile Report (2016)
4. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. The Pragmatic

Bookshelf (2006)
5. Kua, P.: The Retrospective Handbook (2013). E-book available at: https://leanpub.com/the-

retrospective-handbook
6. Moe, N.B., Dingsøyr, T.: Emerging research themes and updated research agenda for

large-scale agile development: a summary of the 5th international workshop at XP 2017.
Presented at the Proceedings of the XP 2017 Scientific Workshops, Cologne, Germany
(2017)

7. Rolland, K.H., Fitzgerald, B., Dingsøyr, T., Stol, K.-J.: Problematizing agile in the large:
alternative assumptions for large-scale agile development. In: International Conference on
Information Systems, Dublin, Ireland (2016)

8. Skinner, R., Land, L., Chin, W., Nelson, R.R.: Reviewing the Past for a Better Future:
Reevaluating the IT Project Retrospective (2015)

9. Lehtinen, T.O., Itkonen, J., Lassenius, C.: Recurring opinions or productive improvements—
what agile teams actually discuss in retrospectives. Empirical Softw. Eng. 22, 2409–2452
(2017)

10. Babb, J., Hoda, R., Norbjerg, J.: Embedding reflection and learning into agile software
development. IEEE Softw. 31, 51–57 (2014)

11. Andriyani, Y.: knowledge management and reflective practice in daily stand-up and
retrospective meetings. In: Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP,
vol. 283, pp. 285–291. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_21

12. Brown, J., Isaacs, D.: The world cafe: Shaping our futures through conversations that matter.
Berrett-Koehler Publishers Inc., San Francisco (2005)

13. Dingsøyr, T.: Postmortem reviews: purpose and approaches in software engineering. Inf.
Softw. Technol. 47, 293–303 (2005)

Learning in the Large - An Exploratory Study of Retrospectives 197

https://leanpub.com/the-retrospective-handbook
https://leanpub.com/the-retrospective-handbook
http://dx.doi.org/10.1007/978-3-319-57633-6_21

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131–164 (2009)

15. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation.
Empirical Softw. Eng. 22, 1–31 (2017)

16. Marks, M.A., Dechurch, L.A., Mathieu, J.E., Panzer, F.J., Alonso, A.: Teamwork in
multiteam systems. J. Appl. Psychol. 90, 964 (2005)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

198 T. Dingsøyr et al.

http://creativecommons.org/licenses/by/4.0/

Reporting in Agile Portfolio Management:
Routines, Metrics and Artefacts

to Maintain an Effective Oversight

Christoph Johann Stettina1,2,3(B) and Lennard Schoemaker2

1 Centre for Innovation The Hague, Leiden University,
Schouwburgstraat 2, 2511 VA The Hague, Netherlands

c.j.stettina@fgga.leidenuniv.nl
2 Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, Netherlands
lennardschoemaker@gmail.com

3 Accenture B.V., Liquid Studio,

Orteliuslaan 1000, 3528 BD Utrecht, Netherlands

Abstract. In a world where the speed of change is faster than ever,
a growing number of organisations adopts Agile Portfolio Management
(APM) to connect their agile teams to business strategy. A domain which
has been little explored in literature and professional frameworks. Based
on 14 interviews conducted in 10 large European organisations, in this
paper we report the preliminary results of our study on reporting rou-
tines, artefacts and metrics in Agile Portfolio Management. In our find-
ings we discuss the three generic domains of reporting responsibility and
the novel types of reporting routines found in practice. Further, we use
the concept of boundary objects to recommend which types of artefacts
are effective for which reporting routines.

Keywords: Agile portfolio management · Agile reporting
PPM reporting

1 Introduction

In a world of ever-faster emerging societal and technological advancements,
companies need to timely adjust their portfolio of products and services - to
adapt to rapidly changing market demand, and to cope with an increasingly
entrepreneurial competition [1]. Agile Portfolio Management (APM), as a poten-
tial solution, defines the heartbeat in connecting strategy to operations through
the selection, prioritisation and review of initiatives an organisation executes.
Still, for large organisations with strong product and service development capa-
bilities with 50 to 500 teams, managing and keeping a meaningful overview of
their ventures is a challenging task.

c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 199–215, 2018.
https://doi.org/10.1007/978-3-319-91602-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_14&domain=pdf

200 C. J. Stettina and L. Schoemaker

Agile portfolio management is associated with the capability for a swift
change of priorities across initiatives based on the faster delivery of interme-
diate outcomes and a better collaboration in and across teams [1]. Comparing to
traditional project management approaches, agile methods put a focus on under-
standing the value created in context and rely heavily on direct communication
and frequent reviews of intermediate results with users. It follows the ethos of
the Agile Manifesto ‘Working software is the primary measure of progress.’ [2].

To provide the right amount of oversight and select the right reporting app-
roach is crucial for a successful and ‘agile’ connection of strategy to operations,
especially due to the focus on the value delivered. Authors like Müller et al. [3]
point out how project and programme reporting influences the performance of
portfolio management. Yet, current literature pays little attention to creating
and managing oversight in portfolios in such dynamic environments [4]. Further-
more, while the origins of portfolio management lie in managing portfolios of
financial assets, project selection and reporting often still follows predominantly
ad hoc or financial metrics [5], or considers projects in isolation [4]. How to main-
tain a meaningful oversight effectively when the knowledge expands towards the
boundaries of a dozen teams remains a question.

In this paper we present the findings of our study on reporting approaches,
artefacts and metrics in large organisations applying agile methods within their
portfolios. The remainder of the paper is organised as follows: First, we discuss
the gap in existing literature and formulate our question. Second, we describe
our approach and descriptive results. Then, we reflect on our findings in light of
existing literature.

2 Related Work

In the following subsections, we will provide an overview of the existing literature
on Portfolio Management (PPM) and Agile Portfolio Management (APM) along
with the reporting of portfolio management, and include an evaluation of the
current gap in the literature.

2.1 Connecting Organisational Strategy to IT Development
Initiatives Through Agile Portfolio Management

Portfolio management deals with the question which initiatives an organisation
should pursue and how to connect those to strategic goals. Cooper et al. [5]
define the goals of portfolio management as follows: (1) to maximise return
on R&D and technology; (2) To maintain the business’s competitive position;
(3) to properly allocate scarce resources; (4) to forge the link between project
selection and business strategy; (5) to achieve a stronger focus; (6) To yield the
right balance of projects and investments; (7) to communicate project priorities
both vertically and horizontally within the organisation; (8) to provide greater
objectivity in project selection.

Reporting in Agile Portfolio Management 201

Agile Portfolio Management differs from traditional Project Portfolio man-
agement as it succeeds agile software development frameworks, while traditional
Project Portfolio Management (PPM) is based on principles to manage finan-
cial portfolios. Agile methods such as Scrum challenge portfolio and programme
reporting in existing, especially large, organisations due to a faster and more fre-
quent delivery of intermediate results, different roles, and a different mindset [1].
The increased delivery of intermediate results requires faster feedback loops in
domains outside individual projects, such as portfolio management [1,6]. This
challenges the traditional view on project portfolio management which, once
selected, focuses on managing projects in isolation [4].

In a first cross-case study comparing the application of agile portfolio man-
agement in 14 large organisations to existing literature and professional frame-
works, Stettina and Hörz [1] point at the characteristics of agile portfolio manage-
ment as (1) transparency of resources and work items, improving trust, decision-
making, and resource allocation; (2) collaboration, close collaboration based on
routinised interaction and artefacts enabling frequent feedback-loops across the
domains; (3) commitment to strategically managed portfolios; (4) team orienta-
tion, removing unrest in resource allocation and building capabilities in teams.

While there is an extensive body of knowledge on Project Portfolio Man-
agement, existing literature pays little attention to portfolios of initiatives in
agile and dynamic environments [4]. The origins of PPM in financial models
can be still traced to a dominance of financial metrics and indices in portfolio
decision-making [7]. Cooper et al. [5] found that the use of financial models alone
yields poorer portfolio results. They advise the application of strategic methods
and scoring approaches compared to financial and quantitative indicators only.
Cooper et al. [8] describe two main approaches to project portfolio review in
new product development: a (1) ‘gates dominate’, and a (2) ‘portfolio domi-
nates’ approach. In a ‘gate-dominated’ project portfolio management approach,
senior management will evaluate individual projects within a portfolio and will
make Go/Kill decisions at these gates. In a portfolio review dominated approach,
the projects within a portfolio are competing with each other.

2.2 Maintaining a Meaningful and Effective Oversight Practice
Across Initiatives Pursued Throughout a Portfolio
of Agile Teams

Reporting is considered to be one of the main process areas in portfolio man-
agement and is positively associated with portfolio success [3].

Empirical literature on reporting in agile portfolio management is scarce.
Existing contributions discuss reporting as providing visibility across projects [9].
Oversight [10] and metrics [11] are frequently mentioned as two of the domains
affected by implementing agile portfolio management. Characteristics associated
with the practice include transparency of resources and work items and close
collaboration based on routinised interaction and artefacts enabling frequent
feedback-loops [1,6]

202 C. J. Stettina and L. Schoemaker

Metrics are generally considered to be an integral part of reporting, contribut-
ing to the success of the entire portfolio. Vähäniitty [6] points out that perfor-
mance metrics and incentives should not encourage local optimisation within
a portfolio. In practitioner literature, Leffingwell [12] and Krebs [13] provide
practical recommendations for different metric types. In his book, Krebs [13]
describes three types of metrics as (1) progress, (2) team morale, and (3) quality
(compare [13] p. 67). Leffingwell [12] describes (1) employee engagement, (2)
customer satisfaction, (3) productivity, (4) agility, (5) time to market, (6) qual-
ity, (7) partner health (compare [12] p. 308). While existing literature points at
possible metrics and artefacts to embed those, empirical evidence is lacking.

Project Management Offices (PMO), or Project Portfolio Management
Offices (PPMO), traditionally serve as a supporting function, providing over-
sight across the pursued initiatives across the portfolio, e.g. by collecting project
information and updates from respective teams and preparing it for management.
Tengshe and Noble [11] describe the changing role of a PMO when adopting agile
methods, by providing means of continuous improvement, training and coaching
across projects and portfolios. Rautiainen et al. [9] describe their case of setting
up a portfolio of agile teams with the help of a PMO to provide transparency,
helping to reduce duplicate projects and aligning projects to strategy.

More recently, software tooling is proposed to support automated reports
across agile teams in programmes and portfolios [6]. However, an empirical per-
spective beyond individual cases on what reporting practices are applied in
practice and the interaction of practices with reporting artefacts and metrics
is missing.

2.3 Taking the Perspective of Knowledge Boundaries to Understand
Effective Reporting in Agile Portfolio Management

Reporting practices can be, analogously to documentation, considered as a
knowledge conversion practice [14]. While there is little academic literature
on reporting in agile portfolio management, there is a growing number of con-
tributions on documentation and knowledge transfer across agile teams (com-
pare [15,16]).

Project reporting and reviewing relies on knowledge transfer across different
teams and different functions such as finance, product development or portfolio
management. To convey knowledge across different domains or boundaries, agile
methods rely heavily on frequent feedback loops based on direct face-to-face com-
munication, but they also require the right artefacts in context to support a sus-
tainable and effective knowledge transfer [15]. Similar to project handovers [16]
or documentation practices [15], reporting relies on man-made artefacts such as
marketing reports, financial status, portfolio updates, or retrospective reports.
Such artefacts crossing different boundaries of knowledge, such as portfolio man-
agement, product management or software development, are considered ‘bound-
ary objects’ [17].

Knowledge boundaries are both “a source of and a barrier to innova-
tion” [18]. Innovation often happens on the boundaries of knowledge as stated

Reporting in Agile Portfolio Management 203

by Leonard [19]. In order to create new products and service, agile teams need to
effectively cross knowledge boundaries. Agile methods such as Scrum are based
on cross-functional teams, which effectively cross knowledge boundaries through
direct, face-to-face communication. However, when embedding agile teams in
a wider organisational context, such as a portfolio management process, such
teams effectively create new knowledge boundaries which need to be bridged
effectively.

Carlile [18] describes knowledge boundaries in new product development,
such as in Agile Software Development, and three distinct approaches move
knowledge across boundaries: (1) the syntactic; (2) the semantic; and (3) the
pragmatic approaches.

The syntactic approach deals with establishing a shared and stable syntax to
enable accurate communication between sender and receiver [18]. Once a syntax
is established, crossing the boundary becomes a knowledge transfer problem.
Examples for boundary objects crossing the syntactic boundary are reposito-
ries storing the information using a previously agreed syntax. In the context of
portfolio management, such repositories might be tools documenting a team’s
development progress, or the status of schedules and budgets collected over time.

The semantic approach acknowledges that despite a shared language or syn-
tax, different interpretations can occur. Different worlds of thought and areas of
interest exist across different functions and teams within an organisation. For
example, a software development team is interested in a high-quality and bug-
free software, while product and portfolio managers are interested in a product
that is commercially viable. Examples of boundary objects to cross a semantic
boundary are standardised forms and methods. Using a User Story template, for
example, allows to translate and store user requirements in a template under-
standable to business. Especially, when compared to traditional requirements
documentation which often use a very technical language.

At the pragmatic knowledge boundary the parties involved need to be willing
to understand, negotiate and alternate their knowledge [17]. Product and port-
folio management, for example, needs to be willing to alternate their plans based
on new technical possibilities given by the development team. Teams need to be
willing to (re)align their work to new strategic priorities for new and existing
product lines, or communicate and negotiate work based on discovered inter-
dependencies with other teams. Example of a pragmatic boundary object is a
Program Board used in SAFe [12].

The interaction of reporting practices, the involved artefacts crossing bound-
aries of knowledge, and the concrete metrics applied, can thus be considered
important when studying reporting in agile portfolio management.

2.4 Gap in the Literature and Research Question

Following the state of art reviewed in the previous subsection, we would now like
to reflect on the gap in the literature and the resulting objectives for this study.

To summarise, the existing literature points out that: Firstly, project port-
folio management is associated with overall success on R&D organisations [8],

204 C. J. Stettina and L. Schoemaker

and reporting is positively associated with portfolio success [3]. Secondly, find-
ings from organisations employing agile practices imply that higher frequency
of interaction, thus also reporting, is required in agile portfolio management [1].
And thirdly, the interplay of routines and artefacts is important for a good and
sustainable agile practice [15].

In light of the existing literature we would like to pose the following research
question to guide our study: What are reporting routines, metrics and artefacts
applied in Agile Portfolio Management?

3 Method

Considering the limitations of the available literature, it was felt that an explo-
rative study would best be suited to this new topic. As is common in the study
of management practices in real-world contexts, we chose the design of our case-
study research the model proposed by Yin [20]. The data collection for the case
studies was carried out by conducting semi-structured interviews with profes-
sionals working in large organisations that have agile portfolio management or
are in the process of moving towards an agile portfolio management process. We
chose a multiple case-study protocol with the aim of drawing more robust and
generic findings which would have an impact on building a theory [20]. In the
following subsection we will elaborate our case study protocol.

Case Selection. Interviews for this study were conducted with professionals
working in organisations that complied with our case selection criteria and which
were part of the portfolio management process. In order to find suitable organ-
isations matching our criteria we used our own network, referrals and online
reports. After identifying suitable organisations, we used own network, refer-
rals as well as LinkedIn Premium to identify the candidates. The following case
selection criteria were applied: (1) The organisation has at least 250 full-time
employees (FTE). (2) The organisation uses agile methods with stable Scrum
or Kanban teams (3) The organisation has a portfolio/programme management
process with at least one portfolio. (4) The organisation has a portfolio report-
ing process. (5) The organisation has at least three teams working with agile
methods. (6) The interviewee is directly involved in the portfolio management
process of the organisation.

Data Collection: Semi-structured Active Interviews. The interviews took
place between July 2016 and December 2016, each taking between 40 and 80 min.
Most interviews were conducted face-to-face at the organisation. The interview
guide consisted of the following main sections: (1) General Information regarding
interviewee and organisation; (2) Project Management, Portfolio Management,
Agile Portfolio Management; (3) Project Portfolio Management Office; and (4)
Reporting. Example questions were: What are some of the common methods
that you use within your organisation on portfolio level? What does your report-
ing process look like at initiative/project level? How does your reporting process

Reporting in Agile Portfolio Management 205

look like at portfolio level? Could you write down a step-by-step guide to your
reporting process? On a scale of 1 to 5, how satisfied are you with your portfolio
reporting process? Which reporting activities and artefacts do you consider to be
agile? Do you have a PMO? What are the functions of your PMO?

Data Analysis. All interviews were digitally recorded and transcribed with the
consent of the interviewees. The analysis started by creating a case description
of each organisation and an overview of all case characteristics. After creating
case summaries we tabulated the data on artefacts and metrics to allow for
cross-case comparison. The data from the process-related questions on project
and initiative level was organised into narrative fragments and translated into
process diagrams. The analysis of the data took place in close discussions with
the two authors in the period between February and October 2017.

4 Results

For this study, a total of 14 people were interviewed from different organisations
across multiple sectors, sizes and countries. This chapter provides an overview
of all gathered data and any additional observations that were made.

Overview Cases. An overview of case organisations is presented in Table 1.
The majority of our cases were large organisations with thousands of employees
and a large IT portfolio, predominantly in the private sector. A large majority
use a monthly reporting practice, based on Gates-driven reporting.

All case organisations reported applying Scrum as their main delivery
method, partially supported by Kanban and Lean practices. Case organisations
use different agile at large models connecting Scrum in the organisational setting.
Two out of the 10 case organisations, case B, and E, mentioned that they used
SAFe as the starting point for defining their agile portfolio management process.
There were several participants who also mentioned SAFe as a framework that
they would use in the future. Half of the case organisations in this study men-
tioned that they to some extent use PRINCE2. Case organisation B is somewhat
of an exception when it comes to applying PRINCE2. The reason for this is that
two people were interviewed from two different parts of the organisation.

We applied the agile transformation maturity model, with the stages Begin-
ner, Novice, Fluent, Advanced and World-class, as proposed by Laanti [21] to
determine portfolio maturity.

Reporting Practices. After creating process diagrams for each case organi-
sations (see Fig. 1) we identified three distinct reporting approaches linked to
the size and agile maturity of an organisation. Across our cases we found (1)
Cadence-driven, (2) Tool-driven, and (3) PMO-driven reporting approaches.

Organisations with a Cadence-driven reporting approach employ reporting
activities that revolve around their development cadence and method, such as

206 C. J. Stettina and L. Schoemaker

Table 1. Case organisations and descriptive variables. (Scale for satisfaction with
reporting process: 1= Not at all satisfied, 2 = Slightly satisfied, 3= Moderately satis-
fied, 4 = Very satisfied, 5 = Extremely satisfied)

Industry Size

(FTE)

PPM

type

Review

frequency

Actors PPM

maturity

Satisf. PPM

reporting

Method

A Telco 350 Gates Bi-weekly Management

Team

Beginner 3/1 Scrum and

SoS

B Electronics 4500 PPM Quarterly PPM Fluent 4/3 Scrum &

SAFe

C Telco 26000 Gates Monthly Board of

Directors

Beginner 3 Scrum &

MoP

D Finance 650 Gates Monthly Steerco Beginner 2 Scrum

E Government 30000 PPM Bi-weekly Portfolio

Board

Fluent 4 Scrum &

SAFe

F Aviation 2000 Gates Monthly CIO Beginner 4 Scrum &

Custom

G IT Service 13000 Gates Tri-weekly Steerco Beginner 2/4 Scrum &

Spotify

H Public

Transport

30000 Gates Bi-weekly Portfolio

Board

Beginner 1 Kanban &

MoP

I Logistics 11000 Gates Monthly Steerco/CIO Beginner 1/4 Scrum &

PMI

J E-commerce 1100 PPM Trimesterly Management

Team

Fluent 4 Scrum &

Spotify

the bi-weekly Sprints in Scrum, or the Program Increments (PI) in SAFe [12]. In
our cases, we found this mostly be Scrum, which in practice means a two-weekly
reporting cadence based on a two-weekly Scrum sprint, and the 4 + 1 two-sprint
cadence in SAFe.

Organisations with a PMO-driven reporting approach employ reporting
activities that revolve around templates provided by project management frame-
works like PRINCE2. In most case organisations this meant the manual creation
of reports in the form of documents or spreadsheets. Cloud-based office suites
like Microsoft OneDrive or Google Drive, or network drives are often used to
store and share such reporting artefacts.

Organisations with a Tool-driven reporting approach employ reporting activ-
ities that are mostly high-level or on an ad hoc basis. In our case organisations,
we found that day-to-day reporting activities are mostly automated with Tools
like JIRA or CA Agile Central.

Artefacts. In the cross-case results we identified three types of reporting arte-
facts in practice1 as follows:

1. Tool-based artefacts. Are reporting artefacts that live within a tool. Exam-
ples identified among the case organisations include collaboration software,
automated test reports or dashboards. Examples are the tool based Portfolio
board reports in org. E.

1 While there are more artefacts involved in the software delivery cycle, (compare [16]),
for the sake of focus in this study we only relate to artefacts related to the reporting
process.

Reporting in Agile Portfolio Management 207

Fig. 1. Reporting practice in case organisation B

208 C. J. Stettina and L. Schoemaker

2. Document-based artefacts. Reporting artefacts in the form of documents.
Examples identified among the case organisations include excel spreadsheets,
text-files, PowerPoint sheets. An example is the project sheet maintained by
org. H.

3. Interaction-based artefacts. Report artefacts that are not created but are
rather an intangible by-product of the reporting interaction. Examples iden-
tified among the case organisations include insights shared during a meeting
or an informal ad hoc update using chat.

When we consider the reporting artefacts, the reporting process diagrams
and the agile maturity we can see that organisation with a higher agile maturity
tend to limit the amount of document-based reporting. When we compare the
used artefacts with the fragments of narrative provided by the employees in our
case study regarding their benefits and challenges, we can see that reporting
artefacts work best when they are well thought out, are used and add value.

Metrics. From our cross-case analysis based on the metrics in Table 2 we iden-
tified 5 metric types:

1. Performance metrics measure the efficiency of the work (e.g. velocity and
cycle time trends in org. B)

Table 2. Example artefacts, with metrics, reporting routine type and knowledge
boundaries crossed (↔ = syntactic; ⇔ = semantic; ∞ = pragmatic)

Level Org. Artefact Metric(s) KB Type

Portfolio E Portfolio
board report

Velocity
Dependencies
Results past period
Results coming period

⇔ Tool

G Portfolio wall
(physical)

Dependencies ∞ Cadence

..

Product A PO highlight
report

Epic status
Results past period
Results coming period

⇔ Cadence

I Project report Milestones
Progress
Financial data

⇔ PMO

..

Team G Retrospective
report

Forecast
Velocity
Work capacity
% impediments
Team happiness

⇔ Cadence

..

Reporting in Agile Portfolio Management 209

2. Quality metrics, measure the quality of the work (e.g. exceptions in org. B &
D)

3. Progress metrics measure how far along you are with the work (e.g. velocity
planned and realised in org. A)

4. Status metrics measure the current state of work (e.g. budget, resources)
5. Contextual metrics provide measurements and information on the work (e.g.

project highlights in orgs. C, D and F, context descriptions)

5 Analysis and Discussion

Based on our data from the case organisations we will now discuss our findings
in light of the existing literature.

5.1 Three Domains of Knowledge Responsibility: Product,
Development and Process

Across our case organisations we identified three main domains of knowledge prac-
tice involved: (1) Product and portfolio responsibility, (2) Development, and (3)
Process. We have depicted the three domains and their reporting relations in
Fig. 2. As a product manager in Org. A. elaborated: “..So it is mainly the demos,
the happiness of the team members and the happiness of the stakeholders..”.

This reporting configuration fundamentally differs from other project man-
agement frameworks like PRINCE2, as the role of the traditional project man-
ager is split up into a content, process and team responsibility in the roles of the
Product Owner and Scrum Master. In the majority of our case organisations,

Product
Responsibility
(Product Owners,

Product
Management)

Development
Responsibility

(Team, Architects)

Process
Responsibility
(Scrum Masters,

RTEs)

Working software, Highlights,

Forecast

Priorities, Direction,
Resources,

Stakeholder happiness

Team happiness,
Velocity

Coaching Business KPIs,
Priorities

Team happiness,
Quality, Velocity

Fig. 2. Domains of reporting responsibility in Agile Portfolio Management

210 C. J. Stettina and L. Schoemaker

the team directly and frequently ‘reports’ to the business, demoing working soft-
ware and other intermediate results at the end of each development cycle, rather
than relying on ad hoc presentations, escalation meetings and intermediaries
(e.g. PMO). For example as hinted by the Vice President of a product unit at
Org. B.: “..we had them [PMOs] but we got rid of them. We wanted the people
in the teams to feel linked and part of the project. So we did not want the people
to feel like they were a generic team, they had to feel product ownership. So we
distributed the PMOs in the product teams. So every product team has a release
management team, we work according to SAFe.”

Product and portfolio managers are concerned about how well the complete
product performs from a business perspective, when they can expect a product
to be released, and what technical options for future development there are.
Product and Portfolio management needs to provide strategic vision, guidance,
product priorities and resources to the team.

Development teams and software architects are concerned about the quality of
the software they produce, dependencies with other teams, and the directions for
a product line. Development teams are providing product demos and technical
options.

Scrum masters and Release Train Engineers are concerned about the quality
of the process, teamwork and the happiness of the teams involved in order to
produce a good product or service. Those responsible for the process, such as
Scrum Masters and release teams, guide the teams to allow for effective work
and remove impediments.

5.2 Three Types of Reporting Routines: Cadence-, Tool-,
and PMO-Driven

Within our case organisations, we found three reporting approaches: a PMO-
driven reporting approach, a Cadence-driven reporting approach and a Tool-
driven reporting approach.

Based on the cross-case results, we found that the identified reporting
approaches correlated with the agile maturity of the organisations and its size.
Organisations with a lower agile portfolio management maturity and a gates-
dominated portfolio management approach tend to apply a PMO-driven report-
ing approach. Organisations using a gates-dominated portfolio management with
a higher agile maturity tended to use a Cadence-driven reporting approach.

Comparing the portfolio management approach used by the organisation with
the reporting approach shows us that there is a connection between the two.
We found that organisations using a portfolio review-dominated portfolio man-
agement approach will tend to use a Tool-driven reporting approach. organisa-
tions using a gates-dominated portfolio management approach will tend to use a
Cadence-driven or a PMO-driven reporting approach. We therefore propose that
both the portfolio management approach and the reporting approach is taken
into account when making recommendations for achieving effective reporting
(Table 3).

Reporting in Agile Portfolio Management 211

Table 3. Identified portfolio reporting approaches and their characteristics

PMO-driven Cadence-driven Tool-driven

Org. Size Large Medium to large Large

Driving element PMO Cadence Tooling

Predominant PPM
approach

Phase-gates Portfolio review Portfolio
review

Metrics Qualitative &
quantitative

Predominantly
qualitative

Predominantly
quantitative

Agile maturity Low Low to medium Medium to
high

5.3 Using Characteristics of Boundary Objects to Understand
Requirements for Effective Reporting in Agile Portfolio
Management

In the following subsections we will apply the notion of boundary objects to
understand the requirements for effective reporting encountered in our case
organisations. We will first elaborate on quantitative metrics and qualitative
information used for reporting across our cases. Then, we will discuss manual
and automated reporting routines. Lastly, we will elaborate why specific arte-
facts and metrics, as boundary objects, are better suited for specific parts of the
reporting process.

Qualitative vs Quantitative Reporting. One of the biggest differentiators
for effective reporting we have found in our case organisations was a clear pres-
ence of both qualitative reporting as well as quantitative reporting. We found
that qualitative reporting allows organisations to explore opportunities, share
knowledge, provide context and provide strategic insights. We found that quan-
titative reporting allows organisations to quantify initiatives and their progress,
verify goals, validate the value and provide quick tactical insights. In Table 4 we
provide an overview of qualitative and quantitative reporting.

Qualitative and quantitative reporting in the case organisations with a rela-
tive high agile portfolio management maturity (see B, E and J) had defined and
measurable goals. Within these case organisations, virtually all initiatives are
expected to be quantifiable. Qualitative reporting in these organisations, on the
other hand, is more loosely defined and is more often used at a higher level, or
done on an ad hoc basis. Qualitative and quantitative reporting in case organisa-
tions with a medium to low agile portfolio management maturity (A and I) had
fewer measurable goals. We found that case organisations with the Tool-driven
reporting approach tend to have reporting processes in place that made a clear
distinction between qualitative reporting and quantitative reporting. In organi-
sations with a PMO- or Cadence-driven reporting approach, this distinction was
less evident.

212 C. J. Stettina and L. Schoemaker

Table 4. Qualitative and quantitative reporting in our case organisations, respective
types of knowledge boundaries, and examples of effective boundary objects

Quantitative Qualitative

Syntactic (effective
transfer)

Semantic (effect.
translation)

Pragmatic (effect.
negotiation)

Product &
portfolio
responsibility

Business metrics
Stakeholder
happiness

User Stories
Epic status
Milestones

Portfolio wall
Strategic benefits

Development
responsibility

Velocity
Test results
Sprint Burndown

Highlights Working software
Dependencies map

Process
responsibility

Team happiness
% Impediments

Team radar* Retrospectives
Work agreement*

Manual vs Automated Reporting. Regardless of the scale of the organisa-
tion, manual reporting plays an important role in reporting due to the qualita-
tive, contextual knowledge and information. While qualitative reporting infor-
mation might be automated with approaches like machine learning in the future,
our case organisations all employed a manual reporting process for qualitative
information. From analysing the interviews, process diagrams and the literature,
we found that the positive impact of automatic reporting on the effectiveness
increases by contributing to more consistent and valid reporting, and more up-
to-date reporting. Participant B1 stated the following when asked about what
worked well in the reporting process of his organisation: “Anything that is auto-
matically produced. What doesn’t work well is when the team needs to spend hours
at night making reports using Excel and PowerPoint and all that nonsense. It’s
very sensitive to creative manipulation and is always out of date.”

Effective Boundary Objects for Qualitative and Quantitative Report-
ing in Agile Portfolio Management. We will now elaborate on the boundary
objects identified across the three domains of Product, Development and team
responsibility, and how they relate to the identified reporting approaches as
depicted in Table 4.

We will use Carlile’s [18] three types of knowledge boundaries to understand
the boundary objects. Following Carlile, at a syntactic boundary, an effective
boundary object “establishes a shared syntax or language for individuals to rep-
resent their knowledge”. At a semantic boundary, an effective boundary object
“provides a concrete means for individuals to specify and learn about their dif-
ferences and dependencies across a given boundary”. At a pragmatic boundary,
an effective boundary object “facilitates a process where individuals can jointly
transform their knowledge” [18].

Quantitative reporting is mainly associated with the syntactic boundary
across our cases. Most metrics are traditional metrics such as time, budget

Reporting in Agile Portfolio Management 213

and scope, but also more recent metrics like Velocity. In our case organisations,
especially the more mature ones like B, E and J, such quantitative metrics are
automated in software tools. According to Carlile [18], the syntactic boundaries
resemble a knowledge transfer problem which requires a shared and sufficient
syntax across the boundaries, e.g. team members and Product Owners agree
on Velocity and how it is measured as a quantifiable measure of the rate at
which Scrum teams consistently deliver software. Once a shared syntax has been
established, repositories such as the project management tools applied by our
participants (e.g. CA Agile Central/Rally or JIRA) are an effective boundary
object.

Qualitative reporting is predominantly associated with semantic and prag-
matic boundaries [18]. It depends if qualitative information is used by partici-
pants to translate their knowledge across boundaries, or if the boundary objects
need to support a process of negotiation and transformation of knowledge -
thus, if a semantic or a pragmatic boundary needs to be crossed. User Stories,
for example, are effective boundary objects for analysis and communication of
requirements as the template allows for the translation and understanding of
requirements across different functions (e.g. system users, developers, UI design-
ers). User Stories alone are not an effective boundary object for reporting the
progress of a project. A working software artefact is an effective boundary object
to support the software development process as it allows the team to communi-
cate progress, to collect feedback of users, and negotiate next priorities e.g. with
Product Owners.

According to Carlile [17], crossing a pragmatic knowledge boundary is only
possible when embedded in a feedback loop, a dialogue allowing for negotia-
tion. Crossing the pragmatic boundary requires boundary objects such a demos
embedded in sprint reviews, or other forms of synchronous face-to-face commu-
nication. Cadence-driven reporting such as the one present in organisations A,
E or G allows for such.

Limitations. While we employed a rigorous method and payed attention in
selecting our case organisations, there are limitations to our study. The main
limitation lies in the limited amount of cases. The second limitation lies in the
beginning maturity of our cases.

6 Conclusions

In this paper we present the preliminary findings of our study on reporting in
agile portfolio management. Based on 14 interviews in 10 organisations applying
agile methods in their portfolios of IT initiatives, we present a perspective on
the practice in use for the first time.

There are four main contributions discussed in this article: (1) we identify
three domains of knowledge and responsibility in agile portfolio management,
(2) we identify three types of reporting routines, (3) we use the concept of
‘boundary objects’ to understand requirements for effective reporting across the

214 C. J. Stettina and L. Schoemaker

identified domains, and lastly (4) we provide examples of effective boundary
objects identified across our cases.

Across our case organisations we observed three distinct types of reporting
routines: Cadence-, Tool- and PMO-driven reporting. With those approaches
we observe two trends: The use of software tooling to automate reporting of
quantitative metrics across agile teams, and socialisation of knowledge through
frequent face-to-face review meetings in teams and at the portfolio level. As an
organisation grows the automation of reporting plays an increasingly important
role in achieving effectiveness. We found that large-scale organisations that have
automation within their reporting process were able to transfer quantitative
reporting information with more consistency, validity and efficiency. Regardless
of the size of the organisation, qualitative reporting and reviews remain a key
part of understanding the full portfolio context. To maintain effectiveness the
primary focus of qualitative reports was to translate, to transform knowledge,
and to make automated reporting actionable. Our findings suggest that organi-
sations that strongly embed both qualitative and quantitative reporting felt that
their reporting helped increase their performance, and were more satisfied with
their reporting process.

We may conclude that reporting in agile portfolio management is character-
ized by a balance of qualitative reviews and quantitative metrics to enable a
transparent connection of strategy to operations in context. Agile methods have
an impact on the portfolio management process as they focus on the value under
development and by doing it with a much higher frequency. The notion of knowl-
edge boundaries and boundary objects can help to understand communication
requirements and shape effective reporting routines to allow for such a higher
degree of interaction.

Acknowledgment. We thank all interview participants for generously contributing
to this study.

References

1. Stettina, C.J., Hörz, J.: Agile portfolio management: an empirical perspective on
the practice in use. Int. J. Proj. Manag. 33(1), 140–152 (2015)

2. Williams, L.: What agile teams think of agile principles. Commun. ACM 55(4),
71–76 (2012)

3. Müller, R., Martinsuo, M., Blomquist, T.: Project portfolio control and portfo-
lio management performance in different contexts. Proj. Manag. J. 39(3), 28–42
(2008)

4. Petit, Y.: Project portfolios in dynamic environments: organizing for uncertainty.
Int. J. Proj. Manag. 30(5), 539–553 (2012)

5. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: New product portfolio manage-
ment: practices and performance. J. Prod. Innov. Manag. 16(4), 333–351 (1999)

6. Vähäniitty, J., et al.: Towards agile product and portfolio management (2012)
7. Jeffery, M., Leliveld, I.: Best practices in it portfolio management. MIT Sloan

Manag. Rev. 45(3), 41 (2004)

Reporting in Agile Portfolio Management 215

8. Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J.: New problems, new solutions: mak-
ing portfolio management more effective. Res. Technol. Manag. 43(2), 18–33 (2000)

9. Rautiainen, K., von Schantz, J., Vahaniitty, J.: Supporting scaling agile with port-
folio management: case paf. com. In: 2011 44th Hawaii International Conference
on System Sciences (HICSS), pp. 1–10. IEEE (2011)

10. Thomas, J.C., Baker, S.W.: Establishing an agile portfolio to align it investments
with business needs. In: Agile Conference, AGILE 2008, pp. 252–258. IEEE (2008)

11. Tengshe, A., Noble, S.: Establishing the agile PMO: managing variability across
projects and portfolios. In: Agile Conference (AGILE), pp. 188–193. IEEE (2007)

12. Leffingwell, D.: Safe Reference Guide. Scale Agile Inc. (2017)
13. Krebs, J.: Agile Portfolio Management. Microsoft Press (2008)
14. Nonaka, I., Toyama, R., Nagata, A.: A firm as a knowledge-creating entity: a new

perspective on the theory of the firm. Ind. Corp. Change 9(1), 1–20 (2000)
15. Stettina, C.J., Heijstek, W., Fægri, T.E.: Documentation work in agile teams: the

role of documentation formalism in achieving a sustainable practice. In: AGILE
2012, pp. 31–40. IEEE, Washington, DC (2012)

16. Stettina, C.J., Kroon, E.: Is there an agile handover? An empirical study of docu-
mentation and project handover practices across agile software teams. In: 2013
International Conference on Engineering, Technology and Innovation (ICE) &
IEEE International Technology Management Conference, pp. 1–12. IEEE (2013)

17. Carlile, P.R.: Transferring, translating, and transforming: an integrative framework
for managing knowledge across boundaries. Organ. Sci. 15(5), 555–568 (2004)

18. Carlile, P.R.: A pragmatic view of knowledge and boundaries: boundary objects in
new product development. Organ. Sci. 13(4), 442–455 (2002)

19. Leonard-Barton, D.: Wellsprings of Knowledge: Building and Sustaining the
Sources of Innovation. Harvard Business School Press, Boston (1995)

20. Yin, R.K.: Case Study Research: Design and Methods. Sage publications, Thou-
sand Oaks (2013)

21. Laanti, M.: Agile transformation model for large software development organiza-
tions. In: Proceedings of the XP2017 Scientific Workshops, p. 19. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Inter-team Coordination in Large-Scale
Agile Development: A Case Study
of Three Enabling Mechanisms

Finn Olav Bjørnson1, Julia Wijnmaalen2, Christoph Johann Stettina2,
and Torgeir Dingsøyr1,3(B)

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,

Sem Sælandsvei 9, 7491 Trondheim, Norway
2 Centre for Innovation, The Hague, Leiden University,

Schouwburgstraat 2, 2511 VA The Hague, The Netherlands
3 Department of Software Engineering, Safety and Security,

SINTEF, 7465 Trondheim, Norway
torgeird@sintef.no

Abstract. Agile methods are increasingly used in large development
projects, with multiple development teams. A central question is then
what is needed to coordinate feature teams efficiently. This study exam-
ines three mechanisms for coordination: Shared mental models, commu-
nication and trust in a large-scale development project with 12 feature
teams running over a four-year period. We analyse the findings in rela-
tion to suggested frameworks for large-scale agile development and a
theory on coordination, and provide new recommendations for practice
and theory.

Keywords: Large-scale agile software development
Multiteam systems · Inter-team coordination · SAFe · LeSS
Project management · Portfolio management

1 Introduction

Agile software development methods are increasingly used in large-scale software
development. These projects typically involve multiple teams responsible for the
development of numerous features of a solution, and often develop systems that
are critical to companies or societies. A study investigating fundamental assump-
tions within large-scale agile development [1] characterises such projects as having
complex knowledge boundaries within them, as well as an interactive complex-
ity and tight coupling with technologies and processes outside the project. A key
change from small- to large-scale is that work across boundaries becomes at least
as important as work within teams. The topic of inter-team coordination, which
has also been included in the research agenda on large-scale agile development [2],
is critical in large projects and development programmes.
c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 216–231, 2018.
https://doi.org/10.1007/978-3-319-91602-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_15&domain=pdf

Inter-team Coordination in Large-Scale Agile Development 217

Coordination is often defined as managing interdependencies [3]. While there
is a growing body of literature on coordination in management science [4,5], in
this paper we draw on multiteam system research to increase our understanding
of team processes in agile development. Specifically, we refer to three coordinat-
ing mechanisms in teamwork proposed by Salas et al. [6]. In line with Scheerer
et al. [7] we believe prior work in this field can inform practice in software devel-
opment, and have therefore chosen this as our theoretical model and for example
not theory on coordination modes from sociology [8], or works on agile develop-
ment such as the model for coordination in co-located development projects [9]
or previous empirical studies on agile inter-team coordination [10].

Our findings are based on material from one of the largest software devel-
opment programmes in Norway, which is described in an exploratory case
study [11]. We explore coordination by using three mechanisms proposed by
Salas et al. [6], namely Shared Mental Models, Closed-loop Communication and
Trust, and by identifying practices that supported the mechanisms in our case.
We contrast our findings from the theory and case with the current frameworks
for large-scale agile development in order to provide feedback on the current
recommendations for practice. We investigate the following research question:
How can knowledge about multiteam systems explain inter-team coordination in
a large development programme, and how can this knowledge inform recommen-
dations to practice as expressed in current large-scale development methods?

The paper starts with outlining present theoretical knowledge on large-scale
agile development and coordination. We provide a brief description of research
methods, present the findings and discussion structured after the three coor-
dination mechanisms before concluding and providing suggestions for further
work.

2 Large-Scale Development and Coordination

Large-scale agile development can be found in practice in at least two distinct
forms: (1) in the case of large-scale software development project or program [11]
as part of a temporal organisation, and (2) as part of a standing organisation
where an IT department engages in ongoing software development embedded in
a portfolio management approach [12]. In the following we use the first under-
standing of large-scale:

2.1 Large-Scale Agile Development: Studies and Practitioner
Frameworks

A 15 million-dollar project lasting 28 months to develop a web-based customer
booking engine for an American cruise company [13] was one of the first large-
scale agile projects studied. The project was distributed and combined Scrum
with the Project Management Body of Knowledge Framework. Customers were
available but did not work together with developers on a daily basis. Some of
the challenges identified in the study were due to the size and involvement of a

218 F. O. Bjørnson et al.

high number of internal business sponsors, users, project managers, analysts, and
external developers from the UK and India. The communications were mainly
formal, and formal documents were needed for changes. However, the project was
considered a success, and the study describes the balance between traditional
and agile methods as essential in achieving both project control and agility.

Since this study, a small body of studies of large-scale agile development efforts
have been published. A transition from traditional plan-based development to
agile development is reported by Petersen and Wohlin [14], following a case with
three large subsystem components developed by 117 people. Another study shows
how Ericsson used communities of practice to support process improvement and
knowledge transfer in a large development programme with 40 teams [15]. A
third study describes chains of Scrum teams in case organisations with 150, 34
and 5 teams [16]. Further, Bass [17] investigates method tailoring in large-scale
offshore development and Dingsøyr et al. [11] describe architectural work, cus-
tomer involvement and inter-team coordination in a large development program.
Scheerer et al. [7] describe large-scale agile development as a multiteam system,
and discuss theoretically how coordination can be achieved in this domain.

Implementations of large-scale agile development are often supported by
practitioner frameworks, most prominently Scaled Agile Framework (SAFe)
or Large-Scale Scrum (LeSS). The Scaled Agile Framework (SAFe) [18] was
designed by Dean Leffingwell, based in part on his experiences with the Nokia
transformation [19]. The framework is based on the idea of an enterprise model
dividing a software development organisation into three parts: Team, Pro-
gram, and Portfolio. While sometimes criticised as too prescriptive, SAFe is
the most applied practitioner framework specifically designed for agile meth-
ods at large [20]. The Large-Scale Scrum (LeSS) [21] model was predominantly
created by Bas Vodde and Craig Larman to scale the original Scrum frame-
work outside of individual Scrum teams. Similarly to SAFe, LeSS proposes an
organisational structure based on teams, accompanied by specific practices and
principles. Although coordination is mentioned as a challenge, both frameworks
address this only parenthetically.

Coordination is crucial in large-scale development. Begel et al. [22] report on
how Microsoft engineers coordinate, finding that coordination is mostly focused
on scheduling and features. They further point out that ‘more communication
and personal contact worked better to make interactions between teams go more
smoothly’. Email was the most used tool to keep track of dependencies on other
teams, for developers, testers and also program managers. The study empha-
sised that ‘creating and maintaining personal relationships between individuals
on teams that coordinate is indicated by many respondents as a way to success-
fully collaborate with colleagues’ and finally that ‘respondents would like more
effective and efficient communication between teams to ease their daily work bur-
den’. A recent study explains ineffective coordination in large-scale development
as resulting from a lack of dependency awareness, due to ‘misaligned planning
activities of specification, prioritization, estimation and allocation between agile
team and traditional inter-team levels’ [23].

Inter-team Coordination in Large-Scale Agile Development 219

2.2 Coordinating Multiple Teams

In 2001 Mathieu, Marks and Zaccaro introduced the term ‘multiteam system’
to indicate ‘..two or more teams that interface directly and interdependently in
response to environmental contingencies toward the accomplishment of collective
goals. Multiteam system boundaries are defined by virtue of the fact that all
teams within the system, while pursuing different proximal goals, share at least
one common distal goal; and in doing so exhibit input, process and outcome
interdependence with at least one other team in the system’ [24, p. 290].

Unlike a traditional team, a multiteam system is too large and specialised
to effectively employ direct mutual adjustment among each and every mem-
ber of the system [25]. An empirical study by Marks and colleagues [26] points
out that coordination ‘involves synchronising the efforts of multiple teams in a
joint endeavour to handle situational demands’ [26, p. 965]. Hence, cross-team
processes appear to predict multiteam performance more than within-team pro-
cesses [26]. The study by Dingsøyr et al. [11] describes practices for inter-team
coordination and found that the case program established far more arenas for
coordination than what is recommended in agile frameworks, that these arenas
changed over time, and that program participants emphasised the importance
of an open-office landscape.

The term coordination has been used for a variety of phenomena. Triggered
by the impracticality of the variety of definitions, Salas et al. [6] reviewed existing
literature and introduced the ‘Big Five’ in teamwork. The Big Five in teamwork
consists of five components and three coordinating mechanisms. The components
are found in almost all teamwork taxonomies: team leadership, mutual perfor-
mance monitoring, backup behaviour, adaptability, and team orientation. While
the five components have been previously used to understand teamwork in agile
teams elsewhere [27,28], in this paper we will focus on the coordination mecha-
nisms. According to Salas et al. [6], the coordinating mechanisms fuse the values
of the five components. The Big Five framework is equally relevant inter-team
processes in multiteam systems [29,30].

The three coordinating mechanisms are:
Shared Mental Models are crucial for coordinated effective action [31]. ‘For

teams to effectively work together, teams must have a clear understanding of the
work process, the tasks, and of other teams capabilities’ [6, p. 565]. It is important
that all teams share the same mental model so they can interpret contextual cues
in a similar manner and make compatible decisions regarding their common goal
[32,33]. A shared mental model is even more important in times of stress or in
a fast-changing environment as the amount of explicit communication decreases
in such situations [6]. Moreover, misaligned mental models can cause conflicts
and misunderstandings [34, p. 299] [35, p. 99].

Closed-loop Communication is more than merely developing and sending mes-
sages; it also has to do with creating a shared meaning [36, p. 178]. Communica-
tion is the simple exchange of information whereas closed-loop communication
adds a feedback loop: Was the information received and interpreted correctly
[6, p. 568]? This extra feedback loop is pivotal for successful communication

220 F. O. Bjørnson et al.

between multiple teams [37, p. 25]. Communication both between and within
teams is needed to share information, synchronise actions and keep the shared
mental model updated. Also it avoids the noise generated by teams merely focus-
ing on their own tasks [26,36]. Although communication might be hindered by
team boundaries through distrust [34].

Trust is defined as the shared belief that teams will perform their roles and
protect the interests of their co-workers. [6, p. 561]. Mutual trust is the teams
confidence in the character, integrity, strength and abilities of another team [38,
p. 106] or group. Trust moderates the relationship between team performance
and various other variables [39,40]. Trust is a crucial team process, however it
does not develop easily across group boundaries [34,41].

3 Method

The empirical data in this study was gathered in a previous study, described in
detail by Dingsøyr et al. [11]. The case was chosen since it was characterised as
the most successful large-scale programme in Norway at the time, with extensive
use of agile methods. The research question, how agile methods are adapted at
a very large-scale, was investigated in an interpretative embedded exploratory
case study. A case study approach was chosen as it achieves ‘the most advanced
form of understanding’ [42, p. 236].

In the original study, data was collected from two sources, group interviews
[43] and documents. The original study had three focus areas: Customer involve-
ment, software architecture, and inter-team coordination. Three two-hour group
interviews were organized with 24 particpants from the programme. The data
from the interviews was transcribed, and the transcriptions along with project
documents were imported into a tool for qualitative analysis.

A descriptive and holistic coding [44] was then performed on the topic of
inter-team coordination. The results were discussed and presented back to the
participants which provided input that led to some small revisions of the first
findings.

Our findings in this paper are based on the original transcriptions of the
inter-team coordination focus area, as well as on all material coded with ‘organi-
sation of the programme’. The material was re-analysed with a starting point in
the original coding, but with respect to the coordination mechanisms. In partic-
ular we looked for description of practices of shared mental models, closed-loop
communication and trust at the inter-team level.

4 Case

In this paper we refer to our case as the Perform programme, which was a
programme led by a public department, the Norwegian Public Service Pension
Fund, further called ‘Pension Fund’, which required a new office automation
system. The programme ran for four years, from January 2008 to March 2012.

Inter-team Coordination in Large-Scale Agile Development 221

4.1 Context

The Pension Fund is a department with about 380 employees who provide
950,000 customers with several types of services. It integrates heavily with
another public department. The Pension Fund initiated Perform due to pub-
lic reform that required new functionality in their existing office automation
system. The content of the reform was not known when the programme started,
which was one of the main reasons for choosing agile development practices for
the project. The goal of the programme was to enable the Pension Fund to pro-
vide timely and accurate services and to ensure a cost-effective implementation
of the reform.

At the time, Perform was one of the largest IT programmes in Norway,
with a final budget of EUR 140 million. It involved 175 people, 100 of whom
were external consultants from five companies. In total the programme used
about 800,000 person-hours to develop 300 epics, divided into 2500 user stories.
The epics were released through 12 releases, from late 2008 to early 2012. The
whole program was co-located on one floor in an open-office landscape, with
team members seated together. The programme was considered a success in
that it delivered the necessary functionality within time and on budget. In the
following sections we focus on the period from around 2011 when the programme
organisation was large and had time to adjust its work practices.

4.2 Structure and Organisation

Perform was managed as a matrix programme, with four main projects intersect-
ing, mainly through personnel from the feature teams in the development project.
The programme was led by a director, focusing mainly on external relations, and
a programme manager who focused on operations. Four main projects had their
own project manager: Business, architecture, development and test projects.

The business project was responsible for analysing needs, and defining and
prioritising epics and user stories. Product owners could be found in this project
along with employees from the line organisation in the department and technical
architects from the development teams who contributed on a partial basis.

The architecture project was responsible for defining the overall architecture.
This project was staffed by a lead architect as well as staffed on a part-time
basis by technical architects from the development teams.

The test project was responsible for testing procedures and approving deliver-
ables. The project had a lead tester and part-time testers from the development
teams.

The development project was itself split into three sub-projects. One was lead
by the Pension Fund, consisting of six teams. The other two were led by consult-
ing companies Accenture and Sopra Steria respectively, each with three teams.
These development teams worked according to Scrum with three-week iterations,
delivering on a common demonstration day. Each team was staffed with a Scrum
master, a technical architect, a functional architect, a test responsible, and 4–5
pure developers, a mixture between junior and senior levels.

222 F. O. Bjørnson et al.

The development process was influenced by a national contract standard
with four phases: analysis, description, construction and approval. The process
was staged and continuous so the programme worked on approving the previous
phase while constructing the current phase and analysing and describing features
in the coming phase.

4.3 Inter-team Coordination

In the following section, we show how coordination mechanisms were influenced
by the practices of the programme, and how they developed over time. We only
focus on practices at the inter-team level:

Shared Mental Models is observed in the solution descriptions where tech-
nical and functional architects worked together to specify on a wiki what was
to be made in more in-depth detail than epics or user stories. As the project
matured, these descriptions decreased in size, leading to a more effective use of
resources in the business project. This is an indication that participants in the
programme started to get a shared mental model of the solution, so less text
was needed for specification.

Several practices can be seen as contributing to establishing this shared men-
tal model. We have focused on practices relating to a shared understanding of
the work process, the tasks to be done and the shared awareness of who knew
what.

The work process was established early on in the project, and contributed
to a homogenous view on the work practices and a shared mental model. Many
developers had previous experience working with Scrum and together with the
matrix organisation, the specialised roles and iterative four-phase development
process that many developers had used before, a common understanding of how
work was to be done emerged. In the beginning, formal arenas were used for
communication, coordination and learning, but as time went on, more emphasis
was placed on informal channels. This could indicate that a shared mental model
had emerged so people knew who to contact directly instead of going through
the more formal channels. In total we identified 14 arenas for coordination.

Concerning the tasks, there were several practices that contributed to a
shared mental model. One of the most important practices was the specialised
roles within those teams which were shared with other projects. In several cases,
the team rotated the employee responsible for the solution description in each
iteration. This lead to an overall increase in domain knowledge, and a shared
mental model between the development project and the business project, which
enabled more efficient collaboration. ‘As the contractor starts to understand more
about the context, the customers real problem is more visible, and this means we
can find a solution together. Fast.’ The project also provided opportunities for
people to listen in on other teams, through stand-up meetings. This was partic-
ularly useful for the leaders of the architecture and testing teams, who needed
to know what was going on in other teams.

Inter-team Coordination in Large-Scale Agile Development 223

The final part of building and maintaining a shared mental model is knowing
who knows what. Several practices contributed here. As the project was evolving,
coordination increasingly took place directly between different teams. Getting
to the point of knowing who knew what was a combination of formal arenas
in the beginning and a willingness to experiment with those arenas and change
them as the needs changed. ‘Having enough coordination arenas to know that
“Oh, we need to talk” and “This is what we need to talk about in detail”. The
combination of the semi-structured meetings and those that just happened were
the most important in my opinion. But then you need enough of the places where
you are informed on what is happening so you actually go and talk to the ones
you need to talk to.’ In addition to the arenas where people got to know each
other, the specialists in the feature team played key roles in knowing who knew
what, since they often had a better overview of other parts of the project.

Closed-Loop Communication at the inter-team level was observed between
several teams, but a prominent example was the introduction of mini demos,
shared between feature teams and the business project. Early on, common demos
were held at the end of every iteration so everyone could provide direct feedback
on the implemented solution. This delayed feedback as iteration length was three
weeks, and teams introduced the concept of mini-demos during iterations where
they received rapid feedback from the customer in the business project to ensure
they had understood the requirements correctly. The fact that the Pension Fund
was able to provide upwards of 30 of their best line operatives to man the business
team of the project was a great benefit to the developers who could ask directly
for clarifications on user stories.

Many emphasised the importance of informal coordination arenas enabled
by the co-location and open landscape when it came to the efficient (close-
loop) communication in the programme. Even though there were many official
coordination arenas, like the daily stand-up, a Scrum of Scrum between teams in
the sub-projects and a meta-scrum covering the entire programme, a lot of the
coordination happened directly between members of different teams who had to
make sure the information they passed through the formal arenas was received
and interpreted correctly.

The formal arenas were necessary, however, as a project manager expressed
it: ‘Having processes to work with dependencies is important for the maturation
of the work, to get an improved understanding. But you need frequent local control
and cooperation to really figure it out.’ The formal arenas seemed most important
in the beginning as an enabler of later informal communication, as expressed by
an architect: ‘I imagine these arenas are most important in the beginning, but
the importance decreases as you get to know each other. You get used to just
walking over to the person you know can fix this thing for you and talking to him
directly.’

There seemed to be a widespread belief from all participants that infor-
mal direct communication would improve or enable better communication
between teams in the programme. The program sought to improve the informal

224 F. O. Bjørnson et al.

communication by physically moving teams around in the landscape. ‘And then
we had some conscious choices to cover the informal communication. A Pen-
sion Fund-team that started working with the GUI-part far into the work-flow,
they were moved over there and we switched the placement of those two teams
[demonstrates on whiteboard]. We wanted that team and that team to work closer
together. That was a conscious choice from the Pension Fund and us.’

Trust. An example came early in the programme, when there was a delay in
delivery. Some in the management in the Pension Fund wanted to monitor the
programme more closely. But the director of the Pension Fund stated: ‘Let the
people who know how to work, work!’ A project manager states the outcome of
this decision: ‘We had a delivery which we missed, and it was touch and go if
we should be allowed to continue. [..] The fact that we were allowed to mature
was important. I feel the suppliers learned from each other and used the others
to grow.’

There are several other examples in the material illustrating that trust was
given between teams. For example, the manager team trusted the feature teams
to take the right actions. ‘They [feature team] told us [manager team] that they
exchanged tasks, more like a checkup that if you don’t mind, we’ve done so and
so, because its better. -OK Go!’ This was also a result of a shared mental model:
The teams identified each other as better suited to their respective tasks. In
another example, the feature teams trusted the other teams to respect their
need for shielding during hectic periods. ‘You know that my team needs to be
shielded for a time, and then you just walk over to (sub-project manager) and
tell him.’

Some of the trust seems to be built on the informal coordination that was
enabled through the more formal arenas, as we have described previously. The
matrix structure and specialised roles in the feature teams also contributed. The
feature teams had to trust the business team to deliver enough work for an
iteration and the business team had to trust the feature teams to swap tasks
if they identified that other teams were more suited. There was much open-
ness between teams and between suppliers who were otherwise competitors. The
open workspace and common lunch area also seem to have contributed to the
relaxed and trusting atmosphere between the teams. The mix of informal and
formal arenas provided developers from different teams the opportunity to dis-
cuss problems and suggest solutions informally as they cropped up, but the final
decision to implement was made in a formal arena. This practice allowed devel-
opers to handle problems autonomously, and made sure that there was a proper
way to disseminate the solution to other teams.

5 Discussion

We return to our research question: How can knowledge about multiteam systems
explain inter-team coordination in a large development programme, and how can

Inter-team Coordination in Large-Scale Agile Development 225

this knowledge inform recommendations to practice as expressed in current large-
scale development methods?

Rentsch and Staniewisz [45, p. 226] hypothesise that ‘coordination mecha-
nisms need to function at the team, inter-team and system levels in order for the
multiteam system to utilise their available capacity fully’. As a program deliver-
ing on time and cost, we know that the Perform program utilised their capacity
well, and we also know that the program continuously worked on improving
work practice, which led to changes in coordination practices. The feature teams
followed Scrum with practices such as iteration planning, daily meetings, demon-
strations and retrospectives on team level. In the following section, we discuss
our two research questions for each of the coordination mechanisms:

5.1 Shared Mental Model

A Shared Mental Model includes a clear understanding of the work process, the
tasks, and of other teams capabilities [6, p. 565]. In the results, we showed how
the solution descriptions were reduced in size, which is an indication of a shared
mental model.

We believe the Scrum development method can be seen as a powerful shared
mental model, as it is easy to understand with few roles, work practices and
artefacts. The programme added new roles and projects on top of this, building
on the contract model which was widely known amongst participants. All teams
demonstrated developed functionality every three weeks. Adding more roles,
work practices and artefacts risks limiting the function of a development method
as a shared mental model. With the new frameworks SAFe and LeSS, we believe
LeSS is closest to the model used in the Perform case. SAFe is a more complex
model, and we believe this model will require more effort to function as a shared
mental model. Building on a lightweight framework such as Scrum could help
develop a shared mental model.

The fact that all the teams in the project are located on the same floor
means that project members walk by the progress boards of other teams and
this aids the formation of a shared mental model. The matrix model meant that
projects such as business and development worked together to develop a shared
understanding of tasks prior to actual development. Furthermore, joint respon-
sibility from the development and testing projects led to a shared understanding
of quality requirements on the codebase. Placing a team together physically is
common advice in the agile practitioner literature, but having a matrix organ-
isation is more controversial. Scrum describes only the role of a facilitator and
team members for a development team. Our case suggests that adding roles on
the teams and organising the programme in a matrix structure is important to
develop a shared mental model. Additional roles could help develop a shared
mental model of tasks.

The open-office landscape led to overall insight in the work across teams
as the progress boards were visible, and it was easy to see which teams were
having discussions after daily stand-up meetings. We also described the number
of meetings in the beginning of the programme as something that established

226 F. O. Bjørnson et al.

knowledge of who knows what. Developing a shared mental model of who knows
what requires extra effort in projects with people new to a domain and the
project organisation.

5.2 Closed-Loop Communication

Agile development methods have led to shorter feedback loops in development
projects. In the Perform program, the iteration length was three weeks. Closed-
loop communication is addressed by the frequent review and coordination prac-
tices in and across teams through planning, demonstrations or product backlog
refinement, as well as through frequent discussions with the teams and rele-
vant stakeholders in the preparation and review of partial results. This is also
described in the SAFe and LeSS frameworks. Perform introduced the new prac-
tice of mini-demos to improve the closed loop communication between the devel-
opment and business projects.

We believe that closed-loop communication was enhanced in the Perform case
by frequent feedback as prescribed by agile practices, by the physical proximity
of teams situated together on one floor, and by the tailored work methods to
improve communication such as with the new practice of ‘mini-demos’.

5.3 Trust

In the theory section we stated that closed-loop communication can be hindered
by team boundaries through distrust. The Perform program involved a number of
companies with their own work cultures, yet participants seem to have developed
trust (as explained in our results section) both from top to bottom (as illustrated
by the Programme Director’s “Let the people who know how to work, work!”,
and trust between teams as described in understanding that teams needed to
be shielded during an iteration. Agile methods with focus on transparency and
feedback loops are well suited to develop trust.

Other practices such as common work spaces and shared lunches also created
a form of identity and stimulated contact, both of which increased the level of
inter-team trust. The amount of open and informal communication and decision-
making has been shown to be indicators of how trust develops [46]. Additionally,
trust literature shows that trust develops if there is more interpersonal contact
[47]. There is a negative relationship between team size and interpersonal con-
tact. This relation between team size and trust might explain why the agile
methods seem to work better in smaller organisations compared to larger ones.

However, relationships within teams and the context around teams are not
static. Hence the static nature of the practical models does not align with the
reality of how relations develop in multiteam systems.

Reflective sessions such as retrospectives used in Perform and described in
both SAFe and LeSS will likely influence the amount of trust. Practices, artefacts
and roles facilitate and stimulate coordination, yet one very influential factor
hardly receives attention: the human. For example, literature on trust tells us
that it does not develop easily across team boundaries [34] and that it influences

Inter-team Coordination in Large-Scale Agile Development 227

the amount of communication [36]. Trust is critical in large-scale development
and is challenging to develop. Co-location and the agile practices of frequent
delivery seem to develop trust.

5.4 Limitations

The main limitations of this study were that the group interviews were per-
formed after the programme was completed, and that we were not able to follow
the case over time. Second, the data collection was not particularly targeted
at the mechanisms identified in the multiteam systems literature, but rather
structured around broad questions of how the programme organised inter-team
coordination. See [11] for further discussion of the limitations of our study.

6 Conclusion

In this paper we used current multiteam systems literature to help understand
inter-team coordination processes in large-scale agile project teams. In partic-
ular, we use the three coordinating mechanisms proposed by Salas et al. [6] to
understand inter-team coordination in practice.

Our results indicate that using the multiteam systems perspective on large-
scale agile teams is useful as it provides reasons for practices that are described
in agile development frameworks. A shared mental model, closed-loop communi-
cation and trust have been identified as important coordination mechanisms in
teamwork in multiteams. The findings from our case show the relevance of these
three coordinating mechanisms for large-scale agile development and underline
the importance of inter-team coordinating mechanisms compared to intra-team
coordination.

The three mechanisms are interrelated and their combined effect influences
the project’s success. The practices suggested in large-scale frameworks indicate
that many practices contribute to or influence more than one coordination mech-
anism at the same time. From the discussion, the following conclusions follow
on the coordination mechanisms:

– Building on a lightweight framework such as Scrum helps develop a shared
mental model of the development process.

– Additional roles could help develop a shared mental model of tasks.
– Developing a shared mental model of who knows what requires extra effort

in projects with people new to a domain and the project organisation.
– Closed-loop communication was developed due to a combination of (1) fre-

quent feedback as prescribed by agile practices, (2) co-location on one floor,
and (3) tailoring of work methods to improve communication such as the
practice of ‘mini-demos’.

– Trust is critical in large-scale development and more challenging to develop
than in small-scale scenarios.

– Co-location and the agile practices of frequent delivery seem to develop trust.

228 F. O. Bjørnson et al.

There is a growing number of studies on multiteam systems which we believe
are relevant for practitioners and researchers in large-scale agile development.
In particular it would be interesting for future research to further explore how
human aspects influence coordination, following up on Begel et al. [22] who
found that creating and maintaining personal relationships was critical to good
coordination. In the future, researchers should draw further on findings in the
multiteam systems field to provide better advice on how these aspects can be
fostered in development methods.

Acknowledgement. This work was in partial supported by strategic internal projects
at SINTEF on large-scale agile development and the project Agile 2.0 supported by
the Research council of Norway through grant 236759 and by the companies Kantega,
Kongsberg Defence & Aerospace, Statoil, Sopra Steria, and Sticos.

References

1. Rolland, K.H., Fitzgerald, B., Dingsøyr, T., Stool, K.J.: Problematizing agile in the
large: alternative assumptions for large-scale agile development. In: International
Conference on Information Systems (2016)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14358-3 1

3. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. (CSUR) 26(1), 87–119 (1994)

4. Mintzberg, H.: Mintzberg on Management: Inside Our Strange World of Organi-
zations. Simon and Schuster (1989)

5. Jarzabkowski, P.A., Le, J.K., Feldman, M.S.: Toward a theory of coordinating:
creating coordinating mechanisms in practice. Organ. Sci. 23(4), 907–927 (2012)

6. Salas, E., Sims, D.E., Burke, C.S.: Is there a big five in teamwork? Small Group
Res. 36(5), 555–599 (2005)

7. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software
development: a multiteam systems perspective. In: 2014 47th Hawaii International
Conference on System Sciences, pp. 4780–4788. IEEE (2014)

8. Dingsøyr, T., Brede Moe, N., Amdahl Seim, E.: Coordinating Knowledge Work in
Multi-Team Programs: Findings from a Large-Scale Agile Development Program.
ArXiv e-prints, January 2018

9. Strode, D.E., Huff, S.L., Hope, B.G., Link, S.: Coordination in co-located agile
software development projects. J. Syst. Softw. 85(6), 1222–1238 (2012)

10. Sharp, H., Robinson, H.: Three CS of agile practice: collaboration, co-ordination
and communication. In: Dingsøyr, T., Dyb̊a, T., Moe, N. (eds.) Agile Software
Development, pp. 61–85. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12575-1 4

11. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development
at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empirical Softw. Eng. 23(1), 490–520 (2018)

12. Stettina, C.J., Hörz, J.: Agile portfolio management: an empirical perspective on
the practice in use. Int. J. Project Manage. 33(1), 140–152 (2015)

https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-642-12575-1_4
https://doi.org/10.1007/978-3-642-12575-1_4

Inter-team Coordination in Large-Scale Agile Development 229

13. Batra, D., Xia, W., VanderMeer, D., Dutta, K.: Balancing agile and structured
development approaches to successfully manage large distributed software projects:
a case study from the cruise line industry. Commun. Assoc. Inf. Syst. 27(1), 21
(2010)

14. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental
software development approach with agile practices. Empirical Softw. Eng. 15(6),
654–693 (2010). ISI Document Delivery No.: 653OB Times Cited: 2 Cited Reference
Count: 46 Petersen, Kai Wohlin, Claes. Springer, Dordrecht

15. Paasivaara, M., Lassenius, C.: Communities of practice in a large distributed agile
software development organization - case ericsson. Inf. Softw. Technol. 56(12),
1556–1577 (2014)

16. Vlietland, J., van Vliet, H.: Towards a governance framework for chains of scrum
teams. Inf. Softw. Technol. 57, 52–65 (2015)

17. Bass, J.M.: How product owner teams scale agile methods to large distributed
enterprises. Empirical Softw. Eng. 20(6), 1525–1557 (2015)

18. Leffingwell, D.: SAFe 4.0 Reference Guide: Scaled Agile Framework for Lean Soft-
ware and Systems Engineering. Addison-Wesley Professional (2016)

19. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional
methods at nokia: a survey of opinions on agile transformation. Inf. Softw. Technol.
53(3), 276–290 (2011)

20. VersionOne: 11th annual survey. the state of agile (2016)
21. Larman, C., Vodde, B.: Large-Scale Scrum: More with LeSS. Addison-Wesley Pro-

fessional, Boston (2016)
22. Begel, A., Nagappan, N., Poile, C., Layman, L.: Coordination in large-scale soft-

ware teams. In: Proceedings of the 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, pp. 1–7. IEEE Computer Society (2009)

23. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in
large-scale software development: a case study of planning misalignment in hybrid
settings. IEEE Trans. Softw. Eng. (2017)

24. Mathieu, J., Marks, M.A., Zaccaro, S.J.: Multi-team systems. Int. Handb. Work
Organ. Psychol. 2, 289–313 (2001)

25. Davison, R., Hollenbeck, J.: Boundary spanning in the domain of multiteam sys-
tems. In: Multiteam systems. An Organization Form for Dynamic and Complex
Environments, pp. 323–362. Routledge (2012)

26. Marks, M.A., DeChurch, L.A., Mathieu, J.E., Panzer, F.J., Alonso, A.: Teamwork
in multiteam systems. J. Appl. Psychol. 90(5), 964 (2005)

27. Moe, N.B., Dingsøyr, T.: Scrum and team effectiveness: theory and practice. In:
Abrahamsson, P., Baskerville, R., Conboy, K., Fitzgerald, B., Morgan, L., Wang,
X. (eds.) XP 2008. LNBIP, vol. 9, pp. 11–20. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68255-4 2

28. Stettina, C.J., Heijstek, W.: Five agile factors: helping self-management to self-
reflect. In: O’Connor, R.V., Pries-Heje, J., Messnarz, R. (eds.) EuroSPI 2011. CCIS,
vol. 172, pp. 84–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22206-1 8

29. Shuffler, M.L., Rico, R., Salas, E.: Pushing the boundaries of multiteam systems
in research and practice: an introduction. In: Pushing the Boundaries: Multiteam
Systems in Research and Practice, pp. 3–16. Emerald Group Publishing Limited
(2014)

30. Wijnmaalen, J., Voordijk, H., Rietjens, B.: MTS coordination in practice: micro-
level insights to increase MTS performance. Team Perform. Manage. Int. J.
24(1/2), 64–83 (2017)

https://doi.org/10.1007/978-3-540-68255-4_2
https://doi.org/10.1007/978-3-540-68255-4_2
https://doi.org/10.1007/978-3-642-22206-1_8
https://doi.org/10.1007/978-3-642-22206-1_8

230 F. O. Bjørnson et al.

31. Zaccaro, S.J., Rittman, A.L., Marks, M.A.: Team leadership. Leadership Q. 12(4),
451–483 (2002)

32. Cooke, N.J., Salas, E., Cannon-Bowers, J.A., Stout, R.J.: Measuring team knowl-
edge. Hum. Fact. J. Hum. Fact. Ergon. Soc. 42(1), 151–173 (2000)

33. Mathieu, J.: Reflections on the evolution of the multiteam systems concept and
a look to the future. In: Multiteam Systems: An Organization Form for Dynamic
and Complex Environments, pp. 511–544 (2012)

34. Hinsz, V.B., Betts, K.R.: Conflict multiteam situations. In: Multiteam Systems: An
Organization Form for Dynamic and Complex Environments, pp. 289–322 (2012)

35. DiazGranados, D., Dow, A.W., Perry, S.J., Palesis, J.A.: Understanding patient
care as a multiteam system. In: Pushing the Boundaries: Multiteam Systems in
Research and Practice, pp. 95–113. Emerald Group Publishing Limited (2014)

36. Keyton, J., Ford, D.J., Smith, F.L., Zacarro, S., Marks, M., DeChurch, L.: Com-
munication, collaboration, and identification as facilitators and constraints of mul-
titeamsystems. In: Multiteam Systems: An Organization Form for Dynamic and
Complex Environments, pp. 173–190 (2012)

37. McIntyre, R.M., Salas, E.: Measuring and managing for team performance: emerg-
ing principles from complex environments. In: Team Effectiveness and Decision
Making in Organizations, pp. 9–45 (1995)

38. Earley, P.C., Gibson, C.B.: Multinational Work Teams: A New Perspective. Rout-
ledge, Mahwah (2002)

39. Costa, A.C., Roe, R.A., Taillieu, T.: Trust within teams: the relation with perfor-
mance effectiveness. Eur. J. Work Organ. Psychol. 10(3), 225–244 (2001)

40. Dirks, K.T.: The effects of interpersonal trust on work group performance. J. Appl.
Psychol. 84(3), 445 (1999)

41. Williams, M.: In whom we trust: group membership as an affective context for
trust development. Acad. Manag. Rev. 26(3), 377–396 (2001)

42. Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12(2),
219–245 (2006)

43. Myers, M.D., Newman, M.: The qualitative interview in is research: examining the
craft. Inf. Organ. 17(1), 2–26 (2007)

44. Saldaña, J.: The Coding Manual for Qualitative Researchers. Sage (2015)
45. Rentsch, J.R., Staniewicz, M.J.: Cognitive similarity configurations in multiteam

systems. In: Multiteam Systems: An Organizational Form for Dynamic and Com-
plex Environments, pp. 225–253 (2012)

46. Currall, S.C., Judge, T.A.: Measuring trust between organizational boundary role
persons. Organ. Behav. Hum. Decis. Process. 64(2), 151–170 (1995)

47. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational
trust. Acad. Manag. Rev. 20(3), 709–734 (1995)

Inter-team Coordination in Large-Scale Agile Development 231

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Supporting Large-Scale Agile
Development with Domain-Driven Design

Ömer Uludağ1(B), Matheus Hauder2, Martin Kleehaus1(B),
Christina Schimpfle2, and Florian Matthes1(B)

1 Technische Universität München (TUM),
85748 Garching bei München, Germany

{oemer.uludag,martin.kleehaus,matthes}@tum.de
2 Allianz Deutschland AG, 85774 Unterföhring, Germany
{matheus.hauder,christina.schimpfle}@allianz.de

Abstract. An increasing number of large organizations are adopting
agile and lean methods at larger scale for building complex software
systems. One major critique of agile development and in particular of
large-scale agile development is the neglect of proper architecting assis-
tance in such development efforts. On the one hand, emergent architec-
ture design may require excessive redesign efforts in large systems, while
on the other hand, big upfront architecture delays the starting point of
implementation. Domain-driven Design (DDD) addresses this problem
by providing means for evolving the architecture of complex systems in
an agile way. We describe how DDD can support large-scale agile devel-
opment based on a conducted case study in a large insurance company
with three agile teams. Furthermore, we present a lightweight framework
that can be used by agile teams as guidance for architecting in large-scale
agile development programs. The presented framework is largely based
on Large-Scale Scrum and incorporates strategic and tactical DDD.

Keywords: Large-scale agile software development
Domain-driven design · Scaling agile frameworks

1 Introduction

Over the past two decades, agile methods have transformed and brought unprece-
dented changes to software development practice by strongly emphasizing change
tolerance, continuous delivery, and customer involvement [1]. The success of agile
methods for small, co-located teams has inspired enterprises to increasingly apply
agile practices to large-scale endeavors [2]. One major critique of agile develop-
ment and in particular of large-scale agile development is the lack of assistance
for building and managing architecture in such development endeavors [2,3]. On
the one hand, agile teams näıvely hope that a suitable architecture will gradually
emerge out of weekly refactorings [4]. However, the practice of this design is effec-
tive at team level, but insufficient when developing complex systems. It requires
c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 232–247, 2018.
https://doi.org/10.1007/978-3-319-91602-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_16&domain=pdf

Supporting Large-Scale Agile Development with Domain-Driven Design 233

excessive redesign efforts, architectural divergence, and functional redundancy
increasing the complexity of the system’s architecture [5,6]. On the other hand,
large “big design upfront” efforts delay the starting point of implementation [7].
The planned architecture might not be contemporary after it meets the “real
world” [5].

Large-Scale Scrum (LeSS), Scaled Agile Framework (SAFe), and Disciplined
Agile Framework 2.0 (DA 2.0) [8], suggest to apply Domain-driven Design (DDD)
to architect in an agile way. However, so far, no real-world example exists which
describes how to combine and implement scaling agile frameworks with DDD.
The main objective of this paper is to explore how DDD can be utilized in
order to support large-scale agile development. Based on this objective our three
research questions are:

– Research Question 1: Which scaling agile frameworks reference DDD?
– Research Question 2: How can DDD be adopted in a large organization with
several agile development teams?

– Research Question 3: Which roles, processes, artifacts, and tools are required
to support a large-scale agile development endeavor with DDD?

The remainder of this paper is structured as follows. In Sect. 2, we motivate the
need of architecting in large-scale agile development and provide an overview of
related works. In Sect. 3, we present the research approach of this paper. Section 4
describes the case study on the adoption of DDD in the insurance company.
Section 5 presents the evaluation results of the proposed framework. We discuss
the main findings in Sect. 6 before concluding the paper with a summary of our
results and remarks on future research in Sect. 7.

2 Background and Related Work

Agile methods such as Scrum, Extreme Programming (XP), and Crystal Clear,
which more or less adhere to the values of the Agile Manifesto1 [9], share com-
mon characteristics, such as iterative and incremental development life cycles,
focusing on small releases, collocated teams, and a planning strategy based on a
release plan or feature backlog [10] where architectural design issues are not very
important [11]. For instance, the incremental design practice of XP claims that
architecture can emerge in daily design (emergent design) [12], which implies
that architecture emerges from the system rather being imposed by some direct
structuring force [11]. Apart from verbal discussions related to design decisions
and overall architecture, also Scrum does not place any emphasis on architec-
ture related practices. In Scrum, the architecture of one-project application can
always be re-factored and repackaged for a higher level of reuse [11]. While “refac-
toring, for its part, has emerged as an important software engineering technique,
it is not a replacement for sound upfront design; if an architecture is decent you
can improve it, but re-factored junk is still junk” [13].

1 http://agilemanifesto.org/, last accessed on: 2018-01-18.

http://agilemanifesto.org/

234 Ö. Uludağ et al.

However, the role of architecture in agile endeavors has changed and it is
now gaining more attraction by agilists [14]. This phenomenon is also reinforced
by the increasing number of “agility and architecture can coexist” advocates cf.
[3,4], or [15]. For building complex and large-scale systems, some amount of
architectural planning and governance becomes even more important [16]. Nord
et al. [4] argue that for large-scale software development endeavors, agility is
enabled by architecture, and vice versa. They highlight some benefits of archi-
tecture in large-scale agile efforts such as providing a common vocabulary and
culture, a systematic way to control dependencies, a way to keep technical debts
in check, and a guide for release planning and configuration management [4].

Some architectural tactics or models to support rapid and agile stability in
large-scale agile endeavors have been proposed by academics such as aligning
feature-based development and system decomposition, creating an architectural
runway, using matrix teams, or the zipper model [15–17]. Also, practitioners are
grappling with the issue of marrying agile approaches with architectural practices
for building complex systems such as Cockburn and his walking skeleton [18],
Leffingwell and his colleagues’ SAFe [19], or Ambler and his colleagues’ DA 2.0
[20]. Recognizing the importance of architecting in large-scale agile endeavors,
we have investigated the role of architects based on a structured literature review
with an excerpt in Table 1 [8].

Table 1. Excerpt of scaling agile frameworks maturity and architecture [8].

C
on

tri
bu

tio
ns

C
as

es

D
oc

um
en

ta
tio

n

Tr
ai

ni
ng

 C
ou

rs
es

 a
nd

C

er
tif

ic
at

io
ns

C
om

m
un

ity
, F

or
um

 o
r

B
lo

g

R
at

in
g

En
te

rp
ris

e
A

rc
hi

te
ct

So
ftw

ar
e

A
rc

hi
te

ct

So
lu

tio
n

A
rc

hi
te

ct

In
fo

rm
at

io
n

A
rc

hi
te

ct

D
om

ai
n-

D
riv

en
 D

es
ig

n

A
rc

hi
te

cu
re

 D
es

ig
n

Large Scale Scrum 29 22 Yes Yes Yes - - - - X emergent

Scaled Agile Framework 35 35 Yes Yes Yes X X X X X
emergent &
intentional

Disciplined Agile 2.0 27 4 Yes Yes Yes X X X - X
emergent &
intentional

Maturity Architecture

Given that architecting should be an iterative activity, we found that mature
scaling agile frameworks [8] suggest DDD as a light-weight approach for large-
scale agile efforts. DDD facilitates an iterative process of collaboration to explore
a model and develop a ubiquitous language between agile teams and domain
experts. Although, DDD has been proposed by these frameworks, to the best of
our knowledge, there is no other work that describes the adoption of DDD in
real large-scale agile development program.

Supporting Large-Scale Agile Development with Domain-Driven Design 235

3 Case Study Design

A case study is a suitable research methodology for software engineering research
since it studies contemporary phenomena in its natural context [21]. It is a
valuable research method in situations where a researcher aims to understand
phenomena in a complex, real life context [22,23]. We followed the guidelines
described by Runeson and Höst [21] for the research process.

Case study design: Main objective of this paper is to explore how DDD can be
utilized in order to support large-scale agile development. Based on this objec-
tive, we defined three research questions (see Sect. 1). Our study is a single-case
study and the case was purposefully selected, because the studied company had
been experimenting with agile approaches for the last two years and is now tran-
sitioning from planned-driven methodology to large-scale agile development. Our
case is exploratory as we are looking into an unexplored phenomenon [21]. Our
unit of analysis is the large-scale agile development endeavor at the large insur-
ance company.

Preparation for data collection: We used a “mixed methods” approach with
three levels of data collection techniques according to [24]:

1. As direct methods, we made observations with high degree of interactions [21]
in several event storming workshops [25] and conducted structured interviews.
The workshops helped us to develop a deep understanding of the overall struc-
ture of the development endeavor with its roles, process, artifacts, and tools.
We interviewed nine stakeholders involved in the development effort with
different roles in order to enable the triangulation of data sources [26]. The
structured interviews helped us to evaluate our framework and incorporate
feedback into the final version of it.

2. In the issue tracking tool Jira2, agile teams assigned user stories to domains
and subdomains. This user story assignment provided us quantitative data
for determining in which subdomains the different teams on the program are
working on.

3. The collaboration tool Confluence3 provided us wikis with detailed infor-
mation on logical architecture models and documentations. We used it as a
complementary source of information.

Analysis of collected data: The quantitative data of the user story assign-
ment was analyzed by using descriptive statistics. The Likert-scale data of the
structured interviews were coded, which then were used to calculate the mean
for each question per stakeholder group. Workshop protocols and wikis were ana-
lyzed and information was clustered utilizing open coding [27]. After the initial
coding, we looked at groups of code phrases and merged them into concepts. Sub-
sequently, we related the concepts to our formulated research questions. Finally,
the main findings were incorporated in a framework.

2 https://www.atlassian.com/software/jira, last accessed on: 2018-01-18.
3 https://www.atlassian.com/software/confluence, last accessed on: 2018-01-18.

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence

236 Ö. Uludağ et al.

4 Applying Domain-Driven Design in Large-Scale Agile
Development

4.1 Case Description

This paper comprises the result of a case study conducted 2017 in a large insur-
ance company. The involved interview partners form a unit with three agile teams
with two to eight developers developing with other teams an integrated sales
platform for several distribution channels. The agile teams are cross-functional
including employees from the IT department as well as from business domains
and coexist next to many other teams that use waterfall methodologies for soft-
ware development. This agile unit primarily focuses on the development of its
particular product, without being distracted by other external tasks. For that
reason, they are co-located at another location of the company. As agile method-
ologies were not commonly used in the company before, the agile teams received
training concerning agile methodologies before the program begins and during
the development process. The agile based product development has started two
years ago and is not finished yet.

It is required that all teams adopt the same lean and agile based methodol-
ogy which is basically LeSS extended by some XP practices. This methodology
tailored for the insurance company was created with assistance of the company
Pivotal that provided know-how on lean startup and agile principles [28]. The
most essential feature added to the Scrum methodology is the development and
release of Minimum Viable Products (MVP). Prototypes are used to validate
proof of concepts. An MVP already represents a finished product that includes
only minimal features. An MVP is released very early in the development process
in order to incorporate and adapt customer feedback [29]. After having released
a first MVP after 100 days, the team extends the MVP gradually with further
functions.

4.2 Framework

In the following, we will describe the large-scale agile development endeavor of
the insurance organization along the tiers, roles, processes, artifacts, and tools
of our proposed framework (see Fig. 1).

Strategic Domain-driven Design: Determines in which subdomains the dif-
ferent teams work. This is achieved by assigning all user stories of all teams to
the subdomain they belong to. An overview of all domains and their subdomains
was created by an enterprise architect (EA) before applying the defined frame-
work. However, the overview of the domains can be adapted in the course of the
process, e.g., in case completely new features are implemented. The assignment
is conducted by the teams themselves and is continuously evaluated through
an enterprise architecture management (EAM). The results support decisions of
program managers (PM) and product owners (PO), e.g., to determine whether
the teams have overlapping requirements. Ideally, there is little overlap between
the domains and subdomains to reduce dependencies across the teams.

Supporting Large-Scale Agile Development with Domain-Driven Design 237

Large-scale agile development process: It is the central part of the frame-
work, which is the main process of all teams. It is enriched by DDD practices.
During the development process, all teams provide input to the DDD processes.
Based on their inputs teams can also profit from the results of the incorporated
DDD approaches. The development process in the framework incorporates many
elements as defined by LeSS. LeSS is considered to fit best in those challenges
where the number of teams is still manageable, but likely to increase in the near
future. LeSS incorporates agile modeling approaches which can be easily con-
nected to DDD. Additionally, LeSS suggests to have a single PO and a single
product backlog for all teams. This is crucial for product quality and dealing
with overarching functions.

Tactical Domain-driven Design: It describes how agile teams can use the
DDD approach to contribute to their own development process. The central ele-
ment of tactical DDD is the domain model which serves as ubiquitous language in
each team individually. All input for the domain model comes from the respective
team, while the EA mainly provide methodological guidance, e.g., as facilitator.
The domain models are continuously improved throughout within entire devel-
opment process. For evolving the domain model, agile modeling techniques, such
as event storming workshops, are used. Each agile team defines, uses, and evolves
its own domain model.

Roles: Our framework proposes program managers (PM) and enterprise archi-
tects (EA) in addition to developers, a scrum master (SM), and a single PO.
The developers are organized in three agile teams. The teams are self-managing,
co-located and long-lived. The teams clarify, implement, and test user stories.
The role of the SM is not depicted explicitly in our framework, as the SM role
correspondents to the SM role in Scrum. Each team has an own SM who has no
specified inter-team responsibilities. Within our framework, one PO is respon-
sible for all agile teams. The PO manages the single product backlog. This
especially includes prioritization of user stories and assignment of them in coop-
eration with representatives from all teams to the most suitable team. The PO
acts as a connector between teams, customers, and higher-level management
being in continuous exchange with the PMs. The PO communicates with all
teams continuously and is aware of team dependencies. The PO advises the PM
concerning organizational structures and suggests to reorganize teams. The PM
mostly use the input from strategic DDD for strategic decisions, e.g., determin-
ing the organizational structure and deciding if additional teams are necessary
for the overall program. PM only take part in strategic DDD and participate in
higher level workshops in order to detect overarching functions which are to be
implemented within the program. The EA provides methodological guidance to
teams. On a strategic level, the EA gives an overview of domains and subdomains
to the team. This includes a first draft of the overview as well as coaching the
team on how to use this artifact. The EA evolves the domain overview consid-
ering the input from the teams and is responsible that the overview is adapted
accordingly in all tools. The EA supports teams with the continuous user story
assignment and presents its results comprehensively to the PO and PMs.

238 Ö. Uludağ et al.

F
ig
.
1
.
O

v
er

a
ll

fr
a
m

ew
o
rk

fo
r

su
p
p
o
rt

in
g

la
rg

e-
sc

a
le

a
g
il
e

d
ev

el
o
p
m

en
t

w
it

h
D

o
m

a
in

-d
ri

v
en

D
es

ig
n
.

Supporting Large-Scale Agile Development with Domain-Driven Design 239

The EA has no decision-making authority, but provides input to decisions. On a
tactical level, the EA introduces the method of event storming as well as domain
modeling to the teams. The EA is the moderator in all event storming workshops
and teaches the teams how the event storming approach works and how they
can incorporate the domain model in their development process in a way that
provides value to the teams in terms of reaching a common understanding and
defining an own ubiquitous language. The EA optionally participates in team
backlog refinements or team retrospectives to help with keeping the domain
model up-to-date. Also, the EA supports teams with their continuous domain
modeling.

Events: They consist of four types: traditional Scrum events, large-scale agile
events, DDD events, and the Sprint itself. The traditional Scrum events com-
prises the intra-team events, namely sprint planning, backlog refinement, daily
Scrum, and retrospective. The large-scale agile events consist of overall sprint
planning, backlog refinement, daily scrum, retrospective, and review events. The
PO and representatives from all teams participate in all inter-team events. This
allows the PO in the framework to communicate with all teams continuously
and in parallel. These meetings especially allow discussions about dependencies
and responsibilities of the teams. The DDD events include the continuous user
story assignment and evaluation, and strategic decision making on the strate-
gic DDD level. The event storming workshops takes place on the tactical DDD
level. The continuous user story assignment and evaluation serves to determine a
suitable organizational structure in line with the DDD approach. The goal is to
have teams that are working in one bounded context within one subdomain. The
strategic decision making in the framework is done by the PO and PMs. Here,
they are mostly concerned about the organizational structure of the teams. This
comprises not only potentially restructuring of existing teams, but also decid-
ing about the responsibilities as soon a new team is added. The event storming
workshop supports exploration of complex business domains with domain mod-
els starting with domain events as their most crucial part. It allows to come up
with a comprehensive model of the business flow in a domain by bringing domain
experts and developers together in a room to build a model collaboratively. The
approach is in line with DDD, as it helps to determine bounded contexts and
aggregates quickly. It has a very easy and intuitive notation that all participants
can understand. The event storming workshops create an atmosphere for discus-
sions about the business logic. In the case study, event storming is regarded as
a first step towards defining a domain model with the central concept of events.

LeSS suggests to synchronize the sprints for all teams. This means the same
sprint length as well as sprint start and end. Here a sprint length of one to two
weeks is suggested.

Artifacts: Essential to the framework are different artifacts which are used and
created in the process. While on the strategic DDD level, the overview of the
subdomain as well as the results of the user story assignment are essential, on
the tactical DDD level the domain models are the central artifacts. User stories,
product and sprint backlog are very essential in the strategic DDD as well as in

240 Ö. Uludağ et al.

the development process. It makes sense for the teams to define key use cases
and to document the logic architecture. The logic architecture models provides
a rough sketch of the entire system. Key use cases can be used to understand
what a typical user expects from a system, how a user interacts with the systems
and benefits from it.

Tools: The agile teams use Jira to manage the product backlog. In order to
document which domain and subdomains are affected by a user story, a new
field called “Affected Domain” has been added to Jira (see Fig. 2).

Fig. 2. Example of assigning domains and subdomains to user stories.

Further application of the framework requires a team collaboration software
and a wiki. In the case study, the agile teams utilize Confluence as a knowledge
base for collaboration and documentations. All teams have established a wiki for
their documentations. Each team has its own wiki space. An overarching wiki
space is also present. The overarching space includes among others documen-
tation on strategic and tactical DDD as well as documentation of the overview
of domains and subdomains. Most importantly, on one page the event storming
method is explained and a picture of the current domain for the correspond-
ing team is included. All former versions of the domain model are included to
document its development over time. Additionally, an Enterprise Architecture
Management (EAM) tool is necessary to be able to automate the evaluation of
the user story assignment. The EA uses the EAM tool Iteraplan. It facilitates the
automation of the evaluation of the user story assignment. The user stories with
assigned domains and subdomains can be imported from Jira in order to build

Supporting Large-Scale Agile Development with Domain-Driven Design 241

figures, e.g., nesting cluster graphics, which visualize subdomains and teams
working on them with (sub-)domains colored depending on their total number
of user stories. PM can use Iteraplan’s figures for strategic decision making.

5 Evaluation

In order to evaluate the defined framework, we conducted interviews with nine
persons in the insurance company of which four are part of an agile team. The
other interview partners work in roles that frequently interact with agile teams.
The interviewees were two PM (PM1, PM2), one scrum master (SM), two busi-
ness analysts (BA1, BA2), one PO, one department head of sales processes and
applications (DH), one lead EA, and one domain architect (DA). Interview part-
ners were not only asked if they agree or disagree to a statement, but also for
the reasons for their choice. Figure 3 shows the statements and the respective
degree of agreement by the interviewees.

Strategic Domain-driven Design: The evaluation of the Strategic DDD com-
ponent includes the user story assignment and interview results. In total, 425
stories were assigned by three teams. User stories purely concerned with UI
design and technical issues - around 35% - have not been assigned as they do
not belong to any business subdomain. Nearly 58% were assigned unambigu-
ously to a business subdomain. Only 3% of user stories were either very difficult
to assign meaning that no suitable subdomain was defined yet. 4% of the user
stories were assigned to more than one subdomain which is caused by a very
broad scope of user stories. This can be prevented by dividing the respective
stories focusing on functional requirements of only one subdomain. According to
the interview results, the agile teams themselves have not profited extensively
from the user story assignment so far. However, the architects, PMs, and PO
evaluated the assignment of user stories as more beneficial. The PO considered
that the result of the user story assignment proved correct about the overarching
subdomains his team works in. DH, PM1 and PM2 confirmed that the results
show the core focus of each team as well as overarching functions that need to
be discussed with different teams. Further, they state that results can be a valid
basis to restructure teams and their responsibilities. The SM stated that making
benefits of such a method clearer to agile team members help them to profit
from the user story assignment in the future. This could include providing the
results continuously on a wiki page accessible by all involved persons.

Tactical Domain-driven Design: Evolving own domains models for each team
starting with event storming workshops reveals a very high agreement among all
interview partners. The model helps the teams to reach a common understand-
ing of the business logic in its domain and serves as a shared language for all
team members - developers and business experts (DA, PO, EA). SM regarded
domain models as very helpful to detect which functionality could be added
next and as a tool to discuss how the logic changes. DA mentioned that in the
future this domain model has to be found in the code as a representation of the

242 Ö. Uludağ et al.

Fig. 3. Evaluation results of the proposed framework.

business logic. However, PM1 mentioned that this might make more sense in
the future when the teams are structured based on subdomains. In general, the
team members who participated in the event storming workshops were convinced
that the method is helpful. Advantages of the method are that it is very simple
(PO, AM), that it creates a good atmosphere for open discussions (BA2, EA),
that its focus is on business events and logic (BA2) and helps to find aggregates
and (sub-)domain boundaries (PM1). According to DA, focusing on business
logic before addressing technical issues is helpful. Comparing domain models

Supporting Large-Scale Agile Development with Domain-Driven Design 243

between teams is considered beneficial to determine boundaries of each teams
work (BA2), to reach a common understanding of the business logic and where
interfaces between the applications are required as well as to define a published
language (DH). However, this approach can increase the need for cross-team
coordination and communication (EA, BA1). Further, this might not be desired
by the teams as they are supposed to reach their own goals and therefore their
interests in common goals and overall architecture might not be given (AM).
According to DA, the EA’s responsibility is to compare domain models and to
detect challenges that might occur. An EA could contact the affected teams and
bring them together to discuss and decide on the detected issues. These results
were also observed in the event storming workshops.

Large-Scale Agile Development Process: The effort for the integration of
the strategic and tactical DDD components was assessed neither as low nor high.
Team members who participated in the assignment and the workshops assessed
efforts higher. As this component of the framework has not been operationalized
yet, further questions concerned the development process in general. The opin-
ions differ if synchronizing sprints, sharing a single backlog and a single PO is
beneficial. Some interviewees argued that actually no dependencies should exist
and continuous delivery and integration would make such means unnecessary
(PM2, BA2, DA). However, other interviewees stated that with similar complex-
ity, using components of scaling agile frameworks could enhance transparency
and focus on common goals (EA, PM1). A single PO supports overarching pri-
oritization of user stories (AM, EA), but if the agile teams are inexperienced it
might be too much work for one person (PO, DH, PM2).
Concluding, the use of the defined artifacts, such as domain models and user
story assignment results, was considered as helpful and especially support of
agile teams by architects has been seen as very beneficial by all interview part-
ners. According to DH, architects play a central role for making overarching
strategic considerations, e.g., concerning team structure (PO, BA1, BA2). Oth-
ers considered architects also as coaches for new methodologies, such as DDD
and event storming (PM1, AM, BA2).

6 Discussion

Key findings: After working independently from all architectural governance,
the agile teams and PM conceived that without any form of architectural guid-
ance large agile programs can hardly be successful. Therefore, one of the key
findings is that agile teams, as soon as there are several of them on a pro-
gram, need to be supported by EA having an overview of the teams and the
applications they develop. Many challenges arise which cannot be addressed by
single teams, but need to be addressed with overarching methods driven by
overarching roles within the organization. Especially, combining large-scale agile
practices and DDD can address various challenges. While scaling agile frame-
works support cross-team coordination and communication, they lack detailed
advice on how to do architecting in large scale agile programs. DDD provides

244 Ö. Uludağ et al.

basic concepts for the architecture that can be beneficial not only to the agile
teams, but the program overall. Architectural activities in agile programs earlier
were not accepted by agile teams who wanted to work independently. However,
if architects are capable of providing apparent value to the agile teams, they
appreciate architectural support. The same applies for PM and other decision
makers. To be able to demonstrate value quickly to both decision makers and
agile teams, we recommend starting with both strategic and tactical DDD at the
same time. Decision makers will profit soon from the strategic DDD, while agile
teams profit mostly from the tactical component. The framework shows how to
combine large-scale agile development and DDD in a light-weight manner.

Threats to validity: We discuss potential threats to validity using Runeson
and Höst’s [21] criteria for assessing the validity of case studies. The first crite-
rion is construct validity. It reflects to what extent the operational measures
that are studied really represent what the researcher has in mind, and what is
investigated according to the research questions. To address this aspect, we inter-
viewed multiple persons with different roles and attended various event storming
workshops. The interviews and workshop protocols were coded and analyzed. We
also applied a “mixed methods” approach as we gathered data through direct
observations, structured interviews, and various software tools. Another poten-
tial concern is that of internal validity, which is not relevant, as this research
was neither explanatory nor causal [21]. A third criterion is external validity,
i.e. to what extent it is possible to generalize the findings. We focus on analytical
generalization [21] by providing a thorough description of the case. Particularly,
our case study provides empirical insights that allow for a profound understand-
ing of this insurance organization’s large-scale agile development endeavor. The
presented findings should be viewed as valuable insights for other organizations
interested in supporting large-scale agile development efforts with DDD. Rune-
son and Höst’s [21] last criterion is reliability. It is concerned with to what
extent the data and the analysis are dependent on the specific researcher. To
mitigate this threat, the study has been designed so that data was collected
from different sources.

7 Conclusion and Future Work

The success of agile methods for small, co-located teams has inspired organiza-
tions to increasingly apply agile practices to large-scale endeavors [2]. However,
large organizations face challenges when scaling agility such as inter-team coordi-
nation, dependencies on other programs, and lack of clearly defined requirements
[30]. Especially, a lacking definition of architecture causes problems when adopt-
ing agile methods. Agile methods do not provide guidance on architecture, but
assume that it emerges with each iteration and continuous re-factoring. This
can be problematic as soon as complex systems are built by many teams. Some
governance and architectural planning is required to define work coordination
and to develop reliable and scalable systems [2,16]. DDD encourages an iterative
and collaborative process for evolving architecture in an agile way.

Supporting Large-Scale Agile Development with Domain-Driven Design 245

Our case study provides a detailed description of how DDD can support large-
scale agile development. The findings indicate that it is easier to gain traction
of decision makers and agile teams at first by demonstrating the value of DDD.
Our findings show that agile teams need some form of architectural guidance
and support by EA having a holistic overview of the teams and the applications
they develop. Stakeholders involved in the large-scale agile program appreciate
that architects not only coach the teams concerning new methods, but also
support them in application and exploitation. Our proposed approach fostered
the acceptance of architectural thinking of agile teams. It helped them to realize
the benefits of architecting, thus, encouraging their intrinsic motivation. Our
study contributes to the growing knowledge base on supporting large-scale agile
software development with EA.

We will continue to study the case organization as the large-scale agile devel-
opment effort becomes more mature and the presented framework will be further
operationalized. In addition, we plan to study the collaboration between EA and
agile teams in other large organizations that are pursuing large-scale agile devel-
opment endeavors. Also, we are interested in identifying recurring stakeholder
concerns and beneficial practices.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development (2012)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14358-3 1

3. Rost, D., Weitzel, B., Naab, M., Lenhart, T., Schmitt, H.: Distilling best practices
for agile development from architecture methodology. In: Weyns, D., Mirandola,
R., Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 259–267. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23727-5 21

4. Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: architecture to the rescue.
In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K.
(eds.) XP 2014. LNBIP, vol. 199, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14358-3 5

5. Agile architecture. http://www.scaledagileframework.com/agile-architecture/.
Accessed 22 Nov 2017

6. Mocker, M.: What is complex about 273 applications? untangling application archi-
tecture complexity in a case of European investment banking. In: 2009 42nd Hawaii
International Conference on System Sciences HICSS 2009, pp. 1–14. IEEE (2009)

7. Nord, R.L., Ozkaya, I., Sangwan, R.S.: Making architecture visible to improve flow
management in lean software development. IEEE Softw. 29(5), 33–39 (2012)

8. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of archi-
tects in scaling agile frameworks. In: 2017 IEEE 21st International Enterprise Dis-
tributed Object Computing Conference (EDOC), pp. 123–132. IEEE (2017)

9. Abrahamsson, P., Babar, M.A., Kruchten, P.: Agility and architecture: can they
coexist? IEEE Softw. 27(2), 16–22 (2010)

https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-23727-5_21
https://doi.org/10.1007/978-3-319-14358-3_5
https://doi.org/10.1007/978-3-319-14358-3_5
http://www.scaledagileframework.com/agile-architecture/

246 Ö. Uludağ et al.

10. Augustine, S.: Managing Agile Projects. Prentice Hall PTR, Upper Saddle River
(2005)

11. Babar, M.A.: An exploratory study of architectural practices and challenges in
using agile software development approaches. In: 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software Archi-
tecture WICSA/ECSA 2009, pp. 81–90. IEEE (2009)

12. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2000)

13. Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer, Switzerland (2014).
https://doi.org/10.1007/978-3-319-05155-0

14. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practition-
ers. IEEE Softw. 27(5), 8–9 (2010)

15. Bellomo, S., Kruchten, P., Nord, R.L., Ozkaya, I.: How to agilely architect an agile
architecture. Cutter IT J. 27(2), 12–17 (2014)

16. Leffingwell, D., Martens, R., Zamora, M.: Principles of agile architecture. LLC.
and Rally Software Development Corp., Leffingwell (2008)

17. Buchmann, F., Nord, R.L., Ozakaya, I.: Architectural tactics to support rapid and
agile stability. Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.,
Technical Report (2012)

18. Cockburn, A.: Crystal Clear: A Human-powered Methodology for Small Teams.
Pearson Education, Upper Saddle River (2004)

19. Scaled agile framework. http://www.scaledagileframework.com/. Accessed 05 Dec
2017

20. The disciplined agile (DA) framework. http://www.disciplinedagiledelivery.com/.
Accessed 05 Dec 2017

21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2008). https://doi.org/10.
1007/s10664-008-9102-8

22. Benbasat, I., Goldstein, D.K., Mead, M.: The case research strategy in studies of
information systems. MIS Q. 11(3), 369–386 (1987)

23. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-
sand Oaks (2013)

24. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empir. Softw. Eng. 10(3), 311–341 (2005)

25. Brandolini, A.: Introducing EventStorming: An act of Deliberate Collective Learn-
ing. Leanpub (2017)

26. Stake, R.E.: The Art of Case Study Research. Sage, Thousand Oaks (1995)
27. Miles, M.B., Huberman, A.M., Saldana, J.: Qualitative Data Analysis: A Methods

Sourcebook. Sage Publications Ltd., Thousand Oaks (2014)
28. Pivotal Software: Pivotal labs (2017). https://pivotal.io/labs
29. Moogk, D.R.: Minimum viable product and the importance of experimentation in

technology startups (2012). http://timreview.ca/article/535
30. Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed orga-

nization: a case study. In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE), pp. 74–83, August 2016

https://doi.org/10.1007/978-3-319-05155-0
http://www.scaledagileframework.com/
http://www.disciplinedagiledelivery.com/
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://pivotal.io/labs
http://timreview.ca/article/535

Supporting Large-Scale Agile Development with Domain-Driven Design 247

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Towards Agile Scalability Engineering

Gunnar Brataas1(&), Geir Kjetil Hanssen1, and Georg Ræder2

1 SINTEF Digital, Trondheim, Norway
{Gunnar.Brataas,Geir.K.Hanssen}@sintef.no

2 EVRY Norway AS, Fornebu, Norway
Georg.Raeder@evry.com

Abstract. Scalability engineering is currently not well integrated into agile
development techniques. This paper extends agile development techniques so
that scalability can be handled in an incremental and iterative development
process. By scalability we mean the ability of a system to handle increasing
workload. We propose the ScrumScale Method which includes scalability
engineering in Scrum. This extension should also be applicable to other agile
techniques. For scalability testing, we indicate how quality thresholds should be
scaled up or down according to the degree of completeness of the product, test
hardware, test software, test data and test workload. Using action research, we
have conducted three pilots in three Norwegian software organizations. These
three pilots have different architectures and operate in different markets yet have
in common scalability challenges.

Keywords: Scrum � Software performance engineering (SPE)
Action research

1 Introduction

A scalable system can handle increasing workloads by utilizing more hardware or
software resources [4, 6]. A system with poor scalability is unable to extend its capacity
if demanded by unexpected workloads. A costly and time-consuming redesign is
required. Despite careful planning and design, scalability is still a “fragile” property
that can easily be jeopardized by carelessness or problems in inter-connected systems.
Hence, scalability is a pervasive property of a system.

Agile methods address a similar challenge. Agile methods target development
projects where requirements are not fully known in advance. Using agile methods,
software projects deliver parts of the solution with the intention of quickly validating
whether the deliverables meet user expectations. Many software organizations are
continuously challenged to reduce time to market for new solutions. Agile methods
help them to scope delivered solutions so that they can rapidly adjust to unpredictable
market needs.

At present, we lack conceptually sound approaches to incorporating scalability
engineering into agile software development. Many software organizations are faced
with a difficult balancing act when trying to accommodate both. Scalability is a

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 248–255, 2018.
https://doi.org/10.1007/978-3-319-91602-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_17&domain=pdf

property of a system that accentuates the tensions between planning and agility to a
new level. Both scalability and agility seek to accommodate uncertainty. Both scala-
bility and agility are important to meeting the needs for software organizations’
competitiveness. It is therefore imperative that we find solutions to how scalability and
agility can be combined.

Babar et al. advocate a middle ground between agile development and incorpo-
rating elements of up-front planning [1]. We seek to develop more powerful concepts
for dealing with scalability to assist stakeholders and practitioners in their collaboration
on scalability engineering. In particular, we think that a more effective language for
scalability will assist in enabling collaboration among product owners, architects,
developers and testers on the construction of sound scalability requirements. Scalability
testing can be put to use in a more agile working practice where it contributes to
produce continuous feedback.

We are in the middle of the ScrumScale project that seeks to resolve this challenge.
The main objective of the ScrumScale project is to reduce the cost of handling scal-
ability using agile development practices. This cost may be reduced in three ways:
(1) Using care when developing software so that costly and time-consuming redesign is
reduced. (2) Less gold-plating of subsystems that scale “too well,” to reduce devel-
opment costs. (3) Reduced consumption of hardware (CPUs, disks, networks) and
software resources (with license and cloud service fees) as a result of improved
scalability.

The main result of ScrumScale will be an extension of agile techniques to
accommodate scalability. We have started with Scrum, but these extensions should also
be applicable to other agile techniques. The main contribution of this paper is a
Scrum-based process for how to handle scalability in Sect. 2. For scalability testing, we
indicate how quality thresholds should be scaled up or down according to the degree of
completeness of the product, test hardware, test software, test data and test workload. In
Sect. 3, conclusions and further work are outlined.

ScrumScale adopts the action research paradigm where researchers and practi-
tioners seek to solve problems in collaboration using cycles of the steps diagnosis,
planning, intervention, evaluation and reflection [5]. In addition to the research partner
SINTEF, ScrumScale has the three industrial partners EVRY, Powel and Altinn.
EVRY delivers financial services solutions, Powel energy and public software solu-
tions with related services, while Altinn is the largest Norwegian public portal.

We have completed the first pilot phase with one pilot for each industrial partner.
These pilots differ both in scope, domain as well as duration. Common to all these three
pilots were anticipated scalability challenges. The initial diagnosis before starting these
three pilots showed that the root cause of problematic scalability was vague scalability
requirements [2]. Clarifying scalability requirements has therefore been the focus in the
first pilot phase. Scalability testing has also been done. Monitoring during operations is
not handled yet. Apart from participating in the three pilots, we have arranged retro-
spectives and conducted structured interviews with main stakeholders in all three
organizations.

Towards Agile Scalability Engineering 249

2 The ScrumScale Method

With the ScrumScale Method, we seek to combine scalability concerns with agility,
and so we work with scalability earlier in the development cycle than what is normally
the case, as illustrated in Fig. 1.

The ScrumScale Method has the following seven steps for each new product:

1. Scalability triage with a rough, intuitive expert evaluation and feedback
2. Extract business-related scalability requirements to get feedback on them
3. Derive testable scalability requirements to get feedback on them
4. Expert evaluation to get feedback on solution suggestions
5. Code review to get feedback on implementation
6. Scalability testing to get feedback on solution
7. Exploit monitoring data to improve the solution but also to get feedback on the

actual workload

In all these steps, we get feedback, so they are applied iteratively and lend them-
selves to integration in an agile development process, such as Scrum. In fact, this
integration is driven by both sides: Modern, agile practice calls for scalability to be
handled likewise, but scalability also will benefit from a more light-weight, iterative
approach.

The product backlog is set up initially where the product owner in collaboration
with customers and other stakeholders defines and prioritizes user stories. Some user
stories may be associated with scalability concerns. In between each iteration, the
product owner may revisit the product backlog to add or change user stories based on
the outcome and new knowledge from the previous sprint. If needed, the product owner

Prioritised
User

Stories
with

Scalability
Concerns

Test-
 driven
 Develop-
 ment

 Cross-
Functional

Team

Increment E

Increment D

Increment C

Product
Owner

Scalability Analysis

Capacity of Service

SW
 +

 H
W

 C
os

ts

With
ScrumScale

Without
Scrum-
Scale

1 2 3 4 5

1

2

3

3

7

Product
Backlog 2

Customers

Internal
Stake-
holders

User
Stories
with

Scalability
Concerns

Scalability
Monitoring

Deployment

Planning

Expert
Evaluation

Increment B

Increment A

41

Scalability
Expert

Sprint
Backlog

5System
Testing

Code
QA

6

Fig. 1. ScrumScale vision

250 G. Brataas et al.

should include a scalability expert (champion) to evaluate whether a new or changed
story will impact the scalability of the solution. This evaluation may be supported by
scalability testing and monitoring of the solution as it is so far. Likewise, a scalability
expert may also assist the team that creates code to implement user stories. Sprints are
short and time-boxed work periods, typically 2–4 weeks, where scalability is evaluated
as part of the sprint review and the planning of the next sprint.

For code review (step 5) and monitoring (step 7) we build on existing practices. The
other five steps are described in more detail below.

2.1 Scalability Triage

This is a fast and informal step where scalability experts try to answer the question: Are
there scalability risks associated with the product? Work, load, and quality thresholds
are not analyzed explicitly. Therefore, this step requires extensive experience. Features
dealing with GUI or adding small details to an otherwise large computation will
probably not pose a threat to scalability. Only for features where there may be a threat
to scalability will we go further in the ScrumScale Method, where we start by working
with the scalability requirements. For the remainder of the features, we simply stop
here. This is important, since the remainder of the steps, even though they are light-
weight, involve some effort.

2.2 Extract Business-Related Requirements

Like other product requirements, scalability requirements originate from business
goals: What is the ambition and planned roadmap for the product? The first step in
scalability requirements elicitation is therefore, to engage product management and ask
questions such as:

• What is the total number of users we want to support?
• What types of users (roles) are there: the public, administrators, specialists, etc.
• What is the total number of objects the system should be able to handle (such as the

number of books in an on-line book store)?
• What are good quality metrics? Is a 90-percentile response time metric useful?
• What are expected magnitudes of quality thresholds –0.1 s, 1 s, 10 s, 1 min, 1 h, 1

day, etc.?
• What is the time horizon for the scalability requirements? Is there a planned

ramp-up of user load or objects handled? A time horizon larger than five years is
probably too much, but shorter than two years probably too small.

Product owners may also have an idea of the expected operating cost of the system
in terms of hardware and software license cost per user, per transaction, or similar. If
this is clear, it is recorded at this stage, but it cannot be validated until fairly late in the
process when resource demands become understood [2].

The requirements gathered at this stage are often imprecise, and not always con-
sistent or even relevant, but they capture the stakeholders’ expectations in a language
that they are comfortable with. The next step is to analyze this input and derive precise,
useful and testable scalability requirements.

Towards Agile Scalability Engineering 251

2.3 Derive Testable Scalability Requirements

To derive systematic, testable requirements, we build on the conceptual model in [4]
which is used to understand scalability requirements in [3]. The system boundaries
define which services are included when measuring quality metrics. An operation
defines a unique and relatively similar way of interacting with a service. A quality
metric defines how we measure a certain quality and is a key part of an SLA
(service-level agreement). At an overall level, response times and throughput are tra-
ditional scalability quality metrics, but more details are required. Is it average or 90
percentile response times? Quality thresholds (QTs) describe the border between
acceptable and non-acceptable quality for each operation and is connected to a par-
ticular quality metric. With the 90-percentile response time quality metric some
operations may have a 0.1 s quality thresholds, while the threshold is 10 s for other
operations.

Load is how often an operation is invoked. In a closed system, load is specified by
the number of users (N) and the think time (Z). Since no users enter or leave the
system, the number of users is constant. Think time is the average time to compose
operation invocations to the system. For an open system, we use arrival rate (k),
measured in operations per time unit, for example 100 transactions per second. In the
context of scalability, we are interested in the highest load, i.e. the load during the
busiest hour, week, month, and year in our planning horizon.

Work characterizes the amount of data to be processed, stored or communicated
when invoking one operation. Ultimately, work describes the amount of hardware and
software resources consumed when invoking one operation. The set of operations is of
course an important part of work characterization, but so are also key data objects, like
documents and accounts. When considering scalability, we are interested in how the
work for one operation varies. This is connected to sizes of objects, e.g. number of
documents and the average size of these documents. Such parameters are work
parameters. For scalability, we focus on the highest values of the work parameters.
Whereas load typically go up and down during the day, week, and month, work
parameters typically only increase.

Together, work multiplied by load becomes workload. The highest workload ful-
filling quality thresholds is the capacity of a system.

The critical operations are the operations where the product of load and work poses
a risk of not fulfilling the quality thresholds. Of course, it would be beneficial to
establish the critical operations early, but this set is also a result of the analysis.
Therefore, iterations, a strong point in agile methods, are required.

As more knowledge is gained, the granularity may increase or decrease, when
operations are split or merged, more work parameters are introduced, or the quality
thresholds are defined for each individual operation instead of the same threshold for
several operations [2]. The system boundary may also change. However, as we learn
more, we see what we can simplify and leave out. This is a typical modeling experience
where the granularity (size) of the model increases because of increased understanding
before it decreases, when we understand what really matters.

At this step, it is useful to get information on the technical approach: system type
(e.g. three-tier web application or batch application) and platform (e.g. cloud).

252 G. Brataas et al.

2.4 Expert Evaluation

The most important outcome of this light-weight expert evaluation is advice on good
design decisions and the identification of problem areas when systems are built step by
step. This will be part of the planning process and also give input to defining testable
scalability requirements, and it will only be performed for high-risk projects. Perfor-
mance patterns and anti-patterns are explicit and well-documented examples of this
knowledge [7], but experts have “silent” knowledge much beyond this. The experts
will try to answer the question “Will the product of work and load pose a threat to the
quality thresholds?” This can have two outcomes: (1) No risk. (2) Potential risk so that
more investigation is required.

Scalability experts (champions) will be a limited resource in all organizations.
Therefore, one scalability expert will assist several teams and in this way transfer
experience across many different projects and technologies.

2.5 Scalability Testing

During scalability testing, we have partial information across many dimensions:

• Solution: Only some increments are completed.
• Test hardware: May not be as powerful as the production hardware.
• Test software: The versions may not resemble the production environment.
• Test data: Synthetic test data may not represent the details which make scalability

hard. Real data may be used, after obfuscation.
• Test workload: It may be hard to anticipate all strange usage patterns for real users.
• Time to do scalability testing: It is clearly a trade-off between how extensive

scalability testing can be performed with frequent iterations. A full, frequent scal-
ability test will simply not be feasible. It is an open question how many scalability
requirement violations can be detected by a simple automated test.

• Partial competence because of less-than perfect knowledge exchange between
scalability tester, architects and developer. To participate in the same Scrum team
will of course help. Moreover, selecting optimal configuration parameters for
software and hardware is challenging.

As a result, we should also scale the scalability requirements. When only parts of
the solution are completed, it cannot consume the complete quality thresholds. We do
not use models for unfinished parts of the system, but some kind of implicit modelling
is required to scale the requirements up or down, according to the degree of com-
pleteness of the other dimensions. We may, for example, assume that the basic platform
takes half of the time, whereas each of ten features share the rest. A system with two
features should then consume approximately 60% of the resources compared to a
complete product. Moreover, if the database server resembles the production envi-
ronment, while the application servers and the network are weaker compared to the
production environment, it becomes harder.

Towards Agile Scalability Engineering 253

3 Conclusion

Half-way into the ScrumScale project, we see the contours of a profitable fusion of
scalability engineering and agile practices. To lay the foundation for such an approach,
we have described a series of method steps that can be applied in an iterative manner,
allowing an agile approach to scalability engineering.

ScrumScale extends Scrum by connecting functional requirements with scalability
requirements to enable evaluation of scalability after each sprint, supported by moni-
toring and testing. When new sprints are planned detailed design is evaluated with
respect to scalability. ScrumScale also adds a new role, the scalability expert, or
champion, that supports the team in making the right decisions.

We are developing these artefacts iteratively through trials on real pilots in three
partner companies. We will continue with more pilots, making the ScrumScale Method
a practical tool for agile scalability engineering.

Acknowledgements. The research leading to these results has received funding from the
Norwegian Research Council under grant #256669 (ScrumScale). Tor Erlend Fægri, then in
SINTEF Digital, contributed with early ideas for this paper. EVRY, Powel and Altinn con-
tributed with pilots.

References

1. Babar, M.A., Brown, A.W., Mistrík, I.: Agile Software Architecture: Aligning Agile
Processes and Software Architectures. Newnes, Oxford (2013)

2. Becker, S., Brataas, G., Lehrig, S.: Engineering Scalable, Elastic, and Cost-Efficient Cloud
Computing Applications: The CloudScale Method. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-54286-7

3. Brataas, G., Fægri, T.E.: Agile scalability requirements. In: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering. ACM (2017)

4. Brataas, G., Herbst, N., Ivansek, S., Polutnik, J.: Scalability analysis of cloud software
services. In: 2017 IEEE International Conference on Autonomic Computing (ICAC). IEEE
(2017)

5. Davison, R.M., Martinsons, M.G., Kock, N.: Principles of canonical action research. Inf. Syst.
J. 14(1), 65–86 (2004)

6. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it is, and what
it is not. In: ICAC (2013)

7. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, Boston (2001)

254 G. Brataas et al.

http://dx.doi.org/10.1007/978-3-319-54286-7
http://dx.doi.org/10.1007/978-3-319-54286-7

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Towards Agile Scalability Engineering 255

http://creativecommons.org/licenses/by/4.0/

Human-Centric Agile

Stress in Agile Software Development:
Practices and Outcomes

Andreas Meier1, Martin Kropp2, Craig Anslow3, and Robert Biddle4(B)

1 Zurich University of Applied Sciences, Winterthur, Switzerland
meea@fhnw.ch

2 University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
martin.kropp@fhnw.ch

3 Victoria University of Wellington, Wellington, New Zealand
craig.anslow@ecs.vuw.ac.nz

4 Carleton University, Ottawa, Canada
robert.biddle@carleton.ca

Abstract. Stress is an important workplace issue, affecting both the
health of individuals, and the health of organizations. Early advocacy for
Agile Software Development suggested it might help avoid stress, with
practices that emphasize a sustainable pace, and self-organizing teams.
Our analysis of a 2014 survey, however, suggested that stress might still
be commonplace in Agile teams, especially for those with less experi-
ence. We also noticed that newcomers to Agile emphasized technical,
rather than collaborative, practices, and speculated this might explain
the stress. We explored this in our analysis of a follow-up survey con-
ducted in 2016, and report our findings in this paper. We show that there
are a variety of factors involved, and that avoiding stress is associated
with both collaborative and technical practices, and a range of outcomes.

Keywords: Stress · Agile · Software development

1 Introduction

Occupational stress is an important workplace issue, affecting both the health
of individuals, both physical and mental, and the health of organizations, from
turnover, poor productivity, and poor collaboration [1]. Since its inception, Agile
software development has emphasized elements that should prevent stress. For
example, Extreme Programming (XP) specified a “sustainable pace”, and both
XP and Scrum emphasized the importance of self-organizing teams. In analysis
of the 2014 Swiss Agile Survey [3], however, we were surprised to see that stress
appeared to be an issue, especially for practitioners new to Agile. In this paper,
we explore the possible reasons for this phenomenon, using data from the 2016
Swiss Agile survey [4].

In the earlier study [5], we asked professionals to identify characteristics that
reflected their perception of working in an Agile software development environ-
ment. In particular, we explored differences reported by those new to Agile,
c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 259–266, 2018.
https://doi.org/10.1007/978-3-319-91602-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_18&domain=pdf

260 A. Meier et al.

those with some experience, and those with more extensive experience. One of
the themes in our analysis of the 2014 survey was collaboration, and we showed
that Agile experience typically began emphasizing technical practices, but that
collaborative practices increased in importance with experience. We therefore
speculated that stress in Agile might relate to an under-adoption of collabora-
tive practices. The 2016 Swiss Agile Study gave us an opportunity to explore this.
Our overall questions were: how do professionals rate how Agile has influenced
their stress; how is their stress related to the level of agility in their process; and
how is their stress related to their team practices and to the influences they see
resulting from their process.

The rest of this paper is structured as follows. In Sect. 2 we outline related
research on stress in software engineering processes, and in Sect. 3 we describe
our study method. We then present our results in Sect. 4, showing how stress
was related to aspects of the software engineering process. In Sect. 5 we discuss
these findings and offer our conclusions.

2 Related Work

The paper we cite in the introduction [1] marked a recognition of the way
that stress has a negative effect on both individual and organization, and much
research has followed. We focus here on research specifically relating to software
engineering.

Sonnetag et al. [10] found that stress was related to the “burnout” phe-
nomenon in software development, in particular stress stemming from lack of
control, high task requirements, and poor interaction within teams. Mannaro et
al. [7], studied factors affecting satisfaction in software teams, and specifically
looked at the relationship between stress and the software process being used,
finding that (then new) Agile methods were associated with less stress. Rajeswari
and Anantharaman [8] studied software professionals in India, and found major
stress factors were fear of obsolescence and unhelpful interactions within the
team and with clients. A general review of research on teamwork and stress [9]
addressed teamwork in a range of industry work, including software develop-
ment, finding that the quality of interactions within the team to be a key issue.
Laanti studied wellbeing and stress in Agile teams within a large organization
[6], and found empowerment to be the major factor for healthy teams, but also
found that teams perceived as performing poorly experienced stress. Overall,
this body of work suggested to us that issues relating to collaborative practices
might indeed be related to stress.

3 Study Setup

Our study was a nationwide online survey conducted by us in Switzerland [4].
The study is about the usage of development methods and practices in the IT
industry, and about the influence of applying Agile methods on projects. The
study addressed both Agile and plan-driven companies as well as both Agile and

Stress in Agile Software Development 261

plan-driven IT professionals. The study was executed as two independent online
surveys; one for companies, and one for IT professionals. The survey questions
were identical for both groups. The company survey was completed by high-
level managers on behalf of their organization. In this paper, therefore, we focus
only on the professional survey, where individuals answered describing their own
personal situation.

We emailed IT professionals with an anonymous link to the survey. The
addresses of the professionals were collected from the participating national IT
associations, as well as from our own institutional databases. We distributed
the link to the anonymous survey also through professional social media like
LinkedIn and XING. 185 IT professionals filled out the complete survey.

The responding IT professionals were typically Senior Software Develop-
ers (17%), Software Developers (12%), Project Managers (13%), Team Leader
(10%), and Designer/Architects (10%). We had a high number of “Others”
(17%), which include roles like Scrum Masters, Agile Coaches and Product Own-
ers. In our analysis, we sometimes isolate the two main categories respondent:
“managers”, meaning coaches, project managers, and the like, and “developers”,
meaning those directly engaged in technical work.

We used an input-output model to address project aspects: We were ask-
ing about the application of common development practices, especially in Agile
software development. We also asked about influences of Agile software develop-
ment, meaning how the process influenced outcomes, especially about business
influences, team influences and the influence on software quality. We also added
questions about experience, self-ratings and the personal situation and company
background. The main basis for our questions were earlier surveys [3,12], and
our own experience with industry.

0
5

10
15

20
25

Managers

1 2 3 4 5

0
5

10
15

20
25

Developers

1 2 3 4 5 1 2 3 4 5

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

agility

st
re
ss

Fig. 1. Left and Centre: Reported stress by managers and developers, on a scale from
1 (unstressed) to 5 (very stressed). Right: Stress reported by Level of Agility; the
boxplots show the medians as heavy black lines, inner quartiles as coloured boxes,
outer quartiles as whiskers, and the means as diamonds. (Color figure online)

262 A. Meier et al.

4 Findings

In our survey we asked how Agile software development had influenced their
stress at work. They answered on a scale from 1 (significantly less stressed) to 5
(significantly more stressed). Figure 1 (left and centre) shows histograms of the
results. As we can see there is a range of answers, with most developers reporting
a neutral level, and most “managers” reporting somewhat less. Although these
results are not extreme, they do suggest some reason for concern, with sizeable
numbers reporting they are more stressed or significantly more stressed (levels
4 and 5).

Our next question relates to the role of Agile development. In our survey,
we asked professionals to report the “level of agility” on a scale of 1–5, where
1 was “Mostly Plan-Driven”, and 5 was “Mostly Agile”. We show the results
as a set of boxplots in Fig. 1 (right). These show that at each level of agility,
there is a range of stress reported, but the ranges are remarkably similar at all
levels. For example, the distribution, median, and mean are the same for agility
levels 2 (14%) and 4 (36%). Level 3 (36%) and Level 5 (15%) show tighter
and lower ranges, but they have the same median as levels 2 and 4. We found
this interesting, because it suggests that the level of agility is not particularly
related to the stress reported. We also explored the relationship between stress
and experience with Agile methods, and again found little evidence. We do
note, however, that we had fewer professionals with little experience in Agile
than in our 2014 survey: we speculate this is simply because of the increasingly
widespread adoption of Agile methods.

Our survey was designed to explore various aspects of the software develop-
ment experience, and in particular we wanted to identify the practices in use,
and the influences that were perceived as resulting. This is the basis of our
input-output model: the practices are the inputs, and the influences are outputs
(or outcomes). We asked professionals to consider a variety of practices, and a
variety of influences they experience in their workplace, rating each on a scale of
1–5. For the practices, we included several technical practices (TP), collabora-
tive practices (CP), and planning practices (PP). For the influences, we included
business influences (BI), software influences (SI), and team influences (TI). For
more detail, please see the survey report [4].

To explore how the practice and influences related to the stress, we looked
for correlations. To compute the correlation, we use Spearman’s non-parametric
“rho” (ρ) method, rather than Pearson’s r, because our Likert scale data is
ordinal, and this approach supports more conservative results. A rho approaching
1 is an extremely close match, approaching −1 is a strong inverse match, and
rho approaching 0 is a very poor match.

Our speculation was a relationship between collaborative processes overall,
and stress. We therefore calculated a composite score based on all collabora-
tive practices, and compared it with the stress data. We did not find a strong
connection: ρ = −0.16, p = .05.

We then explored each of the practices, and each of the influences, calculat-
ing the correlation of each individually with stress. We modified p-levels with

Stress in Agile Software Development 263

the Bonferroni correction for multiple tests, and used an alpha level of 0.05.
For practices, we found the only practice with a significant effect was the “Self-
Organizing Team” collaborative practice showing ρ = −0.27, p = 0.02 (Bonfer-
roni corrected). On further inspection, we found this relationship was strongest
with managers, with ρ = −0.54.

Exploring influences, we found a more diverse picture. Table 1 shows the top
10 correlations, ranked by |ρ|. The p-levels again reflect Bonferroni correction
for multiple tests, and we omit any results above an alpha level of 0.05.

As can be seen, the influences that play a role are varied, with software,
business, and team influences all involved. Perhaps most notably, several soft-
ware influences (SI) rate highly: lower defect levels, good software architecture,
and overall software quality are all associated with lower stress. The business
influences (BI) also relate to good process outcomes, such as requirements man-
agement and ability to manage changing priorities. Team influences (TI) reflect
a positive environment, such as good morale, an engaged customer, and effective
meetings. Looking at differences between managers and developers, we found
most of the influence relationships concerned managers, but it was developers
who most highly rated low defect rates, ability to manage changing priorities,
and morale as most related to reduced stress.

Table 1. Stress correlations for practices.

Question rho p.value

1 SI Defect rate −0.439 <.001

2 TI Team morale motivation −0.413 <.001

3 SI Software architecture −0.374 <.001

4 SI Software quality −0.362 <.001

5 BI Requirements management −0.353 0.001

6 SI Engineering discipline −0.337 0.001

7 SI Software maintainability −0.335 0.001

8 TI Engagement of customer product owner −0.333 0.001

9 BI Ability to manage changing priorities −0.323 0.002

10 TI Effectiveness of meetings −0.321 0.002

Although the correlation tables are helpful, we know that various factors are
involved in understanding stress and we suspected some were more important
than others. To explore this further, we applied recursive partitioning to create
regression trees [2,11]. This approach begins with the whole data set, and deter-
mines which independent variable, and at what point, best distinctly divides
the dependent variable: stress in our case. We thus obtain two coherent sets,
one with lower satisfaction, and one with higher, and so on recursively; we stop
at 10% of the sample. We show two trees in Fig. 2, one each for practices and
influences. The top number at each node shows the stress value mean for the
subtree.

264 A. Meier et al.

C
P

_S
el

f.
o

rg
an

iz
in

g
.t

ea
m

 <
 4

.5

P
P

_U
se

r.
st

o
ri

es
 <

 4
.5

C
P

_O
n

.s
it

e.
cu

st
o

m
er

 <
 1

.5

C
P

_O
n

.s
it

e.
cu

st
o

m
er

 2

.5

T
P

_C
o

n
ti

n
u

o
u

s.
d

el
iv

er
y

 3
.5

2.
8

n=
10

8

2.
5

n=
44

2.
3

n=
26

2.
8

n=
18

3
n=

64

2.
9

n=
52

2.
6

n=
15

3.
1

n=
37

2.
9

n=
24

3.
4

n=
13

3.
5

n=
12

no
ye

s

S
I_

D
ef

ec
t.

ra
te

 <
 3

.5

T
I_

E
ff

ec
ti

ve
n

es
s.

o
f.

m
ee

ti
n

g
s

<
3.

5

B
I_

D
el

iv
er

y.
p

re
d

ic
ta

b
ili

ty
 <

 4
.5

S
I_

S
o

ft
w

ar
e.

ar
ch

it
ec

tu
re

 <
 2

.5

2.
8

n=
10

8

2.
5

n=
63

2.
3

n=
44

1.
8

n=
14

2.
5

n=
30

3.
1

n=
19

3.
2

n=
45

3.
1

n=
32

3.
7

n=
13

no
ye

s

F
ig
.
2
.
R

ec
u
rs

iv
e

p
a
rt

it
io

n
in

g
:
st

re
ss

fa
ct

o
rs

in
p
ra

ct
ic

es
a
n
d

in
fl
u
en

ce
s.

Stress in Agile Software Development 265

Looking at practices, we see again that the Self-Organizing Team is the single
most important factor. People who rate their experience of that practice as 4 or
lower are more stressed. Those without an on-site customer are worse still. Alter-
natively, those who strongly use user stories are least stressed. For influences, low
defect rate dominates. Those who rate that outcome as less than 3.4 are more
stressed. Those who rate software architecture as poor are even more stressed.
Alternatively, those who achieve effective meetings and predictable delivery are
least stressed.

5 Discussion and Conclusions

In this paper we set out to explore a speculation based on earlier work: that
in Agile development it appears that stress was still a factor in professional
experience. We suspected a lack of collaborative practices might be the cause.
Using data from a new study, we found a somewhat more complex picture. First,
while a number of participants reported more stress, a similar number reported
less stress, and the dominant level was neutral. Second, neither the level of agility
claimed, nor Agile experience, was much related to the level of stress reported.

When we explored the practices related to avoiding stress, we found collab-
orative practices in general were only weakly related to reduced stress, but the
effect of Self-Organizing Teams was stronger, especially among those with a lead-
ership role. Lower stress was also linked to many software quality outcomes, such
as low defect rate and good software architecture. Looking for the dominating
effects, for practices we again found self-organizing teams were most helpful, and
story mapping; for developers it was again technical outcomes that were linked
to lower stress. The result is not quite what we expected, but indicates a complex
structure of stress in software development, and in particular the practices and
influences most related to low stress environments.

We acknowledge a number of threats to validity. Our data was self-reported,
and from a single country, Switzerland, so local organizational culture might
influence the results. There was little evidence for our initial idea about the
origin of stress, so our exploration was post-hoc. We therefore need to conduct
more research, which will also allow us to take more care in clarifying the key
constructs, and to better explore causality.

Acknowledgements. We thank the study participants, the anonymous referees of
this paper, and the Swiss IT organizations swissICT and SWEN for funding the study.

References

1. Beehr, T.A., Newman, J.E.: Job stress, employee health, and organizational effec-
tiveness: a facet analysis, model, and literature review. Pers. Psychol. 31(4), 665–
699 (1978)

2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

266 A. Meier et al.

3. Kropp, M., Meier, A.: Swiss agile study 2014. Technical report, Swiss Agile
Study (2014). ISSN 2296–2476, http://www.swissagilestudy.ch/files/2015/05/
SwissAgileStudy2014.pdf

4. Kropp, M., Meier, A.: Swiss agile study 2016. Technical report, Swiss Agile Study
(2017, unpublished). http://www.swissagilestudy.ch

5. Kropp, M., Meier, A., Biddle, R.: Agile practices, collaboration and experience:
an empirical study about the effect of experience in agile software development.
In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki,
S., Mikkonen, T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 416–431. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49094-6 28

6. Laanti, M.: Agile and wellbeing-stress, empowerment, and performance in Scrum
and Kanban teams. In: 2013 46th Hawaii International Conference on System Sci-
ences (HICSS), pp. 4761–4770. IEEE (2013)

7. Mannaro, K., Melis, M., Marchesi, M.: Empirical analysis on the satisfaction of IT
employees comparing XP practices with other software development methodolo-
gies. In: Eckstein, J., Baumeister, H. (eds.) XP 2004. LNCS, vol. 3092, pp. 166–174.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24853-8 19

8. Rajeswari, K., Anantharaman, R.: Development of an instrument to measure stress
among software professionals: factor analytic study. In: Proceedings of the 2003
SIGMIS Conference on Computer Personnel Research: Freedom in Philadelphia-
Leveraging Differences and Diversity in the IT Workforce, pp. 34–43. ACM (2003)

9. Rasmussen, T.H., Jeppesen, H.J.: Teamwork and associated psychological factors:
a review. Work Stress 20(2), 105–128 (2006)

10. Sonnentag, S., Brodbeck, F.C., Heinbokel, T., Stolte, W.: Stressor-burnout rela-
tionship in software development teams. J. Occup. Organ. Psychol. 67(4), 327–341
(1994)

11. Therneau, T.M., Atkinson, E.J., et al.: An introduction to recursive partitioning
using the RPART routines. Technical report, Mayo Foundation for Medical Edu-
cation and Research, Rochester, Minnesota, USA (1997)

12. VersionOne: 11th state of agile survey. Technical report, VersionOne, Inc. (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.swissagilestudy.ch/files/2015/05/SwissAgileStudy2014.pdf
http://www.swissagilestudy.ch/files/2015/05/SwissAgileStudy2014.pdf
http://www.swissagilestudy.ch
https://doi.org/10.1007/978-3-319-49094-6_28
https://doi.org/10.1007/978-3-540-24853-8_19
http://creativecommons.org/licenses/by/4.0/

Teamwork Quality and Team Performance:
Exploring Differences Between Small

and Large Agile Projects

Yngve Lindsjørn1(&), Gunnar R. Bergersen1, Torgeir Dingsøyr2,3,
and Dag I. K. Sjøberg1

1 University of Oslo, Oslo, Norway
{ynglin,gunnab,dagsj}@ifi.uio.no

2 SINTEF, 7465 Trondheim, Norway
torgeird@sintef.no

3 Department of Computer and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway

Abstract. Agile principles were originally developed for small projects but are
now widely used in larger projects with hundreds of developers. Teamwork
quality is essential in any development work, but how does teamwork quality
differ in small and large agile projects? We report from an explorative survey
with 64 agile teams and 320 team members and team leaders, from 31 teams in
small projects and 33 teams in large projects. For small projects, teamwork
quality was considered by both team members and team leaders to primarily
affect product quality. For large projects, the effect of teamwork quality on
product quality was positive when it was rated by team members but was
negative when rated by team leaders. At a finer granularity, the six dimensions
of teamwork quality that we investigated affected team performance differently
in small and large projects. These findings question to what extent findings from
previous studies on teamwork in agile development in small projects apply to
large projects.

Keywords: Agile software development � Team performance
Software engineering � Teamwork � Teamwork quality

1 Introduction

Agile software development methods have become mainstream [1]. Originally aimed at
development in small teams, agile methods are now used also in large software projects
[6]. Teamwork is central in agile development [2, 3]. There are a growing number of
studies on large-scale agile development that focus on topics such as how product
owners are involved in development and how to achieve inter-team coordination [6, 7].
This paper explores differences between small and large-scale projects with respect to
teamwork quality and its effect on team performance. We state the following research
question: How does the effect of teamwork quality on team performance differ between
small and large projects?

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 267–274, 2018.
https://doi.org/10.1007/978-3-319-91602-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_19&domain=pdf

The teamwork quality aspects defined in Sect. 2 describe both aspects of interaction
(communication, coordination, and mutual support) and motivation (effort, balance of
member contribution, and cohesion) within a team. Hoegl et al. [4] suggest that with
less task uncertainty and complexity in settings with fewer teams, that is, smaller
projects, the motivational aspects are relatively more important and interactions aspects
less important than in larger projects. We investigated whether the same findings would
be confirmed in our study.

Teams that use the most popular agile development method, Scrum, focus mainly
on managing internal relations during an iteration through daily meetings [5]. External
relations are managed by the team and through the collaboration between the product
owner and the customer and other stakeholders, and through demonstrating the product
to stakeholders at the end of an iteration.

One important difference between small-scale and large-scale development is the
number of relations that have to be managed. Large projects are characterized by
complex knowledge boundaries among team members, more complex interplay with a
larger number of technologies involved, and a larger set of stakeholders [6]. The first
version of Scrum suggests handling interdependencies between teams in a new forum,
the “Scrum of Scrums”. This forum has shown to be challenging when the number of
teams are high [7].

2 Background

The Teamwork Quality (TWQ) constructs of this paper are based on Hoegl and
Gemuenden [8], and also used in Lindsjørn et al. [2]. The six subconstructs of com-
munication, coordination, balance of member contribution, mutual support, effort, and
cohesion cover performance-relevant measures of internal interaction in teams. A brief
description of the TWQ subconstructs is given below:

• Communication may be classified as to whether the communication is (1) internal
versus external, (2) formal versus informal, and (3) written versus oral [10]. In agile
teams, the team members are often placed closely together in open-plan offices to
stimulate informal and open communication.

• Coordination may be described as managing dependencies between activities [11].
Common understanding when working on parallel subtasks, and agreement on
common work-down structures, schedules, budgets, and deliverables are important
aspects.

• Balance of member contribution refers to the ability to exploit all team members’
skills and expertise in such a way that it benefits the team [8].

• Mutual support refers to the team members’ ability and willingness to give assis-
tance to other team members when needed [12].

• Effort refers to how much workload team members spend on the team’s tasks [8].
• Cohesion may be described as the tendency for a group to stick together in order to

achieve its goals and objectives [13].

Team performance may be defined as the extent to which a team is able to meet
established product quality requirements, as well as cost and time objectives, which are

268 Y. Lindsjørn et al.

included in project quality. A more detailed description of the team performance
concept is given in [2, 9]. This paper reports a study on the extent to which the effect of
teamwork quality on team performance is moderated by the size of development
projects.

With respect to the teamwork quality constructs, the main differences between
small and large projects concern communication and coordination. Due to communi-
cation bottlenecks, large projects need more external, formal, and written communi-
cation than do small projects. Coordination in large projects is more challenging due to
many development teams and dependencies between tasks among different teams.

3 Method

To operationalize the concepts of teamwork quality and team performance, we used a
questionnaire reported in [8]. We define a small project to consist of one or two teams
and a large project to consist of 10 or more teams. We collected data from 31 teams in
small projects and 33 teams in two large projects. The data from the small projects was
also used in a previously published study [2]. This data set also includes 11 teams in
one large project used in this study. In total, the responses from 231 respondents are
included. Another data set with 22 teams (89 respondents) was collected from an
ongoing large project in a company that we collaborate with. All teams in the study
used Scrum as the agile methodology. There are two rater categories in this study: team
members and team leaders. All the team leaders were scrum masters; none of them
were product owners or managers.

The respondents indicated their agreement with the items on a Likert scale from 1
(strongly disagree) to 5 (strongly agree). The questionnaire was previously found to
have acceptable reliability, as measured by Cronbach’s alpha [13].

The value of a variable for a respondent is calculated as the mean of each of the
questions that form that variable (i.e., similar to using the sum-score in internal con-
sistency reliability estimates such as Cronbach’s alpha). The unit of analysis is the team
itself, rather than the individuals in the team. When two or more team members (or two
team leaders) respond from the same team, the results are aggregated using the mean.
Although such aggregations can be problematic (e.g., when faced with strongly
non-normal distributions), the number of responses per team in the available data is
also too low to determine whether the distribution is non-normal. Thus, the aggregation
procedure used in this study is a target for improvement in the future. Only team
members rate teamwork quality (the independent variable). Both team members and
team leaders rate team performance (the dependent variable).

The analysis was conducted using R [14]. The correlations are illustrated using the
qgraph package [15]. The saturation of lines (edges) between the variables (nodes)
shows the strength of the correlations, which are green for positive correlations and red
for negative correlations. The placements of the nodes are calculated using the “spring”
function of qgraph; highly correlated nodes are placed in close proximity and nodes
with little or no shared variance with other nodes are placed distant from other nodes.
Also, nodes with many strong relations to other nodes are centrally placed.

Teamwork Quality and Team Performance 269

The placement of nodes is averaged for project size so that differences in (Pearson and
partial) correlations for small and large projects is more clearly displayed.

Responses to a few of the questions for some team members and team leaders were
missing. For the six variables rated by team members, no variable had more than 0.4%
missing data. However, product quality as rated by team leaders had 7.4% missing data
(project quality had 1.1%). To not discard otherwise usable data, we imputed the
missing data using the mice package [16] in R before aggregating each of the six
variables that comprise teamwork quality and each of the two variables that comprise
team performance.

4 Results

Table 1 shows the descriptive statistics of the analyzed variables for the small (S) and
large (L) projects. All variables are normally distributed according to the Shapiro-Wilk
test of normality, except three of the variables for large projects: Communication
(p = 0.03), Mutual support (p = 0.04) and Product quality for team leaders (p = 0.01).
Product and project quality data for team leaders was not available for 10 of the teams
in one of the large projects, reducing n to 23. Only small differences in the mean values
were detected for the two groups of project; the largest difference was that product and
project quality was rated higher by team leaders in the large projects than in the small
projects. Variability (SD) in ratings given by team members was higher for both
product and project quality than for the six teamwork quality variables; variability was
even higher for ratings given by team leaders.

Table 1. Descriptive statistics of the investigated variables.

Variable Rater Size n mean SD

Communication TM S 31 3.93 0.29
L 33 3.95 0.38

Coordination TM S 31 3.76 0.28
L 33 3.76 0.36

Mutual support TM S 31 4.01 0.33
L 33 4.09 0.35

Effort TM S 31 3.93 0.34
L 33 4.03 0.38

Cohesion TM S 31 3.82 0.30
L 33 3.89 0.33

Balance of member
contribution

TM S 31 3.91 0.30
L 33 4.03 0.34

Product quality TM S 31 3.78 0.37
L 33 3.93 0.32

Project quality TM S 31 3.57 0.42
L 33 3.53 0.41

Product quality TL S 31 3.82 0.46
L 23 4.16 0.48

Project quality TL S 31 3.54 0.60
L 23 3.75 0.60

Note. TM = Team members, TL = team leaders, S = small projects and L = large projects.

270 Y. Lindsjørn et al.

The top part of Fig. 1 shows the correlations between teamwork quality (grey) and
team performance (blue and red). In small projects (top left), product quality (ProdQ) is
more strongly correlated with the teamwork quality for both team members (blue) and
team leaders (red) than is project quality (ProjQ). Product quality is, further, more
centrally placed closer to teamwork quality. Project quality (for both team members
and leaders) is more distantly placed with weaker correlations with the teamwork
quality variables.

In large projects (top right of Fig. 1), the relation between teamwork quality and
team performance is similar to that found in small projects when team performance is
evaluated by the team members. However, for team leaders, product quality is nega-
tively correlated with several teamwork quality variables as well as product quality as
evaluated by the team members. In small projects, the correlations between product
quality and teamwork quality as rated by team leaders are between 0.29 and 0.50,
whereas they in large projects are either negative or zero (−0.47 to 0.02).

When a set of variables, such as those that form teamwork quality, are highly
correlated, it is difficult to determine the unique contribution of each variable. The
partial correlation explains what is uniquely shared between two variables that cannot
be explained through the correlations with other available. The bottom part of Fig. 1
shows the partial correlations. For small projects (bottom left) there appears to be

Note. Com = Communication, Coo = Coordination, MS = Mutual support, Eff = Effort, Coh = Cohesion,
BOC = Balance of member contribution, ProdQ = Product quality and ProjQ = project Quality.

Fig. 1. Pearson and partial correlations for small and large projects (Color figure online)

Teamwork Quality and Team Performance 271

consensus (i.e., unique positive variance between two variables) in how team members
and team leaders evaluate team performance; both product and project quality have
positive partial correlations. However, team members and leaders disagree on project
quality in large projects (bottom right), as shown by a strong negative partial corre-
lation (thick red line) between the product quality for team leaders and team members.
Furthermore, there is no agreement for project quality, as shown by a missing line
between project quality for team members and team leaders.

Regarding the relation between the six subconstructs of TWQ and team perfor-
mance, small and large projects differ in their partial correlations as well. For example,
the partial correlations in small projects (bottom left in Fig. 1) show that balance of
member contribution (BOC) and coordination (Coo) are positively associated with
product quality, whereas communication (Com) is negatively associated with product
quality. However, the pattern in the partial correlations for large projects (bottom right)
is clearly different: except for balance of member contribution, which appears to have a
positive relation to team performance in both small and large projects, the relation
between other subconstructs of TWQ and team performance show few similarities
between small and large projects.

5 Discussion and Conclusion

By analyzing data from 64 software teams, we have shown that there appears to be a
disagreement between team members and team leaders in the evaluation of team
performance for large projects. We have also shown that the effect of different team-
work quality variables (subconstructs) appears to influence team performance in small
and large projects differently.

One possible reason why teamwork quality seems to affect product quality more
than project quality in small projects is that team members and team leaders are
working closely in small projects, and, therefore, there is little need for following a
plan, updating documents and controlling the project by specific means; the progress of
the team is apparent anyway. Effort is tailored towards the product.

Regarding large projects, a possible reason for the stronger relationship between
teamwork quality and project quality when team performance was evaluated by team
leaders is that project management, which is a primary concern of leaders, is more
important in large projects. Interdependencies between development teams and various
stakeholders, and interdependencies between tasks in different teams, need stronger
mechanisms to control cost and time schedules. Such control is primarily the respon-
sibility of team leaders.

Prior studies suggest that coordination is more important to team performance in
large projects [4]. Our results show that coordination has some impact on project
quality when evaluated by team members but is negatively correlated with product
quality for both team members and team leaders. We would also have expected that the
three motivation teamwork aspects (effort, cohesion and balance of member contri-
bution) would have more impact in small projects, while the three interaction aspects
(communication, coordination and mutual support) would have more impact on large
projects. Our results show, however, that balance of member contribution and

272 Y. Lindsjørn et al.

coordination were central to team performance in both small and large projects. Fur-
ther, effort, mutual support, communication, and cohesion appear to show a common
theme. This calls for further investigation.

The main limitation of this study concerns sample size. Although we had responses
from more than three hundred team members and leaders, “large projects” in this paper
is only represented by two projects and their respective organizations. The available
data indicates that the values of the investigated variables differ between small and
large projects, but the small sample for large projects means that caution should be
made when generalizing the findings. Another limitation is that the analysed variables
are ordinal (Likert-scale) which, ideally, should be analysed using non-parametric
statistics (e.g., Spearman correlations and median values). However, we found no
substantially different results when using Spearman correlations for the investigated
variables.

In conclusion, this study suggests that prior findings on teamwork in agile devel-
opment in small projects may not apply to large projects. Future studies should
investigate the quality of interactions between teams to better adopt agile methods in
large projects, and in particular pay attention to difference among different stakeholder
in the rating of team performance.

Acknowledgement. We thank the anonymous reviewers for valuable comments. This work was
partly funded by the Research Council of Norway through the projects TeamIT (grant 193236)
and Agile 2.0 (grant 236759).

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012)

2. Lindsjørn, Y., Sjøberg, D.I.K., Dingsøyr, T., Bergersen, G.R., Dybå, T.: Teamwork quality
and project success in software development: a survey of agile development teams. J. Syst.
Softw. 122, 274–286 (2016)

3. Dingsøyr, T., Fægri, T.E., Dybå, T., Haugset, B., Lindsjørn, Y.: Team performance in
software development: research results versus agile principles. IEEE Softw. 33, 106–110
(2016)

4. Hoegl, M., Weinkauf, K., Gemuenden, H.G.: Interteam coordination, project commitment,
and teamwork in multiteam R&D projects: a longitudinal study. Organ. Sci. 15, 38–55
(2004)

5. Stray, V., Sjøberg, D.I.K., Dybå, T.: The daily stand-up meeting: a grounded theory study.
J. Syst. Softw. 114, 101–124 (2016)

6. Rolland, K.H., Fitzgerald, B., Dingsøyr, T., Stool, K.-J.: Problematizing agile in the large:
alternative assumptions for large-scale agile development. In: International Conference on
Information Systems, Dublin, Ireland (2016)

7. Paasivaara, M., Lassenius, C., Heikkila, V.T.: Inter-team coordination in large-scale globally
distributed scrum: do scrum-of-scrums really work? In: Proceedings of the ACM-IEEE
ESEM, pp. 235–238. IEEE, New York (2012)

8. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative projects: a
theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449 (2001)

Teamwork Quality and Team Performance 273

9. Pinto, M.B., Pinto, J.K.: Project team communication and cross functional cooperation in
new program development. J. Prod. Innov. Manag. 7(3), 200–212 (1990)

10. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Comput.
Surv. 26(1), 87–119 (1994)

11. Tjosvold, D.: “Cooperative and competitive goal approach to conflict”: accomplishments
and challenges. Appl. Psychol. 47(3), 285-34 (1998)

12. Mudrack, P.E.: Defining group cohesiveness. A legacy of confusion. Small Group Res.
20(1), 37–49 (1989)

13. Nunnally, J.C., Bernstein, I.H.: Psychometric Theory, 3rd edn. McGraw-Hill, New York
(1994)

14. R Core Team: R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria (2016)

15. Epskamp, S., Cramer, A.O.J., Waldorp, L.J., Schmittmann, V.D., Borsboom, D.: qgraph:
network visualizations of relationships in psychometric data. J. Stat. Softw. 48(4), 1–18
(2012)

16. van Buuren, S., Groothuis-Oudshoorn, K.: mice: multivariate imputation by chained
equations in R. J. Stat. Softw. 45(3), 1–67 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

274 Y. Lindsjørn et al.

http://creativecommons.org/licenses/by/4.0/

Continuous Experimentation

Challenges and Strategies for Undertaking
Continuous Experimentation to Embedded

Systems: Industry and Research Perspectives

David Issa Mattos1(&) , Jan Bosch1 ,
and Helena Holmström Olsson2

1 Department of Computer Science and Engineering,
Chalmers University of Technology,

Hörselgången 11, 412 96 Göteborg, Sweden
{davidis,jan.bosch}@chalmers.se

2 Department of Computer Science and Media Technology,
Malmö University, Nordenskiöldsgatan, 211 19 Malmö, Sweden

helena.holmstrom.olsson@mah.se

Abstract. Context: Continuous experimentation is frequently used in
web-facing companies and it is starting to gain the attention of embedded systems
companies. However, embedded systems companies have different challenges
and requirements to run experiments in their systems. Objective: This paper
explores the challenges during the adoption of continuous experimentation in
embedded systems from both industry practice and academic research. It presents
strategies, guidelines, and solutions to overcome each of the identified chal-
lenges. Method: This research was conducted in two parts. The first part is a
literature review with the aim to analyze the challenges in adopting continuous
experimentation from the research perspective. The second part is a multiple case
study based on interviews and workshop sessions with five companies to
understand the challenges from the industry perspective and how they are
working to overcome them. Results: This study found a set of twelve challenges
divided into three areas; technical, business, and organizational challenges and
strategies grouped into three categories, architecture, data handling and devel-
opment processes. Conclusions: The set of identified challenges are presented
with a set of strategies, guidelines, and solutions. To the knowledge of the
authors, this paper is the first to provide an extensive list of challenges and
strategies for continuous experimentation in embedded systems. Moreover, this
research points out open challenges and the need for new tools and novel solu-
tions for the further development of experimentation in embedded systems.

Keywords: Continuous experimentation � Data-driven development
Controlled experiments � Embedded systems

1 Introduction

Traditional embedded systems companies continuously rely on software to be a dif-
ferentiator on their products. As the software size of the products increases, these
companies are moving from being mechanical producers to software companies.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 277–292, 2018.
https://doi.org/10.1007/978-3-319-91602-6_20

http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf

In their development process, these companies traditionally make use of up-front
requirements and rigid methodologies to ensure quality or safety attributes in their
products. Nevertheless, the requirements of several parts of their systems are not clear
or cannot be defined in advance [1]. In this context, developers either negotiate with
requirement teams or they make implicit assumptions about the requirements [2].

Even during the requirement specification, several requirements are written based on
assumptions and does not necessarily deliver value to the company or the customers.
Often, research and development effort is spent on features that are never or rarely used
[3] by the users of the product. To minimize the full development of features that do not
deliver value, companies make use of post-deployment data of current products to iterate
in future software releases or in even in new products. In the web domain, companies
provide empirical evidence of the use of continuous experimentation in their develop-
ment, decision-making and feature prioritization process [4–6].

As software becomes the key differentiator for many embedded systems companies,
these companies started to adopt continuous development practices, such as continuous
integration, deployment, and experimentation to develop faster, better and more
cost-effective products. A typical pattern that companies follow is shown in the
“Stairway to Heaven” model [7]. When these companies start to move to move to
continuous deployment scenarios, they see opportunities to run their first experiments
as well.

Although the research in continuous experimentation in web systems is continually
growing, there are few examples of works investigating the use of continuous exper-
imentation in embedded systems.

This paper identifies and analyzes the different challenges that embedded systems
companies face when adopting continuous experimentation in their development pro-
cesses. Moreover, it also presents strategies, guidelines, and potential solutions to
overcome each of the identified challenges.

The scope of this research is captured with the following research question.
RQ: How can embedded systems industry adopt continuous experimentation in

their development process?
This research question is further developed in terms of the following sub-questions:
RQ1: What are the recognized challenges towards continuous experimentation

faced by the embedded systems industry?
RQ2: What are the recommended strategies to facilitate the use of continuous

experimentation in the embedded systems domain?
The contribution of this paper is twofold. First, it identifies the key challenges faced

by embedded systems companies when adopting continuous experimentation. These
challenges are identified from both the industry perspective, through a multi-company
case study, and the academic perspective, through a literature review. Second, this
paper proposes different strategies and guidelines to overcome the identified chal-
lenges. This paper, to the knowledge of the authors, is the first to present an extensive
set of challenges and strategies that embedded systems companies face when adopting
continuous experimentation. Moreover, the analysis of the challenges points out the
need for new tools and novel solutions for the further development of experimentation
in embedded systems.

278 D. I. Mattos et al.

The rest of the paper is organized as follows. Section 2 provides a background
review in continuous experimentation. Section 3 presents the research method. Sec-
tion 4 presents and discusses the results in the form of identified challenges and sug-
gested strategies. Section 5 discusses the validity threats of this research. Section 6
concludes and discusses research challenges and future works.

2 Background

Continuous experimentation refers to the research and application of controlled
experimentation to drive software development, for reliably evaluate and prioritize
development activities [4].

Studies show that the prioritization of features is traditionally driven by past
experiences, beliefs, and organizational role [6, 8]. The decision to invest development
resources in a full feature can result in inefficiency and opportunity cost if the feature
does not have a confirmed value [9]. Companies traditionally rely on customers
interviews and qualitative studies to derive requirements for the system in the early
stages of the development [10]. However, customers usually are not good in predicting
what they want or they are not aware of other potential solutions [1].

In the post-deployment stage, companies usually collect customer and product data.
Most software companies, from both the embedded and web systems domains collects
and logs usage and operational data [10]. In embedded systems, these log data are
mostly used for troubleshooting and improving subsequent products. However, over
the last decade, software companies are showing an increasing interest in using the
collected data to improve not only future products but also to improve the current
products.

Recent technological trends focus on not only identifying and solve technical
problems but also delivering value to their customers and users [11]. The Lean Startup
methodology proposes the cycle build-measure-learn [12]. In this methodology, the
collected post-deployment data is also used in the improvement of the current product.
The HYPEX model [9] presents an approach to shorten the feedback loop between
companies and customers. The model uses hypotheses, customer feedback and the
minimum viable product (MVP) to continuously decide upon the full development or
abandonment of a feature.

Web-facing companies continuously report the use of post-deployment data and
controlled experiments to develop and continuously improve their systems. The
uncertainty raised by the environment, interaction with humans and other agents impact
in the system behavior in unknown and unpredictable ways. Controlled experiments
help companies to establish the causal relationship between a variation in their system
and the observed behavior [6].

In software development, A/B test is the simplest version of a controlled experiment.
“A” stands for the control variation and “B” stands for the treatment variation. The
treatment (variation “B”) represents any point in the system that you want to modify and
compare to the control (variation “A”). Both variations are deployed to randomized
users, to avoid bias, and the analyzed behavior is the measured in both cases. Statistical

Challenges and Strategies for Undertaking Continuous Experimentation 279

analysis helps to determine if there is a causal difference between the observed behavior
and the variations. Other experimentation techniques are described in [6].

Kohavi et al. [6] provides a guide on how to run controlled experiments in web
systems. The paper discusses the important ingredients, limitations of experimentation,
architectures for experimentation systems, how to analyze and how to design controlled
experiments for the web. Kohavi et al. [13], presents some rules of thumb and common
pitfalls when running experimentation, such as iterating in the experiment design, the
impact of speed and performance, number of users and how experiments impact key
metrics.

Fagerholm et al. [11] provides a general infrastructure for running continuous
experimentation systematically. The RIGHT framework describes how to design and
manage experiments, and how different stakeholders (business analyst, product owner,
data scientists, developers, and DevOps engineers) interact with an experimentation
infrastructure.

Fabijan et al. [4] describes the Experimentation Evolution Model, based on
experimentation at Microsoft. This model analyzes how teams scale their experimen-
tation from a few experiments to a data-driven organization. The model divides this
evolution into four steps: crawl (teams are running and setting their first experiments),
walk (teams already run a few experiments and determining metrics and experimen-
tation platforms), run (the teams run several experiments and iterate quickly to identify
effects of experiments on the business) and fly (experiments are the norm for every
change to any product). Each of these phases is discussed in three different perspec-
tives, the technical, the organizational, and the business perspectives.

One of the challenges in controlled experiments is defining an Overall Evaluation
Metric (OEC) [4, 6, 14]. The OEC is a quantitative measure of the experiment’s
objective. It provides a balance between short and long-term effects considering the
business objectives. Olsson and Bosch [14], present a systematic approach to model the
value of experiments. This approach allows companies that are starting to run the first
experiments to understand and improve their own OEC metrics.

To the knowledge of the authors, the first research discussing the experiments in
embedded systems appeared in 2012 [15]. This paper discusses experimentation in the
context of Innovation Experiment Systems. It identifies some challenges with experi-
mentation in embedded systems, such as experimentation in safety systems, managing
multiple stakeholders and hardware limitations. It also presents an initial infrastructure
to run experiments in embedded systems.

Giaimo and Berger [16], discuss continuous experimentation in the context of
self-driving vehicles. The paper presents functional (such as instrumentation, logging,
data feedback to a remote server) and non-functional (separation of concerns, safety,
short cycle to deployment) requirements to achieve continuous software evolution.
Bosch and Olsson [17], extended the concept of experimentation towards automated
experimentation. Automated experimentation aims to leverage the number of experi-
ments by letting the system own and control the experiments, opposed to the R&D
organization. Mattos et al. [18, 19], identified a set of architectural qualities to support
automated experimentation that was implemented in a research mobile autonomous
vehicle.

280 D. I. Mattos et al.

3 Research Method

The research process used in this study combines a literature review with multiple case
study. This research method aims to strengthen the evidence of the challenges and
strategies found in a multiple case-study with others found in the research literature.
Research in continuous experimentation generally utilizes the case study as the research
method, combining results from both approaches reinforce the empirical evidence of
the findings.

The method is composed of two parts. The first part consists of a literature review
in the continuous experimentation domain. This literature review collects challenges
and strategies to overcome them from academic research. The second part consists of
semi-structured interviews with software companies in the embedded systems domain.
It aims to be exploratory, collect and confirm challenges and strategies from the
embedded systems industry. Below, the research method is described in details. The
results of both parts were aggregated and described in Sect. 4. Table 1 summarizes the
research process used in this paper.

3.1 Literature Review

The first part of the research method consists of a literature review in continuous
experimentation. Although most of the studies in continuous experimentation focus on
web-facing companies, the experiences from this domain, sometimes, can be extrap-
olated to the embedded systems domain. In this literature review, the authors identified
challenges recognized in academic collaboration with industry, regardless of the
industry domain. The identified challenges were discussed with the embedded systems
companies to see if the literature challenges were also relevant in this domain.

Relevant works in the literature covering continuous experimentation were iden-
tified by searching the Scopus digital indexing library, by keywords, title and abstract.
The used search phrase was “((continuous experimentation) OR (field experiments) OR
(innovation experiment systems)) AND (software engineering)’’. This search query
was restricted to the fields of engineering and computer science and limited from 2000
to 2017. This search phrase resulted in 534 articles. Positioning papers and papers with

Table 1. Summary of the research method. LR stands for the literature review part and CS for
the multiple case study part.

Step Description

1 Search definition and execution (LR)
2 Papers review (LR)
3 Identification of literature challenges and strategies (LR)
4 Data selection: Contact with companies (CS)
5 Semi-structured interview protocol definition (CS)
6 Data collection: Interviews and workshop (CS)
7 Data analysis: thematic coding and categorization (CS)
8 Case study report (CS)

Challenges and Strategies for Undertaking Continuous Experimentation 281

less than 5 pages were excluded. From this subset of articles, the results were filtered
based on the abstract. After the first screening process, the papers were read in their
integrity. Continuous experimentation is also largely studied from the
statistical/algorithmic side. Research papers that focused solely on improving or
evaluating algorithms without industry evaluation or application were excluded.

After this screening process, the authors identified 30 articles with relevance to this
study. An additional set of 12 articles were included using a snowballing [20] process,
where new references were added according to the references mentioned in the other
articles. Thematic coding was used to [21] identify the challenges from the literature.
These challenges were categorized according to the three different categories of the
Experimentation Evolution Model [4] discussed in Sect. 2, the technical, the organi-
zational and the business perspective. The identified set of challenges were also used as
input for the semi-structured interviews as discussed in Sect. 3.2. The strategies are
categorized in three groups: changes in the development process, changes in the sys-
tem’s architecture and changes in how the experiment and organizational data is
handled and analyzed.

The complete set of papers can be found at the following link: https://github.com/
davidissamattos/public_documents/blob/master/LR-XP18.png.

This part of the research process allowed the identification of challenges that served
as input for the multiple case study and confirmation of identified challenges inside the
company.

3.2 Multiple Case Study

The second part of the research method consists of a multiple case study [21] with
semi-structured interviews conducted with software companies in the embedded sys-
tems domain. This study was conducted from December 2016 to October 2017 with
five companies in the embedded systems domain. The empirical data consists of
interviews and a workshops transcripts and notes. There were 8 individual
semi-structured interviews with an average of one hour each, three in Company A, two
in Company B, one in Company C, one in Company D and 2 in Company E. The
workshop session was conducted with 8 people from Company A lasting 3 h. The
analysis of the empirical data consisted of thematic coding of [21] interviews tran-
scriptions and notes to identify and categorize the challenges and solutions. Addi-
tionally, during the interviews challenges identified in the literature were clarified to the
interviews and asked if the current company relates to the challenge partially or not.

The empirical data were aggregated together with the identified challenges and
strategies from the literature review. The current published research already provides
guidelines and solutions for the challenges that were also identified in the literature
review phase. Other guidelines and solutions were suggested by practitioners during
the interviews. Challenges identified in the literature that was not confirmed neither
through a previous case study nor by the case study companies are not shown.

Due to confidentiality reasons, only a short description of each company and their
domain is provided:

282 D. I. Mattos et al.

https://github.com/davidissamattos/public_documents/blob/master/LR-XP18.png
https://github.com/davidissamattos/public_documents/blob/master/LR-XP18.png

Company A is a multinational conglomerate company that manufactures embedded
systems and electronics and provides software solutions for both consumers and pro-
fessionals. This study was conducted with two teams, one providing mobile commu-
nications solutions and the other providing business-to-business products. In recent
years, the company started to adopt experimentation in their software solutions and is
looking for data-driven strategies in their embedded systems products. The intervie-
wees were developers, managers and data analysts.

Company B is a multinational company that provides telecommunication and
networking systems. The company is adopting continuous development practices and is
looking for new strategies to deliver more value to their customers by optimizing their
products. The interviewees were managers.

Company C is a global automotive manufacturer and supplier of transport solutions.
As the company’s products are continuously growing in complexity and software size,
the company is looking for strategies to prioritize their R&D effort and deliver more
value to their customers. As some employees have experience in web and pure
software-systems development, experimentation is getting attention in some develop-
ment teams. Challenges in experimentation arise since the company is subjected to
several regulations and certification procedures. The interviewee was a senior engineer.

Company D is a global software company that develops and provides embedded
systems software solutions related to autonomous driving technology for the auto-
motive industry. Autonomous driving is an emerging and fast-moving technology and
the company is looking to deliver competitive solutions faster by adopting continuous
development practices. However, as it interfaces with the highly regulated automotive
domain its software is also subjected to regulation and certification. The interviewee
was a manager.

Company E is a global software company that develops both software and hardware
solutions for home consumers. The company already has experience running contin-
uous experimentation in their web systems and is starting to run experiments in their
hardware solutions. The interviewees were senior data analysts working in experi-
mentation in their embedded systems.

4 Challenges and Proposed Strategies

This section presents results obtained from the research process. The challenges are
grouped in the three different perspectives as discussed in the Experimentation Evo-
lution Model [4]: the technical challenges, the business challenges and the organiza-
tional challenges. The technical challenges refer to challenges related to the system
architecture, experimentation tooling and development processes. The business chal-
lenges refer to challenges faced in the business side, such as evaluation metrics,
business models and privacy concerns. The organizational challenges refer to chal-
lenges faced by the cultural aspect of the R&D organization.

All the strategies identified in this study are used, suggested by companies, or
supported by strategies identified in previous literature case studies. The strategies are
categorized in three groups: (1) changes in the development process. This refers to how
companies organize their development activities. (2) changes in the system’s

Challenges and Strategies for Undertaking Continuous Experimentation 283

architecture. Often restrictions in the running experiments comes from limitations in the
system’s architecture, that does not support data collection, or does not allow
parametrization of features for experiments. (3) changes in how the experiment and
organizational data is handled and analyzed. This refers to how the company stores
data, comply to data regulations or use data analysis tools. The challenges are not
presented in any specific order as they might reflect different challenges the companies
are facing.

Figure 1 represents a summary of the identified challenges and strategies. In Fig. 1,
it is possible to see the relation of how each strategy relates to the different challenges,
as some of them are part of the strategy of one or more challenge. This figure was
obtained using the thematic codes generated in the analysis of the interviews. It maps
the identified challenges within their groups with the obtained strategies groups. The
rest of this section discusses each challenge individually and presents strategies to
overcome them.

4.1 Technical Challenges

Lack of over the air (OTA) updates and data collection
Continuous experimentation requires over-the-air (OTA) post-deployment data col-
lection and updates. When testing a different hypothesis, the system needs to have the
ability to measure the specific behavior under investigation and to update the system
with the new variants as well. It is possible to run experiments without OTA, however,
several experiments pitfalls can be identified in the first hours and be corrected [6].
Moreover, experiments for optimization are looking in practical significance as low as
1–2% in their metrics [6, 13]. If OTA updates and data collection are not available the

Fig. 1. Summary of the challenges and the strategies faced by embedded systems companies
adopting continuous experimentation.

284 D. I. Mattos et al.

cost of the experiment and the practical significance level are high and the optimization
process might not be worth it.

Strategies: At the moment of this study, embedded system companies are not looking
into experimentation in low level systems, but in computing systems that already
support modern operating systems with connectivity and the necessary infrastructure
for OTA updates. OTA updates and post-deployment data collection should be part of
the functional requirements of the system when designing the hardware. Mobile
companies already provide such functionality in their operating systems. Car manu-
facturers are also introducing continuous delivery of new software to their vehicles in
the context of autonomous vehicles (Tesla Motor’s Model S, Volvo Drive Me and the
Volvo XC90).

Lack of experimentation tools that integrate with their existing tooling
Continuous experimentation started in web-facing companies. Today several experi-
mentation tools, both commercial and open source, are available on the website and
mobile applications domains. However, in the embedded systems domain, companies
lack tools that integrate with their development process. Setting up an infrastructure to
run experiments from scratch increases the cost of running the first experiments while
hindering the benefits.

Strategies: Several tools available for websites are open source or have open source
SDKs. Although not ideal, some of these tools can be modified to support experi-
mentation problems. Experimentation-as-a-Service (EaaS) is a business model that
provides a working platform for continuous experimentation. EaaS have the benefit of
avoiding the cost and pitfalls of development of an experimentation platform from
scratch. EaaS platforms also provide SDKs that can be incorporated in the product [22].
However, the system under experimentation should support data collection so it can be
integrated with EaaS tools.

Expensive testing environments
Software-intensive embedded systems are extensively tested before release. One of the
challenges faced by embedded systems companies is to include experimentation as part
of the verification and validation process. In some cases, such as in the development of
a new vehicle, the testing environment is expensive and not all experiment hypotheses
are allowed to go to a physical testing platform. This high cost also increases minimum
level necessary to reach practical significance and demotivates teams to formulate
hypothesis beyond the basic requirements of the system.

Strategies: The development of experiments in the embedded systems domain require
additional steps from the hypothesis to the final user. The development of a feature in
embedded systems follows a testing procedure, beginning with integration and going to
simulation, test beds, internal deployment until user deployment. The experimentation
procedure should follow similar testing procedure, to identify early pitfalls, and even
improve the system behavior during each testing phase.

The practical significance level to implement a new hypothesis increases with the
associated costs of such testing procedure. The EDAX model [17] describes how
experimentation and automated experimentation is incorporated in this process.

Challenges and Strategies for Undertaking Continuous Experimentation 285

Automated experimentation [18] also suggests that it can reduce the experimentation
costs and therefore the practical significance level.

Experimentation constraints in real-time and safety-critical systems
Embedded systems are employed in several real-time and safety-critical systems. These
products have subsystems that are constrained to regulations and certification. Exper-
imenting with these systems in the field might not be allowed by regulation or might
impact substantially the performance of the system.

Strategies: Embedded systems companies are starting to run their first experiments.
Safety-critical or real-time systems provide additional challenges, as it is subjected to
legislation and certification. The initial recommendation in all case study companies is
not to run experimentations in these subsystems. However, these safety-critical sub-
systems can run experiments in the earlier phases prior to the deployment, as discussed
in the EDAX model [17].

4.2 Business Challenges

Determining good experimentation metrics and metrics validation
One of the biggest challenge faced by companies is to determine good business metrics
to understand and compare different experiments, and validate that the current metrics
are aligned with the company strategy

Strategies: Web companies traditionally rely on conversion metrics such as
Click-Through-Rate in the beginning of their experimentation process. As their
experimentation teams and the number of experiments increase the metrics start to
become more tailored to the business and stable [4]. Embedded systems companies can
have very different and complex metrics, depending on the product. However, team
level optimization experiments can use customized metrics. Olsson and Bosch [14]
presents a systematic approach to determine metrics and value functions for experi-
ments. This is an iterative process that should be refined with usage and aligned with
the business strategies and goals. As the metrics become complex, companies allocate
of resources for the evolution and ensuring that the experiment metrics are aligned with
the company’s main KPIs.

Privacy concerns regarding user data
Continuous experimentation relies on the collection and analysis of post-deployed
software. However, some issues arise when collecting data, such as the legal and
contractual issues or user consent and data sharing.

Strategies: Data sensitivity and the use of data vary largely between different orga-
nizations and countries. Data collection should be aligned with the legal requirements
for utilization and consent of the users. Data regulations such as the European GDPR
(https://www.eugdpr.org/) create restrictions that might imply in technology and pro-
cess modifications for compliance. Additionally, some ethical questions regarding the
experiment must be evaluated, such as: How are participants guaranteed that their data,
which was collected for use in the study, will not be used for some other purpose?

286 D. I. Mattos et al.

https://www.eugdpr.org/

What data may be published more broadly, and does that introduce any additional risk
to the participants? Web companies, besides compliance with regulations also create
ethical checklists to ensure that the experiments follow the companies’ policies [23].

Lack of sharing user data in business-to-business (B2B) solutions
Several embedded systems companies operate in a business-to-business domain. In this
scenario, there is a difference between user and customer data. Experiments with users
might not be possible, they might require deeper involvement between the companies,
or there might be a mismatch between the customer and the user value [1].

Strategies: Ecosystems refers to companies co-opting third parties to build and
leverage their products and services in such a way that they have more utility value to
their customers [24]. In this sense, companies might agree on implementing and
sharing data collected inside the ecosystem. Some mobile operating systems (e.g. iOS
and Android) collect data and usage statistics to share with app developers. Although
most of its use is connected to crash reports, similar strategies can be used to share user
data in business-to-business products.

Lack of insights obtained from the collected data
Companies are continuously collecting data from their deployed software. The col-
lected data is mainly used for troubleshooting purposes. However, little insight is
provided by the collected data [14]. In the Experimentation Evolution Model [4], web
companies evolve from centralized data science teams to small data science teams
presented in each product teams. The interviewed embedded systems companies don’t
have data science teams incorporated in the product development.

Strategies: If the experimentation benefits are not clear, the extra cost of involving
data scientists in the product development might be a large step. Different companies
started to provided experimentation and data analysis services. Experimentation tools
usually incorporate basic statistical analysis, such as statistical significance testing,
power analysis, A/A tests and more. Using experimentation and data analysis services
to generate basic insights can be used as a short-term solution. Once the benefits of
experimentation are clear to the company, investments such as integrating data sci-
entists in the product development or acquiring a complex tool are easier to justify.

Long release cycles
Traditionally, embedded systems have a long software release cycle based on upfront
defined requirements. Sometimes the software is deployed only once and last for
several years [1, 15]. This happens due to several reasons, from both the organizational
(structure and decision-making) and business (engineering effort in every cycle,
requirements definition and products updates) to the technical perspective (architecture,
functionalities available and support for over-the-air updates).

Strategies: From the organizational and business perspective, continuous experi-
mentation aligns with the organizational transition to agile methodologies and the Lean
Startup methodology [12]. Continuous experimentation makes use of extreme pro-
gramming practices such as continuous integration, delivery and deployment to deliver
experiments and new software aligned with customer behavior. The Stairway to

Challenges and Strategies for Undertaking Continuous Experimentation 287

Heaven [7] conceptual model helps companies to evolve their practices towards con-
tinuous deployment of software.

4.3 Organizational Challenges

Managing multiple stakeholders in the experiment design
One of the challenges embedded systems companies face is the involvement of mul-
tiple stakeholders in an experimental design. Experimentation in embedded systems
requires that the involved stakeholders understand the implications of continuous
practices in their systems.

Strategies: Embedded systems require the interaction with multiple stakeholders, such
as software developers, systems architects, electrical and mechanical engineers, sup-
pliers and subcontractors. Continuous experimentation requires that these stakeholders
are aware of the implications in the system design. To overcome some of these chal-
lenges, it is prosed a decoupling of the application and the underlying software and also
a decoupling in time (software is not integrated at the manufacturing time) [15].
Additionally, if the interaction of the stakeholders happens in a business ecosystems
perspective the experiment can be designed to benefit multiple parts [24].

Highest Paid Person Opinion - HiPPO
Some companies are organized in vertical structures, where lower rank developers have
fewer possibilities to influence and address customer’s needs. Several requirements and
architecture specifications are based and determined by higher paid ranks inside the
company.

Strategies: This challenge is persistent in several domains and it is not restricted to the
embedded systems industries. This challenge is discussed extensively in [6] among
other publications. The traditional adopted strategy is to run the first experiments.
Usually, experiments continuously disprove beliefs and opinions adopted by the higher
paid ranks [6]. However, this requires changes in the organizational and cultural aspect
of the company.

Tuning experiments is repetitive and requires highly qualified engineers
One of the interviewed companies runs experiments for parameter optimization. The
experiments rely on the system response instead of the customer response. However,
running these experiments for tuning and optimization is a repetitive task that con-
sumes R&D time and requires highly qualified engineers to perform them.

Strategies: Existing algorithms in search-based optimization, reinforcement learning
and others artificial intelligence algorithms support this kind of optimization strategies.
However, both the complexity of these algorithms as well as the introduced technical
debt in the existing systems [25] prevent embedded systems companies to use such
strategies. Experimentation-as-a-Service solutions allow companies to test Machine
Learning algorithms in their system for optimization purposes. Although still in early
phases, automated experimentation [18] solutions can help companies to optimize their
systems through field experiments.

288 D. I. Mattos et al.

5 Validity Threats

The first threat to the validity of this study refers to the scope of the literature review.
The search query was applied to the Scopus indexing library. Both the choice of the
search string and the indexing library could miss other research work that can con-
tribute to the literature review. To mitigate this threat the authors performed a backward
and forward snowballing [20] process. The snowballing process allowed the authors to
identify other cited work in the same area that was not identified by the search query.

An external validity to this is study is the generalization of the challenges to the
entire population of embedded systems companies. To mitigate this threat, the authors
sample companies producing different products in embedded systems. The authors
sampled contacted multiple companies explaining the research goal, and selected only
companies that are adopting/running controlled experiments in their development
process were included. During the data analysis part, we reviewed all challenges only
challenges that had correspondence in more than one company or that could be tri-
angulated with the literature review were included. Challenges that could not be tri-
angulated with other source, and that could be specific to current situation of the
company, were not included in this study.

The companies that participated in this study are adopting their first steps towards
continuous experimentation and are running their first experiments or trying to scale
experimentation practices from a few development teams to the organization. There-
fore, most of the presented challenges are faced in these first steps and cannot be
generalized to companies or teams that are running experimentation at scale. As the
companies evolve their experimentation practices, new challenges will arise from all
three perspectives.

6 Conclusion

This paper addresses the question of how embedded systems companies can adopt
continuous experimentation in their software development process. This question can
be divided in two parts: first, the identification of problems and challenges that limit the
adoption of continuous experimentation, and second selected strategies adopted by
companies to overcome these challenges.

This paper identified twelve key challenges faced by embedded systems and them
grouped in three perspectives, the business, the technical and the organizational. The
challenges are also presented with suggested strategies to overcome them. The set of
strategies can be grouped in three categories, changes that need to take place in how the
company handles and analyze the post-deployment collected data, changes in the
company development process and changes in the product architecture. The relation
between the different strategies and the challenges is seen in Fig. 1. The paper used a
combination of literature review and a multiple company case study to provide a
stronger empirical evidence.

Further research is needed to understanding how the system can be architected to
support continuous experimentation as a first-class citizen in the development process
while still guaranteeing safety and real-time requirements as well as intermittent

Challenges and Strategies for Undertaking Continuous Experimentation 289

connectivity. Additionally, continuous experimentation changes how the development
process takes place, as it emphasizes in an outcome-driven development and this
scenario might lead to impactful organizational changes. For future works, the authors
are investigating where is the perceived highest return on investment that companies
see and plan to invest to overcome the identified challenges and further support of
continuous experimentation in their products.

Acknowledgments. This work was partially supported by the Wallenberg Autonomous Sys-
tems and Software Program (WASP) and the Software Center.

References

1. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inf. Softw. Technol. 77, 80–91 (2016)

2. Eliasson, U., Heldal, R., Knauss, E., Pelliccione, P.: The need of complementing plan-driven
requirements engineering with emerging communication: experiences from Volvo Car
Group. In: Proceedings of 2015 IEEE 23rd International Requirements Engineering
Conference RE 2015, pp. 372–381 (2015)

3. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘open loop’ problem. In: Proceedings of 40th Euromicro Conference Series
on Software Engineering and Advanced Applications SEAA 2014, pp. 9–16 (2014)

4. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development. In: Proceedings of the 39th International
Conference on Software Engineering ICSE 2017 (2017)

5. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining-KDD 2010, p. 17 (2010)

6. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2009)

7. Olsson, H.H., Bosch, J.: Climbing the “Stairway to Heaven”: evolving from agile
development to continuous deployment of software. In: Bosch, J. (ed.) Continuous Software
Engineering, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11283-
1_2

8. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer,
B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30746-1_3

9. Olsson, H.H., Bosch, J.: The HYPEX model: from opinions to data-driven software
development. In: Bosch, J. (ed.) Continuous Software Engineering, pp. 1–226. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11283-1_13

10. Fabijan, A., Olsson, H.H., Bosch, J.: The lack of sharing of customer data in large software
organizations: challenges and implications. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP,
vol. 251, pp. 39–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_4

11. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

12. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses, 1st edn. Crown Publishing Group, New York
(2011)

290 D. I. Mattos et al.

http://dx.doi.org/10.1007/978-3-319-11283-1_2
http://dx.doi.org/10.1007/978-3-319-11283-1_2
http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://dx.doi.org/10.1007/978-3-319-11283-1_13
http://dx.doi.org/10.1007/978-3-319-33515-5_4

13. Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining-KDD 2014, pp. 1857–1866 (2014)

14. Olsson, H.H., Bosch, J.: So much data ; so little value : a multi-case study on improving the
impact of data-driven development practices. In: Proceedings of the Ibero American
Conference on Software Engineering (ClbSE), 22nd–23rd May, Buenos Aires, Argentina
(2017)

15. Bosch, J., Eklund, U.: Eternal embedded software: towards innovation experiment systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 19–31. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_3

16. Giaimo, F., Berger, C.: Design criteria to architect continuous experimentation for
self-driving vehicles. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 203–210 (2017)

17. Bosch, J., Olsson, H.H.: Data-driven continuous evolution of smart systems. In: Proceedings
of the 11th International Workshop on Software Engineering for Adaptive and
Self-Managing Systems-SEAMS 2016, pp. 28–34 (2016)

18. Mattos, D.I., Bosch, J., Olsson, H.H.: Your system gets better every day you use it: towards
automated continuous experimentation. In: Proceedings of the 43th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) (2017)

19. Mattos, D.I., Bosch, J., Holmström Olsson, H.: More for less: automated experimentation in
software-intensive systems. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611,
pp. 146–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_12

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering, vol. 1. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29044-2

21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

22. Optimizely, “Optimizely.” https://www.optimizely.com/. Accessed 28 June 2017
23. Zhang, B.: Privacy Concerns in Online Recommender Systems: Influences of Control and

User Data Input, pp. 159–173 (2014)
24. Holmström Olsson, H., Bosch, J.: From ad hoc to strategic ecosystem management: the

Three-Layer Ecosystem Strategy Model? (TeLESM). J. Softw. Evol. Process 29, e1876
(2017)

25. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
Young, M., Dennison, D.: Hidden Technical debt in machine learning systems. In: NIPS,
pp. 2494–2502 (2015)

Challenges and Strategies for Undertaking Continuous Experimentation 291

http://dx.doi.org/10.1007/978-3-642-34026-0_3
http://dx.doi.org/10.1007/978-3-319-69926-4_12
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
https://www.optimizely.com/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

292 D. I. Mattos et al.

http://creativecommons.org/licenses/by/4.0/

ICOs Overview: Should Investors Choose
an ICO Developed with the Lean

Startup Methodology?

Simona Ibba1(B), Andrea Pinna1, Gavina Baralla1, and Michele Marchesi2

1 Department of Electric and Electronic Engineering,
University of Cagliari, Cagliari, Italy

{simona.ibba,a.pinna,gavina.baralla}@diee.unica.it
2 Department of Mathematics and Computer Science,

University of Cagliari, Cagliari, Italy
marchesi@unica.it

Abstract. An Initial Coin Offering (ICO) is an innovative way to raise
funds and launch a startup. It is also an opportunity to take part in a
project, or in a DAO (Decentralized Autonomous Organization). The use
of ICO is a global phenomenon that involves many nations and several
business categories: ICOs collected over 5.2 billion dollars only in 2017.
The success of an ICO is based on the credibility and innovativeness of
project proposals. This fund-raising tool contains however some critical
issues, such as the use of tokens that have no intrinsic value and do not
generate direct liquidity, and the role of investors in the management
of the startup. We analyzed if the Lean Startup methodology is helpful
to face this critical aspects and we examined some ICOs in which the
proposing team states explicitly that a lean startup approach is used.

Keywords: ICO · ICOs overview · Lean software startup · Blockchain

1 Introduction

ICOs are the new trend in the cryptocurrencies field. The technology to create a
new cryptocurrency is cheap: in a short time and without large investments any
company can present itself to the market with its fundraising and the related
token. With these premises, an ICO is the most innovative solution to finance
themselves outside the traditional channels, especially for startups.

In fact, a good source of funding is essential to launch a startup. At first, it is
possible to apply for local or international institutional funding, that generally
does not provide for the repayment of the grant, but which also involves very
long waiting times and a very complex bureaucracy. Even traditional funding
operations that involve venture capitalists (VCs) or business angels have long
waiting times. The risk is also that a traditional VC could acquire a high per-
centage of shares and become prevailing in the key decisions of the company.

c© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 293–308, 2018.
https://doi.org/10.1007/978-3-319-91602-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_21&domain=pdf

294 S. Ibba et al.

On the other hand, a typical fundraiser needs a good marketing campaign, with
many supporters participating with small amounts of money. Even a financial
partner can be very risky, especially if the partner is a very experienced person
who want to steal the business idea. The creation of an ICO therefore represents
a valid way to collect initial capital for startups.

The success of an ICO is fundamentally based on three key elements: reli-
ability of team members, evaluation of the project and of its white paper, and
comments from other investors. Analyzing these three factors, investors should
be able to answer two simple questions: “What novelty and what value does this
project bring to the world?” And consequently: “Does it make sense to invest in
this project?” The questions arising from this premise are therefore the follow-
ing: “Can an investor monitor the evolution of the startup based on an ICO and
actively collaborate on the success of this startup?” In this paper we evaluate
the lean startup approach as a methodology for the implementation of an ICO
based on the collaboration between all the stakeholders involved and founded
on a continuous iteration process that allows investors to be an integral part in
the startup’s development and therefore to interact continuously with the exec-
utive team and product development team. The paper is structured as follows.
Section 2 presents the related works. Section 3 proposes an ICOs overview which
includes phenomenon statistics, a taxonomy, and a description of critical aspects.
In Sect. 4 we show ICOs as Lean Startups and discuss about some study cases.
Finally, in Sect. 5 we present the conclusions.

2 Related Work

This paper presents an overview of ICOs initiatives, pinpointing the opportunity
for early stage lean startups to raise funds in an innovative and fast way.

To date, because of its novelty, literature hardly addresses this topic. In Octo-
ber 2017 Flool et al. [2], analyzing the history of the blockchain technology and of
cryptocurrencies, presented the ICO phenomenon as a realization of an anarcho-
capitalists system, made trusty by the underlying technology. Authors reported
results of their studies related to key elements which make good an ICO, stating
that the crucial element is trust (generated by the technology and by the ICO
features). The initial coin offering process has also been studied by Kaal et al. [4]
in November 2017. They described ICOs and the related environment. In addi-
tion, they underline the similarities and differences between ICOs and the IPOs
of the stocks market, focusing the attention on risks and bad practices which
could compromise investments and the general trust in the ICO system. Trust
creation can not ignore the legal aspects of the ICO funding mechanism. Barsen
[1] gave particular attention to this aspect. He highlights regulator organisms
are well equipped to apply existing regulation to virtual currencies and ICOs.
He also provides a legal classification of ICOs, distinguishing the currency-like
tokens from the security-like ones. In order to evaluate risks and actual value of
an ICO, Venegas [7] proposed an empirical approach based on the correlation
analysis of the network activity. Adhami et al. [8] too focused the attention on

ICOs Overview 295

empirical evaluation of ICOs, classifying them in accomplished and failed. Very
recently, Fenu et al. analyzed 1387 ICOs, assessing the factors that were crit-
ical to theirs success [5] using a statistical analysis, whereas Hartmann et al.
analysed 28 ICO websites to reveal the state of the practice in terms of ICO
evaluation [6].

ICOs are a startup funding method that has similarity with the crowdfund-
ing. In 2014, Mollick presented results of his empirical analyses on the dynam-
ics of crowdfunding [11] and factors that influence the performances. Recently,
Wang et al. studied the effects of the interaction between creators and backers on
crowdfunding success [12], basing on the sentiment analysis of the comments. On
the other hand, several works focused the attention on the lean startup develop-
ment and their funding opportunity. Poppendieck et al. described lean startup
concept and its key elements in their tutorial [9] in 2012. In 2013, Bosch et al.
proposed a early stage startup development framework [10] in which all stages
which a startup team have to accomplish during the first phases of their business
initiative, starting from the idea generation to the validation of the Minimum
Viable Product (MVP), are described.

3 ICOs: Overview

We can describe an ICO both as a way, not regulated by an authority, to raise
funds and launch a startup, and as an opportunity to take part in a project, in
a DAO or even in an economic system.

3.1 The Main Characteristics of ICOs

The idea of ICO is very similar to the well-known concept of Initial Public Offer-
ing (IPO), where a company decides to place its shares on the stock exchange, to
open its capital to new shareholders. In this way, new listed companies enter the
stock market and consequently increase their capital. We can therefore define
ICOs as investments that provide “crypto objects” to investors. These are com-
monly named tokens. Tokens are also considered to be coins offered during an
ICO, and as such they can be considered equivalent to the shares purchased under
an IPO. Note also that the vast majority of ICOs issue tokens in exchange for
cryptocurrencies convertible into real money; this allows investors to access the
functionality of a particular project. Moreover, ICOs in general remain open for
a period of a few weeks, up to a maximum of one or two months. In the following
we indicate the main features of an ICO.

– ICO prices are set by the creators of the startup or by the person who designed
the project;

– the investor who owns the tokens issued by a startup in the phase of capital
raising does not always have the right to express an opinion or to be part of
decisions about the project, even if it remains one of the available options;

296 S. Ibba et al.

– the first investors will probably have greater advantages included in their
tokens as incentives. The creators of a startup, to thank investors and to
improve their loyalty, often offers them a variable bonus percentage that is
proportional to the amount of cryptocurrency that the investor chooses to
put in that token, and then in that startup;

– after the conclusion of an ICO, its tokens are traded on some cryptocurrency
exchange, which is a website where digital currencies can be traded against
each others, and against legal money, so that they can be traded very soon
with respect to other kinds of startup financing;

– the startups that collect capital through ICOs are not subject to taxation (at
least by now).

3.2 How Does an ICO Works?

A startup initiates the ICO process by establishing, first of all, three aspects: the
blockchain [3] underlying the system, its protocols and rules. Subsequently the
ICO’s creators define and make available the tokens that will be sold. In addition,
in order to evoke the greatest possible interest, startups announce their ICO in
several ways. The most used are represented by social media and ICO websites
in which ICO’s creators describe their business project.

The new token issued during the ICO will also need to be traded in an
exchange, in a similar way of trading in the stock exchange after an Initial Pub-
lic Offering (IPO). ICOs active or about to be activated can be traced through
different websites, whereas the sale of tokens against cryptocurrencies is per-
formed through selected exchange platforms (the most famous being Bittrex,
Kraken, Poloniex, Livecoin, SpaceBTC and Bitlish). In order to buy tokens,
the investors must possess a virtual wallet holding the needed cryptocurrencies,
that can in turn be bought in an exchange using traditional money. Investors
can buy ICO tokens very easily and directly, starting from the startup website.
So, investors eager to invest in promising startups through their ICOs have to
explore thoroughly the various exchange platforms and the social media dealing
with ICOs. In this way, they find and evaluate the active and forthcoming ICOs,
and can make their choice, buying the chosen tokens.

3.3 Overview of ICOs Phenomenon Statistics

In this section, in order to figure out the dimension of the ICO phenomenon,
we provide some statistics. We analyzed from the 1th of December up to the
12th January 2017 specialized websites1 which collect ICOs and their details.
1 ICO data are extracted from the following websites:

http://www.icobench.com,
http://www.coinschedule.com,
http://www.icowatchlist.com,
http://www.coingecko.com,
http://www.icoalert.com,
http://www.icostats.com,
http://www.icodrops.com.

http://www.icobench.com
http://www.coinschedule.com
http://www.icowatchlist.com
http://www.coingecko.com
http://www.icoalert.com
http://www.icostats.com
http://www.icodrops.com

ICOs Overview 297

We can state that 2017 was the year of ICOs. According with icowatchlist.com
data, during that year ICO raised over 3.3 billion dollars. By comparison, in
2016 ICOs raised a total of 106 million dollars2. Exploring ICOs we realize that
they represent a global phenomenon. In particular, 88 nations presented at least
one ICO. Despite this reality, it must be said that four countries raised over
the 54% of the total. They are Switzerland (21%), United States (19.1%), Israel
(7.6%) and Singapore (6.7%). As regards the number of ICOs per nation, USA,
Russia, UK and Singapore are the most active nations. Table 1, summarizes the
first ten nations per total raised amount.

Table 1. The first ten nation involved in the ICO phenomenon spread

Country Total raised % of Total ICO projects

Switzerland 463,775,825 21.02% 51

United States 421,402,100 19.10% 248

Israel 167,370,000 7.59% 15

Singapore 148,780,000 6.74% 79

Russian Federation 81,174,361 3.68% 202

France 78,050,000 3.54% 15

United Kingdom 61,050,000 2.77% 106

Serbia 53,070,000 2.41% 4

Gibraltar 27,480,000 1.25% 14

Spain 26,660,000 1.21% 10

By the end of 2017 the icobench.com website listed 1259 ICOs, referring to
a heterogeneous set of projects. About 50% of ICO projects are ICOs already
ended. 33% are ongoing ICO and the remaining 17% are upcoming ICOs.

In order to understand the ICO trend we decided to categorize them by
industrial sector. In this regard, we pinpointed all relevant data from the afore-
mentioned ICO websites. However, each website presents information by con-
sidering different criteria and perspective, and only a few of them propose a
classification. In general, an ICO is described by: name, logo, token, start date,
end date, description, website, white paper, social links, accepted cryptocur-
rency, development platform, ICO price, min and max target amount to raise,
country, upcoming, ongoing, ended, and so on.

Merging and cross-referencing the analyzed data, we built the taxonomy
shown in Table 2. To identify the taxonomy dimensions, we made a list of cate-
gories already identified by the various websites, using as labels the most used
ones. In some cases we joined some of them. In total, we identified 24 dimensions
which represent the category of industrial ICO sectors. Afterward, we populated
the taxonomy considering both the number of projects developed and the amount
2 https://www.coindesk.com/2016-ico-blockchain-replace-traditional-vc/.

http://www.icowatchlist.com
http://icobench.com
https://www.coindesk.com/2016-ico-blockchain-replace-traditional-vc/

298 S. Ibba et al.

Table 2. An industrial sector taxonomy of ICOs

Category % Projects per
category

% Fund raised
per category

Blockchain Platform & Services 20,00% 25,00%

Finance 12,00% 7,00%

Trading & Investing 10,00% 8,50%

Commerce/Retail 8,00% 3,00%

Payments/Wallets/Cryptocurrency 8,00% 9,00%

Gaming/VR 6,00% 4,00%

Funding/VC 5,00% 1,20%

Network/Communication/Storage 5,00% 20,00%

Betting/Gambling 3,00% 2,00%

Data/Artificial
Intelligence/Machine Learning

3,00% 2,00%

Media/Content 3,00% 0,50%

Healthcare 2,00% 7,00%

Real estate 2,00% 0,80%

Security/Identity 2,00% 2,00%

Social Network 2,00% 3,00%

Energy/Utilities 1,50% 0,40%

Education 1,00% 0,01%

Industry/Logistics 1,00% 0,20%

Insurance 1,00% 0,20%

Mining 1,00% 0,30%

Transportation 0,70% 0,20%

Tourism 0,40% 0,10%

Legal 0,05% 0,40%

Other 2,35% 3,19%

of funds raised in each specific sector. In this way, we were able to understand
the ICO sector trend and the investors interest towards projects. We represent
results in percentage terms. Table 2 shows that projects in Blockchain Platform
& Services are the most popular: 20% of projects has been launched in this
sector. We can also see that these projects are the most heavily funded, hav-
ing received 25% of the total raised amount. The second most funded category
is Network/Communication/Storage with 20% of funds raised. Therefore, we
notice that nearly half of all investors are interested in the two above mentioned
categories.

Since ICO funding is an ever changing phenomenon, the proposed classifi-
cation should not be considered as definitive, but as a starting point on a path
toward a more exhaustive categorization.

ICOs Overview 299

Table 3. The ten most important ICOs of 2017

Name Total raised

(USD M.)

Category Start date Duration Team

(Advi-

sors)

Nation

HDAC 258 BC Platform & Services 27/11/17 25 17 (7) Switzerland

FileCoin 257 Network/Communication/ 10/08/17 31 13 (0) USA

Storage

Tezos 232 BC Platform & Services 01/07/17 12 11 (3) USA

EOS 185 BC Platform & Services 11/06/17 15 4 (0) USA

Paragon

Coin

183 BC Platform & Services 15/09/17 30 12 (0) Russia

Sirin Lab 158 Commerce/Retail 12/12/17 14 42 (7) Switzerland

Bancor 153 BC Platform & Services 12/06/17 31 8 (10+5) Israel

Polkadot 145 BC Platform & Services 15/10/17 12 NA Singapore

QASH 105 Trading & Investing 606/11/17 02 9 (9) Singapore

Status 102 Other 20/06/17 31 7 (0) Switzerland

We show in Table 3 the ten most funded ICOs in 2017, reporting also their
category, according to the taxonomy shown in Table 2.

ICO Dataset. The dataset has been populated using the API provided by
icobench.com website3. On date 16 January 2018, we updated the ICO dataset,
holding on that date information regarding 1542 ICOs. In particular, we used
the POST request

https : //icobench.com/api/v1/ico/{id}

where {id} is a progressive number that uniquely identifies an ICO. This request
provided comprehensive information about each ICO stored in the website
database. The data were extracted using a script written in R language, which
includes the httr4 library developed by Wickham.

In order to analyze a temporally homogeneous set of ICOs, we selected the
ICOs started and ended during 2017. This set includes 690 ICOs. The sum of the
raised amounts by these ICOs during 2017 is about 5.20 billion dollars. Consider-
ing only ICOs with non-zero raised amount, the average value of these amounts
is about 17.21 million dollars, whereas the median is 7.30 million dollars. To
focus the attention on the magnitude of the raised amounts, we considered the
raised amount in log10 scale. This value is included in the range 2–9. In addi-
tion, to describe each ended ICO, we extracted four static key features from
the dataset: the ICO Duration in days, the Rate (a rating score provided by
icobench.com that summarize the overall quality of the ICO), the total Team
size, the number of advisors, and the total raised amount. We then excluded 119
ICOs having zero team members or whose total raised amount was not-available.

3 https://github.com/ICObench/data-api for references.
4 https://cran.r-project.org/web/packages/httr/httr.pdf.

http://icobench.com
http://icobench.com
https://github.com/ICObench/data-api
https://cran.r-project.org/web/packages/httr/httr.pdf

300 S. Ibba et al.

We investigated if and how key features influence the final raised amount
computing, at first, the correlation factor between each key element and the
raised amount for each ICO. In Table 4 we summarize the four key features
and their values. It is interesting to note that the ICO duration and the raised
amount have a negative correlation. We focused the attention on the team size,
considering all people registered in the dataset, including developers, advisors
and supporters of the ICO. The average number of team members is 10.9, with
a standard deviation equal to 7.1. In Fig. 1 the distribution of the team size is
provided.

Table 4. Summary of the four key elements selected to investigate how they affect the
total raised amount in terms of correlation coefficient.

Duration Team size Advisors Rating

Max value 112 days 58 17 4.9

Average 29.65 days 10.87 2.17 3.18

Standard Deviation 18.09 7.05 3.37 0.80

Correlation −0.28 0.32 0.22 0.34

Fig. 1. Team size distribution

The correlation between the time size and the raised amount of the ICO in
log10 scale is equal to 0.32. To investigate the relation between team size and
ICO success, we computed the average raised amount per team size (AR), and
the minimum raised amount per team size (MR). Results show that both these
data are more correlated with the team size than the original data. The AR and
the team size have a correlation coefficient equal to 0.51, whereas MR and team
size have a correlation coefficient equal to 0.76. To describe the proportionality of
these results with the team size, we computed the linear regression y = m(x)+q,
where and x is the team size and y is the log10 of the amount. The AR function
has parameters m = 0.017 (with standard error 0.11) and q = 6.67 (with standard

ICOs Overview 301

error 0.12). The MR function has parameters m = 0.064 (with standard error
0.009) and q = 4.88 (with standard error 0.23) Fig. 2 shows these two functions.
Blue diamond dots represent the linear regression function of the minimum raised
amount per team size. Red squared dots represent the linear regression function
of the average raised amount per team size.

Fig. 2. Raised amount per team size.

3.4 ICOs’ Critical Aspects

An ICO is based on the assumption that investors will buy the ICO token in
order to obtain a future return on investment (ROI). In particular, an investor
will buy the token at the ICO selling price with the aim of selling it after ICO
ends, at a higher price. For this reason, an ICO must be organized to be attrac-
tive to investors. In short, an ICO must first of all be credible. ICO general
information, the product information, the team composition, and the vision of
the proposing startup, are key elements in the eyes of investors during the eval-
uation of investment opportunity.

In traditional VC rounds, investors acquire an ownership percentage, after
a business evaluation. Conversely, ICO investors do not enter in the business
ownership. Investors aim to obtain a profit on what they are buying, i.e. the
token. Actually, token are something that will allow the access to some services
after the startup idea will be realized. Investors wish to buy tokens whose value
will increase after the startup business will launch its product. The first invest-
ment performance indicator is the ROI. As of writing, the vast majority of closed
ICOs are characterized by a positive ROI, and several cases present a very high
increase of the token value (see for instance the ROI of Stratis and NEO, charac-
terized by a return on January 2018, greater than one thousand percent!). In few
cases, investors lost theirs money, as in the case of Paragon ICO, one of the ICOs

302 S. Ibba et al.

which raised most money, that currently has a negative ROI (−44%). Another
important aspect is that ICO investment can be liquidated just by selling the
bought tokens (the equivalent of the exit operation in venture capital). Tokens,
however, are not directly payable in fiat currency. They have to be sold in spe-
cialized exchange websites, at the market price. This price is typically highly
volatile, thus presenting a high risk. Summarizing, critical aspects of ICOs are:

– ICO project must be credible for investors (feasibility of the project, etc.);
– Token should have an intrinsic value: an ICO does not generate direct liquid-

ity, but the value is given by its token;
– Risk of low or negative ROI;
– The investors, who are used to risk, play the role of the controller.
– The ICO tool is highly innovative: it is not possible to carry out histori-

cal analyzes or analytical forecasts. The key element of success is based on
management flexibility.

The critical aspects of an ICO also can partially or totally match the typ-
ical crucial aspects of a startup firm, which operates in conditions of extreme
vulnerability and faces many challenges. According to several authors [13,14],
the high failure rate of startups can be mainly attributed to the way in which
the startup is managed and not only to typical market factors such as competi-
tion. The main risk of an ICO, and consequently of a startup [14], is therefore
to spend time, money and energy in the development of a service or a product
which people are not interested in.

What Would be Needed to Reduce the Identified Problems?
After highlighting the limitations of an ICO and the challenges that a startup

faces, in the followings we point out what are the elements that can contribute
to the success of an ICO.

– Investor involvement not only in the fundraising phase, but also in the subse-
quent phases. Business risk is therefore shared, and investors are called upon
to invest only in projects they really believe in and where they can make a sig-
nificant contribution also in terms of ideas. In this way, the risk of speculation
is limited.

– The design idea must be manageable through a token.
– The business model must be feasible and therefore concrete, sufficiently

detailed, but at the same time must be flexible.
– A complex project can be divided into phases: the first steps, if the startup

project is innovative, are the most critical.
– It is good to test the project idea right away by analyzing feedback from a

small number of users.

The elements highlighted above, designed to increase the probability of suc-
cess of a startup, are supported by numerous studies [15–18], and are typical of
lean startup methodology in which the focus is on the customer, the decision-
making process is based on the facts and pivoting and agile/lean thinking is
fundamental.

ICOs Overview 303

4 ICOs as Lean Startups

According to [19], in order to create a successful ICO it could be helpful the use
of The Lean methodology and Value Proposition Canvas. These strategies in fact
can be used to ensure that the market of designed product actually exists and
that the idea can be considered good. In the context of an ICO, moreover, the
activities can not be exclusively focused on reaching a solution, but it is necessary
to examine the problem in detail before proceeding with any elaboration [20].
At the start of an ICO, in fact, both the problem and the solution are not
generally well understood by investors and often also by the development team.
In this context of uncertainty, the typical elements of lean startup methodology
such as prototyping, execution of experiments [22], validation of initial business
hypotheses and continuous learning can be easily applied as elements of greater
security [15,21]. We outline below some aspects of this methodology that can be
easily applied to the management of an ICO.

1. The Pivot. It is a change of direction during the development of the project.
All changes are based on what is learnt in the previous stages. If you reduce
the time between the pivots you increase chances of success and you spend
less money. The pivot is connected to the concept of feedback cycle formed
by the three phases Build-Measure-Learn (BML) and to the Minimum Viable
Product (MVP). A chance of success is proportional to the minimum time it
takes to get through the BML loop, and then to the minimum time between
pivots. With this approach, you start with an idea of product or startup,
and the end result can be something else. The direct feedback and the tests
by potential users of the product could therefore induce to change market
segment, customer type, costs, partners, strategies, while maintaining the
same vision of the startup. In an ICO, given that initial investors back the
team more than the idea, the pivoting should not be a problem.

2. Validated learning. This process should apply to an ICO that works in
an area of extreme uncertainty in order to verify the progress of the project
[14]. A positive marker of an ICO in fact cannot be just the revenue. An
iterative validated learning process allows an evaluation of the hypothesis
(that could be valid or invalid) by running experiments and by the analysis
of information that leads to the formulation of new ideas. Identifying a very
clear use case that requires the decentralized approach typical of blockchain
technology could be the first step of this process.

3. Testing. The Lean startup methodology highlights the importance of test
cycles. It allows to verify concretely if the need really exists, if it is perceived
by the identified target, and if it is strong enough to be satisfied. Testing
speeds up learning and create a competitive value. When a stakeholder anal-
yses an ICO, one of the most relevant questions is if the idea and the team are
good in that specific context. According to Lean Startup methodology, the
success of an ICO could be connected to testing the product in each phase,
to verify the need and the use of the product. In accordance with the decen-
tralized nature of the blockchain, the use of tests applied in a decentralized
way can be useful.

304 S. Ibba et al.

4.1 Three Different Case Studies

In our work, we aim to analyze the ICO phenomenon based on the lean startup
methodology. We examined those ICOs in which the proposer team states explic-
itly that a lean startup approach is used. We examined three different case stud-
ies, each with a different application of this methodology. The first ICO uses
the principles of modularity, simplicity and scalability typical of lean startup
methodology to develop a platform to build decentralized applications; the sec-
ond, according to lean startup methodology, focuses its attention on feedback
from users. Finally, the third ICO designs a platform that, using the lean startup
methodology, aims to address the problem of lack of interaction between investors
and development team of ICOs.

Lisk - Blockchain Application Platform. Lisk5 is one of the oldest ICOs and
is a lean startup. It was registered in Switzerland by Max Kordek, Oliver Bed-
dows and Guido Schmitz-Krummacher on 22 February 2016 and raised money
in bitcoins. The platform was born from a fork of Crypti’s blockchain and its
price, as well as that of most tokens, peaked in 2017. At present, Lisk is one
of the most solid startups financed by an ICO. Lisk has raised over 14,000 Bit-
coins or about $ 9 million at the time of the campaign, and has now a market
cap of more than one $ billion. Every month, on the ICO website a monthly
report is published on the activities of the startup and on its financial evolu-
tion. Lisk spends around 76,000 CHF for its running costs per month. The daily
volume traded on exchanges is of several tens of million CHF. Lisk is based on
the principles of modularity, simplicity and scalability typical of lean startup
methodology, and provides a platform for the construction and distribution of
decentralized apps. Developers have the ability to build decentralized applica-
tions (DApp) with some mainstream programming languages such as JavaScript
and Node.js. Therefore, developers do not need to learn the Solidity language, as
in the Ethereum blockchain. Unlike what happens to the DApp on Ethereum, the
applications developed on Lisk will be built on a parallel blockchain (sidechain),
so as not to create problems for the main blockchain, especially in the case
of bugs. A modular SDK allows developers to take advantage of a series of
libraries, modules, algorithms and third-party tools that make the development
environment user-friendly and customizable, and therefore suitable for creating
blockchain applications.

Galactikka - A Social Networking Project. Galactikka6 is another ICO in
which the proposing team declares to use the lean startup methodology. Galac-
tikka is an innovative social network that allows authors to promote their original
content and to earn money with their posts, photos and video materials when
they are published and shared. The platform integrates a community, blogs and
a system for Q&A. The goal of Galactikka is therefore to help amateur authors
to make themselves known and to profit from their creativity. Galactikka was
designed in Russia, so its the main language is Russian. Galactikka uses the
5 https://lisk.io/.
6 http://galactikka.com/.

https://lisk.io/
http://galactikka.com/

ICOs Overview 305

approach of phases and interactions typical of the Lean Startup methodology,
giving great value to the feedback provided by the users. For this reason, in the
first instance, the team prefers to use only the Russian language, because it is
the language best known to them. In the first phase also the contents inserted
by the users will have to be in Russian language. According to the lean startup
method, it is in fact convenient to test the application on a small group of users.
In this way, the development team intends to concentrate initially on a limited
user target, whose language is fully understood, in order to avoid wasting energy
and resources on a global audience that is too large. In this way, it is possible
to increase the speed of development of the project.

doGood - Blockchain-Fueled Social Platform for Lean Startup.
doGood7 aims to get through one of the main limitations of an ICO: the lack of
tools that can allow investors to provide feedback during the development phases
of the project idea related to a startup. With a lean startup approach, doGood
wants to offer funders the opportunity to monitor the team’s progress and to pro-
vide direct guidance at all stages of the project. The lean startup methodology
is needed, given the uncertainty in the evolution of the project, and in order to
ensure that the proponent team provides the promised results, thus determining
an increase in the value of the token. Using the lean startup methodology, the
doGood ICO seeks to improve interactions between the team and other stake-
holders. Smart contracts help decision making and reduce the cost and the time-
to-market. In this way, it is possible to increase token value and reduce the risks
involved in these ventures. doGood is therefore a web platform that stems from
the idea that it is necessary to improve interaction between people by proposing
a democratic method to solve complex problems based on open innovation prin-
ciples, design thinking and especially on lean startup philosophies. Every person
involved in the project, and therefore also every investor, in a decentralized way
and from any part of the world can indeed perform a series of activities and be
totally protagonist of the success of the startup. Incentives and governance sys-
tem are based on the Ethereum blockchain, aiming to a better identification of
solutions to problems, and to the ability of proposing arrangements in a decen-
tralized and large-scale manner. The system is designed with the hybrid use
of two architectural paradigms: a client-server architecture (centralized), and a
client-server architecture based on blockchain technology (decentralized). This
ICO merges the use of smart contracts with the lean startup methodology, gain-
ing a double advantage for investors – they have greater visibility within the
project and the related startup, and can provide relevant and appropriate infor-
mation on the construction of the system. The token is called just GOOD. A
smart contract system, in application of the lean startup methodology, is con-
nected to the various decision-making milestones of the project’s evolution. A
GOOD token is assigned to a project in exchange for the VOTE tokens. VOTE-
type tokens are used by investors, proportional to the amount of GOOD Token
held, to be able to cast their votes in the decision-making stages of the project.
In this way, the Product Development Team can understand unequivocally, as a
7 https://dogood.io/.

https://dogood.io/

306 S. Ibba et al.

result of a democratic operation, what are the wishes of the investors. The use
of the blockchain is useful for its intrinsic properties that guarantee authenticity
and security of the vote of the stakeholders.

5 Conclusions

In our work we analyzed the new and complex phenomenon of ICOs, an alter-
native means of financing startups based on the concept of token and on a
decentralized blockchain approach. Startups based on a ICO are playing a fun-
damental role in creating the market of blockchain applications. ICOs provide
a pre-sale of tokens what will be used to pay for a service to be launched on
the market, or even the launch of a new cryptocurrency. In most cases, the same
investors become consumers or users of the same service. All this allows investors
to buy crypto tokens at a discounted price, even if in reality their value will be
dictated by the mechanism of supply and demand only after being placed on
the market. An ICO can be a valuable tool for those teams that want to quickly
obtain financing, but it also has several limitations, due essentially to the imma-
turity of the technological system and to the risk of financial speculation.

In this work, we analyzed the ICO phenomenon starting from the available
data provided by ICO datasets, performing various statistical computations to
understand what affects the ICO success. Then, we tried to understand if the
Lean startup approach can be useful to solve some of ICO issues. The tokeniza-
tion nature of an ICO proposal needs a form of sustainable and regulated token
sale event, that can be built on an MVP. The concepts of pivot and validated
learning can be very useful, but also the investors’ goals must be taken into
account. They can be directed exclusively to immediate gain and not to com-
pany growth, strategic planning or operational work. A Lean startup methodol-
ogy could be useful in order to respond to a tokenization that gives rise to new
business models and new products or services that must effectively address cus-
tomer needs. Many iterations and the direct involvement of all the stakeholders
can further improve and help to market the original idea.

Acknowledgments. The work presented in this paper has been partially funded by
Regione Autonoma della Sardegna, under project AIND - POR FESR Sardegna 2013.
The authors thank icobench.com for permission to use their API.

References

1. Barsan, I.: Legal Challenges of Initial Coin Offerings (ICP). Social Science Research
Network (2017)

2. Flood, J., Robb, L.: Trust, Anarcho-Capitalism, Blockchain and Initial Coin Offer-
ings. Social Science Research Network (2017)

3. Porru, S., Pinna, A., Marchesi, M., Tonelli, R.: Blockchain-oriented software engi-
neering: challenges and new directions. In: Proceedings of the 39th International
Conference on Software Engineering Companion, pp. 169–171. IEEE, May 2017

http://icobench.com

ICOs Overview 307

4. Kaal, W., Dell’Erba, M.: Initial Coin Offerings: Emerging Practices, Risk Factors,
and Red Flags. Social Science Research Network (2017)

5. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ICO phenomenon and its
relationships with ethereum smart contract environment. In: Proceedings of the
SANER 2018 Conference, IWBOSE (2018)

6. Hartmann, F., Wang, X., Lunesu, M.I.: Evaluation of initial cryptoasset offering:
the state of the practice. In: Proceedings of the SANER 2018 Conference (2018)

7. Venegas, P.: Initial Coin Offering (ICO) Risk, Value and Cost in Blockchain Trust-
less Crypto Markets. Social Science Research Network (2017)

8. Adhami, S., Giudici, G., Martinazzi, S.: Why do businesses go crypto? An empirical
analysis of Initial Coin Offerings. Social Science Research Network (2017)

9. Poppendieck, M., Cusumano, M.A.: Lean software development: a tutorial. IEEE
Softw. 29(5), 26–32 (2012)

10. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage soft-
ware startup development model: a framework for operationalizing lean principles
in software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Mor-
gan, L., Stol, K.J. (eds.) Lean Enterprise Software and Systems. Lecture Notes in
Business Information Processing, vol. 167, pp. 1–15. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-44930-7 1

11. Mollick, E.: The dynamics of crowdfunding: an exploratory study. J. Bus. Ventur.
29(1), 1–16 (2014)

12. Wang, N., Li, Q., Liang, H., Ye, T., Ge, S.: Understanding the importance of inter-
action between creators and backers in crowdfunding success. Electron. Commer.
Res. Appl. 27, 106–117 (2018)

13. Blank, S.: The Four Steps to the Epiphany: Successful Strategies for Products that
Win. BookBaby, Cork (2013)

14. Ries, E.: The Lean Start-up: How Constant Innovation Creates Radically Successful
Business. Portfolio Penguin, Londres (2011)

15. Björk, J., Ljungblad, J., Bosch, J.: Lean product development in early stage star-
tups. In: IW-LCSP@ ICSOB, pp. 19–32, June 2013

16. Mueller, R.M., Thoring, K.: Design thinking vs. lean startup: a comparison of two
user-driven innovation strategies. In: Leading Through Design, p. 151 (2012)

17. Silva, S.E., Calado, R.D., Silva, M.B., Nascimento, M.A.: Lean Startup applied in
Healthcare: A viable methodology for continuous improvement in the development
of new products and services. IFAC Proc. 46(24), 295–299 (2013)

18. Miski, A.: Development of a mobile application using the lean startup methodology.
Int. J. Sci. Eng. Res. 5(1), 1743–1748 (2014)

19. Initial Coin Offerings (ICOs): What They Are and How to Market Them. https://
blog.ladder.io/ico-marketing-strategy. Accessed 10 Jan 2018

20. Mullins, J.W., Komisar, R.: Getting to Plan B: Breaking Through to a Better
Business Model. Harvard Business Press, Boston (2009)

21. Hart, M.A.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Inno-
vation to Create Radically Successful Businesses Eric Ries, 2011, 320 pp. Crown
Business, New York (2012)

22. Moogk, D.R.: Minimum viable product and the importance of experimentation in
technology startups. Technol. Innov. Manage. Rev. 2(3), 23 (2012)

https://doi.org/10.1007/978-3-642-44930-7_1
https://blog.ladder.io/ico-marketing-strategy
https://blog.ladder.io/ico-marketing-strategy

308 S. Ibba et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

Anslow, Craig 259

Baralla, Gavina 293
Barroca, Leonor 131
Bergersen, Gunnar R. 267
Biddle, Robert 259
Bjørnson, Finn Olav 216
Bosch, Jan 277
Brataas, Gunnar 248

Chita, Pritam 160
Choma, Joelma 68

da Silva, João Pablo S. 3
da Silva, Tiago Silva 68
Diebold, Philipp 123
Dingsøyr, Torgeir 191, 216, 267
Dominguez-Mayo, F. J. 19
dos Santos, Ernani César 104

Ecar, Miguel 3

Florea, Raluca 54
Fontdevila, Diego 146

Gainey, Fernando 146
Grini, Mari 86
Guerra, Eduardo M. 68

Hanssen, Geir Kjetil 248
Hauder, Matheus 232

Ibba, Simona 293

Jørgensen, Magne 179

Karvonen, Teemu 131
Kepler, Fabio 3
Kleehaus, Martin 232
Kropp, Martin 259

Lindsjørn, Yngve 267

Marchesi, Michele 293
Matthes, Florian 232
Mattos, David Issa 277
Meier, Andreas 259
Mikalsen, Marius 191
Milosheska, Bisera 86

Oliveros, Alejandro 146
Olsson, Helena Holmström 277
Oyetoyan, Tosin Daniel 86

Paez, Nicolás 146
Pinna, Andrea 293

Ræder, Georg 248
Rivero, José Matias 19
Rossi, Gustavo 19

Schimpfle, Christina 232
Schoemaker, Lennard 199
Sharp, Helen 131
Sjøberg, Dag I. K. 267
Soares Cruzes, Daniela 86
Solem, Anniken 191
Stettina, Christoph Johann 199, 216
Stray, Viktoria 54

Theobald, Sven 123
Torres, Nahime 19

Uludağ, Ömer 232
Urbieta, Matias 19

Vestues, Kathrine 191
Vilain, Patrícia 104

Wagner, Stefan 37
Wang, Yang 37
Wijnmaalen, Julia 216

	Preface
	Organization
	Contents
	Agile Requirements
	Cosmic User Story Standard
	1 Introduction
	2 Background
	2.1 COSMIC Method
	2.2 User Story Overview

	3 COSMIC User Story Standard
	4 Evaluation
	4.1 Survey
	4.2 Example

	5 Threats to Validity
	6 Conclusion and Future Work
	References

	Improving Mockup-Based Requirement Specification with End-User Annotations
	Abstract
	1 Introduction
	2 Related Work
	3 Enhancing Mockups with End-User Annotations
	3.1 Structural User Interface
	3.2 End-User Grammar Annotations Catalogue
	3.3 Colloquial Data Description
	3.4 Using End-User Grammar to Identifying Requirement Inconsistencies

	4 Evaluation
	4.1 Goals, Hypotheses and Variables
	4.2 Experiment Design
	4.3 Experimental Unit
	4.4 Subjects, Instrumentation, and Data Collection
	4.5 Analysis and Evaluation of Results and Implication
	4.6 Threats to Validity

	5 Conclusion and Further Work
	References

	Agile Testing
	Combining STPA and BDD for Safety Analysis and Verification in Agile Development: A Controlled Experiment
	1 Introduction
	2 Related Work
	3 STPA Integrated BDD for Safety Analysis and Verification (STPA-BDD)
	4 Experiment Design (We follow the guideline by Wohlin et al. wohlin2012experimentation.)
	4.1 Goal
	4.2 Context
	4.3 Hypotheses
	4.4 Variables
	4.5 Pilot Study
	4.6 Experiment Operation

	5 Analysis
	5.1 Descriptive Analysis
	5.2 Hypothesis Testing

	6 Threats to Validity
	6.1 Internal Validity
	6.2 Construct Validity
	6.3 Conclusion Validity
	6.4 External Validity

	7 Discussion and Conclusion
	References

	Software Tester, We Want to Hire You! an Analysis of the Demand for Soft Skills
	Abstract
	1 Introduction
	2 Data Collection and Analysis
	2.1 Coding of Soft Skills

	3 Results
	4 Discussion
	5 Limitations
	6 Implications
	7 Conclusion and Future Work
	References

	Developers' Initial Perceptions on TDD Practice: A Thematic Analysis with Distinct Domains and Languages
	1 Introduction
	2 Related Work
	3 Empirical Study
	4 Findings
	5 Discussion
	6 Conclusion, Limitations and Future Work
	References

	Myths and Facts About Static Application Security Testing Tools: An Action Research at Telenor Digital
	1 Introduction
	2 Background
	3 Case Study
	3.1 Evaluating Static Analysis Tools
	3.2 Performance Metrics
	3.3 Results of Tools' Evaluation
	3.4 Interview
	3.5 Practices and Demography
	3.6 Experience with Static Analysis Tools and Security
	3.7 Perceptions of the Developers About SAST Tools

	4 Discussions and Implications
	5 Limitations
	6 Conclusion
	References

	Automated Acceptance Tests as Software Requirements: An Experiment to Compare the Applicability of Fit Tables and Gherkin Language
	Abstract
	1 Introduction
	2 Related Works
	3 Background
	4 Experiment Definition
	4.1 Experiment Participants
	4.2 Experiment Material
	4.3 Hypothesis Definition
	4.4 Experiment Design
	4.5 Training
	4.6 Experiment Procedure

	5 Results and Data Analysis
	5.1 Consistency and Correctness of the Acceptance Test Scenarios
	5.2 Time to Complete Acceptance Test Scenarios Specifications
	5.3 Applicability of Acceptance Test Scenarios to Communicate Software Requirements
	5.4 Experiment Questionnaire

	6 Threats to the Validity
	7 Conclusion
	References

	Agile Transformation
	Interface Problems of Agile in a Non-agile Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	4.1 Existing Interfaces (RQ1)
	4.2 Existing Problem Fields (RQ2)
	4.3 Problem Classification (RQ3)
	4.4 Limitations

	5 Conclusion and Future Work
	References

	Enterprise Agility: Why Is Transformation 	so Hard?
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Defining Enterprise Agility
	2.2 Organisational Culture
	2.3 Summary of Approaches for Achieving Enterprise Agility

	3 Case Organisation and Study Design
	4 Findings
	4.1 Transformation Challenges

	5 Limitations and Future Work
	6 Discussion and Conclusion
	Acknowledgements
	References

	Technical and Organizational Agile Practices: A Latin-American Survey
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Technical and Organizational Categorization
	3.2 Study Description

	4 Results and Findings
	4.1 Demographics
	4.2 Ranking of Practices
	4.3 Quartile Analysis
	4.4 Factors Influencing Practice Adoption

	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Agile Software Development – Adoption and Maturity: An Activity Theory Perspective
	Abstract
	1 Introduction
	2 Agile Maturity
	2.1 Agile Maturity and Learning

	3 Activity Theory (AT)
	3.1 Activity Theory and Expansive Learning
	3.2 Contradictions Within Activities

	4 Research Conducted
	5 Further Research
	References

	Scaling Agile
	Do Agile Methods Work for Large Software Projects?
	Abstract
	1 Introduction
	2 The Survey
	2.1 Survey Design
	2.2 Limitations
	2.3 Results

	3 Discussion and Conclusion
	References

	Learning in the Large - An Exploratory Study of Retrospectives in Large-Scale Agile Development
	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgement
	References

	Reporting in Agile Portfolio Management: Routines, Metrics and Artefacts to Maintain an Effective Oversight
	1 Introduction
	2 Related Work
	2.1 Connecting Organisational Strategy to IT Development Initiatives Through Agile Portfolio Management
	2.2 Maintaining a Meaningful and Effective Oversight Practice Across Initiatives Pursued Throughout a Portfolio of Agile Teams
	2.3 Taking the Perspective of Knowledge Boundaries to Understand Effective Reporting in Agile Portfolio Management
	2.4 Gap in the Literature and Research Question

	3 Method
	4 Results
	5 Analysis and Discussion
	5.1 Three Domains of Knowledge Responsibility: Product, Development and Process
	5.2 Three Types of Reporting Routines: Cadence-, Tool-, and PMO-Driven
	5.3 Using Characteristics of Boundary Objects to Understand Requirements for Effective Reporting in Agile Portfolio Management

	6 Conclusions
	References

	Inter-team Coordination in Large-Scale Agile Development: A Case Study of Three Enabling Mechanisms
	1 Introduction
	2 Large-Scale Development and Coordination
	2.1 Large-Scale Agile Development: Studies and Practitioner Frameworks
	2.2 Coordinating Multiple Teams

	3 Method
	4 Case
	4.1 Context
	4.2 Structure and Organisation
	4.3 Inter-team Coordination

	5 Discussion
	5.1 Shared Mental Model
	5.2 Closed-Loop Communication
	5.3 Trust
	5.4 Limitations

	6 Conclusion
	References

	Supporting Large-Scale Agile Development with Domain-Driven Design
	1 Introduction
	2 Background and Related Work
	3 Case Study Design
	4 Applying Domain-Driven Design in Large-Scale Agile Development
	4.1 Case Description
	4.2 Framework

	5 Evaluation
	6 Discussion
	7 Conclusion and Future Work
	References

	Towards Agile Scalability Engineering
	Abstract
	1 Introduction
	2 The ScrumScale Method
	2.1 Scalability Triage
	2.2 Extract Business-Related Requirements
	2.3 Derive Testable Scalability Requirements
	2.4 Expert Evaluation
	2.5 Scalability Testing

	3 Conclusion
	Acknowledgements
	References

	Human-Centric Agile
	Stress in Agile Software Development: Practices and Outcomes
	1 Introduction
	2 Related Work
	3 Study Setup
	4 Findings
	5 Discussion and Conclusions
	References

	Teamwork Quality and Team Performance: Exploring Differences Between Small and Large Agile Projects
	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Results
	5 Discussion and Conclusion
	Acknowledgement
	References

	Continuous Experimentation
	Challenges and Strategies for Undertaking Continuous Experimentation to Embedded Systems: Industry and Research Perspectives
	Abstract
	1 Introduction
	2 Background
	3 Research Method
	3.1 Literature Review
	3.2 Multiple Case Study

	4 Challenges and Proposed Strategies
	4.1 Technical Challenges
	4.2 Business Challenges
	4.3 Organizational Challenges

	5 Validity Threats
	6 Conclusion
	Acknowledgments
	References

	ICOs Overview: Should Investors Choose an ICO Developed with the Lean Startup Methodology?
	1 Introduction
	2 Related Work
	3 ICOs: Overview
	3.1 The Main Characteristics of ICOs
	3.2 How Does an ICO Works?
	3.3 Overview of ICOs Phenomenon Statistics
	3.4 ICOs' Critical Aspects

	4 ICOs as Lean Startups
	4.1 Three Different Case Studies

	5 Conclusions
	References

	Author Index

