
Shelve in
Computer Hardware/General

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Embedded Firmware Solutions
Embedded Firmware Solutions is the perfect introduction and daily-use field
guide—for the thousands of firmware designers, hardware engineers, architects,
managers, and developers—to Intel’s new firmware offering (including Quark
coverage), showing how to integrate Intel® Architecture designs into their designs.

Featuring hands-on examples and exercises using Open Source codebases,
like coreboot, EFI Development Kit, and tianocore, on Chromebook and Intel® Quark
reference design, this is the first book that combines a timely and thorough overview
of firmware solutions for the rapidly evolving embedded ecosystem with in-depth
coverage of requirements and optimization.

What You’ll Learn:

• Understand the key differences between PC and embedded ecosystems
in terms of firmware needs

• Thorough underpinning of Intel’s firmware solutions
• How to build a firmware stack for Chromebook and Intel® Quark products
• How to integrate Intel® FSP with a firmware stack, by studying the hands-on

examples based on coreboot and UEFI
• How to make a smart “build-it or buy-it” decision when starting a

new embedded project

Sun
Zimmer
Jones

Reinauer

9 781484 200711

53999
ISBN 978-1-4842-0071-1

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors �� xv

About the Technical Reviewers ��� xvii

Acknowledgments �� xix

Foreword �� xxi

Introduction �� xxiii

Chapter 1: Introduction ■ �� 1

Chapter 2: Firmware Stacks for Embedded Systems ■ ������������������ 13

Chapter 3: Intel ■ ® Firmware Support Package (Intel® FSP) ����������� 25

Chapter 4: Building coreboot with Intel FSP ■ �������������������������������� 55

Chapter 5: Chrome book Firmware Internals ■ ������������������������������� 97

Chapter 6: Intel FSP and UEFI Integration ■ ���������������������������������� 121

Chapter 7: Building Firmware for Quark Processors ■ ������������������ 145

Chapter 8: Putting It All Together ■ ��� 173

Appendix A: Sample Boot Setting File (BSF) ■ ������������������������������� 179

Index ��� 191

xxiii

Introduction

We consider ourselves lucky enough to live in an era when new things and new ideas
seem to come out every few years, if not every few days. We are not only experiencing an
explosion of new ideas, but also witnessing some existing technologies being completely
maxed out in our lifetime, including the semiconductor technology. Since Brattain and
H. R. Moore made a demonstration of the first transistor at Bell Labs on December 23, 1947,
the semiconductor, as we know it today, is reaching its physical limit, even though we are
still trying very hard to shrink it below 10 nanometers. For the sake of argument, even if we
can still shrink a couple of nanometers below 10 nanometers, how much further can we
really go without changing the fundamental theory the technology is based on?

In the meantime, there are many other technologies that are approaching the limits
of our sense and sensibility. Do we need more than 12 bits of color depth that shows more
than billions of colors? Do we need a frame rate that is beyond what our eyes and brain
can process? Do we need cars that go faster than our own response time? We now have
display devices, media playback technologies, and transportation vehicles that achieve
the best that they need to be.

Even though that is the case, there are still unlimited opportunities to make devices
smarter and more connected to make our lives easier and safer. People are calling these
devices the Internet of Things, or IoT for short. The explosive cycle of the IoT has just
begun: cars will be talking to cars in the near future, thermostats and sprinkler systems
can adjust themselves based on current weather forecast, buildings can manage lighting
and air circulation based on where people are, and the list goes on and on.

Yes, this book is related to the explosion of the Internet of Things. We are addressing
a technical area that is rarely talked about—the firmware inside of the Internet of Things.
Firmware is the first piece of software that runs after silicon, coming out from the power-
on reset state. Sometimes it is mysterious to people why building a firmware stack is
hard and why firmware can be problematic. Considering the fact that the time it takes to
run a piece of firmware is only between subseconds to a few minutes at most, why are
we writing a book about it? After all, there are already books that talk about BIOS, UEFI
(beyond BIOS), and techniques to optimize the firmware to boot faster. Why do we need
yet another book to talk about firmware for the Internet of Things and the embedded
system in general? There is one important reason: the firmware for IoT is different from
the firmware running on a PC (BIOS or UEFI-based firmware), and there are many
unique requirements for IoT firmware, and we will talk about them in the second chapter
of this book.

This is what this book is about. We are going to examine the uniqueness of firmware
requirements in embedded systems and IoT devices, and then we are going to introduce
the technique Intel introduced to help IoT system firmware developers overcome the
steep learning curve in developing a firmware stack for their versatile IoT products.

■ introduCtion

xxiv

In this book, we are going to use two open source firmware stacks—coreboot and
UEFI—to demonstrate the concept and show the steps to develop a workable firmware
stack using widely available platforms from Intel. We are also going to show how the
firmware works in a Chromebook, and what it does in a Chromebook, and we will also
discuss the firmware for Intel® Quark family.

The targeted audience for this book are firmware engineers, hardware engineers,
software engineers, and other professionals curious about IoT firmware. This is a good
book for students who are learning about firmware, because we are going to give step-
by-step instructions about how to build a workable firmware stack using commercially
available platforms. For developers who have been involved in PC firmware, this can
be a good reference book to understand the differences between PC and IoT, and
the alternative solutions available. For people who have been struggling with Intel®
Architecture (IA) and its firmware stack due to a lack of technical information from
Intel in the past, this book reveals an opportunity for you to quickly get over the silicon
initialization hump, and you will be able to quickly develop an effective firmware stack
using the techniques learned from this book.

This book uses a lot of pages to describe the Intel® Firmware Support Package
(Intel FSP) because it is a way to encapsulate the complexity of silicon initialization
to make firmware development work easier. Since its launch in October, 2012, many
developers and designers of alternative architectures have benefited from this product.

Why Should You Read this Book?
There are not many books out there talking about firmware because it is not a standard
discipline that can be talked about generically. Every subject in the realm of firmware
can be a book of its own, and there have been books about UEFI, BIOS, Fast Boot,
RTOS, assembly languages, and so forth. There are also many system requirements and
constraints that can dictate how a firmware is chosen and written; therefore, it is a topic
that cannot be easily addressed holistically without an objective. Our objective is to show
you how you can take advantage of Intel Architecture, and how to prepare a firmware
stack for Intel microprocessors regardless of the firmware stack that you choose. There
will be areas that are not covered in this book, such as power management and secure
boot features, but readers can certainly find in-depth discussion of those topics in other
technical books in the market. This book is written to help you build a workable firmware
stack for Intel Architecture.

What Chapters Should You Read?
Since there are many interesting but distinctly different topics surrounding IoT device
firmware, busy readers can pick and choose the chapters to read and skip if needed.

If you are just curious about what firmware options you may have for IoT devices,
you may read Chapters 1 and 2 before diving too deeply into actual implementations.

If you are interested in developing a coreboot-based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 4.

■ introduCtion

xxv

If you are more interested in developing an EDK II–based firmware solution for Intel
Architecture, you can get a complete picture of the process by reading Chapters 1, 3, and 6.

If you are more curious about what Chromebook is about and how the firmware for
Chromebook works, you can read Chapters 1, 3, 4, and 5.

If you have heard about Quark and you are interested in building firmware for
Quark, you can read Chapters 1, 2, 3, 4, 6, and 7. Why do you need to read more chapters
for Quark? It is not because it is complicated, it is because it can be used in many
varieties of applications using different firmware stacks. If you want a complete picture
about firmware solutions for embedded applications and IoT devices, you should take
your time and read all of the chapters in this book. After all, this is the purpose of the
book: to give you a complete picture of the firmware solutions for IoT devices.

Hobbyists should be able to obtain a platform mentioned in the chapters, follow the
instructions to download the source trees and tools, build a firmware image to try on a
real platform, and enjoy the accomplishments.

Every firmware stack has its advantages and disadvantages; there will be situations
when a developer needs to pick a different and unfamiliar firmware stack for the
applications at hand. From time to time throughout the book, you might find some
unfamiliar terminologies. We will list them here for reference. If you are still puzzled by
a specific terminology, Wikipedia is probably the best resource to check. Internet search
engines may be the second best source, but careful filtering of information is needed.

Bootloader•	 : This term might be confusing from time to time. In
coreboot, bootloader is identified as the payload, which loads
the OS, but in some cases, bootloader is used to represent the
code from the reset vector to the hand-off point to an OS. The
definition changes based on context. Also, this term is mostly
used outside of the Intel Architecture (x86) world, where
hardware initialization is not as complicated. In this book, we
will not use bootloader to represent the complete firmware stack.
When you see this term in this book or outside this book, you
need to read the context to see which part of the firmware stack it
is referring to.

Firmware stack•	 : In this book, we use the term to represent all the
components in a firmware solution; there might be phases in the
boot process of a firmware solution, but the term firmware stack
will cover them all. We will also refer the firmware stack used to
integrate Intel FSP as the “host firmware”.

PI and UEFI•	 : Platform Initialization and Unified Extensible
Firmware Interface. These are two major standards governed by
the UEFI Forum. People are frequently using UEFI to represent
the modern firmware stack that boots 64-bit OS in a PC. “UEFI
BIOS” is frequently used to represent the firmware stack
developed based on UEFI and PI specifications. PI specifications
is a set of specifications that focuses on platform and silicon
initialization.

■ introduCtion

xxvi

BIOS•	 : Basic Input/Output Systems. This is a term that is used
“conveniently” to represent the firmware stack of a PC, even
though it is no longer the same 16-bit hardware abstraction layer
to interface with a 16-bit OS. Today, as a habit, people are still
using this term to call the firmware stack of a PC, even though the
firmware stack has become more powerful, more dynamic, and
has more features. You will see “legacy BIOS” and “UEFI BIOS”
terms in the book when we describe the implementations of PC
firmware stacks today. Some companies might still use “BIOS” in
the names of their products, but the purpose is to associate their
products to a more familiar terminology so that PC developers
understand the products better.

FSP•	 : Firmware Support Package. Intel FSP is the silicon
initialization module that Intel produces to encapsulate basic
silicon initialization code.

Microprocessors, CPU (Central Processing Unit), chips•	 : These three
terminologies are used interchangeably to represent the silicon
that does more of the general computing and control tasks.

I/O•	 : Input and output.

SoC, SOC, SIP•	 : Silicon-on-Chip, Silicon-in-Package. This
represents silicon designed to include more than one component
on a die or in a package; typically these components are CPU
cores, northbridge(s), I/O components, and other glue logic.
From the outside, they function as an integral unit.

Southbridge, northbridge, and companion chips•	 : Today’s SoC
still contains components that we used to call northbridge and
southbridge for two distinct functions that used be on different
sides of a front-side bus (or a high-speed point-to-point bus) that
connects all the components internal to the chip. Even though
internal buses have evolved in modern SoC designs, the names
northbridge and southbridge remain in many code bases to
represent the functions that used to be there: northbridge deals
with CPU, memory controllers, and other related features, and
southbridge deals with I/O–related features.

Obviously, this book cannot cover all of the peripheral knowledge that you might be
interested in. Here are online resources and links for further reading and research:

•	 http://www.intel.com/fsp

•	 http://www.tianocore.org

•	 http://www.uefi.org

•	 http://www.coreboot.org

http://www.intel.com/fsp
http://www.tianocore.org
http://www.uefi.org
http://www.coreboot.org

1

Chapter 1

Introduction

If you can fix a hardware bug in firmware, it’s not a bug but a
documentation issue.

—An anonymous hardware manager

What Is Embedded Firmware?
Since you are reading this book, you must have some understanding of what the words
embedded and firmware mean in the context of computer technology. There are quite a
few interesting discussions on the Web about the difference between firmware engineers
and embedded engineers. Some say that an embedded engineer is a software engineer
turning into a hardware engineer, and a firmware engineer is a hardware engineer turning
into a software engineer. There is some truth to this because most firmware engineers
learned how to design circuits in school, but there are definitely a lot of smart firmware
engineers out there with a computer science or nonhardware degree. Regardless, writing
firmware is a unique skill that deals with both hardware and software at the same time.
You need to know something about signal strength, timing, voltage, and at the same time,
data structure, algorithm, and modularity.

For the purposes covered in this book, let’s define firmware as the layer of software
between the hardware and the operating system (OS), with the main purpose to initialize
and abstract enough hardware so that the operating systems and their drivers can further
configure the hardware to its full functionality. To make embedded systems run faster
and be more robust, the relationship between the firmware and the OS is transitioning
from isolating themselves from each other to cooperating with each other. In the past, you
might have seen the same hardware initialized by the firmware first, and then initialized
again by a driver in the OSas shown in Figure 1-1; but in modern systems, you see more
effort in trying to eliminate redundancy between the firmware and the OS.

Chapter 1 ■ IntroduCtIon

2

Hardware design is also moving toward being more “software friendly” so that
hardware takes less effort to program. Self-initializing chips and a built-in boot ROM are
just two examples currently available in System-on-Chip (SoC). Due to the evolution
toward software friendliness, the heavy-duty hardware initialization responsibility has
been gradually shifted from the firmware to the drivers of the operating systems, and
the operating systems are relying less and less on firmware to carry out the hardware
initialization work. Some real-time operating systems (RTOS) and specialized operating
systems, such as Android and Chrome OS, are carrying out a lot of hardware initialization
functions with help from the hardware vendors. This is especially true when system
designers compartmentalize their design to a set of standardized hardware components
and constrain the hardware selection pool; in some cases, hardware configuration can be
achieved with a GUI (graphical user interface) -based configuration tool instead of relying
on rewriting programs in firmware or software.

The line between firmware and specialized operating systems is definitely blurring,
if not disappearing completely. The very minimum things that firmware has to do in a
well-coordinated environment are presenting a data structure of features that can be
further processed by OS drivers, such as an ACPI (Advanced Configuration and Power
Interface) table, and carrying out the tasks that can only be done more effectively by
firmware, such as memory controller initialization. When a seamless cooperation
between the firmware and the OS cannot be guaranteed, firmware still plays a significant
role in the system to make sure all system features are utilized properly. Therefore, no
matter what the design trend is, firmware remains a critical component in a system.

Let’s face it: firmware does have a troublesome reputation in the x86 world. In the dawn
of laptop computers, System Management Mode (SMM) was created to do many things
behind the back of the OS. System Management Interrupt (SMI) was not only nonmaskable,
but was also not controllable by the OS. Firmware would take its own initiative to blank the
display to save power, put the system to sleep when no user activity was detected, slow down
the clock when running on the battery, take care of battery warnings when they happened,
and react to Fn hot keys when they are pressed. These functions were not coordinated with
the OS, and they just happened, seemingly at random. Obviously, none of these are bad
features, but the amount of time it took to go through the process, and the adverse effects
(missing timer ticks, long latency in interrupt delivery, etc.) on the OS were too much for
the OS to ignore. Therefore, ACPI was created to allow the OS and firmware to coordinate
and cooperate on these features. The utilization of SMM has been gradually reduced over

Figure 1-1. The roles of firmware and device drivers during the boot process

Chapter 1 ■ IntroduCtIon

3

the years. In addition to some SMM firmware dealing with actions requested by ACPI and
security features, chip vendors are the only entities still using SMM to work around chip
issues when necessary.

Where Is Firmware?
Firmware is generally considered part of the hardware (rather than part of the software)
because it resides inside a hardware component, which is typically a Flash storage
device or ROM. However, when it comes to the programming language, the tools, and
the methodology a firmware engineer follows, firmware is clearly a type of software, even
though it is tightly coupled with hardware in most cases.

What Do Firmware Engineers Do?
Regardless of whether firmware engineers are hardware engineers turning into software
engineers, or the other way around, firmware engineers have a lot of interesting work
to do. One of the most important and challenging jobs that a firmware engineer does is
to make a new circuit board work when it is first manufactured, especially when most
components on the new board are also new. It is not a unique case to have many new
components on a brand-new circuit board because most hardware evolves in similar
cycles. In chip manufacturing companies, some firmware engineers’ only job is to bring
up and test a new chip on a new board. The combination of a new chip, new components,
and a new board not only makes debugging work much more complicated, but also
makes the preparation work much more challenging.

When a firmware engineer prepares for the bring-up of a new board, he or she does
not just wait for the hardware to show up, and then write the code; he or she needs to
read a lot of early specifications, such as datasheets, a couple of months before the new
board shows up. Since these specifications are mostly evolving, the information may
not be 100 percent correct. Firmware engineers need to help correct the information in
datasheets and write programming guides as they go through the debug process. In a
typical hardware-oriented company, firmware needs to be ready when the first circuit
board shows up. It is not acceptable for hardware to wait for firmware because hardware
is usually more difficult and more expensive to alter than firmware. Manufacturers want
hardware bugs to be discovered and fixed as early as possible. In the beginning, firmware
only needs to have enough functions to test the circuit board to determine if the new
components can be manufactured, but it is a lot of hard work to do it right the first time.

Firmware Preparation for New Hardware
During the preparation, firmware engineers need to figure out what to program, how to
program, and the sequence in programming the new components after they study the
materials available to them. The obvious challenge after writing the program for the new
components is to figure out how to test the new code before the new hardware shows
up at the door of their lab. Many manufacturers have simulators designed to test early
firmware and software, such as Intel’s Simics and AMD’s SimNow, but the usefulness

Chapter 1 ■ IntroduCtIon

4

of a simulator depends on the behavioral models written to simulate the hardware. The
accuracy and fidelity of the models in the simulation tool decide whether or not you can
find bugs and programming errors in your early firmware.

Besides simulators, FPGA-based emulators are also frequently used to test early
firmware and the circuitry inside a new chip. Compared to simulators, FPGA-based
emulators are much more accurate in representing the final hardware, but since they
are running in a much slower clock speed, timing-related issues may not be discovered
easily, and firmware is sometimes modified to accommodate the slower clock speed;
therefore, some parts of firmware are not well tested. In most cases, based on our
experience, these simulators and emulators actually deliver pretty solid results, and the
simulated and emulated firmware usually works when it is put on the real hardware for
the first time they integrate. Even with the help of simulators, it typically takes a couple of
days, weeks, or even months of effort to iron out all the hardware issues.

The Mystery of Bits
In the process of preparing a bring-up firmware, a firmware engineer spends a lot of
time figuring out what needs to be programmed into the microprocessor and chipset
by studying datasheets and specifications. In this case, literally, every bit matters. Even
though many bits will work in their default states, a single mistake in misinterpreting the
definition of a bit in a chip can turn the circuit board into a brick, and there are many bits
to be programmed from their default states in order to work properly.

A datasheet is like the Bible for firmware engineers (see Figure 1-2); it has almost
everything a firmware developer needs to know about the chip. Using a published
datasheet from Intel as an example, the datasheet for Intel® Communications Chipset
89xx Series, published in October 2012, contains 1,682 pages of useful register data. The
list of tables that are used to describe the registers span across 30 pages, with about 60
entries on each page.

Chapter 1 ■ IntroduCtIon

5

Learning and understanding what each bit does and does not do is as tedious
as sorting sand on a beach, especially when some of the data documented in the
datasheet does not provide as much detailed information as needed to understand how
to use it. Sometimes, it takes a lot of trial and error in the process. There are also many
undocumented bits that are there either for internal testing or for tuning purposes; these
bits are usually not documented inside a datasheet. Therefore, missing critical information
could be another challenge for firmware developers.

From time to time, a mysterious problem can stall the debug and development effort
for a long time, and the final solution is sometimes a mysterious bit that was somehow
discovered after scrubbing the design data. With a stabilizing feature set and better tools,
these kinds of problems are not happening as frequently in modern chips.

It is the purpose of early-stage firmware to find the problems of a newly designed
chip. Even though there are chip bugs that cannot be resolved without fixing the chip itself,
more often than not, a chip problem can be resolved with fixes in firmware; chip vendors

Figure 1-2. An example of a datasheet page

Chapter 1 ■ IntroduCtIon

6

frequently call these kinds of fixes “work-arounds.” If there is a work-around for a chip bug,
it usually involves a bit or a set of bits that need to be programmed or changed. Or, there
will be an algorithm developed to work around a problem only when certain conditions
are met. To apply a work-around with as little impact as possible to the existing software,
designers frequently suggest the fixes to be implemented in the SMM. Since SMM code
takes away operating cycles and time, these kinds of fixes are sometimes intrusive and
problematic. It is ultimately up to the designers to reveal the fixes after studying the original
design of the chip. Most of the time, the fixes are not obvious; the designers need to analyze
and figure out if there exists a setting of bits that could fix the problem, or check if they
should turn off certain new features that are not working properly. Even though a firmware
engineer may accidentally find a fix to resolve an issue through a trial-and-error process,
this is very rare these days—especially when the work-around involves an undocumented
bit or bits. Designers ultimately hold the key to resolving a chip issue.

How do undocumented bits exist? As stated earlier, when designers design a chip,
they put many configurable bits in a chip to help tune the chip or control features that are
supposed to be hidden from the programmers. They keep some of these bits undocumented
and locked so that no one can accidentally program them to cause unintentional damage
or adverse effects. There is a nickname for these bits, called “chicken bits.” The origin of this
phrase is unknown, but it may have something to do with the fact that these bits are scattered
everywhere in the chip like the food for chickens; or it may imply that the designers were too
“chicken” to show these bits to others, therefore hiding them.

There could be as many as 60,000 chicken bits in a chip, depending upon the
complexity, the functionality, and the size of the chip. This also explains why a chip
vendor cannot possibly document every programmable bit of a chip in a datasheet
or a programming guide, even if they wanted to try. As a matter of fact, most of these
chicken bits will never be documented, and a small portion of the chicken bits will be
documented only when they are needed to work around a chip problem. Many of you
may have heard of or even read an errata sheet from chip vendors; this errata sheet
frequently contains information for bits that were not documented before.

Programming Guides
When designers design a new chip, they will compile of a list of registers to support
various chip features. During the chip design phase, hardware engineers and firmware
engineers work with designers to design, simulate, and validate the chip. By doing this
together, the function of bits and bytes in registers are defined, refined, and documented
so that a comprehensive programming guide can be available at the same time that
the first chip shows up at a customer’s door, typically a manufacturer of a product
using the chip. In Intel, this programming resource is named the BIOS Writer’s Guide
(BWG) because it is designed to help BIOS developers write a BIOS for a PC to begin
with. For a modern chip like Quark, the name of the document has been changed to
the UEFI Firmware Writer’s Guide to distant itself from the term BIOS. Regardless, this
programming guide has all the information a firmware engineer needs to know beyond
programming a PC and for every embedded system as well.

In 1996, the BWG for the Pentium Pro was 73 pages long; but today, the BWG for
the BayTrail SoC is 440 pages divided in two volumes; it grew more than six times in
18 years. Not only the amount of information, but the complexity has increased as well.

Chapter 1 ■ IntroduCtIon

7

For example, the Pentium Pro BWG describes very basic programming information that
most people can probably figure out themselves after reading a few standard specifications
from Intel, like SMM, BIOS INT functions, and how to handle multiprocessor initialization
and so forth. In comparison, besides basic SMM multiprocessor topics, BayTrail BWG
uses 34 pages just to talk about MSR (model-specific register); other information
includes CPUID handling, the Microcode Update, SpeedStep, C-State Control, thermal
management, and more. This list is just the information contained in volume one. In
volume two, almost all the subjects require a domain expertise to understand, such as HD
audio, graphics, the HPET timer, xHCI, EHCI, DDR3, ISP, P-Unit, SIO, PCIe, PCU, TCO,
and so forth. (If you don’t recognize any of these acronyms, you get the point: modern-day
BWGs have become very specialized repositories of information.)

The programming guide not only specifies the features that can be customized by
the customer via programming the bits and bytes, it also methodically covers the many
bits and bytes that must be programmed with particular values in a fixed order to support
certain features.

Even if you have not been involved in debugging a new circuit board, you can
imagine that finding a bit-setting error in an ocean of bits is pretty painful. Does a chip
vendor need to put firmware engineers through a painful experience every time it
produces a new chip? If the programming guide is done right, firmware engineers should
not have to read through 440 pages of BWG to study what needs to be programmed just
to get the chip up to the point of providing its features. Firmware engineers have better
things to do than look at the programming guide to figure out which bits to flip and which
bytes to write; they should spend their valuable time developing value-added features to
help deliver a product with differentiating features.

The Intel® Firmware Support Package
Intel has taken the initiative to provide a way to encapsulate tedious chip initialization
code into a package: the Intel® Firmware Support Package (Intel® FSP, for short; we will
use Intel FSP and FSP interchangeably in this book). Obviously, there is more than one
way to ease the programming pain associated with chip initialization. For example,
releasing the full source code to allow people to view how it is done, or putting all the chip
initialization code in one binary to hide the complexity, or anything in between. Intel
has decided to go with the option to put all the chip initialization code in one place with
the hope that, once it is used in the firmware stack of your choice, the developers will be
able to quickly get over the chip initialization hump and move on to value-added features
development work.

Why would Intel produce Intel FSP for the embedded designs and the Internet
of Things (discussed shortly) in the first place? After all, Intel is already providing a
comprehensive reference code for each reference platform, and there is also an open
source EDK II codebase under Tianocore.org that allows people to study the UEFI
implementation. The problem is not about having reference code out there or not; it is
portability, scalability, and flexibility that developers are looking for, especially in the
embedded and IoT space where UEFI and PC architecture are not playing a major role as
things stand today.

Chapter 1 ■ IntroduCtIon

8

Intel recognizes that many developers have a hard time extracting chip initialization
code out of an EDK II codebase or from a BIOS to port to a different firmware stack or
to a different platform design. Going to IBV (Independent BIOS Vendors) to ask for
help is not always an option for some customers. Intel believes that there are a lot of
smart firmware engineers out there, and once these engineers get hold of a technical
specification, an industry standard, or reference code, they can produce a firmware
implementation without too much difficulty. The only thing that is missing for them is the
chip programming information.

That said, it does not matter how smart the firmware engineer is: he or she cannot
and will not be able to figure out how to program a new chip without help from chip
vendors. Over the years, some smart developers have tried to reverse-engineer what has
been done in an existing platform, but the process is long, hard, and error-prone.

In this book, we talk about Intel’s FSP solution; other chip vendors have also
provided similar packages or mechanisms to reduce the programming burden for
initializing basic chip functions, such as AMD’s AGESA (AMD Generic and Encapsulated
Software Architecture), and ARM’s boot ROM concept. This book will not discuss these
implementations, but they are efforts that chip vendors put out to ease the programming
challenges.

Since its launch in October of 2012, Intel FSP has been widely used in many
customers’ embedded designs, including customers who chose to convert from a
competing architecture to Intel Architecture. As you will discover in later chapters of this
book, Intel FSP can be easily integrated into an existing firmware stack to save you time
and energy in figuring out the information needed to program an Intel chip.

Note ■ Keep in mind that Intel FSp is not a stand-alone firmware stack. It does not have
all the ingredients to boot to an oS on its own; therefore, it must be integrated with a
firmware stack, such as BIoS, coreboot, rtoS, or other proprietary bootloader solutions.

The Uniqueness of Embedded Firmware
It is one thing to develop firmware for a general-purpose and open system such as a PC;
it is quite another thing to develop a firmware stack for a closed system with dedicated
functions. Over the last three decades, firmware engineers have almost perfected BIOS
(including UEFI) for the PC. The PC BIOS has the ability to deal with devices that come and
go anytime (plug-and-play) and to boot to any general-purpose OS (Linux, Windows), and
it is smart enough to learn about its environment (ambient light, battery status, and user
inactivity) to adjust itself to save energy. Arguably, it could be the most intelligent firmware
stack ever created. Over the last three decades, we have definitely seen the evolution of
BIOS, and we have witnessed a great improvement of quality in the BIOS realm.

Can the experience learned from the PC BIOS be applied to an embedded firmware
design? The answer is “yes” because there are many useful industry standards created
and implemented in the code.

Chapter 1 ■ IntroduCtIon

9

Can we use a PC BIOS stack on an embedded firmware design? The answer is
“yes, but…” because it depends on the purpose of the design. Many embedded designs
leverage PC architecture for cost and ecosystem support reasons. Since the designs
inherit all the characteristics of a PC, the PC BIOS and similar technologies could still be
the best choice for an open and general-purpose system if boot speed and the size of the
firmware stack are not issues of concern. There are also a lot of embedded designs that
are not based on PC architecture. In these cases, the PC BIOS and similar technologies
can be used, but will need a lot of effort to fit into the design; there are better firmware
solutions out there to choose from. In some cases, a PC BIOS just won’t work because the
special need for boot speed, a small footprint, real-time performance, and so forth, are
required.

Many mission-critical and time-sensitive designs require the system (hardware,
firmware, and software) to be deterministic and predictable among other special
constraints; many intelligent and dynamic configuration capabilities of a PC BIOS can be
prohibitors for those deterministic and predictable considerations. Some closed devices
designed without any upgradability do not need the flexibility of plug-and-play, heuristic
training algorithm, and bus enumeration techniques that are typical in a PC BIOS;
therefore, embedded firmware can sometimes be dramatically simplified. Finally, there
are more embedded designs asking for faster boot time and quicker response time, which
a typical PC BIOS cannot achieve. The rear-view camera in a vehicle, for example, needs
to be turned on within 2 seconds after the car engine is ignited; this is for safety concerns
and also a regulation requirement in many countries. Even though it is not impossible
for a PC BIOS to achieve faster boot time, the hardware and firmware stack used in an IVI
(in-vehicle infotainment) system is heavily customized to achieve this stringent boot-
time requirement. All of these unique requirements make a PC BIOS harder to fit into
embedded applications.

The Choice of Firmware Stacks
There are quite a few firmware options in the market, such as PC BIOS (including various
UEFI implementations), RTOS, open source stacks, and proprietary solutions. Each of
these firmware stacks has a specific purpose to fulfill, and we will discuss their special
usage models later in the book. We’ll also discuss how to work with different firmware
stacks using a common chip initialization module (in the next chapter, we’ll take a look at
a few of the options), and we will also talk about their pros and cons and how to make a
choice based on your needs.

Welcome to the Era of the Internet of Things
Due to the fast evolution of microprocessors, embedded systems are not only becoming
more intelligent, but also becoming more ubiquitous. Some of the devices we use today
will start to make decisions for us and even protect us from danger someday. There are
refrigerators that can order food for us when they are empty. There are thermostats that
can call the police when they detect an intruder in our house. There are cars that can
steer themselves out of danger when they are about to collide with another car. There
are a lot of more new ideas and new devices in the works to make you safer and make

Chapter 1 ■ IntroduCtIon

10

your life more convenient. The next wave of the technology revolution has arrived, and
it comes in the form of built-in connectivity and intelligence. People are calling these
intelligent and connected devices the “Internet of Things” or IoT. It takes a lot of creative
minds to conceive, develop, and refine such an IoT, and no doubt much of the work
needs to be done at the firmware and software level. The demand for the skill sets covered
in this book will increase in the foreseeable future.

Technical Coverage in This Book
This book covers topics related to embedded firmware stacks and an important ingredient
that enables them—Intel FSP. Since this book uses Intel Architecture as the centerpiece,
we focus on how Intel FSP works and demonstrate how it can be integrated into popular
firmware stacks; coreboot and EDK II examples are used in this book. We cover detailed
information about each of these two firmware stacks, including the internals and how to
work with them. The reader can pick and choose a particular subject and do a deep dive,
or the reader can choose to learn both of the firmware stacks in a holistic way. If you are
among the readers who are not using either the coreboot or the EDK II codebase, the
same principles and practices also apply to your own firmware stack once you have a basic
understanding.

This book does not cover the details of implementing specific features, such as
power management, device enumeration, graphics, audio/video, and other non-chip
related features. However, this book will touch upon the new Intel Quark family products
and talk about their firmware stack and detailed firmware architecture. Even though the
firmware strategies of some Intel products are not yet using FSP as the building block, you
can compare and understand the differences and the rationale behind the decisions.

There are not many books out there talking about firmware because it is not a
standard discipline that can be talked about generically. Every subject in the realm of
firmware can be a book on its own, and there have been books about UEFI, BIOS, Fast
Boot, and so forth, and many system requirements and constraints can dictate how a
firmware is chosen and written; therefore, it is a topic that cannot be easily addressed
holistically without an objective. Our objective is to show you how you can take
advantage of Intel Architecture, and prepare a firmware stack for it regardless which
firmware stack you choose. There might be areas that are not covered in great detail in
this book, such as integrating Intel FSP into a RTOS codebase, but hopefully the same
practices still apply.

The Future of Firmware
We have been witnessing an interesting phenomenon since the beginning of this century:
open source projects are gaining momentum, led by companies such as Google and
Facebook. Many legacy and proprietary software solutions are either disappearing or
losing steam very quickly; open source solutions are becoming a primary interest of
technologists at an amazing speed.

Even though this century is still young, we are riding on a fascinating wave that will
make the 21st century a distinctly different century than any other. The phrase “open source”
clearly connotes sharing and collaboration, in contrast to the waning business philosophy of

Chapter 1 ■ IntroduCtIon

11

protecting intellectual properties so that “we can win as an individual company.” What has
emerged is a new concept to tie business success to a collaborative ecosystem effort. Under
this new model, everyone has a chance to thrive in the ecosystem because innovation is
multiplied with the participation of many intelligent scientists, hobbyists, and engineers.

Will embedded firmware solutions be moving toward the same model that operating
systems and computing systems are currently going through? Yes, we can tell that the open
source model is impacting the firmware world in equal force in the last few years. Even
some of the traditionally closed solutions are adapting themselves to the open source
model as we write this book. For example, even though Tianocore was created as an open
source project by Intel years ago, the community did not thrive due to lack of crucial
components in the source tree. Until recently, many ARM developers have tapped into the
Tianocore source code to make it workable with ARM designs. Intel has also ramped up
its effort to provide an FSP component so that it can be successfully built for a platform in
distribution.

However, due to its many unique characteristics, firmware is a source of intense
debate because it is so tightly coupled with the hardware underneath, and hardware
still has IP that companies want to protect. The questions for chip vendors will always
be how much firmware can be benefited by the collaborative model, and how much
firmware is so chip-specific that there is nothing that needs to be collaborated on? For
example, if some of the chip code is fragile enough that only the designers can program
it right, does it make a difference if the code is open or not? If it is open, does it do more
harm than good? How about the code inside a boot ROM that is masked? Should that
code be open as well? What about the firmware that is currently outside an SoC? Where
is the boundary? What makes sense to be open and what does not? These questions may
be rhetorical, but the binary distribution format will gradually move away from being a
mechanism to hide features, and instead be a way to simplify its integration.

Putting these rhetorical questions aside for the moment, the open source model is
a trend that all chip vendors, BIOS vendors, and software vendors will continue to adapt
to. In the spirit of open source communities, the best of the best will emerge after all the
debates, arguments, and brainstorming. This book was written with the aim to enable the
open source community to thrive on its own and alongside proprietary solutions. It will
undoubtedly fall short of some readers’ expectations, and it may disappoint a few hard-
core open source enthusiasts. However, it is still a step toward the right direction to make
chip initialization a non-issue (or less of an issue) for open source communities.

We are all aware that the state of the art in chip engineering will continue to rapidly
evolve. New methodologies will emerge to make firmware development easier and
faster for the developers trying to bring innovative IoT devices to the world, and perhaps
subsequent editions of this book will cover those developments. In the meantime, we
welcome you to this discussion. Please read on.

13

Chapter 2

Firmware Stacks for
Embedded Systems

Computers themselves, and software yet to be developed, will
revolutionize the way we learn.

—Steve Jobs

If you have been doing BIOS work or read a book about it, you probably have an idea
about what firmware is doing for a PC. Firmware needs to do the following:

It needs to discover devices that are connected to a system bus•	

It needs to deal with devices disappearing and appearing anytime •	
during runtime

It needs to be prepared to boot any operating systems that are •	
written for the PC

It needs to wake up if an external stimulus occurs•	

It needs to adjust its backlight, clocks, and speed based on •	
the temperature, the power source, and the status of the user
(inactive or active)

However, embedded systems and IoT devices have some unique firmware
requirements from PC BIOS:

•	 Timeliness in responding to external stimuli (real-time behavior).
The examples are industrial precision machines. These machines
cannot tolerate any deviation from their specified error margins
during operation.

•	 Determinism during execution. The examples are missiles and
rockets. You probably don’t want to see these things taking
different software paths every time they fly out of their launch
pad; who knows what will happen if they act differently every time
they execute their software after launch? Results might be deadly
if the software is nondeterministic.

14

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

•	 Predictability of the outcome. The examples are industrial
machines and manufacturing robots. They need to deliver the
same result repeatedly without deviating from its programmed
behavior; otherwise, the produced items may not be usable.

•	 Closed system with fixed function. The examples are the set-top
box and GPS. The software running inside these things are doing
one function (or a few functions) very well without errors.

•	 Closed system with limited expansion. The examples are the Mars
Rover and home appliances. Once these things are delivered
(departed Earth or sent home), the software inside should not
need to deal with components coming and going in the systems,
because a closed system can safely assume no expansion after
certain points.

•	 Fast boot time. The examples are rearview cameras of cars, mobile
phones, and home appliances. These things need to boot fast
for either safety reasons or for a better user experience. It was
very annoying when some early Blu-ray DVD players took a long
time to be ready to play DVDs, because no consumer electronic
devices should take more than a few seconds to be ready (at least
this is not what consumers are used to).

•	 Small footprint. The examples are wearable devices, sensors,
and software that needs to be certified. Big software frequently
needs bigger storage devices, and they tend to be error-prone and
difficult to certify.

•	 Security and reliability. The examples are point-of-sale (POS)
terminals and in-vehicle-infotainment systems (IVI). In IVI, you
probably don’t want a software crash in the DVD player of the
system to bring down the GPS, radio, and phone connection,
and you do not want your credit card information stolen during
checkout at a store; isolation of mission-critical and nonessential
elements are, therefore, very important for some applications.

•	 Fixed boot target. The examples are Chromebook and IVI.
These devices only have one boot target in mind (ChromeOS or
embedded Linux); therefore, the firmware does not need to worry
about having a general-purpose boot loader interface ready to
boot any OS. A direct-boot interface can not only save code space,
but also boots faster because shortcuts can be taken.

These are just the common requirements for embedded firmware. As you can see,
they are very different from PC firmware. Still, each embedded system design can have
its own requirements that may or may not come from the preceding list, or it may have
multiples of these characteristics.

In addition to these requirements, embedded systems tend to have a longer life
cycle than PCs; therefore, the cost of extensive and deep customization can be justified.
Why is this important? Because a highly customized solution can deliberately violate

15

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

some commonly known design principles to achieve the best and optimized outcome—a
perfect product for the very niche market. The reusability and the ability to leverage a
horizontal technology may suffer, and the sustaining effort may be expensive, but some
products are never meant for service after being sold in the market. Therefore, a lot of
firmware stacks, especially commercial off-the-shelf (COTS) products, focus more on
ease of customization than anything else. Some software companies even have products
designed for specialized markets with special certification requirements, such as avionics
and military applications where safety and security are the main concerns.

When we examine the list of unique firmware requirements for embedded systems,
we know some of these requirements can be achieved by specialized OS or RTOS.
These specialized systems sometimes consist of a well-designed microkernel instead of
a monolithic kernel; they also may have a customized firmware stack that is designed
for ease of adding and subtracting components. Some of the requirements need the
involvement of a virtual machine monitor (VMM); therefore, picking, integrating,
customizing, and designing components in these firmware stacks can be an art
sometimes.

Despite all of these unique requirements, there are still embedded designs that can
be based on a familiar and ubiquitous PC architecture, such as industrial controllers,
vending machines, POS, switches, and routers. Not necessarily because PC architecture
is the best for these applications, but because the advantages of using a well-established
and well-tested architecture sometimes outweigh the cost and disadvantages.

This is particularly true when developers want to reduce the design cost: they can
simply buy off-the-shelf PC motherboards. It is easier to get ecosystem support, and may
shorten the development cycle as well. The developers who have decided to leverage PC
motherboards can still decide on whether or not to use PC BIOS. If the developers want to
boot nothing but Linux and would like to replace the existing BIOS on the motherboard,
they can certainly do that. There are many pros and cons to consider when picking the
right firmware stack for your product.

Is a One-Size-Fits-All Solution Possible?
Ever since computer science emerged as a popular subject in the academic world, people
have been trying to invent solutions that are as flexible as possible and to cover as much
ground as possible. It is a challenge to come up with a smart design that works in all
scenarios and meets all the requirements in the world. Unfortunately, no matter how
hard we try, we have not succeeded in creating something that can deal with extreme
requirements effectively. For example:

Can we have a firmware stack that is optimized for a closed •	
system while keeping the capability to boot a general-purpose OS
and run general-purpose applications in an open system?

Can we have a firmware stack that is not only optimized for a •	
dedicated function, but also to support a computing environment
that is capable of expanding into other functions?

16

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

Can we have a firmware stack that is optimized for speed while •	
maintaining the capability for exhaustive device discovery
mechanisms and heuristic self-adjustment capability?

Can we have a firmware stack that is optimized for size with the •	
smartness to resolve device dependencies on the fly?

Can a firmware stack be smart and intelligent, but at the same •	
time deterministic and predictable?

Although it is not impossible, it is extremely hard to support extreme requirements
using the same firmware stack. And even if this difficult design goal was achieved, the
source code would probably be too complicated to read, or the build process would be
too convoluted to comprehend. Regardless, a few people are trying to make a one-size-
fits-all solution; one of the attempts is the UEFI firmware stack. Supported by Intel, HP,
AMD, Dell, and other partners, there is still much research and development needed
in making the UEFI firmware stack fit into fast and small applications beyond the PC
paradigm. We shall see the results in a few years.

The motivation of promoting a one-size-fits-all solution could be based on the desire
to reduce the support cost, but there are many alternatives available to customers. The
following are some firmware solutions that typical customers of embedded systems are
looking for.

Microkernel
Microkernel is frequently associated with RTOS, but it can be designed without real-
time elements. The difference between a microkernel and a monolithic kernel is the
responsibilities carried out inside the kernel. A monolithic kernel typically handles all
the privileged tasks and system services in the kernel (such as file systems, interprocess
communication, I/O, and a scheduler), while a microkernel does only basic process
communication and I/O control, leaving the user space applications to provide services
such as a pager, file systems, a virtual machine monitor, and so forth. Linux and Windows
have monolithic kernels, and microkernel is frequently used in the operating systems
designed for embedded applications in a closed system. The advantage of a microkernel
is its size, flexibility, and the ability to handle mission-critical tasks in a tightly controlled
manner. The main drawback of a microkernel is its lack of common features, and the fact
that adding extra features can be costly and time-consuming.

Real-Time Operating System (RTOS)
For our daily computing needs, we seldom need RTOS because the tasks we typically
carry out on a computer are either transformational or interactive.

Transformational tasks are the tasks we submit to a computer, and then the
computer executes the task and gives us the result. When there is no task, there is no
result. For example, if you calculate 2 + 3 on a soft calculator on the computer, a result
of 5 is generated after you submit the task for calculation. When you submit a software
source code for compilation, the software source code is the input, and compiled results
(binaries, symbols, and executables) are the output after transformation.

17

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

Interactive tasks are those that occur when your computer responds to your requests,
and vice versa; when there is no request, there is no action. When you type a character in
a Word document or play a game on a computer, it is considered to be an interactive task
between you and the computer. Every key you type on the keyboard becomes a task that
the computer needs to handle, and then displays the text or image on the screen to give
you the feedback you are looking for. The computer will also request that you take actions
when dialog boxes are displayed, and keyboard commands are sometimes needed during
games and with other interactive software.

The only time you will need to consider using RTOS is when you have a reactive
system, which needs to respond to external stimuli in a timely manner. Although with
many tasks the device handles could still be transformational, the actions are secondary
to the main requirement. It is most important to respond to the stimuli and finish the
tasks associated with the stimuli in a timely manner. Therefore, the major design goal is
not about how fast or how many tasks the device can handle, but the ability to deal with
a peak load when many stimuli are happening at the same time and to complete all the
tasks invoked by the stimuli within the time specified by the design requirement.

The design of the kernel of a RTOS is mostly based on a preemptive scheduler, which
responds to interrupts according to preset priority, and won’t let go of the task until it
is finished. In comparison, a GPOS (general-purpose operating system) typically uses
a time-based, round-robin scheduler to ensure fairness. There are exceptions to both
camps, but scheduler design is the main difference between the two categories.

There are many RTOS vendors owning a great deal of embedded markets, such
as Wind Rivers, Green Hills, QNX, and so forth. There are also many open source
and proprietary RTOS projects, such as FreeRTOS, eCos, and so forth. At the time
this book is written, there are more than 160 RTOS offered for various platforms and
usage cases under different licensing terms. Among them, at least 120 of them are still
active. This means that the needs are so diversified and so customized that any niche
market can spawn a RTOS of its kind. For this very reason, many big RTOS vendors
also offer a few RTOS products for the specialized markets that they serve, most
notably, avionics and military.

Legacy BIOS
Even though legacy BIOS is becoming less and less popular, it has transformed itself into
a “payload” or a “compatibility module” for a very specific reason: to boot and run legacy
software. There are still designs offered by many companies that require legacy BIOS to
boot DOS, Linux, and 32-bit Windows (such as Vista, XP, and Windows 7). A legacy BIOS
can be a stand-alone BIOS, or it can piggyback on a host firmware stack as a payload,
such as SeaBIOS for coreboot, or it can be a module in a firmware stack to perform the
compatibility boot, like compatibility support module (CSM) for UEFI firmware stack.
Legacy BIOS is not necessarily old or obsolete, because some of the BIOS vendors and
developers are still updating their code base to support newer hardware and CPUs. Most
users of legacy BIOS are self-sufficient because updates are rare and support is scarce; a
few IBV (independent BIOS vendors) are still doing business with legacy BIOS, but the
revenue stream from legacy BIOS is quickly dwindling to a minuscule level compared to
its mainstream business—UEFI-compatible products.

18

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

Implementations of the UEFI Framework
A firmware implementation of UEFI Framework is a firmware stack primarily for booting
a 64-bit OS. It is modular at every stage of the boot process; therefore, supporting a new
device can be added individually with flexibility. During the debug phase, a new device
driver can be loaded and tested separately without reprogramming the whole flash
device. There is also a Dependency Expression Grammar in the core to allow modules to
be loaded in the order decided by a dependency expression, instead of an order that is
statically programmed. There are many other clever designs in the UEFI firmware stack.

This UEFI firmware stack has been widely adopted by BIOS vendors, OEMs, and
ODMs. It has become a de facto code base for booting 64-bit OS from the Microsoft and
the Linux communities. The ARM community has also started to use the open source
tianocore.org for 64-bit ARM support.

Open Source Firmware Stacks
Even though various Linux communities have been in existence for a long time, and they
have established a very healthy and prosperous ecosystem, open source communities
for firmware projects had not been as successful in terms of participants, number
of platforms, and ecosystem support. It is changing because more and more silicon,
hardware, and software companies, such as AMD, Google, Sage Electronic Engineering,
and Intel, are getting involved.

The major difference between the communities for Linux and the communities for
firmware is their dependency on hardware vendors and silicon vendors, and this factor
also contributed to their progress in recent years. Most of the Linux development and
collaboration work can be done without thinking too much of the hardware or firmware.
The exception is the drivers, but even with drivers, they rely less on firmware, and more
on direct hardware manipulation. In the past, the abstraction of hardware was mostly
provided by a layer of firmware using tables and runtime services, but this model is
changing to minimize the dependency on firmware beyond basic hardware abstraction
tables. Thanks to the involvement of more hardware companies that are willing to
contribute directly to the Linux development communities and are committed to write
device drivers for their own devices, the overall performance and reliability of the systems
has improved over the years. As a result, the user experience of Linux has also improved,
and Linux has gained a lot of popularity from developers who did not treat Linux
seriously in the past; like an upward spiral, when Linux gains popularity, more hardware
companies are willing to be involved in contributing to the Linux source code. Even
if there is a lag in the contribution from a key hardware vendor, it will not stall a Linux
development project completely; missing a device driver may cause inconvenience when
the corresponding device is not functioning correctly or is not accessible, but the other
parts of the system will remain functional, and development work associated with the
kernel or applications will not be completely blocked by the missing device support.

In contrast, lacking support from a key hardware or silicon vendor could be a
death sentence for an open source firmware project. Even if a hardware initialization
sequence can be reverse engineered, it may take a long time for developers to come
up with an implementation to satisfy the needs of a community. The dependency on

19

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

hardware vendors can determine the health of an open source firmware community; for
example, U-Boot developers are having more success than coreboot because ARM and
PowerPC architectures are considered more “friendly” and easier to program from the
firmware perspective, and they have less dependencies on hardware vendors. That is
also why board-level projects based on Intel Architecture are lagging: it has been hard
to get support from Intel in the past, since Intel has not been very active in open source
firmware until recently. With the introduction of Intel FSP and Google’s usage of coreboot
in the Chromebook products, the situation is quickly changing, and Intel has become
actively involved in contributing silicon code to these communities. Although Intel
FSP is distributed in binary format as the book is written, Intel has also been releasing
complete source code for Quark families. The debate on whether or not a binary solution
is acceptable to an open source community remains, but for the purpose of helping these
communities to quickly get the key components they need, regardless of which format
the support code is distributed, it is a good starting point.

Note ■ a quote from http://www.coreboot.org/pipermail/coreboot/2014-
November/078930.html: “my personal take on this is that i would rather see coreboot run
75% free on a billion machines out there than 100% free on 1000 machines. because that
will ultimately leave the project in a better place of negotiating future ports and leaves the
whole ecosystem with a higher percentage of free software total.” —by Stefan rainaure in
answering the debate of binary modules in coreboot.

As mentioned in the previous paragraph, the two better-known open source firmware
communities are coreboot and U-Boot; tianocore or EDK II open source communities
are also getting more attention due to ARM’s 64-bit movement. Among these open source
firmware communities, coreboot, tianocore, and EDK II have been traditionally focusing
on x86 platforms, and U-Boot has been used widely in the ARM and PowerPC designs. In
later chapters, we will dive deeper into the coreboot and EDK II sides of development and
practices.

This book will not discuss the different licensing agreements and terms offered by
open source communities, but it is nonetheless a very important topic to study before you
are fully committed to an open source project. Licensing agreement topics can usually be
found in the open source community web sites.

Proprietary Firmware Stacks
Per the survey done by EE Times in 2013, about 24% of the companies surveyed are
using in-house or homegrown software and firmware stacks for their embedded designs.
We won’t be able to show an example of these firmware stacks in this book, but this is
certainly a viable option, and the same principles and examples shown in this book will
apply to these in-house designs, especially when industry standards, specifications, and
sample code are easily obtainable for the designs that require them. Regardless what
choice a company makes, the design principles and methodologies for developing a

http://www.coreboot.org/pipermail/coreboot/2014-November/078930.html
http://www.coreboot.org/pipermail/coreboot/2014-November/078930.html

20

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

robust firmware stack to meet design requirements are common to all. You can go for an
extremely customized proprietary solution, or an open source solution with reusability
in mind, or even something in between. Hopefully, silicon companies such as Intel are
no longer a roadblock for your development work. Read on and learn how you can take
advantage of Intel FSP and Intel’s full source code releases for Intel products for the
IoT markets.

Make or Buy
Even though a PC ecosystem and an embedded ecosystem will not overlap in most cases,
many Independent BIOS Vendors (IBVs) and Independent Software Vendors (ISVs)
provide solutions and services to customers in both ecosystems. However, the business
models in the two ecosystems are quite different: some IBVs and ISVs need to take a
different approach when facing customers from different segments. Customers have a
choice to buy the service from these IBVs and ISVs, or to develop a firmware stack on their
own, and the decision to make or buy a firmware stack/solution can be complicated, and
it depends on many questions, such as:

•	 Do we have ongoing products that we need a firmware stack for? If
the products are ongoing and last for many years, either building
a long-term relationship with a vendor, or working in-house
with dedicated resource should work better. Buying a short-term
service contract or changing vendors along the way could be
problematic because the switching costs could be higher.

•	 Is there a turnkey solution out there? If the product has become
a commodity and there are turnkey solutions available in the
market, it might make sense to take advantage of an existing
solution to save time and cost. In this case, it might make more
sense to put as few resources as possible on the firmware creation,
or pay someone to customize an existing solution.

•	 Do we need source code to modify after the project is done? If
there is no engineering resource in the company, source code
availability is not too much of an issue. But, some companies with
a low-touch development model may have one or two engineers
helping resolve customers’ issues, and then they need to have
access to the source code in order to do some modifications. If
this is the case, the company can decide on hiring a vendor for
everything from cradle-to-grave, including support, or pay for a
contract that allows them to own the source code after it is done
with all the features. Some vendors may not be willing to give the
source code as part of the deal. Be aware.

21

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

•	 Who can do it faster with the domain knowledge? Many vendors
will try to convince you that they can do it faster with lower cost,
but you might want to check their domain knowledge in the field
you intend them to work in. Sometimes a blocking issue is not
necessarily a technical or programming issue, but rather that the
domain knowledge is not easily obtainable. If you know a domain
inside out, you might want to assess the risk involved in teaching
your vendor to learn everything from you. After you teach the
vendors to obtain the domain knowledge, they may use it to serve
other customers, and these customers of theirs might happen to
be your competitors.

•	 Who needs to maintain the code after it is done? Anyone who has
developed or implemented firmware can attest that shipping
a product is just the beginning of a headache, no matter how
good your quality control process is. Who has the source code
and who can provide support are the issues to think about early
in the decision-making process. If you don’t like going back to
your vendors after the contract is over, you might want to pay for
a long-term contract, or maintaining the code in-house from the
beginning.

•	 Are there special intellectual properties (IP) and differentiators
in the firmware? This is an important question to ask because
any noncommodity product may have a few areas that you can
differentiate on; once the differentiators are in place, they may be
considered as IP. Do you feel comfortable sharing this knowledge
with a vendor? We have seen a lot of cases where the vendors have
become the main competitors, who turned around and outsold
the original owner of the IP.

•	 Related to the previous question, do we need to control our own
destiny (to protect IP and differentiators)? One way to protect IP
and differentiators is to not share the code with anyone, but keep
it to yourself; however, this does not mean that vendors cannot
protect your secrets for you. In most cases, carefully designed
non-disclosure agreements, once in place, can adequately protect
your IP. But, you cannot protect IPs forever. The intangible
experience the vendors accumulate during the projects cannot
only serve you better over time, but could also potentially be used
to serve others.

•	 Can we get the attention from our vendors when we need their help
during emergencies? Most vendors are very reliable in dealing with
emergencies, but if your company is small in size, or the volume
of your product shipment is smaller than that of other customers
of your vendor, you might want to make sure that you have a plan
to deal with emergencies if you don’t plan to do in-house design.

22

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

•	 Which way is more cost effective: NRE (Non-recurring engineering),
royalty, or internal resource? This is a pure financial assessment
that you have to make to determine whether you prefer to pay for
a one-time contract or to save upfront costs by sharing your future
profit. In-house engineering is an investment that you can make if it
makes financial sense after comparing different business models.

The Advantages of Outsourcing
The following are the obvious advantages of outsourcing:

IBVs and ISVs usually have early access to programming •	
information and silicon samples before most customers do. Silicon
vendors treat ecosystem vendors with a higher priority to give
them more privileges so that they can help enable the industry.

IBVs and ISVs have more experience because they frequently deal •	
with many customers at once; if there is a tough blocking issue
facing you, mostly likely they have dealt with it or are working on
it— unless you are the first customer to discover it. You may be
able to leverage what they have learned before you do.

IBVs and ISVs have built their business model around services; •	
therefore, there will be fewer surprises when issues arise. For
example, they know how to get help and where to get help when
encountering issues, and it could be hard for you to do the same
effectively if you haven’t dealt with issues regularly.

Why do it in-house if the product is already a commodity? •	
Outsourcing is a better option when there is no differentiation to
be done for the product. Examples are tablets and phones: they
have become such commodities that the hardware selection is
limited and turnkey solutions are widely available. One cannot
say that there is no innovation left, but the hardware and firmware
are pretty much set in most cases.

The Disadvantages of Outsourcing
The following are the disadvantages of outsourcing:

Lack of knowledge of what is implemented. If you are curious •	
about what has been done for you by a third-party vendor, be
prepared to get lost unless you also invest your own resources to
monitor the design.

Lack of capability to sustain a product. If you plan to sustain a •	
product after a release done by a vendor, you may not have the
knowledge and experience to carry it out effectively.

23

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

Sometimes vendors don’t share the source code or the knowledge •	
they learned from making the product work. In this case, the
next project is going to look new to you even if it shares common
components.

Sometimes vendors charge money for additional support, even •	
though they picked up the knowledge while working on your
product.

In-House Development
After analyzing the pros and cons of the outsourcing model, let’s take a look at the
following advantages of developing in-house:

Despite many tedious technical challenges, the knowledge •	
belongs to the company after the project is done.

It is easier to maintain and sustain a product if you own the •	
resulting source code and technology. Some vendors provide the
source code to you after the project is done, but you will still need
to understand the codebase if you are not familiar with it.

It is easier to add differentiating features if the product is not yet •	
a commodity. Although it is also possible through vendors, it is
more reliable if it is done by internal resources, and it is easier to
protect the IP in the product.

In recent years, the reason for not doing in-house development has been cost
concerns. At the beginning of the twenty-first century, it was trendy for companies to
eliminate their internal resources to rely on external vendors. Initially, it seemed to
provide a cost advantage, but those who blindly followed this model were hurt not only
financially, but also from a technology leadership perspective. Many “sold the farm”
(gave away their know-how) just for the sake of doing outsourcing.

Whether or not to leverage an external vendor is sometimes a complicated
decision, but not always; many companies have tried different models in their practices.
Sometimes the short-term cost benefits of using external vendors bring long-term
disadvantages; sometimes internal resources investment is wasted when insurmountable
obstacles cannot be overcome in a reasonable time.

It is hard to tell if you can save money in the long run if you outsource, and it is also
hard to tell if you will be better off financially if you do things in-house, because the
trade-offs can go either way. You, being an expert of firmware in your company, need to
make the recommendation carefully.

24

Chapter 2 ■ Firmware StaCkS For embedded SyStemS

Summary
There is a lot of common-sense discussion related to “choices” in this chapter. The purpose
is to help readers gain a general understanding of the choices they can make when facing
a decision that has short-term and long-term implications on a product. In the following
chapters, there are in-depth examples and programming steps and results that will equip
you with practical knowledge to make intelligent design decisions for your products.

25

Chapter 3

Intel® Firmware Support
Package (Intel® FSP)

“Simple can be harder than complex: you have to work hard to get your
thinking clean to make it simple. But it’s worth it in the end because once
you get there, you can move mountains.”

—Steve Jobs

Over the years, Intel has made several firmware products to support the embedded industry;
most of them are either BIOS, UEFI Firmware, or something with the flavor of these two.

Intel enables its customers to design products around its chips by (like every other
silicon vendor) making a Customer Reference Board (CRB) to showcase its new chips and
its features. Intel, like other silicon vendors, expects customers to either copy or leverage
what Intel has done with hardware, firmware, and software on the board, so that their
designs can quickly go to the market for sale.

After three decades of perfecting the PC ecosystem and supply chain, the PC system
development process for planning and designing chip and board features has become
extremely efficient. The efficiency covers every link from top to bottom in terms of parts
selection, vendor roadmap, software development, technology interception, distribution
channels, marketing practices, to final sales online or in the brick-and-mortar shops.
Everything is done in a well-tuned rhythm, and very few companies would miss a beat or
have a hiccup in the process.

The efficiency of the PC industry can be a blessing as well as a curse. Due to the
maturity of the ecosystem, the selection-choices of hardware components, software,
and peripherals are gravitating toward a standard set of choices. These choices become
more and more limited, and products are becoming more and more homogeneous
even though the number of vendors is increasing. At the same time, the hardware,
firmware, and software interfaces and architectures are also gravitating toward a few
comprehensive standards, such as Wi-Fi, PCI, ACPI, UEFI, USB, Display Port, HDMI,
Bluetooth, and so forth. Innovation and breakthroughs can still happen in these confined
areas, but it is harder and harder for innovators to stand out in the crowd. Consumers
may have a preference on brands, but there is hardly any reason to be loyal to a brand.
The “cool” factor of Apple Mac products is one of the few remaining examples of strong
product differentiation in an increasingly homogenized market.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

26

Compared to the PC industry, the embedded market and the emerging IoT industry
are more vibrant and versatile. They are not as mature as the PC industry, and are not as
well-regulated by standards and specifications. However, the embedded market does not
live in chaos. Each vertical segment of the embedded market still has its own regulations,
standards, supply chain, and practices; they are just not as organized or homogeneous as
the PC industry.

Therefore, trying to provide a horizontal solution across all segments and verticals
is harder to achieve in the embedded market. Since the embedded market is about
customization and diversification, and the life cycle of the devices is typically longer
than a typical PC device, solutions for the industry need to be tailored to the needs of the
designs for the vertical segments instead of the other way around.

This was the challenge that Intel was facing with firmware enablement strategies
before Intel FSP was introduced. Since not all embedded market customers are leveraging
PC architecture, they struggled with the firmware choices—or the lack of choices.

In 2010, Intel produced the Intel Boot Loader Development Kit (BLDK) to help
developers customize an existing CRB and its BIOS. Intel BLDK was a good idea, but
fell short of expectations, because even though it provided most of the source code for
customers to customize, it was not very useful when customers wanted to alter their
designs or use a completely different firmware stack for their boards.

After a few years of gathering feedback and prototyping, Intel announced the Intel
Firmware Support Package in October 2012. It was not an answer to all the challenges, but it
was a simple solution to support versatile needs of designs and choices. Intel FSP contains
only the silicon initialization code that can be integrated into any firmware stack. Once
integrated, developers can design the rest of the firmware stack for value-added features.

If you are confused by BIOS, BLDK, and FSP, let’s compare these three offerings
using automobile metaphors. The reference BIOS on a CRB is like an 8-cylinder, fully
loaded SUV: powerful, impressive, and with all the features you can dream of. BLDK, on
the other hand, is like a customizable VW Beetle with a lot of accessories and parts to
alter the design and to customize its look. But, the Beetle is still a car in a fixed frame.
If you plan to build a different kind of car, whether it is a race car, a sand buggy, or a
military tank, it is not impossible, but it is hard to pick the parts you need from an SUV or
a Beetle to build the car you want.

Using the same analogy, metaphorically, Intel FSP is like an engine, which is needed
by every car. Obviously, in reality, cars of different models use different engines, but in the
firmware case, the engine for initializing a silicon is identical whether you are building a
server, a desktop, a laptop, a set-top box, or a wearable device. If a silicon vendor does it
right, it is very possible to share the same silicon code for all market segments.

Intel FSP is the engine that provides the silicon initialization code for Intel chips.
Each Intel silicon and its companion chip will have their own Intel FSP. There is no
super FSP that encapsulates multiple silicon families, simply because it is not necessary.
The goal is to keep FSP small enough that it can be utilized in the most compact and
size-constrained environment. In Intel’s case, the programming information is mostly
documented in a BIOS Writer’s Guide (BWG) or UEFI Firmware Writer’s Guide, which are
confidential documents that only privileged customers can obtain (after signing a
non-disclosure agreement with Intel). If you are a developer who does not want to
understand or debug Intel’s code, and you have no interest in reading hundreds of pages
of a BWG, you can simply take the Intel FSP, integrate it into your firmware stack, and let
the magic of Intel FSP work for you.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

27

Once executed, Intel FSP initializes the memory, programs the system address
space, and initializes the input/output (I/O) controllers of the microprocessor and its
companion chip. You will be able to run the next stage firmware stack to do whatever
you like to do from this point on. Obviously, you still have a lot of work to do to initialize
the rest of the platform, but the good news is that the rest of the system depends less on
silicon vendors, but more on industry standards, publicly available specifications, and
your own design recipes. There is even reference code and sample code to help you finish
the features that are commonly available in a system.

The Intel FSP Philosophy
As discussed in Chapter 1, Intel believes that there are a lot of smart firmware engineers
out there in the embedded industry. Intel knows that some of them are looking for
turnkey solutions, with which they don’t have to do anything besides turning knobs on
a GUI-based tool. Intel also knows that some of them are looking for completely open
source solutions that bring total freedom in creating customer-specific firmware stacks.
Besides the 100% GUI-tool users and 100% open source users, there are many engineers
who need to work with hybrid solutions because their code bases are either proprietary
or have a lot of customized features to be added beyond standard features offered by the
reference designs.

No doubt in people’s mind, silicon vendors know their chips inside out because they
design them; therefore, providing Intel FSP to encapsulate the chip initialization code
that Intel knows the best makes sense. Developers who choose to leverage Intel FSP will
have a better starting point with a new Intel chip than relying on a self-learning process
from reading programming manuals.

Intel FSP does not have features that are typically available in reference BIOS from
Intel (such as secure boot, PCI Bus enumeration, power management, etc.). The reason
why these features are not included is because Intel does not want to burden everyone
with code they may not need. Intel wants to keep the FSP footprint as small as possible.
For this reason, a developer may feel lost if he or she has been depending upon Intel
to deliver the additional features in the reference BIOS, but the good news is that these
features have publicly available specifications, standards, and even sample code to
follow or copy. Obviously, the bad news is that the developer will have to somehow
implement these features in the firmware stack if they need the features. If the developer
is implementing them from scratch, it could be hard, but this is the price the developer
has to pay when switching away from the reference BIOS model. Whichever way the
developer chooses to acquire the features (do it himself/herself or pay someone to
do it), the developer has a better starting point with Intel FSP than with a reference
BIOS because of the additional freedom provided by FSP. Hopefully, as the ecosystem
for supporting Intel FSP grows, there will be more and more ISVs involved to provide
firmware solutions different than BIOS. Additionally, once the code for these peripheral
features is done, most of the code is reusable and can last for a long time. For example,
PCI bus enumeration code, even though is complicated, does not change between
generations of chips. Most of the power management and secure boot features do not
need an overhaul once the foundation is built.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

28

It is really all about additional freedom provided by Intel FSP; it is not an answer to
all the firmware needs associated with Intel Architecture. If you have a design that heavily
leverages Intel CRB and standard features, you are probably better off with a standard
BIOS solution; it does not likely make sense to start a new firmware stack to replace your
existing BIOS. However, if you are starting from scratch, or if your design is significantly
different from a traditional PC, you might want to consider the options involving Intel
FSP. Intel FSP addresses a niche market where the developer doesn’t use PC architecture
or when the developer does not plan to use BIOS. Therefore, don’t jump onto the Intel
FSP bandwagon until you know your ultimate goal.

What Is in Intel FSP?
Later in this book, we will show you where to download Intel FSP. At the FSP download
site on the Web, you will find self-extracting executable packages (in .exe format for
Windows or in .tgz files if you are exploring Linux options).

After you download the file in .exe or .tgz format for your favorite OS, you can
extract the contents from the file by executing the .exe file or by using your favorite Linux
unpacking utility. And, you can find a couple of items in your expanded folder:

A subfolder called Documentation, which contains an integration •	
guide and release notes.

A subfolder called FSP, which contains an FSP binary file (with •	
an .fd file extension), a Boot Setting File (BSF, with a .bsf file
extension), and two subfolders with sample header files and
source code.

A subfolder called Graphics. This folder is optional. When it •	
exists, it contains graphics components that you might need, such
as a VGA BIOS image.

A subfolder called Microcode, which contains the microcode •	
patches available at the time of the release of FSP. The microcode
patches can be updated independently of FSP, as well as when
you must download the latest ones to make sure that they match
with the microprocessor used on your board.

There are additional files, such as the licensing agreement, a ReadMe (describing the
contents of FSP), and so forth. These are not important to the discussion of this book. There
is an important tool available—the Binary Configuration Tool—on the same download
page, but it is a separate download file. We will discuss this tool later in the book.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

29

We will explain each item in more detail, but a hard-core open source software
engineer may already have a question about why Intel ships only a binary file, not the
source code. Currently, there are a couple of reasons. Intel may change the design and
deliverables in the future.

Intel FSP still has some IP-protected code inside; therefore, until •	
this code can be properly protected or cleared for protection, Intel
does not have a near-term plan to release it in an open source
repository. However, you may have discovered that Intel has
already released 100% of the source code for the Intel® Quark™ SoC
X1000 Series; therefore, Intel is gradually removing the barrier of
IP protection. It may take a few years to see Intel completely open
all the source code at this level.

Intel wants to eventually move basic silicon initialization code •	
inside the silicon one day; therefore, a binary file is isolated
enough that it can pave the road for future silicon inclusion.
Many silicon vendors have already included a Boot ROM inside
their SoC. Since the code inside the Boot ROM is for the purpose
of initializing the SoC, it should not be a concern if silicon
initialization code is isolated and protected somehow. Intel FSP
does offer a way to customize its internal configuration with the
BCT tool; thus it further eliminates the need to change what is
inside Intel FSP.

Many vendors release binary files to abstract silicon and hardware •	
code. This practice has been in existence for many decades; for
example, the Option ROM on plug-in cards contains a binary
code that initializes the hardware on the card. VGA BIOS still
exists in the form of Option ROM, even though there is no longer
a plug-in card. This abstraction has been working out nicely in the
PC industry because it provides a simple interface and isolation
so that the cards can be sold separately from the motherboards.

Being a binary, it can be interfaced with a firmware stack without •	
being dynamically or statically linked into the host firmware.
In this way, it can help eliminate the concerns of open source
codebase using General Public License (GPL) when integrating.
Because this book does not provide legal advice and there are a
few different versions of GPL, you need to double-check with your
legal department to decide what is OK and what is not OK.

That said, Intel does realize that many hardware and firmware engineers need source
code to bring up or power-on a brand-new board in order to debug a problem when the
board is not functioning after the power is applied. Intel offers source code to customers
under a special software license agreement (SLA). It is beyond the scope of this book to
discuss how to obtain source code from Intel; therefore, you should contact Intel’s sales or
field engineers to ask for details.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

30

As previously discussed, even though Intel FSP is a binary file, it needs a provision to
customize its internal states and features; therefore, it has reserved a data region inside
the binary for customization. The data area also contains a couple of platform-specific
parameters that Intel FSP would otherwise have no knowledge about, or would initialize
the board with default values. The Boot Setting File (BSF) plays an important role for this
purpose. It is basically a text file that contains firmware internal settings associated with the
board; for example, the SMBUS (System Management Bus) address of a SPD (Serial Presence
Detect) ROM on a DIMM (Dual Inline Memory Module) is one of the data in the BSF.

$gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr1 1 byte $_DEFAULT_ = 0xA0
$gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr2 1 byte $_DEFAULT_ = 0xA2

A sample BSF can be found in Appendix A.
The data in BSF is represented in a GUI-based tool, which allows developers to

visualize the meaning of each component in BSF. With the GUI and BSF, it is collectively
called a Binary Configuration Tool (BCT). There are three versions of BCT: one runs
under Windows, one runs under Linux, and the third is a command-line option under
Linux. Figure 3-1 shows a BCT tool for Windows.

Figure 3-1. Binary Configuration Tool (BCT) GUI

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

31

The last part of Intel FSP is the header files and sample code. These files are for
developers to include in their firmware stack to develop the interface code with Intel FSP;
therefore, developers can include these files in the firmware stack or re-create the files
based on these files. For example, fsp.h under the include directory, looks like this:

#include <stdint.h>
#include "fsptypes.h"
#include "fspfv.h"
#include "fspffs.h"
#include "fsphob.h"
#include "fspapi.h"
#include "fspplatform.h"
#include "fspinfoheader.h"
#include "fspvpd.h"

#define FSP_HOB_RESOURCE_OWNER_FSP_GUID \
{ 0x69a79759, 0x1373, 0x4367, { 0xa6, 0xc4, 0xc7, 0xf5, 0x9e, 0xfd, 0x98, 0x6e } }
#define FSP_NON_VOLATILE_STORAGE_HOB_GUID \
{ 0x721acf02, 0x4d77, 0x4c2a, { 0xb3, 0xdc, 0x27, 0xb, 0x7b, 0xa9, 0xe4, 0xb0 } }
#define FSP_HOB_RESOURCE_OWNER_TSEG_GUID \
{ 0xd038747c, 0xd00c, 0x4980, { 0xb3, 0x19, 0x49, 0x01, 0x99, 0xa4, 0x7d, 0x55 } }
#define FSP_HOB_RESOURCE_OWNER_GRAPHICS_GUID \
{ 0x9c7c3aa7, 0x5332, 0x4917, { 0x82, 0xb9, 0x56, 0xa5, 0xf3, 0xe6, 0x2a, 0x07 } }
#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \
{ 0xbbcff46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, 0xd4, 0xf3, 0xb3, 0xf6, 0x4e } }

//
// 0x21 - 0xf..f are reserved.
//
#define BOOT_WITH_FULL_CONFIGURATION 0x00
#define BOOT_ON_S3_RESUME 0x11

Intel FSP Binary Format
Since Intel FSP is a binary file, it needs to be organized in a standard way that the data
inside can be easily found and retrieved. What are things you need to find inside the Intel
FSP? The two most important interface points are the application programming interface
(API) and the configuration region.

Intel FSP chose to follow UEFI’s Firmware Volume (FV) layout format. Don’t be
alarmed if you are not familiar with Platform Initialization (PI), UEFI, or FV. FV is just a
layout format that dictates how the data inside is organized. If you want to learn more
about FV, please find more information in the Appendix or look it up on the UEFI web
site. The diagram in Figure 3-2 shows the FV layout format.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

32

Figure 3-2 shows an FV where Intel FSP resides, but Intel FSP can be split into
multiple FVs due to the needs of secure boot and other features. For example, there can
be one FV that contains part of the code that needs to be certified and signed, and there
can be another part of the code that is customizable for developers; therefore, the latter
can exist in a different FV so that the second part can be certified or signed separately
from the first one. The other case that warrants the separation of the FVs is where one
part can be masked after production and the other part can be updated in the field. Intel
FSP provides the flexibility to be used in different ways.

A few key ingredients are in the Intel FSP binary:

FSP information header region for configuration data•	

Offsets pointing to API entry points and the configuration data •	
region

The APIs themselves•	

The FSP information header provides a basic FSP image signature, a base, size
information, and the offsets pointing to the API entry points and the configuration region.

The following shows the FSP information header:

typedef struct {

 UINT32 Signature; // Off 0x94
 UINT32 HeaderLength;
 UINT8 Reserved1[3];
 UINT8 HeaderRevision;
 UINT32 ImageRevision;

Figure 3-2. Intel FSP binary Firmware Volume (FV) layout

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

33

 CHAR8 ImageId[8]; // Off 0xA4
 UINT32 ImageSize;
 UINT32 ImageBase;

 UINT32 ImageAttribute; // Off 0xB4
 UINT32 CfgRegionOffset;
 UINT32 CfgRegionSize;
 UINT32 ApiEntryNum;

 UINT32 NemInitEntry; // Off 0xC4
 UINT32 FspInitEntry;
 UINT32 NotifyPhaseEntry;
 UINT32 Reserved2;

} FSP_INFO_HEADER;

As you can see, offset numbers are provided here in the sample header structure:
148 bytes (0x94 is the hexadecimal number) from the top of the file is the starting point of
the FSP_INFO_HEADER; 164 bytes (0xA4 is the hexadecimal number) from the top is the
identification string of the FSP binary; 180 bytes (0xB4 is the hexadecimal number) from
the top is the location that contains the offset to the configuration region; and 196 bytes
(0xC4 is the hexadecimal number) from the top is where the three pointers to the three
APIs are located. Later on, we will talk about why the offset values are important to know.
These numbers may change based on the platform. Please check the documentation
that comes with each Intel FSP release—particularly the Intel FSP Integration Guide—to
obtain the latest offset values.

The configuration data region stores platform-specific information; some
parameters are customizable during runtime by the firmware stack, and some are fixed
once configured—thus static once they are manipulated by the BCT. Details will be
discussed later. The pointers to the APIs and the APIs themselves are part of the FV, and
they will be discussed in later sections as well.

Sample Boot Flow
The boot process starts from the Reset Vector after power is applied. In modern
computers, many things have already happened before the first fetch of the opcode
located at the Reset Vector of the CPU, such as microcontroller firmware and
management engine firmware. In a secure boot implementation, the management
engine in the system can hold the reset signal to the CPU until it deems that the firmware
running the CPU is trustworthy and safe to run.

As shown in Figure 3-3, once the firmware stack is allowed to execute, the CPU will
fetch its first instruction from the Reset Vector, which is located at top of the 4-gigabyte
physical memory space, minus 16 bytes (or FFFFFFF0, in hexadecimal value). This
address is hardwired in the Intel microprocessors during reset, and the location should
fall inside the Flash ROM if you have designed your board correctly. In the design of future
microprocessors, this physical address of FFFFFFF0 may change to allow more flexibility.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

34

At this point, the firmware stack inside the Flash ROM will begin to execute; the first
thing it needs to do is quickly exit the “reset mode” and enter a more permanent 32-bit
Protected Flat Mode. This “32-bit Protected Flat Mode” is a loaded term, but it is basically
a mode that allows you to access 4 gigabytes of “flat” physical address space with the
existing segment register and selector settings. After entering this 32-bit Protected Flat
mode, the firmware stack has a powerful execution environment to access code and
memory mapped I/O anywhere within the 4-gigabyte range.

However, even with the power to access the 4-gigabyte address range, you still
cannot do too much without memory and I/O devices; therefore, the firmware stack
should be initializing the memory controller and the companion I/O controllers as soon
as possible so that it can actually run its code inside the faster DRAM (instead of the slow
Flash ROM) and access I/O devices in the system. This is where you will run into the first
headache in dealing with a new silicon from a silicon vendor. In Intel’s case, you may use
Intel’s Memory Reference Code (MRC) directly if you can get one, or you can download
Intel FSP that contains the MRC.

Since MRC is very complicated, we recommend you not to touch MRC. If you
understand DDR (Double Data Rate) memory technology, you know that MRC contains
the memory training algorithm to try to find the sweet spot of the operating speed, signal
strength, and other parameters for the DRAMs in the system; whatever algorithm Intel
(or any other silicon vendor) has developed inside MRC, it is robust, optimized, and
validated. You should not touch the code if you don’t have a reason to do so. However,
you might want to customize your design; for example, bypassing memory training when
you have a soldered-down or fixed memory configuration. But this so-called “Fast Boot”
path is also provided inside MRC; it is typically an option provided by the Intel FSP BCT
configuration tool. You can achieve this “Fast Boot” by simply turning a bit on and off

Figure 3-3. A sample boot flow involving Intel FSP

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

35

inside the tool. FSP will automatically apply the fast boot option when a valid NVS
(Non-Volatile Storage) data region is provided by the firmware stack. The NVS data region
contains the memory parameters that can be used repeatedly by Intel FSP.

Note ■ DDr technology is quite delicate; the training algorithm exists for a reason.
the “sweet spot” of operation may change over time due to temperature, aging, and other
factors in the environment; therefore, the parameters stored in the nVS may not work all the
time unless careful error margins are built in, and a failover mechanism is provided when
the parameters in nVS no longer work. the memory training may need to be executed again
to acquire new parameters when old parameters do not function.

As shown in Figure 3-3, Intel FSP does more than just memory initialization; you
should use it rather than dealing with MRC directly. Intel FSP also loads microcode
patches and initializes companion I/O controllers for you. In addition, it sets up a small
amount of temporary memory using cache or SRAM before DRAM is initialized, so that
you can execute code more efficiently before the system memory is fully initialized.

Therefore, once the host firmware stack transitions to the 32-bit Protected Flat Mode,
it can look for the first Intel FSP entry point and jump into it. The first thing that Intel FSP
does inside the first FSP API is load microcode patches, and then initialize a small region
of temporary memory. Once the temporary memory is set up, Intel FSP returns control
back to the host firmware stack. Why? Because the next step Intel FSP is about to do is to
initialize DDR memory, where a memory training algorithm will be conducted, and it can
take 100 milliseconds to 300 milliseconds to finish, depending upon the board layout, the
amount of memory, and which DDR technology is used. If you have something important
and urgent or devices that can be turned on early to allow the electronics to be stabilized
before the OS starts (e.g., the LED backlight, HDD spin-up, etc.), you can do it before
memory is initialized. Some firmware stacks take this opportunity to verify the integrity of
the next stage of boot code to ensure that the code running next is secure and trust worthy.

Once pre-memory initialization work is done by the host firmware, it can once
again call into the second entry point of Intel FSP. This time, Intel FSP is going to finish
the memory initialization and the companion chip initialization altogether. Once this is
done, upon return, the host firmware will be able to see 4 gigabytes of memory available
for them to use. There are many techniques in firmware to look beyond 4 gigabytes, such
as memory hoisting (moving memory above 4 gigabyte to fill the memory holes created
by Memory Mapped I/O); but the best way to access memory above 4 gigabyte is to
transition to 64-bit long mode, although most embedded firmware stacks don’t do that
unless they are designed to boot a 64-bit OS. Some firmware stacks will remain in 32-bit
mode until the last minute before booting a 64-bit OS; it is up to the firmware developer
to decide when to switch to 64-bit mode if it is necessary.

At this point, Intel FSP has done its job and leaves the rest of the platform
initialization work to the host firmware. The following chapters will be walking you
through two firmware stacks as examples for carrying out the platform initialization work.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

36

There is another entry point of Intel FSP that we have not talked about—
NotifyPhase. NotifyPhase is an entry point for the host firmware to call back to Intel FSP
after PCI bus enumeration and before booting an OS, because there are things to be
adjusted, locked down, and cleaned up; as an example, the TSEG register will be locked
so that no one can mess it up after booting an OS.

Once NotifyPhase returns the control to the host firmware, the firmware is ready to
transition control to a payload or an interface to boot an OS.

Is this the only way to go through the boot process? Of course not; this is a typical
boot process for a system based on PC architecture. For a system without PC bus or
graphics, or closed without expansion, the boot process can be different or simpler, and
Intel FSP can still be part of the boot process to initialize silicon features.

One thing should be very clear to you now: Intel FSP is not a firmware stack
itself. It needs to be integrated into one. And, Intel FSP contains only the basic silicon
initialization code; more sophisticated features need to be carried out by the host
firmware stack; for example, power management, bus enumeration, ACPI, and so forth.

A rough estimation of the Intel FSP size is between 100 and 300 kilobytes, and it
can finish all the tasks within 100 to 300 milliseconds. These size and performance
estimations are all tied to the CPU type, and the size and performance of MRC dominate
the overall estimation because it is the biggest and slowest code inside Intel FSP.

The boot flow shown in Figure 3-3 may change in the future, when new requirements
for Intel FSP show up; for example, Intel FSP may provide more hooks to allow host
firmware to carry out actions in between various Initialization tasks.

Locating the Entries of Intel FSP
Since Intel FSP is a binary image, the host firmware stack needs to find the image of Intel
FSP soon after it starts running from the reset vector. Once Intel FSP is found, it needs to
find the entry points pointing to the three APIs that we mentioned in the section about
Boot Flow. There are two ways to find the pointers to these APIs.

The Hard Way to Find Intel FSP APIs: Use Data Structure
A developer can certainly follow the predefined and standard FV data structure to parse
the data in an FV binary. All you have to do is trace through the data structure and look
for header and data regions that contain relevant FSP data.

The first step is to find the base address of the FV where Intel FSP resides. This
is where you physically put the FSP binary image. Many Intel FSP binary images are
designed to exist at a physical address, such as 0xFFFF8000. A developer can customize
the location by rebasing Intel FSP to a different location by running the BCT, which will be
discussed later. As you read the data out of the FV and match it against the data structure
of EFI_FIRMWARE_VOLUME_HEADER, defined in a standard UEFI header file for FV,
you can basically follow the hierarchy of the data structure and look for the data you need.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

37

typedef struct {
 UINT8 ZeroVector[16];
 EFI_GUID FileSystemGuid;
 UINT64 FvLength;
 UINT32 Signature;
 EFI_FVB_ATTRIBUTES_2 Attributes;
 UINT16 HeaderLength;
 UINT16 Checksum;
 UINT16 ExtHeaderOffset;
 UINT8 Reserved[1];
 UINT8 Revision;
 EFI_FV_BLOCK_MAP BlockMap[];
} EFI_FIRMWARE_VOLUME_HEADER;

FSP_INFORMATION_HEADER is a firmware file that is placed as the first firmware
file within the FV. All firmware files have a GUID that can be used to identify the files,
including the FSP header file. The FSP header firmware file GUID is defined as
912740BE-2284-4734-B971-84B027353F0C.

The host firmware stack can find the offset of the FSP header within the FSP binary
by following these steps:

1. Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV
header and skip the standard and extended FV header.

2. The EFI_FFS_FILE_HEADER with the FSP_FFS_
INFORMATION_FILE_GUID is located at the 8-byte aligned
offset following the FV header.

3. The EFI_RAW_SECTION header follows the FFS File Header.

4. Immediately following the EFI_RAW_SECTION header is the
raw data. The format of this data is defined in the
FSP_INFORMATION_HEADER structure.

The following is a sample code snippet that does the previous steps in a stackless
environment. Since the code will be executed in a stackless environment, assembly code
is preferred. In this example, we use the C language for easier readability.

//
// Validate FV signature _FVH
//
 if (((EFI_FIRMWARE_VOLUME_HEADER *)ptr)-> Signature != 0x4856465F) {
 ptr = 0;
 goto NotFound;
 }
//
// Add the Ext Header size to the Ext Header base to go to the
// end of FV header

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

38

//
 ptr += ((EFI_FIRMWARE_VOLUME_HEADER *)ptr)->ExtHeaderOffset;
 ptr += ((EFI_FIRMWARE_VOLUME_EXT_HEADER *)ptr)->ExtHeaderSize;
//
// Align the end of FV header address to 8 bytes
//
 ptr = (UINT8 *)(((UINT32)ptr + 7) & 0xFFFFFFF8);
//
// Now ptr is pointing to thr FFS Header. Verify if the GUID
// matches the FSP_INFO_HEADER GUID
//
 if ((((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[0] !=
0x912740BE) ||
 (((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[1] != 0x47342284) ||
 (((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[2] != 0xB08471B9) ||
 (((UINT32 *)&(((EFI_FFS_FILE_HEADER *)ptr)->Name))[3] != 0x0C3F3527)) {
 ptr = 0;
 goto NotFound;
 }
//
// Add the FFS Header size to the base to find the Raw section
// Header
//
 ptr += sizeof(EFI_FFS_FILE_HEADER);
 if (((EFI_RAW_SECTION *)ptr)->Type != EFI_SECTION_RAW) {
 ptr = 0;
 goto NotFound;
 }
//
// Add the Raw Header size to the base to find the FSP INFO
// Header
//
 ptr += sizeof(EFI_RAW_SECTION);
NotFound:
 __asm__ __volatile__ ("ret");

All of these data structures are provided in FSP header files in the package; therefore,
you can develop a generic solution to locate FSP APIs.

The Easy Way to Find FSP APIs: Use Hard-Coded
Constants
If you are more concerned more about saving a few bytes here and there, or a few
nanoseconds or microseconds here and there, and you are not worrying about changing
code for every platform you build, you may consider using hard-coded constants to find
the FSP APIs.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

39

For example, the offset constant OFFSET_OF(FSP_INFO_HEADER) is defined as
0x94 for BayTrail platforms. It is the offset from the beginning of the FSP binary. The next
important offset constant is OFFSET_OF(FSP_BASE), which is defined as 0x1C (28 bytes
from the beginning of FSP_INFO_HEADER). The FSP_BASE must match the location
where you put the FSP image in Flash. Then we have three pointers pointing to Intel FSP’s
three APIs located at offset constants from the beginning of FSP_INFO_HEADER: 0x30,
0x34, and 0x38, respectively. They are 4 bytes apart because these offsets are 32 bits long.

Using these offset constants, you may find the following:

The first API (TempRAMInit) entry point at the physical location •	
of (FSP_BASE + *(UINT32 *)(FSP_BASE + OFFSET_OF(FSP_
INFO_HEADER) + 0x30))

The second API (FspInit) entry point at the physical location of •	
(FSP_BASE + *(UINT32 *)(FSP_BASE + OFFSET_OF(FSP_INFO_
HEADER) + 0x34))

The last API (NotifyPhase) entry point at the physical location of •	
(FSP_BASE + *(UINT32 *)(FSP_BASE + OFFSET_OF(FSP_INFO_
HEADER) + 0x38))

Programming Interface: The APIs of Intel FSP
Now you know how to find the three APIs inside of Intel FSP. It is time to understand what
they are and how you should interface with them.

TempRamInit
As described in the “Sample Boot Flow” section, this FSP API will load the microcode
patches, enable the code cache region specified by the host firmware, and set up a
temporary stack to be used until the main memory is initialized. There are a couple of
input parameters for passing in: the microcode patch base address and its size, and the
host firmware code region base address and its size. The microcode patch mechanism
built in FSP will try to load the correct microcode patches for the silicon by matching its
CPUID and the ID of the patches; if no matching one is found, the API will return an error
code. This is a typical error that the developer will face when he or she is not familiar with
Intel microprocessors and the microcode patching mechanism.

The other input parameters are firmware code region base and size. They are used
to enable the code cache to speed up the execution of the code in Flash. Here is the data
structure of the input parameters:

typedef struct {
 UINT32 MicrocodeRegionBase,
 UINT32 MicrocodeRegionLength,
 UINT32 CodeRegionBase,
 UINT32 CodeRegionLength
} FSP_TEMP_RAM_INIT_PARAMS;

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

40

Since the host firmware is supposed to blindly jump into TempRamInit after finding
its address, how does Intel FSP know where to return to after TempRamInit is done?
A trick called “ROM-based stack” is used here. It is basically a trick to point the ESP
(Stack Pointer) register to a location in ROM where a return address is stored. When the
TempRamInit code is done, all it has to do is execute a “ret” instruction, which will pop
the return address from the location pointed by the ESP register, and the Instruction
Pointer will point to the next instruction that the host firmware specifies. Besides the
return address, the input parameters will also be stored there so that TempRamInit can
simply look at the “stack” and retrieve the input parameter as if it is running a subroutine
written in the C language.

The following is an example of what the ROM-based stack looks like. ESP will be
loaded with the address tempRamInitStack, where it contains the return address as
temp_RamInit_done, and also the pointer to the input parameters—tempRamInitParams.
The microcode patches–based address and length are passed in here.

tempRamInitParams:
 .long _ucode_base # Microcode base address
 .long _ucode_size # Microcode size
 .long 0xfff00000 # Code Region Base
 .long 0x00100000 # Code Region Length
tempRamInitStack:
 .long temp_RamInit_done # return address
 .long tempRamInitParams # pointer to parameters

This API should be called only once after the system comes out of the reset, and it
must be called before any other FSP APIs. The system needs to go through a reset cycle
before this API can be called again; otherwise, unexpected results may occur. The sample
implementation of find_fsp_info_header and tempRamInit are listed next as an example:

prepare to find FSP header
 lea findFspHeaderStack, %esp
 lea _fsp_rom_start, %eax
 jmp find_fsp_info_header
findFspHeaderDone:
 mov %eax, %ebp # save fsp header address in ebp
 mov 0x30(%ebp), %eax # TempRamInit offset in the header
 add 0x1c(%ebp), %eax # add FSP base to get the API address
 lea tempRamInitStack, %esp # initialize to a rom stack
#
call FSP PEI to setup temporary Stack
#
 jmp *%eax
 temp_RamInit_done:
 addl $4, %esp
 cmp $0, %eax
 jz continue

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

41

#
TempRamInit failed, dead loop
#
 jmp .
continue:
#
Save FSP_INFO_HEADER in ebx
#
 mov %ebp, %ebx
#
setup bootloader stack
ecx: stack base
edx: stack top
#
 lea -4(%edx), %esp
#
call C based early_init to initialize meomry and chipset.
pass the FSP INFO Header address as a paramater
#
 push %ebx
 call early_init
#
should never return here
#
 jmp .
.align 4
findFspHeaderStack:
 .long findFspHeaderDone
tempRamInitParams:
 .long _ucode_base # Microcode base address
 .long _ucode_size # Microcode size
 .long 0xfff00000 # Code Region Base
 .long 0x00100000 # Code Region Length
tempRamInitStack:
 .long temp_RamInit_done # return address
 .long tempRamInitParams # pointer to parameters

If this function is successful, ECX and EDX registers will be returned to point to
a temporary but writeable memory range available to the host firmware with FSP_
SUCCESS stored in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. At this point, the host firmware
is free to use the whole range described. Typically, the host firmware can reload the ESP
register to point to the end of this returned range so that it can be used as a standard stack
now, and the C-style function call can now be used; in other words, the programming
language can be switch to the C language after this API is called. Since there is only
limited space, the host firmware should not try to do crazy things using this memory
range. Stack is probably the only function that the host firmware should consider using
until the main memory is initialized by the next API.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

42

Developers should also be aware that this returned range is just a subregion of the
whole temporary memory initialized by the TempRamInit function; Intel FSP maintains
and consumes the remaining temporary memory. It is important for the host firmware
not to access the temporary memory beyond the returned boundary.

FspInitEntry
As shown in the sample boot flow diagram in the previous section, once Intel FSP hands
over control back to the host firmware after TempRamInit is executed, the host firmware
can choose to do a few things before calling the next API—FspInitEntry. Since this
upcoming API initializes the memory, the CPU, and the companion chips, it may take a
few hundred milliseconds before the host firmware gains control again; therefore, the host
firmware can utilize this opportunity to carry out some pre-memory initialization work;
for example, turn on the LED backlight, spin up the hard drive, or turn on other hardware
components that need time to stabilize their electronic and mechanical states. The host
firmware can also choose to verify components for secure boot purposes before continuing.

Since FspInitEntry deals with CPU, memory controller, and companion chips,
it is highly dependent on the silicon it is associated with. Therefore, even though the
input parameter is consistent among all Intel FSP as a pointer to a data structure, the
contents of the data structure will be defined differently by each FSP release. They will be
documented in the Integration Guide. The prototype of the input parameter is as follows:

typedef
FSP_STATUS
(FSPAPI *FSP_FSP_INIT) (
 INOUT FSP_INIT_PARAMS *FspInitParamPtr
);

And, the data structure is shown as the following:

typedef struct {
 VOID *NvsBufferPtr;
 VOID *RtBufferPtr;
 CONTINUATION_PROC ContinuationFunc;
} FSP_INIT_PARAMS;

Within the data structure, NvsBufferPtr points to the data buffer with data that needs
to be stored into and retrieved from a non-volatile storage device. In the very beginning—
the first time the host firmware calls the API—this parameter is NULL, and Intel FSP
will return the data in the Hand-Off Block (HOB) after this API is executed. The data can
then be stored in the non-volatile storage device for later usage by the host firmware. For
subsequent boots, the data can be passed in by the host firmware to the FSP to handle
special cases, such as S3 resume or fast boot.

RtBufferPtr points to the data buffer used for runtime configuration. For example,
the “StackTop” pointer pointing to the top of the host firmware stack after memory is
available; the pointer pointing to the configuration data region that contains customized
configuration settings; and the boot mode, which is the flag to tell Intel FSP to optimize

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

43

its initialization flow. This S3 resume path (i.e., resume from a sleep state using existing
memory contents) is used to optimize the boot speed by using the memory parameters
passed in (instead of going through the memory training code). It can also be used for
soldered-down memory configuration, or after the first boot when there is no change
in memory configuration and when memory training parameters remain valid. There is
not a “Fast Boot” flag to reflect the need to skip memory training, but FSP will look at the
input parameter, NvsBufferPtr, to determine if it should skip memory training or not. If it
is NULL, it will not skip, and if there is a valid pointer stored in NvsBufferPtr, it will skip
the memory training code. This can save potential boot time up to 100 milliseconds.

typedef struct {
 UINT32 *StackTop;
 UINT32 BootMode;
 VOID *UpdDataRegPtr;
 UINT32 Reserved[7];
} FSP_INIT_RT_COMMON_BUFFER;

ContinuationFunc is a pointer to the “continuation function” address, where Intel
FSP will jump back to after the execution of this API is done. After the FspInitEntry API
completes its execution, it does not return to the host firmware from where it was called,
but instead returns control to the host firmware by jumping to the continuation function.
The jump is accompanied by two parameters: the Status and the Pointer of a HOB list that
contains the hand-off data from Intel FSP to the host firmware.

typedef VOID (* CONTINUATION_PROC)(
 IN FSP_STATUS Status,
 IN VOID *HobListPtr
);

Why are we using an input parameter, continuation function’s address, as the return
address? The reason why a simple return is not used after FspInitEntry is done in this
case is because after memory is initialized, the old stack using temporary memory will be
destroyed, and a new stack will be set up in its place. The transfer of contents in a stack
can be done, but this is very risky due to compiler compatibility issues, and the old stack
may no longer have valid contents after the transition; for example, a pointer to a local
variable in the old stack will still point to the old stack. Even after migration, it is more
reliable if we simply jump to an address passed in as a parameter.

Like the previous API, this API should be called only once.

NotifyPhase
This API is used by the host firmware to notify the FSP after finishing certain phases
during the boot process, so that Intel FSP can take appropriate actions as needed for
these phases. The actions and phases are platform dependent and will be documented
with each FSP release. Examples of boot phases include “post pci enumeration” and
“ready to boot.”

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

44

The FSP will lock the configuration registers to ensure system security and reliability.

#define FSPAPI __attribute__((cdecl))
typedef UINT32 FSP_STATUS;
typedef FSP_STATUS (FSPAPI *FSP_NOTFY_PHASE)
(NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr);
typedef enum {
 EnumInitPhaseAfterPciEnumeration = 0x20,
 EnumInitPhaseReadyToBoot = 0x40
} FSP_INIT_PHASE;
typedef struct {
 FSP_INIT_PHASE Phase;
} NOTIFY_PHASE_PARAMS;

void FspNotifyPhase (UINT32 Phase)
{
 FSP_NOTFY_PHASE NotifyPhaseProc;
 NOTIFY_PHASE_PARAMS NotifyPhaseParams;
 FSP_STATUS Status;

 /* call FSP PEI to Notify PostPciEnumeration */
 NotifyPhaseProc = (FSP_NOTFY_PHASE)(fsp_info_header->ImageBase +
fsp_info_header->NotifyPhaseEntry);
 NotifyPhaseParams.Phase = Phase;
 Status = NotifyPhaseProc (&NotifyPhaseParams);
 if (Status != 0) {
 printf("FSP API NotifyPhase failed for phase %d!\n",Phase);
 }
}

Intel FSP Output
As initialization progresses, a lot of system information and configuration data are collected
in the process. The data needs to be passed to the host firmware so that it does not need to
rediscover this data on its own. While Intel FSP is discovering the data, it builds a series of
data structures called Hand-Off Blocks, or HOBs, and fills them with useful information,
such as total memory size and so forth. The data structures conform to the HOB format, as
described in the PI specification Volume 3: Shared Architectural Elements, which can be
downloaded from www.uefi.org/specifications/ under the latest specification listed on
the page. HOBs are the only conduits between Intel FSP and the host firmware once Intel
FSP is done with its work. Therefore, the user of the FSP binary is strongly encouraged to go
through the specification mentioned earlier in order to understand the HOB design details
and create a simple infrastructure to parse the HOBs, because the same infrastructure can
be reused with different FSPs across different platforms.

The specification mentioned earlier describes about nine different HOBs; most of the
information may not be relevant to a particular host firmware. It’s up to the host firmware
to decide how to consume the information passed through the HOBs produced by the FSP.

http://www.uefi.org/specifications/

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

45

Regarding how you know which information is important and which information is not
important, you need to examine the data structures and decide what is needed by the
platform initialization code, and then retrieve the data from the data structures, as needed.
The data structures can be different from platform to platform, and new data can be
available as new features and new requirements are developed.

API Execution Status
The host firmware can check the status after each API call. The following are the statuses
for TempRamInit:

FSP_SUCCESS: Temp RAM was initialized successfully.•	

FSP_INVALID_PARAMETER: Input parameters are invalid.•	

FSP_NOT_FOUND: No valid microcode was found in the •	
microcode region.

FSP_UNSUPPORTED: The FSP calling conditions were not met.•	

FSP_DEVICE_ERROR: Temp RAM initialization failed.•	

The following are the statuses for FspInit:

FSP_SUCCESS: The FSP execution environment was initialized •	
successfully.

FSP_INVALID_PARAMETER: Input parameters are invalid.•	

FSP_UNSUPPORTED: The FSP calling conditions were not met.•	

FSP_DEVICE_ERROR: FSP initialization failed.•	

The following are the statuses for NotifyPhase:

FSP_SUCCESS: The notification was handled successfully.•	

FSP_UNSUPPORTED: The notification was not called in the •	
proper order.

FSP_INVALID_PARAMETER: The notification code is invalid.•	

Temporary Memory Data HOB
A few paragraphs ago, we talked about the temporary stack being destroyed after main
memory initialization, but there could be data that interests you that is still in the stack.
Intel FSP will save the subregion where the host firmware data is stored, and pass it back
to the host firmware using a HOB data structure with a unique GUID, defined as follows:

#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \
{ 0xbbcff46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, 0xd4, 0xf3,
0xb3, 0xf6, 0x4e } };

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

46

Non-Volatile Storage HOB
Another HOB worth mentioning is the Non-Volatile Storage HOB, which is used to pass data
to the host firmware to save for S3 resume or fast boot. The host firmware needs to parse the
HOB list to see if such a GUID HOB exists once the continuation function is regaining control
from Intel FSP. If so, the host firmware should extract the data portion from the HOB and
save it into a platform-specific NVS device, such as Flash, EEPROM, and so forth.

During the following boot process, the host firmware should load the data block
back from the NVS device to temporary memory and populate the buffer pointer into the
FSP_INIT_PARAMS.NvsBufferPtr field before calling into the FspInit() API. If the NVS
device is memory mapped, the host firmware can initialize the buffer pointer directly to
the buffer.

Sample Code for Parsing HOBs
This is sample code that parses HOBs to look for memory size below the 4 gigabyte
boundary:

VOID
GetLowMemorySize (
UINT32 *LowMemoryLength
)
{
 EFI_PEI_HOB_POINTERS Hob;
 *LowMemoryLength = 0x100000;
 //
 // Get the HOB list for processing
 //
 Hob.Raw = GetHobList();
 //
 // Collect memory ranges
 //
 while (!END_OF_HOB_LIST (Hob)) {
 if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR)
{
 if (Hob.ResourceDescriptor->ResourceType ==

EFI_RESOURCE_SYSTEM_MEMORY) {
 //
 // Need memory above 1MB to be collected here
 //

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

47

 if (Hob.ResourceDescriptor->PhysicalStart >=
0x100000 &&

 Hob.ResourceDescriptor->PhysicalStart <
(EFI_PHYSICAL_ADDRESS) 0x100000000) {

 *LowMemoryLength += (UINT32)
(Hob.ResourceDescriptor-
>ResourceLength);

 }
 }
 }
 Hob.Raw = GET_NEXT_HOB (Hob);
 }
 return;
}
For memory above 4 gigabytes, the following code is used in place of the
code looking a PhysicalStart element:
if (Hob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
//
// Need memory above 4GB to be collected here
//
 if (Hob.ResourceDescriptor->PhysicalStart >=
 (EFI_PHYSICAL_ADDRESS) 0x100000000) {
 *HighMemoryLength += (UINT64) (Hob.ResourceDescriptor-

>ResourceLength);
 }
}

Customization of Intel FSP
Even though Intel FSP can carry out CPU, memory, and companion chip initialization,
it needs the cooperation from the host firmware to pass in crucial information about
the platform. And developers can also customize Intel FSP by changing the hardware
configuration settings when necessary.

The way Intel FSP organizes the configurable region is to separate it into two areas:
a static area and a dynamic area. The static area is called VPD (Vital Product Data) and
the dynamic area is called UPD (Updatable Product Data). Both areas can be customized
using the BCT; however only the UPD area can be overridden by the host firmware during
runtime.

The way to override the UPD data is to copy the UPD data structure to the temporary
memory (remember that this is before FspInit is called), modify the data you want to
alter, and then pass the pointer in as an input parameter. The FspInit API parameter
includes a pointer that can be initialized to point to the UPD data structure. If this pointer
is initialized to NULL when calling the FspInit API, the FSP will use the default UPD data
that is available in the FSP configuration region. If it is not NULL, the FSP will use the
data structure in temporary memory. Whatever data you have modified will be used to
configure the hardware when FspInit executes.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

48

The following shows an example of the VPD data structure:

typedef struct _UPD_DATA_REGION {
 UINT64 Signature; /* Offset 0x0000 */
 UINT32 RESERVED1; /* Offset 0x0008 */
 UINT8 Padding0[20]; /* Offset 0x000C */
 UINT16 PcdMrcInitTsegSize; /* Offset 0x0014 */
 UINT16 PcdMrcInitMmioSize; /* Offset 0x0016 */
 UINT8 PcdMrcInitSPDAddr1; /* Offset 0x0018 */
 UINT8 PcdMrcInitSPDAddr2; /* Offset 0x0019 */
 UINT8 PcdeMMCBootMode; /* Offset 0x001B */
 UINT8 PcdEnableSdio; /* Offset 0x001C */
 UINT8 PcdEnableSdcard; /* Offset 0x001D */
 UINT8 PcdEnableHsuart0; /* Offset 0x001E */
 UINT8 PcdEnableHsuart1; /* Offset 0x001F */
 UINT8 PcdEnableSpi; /* Offset 0x0020 */
 UINT8 PcdEnableLan; /* Offset 0x0021 */
 UINT8 PcdEnableSata; /* Offset 0x0023 */
 UINT8 PcdSataMode; /* Offset 0x002E */
 UINT8 PcdEnableAzalia; /* Offset 0x002F */
 UINT32 AzaliaConfigPtr; /* Offset 0x0030 */
 UINT8 PcdEnableXhci; /* Offset 0x0034 */
 UINT8 PcdEnableLpe; /* Offset 0x0029 */
 UINT8 PcdLpssSioEnablePciMode; /* Offset 0x002A */
 UINT8 PcdEnableDma0; /* Offset 0x002B */
 UINT8 PcdEnableDma1; /* Offset 0x002C */
 UINT8 PcdEnableI2C0; /* Offset 0x002D */
 UINT8 PcdEnableI2C1; /* Offset 0x002E */
 UINT8 PcdEnableI2C2; /* Offset 0x002F */
 UINT8 PcdEnableI2C3; /* Offset 0x0030 */
 UINT8 PcdEnableI2C4; /* Offset 0x0031 */
 UINT8 PcdEnableI2C5; /* Offset 0x0032 */
 UINT8 PcdEnableI2C6; /* Offset 0x0033 */
 UINT8 PcdEnablePwm0; /* Offset 0x0034 */
 UINT8 PcdEnablePwm1; /* Offset 0x0035 */
 UINT8 PcdEnableHsi; /* Offset 0x0036 */
 UINT8 PcdIgdDvmt50PreAlloc; /* Offset 0x0043 */
 UINT8 PcdApertureSize; /* Offset 0x0044 */
 UINT8 PcdGttSize; /* Offset 0x0045 */
 UINT16 PcdRegionTerminator; /* Offset 0x003A */
} UPD_DATA_REGION;

Whereas a sample VPD data structure is shown here:

typedef struct _VPD_DATA_REGION {
 UINT64 PcdVpdRegionSign; /* Offset 0x0000 */
 UINT32 PcdImageRevision; /* Offset 0x0008 */
 UINT32 PcdUpdRegionOffset; /* Offset 0x000C */

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

49

 UINT8 Padding0[16]; /* Offset 0x0010 */
 UINT32 RESERVED1; /* Offset 0x0020 */
 UINT8 PcdPlatformType; /* Offset 0x0024 */
 UINT8 PcdEnableSecureBoot; /* Offset 0x0025 */
 UINT8 PcdMemoryParameters[16]; /* Offset 0x0026 */
} VPD_DATA_REGION;

These two examples are from the Intel FSP for Intel Atom E3800 Product family.
In this VPD data structure, each element has a matching member provided in a Binary
Setting Flag file, which specifies the layout of the configuration region.

Downloading Intel FSP
Now you understand the basic plumbing and interface of Intel FSP. More practice
exercises will be provided in later chapters using coreboot and EDK II codebase to show
how they integrate Intel FSP, including the handling of input parameters and output
parameters. During these exercises, you will need to download a copy of Intel FSP. Here
are the steps:

1. Figure out which CPU and Chipset combo you are designing
your firmware for. If you are working on a SoC, you need to
figure out which SoC family you are using.

2. Go to www.intel.com/fsp/ and select the “Download an Intel
FSP” link, as shown in Figure 3-4.

Figure 3-4. Intel FSP download web site

http://www.intel.com/fsp/

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

50

3. Once you click the “Download an Intel FSP” link, it takes you
to the next screen, as shown in Figure 3-5. Select the kind of
package you want: Windows or Linux.

Figure 3-5. Intel FSP download selection

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

51

4. After accepting the licensing agreement, the download will
start. After downloading, unpack it.

Figure 3-7. Intel FSP package layout and contents

Figure 3-6. Intel FSP download action

5. Depending upon which source code codebase you are using,
you can start copying them to the appropriate folders under
the host firmware directory trees.

Now, you are ready to create code, change the code, and build the code.

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

52

Microcode Patches
Microcode is a unique machine code that runs inside a CPU and many other silicon chips
to initialize its internal states and features. Since the year 2000, all modern CPUs have
been using microcode updates to fix issues that are frequently documented in erratum by
silicon vendors.

The microcode update format is not documented and it cannot be easily read or
understood by engineers who are not specialized in microprogramming. For example,
one microinstruction could carry out a “Connect this register to that side of the ALU” task,
and the other one might “Set ALU’s carry input to zero”. Each microinstruction may be
doing something completely tied to the silicon at the logic level, and will only make sense
to the silicon designers who actually designed the chip.

As shown in Figure 3-8, one of the Intel FSP folders is called Microcode, and it has
the microcode updates that are available at the time Intel FSP was released. Intel FSP has
the microcode update mechanism already incorporated. During the microcode update
step, it will check the CPUID of the microprocessor on the circuit board and update the
appropriate microcode update file into the CPU. There is the possibility that you are
using a newer board with a newer stepping of the CPU, and thus the microcode updates
inside Intel FSP do not match the stepping of your CPU; therefore, it will not be able to
find the appropriate microcode update to update your CPU, and the system will hang as
a result. If this is the case, you will need to go to Intel’s support web site and look for the
latest microcode updates for the CPU you have on board, convert it from a raw text file to
an .h or an .inc text file, and copy it to the corresponding microcode folder in the host
firmware directory tree.

Figure 3-8. Intel FSP file movement to the host firmware folders

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

53

If you are familiar with Linux commands, here are two commands to convert from a
.txt file to .h or .inc files:

cat name.txt | awk ' { print $1 ; print $2 ; print $3; print $4 } ' > name.h
cat name.txt | sed 's/,//'| awk ' { print " .long " $1 } '

There is also a utility in the coreboot tree to convert the microcode file for you; there
may be other tools available to do the same thing.

The microcode updates–based address and the length are passed into the
TempRamInit API as an input parameter, which is stored in ROM and is part of the
ROM-based stack that we described earlier. In a multiprocessor environment, FSP
supports BSP (Boot Strap Processor) and AP (Application Processor) microcode loading.
The microcode range can contain multiple back-to-back microcode binaries, and the FSP
will check them one by one and load all applicable patches. The microcode code patches
for BSP will be loaded inside the TempRamInit API, and the patches for AP will be loaded
in the FspInit API.

Relocating Intel FSP
After you download and start building your host firmware, you are told to put the Intel
FSP binary at the physical location described in the FSP integration guide. However, if you
decide to move Intel FSP, you will need to run BCT and change the base address of FSP
to the location you prefer to use. This step is needed because many internal references
to the base address need to be corrected by a tool, since they do not dynamically resolve
address assignment at runtime.

Integration and Build
At this point, you should have all the elements from Intel in place to do an integration
with your host firmware stack. Once you have done the integration, the build process and
testing will begin. Hopefully, you will spend most of time developing your value-added
features, rather than debugging Intel silicon code. Intel FSP should have taken care of
your basic silicon initialization needs at this point.

The Future of Intel FSP
Intel FSP is only the first step in the direction that Intel wants to take to help embedded
and IoT developers to adopt Intel Architecture easily and quickly, so that they aren’t
spending precious time studying, implementing, and debugging silicon-related
configurations and issues. Going forward, Intel FSP will continue its evolution toward
a more flexible, scalable, and customizable silicon initialization module, and will cover
more silicon on the Intel roadmap. We do realize that there are different needs in the
developer community. Unfortunately, these needs are distributed on a scale with two
opposite extremes on the spectrum. On one end are the developers who want completely

Chapter 3 ■ Intel® FIrmware Support paCkage (Intel® FSp)

54

open source code available to them so that they can play with the source code with total
freedom and total control. On the other end are the developers who just want a turnkey
solution so that they don’t have to know anything about firmware; “knobs” for tuning
parameters and for turning on and off features are all that they need.

The best way to satisfy everyone is to keep opening up source code for collaboration
and customization and to provide different levels of turnkey solutions where it makes
sense.

What Is Coming in the Following Chapters
By now, if you have been reading this chapter carefully, you should know what Intel FSP
is, why it was created, what it can do, and how it carries out the work, as well as how to
customize Intel FSP and how to integrate it into the host firmware stack of your choice.

Even though there are only three APIs (this number may change in a future Intel
FSP) that you need to interface with in your firmware stack, you still need to prepare input
parameters and deal with output parameters carefully, and learn how to build the firmware
with the right tools. It is best if you continue by reading the following hands-on chapters to
get familiar with the practical knowledge about building successful firmware stacks.

55

Chapter 4

Building coreboot with
Intel FSP

Empowerment of individuals is a key part of what makes open source
work, since in the end, innovations tend to come from small groups, not
from large, structured efforts.

—Tim O’Reilly

The Introduction of coreboot
Since 1999, developers from around the world, some as individual contributors and
others working on behalf of businesses and corporations, have formed a community
around coreboot, an open source firmware project. coreboot is boot firmware primarily
focused on x86 processors and chipsets, but other processors, like Alpha, PPC, and
ARM-based systems are supported. The coreboot logo is a European Brown Hare,
Figure 4-1.

Chapter 4 ■ Building CoreBoot with intel FSp

56

coreboot firmware deals directly with system hardware configuration. As silicon
has become more complicated, with more features and integrated peripherals, firmware
developers have had to rely more and more on the silicon vendors for reference code and
binaries for the latest silicon releases. Many silicon vendors have tried different solutions
to help the developers in the community; for example, AMD’s AGESA (AMD Generic
Encapsulated Software Architecture), and now, Intel FSP (Firmware Support Package).
With the support of silicon vendors, coreboot developers are able to develop and release
current silicon devices and to concentrate on peripheral and platform customization.

We are excited to introduce you to the coreboot project. In this chapter, we will cover
many of the different aspects of coreboot. The first few sections of this chapter lay the
groundwork for working with the coreboot community. We cover the history of coreboot,
coreboot’s open source software development practices—including details on using
Git, and how to build a sample coreboot image. Later in the chapter, we examine the
technical details of coreboot, including the binary image structure, the execution flow,
and the source code organization. The final sections include information about payloads,
debugging, and optimizations for coreboot. Feel free to skip ahead and come back to
these sections if you want.

The Philosophy of coreboot
coreboot is built on the belief that users and vendors deserve an open, fast, customizable,
and purpose-built firmware for silicon and mainboard initialization. coreboot is designed
to do critical hardware initialization before passing control to a payload.

The coreboot philosophy aligns with the Intel FSP philosophy. The coreboot
hardware initialization framework handles the FSP silicon initialization API, configures
system peripherals, and loads the payload.

Since coreboot is focused on hardware initialization, it does not contain any BIOS or
other runtime services. Services, runtime code, and the operating system boot are provided
by a payload. coreboot supports a number of different payloads, for disk boot, network
boot, and legacy BIOS services. coreboot is often used to boot Linux, but depending on the
payload, it can also boot most versions of BSD, Windows, or any other OS. While not part of
coreboot, payloads are integral to a complete coreboot firmware image.

Figure 4-1. coreboot logo

Chapter 4 ■ Building CoreBoot with intel FSp

57

coreboot source code is licensed under the GNU General Public License, version
2 (GPLv2). This is the same license that the Linux kernel is released under. The GPL is a
share-alike license, which means that each developer benefits from the efforts and the
knowledge of the entire community, adding to the success and growth of the project.
There are several restrictions about what you can and cannot do with GPL source code,
which are clearly documented on the GNU web site at http://www.gnu.org/licenses/
licenses.html#GPL. You need to be aware of this and should consult legal experts before
integrating GPL code into your own proprietary code.

Note ■ payloads are separate projects and have their own license requirements.

A Brief History
coreboot has a long history, stretching back more than 15 years to when it was known as
LinuxBIOS. While the project has gone through lots of changes over the years, many of
the earliest developers still contribute today.

v1: 1999–2000
The coreboot project originally started as LinuxBIOS in 1999 at Los Alamos National Labs
(LANL) by Ron Minnich. Ron needed to boot a cluster made up of many x86 mainboards
without the hassles that are part of the PC BIOS. The goal was to do minimal hardware
initialization in order to boot Linux as fast as possible. Linux already had the drivers and
support to initialize the majority of devices. Ron and a number of other key contributors
from LANL, Linux NetworX, and other open source firmware projects successfully booted
Linux from flash. From there, they were able to discover other nodes in the cluster, load a
full kernel and user space, and start the clustering software.

v2: 2000–2005
After the initial success of v1, the design was expanded to support more CPU architectures
(x86, Alpha, PPC) and to support developers with increasingly diverse needs. One of the
early design goals was to have as little assembly code as possible. With new and more
complex CPUs and DDR initialization requirements, the developers realized that there
would be too much assembly code in the firmware. The problem with assembly code is
that it is difficult to write and maintain. It also lacks the flexibility and maintainability of a
higher language like C. The reason standard C cannot be used in the initial firmware code
is because the C compiler requires memory to store variables on a stack.

The first supported CPU memory initialization could be done in just a few
instructions of assembly code, but the newer DDR memory controllers required
significantly more configuration and a lot more assembly code. To address this problem,
Eric Biederman wrote a special “precompiler” called ROMCC that turns C code into

http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html

Chapter 4 ■ Building CoreBoot with intel FSp

58

stackless assembly code. ROMCC works around the stack issue by turning the C code
into assembly code and using the internal CPU registers to hold all variables. ROMCC is
extremely limited in the number of variable and function calls it can support, due to the
small number of registers that a CPU has available. The ROMCC-generated assembly is
included as an .inc file, and then compiled as part of LinuxBIOS. ROMCC could be used
until the memory was initialized, and then LinuxBIOS used standard C for the majority of
the firmware device configuration code.

As part of the v2 implementation, the LinuxBIOS device tree was introduced. The
device tree is based on the PCI bus hierarchy and outlines the system devices. The
concept is similar to the Linux kernel’s PCI device driver hierarchy and uses some of the
same concepts as the Linux tree and driver initialization.

Many target systems had flash devices that were too small to hold both the hardware
initialization code and the Linux kernel. Image size was not the only issue. The needs of
the users were changing, and additional boot device support was required. Payloads were
created for flexible boot device support. A network boot solution was the obvious choice
for clusters, so the “etherboot” project was modified to run directly from LinuxBIOS as a
payload. Later, a disk-based boot option called FILO was added.

During this period, there were substantial silicon development contributions from
Intel, VIA, SIS, Linux NetworX, SUSE, and AMD.

v2+: 2005–2008
The next advancement was the introduction of Cache as RAM (CAR) in 2005. With
CAR, the CPU cache was used as temporary memory prior to memory controller
initialization. It was a delicate process, but allowed the use of C code after a few
hundred lines of assembly.

Note ■ For more information, see the white paper CAR: Using Cache as RAM in LinuxBIOS
at http://rere.qmqm.pl/~mirq/cache_as_ram_lb_09142006.pdf.

In 2005, Stefan Reinauer, a developer on the project, formed a company named
coresystems GmbH to support LinuxBIOS. Stefan was one of the primary developers
and co-leaders of LinuxBIOS with Ron Minnich. Stefan’s significant contributions
included the first AMD64 port, the original ACPI implementation, the original SMM
implementation, the flashrom utility, and the FILO payload development and maintainer.

In 2005 the Free Software Foundation (FSF) started the Free BIOS campaign to
support LinuxBIOS development. Ward Vandewege, of the FSF, ported LinuxBIOS to the
FSF servers and other mainboards.

During this time, the AMD processors become the silicon of choice due the
availability of good documents and vendor support. This support included the AMD K-8,
Geode, and AMD Family 10 CPUs.

http://rere.qmqm.pl/~mirq/cache_as_ram_lb_09142006.pdf

Chapter 4 ■ Building CoreBoot with intel FSp

59

v3: 2006–2008
By 2006, LinuxBIOS had already supported hundreds of mainboards. With so many
boards, there were problems with porting additional silicon and systems. Based on
lessons learned from v2, LinuxBIOS v3 was a fresh start and a place to experiment and
fix major problems. Developers fixed and clarified many driver and bus support issues
in the device tree. New features included the new build configuration with Kconfig and a
firmware image archive called LAR (LinuxBIOS ARchiver). LAR was improved upon and
led to the more refined and flexible concept of CBFS.

v3 had a lot of great technical advancements, but it didn’t support many mainboards
and it was too unstable for commercial developers. For these reasons, it wasn’t the
main development branch; it was essentially an R&D branch, where the best ideas were
backported to v2.

2008 LinuxBIOS Renamed “coreboot”
LinuxBIOS gained popularity and recognition within the open source community. The
name became a bit of a misnomer, since Linux was no longer booted directly from flash,
and other payloads and bootloaders had been substituted in its place. Since the original
idea was about hardware initialization (core init) and booting quickly, it made sense to
rename the project as “coreboot”. At this time, co-leader Stefan Reinauer took over as the
primary leader of the project, as Ron Minnich focused on other projects.

v4: 2009–2012
coreboot turned 10 years old in 2009. Open source projects should be measured in dog
years, and 10 years was a major milestone. In early 2010, coreboot moved from SVN to
Git for source control, and during that transition, the community took the opportunity to
recognize the advancements of the past 10 years and updated to version 4.0.

coreboot continued to add developers and expanded its user base. Many
mainboards were added; one of the largest contributions came from AMD, with the open
source release of AMD Generic Encapsulated Software Architecture (AGESA), which
started in 2004. AGESA reference code needed to be integrated with coreboot, but at the
same time stand alone, as it was code directly from the silicon vendor and the same code
used by the BIOS vendors. The initial support was for the AMD Family 14 silicon, but
soon grew to include Family 15, Family 16, and the accompanying chipsets.

v4+: 2012–2014
In recent years, several other big vendors have become directly involved as contributors
to and supporters of coreboot. The involvement of these vendors has pushed coreboot to
be a viable firmware competitor on x86 processor systems at product launch.

In 2012, Google introduced the first x86-based Chromebook with coreboot
as the firmware and Chrome OS as the operating system. Since then, Google, in
cooperation with multiple computer manufacturers, has released several generations of
Chromebooks—all using coreboot. Google is also porting and upstreaming an ARM port
of coreboot to promote a consistent and common codebase.

Chapter 4 ■ Building CoreBoot with intel FSp

60

In early 2013, Intel released coreboot FSP support with cooperation and support
from Sage Electronic Engineering. Sage has been a coreboot contributor and commercial
vendor since 2011, and has developed several coreboot ports with its partners AMD,
Google, and Intel.

The coreboot community is also experiencing many new contributors joining it and
providing new patches and support. There is a new distribution based on coreboot called
libreboot. It is a nonproprietary software distribution for the Thinkpad T60. It is a major
contribution to the coreboot source code and has the support and endorsement of Free
Software developers around the world.

The following are statistics on coreboot (source: http://www.ohloh.net/p/
coreboot, May 23, 2014):

It has had 10,207 commits made by 285 contributors•	

It represents 1,597,818 lines of code•	

It is mostly written in C•	

It has a very well-commented source code•	

It has a well-established, mature codebase•	

It is maintained by a very large development team•	

It is with stable Y-O-Y commits•	

It took an estimated 461 years of combined effort •	
(COCOMO model) to create

It has a codebase of 1,597,818 lines•	

It has an estimated cost of $25,353,695•	

Further Reading
For more information on the history of coreboot, visit the following:

•	 $ git log: All coreboot history is easily accessible

•	 http://review.coreboot.org

•	 http://www.linuxjournal.com/article/4888

•	 http://www.linuxjournal.com/article/7170

•	 http://www.linuxjournal.com/magazine/coreboot-your-
service

•	 http://www.socallinuxexpo.org/scale8x/blog/interview-
ron-minnich-coreboot.html

•	 https://archive.fosdem.org/2007/interview/
ronald+g+minnich

http://www.ohloh.net/p/coreboot
http://www.ohloh.net/p/coreboot
http://review.coreboot.org/
http://www.linuxjournal.com/article/4888
http://www.linuxjournal.com/article/7170
http://www.linuxjournal.com/magazine/coreboot-your-service
http://www.linuxjournal.com/magazine/coreboot-your-service
http://www.socallinuxexpo.org/scale8x/blog/interview-ron-minnich-coreboot.html
http://www.socallinuxexpo.org/scale8x/blog/interview-ron-minnich-coreboot.html
https://archive.fosdem.org/2007/interview/ronald+g+minnich
https://archive.fosdem.org/2007/interview/ronald+g+minnich

Chapter 4 ■ Building CoreBoot with intel FSp

61

•	 http://2012.latinoware.org/2012/10/ron-minnich-and-
details-of-coreboot/

•	 http://www.h-online.com/open/features/The-
beginnings-746825.html

Prerequisites for Working with coreboot
coreboot uses a typical open source development process. The source code is developed
by a community made up of individual contributors. It is submitted to the community for
public review prior to being committed to the tree. The code is reviewed for bugs, style,
and other improvements. Anyone (even you) can comment and make suggestions during
the code review. Developers iterate the code and resubmit it for further review until it is
accepted. Once accepted by a senior member, the source is submitted to the coreboot
repository.

The coreboot web site (http://coreboot.org) contains a lot of valuable information
about the project and it is the first place a new developer should go for information.

The coreboot community does the majority of its communication on the mailing list
(http://www.coreboot.org/mailman/listinfo/coreboot) and in IRC (#coreboot on
freenode.net).

All code reviews are done in Gerrit (more about Gerrit in a little bit) at
http://review.coreboot.org.

If you are using Windows, you might also consider running a Linux virtual machine
for coreboot development.

Community Organization
The coreboot community is a flat organization. There is a small leadership group that
is informally organized, with Stefan Reinauer as the current chairman, but anyone
can review or contribute code to the project. The community is led by developers with
commit rights; commit rights are awarded to developers who act in the best interests of
the community. These developers participate in the community regularly by developing
high-quality code, reviewing other developers’ code, and acting as mentors and liaisons
for coreboot.

Git and Gerrit
The coreboot source code is maintained at coreboot.org in a Git repository. Git is a
distributed SCM (Source Control Management) system that is commonly used in
the open source community. We will cover some basic Git commands as part of the
development process, but you will want to explore the power and flexibility of Git for your
own development (see http://git-scm.com and http://git-scm.com/book).

The coreboot source review process uses the Gerrit tool. Gerrit provides a web-based
review of source code with side-by-side differences and user-comment functionality (it
also integrates very well with Git). Each Git commit is identified by a SHA-1 hash unique
to that change and commit message. The hash is a 40-character hexadecimal sequence,

http://2012.latinoware.org/2012/10/ron-minnich-and-details-of-coreboot/
http://2012.latinoware.org/2012/10/ron-minnich-and-details-of-coreboot/
http://www.h-online.com/open/features/The-beginnings-746825.html
http://www.h-online.com/open/features/The-beginnings-746825.html
http://coreboot.org/
http://www.coreboot.org/mailman/listinfo/coreboot
http://review.coreboot.org/
http://git-scm.com/
http://git-scm.com/book

Chapter 4 ■ Building CoreBoot with intel FSp

62

recalculated with every update to the code or commit message so that Gerrit can’t use the
hash to track a revision of code already under review. Instead of the commit hash, Gerrit
uses a Change-ID hash in the commit message to track a patch through the source code
review iteration process. The Change-ID in the commit message doesn’t change; and
when source is updated and pushed, Gerrit replaces the old version with the new version
to be reviewed. The coreboot Git setup automatically adds a Change-ID to the commit
message if one doesn’t already exist (see https://code.google.com/p/gerrit/).

Git Commit Messages
Each git commit has an accompanying commit message. This is extremely helpful to the
community; it allows you to see what changed without parsing all the code. Here are a
few guidelines for git commit messages:

The first line of the commit message has a short summary of the •	
change. It should have helpful information about the subsection
and what changed. It should be no more than 75 characters long.

Skip the second line.•	

The third line is the start of a detailed description. There should •	
be enough information provided that other developers can
understand what was going wrong, what changed, and any other
relevant details. The description should be informative and clear
enough that developers don’t need to guess what happened when
they read it five years later. Again, lines should never be longer
than 75 characters.

The next line is empty (no whitespace at all).•	

The Change-Id line to let Gerrit track this logical change (this is •	
generated by the commit hook).

The Signed-off-by line according to the development guidelines. •	
(Use git commit -s to have Git add your Signed-off-by line
automatically. Also see the following “coreboot Sign-off
Procedure” section and coreboot’s development procedures at
http://www.coreboot.org/Development_Guidelines#Sign-
off_Procedure).

The following is an example of a well-formatted commit message from coreboot
(note the additional lines inserted by Gerrit):

commit 48a749a89844ba76ff1564d5009e81d4d8e06db8
Author: Marc Jones <marc.jones@se-eng.com>
Date: Tue Oct 29 22:13:38 2013 -0600

 intel/cougar_canyon2: Intel CRB FSP based mainboard

 Cougar Canyon 2 is a Ivybridge/PantherPoint reference board.

https://code.google.com/p/gerrit/
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure

Chapter 4 ■ Building CoreBoot with intel FSp

63

This implementation uses the Intel FSP (Visit the Intel FSP website for
details on FSP architecture and support).
 The FSP does not support s3 at this time. S3 may be added
 when it is available in the FSP. All other features and IO
 ports are functional. Booted on Ubuntu 12.04 and 13.04,
 Fedora 18 with SeaBIOS payload. Memtest86, FWTS, and
 other tests pass.

 Board support page will be updated on acceptance.

 Change-Id: I26c0b82d7ac295498376ad4c3517a9d6660d1c01
 Signed-off-by: Marc Jones <marc.jones@se-eng.com>
 Reviewed-on: http://review.coreboot.org/4018
 Tested-by: build bot (Jenkins)
 Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>

coreboot Sign-off Procedure
Before the code can be pushed to coreboot Gerrit for review, the author must follow a
sign-off procedure. This procedure is very similar to the Linux sign-off procedure, and
the sign-off is enforced by Git and Gerrit tools. You must use your real (legal) name in the
Signed-off-by line and in any copyright notices that you add.

By adding your sign-off, you agree to the Developer’s Certificate of Origin 1.1.

Developer’s Certificate of Origin 1.1
By making a contribution to this project, I certify that:

a. The contribution was created in whole or in part by me and
I have the right to submit it under the open source license
indicated in the file; or

b. The contribution is based upon previous work that, to the best

of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part by
me, under the same open source license (unless I am permitted
to submit under a different license), as indicated in the file; or

c. The contribution was provided directly to me by some other

person who certified (a), (b) or (c) and I have not modified it; and

d. In the case of each of (a), (b), or (c), I understand and agree
that this project and the contribution are public and that a
record of the contribution (including all personal information
I submit with it, including my sign-off) is maintained
indefinitely and may be redistributed consistent with this
project or the open source license indicated in the file.

http://review.coreboot.org/4018

Chapter 4 ■ Building CoreBoot with intel FSp

64

Note ■ the developer’s Certificate of origin 1.1[1] is licensed under the terms of the
Creative Commons attribution-Sharealike 2.5 license[2].

For more information, see the following web sites:

•	 http://web.archive.org/web/20070306195036/http://osdlab.
org/newsroom/press_releases/2004/2004_05_24_dco.html

•	 HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-SA/2.5/

Adding Your Sign-off
git commit -s will add your sign-off (as set in your git config) to the commit message; for
example:

Signed-off-by: Random J Developer <random@developer.example.org>

Note ■ See http://www.coreboot.org/Development_Guidelines#Sign-off_
Procedure for additional sign-off procedure information.

Working with the coreboot Community
An active and productive community is a major component of a successful open
source project. As part of any community, it is most constructive if people are civil and
considerate of others. This is particularly important in online communities, where
people are coming together from different cultures, backgrounds, and levels of technical
expertise. Be mindful of one’s own place as one among many within the community—in
order to be a productive and worthy-of-respect contributor.

coreboot Do’s
The following should be done in the coreboot community:

DO engage the coreboot community e-mail list and IRC channel.•	

DO review patches and engage in development discussion.•	

DO publish source code for review by the community.•	

DO publish small, logical, and understandable patches.•	

http://web.archive.org/web/20070306195036/http:/osdlab.org/newsroom/press_releases/2004/2004_05_24_dco.html
http://web.archive.org/web/20070306195036/http:/osdlab.org/newsroom/press_releases/2004/2004_05_24_dco.html
http://creativecommons.org/licenses/by-sa/2.5/
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure

Chapter 4 ■ Building CoreBoot with intel FSp

65

coreboot Don’ts
The following should not be done in the coreboot community:

DON’T violate the GPL or other open source licenses.•	

DON’T demand support from the coreboot community.•	

DON’T expect every (your) device to have complete support.•	

DON’T submit code and ignore the reviews (dump and run). •	

Nonsource Binaries in coreboot
Even though nonsource binaries have been part of the x86 ecosystem for many years,
it remains a touchy subject to incorporate binaries into coreboot. coreboot attempts to
use as few proprietary binaries as possible while still providing the base level of support
for coreboot users. Binaries are located on the flash with coreboot, without being linked
to coreboot. Binaries may include PCI Option ROMs, Video BIOS, payloads, or silicon-
specific binaries (like the Intel FSP). Binaries are optional at build time and are not part
of the coreboot repository, although some are stored in a SubModule repository called
3rdparty/. Users may forgo binaries if the feature or capability isn’t required. For users
looking for a completely free source, the libreboot.org distribution has removed all
proprietary binaries.

Intel FSP pairs with coreboot easily. The FSP binary is located at a fixed address
within the coreboot image and is accessed with a coreboot driver interface based on the
FSP requirements described in Chapter 3. The specific details of where the FSP is located
and how the FSP are accessed are covered later in this chapter.

A Hands-on Example: Building coreboot for the
MinnowBoard MAX Mainboard
This chapter is meant to provide hands-on training, so we will dive right in, get the code,
and use it as reference as we guide you through building and modifying coreboot. There
are a few things you will need prior to diving in.

Chapter 4 ■ Building CoreBoot with intel FSp

66

Environment
It is expected that you are building coreboot in a Linux environment and that you are
familiar with the standard application and kernel tools. coreboot can be built under most
common shells (bash, csh, zsh). coreboot can also be built on BSD and on Windows with
Cygwin or MinGW, but that is outside the scope of this book. If you are using Windows,
you might also consider running a Linux virtual machine for coreboot development.

Fedora: •	 $ sudo yum groupinstall "Development Tools"
"Development Libraries"

Debian/Ubuntu: •	 $ sudo apt-get install build-essentials

The following tools are required to get started:

GCC/G++•	

make•	

Git•	

ncurses-dev•	

flex and bison•	

Please read the information at http://www.coreboot.org/Build_HOWTO.

Note: Ubuntu dash, the default Ubuntu shell, may have strange failures with the
coreboot sh scripts. While coreboot has addressed these issues in the scripts, you might
want to update to full bash.

 $ sudo dpkg-reconfigure dash

Hardware: MinnowBoard MAX
The MinnowBoard MAX (MinnowMax) is a low-cost, open hardware development
board. It uses the Intel E38xx ‘Bay Trail-I’ SoC. The compact, low-power, and affordable
mainboard is idea for coreboot with FSP development (see http://www.minnowboard
.org/meet-minnowboard-max/ for more information).

MinnowBoard MAX Platform Details
Please note the following information on the MinnowBoard MAX:

SoC: 64-bit Intel E38xx ‘Bay Trail-I’•	

Video: HDMI Intel Integrated Graphics•	

Memory: 1GB or 2GB DDR3•	

IO: MicroSD, SATA2, USB3.0, USB2.0, 10/100/1000 Ethernet•	

Low-speed expansion ports: SPI, I2C, I2S Audio, 2xUART, 8xGPIO•	

High-speed expansion ports: 1xPCIe, 1xSATA, 1xUSB2.0, I2C, •	
GPIO, JTAG

http://www.coreboot.org/Build_HOWTO
http://www.minnowboard.org/meet-minnowboard-max/
http://www.minnowboard.org/meet-minnowboard-max/

Chapter 4 ■ Building CoreBoot with intel FSp

67

Note ■ a Bus pirate or similar device is required to get serial debug information via the
low-speed expansion port.

Development Directory
For our example, we do development in ~/fsp_coreboot/:

~/$ mkdir fsp_coreboot
~/$ cd fsp_coreboot

You may use any directory that you prefer.

Downloading Intel FSP
The E3800 (Bay Trail) FSP is distributed directly from Intel. You need to download it,
uncompress it, and agree to the license before you can use it with coreboot. There is more
extensive FSP download information in Chapter 3. The FSP download is at
http://intel.com/fsp.

Download an Intel Firmware Support Package
 Intel® Atom™ processor E3800 product family (formerly Bay Trail)
 Linux* release version 003 >

Installing Intel FSP
Uncompress the .tgz file to the development folder. Then, install the FSP.

~/fsp_coreboot$ tar -xzvf ~/Downloads/BAY_TRAIL_FSP_KIT_GOLD3.tgz
~/fsp_coreboot$./BAY_TRAIL_FSP_KIT.se
 INTEL CORPORATION
 RESTRICTED USE LICENSE AGREEMENT
 INTEL(R) PRODUCTION FIRMWARE SUPPORT PACKAGE
 (Intel Confidential)

IMPORTANT - READ BEFORE COPYING, INSTALLING OR USING.

...<SNIP>...

http://intel.com/fsp

Chapter 4 ■ Building CoreBoot with intel FSp

68

Do you accept the license terms (y/n)? y
Extracting into ~/fsp_coreboot/BAY_TRAIL_FSP_KIT
Finished

Note ■ Be aware that you will need to modify your paths later in the process if you install
the FSp somewhere else.

The FSP package contains a number of important components besides the FSP
binary. It also contains additional supporting software and binaries, including the Video
BIOS and CPU microcode. Again, the FSP package is described in detail in Chapter 3.

Downloading the coreboot Source
The coreboot source download may take a few minutes.

~/fsp_coreboot$ git clone http://review.coreboot.org/coreboot
Cloning into 'coreboot'...
remote: Counting objects: 35863, done
remote: Finding sources: 100% (24537/24537)
remote: Total 167717 (delta 11917), reused 163083 (delta 11917)
Receiving objects: 100% (167717/167717), 47.14 MiB | 2.60 MiB/s, done.
Resolving deltas: 100% (121812/121812), done.
Checking connectivity... done

This will create a directory called coreboot/ in the directory that the command
was run.

~/fsp_coreboot$ cd coreboot/
~/fsp_coreboot/coreboot$ ls
3rdparty documentation Makefile.inc README toolchain.inc
COPYING Makefile payloads src util

coreboot Toolchain
To help alleviate build problems with many different distribution toolchains, coreboot
builds its own small toolchain. The toolchain contains all the tools required to build
coreboot and most payloads. We can use a make target to run the coreboot/utils/
buildgcc/buildgcc script. It builds gcc, libraries, binutils, iasl, and checks for the
required tool dependencies.

~/fsp_coreboot/coreboot$ make crossgcc-i386
Welcome to the coreboot cross toolchain builder v1.25 (November 19th, 2014)

http://review.coreboot.org/coreboot

Chapter 4 ■ Building CoreBoot with intel FSp

69

Target arch is now i386-elf
Will skip GDB ... ok
Downloading tar balls ...
...<SNIP>...
Unpacked and patched ... ok
Building GMP 5.1.2 ... ok
Building MPFR 3.1.2 ... ok
Building MPC 1.0.1 ... ok
Building libelf 0.8.13 ... ok
Building binutils 2.23.2 ... ok
Building GCC 4.8.3 ... ok
Skipping Expat (Python scripting not enabled)
Skipping Python (Python scripting not enabled)
Skipping GDB (GDB support not enabled)
Building IASL 20140114 ... ok
Cleaning up... ok

You can now run your i386-elf cross toolchain from the following directory:
~/fsp_coreboot/coreboot/util/crossgcc/xgcc.

You can make crossgcc-arm to build the ARM toolchain, but it isn’t required for FSP-
based mainboards. There is a make crosstools target, which builds additional tools that
are not required to compile coreboot.

coreboot Commit Hooks
Back in the “Git and Gerrit” section of this chapter, we discussed the need for a Change-
ID to be added to each git commit. This is added by the commit-msg hook. coreboot also
has a pre-commit hook that runs lint on the patch. The commit hooks are set up by the
following coreboot make target:

~/fsp_coreboot/coreboot$ make gitconfig

Creating a coreboot Development Branch
Create a branch in git to do the development on. For the purposes of this book, we will
use a specific coreboot commit so that the code is consistent with the instructions and
information within. Should you choose, you may use the HEAD code, but HEAD is being
actively developed and it may have some differences. The following command creates the
branch and sets it to the specific commit that works for the instructions in this book:

commit cf52f9761fef3a8e46ff28d6593e0d573ff1d4ac

~/fsp_coreboot/coreboot$ git checkout -b fsp_dev cf52f9

Chapter 4 ■ Building CoreBoot with intel FSp

70

Figure 4-2. Screenshot of coreboot menuconfig utility

Building the Mainboard
The next step is to build the correct mainboard and to direct the build to the FSP and
other binaries for inclusion. These settings are shown in Figures 4-2 through 4-5.

~/fsp_coreboot/coreboot$ make menuconfig

Chapter 4 ■ Building CoreBoot with intel FSp

71

Figure 4-3. Screenshot of coreboot menuconfig to select Mainboard

 Set Mainboard vendor (Intel)
Set Mainboard model (MinnowMax)
Set the Memory Size
Exit the submenu to return to the top level menu

On the Menuconfig Menu

Chapter 4 ■ Building CoreBoot with intel FSp

72

 Set Microcode Path: ../BAY_TRAIL_FSP_KIT/Microcode
Enable: Enable built-in legacy Serial Port
5Set the FSP file: ../BAY_TRAIL_FSP_KIT/FSP/BAYTRAIL_FSP_GOLD_003_16-
SEP-2014.fd

Figure 4-4. Screenshot of coreboot menuconfig in selecting microcode and FSP path

On the Chipset Menu

Chapter 4 ■ Building CoreBoot with intel FSp

73

Set the VGA BIOS file, as follows:

../BAY_TRAIL_FSP_KIT/Graphics/INTEL_EMGD.VBIOS_GOLD_VERSION_36_2_3_3698/
Vga.dat

Once the preceding steps to configure the components of the project are done, select
Exit and Save to preserve the configuration for this project.

Build
The menuconfig target creates a .config file, which coreboot uses to build the correct
options for a given mainboard.

Let’s build the project now:

~/fsp_coreboot/coreboot$ make
#
configuration written to .config
#
 HOSTCC nvramtool/cli/nvramtool.o
 HOSTCC nvramtool/cli/opts.o
 HOSTCC nvramtool/cmos_lowlevel.

...<SNIP>...

Figure 4-5. Screenshot of coreboot menuconfig to select VGA BIOS file

On the Devices Menu

Chapter 4 ■ Building CoreBoot with intel FSp

74

 CBFS coreboot.rom
 PAYLOAD build/seabios/out/bios.bin.elf (compression: LZMA)
 CONFIG .config
 CBFSPRINT coreboot.rom

coreboot.rom: 2048 kB, bootblocksize 1024, romsize 2097152, offset 0x0
alignment: 64 bytes

Name Offset Type Size
cmos_layout.bin 0x500000 cmos_layout 1352
pci8086,0f31.rom 0x500580 optionrom 65536
fallback/romstage 0x5105c0 stage 30444
fallback/ramstage 0x517d00 stage 65969
fallback/payload 0x527f00 payload 55583
config 0x535880 raw 4321
revision 0x5369c0 raw 693
(empty) 0x536cc0 null 1938200
cpu_microcode_blob.bin 0x710000 microcode 156736
(empty) 0x736480 null 105240
mrc.cache 0x74ffc0 (unknown) 65536
(empty) 0x760000 null 393112
fsp.bin 0x7bffc0 (unknown) 229376
(empty) 0x7f8000 null 31640

The build has completed successfully and the ROM image is here:

~/fsp_coreboot/coreboot/build/coreboot.rom

Summary of Commands
Here are the commands we have used so far to get a platform project configured and
built:

$ mkdir fsp_coreboot
$ cd fsp_coreboot/
$ tar -xzvf ~/Downloads/BAY_TRAIL_FSP_KIT_GOLD3.tgz
$ git clone http://review.coreboot.org/coreboot
$ cd coreboot
$ ls
$ make crossgcc-i386
$ make gitconfig
$ git checkout -b fsp_dev cf52f9
$ make menuconfig
$ make

http://review.coreboot.org/coreboot

Chapter 4 ■ Building CoreBoot with intel FSp

75

Flashing the ROM
flashrom is a utility for programming flash chips. It is one of the projects that has spun-
off from the coreboot community. It is designed to program any type of firmware binary
image (not only coreboot) onto a mainboard or other controller cards. It supports
programming many flash devices in the system, including parallel, LPC, FWH, and SPI
devices. It also supports many external programmers, including the commonly used
Dediprog SF100 and BusPirate. It has common interface support for FT2232 and serprog-
based devices. It is built for support on most operating systems.

Please check http://flashrom.org for more information.

Note ■ it is strongly recommended that you have an external programmer for firmware
development. at some point, you will “brick” your system and need to reflash the device.

For this example, we’ll use the Dediprog SF100 to program the mainboard. Please
see the mainboard user guide for additional programming requirements. The system may
need to be powered on, powered off, or have a jumper set before you can program.

Preparing the Flash Programmer
The following are the steps to program System BIOS by using the Dediprog SPI flash
programmer:

1. Power-off the board.

2. Port for BIOS flash update is J1 (MinnowBoard MAX).

3. No jumper settings.

4. Config the Dediprog voltage to 1.8V.

5. Program the device (W25Q64DW).

Save the entire existing flash image, just in case.

~/fsp_coreboot/coreboot$ flashrom -p dediprog -r backup.rom
flashrom v0.9.7-r1764 on Linux 3.11.0-20-generic (x86_64)
flashrom is free software, get the source code at http://www.flashrom.org

Calibrating delay loop... OK.

http://flashrom.org/
http://www.flashrom.org/

Chapter 4 ■ Building CoreBoot with intel FSp

76

Flashing the ROM Image
The total coreboot ROM image is the same size as the SPI flash device—8MB. coreboot
is not the only code in the SPI flash device and it may only use the BIOS section. For
MinnowMax, the BIOS section is 3MB; the flash descriptor and the TXE binary are the
other 5MB. We will discuss the descriptor and other binaries later in this chapter.

To update the flash with flashrom, we need to do the following:

1. Create an XML file with flashrom instructions.

2. Flash the device with the correct parameters (the MinnowMax
flash device requires 1.8 volts from the Dediprog).

3. Create the XML instructions for flashrom:

~/fsp_coreboot/coreboot$ echo 00500000:007fffff cb > 8mb.xml

4. Write the image you have built to the BIOS region:

~/fsp_coreboot/coreboot$ sudo flashrom -p dediprog -l 8mb.xml -i
cb -w build/coreboot.rom
flashrom v0.9.7-r1764 on Linux 3.11.0-20-generic (x86_64)
flashrom is free software, get the source code at http://www.
flashrom.org

Calibrating delay loop... OK.

Warning ■ You cannot program the entire flash with the coreboot image. there are other
binaries located on the flash that are required to boot the system. overwriting these files is
bad. (You backed up the entire flash image as described earlier, right?)

Remove the Dediprog, replace the programming jumpers, and power up the system.
The system should boot. If not, check out the “Troubleshooting and Debugging” section.

coreboot Internals
Now that you have a booting FSP coreboot MinnowMax, we can dig into the internals of
coreboot. This section discusses what happens in the coreboot image during boot.
We also cover how it is organized, the source tree, and the boot process.

Boot Stages
coreboot is made up of four boot stages. Each stage is a binary within the ROM image.
From power-on, coreboot transitions from one binary stage to the next in the order
shown in Table 4-1.

http://www.flashrom.org/
http://www.flashrom.org/

Chapter 4 ■ Building CoreBoot with intel FSp

77

Additional Files
The stage binaries require supporting files. These additional files are part of the coreboot
image and critical for system functionality (see Table 4-2).

Table 4-2. coreboot Supporting Files

File Name Description

fsp.bin The FSP binary file.

pci8086,0166.rom The video BIOS file; the name associates the binary to the PCI ID
of the graphics device.

cmos_layout.bin A map of the CMOS values used by coreboot. This file may be
used by payloads or other utilities to safely manipulate CMOS.

config The build options in the .config file are saved in the ROM image.
This makes it possible to reproduce the image with the same
options in the future.

mrc.cache For saved memory configuration data. (More on this later.)

Table 4-1. coreboot Boot Stages

Stage Description

bootblock The reset vector and pre cache-as-RAM setup

romstage Cache-as-RAM setup, early silicon initialization, memory setup

ramstage Normal device setup and mainboard configuration

payload The OS or application bootloader

Note ■ these are the file names in CBFS. they may be different than the menuconfig
input path and file name.

CBFS
The coreboot stages and binaries require some organization in order to be found and
loaded. This is accomplished in coreboot within CBFS, which is a scheme for managing
independent binaries within a single firmware ROM image. Though not a true file system,
the style and concepts are similar. CBFS binary headers contain information to help

Chapter 4 ■ Building CoreBoot with intel FSp

78

identify the binary by type, such as stage, optionROM, and payload, and indicate if the
binary is compressed. It is important to understand that each file in the CBFS is compiled
separately. These binaries are not linked and each file is located, loaded, uncompressed,
and executed as required.

Note ■ please visit http://www.coreboot.org/CBFS.

An Example of CBFS
At the end of the preceding coreboot build, the contents of the coreboot.rom file are
printed out. We can check it again using the cbfstool:

~/fsp_coreboot/coreboot$./build/cbfstool ./build/coreboot.rom print
coreboot.rom: 2048 kB, bootblocksize 1024, romsize 2097152, offset 0x0
alignment: 64 bytes
Name Offset Type Size
cmos_layout.bin 0x0 cmos_layout 1132
pci8086,0f31.rom 0x4c0 optionrom 65536
fallback/romstage 0x10500 stage 27029
fallback/ramstage 0x16f00 stage 58969
fallback/payload 0x255c0 payload 59940
config 0x34040 raw 4221
(empty) 0x35100 null 896728
cpu_microcode_blob.bin 0x110000 microcode 52224
(empty) 0x11cc40 null 209752
mrc.cache 0x14ffc0 (unknown) 65536
(empty) 0x160000 null 393112
fsp.bin 0x1bffc0 (unknown) 229376
(empty) 0x1f8000 null 31640

There are a couple things to note about the CBFS output.
You can find that all the stages are listed except for the bootblock. The bootblock

stage is a mandatory piece and handled as a special case. It is located in the last 20K of
the ROM space with the reset vector. It contains the location of the master header and the
entry point for the loader firmware. It doesn’t have a CBFS header due to its location at
the end and how it is accessed, via a direct jump from the reset vector.

Note ■ this may change in the future as arM and other support are added, and which
have different reset requirements for the reset vector and bootblock.

http://www.coreboot.org/CBFS

Chapter 4 ■ Building CoreBoot with intel FSp

79

CBFS can have a directory-like structure; for example, fallback/romstage and
fallback/ramstage. This is useful for grouping files that should be used together or for
a specific boot purpose. In the preceding example, fallback/ is the default boot path
in coreboot. An additional set of binaries could be added for an alternate boot path
that would be selected by the bootblock. The SeaBIOS payload also uses the directory
structure for coreboot options.

Note ■ For more information about SeaBioS, please visit http://www.coreboot.org/
SeaBIOS#SeaBIOS_and_CBFS.

CBFS Size
The size of the coreboot.rom file is not required to be the size of the flash device. It only
needs to be large enough to fit the required files within CBFS. This leaves room on the
flash device for files that are not part of coreboot. On a FSP-based system, the coreboot.
rom file should be the same size as the BIOS descriptor region indicated by the flash
descriptor. The coreboot.rom must be located at the end of the flash device to execute the
reset vector.

Special Binaries
In addition to Intel FSP and microcode, there are some important binaries located on
the flash device that are not part of coreboot. This was briefly described in the flash and
boot section of this chapter. These files are required for proper system operation, so it is
important that they are not overwritten with coreboot (see Table 4-3).

Table 4-3. Special Binaries for coreboot

Binary Description

descriptor.bin The Intel Firmware Descriptor describes the content of the flash
device. This includes the locations of the binaries, which areas are
write protected, and bootstrap options.

TXE/ME Trusted Execution Engine(TXE) or Management Engine (ME)
binaries. These binaries are run by the security and management
processor prior to starting the CPU.

GigEthernet Intel integrated Ethernet binary. This is not a PXE option ROM,
but device firmware.

http://www.coreboot.org/SeaBIOS#SeaBIOS_and_CBFS
http://www.coreboot.org/SeaBIOS#SeaBIOS_and_CBFS

Chapter 4 ■ Building CoreBoot with intel FSp

80

Note ■ the descriptor and other binaries can be queried by the coreboot utils/ifdtool.

Boot Flow Using Intel FSP
As mentioned earlier, each stage is called consecutively after the other. In this section, we
will follow the flow from the reset vector to loading a payload.

Reset Vector and Bootblock
On x86 systems, there is a lot of legacy cruft, which makes for some tedious details that
must be dealt with by early boot firmware. To start with, the very first instruction executed
by an x86 CPU is in 16-bit reset mode (sort of like real mode, but with 4GB selectors
loaded as default); the first instruction is fetched and executed by the CPU at memory
location FFFFFFF0, in hexadecimal value, 16 bytes below 4GB of the 32-bit architecture’s
addressing limit. There’s a lot of history behind this design; therefore, we won’t go into
more detail in this book.

coreboot’s reset vector contains a single jump instruction to the 16-bit entry code
of the bootblock. coreboot then transitions immediately to 32-bit flat protected mode.
This switch makes it much easier to use the 32-bit registers and to access the entire 4GB
memory space.

The reset vector and bootblock code is run directly from ROM, doing what is called
“execute in place” (XIP). The first few instructions are written in assembly code. As
discussed in the preceding history section, assembly code is difficult to read and debug,
so coreboot starts using C code within a few hundred instructions. This is accomplished
by using a special compiler/assembler called ROMCC. ROMCC translates C code to a
stackless assembly .inc file that is then compiled and linked by the assembler/linker. It
must be stackless because there is no memory for stack at this point in the boot process,
and normal C compilers assume memory and use the stack to pass variables.

The early C code in bootblock has a few basic functions. If required by the system, it
can do very early silicon setup. For example, routing the Port 80h debug output, enabling
the chipset flash features, or checking a signal to indicate which stage should be loaded
next. The bootblock parses CBFS, locates the romstage, and jumps to its starting point.

romstage
The early part of romstage is very similar to the bootblock. It is execute in place (XIP) code
written in assembly. The only difference is that coreboot is already in 32 bit protected
flat mode. There is no system memory available, so the first step in romstage is to set up
“Cache as RAM” (CAR). This allows coreboot to use the CPU cache as system RAM for a
stack location. The FSP handles the CAR setup and has some very specific requirements to
run. This is fully explained in the Intel FSP chapter, but we will do a quick review.

Chapter 4 ■ Building CoreBoot with intel FSp

81

To call the first Intel FSP entry, coreboot contains a stack area that contains a pointer
to the Intel FSP parameter structure and the return address to get back to coreboot when
Intel FSP is finished. The parameter structure contains the microcode address and length,
and start address and length of the ROM area that should be cached. With the stack
pointer prepared, coreboot locates the FSP, verifies that the FSP headers are as expected
for the platform and jumps to the FSP TempRamInit API entry point. The FSP executes,
works its magic, sets up CAR, and returns to coreboot. coreboot sets the stack pointer and
makes the first C-style call to do romstage system setup and memory setup.

Most x86 systems require a significant amount of setup to configure the hardware.
This is even more the case in integrated silicon and System on a Chip (SoC) systems. Most
integrated subsystem devices require additional configuration prior to being accessed in
the normal methods (PCI Configuration Space, Memory Mapped I/O, System I/O, etc.).
Romstage is where the few devices required for memory initialization are configured. It
is also the first change to get additional debug information from the system. With most
Intel FSP based systems, including MinnowMax, the serial port is configured and debug
information can be streamed to the developer.

With a little bit of mainboard specific hardware initialized, coreboot is almost ready
to make the second call into Intel FSP for memory initialization and the initial setup of
the various peripherals. In order to do this, coreboot locates the UPD/VPD structures as
discussed in Chapter 3. After getting the UPD/VPD data, coreboot modifies these based
on mainboard specific configuration data from devicetree.cb. This allows coreboot to
inform Intel FSP which devices should be enabled or disabled and what mode the devices
should be configured in. The FspInit entry sets up the memory and disables CAR before
it returns to the coreboot’s return function. Intel FSP also passes back a Hand-Off Block
(HOB), which contains data Intel FSP and coreboot may use later. coreboot saves the
HOB data location and prepares for ramstage. The romstage code locates the ramstage in
CBFS, copies it to memory and jumps to the entry point.

ramstage
Ramstage is a bare-metal application. The CPU and memory are functional and ramstage is
running from memory with a normal stack and can use heap, global variables, and so forth.
The purpose of ramstage is to configure the I/O devices, additional application processors,
SMM, and to set up tables that may be passed to payloads or operating systems.

The heart of ramstage is a state machine running in the hardwaremain function and
the device tree. The state machine states are defined by the standard stages of PCI device
configuration and enumeration. There are additional states for chip and mainboard
configuration to allow customization of device prior to the normal initialization process.
The state machine also has pre and post hooks at each state, so chipset and mainboards
can be customized as needed. The states and state machine are explained in detail later
in this chapter.

The device tree is the hierarchical structure of the PCI and legacy devices in
the system. The device tree is prepopulated at build time through the entries in the
mainboard’s devicetree.cb file and amended runtime as devices are discovered in the
PCI enumeration process. The device tree structure has function pointers for every
device for each state in the state machine. This allows chipset and onboard devices to
have customer driver functions run during the enumeration process. We will discuss the
specific of the state machine and device tree later in this chapter.

Chapter 4 ■ Building CoreBoot with intel FSp

82

There are two calls to the FspNotifyPhase entry point in ramstage,
AfterPCIEnumeration and ReadyToBoot. After all the devices are enumerated, the
coreboot calls FspNotifyPhase(AfterPCIEnumeration). coreboot then sets up SMM,
does legacy table setup, and finally ACPI table setup. The final call to Intel FSP is made,
FspNotifyPhase(ReadyToBoot), where the lock registers are set to protect SMM and other
sensitive registers. Then, ramstage locates the primary payload in CBFS, decompresses it
to memory, and executes it.

Payload
The last part of coreboot is to execute a payload. The payload functions and features are
not defined by coreboot. A payload could be a bare-metal application or it could boot
an operating system. There may be more than one payload in a coreboot image. Some
common payload options are discussed later in the chapter.

coreboot Source
coreboot contains initialization code for several different architectures, many different
silicon devices, and hundreds of mainboards. This can be overwhelming for new
coreboot developers, so we will highlight the areas of focus for coreboot FSP-based
mainboards. Again, we focus on the MinnowMax mainboard.

coreboot Device Tree
Each device supported by coreboot has a corresponding driver. In order to associate the
hardware to the driver, coreboot describes the onboard devices in the coreboot device tree.
The mapping of devices to their custom functions is done in the mainboard devicetree.cb
file. The devicetree.cb is evaluated during the build process by the sconfig tool (coreboot/
util/sconfig), which creates a linked list of devices in the build/mainboard/VENDOR/
BOARD/static.c file. During the boot process, the coreboot scans the devices, adds any
found devices to the device tree, and links the drivers to the devices found. The device tree
is an integral part of the coreboot build and boot process. The device tree code is located in
the coreboot device tree source directory at coreboot/src/device.

The device tree has two root busses, the CPU bus and the PCI bus. The start of
the device tree is called the root complex, which links the top level CPU bus and PCI
bus 0. The CPU bus contains systems local APICs (Advanced Programmable Interrupt
Controllers). PCI bus 0 contains all other system devices, including legacy and IO devices.

Note ■ the coreboot device tree is not a Flattened device tree used by linux arM kernels.

Chapter 4 ■ Building CoreBoot with intel FSp

83

Chips and Devices
The coreboot device tree has chip and device functions. A chip may be made up of one
or more devices. Some chips require configuration prior to the device configuration. This
is very common on southbridge devices. To accommodate the predevice setup, the chip
functions are called prior to device functions. We will cover this in more detail in the
section covering coreboot hardware state machines.

Device Tree Variables
Each device tree section starts with the variable name (see Table 4-4) and is closed with
the 'end' keyword.

Table 4-4. coreboot Device Tree Variables

Variable Name Description

chip Path to the chip source. The chip variable comes prior to all devices
in the device tree. The path also corresponds with a chip_operations
structure.

device Defines a device type at the indicated address.

register Is used to pass mainboard customization to generic chip code as
defined in its chip.h. This is different than a Kconfig build option.

Table 4-5. coreboot Device Types

Device Type Description

domain Sets the PCI bus number. All PCI devices must be within a domain
keyword. Only bus 0 must be set up in a system, leaving all other busses
to be configured using the default configuration.

cpu_cluster Specifies the top-level APIC and the CPU root cluster.

pci Devices with PCI configuration space.

i2c Sets the 7-bit I2C address of a device on an I2C bus. This keyword must
be within a PCI I2C/SMBUS controller device.

pnp Devices in the legacy (ISA) memory and I/O range (e.g., SuperIOs).

ioapic The ID of a chipset’s IO APIC. A default configuration is used if this is
not set in the device tree.

lapic The ID of a CPU’s Local APIC. One lapic is required in the device tree.

Each device type has its own set of function pointers, as listed in Table 4-5.

Chapter 4 ■ Building CoreBoot with intel FSp

84

There are additional keywords used in the device tree, which are listed in Table 4-6.

Table 4-6. coreboot Additional Keywords Used in the Device Tree

Keyword Description

subsystemid Sets the PCI config register subsystem device and vendor IDs. This
may be set at the top level and inherited, or within a specific device.
See inherit.

inherit Sets a value for all the devices after it. Used for subsystem ID.

io Sets an IO register value for a pnp device.

irq Sets an IRQ line for a pnp device.

drq Sets a DRQ line for a pnp device.

ioapic_irq Is used to generate mptable from the devicetree.cb.

on Sets a device state to enabled.

off Sets a device state to disabled (may hide device on some chipsets).

end Closes a block.

A Device Tree Example
The following example is at coreboot/src/mainboard/intel/minoxmax/devicetree.cb.

chip soc/intel/fsp_baytrail
ACPI Register Settings
register "fadt_pm_profile" = "PM_UNSPECIFIED"
register "fadt_boot_arch" = "ACPI_FADT_LEGACY_FREE"

FSP register settings
register "PcdSataMode" = "SATA_MODE_AHCI"
register "PcdMrcInitSPDAddr1" = "SPD_ADDR_DEFAULT"
register "PcdMrcInitSPDAddr2" = "SPD_ADDR_DEFAULT"
register "PcdMrcInitMmioSize" = "MMIO_SIZE_DEFAULT"
register "PcdeMMCBootMode" = "EMMC_FOLLOWS_DEVICETREE"
register "PcdIgdDvmt50PreAlloc" = "IGD_MEMSIZE_DEFAULT"
register "PcdApertureSize" = "APERTURE_SIZE_DEFAULT"
register "PcdGttSize" = "GTT_SIZE_DEFAULT"
register "PcdLpssSioEnablePciMode" = "LPSS_PCI_MODE_DEFAULT"
register "AzaliaAutoEnable" = "AZALIA_FOLLOWS_DEVICETREE"
register "LpeAcpiModeEnable" = "LPE_ACPI_MODE_DISABLED"
register "IgdRenderStandby" = "IGD_RENDER_STANDBY_ENABLE"
register "EnableMemoryDown" = "MEMORY_DOWN_ENABLE"
register "DRAMSpeed" = "DRAM_SPEED_1066MHZ"

Chapter 4 ■ Building CoreBoot with intel FSp

85

register "DRAMType" = "DRAM_TYPE_DDR3L"
register "DIMM0Enable" = "DIMM0_ENABLE"
register "DIMM1Enable" = "DIMM1_DISABLE"
register "DIMMDWidth" = "DIMM_DWIDTH_X16"
register "DIMMDensity" = "DIMM_DENSITY_2G_BIT" # Setting for 1GB
board - modified runtime for 2GB board in romstage.c to DIMM_DENSITY_4G_BIT
register "DIMMBusWidth" = "DIMM_BUS_WIDTH_64BIT"
register "DIMMSides" = "DIMM_SIDES_1RANK"
register "DIMMtCL" = "11"
register "DIMMtRPtRCD" = "11"
register "DIMMtWR" = "12"
register "DIMMtWTR" = "6"
register "DIMMtRRD" = "6"
register "DIMMtRTP" = "6"
register "DIMMtFAW" = "20"

device cpu_cluster 0 on
device lapic 0 on end
end

device domain 0 on
device pci 00.0 on end # 8086 0F00 - SoC router -
device pci 02.0 on end # 8086 0F31 - GFX micro HDMI
device pci 03.0 off end # 8086 0F38 - MIPI -

device pci 10.0 off end # 8086 0F14 - EMMC Port -
device pci 11.0 off end # 8086 0F15 - SDIO Port -
device pci 12.0 on end # 8086 0F16 - SD Port MicroSD on SD3
device pci 13.0 on end # 8086 0F23 - SATA AHCI Onboard & HSEC
device pci 14.0 on end # 8086 0F35 - USB XHCI - Onboard & HSEC - Enabling
both EHCI and XHCI will default to EHCI if not changed at runtime
device pci 15.0 on end # 8086 0F28 - LP Engine Audio LSEC
device pci 17.0 off end # 8086 0F50 - MMC Port -
device pci 18.0 on end # 8086 0F40 - SIO - DMA -
device pci 18.1 off end # 8086 0F41 - I2C Port 1 (0) -
device pci 18.2 on end # 8086 0F42 - I2C Port 2 (1) - (testpoints)
device pci 18.3 off end # 8086 0F43 - I2C Port 3 (2) -
device pci 18.4 off end # 8086 0F44 - I2C Port 4 (3) -
device pci 18.5 off end # 8086 0F45 - I2C Port 5 (4) -
device pci 18.6 on end # 8086 0F46 - I2C Port 6 (5) LSEC
device pci 18.7 on end # 8086 0F47 - I2C Port 7 (6) HSEC
device pci 1a.0 on end # 8086 0F18 - TXE -
device pci 1b.0 off end # 8086 0F04 - HD Audio -
device pci 1c.0 on end # 8086 0F48 - PCIe Port 1 (0) -
device pci 1c.1 off end # 8086 0F4A - PCIe Port 2 (1) -
device pci 1c.2 on end # 8086 0F4C - PCIe Port 3 (2) Onboard GBE
device pci 1c.3 on end # 8086 0F4E - PCIe Port 4 (3) HSEC

Chapter 4 ■ Building CoreBoot with intel FSp

86

device pci 1d.0 on end # 8086 0F34 - USB EHCI - Enabling both EHCI and XHCI
will default to EHCI if not changed at runtime
device pci 1e.0 on end # 8086 0F06 - SIO - DMA -
device pci 1e.1 on end # 8086 0F08 - PWM 1 LSEC
device pci 1e.2 on end # 8086 0F09 - PWM 2 LSEC
device pci 1e.3 on end # 8086 0F0A - HSUART 1 LSEC
device pci 1e.4 on end # 8086 0F0C - HSUART 2 LSEC
device pci 1e.5 on end # 8086 0F0E - SPI LSEC
device pci 1f.0 on end # 8086 0F1C - LPC bridge No connector
device pci 1f.3 on end # 8086 0F12 - SMBus 0 SPC
end
end

Note ■ these are not the only pCi devices in the system, but they are the only
ones that require drivers. devices may be added to slots and use the standard device
initialization functions.

Chip Operations
The chip operations structure contains pointers to a function to initialize the chip and to
enable a device, as well as a finalize function and a chip name string. The device enable
function is called prior to the device operations (see Table 4-7). This is particularly
important for devices that need to enable PCI devices before the initial scan and
initialization. For example, some chipsets require additional setup for each device to be
visible on the PCI bus.

Table 4-7. coreboot Chip Functions

Chip Function Description

init Chip initialization function.

enable_dev The function called for each chip in the device tree.

final The final function for each chip in the device tree. The last function
before payload loading.

Chapter 4 ■ Building CoreBoot with intel FSp

87

Device Operations
During the coreboot initialization process, each device operations function is run on
the device in the order that it is scanned. Any device operation function pointer can be
set to point to a custom device function. The device operations structure contains the
function pointers listed in Table 4-8.

Set the function pointer to NULL to skip the function for the device; otherwise, the
default device function is used.

coreboot Hardwaremain State Machine
At the heart of the coreboot ramstage is a state machine for enumerating mainboard
devices. coreboot starts device enumeration with the top-level device in the device
tree and begins a bus scan. PCI devices that do not require special setup are added
to the device tree as they are found during the scan, and are set up by the default PCI
configuration functions. PCI devices that require special setup are linked with their
custom drivers in the initial scan. Then, the state machine enumerates each PCI device’s
functions in five stages: read_resource, set_resource, enable_resource, init, and enable
(see the “Device Operations” section). At each state, custom device functions can
be called. The coreboot hardwaremain state machine source is coreboot/src/lib/
hardwaremain.c.

State Machine States
Table 4-9 lists the state machine states used in coreboot.

Table 4- 8. coreboot Device Operations

Device Operation Description

read_resources Read and save the device resources to be arranged and assigned.

set_resources Assigned memory and IO space.

enable_resources Enable memory and IO in the PCI command register.

init Load the PCI device option ROMs.

finalize Perform any final cleanup.

scan_bus Bus or bridge devices scan and enable function.

enable Activate the device (very late function call; not normally used).

disable Deactivate the device, turning it off (very late function call; not
normally used).

ops_pci Sets the devices default operation functions.

Chapter 4 ■ Building CoreBoot with intel FSp

88

State Machine Callbacks
Each state has an Entry Callback and an Exit Callback, which may be used by any
coreboot code to hook any state; for example, the Bay Trail FSP mrc.cache is saved during
the table write state, after all devices have been setup.

Enter State -> Entry Callback -> Execute State -> Exit Callback ->
Next State

Note ■ do not use multiple hooks to the same state callback. the order in which multiple
hooks to the same state’s callback are executed is undetermined.

Mainboard
The coreboot mainboard directory is the primary location that new mainboard
developers will begin working in. It is located in the mainboard vendor directory and
contains the files that make one mainboard unique from another (see Table 4-10).
coreboot is architected to share as much common code as possible. The mainboard files
access the CPU’s, the chipset’s, and the device driver’s common code to do the majority
of the work. Let’s review the contents of the MinnowMax directory and break down the
purposes of these key files.

Table 4-9. coreboot State Machine States

State Descrtiption

BS_PRE_DEVICE Before any device tree actions take place

BS_DEV_INIT_CHIPS Init all chips in device tree

BS_DEV_ENUMERATE Device tree probing

BS_DEV_RESOURCES Device tree resource allocation and
assignment

BS_DEV_ENABLE Device tree enabling/disabling of devices

BS_DEV_INIT Device tree device initialization

BS_POST_DEVICE All device tree actions performed

BS_OS_RESUME_CHECK Check for OS resume vector

BS_OS_RESUME Resume to OS

BS_WRITE_TABLES Write coreboot tables

BS_PAYLOAD_LOAD Load payload into memory

BS_PAYLOAD_BOOT Boot to payload

Chapter 4 ■ Building CoreBoot with intel FSp

89

Table 4-10. coreboot Mainboard Files

File Name Description

acpi_tables.c Functions that patch the DSDT and other ACPI table runtime.

cmos.layout CMOS entries used by the mainboard.

devicetree.cb Prepopulate mainboard chips and devices used to configure and
enable and disable certain device options.

dsdt.asl The mainboard ACPI ASL file.

fadt.c Generates and checksums the ACPI FADT file.

gpio.c Sets the default configuration for the mainboards GPIOs. GPIO
configuration is fairly complex on Bay Trail and there are a lot of
options to set up.

irqroute.c Required to compile the IRQ macros defined in IRQ.h.

irqroute.h Macros for each device IRQ routing in APIC and PIC modes.

Kconfig Selects the default build options for CPU-, chipset-, and
mainboard-specific options.

mainboard.c The mainboard-specific file called in ramstage.

mainboard_smi.c The mainboard-specific SMI calls.

Makefile.inc Required to build the mainboard directory.

onboard.h Mainboard-specific SMBIOS table settings.

romstage.c The mainboard-specific function for romstage.

thermal.h Critical temperature definitions for ACPI.

acpi/

ec.asl

mainboard.asl

superio.asl

video.asl

Contains mainboard-specific ACPI ASL files that are included by
the chipset ASL files.

The directory is coreboot/src/mainboard/intel/<mainboard>/.
It is easiest to begin working on a new mainboard using the reference design. It will

already have the basic calls to the chipset and other devices.

Chapter 4 ■ Building CoreBoot with intel FSp

90

The Chipset Driver
When the coreboot device enumeration finds a new device, it checks for a custom
driver to set up the device. For Bay Trail, the basic setup is handled by the romstage and
ramstage files located in the SoC directory. When Intel FSP access is required, the chipset
code and the Intel FSP driver cooperate to send the correct information for the chipset-
specific Intel FSP.

The Bay Trail FSP source files are at coreboot/src/soc/intel/fsp_baytrail.
Key files are listed in Table 4-11.

Table 4-11. Key Chipset Files Under coreboot

File Name Description

northcluster.c Memory and PCIe resource allocation

southcluster.c I/O device resource allocation

ramstage.c

romstage/romstage.c FSP early_init() call and return point

chip.h Bay Trail FSP variables, includes UPD options

fsp/chipset_fsp_util.c

Note ■ Bay trail is an SoC, so it has northcluster and southcluster files within the src/
soc/ directory. a typical chipset pair would have their files in src/northbridge/ and
src/southbridge/ directories.

Chipset FSP UPD Options
The chipset UPD options in Intel FSP are defined in chip.h and set in the mainboard-
specific devicetree.cb. See the section discussing UPD in Chapter 3 for more details on
the options that are passed.

The FSP Driver
The coreboot FSP driver handles standard access functions to Intel FSP. While the
access functions are standardized per the API, each chipset and mainboard may have
custom FSP requirements, capabilities, and options. Chipset-specific options such as
configuring the UPD data are handled by calls from the driver back to the chipset’s FSP
files. The mainboard-specific configuration is set in the devicetree.cb file, and then can

Chapter 4 ■ Building CoreBoot with intel FSp

91

be customized further during the romstage callback, as previously mentioned. The FSP
driver is based on the reference code provided in Intel FSP documentation, but resides
in coreboot. The driver runs in both romstage and ramstage. The first FSP API call to
TempRAMInit is part of the normal driver code, but is included in early romstage, cache_
as_ram.inc.

The FSP driver source directory is located at coreboot/src/drivers/fsp.
Table 4-12 lists the coreboot fsp_util functions.

Table 4-12. coreboot Functions that Interface with Intel FSP

Function Name Description

find_fsp Function to find the FSP in memory.

fsp_early_init FSP memory and early device setup function. Called in
romstage by the chipset driver.

romstage_fsp_rt_buffer_
callback

Callback from fsp_early_init for mainboard-specific RT buffer
customizations (soldered down memory timings, etc.).

FspNotify There are two notify calls in ramstage.

AfterPCIEnumeration during device finalize and

ReadyToBoot during chip finalize.

save_mrc_data Called in romstage after fsp_early_init to save the memory
configuration to CBMEMh.

update_mrc_cache Moves the mrc data from CBMEM to NVRAM in late
ramstage.

Kconfig
coreboot uses the Linux build configuration tool, Kconfig, to select build options. Kconfig
files are in nearly all coreboot source directories. The Kconfig options are used by the
makefiles to include the correct source files. In the preceding coreboot mainboard build
section, you used the Kconfig Text User Interface—menuconfig—to select options for
your example coreboot build. Typically, there are options for the mainboard, chipsets,
debugging, and which payload to include in the coreboot.rom image file. The Kconfig
options are saved as .config file and converted to a config.h for definitions to be used
by the coreboot source code. The file is also saved in the coreboot.rom image, where it
can be extracted and used to build with the same coreboot options.

The Kconfig tool is built by the coreboot make process and is located here:
coreboot/util/kconfig

Chapter 4 ■ Building CoreBoot with intel FSp

92

xcompile
The coreboot make process needs to locate a compatible toolchain. This is done by the
xcompile script. On each build, the coreboot makefile checks for the .xcompile file,
which is generated by the utils/xcompile/xcompile script, and if it is not found, the
makefile calls the script to generate it. The xcompile script locates the coreboot toolchain
and copies the path into the .xcompile file. The generated .xcompile file is included in
the make to set variables CC, CFLAGS, CPP, AS, LD, NM, OBJCOPY, OBJDUMP, READELF, STRIP, AR.

Warning ■ the .xcompile file isn’t built on every make. if the file already exists, the
script will not be re-run. this is a problem if you didn’t have the toolchain built previously
and the .xcompile is empty. without a “make clean,” the old path to the distribution
toolchain is used.

Payloads
A payload may be any ELF binary. It must be able to execute on bare metal and without
any support services. Payloads are typically separate projects from coreboot and have
their own development community (although there is some obvious overlap with
coreboot developers). As a separate project and binary, payloads may have a different
license than coreboot. The cbfstool supports converting the ELF format to the SELF
format, which can be loaded by coreboot. SeaBIOS is the default payload, but any ELF
may be added in the Payload section of the menuconfig.

See http://www.coreboot.org/Payloads and http://www.coreboot.org/SELF for
more information.

There are several Payloads available for you to choose from.

SeaBIOS

SeaBIOS provides the legacy BIOS services for booting most operating systems. The
coreboot build process makes it easy to use SeaBIOS by downloading and building it if
it is selected. SeaBIOS supports booting from SATA and USB. It also supports loading
Option ROMs and additional payloads. SeaBIOS runtime options, like boot order, are
added to configuration files in CBFS.

SeaBIOS has been tested with Linux, NetBSD, OpenBSD, FreeDOS, and Windows
XP/Vista/7. Classic GRUB, GRUB2, lilo, and isolinux work well with SeaBIOS. Other x86
bootloaders and operating systems will likely also work.

The SeaBIOS development license uses GPLv2+.
See http://www.coreboot.org/SeaBIOS and http://www.seabios.org/SeaBIOS for

more information.

http://www.coreboot.org/Payloads
http://www.coreboot.org/SELF
http://www.coreboot.org/SeaBIOS
http://www.seabios.org/SeaBIOS

Chapter 4 ■ Building CoreBoot with intel FSp

93

GRUB 2

You can use GRUB2 as a coreboot payload to boot an operating system from a hard drive,
for instance. You can also boot via an existing GRUB2 MBR on your hard drive by using
SeaBIOS as your coreboot payload.

The GRUB2 development license uses GPLv3. See http://www.coreboot.org/GRUB2
and https://www.gnu.org/software/grub/grub.html for more information.

FILO

FILO is a simple bootloader with filesystem support. It can boot from hard drives and
USB mass storage. It does not require any legacy BIOS callbacks.

The FILO development license uses GPLv2. See http://www.coreboot.org/FILO for
more information.

iPXE

iPXE is a network bootloader and is a fork of GPXE/Etherboot. It provides a direct
replacement for proprietary PXE ROMs. It can be run as a payload or as an OptionROM
by SeaBIOS.

The iPXE development license uses GPL v2+.
See http://www.coreboot.org/IPXE and http://ipxe.org/ for more information.

TianoCore

There is limited porting and support work in the community for TianoCore, a bootloader
providing the UEFI interface.

The TianoCore development license uses BSD.
See http://www.coreboot.org/TianoCore for more information.

Depthcharge

Depthcharge is a payload for the Google Chromebooks.
The Depthcharge development license uses GPLv2 (or later).
See https://chromium.googlesource.com/chromiumos/platform/depthcharge

for more information.

U-Boot

The U-Boot bootloader can be configured as a coreboot payload for Google
Chromebooks.

The U-Boot development license uses GPLv2.
See http://www.denx.de/wiki/U-Boot for more information.

http://www.coreboot.org/GRUB2
https://www.gnu.org/software/grub/grub.html
http://www.coreboot.org/FILO
http://www.coreboot.org/IPXE
http://ipxe.org/
http://www.coreboot.org/TianoCore
https://chromium.googlesource.com/chromiumos/platform/depthcharge
http://www.denx.de/wiki/U-Boot

Chapter 4 ■ Building CoreBoot with intel FSp

94

Memtest86+

Aimed at memory failures detection, this memory test is available as a coreboot payload
as well.

See http://www.coreboot.org/Memtest86 and http://memtest.org/ for more
information.

libpayload
Libpayload is a library to assist with developing and building custom payloads. It contains
entry point, build options, and basic libc functions. libpayload is built separately from
the developers’ payload code and it is statically linked. libpayload may be built with a
number of different options configured with a libpayload-specific Kconfig. See the FILO
or TINT payloads for an example.

The libpayload development license uses BSD.
See http://www.coreboot.org/Libpayload for more information.

coreboot Troubleshooting and Debugging
There are lots of complicated parts to modern systems, and silicon initialization
and development and testing don’t always go smoothly. There are a number of
troubleshooting and debugging options when debugging with coreboot.

Postcodes
The earliest debug information available from coreboot is postcodes on port 80h. Many
CRBs have integrated postcode hardware to display this early debug information.
coreboot’s first instruction after the reset vector is an out 01h (POST_RESET_VECTOR_
CORRECT) to port 80h. There are two common failures early in coreboot with FSP:

postcode 00h: The system is on, but no there are no postcodes.•	
This is usually a problem with the flash device. Check that the
flash jumpers are correctly populated.

The other problem is that the flash image descriptor.bin and TXE/ME have been
overwritten. Reflash the backup image and only update the last 2MB of the MinnowMax
flash device with coreboot.

postcode BBh: The system is alternating between BBh and one of •	
the following postcodes:

00h - FSP_SUCCESS: Temp RAM was initialized successfully.
02h - FSP_INVALID_PARAMETER: Input parameters are invalid.
03h - FSP_UNSUPPORTED: The FSP calling conditions were not met.
07h - FSP_DEVICE_ERROR: Temp RAM initialization failed
0Eh - FSP_NOT_FOUND: No valid microcode was found in the

microcode region.
14h - FSP_ALREADY_STARTED: Temp RAM initialization has been invoked

http://www.coreboot.org/Memtest86
http://memtest.org/
http://www.coreboot.org/Libpayload

Chapter 4 ■ Building CoreBoot with intel FSp

95

The most common failure is 0Eh, no valid microcode was found. Check that you are
using the latest Intel microcode for your silicon version. The Intel FSP package may not
have the latest version and you need to update it.

Serial Debug
Serial debug is the most common method of debug in coreboot. The serial port and
console configuration is one of the earliest functions after CAR (TempRAMInit) is set
up. coreboot can be configured to output different levels of information on the serial
port. A typical development coreboot build defaults to DEBUG level, which outputs a lot
of information for the developer. The level can be turned up to SPEW, which is way too
much information, and it can also be turned down to ERROR or other lower settings to
speed up the boot process by printing less information to the serial port. Intel FSP also
supports serial output for sending debug information.

EHCI USB Debug
If a serial port is not available for normal debug, coreboot may set up the EHCI controller
USB port 0 for debug mode. The EHCI debug port provides a special mode of operation
that requires neither RAM nor a full USB stack. It requires additional hardware, like the
Ajays NET20DC USB Debug Device, and drivers for the device for the target to send the
logging information to. The debug mode is not yet supported by Intel FSP for debug
information.

Summary
The coreboot firmware philosophy is about building up with small, fast, target-
specific needs. The developers have created a framework to build on and do not make
assumptions about the users’ needs. Intel FSP and coreboot together allow system
designers to customize their solutions down to the smallest details. We look forward to
what the next generation of coreboot developers will bring.

97

Chapter 5

Chrome book Firmware
Internals

“The world as we have created it is a process of our thinking. It cannot be
changed without changing our thinking.”

—Albert Einstein

About Chrome book and Chrome OS
When the first version of Chrome OS became available, many people were asking the
same questions: Why? What can it be used for? How is it different from Android? Out of
curiosity, many people downloaded it and played with an earlier version. People quickly
discovered that it is a neat idea to build an application environment for connected
devices that is bounded by a browser-like framework.

Chrome OS takes advantage of the numerous Google cloud-based applications.
Why would an OS be designed to depend on the idea that everything would be stored
and manipulated in the cloud? Yes, that is the idea. Today’s Chrome book and Chrome
OS have the offline capabilities to allow users to write e-mails, view appointments, take
notes, manipulate documents, edit photos, read offline web pages, and even play games
offline without connection, but it is a machine and operating system built to work with
Google’s cloud. Whatever you work on offline is synchronized with whatever is online,
once you are connected. While there is a wide range of Chrome OS devices, the look and
feel and experience is uniform across the whole product spectrum.

The reason why we include Chrome book and Chrome OS in this book is because
of Google’s choice of coreboot as the vehicle to boot its OS. Chrome book may not be
designed to be like a typical laptop that can boot multiple operating systems, and it does
not have the capability to add and remove internal devices like a PC can, but it is designed
to do one thing (if interfacing with cloud is considered as “one thing”) and do it well,
and that is all that matters. This idea is what IoT devices are about, with a few dedicated
functions, and to maximize its benefits and usability for those functions. Chrome book
looks like a PC and smells like a PC, but it is deviating itself from the typical PC paradigm.
And its choice of coreboot to simplify and secure the firmware stack not only makes
sense, but also matches with Google’s open source philosophy from top to bottom.

Chapter 5 ■ Chrome book Firmware internals

98

As you read this chapter, you will also learn that Chrome devices are designed to
be experimented with. Google has held classes to do just that—showing people how to
change the internal firmware and software of a Chrome book. After reading this chapter
(and the previous chapter about coreboot), as long as you always preserve a way to
restore the original firmware and OS image, you should feel free to experiment with the
firmware and OS stack.

Chrome OS Firmware Overview
Chrome OS uses coreboot for all its supported CPU architectures (currently, several
different flavors of x86 and ARM devices). This allows for a consistent codebase and
designed behaviors across all architectures. Google is committed to open source
solutions, and coreboot contains the requisite features and capabilities for booting
Chrome OS. coreboot, the firmware layer, provides maximum customization for the
optimization of power, performance, and security, with a flexible and consistent firmware
OS interface, via ACPI.

The internal operations of coreboot was discussed in the previous chapter, so in
this chapter, we will highlight any differences and extensions that have been made to
coreboot for Chrome OS devices. You should revisit the previous chapter for specific
information about the internals of coreboot.

The Chrome OS firmware image is made up of several pieces: the coreboot hardware
initialization code, the Google Depth charge payload, and support binaries and libraries
required to boot Chrome OS. The image as a whole is called Chrome OS firmware and it
should not to be confused with the embedded controller (EC) firmware or other firmware
images within the flash device.

Chrome OS Security Philosophy
Google has designed Chrome OS from the ground up with users’ data security in mind.
Chrome OS devices use the Google verified boot security library for the chain of trust,
which starts in write-protected coreboot romstage.

Chrome OS Security Guiding Principles
The following are Chrome OS security guiding principles:

•	 The perfect is the enemy of the good. By realizing that there will
never be a perfect solution, the developers of Chrome systems
can always ship something good enough to protect the users.

•	 Deploy defenses in depth. There are a variety of defenses to
prevent attacks at different levels, so that even if the attacker can
penetrate one level, he can be stopped at other levels, making it
difficult for the attacker to persist.

Chapter 5 ■ Chrome book Firmware internals

99

•	 Make devices secure by default. Security should not be optional,
and it should not be a trade-off item competing with performance
and ease-of-use. Since firmware, Chrome OS, and software
are well-integrated by the developers, there can be a seamless
security implementation from top to bottom by default, not as an
afterthought.

•	 Don’t scapegoat the user. The design helps the user make
decisions only about things they can comprehend, and ensures
a fail-safe to make the choice go away when the user does not
understand.

Further details are documented at http://www.chromium.org/chromium-os/
chromiumos-design-docs/security-overview.

Power wash
To further protect user data, a system may be power washed, which securely wipes
the user’s data on the device and returns the system to the default state. This may be
performed at any time via the settings screen.

Chrome OS Boot Modes
Chrome OS supports three separate boot modes. The normal Verified Mode boots a
Google-signed Chrome OS image. In case of image corruption or other device failure, Chrome
OS has Recovery Mode to reinstall the signed image. The third boot mode is Developer Mode,
which allows for advanced features and user-customized sources to be loaded.

Verified (Normal) Mode
Verified boot is the cornerstone for the Chrome OS security, which is implemented in
concert with coreboot and the Depth charge payload. Google signs all the binary images
that make up a Chrome OS device. This includes the coreboot firmware stages, the
embedded controller firmware, and the kernel image. As the system boots, each binary
image is cryptographically verified prior to running the image. To protect users, the
firmware image enters Recovery Mode if any binary verification fails.

Recovery Mode
If something goes wrong in Chrome OS, the system will boot into Recovery Mode.
Recovery Mode runs a protected version of coreboot and gives the user an opportunity
to recover the system and return to Normal boot mode. Recovery Mode will only boot a
Google-signed USB recovery image. Recovery Mode may be automatically initiated when
a software or hardware issue occurs. It may also be initiated directly by the user, typically
by pressing the Esc+Refresh+Power buttons.

http://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview
http://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview

Chapter 5 ■ Chrome book Firmware internals

100

To protect the system during Recovery Mode, the firmware runs the read-only
protected version to defend against a problem with a system firmware update or in cases
where the system may have been subject to some sort of attack. The read-only version of
the firmware can’t be overwritten without physical access to the machine, and then only
by removing the write-protect screw (which voids the device warranty).

Developer Mode
Developer Mode allows the user to run the Chrome OS system in an unverified mode.
This allows more significant software modifications and system controls at the expense of
some security. The user may use the root shell, install unsigned and unverified software,
run customized images, or even boot a different operating system.

Developer Mode is, essentially, a built-in jailbreak mode that keeps Chrome OS
hardware open and enables fair use for all who want to get a Chrome OS device, but are
not quite sure whether they want to commit to Chrome OS over the lifetime of the device.

Note ■ entering Developer modeclears the private user data saved while the system is in
normal mode. a warning screen is shown to the user on each boot, so they know that the
device is not secure. Developer mode may be entered by first entering recovery mode and
then pressing Ctrl+D.

Once in Developer Mode, the user may wish to boot something other than Chrome
OS. This may be done by enabling the Legacy Mode flags. This loads the SeaBIOS payload
instead of the Depth charge payload. SeaBIOS supports USB and normal hard drive
INT19 (legacy) –style booting.

To enable legacy boot, the following flag must be set via the root shell.

crossystem dev_boot_legacy=1

Note ■ For more information, please check out the information at the following Url:
http://www.chromium.org/chromium-os/chromiumos-design-docs/developer-mode.

Chrome OS Coreboot
Chrome OS is developed on several CPU architectures. Currently, x86, ARM (including
ARM64), and MIPS are supported; each architecture requires custom firmware.

http://www.chromium.org/chromium-os/chromiumos-design-docs/developer-mode

Chapter 5 ■ Chrome book Firmware internals

101

x86
For the x86 architecture, the Chrome OS coreboot does not use the Intel FSP as described
in the coreboot chapter. It has a smaller Intel firmware binary image, similar to the FSP,
and the firmware binary image is specifically tailored to meet the performance and boot
time requirements for Chrome OS. The Intel firmware binary image contains subsections
of the Memory Reference Code (MRC) and System Agent code.

Note ■ as this book is written, Google has come down the path of using mrC binary in
the firmware stack, and intel Fsp was made available later. there is an ongoing evaluation
effort between intel and Google to decide on the best solution for future projects. in other
words, mrC and intel Fsp may converge in the near future.

ARM
x86 is well represented in the coreboot codebase. coreboot was originally designed
around PCI standards first introduced in x86. Google has combined x86 and ARM support
into a common codebase. ARM wasn’t discussed in the previous coreboot chapter, so we
will give a brief overview here.

The number of ARM SOCs supported in coreboot at this time is still significantly
behind the number of x86 processors and chipsets, but the number is steadily increasing.
The first ARM SOC that started off ARM architecture support in coreboot was the
Samsung Exynos 5250, which was added as an experimental proof of concept. Since
then, several SOCs have been supported, including newer Exynos, Nvidia Tegra, and
Qualcomm devices. Similar to x86, some of the systems require certain binary-only
components—like a signed first-stage bootloader or a microcode—to fully function.

Note ■ please check out coreboot differences at http://git.chromium.org/
gitweb/?p=chromiumos/third_party/coreboot.git;a=summary.

Depth charge Payload
The Google Depth charge payload has a single, focused goal: to securely boot Chrome OS.
It is designed to be simple, small, and easy to learn. Being simple and small, it has a
quick load time, fast execution, a small attack surface, and is generally very efficient.
Depth charge uses two libraries: vboot and libpayload.

Depth charge is loaded by coreboot just as any other coreboot payload. It resides in
CBFS and is loaded immediately after coreboot has initialized the hardware. The code
flow is fairly simple, as shown in Figure 5-1.

http://git.chromium.org/gitweb/?p=chromiumos/third_party/coreboot.git;a=summary
http://git.chromium.org/gitweb/?p=chromiumos/third_party/coreboot.git;a=summary

Chapter 5 ■ Chrome book Firmware internals

102

Figure 5-1. Verified boot flow with Depthcharge payload

Depth charge will only load Chrome OS and can’t boot any other operating system.
Depth charge can chain load other payloads in Developer Mode, which may be used to
load an additional payload, like SeaBIOS, which may load other operating systems.

libpayload
Depth charge is built upon lib payload. As mentioned in the “Payloads” section of
Chapter 4, lib payload is a library of common payload functions and hardware drivers
provided by coreboot. It is used by Depth charge and has the following lib payload
features:

A subset of libc and other utility functions•	

malloc/free, printf, “string” functions, rand, *delay, etc.•	

Tiny ncurses implementation for console and Developer •	
Mode display

Functions to read and parse the coreboot tables•	

LZMA compression•	

CBFS utility functions (see Chapter 4 for more information •	
on CBFS)

Device drivers•	

PCI/PCIe: USB ver. 1, 2, 3—HID, mass storage, hubs; SD and ·
eMMC; SATA (hard drive)

CBMEM: Serial console and frame buffer console; CMOS; ·
PC keyboard

Chapter 5 ■ Chrome book Firmware internals

103

Verified Boot
Verified boot is used within coreboot and Depth charge to ensure that only signed
code is executed. It is based on security standards starting with a Root of Trust. The
Root of Trust on Chrome OS devices is in read-only (RO) firmware protected by
physical hardware write protection. The device reset vector (the first instructions
executed) is in the RO area of flash (see Figure 5-2). Then, the RO firmware verifies a
signed read-write (RW) firmware (VB_Firmware). (The RW firmware may be updated
to fix issues in the field). The RW firmware verifies the Chrome OS kernel signature
(VB_Kernel) prior to loading it.

Figure 5-2. coreboot boot flow from reset to kernel

Chapter 5 ■ Chrome book Firmware internals

104

Verified Boot and Kernel Security
After the firmware has verified and loaded the kernel, the Root hash is passed to the
kernel-on-kernel command line by Depthcharge. The kernel continues the Root of
Trust–based security model and mounts the root filesystem as read-only (see Figure 5-3).
The kernel security hashes each block in the image. The block hashes are bundled and
structured in a tree, and subsequent read blocks are hashed and checked against the tree.
The hash tree is stored in the page cache.

Figure 5-3. Verified boot and kernel security

Note ■ reference implementation is available in the Chrome os source code:
http://git.chromium.org/gitweb/?p=chromiumos/platform/depthcharge.git;a=summary.

Chrome OS Firmware Boot Log
Traditionally, coreboot sends its boot console log messages to a serial port. The coreboot
and Depth charge firmware boot log is saved to CBMEM on Chrome OS systems. This log
is extremely helpful in debug and it contains useful information to the curious user.

In Chrome OS, the boot log is available in the system information at chrome://system
and by then clicking on the Expand button under bios_log.

In Developer Mode, the boot log is easy to access in /sys/firmware/log:

cat /sys/firmware/log

http://git.chromium.org/gitweb/?p=chromiumos/platform/depthcharge.git;a=summary

Chapter 5 ■ Chrome book Firmware internals

105

Boot Times Log
In addition, the firmware boot times are available under bios_times:

There are 23 entries total:

 1:start of rom stage 50,048
 2:before ram initialization 52,139 (2,091)
 3:after ram initialization 73,927 (21,787)
 4:end of romstage 74,426 (499)
 5:start of verified boot 74,706 (280)
 6:end of verified boot 329,652 (254,946)
 8:start of copying ram stage 330,040 (387)
 9:end of copying ram stage 346,012 (15,972)
 10:start of ramstage 346,040 (28)
 30:device enumeration 346,115 (74)
 40:device configuration 400,461 (54,346)
 50:device enable 404,182 (3,721)
 60:device initialization 405,091 (908)
 70:device setup done 459,755 (54,663)
 75:cbmem post 459,770 (14)
 80:write tables 467,590 (7,820)
 90:load payload 468,743 (1,152)
 99:selfboot jump 494,047 (25,304)
1000:depthcharge start 496,598 (2,551)
1002:RO vboot init 496,605 (7)
1020:vboot select&load kernel 498,680 (2,074)
1100:crossystem data 1,031,758 (533,077)
1101:start kernel 1,032,895 (1,136)

In Developer Mode, the boot log is easy to access in var/log/bios_times.txt:

cat /var/log/bios_times.txt

Chrome OS Firmware Event Log
The coreboot boot log in CBMEM contains a lot of detailed information about the current
boot, but it is lost when the system reboots and cannot be accessed when the system is in
a nonbootable state. In order to debug issues across several reboots, all coreboot-based
Chrome OS systems have a persistent log of system events.

The event log is based on SMBIOS Type 15 Event Log format, but uses a number
of OEM events to provide additional information. The mosys application that is part of
Chrome OS can be used to read and decode the log by running the mosys event log list as
the root user in Chrome OS if the device is in Developer Mode, or by opening
chrome://system and looking for the event log entry in Normal/Verified mode.

Chapter 5 ■ Chrome book Firmware internals

106

mosys eventlog list
12 | 2013-01-15 10:47:43 | ACPI Wake | S5
13 | 2013-01-15 10:47:43 | EC Event | Lid Open
14 | 2013-01-15 10:47:43 | System boot | 142
15 | 2013-01-15 11:51:42 | ACPI Enter | S3
16 | 2013-01-15 21:05:37 | ACPI Wake | S3
17 | 2013-01-15 21:05:37 | Wake Source | GPIO | 11
18 | 2013-01-15 21:05:38 | Kernel Event | Oops
19 | 2013-01-15 21:05:38 | Kernel Event | Panic
20 | 2013-01-15 21:05:39 | System boot | 143

10:47 - Power on because lid was opened
11:51 - System is suspended
21:05 - Wake from suspend due to GPIO 11 (Touchpad)
21:05 - Kernel oops+panic on resume

Google SMI Linux Kernel Driver
The Google SMI kernel driver implements a kernel interface to talk to the firmware’s
System Management Interrupt (SMI) handler. It allows kernel events to be stored in the
firmware event log. The driver hooks into kernel notifier chains and records the following
conditions to the log:

panic•	

thermal•	

reboot•	

die•	

Chrome OS Extensions to the Firmware Image
As discussed in previous sections, Google has added a number of features and
capabilities that are beyond a standard coreboot firmware image. These extensions
cohabitate within the firmware image along with coreboot, payloads, and vendor
binaries. The extensions in the following subsections were added to help facilitate the
many features in the flash image.

FMAP
FMAP is a simple specification for the layout of flash devices. It doesn’t make
assumptions about the underlying technology. For example, it may be used by coreboot,
Legacy BIOS, UEFI, and EC images. FMAP only defines regions in flash. Unlike the
coreboot file system CBFS, FMAP defines fixed-size regions.

Chapter 5 ■ Chrome book Firmware internals

107

fmap structure:
struct fmap_header {
 char fmap_signature[8]; /* "__FMAP__" */
 uint8_t fmap_ver_major; /* Major version number of this structure */
 uint8_t fmap_ver_minor; /* Minor version number of this structure */
 uint64_t fmap_base; /* Physical address of the flash chip */
 uint32_t fmap_size; /* Size of the flash chip in bytes */
 char fmap_name[32]; /* Descriptive name of this flash device */
 uint16_t fmap_nareas; /* Number of areas described by fmap_areas[] */

 struct fmap_area_header {
 uint32_t area_offset; /* Offset of this area in flash device */
 uint32_t area_size; /* Size of this area in bytes */
 char area_name[32]; /* Descriptive name of this area */
 uint16_t area_flags; /* Flags for this area */
 } fmap_areas[0];
} __packed;

#define FMAP_AREA_STATIC 0x0001 /* Area contents will not change */
#define FMAP_AREA_COMPRESSED 0x0002 /* Area holds potentially
compressed data */
#define FMAP_AREA_RO 0x0004 /* Area is considered read-only */

A Chrome OS firmware FMAP example is shown in Table 5- 1.

Table 5-1. FMAP Example

Base Size Section Description

0x000000 0x200000 SI_ALL Descriptor + ME

0x200000 0x0f0000 RW_SECTION_A Read-Write Firmware A

0x2f0000 0x0f0000 RW_SECTION_B Read-Write Firmware B

0x3e0000 0x010000 RW_MRC_CACHE Memory Training Cache

0x3f0000 0x004000 RW_ELOG Event Log

0x3f4000 0x004000 RW_SHARED Shared Data

0x3f8000 0x002000 RW_VPD Read-Write VPD

0x400000 0x200000 RW_LEGACY Legacy Firmware

0x600000 0x004000 RO_VPD Read-Only VPD

0x610000 0x000800 FMAP Flash Map

0x610800 0x000040 RO_FRID RO Firmware ID

0x611000 0xef0000 GBB Google Binary Block

0x700000 0x100000 BOOT_STUB Read-Only Firmware

Chapter 5 ■ Chrome book Firmware internals

108

BOOT_STUB FMAP Section
The BOOT_STUB section contains the reset vector location at the end of the rom (for x86),
as well as all the read-only firmware. This includes the coreboot rom stage and verified
boot image used by the normal verified boot path. It also contains the complete RO
firmware for Recovery Mode, which includes read-only versions of coreboot ram stage
and Depth charge.

Chrome OS Firmware RW FMAP Sections
Chrome OS firmware contains two read-write sections. These are updated separately
in case there is a problem with the update process. When a firmware update happens,
only one of the sections is updated with a new image. Once the system has booted
successfully with the new firmware, the old firmware in the other section is overwritten
with the new firmware. If the firmware update fails, the system will automatically fall
back to the old, known good firmware. A Chrome OS firmware FMAP RW Section
example is shown in Table 5-2.

Table 5-2. FMAP Read-Write Section Example

RW_SECTION_A Size Type Description

0x200000 0x010000 VBLOCK_A Key Block

0x210000 0x0c0000 FW_MAIN_A BIOS Image A

0x2d0000 0x01ffc0 EC_MAIN_A EC Image A

0x2effc0 0x000040 RW_FWID_A RW Firmware ID

RW_SECTION_B

0x2f0000 0x010000 VBLOCK_B Key Block

0x300000 0x0c0000 FW_MAIN_B BIOS Image B

0x3c0000 0x01ffc0 EC_MAIN_B EC Image B

0x3dffc0 0x000040 RW_FWID_B RW Firmware ID

The FMAPorganization is defined by the fmap.dts file located in the Depthcharge
payload (see the following example).

Chapter 5 ■ Chrome book Firmware internals

109

An fmap.dts (RW_SECTION_A) Example

rw-a {
 label = "rw-section-a";
 reg = <0x00200000 0x000f0000>;
};
rw-a-vblock {
 label = "vblock-a";
 reg = <0x00200000 0x00010000>;
 type = "keyblock boot,ecrwhash,ramstage,refcode";
 keyblock = "firmware.keyblock";
 signprivate = "firmware_data_key.vbprivk";
 version = <1>;
 kernelkey = "kernel_subkey.vbpubk";
 preamble-flags = <0>;
};
rw-a-boot {
 label = "fw-main-a";
 reg = <0x00210000 0x000c0000>;
 type = "blob boot,ecrwhash,ramstage,refcode";
};
rw-a-ec-boot {
 label = "ec-main-a";
 reg = <0x002d0000 0x0001ffc0>;
 type = "blob ecbin";
};
rw-a-firmware-id {
 label = "rw-fwid-a";
 reg = <0x002effc0 0x00000040>;
 read-only;
 type = "blobstring fwid";
};

The FMAP reference implementation is available at http://flashmap.googlecode.com.

Google Binary Block (GBB)
The Google Binary Block (GBB) is a simple binary storage interface for Chrome OS
devices. It is stored in a region in read-only firmware and located via the FMAP. It
contains the following information:

Hardware Identification (HWID)•	

Firmware Root Key•	

Recovery Key•	

Bitmaps for firmware screens and translations of firmware messages•	

A Flags setting to enable/disable Chrome OS–related features and •	
boot configuration

http://flashmap.googlecode.com/

Chapter 5 ■ Chrome book Firmware internals

110

GBB: HWID v3
The Hardware identifier is unique for each Chrome OS device model. It is generated by
an algorithm that catalogs all HW and FW components, as well as the platform name,
build phase, and the RO firmware version. It is generated for each board during the
factory process. HWID is used to uniquely identify each platform hardware variant to
ensure compatibility during recovery and updates.

GBB: Firmware Bitmaps
The firmware image screens for Recovery Mode help and Developer Mode warnings are
included in the GBB area. These images have localized text overlays for the transition
to and from Recovery and Developer modes. The user can switch between locales with
arrow keys. The images are LZMA-compressed bitmaps to minimize space and they must
be available for the RO firmware.

GBB: Firmware Keys
Public keys in GBB are used for verification of the binaries, which are signed by the
Google private keys during the build process. The binary data is not encrypted; it is only
hashed. The GBB contains the Root and Recovery Public Keys, which are RSA-8192 +
SHA-512. Subsequent keys are smaller. Each signing key is versioned and the Verified
boot will reject lower versions.

GBB: Boot Flags
The boot flags are flags that alter the Chrome OS boot path. They override the nonvolatile
flags set with the crossystem tool. The flags are used to enable alternate booting for the
factory process, but they can also be used by the end user to customize a boot after entering
Developer Mode and disabling write protect. A list of the boot flags is located in Table 5-3.

Chapter 5 ■ Chrome book Firmware internals

111

Table 5-3. GBB Boot Flag Types

Flag Name Flag Value Description

GBB_FLAG_DEV_SCREEN_SHORT_DELAY 0x00000001 Reduce Developer screen
delay to 2s

GBB_FLAG_LOAD_OPTION_ROMS 0x00000002 Load option ROMs from
arbitrary PCI devices (obsolete)

GBB_FLAG_ENABLE_ALTERNATE_OS 0x00000004 Allow booting of non-Chrome
OS kernel

(obsolete)

GBB_FLAG_FORCE_DEV_SWITCH_ON 0x00000008 Force enable Developer Mode

GBB_FLAG_FORCE_DEV_BOOT_USB 0x00000010 Allow booting from USB in dev
mode even if dev_boot_usb is 0

GBB_FLAG_DISABLE_FW_ROLLBACK_CHECK 0x00000020 Disable firmware rollback
protection

GBB_FLAG_ENTER_TRIGGERS_TONORM 0x00000040 Allow Enter key to trigger mode
transition to Normal Mode on
Developer Mode warning screen

GBB_FLAG_FORCE_DEV_BOOT_LEGACY 0x00000080 Allow Legacy Mode boot even if
dev_boot_legacy is 0

GBB_FLAG_FAFT_KEY_OVERRIDE 0x00000100 Allow use of alternate keys for
firmware testing

GBB_FLAG_DISABLE_EC_SOFTWARE_SYNC 0x00000200 Disable EC read-write firmware
update

GBB_FLAG_DEFAULT_DEV_BOOT_LEGACY 0x00000400 Boot legacy OS in Developer
Mode by default

GBB_FLAG_DISABLE_PD_SOFTWARE_SYNC 0x00000800 Disable PD MCU read-write
firmware update

Chapter 5 ■ Chrome book Firmware internals

112

Vital Product Data (VPD)
There are two types of the Vital Product Data in the flash image. There is a region in read-only
and read-write areas of flash and the two VPDs hold separate information, as follows.

RO_VPD•	

Serial Number ·

Initial Locale ·

Initial Time Zone ·

Keyboard Layout ·

Ethernet MAC address ·

RW_VPD•	

Activation Date ·

Registration Codes ·

Firmware TPM Usage
TPM stands for Trusted Platform Module. It is a specialized chip on an endpoint device
that stores RSA encryption keys specific to the host system for hardware authentication.

Chrome OS’s verified boot library uses the TPM for the following tasks:

Preventing software and firmware version rollback•	

Maintaining information to detect transitions between Normal •	
and Developer Modes

Protecting user data encryption keys•	

Protecting certain user RSA keys (“hardware-backed” certificates)•	

Providing tamper evidence for installation attributes•	

Protecting state ful partition encryption keys•	

Attesting TPM-protected keys•	

Attesting device mode•	

The TPM is not directly available outside of Chrome OS for any purpose; that is, no
remote software or system may have access to the TPM.

Chrome OS does not use the TPM for the following:

•	 Trusted boot: The TPM is not used as part of the Chrome OS
verified boot solution.

•	 Hardware: Strength platform configuration reporting.

•	 Whole-disk encryption or similar: In particular, the TPM is not
used to unwrap an encryption key during the boot process.

Chapter 5 ■ Chrome book Firmware internals

113

Chrome OS Firmware Update
The Chrome OS read-write area of the flash may be updated by the auto-update process.
When required, Chrome OS downloads the firmware update as a self-contained firmware
update package. All the binaries and scripts embedded into the shell archive, as well as
the firmware images for the system flash and the EC flash. The flashrom utility is part of
the package and is used to flash both the Chrome OS firmware image and the EC image.

As shown in the “FMAP” section of this chapter, the Chrome OS firmware has two
read-write images. The update process begins with flashing one region, rebooting,
verifying that the new image works, and then flashing the second region. This process
should prevent the system from becoming unusable if there is an update issue. Figure 5-4
shows the process of the RW image update process.

Figure 5-4. RW image update process

Chrome OS Utilities
Chrome OS uses several customized utilities behind the scenes. Users are able to access
these utilities to make system modifications in Developer Mode:

flashrom•	

gbb_utility•	

mosys•	

crossystem•	

Chapter 5 ■ Chrome book Firmware internals

114

flashrom
flashrom is an open source flash chip programmer utility (flashrom.org). It supports
many chipsets, flash devices, and programmers. The Chrome OS version has been
customized for Chrome OS needs, which includes updates to FMAP regions.

FTDI (-p ft2232_spi:servo-v2)
Dediprog (-p dediprog)
Embedded Controllers (-p ec)
FMAP integration (-i region)

Usage: flashrom [-h|-R|-L|-p <programmername>[:<parameters>] [-c <chipname>]
[-E|(-r|-w|-v) <file>] [-l <layoutfile> [-i <imagename>]...] [-n] [-f]]
[-V[V[V]]] [-o <logfile>]

Read Chrome OS firmware image:

flashrom -p host -r fw_backup.bin
flashrom v0.9.4 : 141a262 : Jan 08 2014 02:24:30 UTC on Linux 3.10.18
(x86_64), built with libpci 3.1.10, GCC 4.8.x-google 20130905 (prerelease),
little endian
Mapping BYT IBASE at 0xfed08000, unaligned size 0x200.
Mapping BYT SBASE at 0xfed01000, unaligned size 0x200.
Reading flash... SUCCESS

Write Chrome OS firmware image:

flashrom -p host -w image.bin
flashrom v0.9.4 : 141a262 : Jan 08 2014 02:24:30 UTC on Linux 3.10.18
(x86_64), built with libpci 3.1.10, GCC 4.8.x-google 20130905 (prerelease),
little endian
Mapping BYT IBASE at 0xfed08000, unaligned size 0x200.
Mapping BYT SBASE at 0xfed01000, unaligned size 0x200.
Erasing and writing flash chip... Verifying flash... VERIFIED.
SUCCESS

gbb_utility
gbb_utility is the utility to manage the Google Binary Block (GBB) region of the
firmware image.

Note ■ the internal write protect screw on the mainboard must be removed to write the
Gbb region.

Chapter 5 ■ Chrome book Firmware internals

115

Usage: gbb_utility [-g|-s|-c] [OPTIONS] bios_file [output_file]

Read current BIOS from flash into bios.bin:

flashrom -r bios.bin

Extract and display HWID from bios.bin:

gbb_utility --get --hwid bios.bin
hardware_id: RAMBI TEST A-A 0120

Extract and display GBB flags from bios.bin:

gbb_utility --get --flags bios.bin
flags: 0x00000000

Set GBB flags in bios.bin to 0x39 (factory default):

gbb_utility --set --flags=0x39 bios.bin
- flags changed from 0x00000000 to 0x00000039: success
successfully saved new image to: bios.bin

Write updated bios.bin back to flash:

flashrom -i GBB -w bios.bin

GBB Flags Utility Script: set_gbb_flags.sh
set_gbb_flags.sh is a script to automate the gbb_utility to change the flags. It can be used
in place of the preceding GBB flags example.

Usage: set_gbb_flags.sh [option_flags] GBB_FLAGS_VALUE

crossystem
The crossystem tool is used to gather information about the Chrome OS device’s system
flags, boot modes, VPD, GBB, NVRAM information, and binary versions.

Get vital system data:

crossystem
arch = x86 # Platform architecture
clear_tpm_owner_request = 0 # Clear TPM owner on next boot
clear_tpm_owner_done = 0 # Clear TPM owner done
cros_debug = 1 # OS should allow debug features
dbg_reset = 0 # Debug reset mode request (writable)
ddr_type = unknown # Type of DDR RAM
debug_build = 1 # OS image built for debug features

Chapter 5 ■ Chrome book Firmware internals

116

dev_boot_usb = 0 # Enable developer mode
boot from USB/SD
(writable)

dev_boot_legacy = 0 # Enable developer mode
boot Legacy OSes
(writable)

dev_boot_signed_only = 0 # Enable developer mode
boot only from official
kernels (writable)

devsw_boot = 1 # Developer switch
position at boot

devsw_cur = 1 # Developer switch current
position

disable_dev_request = 0 # Disable virtual dev-mode
on next boot

ecfw_act = RW # Active EC firmware
fmap_base = 0xffe10000 # Main firmware flashmap

physical address
fwb_tries = 0 # Try firmware B count

(writable)
fwid = Google_Rambi.5216.239.0 # Active firmware ID
fwupdate_tries = 0 # Times to try OS firmware

update (writable, inside
kern_nv)

hwid = RAMBI TEST A-A 0128 # Hardware ID
kern_nv = 0x00000000 # Non-volatile field for

kernel use
kernkey_vfy = sig # Type of verification

done on kernel key block
loc_idx = 0 # Localization index

for firmware screens
(writable)

mainfw_act = A # Active main firmware
mainfw_type = developer # Active main firmware type
nvram_cleared = 1 # Have NV settings been

lost? Write 0 to clear
oprom_needed = 0 # Should we load the VGA

Option ROM at boot?
platform_family = BayTrail # Platform family type
recovery_reason = 0 # Recovery mode reason

for current boot
recovery_request = 0 # Recovery mode request

(writable)
recovery_subcode = 0 # Recovery reason subcode

(writable)
recoverysw_boot = 0 # Recovery switch position

at boot

Chapter 5 ■ Chrome book Firmware internals

117

recoverysw_cur = (error) # Recovery switch current
position

recoverysw_ec_boot = 0 # Recovery switch position
at EC boot

ro_fwid = Google_Rambi.5216.239.0 # Read-only firmware ID
savedmem_base = 0x00f00000 # RAM debug data area

physical address
savedmem_size = 1048576 # RAM debug data area size

in bytes
sw_wpsw_boot = 0 # Firmware write protect

software setting enabled
at boot

tpm_fwver = 0x00010001 # Firmware version stored
in TPM

tpm_kernver = 0x00010001 # Kernel version stored
in TPM

tried_fwb = 0 # Tried firmware B before
A this boot

vdat_flags = 0x00000c56 # Flags from VbSharedData
vdat_timers = LFS=185474800,273111920
 LF=274161584,415809776
 LK=1,2856282 # Timer values from

VbSharedData
wpsw_boot = 1 # Firmware write protect

hardware switch position
at boot

wpsw_cur = 1 # Firmware write protect
hardware switch current
position

mosys
mosys is the firmware and hardware inspection utility. It is customized for each chipset,
so the capabilities and information vary from system to system. Generally, the following
commands are available with mosys:

ec EC information
eeprom EEPROM Information
gpio GPIO Information
memory Memory Information
nvram NVRAM information
platform Platform Information
smbios SMBIOS Information
eventlog Event Log

usage: mosys [options] [commands]

Chapter 5 ■ Chrome book Firmware internals

118

Get the SMBIOS BIOS information table:

mosys smbios info bios
coreboot | Google_Rambi.5216.239.0 | 07/11/2014 | 8192 KB

Google Embedded Controller
Besides the Application processor firmware, coreboot, Google has developed open source
embedded controller (EC) firmware.

The primary responsibilities of the EC are as follows:

Application processor power sequencing•	

Battery charging•	

Thermal management•	

Keyboard controller•	

Buttons and switches•	

Backlights, indicator LEDs•	

Additional board-specific peripherals•	

Note ■ For more information about the Google eC, visit http://git.chromium.org/
gitweb/?p=chromiumos/platform/ec.git;a=summary.

Like other areas of Chrome OS, the Chrome EC is designed for security. It has read-
only and read-write regions. The read-write binary update is called Software Sync. The
sync is handled by Depth charge and verified boot. The Chrome EC firmware has support
for several different ARM SOCs, including Texas Instruments Stellar is Cortex-M4 and the
ST Micro STM32 Cortex-M3.

Power Sequencing
Each application processor family has its own power sequencing requirements. The EC
must manage and respond to all those requirements across the different system states,
like boot, sleep, and idle. It also ensures that some peripherals are brought up and down
as directed by system drivers; for example, USB and Wi-Fi devices.

http://git.chromium.org/gitweb/?p=chromiumos/platform/ec.git;a=summary
http://git.chromium.org/gitweb/?p=chromiumos/platform/ec.git;a=summary

Chapter 5 ■ Chrome book Firmware internals

119

Battery Charging
Most Chrome books use Smart Battery technology. This is a fairly simple system, where
the battery asks for specific voltage and current, and the charger circuitry responds
accordingly. The EC handles a few special cases:

Trickle charge a fully discharged battery•	

Custom charge requirements for high- or low-power conditions•	

Keeping temperatures within safe operating ranges•	

Note ■ reference materials are located at http://sbs-forum.org/specs/sbdat110.pdf.

Thermal Management
The Chrome EC firmware supports several different thermal modes. It can act on
independent thresholds and deliver host events via ACPI and the system PROCHOT
signal. It also has configuration for fan speeds and can force the system power off, based
on any sensor readings.

Keyboard Controller
For x86-based systems, the EC provides a “standard” 8042 AT-style interface. ARM-based
systems use a binary format that merely sends the scan matrix up to the kernel. In either
case, the keyboard scan matrix is defined in the board-specific firmware configuration.

Other Peripheral Controls
The Chrome EC also controls the following devices:

LED behavior (battery charging, full, power on, etc.)•	

Backlight•	

Wi-Fi/USB power•	

Light bar, accelerometer, dedicated hardware buttons•	

Chrome EC Software Sync
It is important that the AP firmware (coreboot) and the EC firmware remain compatible
through upgrades. During every Normal Mode boot, the EC firmware is verified by the
AP firmware and updated, if required. In Recovery Mode, the EC and AP firmware stay in
read-only mode.

http://sbs-forum.org/specs/sbdat110.pdf

Chapter 5 ■ Chrome book Firmware internals

120

Software Sync Steps
The following are the software sync steps:

1. The EC boots its RO firmware and powers on the AP.

2. The AP boots its RO firmware.

3. The AP verifies its RW firmware and jumps to it.

4. The EC computes a hash of its RW firmware.

5. The AP RW firmware contains a copy of the EC’s RW firmware.
The AP compares its hash with the EC’s hash.

If they differ, the AP gives the EC the correct RW firmware, which the EC writes to its flash.
The EC jumps to its RW firmware.
In Developer Mode, set the flag in the GBB to disable Software Sync:

set_gbb_flags.sh 0x239
0x00000001 GBB_FLAG_DEV_SCREEN_SHORT_DELAY
0x00000008 GBB_FLAG_FORCE_DEV_SWITCH_ON
0x00000010 GBB_FLAG_FORCE_DEV_BOOT_USB
0x00000020 GBB_FLAG_DISABLE_FW_ROLLBACK_CHECK
0x00000200 GBB_FLAG_DISABLE_EC_SOFTWARE_SYNC

Summary
We are hoping that after reading this chapter, you have realized that the Chrome book
and other Chrome devices are not only interesting and convenient to use, but are also
devices that you can play with to experiment your new firmware and software ideas. This
chapter has provided you enough information to start your journey, but do check out
Google web sites to learn up-to-date and more detailed technical information.

By the way, this chapter’s text and graphics were written on a Chrome OS device in
Google Docs.

Note ■ this chapter contains some modified materials from the Chromium os wiki
(http://www.chromium.org/chromium-os). this falls under the Creative Commons
attribution 2.5 license (http://creativecommons.org/licenses/by/2.5/).

http://www.chromium.org/chromium-os
http://creativecommons.org/licenses/by/2.5/

121

Chapter 6

Intel FSP and UEFI Integration

“In theory, there is no difference between theory and practice. But, in
practice, there is.”

—Yogi Berra

This chapter will provide a bridge from the earlier chapters on FSP and coreboot to Unified
Extensible Interface (UEFI)-based technologies. These UEFI technologies include the
UEFI Platform Initialization (PI)–based modules in the EFI Developer Kit II (EDK II) found
on tianocore.org. EDK II elements can “consume” an Intel FSP binary to build a complete
platform. In addition, EDK II can be used as a payload for coreboot-style systems. Finally,
there are examples of EDK II–based open hardware platforms, such as Minnow and
MinnowMax, which demonstrate the Intel FSP and EDK II platform elements.

Introduction to EFI
EFI (Extensible Firmware Interface) and coreboot began around the same time in the late
1990s. They started with two different purposes. One of the objectives of EFI was moving
legacy BIOS to a modern interface with a modular driver model that allowed components
to be added and removed with ease.coreboot, on the other hand, was mostly created
from scratch to keep a minimum set of hardware initialization to boot Linux, and it was
designed to be an open source project from the beginning. EFI was later adopted by many
industry leaders, and turned into UEFI (Unified Extensible Firmware Interface). Along
with the UEFI evolution, the EDK (EFI Development Kit) was created to help firmware
development projects based on UEFI. Today’s EDK II is the second generation of the
original EDK, as the name suggests. You may also find UDK (UEFI Development Kit) as
the name representing the same codebase, which designates specific validated instances
of the EDK II tree.

We have talked about coreboot and Intel FSP in the last few chapters, and we will
focus on EDK II and Intel FSP integration in this chapter. Figure 6-1 shows an overview of
the development flow of different firmware ingredients in route to make the final target
ROM. As stated before, the goal of this book is to teach you how to put these ingredients
together so that you have the freedom to explore and develop your value-added features.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

122

The life cycle of firmware creation is shown in Figure 6-1. The flow starts from
the left, with the silicon reference code formatted as PEI Modules (PEIMs). These
PEIMs are, in turn, built into a firmware volume with the appropriate FSP interfaces
via the FSP SDK. This SDK includes elements of the MDE Module Package
(https://svn.code.Sf.net/p/edk2/code/trunk/edk2/MdeModulePkg) and the Intel
FSP Package (https://svn.code.Sf.net/p/edk2/code/trunk/edk2/IntelFspPkg/).
The latter package encapsulates the interfaces that a FSP binary needs to publish, as
defined in the FSP External Architecture Specification at http://www.intel.com/fsp.

Figure 6-1. Work flow of FSP and EDK II

Table 6-1. Comparison of coreboot and UEFI PI

Capability coreboot UEFI PI

The reset vector and
pre cache-as-RAM setup.

boot block Security Phase (SEC)

Cache-as-RAM setup, early silicon
initialization, memory setup.
Covered largely by Intel FSP.

rom stage Pre-EFI Initialization (PEI)

Create HOBs

Normal device setup and main board
configuration. Publishes SMBIOS/ACPI
tables.

ram stage Early Driver Execution
Environment (DXE)

Memory map hand-off. CBMEM UEFI Memory Map

The OS or application boot loader. pay load DXE BDS and UEFI Drivers

Even though UEFI/PI–based EDK II and core boot are distinctly different code bases,
conceptually, they share similar boot phases. Table 6-1 compares core boot and
UEFI/PI–based EDK II from a boot phase and terminology perspective. The left most
column describes the common capability, the middle column lists the core boot mapping,
and finally, the right most column contains the UEFI PI–based firmware mapping.

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdePkg
https://svn.code.sf.net/p/edk2/code/trunk/edk2/IntelFspPkg/
http://www.intel.com/fsp

Chapter 6 ■ Intel FSp and UeFI IntegratIon

123

The reality is that EDK II is necessarily rich and expansive because it supports the
specifications at www.uefi.org and a large set of capability sets to meet the various business
demands. To that end, EDK2 and UEFI have been successful in the broad market.

Even UEFI/EDK II stalwarts have expressed complexity, including anecdotal commentary
at http://uefi.blogspot.com/2014/04/the-tale-of-three-conferences.html.

Many discussions around UEFI have to do with complexity. And there is
something to these discussions, since the very power and flexibility of UEFI has led to
implementations (like that on TianoCore) that are broken into hundreds of pieces, where
assembling the right one requires the appropriate recipes. Most embedded vendors don’t
need their firmware distribution to be as complicated as their Linux distribution
(see yoctoproject.org).

Alternate firmware communities like core boot (www.coreboot.org) have Source
Control Management (SCM), a simpler workflow and number of files, and many public
main boards with full source. This poses an opportunity to embrace some of those
properties in our extant EDK II community. Specifically, the challenge for this effort is to
balance the richness of the present EDK II source, standards, and http://tianocore.org,
but provide simplified views or “recipes.”

The Firmware Support Package (FSP) is a recipe for aggregating a series of PEI
Modules (www.uefi.org) into a firmware volume. More information on the interface to
the FSP, including the hand-off state and additional APIs, can be found at
http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-
support-package/fsp-architecture-spec.html in the FSP EAS. We refer to this internally
as “FSP 1.0” since the evolution of FSP to include the migration of code to the reset vector
and other state management will be provided on the path toward the vision of “FSP2.0.”

FSP allows for the reuse of the validated EDK II code from the Intel product groups
providing silicon-initialization reference code. So the FSP + coreboot, or the FSP + EDK II
boot loader allow for amortizing the validation listed earlier.

There are presently efforts underway to assess open sourcing the closed-source
silicon reference code (SiRC) in Figure 6-1. If that happens, does that mean that the
FSP is no longer of value? No. Instead, FSP provides a simple means by which to
segregate the CPU and chipset-specific initialization code from the platform initialization
(board-specific elements) and the boot loader (OS-interface specific). This provides a
clean separation of duty from the ecosystem.

Introduction to FSP
The Intel® Firmware Support Package (Intel® FSP) provides key programming information
for initializing Intel® silicon. It can be easily integrated into a firmware boot environment
of the developer’s choice.

Different Intel hardware devices may have different Intel FSP binary instances, so a
platform user needs to choose the right Intel FSP binary release. The FSP binary should
be independent of the platform design, but specific to the Intel CPU and chipset complex.
We refer to the entities that create the FSP binary as the FSP producer and the developer
who integrates the FSP into some platform firmware as the FSP consumer.

http://www.uefi.org/
http://uefi.blogspot.com/2014/04/the-tale-of-three-conferences.html
http://www.coreboot.org/
http://tianocore.org/
http://www.uefi.org/
http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/fsp-architecture-spec.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/fsp-architecture-spec.html

Chapter 6 ■ Intel FSp and UeFI IntegratIon

124

Despite the variability of the FSP binaries, the FSP API caller (a.k. A. FSP consumer)
could be a generic module to invoke the three APIs defined in FSP EAS. This allows for
rich differentiation in the platform silicon, but it provides for a single set of interface code
in the consuming firmware base, whether it be coreboot or EDK II based. In other words,
the interface to the FSP binary can be like a class-driver or generic code, written for any
FSP binary. This allows for the ease of maintaining generic open source firmware code
that can absorb FSPs from different lines of business within a given manufacturer or other
manufacturers.

Figure 6-2 describes the FSP architecture, with the FSP binary from the FSP producer
in the center of the figure, and the platform code that integrates the binary, or the FSP
consumer, in blue. The fixed APIs published by the center FSP producer code, which is the
center of the figure, allow for a consistent set of invoking “consumer” code in the adjacent
boxes on the left and right.

Figure 6-2. Platform flow with FSP

The FSP EAS describes the API interface to the FSP binary that the consumer code
will invoke, but it also describes the hand-off state from the execution of the FSP binary.
The latter information is conveyed in Hand-Off Blocks, or HOBs. The Hand-Off Block
generic definition can be found in the UEFI Platform Initialization (PI) specification at
www.uefi.org, and the generic FSP EAS contains additional definitions of the HOB, as do
silicon-specific integration guides. Both the HOB definition and the binary layout of the
FSP.bin, namely as a Firmware Volume (FV), are the same as that defined in the UEFI PI
specification. Both the reuse of the PI specification artifacts and the EDK II open source
are used in the FSP production.

http://www.uefi.org/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

125

The FSP consumption, which is the topic of this chapter, can be a plurality of
firmware environments, of which an EDK II-style consumer will be described in more
detail. This EDK II consume will be a mixture of generic code from Tiano Core and
platform-specific PEI and DXE modules.

Introduction to EDK II
EDK II is the open source implementation for UEFI firmware, which can boot multiple
UEFI OS. This document will introduce how to use EDK II as a FSP consumer module to
build a platform BIOS.

Summary
This section provided an overview of Intel FSP and EDK II. Specifically, the use of
open source http://www.Tianocore.org/ elements that provide UEFI and UEFI PI
interfaces—along with consumer code of the FSP APIs—will be treated. TianoCore/ is
a package-based firmware architecture that provides an open source implementation
of industry-standard APIs in order to provide a “BIOS Core” that can be used in the
construction of platforms. The more generic, open source packages of TianoCore/, such
as the Module Development Environment (MDE) and the associated modules of the
MDE Module Package, should be reusable across a broad class of architectures, from
ARM Ltd to AMD to Intel. Chapter 2 of the UEFI 2.4 specification describes the various
bindings for which UEFI can be built.

For the Intel FSP, the https://svn.code.Sf.net/p/edk2/code/trunk/edk2/
IntelFspWrapperPkg/ is the package that provides an abstraction into an FSP.bin file.
The FSP.bin is included in a firmware build by importing the binary into the directory
and including a reference to the DSC file, along with the other necessary packages from
TianoCore/.

FSP Components
In EDK II, there are two different FSP-related packages. One is the producer, IntelFspPkg,
which is used to produce FSP.bin together with other EDK II packages and silicon
packages. The other is consumer, IntelFspWrapperPkg, which consumes the API exposed
by FSP.bin.

This chapter only focuses on IntelFspWrapperPkg and how it consumes FSP.bin. This
chapter will not describe IntelFspPkg or how it produces FSP.bin because the upcoming
chapter on Tiny Quark describes the construction of a full initialization binary very much
like a FSP binary. The core boot consumption of FSP was described in Chapter 4.
Figure 6-3 shows the EDK II work flow for the production of an FSP (on the left) and the
resultant paths to consume the FSP (on the right).

http://www.tianocore.org/
https://svn.code.sf.net/p/edk2/code/trunk/edk2/IntelFspWrapperPkg/
https://svn.code.sf.net/p/edk2/code/trunk/edk2/IntelFspWrapperPkg/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

126

FSP Wrapper Boot Flow
According to the FSP EAS, an FSP.bin exposes three APIs: TempRamInitApi, FspInitApi,
and FspNotifyApi (PciEnumerationDone and ReadyToBoot).

When should they be invoked in EDK II BIOS? There are three options for integrating
the FSP into an EDK II-style firmware. Details on the three options are described next,
with a grading that can be found in Table 6-2.

There are many architectural choices. The choices of FSP integration include having
a SEC core that directly invokes the FSP binary, and a second implementation that
includes a full PEI firmware volume with a PEI core. The former would be for a simple
system without other features in the PEI firmware volume (FV), such as Capsule Update
or Recovery.

With the SEC integration of FSP, which is shown in Figure 6-4, the SecCore can call
TempRamInitApi and FspInitApi immediately, and then skip the entire PEI phase and
jump to DxeLoad. DxeLoad can consume the FspHob, produce HOBs for DXE, and then
enter DxeCore directly. Afterward, FspNotifyDxe will register for a notification on the
PciEnumerationDone and ReadyToBoot callback function.

Finally, the FspNotifyApi is called in the callback function.

Figure 6-3. FSP components

Figure 6-4. FSP wrapper boot flow option 1

For the option described in Figure 6-5, SecCore calls TempRamInitApi and FspInitApi
immediately, and then enters PeiCore as normal. One PEIM will consume FspHob
and produce the HOBneeded by DXE. At the end of PEI, DxeIpl is launched and enters
DxeCore. The FspNotifiyDxe is the same as the example shown in Figure 6-4.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

127

In the final integration option shown in Figure 6-6, SecCore calls TempRamInitApi
only, and then enters the PeiCore. The FspInitPei module calls FspInitApi. However, once
FspInitApi is back, all PEI context saved in CAR is destroyed. So FspInitPei has to enter
PeiCore again to continue the PEI phase boot. Then, the rest of the initialization activities
will be same as a normal UEFI PI firmware boot flow. In addition, FspNotifyDxe is the
same as option 1 listed above in Figure 6-4.

Table 6-2. Comparison of the FSP Integration Options

FSP Wrapper Flow Pros Cons

Option 1 Small firmware size. No generic Dxe Loader.

Hard to support a different
PI boot mode.

Option 2 All generic code. Hard to support a different
PI boot mode.

Option 3 All generic code.

Supports all PI boot modes.

Complex. Needs to enter
PEI Core twice.

Figure 6-5. FSP wrapper boot flow option 2

Table 6-2 compares the pros and the cons for each solution.

Figure 6-6. FSP wrapper boot flow option 3

In EDK II, the default option is the last one. That means the IntelFspWrapperPkg
can support multiple PI boot modes, like Normal boot, S3 resume, Capsule Update, and
Recovery. Boot modes are describes in the UEFI PI Specification.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

128

However, an EDK II developer can use option 2 if the platform is so simple that
there is no need to support multiple boot modes. Or, a developer can use option 1 if
the platform is simple enough to skip the PEI phase. And in this case, “simple” means
PEI-phase features like platform Recovery, S3 Resume, Capsule Detection, and other
platform-based PEI phase actions can be omitted or deferred to a later phase, such as the
Driver Execution Environment (DXE).

Generic FSP Wrapper Boot Flow
Next is a deeper dive into the FSP wrapper boot flow. The detailed boot flow in each of the
UEFI PI boot modes will be described, too.

Normal Boot
A Normal Boot is typically a restart of the system that passes control from the reset vector
to the ensuing OS loader or payload. It is typically an ACPI S5 restart from a hardware
perspective, as opposed to a wake event like ACPI S3 or a restart event that is intended to
support a firmware update, such as the UEFI Capsule Update.

Boot Flow
In Normal boot mode, SecCore will firstcall theFSP API—TempRamInitApi, and then
transfer control to the PeiCore. One platform PEIM will be responsible to detect the
current boot mode and find some variable to finalize the boot mode selection. The
Normal boot flow is shown in Figure 6-7.

Figure 6-7. FSP Normal boot flow

FspInitPei has a dependency on MasterBootModePpi, so after the boot mode
is determined, FspInitPei is invoked for the first time, and it will call the second FSP
API—FspInitApi. In FSP.bin, the cache is torn down, so all previous PeiCore context is
lost. In the FspInit continuation function, it will emulate SecCore to launch the PeiCore
again, with a special PEIM-to-PEIM Interface (PPI)—FspInitDonePpi—as a parameter

Chapter 6 ■ Intel FSp and UeFI IntegratIon

129

for the PeiCore. Then FspInitPei will be invoked for a second time. At that moment, since
FspInitDonePpi is installed, FspInitPei will run into another path to parse the FspHob
and install PEI memory.

PeiCore will continue dispatching the final PEIMs and jump into the DXE core. Then,
DXE core will launch FspNotifyDxe, which registers a callback function for the last FSP
API—FspNotifyApi, for both PciEnumerationDone and ReadyToBoot.

Memory Layout for a Normal Boot Flow
The memory layout for FSP Normal boot is shown in Figure 6-8. The left-hand side
demonstrates the component on flash and the temporary memory, such as cache as
RAM. On the right-hand side is the DRAM layout. The green part is for FSP.BIN. The blue
part is for EDK II BIOS.

When SecCore calls TempRamInitApi, FSP binary sets up the temporary memory
using the processor cache-as-RAM (CAR), uses part of them, and leaves the rest of these
activities to the EDK II BIOS. This CAR information is reported as a return parameter of
TempRamInitApi (see bottom left of Figure 6-8).

Figure 6-8. FSP Normal boot flow memory layout

Chapter 6 ■ Intel FSp and UeFI IntegratIon

130

Then FspInitPei calls FspInitApi, wherein the FSP binary will initialize silicon
including DRAM and reserved portions of DRAM. The full memory layout, including
full DRAM size, reserved DRAM location, and SMRAM location will be reported by
the FspHob. After FspInitApi, it will return back to the Continue Function provided by
FspInitPei, with the stack pointed to DRAM (because CAR is destroyed; see the bottom
right of Figure 6-8).

In FspInitPei, the Continue Function will launch the second SecCore, with the
temp ram pointed to DRAM. The second SecCore will launch the same PeiCore and
continue dispatching the PEI firmware volume (see the top left of Figure 6-8 for more
information). The purpose of the second PEI core is so that the FSP binary has its own
small PI initialization flow. Regions in the figure are broken out by “who allocates the
memory—FSP reserved at the top from FSP.bin, DXE code and data with DXE allocations
in the middle, and PEI allocated at the bottom.”

Finally, the system enters the DXE phase, and a platform module may allocate
temporary ram for the S3 boot path and a capsule boot path to save the information in a
tamper-proof, safe location.

FSP Normal Boot Data Structure
According to Figure 6-8, there are two SecCores involved. The first one is the normal
SecCore and the second one is a small SecCore inside FspInitPei. Given the two SecCores,
there needs to be a scheme where in the first SecCore passes information to the second
one, like the Built-In Self-Test (BIST) data and the initial reading of the performance
counter, or ‘boot time ticker’ needed for subsequent construction of the Firmware
Performance Data Table (FPDT).

In IntelFspWrapperPkg, the first SecCore saves the BIST and ticker in CAR. Before
FspInitApi is called, the platform may choose to save them in some special registers not
touched by FSP.bin. One example could be IA CPU multimedia registers like MMX, or a
PCI scratch register. In the implementations listed later, the MMX option is used, as shown
in Figure 6-9, using MMX0 and MMX5/6 for BIST and performance ticker information,
respectively. After FspInitApi, the FspInitPei launches the second SecCore, which will
restore the information from special registers to a new stack in temp ram. The second
SecCore also registers a special TopOfTemporaryRam PPI (a.k. A., TopOfCarPPI, as shown
in Figure 6-9), which has pointer to the top of temp ram.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

131

The reason to introduce TopOfTemporaryRam PPI is because the FspInitPei needs a
way to ascertain the beginning of the FSP’s HOB list, while the FspHobList pointer itself is
saved to the top of temp ram. Also, the BIST and boot time ticker information are saved at
the top of temp ram. It becomes easy to know the information by having a PPI to tell the
temp ram location.

This section described the FSP wrapper boot flow in Normal boot mode. As part of
enabling the Normal boot, several options were reviewed, with details on the present
open source implementation (option 3), that supports all the UEFI PI PEI phase related
features. The next section goes into the specific implementation of those features, such as
S3, Recovery, and Capsule Update.

Figure 6-9. FspInitPei data structure

Chapter 6 ■ Intel FSp and UeFI IntegratIon

132

S3 Boot
TheS3 Boot represents one of the more involved restart mechanism. S3 is a wake event
wherein most of the hardware it put into a low-power state and the main memory needs
to be taken out of a self-refresh mode. The system firmware orchestrates this restoration
by replaying a set of the configuration settings applied during a Normal Boot as one
embodiment.

Boot Flow
In S3 boot, the difference from the Normal boot entails when to call FspNotifyApi. In
Normal boot mode, this invocation occurs in the DXE phase, but in S3 boot mode, there is
no DXE. Details of the FSP S3 boot flow are shown in Figure 6-10.

Figure 6-10. FSP S3 boot flow

In the IntelFspWrapperPkg, the FspInitPei routine will register EndOfPei callback in
S3 boot mode. So when the boot script finishes execution, FspNotifyApi is invoked, and
then the system invokes the OS waking vector.

S3 Memory Layout
In an S3 boot, the difference in the memory layout entails the temp ram location. In
Normal boot mode, the temporary ram is at some low DRAM address, configured by
Platform Configuration Database (PCD) settings, which is used by no one in PEI phase. In
the S3 boot, usable DRAM is owned by OS, expected the one reported as ACPI reserved or
ACPI NVS. The details of this memory layout are shown in Figure 6-11.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

133

In a Normal boot DXE phase, a platform driver should allocate S3 temp ram,
marking it as reserved to OS. Then in the S3 phase, the FspInitPei can use it as temp ram
for purposes of invoking the continuation function.

S3 NV Data Passing
In some platforms, S3 phase initialization needs the configuration saved in a Normal
boot. Figure 6-12 is an example of how memory configuration data is passed from the
MRC module in Normal boot to the MRC module in S3.

Figure 6-11. FSP S3 memory layout

Chapter 6 ■ Intel FSp and UeFI IntegratIon

134

In a Normal boot, the FSP Memory Reference Code (MRC) PEI module produces
a MemoryConfigData HOB and saves it in the FSP HOB list. The resultant FSPlist is
published after FspInitApi. Then an FSP platform PEI parses the FSP HOB, gets the
MemoryConfigData, and saves it into the normal PEI HOB list. In the DXE phase, a platform
module parses the PEI HOB list and saves MemoryConfigData into an NV variable.

In S3 boot, the FSP PEI module finds the MemoryConfigData from an NV
variable region, constructs NvsBufferPtr as an FspInitApi parameter, and calls the FSP
binary. Then, the FSP binary has the NvsBufferPtr, and the MRC module can get the
MemoryConfigData from NvsBufferPtr and do the memory initialization in S3 phase.

This section describes the FSP wrapper boot flow in S3 boot mode. This section
treated concerns about having memory reservation for purposes of invoking the OS
wake vector and securely storing the configuration information necessary to restore the
platform state prior to the hand-off to the OS.

Capsule Flash Update
The Normal Boot and S3 boot typically refer to hardware restarts, namely S5 and S3,
respectively. The Capsule Flash Update is a logical boot flow that leverages an S5 or S3
hardware restart but applies some underlying logic to orchestrate receiving and applying
a firmware update.

Boot Flow
In the Capsule Update boot, there is only a small difference with the Normal boot flow. In
the Capsule Update flow, the FspInitPei needs to call CapsuleCoalesce before installing PEI
memory, and it needs to install PEI memory for Capsule Update mode. Other differences
from the Normal boot flow include the size and location of the PEI memory. The reason
that the Capsule Update flow may need to sequester more memory is that the Capsule FV in
memory is loaded by the PEI phase and thus consumes additional resources from the PEI
usages of DRAM. Details of the FSP Capsule Update boot flow can be found in Figure 6-13.

Figure 6-12. FSP S3 NVS data passing

Chapter 6 ■ Intel FSp and UeFI IntegratIon

135

Figure 6-13. FSP Capsule Update boot flow

Capsule Update Memory Layout
In Capsule Update boot mode, the difference in memory layout is the temp ram location.
In Normal boot mode, the temp ram is at some low DRAM, configured by a PCD,
which is used by no one at PEI phase. In Capsule Update boot, usable DRAM is owned
by OS, and one can expect this to be reported as ACPI reserved or ACPI NVS. The OS
might put the capsule image into any usable DRAM. Specifically, the UpdateCapsule()
runtime call from the UEFI runtime service table has a pointer to a scatter gather list of
memory allocated by the OS kernel. As such, the firmware, such as the PEI phase and
FSP, cannot predict “where” the OS will put the capsule. The PEI phase’s responsibility
is to discover the capsule and then coalesce or merge the fragments into a continuous
run of memory, such that the following DXE phase can ascertain data or code from the
Capsule Firmware volume. Additional details on UpdateCapsule can be found in the
UEFI Specification at www.uefi.org. Details of the flash and memory during the Capsule
flow can be found in Figure 6-14.

http://www.uefi.org/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

136

Figure 6-14. FSP Capsule Update boot memory layout

In a normal boot DXE phase, a platform driver should allocate capsule temp ram,
marking it as reserved to the OS. Then in the Capsule Update phase, the FspInitPei can
use it as temp ram for continued functioning.

This section has provided an overview of the Capsule Update boot flow. The
flow is very similar to the Normal boot flow, with the exception of additional memory
reservation for storing the capsule firmware volume.

Recovery Boot Flow
In Recovery boot, there is only a small difference from the earlier flow: FspInitPei
needs to install PEI memory for Recovery Mode. The size might be different with
Normal boot mode because the recovery firmware volume will be loaded from some
recovery media, such as a USB thumb drive, and put into memory reserved by the
PEI phase. This is similar to the Capsule Update in that the PEI phase will pass up a
firmware volume not contained in the system board flash: OS-reserved memory for
the capsule and on-recovery-media data for recovery. Details of the recovery flow are
shown in Figure 6-15.

Chapter 6 ■ Intel FSp and UeFI IntegratIon

137

Figure 6-15. FSP Recovery boot flow

FSP Recovery Memory Layout
In Recovery boot, the memory layout is the same as Normal boot mode. Details are
shown in Figure 6-16.

Figure 6-16. FSP Recovery boot memory layout

Chapter 6 ■ Intel FSp and UeFI IntegratIon

138

This section has shown how a full set of UEFI PI features can be implemented with
the Intel FSP Wrapper Package. These features include Capsule Update, Recovery, and
S3. These discussions included the design considerations and memory layout for the
different scenarios.

The packages on TianoCOre are prefixed with “Intel” since the FSP EAS is an
Intel-published document. This Intel-qualified moniker is very much akin to the
Intel Platform Innovation for the Extensible Firmware Interface, or “Framework”
specifications, lifecycle. These specifications started viaan Intel self-published matter that
Intel subsequently contributed to the UEFI Forum to become the UEFI PI specifications.

coreboot Payload Based upon EDK II
Beyond using EDK II to consume an FSP, a payload for coreboot can be built upon
EDK II. Chapter 4 talked about the overall concept of payloads in coreboot. As a quick
recap, recall that the coreboot romstage and ramstage do platform initialization, but
the set of interfaces exposed to the operating system hand-off can vary. As an old
friend once told me, “Compatibility is the software you choose to run,” (see
http://vzimmer.blogspot.com/2013/02/what-is-compatibility.html), so the
payloads vary based upon that criteria, namely the operating system “software”
that you wish to run. For example, if you want to launch a PC/AT BIOS–based OS,
then Sea BIOS is a choice. Correspondingly, if you want to use coreboot for platform
initialization but launch a UEFI-style OS, then the UEFI payload is an option.

There have been many UEFI payloads built in the past, including EDK-based. For this
discussion, we build upon earlier EDK II review to show, in addition to EDK II being one
means by which to construct an FSP, the generic EDK II code can be used to create
a coreboot payload, too. A variant of this payload can be found at http://www.uefidk.com.
It consists of a DSC file that includes many generic drivers from TianoCore and a few
purpose-built modules that take the coreboot state and adapt it into UEFI. The firmware
device (FD) that contains these modules is shown in Figure 6-17.

http://vzimmer.blogspot.com/2013/02/what-is-compatibility.html
http://www.uefidk.com/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

139

Figure 6-17. UEFI payload based upon EDK II

Figure 6-17 shows the spatial view of the code; the UEFI payload in Figure 6-18
describes the temporal flow of the constituent elements. As described in a generic UEFI
flow, there is a miniature variant of the same in the payload, namely a SEC module
that takes control from coreboot ramstage and passes CBMEM from coreboot into the
following payload PEI and DXE phase. One module in the payload is responsible for
transforming the CBMEM description of the memory and addressing space topology
into UEFI PI HOBs and the UEFI DXE internal tracking elements, like Global Coherency
Domain (GCD) entries, for purposes of publishing the resultant descriptions from
the UEFI service GetMemoryMap(). The HOBs and GCD can be found in the UEFI PI
specifications, and the GetMemoryMap API can be found in the UEFI specification. All of
these documents can be found at www.uefi.org.

http://www.uefi.org/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

140

Figure 6-18. UEFI Payload boot flow

Building Minnow and MinnowMax with FSP
The preceding discussions talk about infrastructure code, but not a complete platform.
Intel FSP provides a simple method to integrate a solution that reduces time-to-market,
and it is economical to build. IntelFspWrapperPkg is the FSP consumer in EDK II to
support building out a UEFI BIOS. This section describes in detail the work flow and data
structure in IntelFspWrapperPkg.

The source trees for Minnow and MinnowMax can be found at http://www.uefidk.com.
These distributions include the elements necessary to build a full UEFI-based
firmware image, including a build option based upon the Intel FSP. The locations
are http://www.uefidk.com/content/minnowboard-uefi-firmware and
https://uefidk.com/content/minnowboard-max, respectively.

This section features a simple work flow to adapt an Intel® Firmware Support Package
(FSP) (http://www.intel.com/content/www/us/en/intelligent-systems/intel-
firmware-support-package/intel-fsp-overview.html.html) –based binary module
and an operating system boot loader layer built upon the EFI Development Kit 2 (EDK II)
(http://tianocore.Sourceforge.net/wiki/EDK2). The work flow entails retrieving the
Intel FSP binary from the Intel website. The FSP binary will be unique for a given CPU,
chipset, and memory controller.

The FSP binary can then be adapted to an EDK II style boot environment with the
https://svn.code.Sf.net/p/edk2/code/trunk/edk2/IntelFspWrapperPkg/. The FSP
binary itself is formatted as a UEFI Platform Initialization (PI) firmware volume and
conveys the output results of the FSP initialization in UEFI PI Hand-Off Blocks. These
HOBs include details such as the initialized set of main memory, the graphics frame

http://www.uefidk.com./
http://www.uefidk.com/content/minnowboard-uefi-firmware
https://uefidk.com/content/minnowboard-max
http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html.html
http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html.html
http://tianocore.sourceforge.net/wiki/EDK2
https://svn.code.sf.net/p/edk2/code/trunk/edk2/IntelFspWrapperPkg/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

141

buffer in the case of integrated FSP graphics, and other initialization resources, like TSEG.
Beyond the Intel FSP Wrapper, a small complement of EDK II code can be used to provide
a minimal set of architectural protocols, DXE core, and a Boot Device Selection (BDS)
driver to boot an embedded operating system.

The BDS can provide a standards-based UEFI boot, or alternate BDS
implementations can feature direct kernel loads from flash, as in a coreboot payload
approach, or direct kernel load from disk, as found in U-Boot.

Three FSP wrapper modules are provided in the Intel FSP Wrapper Package to help
EDK II firmware make calls to the FSP binary. FspSecCore will prepare the running
environment for FSP binary, search the FSP information header, and then call the two
basic FSP APIs (TempRamInit and FspInit). After these two APIs are executed, both the
processor and the chipset have been initialized, and memory is also ready for use. At
last, FspSecCore will transfer the control to PeiCore. FspWrapperPei will be executed
in the PEI phase. It will parse the HOBs produced by FSP and report them to the EDK II
BIOS if they are required. Also, it will install memory according to the memory resource
information from the FSP. FspWrapperDxe should be run in DXE phase to notify the FSP
about the different phases in the boot process. This allows the FSP to take appropriate
actions as needed during different initialization phases.

Details on the workflow are as follows.
Before we start the integration, let’s first figure out what you need to have.

•	 FSP binary. The binary file that contains the basic CPU and
chipset init code; you also get a FSP usage guide.

•	 IntelFspWrapperPkg. The EDK II wrappers we created and put
together into a single package; this is available at TianoCore. This
package includes the components FspDxeIpl and FspSecCore.

•	 Your current EDK II platform code base.

Now, let’s go through following steps to prepare your codebase to incorporate the
FSP binary. For the Minnow and MinnowMax projects, these files can be found on
http://www.uefidk.com.

1. Change the BIOS flash map file and put the FSP binary at the
expected address.

During the build of FSP binary, the base address of FSP binary will be placed at the
predefined address; if your flash map layout is different with those predefined addresses,
please change them accordingly. Next is the list of the six PCDs used by FSP. For example,
in Platform.fdf:

// Base address of bios flash device
SET gEfiFspTokenSpaceGuid.PcdFlashAreaBaseAddress = 0xFFC00000
// Size of bios flash device
SET gEfiFspTokenSpaceGuid.PcdFlashAreaSize = 0x400000
// Base address of cpu microcode
SET gEfiFspTokenSpaceGuid.PcdFlashMicroCodeAddress = 0xFFFB8000
// Size of cpu microcode
SET gEfiFspTokenSpaceGuid.PcdFlashMicroCodeSize = 0x00004000
0x003c0000|0x00020000
gEfiFspTokenSpaceGuid.PcdFlashFvFspBase|gEfiFspTokenSpaceGuid.PcdFlashFvFspSize
FILE = $(WORKSPACE)/MinnowPkg/FspBinary/FvFsp.bin

http://www.uefidk.com/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

142

2. Replace the original SecCore Module with FspPkg’s SecCore
Module.

In addition, you need to set values for these two PCDs (PcdTemporaryRamBase
and PcdTemporaryRamSize). These two PCDs define the base address and size of the
temporary memory, which is used in the PEI phase before memory is installed. As in
SecCore, FSP has already initialized the memory. You can use any physical memory
address, or you can remove any definitions on these two PCDs in platform.dsc and use
the default values.

For example, in Platform.dsc:

[PcdsFixedAtBuild]
gEfiCpuTokenSpaceGuid.PcdTemporaryRamBase|0x00080000
gEfiCpuTokenSpaceGuid.PcdTemporaryRamSize|0x00010000
[Components.IA32]
FspPkg/SecCore/SecCore.inf
In Platform.fdf:
// INFIA32FamilyCpuPkg/SecCore/SecCore.inf
INFFspPkg/SecCore/SecCore.inf

3. Add FSP support PEIM and DXE modules from FspPkg.

For example, in Platform.dsc:

[Components.IA32]
FspPkg/FspPei/FspPei.inf
FspPkg/FspDxe/FspDxe.inf
In Platform.fdf:
INF FspPkg/FspPei/FspPei.inf
INF FspPkg/FspDxe/FspDxe.inf

For the open hardware, the website http://www.uefidk.com/projects has the
landing page (https://uefidk.com/content/minnowboard-max) with files to build a full
MinnowMax (http://www.minnowboard.org/meet-minnowboard-max/) tree.

Presently, these distributions are online as a zip archive. In the future, these sources
should evolve to the live open source tree at TianoCore.

This tree supports both a native EDK II build from individual binary and sources,
along with the FSP build. The latter is keyed off of MINNOW2_FSP_BUILD in the platform
DSC file.

Specifically, as noted in the release notes, you need to open Vlv2TbltDevicePkg\
PlatformPkgConfig.dsc.

Modify “DEFINE MINNOW2_FSP_BUILD” macro from “FALSE” to “TRUE”. DEFINE
MINNOW2_FSP_BUILD = TRUE

The preceding definition tells the build tools to select the modules that work with
the Intel FSP Wrapper Package, as opposed to building the firmware wholly from separate
.PEI and .EFI files for the PEI and DXE phases of execution, respectively.

http://www.uefidk.com/projects
https://uefidk.com/content/minnowboard-max
http://www.minnowboard.org/meet-minnowboard-max/

Chapter 6 ■ Intel FSp and UeFI IntegratIon

143

Future of the Intel FSP
The Intel FSP is a binary-enabling model that works in tandem with open or closed
source IA firmware platform code. The work flow of binaries can include additional
tools in the future, such as the Intel® Firmware Engine (http://www.uefidk.com/sites/
default/files/resources/SF14_STTS002_100f.pdf). These tools allow for automating
the creation of the FSP, or configuring the FSP, such as the PCD-as-VPD for platform
adaptation, from a user interface.

In addition to automation tools, the present FSP has the UEFI EDK II platform code
SecCore or coreboot rom stage for the hardware reset, but a future evolution of Intel
FSP can include moving some of the critical silicon initialization to reset itself. This
would entail having a CPU manufacturer code that might even ship with the hardware
element with hand-off to platform IA firmware via today’s FSP or EFI PI PEI hand-off,
such as HOBs.

The work flow, including binary manipulation tools and the migration for the FSP
binary to reset, are shown in Figure 6-19.

Figure 6-19. Evolution of Intel FSP

And as the Intel Framework Specification went to UEFI PI, the Intel FSP EAS could
also follow the same pattern and appear in a future UEFI PI specification.

http://www.uefidk.com/sites/default/files/resources/SF14_STTS002_100f.pdf).These
http://www.uefidk.com/sites/default/files/resources/SF14_STTS002_100f.pdf).These

Chapter 6 ■ Intel FSp and UeFI IntegratIon

144

Conclusion
This chapter described several aspects of building firmware using UEFI class technology.
The chapter began by building upon the Chapter 4 coreboot section, which is leveraged
to compare coreboot phases with UEFI PI flows. This was followed by describing EDK II
on FSP via the various boot flows of the Intel FSP Wrapper Package. After this overview,
a description of the wrapper enablement of a Normal, Capsule, Recovery, and S3 boot
followed. Building upon the Intel FSP Wrapper Package, the construction of EDK II on
FSP for Minnow and MinnowMax open hardware platforms followed. After instantiating
FSP on these two platforms, a glimpse is provided into possible evolution of the Intel FSP
construction workflows with tool assistance and the migration of the Intel FSP binary to
the reset vector.

145

Chapter 7

Building Firmware for Quark
Processors

“Three things cannot be long hidden: the sun, the moon, and the truth.”

—The Buddha

The Intel Quark SoC X1000 is Intel’s lowest-power SoC, designed to provide performance
and reduce development costs for securely managed Internet of Things endpoint devices.
It is initially offered as a single-core, single-threaded microprocessor, making it an ideal
solution for low-cost, small form factor, fan less and headless designs.

This chapter will discuss the EDK II infrastructure, Quark, and building a minimal
Quark tree with the EDK II. The purpose of this review is to touch upon the salient aspects
of the EDK II source construction technology and how it relates to the UEFI PI and UEFI
standards, respectively.

This Intel implementation of EDK II at TianoCore demonstrates the possibilities
available using the scalable architecture of both the code base and the associated underlying
industry standards (see www.uefi.org). The UEFI firmware size for this Intel Galileo EDK
II implementation (http://uefidk.intel.com/projects/quark) is 64KB, and given its
diminutive size relative to the full Quark EDK II build, it is referred to as “TinyQuark”
throughout the rest of this document. TinyQuark boots Yocto Linux (www.yoctoproject.org)
on the Intel Galileo board using the onboard flash. You can build this solution from the source
code available to download using the following URL. Specifically, the TinyQuark code is at
http://uefidk.intel.com/content/get-started-intel-galileo-development-board.

This chapter presents the internal design of TinyQuark, which can be generalized by
developers to make their own small-footprint UEFI firmware.

Overview of UEFI and PI
Before getting into TinyQuark, however, the next sections will describe some of the
design intent of the EDK II software infrastructure and the association to the UEFI and PI
specifications. These specifications describe interoperability between binary and/or source
components. Books like Beyond BIOS by Vincent Zimmer, Michael Rothman, and Suresh
Marisetty (Intel Press, 2011) describe the specifications, but there hasn’t been a single place
to describe the implementation. The next section is intended to help with that gap.

http://www.uefi.org/
http://uefidk.intel.com/projects/quark
http://www.yoctoproject.org/
http://uefidk.intel.com/content/get-started-intel-galileo-development-board

Chapter 7 ■ Building Firmware For Quark proCessors

146

History of Implementations and Specifications
Starting with the Extensible Firmware Interface (EFI) 0.92 specification in 1998, there has
always been a reference EFI implementation. The sample implementations are intended
to help clarify some of the design intent of the specification. As shown in the diagram in
Figure 7-1, every corresponding specification has had an associated implementation.
Historically, these implementations were of the core components that are portable
across a broad set of hardware platforms, but the implementations did not include a full
platform source tree.

Figure 7-1. Specification and implementation time line

The time line shows the original sample implementation, pre-2006. The original EFI
Developer Kit (EDK) had challenges in construction since it was a monolithic tree, and
the addition of third-party sources or data was ad hoc, as was library support since EDK
didn’t codify the set of libraries that were usable by the different phases of execution. The
introduction of the packaging concept in EDK II, along with PCDs and the base libraries,
provided a way to compose source modules from different entities, have reusable sources
across many different architectures, and host development environments. Specifically,
EDK only supported the Microsoft tool chain, whereas EDK II supports building under
Apple OS X, Microsoft Windows, and various Linux distributions. The clean ANSI-C
source files and the Python-based build tools of EDK II help contribute to this portability.

Chapter 7 ■ Building Firmware For Quark proCessors

147

Introduction to EDK II Building Blocks
The EFI Development Kit II (EDK II) is an implementation of the UEFI and PI standards.
The EDK II is hosted at www.tianocore.org and features many technologies, including
an OS-portable build system, ANSI-C code, and GCC/NASM/MASM–based assembly
language sources.

In addition, the source technology is decomposed via “packages.” The package
concept is covered by the UEFI PI packaging specification and is a means by which to
segregate binary and sources. The package boundaries are typically driven by business
considerations. The packing concept has many interrelated elements for construction,
including the DEC, DSC, FDF, and INF files, along with the Platform Configuration
Database. The relationship of these elements, details, and some examples of the same are
shown next.

Regarding packages, the most prominent packages are listed next, with brief notes
about functionality.

PKG: Packaging
Packaging describes the units of decomposition for various technologies. The packaging
boundaries may appear somewhat arbitrary at first but are usually motivated by both
technology and business criteria. The former includes aggregating a given type of
component in one place, such as the generic bus drivers and core elements in the MDE
Module Package. The latter includes things like licensing, wherein the package may
contain closed-source binaries and sources for a proprietary technology.

MdePkg
The Module Development Environment (MDE) Package (MdePkg) includes files and
libraries for Industry Standard Specifications (i.e., UEFI, PI, PCI, USB, SMBIOS, ACPI,
SMBIOS, etc.). You can think of the MdePkg, along with the build tools, as the minimum
components to build a PEI Module (PEIM), a DXE driver, or a UEFI driver.

The EDK II code is managed on www.sourceforge.net, but there is also a
mirror on GitHub. As such, the source code for this package can be found at
https://github.com/tianocore/edk2/tree/master/MdePkg.

The important components are the include and library directories. Within the include
directory there are industry standard definitions, protocol and PPIs corresponding to
the UEFI and UEFI PI specifications, and architecture-specific files. These files need a
corresponding white cover industry standard, a public document, or a published UEFI
specification in order to reside in the MdePkg.

The library directory, on the other hand, contains a series of library classes. The
directories prefixed by “Base” should be use able in the PEI, DXE, UEFI runtime, and
UEFI boot services phases. These are the most generic, portable libraries that do not
depend upon underlying interfaces. The other libraries are alternately prefixed by the
phase of execution, such as “PEI”, “SMM”, “DXE”, “SEC”, or “UEFI.” These latter terms
designate the phase of execution wherein these libraries apply.

Figure 7-2 describes the various phases of UEFI PI execution.

http://www.tianocore.org/
http://www.sourceforge.net/
https://github.com/tianocore/edk2/tree/master/MdePkg

Chapter 7 ■ Building Firmware For Quark proCessors

148

MdeModulePkg
Building upon the MdePkg are implementations of modules, namely the Module
Development Environment Modules (MdeModulePkg). These components can be found
at https://github.com/tianocore/edk2/tree/master/MdeModulePkg. The PEIMs, DXE
drivers, UEFI drivers, and UEFI applications-only definitions from the Industry Standard
Specifications are defined in the MdePkg. These components should be portable across
a broad class of platforms and CPU bindings, including 32-bit and 64-bit ARM, Intel
Itanium, IA32, and X64.

IntelFrameworkPkg
The IntelFrameworkPkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkPkg) includes files and libraries for those parts of the Intel Platform
Innovation Framework for EFI specifications (a.k.a. “Framework”) that were not adopted
“as is” by the UEFI or PI specifications. These packages provide a bridge between code
written against the Framework Specifications (http://www.intel.com/content/www/us/
en/architecture-and-technology/unified-extensible-firmware-interface/efi-
specifications-general-technology.html) and the subsequent UEFI PI specifications.
Some of the interfaces changed between Framework and PI, such as the SMM-CIS;
whereas other interfaces only exist in the Framework corpus, such as the Compatibility
Support Module (CSM).

Figure 7-2. UEFI PI boot flow

https://github.com/tianocore/edk2/tree/master/MdeModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html

Chapter 7 ■ Building Firmware For Quark proCessors

149

IntelFrameworkModulePkg
The IntelFrameworkModulePkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkModulePkg) contains modules (PEIMs + DXE drivers+ UEFI drivers) that
make reference to one or more definitions in the IntelFrameworkPkg. A diagram of these
packages is shown in Figure 7-3.

Figure 7-3. Important packages for EDK II

Packages
Packages in the EDK II are groups of modules. A package may support one or more
drivers, libraries, or combinations thereof. Example packages, in addition to the ones
listed earlier, include drivers and applications related to specific hardware, or drivers
and applications related to software components, such as the UEFI specification. The
MdeModulePkg is an example of the latter, and the former will be discussed in the
context of TinyQuark.

Packages can also leverage definitions and elements of other packages. A hardware
package should reference the core UEFI packages, such as the MdePkg, for the definitions
of standard UEFI protocols and structure.

Packages have related files, such as XML manifest, DSC, and INF files, in addition to
the C and/or assembly-language source files. Figure 7-4 shows the packages’ relationship
with supporting files.

https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg

Chapter 7 ■ Building Firmware For Quark proCessors

150

So the package provides the partitioning of the sources and binaries, but it does not
provide for fine-grain control of build options in the actual code artifacts. For that, the
PCD comes into play.

PCD: Platform Configuration Database
So what is the platform configuration database goal? First, PCD entries are used for
module parameterization; examples include define statements and variables. Among
other things, the benefit of PCDs includes reducing the need to edit the source code. Also,
there is no need to search for a magic #define statement, like base address registers, for
example. These can all be PCD values.

PCDs allow for reusing values across many modules. These fixed-at-build PCDs are
very much akin to #defines, but herein they are tied into the build system.

Beyond PCDs, the PCD concept can also be used dynamically, namely to store
platform information, like the vital product data serial number. You can use dynamic
PCDs for setup options and so forth.

PCDs are related to other build files, such as INF, DEC, and DSC, as shown
in Figure 7-5.

Figure 7-4. Packages and supporting files

Chapter 7 ■ Building Firmware For Quark proCessors

151

There are various types of PCDs, including FeatureFlag, FixedAtBuild,
PatchableInModule, and Dynamic.

•	 FeatureFlag: Replaces a switch MACRO to enable/disable a
feature (TRUE or FALSE).

•	 FixedAtBuild: Replaces a macro that produced a customizable
value. The value of this PCD type is determined at build time and
is stored in the code section of a module’s PE image.

•	 PatchableInModule: The value is stored in the data section, rather
than the code section, of the module’s PE image.

•	 Dynamic/DyanmicEx/DynamicHii/DynamicVpd: The value is
assigned by one module and is accessed by other modules in
execution time.

The PCDs are related to the build process, as follows in Figure 7-6. Specifically, the
PCDs are ascertained from the DEC, INF, DSC, and FDF file and included in the autogen.
The autogen source files are in turn compiled with the other sources for the resultant
driver or PEI module.

Figure 7-5. PCD relationship to INF, DEC, and DSC

Chapter 7 ■ Building Firmware For Quark proCessors

152

In addition to extracting the PCDs from metadata files like INF/DEC/DSC, the PCDs
can also be used directly in source files. In this case, the relationship of the source and
the build is shown in Figure 7-7.

Figure 7-7. PCDs via build and source construction

Figure 7-6. PCDs and build flow

Syntax
Given the background on the PCDs, the following is an example of the declaration of
PCDs for a given module.

[PcdsFeatureFlag.common] [PcdsFixedAtBuild.IA32] [PcdsFixedAtBuild.X64]
[PcdsFixedAtBuild.IPF] [PcdsFixedAtBuild.EBC] [PcdsDynamic.IA32]
[PcdsDynamicEx.X64]

Chapter 7 ■ Building Firmware For Quark proCessors

153

Example of a PCD during DXE
Defined in ICH X Package DEC
 [PcdsDynamic.common]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0|UINT8|0x40000016
The Module INF lists which PCDs get accessed
 [Pcd]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs
The Value to use in New Project Package DSC
 [PcdsDynamicDefault.common.DEFAULT]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0

Here is an example used in the CODE:

DXE - Referenced in the DXE code in NewProjectPkg\ SetupDxe\Platform.c

IchSataPataConfigs.Uint8 = PcdGet8(PcdIchSataPataConfigs);
 . . .
 PcdSet8(PcdIchSataPataConfigs, IchSataPataConfigs.Uint8);

Finally, the PCDs can show up in the resultant flash image in many ways, including
as a Firmware File System file in the flash image. Figure 7-8 shows one possible layout of
the PCDs, along with other binary content, such as the UEFI variable data and the vital
product data.

Figure 7-8. PCDs in a flash image

Beyond PCDs for parameterizing the build and source files, there is the Platform
Declaration File that describes the collection of modules in a build.

DEC: Platform Declaration File
The DEC is the Platform Declaration File (the “D” in DEC is for declaration). There is just
one DEC file per package. A DEC file is required for EDK II modules using extended INF and
extended DSC format files. If you make a new package you must have a DEC file for it.

Chapter 7 ■ Building Firmware For Quark proCessors

154

Syntax
The DEC has a defines section that states what the package is. It gives it a GUID and a
name. Every other section described here is optional.

The DEC file may have an includes section stating, “The include directories for this
package are as follows:”. For example, you might be able to say, “This is my IA64 include
and this is my X64 include,” and so forth.

In addition, the DEC file also has an optional library class section. It exposes the
library classes that are defined in the package.

If you declare any GUIDs in the system, the DEC file has a GUID section. Certain
structures have GUIDs defined for them; if that structure is defined in this package,
it would be listed here.

The DEC file has a protocol GUID listed for every protocol header file that is in your
package. You list the GUID of that protocol in the protocol section. The same is true for
PPIs; they are also identified by GUID.

If any module contained in your package defines a new PCD, this is where you look
it up.It is possible to reference a PCD from another package, but do not list it here. This
location is for new PCDs.

Coincidentally, as soon as you make a new PCD, you must make a new token space
GUID, because all the PCDs are defined by a token space GUID, followed by the PCD
name. A new token space means you must have a GUID for the token space. So, any new
PCDs are also going to have a GUID.

Finally, user extensions are rarely used, but are optionally present. The following is
an example DEC file.

Example dec
@file ShellPkg.dec
##
[Defines]
 DEC_SPECIFICATION = 0x00010005
 PACKAGE_NAME = ShellPkg
 PACKAGE_GUID = 9FB7587C-93F7-40a7-9...
 PACKAGE_VERSION = 0.40
[Includes.common]
 Include
[LibraryClasses.common]
 ## @libraryclass Provides most Shell APIs. Only available for Shell applications
 ShellLib|Include/Library/ShellLib.h
 ## @libraryclass Provides shell internal support Only available for
shell internal commands
 ShellCommandLib|Include/Library/ShellCommandLib.h
 ## @libraryclass provides EFI_FILE_HANDLE services used by Shell and ShellLib
 FileHandleLib|Include/Library/FileHandleLib.h
 ## @libraryclass Allows for a shell application to have a C style entry point
 ShellCEntryLib|Include/Library/ShellCEntryLib.h
 ## @libraryclass Provides sorting functions
 SortLib|Include/Library/SortLib.h

Chapter 7 ■ Building Firmware For Quark proCessors

155

 ## @libraryclass Provides advanced parsing functions
 HandleParsingLib|Include/Library/HandleParsingLib.h
[Guids.common]
 gEfiShellEnvironment2ExtGuid = {0xd2c18636, 0x40e5, 0x4eb5, {0xa3, 0x1b,
0x36, 0x69, 0x5f, 0xd4, 0x2c, 0x87}}

This completes the description of the DEC file. Beyond the DEC file, there also needs
to be a DSC.

DSC: Platform Description File
A DSC file must define all libraries, components, and/or modules that will be used by one
package. DSC files are a list of the following:

EDK Component or EDK II Module INF files•	

EDK libraries (for EDK Components)•	

EDK II Library Class Instance Mappings (for EDK II Modules)•	

EDK II PCD Entry Settings•	

The following is an example of a DSC file for the UEFI Shell Package:

#/** @file
Shell Package
#**/
[Defines]
 PLATFORM_NAME = Shell
 PLATFORM_GUID = E1DC9BF8-7013-4c99-9437-...
 PLATFORM_VERSION = 0.4
 DSC_SPECIFICATION = 0x00010006
 OUTPUT_DIRECTORY = Build/Shell
 SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC
 BUILD_TARGETS = DEBUG|RELEASE
 SKUID_IDENTIFIER = DEFAULT
[LibraryClasses.common]
 UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/
UefiApplicationEntryPoint.inf

 UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/
UefiBootServicesTableLib.inf

 DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
 DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
 PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

Chapter 7 ■ Building Firmware For Quark proCessors

156

FDF: Flash Description File
The FDF file describes information about the flash part. It has rules for combining
binaries built from a DSC file. You can create firmware images and optional ROM images
for nearly anything you need.

It is possible to have PCD information used in the definition, as well as in some of the
PCDs. The patchable ones will be stored at specific places inside the FV file.

Syntax
The FDF file has a header and a FD section, as well as a number of FV sections. It might
have a capsule, a VTF, rules, and an optional ROM section if you are trying to build a
PCI option on some user extensions. The following is a Backus-Naur Form (BNF) style
notation of the FDF file.

FDFfile ::= [<Header>]
 [<Defines>]
 <FD>
 <FV>
 [<Capsule>]
 [<VTF>]
 [<Rules>]
 [<OptionRom>]
 [<UserExtensions>]

The FD section definitions for flash devices must be in the FDF file. The FV section
definitions for firmware volumes must be in the FDF file.

Build: The EDK II Build Command
The EDK II build system is based on Python. This is one way to achieve the cross-OS
build environment portability. The build tools directory in the EDK II tree root hosts
the source code for the tool. Schematically, the EDK II build process proceeds as
shown in Figure 7-9.

Chapter 7 ■ Building Firmware For Quark proCessors

157

Usage of the command is as follows:

EDK2 build command
Usage: build.exe [options] [all|fds|genc|genmake|clean|cleanall|cleanlib|
modules|libraries|run]
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a TARGETARCH, --arch=TARGETARCH
 ARCHS is one of list: IA32, X64, IPF, ARM or EBC,
 which overrides target.txt's TARGET_ARCH definition
 To specify more archs, please repeat this option.
 -p PLATFORMFILE, --platform=PLATFORMFILE
 Build the platform specified by the DSC file name
 argument, overriding target.txt's ACTIVE_PLATFORM
 definition.
 -m MODULEFILE, --module=MODULEFILE
 Build the module specified by the INF file name
argument.

To bring all of the metadata and build files together, Figure 7-10 shows the
relationship of the source with the FDF, INF, DEC, and DSC files.

Figure 7-9. Build flow for binary creation

Chapter 7 ■ Building Firmware For Quark proCessors

158

INF: INF File
The INF file is updated to define all sources (.c, .h, .uni), libraries, packages, GUIDs,
and PCDs used by the module. See the EDK II INF File Specification for more
information and examples.

An INF is like a local make-maker file or metadata to inform the build system about
which files to use and how to integrate them. The following is an example of an INF file
for a serial driver.

INF Example SerialDxe
C file
EFI_STATUS
EFIAPI
InitializeSerial (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 SerialPortInitialize ();
 return
 gBS->InstallMultipleProtocolInterfaces (
 &mSerialIoHandle,
 &gEfiDevicePathProtocolGuid,

Figure 7-10. Relationship of all files to the complete build

Chapter 7 ■ Building Firmware For Quark proCessors

159

 &mSerialIoDevicePath,
 &gEfiSerialIoProtocolGuid,
 &mSerialIo,
 NULL);
}

INF file
[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SerialDxe
 FILE_GUID = 7507 . . .
MODULE_TYPE = UEFI_DRIVER
 VERSION_STRING = 1.0
 ENTRY_POINT = InitializeSerial
[Sources.common]
 Serial.c
[Packages]
 MdePkg/MdePkg.dec
 MdeModulePkg/MdeModulePkg.dec
[LibraryClasses]
 PcdLib
 UefiBootServicesTableLib
 . . .
[Protocols]
 gEfiSerialIoProtocolGuid
 gEfiDevicePathProtocolGuid

INFfile ::=[<Header>]
<Defines>
 [<BuildOptions>]
 [<Sources>]
 [<Binaries>]
 [<Guids>]
 [<Protocols>]
 [<Ppis>]
 [<Packages>]
 [<LibraryClasses>]
 [<Pcds>]
 [<UserExtensions>]
 [<Depex>]

More Information
All of the preceding build specifications can be found at
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

Chapter 7 ■ Building Firmware For Quark proCessors

160

Introduction to the EDK II Subset
EDK II is open source implementation for UEFI firmware, which can boot multiple
UEFI-aware operating systems. Section 2.6 of the UEFI Specification [UEFI] defines the
minimum set of capabilities that UEFI-aware firmware, such as EDK II, must support.
We use EDK II BIOS for the Galileo board, which uses the Quark processor.

The Quark build for Galileo is the first fully open-source EDK II–based platform.
It leverages the UDK2010 packages, including MdePkg and MdeModulePkg, and adds
TinyBootPkg, Ia32FamilyCpuBasePkg, QuarkPlatformPkg, and QuarkSocPkg.

The standard build is 1MB and can be found at
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197.

This full build includes features described in the UEFI 2.4 and PI1.3 specifications on
www.uefi.org, and include the capsule update, SMM, S3, PCI, recovery, FAT file system
support, and UEFI variables.

Now that the overview of the EDK II build system and associated elements have
been discussed, details on the internals of TinyQuark will be used to demonstrate this
infrastructure in practice. As such, this section provided an overview of Quark and EDK II.
Before we begin on the software, a description of the Quark platform itself is in order.

Introduction to Quark
The Intel Quark System-on-Chip (SoC) X1000 is the first product in a new road map
of innovative, small core products targeted at rapidly growing areas, ranging from
the industrial IoT to wearables. It brings low-power and Intel compute capabilities
for thermally constrained, fanless, and headless applications. With its security and
manageability features, this SoC is ideally suited for the Internet of Things and for the
next wave of cost-effective, intelligent connected devices. An overview of the Quark
hardware platform is shown in Figure 7-11.

Figure 7-11. Quark hardware platform

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197
http://www.uefi.org/

Chapter 7 ■ Building Firmware For Quark proCessors

161

ROM Flash Image Size Optimization
A set of UEFI/EDK II–related size reduction technologies to make TinyQuark are listed
in the following sections. “Write good C code” is not mentioned because it is a generic
advocacy to have robust, testable code. Instead, this section defines how to apply some
logic to provide the minimum feature to the EDK II Quark firmware and still maintain
basic UEFI conformance.

In the next several sections, we will discuss the size reduction techniques, one
by one. The various techniques used for the EDK II Quark image size reduction are
schematically shown in Figure 7-12.

Figure 7-12. Technology summary for Quark image size reduction

Fixed Resource
To begin, the support of fixed system resources is important because it will lead to the
direct feature set of the platform.

DRAM/SMRAM

If a platform can have fixed DRAM resource, then we can remove the complicated
Memory-Type Range Register (MTRR) calculation algorithm in the CPU driver. The MTRR
settings can be a table-driven configuration for this design with a known physical
memory map. Refer to QuarkPlatformPkg\Library\QuarkSecLib\SecPlatform.c and
http://uefidk.intel.com/projects/quark for more information.

http://uefidk.intel.com/projects/quark

Chapter 7 ■ Building Firmware For Quark proCessors

162

If a platform can have fixed SMRAM, then we can remove the SmmAccess driver
that supports the PI SMM interfaces, and just use library to get that value. Refer to
QuarkPlatformPkg\Library\SmmPlatformHookLib.

If a platform can have fixed-memory mapped I/O (MMIO) and PCI resources,
then we can remove PCI driver. The PCI resource setting can be done by a table-driven
configuration. Refer to QuarkPlatformPkg\Pci\PlatformFixedPciResource found in
https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip.

Remove Features

Not all UEFI features are needed in TinyQuark. Some features can be removed directly,
like S3 (ACPI), ATA bus (ATA), USB bus (USB), SCSI bus, network (UEFI), HII (UEFI),
UEFI secure boot (UEFI), TPM (TCG), or dynamic PCD(UEFI PI Specification).

Removing some features needs fixed resource support. Today, there are
complex resource managers in a full EDK II firmware, like the PCI Bus Driver
(https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci), which
discovers a set of PCI devices and balances the resources. This is an algorithmically
complex process that entails significant code logic. For deeply embedded platforms like
Quark, wherein the designer elides the ability to add arbitrary devices, a simple driver
that declares a fixed set of resources can be used. An example from TinyQuark includes
TinyQuark_EDK II\QuarkPlatformPkg\Pci\ PlatformFixedPciResource.

The biggest component removed in TinyQuark is the PEI core. TinyQuark has SEC
linked to the DecompressLib, and the code in SEC jumps directly into DxeIpl. DxeIpl
links into the memory reference code (MRC), finishes memory initialization, and then
jumps into the DxeCore. The DXE core provides the basic UEFI capabilities, such as the
boot services.

The detail flow of SEC ➤ DXE is shown in Figure 7-13.

Figure 7-13. SEC ➤ DXE solution

https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci

Chapter 7 ■ Building Firmware For Quark proCessors

163

Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more
information on how many of the features are removed:

For ResetVector module, refer to •	
QuarkPlatformPkg/Cpu/Sec/ResetVector.

For SecTrampoline module, refer to •	
QuarkPlatformPkg/Cpu/SecTrampoline.

For DxeIpl module, refer to QuarkPlatformPkg/Cpu/SecCore.•	

Reduce Features

Even if a component is still needed in TinyQuark, we can make a simplified version.
For example:

•	 CpuArch: No SetMemoryAttribute() support, because
MTRR is fixed and programmed in DxeIpl. Refer to
IA32FamilyCpuBasePkg/SimpleCpuArchDxe

•	 Variable: Just expose empty variable driver. Or later we can
have some fixed data integrated in this driver. So there is
no need to allocate specific Variable FV region. Refer to
TinyBootPkg/Universal/Variable/NullVariableRuntimeDxe/
NullVariableRuntimeDxe.inf

•	 ACPI: No generic ACPI_TABLE or ACPI_SDT driver. We created
AcpiLib to support SetAcpi() only in the AcpiPlatform driver.
Refer to TinyBootPkg/Library/AcpiTableLib

•	 Terminal: No driver model. Only supportsPcAnsi. Refer to
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 Serial: No driver model. Link SerialPortLib directly. Refer to
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 PE/COFF lib: Support PE32 only, no PE32+ or TE. Refer to
TinyBootPkg/Library/BasePeCoffLibPe32

•	 DXE core: No GUIDED_SECTION, no Decompression, no FVB,
no EBC, no HII, no DebugInfo table. Refer to TinyBootPkg/Core/
SimpleDxeCore

•	 SMM: SMM is redesigned. We removed SmmCore
(see next for more information).

The current EDK II has the SmmIpl, SmmCore, and SmmCpu drivers. SmmIpl will
load SmmCore into SMRAM. SmmCore will load all SMM drivers into SMRAM, including
the SmmCpu driver, the SmmPch driver, the SmmPlatform driver, and so forth.

Chapter 7 ■ Building Firmware For Quark proCessors

164

Figure 7-14. Full SMM core solution

After the SmmCpu driver is loaded, SMBASE rebase happens. Then, the next SMI
will trigger into the SmmCpu driver. Next, the SmmCpu driver passes control to the
SmmCore, and the SmmCore calls each Smm root handler driver, as registered by the
SmmPch driver, to dispatch the respective SMI handler. This full SMM topology can be
found in Figure 7-14, in which the upper portion of the figures is SMRAM, or memory
protected from ring 0 code by hardware, and the lower portion of the boxes designates
normal DRAM.

In this simplified version, we remove the SmmCore. We let the SmmIpl find the
SmmCpu driver and load it into SMRAM to do the SMBASE rebase operation. Another
activity entails the conversion of all SmmPlatform drivers into a library, and links this
library into the SmmCpu drive.

The next SMI will trigger a machine mode switch so that control is passed into the
SmmCpu driver, and the SmmCpu driver will call a SmmPlatform library to dispatch the
SMI handler. Figure 7-15 provides a diagram of the simplified SMM solution.

Chapter 7 ■ Building Firmware For Quark proCessors

165

Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more
information on a simplified version driver.

For the SmmIpl/SmmCpu module, refer to IA32FamilyCpuBasePkg/
SimplePiSmmCpuDxeSmm.

For SmmPlatform lib, refer to QuarkPlatformPkg/Library/SmmPlatformHookLib.

Compiler Options

In order to support a minimal image size, there are a couple of guiding rules:
do not use the /Zi compiler flag and do not use the /DEBUG link flag. These flags can
be added in the debug phase, but do not use them in final release, so that debug
information in PE image is removed.

Build Options

Use the NULL Debug lib: DebugLib|MdePkg/Library/BaseDebugLibNull/
BaseDebugLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Do not use dynamic PCDs: PcdLib|MdePkg/Library/BasePcdLibNull/
BasePcdLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Figure 7-15. Simplified SMM solution

Chapter 7 ■ Building Firmware For Quark proCessors

166

For the Execute-in-Place (XIP) images, use the TE image. Refer to QuarkPlatformPkg.fdf.
The following provides an example of the FRF file that provides the TE images.

[Rule.Common.SEC]
 FILE SEC = $(NAMED_GUID) RELOCS_STRIPPED {
 TE TE Align = 8 $(INF_OUTPUT)/$(MODULE_NAME).efi
 RAW BIN Align = 16 |.com
}

The TE Image format is not applicable for the DXE or UEFI drivers, but it does
provide a space savings for images that cannot be compressed by instead have to execute
directly from the memory mapping SPI NOR flash, such as SEC and PEI.

Do not use UI/VER section. Refer to QuarkPlatformPkg.fdf.

[Rule.Common.DXE_DRIVER]
 FILE DRIVER = $(NAMED_GUID) {
 DXE_DEPEX DXE_DEPEX Optional $(INF_OUTPUT)/$(MODULE_NAME).depex
 PE32 PE32 $(INF_OUTPUT)/$(MODULE_NAME).efi
UI STRING="$(MODULE_NAME)" Optional
VERSION STRING="$(INF_VERSION)" Optional BUILD_NUM=$(BUILD_NUMBER)
}

Although it doesn’t necessarily contribute to the image size reduction, the image
must be rebased in order to support Execute-in-Place (XIP). Sometimes the DXE volume
can be rebased to the location in the main memory where it will be decompressed.
This build-time rebasing omits the time-overhead of the PE/COFF loader to “fix-up”
the image during each machine restart. In general, this technique won’t work for open
platforms because we do not know at firmware build time the size of physical memory
or “where” the main DXE firmware volume will be decompressed and copied. Only for
deeply embedded platforms with integrated DRAM can such a build-time technique be
employed. Additional details from the FDF on how to configure this rebasing follow.

[FV.EDK II_BOOT_SLIM]
BlockSize = 0x1000
FvBaseAddress = 0x80010000
FvForceRebase = TRUE
...

In order to have compression support, the TinyQuark employs LZMA F86
compression. Refer to QuarkPlatformPkg.fdf.

FILE FV_IMAGE = 9E21FD93-9C72-4c15-8C4B-E77F1DB2D791 {
 SECTION GUIDED D42AE6BD-1352-4bfb-909A-CA72A6EAE889 PROCESSING_
REQUIRED = TRUE { # LzmaF86
 SECTION FV_IMAGE = EDK II_BOOT_SLIM
 }
 }

Chapter 7 ■ Building Firmware For Quark proCessors

167

Table 7-1. TinyQuark ROM Module Size

Although earlier we mentioned “No GUIDED_SECTION support in the DxeCore”,
this is a GUIDed section. The reason is that this Guided section will be only supported
by DxeIpl to decompress the whole DXE FV. As such, there is no need to have individual
drivers in the the DXE FV supported by compression or GUIDed section, thus allowing
the DxeCore to remove these support to reduce the size.

Results of the TinyQuark Optimization
After the application of the techniques covered earlier, the TinyQuark ROM demonstrates
significant code size savings in the ROM image. Table 7-1 lists some of the metrics.

In addition to the fine-grain metrics in Table 7-1, Figure 7-16 provides a print
message from the firmware itself, essentially showing that the entire firmware volume
in the flash part occupies less that 64KB, or the smallest region of today’s symmetrically
blocked SPI NOR flash parts.

Figure 7-16. Message from the firmware on its size

Chapter 7 ■ Building Firmware For Quark proCessors

168

This section described how to reduce ROM flash size, especially as larger flash
images lead to larger parts, with an impact to the bill of materials (BOM) and ultimate
cost of the platform. Beyond cost savings, the other reason to have a smaller image in
flash entails performance; copying a smaller binary from flash to DRAM consumes less
of the boot time. To reach the smaller binary, the PEI core was omitted and purpose-built
PCI Bus drivers and SMM infrastructure were employed. TinyQuark shows an extreme
end of the spectrum, but even a generic platform could benefit from a subset of the
techniques described.

RAM Footprint Optimization
In the preceding section, we reduced the amount of real estate consumed in the SPI NOR
flash, thus allowing more space for the operating system and other data. But the SPI NOR
isn’t the only factor to impact the BOM. The other factor that impacts a board cost is
volatile memory, or RAM usage. RAM is often noted as DRAM, too, for most systems.

As such, we did an analysis on RAM footprint on the 64K TinyQuark, and we realized
that the image in Quark firmware is copied four times during boot, which can be avoided
in practice.

1. DxeIpl, will prepare Decompressed FV to DxeCore. This is the
first copy.

2. Once DxeCore finds a FV, it will copy FV into RAM. The
reason is that DxeCore does not know if it is on flash or
DRAM. This flash vs. DRAM independence only makes sense
if other optimizations are in place, such as setting the MTRRs
to ensure that the firmware volume in flash is cached. If not,
there is a significant performance penalty in doing direct flash
access for each code fetch.

3. Then in the Driver Dispatch phase, the DxeCore constructs
a list for all FFS and SECTIONs there. The section stream for
FFS is the third copy for each PE/COFF image.

4. Finally, when DxeCore starts loading the UEFI image, it
allocates another memory and uses PeCoff library to load and
relocate PE image. This is the fourth copy.

The detailed memory layout before optimization is shown in Figure 7-17.

Chapter 7 ■ Building Firmware For Quark proCessors

169

Figure 7-17. Current DXE core

Optimization
In order to optimize memory usage, the design technique entails avoiding additional
buffer allocations. Instead, the optimization entails reuse of the old buffer as much as
possible.

To begin, the Decompressed Fv buffer is the base. This buffer is then reused as the
CachedFvcan be a pointer to the original Decompressed Fv buffer. Correspondingly, the
section stream for FFS can still point to the original buffer.

Then for the PE/COFF image, we relocate all PE/COFF images at build time.
A normal DXE driver or UEFI driver is rebased for its execution address in DRAM so that
it can be run directly, without the need for fix-ups. The Dxe Runtime driver is special
because it needs to reside in runtime memory (i.e., memory of type EFI_MEMORY_
RUNTIME [UEFI]). So the DxeCore just needs to allocate Runtime Paged memory and do
the relocation for the runtime driver.

The detailed memory layout after optimization of memory usage can be found in
Figure 7-18.

Chapter 7 ■ Building Firmware For Quark proCessors

170

Figure 7-18. Enhanced simplified DXE core

Table 7-2. TinyQuark Component RAM Size

Result of Memory Usage Optimization
Before optimization, the memory size used is 760K (624K allocated during boot + 136K
decompressed FV). After optimization, the memory size used is 340K (204K allocated
during boot + 136K for the decompressed FV).

In addition to the overall metric, a finer-grain accounting of memory usage can be
found in Table 7-2.

Chapter 7 ■ Building Firmware For Quark proCessors

171

This section describes the how to reduce the RAM footprint size. Historically,
memory usage in the pre-OS has been considered “free” since the operating system will
reclaim most of the resources, but for resource-constrained embedded systems, the
DRAM size can be strictly limited. As such, optimizing the boot-time drivers to reuse
buffers instead of allocating additional pages allows for an optimum memory footprint
during the early phase of execution.

Conclusion
This Intel implementation of the EDK II is a demonstration showing the possibilities
available using the scalable architecture of EDK II source code technology and the
flexibility of the UEFI Specification. The 64K “TinyQuark” demonstrates the scalability of
the EDK II architecture and how to create a UEFI-conformant firmware solution that has
a very small flash size and can minimize DRAM usage. This allows for a slim boot load
environment for a subsequent UEFI OS, or a slim execution environment for bare-metal
execution that can suffice just using UEFI services.

173

Chapter 8

Putting It All Together

“The future depends on what you do today.”

—Mahatma Gandhi

Embedded firmware has a lot of facets beyond the topics we could cover in this book.
Our goals have been to provide enough knowledge and tools to get you started quickly
when you deal with an embedded design based on Intel Architecture. The contents in
this book may not have anticipated all the changes in the specifications and APIs that
were under development when we were writing this book, but the framework of the book
can represent the essence of the ideas and examples shown in the book. Regardless of
whether you have read all the chapters in this book, you should have learned about the
key ingredients mentioned in it: Intel FSP, coreboot, EDK II, Chromebook firmware, and
the unique firmware features that embedded industries are looking for.

If we include automotive, industrial, medical, retail, smart home and building,
avionics, military, print imaging, gaming, and other broad market sectors in the picture,
there are many versatile design requirements—ranging from using completely open
standards to using only proprietary closed specifications; and from performing multiple
general-purpose functions to possessing only a single dedicated function; and from
having a long life cycle that spans a couple of decades to a short life cycle that lasts just
long enough until the next coolest thing comes out. Some sectors require a rigorous
certification process to examine every line of code shipped in the unit to ensure safety
and security, and it is costly if any line of the code needs to be updated from both a time
and a monetary perspective. That explains why some crucial components, such as the
recording technology embedded in the black box of an airplane, do not seem to evolve
as quickly as other sectors are experiencing. Each vertical sector has to develop its own
methodology to optimize its own firmware development approach to maximize its value.

From the perspective of firmware development methodology in these vertical
sectors, developers can choose a high-touch design model using an army of developers to
write every line of code, or choose to use a low-touch turnkey model with only a handful
of staff to turn control knobs provided by a software utility that cranks out a firmware
binary at the other end. It is the decision of the business development managers, not only
based on the customers they are targeting, but also on a long-term view of the business.

From the ecosystem perspective, some vertical sectors have a large well-established
ecosystem; some have only a small ecosystem with only a few players in it. The
availability of the either high-touch or low-touch solutions may not be consistently
available at the same time.

Chapter 8 ■ putting it all together

174

Therefore, the spectrum of supporting all these vertical sectors is wide open and
full of variables. The thing we need to keep in mind is that there is no one-size-fits-all
solution out there. Even within the same company selling the same source code to their
customers, some customize the common source code and turn them into two or more
products to serve different market sectors. For example, it is a very typical process for
a RTOS vendor to provide one RTOS product for avionic customers to satisfy safety-
related certification, and yet another RTOS product for military customers to use for
security-specific certification. Safety standards—such as ARINC 653, ISO 26262, and
IEC 61508—define critical requirements that are very different from security-focused
standards that regulate data integrity and protection. The most important standard, MILS
(Multiple Independent Levels of Security) architecture, defines four conceptual layers of
separation in separation kernel and hardware, middleware services, trusted applications,
and distributed communications. The RTOS or firmware vendors in these spaces
frequently provide several products to serve the customers that need certain certification
done. It is very costly and tedious to run through the line-by-line source code certification
process; some said that it can be $50 or more per line to cover the certification. That is
why sometimes a smaller code size is critical to some market sectors.

RTOS and Intel FSP
As discussed in Chapter 2, there were more than 120 active RTOS projects being
developed for various applications and vertical markets at the time this book was written.
Intel FSP can be a useful ingredient if these RTOS vendors are looking for a reliable way to
support Intel Architecture.

Traditionally, RTOS products have been mainly designed for microcontrollers and
low-end microprocessors rather than feature-rich microprocessors; therefore, there has
not been a lot of demand to support Intel’s Atom and Core products until recently, as
IoT devices are becoming important and Intel pushes Quark SoC and other low-power
products to the market. As Moore’s Law continues to affect microprocessors’ size and
power reduction, it is more and more feasible to use high-performance Intel processors
in IoT and embedded devices. Intel has put in a considerable amount of effort to make
embedded-friendly products. As a result, more and more developers are looking for RTOS
solutions to support Intel microprocessors; this is especially true since Quark SoC was
introduced to the market in 2014.

There are currently two ways for a RTOS to work with a microprocessor that requires
some silicon-level programming:

An RTOS vendor can choose to put a firmware stack or bootloader •	
underneath. Just like a PC, the target system can first boot a
firmware stack, such as BIOS, and then boot the RTOS kernel
using a GRUB or similar OS bootloader. This is a viable solution
as long as boot speed and code size are not the critical design
requirements. A size- and speed-optimized firmware stack can
make the option more appealing too.

RTOS can also have a native silicon initialization code built inside •	
the RTOS stack. With Intel FSP, RTOS vendors can choose to boot
natively by integrating Intel FSP into the RTOS boot code.

Chapter 8 ■ putting it all together

175

In 2012, Wind River Systems did a demo at the Intel Developer Forum to boot to
a VxWorks kernel on an Intel platform in 350 milliseconds using native Intel silicon
initialization code. Obviously, the demo was done without graphics and PCI devices.
RTOS vendors often deal with a system without graphics and PCI devices; therefore, it is
a viable solution for RTOS vendors to integrate a small silicon initialization code, such as
Intel FSP, and add other components on top of it, if necessary.

Intel FSP and Open Source Philosophy
When the Intel® Quark™ SoC X1000 Series was announced, its EDK II source code was
fully released as an open source project on Intel’s web site. It is actually a source code
without the involvement of Intel FSP. If an open source code base has all the source
code available, do we still need Intel FSP? This is a good question, and the answer is: it
depends. As we discussed in this chapter, many embedded firmware developers do not
have the time or the expertise to look for components inside an open source codebase,
and they are frequently looking for a way to quickly enable their own firmware stack to
boot to their value-added features. Giving them all the source code that contains the
silicon initialization code is useful, but it does not help if they need to quickly find the
components inside the source code and port it over to another firmware stack. The EDK II
source code uses a diver model for device initialization, and the documentation provided
has comprehensive data to guide a developer to extract the source, if needed. Therefore,
it is very feasible for a seasoned firmware engineer to find all the necessary source code to
port it over to a different codebase.

Even though many hard-core open source advocates always love fully opened source
code, as a compromise, many open source developers don’t mind picking up some code
that other people have written, tested, and verified, and then wrapped in a binary file.
Because these developers don’t have too much value to add to the code (serving a very
specific hardware enablement mission), the code can be treated as part of the “hardware”
as necessary. For example, a chip needing rigid and sensitive hardware initialization may
not have too much room for innovation. Obviously, this is debatable; many developers
can still add value by optimizing and reducing the code size if they want to. Silicon
vendors may not have done the best job in optimizing the code to initialize their chips.

That said, the majority of the developers do not have as much time to look for
firmware code in the open source repository to construct a firmware stack, or simply do
not have the expertise to experiment open source projects.

Even though Intel FSP is far from a turnkey solution, it encapsulates enough silicon
initialization code to provide the flexibility that people need to pick and choose a different
firmware stack to work with. One day, Intel may decide to make all the components
inside Intel FSP open source; but even if that happens, the concept of having all the
silicon code in one place, such as Intel FSP, should still be the best option for people who
do not want to invest time in figuring out how to initialize Intel’s silicon.

Since the goal of Intel (and potentially other silicon vendors as well) is to simplify the
silicon initialization work inside a firmware stack, it is predictable that there will be many
types of firmware solutions available to the market from Intel to help developers—from
completely open source to completely turnkey. Some solutions may require more work
than the others; and some may be no work at all beyond turning a few knobs on a utility-
based GUI user interface. Intel FSP will be a key component of all. As shown in Figure 8-1,

Chapter 8 ■ putting it all together

176

the options can be an integration of FSP inside a host firmware, or a turnkey Boot ROM
that allows customization by an OEM and ODM, or to the solution where the designers
can pick and choose components from a set of prebuilt initialization modules.

Figure 8-1. Prebuilt silicon and hardware module options

For example, in some markets that involve standardized platforms with limited
hardware selections, “Boot ROM”-type turnkey solutions can be made available to
simplify the development work. In some mature markets with many known hardware
components, bus topology, and standards, there can even be a binary repository for
constructing a complete ROM by using “Chinese Menu”-style of configuration tool
recently introduced at the 2014 Intel Developer Forum.

Customization and Production of Intel FSP
Some advanced developers might have gone beyond just consuming Intel FSP in their
firmware projects; they may be thinking about customizing and producing FSP for
themselves or their downstream customers. For example, some IBVs and ISVs are in the
business of creating firmware solutions—such as Board Support Package (BSP), services,
and tools, and they might already have an intimate knowledge of Intel silicon. These
vendors can consider producing a customized FSP to a special market that they want
to serve. The other possibilities are when an OEM or ODM customizes Intel FSP for a
particular family of their products, or when an OEM/ODM wants to distribute a FSP to its
own vendors after customization. All these scenarios can be made possible in the future.

It Is a Community Effort After All
Regardless of whether you have read the book thoroughly, or picked and chose the
chapters you were interested in, this book is written to help you develop a firmware stack
for Intel Architecture quickly and effectively. During the process of developing Intel FSP,
and while writing this book, we received a lot of good feedback and suggestions on how
to make Intel FSP better, and how to make this book more useful. We are in an era of
openness; as part of the process in embracing openness, we encourage you to contribute
your constructive ideas as well.

Chapter 8 ■ putting it all together

177

The four authors and countless reviewers of this book are coming from different
companies (Intel, Google, Sage, and Huawei). We are extremely proud that we are able to
pull this book together to introduce to you the firmware solutions for different embedded
and IoT devices. We know that there are still many stones unturned and many interesting
topics not yet discussed related to this topic, but this is hopefully a good starting point to
get everyone excited and involved.

Together, we can make embedded firmware easier and better, so that we can have
more intelligent and reliable products; this is why we wrote this book. Regardless of
whether the source code is UEFI-based or coreboot, or U-Boot, or RTOS, we hope that
everyone can benefit from this book.

Now, go write some firmware.

179

Appendix A

Sample Boot Setting File
(BSF)

/** @file

 Boot Setting File for Platform Configuration.

 This file contains an 'Intel Peripheral Driver' and is
 licensed for Intel CPUs and chipsets under the terms of your
 license agreement with Intel or your vendor. This file must not
 be modified by end users or could render the generated boot loader
 inoperable.

 Copyright (c) 2014 Intel Corporation. All rights reserved
 This software and associated documentation (if any) is furnished
 under a license and may only be used or copied in accordance
 with the terms of the license. Except as permitted by such
 license, no part of this software or documentation may be
 reproduced, stored in a retrieval system, or transmitted in any
 form or by any means without the express written consent of
 Intel Corporation.

 This file is automatically generated. Please do NOT modify !!!

**/

GlobalDataDef
 SKUID = 0, "DEFAULT"
EndGlobalData

Appendix A ■ SAmple Boot Setting File (BSF)

180

StructDef

 Find "VLV2UPDR"
 Skip 24 bytes
 $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitTsegSize 2 bytes

$_DEFAULT_ = 0x0001
 $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitMmioSize 2 bytes

$_DEFAULT_ = 0x0800
 $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr1 1 bytes

$_DEFAULT_ = 0xA0
 $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr2 1 bytes

$_DEFAULT_ = 0xA2
 $gPlatformFspPkgTokenSpaceGuid_PcdeMMCBootMode 1 bytes

$_DEFAULT_ = 2
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableSdio 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableSdcard 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsuart0 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsuart1 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableSpi 1 bytes

$_DEFAULT_ = 1
 Skip 1 bytes
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableSata 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdSataMode 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableAzalia 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_AzaliaConfigPtr 4 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableXhci 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableLpe 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdLpssSioEnablePciMode 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableDma0 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableDma1 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C0 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C1 1 bytes

$_DEFAULT_ = 1

Appendix A ■ SAmple Boot Setting File (BSF)

181

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C2 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C3 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C4 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C5 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C6 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnablePwm0 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnablePwm1 1 bytes
$_DEFAULT_ = 1

 $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsi 1 bytes
$_DEFAULT_ = 0

 $gPlatformFspPkgTokenSpaceGuid_PcdIgdDvmt50PreAlloc 1 bytes
$_DEFAULT_ = 2

 $gPlatformFspPkgTokenSpaceGuid_PcdApertureSize 1 bytes
$_DEFAULT_ = 2

 $gPlatformFspPkgTokenSpaceGuid_PcdGttSize 1 bytes
$_DEFAULT_ = 2

 Skip 5 bytes
 $gPlatformFspPkgTokenSpaceGuid_PcdMrcDebugMsg 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_ISPEnable 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_PcdSccEnablePciMode 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_IgdRenderStandby 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_TxeUmaEnable 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_PcdOsSelection 1 bytes

$_DEFAULT_ = 0x4
 $gPlatformFspPkgTokenSpaceGuid_eMMC45DDR50Enabled 1 bytes

$_DEFAULT_ = 1
 $gPlatformFspPkgTokenSpaceGuid_eMMC45HS200Enabled 1 bytes

$_DEFAULT_ = 0
 $gPlatformFspPkgTokenSpaceGuid_eMMC45RetuneTimerValue 1 bytes

$_DEFAULT_ = 8
 Skip 156 bytes
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableMemoryDown 1 bytes

$_DEFAULT_ = 0x00
 $gPlatformFspPkgTokenSpaceGuid_PcdDRAMSpeed 1 bytes

$_DEFAULT_ = 0x02

Appendix A ■ SAmple Boot Setting File (BSF)

182

 $gPlatformFspPkgTokenSpaceGuid_PcdDRAMType 1 bytes
$_DEFAULT_ = 0x01

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMM0Enable 1 bytes
$_DEFAULT_ = 0x01

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMM1Enable 1 bytes
$_DEFAULT_ = 0x00

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMDWidth 1 bytes
$_DEFAULT_ = 0x00

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMDensity 1 bytes
$_DEFAULT_ = 0x01

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMBusWidth 1 bytes
$_DEFAULT_ = 0x03

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMSides 1 bytes
$_DEFAULT_ = 0x00

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtCL 1 bytes
$_DEFAULT_ = 0x09

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRPtRCD 1 bytes
$_DEFAULT_ = 0x09

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtWR 1 bytes
$_DEFAULT_ = 0x0A

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtWTR 1 bytes
$_DEFAULT_ = 0x05

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRRD 1 bytes
$_DEFAULT_ = 0x04

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRTP 1 bytes
$_DEFAULT_ = 0x05

 $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtFAW 1 bytes
$_DEFAULT_ = 0x14

 Find "VLYVIEW1"
 $gPlatformFspPkgTokenSpaceGuid_PcdImageRevision 4

bytes $_DEFAULT_ = 0x00000303
 Skip 24 bytes
 $gPlatformFspPkgTokenSpaceGuid_PcdPlatformType 1

bytes $_DEFAULT_ = 2
 $gPlatformFspPkgTokenSpaceGuid_PcdEnableSecureBoot 1

bytes $_DEFAULT_ = 2

EndStruct

List &EN_DIS
 Selection 0x1 , "Enabled"
 Selection 0x0 , "Disabled"
EndList

Appendix A ■ SAmple Boot Setting File (BSF)

183

List &gPlatformFspPkgTokenSpaceGuid_PcdDIMMSides
 Selection 0x0 , "1 Ranks"
 Selection 0x1 , "2 Ranks"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdIgdDvmt50PreAlloc
 Selection 0x01 , "32 MB"
 Selection 0x02 , "64 MB"
 Selection 0x03 , "96 MB"
 Selection 0x04 , "128 MB"
 Selection 0x05 , "160 MB"
 Selection 0x06 , "192 MB"
 Selection 0x07 , "224 MB"
 Selection 0x08 , "256 MB"
 Selection 0x09 , "288 MB"
 Selection 0x0A , "320 MB"
 Selection 0x0B , "352 MB"
 Selection 0x0C , "384 MB"
 Selection 0x0D , "416 MB"
 Selection 0x0E , "448 MB"
 Selection 0x0F , "480 MB"
 Selection 0x10 , "512 MB"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdOsSelection
 Selection 0x1 , "Android"
 Selection 0x4 , "Linux OS"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdDIMMDensity
 Selection 0x0 , "1 Gbit"
 Selection 0x1 , "2 Gbit"
 Selection 0x2 , "4 Gbit"
 Selection 0x3 , "8 Gbit"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdEnableLpe
 Selection 0x2 , "ACPI Mode"
 Selection 0x1 , "PCI Mode"
 Selection 0x0 , "Disabled"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdDRAMType
 Selection 0x0 , "DDR3"
 Selection 0x1 , "DDR3L"
 Selection 0x2 , "DDR3ECC"
 Selection 0x4 , "LPDDR2"

Appendix A ■ SAmple Boot Setting File (BSF)

184

 Selection 0x5 , "LPDDR3"
 Selection 0x6 , "DDR4"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdMrcInitTsegSize
 Selection 0x01 , "1 MB"
 Selection 0x02 , "2 MB"
 Selection 0x04 , "4 MB"
 Selection 0x08 , "8 MB"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdPlatformType
 Selection 0x2 , "BayleyBay Platform Type"
 Selection 0x3 , "BakerSport Platform (ECC) Type"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdMrcInitMmioSize
 Selection 0x400 , "1.0 GB"
 Selection 0x600 , "1.5 GB"
 Selection 0x800 , "2.0 GB"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdGttSize
 Selection 0x1 , "1 MB"
 Selection 0x2 , "2 MB"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdSataMode
 Selection 1 , "AHCI"
 Selection 0 , "IDE"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdDIMMBusWidth
 Selection 0x0 , "8 bits"
 Selection 0x1 , "16 bits"
 Selection 0x2 , "32 bits"
 Selection 0x3 , "64 bits"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdEnableSecureBoot
 Selection 0 , "Disabled"
 Selection 1 , "Enabled"
 Selection 2 , "Auto"
EndList

Appendix A ■ SAmple Boot Setting File (BSF)

185

List &gPlatformFspPkgTokenSpaceGuid_PcdApertureSize
 Selection 0x1 , "128 MB"
 Selection 0x2 , "256 MB"
 Selection 0x3 , "512 MB"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdDRAMSpeed
 Selection 0x0 , "800 MT/s"
 Selection 0x1 , "1066 MT/s"
 Selection 0x2 , "1333 MT/s"
 Selection 0x3 , "1600 MT/s"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdDIMMDWidth
 Selection 0x0 , "x8"
 Selection 0x1 , "x16"
 Selection 0x2 , "x32"
EndList

List &gPlatformFspPkgTokenSpaceGuid_PcdeMMCBootMode
 Selection 0x0 , "Disabled"
 Selection 0x1 , "Auto"
 Selection 0x2 , "eMMC 4.1"
 Selection 0x3 , "eMMC 4.5"
EndList

BeginInfoBlock
 PPVer "1.0"
 Description "BayTrail platform"
EndInfoBlock

Page "Platform"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdPlatformType, "Platform Type",

&gPlatformFspPkgTokenSpaceGuid_PcdPlatformType,
 Help "Select Platform Type."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableSecureBoot, "Enable Secure

Boot", &gPlatformFspPkgTokenSpaceGuid_PcdEnableSecureBoot,
 Help "Enable/disable secure boot. Auto by default."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdOsSelection, "OS Selection",

&gPlatformFspPkgTokenSpaceGuid_PcdOsSelection,
 Help "Select Operating System"
EndPage

Page "Memory Down"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableMemoryDown, "Enable Memory

Down", &EN_DIS,
 Help "Enable = Memory Down, Disable = DIMM"

Appendix A ■ SAmple Boot Setting File (BSF)

186

 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDRAMSpeed, "DRAM Speed",
&gPlatformFspPkgTokenSpaceGuid_PcdDRAMSpeed,

 Help "DRAM Speed"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDRAMType, "DRAM Type",

&gPlatformFspPkgTokenSpaceGuid_PcdDRAMType,
 Help "DRAM Type"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMM0Enable, "DIMM 0 Enable",

&EN_DIS,
 Help "Please populate DIMM slot 0 if only one DIMM is supported."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMM1Enable, "DIMM 1 Enable",

&EN_DIS,
 Help "Please populate DIMM slot 1 if only one DIMM is supported."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMMDWidth, "DIMM_DWidth",

&gPlatformFspPkgTokenSpaceGuid_PcdDIMMDWidth,
 Help "DRAM device data width."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMMDensity, "DIMM_Density",

&gPlatformFspPkgTokenSpaceGuid_PcdDIMMDensity,
 Help "DRAM device data density."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMMBusWidth, "DIMM_BusWidth",

&gPlatformFspPkgTokenSpaceGuid_PcdDIMMBusWidth,
 Help "DIMM Bus Width."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdDIMMSides, "DIMM_Sides",

&gPlatformFspPkgTokenSpaceGuid_PcdDIMMSides,
 Help "Ranks Per DIMM. "
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtCL, "tCL", DEC,
 Help "tCL"
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRPtRCD, "tRP_tRCD", DEC,
 Help "tRP and tRCD in DRAM clk - 5:12.5ns, 6:15ns, etc."
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtWR, "tWR", DEC,
 Help "tWR in DRAM clk"
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtWTR, "tWTR", DEC,
 Help "tWTR in DRAM clk"
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRRD, "tRRD", DEC,
 Help "tRRD in DRAM clk"
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtRTP, "tRTP", DEC,
 Help "tRTP in DRAM clk"
 "Valid range: 1 ~ 255"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdDIMMtFAW, "tFAW", DEC,
 Help "tFAW in DRAM clk"
 "Valid range: 1 ~ 255"
EndPage

Appendix A ■ SAmple Boot Setting File (BSF)

187

Page "South Complex"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdeMMCBootMode, "eMMC Boot Mode",

&gPlatformFspPkgTokenSpaceGuid_PcdeMMCBootMode,
 Help "Select EMMC Mode."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableSdio, "Enable SDIO",

&EN_DIS,
 Help "Enable/disable SDIO."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableSdcard, "Enable SD Card",

&EN_DIS,
 Help "Enable/disable SD Card."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsuart0, "Enable HSUART0",

&EN_DIS,
 Help "Enable/disable HSUART0."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsuart1, "Enable HSUART1",

&EN_DIS,
 Help "Enable/disable HSUART1."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableSpi, "Enable SPI",

&EN_DIS,
 Help "Enable/disable SPI."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableSata, "Enable SATA",

&EN_DIS,
 Help "Enable/disable SATA controller."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdSataMode, "SATA Mode",

&gPlatformFspPkgTokenSpaceGuid_PcdSataMode,
 Help "Select SATA controller working mode."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableAzalia, "Enable Azalia",

&EN_DIS,
 Help "Enable/disable Azalia controller."
 EditNum $gPlatformFspPkgTokenSpaceGuid_AzaliaConfigPtr, "Azalia

Configuration Pointer", HEX,
 Help "Address of the Azalia Configuration Data."
 "Valid range: 0x00 ~ 0xFFFFFFFF"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableXhci, "Enable XHCI",

&EN_DIS,
 Help "Enable/disable XHCI controller."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableLpe, "Enable LPE",

&gPlatformFspPkgTokenSpaceGuid_PcdEnableLpe,
 Help "Choose LPE Mode."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdLpssSioEnablePciMode, "Enable

PCI mode for LPSS SIO devices", &EN_DIS,
 Help "Enable PCI Mode for LPSS SIO devices. If disabled, LPSS SIO

devices will run in ACPI mode."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableDma0, "Enable DMA0",

&EN_DIS,
 Help "Enable/disable DMA0."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableDma1, "Enable DMA1",

&EN_DIS,
 Help "Enable/disable DMA1."

Appendix A ■ SAmple Boot Setting File (BSF)

188

 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C0, "Enable I2C0",
&EN_DIS,

 Help "Enable/disable I2C0."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C1, "Enable I2C1",

&EN_DIS,
 Help "Enable/disable I2C1."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C2, "Enable I2C2",

&EN_DIS,
 Help "Enable/disable I2C2."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C3, "Enable I2C3",

&EN_DIS,
 Help "Enable/disable I2C3."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C4, "Enable I2C4", &EN_DIS,
 Help "Enable/disable I2C4."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C5, "Enable I2C5",

&EN_DIS,
 Help "Enable/disable I2C5."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableI2C6, "Enable I2C6",

&EN_DIS,
 Help "Enable/disable I2C6."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnablePwm0, "Enable PWM0",

&EN_DIS,
 Help "Enable/disable PWM0."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnablePwm1, "Enable PWM1", &EN_DIS,
 Help "Enable/disable PWM1."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdEnableHsi, "Enable HSI", &EN_DIS,
 Help "Enable/disable HSI."
 Combo $gPlatformFspPkgTokenSpaceGuid_ISPEnable, "Enable ISP", &EN_DIS,
 Help "Enable/disable ISP."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdSccEnablePciMode, "Enable PCI

mode for SCC devices", &EN_DIS,
 Help "Enable PCI Mode for SCC devices. If disabled, SCC devices will

run in ACPI mode."
 Combo $gPlatformFspPkgTokenSpaceGuid_eMMC45DDR50Enabled, "eMMC45 DDR50",

&EN_DIS,
 Help "Enable eMMC45 DDR50"
 Combo $gPlatformFspPkgTokenSpaceGuid_eMMC45HS200Enabled, "eMMC45 HS200",

&EN_DIS,
 Help "Enable eMMC45 HS200"
 EditNum $gPlatformFspPkgTokenSpaceGuid_eMMC45RetuneTimerValue, "eMMC45

Retune Timer Value", DEC,
 Help "Select Timer Value"
 "Valid range: 0 ~ 15"
EndPage

Appendix A ■ SAmple Boot Setting File (BSF)

189

Page "North Complex"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitTsegSize, "Tseg Size",

&gPlatformFspPkgTokenSpaceGuid_PcdMrcInitTsegSize,
 Help "Size of SMRAM memory reserved."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitMmioSize, "MMIO Size",

&gPlatformFspPkgTokenSpaceGuid_PcdMrcInitMmioSize,
 Help "Size of memory address space reserved for MMIO (Memory

Mapped I/O)."
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr1, "DIMM 0 SPD

SMBus Address", HEX,
 Help "SPD Address of DIMM."
 "Valid range: 0x00 ~ 0xFF"
 EditNum $gPlatformFspPkgTokenSpaceGuid_PcdMrcInitSPDAddr2, "DIMM 1 SPD

SMBus Address", HEX,
 Help "SPD Address of DIMM."
 "Valid range: 0x00 ~ 0xFF"
 Combo $gPlatformFspPkgTokenSpaceGuid_TxeUmaEnable, "Enable TXE UMA",

&EN_DIS,
 Help "Enable/disable Unified Memory Reservation for TXE engine."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdMrcDebugMsg, "MRC RMT Message

Display", &EN_DIS,
 Help "Enable/disable MRC RMT Message Display."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdIgdDvmt50PreAlloc, "Internal

Graphics Pre-allocated Memory", &gPlatformFspPkgTokenSpaceGuid_
PcdIgdDvmt50PreAlloc,

 Help "Size of memory preallocated for internal graphics"
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdApertureSize, "Aperture Size",

&gPlatformFspPkgTokenSpaceGuid_PcdApertureSize,
 Help "Select the Aperture Size."
 Combo $gPlatformFspPkgTokenSpaceGuid_PcdGttSize, "GTT Size",

&gPlatformFspPkgTokenSpaceGuid_PcdGttSize,
 Help "Select the GTT Size."
 Combo $gPlatformFspPkgTokenSpaceGuid_IgdRenderStandby, "Enable Render

Standby", &EN_DIS,
 Help "Enable/disable Integrated Graphics Render Standby."
EndPage

A���������
Advanced Configuration and

Power Interface (ACPI), 2
AMD Generic Encapsulated Software

Architecture (AGESA), 59
Application programming interface (API)

data structure, 36
execution status, 45
FspInitEntry, 42
hard-coded constants, 38
NotifyPhase, 43
TempRamInit, 39

B���������
Binary Configuration Tool (BCT), 30
BIOS Writer’s Guide (BWG), 6
Boot Device Selection (BDS), 141
Boot Setting File (BSF), 30, 179

C���������
Chromebook firmware

advantage, 97
boot log, 104–105
Chrome OS security, 98–99
coreboot, 98

ARM, 101
x86, 101

crossystem, 115–117
Depthcharge payload

kernel security, 104
lib payload, 102
verified boot, 103–104
verified boot flow, 101–102

Developer Mode, 100

embedded controller
battery charging, 119
keyboard controller, 119
power sequencing, 118
responsibilities, 118
software sync, 120
thermal management, 119

event log, 105–106
firmware image, 98
flashrom utility, 114
FMAP, 107

read-write section, 108–109
structure, 107

FMAP BOOT_STUB section, 108
GBB

bitmaps, 110
boot flags, 110–111
HWID v3, 110
information, 109
public and private keys, 110

gbb_utility, 114–115
mosys utility, 117
powerwash, 99
Recovery Mode, 99
TPM, 112
updating process, 113
verified boot, 99
VPD, 112

Commercial off-the-shelf (COTS), 15
Coreboot, 19

AGESA reference, 59
binaries, 79
CAR, 58
CBFS

cbfstool, 78
organization, 77
size, 79

Index

191

■ index

192

chipset driver
chipset UPD options, 90
Depthcharge, 93
ELF format, 92
FILO, 93
FSP driver, 90–91
GRUB2, 93
Intel FSP driver, 90
iPXE, 93
Kconfig, 91
Key files, 90
libpayload, 94
memory test, 94
SeaBIOS, 92
TianoCore, 93
U-Boot, 93
xcompile, 92

community, working, 64–65
community organization, 61
CPU architectures, 57
device tree, 84–86

chips, 83, 86
CPU and PCI busses, 82
keywords, 84
operations, 87
sconfig tool, 82
state machine states, 88
types, 83
variables, 83

etherboot project, 58
FSF, 58
git commit messages, 62
Git Gerrit, 61
Google, 59
Hardwaremain state machine, 87
Intel FSP

payload, 82
ramstage, 81–82
reset vector and bootblock, 80
romstage, 80–81

libreboot, 60
LinuxBIOS, 57, 59
logo, 56
mainboard directory, 88–89
MinnowMax (see MinnowBoard

MAX (MinnowMax))
nonsource binaries, 65
philosophy, 56
ROMCC, 58

Sage, 60
sign-off procedure, 63–64
stages, 76
state machine callbacks, 88
state machine states, 87
statistics, 60
supporting files, 77
troubleshooting and debugging, 94–95
web site, 61

D���������
Double Data Rate (DDR)

technology, 34–35

E���������
EFI Developer Kit II (EDKII), 125
EFI Development Kit II (EDK II)

build command, 156
DEC, 153
DSC, 155
FDF, 156
INF file, 158
packages, 149
packaging

IntelFrameworkModulePkg, 149
IntelFrameworkPkg, 148
MdeModulePkg, 148
MdePkg, 147
UEFI PI boot flow, 148

PCD
build and source

construction, 152
build flow, 152
flash image, 153
INF, DEC, and

DSC relationship, 151
Syntax, 152

supporting files, 150
Embedded engineers, 1
Extensible Firmware Interface (EFI)

coreboot and UEFI PI, 122
development flow, 121
FSP, 123
history, 121
PEIMs, 122
SCM, 123
SiRC, 123
UEFI/EDK II, 123

Coreboot (cont.)

■ index

193

F���������
Firmware

ACPI table, 2
BIOS vendors, 11
boot process, 2
chip vendors, 11
coreboot and EDK, 10
definition, 1
engineers, 1, 3
flash storage device, 3
FPGA-based emulators, 4
Google and Facebook, 10
hardware design, 2
Intel® FSP, 7
Intel Quark family products, 10
Intel’s Simics and AMD’s SimNow, 3
Internet of Things, 10
open source stacks, 9
PC BIOS stack, 8–9
programming guides, 6
RTOS codebase, 10
RTOS stacks, 9
SMM and SMI, 2
software vendors, 11
Tianocore source code, 11

Firmware stacks
BIOS, 13
COTS, 15
IBV, 20
in-house development, 23
ISV, 20
legacy BIOS, 17
microkernel, 16
one-size-fits-all solution, 15
open source, 18
PC architecture, 15
proprietary, 19
RTOS, 16
UEFI Framework, 18
virtual machine monitor, 15

Firmware Support Package (FSP), 123
APIs, 124
architecture, 124
binary-enabling model, 143
Capsule Flash Update

boot flow, 134–135
memory layout, 135–136
recovery boot, 136–138

components, 125
consumer, 123
definition, 123
EDKII, 138
evolution, 143
Minnow and MinnowMax

APIs, 141
BDS, 141
binary, 140–141
infrastructure code, 140
locations, 140
PCDs, 142
Platform.dsc, 142
Platform.fdf, 141
workflow, 141

normal boot
boot flow, 128
data structure, 130–131
memory layout, 129–130

producer, 123
S3 boot

boot flow, 132
memory layout, 132–133
NV data passing, 133–134

UEFI payload, 138–140
UEFI PI, 124
wrapper boot flow

APIs, 126
boot modes, 128
EDKII BIOS, 126
FspNotifiyDxe, 126–127
FspNotifyApi, 126
integration options, 127
SEC integration, 126

FspInit, 45
FspInitEntry

ContinuationFunc, 43
NvsBufferPtr points, 42
prototype, 42
RtBufferPtr points, 42

G���������
General Public

License (GPL), 29

H���������
Hard-coded constants, 38

■ index

194

I, J, K���������
Independent BIOS Vendor (IBV), 20
Independent Software Vendors (ISVs), 20
Intel® Firmware Support

Package (Intel FSP), 7
API

FspInitEntry, 42
NotifyPhase, 43
TempRamInit, 39

binary format, 31
Boot Setting File (BSF), 30
community effort, 176
Coreboot (see Coreboot)
customization, 47
customization and production, 176
downloading, 49
ecosystem perspective, 173
expanded folder, 28
future aspects, 53
hard-core open source, 175
header files and sample code, 31
integration and build process, 53
locating APIs

data structure, 36
hard-coded constants, 38

microcode patches, 52
output

API execution status, 45
non-volatile storage HOB, 46
sample code for

parsing HOBs, 46
temporary memory data HOB, 45

philosophy, 27
prebuilt silicon, 176
relocation, 53
RTOS, 174
sample boot flow, 34
shipping of binary file, 29
vertical sectors, 173

Intel Quark System-on-Chip (SoC)
build options, 165
compiler options, 165
fixed DRAM resource, 161
full SMM core solution, 164
hardware platform, 160
memory usage

optimization, 169–170
RAM footprint optimization, 168

reduce features, 163–164
remove features, 162
SEC ➤ DXE solution, 162
simplified SMM solution, 165
TinyQuarkOptimization, 167

L���������
Linux, 18

M���������
Memory Reference Code (MRC), 34
Microcode, 28, 52
Microkernel, 16
MinnowBoard MAX (MinnowMax)

building, 73–74
Chipset menu, 72
commands, 74
commit hooks, 69
development branch, 69
development directory, 67
devices menu, 73
environment, 66
flashing

devices, 75
flash programmer, 75
ROM image, 75–76

hardware, 66
Intel FSP, 67–68
Menuconfig menu, 71
platforms, 66
source download, 68
toolchains, 68–69

Model-specific register (MSR), 7
Module Development Environment

(MDE) Package (MdePkg), 147
Multiple Independent Levels

of Security (MILS), 174

N, O���������
Non-volatile storage HOB, 46
NotifyPhase, 45

P, Q���������
Platform Configuration

Database (PCD), 150

■ index

195

R���������
Real-time operating

systems (RTOS), 2, 16

S���������
System Management

Interrupt (SMI), 2
System Management Mode (SMM), 2

T���������
Temporary memory data HOB, 45
TempRamInit, 39, 45
Tianocore, 11
Trusted Platform Module (TPM), 112

U���������
U-Boot community, 19
Unified Extensible

Firmware Interface (UEFI)
integration, Intel FSP

(see Intel® Firmware Support
Package (Intel FSP))

firmware stacks, 18
UEFI Firmware Writer’s Guide, 6
UEFI’s Firmware Volume (FV)

layout format, 31
Updatable Product Data (UPD), 47

V, W, X, Y, Z���������
Vital Product Data (VPD), 47–48

Embedded Firmware
Solutions

Development Best Practices for the
Internet of Things

Jiming Sun
Marc Jones
Stefan Reinauer
Vincent Zimmer

Embedded Firmware Solutions: Development Best Practices for the Internet of Things

Jiming Sun, Marc Jones, Stefan Reinauer, and Vincent Zimmer

Copyright © 2015 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than 5
lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the text of
the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights
reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media and
formats known now or hereafter. While the advice and information in this Work are believed to be true and
accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses (2)
and (3) must accompany the source code. If your use is an adaptation of the source code provided by Apress
in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, excepting the source code
copyrighted by Intel Corp from Embedded Firmware Solutions: Development Best Practices for the
Internet of Things, ISBN 978-1-4842-0071-1 is copyrighted by Apress Media, LLC, all rights reserved. Any
direct reproduction of this Apress source code is permitted but must contain this license. The following license
must be provided for any use of the source code from this product of greater than 5 lines wherein the code
is adapted or altered from its original Apress form. This Apress code is presented AS IS and Apress makes no
claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code, excepting the
source code copyrighted by Intel Corp provided are used or adapted from Embedded Firmware Solutions:
Development Best Practices for the Internet of Things, ISBN 978-1-4842-0071-1 copyright Apress Media
LLC. Any use or reuse of this Apress source code must contain this License. This Apress code is made available
at Apress.com/9781484200711 as is and Apress makes no claims to, representations or warrantees as to the
function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4842-0071-1

ISBN-13 (electronic): 978-1-4842-0070-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editors: Steve Weiss (Apress); Stuart Douglas (Intel)
Coordinating Editor: Melissa Maldonado
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

http://Apress.com/9781484200711
http://orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, •	
free, noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user-friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

vii

Contents

About the Authors �� xv

About the Technical Reviewers ��� xvii

Acknowledgments �� xix

Foreword �� xxi

Introduction �� xxiii

Chapter 1: Introduction ■ �� 1

What Is Embedded Firmware? ��� 1

Where Is Firmware? ��� 3

What Do Firmware Engineers Do? �� 3

Firmware Preparation for New Hardware ��� 3

The Mystery of Bits ��� 4

Programming Guides ��� 6

The Intel® Firmware Support Package �� 7

The Uniqueness of Embedded Firmware ��� 8

The Choice of Firmware Stacks �� 9

Welcome to the Era of the Internet of Things �� 9

Technical Coverage in This Book ��� 10

The Future of Firmware ��� 10

Chapter 2: Firmware Stacks for Embedded Systems ■ ������������������ 13

Is a One-Size-Fits-All Solution Possible? �� 15

Microkernel ��� 16

■ Contents

viii

Real-Time Operating System (RTOS) ��� 16

Legacy BIOS �� 17

Implementations of the UEFI Framework �� 18

Open Source Firmware Stacks �� 18

Proprietary Firmware Stacks �� 19

Make or Buy �� 20

The Advantages of Outsourcing �� 22

The Disadvantages of Outsourcing ��� 22

In-House Development ��� 23

Summary ��� 24

Chapter 3: Intel ■ ® Firmware Support Package (Intel® FSP) ����������� 25

The Intel FSP Philosophy ��� 27

What Is in Intel FSP? ��� 28

Intel FSP Binary Format �� 31

Sample Boot Flow ��� 33

Locating the Entries of Intel FSP ��� 36

The Hard Way to Find Intel FSP APIs: Use Data Structure ��������������������������������������� 36

The Easy Way to Find FSP APIs: Use Hard-Coded Constants ���������������������������������� 38

Programming Interface: The APIs of Intel FSP ��������������������������������������� 39

TempRamInit ��� 39

FspInitEntry �� 42

NotifyPhase �� 43

Intel FSP Output �� 44

API Execution Status ��� 45

Temporary Memory Data HOB �� 45

Non-Volatile Storage HOB ��� 46

Sample Code for Parsing HOBs �� 46

■ Contents

ix

Customization of Intel FSP ��� 47

Downloading Intel FSP ��� 49

Microcode Patches ��� 52

Relocating Intel FSP ��� 53

Integration and Build �� 53

The Future of Intel FSP ��� 53

What Is Coming in the Following Chapters ��� 54

Chapter 4: Building coreboot with Intel FSP ■ ������������������������������� 55

The Introduction of coreboot �� 55

The Philosophy of coreboot �� 56

A Brief History �� 57

v1: 1999–2000 ��� 57

v2: 2000–2005 ��� 57

v2+: 2005–2008 �� 58

v3: 2006–2008 ��� 59

2008 LinuxBIOS Renamed “coreboot” ��� 59

v4: 2009–2012 ��� 59

v4+: 2012–2014 �� 59

Further Reading ��� 60

Prerequisites for Working with coreboot �� 61

Community Organization ��� 61

Git and Gerrit ��� 61

Git Commit Messages �� 62

coreboot Sign-off Procedure ��� 63

Working with the coreboot Community �� 64

coreboot Do’s ��� 64

coreboot Don’ts ��� 65

Nonsource Binaries in coreboot �� 65

■ Contents

x

A Hands-on Example: Building coreboot for
the MinnowBoard MAX Mainboard �� 65

Environment ��� 66

Development Directory ��� 67

Downloading Intel FSP �� 67

Installing Intel FSP �� 67

Downloading the coreboot Source ��� 68

coreboot Toolchain �� 68

coreboot Commit Hooks ��� 69

Creating a coreboot Development Branch �� 69

Building the Mainboard �� 70

Flashing the ROM ��� 75

coreboot Internals ��� 76

Boot Stages �� 76

Additional Files ��� 77

CBFS ��� 77

CBFS Size ��� 79

Special Binaries �� 79

Boot Flow Using Intel FSP ��� 80

Reset Vector and Bootblock �� 80

romstage �� 80

ramstage �� 81

Payload ��� 82

coreboot Source �� 82

coreboot Device Tree �� 82

coreboot Hardwaremain State Machine ��� 87

Mainboard��� 88

The Chipset Driver �� 90

■ Contents

xi

coreboot Troubleshooting and Debugging �� 94

Postcodes �� 94

Serial Debug �� 95

EHCI USB Debug �� 95

Summary �� 95

Chapter 5: Chrome book Firmware Internals ■ ������������������������������ 97

About Chrome book and Chrome OS �� 97

Chrome OS Firmware Overview ��� 98

Chrome OS Security Philosophy ��� 98

Chrome OS Security Guiding Principles ��� 98

Power wash �� 99

Chrome OS Boot Modes ��� 99

Verified (Normal) Mode �� 99

Recovery Mode �� 99

Developer Mode ��� 100

Chrome OS Coreboot �� 100

x86 ��� 101

ARM ��� 101

Depth charge Payload �� 101

libpayload �� 102

Verified Boot �� 103

Verified Boot and Kernel Security �� 104

Chrome OS Firmware Boot Log �� 104

Boot Times Log �� 105

Chrome OS Firmware Event Log �� 105

Google SMI Linux Kernel Driver ��� 106

■ Contents

xii

Chrome OS Extensions to the Firmware Image ����������������������������������� 106

FMAP �� 106

Google Binary Block (GBB) �� 109

Vital Product Data (VPD) ��� 112

Firmware TPM Usage �� 112

Chrome OS Firmware Update �� 113

Chrome OS Utilities ��� 113

flashrom ��� 114

gbb_utility ��� 114

crossystem ��� 115

mosys ��� 117

Google Embedded Controller ��� 118

Power Sequencing �� 118

Battery Charging ��� 119

Thermal Management �� 119

Keyboard Controller �� 119

Other Peripheral Controls ��� 119

Chrome EC Software Sync �� 119

Summary ��� 120

Chapter 6: Intel FSP and UEFI Integration ■ ���������������������������������� 121

Introduction to EFI ��� 121

Introduction to FSP ��� 123

Introduction to EDK II �� 125

Summary �� 125

FSP Components ��� 125

FSP Wrapper Boot Flow ��� 126

Generic FSP Wrapper Boot Flow ��� 128

■ Contents

xiii

Normal Boot ��� 128

Boot Flow ��� 128

Memory Layout for a Normal Boot Flow �� 129

FSP Normal Boot Data Structure ��� 130

S3 Boot ��� 132

Boot Flow ��� 132

S3 Memory Layout ��� 132

S3 NV Data Passing ��� 133

Capsule Flash Update ��� 134

Boot Flow ��� 134

Capsule Update Memory Layout �� 135

Recovery Boot Flow ��� 136

FSP Recovery Memory Layout ��� 137

coreboot Payload Based upon EDK II ��� 138

Building Minnow and MinnowMax with FSP �������������������������������������� 140

Future of the Intel FSP �� 143

Conclusion �� 144

Chapter 7: Building Firmware for Quark Processors ■ ����������������� 145

Overview of UEFI and PI ��� 145

History of Implementations and Specifications ��� 146

Introduction to EDK II Building Blocks �� 147

PKG: Packaging �� 147

Packages ��� 149

PCD: Platform Configuration Database �� 150

DEC: Platform Declaration File ��� 153

DSC: Platform Description File ��� 155

FDF: Flash Description File �� 156

■ Contents

xiv

Build: The EDK II Build Command ��� 156

INF: INF File �� 158

More Information �� 159

Introduction to the EDK II Subset �� 160

Introduction to Quark �� 160

ROM Flash Image Size Optimization ��� 161

RAM Footprint Optimization �� 168

Conclusion ��� 171

Chapter 8: Putting It All Together ■ ��� 173

RTOS and Intel FSP �� 174

Intel FSP and Open Source Philosophy ��� 175

Customization and Production of Intel FSP ��� 176

It Is a Community Effort After All ��� 176

Appendix A: Sample Boot Setting File (BSF) ■ ������������������������������� 179

Index ��� 191

xv

About the Authors

Jiming Sun is a firmware and BIOS industry veteran
who started to write RTOS kernel code (pSOS) for Bell
Labs in 1986. After changing career paths from telecom
to PC, he was involved in the early laptop PC evolution,
and was among the first batch of firmware engineers
to implement System Management Mode (SMM) code
for 386SL in the early 1990s. After joining Intel in 1993,
Jiming did early APM (Advanced Power Management)
and ACPI (Advanced Configuration and Power
Interface) implementation. Jiming is one of the creators
of Tiano, which turned into UEFI, at Intel, and he is
the major contributor of AMD’s AGESA (AMD Generic
and Encapsulated Software Architecture). Besides

his experience with Intel, Bell Labs, and AMD, Jiming has also worked for Zenith Data
Systems, HP (Compaq), Insyde Software, Dell, and Apple. Jiming recently grandfathered
Intel Firmware Support Package (Intel FSP) and was instrumental in launching the
product in October of 2010. Jiming has master’s degrees in Electrical Engineering and
Management of Science and Technology, and he has 19 granted and one pending US
patents. He currently lives in the Bay Area of California with his wife and two sons.

Vincent Zimmer is a senior principal engineer in the
Software and Services Group at Intel Corporation.
With over 23 years’ experience in embedded software
development and design, Vincent holds more than
310 US patents and was awarded two Intel Achievement
Awards for his development of firmware architecture
and security. He has a Bachelor of Science in Electrical
Engineering degree from Cornell University, Ithaca,
New York, and a Master of Science in Computer Science
degree from the University of Washington, Seattle.

■ About the Authors

xvi

Marc Jones is an accomplished firmware developer
with over 18 years’ experience in x86 embedded
systems development. Marc has been a vital, active
member of the coreboot community since 2007.
As a lead firmware developer at Sage Electronic
Engineering, his most recent focus has been on
Intel FSP coreboot integration, Google Chromebook
development, and AMD embedded APU solutions.
Marc got started with coreboot as the lead developer
and coreboot project liaison at AMD. As a senior

software engineer, he developed coreboot source code for the AMD Barcelona Family10
processor, AMD Geode processor, and AMD CS5536 chipset. In addition, he contributed
to the development of support for the AMD RS690 and SB600 chipsets along with
reference mainboards. Prior to coreboot, Marc was one of the primary architects of
the AMD GeodeROM BIOS, the basis of most Geode systems. He has also developed
firmware and BIOS for Cyrix and National Semiconductor. Marc has been a proponent
of open source development for years and has written papers and blog posts that
spotlight its merits. He has presented coreboot at the Southern California Linux Expo
(SCaLE) 2013, 2012, 2010, the Free Software Foundation (FSF) Libre Planet 2009, the
2008 High Performance Computer Science Week Conference, and the 2007 Ottawa Linux
Symposium. For the past five years, Marc has been the coreboot administrator and a
mentor for Google Summer of Code, which provides students summer internships with
open source software projects.

Stefan Reinauer is a staff engineer/manager in the
Chrome OS Group at Google Inc. He has been working
on open source firmware solutions ever since he
started the OpenBIOS project in 1997. Stefan joined
the LinuxBIOS project in 1999, and worked on the first
x64 port for LinuxBIOS back in 2003. In 2005, Stefan
founded coresystems GmbH, the first company to
ever provide commercial support and development
around the coreboot project, working on ports to new
chipsets and mainboards. In 2008, Stefan took over
maintainership of the LinuxBIOS project and renamed
it “coreboot”. He was the original implementer of the
project’s ACPI and SMM implementations. Since 2010,
Stefan is leading the coreboot efforts at Google and

contributed significantly to what is the largest coreboot deployment in the history of the
project. Stefan currently lives in the San Francisco Bay Area.

xvii

About the Technical
Reviewers

Xiang (Maurice) Ma is an Intel software architect
on IA firmware, BIOS, and bootloader. He has more
than 15 years’ extensive experience in the legacy
BIOS, UEFI firmware, bootloader, and embedded OS
development for various Intel IA platforms, including
embedded systems and workstation/servers, focusing
on the core architecture, silicon reference code design
and prototyping, as well as platform enabling and
porting. Xiang Ma now works in the Intel IOTG group
on the Intel firmware and bootloader initiatives. He is
the primary architect who defined the Intel FSP design
specification and prototyped the initial Intel FSP

solution on Intel Haswell and Bay Trail platforms. He holds a master’s degree in Control
Theory and Control Engineering from Huazhong University of Science & Technology
in China.

Ravi Rangarajan is a firmware architect with 15 years’
experience in a range of areas, from embedded
systems to server firmware development. He has a
bachelor’s degree in electronics and a master’s degree
in computer applications. He is currently working for
the Intel Corporation. Ravi’s interests include computer
architecture, firmware, and operating systems.

Ravi was one of the original authors of the FSP
Architecture Specification and was part of the team
that prototyped, designed, and developed the Intel
Firmware Support Package. His involvement continues
in the evolution of the Intel FSP.

■ About the teChniCAl reviewers

xviii

Edward Roache graduated from Dublin City University
in 1993 with a B. Eng in Electronic Engineering. He has
been working with BIOS for 15 years. He joined Stratus
Technologies, Inc. in 1999 and worked on BIOS for their
ftServer Fault-Tolerant servers. From 2006, he worked
for Ircona providing BIOS services for companies such
as Fujitsu-Siemens and NettApp. He joined Intel in
2011 as the BIOS technical lead for Quark X1000. He
lives with his wife, Ann, and their son, Darragh. He’s a
keen GAA follower and helps coaching of the underage
teams in Ratoath, Co. Meath where he lives.

Kangkang Shen is the chief architect for BIOS
in Huawei. As a BIOS industry veteran, he has
experienced the development of the PC industry
since its early days. After joining Award software in
1993, he became one of the key developers for BIOS
boot manager, PCI BIOS, and many other key BIOS
features. In 1998, he joined Phoenix Technologies as
engineering manager and director responsible for
Phoenix and Award BIOS kernels. In 2003, he was
assigned to lead the Phoenix R&D center in China.
In 2006, he cofounded Nanjing Byosoft, an Intel-
authorized BIOS vendor. In addition to his industry
experience, he worked in Nanjing University of
Technology as a professor from 2008-2011. He has
a Bachelor’s of Science in Optical Engineering from
Zhejiang University, China and a Ph. D. from Georgia
Institute of Technology, Atlanta.

xix

Acknowledgments

We thank our families first for their support of us in writing this book. Since all of us have
a demanding job to focus on during the day, we frequently spent our precious family
time, evenings, weekends, and holidays, writing this book. Without our families’ support,
this book would not be possible.

We accepted the challenge of a tight publishing schedule because, like everything
else in the high-tech world, the contents are actually “perishable”. We had just about
enough time to catch up with the latest development in the space; as soon as we thought
we were done, we found areas that needed to be updated. This book is useful only if we
can make it accurate and up-to-date so that developers can benefit from the information
in this book. Thankfully, we have many high-caliber reviewers and alpha book readers to
help us to correct the information in the book.

Without a particular order and with no implication of the importance of their
contributions to the book, these people include:

Aaron Durbin•	

Edward Roache•	

Maurice Ma•	

Ravi P Rangarajan•	

Martin Roth•	

Kangkang Shen •	

Bob Hart•	

Ron Minnich•	

We thank you for your efforts in making this book useful to many more people like you.

xxi

Foreword

By Ron Minnich
Creator of LinuxBIOS (later renamed coreboot)
Software Engineer at Google, Inc.

I started the coreboot project at Los Alamos National Lab in 1999. At the time, it was
seen by hardware vendors as an impractical idea that would soon vanish. Now, 15 years
later, it is mainstream: millions of x86- and ARM-based Chromebooks and Chromeboxes
run coreboot, as its speed and reliability are an essential part of the Chrome OS user
experience. coreboot is now a key component of the fastest-growing consumer laptop
segment.

It might come as a surprise to embedded programmers that the initial goal of
coreboot was to make very large supercomputing clusters manageable. We had a 128-
node VA Linux cluster at Los Alamos in 1999 that had no keyboards or displays. BIOS
upgrades required that we wheel around a “crash cart” with a keyboard and monitor;
boot DOS on a floppy, which in turn started an autoexec.bat script; and wait 5 to 10
minutes for the process to complete for each node. If anything went wrong, it got more
fun: we had to crack open the case, move a jumper, and do the recovery with no working
graphics. As if this were not bad enough, the vendor BIOS had a habit of coming up
displaying “No keyboard present—hit F1 to continue” on a nonexistent monitor, asking us
to hit F1 on a keyboard that it had already discovered was not there!

Could this possibly get any worse? It could, and did, on the Thunderbird cluster at
Sandia National Labs: 4400 nodes, none having a keyboard or a monitor, came up one
day with that same vendor BIOS message. The fix? Dispatch 20 people with 20 keyboards
to 220 machines each; they had to plug in the keyboard, hit F1, and hope it all went well.

By 2002, we had a 1024-node Linux cluster using coreboot. The reflash process for
all 1024 nodes took 30 seconds total, not five days. If something went wrong, coreboot
would figure it out on the next boot, switch to a backup BIOS image, and boot up: the
nodes could not be put into an unrecoverable state. There was no longer a need to open
the nodes and move a jumper. coreboot represented a huge jump in the manageability of
cluster nodes.

■ Foreword

xxii

coreboot has had many uses since its inception: everything from the smallest
systems (Apache Military Modem II) to some of the largest supercomputers. While there
is wide adoption in Chrome OS systems, coreboot’s earliest and continuing use is in
embedded systems such as televisions, network switches, and robotic systems. In fact,
about the same time we deployed a supercomputer using coreboot, iRobot had ported
coreboot to its Packbot robot.

Embedded systems used to be very simple: a low-power CPU connected to low-
performance memory and peripherals, used in low-performance and limited applications
such as digital clocks and automobile computers. But in the last ten years, we can see
low-power embedded CPUs used in unexpected places. The highest-end systems—such
as IBM Blue Gene supercomputers, which were the fastest in the world for many years—
used 65,536 embedded PowerPC CPUs with 18 cores each. We now see higher-power
CPUs used in small embedded systems such as Chromebox videoconferencing systems—
an inexpensive system with a very powerful Intel CPU.

These embedded Intel CPUs have memory bandwidth much higher than classic Cray
vector supercomputers and hence are fiendishly complex to design. Once designed, this
high-performance hardware is quite difficult to initialize, and even should we wish to
write the code to manage the initialization, the programming information is not public.

This has led to a dilemma: How can we enable coreboot on complex systems that are
not fully open?

This book shows one path. Intel has released in binary form a basic set of functions
to initialize the messiest—and hardest to program—bits of the Intel chipset. The calling
conventions and behavior of the binary are completely and clearly documented. The
developer is freed from having to deal with very difficult chipset setup. Upgrades of this
software are simple: just replace the old binary with a new one. This code is called the
Firmware Support Package, a.k.a. FSP.

The result is that high-performance Intel chipsets can be used with coreboot in all
kinds of systems, including embedded ones, with a binary supplied by Intel that removes
much of the porting difficulty.

Wearable embedded systems are a growing area right now, and many use the CPU
described in this book. This book is an ideal companion for those wishing to be current
with current and future embedded technology.

coreboot has succeeded because of the efforts of the many talented people involved
in the project for the last 15 years. The reader is fortunate that this book is written by four
of the best minds in the business. There is a lot to learn here and it will stand you in good
stead if you continue to work in embedded systems.

I’d like to thank Jiming Sun and the team for conceiving FSP and bringing it to
fruition. Without their tireless efforts and diplomacy, we would not have FSP or this book.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Introduction
	What Is Embedded Firmware?
	Where Is Firmware?
	What Do Firmware Engineers Do?
	Firmware Preparation for New Hardware
	The Mystery of Bits
	Programming Guides
	The Intel® Firmware Support Package
	The Uniqueness of Embedded Firmware
	The Choice of Firmware Stacks
	Welcome to the Era of the Internet of Things
	Technical Coverage in This Book
	The Future of Firmware

	Chapter 2: Firmware Stacks for Embedded Systems
	Is a One-Size-Fits-All Solution Possible?
	Microkernel
	Real-Time Operating S ystem (RTOS)
	Legacy BIOS
	Implementations of the UEFI Framework
	Open Source Firmware Stacks
	Proprietary Firmware Stacks
	Make o r Buy
	The Advantages of Outsourcing
	The Disadvantages of Outsourcing
	In-House Development

	Summary

	Chapter 3: Intel® Firmware Support Package (Intel® FSP)
	The Intel FSP Philosophy
	What Is in Intel FSP?
	Intel FSP Binary Format
	Sample Boot Flow
	Locating the Entries of Intel FSP
	The Hard Way to Find Intel FSP APIs: Use Data Structure
	The Easy Way to Find FSP APIs: Use Hard-Coded Constants

	Programming Interface: The APIs of Intel FSP
	TempRamInit
	FspInitEntry
	NotifyPhase

	Intel FSP Output
	API Execution Status
	Temporary Memory Data HOB
	Non-Volatile Storage HOB
	Sample Code for Parsing HOBs

	Customization of Intel FSP
	Downloading Intel FSP
	Microcode Patches
	Relocating Intel FSP
	Integration and Build
	The Future of Intel FSP
	What Is Coming in the Following Chapters

	Chapter 4: Building coreboot with Intel FSP
	The Introduction of coreboot
	The Philosophy of coreboot
	A Brief History
	v1: 1999–2000
	v2: 2000–2005
	v2+: 2005–2008
	v3: 2006–2008
	2008 LinuxBIOS Renamed “coreboot”
	v4: 2009–2012
	v4+: 2012–2014
	Further Reading

	Prerequisites for Working with coreboot
	Community Organization
	Git and Gerrit
	Git Commit Messages
	coreboot Sign-off Procedure
	Developer’s Certificate of Origin 1.1
	Adding Your Sign-off

	Working with the coreboot Community
	coreboot Do’s
	coreboot Don’ts
	Nonsource Binaries in coreboot

	A Hands-on Example: Building coreboot for the MinnowBoard MAX Mainboard
	Environment
	Hardware: MinnowBoard MAX
	MinnowBoard MAX Platform Details

	Development Directory
	Downloading Intel FSP
	Installing Intel FSP
	Downloading the coreboot Source
	coreboot Toolchain
	coreboot Commit Hooks
	Creating a coreboot Development Branch
	Building the Mainboard
	On the Menuconfig Menu
	On the Chipset Menu
	On the Devices Menu
	Build
	Summary of Commands

	Flashing the ROM
	Preparing the Flash Programmer
	Flashing the ROM Image

	coreboot Internals
	Boot Stages
	Additional Files
	CBFS
	An Example of CBFS

	CBFS Size
	Special Binaries

	Boot Flow Using Intel FSP
	Reset Vector and Bootblock
	romstage
	ramstage
	Payload

	coreboot Source
	coreboot Device Tree
	Chips and Devices
	Device Tree Variables
	A Device Tree Example
	Chip Operations
	Device Operations

	coreboot Hardwaremain State Machine
	State Machine States
	State Machine Callbacks

	Mainboard
	The Chipset Driver
	Chipset FSP UPD Options
	The FSP Driver
	Kconfig
	xcompile
	Payloads
	SeaBIOS
	GRUB 2
	FILO
	iPXE
	TianoCore
	Depthcharge
	U- Boot
	Memtest86+

	libpayload

	coreboot Troubleshooting and Debugging
	Postcodes
	Serial Debug
	EHCI USB Debug

	Summary

	Chapter 5: Chrome book Firmware Internals
	About Chrome book and Chrome OS
	Chrome OS Firmware Overview
	Chrome OS Security Philosophy
	Chrome OS Security Guiding Principles
	Power wash
	Chrome OS Boot Modes
	Verified (Normal) Mode
	Recovery Mode
	Developer Mode

	Chrome OS Coreboot
	x86
	ARM

	Depth charge Payload
	libpayload
	Verified Boot
	Verified Boot and Kernel Security

	Chrome OS Firmware Boot Log
	Boot Times Log

	Chrome OS Firmware Event Log
	Google SMI Linux Kernel Driver

	Chrome OS Extensions to the Firmware Image
	FMAP
	BOOT_STUB FMAP Section
	Chrome OS Firmware RW FMAP Sections
	An fmap.dts (RW_SECTION_A) Example

	Google Binary Block (GBB)
	GBB: HWID v3
	GBB: Firmware Bitmaps
	GBB: Firmware Keys
	GBB: Boot Flags

	Vital Product Data (VPD)
	Firmware TPM Usage

	Chrome OS Firmware Update
	Chrome OS Utilities
	flashrom
	gbb_utility
	GBB Flags Utility Script: set_gbb_flags.sh

	crossystem
	mosys

	Google Embedded Controller
	Power Sequencing
	Battery Charging
	Thermal Management
	Keyboard Controller
	Other Peripheral Controls
	Chrome EC Software Sync
	Software Sync Steps

	Summary

	Chapter 6: Intel FSP and UEFI Integration
	Introduction to EFI
	Introduction to FSP
	Introduction to EDK II
	Summary
	FSP Components
	FSP Wrapper Boot Flow
	Generic FSP Wrapper Boot Flow

	Normal Boot
	Boot Flow
	Memory Layout for a Normal Boot Flow
	FSP Normal Boot Data Structure

	S3 Boot
	Boot Flow
	S3 Memory Layout
	S3 NV Data Passing

	Capsule Flash Update
	Boot Flow
	Capsule Update Memory Layout
	Recovery Boot Flow
	FSP Recovery Memory Layout

	coreboot Payload Based upon EDK II
	Building Minnow and MinnowMax with FSP
	Future of the Intel FSP
	Conclusion

	Chapter 7: Building Firmware for Quark Processors
	Overview of UEFI and PI
	History of Implementations and Specifications

	Introduction to EDK II Building Blocks
	PKG: Packaging
	MdePkg
	MdeModulePkg
	IntelFrameworkPkg
	IntelFrameworkModulePkg

	Packages
	PCD: Platform Configuration Database
	Syntax

	DEC: Platform Declaration File
	Syntax

	DSC: Platform Description File
	FDF: Flash Description File
	Syntax

	Build: The EDK II Build Command
	INF: INF File
	More Information

	Introduction to the EDK II Subset
	Introduction to Quark
	ROM Flash Image Size Optimization
	Fixed Resource
	DRAM/SMRAM
	Remove Features
	Reduce Features
	Compiler Options
	Build Options

	Results of the TinyQuark Optimization

	RAM Footprint Optimization
	Optimization
	Result of Memory Usage Optimization

	Conclusion

	Chapter 8: Putting It All Together
	RTOS and Intel FSP
	Intel FSP and Open Source Philosophy
	Customization and Production of Intel FSP
	It Is a Community Effort After All

	Appendix A: Sample Boot Setting File (BSF)
	Index

