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Introduction and summary

This extended essay started out as a modest attempt to offer some
supporting structure for teachers struggling to implement a rather
unhelpful National Curriculum. It then grew into a Mathematical manifesto
that offers a broad view of secondary mathematics, which should interest
both seasoned practitioners and those at the start of their teaching careers.
This is not a DIY manual on how to teach. Instead we use the
official requirements of the new National Curriculum in England as an
opportunity:

• to clarify certain crucial features of elementary mathematics and how it
is learned—features which all teachers need to consider before deciding
‘How to teach’.

In other words, teachers will find here a survey of some of the mathematical
background which schools need to bear in mind when choosing their
approach, when thinking about long-term objectives, and when reflecting
on (and trying to understand and improve) observed outcomes.

We leave others to draft recipes for translating the official curriculum
into a scheme of work with the minimum of thought or reflection.
This study is aimed at anyone who would like to think more deeply
about the discipline of “elementary mathematics”, so that whatever
decisions they may take will be more soundly based. Feedback on
earlier versions suggested that this analysis of secondary mathematics
and its central principles should provide food for thought for anyone
involved in school mathematics, whether as an aspiring teacher, or as an
experienced professional—challenging us all to reflect upon what it is that
makes secondary school mathematics educationally, culturally, and socially
important.
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The contents demand repeated reading, and should be weighed and
digested slowly.

• The reader should begin with the very short Part I, which sets the scene.

• We suggest they should then work through Part II, which concentrates
on the Aims etc. of the published curriculum, and on the general
requirements in the section headed Working mathematically. But readers
should not worry if some aspects remain unclear on a first reading.

• Ultimately all the sections are interlinked; but we expect the reader
will then select sections in Part III (the listed Subject content) which are
of most immediate interest—whether Number, or Algebra, or Geometry
and measures, or Probability and Statistics—and extract whatever is found
useful. Again, each section may bear repeated reading over a number
of years, so do not be frustrated if at first some parts appear more
immediately applicable than others.

• Part IV is a revised version of our “humane mathematics curriculum
for all, written from a mathematical viewpoint”. This is offered as a
“sample” rather than as an ideal “model”. It tries to avoid the hubris of
some recent reforms and to show how more modest goals mesh together
over time, and with each other. For example, we include stages intended
to ensure that everyone should manage to learn their tables by the end
of primary school, with reinforcement in lower secondary school (even
if some pupils achieve fluency earlier); and though we emphasise the
central role of fractions for everyone in secondary mathematics, we avoid
their early introduction.

The reader is assumed to be an active reader. We repeatedly emphasise
drawing, calculating, and making; but we have left these delights for the
reader, who should always have pencil and paper to hand. In particular,
problems and calculations included in the text should be tackled before
reading on, and diagrams described in the text should be drawn.

The important messages are best understood in the context where they
arise. However, we were advised to include a summary of some of the
key messages at the outset. We therefore end this Introduction with a list
of some of the most important messages that arise in the ensuing text, even
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though many of these messages cannot be easily summarised. Hence we
also urge readers to construct their own list of key principles as they work
through the main text.

• Key Stage 3 (lower secondary school, age 11–14) is a crucial transition
stage, which needs concerted support (see Part I).

• We need to recognise that, if what is learned is to bear fruit in the medium
term, whatever is taught needs to be analysed and taught within an
organised didactical framework.

• What is taught also has to build on what is already known, so teachers
need to exercise judgement about pupils’ readiness to progress.

• Mathematics can be daunting; but everyone can make progress with
perseverance. So it is important to pace the initial material to allow this
message to register.

• Whenever possible one should exploit opportunities for pupils to
calculate, to draw, to measure and to make things for themselves.

• Whenever possible, one should establish and check pupils’ grasp of the
inner structure of elementary mathematics through on-going class oral
and mental work.

• Regularly extend routine oral and mental work to encourage an
atmosphere in which thoughtful conjectures are expressed and tested,
and where proof is increasingly valued.

• Actively develop pupils’ powers of remembering. Gradually extend
the range and scope of important results and methods that pupils
understand and know by heart. Help them to see that having to work
things out from scratch each time seriously restricts the kind of problems
one can tackle and solve.

• Each theme must be given sufficient time and variety for pupils to
achieve the kind of robust fluency, and the shift of focus that is needed
for subsequent progression.
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• Special and recurring attention needs to be paid to strengthening
key themes (such as place value, fractions, structural arithmetic,
simplification, ratio and proportion) in a suitably robust form.

• An effective programme must allow pupils to appreciate links and
connections, and to gradually become aware of the way in which simple
ideas from different mathematical domains relate to each other.

• Always look for alternatives to ‘acceleration’. Aim for all pupils to
achieve robust mastery in sufficient depth to maximise their preparation
for subsequent progression. The easier a pupil finds a topic, or a group
of topics, the more important it is for them to master that topic in serious
depth before moving on.

• Use carefully designed sets of graded exercises that range from the very
simple to the general, routinely exploring the more demanding ‘indirect’
variations, which are needed in many subsequent applications.

• Recognise the link between each direct operation or process (such as
addition, or multiplying out brackets) and the corresponding inverse
operation or process (such as subtraction, or factorising). Whilst fluency
in the direct operation is essential, its main purpose is to serve as a
foundation for solving the harder, and more important inverse problems.
In particular, resist the temptation to break harder inverse problems into
manageable (direct) steps.

• Routinely include simple word problems alongside technical exercises, so
that pupils learn to identify and extract relevant information from short
(two or three sentence) problems given in words.

• Regularly include short, non-routine problems (including two-step and
multi-step problems), that cultivate pupils’ willingness to face the
unexpected, and to think how to link known techniques into effective
solution chains.

• Routinely re-visit old material and replace old methods by more
flexible, forward-looking alternatives. Distinguish clearly between
backward-looking methods (that may deliver answers, but which hinder
progression) and forward-looking methods (that may at first seem
unnecessarily difficult, but which hold the key to future progression).
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The final version owes much to many friends and colleagues, whose
comments on successive drafts kept alive the vision of trying to write
something of value in difficult times: I hope they will accept my profound
thanks without my running the risk of trying to name them all. The London
Mathematical Society provided essential support for this project over an
extended period. But the book would never have seen the light of day
without the endless encouragement and Herculean efforts of Alexandre
Borovik.





I. Background: Why focus on Key Stage 3?

When designing a mathematics scheme of work for Key Stage 3, the
obvious move would be to try to adapt the official programme of study.1

However:

• the programme of study incorporates some startling omissions of
essential content that simply cannot be skipped (to give just two
examples: there is no reference to the subtleties of teaching the arithmetic
of negative numbers, or of combining negatives and ‘minus signs’ in
algebra; nor is there any explicit mention of isosceles triangles, or of
deriving and using their properties in other settings);

• many of the officially listed themes require careful interpretation in other
ways;

• in the official programme of study the connections between topics are
rarely elaborated; and

• the grouping and sequencing of, and the progression through, topics is
far from clear.

In short, the programme of study needs to be supplemented and ‘fleshed
out’ (and sometimes corrected). Moreover, unlike the programmes for Key
Stage 1 and Key Stage 2,

the programme of study for Key Stage 3 has no year-by-year
structure and no accompanying Notes and guidance.

1 National curriculum in England: mathematics programmes of study, https:
//www.gov.uk/government/publications/national-curriculum-in-england-mathematics-
programmes-of-study; https://www.gov.uk/government/uploads/system/uploads/
attachment data/file/239058/SECONDARY national curriculum - Mathematics.pdf

https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/SECONDARY_national_curriculum_-_Mathematics.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239058/SECONDARY_national_curriculum_-_Mathematics.pdf


2 Tony Gardiner

The fact that we need to think more carefully about mathematics teaching
at Key Stage 3 has been a theme of the Ofsted triennial reports on
mathematics:

Mathematics: Understanding the score (2008)2

and

Mathematics: Made to measure (2012).3

These reports have not been as widely read as they deserved. Their analysis
is unusually forthright for official documents, and provides a sobering
starting point for any school seeking to review its mathematics provision
at Key Stage 3. The reports summarise observations from hundreds
of inspections—but they do so in an unusually constructive spirit. For
example, having classified half of secondary maths lessons, and more than
half of the schemes of work, as being either ‘inadequate’ or ‘requiring
improvement’, Ofsted went out of their way to provide down-to-earth
advice.4

This down-to-earth Ofsted DIY guide begins with a four-page table
contrasting

• the general features of “good mathematics teaching”

with

• those of “mathematics teaching deemed to require improvement”.

The Ofsted guide then presents a string of specific examples chosen to
clarify the differences between ‘weak’ and ‘more effective’ mathematics
teaching, and to challenge schools to reflect on, and to improve, their own
teaching. Hence this collection of examples and advice should probably

2 http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/
resources/mathematics-understanding-score

3 https://www.gov.uk/government/publications/mathematics-made-to-measure
4 http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/

resources/mathematics-understanding-score-improving-practice-mathematics-secondary

http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/resources/mathematics-understanding-score
http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/resources/mathematics-understanding-score
https://www.gov.uk/government/publications/mathematics-made-to-measure
http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/resources/mathematics-understanding-score-improving-practice-mathematics-secondary
http://webarchive.nationalarchives.gov.uk/20141124154759/http://www.ofsted.gov.uk/resources/mathematics-understanding-score-improving-practice-mathematics-secondary
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be taken seriously by any school seeking to revise its published scheme of
work for Key Stage 3.

Key Stage 3 mathematics teaching is important because it marks a transition
from the more informal approach in primary schools to the formal, more
abstract mathematics of Key Stage 4 and beyond. Hence those teaching
Key Stage 3 classes need a clear picture of how the constituent parts of
secondary mathematics interlock, and how Key Stage 3 work can best
support progression—first progression to Key Stage 4, and then to Key
Stage 5 (at ages 16-18). In this regard the 2012 report Made to measure
highlights the uncomfortable fact that (p. 4):

“More than 37,000 pupils who had attained Level 5 at primary
school gained no better than grade C at GCSE in 2011. Our
failure to stretch some of our most able pupils threatens the
future supply of well-qualified mathematicians, scientists and
engineers.”

This illustrates the extent to which current provision at Key Stage 2 and
Key Stage 3 fails to lay the necessary foundations for subsequent stages,
and raises the question of how to improve provision at Key Stage 3. The
question is especially relevant given that so many schools feel unable to
allocate their strongest mathematics teachers to Key Stage 3 classes. So
there is clearly a need to provide more detailed guidance for those who
teach at this level.

The quality of existing support and guidance at school level is summarised
in the key findings of the 2008 report Understanding the score (p. 6):

“Schemes of work in secondary schools were frequently
poor, and were inadequate to support recently qualified and
non-specialist teachers.”

The ‘Executive Summary’ (p. 4) noted:

“Evidence suggests that strategies to improve test and
examination performance, including ‘booster’ lessons, revision
classes and extensive intervention, coupled with a heavy
emphasis on ‘teaching to the test’, succeed in preparing pupils
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to gain the qualifications but are not equipping them well
enough mathematically for their futures. It is of vital
importance to shift from a narrow emphasis on disparate
skills towards a focus on pupils’ mathematical understanding.
Teachers need encouragement to invest in such approaches to
teaching.” [emphasis added]

And the ‘Recommendations’ (p. 8) included:

“Schools should [. . . ]

• enhance schemes of work to include guidance on teaching
approaches and activities that promote pupils’ understanding
and build on their prior learning.”

Pages 19–25 of the 2008 report provide useful additional details: Figure
4 on p. 19, and Figure 5 on p. 24 summarise the observed weaknesses
in secondary schools, and the surrounding paragraphs make clear
suggestions as to what needs attention.

The 2012 report Made to measure echoes, and reinforces the concerns
expressed in the 2008 report:

p. 9:

“Teaching was strongest in the Early Years Foundation Stage
and upper Key Stage 2 and markedly weakest in Key Stage
3.” [emphasis added]

p. 18:

“Learning and progress [. . . ] were least effective in Key Stage
3, where only 38% of lessons were good or better and 12% were
inadequate” [emphasis added]

p. 19:

“[. . . ] Quick-fix approaches were particularly popular.
Aggressive intervention programmes, regular practice of
examination-style questions and extra provision, such as
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revision sessions and subscription to revision websites, allowed
pupils to perform better in examinations than their progress
in lessons alone might suggest.

These tactics account for the rise in attainment at GCSE; this
is not matched by better teaching, learning and progress in
lessons, or by pupils’ deeper understanding of mathematics. In
almost every mathematics inspection, inspectors recommended
improvements in teaching or curriculum planning, in
most cases linked to improving pupils’ understanding of
mathematics or their ability to use and apply mathematics.

[. . . ] It remains a concern that secondary pupils seemed
so readily to accept the view that learning mathematics is
important but dull.” [emphasis added]

The analysis in this book may be seen as an attempt to help schools respond
to one of the main ‘Recommendations’ in the 2012 report (p. 10):

“Schools should:

• tackle in-school inconsistency of teaching, making more of
it good or outstanding, so that every pupil receives a good
mathematics education

• increase the emphasis on problem solving across the
mathematics curriculum

• develop the expertise of staff:

– in choosing teaching approaches and activities that foster
pupils’ deeper understanding, including through the use
of practical resources, visual images and information and
communication technology

– in checking and probing pupils’ understanding during the
lesson, and adapting teaching accordingly

– in understanding the progression in strands of mathematics
over time, so that they know the key knowledge and skills
that underpin each stage of learning
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– ensuring policies and guidance are backed up by
professional development for staff to aid consistency and
effective implementation.”

The seriousness of the current situation summarised in these two reports,
and the weaknesses in the published Key Stage 3 programme of study
may explain why these notes and guidance grew into an ‘extended essay’,
rather than being effectively distilled into a punchy DIY manual. Despite
(or perhaps because of) this, we hope that all teachers (from those just
beginning their careers, or those aiming to take responsibility as Head of
Department, to the most experienced practitioners), and those who train
teachers will find that what follows provides food for thought, and that
schools will find what is presented here helpful in reviewing their current
provision in lower secondary school.



II. The general advice in the Key Stage 3

programme of study

Schools will naturally try to implement and adapt the published
programme as it stands. It is therefore important to decide

• when it is safe simply to copy what is listed;

• when the given list of topics needs to be reordered or supplemented in
some way; and

• when there are strong mathematical reasons to reinterpret an official
requirement (and to clarify in one’s own mind why it needs to be
reinterpreted).

Hence the remaining sections of this book are presented in the form of a
line-by-line commentary (where comment seems needed) on the published
programme. The present part, Part II, concentrates

• on the Aims etc. which appear on page 2 of the published programmes of
study (Section 1 below), and

• on the broad expectations discussed in the section headed Working
mathematically on pages 4 and 5 of the published programmes of study
(Section 2 below).
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1. Aims

1.1. [Aims p. 2]

Mathematics is an interconnected subject in which pupils
need to be able to move fluently between [different]
representations and mathematical ideas.

Elementary mathematics derives its power from the way a simple idea
sometimes has other interpretations, and from the way simple ideas from
different domains can be combined to deliver more than one might expect.
The published programme of study does not always make it easy to identify
these connections and interactions. Hence it is important to consider how to
sequence and to link the listed material in a way that clarifies and develops
the interdependencies between topics and ideas.

For example, if we consider the most familiar idea of all—namely ‘place
value’—schools may recognise the need to reinforce:

• how the place value notation for integers works, and how it extends to
decimals;

• that it does so in a way that links

– the more familiar positive powers of 10 (tens, hundreds, thousands),

– with 100 “ 1 (the ‘units’ or ‘1s’ place), and

– with negative powers of 10 (for places to the right of the decimal point);

• the fact that powers of 10 multiply together in a way that foreshadows
the index laws for general powers;

• that the written algorithms of column arithmetic, which were developed
in primary school for integers, extend naturally to decimals—giving
plenty of opportunity to reinforce both the procedures themselves and
why they work, and hence to strengthen pupils’ sense of ‘place value’.
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Schools will benefit from identifying such recurring themes and important
connections for themselves, and from organising the required Key Stage 3
content so that pupils come to appreciate these themes and connections.
Some of these are very basic. The next ten bullet points indicate a few
selected examples to illustrate the need

– to consider each of the requirements listed in the programme of study,

– to decide what links need to be explicitly mentioned, and

– where possible to include these in any scheme of work.

• The way work with pure numbers (that is, numbers like 1, 23, 4
5 , or ´67.8,

stripped of any units), and the arithmetic of integers and decimals, links
to simple applications—where purely numerical calculations allow one
to solve problems involving measures, and to make sense of, and solve,
all sorts of ‘word problems’.

• The way multiplication and division of decimals and fractions hold
the key to routinely solving almost any problem involving rates, or
percentages, or ratios, or proportion.

• The way blind calculation gives way to simplification and “structural
arithmetic”, which links naturally to effective calculation in algebra.

• The way “I’m thinking of a number . . . ” problems should at first be
tackled without algebra (as ‘inverse mental arithmetic’), but can later be
formulated as a simple equation in one unknown, then routinely solved.

• The way any linear equation in one unknown x reduces to ax ` b “ 0, with
solution x “ ´ b

a ; and any linear inequality in one unknown x reduces
either to

(i) ax ` b ą 0 (or ax ` b ě 0) with a ą 0, having solution x ą ´ b
a (or

x ě ´ b
a )—i.e. a ‘half-line’; or alternatively to

(ii) ax ` b ă 0 (or ax ` b ď 0) with a ą 0.

• The way any linear equation y “ mx ` c in two unknowns x, y
corresponds geometrically to the set of all points px, yq on a straight
line, that the line divides the plane into two ‘half-planes’, and that the
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solutions of the corresponding linear inequality (y ą mx ` c, or y ě

mx ` c) correspond to the set of all points px, yq in one of these two
half-planes.

• The fact that two simultaneous linear equations can be solved exactly,
and that the solution is the point of intersection of the two lines
corresponding to the linear equations (provided the two lines meet).

• The way short and long division (combined with a little algebra) shows
that fractions correspond precisely to terminating or recurring decimals.

• The way the basic property of parallel lines forces the sum of the angles
in a triangle to be equal to the sum of the angles at a point on a straight
line.

• The way the congruence criterion and the parallel criterion allow us to
justify the standard ruler and compass constructions, and to prove the
basic facts about areas (of parallelograms and triangles), which lead to
a proof that in any right angled triangle the square on the hypotenuse
is miraculously equal to the sum of the squares on the other two sides,
which then links with coordinate geometry by allowing us to calculate
exactly the distance between any two given points in 2D or in 3D.

1.2. [Aims p. 2]

Pupils should build on Key Stage 2

This is excellent advice—provided it is suitably interpreted. Key Stage 3 has
to start out from pupils’ experience at Key Stage 2. But this prior experience
also needs to be revisited and developed in fresh ways if it is to be used as
a reliable foundation for further work. In commenting on this principle, we
consider one example in modest detail (1.2.1), then digress to make three
important general points (1.2.2–1.2.4), indicate some further examples more
briefly (1.2.5), and end with a gentle warning about the likely impact of the
Key Stage 2 programme of study on Key Stage 3 (1.2.6).
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1.2.1 Mental calculation work should not end with Key Stage 2. It should
continue in Year 7, but should increasingly use what pupils know in a way
that exploits structure, rather than calculating blindly.

• Pupils need to learn to be on the look-out for ways of extracting 10s and
100s in additions such as

73 ` 48 ` 27 “ . . . ;

or in multiplications such as

14 ˆ 45 “ 7 ˆ p2 ˆ 5q ˆ 9 “ 630,

or
75 ˆ 28 “ 3 ˆ p25 ˆ 4q ˆ 7 “ 2100.

• Decimal calculations (such as 7 ˆ 0.8 “ . . . , and 12 ˆ 1.2 “ . . . , and
0.7 ˆ 0.08 “ . . . , and 1.2 ˆ 1.2 “ . . . ) should be routinely related to their
familiar integer equivalents, exploiting opportunities to reflect on how
multiplying and dividing by powers of 10 affects the decimal point.

• Common factors among a list of added terms should be seen as an
opportunity to ‘group’ using the distributive law, as in

17 ˆ 23 ` 17 ˆ 7 “ 17 ˆ p23 ` 7q “ 17 ˆ 30,

rather than to calculate the left hand side blindly. In general, common
factors among terms which are to be added or subtracted, multiplied or
divided, should be seen as an opportunity to simplify and to cancel.

• Lots of simple work involving fractions should include (a) switching to
common denominators (by scaling up both numerator and denominator)
in order to simplify the arithmetic, and (b) moving in the opposite
direction when using cancellation to simplify fractions.

Written calculation with integers also needs to be strengthened and
extended to decimals—but we shall have more to say on this in Section
1.2.5 below.
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1.2.2 In Part I we saw clear evidence (in the two Ofsted reports)
of the unfortunate consequences when a Key Stage seeks to maximise
performance on immediately impending assessments, and forgets

that our primary responsibility is always to prepare pupils for
the Key Stages that follow.

Pressure to “achieve” in the short-term often encourages pupils to become
dependent on (and teachers to allow) ‘backward-looking’ methods that
deliver answers in easy cases, but which sooner or later become an obstacle
to progress. Hence any internal scheme of work needs to make a clear
distinction between

(a) backward-looking methods that get answers in the short-term, but
which trap pupils in old ways of working (as with finger counting,
or idiosyncratic calculation methods, or reducing multiplication to
repeated addition, or modelling questions about fractions in terms of
pizzas—all of which may have transitional value, but which are known
to block later progress if they become too strongly embedded), and

(b) forward-looking methods, that may seem unnecessary if the perceived
goal is merely to get answers to simple problems at a given stage, but
which are important because of the way they reflect the inner structure
of elementary mathematics, and are often essential for progress at the
next stage.

It is not easy for a mere listing of curriculum content to capture this crucial
distinction. An effective primary school is one whose pupils are taught in
such a way that allows them to flourish at Key Stages 3 and 4. Similarly,
effective teaching at Key Stage 3 prepares the ground for, and leads to solid
achievement at Key Stage 4 and beyond. Insofar as the revised programme
of study incorporates this idea, it tends to do so in ways that are not
immediately apparent, so we shall occasionally comment on how Key Stage
3 material impacts on mathematics at Key Stage 4 and beyond.

1.2.3 The previous subsection drew attention to the distinction
between backward-looking and forward-looking methods. Another important
distinction is that between
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• a direct operation (such as addition, or multiplication, or evaluating
powers, or multiplying out brackets), and

• the associated inverse operation (such as subtraction, or division, or
identifying roots, or factorising).

The distinction may be easier to appreciate if we consider a strictly artificial
example—namely the “24 game”. Four numbers are given, and each is
to be used once. These four numbers may be combined using any three
operations chosen from the four rules (with brackets as required), with the
goal being to “make 24”.

If one is given the starting numbers “3, 3, 4, 4”, then one scarcely notices
the distinction between

• a ‘direct’ calculation (such as “Work out p3 ˆ 4q ` p3 ˆ 4q “ . . . ”), and

• the ‘inverse’ challenge of having to “invent for oneself a way to make
24” (let’s try “p3 ` 3q ` p4 ˆ 4q “ 22”— not quite; or “p3 ˆ 3q ` p4 ˆ 4q “

25”—nearly; or “p3 ˆ 4q ` p3 ˆ 4q “ . . . ”).

When faced with the inverse challenge to “make 24 using 3, 3, 4, 4”, it is
almost as easy to dream up a combination that works as it is to evaluate the
expression once it has been invented. But

• evaluating the answer of a given sum is a direct, or mechanical, process,
whereas

• juggling possibilities to come up with a calculation which produces
the required answer of “24” is an inverse operation, which is far from
mechanical (even if in this case it is rather easy).

The distinction between direct and inverse operations becomes slightly
clearer if the given numbers are “3, 3, 5, 5”. Here the inverse task of coming
up with a sum that delivers the required answer of “24” is significantly
harder. The relevant tools are the direct processes of arithmetic—except
that it is not clear which to use, so one has to scan what one knows, and
select approaches which seem to be the most promising. It is precisely
this willingness to juggle intelligently with numbers, and to think flexibly
with simple ideas that is needed in many everyday applications. But
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once one is told what calculation to carry out, then the direct calculation
“p5 ˆ 5q ´ p3 ˜ 3q” is entirely routine.

This distinction between the direct operation (which is straightforward, and
which requires only that one should implement a given calculation to check
that the answer is equal to “24”), and the inverse operation (which is much
harder, and which here requires us to invent a sum that has the required
answer “24”), becomes markedly more clear if one is given the starting
numbers 3, 3, 6, 6, and is left to find a way to “make 24” (or if one is given
the starting numbers 3, 3, 7, 7; or 3, 3, 8, 8).

To sum up: the reasons why this distinction is important are that

• almost every mathematical technique one learns comes initially in a
direct, or mechanical, form, but leads naturally to inverse problems (as
addition leads naturally to subtraction);

• inverse problems are usually much more demanding than their direct
cousins;

• mastery of the inverse form depends on a prior robust mastery of the direct
form;

• but in the long run, it is the inverse operation which is generally more
important.

Those who complain that pupils, or school leavers, cannot “use” what
they are supposed to know, often fail to notice that what pupils have
been taught (and what has been assessed) has usually focused on direct
procedures, whereas what is required is the ability to think more flexibly
when faced with some kind of inverse problem. Inverse problems often
come in different forms, or variations something that has been a focal point
of the recent teacher exchanges with Shanghai, where the idea of “exercises
with variation” has emerged as a recurring didactical theme

Given this, one might expect formal assessments to include a strong focus
on ensuring mastery of the many inverse operations and the ability to solve
the standard inverse problems in elementary school mathematics. In reality,
inverse processes have been neglected, or (worse) have been distorted
by providing ready-made intermediate stepping stones that reduce every
inverse problem to a sequence of direct steps. Why is this?
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Direct operations are relatively easy to teach, and to assess. The
associated inverse operations may be more important, but they are harder
to assess. Inverse problems are more demanding, and cannot be reduced to
deterministic methods. So they give rise to low scores, and they do so in a
way that is hard to predict. This makes them distinctly awkward for those
who devise test items within a target-driven and test-driven culture, where
the assessors may be contractually obliged to return predictable results,
and to avoid low scores. Hence, if such problems are set at all, they are
usually adapted in some way to make pupil performance more predictable
(for example, by breaking down the unpredictable inverse problem into a
more manageable sequence of steps—each of which is essentially a routine
direct task).

Teachers need to recognise the importance of such problems for pupils’
subsequent progress, and then devote sufficient time to them for pupils
to achieve a degree of mastery. But it would obviously help if assessments
regularly required, and rewarded, such mastery!

1.2.4 The bald listing of content in the official programme of study
is rather dry and formal—focusing on “what” rather than “how”. In
one sense, this emphasis is healthy. But it ignores the essential interplay
between content and didactics.

Procedural fluency is rightly stressed. But this emphasis is too often
repeated in isolation—as though a robust grasp of place value (for example)
will emerge spontaneously as a result of banging on about fluency in
specified procedures. It won’t. So something more is needed. If it is to
serve as a useful guide, a content list or programme of study needs to
be constructed in a way that indicates, and supports, a clear underlying
“didactical architecture”. In contrast, the given programme of study
routinely misses the opportunity to convey key central principles (such
as the contrast between backward-looking and forward-looking methods, or
between direct and inverse operations), and important details (such as the
key didactical stages which can lead from:

(a) talking about “half a pint” or “half an hour” in Year 2, to competence
with the arithmetic of fractions in Year 9; or

(b) from meeting negative quantities for the first time in Key Stage 2, to
calculating freely with negative numbers, and simplifying expressions
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which combine subtraction and minus signs in algebra at Key Stage
3/4).

1.2.5 In early Key Stage 3 we need to reinforce Key Stage 2 work on
the familiar written arithmetical procedures for integers in order to extend
them to more serious long multiplication, to division, and to decimals.
Column arithmetic for integers provides an excellent opportunity to cement
number bonds and multiplication tables. It also develops the ability to
carry out a sequence of simple steps completely reliably. The extension of
these procedures to decimals provides fresh opportunities to address ‘place
value’. At the simplest level, pupils need to understand why it is essential
to align the units and tens “places” when carrying out column addition and
subtraction of integers, so that the requirement to align the decimal points
when adding and subtracting decimals is recognised as being essential (see
example 1.2.2C “42.65 ` 5.748 “ . . . ” in Part III). The logic of short and
long multiplication will also need to be clarified before these procedures
are extended to decimals. Integer arithmetic (including mental arithmetic
in both direct and inverse forms with all variations) also needs to be in
good shape before we extend integer arithmetic to fractions.

The extension of long multiplication and division to decimals may need
to be slightly delayed. When they are addressed, pupils need first to
know how the decimal point behaves under multiplication and division by
powers of 10, so that they can understand how this allows multiplication
and division of decimals to be transformed into integer multiplication and
division.

Short and long division develop the inverse of multiplication, in that they
require pupils to use what they know about multiplication in a flexible way.
When asked to divide 17 onto 918, the initial inverse question:

“How many times does 17 go into 91? And what is the
remainder?”

requires greater mental agility than the two direct questions:

“What is 17 ˆ 5?”, and “What is 91 ´ 85?”.

Short and long division also require pupils to string together a chain of
steps, each of which is accessible, but where the whole chain has to be
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implemented 100% reliably for the process as a whole to succeed. And the
power of the process becomes apparent when one discovers how it extends
naturally to allow division of decimals. Later the division process helps to
establish the remarkable connection between fractions and decimals.

Some pupils will benefit from the challenge of tackling (or extending their
prior facility with) serious long division. This topic is listed in Key Stage 2
for all pupils. It is unclear what effect this may have; but we may well find
that serious long division is appropriate for only around half of the cohort,
even at Key Stage 3.

1.2.6 In exhorting teachers at Key Stage 3 to “build on Key Stage 2” it is
only fair to mention that the Key Stage 2 programme of study may prove
problematic in some respects. A preliminary indication of the extent of this
difficulty may be gleaned from an earlier paper.5 In particular

• a significant amount of material has been included at Key Stage 2 in a
way that is likely to prove premature; and

• some of the listed topics which are entirely appropriate in Year 5 and 6
have been specified rather poorly.

Hence one can anticipate that many pupils entering Key Stage 3 will have
at best a superficial grasp of some of the listed content from Key Stage 2.

Among the listed topics that are inappropriate and unnecessary in Year 6,
many are implicit in the early Key Stage 3 programme of study, so could
be safely delayed until Year 7. Some primary schools may recognise this
and concentrate on more age-appropriate material—leaving other content
to be treated more effectively at Key Stage 3. But many schools will go
by the book and will try to cover whatever is listed—with predictable
consequences. For both groups, this problematic material will need to
be revisited at Key Stage 3 in order to establish a secure platform for
progression. Examples of topics which may have been ‘covered’ at Key
Stage 2, but which will need serious attention in Years 7 and 8 include:

• the extension of place value to decimals;

5 http://education.lms.ac.uk/wp-content/uploads/2012/02/DMG 4 no 3 2013.pdf

http://education.lms.ac.uk/wp-content/uploads/2012/02/DMG_4_no_3_2013.pdf
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• the arithmetic of decimals;

• work with measures—especially compound measures;

• the arithmetic of fractions;

• ratio and proportion;

• the use of negative numbers;

• work with coordinates in all four quadrants;

• simple algebra.

1.3. [Aims p. 2]

Decisions about progression should be based on the security
of pupils’ understanding and their readiness to progress to
the next stage.

Secondary schools will need to know how this excellent principle of
“readiness to progress” has been handled at Key Stage 2. We give just one
example of many.

There is a general welcome for the requirement that pupils should learn (i.e.
know, and be able to use) their tables. But there is unanimity that this will
not be achieved by the end of Year 4 as specified in the official programme
of study, and that a more realistic objective may be to expect most pupils to
achieve this by the end of Year 5 or Year 6. Hence material listed in Year 5
and Year 6 that depends on ‘prior mastery of tables’ will not be accessible
at the expected stage, so will prove unrealistic at that level. (For example,
until tables are secure, one is limited in what one can achieve in factorising
integers, finding HCFs, working with prime numbers, with short division
and long division, with squares and cubes, with equivalent fractions and
with cancellation.)

If primary schools feel obliged to try to teach inappropriately ambitious
material purely because it is officially listed, this will lead to problems that
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are entirely avoidable. Thus secondary schools may have to encourage
their feeder primary schools to trust their professional judgement in such
matters, and to recognise those aspects of the Year 6 programme where
work should remain ‘preparatory’, with a serious treatment being delayed
until Year 7.

Some of the material that is listed in Key Stage 2 seems inappropriate at that
level—partly because we know that it is hard to teach it well even at Key
Stage 3. For example, it may make sense at Key Stage 2 to use symbols to
summarise familiar formulae: such as re-writing the verbal equation

“(area of a rectangle) = (length times breadth)” as “A “ l ˆ b”.

However, it would be premature to expect most primary pupils to learn
more serious elementary algebra (and most primary teachers are in no
position to teach it effectively). And while there is every reason to engage
pupils at Key Stage 2 in tackling “I’m thinking of a number . . . ” problems,
they are best addressed at that age by using ‘inverse mental arithmetic’: that
is, where the missing number is discovered by using intelligent, flexible,
inverse mental arithmetic, rather than by prematurely trying to formulate
such problems algebraically as equations (as suggested by the official Year 6
programme listed under Algebra).

Even where secondary schools liaise effectively with most of their feeder
primaries, they should think carefully—as part of ensuring “readiness to
progress”—how to consolidate key ideas and techniques from Key Stage 2
in early Key Stage 3, and should be prepared to clear up misunderstandings
that may have arisen as a result of material having been introduced
prematurely.

A key application of this crucial principle of “readiness to progress” arises
because the Key Stage 3 programme of study is now an explicit part of the
GCSE specification. Hence decisions about progress through the Key Stage
3 curriculum are bound up with decisions about future GCSE entry. The Key
Stage 4 programme of study states explicitly:
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Together the mathematical content set out in the Key Stage
3 and Key Stage 4 programmes of study covers the full
range of material contained in the GCSE Mathematics
qualification. Wherever it is appropriate, given pupils’
security of understanding and readiness to progress, pupils
should be taught the full content set out in this programme
of study.

In its understated way this both presents a challenge to teach as much of the
listed material as possible to as many pupils as possible, and at the same time
leaves considerable scope for teachers to use their professional experience
to decide where this aspiration may not be “appropriate”.

Those pupils who should progress comfortably to GCSE Higher tier may be
able to swallow the complete Key Stage 3 programme by the end of Year 9.
But those who may land up taking Foundation tier GCSE will often benefit
from proceeding more slowly through Key Stage 3 in order to establish a
solid foundation for those parts of the Key Stage 4 programme which they
might subsequently manage to cover, and perhaps master. In other words,
schools would seem to be free to interpret the Key Stage 3 programme as
part of GCSE, and to allow some material to spill over into Year 10 where
this seems appropriate. Those pupils heading for Foundation tier are far
more likely to achieve mastery of some of this material if they are allowed
to proceed more steadily (e.g. taking four years rather than three), than if
they are forced to cover the material prematurely, and then have to repeat
it.

1.4. [Aims p. 2]

Pupils who grasp concepts rapidly should be challenged
through being offered rich and sophisticated problems
before any acceleration through new content in preparation
for Key Stage 4. Those who are not sufficiently fluent
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should consolidate their understanding, including through
additional practice, before moving on.

The second sentence reinforces the comments made at the end of 1.3 above.

The first sentence advises against acceleration. It also highlights the fact
that each listed topic can be treated on many levels, and states the important
general principle that those who grasp a basic concept should be faced with
more challenging variations on the same material before they move ahead.
This is an extension of the idea of “readiness to progress”: namely that

before allowing pupils to progress to more advanced topics,
we should routinely expect a much deeper understanding on
the part of those who might one day proceed further.

At present we routinely let down large numbers of pupils by failing
to establish a sufficiently robust mastery of important basic ideas. For
example, the very first item under Number (Subject content p. 5: see Part
III, section 1) states that pupils should

understand and use place value for decimals, measures and
integers of any size.

Other requirements under the sub-heading Number relate to calculating
with fractions, working with percentages, and simple algebra. But the
evidence is that, even when teaching such basic material we in England
have expected far too little—including from our more able pupils. Consider
the following items, given to Year 9 pupils in around 50 different countries
as part of the major international comparison TIMSS 2011:6

6 http://timss.bc.edu/timss2011/

http://timss.bc.edu/timss2011/
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1.4A Which fraction is equivalent to 0.125?

A:
125
100

B:
125
1000

C:
125

10000
D:

125
100000

1.4B Which number is equal to
3
5

?

A: 0.8 B: 0.6 C: 0.53 D: 0.35

1.4C
4

100
`

3
1000

“

A: 0.043 B: 0.1043 C: 0.403 D: 0.43

1.4D The fractions 4
14 and ...

21 are equivalent. What is the value of
. . . ?

A: 6 B: 7 C: 11 D: 14

1.4E Which of these number sentences is true?

A: 3
10 of 50 “ 50% of 3 B: 3% of 50 = 6% of 100

C: 50 ˜ 30 “ 30 ˜ 50 D: 3
10 ˆ 50 “ 5

10 ˆ 30

1.4F Which shows a correct method for finding
1
3

´
1
4

?

A:
1 ´ 1
4 ´ 3

B:
1

4 ´ 3
C:

3 ´ 4
3 ˆ 4

D:
4 ´ 3
3 ˆ 4

1.4G Write 3 5
6 in decimal form rounded to 2 decimal places.

1.4H Simplify the expression

3x
8

`
x
4

`
x
2

.

Show your work.
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Success rates are never easy to interpret. But it seems sensible to compare
the success rates for Year 9 pupils in England with those in Russia,
in Hungary, in the USA, and in Australia rather than with countries
from the Far East (for the released items and the corresponding results,
see http://timss.bc.edu/timss2011/international-released-items.html). We
note that:

• in Russia, children start school only at age 7, and in Hungary at age 6;

• the primary curriculum in Russia may include the idea of fractional parts,
and the link with decimals, but calculation with fractions would seem to
begin only in secondary school;

• tasks 1.4A–1.4F are multiple-choice questions with just four options, and
some of the options could never be obtained as a result of making a
mistake (which suggests that the English success rates for 1.4A–1.4C are
already embarrassing).

1.4A Russia 86%, USA 76%, Hungary 74%, Australia 67%,
England 62%;

1.4B Russia 84%, USA 83%, Australia 70%, Hungary 67%,
England 59%;

1.4C Russia 83%, Australia 68%, Hungary 63%, USA 63%,
England 57%;

1.4D Russia 62%, USA 55%, Hungary 49%, Australia 45%,
England 43%;

1.4E Russia 58%, Hungary 53%, Australia 36%, USA 36%,
England 33%;

1.4F Russia 63%, Australia 34%, Hungary 33%, USA 29%,
England 28%;

1.4G Russia 39%, Australia 31%, Hungary 29%, USA 29%,
England 24%;

1.4H Russia 35%, Hungary 34%, USA 19%, Australia 14%,
England 9%.

The implication of these comparisons would seem to be that we in England
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• are failing to achieve basic competence even for our more able pupils,

• that we routinely allow (or even encourage) pupils to move on to some
“higher level” before basic material has been properly understood, and

• that we need to slow down and routinely use slightly harder and more
varied problems to probe and strengthen pupils’ understanding before
they move on in this way.

This inference was supported by the recent ICCAMS study which set a
sample of 15 year olds in English schools problems that had been used in a
similar study in the late 1970s. We give just two examples:

1.4J On the motorway my car can go 41.8 miles on each gallon of
petrol. How many miles can I expect to travel on 8.37 gallons?

[Six calculations involving 41.8 and 8.37 were given, and the
relevant calculation was to be ‘circled’, not implemented.]

30 years ago 54% of 14 year olds managed to circle 8.37 ˆ 41.8; now only
33% manage this.

1.4K Six tenths written as a decimal is 0.6. How would you write
eleven tenths as a decimal?

30 years ago 36% managed to write 1.1; now just 16% of 14 year olds
respond correctly.

The message would seem to be clear. We need to do much more work with
the most basic material to ensure that pupils grasp the relevant concepts.
The last thing our more able pupils need is to be accelerated. They need to slow
down, and to strengthen their understanding by tackling harder, and more
varied, problems involving the same material as their peers. In particular,
notwithstanding the wording of the requirement at the start of Section 1.4,
able pupils may need challenges that are surprisingly basic, before they are
confronted with material that is “rich and sophisticated”.

The need to replace a philosophy of premature “acceleration” by a strategy
of deepening and strengthening was strongly argued in the recent ACME
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report Raising the bar.7 Any mathematics department which appreciates
the importance of avoiding acceleration, but which anticipates being
challenged by parents, or by senior management, will find valuable support
in this report.

Ministerial advice regarding early GCSE entry has recently changed to
reflect the same position. This change in official policy is partly based on
overwhelming evidence. The instructive paper,8 which was prepared by the
Department for Education for the House of Commons Select Committee,
contains some astonishing statistics that should also help to convince
sceptical parents and management that acceleration incurs substantial
human and resource costs with no evident benefits. Indeed, those who take
GCSE early rarely benefit as a result.

This recent shift in policy is in line with the longstanding professional
consensus, which was first stated in the analysis and the recommendations
of the old report Acceleration or enrichment? (2000).9

2. Working mathematically

This section of the official programme of study contains eighteen bullet
points under three headings: Develop fluency, Reason mathematically, and
Solve problems. Many of these bullet points appear relatively unproblematic.
Hence we restrict our remarks to those requirements that invite comment.

2.1. [Develop fluency, p. 4]

The list of themes referred to in the bullet points under this sub-heading in
the official programme of study needs to be further supplemented: e.g. at

7 http://www.acme-uk.org/media/10498/raisingthebar.pdf
8 http://www.parliament.uk/documents/commons-committees/Education/

MemoSelectCommitteeGCSEMultipleEntryFinal.pdf
9 http://education.lms.ac.uk/wp-content/uploads/2012/02/Acceleration or Enrichment

15Aug12.pdf

http://www.acme-uk.org/media/10498/raisingthebar.pdf
http://www.parliament.uk/documents/commons-committees/Education/MemoSelectCommitteeGCSEMultipleEntryFinal.pdf
http://www.parliament.uk/documents/commons-committees/Education/MemoSelectCommitteeGCSEMultipleEntryFinal.pdf
http://education.lms.ac.uk/wp-content/uploads/2012/02/Acceleration_or_Enrichment_15Aug12.pdf
http://education.lms.ac.uk/wp-content/uploads/2012/02/Acceleration_or_Enrichment_15Aug12.pdf
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present there is no mention of measures, or of ratio and proportion, or of
word problems, or of geometry.

In recent years those who decided what a typical pupil in England should
be expected to learn have downplayed the importance of memorisation, and
of fluency. Yet there are all sorts of reasons why we need to learn certain
things by heart, and in general to achieve much higher levels of fluency.
The word “fluency” is not quite the same as raw speed; but fluency, and
the related notions of “learning by heart” and “automaticity”, are useful
indicators of understanding and mastery.

Memory contributes significantly to what we are, and to what we can do.
We need to be completely on top of that limited collection of basic facts
and techniques in terms of which most elementary mathematics can be
understood. But we need to memorise far more than this. For example,
when tackling an unfamiliar problem, one must be able

• to consider and choose between possible approaches and to compare the
alternative intermediate steps in order to assess what seems to be the
most promising strategy; and

• to achieve this, the possible steps or techniques need to be robustly
internalised and immediately accessible.

Where a pupil struggles to use an idea, or fails to implement a learned
procedure quickly and reliably, one can infer either that the ingredient
steps need to be strengthened, or that more time needs to be devoted to
integrating these steps into an effective method (or both).

When faced with routine inverse problems (such as “simplify 36
54 ”; or

“factorise x4 ´ 7x2 ` 1”; or “make 24 with 3, 3, 5, 5; or with 3, 3, 6, 6; or with
3, 3, 7, 7; or with 3, 3, 8, 8”), one cannot begin unless the relevant direct facts
are immediately to hand. Only then do we have a chance of recognising the
relevance of those direct facts.

• We need immediate recognition that 36 “ 4 ˆ 9 and 54 “ 6 ˆ 9 in order

to “simplify
36
54

“
4
6

“
2
3

”.

• Given “3, 3, 5, 5 to make 24” we need to notice immediately that “5 ˆ 5”
is “close to 24”, and then that “3 ˜ 3” makes up the difference.
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• Later (at Key Stage 4 or beyond), unless the identity

pa2 ´ b2q “ pa ´ bqpa ` bq

is second nature, we are most unlikely to notice that

x4 ´ 7x2 ` 1 “ px2 ` 1q2 ´ 9x2 “ px2 ´ 3x ` 1qpx2 ` 3x ` 1q.

That is, we need to memorise enough to enable us to respond flexibly.

What you don’t know by heart, and so can’t access instantly, you can’t use.

This observation applies not only to facts (such as 36 “ 4 ˆ 9, and 5 ˆ 5 “

25), but also to procedures. That is, we need to attain fluency in handling
a wide range of arithmetical, algebraic, trigonometric and geometrical
procedures, so that each new procedure can eventually be exercised
automatically, quickly, and accurately. Once this level of automaticity is
achieved, the brain is free to focus on those more demanding aspects of
a problem that require genuine thought (such as trying to see whether
x4 ´ 7x2 ` 1 can be written as a difference of two squares).

2.1.1 [Develop fluency p. 4 ]:

– consolidate their numerical and mathematical capability
from Key Stage 2 and extend their understanding of
the number system and place value to include decimals,
fractions, powers and roots

– select and use appropriate calculation strategies to solve
increasingly complex problems

2.1.1.1 Consolidating Key Stage 2 work, and choosing and using
appropriate calculation strategies should start immediately in Year 7.
In particular, mental work should continue, but should move beyond
idiosyncratic methods (which may have been quite rightly encouraged
at some stage, but which should then have moved on to more efficient
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methods) towards structural arithmetic in preparation for algebra. (The
meaning of “structural arithmetic” is explained briefly in Subsection
2.1.1.2.)

There should also be a continuing thread of word problems, through which
pupils learn to extract information from given text and to

“select and use appropriate calculation strategies to solve
. . . problems”.

(What is meant by “word problems” is outlined in Section 2.3 Solve problems,
and in particular in Subsection 2.3.3.)

Particular attention should be paid

• to pupils’ facility in working with decimals as an extension of earlier
work with integers, including a robust grasp of

(a) the “transition across boundaries” (from 0.9 to 1.0, or from 1.19 to
1.20, or from 2.99 to 3.0, etc.),

(b) multiplying by a suitable power of 10 to change decimals into
integers and conversely,

(c) translating decimals into fractions and vice versa,

(d) adding and subtracting fractions and decimals (see the ICCAMS and
TIMSS examples 1.4A–1.4K above, and example 1.2.2C in Part III);

• to consolidating long multiplication and short division, and simple long
division for integers;

• to extending the standard written arithmetical procedures for integers to
decimals (column addition and subtraction, short and long multiplication
and short division)—using these procedures to reinforce the idea of
place value, and to solve word problems and other problems involving
measures;

• linking division to quotients, or fractions, so that pupils understand
how decimal division can be effected by multiplying both divisor and
dividend by a suitable power of 10 to change the divisor into an integer.

2.1.1.2 We end this subsection by explaining briefly what we refer to as
structural arithmetic. One feature of mathematics teaching at all levels is the
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need to re-visit topics and methods which have been previously learned, in
order to think about familiar things in new ways. As long as one avoids
simply repeating what was done before, much may be gained from time
spent revising and strengthening vaguely familiar ideas, language, and
methods—even when the material has already been well taught. Where
pupils failed to grasp a topic at the first encounter, subsequent re-visiting
and revision is essential if they are to progress; and those pupils who
appeared to understand things the first time round can always benefit from
re-visiting basic material in the right spirit.

The 2003, 2007, and 2011 results from TIMSS (a 4-yearly study of school
mathematics in different countries) revealed a significant improvement
in average success rates among Year 5 pupils in England when tackling
internationally designed test items. The natural response was to see this as
constituting resounding support for the extensive efforts that had gone into
the early Numeracy Strategy. But closer inspection (for example, of those
problems where English pupils performed less well) suggested that these
improved average scores

• derived mainly from success on relatively simple tasks, where correct
answers could be obtained using “backward-looking” methods, and that

• pupils in Year 5 struggled with precisely the material that is most relevant
to subsequent progress at Key Stage 3.

This impression was reinforced by the fact that the apparent improvement
in average Year 5 scores was not reflected in any corresponding
improvement at Year 9 (even though the 2007 Year 9 sample was from
exactly the same cohort as the 2003 Year 5 sample; and the 2011 Year 9
sample was from exactly the same cohort as the 2007 Year 5 sample). If this
analysis is correct, then we clearly need to focus our mathematics teaching
rather differently, so that our approach to the content being taught in Years
5–8 actively prepares the ground for the way elementary mathematics will
develop subsequently.

In particular, at the interface between Key Stage 2 and Key Stage 3 the
approach to mental calculation needs to move beyond methods designed
solely to “get the answer”. As the range of numbers in calculations expands
(to include arbitrarily large integers, decimals, fractions, and surds), most
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of the expressions one could conceivably be asked to calculate are so messy
that they cannot be easily evaluated or simplified. Something similar occurs
in algebra when, during Key Stage 3 and Key Stage 4, the possible algebraic
structure of the expressions to be manipulated gets progressively more
complicated. Attention then shifts away from working with “expressions
in general” and concentrates on expressions whose “structure” allows them
to be evaluated or simplified. Progress in mathematics then depends
more and more on learning to use the algebraic rules which sometimes
allow one to simplify unexpectedly. Hence from Key Stage 2 onwards,
calculation should begin to move beyond bare hands evaluation, and
should concentrate on developing

• flexibility in looking for ways to exploit place value (as in 73 ` 48 ` 27 “

. . . , or 17.18 ` 7460 ` 22.82 “ . . . ), and

• an awareness of the algebraic structure lurking just beneath the surface of
so many numerical or symbolical expressions [as in 3 ˆ 17 ` 7 ˆ 17 “ . . . ,
or 6ˆ15

10 “ . . . , or 16 ˆ 17 ´ 3 ˆ 34 “ . . . , or 6pa ´ bq ` 3p2b ´ aq “ . . . ].

This habit of looking for, and then exploiting, algebraic structure in
numerical work is what we call structural arithmetic.

2.1.2 [Develop fluency p. 4]:

use algebra to generalise the structure of arithmetic,
including to formulate mathematical relationships

Elementary algebra does not really “generalise the structure of arithmetic”
as suggested in the above official requirement: algebra copies the structure
of arithmetic exactly (that is, the four rules, together with the commutative
laws, the associative laws, and the distributive law) and applies it to a new
“mixed universe” of symbols (or letters) and numbers. Thus it is not the
structure that is generalised, but the universe to which the old structure is
applied.

This new domain of “elementary algebra” has several distinct aspects, or
sub-domains, each of which sheds a slightly different light upon the subject.
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Some of these sub-domains are more natural for beginners than others.
The four most obvious ones—in approximate order of sophistication—are
formulae, equations, expressions, and identities.

• Formulae. Here letters are used in place of familiar entities (e.g. A “ l ˆ b
for the area A of a rectangle of length l and breadth b; or C “ 2πr for the
circumference C of a circle of radius r). In each such formula, the letters
can take different numerical values. The simplest formulae (such as C “

2πr) are rather like the simplest calculations that we meet at Key Stages 1
and 2, in that they tell us how the value of one entity (the circumference
C) can be calculated once we know the values of certain others (the radius
r).

• Equations. The first equations one meets involve a single letter (often
denoted by “x”). This letter is usually referred to as the “unknown”.
An equation can be interpreted as a constraint which some unknown
number “x” has to satisfy. Later one meets equations, and even pairs
of equations, linking two or more “unknowns” (or “variables”). In all
cases the strategy is the same: namely to transform the equations using
the rules of algebra in a way that pins down the “unknown number (or
numbers)” more precisely than was apparent in the original equation (or
equations).

• Expressions. Given a formula, such as C “ 2πr, we very soon want to
move the letters around. For example:

– Suppose we use string to measure the circumference C of a tall
cylindrical lamp post and want to calculate the radius r (a length which
we cannot measure directly). We then need to re-write the formula as
r “ C

2π so that we can calculate r as soon as we know the value of the
circumference C.

– Or we may want to “expand” px ` 4qpx ` 2q or px ` 3q2; or to rewrite
the quadratic equation “x2 ` 6x ` 8 “ 0” by “factorising” the LHS to
get “px ` 4qpx ` 2q “ 0”, or by “completing the square” to get
“(x ` 3q2 ´ 1 “ 0”.
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In all these settings we need to know how to work with expressions made
up of letters, and to transform them “as if the letters stood for numbers”
(since this is exactly what the letters represent).

The fourth subdomain of elementary algebra—identities—is not mentioned
explicitly in the Key Stage 3 programme of study. But it has already arisen
in the previous bullet point; and it is highlighted by the later Key Stage 3
requirement (see Part III, section 2.4 below)

“to simplify and manipulate algebraic expressions to maintain
equivalence” [emphasis added].

Hence this subdomain is bound to arise in Key Stage 3, even if it is more
evident at Key Stage 4 and beyond.

• Identities: In primary arithmetic the = sign at first tends to connect some
required calculation such as “13 ` 29” (on the left hand side) with the
answer “42” (on the right hand side): 13 ` 29 “ 42. But the “ sign then
broadens its meaning and is used to connect any two numerically equivalent
expressions—such as “13 ` 29 “ 6 ˆ 7”, or “62 ´ 1 “ 5 ˆ 7”, or “ 28

42 “

10
15

”. Something similar arises in the algebra of expressions, where pupils
first learn that, given a jumble of symbols on the left hand side, one is
expected to simplify it in some way and set it “equal” to something a bit
like an “answer” (on the right hand side). For example one might be
given an expression such as

ˆ

x
x ´ 1

´
x ` 1

x

˙´1

and be expected to rewrite it as ““ x2 ´ x” (or as ““ xpx ´ 1q”). However
one later broadens this use of the equals sign so that “=” simply links two
expressions that are “algebraically equivalent”—that is, where one side
can be transformed into the other side via the rules of algebra. Any such
equation that links two expressions that are algebraically equivalent is
called an identity.

Pupils become aware of these four subdomains gradually, generally
starting with formulae, then equations and expressions. The goal
throughout should be to establish two main principles:
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• letters are essentially placeholders for numbers, and so are subject only
to the laws of arithmetic (or algebra);

• in formulae and equations, the letters can take any values that are
consistent with the constraint expressed by the formula or equation; in an
expression or identity the only constraints are the laws of arithmetic—so
the x in “ 1

x
” cannot be set “ 0, but otherwise the letters can be replaced

by any values whatsoever, as long as different instances of the same letter
are given the same value.

2.1.3 [Develop fluency p. 4]:

substitute values into expressions, rearrange and simplify
expressions, and solve equations

2.1.3.1 The requirement in 2.1.3 reinforces the immediately preceding
bullet point. In an equation, the letters are constrained, so can only take
particular (as yet unknown) values.

• In contrast, the letters in an algebraic expression are only required
to satisfy the rules of arithmetic (or of algebra), so can be replaced
by any numbers whatsoever (provided they are not clearly “forbidden
values”—such as those that would make a denominator equal to zero).

Many pupils never grasp this fact, and so move letters around without
realising that they are little more than placeholders for numbers, and must
be treated as such. Pupils need more experience of substituting given
numerical values for the letters in an expression, in order to internalise
the idea that a letter can be given any value provided all occurrences of the
same letter are given the same value. The act of substituting and evaluating
also provides opportunities

• to exercise mental arithmetic, and

• to check that standard algebraic notation (juxtaposition as multiplication,
brackets, powers, the fraction bar notation, priority of operations, etc.) is
translated correctly when calculating with numbers.
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Moreover, evaluating expressions in this way begins to convey the key idea
that

• each choice of inputs gives rise to a single, determined output value for
the expression.

That is, such expressions provide the simplest examples of what we will
later call a function (of its component variables).

2.1.3.2 The expression “rearrange and simplify” in the quote at the
start of 2.1.3 gives a slightly misleading impression. Algebra almost never
involves “rearranging” for the sake of it: one “rearranges” the terms of
a compound expression for a reason—and that reason is almost always
to simplify in some way. We are formally allowed to rearrange, or to
manipulate, expressions in any way that respects the rules of algebra; but
in practice we ignore almost all rearrangements, and focus on those which
seem likely to lead to a more manageable, or “simpler”, result. Hence
“rearrange and simplify” might have been better expressed as

“rearrange in order to simplify”.

In any event it is clear that pupils need more exercises (and class discussion)
to help them learn what kinds of outputs are mathematically “simpler”
(such as “fully cancelled” expressions, or those in “fully factorised” form),
and to understand when and why the simpler forms are to be preferred.

2.1.3.3 The requirement at the start of Subsection 2.1.3 ends with three
innocent-looking words: “and solve equations”. In mathematics the
expression “solve equations” strictly means “solve exactly”—by algebraic
methods. We delay further comment on exactly what this means until
Subsection 2.2.2.2. However, once this basic notion is understood, it can
be modified, or re-interpreted in other fruitful ways.

The first such reinterpretation is to interpret the equations and the solving
process geometrically. This reinterpretation does not help in the solution
process itself, but it gives rise to interesting applications; it also provides a
valuable alternative way of thinking about what is going on.

A different variation on the idea of “solving an equation” arises when we
have no obvious way of finding an exact solution. It is then worth looking
for effective ways of “getting close to” the elusive exact solution—that
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is, to find an approximate solution. The standard way to do this is
to devise a process which allows us to “creep up on” a solution by
generating a sequence which approaches the exact solution ever more
closely. And the preferred kind of process is one which always takes
the output from the previous step and operates on it in the same way to
get the next approximation. This kind of repetition of a single process
is called “iteration”—an idea which appears unannounced in the GCSE
specification.10 There, in item 20 under the heading Number, we read:

find approximate solutions to equations numerically using
iteration;

and in item 16 of Ratio, proportion, and rates of change we read:

work with general iterative processes.

There is no officially required preparatory work at Key Stage 3. However,
when finding approximate points of intersection of two straight lines, or of
the graph of a curve and the x-axis, it may make sense to alert pupils to
the desirability of having a deterministic numerical (rather than graphical)
process that finds such solutions to any required degree of accuracy. At
the same time one can prepare the ground as part of work with sequences,
by exploring the behaviour of standard sequences that “converge” (such as

xn “

´

1
10

¯n
, or xn “

´

1
2

¯n
, or xn “ 1 ´

´

´ 1
2

¯n
, or xn “ n´1

n ), and others
that “diverge” (such as xn “ 10n, or xn “ 2n).

The geometrical interpretation of the meaning of “solve” arises because
algebraic equations correspond to geometrical curves or surfaces. This
important link between algebra and geometry was forged by Descartes
(1596-1650), who in 1637 showed that solving an equation corresponds to

10 https://www.gov.uk/government/publications/gcse-mathematics-subject-content-and-
assessment-objectives

https://www.gov.uk/government/publications/gcse-mathematics-subject-content-and-assessment-objectives
https://www.gov.uk/government/publications/gcse-mathematics-subject-content-and-assessment-objectives
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• looking for points on a curve or surface where some expression takes a
particular value (as with contour lines on an Ordinance Survey map); or

• looking for points where a curve or surface intersects a line (such as the
x-axis), or a plane.

Hence the solutions of an equation, or of a system of equations, can be
thought of as the coordinates of some point or points where two or more
curves, or surfaces, meet. This is a powerful idea which can help to explain,
for example,

• why some quadratic equations, such as x2 ` 1 “ 0, have no solutions
(because the curve y “ x2 ` 1 never crosses the x-axis—that is, the line
“y “ 0”),

• why other quadratic equations, such as x2 “ 0, have just one solution
(because the curve y “ x2 touches the x axis “y “ 0”), and

• why many quadratic equations, such as x2 ´ 1 “ 0, have exactly two
solutions (because the curve y “ x2 ´ 1 cuts the x-axis “y “ 0” in two
points: p´1, 0q and p1, 0q).

The geometrical interpretation makes it possible for pupils to engage the
hand and the eye to draw the relevant curves and to find the approximate
coordinates of the points which correspond to solutions of the given
equation(s)—a process that can help the brain to make sense of the exact
algebraic solution process, which might otherwise remain a purely abstract
idea. Without the insights provided by this geometrical interpretation,
pupils can all too easily misapply the rules of algebra—even with such
simple examples as:

• x “ x2 (where thoughtless cancellation can easily lead one to lose the
solution x “ 0). If we interpret solutions of this equation as the two points
p0, 0q and p1, 1q where the familiar curves y “ x and y “ x2 cross, this
can illustrate the error, can underline the importance of only cancelling
factors which are never zero, and can help to reinforce the reasons for
the standard algebraic method (when dealing with quadratics and higher
powers) of
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“taking everything to one side and factorising”.

The same idea applies to less familiar equations such as

• x “ 2x4 (or x “ 3x5) where one can again consider the two points where
the curves y “ x and y “ 2x4 cross (or the three points where the curves
y “ x and y “ 3x5 cross).

Later one can apply the same idea to cos x “ 1, to sin x “ 1
2 , or to x “ tan x,

to see that each equation has infinitely many solutions.

Sketching the lines or curves corresponding to two equations can allow one
to find approximate solutions by estimating the coordinates of the points
where the lines or curves intersect. This kind of geometrical visualisation
is didactically and psychologically invaluable. But it is not a logical, or
mathematical way of actually “solving the equation”—any more than the
unknown length of the hypotenuse of a right angled triangle with legs of
lengths 3 and 4 (or a and b) can be mathematically calculated by drawing
an approximate 3 by 4 rectangle (or an a by b rectangle) and then measuring
the diagonal.

2.2. Reason mathematically

2.2.1 [Reason mathematically p. 4]:

extend and formalise their knowledge of ratio and proportion

The words “ratio” and “proportion” are here used correctly! But they are
so often used incorrectly that we go into considerable detail (here and in
Part III, Section 1.9) to explain the background that is needed if pupils
are to “formalise their knowledge of ratio and proportion”. We should
perhaps stress that our comments throughout are designed to provide
food-for-thought for teachers, and are not intended to constitute a teaching
sequence for pupils.

Elementary mathematics comes into its own (and needs to be seriously
taught!) as soon as we take the step from addition to multiplication. Ratios
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are the quintessential “multiplicative relations”, and work with ratios links
naturally to work with fractions.

The basic “knowledge of ratio and proportion” which all pupils need to
build on is relatively familiar and accessible to all: so all can make some
progress. And this matters, because the topic is important, and has many
applications. However, the step that leads from a “common sense” view to
its mathematical analysis is more delicate; and though the art of teaching
consists in finding ways to make such things easier to digest, one should
not underestimate the challenge in this case.

The initial stage is purely numerical.

A position is advertised at £8.30 per hour (including specified
breaks).

If my weekly schedule counts as 25 hours, then I expect to earn

25 ˆ £8.30 “ £207.50.

Here the given data includes the “unit cost” of “earnings per hour”, and
the calculation reduces to a single multiplication. Despite the disturbingly
low success rate for problem 1.4J above, this kind of multiplication can be
made accessible to almost everyone. So it should be possible (even if it takes
time and care) to extend this idea to problems where the “unit cost” has to
be extracted first, before it can be used to find the required answer:

If my schedule counts as 25 hours per week and I earn £207.50,
what would you expect to earn if your schedule counted as 30
hours?

All that is needed is to insert an extra reverse step, before repeating
essentially the same calculation:

if 25 hours ´́ ´́ ´́ ´́ ´́ ´́ÝÑ earns £207.50,
then 1 hour ´́ ´́ ´́ ´́ ´́ ´́ÝÑ earns £ . . .
so 30 hours ´́ ´́ ´́ ´́ ´́ ´́ÝÑ should earn 30 ˆ £8.30 “ £249

In other words, all that is needed (once one has a template to organise one’s
thoughts and calculations) is to carry out two multiplications (“ˆ 1

25 ” and
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“ˆ30”) instead of one multiplication. This two-step process, where the unit
cost is extracted first, is often referred to as “the unitary method”.

The general situation of which the above is an example arises whenever
two quantities, in this case

“hours worked” and “pay received (in £)”

vary together in such a way that, whenever we have two linked pairs of
quantities, such as:

25 hours corresponds to £207.50,
and

30 hours corresponds to £249,

then the ratio between the two quantities of the first kind

25 : 30

is equal to the ratio between the two quantities of the second kind

207.50 : 249

This “equality of ratios” is called a proportion. We also say “the two
quantities—hours worked, and pay received—vary in proportion to each
other”. (Slightly confusingly, this is sometimes referred to as “direct
proportion”—to underline the contrast with “inverse proportion”, where
the two quantities x, y vary in such a way that the first quantity x varies
in proportion to the inverse 1

y of the second quantity).

The “equality of ratios” can be re-written as an equality of fractions:

25
30

“
207.5
249

This is all very well, but each time we choose a different “linked pair of
quantities” we get two new ratios. The new ratios are again equal, but they
are different from the previous two ratios that were equal. However, if we
rewrite the fraction equation in the form

25
207.5

“
30
249
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then something remarkable happens: we obtain a quotient which is always
the same—and which is called the constant of proportionality.

Teachers and schools will no doubt have their own ways of simplifying this
idea. But there is no escaping from the need to prepare the ground by doing
sufficient prior work with word problems, with multiplication and division,
with fractions, and with ratios.

The teacher is like a midwife—using their own higher knowledge to coax
ideas into pupils’ minds. But to do this effectively, the teacher (like the
midwife) needs to see the bigger picture—even if they then choose to
suppress some of the details. To generate a ratio, all that is needed is a single
class of pairwise comparable magnitudes (that is, a class of magnitudes where
any two given entities can be ‘compared’, so that we can decide which is the
larger). The simplest examples of such a class of “comparable magnitudes”
are the set of positive rational numbers, and the set of positive real numbers.
In the context of ratios, real numbers generally arise as the set of possible
numerical measures of some set of objects (relative to some chosen unit).
Numerical ratios are easier to handle (replacing the class of objects by their
measures). But ratios are not necessarily numerical. They arise naturally
in mathematics whenever one has a class of “comparable entities” (such
as line segments, or 2D shapes): we do not have to turn everything into
numbers by measuring (for a very simple example, see Part III, Section
1.9.2).

The example above illustrates how a proportion arises whenever two
different classes of entities are linked in a special (but very common) way.
For example, suppose that one class consists of

“quantities of petrol”

and the other class consists of

“amounts of money in £”.

If 1 litre of petrol costs £1.50,
then we expect 2 litres to cost £3 (“ 2 ˆ £1.50)

That is, for any two purchases from the same outlet at the same time,
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the quantities purchased (in litres)

are in the same ratio as
the amounts paid (in £).

If I buy a litres of petrol and pay £c,
and you buy b litres of petrol and pay £d,
then the ratio a : b is equal to the ratio c : d.

The equality
a : b “ c : d

is what we call a proportion.

Note that since a, b, c, d are magnitudes, with a, b of one kind and c, d of
another kind, then a : b is a perfectly well-defined ratio; but “a : c” makes
no sense, because a and c are not comparable magnitudes. One cannot have
a ratio between a quantity of fluid and an amount of money. However,
if we replace the different quantities and amounts by their numerical
measures, then the equality of ratios “a : b “ c : d” can be written as an
equation between fractions, which can then be treated purely numerically (or
algebraically), to give an equality of quotients, or fractions:

a
b

“
c
d

(˚)

The two quotients in equation (˚) are always equal, but can take any
positive value. You could consider buying

b “ 2a litres of petrol and pay d “ 2c pounds,

and the quotients would then both take the value 1
2 . Or you could buy

b “ 1
2 a litres of petrol and pay d “ 1

2 c pounds,

and the quotients would then both take the value 2.

However, if we now treat the equation (˚) purely algebraically, then we can
rewrite it in the form

c
a

“
d
b

This equation looks very similar to equation (˚), but it is completely
different. The two sides do not represent ratios, but specify the constant
of proportionality (relative to the two chosen units: litres and pounds (£)).
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That is, once we choose units and give numerical values a and c to the basic
pair of corresponding magnitudes—one from one class and one from the
other

a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c

the value of the quotient c
a is a constant, the constant of proportionality.

That is, it has the same value as the corresponding quotient d
b for any other

pair of corresponding magnitudes b, d (one from one class and one from the
other).

This is the simplest, and perhaps the most valuable, application of school
mathematics—to life, to science and to mathematics itself. It applies
whenever two quantities are related so that if one quantity doubles, or
triples, so does the other: that is, where the numerical measures a, c or
b, d of the two quantities have a constant ratio. Two quantities that vary in
such a way as to preserve a constant ratio between their values are said to
be “in proportion”.

The fact that “ c
a is a constant” means that the number lines corresponding

to the two families of measures “line up” in such a way that one scale is
simply a multiple (ˆ c

a ) of the other:

s s s s p p p y
0 c 2c 3c

s s s s p p p x
0 a 2a 3a

£:

litres:

If we imagine a linked pair px, yq of unknown variables—where “x litres
costs £y”—then these variables are connected by the linear equation

y “

´ c
a

¯

x.

Any particular proportion problem that pupils may be required to solve is
likely to involve just two pairs pa, cq and pb, dq,

• where a and b come from one class of magnitudes, and c and d come from
the other class.
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In a typical proportion problem, three of the four values are given and the
fourth is to be found. Hence one pair is completely known, and we take
this as our “base”, or “reference pair”:

a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c

One of the other two values b, d is “to be found”. So the four ingredients
can be thought of as the corners of a rectangular array, where three of the
values are known and the fourth is to be calculated:

If a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c
then b litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £??

Alternatively, the missing value may be the one in the bottom left corner:

If a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c
then ?? litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £d

This standard way of representing the four pieces of information in a
proportion—with three known values and one generally unknown—is
referred to here as the rectangular template for displaying proportion
problems. We will revise and extend this example in Part III (p. 137ff).

2.2.2 [Reason mathematically p. 4]:

– make and test conjectures about patterns and relationships;
look for proofs or counterexamples

– begin to reason deductively in geometry, number and
algebra, including using geometrical constructions

Learning to distinguish between a plausible guess and a provable fact
should be part of school mathematics from the earliest years. In Key Stage
3 this distinction takes on a new importance—but the requirement stated in
2.2.2 is difficult to interpret because the logical framework within which
such deduction is to take place remains undeclared (e.g. for Euclidean
geometry).
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2.2.2.1 The problems begin already with the requirement to “reason
deductively in number” when making sense of simple numerical patterns.
At present the patterns pupils meet are often chosen in a way that misleads
everyone into thinking that

patterns that seem genuine, always are genuine.

This makes it hard for pupils to discover the need for proof.

Consider, for example, the first 17 terms of what should be a familiar
endless sequence:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384,

32768, 65536, 131072, . . .

These are the successive powers of 2. Pupils can extend the sequence as far
as they need simply by repeatedly multiplying by 2.

Now consider the two sequences that arise naturally from this sequence of
“powers of 2” by looking at the two “ends” of each term of this sequence:

first the succession of units digits:

2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 8, 6, 2, 4, 6, 8, 2, . . .

then the succession of leading digits:

2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, . . . .

As one continues to extend the original sequence of powers of 2, it is hard
not to notice that both these sequences of digits seem to recur.

But do they really? And if they do, are these two conjectures really similar?

It is relatively easy to prove that the first sequence “2, 4, 8, 6, 2, 4, 8, 6,
. . . ” really does recur. For we know that when we carry out the short
multiplication, multiplying by 2 each time,

• each new units digit arises from multiplying the previous units digit by 2.

So each time we reach a units digit of 2, we notice that
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– the units digit of the next term is 4 (since “2 ˆ 2 ends in 4”);

– then “2 ˆ 4 ends in 8”;

– then “2 ˆ 8 ends in 6”;

– then “2 ˆ 6 ends in 2”—and the sequence “2, 4, 8, 6” starts to repeat.

However, the second sequence

2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, . . .

is different. There is no obvious reason why the leading digits should recur
as they seem to do.

Somehow pupils need to learn that what looks like a pattern may not
be a pattern at all!

So we have to insist that, in the absence of an acceptable proof, no pattern
is simply “believed”—no matter how persistent it may seem to be.

2.2.2.2 The requirement to “reason deductively in algebra” is more
interesting—and is explored surprisingly rarely. Proof in algebra has to be
based on combining

• use of the commutative and associative laws of addition and
multiplication, and the distributive law, to simplify expressions,

together with

• the idea that one is allowed to operate on the two sides of any equals sign
in the same way without destroying the equality.

The most obvious example at Key Stage 3 and Key Stage 4 (about which the
programme of study remains stubbornly silent) is the proof that

p´1q ˆ p´1q “ 1.

There are all sorts of heuristic arguments that can be used to “justify” this
crucial mathematical fact. One of the more plausible explanations is to
consider dieting and weight loss.

• If I consistently put on 1kg per month, then
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in 3 months time, I will be (3 ˆ 1)kg heavier than now; and

3 months ago, i.e. “in ´3 months time”, my weight was [p´3q ˆ 1]kg
more than now.

• If I consistently lose 1 kg per month (that is, if I “put on p´1qkg per
month”), then I know that

in 3 months time, my weight will be 3kg less than it is now; and

(˚) 3 months ago, my weight would have been 3kg more than it is now.

If we try to express these observations arithmetically we see that

in 3 months time, my weight will be [3 ˆ p´1)]kg more than it is now;
whereas

(˚˚) 3 months ago, my weight must have been [p´3q ˆ p´1q]kg more
than it is now.

Taken together (˚) and (˚˚) seem to suggest that: p´3q ˆ p´1q “ 3.

Such linguistic plausibility is fine at Key Stage 3. But at some stage in Key
Stage 4, those who may move on to A level need to know that the fact has
a simple mathematical basis. All we need to use is that:

(i) multiplying by 1 changes nothing: a ˆ 1 “ a for all a;

(ii) adding 0 changes nothing: a ` 0 “ a for all a;

(iii) the distributive law holds.
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It then follows that

‚ a “ 1 ˆ a

6 a “ p1 ` 0q ˆ a

6 a ` 0 “ 1 ˆ a ` 0 ˆ a “ a ` 0 ˆ a

6 0 “ 0 ˆ a for all a

‚ 6 0 “ 0 ˆ p´1q pputting a “ ´1 in “0 ˆ a “ 0 for all a2q

“ p1 ` p´1qq ˆ p´1q

“ 1 ˆ p´1q ` p´1q ˆ p´1q

“ p´1q ` rp´1q ˆ p´1qs

6 p´1q ˆ p´1q “ 1. QED

The proof given here is for teachers, and is based on the fact that

(i) is the defining property of the multiplicative unit “1”, and

(ii) is the corresponding defining property of the additive identity “0”.

Some readers may judge that for pupils the initial step—the fact that “0 ˆ a “

0 for all a”—is so familiar that the first bullet point is best suppressed.

A quite different fact that is often confused with the above is the fact that
“subtracting a negative is the same as adding”:

a ´ p´xq “ a ` x.

However tempting it may seem, little is gained by summarising this and
the result proved above as “two minuses make a plus”. The two results are
in fact rather different: in the above equation there is no multiplication in
sight. Moreover, the symbol “´x” should not be referred to as “a negative”,
since its value depends on the value of x itself: it is simply the “additive
inverse of x”; that is, “´x” is the “negative of x”, or that number which
cancels out “x” under addition and produces 0.

Claim a ´ p´xq “ a ` x for all a, x
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Proof
(i) a ` p´xq ` x “ a ` 0 “ a

Now subtract x from both sides:

6 a ` p´xq “ a ´ x

(ii) a ´ p´xq ` p´xq “ a
Use part (i) to replace “`p´xq” by “´x”:

6 a ´ p´xq ´ x “ a

Now add x to both sides:

6 a ´ p´xq “ a ` x. QED

At Key Stage 3 schools will need to develop their own ways of achieving
fluency in using such algebraic rules—for they are far from obvious! If the
proof is illustrated numerically, one must first establish part (i), so that it can
be used in part (ii); and it is important to give three or four examples—e.g.
replacing a and x first by 1 and 2, then by 1 and ´2, then by ´1 and 2, and
finally by ´1 and ´2.

A rather different opportunity for pupils to “reason deductively in algebra”
arises in the solution of equations. We pointed out in Subsection 2.1.3 that
“to solve equations” really means to solve exactly—by algebraic methods.
A given equation in a single unknown “x” has an imagined (but unknown)
set of “solutions”, or possible values for the unknown “x”. The art of
solving equations algebraically is a process which exploits exactly two
kinds of moves.

• The first kind of move allows us to replace any constituent expression
on either side of the equation by another expression which is algebraically
equivalent to it. Because “algebraically equivalent” expressions are equal
for all values of x, this kind of move is reversible, so exactly the same
values of the unknown “x” satisfy the new equation as satisfied the old
equation.

• The second kind of move is to subject both sides of the equation to the
same operation.
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– If this operation is reversible (such as adding or subtracting the same
thing from both sides, or multiplying or dividing both sides by a given
expression that is never equal to zero, or cubing both sides), then we can
again be sure that exactly the same values of the unknown “x” satisfy
the new equation as satisfied the old equation.

– However, we are also free to subject both sides of the equation to an
operation which is not reversible, such as squaring both sides of the
equation. In this case we can only be sure that

any value of “x” which satisfied the original equation
will also satisfy the new equation.

That is, any solution of the original equation is also a solution of the
new equation, so we can be sure that we have not lost any solutions.
However, we may have gained some new solutions which did not
satisfy the original equation. For example,

if “A “ B”, then we can square both sides to get the new
equation “A2 “ B2”;

but the change may introduce new solutions, since A2 “ B2 includes
the possibility that A “ ´B, which is quite different from the original
equation.

A third domain where pupils should learn to “reason deductively in
algebra” arises with inequalities. In many ways equations are rather rare. In
mathematics and in life inequalities are much more common. For example,
a business never quite ‘breaks even’: it either makes a surplus, or it makes
a loss. And for a production line to keep running, one can never order the
exact amount of material that is required: one has to slightly over-order to
make sure that the supply of what is needed never runs out (and one would
like to do so in such a way that waste is reduced to a minimum). This means
that real problems are often formulated in terms of inequalities.

Much of what holds for equations translates to inequalities.

• The solution of a linear equation in one unknown “x” is a single point on
the x-axis; and the solution of the corresponding linear inequality consists
of all values on one side of this point (a “half-line”).
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• The possible solutions of a linear equation in two variables x, y
correspond to the set of all points px, yq on a line, which divides the plane
into two “half-planes”; and the solutions of the corresponding linear
inequality in two variables x, y consists of all points on one side of the
line—that is, in one of the two half-planes.

The algebraic rules for “solving inequalities” are very similar to the rules
for solving equations. For example, one is allowed to add the same to both
sides of an inequality, or to multiply both sides of a given inequality by
a positive quantity. But there is a twist: a negative multiplier reverses the
inequality!

The extent to which inequalities are neglected in England is clear from one
of the 2011 TIMSS Year 9 items:

2.2.2.2A “Solve the inequality: 9x ´ 6 ă 4x ` 4”.

We can transform the given inequality by collecting terms (or more
correctly, by “adding 6 ´ 4x to both sides”) to get 5x ă 10.

We can then multiply both sides by the positive multiplier 1
5 to obtain “x ă

2”.

The percentage of correct responses to this problem from a representative
sample of 15 year olds in more than 50 countries was not encouraging, and
included:11

2.2.2.2A Korea 60% Russia 46% Hungary 38% USA 21%
Australia 8% England 3%

This suggests rather starkly that our approach to deduction and calculation
in algebra needs to change in order to establish a clear connection between
the familiar processes used in solving equations and those required to
solve inequalities (which are listed in the Key Stage 3 programme in
the third bullet point of “Algebra”, and which feature in the GCSE
mathematics subject content list, so certainly warrant preliminary work at
this level—even if a more formal treatment can be delayed until Key Stage
4).

11 http://timss.bc.edu/timss2011/international-released-items.html

http://timss.bc.edu/timss2011/international-released-items.html
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2.2.2.3 The requirement to “begin to reason deductively in geometry”
and to include “geometrical constructions” is in some ways easier to
achieve. But it is in other ways more delicate.

Geometry at Key Stage 1 and 2 is predominantly experiential and
descriptive. However, once the basic repertoire of shapes and language
has been established, one can begin to organise the subject matter at Key
Stage 3 into a logical, or deductive, hierarchy. For example:

• once one knows that angles at a point P on a straight line add to 180˝,

• one can prove that, whenever two lines cross at a point P, any pair of
vertically opposite angles A and A1 at P are necessarily equal:

[Proof: Let B be the angle “between” the two vertically opposite angles
A and A1. Then A ` B is the straight angle on one line, and B ` A1 is the
straight angle on the other line.

6 A ` B “ B ` A1 , so A “ A1. QED]

This proof only depends on the assumption (which pupils and teachers
alike accept without even noticing) that:

all ‘straight angles’ (at possibly different points on two straight
lines) are equal.

Plane geometry deals with imagined points and lines. Two points determine
exactly one line, and two lines which are not parallel meet in exactly one
point. This much should be clear—though it needs to be reinforced in Year
7 through appropriate drawing exercises.

More importantly, the methods and language of geometry require us to
make a clear distinction between

• the line AB (which passes through the two points A, B, and which extends
forever in both directions)

and

• the line segment AB (that starts at A, runs to B, and then stops), which in
the UK is usually also written as AB.
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For example, the sides of triangle ABC are not the “lines” AB, BC, CA,
but rather the line segments AB, BC, CA. Geometrical experience prior to
Year 8 needs to ensure that these ideas can be taken for granted without
drawing explicit attention to them. However, to go further, one needs a
clear framework within which the basic results of Euclidean geometry can
be derived. And since such a framework remains largely implicit (or even
hidden) in the programme of study, it may help if we give (here and in Part
III, Section 3) a brief outline of the necessary background.

The whole of geometry in 2D and in 3D rests on one key idea, which needs
to be cultivated at Key Stage 2, and strengthened at Key Stage 3 through
drawing, and through making and examining standard structures. This is
the discovery that triangles hold the key to the construction and analysis
of more complicated shapes. Every integer can be factorised as a product
of prime numbers, and this factorisation tells us important things about the
original number, even though most of the details of this factorisation cannot
be seen when one first looks at the starting number. In much the same
way important properties of complicated geometrical configurations can be
analysed in terms of their constituent triangles, even though these triangles
may not be immediately apparent in the initial configuration. (This strategy
of reducing geometrical reasoning in general to reasoning about triangles is
also related to the fact that the rigidity of structures in engineering—such
as cranes, or roof trusses, or bridges, or the Wembley arch—often comes
down to the way triangles are built in to their design.)

Mathematics succeeds by translating sense impressions and language, or
sounds, into symbols which allow exact calculation. “The sum of three
consecutive even integers” makes perfect sense in English, but the words
alone suggest nothing special. However, as soon as we translate the words
into symbols and write this as

2n ` p2n ` 2q ` p2n ` 4q “ 6n ` 6

it is clear that the result is always a multiple of 6. The same is true in
geometry. The English words “triangle” or “quadrilateral” may conjure
up a visual impression in the mind’s eye of an imagined shape. But one
cannot calculate with such an impression. If we wish to refer to a particular
triangle or quadrilateral, we may point it out; and others may notice things
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about the indicated shape; but they cannot talk, or reason deductively
about a triangle or quadrilateral which has been indicated in this way. Just
as “consecutive even integers” were given names in accordance with the
rules of algebra, so a triangle or quadrilateral has to be given a name in
accordance with certain conventions before we can begin to calculate with
it.

Labelling conventions have to communicate reliably between individuals,
and so are chosen to reflect the underlying geometric structure. For
example, a polygon is a collection of line segments, where successive
pairs meet at a shared vertex. Hence the sequence in which the vertices are
labelled matters. A quadrilateral ABCD has to be labelled in cyclic order,
where the edges are the successive line segments, or edges, that make
up the quadrilateral: AB and BC (meeting at B), BC and CD (meeting at
C), CD and DA (meeting at D), and DA and AB (meeting at A). Just
as the neglect of grammar and spelling makes it impossible for pupils
to organise and to express their thoughts, and hence to be understood,
so it is an indication of the anarchy in English school geometry that
standard geometric conventions are routinely flouted without the serious
consequences being recognised.

There is another oversight which may prove harder for some to swallow.
The reader is invited to imagine (and to draw, and to label) two adjacent
unit squares—ABCF, FCDE. The squares ABCF and FCDE are clearly
different, but very much alike. But we would not usually quibble if I
referred to the first square as ABCF and you referred to it as BCFA (or
even BAFC—but not AFBC). However, ABCF and BCFA are in some sense
different—whether they are different squares or just different labellings need
not be decided immediately. The difficulty may be clearer if one considers
the two rectangles ABDE and DBAE: much of the time one may loosely
think of these as “different ways of referring to the same rectangle”. But
life is much easier if one views them as different—though closely related.
This becomes clear as soon as one tries to sharpen the feeling that the two
rectangles are “the same”, or “congruent”; for then the “sameness” one is
trying to capture requires one to match them up in a way that essentially
changes the labelling of the second rectangle, since “AB” (the first side
mentioned in ABDE) is a short side, whereas “DB” (the first side mentioned
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in DBAE) is a long side. It does not matter whether the matching up leads
one to think of the second rectangle as ABDE, or BAED, or DEAB, or
EDBA; but it becomes silly to insist on calling it DBAE while also insisting
that it is “the same as ABDE”. Even if we do not strictly insist on such
precision all the time, each time we do some kind of “calculation” with a
triangle, or a quadrilateral, we find that the order matters (as well as the
sequential labelling of the vertices).

So there is a clear sense in which, whenever push comes to shove, a
“triangle” is not just a three-cornered shape: it is a labelled, or ordered, triple
ABC, where the order matters. (If one only knows the three vertices, but
not the order, then this corresponds to several different triangles: △ABC,
△BCA, △CAB, △BAC, . . . . )

Each triangle involves six different pieces of data:

• the three side lengths: AB “ c, BC “ a, CA = b, and

• the three angles: =ABC (often abbreviated as “B”), =BCA (abbreviated
as “C”), and =CAB (abbreviated as “A”).

There are three basic organising principles on which deductive reasoning
in geometry is based. Two of these principles (relating to congruence and to
parallels) belong naturally to Key Stage 3; the third organising principle (the
similarity criterion) belongs slightly later—perhaps in Year 9 or Year 10.

The first organising principle is the congruence criterion. This underlines
the central role played by triangles, and should arise naturally as a formal
summary of pupils’ extensive experience from drawing, where they should
discover that:

one does not need to know everything about a triangle in order
to specify it uniquely.

The “congruence criterion” then summarises the information that is needed
to specify a triangle uniquely.

Two (ordered) triangles △ABC and △DEF are congruent if the (ordered)
correspondence

A ÐÑ D, B ÐÑ E, C ÐÑ F
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matches up each of the six ingredients of triangle △ABC with those of
triangle △DEF in such a way that

• all three corresponding pairs of line segments are equal: AB “ DE, BC “

EF, CA “ FD, and

• all three corresponding pairs of angles are equal: A “ D, B “ E, C “ F.

We write this as: △ABC ” △DEF (which we read as “Triangle ABC is
congruent to triangle DEF”).

“Congruence of triangles” only makes sense between ordered triangles.
And it can help pupils to see more clearly which vertex of the first triangle
corresponds to which in the second triangle, and which side of the first
triangle corresponds to which in the second triangle, if pupils initially write:

△ABC

” △DEF

since this lines up

• corresponding vertices (with A directly above D, B directly above E, C
directly above F), and

• corresponding sides (with AB directly above DE, BC directly above EF,
CA directly above FD).

Pupils’ experience of drawing should then reveal that, in order to guarantee
congruence

“just three pieces of data suffice”,

provided we avoid the two triples that don’t suffice! Hence they need to
understand

• that any of SSS, SAS, ASA determine the triangle uniquely,

• that “AAA” determines the shape, but says nothing about the scale, or
size, of the triangle;
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• that the appropriately named “ASS” criterion is different, in that it may
give rise to two possible triangles (for example, a triangle with =B “ 30˝

and BC “
?

3, CA “ 1 could have either AB “ 2 with =A acute, or
AB “ 1 with =A obtuse).

The congruence criterion summarises the first of these three bullet points:

• triangles △ABC and △DEF are congruent (by SSS) if AB “ DE, BC “

EF, and CA “ FD;

• triangles △ABC and △DEF are congruent (by SAS) if AB “ DE,
=BAC “ =EDF, and AC “ DF;

• triangles △ABC and △DEF are congruent (by ASA) if =BAC “ =EDF,
AB “ DE, and =ABC “ =DEF.

The RHS congruence criterion is not part of this basic congruence criterion,
so does not really belong at this stage. It arises as the degenerate instance of
the failed ASS criterion (where the angle “A” in “ASS” is a right angle, and
so is neither acute nor obtuse). The fact that RHS guarantees congruence
follows somewhat later (once we have proved Pythagoras’ Theorem, since
knowing two sides and a right angle then determines the third side. So
RHS is a special case of SSS).

SSS, SAS, and ASA congruence allow one to prove such results as:

• The two diagonals of a square ABCD are equal

[Proof The two triangles △ABC, and △BCD are congruent by SAS:

△ABC
” △BCD psince AB “ BC, =B “ =C, and BC “ CDq.

Hence AC (in △ABCq “ BD (in △BCDq. QED].

• The base angles of an isosceles triangle are equal:

[Proof 1 Suppose AB “ AC. Construct the midpoint M of the base BC.
Then, by SSS,
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△AMB
” △AMC psince AM “ AM, MB “ MC pM is the midpoint of BCq,

and AB “ AC pgivenqq.

Hence =ABM (in △AMBq “ =ACM (in △AMCq. QED].

It is worth pondering on a different proof of this result, which exploits the
fact that △ABC and △ACB are different triangles.

[Proof 2 Suppose AB “ AC. Then the two different ordered triangles
△BAC, and △CAB are congruent by SAS:

△BAC
” △CAB psince BA “ CA, =A “ =A, and AC “ ABq.

Hence =B pin △BACq “ =C pin △CABq. QED].

• Any triangle with equal base angles is isosceles:

[Proof Suppose =ABC “ =ACB. Then the two different ordered
triangles △ABC, and △ACB are congruent by ASA:

△ABC
” △ACB psince =ABC “ =ACB, BC “ CB, and =BCA “ =CBAq.

Hence AB (in △ABC) “ AC (in △ACB). QED].

• In an isosceles triangle, the bisector of the apex angle, the median to the
base, and the perpendicular to the base are all the same.

Isosceles triangles constitute one of the simplest and most fruitful sources
of geometrical deduction. For example, in a circle any chord AB forms an
isosceles triangle OAB with the centre O, so isosceles triangles allow one to
deduce all sorts of properties of circles (the so-called “circle theorems”).

The congruence criterion is also needed to prove that the basic ruler and
compass constructions do what they claim to do:

• to bisect a given angle,
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• to bisect a given line segment,

• to construct a perpendicular to a given line from a given point, and

• to construct a line parallel to a given line through a given point.

For example:

• To bisect a given angle =BAC. Let the circle with centre A and passing
through B meet the half line AC at the point B1. Let the two circles—one
with centre B and passing through A, the other with centre B1 and passing
through A— meet again at D. Then AD bisects =BAC.

[Proof We show that △BAD ” △B1AD (by the SSS congruence criterion),
since
BA “ B1A (both are radii of the same circle with centre A).
AD (in △ADB) “ AD (in △ADB1 ) (the one segment is part of both
triangles)
DB “ AB (both are radii of the same circle with centre B)
AB “ AB1 (both are radii of the same circle with centre A)
AB1 “ DB1 (both are radii of the same circle with centre B1 )
6 DB “ DB1.

Hence =DAB pin △BADq “ =DAB1 pin △B1ADq, so DA bisects
=BAC. QED]

The second organising principle in geometry is the criterion for two lines in
the plane to be parallel.

Given any two lines in the plane, a transversal is a third line that cuts both
of the two given lines. The parallel criterion declares that:

• two lines are parallel precisely when the alternate angles (or the
corresponding angles) created by a transversal are equal.

This is a rather subtle criterion, but one which can be made thoroughly
plausible. It immediately allows one to prove:

Claim The angles in any triangle △ABC add to 180˝ (i.e. a “straight
angle”).
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Proof Construct the line XAY through vertex A which is parallel to BC
(where X, B both lie on the same side of the line AC).
6 =XAB “ =CBA “ =B (alternate angles)
and =YAC “ =BCA “ =C (alternate angles)

6 =A ` =B ` =C “ =A ` =XAB ` =YAC

“ =XAYpa straight angle at A on the line XYq. QED

And this in turn provides access to hundreds of wonderful (non-obvious,
multi-step) problems involving angle chasing. This term is a shorthand
for any activity in which a 2D configuration is specified, with the sizes
of certain angles given, from which the sizes of other angles are to be
logically determined (by reasoning and calculation, not by measuring). If
the required angle were the third angle in a triangle whose other two angles
were given, then the required angle could be immediately deduced. In
general the size of the required angles may not be immediately deducible,
but may force one to first calculate certain intermediate results. That is,
angle-chasing refers to a restricted (geometrical) class of problems that are
multi-step, and that are also deductive exercises in using the basic angle
properties (angles at a point, angles on a straight line, vertically opposite
angles, angles in a triangle—and later alternate angles). See for example,
Extension mathematics Book Alpha by Tony Gardiner (Oxford 2007), Sections
T9 and E2, and Book Beta Sections T17, C11 and E4.

If we combine the parallel criterion with the congruence criterion, we can
prove the basic facts about parallelograms, and derive the fundamental fact
that the area of a triangle is equal to

1
2

pbase ˆ heightq.

This then allows us to prove Pythagoras’ Theorem.

The congruence criterion and the parallel criterion allow one to transfer
exact relations (such as equality of line segments or of angles) from one place
to another. The third organising principle of secondary school Euclidean
geometry, the similarity criterion, goes beyond this world of exact equality to
allow one to deal with ratios, scaling, and enlargement. The introduction
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of this criterion is probably best delayed until the basic consequences of
congruence and parallelism have been fully explored, and until pupils are
sufficiently confident in working with ratio.

As with congruence, similarity in general is formulated in terms of
“similarity of triangles”. The similarity criterion summarises the minimum
requirement for two given triangles to be “similar”. Two (ordered) triangles
△ABC and △DEF are similar (which we write as △ABC „ △DEF) if

• corresponding angles are equal:

=A “ =D, =B “ =E, =C “ =F,

and

• corresponding sides are proportional:

AB : DE “ BC : EF “ CA : FD.

The similarity criterion may be thought of as a substitute for the (evidently
false) “AAA congruence criterion”, in that it states that each of the above
bullet points implies the other:

if corresponding angles are equal:

=A “ =D, =B “ =E, =C “ =F,

then corresponding sides are proportional:

AB : DE “ BC : EF “ CA : FD;

and

if corresponding sides are proportional:

AB : DE “ BC : EF “ CA : FD,

then corresponding angles are equal:

=A “ =D, =B “ =E, =C “ =F.
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Special cases of this can be proved using the exact relation of congruence.
For example, one can prove the Midpoint Theorem, which says that:

if in △ABC, M is the midpoint of AB and N is the midpoint of
AC,
then MN is parallel to BC and BC : MN “ 2 : 1.

That is △ABC „ △AMN, with the corresponding scale factor AB : AM “

AC : AN “ BC : MN “ 2 : 1.

Some further detail concerning geometry may be found in Part III, Section
3.

2.2.2.4 The requirements listed at the start of Section 2.2.2 suggest that
during Key Stage 3 pupils should

“make and test conjectures”

and

“begin to reason deductively”.

This should be interpreted as part of the (unstated) requirement that pupils
should at all times expect the methods of elementary mathematics to make
sense. But there are different kinds of “sense making”: some involve
inference; some involve plausibility arguments; and some are rooted in
deduction. The requirement for pupils to “reason deductively” means that
they need to be clear

• when they are experimenting or conjecturing, and when they are
working “deductively”;

and also

• when they are working in rough, and when they are writing for others to
read.

That is, they need some way of demonstrating (to themselves and to others)
which mode they are in at any given time. For pupils who are ready
for the formal procedures of elementary mathematics at Key Stage 3, the
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calculations and methods should be increasingly justified in ways that
are exact and deductive (rather than approximate, inferential, or based on
the authority of the teacher). The essence of elementary mathematics at
secondary level incorporates the twin facts

• that its domain is restricted and abstract, and

• that within this limited domain, the knowledge it delivers is
certain—that is, objective, rather than subjective (or approximate, or based
only on experience, or conjecture, or convention).

For such pupils calculations and solutions need to be increasingly
presented in a way that constitutes a proof that the answer to the original
problem is undeniably what emerges at the end of the calculation or
solution. And this is best conveyed by laying out calculations and
deductions line-by-line,

• with the given information, and any symbols representing “unknowns”
declared at the outset,

• with each fresh step on a new line (and any explanation given alongside),

and

• with the final answer clearly displayed at the end.

The sequence of successive steps can then be grasped as a single chain of
reasoning, in which each step follows clearly from those which went before.
This logical structure is equally applicable

• to simple calculations,

• to the solution of an angle-chasing problem,

• to setting up and solving an equation,

• to proving that two algebraic (or trigonometric) expressions are identical,

• to a ruler and compass construction,

• to a proof (such as, that the angle in a semicircle is a right angle), or
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• to the way pupils present their solutions to set problems.

It is hard to convey this style consistently in a discursive text such as this
one. But it can be seen in the way we present short proofs. And it is also
visible elsewhere—such as in the solution at the end of Section 2.3.5 below.

2.3. Solve problems

[Solve problems p. 5]:

– develop their mathematical knowledge, in part through
solving problems and evaluating their outcomes, including
multi-step problems

– develop their use of formal mathematical knowledge
to interpret and solve problems, including in financial
mathematics

– begin to model situations mathematically and express
the results using a range of formal mathematical
representations

– select appropriate concepts, methods and techniques to
apply to unfamiliar and non-routine problems

These four bullet points are clearly meant to encourage pupils and teachers
to see school mathematics as more than endless practise with dry-as-dust
formal technique. But beyond this admirable aspiration, it is far from
clear what exactly is being advocated. We base our commentary on three
questions.

• What is meant by a “problem”, rather than (say) an “exercise”?

• What does it mean to “solve problems”?

• And why are “multi-step” problems important?

2.3.1 We begin by clarifying the distinction between “exercises” and
“problems”.
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An exercise is a task, or a collection of tasks that provide routine practice
in some technique or combination of techniques. The techniques being
exercised will have been explicitly taught, so the meaning of each task
should be clear. Each sequence of exercises is designed to cultivate fluency
in using the relevant techniques, and all that is required of pupils is that
they implement the procedures more-or-less as they were taught in order
to produce an answer. The overall goal of such a sequence of exercises is
merely to establish mastery of the relevant technique in a suitably robust
form. In particular, a well-designed set of exercises should help to avoid, or
to eliminate, standard misconceptions and errors.

Exercises are not meant to be particularly exciting, or especially stimulating.
But they can give pupils a quiet sense of satisfaction. Without a regular
diet of suitable exercises, ranging from the simple to the suitably complex
(including standard variations), pupils are likely to lack the repertoire
of basic techniques they need in order to make sense of mildly more
challenging tasks (as the examples 1.4A-1.4K above show). In other words,

exercises are the bread-and-potatoes of the mathematics
curriculum.

Pupils in England clearly need more (carefully prepared)
“bread-and-potatoes” exercises than they currently get. However,
bread and potatoes alone do not constitute a healthy diet. Pupils also need
more challenging activities both to whet their mathematical appetites, and
to cultivate an inner willingness to tackle, and to persist with, simple but
unfamiliar (or “non-routine”) problems. A problem is any task which we
do not immediately recognise as being of a familiar type, and for which we
therefore know no standard solution method. Hence, when faced with a
problem, we may at first have no clear idea how to begin.

The first point to recognise is that a task does not have to be all that
unfamiliar before it becomes a problem rather than an exercise! In the absence
of an explicit problem solving culture, an exercise may appear to the pupil
to be a problem simply because its solution method has not been mentioned
for a week or so, or because it is worded in a way which fails to announce
its connection with recent work. The second point is that the distinction
between a problem and an exercise is not quite as clear-cut as we have made
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it look, and is to some extent time- and pupil-dependent. For example, an
“I’m thinking of a number” problem from Year 5 or Year 6 should by Year 8
be seen to be a mere exercise in setting up and solving a simple equation.

Most useful techniques involve a chain of simple steps, and the technique
as a whole is only an effective tool if the complete chain can be carried
out entirely reliably—a requirement which may only be achieved after
extensive practice. Examples include: any of the standard written
algorithms; the process of turning a fraction into a decimal; the sequence
of steps required to add or subtract two fractions, or to solve an equation or
inequality, or to multiply out and simplify an algebraic expression. Hence
each set of exercises should include tasks that force pupils to think a little
more flexibly, and that require them to string simple steps together in a
reliable way. Too many sets of exercises get stuck at the level of “one piece
jigsaws”—with one-step routines being practised in isolation, ignoring key
variations. Pupils need to learn from their everyday experience that the
whole purpose of achieving fluency in routine bread-and-potatoes exercises
is for them to learn to marshal these techniques to solve more demanding
multi-step exercises, and more interesting, if mildly unsettling, problems.

2.3.2 This distinction between exercises and problems affects how we
choose to introduce each new topic or technique. Should we concentrate on
relatively simple examples that minimise pupil difficulties, and which seem
likely to guarantee a quick pay-off? Or should we—when working with
the whole class—move quickly on to examples that provide a significant
challenge, and so require pupils from the outset to grapple with (carefully
chosen) tasks of a more demanding nature?

How challenging one can safely be will depend on the pupils. But
experience from those who observe lessons in other countries suggests
that the English preference for concentrating the initial worked examples
on easy cases increases the extent of subsequent failure. Easy initial
examples lead to cheap apparent success; but this initial pupil success
may be based on pupils’ own inferred methods that appear to work in
easy cases, but which are flawed in some way; or on backward-looking
methods, that seem (to the pupil) to work in simple instances, but which
do not extend to the general case. So we need to consider the benefits
of starting each new topic with a harder “class problem” that brings out
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the full complexity of the method that we want pupils to master, and then
to follow this up with exercises that may start simply, but which oblige
pupils to think flexibly from the outset, and to handle standard variations
including inverse problems.

2.3.3 The last 30 years have witnessed a consistent concern about pupils’
ability to “use” the elementary mathematics they are supposed to know.
Previous versions of the mathematics National Curriculum displayed an
admirable determination to incorporate “Using and applying” within
teaching and assessment. But such determination is not enough. The
experience of the last 25 years in England is more useful as a guide to what
does not work than to what does work. Much effort has been expended
in trying to do better—but with limited effect. In particular, ambitious
attempts to coerce change—using extended investigations, coursework,
and “modelling”—have mostly served to demonstrate what should not be
officially required at this level.

Somewhere along the line we seem to have lost sight of simple word
problems. Word problems typically consist of two or three short sentences,
from which pupils are required

• to extract the intended meaning and any required information,

• to identify what needs to be done,

and then

• to carry it out, and interpret the answer in the context of the problem.

Everyday uses of elementary mathematics tend to come in some variation
of this form. Yet the simplest exercises, which might be solved routinely if
they were presented without words, become powerful discriminators when
given this gentle packaging. The need for pupils to read and extract the
relevant data from two or three English sentences may appear routine—but
it is a skill that has to be learned the hard way, and that constitutes the initial
stepping-stone en route to the ultimate solution of almost any problem.
This simple format can be tweaked to cover the standard variations of the
underlying task (e.g. so that it appears both in direct and in the various
indirect forms).
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During Key Stage 1 word problems are important because they reflect the
fundamental links between

• the world of mathematical ideas and mathematical reasoning,

and

• the world of language.

Indeed, for young children, the logic of mathematics is inextricably bound
up with the grammar of language.

At later stages word problems continue to serve as an invaluable way of
linking the increasingly abstract world of mathematics and the world where
its ideas can be applied. That is, they constitute the simplest exercises
and problems in any programme that seeks to ensure that elementary
mathematics can be used.

The suggestion that improving mathematical literacy depends on
rediscovering the world of carefully structured word problems is both
more ambitious and more modest than what has been attempted in recent
English reforms.

• It is more ambitious in that the evidence from other countries shows just
how much more we might achieve were we to incorporate a permanent
thread of such focused material from the earliest years.

• It is more modest in that it explicitly encourages more focused (and
hence more manageable) tasks—short problems with a clearly specified
beginning and end, but with the path from one to the other left for the
solver to devise. Such problems have “closed” beginnings and “closed”
ends, but are open-middled. Almost any mental arithmetic problem, or
word problem, might serve as an example. Suppose we ask:

“I pack peaches in 51 boxes with 16 peaches in each box.

How many boxes would I use if each box contained just 12
peaches?”

What is given and what is required is “closed”—i.e. specified uniquely.
But the mode of solution is left entirely open:
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– some pupils might calculate the total number of peaches and then
divide by 12;

– one would prefer to see a more structural version of this representing
the total number of peaches as “51 ˆ 16” without evaluating, and the
required number of boxes as 51ˆ16

12 before cancelling

17 ˆ p3 ˆ 4q ˆ 4
12

“ 17 ˆ 4;

– others might notice that 3 ˆ 16 “ 4 ˆ 12, and look for the number x
satisfying “x : 51 “ 4 : 3”;

– while some might remove 4 peaches from each of the 51 boxes and
group the 4s in groups of 3 ˆ 4 to get 17 additional boxes.

2.3.4 Pupils need a regular diet of problems and activities designed to
strengthen the link between elementary mathematics on the one hand and
its application to simple problems from the wider world on the other. Word
problems are only a beginning.

Some have advocated using “real-world” problems. But though these may
have a superficial appeal, their educational utility is limited. Problems
which support the move towards using and applying beyond the limited
world of word problems need to be very carefully constructed, so that the
real context truly reflects the mathematical processes pupils are expected to
use as part of their solution. (Problems which have to be carefully designed
in this way are sometimes called “realistic”.)

The related claim that technology allows pupils to work with “real-world
problems” and with “real (or ‘dirty’) data” becomes important once the
underlying ideas have been grasped. However, for relative beginners the
claim too often ignores the distracting effect of the noise which is created
by “real” contexts, by “real” data, and by the non-mathematical interface
that so easily prevents pupils from grasping the underlying mathematical
message.

2.3.5 The official programme of study makes repeated reference to the
need to solve multi-step problems. A multi-step problem is like a challenge
to cross a stream that is too wide to straddle with a single jump, so that
the prospective solver is obliged to look for stepping-stones—intermediate
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points which reduce the otherwise inaccessible challenge of crossing from
one bank (what is given) to the other (the completed solution) to a chain of
individually manageable steps. In elementary mathematics, this art has to be
learned the hard way. It should not be seen as optional, or as a matter of
taste. It is central to what elementary mathematics is about, and to how it
is used.

One might think that—given the original emphasis on Using and
applying—this goal has been an integral part of the National Curriculum
since its inception. But that is not quite true—for we have too often
confused

• “solving problems”, and tackling “multi-step” problems

with

• real-world problems, and extended tasks.

The limitations of “real-world” problems were outlined in the previous
Section 2.3.4. An extended task allows pupils considerable freedom, and can
be beneficial precisely because the outcomes lie to some extent outside the
teacher’s control. However, this lack of predictability and control means
that extended tasks are not an effective way for most pupils to learn the art
of solving multi-step problems. For most teachers, this art is much more
effectively addressed through short, easily stated problems in a specific
domain (such as number, or counting, or algebra, or Euclidean geometry),
where

• what is given and what is required are both clear,

• but the route from one to the other requires pupils to identify one or more
intermediate stepping-stones (that is, they are “open-middled”)—as with

– solving a simple number puzzle, or

– interpreting and solving word problems, or

– proving a slightly surprising algebraic identity, or

– angle-chasing (where a more-or-less complicated figure is described
and has to be drawn, with some angles given and some sides declared
to be equal, and certain other angles are to be found—using the basic
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repertoire of angles on a straight line, vertically opposite angles, angles
in a triangle, and base angles of an isosceles triangle), or

– proving two line segments or two angles are equal, or that two
triangles are congruent (where the method of proof is not immediately
apparent).

The steps in the solution to a multi-step problem are like the separate links
in a chain. And the difficulty of such problems arises from the need to select
and to link up the constituent steps into a single logical chain. Suppose
pupils are faced with:

Question: “I’m thinking of a two-digit number N ă 100, which
is divisible by three times the sum of its digits? How many such
numbers are there?”

In Year 7 pupils may see no alternative to guessing, or to testing each “two
digit number” in turn. But by Year 9 one would like some to respond to the
trigger in the question

“three times the sum of its digits”

by gradually noticing some of the hidden stepping stones.

Steps toward a solution

1. The number has to be a multiple of 3 (“divisible by three times the sum
of its digits”).

2. Hence the sum of its digits must be a multiple of 3 (standard divisibility
test).

3. But then the number is divisible by 9 (“divisible by three times a multiple
of 3”).

4. And so the sum of its digits must be a multiple of 9 (standard divisibility
test).

5. So the number is divisible by 27 (“divisible by three times a multiple of
9”).

6. So we only have to check 27, 54, and 81. QED
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The sequencing of the steps, and the connections between the steps, are part
of the solution. In short, basic routines become useful only insofar as sufficient
time is devoted to making sure they can be linked together to solve more interesting
(multi-step) problems.

2.3.6 Expecting pupils to select and to coordinate simple routines to create
a chain of steps in order to solve simple multi-step problems should be part
of mathematics teaching for all pupils. In contrast, recent efforts to improve
the effectiveness of mathematics instruction in England have concentrated
on:

• the teacher, textbook author, or examiner breaking up each complex
procedure into easy steps, and then concentrating on teaching and
assessing the easy steps, or atomic outcomes (one-piece jigsaws),

• monitoring centrally whether these atomic outcomes can be performed
in isolation, and

• ignoring the fact that we have neglected the most demanding skill
of all—namely that of integrating the separate steps into an effective
multi-step procedure.

The evidence from international studies confirms what should have
been obvious: this reductionist process of de-constructing elementary
mathematics into atomic parts, combined with central monitoring that
rewards partial success, has distorted the way pupils and teachers perceive
elementary mathematics in a most unfortunate way. Improved problem
solving and more effective mathematics teaching depend on enhancing the
skill of the teacher. In contrast, the policy of focusing on targets and testing,
and our misplaced dependence on crude measures of “pupils’ progress”,
have tended to undermine the authority, the professional judgement, and
the perceived long-term responsibility of the teacher.

Solving problems is hard. Any system that uses targets and testing to
exert pressure on schools soon discovers the awkward facts that assessment
items that require pupils to link two or more steps

• have a high failure rate, and

• generate pupil responses whose profile is at odds with the contractual
demands placed on those who design centrally administered tests.
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Such problems are therefore deemed unsuitable, and the tests tend to
concentrate on more manageable one-step routines (or break down longer
questions into a pre-ordained sequence of one-step “subroutines”). As
long as teachers are judged on test outcomes, and as long as unfamiliar,
multi-step problems are largely excluded from the official tests, teachers
will continue to conclude that “in the (short-term) interests of their pupils”
they dare not waste time developing the only thing that matters in the long
run—namely:

to provide their pupils with the skills and attitudes they need for the
next phase.

In short, England has adopted an “improvement strategy” that guarantees
neglect of the delicate art of solving multi-step problems, and that
is therefore self-defeating. Central prescription, and political pressure
to demonstrate relentless year-on-year improvement, have resulted
in a national didactical blind spot, with curriculum objectives and
assessment—and hence teaching—becoming atomised, so that pupils are
only expected to handle “one piece jigsaws”. Exams have routinely broken
down each problem into a succession of easy steps—in order to minimise
the risk of failure, and to ease “follow through marking” for the examiner.
Teachers have then concluded that the delicate art of interlinking simple
steps can be safely ignored. And we have all pretended that

• candidates who can implement (most of) the constituent steps separately

• have thereby achieved mastery of the integrated technique.

This is a delusion. The individual steps may be a starting point; but
the power and challenge of elementary mathematics lies in learning how
simple ideas can be combined to solve problems that would otherwise be
beyond our powers. That is, the essence of the discipline lies not so much
in the techniques themselves as in the connections between its ideas and
methods. Hence the curriculum (and, where possible, its assessment) need
to cultivate the ability to tackle multi-step problems without them being
artificially broken down into steps.

A curriculum or syllabus can specify the individual techniques, or steps;
but this is futile if one then forgets that it is the linking of the material
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which determines whether it can be effectively used to solve problems.
This interlinking is an elusive property, which depends entirely on the way the
material is taught: that is, it depends on the teacher. So we need a system in
which teachers are free (nay, in which teachers feel professionally obliged)
to value this activity in their classrooms, even though its value will only
become apparent at subsequent stages—after their pupils have moved on to
other classes.

2.3.7 Two further issues warrant comment before we move on to consider
the listed Subject content requirements in Part III. The first is the matter
of exactness and approximation, and the second is the repeated reference to
“financial mathematics”.

Mathematics used to be known as “the exact science”. Mathematical
objects sometimes have their roots in the world of human experience; but
they become mathematical only when the underlying ideas are abstracted
from these roots. Unlike disciplines that work with real data or objects,
mathematics studies a world of idealised, mental objects. For example,

• numbers have their roots in experience;

• but they soon become “mental objects” with exact properties, and are
manipulated in the mind.

In much the same way, a sheet of A4 paper, or a wooden door, may serve
as a suggestive model for a rectangle, but

• a mathematical rectangle is a perfect mental object, whose diagonals are
exactly equal—their length being given exactly (in terms of the sides) by
Pythagoras’ Theorem.

The mathematical universe consists of imagined objects, which are precisely
defined, and hence uniquely knowable. In particular, mathematics, or
“the art of exact calculation”, belongs to a completely different conceptual
universe from the practical world in which one might

“draw a scale diagram of a rectangle and measure the
approximate length of the diagonal”.

Helping pupils to appreciate the difference between these two universes,
and to see the advantages—even for the most practical of purposes—of
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engaging with the exact world of mathematics, should constitute a key
(though often unstated) goal of any curriculum.

The process of developing internal methods of calculating with these exact
mental objects (whether numbers, symbols, shapes, or functions) is much
the same today as it ever was—and is rooted in mental work and written
hand calculation. Once these ideas are suitably embedded in the mind,
calculators and other tools have much to offer: but initially, the learning
process proceeds more naturally without such distractions.

The fact that the world of mathematics operates on ideal objects allows its
ideas, its notation, its methods of calculation, and its processes of logical
deduction to be exact. This guarantees that the answers and conclusions
produced in mathematics are as reliable as the information that was fed
into the relevant calculation or deduction. The importance of this aspect of
elementary mathematics has been considerably blurred in recent years—for
example, by inappropriate and premature dependence on calculators,
by reduced emphasis on the need to attain mastery of the art of exact
calculation, and by the way “valuing children’s own reasons” has been
misconstrued.

In contrast to the exact mental universe of mathematics, the world of
experience, of measurements, and of ideas is inescapably “fuzzy”. It
should be a goal of any curriculum to convey implicitly this key distinction
between the exact world of mathematics, and the approximate world where
mathematics is used and applied.

Mathematical exactness is quite different from precision. The very idea
of “precision” recognises that, outside mathematics, all measurements
incorporate a degree of error, and so are approximate. In contrast, exactness
in mathematics allows no scope whatsoever for error; indeed, in an exact
calculation an error of any kind undermines the validity of the whole
process. Mathematical methods can be applied to values which are only
known approximately; but the “exact answer” which mathematics then
provides indicates the exact range of values within which the actual answer
must lie. To achieve this, we first need to know

• the maximum extent of potential error in the given data, and
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• how these potential errors accumulate when one carries out exact
calculations with numbers that are only known up to this level of accuracy.

For pupils to master the art of approximating arithmetical calculations in
integers, they first need to master the art of exact calculation. Only then can
they use their knowledge of exactness as a fulcrum for thinking precisely
about more elusive approximation, or estimation. (This matter is explored
further in Part III, at the end of Section 1.7.) And when they come to analyse
the errors introduced by such approximations, they will find that this is
done via the exact calculations of elementary algebra. Thus, even when
seeking to transcend the inherent exactness of arithmetic by cultivating the
art of making estimates, there is no escape from the maxim:

Mathematics is the science of exact calculation.

Finally, while it is perfectly fair to require that pupils be required to

“develop their use of formal mathematical knowledge to
interpret and solve problems”,

this challenge applies to problems of many different kinds. So there is no
possible excuse for adding the words “including financial mathematics” in
the second bullet point of 2.3. There is no such subject area as “financial
mathematics” at Key Stage 3; so its explicit inclusion can only reflect an
enforced response to improper political lobbying. Some material relating
to financial matters will inevitably be included (e.g. as an application of
percentage increases and decreases, and of iterated powers as a model for
the returns on long term investment or the accumulation of debt). But
the precise words are no more worthy of special mention in a national
curriculum than many other examples.





III. The listed subject content for

Key Stage 3

In Part III we examine the detail of the listed Subject content. To comment
on each bullet point in turn would tend to reinforce the fragmentation
that arises when a curriculum is reduced to a mere content list. So we
have tried instead to group the bullet points in a way that allows us to
identify common threads and underlying themes, and to indicate some of
the linking that may be needed.

1. Number (and ratio and proportion)

1.1. [Subject content: Number pp. 5–6]

– understand and use place value for decimals, measures and
integers of any size

– order positive and negative integers, decimals and
fractions; use the number line as a model for ordering of
the real numbers; use the symbols “, ‰, ă, ą, ď, ě

– use standard units of mass, length, time, money and other
measures, including with decimal quantities

– round numbers and measures to an appropriate degree of
accuracy [for example, to a number of decimal places or
significant figures]

– [Algebra p. 6] work with coordinates in all four quadrants
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At Key Stage 3 basic number work acts as an essential bridge, reaching
back to Key Stage 2, and looking ahead to the more subtle multiplicative
methods of Key Stage 3—with ‘structural arithmetic’ serving as a template
for elementary algebra.

Within this context, the five requirements listed in 1.1 constitute a very
simple beginning, since they focus on the size of numbers, and do not yet
address arithmetic. But it would be unwise to assume that these ideas will
therefore not require consolidation and strengthening. Consider these two
released items12 from TIMSS 2011 which were set to pupils in Year 5.

1.1A In which number does the 8 have the value 800?

A 1,468 B 2,587 C 3,809 D 8,634

1.1B Which number is 100 more than 5,432?

A 6,432 B 5,532 C 5,442 D 5,433

These are very basic questions; and the answer to each question is given
as one of four options. One should therefore expect almost all pupils to
answer correctly. But the results suggest that we in England may expect
less than comparable countries (some of whom start school significantly
later than we do). We have included here the results from Flemish Belgium
(who took part in TIMSS 2011 at Year 5, but not at Year 9).

1.1A Russia 90%, USA 87%, Flem Bel 87%, Australia 75%,
England 68%, Hungary 66%

1.1B Flem Bel 84%, Russia 82%, USA 80%, Australia 73%,
England 73%, Hungary 73%

Moreover, the examples 1.4A, 1.4B, 1.4C, 1.4D, 1.4G, 1.4K in Part II above
suggest that this weakness needs to be (and is often not) addressed between
Year 5 and Year 9.

Given the fourth requirement listed at the start of 1.1 we include an
additional item from TIMSS 2011 for pupils in Year 9:

12 http://timss.bc.edu/timss2011/international-released-items.html

http://timss.bc.edu/timss2011/international-released-items.html
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1.1C Write 3 5
6 in decimal form rounded to two decimal places.

Here one expects significantly lower scores—but the English success rate is
nevertheless disappointing:

1.1C Russia 39%, Australia 31%, Hungary 29%,
USA 29%, (Ave. 25%), England 24%,

The second bullet point at the start of 1.1 refers to “the number line”. At Key
Stages 1 and 2 the number line provides a valuable image which allows the
different forms of “number” to be seen as part of a single number system.
Moving along the number line also provides a useful physical model for
skip-counting and for addition and subtraction—including with negative
numbers (though it is less helpful with multiplication and division). But
during Key Stage 3 the number line gradually loses its separate existence
and becomes identified with the x-axis (and y-axis) in a coordinate system.
The ordering of real numbers is then needed on both axes to locate points in
the plane, where pupils need to learn to work comfortably with coordinates
“in all four quadrants”.

At Key Stage 3 the family of real numbers extends to include not only
decimals and fractions, but also negative numbers, and later surds. A lot
of work is needed to ensure that negative numbers and their arithmetic
become a natural part of pupils’ mental universe of mathematics. For
example:

• locating “´3” and “´2.5” on the number line, or x-axis, helps to
underline the ordering (e.g. ´3 ă ´2.5 ă ´2);

• common sense may suggest that “measures” and “quantities” have to
be positive, but pupils need to learn to interpret negative quantities in
practical situations, so that, for example, “´3 hours’ from now” is
routinely interpreted as “3 hours ago”.

The inequality symbols mentioned in the second requirement listed at the
start of 1.1 may appear unproblematic. We see 2 ă 3 as being entirely
natural; and ´3 ă 2 may seem only marginally less obvious (though it still
needs to become second nature). However ´3 ă ´2 is nowhere near as
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obvious as one might think, and has clearly not been well handled in the
past.13

There seem to be few TIMSS 2011 released items on ordering numbers. But
one Year 5 item suggests a need for further work on ordering fractions.

1.1D Which of these fractions is larger than 1
2 ?

A 3
5 B 3

6 C 3
8 D 3

10

1.1D USA 62%, Russia 62%, Flem Bel 58%, Australia 54%,
England 50%, Hungary 48%

Each such set of responses needs to be assessed on its own merits—bearing
in mind that there are many hidden details that make the raw data hard
to interpret reliably. For example, as far as one can tell, the primary
curriculum in Russia does not seem to include explicit work on fractions
or their arithmetic; but the idea of a fraction is clearly addressed in some
preliminary way. The success rates in other countries are therefore merely
guides as to what might reasonably be expected. The success rate for
English pupils in example 1.1D is in fact just above the “international
average”; but this “average” is skewed by many countries whose education
systems are much less well developed. So it makes sense to focus any
comparison on systems that are more naturally comparable with England.

In helping pupils make sense of “ă” and ‘‘ ď”, we need to be aware that
these are relations, which are true if used for certain pairs of real numbers,
and are false for other pairs. The truth of “2 ă 3” and “2 ď 3” may seem
obvious. But it can be harder for pupils to accept that “2 ď 2” is equally
true.

In many countries, the list of standard symbols in the second bullet
point at the start of 1.1 would include a symbol (usually «) to stand for
“approximately equal to”. It is perfectly natural to stretch the use of ““” to
include

13 http://www.manchestereveningnews.co.uk/news/greater-manchester-news/cool-cash-
card-confusion-1009701

http://www.manchestereveningnews.co.uk/news/greater-manchester-news/cool-cash-card-confusion-1009701
http://www.manchestereveningnews.co.uk/news/greater-manchester-news/cool-cash-card-confusion-1009701
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“2π “ 6.28 (2 d.p.)”, or “
?

2 “ 1.4 (2 s.f.)”, or “sin 60˝ “ 0.866 (3
d.p.)”.

But given the requirement to use symbols “correctly”, and to work
with rounding, estimates and approximations, it is worth introducing a
special symbol “«”, and using it consistently whenever one is “actively
approximating”, as in:

35, 941 ˆ 273 « 33, 333 ˆ 300 « 10, 000, 000 “ 1 ˆ 107.

These matters are addressed in more detail in Section 1.7 below.

The reference to “measures” in the first, second, and fourth requirements
must include compound measures. A “compound” measure arises when two
basic measures are combined: area is a compound measure, where length
is multiplied by length, measured in “cm2” (say); speed arises when length
is divided by time, and is measured in “metres per second” or “miles per
hour”; density arises when mass is divided by volume, and is measured in
“grams per cubic centimetre”. Other compound measures include “rates
of pay”, “fuel consumption”, and “unit prices”. One might think that
compound units will be familiar from Key Stage 2 (even if only implicitly),
because any problem which involves “measures” and “multiplication”
inevitably involves compound measures:

Question “I travel at 60 mph for 4.5 hours. What distance do I
cover?”

Answer 4.5 ˆ 60 “ 270 miles

Question “My car consumes 8 litres of petrol per 100km. How
much fuel is needed to drive 170 kilometres?”

Answer 8 ˆ 1.7 “ 13.6 litres.

Yet compound measures are not explicitly mentioned in the Key Stage 2
programme of study! So those teaching at Key Stage 3 must anticipate
that time may be needed to ensure that pupils can work comfortably with
compound measures.

We end by mentioning one topic that can contribute much to pupils’
understanding of place value, but which has dropped out of the official
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curriculum. That is, to engage in numerical work in other bases. We
particularly recommend work in base 2, in base 9, and in base 11. Base 2
lies behind the 0–1 of all electronic devices; but it has other pedagogical
advantages (such as allowing a row of seated pupils to emulate the
sequence of digits representing a number, and to enact a human numerical
“counter”, with each pupil standing for “1” and sitting for “0”). Base 9 and
base 11 are closer to the familiar base 10; and it can be highly instructive for
pupils to extend the standard written algorithms by inventing and working
with a new symbol for the “digit 10”—say “X”—when working in base 11.

They can also discover the thought-provoking fact that

in base 11 a number is “divisible by ten”

precisely when “the sum of the digits is divisible by ten”,

which matches the base 10 rule for divisibility by 9 (see Section 1.4.4 below).
For more confident pupils it can be highly instructive to extend the notation
for integers to “decimals” in these other bases, and to realise that whether
a fraction has a terminating “decimal” depends on the base, not on the
fraction itself.

1.2. [Subject content: Number p. 5]

– use the four operations, including formal written methods,
applied to integers, decimals, proper and improper
fractions, and mixed numbers, all both positive and
negative

– use conventional notation for the priority of operations,
including brackets, powers, roots and reciprocals

– recognise and use relationships between operations
including inverse operations
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The final paragraph of Section 1.1 above illustrates how difficult it is to
separate the notation for place value from arithmetic, or work with operations
(the four rules, powers, etc.), which is the focus of the present section.

1.2.1 Throughout the official Key Stage 3 programme of study there
is an unfortunate silence concerning mental and oral work with numbers.
The increase in the variety of forms in which “numbers” are encountered
(positive integers, fractions, terminating and recurring decimals, negative
numbers, surds, etc.) increases the need for such oral work at this level.

• Work with integers needs to be continually exercised, and extended to
negatives.

• The same mental procedures need to be actively extended to work with
decimals.

• Work with integers needs to be extended rather differently to support
work with fractions.

• The “algebraic” conventions (for powers, for fractions, for brackets,
for priority of operations, and for roots) need to be exercised fluently
and automatically with numerical expressions, so that they are clearly
understood before these conventions are extended to symbols.

As the examples 1.4A–1.4K in Part II indicate, such mental work has clearly
been undervalued in English secondary schools for some decades, with
significant consequences for pupils’ subsequent progression. Here we can
only illustrate what is needed on the simplest level, where pupils should be
routinely expected to evaluate mentally such expressions as:

1.2 ` 0.8, 2p14.3 ´ 3.8q, 17 ˆ 0.9, 1.2 ˆ 80, 1.08 ˜ 1.2, 1.7 ˆ 13 `

0.3 ˆ 13, p0.8q2, p0.4q3, p1.2q2, p0.12q2,
?

2.25,
?

1.96,
?

6.25,
?

16,

p
?

2q3,
?

27,
?

100,
?

1000, 3
?

27, 3
?

64, 0.625 ` 3
5 , 4

100 ` 35
10000 as a

decimal, 3
10 of 40% of 50 ˜ 60, 1

3 ´ 1
4 , 3 5

6 as a decimal.

In addition to mastering simple calculation, mental and oral work is
perhaps even more important, and even less common, in thinking about
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calculation, and numerical relations. This is indicated by the following
three released items14 for Year 5 pupils from TIMSS 2001.

1.2.1A l stands for the number of pencils Pete had. Kim gave
Pete 3 more pencils. How many pencils does Pete now have?

A 3 ˜ l B l ` 3 C l ´ 3 D 3 ˆ l

1.2.1B 4 ˆ l “ 28. What number goes in the box to make this
sentence true?

1.2.1C 3 ` 8 “ l ` 6. What number goes in the box to make this
number sentence true?

In all three cases English success rates are around, or below the
international average.

1.2.1A Russia 91%, Flem Bel 85%, USA 83%,
Hungary 82%, Australia 79%, England 75%

1.2.1B Russia 95%, Flem Bel 94%, Hungary 91%,
USA 87%, England 82%, Australia 77%

1.2.1C Russia 80%, Hungary 50%, Flem Bel 49%,
USA 47%, Australia 33%, England 29%

1.2.2 The standard written algorithms need further attention at Key
Stage 3 to secure their reliability for integers. More confident pupils can
avoid mere repetition by concentrating on inverse problems to test their
understanding (the meaning of “inverse problems” was explained in Part
II, Section 1.2.3). We offer two more released items from TIMSS 2011 for
Year 5 pupils as evidence that there will still be plenty to do in Year 7.

1.2.2A 5631 ` 286 “ . . .

1.2.2B 23 ˆ 19 “ . . .

14 http://timss.bc.edu/timss2011/international-released-items.html

http://timss.bc.edu/timss2011/international-released-items.html
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Some will find the English success rates acceptable. But these are exercises
one should expect almost all pupils to get right—as the results from other
countries tend to confirm. In all cases the English performance is either
below or just above the “international average”.

1.2.2A Russia 89%, USA 84%, Hungary 77%,
England 67%, Flem Bel 66%, Australia 57%

1.2.2B Russia 74%, USA 59%, Hungary 40%,
England 37%, Flem Bel 26%, Australia 11%

Schools who actively seek to strengthen arithmetic in Year 7 and who need
harder “inverse” problems for pupils whose arithmetic is strong, could do
worse than to include lots of “missing digit” problems (for example, see
Tony Gardiner, Extension Mathematics Book Alpha p. 46, p. 61, p. 74, p. 125).

These written procedures then need to be extended to decimals. And
the simplest calculations with decimals (such as 71.6 ˆ 2.8, or 271.6 ˜

2.8) demonstrate that this extension to decimals needs the corresponding
integer procedures to routinely handle multi-digit inputs (at the very least
716 ˆ 28, and 2716 ˜ 28). In the released TIMSS 2011 items at Year 9, decimal
arithmetic mostly arises in context. But the following item tends to reinforce
the suggestion that we currently expect too little.

1.2.2C 42.65 ` 5.748 “ . . .

1.2.2C Russia 90%, USA 89%, Hungary 88%,
Australia 82%, England 79%

1.2.3 At this level, calculation with fractions becomes increasingly
pervasive (solving simple numerical problems involving multiplication;
understanding how the standard written algorithms of column arithmetic
for integers extend to those for decimals; rearranging equations and
simplifying expressions; using percentages; working with ratio and
proportion). And something clearly needs to change if many more pupils
are to learn to calculate reliably and confidently with fractions: examples
1.4A–1.4K in Part II above suggest that we currently fail to lay the most
basic foundations. Rather than offer a trite summary here, we postpone
discussion of fractions until Section 1.6 below— where, as a tentative
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contribution to the re-thinking that is needed, we outline some of the
relevant background.

1.2.4 All three of the official requirements listed at the start of 1.2 include
the word “use”; but the intended scope of the word is left unexplained.
The official intention here may be restricted to technical usage, rather than
to “applications”. But we take the opportunity to explore what it means for
pupils to be able to use what they have learned.

The last 35 years have witnessed a stream of complaints that those leaving
school cannot “use” what they have been certified as “knowing”. This
suggests that everyone may have misunderstood what is required if a
learned technique is to become available for use.

The ability to use the mathematics one knows

• includes its use within other parts of mathematics; and

• extends to simple applications, or word problems (see Section 2.3.3 in
Part II for an explanation of what is meant by word problems).

In both domains, pupils’ inability to “use what they know” often has the
same cause, and stems from

• the fact that a typical technique is first learned as a deterministic direct
procedure,

• whereas applications frequently require a flexibility in using the
procedure in the spirit of the corresponding inverse process (the
distinction between direct and inverse is explained in Part II, Section 1.2.3).

In other words, pupils’ difficulties often reflect our failure to recognise the
gulf between

• fluency in the underlying easy direct skill, and

• what is needed to work flexibly with this direct skill, and to handle the
related inverse problems, or variations, which is what is generally needed
for most applications.

Mathematics teaching and assessment have focused too strongly on the
easy direct skills, and have often overlooked the fact that fluency, flexibility,
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and “use” require that far more attention be given to simple inverse
problems. A pupil may know how to

• “find 75% of £120”

yet fail to relate this direct operation to inverse variations, such as

• “A price of £90 is raised to £120. What percentage increase is this?”, or

• “Calculate the original price if I got 25% off and paid £90”.

For each direct process, we need to allow far more time to develop the
flexibility that is needed if pupils are to use the process effectively to solve
related indirect problems.

1.2.5 The distinction in the previous subsection is illustrated in its
simplest form by the third requirement listed at the start of 1.2. Once one
moves into Key Stage 3, the key to arithmetic (and later to algebra) lies
in simplification. One no longer applies brute force to calculate with each
expression as it is given. Instead one looks first for ways of simplifying. And
the key to simplification lies in looking for

“complexifications that cancel each other out”,

that is, for hidden instances of operations cancelled out by their inverses.
For example, when faced with the question:

“How many weeks are there in 50402 seconds?”

one would like pupils to set up the relevant equations

50402 seconds “
5040 ˆ 5040

60
minutes

“
5040 ˆ 5040

60 ˆ 60
hours

“
5040 ˆ 5040
60 ˆ 60 ˆ 24

days

“
5040 ˆ 5040

60 ˆ 60 ˆ 24 ˆ 7
weeks
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without evaluating 50402 “ . . . , and without carrying out long divisions
(or using a calculator), and then to look for ways of cancelling.

When dealing with algebraic expressions:

• It is permissible (but usually silly) to split up a single term and to spread
the parts around to change a given expression into one that looks much
more complicated; it is more helpful to reverse such “complexifications”
by “collecting up” similar-looking terms to produce a more compact
expression, which is then much easier to comprehend at a glance.

• It is equally permissible (and usually equally silly) to multiply the
numerator and denominator of a given (numerical or algebraic) fraction
by the same non-zero expression, and then to multiply out to make a new
rational expression that appears more complicated than the original; but
it is generally more sensible to factorise, to identify (non-zero) common
factors, and to cancel in order to simplify.

That is,

• operations come in linked “direct-inverse” pairs which cancel each
other out (addition-subtraction; multiplication-division; powers-roots;
multiplying out and factorising; etc.).

Simplification is essentially the art of spotting such combinations, and
cancelling them out.

This key algebraic art needs to be exercised and mastered first within
arithmetic—so that numerical expressions are no longer “blindly evaluated”,
but are routinely simplified, using what we have called structural arithmetic
(see Part II, Section 2.1.1)—so that one routinely notices: that

28 ` 186 ` 72 “ p28 ` 72q ` 186 “ 286;

or that
36
54

“
4 ˆ 9
6 ˆ 9

“
4
6

“
2
3

.

One is then in a position to be pleasantly surprised by equivalences that are

less obvious (such as that
a

3 ` 2
?

2 “

b

p1 `
?

2q2 “ 1 `
?

2).
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1.2.6 The first of the requirements listed at the start of 1.2 refers to “proper
and improper fractions” and to “mixed fractions”. The expressions “proper
fraction” and “improper fraction” make sense in Key Stage 2, but they are
no longer really appropriate at Key Stage 3.

Fractions are introduced in Key Stage 1 and Key Stage 2 as parts of a
whole, and so are automatically less than 1; hence, at that stage, when one
comes to refer to fractions that are greater than 1, it makes sense to call them
“improper”. But the distinction is not a mathematical distinction; it arises
because of the way fractions are introduced.

From Key Stage 3 onwards all fractions, whether greater than 1 or less than
1, should be treated in the same way, as the quotient of two integers p

q , with
q ą 0. Hence the use of words like “proper” and “improper” should be left
behind (along with such language as “timesing”).

Similarly, though it may sometimes be appropriate to present an answer in
“mixed” form (say as 3 5

6 ), the expression “mixed number” is out of place in
secondary mathematics.

1.3. [Subject content: Number p. 6]

– use a calculator and other technologies to calculate results
accurately and then interpret them appropriately

“Calculators and other technologies” were first advocated at secondary
level some 40 or more years ago. Yet we still do not seem to have forged a
consensus as to when their use is “appropriate”, and when not.

The opening Aims (see page 2 of the National Curriculum programmes of
study for Key Stage 3) include the sensible warning that calculators, etc.

“should not be used as a substitute for good written and mental
arithmetic” [emphasis added].

However, this sound advice still needs to be interpreted. And the positive
guidance as to when calculator use is “appropriate” is only slightly more
helpful. The general advice offered at the beginning of the programmes of
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study for Key Stages 1 and 2, on pages 3 and 4,15 says that calculators should
only be introduced

“to support pupils’ conceptual understanding and exploration
of more complex number problems, if written and mental
arithmetic are secure” [emphasis added].

The dilemma highlighted by this advice refers to integer arithmetic in
primary schools. But the same dilemma recurs throughout Key Stage
3—with decimal arithmetic, with fractions, with surds, and so on. Secure
calculation by hand and in the head is a crucial ingredient of the way
beginners internalise meaning, structures, and procedures. So in each case the
above instruction would seem to imply that

• pupils should achieve conceptual understanding and mental and written
fluency before routinely using a calculator,

• but that once a suitable level of fluency has been achieved, one can safely
delegate “more complex number problems” to the calculator, and exploit
the power of the calculator to extend conceptual understanding into new
realms (see the example at the end of this section).

The introduction to the programmes of study for Key Stage 1 and 2 and for
Key Stage 3 both state that

“In both primary and secondary schools, teachers should use
their judgement about when ICT tools should be used.”

But the wider community remains confused. The judgement in the
previous paragraph (that “secure calculation is an important part of the
way beginners internalise meaning”) would seem to be a reasonable
summary of views in many other countries. But teachers in England will
know that the mathematics education community here remains divided.
Hence teachers must be prepared to develop and to use their own
judgement as they are exhorted to do.

15 https://www.gov.uk/government/uploads/system/uploads/attachment data/file/
335158/PRIMARY national curriculum - Mathematics 220714.pdf

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335158/PRIMARY_national_curriculum_-_Mathematics_220714.pdf
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To illustrate the divide, we give just two recent examples. The first
is a report published by the Joint Mathematical Council16 and a riposte.17

The second is a debate between a strong advocate of “computer based
mathematics” in schools and an agnostic:18 (see “Technology and maths”) .

Technology is clearly seen as “sexy” by politicians and by enthusiasts. And
its evident potential should certainly be explored. But it is not easy for
ordinary teachers to see beyond the rhetoric in order to discern

• whether we have already discovered some magic “royal road” to
elementary mathematics, that removes the need for beginners to master
the art of hand calculation; or

• whether those who currently advocate increased use of technology by
beginners are getting ahead of themselves, and are misleading the rest of
us as to what is currently in pupils’ interests.

Whatever may be the eventual impact of technology on the learning of
mathematics, the present evidence from international studies (illustrated
by examples 1.4A–1.4K in Part II) would seem to be that we in England
have tended to delegate calculation to the calculator or computer far too
easily. Instead of using technology to achieve more, we have used it as a
convenient alternative to achieving meaning and mastery. That is, we have
failed to heed the exhortation of the official programme of study, and have
allowed technology to be “used as a substitute for” pupils’ understanding
of written and mental arithmetic.

Computation by hand, or in the head, has too often been repudiated as if
it were merely outmoded drudgery, or some puritanical hangover. But the
importance of calculation at all levels stems from the role played by mental
and written procedures in the subtle process of human sense-making. So
we should perhaps hesitate before discarding it until such time as we are
sure that we have other ways of establishing the kind of meaning that will
allow pupils to use elementary mathematics with confidence.

16 http://www.jmc.org.uk/documents/JMC Report Digital Technologies 2011.pdf
17 http://education.lms.ac.uk/wp-content/uploads/2012/02/Gardiner on JMC.pdf
18 http://www.cambridgeassessment.org.uk/news/playlist/view/maths-podcasts/

http://www.jmc.org.uk/documents/JMC_Report_Digital_Technologies_2011.pdf
http://education.lms.ac.uk/wp-content/uploads/2012/02/Gardiner_on_JMC.pdf
http://www.cambridgeassessment.org.uk/news/playlist/view/maths-podcasts/
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The requirement that pupils should “use calculators and other
technologies”

“to calculate results accurately and then interpret them
appropriately” [emphasis added]

needs to be interpreted with care. A calculator certainly allows us all to
work with messier numerical data than we could otherwise manage. But
for most calculations, a calculator is the opposite of “accurate”: its value
lies in the fact that it is “quick and dirty”, and produces an answer which is
a very good approximation, but which may not be exact. The ubiquity
of calculators, and their ease of use makes it important for pupils to
develop their own internal sense of number so that they can use calculators
intelligently, interpret the approximate answers which they produce, and
use these tools to extend their own powers of analysis.

To give an example from within elementary mathematics (having one eye
on the next subsection), one might invite more able pupils in Year 8 or Year
9 to work (initially without a calculator) to address these three questions:

(a) Find a prime number which is one less than a square.

(b) Find another such prime number. And another.

(c) How many such prime numbers are there?

Different teachers will exploit the proposed task in different ways. Pupils
must first access whatever internal register of squares they have, and then
reinforce and extend their internal list to generate:

(12 ´ 1 “ 0,) 22 ´ 1 “ 3, 32 ´ 1 “ 8, 42 ´ 1 “ 15, 52 ´ 1 “ 24,
62 ´ 1 “ 35, 72 ´ 1 “ 48, 82 ´ 1 “ 63, 92 ´ 1 “ 80, 102 ´ 1 “ 99,
112 ´ 1 “ 120, 122 ´ 1 “ 143, 132 ´ 1 “ . . . , . . .

They must then decide which of these numbers are prime. The associated
“noise” (of having first to think about squares, then to subtract 1) makes
this more awkward than simply asking pupils to test given integers to see
whether they are prime. So one can anticipate some surprising mistakes.
For example: though 8, 15, 24, 35, 48 are unlikely to be labelled as primes,
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the surrounding “noise” means that part (b) may well lead to 63 and 143
being proposed as candidate primes.

There are challenges here for pupils on many levels. A calculator may at
first be used simply to extend the list of squares. If so, then 168, 195, 224,
255, 288, 360, 440 are unlikely to be proposed as primes; but 399 and 483
might well be, and 323 will almost certainly feature.

However, once the proposed candidates 63 (“ 7 ˆ 9), 143 (“ 11 ˆ 13), and
323 (“ ¨ ¨ ¨ ˆ . . . ) have been seen to fail, one would like pupils to think rather
than just press buttons and guess. A mixture of patience and prodding
should allow them to discover the apparent pattern

8 “ 2 ˆ 4,

15 “ 3 ˆ 5,

24 “ 4 ˆ 6, etc.,

and they can then to use the distributive law to multiply out

pn ´ 1qpn ` 1q “ npn ` 1q ´ 1pn ` 1q “ n2 ` n ´ n ´ 1 “ n2 ´ 1,

and to discover

• the advantages of thinking and working with symbols (“n2 ´ 1”)

• rather than with words (“one less than a square”).

1.4. [Subject content: Number p. 5]

– use the concepts and vocabulary of prime numbers,
factors (or divisors), multiples, common factors, common
multiples, highest common factor, lowest common
multiple, prime factorisation, including using product
notation and the unique factorisation property

– use integer powers and associated real roots (square, cube
and higher), recognise powers of 2, 3, 4, 5 and distinguish
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between exact representations of roots and their decimal
approximations

This collection of topics related to integer arithmetic deserves to be taken
more seriously than has perhaps traditionally been the case at secondary
level. The following released item from TIMSS 2011 for pupils in Year 9
suggests that work on primes and factors from primary school is often not
followed up.

1.4A Which of these shows how 36 can be expressed as a
product of prime factors?

A 6 ˆ 6 B 4 ˆ 9 C 4 ˆ 3 ˆ 3 D 2 ˆ 2 ˆ 3 ˆ 3

1.4A Hungary 69%, Russia 68%, USA 64%,
England 51%, Australia 45%

Bare hands integer arithmetic may suffice for pupils to find HCFs (to
cancel fractions), and LCMs (to add or subtract fractions by writing
both with a common denominator). But if the official requirements are
interpreted coherently, then the listed ideas constitute a valuable “Key
Stage 3 introduction to Number theory”, a subject which is increasingly
important in a world dominated by “calculators and other technologies”.

1.4.1 The second listed requirement in 1.4 “use integer powers” is
perhaps the simplest starting point. Pupils should recognise and work with

squares: 12 “ 1, 22 “ 4, 32 “ 9, 42 “ 16, 52 “ 25, 62 “ 36,
72 “ 49, 82 “ 64, 92 “ 81, 102 “ 100, 112 “ 121, 122 “ 144, . . . ;
and

cubes: 13 “ 1, 23 “ 8, 33 “ 27, 43 “ 64, 53 “ 125, 63 “ 216, . . . ,
103 “ 1000.

They should also recognise the powers of 10 in exponent form and know
the corresponding values:

powers of 10: 10, 102 “ 100, 103 “ 1000, 104 “ 10000, 105 “

100000, 106 “ 1000000, etc.
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And they should work with and recognise powers of small integers, such
as:

powers of 2: 2, 22 “ 4, 23 “ 8, 24 “ 16, 25 “ 32, 26 “ 64,
27 “ 128, 28 “ 256, 29 “ 512, 210 “ 1024

powers of 3: 3, 32 “ 9, 33 “ 27, 34 “ 81, 35 “ 243

powers of 4: 4, 42 “ 16, 43 “ 64, 44 “ 256, 45 “ 1024

powers of 5: 5, 52 “ 25, 53 “ 125, 54 “ 625.

Squaring is a “unary operation” or function (in that the output n2 is uniquely
determined by a single input). Once sufficiently many squares are known,
they can be exploited to interpret the exact meaning of the inverse unary
operation, that is the square root function ? where

?
n denotes “the positive number whose square is equal to n”.

Notice that, since ? is to be a function,
?

4 must denote a unique
value—namely the positive number whose square is equal to 4: i.e. 2. In
contrast, the quadratic equation “x2 “ 4” has two solutions, which are ˘

?
4.

Later, appropriate groups of pupils can help to formulate and prove:

Claim If a2 “ b2, then a “ ˘b.

Proof Suppose a2 “ b2.

6 a2 ´ b2 “ 0

6 pa ´ bqpa ` bq “ 0

6 a ´ b “ 0, or a ` b “ 0, so a “ ˘b. QED

This shows that there is just one positive number whose square has a given
positive value.

Provided n is a perfect square, pupils can find the exact value of
?

n: for
small squares:

?
4 “ 2,

?
9 “ 3,

?
16 “ 4,

?
25 “ 5;

and for larger squares:

?
81 “ 9,

?
100 “ 10,

?
121 “ 11,

?
256 “ 16.
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They may be encouraged to notice that

?
4 ˆ 9 “

?
36 “ 6 “ 2 ˆ 3 “

?
4 ˆ

?
9,

and that
?

9 ˆ 9 “ 9 “
?

9 ˆ
?

9.

They can then use this as a short cut to find the square root of larger squares
such as

?
16 ˆ 25.

[Later they can prove that:

Claim
?

a ˆ
?

b “
?

ab whenever a and b are positive:

Proof
?

a ˆ
?

b is clearly positive (since
?

a and
?

b are both positive).

And p
?

a ˆ
?

bq2 “ p
?

aq2 ˆ p
?

bq2 “ ab

6
?

a ˆ
?

b “
?

ab. QED]

And once sufficiently many cubes are known, pupils can find 3
?

n when n is
a perfect cube:

3?8 “ 2, 3?27 “ 3, 3?64 “ 4, 3?1000 “ 10.

With help they may notice that

3
?

8 ˆ 27 “
3?216 “ 6 “ 2 ˆ 3 “

3?8 ˆ
3?27.

This basic repertoire of calculations using powers and roots can then
develop in two very different directions—one focusing on calculation, and
the other on structure.

1.4.2 Further calculation The notation
?

n and 3
?

n for square roots and
cube roots has many features in common with the notation for fractions.

Some fractions, like 8
2 “ 4, or 1

4 “ 0.25, stand for familiar numbers, and
can be exactly evaluated. But most fractions one can write down (such as
1
6 « 0.167) do not stand for any otherwise familiar number, and cannot
be evaluated exactly. The value of the fraction notation is that it provides
a way of writing exact expressions for “ideas of numbers”, which we often
have no other way of writing exactly, such as
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“that number—six identical copies of which add up to 1”.

Similarly, the functions ? and 3
? allow us to write exact expressions for

numbers, most of which cannot be evaluated exactly as decimals, or in any
other way. We know that

?
4 “ 2. But what number is represented by

?
2?

Or by
?

3? Or by
?

300? Or by
?

0.3? Or by
b

1
3 ?

Before we worry about the square root of fractions or decimals, there is
plenty of work to be done to establish the meaning and the arithmetical
rules for working with surds: that is numbers of the form

?
n when n is an

integer. For example, we need to ensure

• that
?

10 is understood formally to be “the (positive) number whose
square is 10”;

• that since 10 lies between 9 and 16,
?

10 is seen to be slightly bigger than
?

9 “ 3 (and a lot less than
?

16 “ 4);

• that pupils compare the side length of a square of area 10 square units,
with that for a square of area 9, and one of area 16; and

• that they later compare the length of a diagonal of a 1 by 3 rectangle

(a) with the length (“ 3) of the longest side, and

(b) with the length (“ 4) of the route round the perimeter of the rectangle
from one corner to the opposite corner.

These ideas can later be taken further. Pythagoras’ Theorem shows that an
isosceles right angled triangle with legs of length 1 has a hypotenuse of
length exactly

?
2. The hypotenuse is clearly longer than each of the two

legs; and the triangle inequality shows that the hypotenuse is less than the
sum of the two shorter sides. So we know that 1 ă

?
2 ă 2. But to pin down

the value of
?

2 more accurately requires us to use a little of what we know
about integer squares:

142 “ 196 ă 200 ă 225 “ 152

6 14 “
?

196 ă
?

200 ă
?

225 “ 15

6 14 ă
?

100 ˆ 2 “
?

100 ˆ
?

2 ă 15

6 14 ă 10
?

2 ă 15
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6 1.4 ă
?

2 ă 1.5

[In short: 1.42 “ 1.96 ă 2, and 1.52 “ 2.25 ą 2.]

Similarly, Pythagoras’ Theorem shows that an equilateral triangle of side 2
has height exactly

?
3, and that this height is less than the hypotenuse, so

?
3 ă 2; and the triangle inequality shows that 1 `

?
3 ą 2. Hence 1 ă

?
3 ă

2. But to pin down the value
?

3 more accurately we have to use what we
know about integer powers to find reasonable estimates:

172 “ 289 ă 300 ă 324 “ 182

6 17 “
?

289 ă
?

300 ă
?

324 “ 18

6 17 ă
?

100 ˆ 3 “
?

100 ˆ
?

3 ă 18

6 17 ă 10
?

3 ă 18

6 1.7 ă
?

3 ă 1.8

[In short: 1.72 “ 2.89 ă 3, and 1.82 “ 3.24 ą 3.]

In the same way one can use what pupils know about perfect cubes to
ensure

• that 3
?

10 is interpreted as “the number whose cube is equal to 10”;

• that this number is seen to be slightly bigger than 3
?

8 “ 2 and
considerably smaller than 3

?
27 “ 3;

• that pupils compare an imagined cube of volume 10 cubic units with
a smaller cube of volume 8 and a larger cube of volume 27 cubic
units—noting and understanding how a modest increase in the edge
length leads to a cube with three times the volume!

1.4.3 Structure: the index laws The structural (or algebraic) theme related
to powers prepares the ground for the index laws. The index laws are not
explicitly mentioned within the Key Stage 3 programme of study, but there
are several reasons why they need to be squarely addressed at this level.

One reason is that, as we shall see in Section 1.5, zeroth and negative powers
are needed to represent real numbers in standard form; and the way we
define these powers only really makes sense if we think in terms of the
advantages of “preserving the index laws”.
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A more basic reason is for pupils to understand why

when we multiply a digit in the 10m place (or column) by a digit
in the 10n place (or column), the answer belongs in the 10m`n

column.

For this to make sense, pupils already need to know in their bones how
products of powers work: for example, that

102 ˆ 105 “ p10 ˆ 10q ˆ p10 ˆ 10 ˆ 10 ˆ 10 ˆ 10q “ 102`5, and
22 ˆ 25 “ p2 ˆ 2q ˆ p2 ˆ 2 ˆ 2 ˆ 2 ˆ 2q “ 22`5.

Once pupils

• think of the place value of positions, or columns, in terms of the exponent
of the “power of 10”, rather than verbally as “units, tens, hundreds, etc.”,
and

• realise that “when we multiply powers, we add exponents”,

it becomes natural to think of the unit as 100 “ 1.

The rightmost place when representing an integer
then corresponds to the “(units digit) ˆ100”.

The fact that 100 “ 1 then fits in with the way powers multiply (since we
want 101 ˆ 100 “ 10p1`0q “ 10).

Once the units column (just to the left of the decimal point) is associated
with 100, it becomes plausible that the place immediately to the right of the
decimal point might correspond to “10´1”. And the idea that “when we
multiply powers, we add exponents” also helps to explain why we take
“10´1” to equal 1

10 (since we want: 101 ˆ 10´1 “ 101`p´1q “ 100 “ 1 “

10 ˆ 1
10 ).

1.4.4 Introduction to number theory It is easy to compare, and to add,
two fractions with the same denominator; but it is not at all obvious how
to compare, or to add, two fractions with different denominators m, n.
However, as soon as we change each fraction to one that is equivalent to it,
and which has denominator “LCMpm, nq”, comparison is again immediate,
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and addition, subtraction and division can be carried out easily. Hence
LCMs come into their own as soon as we wish to compare, or to add,
subtract, or divide two fractions with different denominators m and n. In
general HCFs and LCMs feature whenever a problem requires us to switch
to a common unit that works for both m and n (whether a multiple of each,
or a submultiple—or factor—of each).

The HCF and LCM of two given integers m, n are easy to find in a primitive
way.

HCF: Each of the given integers m, n has a finite number of
factors, and these can be listed; the two lists can then be scanned
to find the “highest”, or largest, factor in both lists.
LCM: The LCM of the given integers m, n can be found by
making a list of (positive) multiples of each number (2m, 3m,
4m, . . . ; and 2n, 3n, 4n, . . . ) and looking for the “least” multiple
that occurs in both lists.

These primitive approaches are easy to implement, but are slightly
unwieldy. Moreover, they do not immediately suggest, or explain why it
is always true that:

HCFpm, nq ˆ LCMpm, nq “ m ˆ n.

For suitable groups of pupils it is worth making sure that this result is
discovered, or at least noticed, and if possible proved.

[Proof Let HCFpm, nq “ h.

6 m “ h ˆ m1 and n “ h ˆ n1, where m1 and n1 have no common factors.

6 m1 ˆ n “ m1 ˆ ph ˆ n1q “ pm1 ˆ hq ˆ n1 “ m ˆ n1 is a multiple of m and
of n, so is a common multiple of both m and n.

The fact that it is the LCM follows from the important fact that every
common multiple of both m and n is also a multiple of their LCM. (So if
there were a smaller common multiple of m and n, say k, then it would
have to be a proper factor of m1 ˆ h ˆ n1 and the quotient would be a
factor of both m1 and n1.)
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6 HCFpm, nq ˆ LCMpm, nq “ h ˆ pm1 ˆ nq “ ph ˆ m1q ˆ n “ m ˆ n. QED]

The observation that LCMpm, nq is a factor of every common multiple of m
and n is not hard, but cannot easily be proved at this level. However, it can
be established as a “fact of experience” by listing the common multiples of
suitable pairs, such as:

2 and 3: 6, 12, 18, 24, . . .
6 and 8: 24, 48, 72, 96, . . .
6 and 14: 42, 84, 126, . . .
30 and 42: 210, 420, 630, . . . .

And the fact that
HCFpm, nq ˆ LCMpm, nq “ mn

can be re-explained later when one is in a position to look at HCFs and
LCMs in terms of the prime factorisations of the two integers m and n.

The Key Stage 3 requirements relating to prime numbers and prime
factorisation extend what is expected at Key Stage 2. There we find that
pupils (in Year 5) are supposed to

• “know and use the vocabulary of prime numbers, prime factors and
composite numbers”

• “establish whether a number up to 100 is prime and recall prime numbers
up to 19”, and

• “recognise and use square numbers and cube numbers and the notation
for squared (2) and cubed (3)”.

Although we have been told that “Key Stage 3 should build on Key Stage
2”, it may be wise to revisit, and to reinforce, these ideas in Year 7 before
ploughing ahead (especially with regard to the third bullet point, which
seems unnecessarily premature). A sensible initial goal at Key Stage 3 is

• to get to know the twenty five prime numbers up to 100

by implementing the Sieve of Eratosthenes (Greek, 3rd century BC).

• Write out the integers 1–100 in ten columns. Cross out 1 (as 1 is not a
prime).
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• Circle the first uncrossed integer (the prime 2) and cross out all its larger
multiples.

• Circle the first uncrossed integer (the prime 3) and cross out all its larger
multiples.

• Circle the first uncrossed integer (the prime 5) and cross out all its larger
multiples.

• Circle the first uncrossed integer (the prime 7) and cross out all its larger
multiples.

Then check that all of the remaining uncrossed integers

11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

are in fact primes. (The reason why should be revisited later when the
“square root test” has been understood—see later in this section.)

As part of this exercise one would like pupils to learn that, although
unfamiliar integers sometimes “smell like a prime”, this may be simply
because (like 51, or 91, or 323) they are not routinely encountered in the
multiplication tables. Pupils will later need to develop a systematic way of
testing any three-digit integer to see whether it is prime (the “square root
test”).

The programme of study includes “prime factorisation” as an explicitly
declared goal. So it is important to explain why we do not count “1” as
a prime number (and to make it clear that this has nothing to do with
enforcing an arbitrary definition of a “prime” as an integer with “exactly two
factors”). Pupils should understand (from their own extensive experience of
factorising integers: see below) that

• prime numbers are the “multiplicative atoms” for integers.

Hence we can break up any given integer as the product of its constituent
prime factors. Once we grasp this important property of prime numbers, it
should be clear that “1 is different”, e.g.

1 “ 1 ˆ 1 “ 1 ˆ 1 ˆ 1 “ . . . ,
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and
2 “ 2 ˆ 1 “ 2 ˆ 1 ˆ 1 “ 2 ˆ 1 ˆ 1 ˆ 1 “ . . . .

So “1” is not such a constituent atom, and it would simply get in the way if
we made the mistake of calling it a prime.

Some thought is needed when choosing a systematic procedure for
“factorising integers”. “Factor trees” may have a place for beginners, but
it is worth thinking carefully why they are best left behind when we come
to Key Stage 3 (along with oblongs, timesing, improper fractions, and
mixed numbers). The most suitable systematic algorithm for achieving
prime factorisation of a given integer is to carry out successive short
divisions—upside down:

“Write 2310 as a product of prime powers.”

2 is clearly a factor of 2310:
2 |2310

1155
6 2310 “ 2 ˆ 1155

3 is clearly a factor of 1155:
3 |1155

385
6 2310 “ 2 ˆ 1155 “ 2 ˆ 3 ˆ 385

5 is clearly a factor of 385:
5 |385

77
6 2310 “ 2 ˆ 3 ˆ 5 ˆ 77

7 is clearly a factor of 77:
7 |77

11
6 2310 “ 2 ˆ 3 ˆ 5 ˆ 7 ˆ 11

If we apply a slightly compressed version of the same procedure to less
carefully chosen starting integers—such as 1234, or 12345, or 123456, or
4321, or 54321, or 654321, then we quickly discover the need for an efficient
way of deciding whether “large” integers are prime.
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1234: 2 is clearly a factor:

2 |1234
617

6 1234 “ 2 ˆ 617. But is 617 prime?

12345: 5 is clearly a factor:

5 |12345
3 | 2469

823

6 12345 “ 3 ˆ 5 ˆ 823. But is 823 prime?

123456: 2 is clearly a factor:

2 |123456
2 | 61728
2 | 30864
2 | 15432
2 | 7716
2 | 3858
3 | 1929

643

6 123456 “ 26 ˆ 3 ˆ 643. But is 643 prime?

These unanswered questions lead naturally to the square root test for
deciding whether a given integer is prime:

Square root test: Suppose that 643 is not prime.

Then 643 factorises—say as 643 “ a ˆ b, where a, b are both
“proper factors” (i.e. a, b ą 1) We may choose a to be the smaller
of the two proper factors: so 1 ă a ď b.

Then

643 “ a ˆ b

ě a ˆ a psince b ě aq

6
?

643 ě
?

a ˆ a “ a , so the smaller factor a ď
?

643 ă 26.

Hence to test whether 643 is prime, we only need to test for
factors up to 25.
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The first few short divisions can be done in the head:

2 is clearly not a factor of 643;

3 is not a factor (the simple ‘divisibility tests’ are discussed
below);

(4 cannot be a factor—or else 2 would have been a factor);

5 is clearly not a factor;

(6 cannot be a factor or else 2 and 3 would have been factors);

7 is not a factor;

(8 cannot be a factor or 2 would have been a factor; similarly 9
and 10 cannot be factors);

11 is not a factor; and so on.

The reasons why we do not have to check 4, 6, 8, 9, 10, . . . show that we only
have to check for possible prime factors up to

?
643—that is up to 23. And

once the easy short divisions have been checked, it makes perfect sense to
use a calculator to test for larger possible prime factors (say beyond 7, or
11). Moreover calculator use makes the power and speed of the method
even more evident:

643 ˜ 13 “ 49.46 . . . ;

643 ˜ 17 “ 37.82 . . . ;

643 ˜ 19 “ 33.84 . . . ;

643 ˜ 23 “ 27.95 . . . .

6 643 is prime

Pupils can now look back at the “sieve of Eratosthenes” for the integers
1–100 and understand why it stopped at multiples of 7:

Proof Any non-prime ď 100 must have a prime factor ď
?

100“ 10.

That is, every non-prime ď 100 is a multiple of 2, or of 3, or of 5, or of 7.
QED

Armed with this method, they can then complete a “sieve of Eratosthenes”
to find all prime numbers up to 500 (by following the same
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procedure—circling the first uncrossed number and crossing out all higher
multiples—for primes up to

?
500 “ 22.36 . . . —that is up to 19). Hence, in

order to extend the list from 100 to 500 we only need to carry out four extra
steps, to eliminate multiples of 11, of 13, of 17, and of 19.

The fact that every positive integer can be factorised in just one way as
a product of prime powers cannot be proved at this level. Instead the
uniqueness of prime factorisation emerges as a “fact of experience”: the
factorisation procedure above churns out the prime factorisation each time,
and the subtle question as to its uniqueness is unlikely to arise.

There is plenty of mileage in exploiting prime factorisation. For example:

• to recognise squares as precisely those integers whose prime factorisation
only involves primes to even powers

• to recognise cubes as precisely those integers whose prime factorisation
only involves primes raised to powers that are all multiples of 3

• to see how HCFpm, nq is just the product of those prime powers that occur
both in the prime factorisation of m and in the prime factorisation of n,
and hence to re-prove

HCFpm, nq ˆ LCMpm, nq “ m ˆ n.

Divisibility tests are not explicitly mentioned in the Key Stage 3 programme
of study. However, the requirements to understand place value (Section
1.1) and to test for factors (Section 1.4) should highlight the need to discuss
these excellent examples of structural arithmetic.

The fact that multiples of 10 are precisely the integers having “units digit
= 0” is an evident consequence of place value: for example

3210 “ 3000 ` 200 ` 10

“ 300 ˆ 10 ` 20 ˆ 10 ` 1 ˆ 10

“ 321 ˆ 10

Any integer N can therefore be decomposed as “a multiple of 10” plus its
“units digit”. The first of these two terms “a multiple of 10” is also “a
multiple of 2” (because 10k “ p2 ˆ 5qk “ 2 ˆ p5kq).
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6 An integer N is a multiple of 2 precisely when its units digit
is a multiple of 2.

That is, when it ends in 0, 2, 4, 6, or 8. (Be prepared to have to insist that
“0 “ 0 ˆ 2” is a multiple of 2, and so is even.)

Similarly, any multiple of 10 is also a “multiple of 5” (because 10k “

p5 ˆ 2qk “ 5 ˆ p2kq).

6 an integer is a multiple of 5 precisely when its units digit is a
multiple of 5.

That is, when it ends in 0, or 5.

The same idea shows that multiples of 100 are precisely the integers having
“both tens and units digits = 0”.

Any integer N can be decomposed as “a multiple of 100” plus the number
formed by its tens and units digits. The multiple of 100 is also a “multiple
of 4” (because 100k “ p4 ˆ 25qk “ 4 ˆ p25kq).

6 N is a multiple of 4 precisely when “the number formed by
its last two digits is a multiple of 4”.

Multiples of 1000 are precisely the integers having hundreds, tens and
units digits = 0.

Any multiple of 1000 is also a “multiple of 8” (because 1000k “ p8 ˆ 125qk “

8 ˆ p125kq); so an integer is a multiple of 8 precisely when “the number
formed by its last three digits is a multiple of 8”.

This shows how the rules for spotting multiples of 2, or 4, or 5, or 8, or 10
derive from our place value system for writing numbers.

The divisibility tests for multiples of 3, and of 9 depend on the place value
system in a more interesting way, which obliges us to think about the
algebraic structure of the place value system. The key here lies in the fact
that

10 ´ 1 “ . . . , 100 ´ 1 “ . . . , 1000 ´ 1 “ . . . etc. are all multiples
of 9.
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Later this can be seen as a special case of the beautiful factorisation

xn ´ 1 “ px ´ 1qpxn´1 ` xn´2 ` xn´3 ` ¨ ¨ ¨ ` x ` 1q.

Hence any integer such as 12345, can be deconstructed into

12345 “ 1 ˆ 10000 ` 2 ˆ 1000 ` 3 ˆ 100 ` 4 ˆ 10 ` 5

“ 1 ˆ p9999 ` 1q ` 2 ˆ p999 ` 1q ` 3 ˆ p99 ` 1q ` 4 ˆ p9 ` 1q ` 5

“ p1 ˆ 9999 ` 2 ˆ 999 ` 3 ˆ 99 ` 4 ˆ 9q ` p1 ` 2 ` 3 ` 4 ` 5q

The first bracket is clearly a multiple of 9—and so is also a multiple of 3.

Hence, for 12345 to be a multiple of 3 the second bracket—that is, its
digit-sum “1 ` 2 ` 3 ` 4 ` 5”—must be a multiple of 3 (which it is!).

And for 12345 to be a multiple of 9, the second bracket—that is, its
digit-sum “1+2+3+4+5”—must be a multiple of 9 (which it is not). This
yields a simple (and intriguing) test for divisibility by 3 and by 9.

The test for divisibility by 6 is mildly different: an integer is divisible by
6 precisely when it is divisible both by 2 and by 3. Similarly, an integer is
divisible by 12 precisely when it is divisible both by 4 and by 3. Here it is
important that HCFp3, 4q “ 1. (Notice that 18 is a multiple of 6 and of 9; but
18 is not a multiple of 6 ˆ 9 “ 54, because HCFp6, 9q ‰ 1.)

Divisibility by 11 “ 10 ` 1 depends on a simple variation of the reasoning
for divisibility by 9 “ 10 ´ 1. The key here lies in the fact that

10 ` 1 “ 11,

100 ´ 1 “ 99,

1000 ` 1 “ 1001,

10000 ´ 1 “ 9999,

etc. are all multiples of 11.

An interesting consequence of the prime factorisation of an integer is
that it allows an easy way of counting the number of factors which the
integer has without listing them all first. The idea depends on “the product
rule for counting” which is needed at Key Stage 3—but is not explicitly
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mentioned. However, it is optimistically hinted at rather vaguely in the
Year 6 programme of study under

“Algebra: – enumerate possibilities of combinations of two
variables”.

And the product rule is explicitly required at Key Stage 4.

The simplest version of the product rule tells us that the number of dots in
a rectangular array is equal to “the number of dots in each row times the
number of rows”.

‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

‚ ‚ ‚ ‚ ‚ ‚ ‚

Instead of counting the dots individually, we note that there are 3 rows,
each with 7 dots, so the total number of dots is “7 ` 7 ` 7 “ 3 ˆ 7”.

A similar situation arises whenever we are effectively counting “ordered
pairs”. When we roll two dice, one red and one blue, each outcome can be
listed systematically as an ordered pair:

(red score, blue score).

The key observation is that each possible first coordinate has the same fixed
number of possible second coordinates, so the total number of outcomes
can be counted very easily.

There are 6 possible red scores;
and each red score can occur with each of the 6 possible blue
scores;
so there are

6 ` 6 ` 6 ` 6 ` 6 ` 6 “ 6 ˆ 6

possible ordered pairs, or outcomes for rolling the two dice.

In the same way, if we want to count the possible factors of 12 “ 22 ˆ 3,
then each factor must have the form 2a ˆ 3b with a “ 0, 1, or 2, and b “ 0,
or 1. So
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there are 3 possible choices for a;
and for each choice of a there are 2 choices for b. 6 3 ˆ 2 possible
factors:

20 ˆ 30 “ 1, 20 ˆ 31 “ 3, 21 ˆ 30 “ 2, 21 ˆ 31 “ 6, 22 ˆ 30 “ 4, 22 ˆ 31 “ 12.

1.5. [Subject content: Number p. 5]

– understand and use place value for decimals, measures and
integers of any size

– interpret and compare numbers in standard form A ˆ 10n,
1 ď A ă 10, where n is a positive or negative integer of zero

The two requirements in 1.5 are closely intertwined—even if the second
bullet point seems slightly premature from a purely mathematical
viewpoint. (Standard form may have been included at this level to
support the requirements of science teaching. Yet there is no mention of
“standard form” in the Key Stage 3 science programme of study—unless
the numerical significance of the “pH scale” as

“the decimal logarithm of the reciprocal of the hydrogen ion
activity in a solution”

is to be explained in detail, or the value of “Newton’s gravitational
constant” is to be pulled out of a hat as “« 6.67 ˆ 10´11N ¨ pm{kgq2”. )

The sequence of topics related to the requirements in 1.5 would seem to
include:

• understanding and working with positive integer powers

• recognising that multiplication of powers of 10 corresponds to “adding
exponents” (i.e. the index laws)

• understanding that defining “100 “ 1” is consistent with the place value
notation for integers (so that the tens column is in some sense the 1st

column, and the units column is the “zeroth” column), and that this
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definition of 100 preserves the index laws for multiplication p103 ˆ 100 “

10p3`0q “ 103)

• understanding that defining “10´n” to be equal to the reciprocal of 10n

then allows us to interpret the decimal places to the right of the decimal
point in the same way (as the “p´1qth” column, the “p´2qth column”,
the “p´3qth column”, the “p´4qth column”, and so on), and that this also
respects the index laws

• learning to write any integer with n ` 1 digits as a decimal A (1 ď A ă 10)
multiplied by 10n (by moving the decimal point n places to the left to
follow the leading digit), and learning to translate numbers which are
given in standard form back into their more familiar guise

• extending this notation to numbers which are less than 1, so that it can be
used for all positive real numbers

• learning to compare numbers given in standard form

• learning to interpret the conventions associated with rounding, where
numbers are specified to so many “significant figures”, or to so many
“decimal places”

• learning how to multiply and divide, and to add and subtract, numbers
given in standard form (bearing in mind the specified levels of accuracy).

Experience with different groups of pupils will determine which parts
of this sequence are better delayed until Year 10 (or even Year 11). For
example, some pupils may be able to compare relatively simple examples
of numbers given in standard form, but will need to revisit and extend the
idea in Years 10 and 11. However, the final bullet point in the sequence
seems much too demanding at this stage, since it involves the interaction
between standard form and rounding, or approximation. (Numbers given
in standard form are almost never exact. So arithmetic with numbers given
in standard form needs to be linked with an understanding of numerical
data being “accurate to so many decimal places”, and with the use of
“significant figures”.)

The first few bullet points in the above sequence were incorporated in our
comments on powers in Section 1.4. On one level, in order to understand
that
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3.1 ˆ 10 is equal to “31”,

it is enough to know that

3.1 ˆ 10 “ p3 ` 0.1q ˆ 10, and that

0.1 is equal to 1
10 (that is, that the “1” in the first decimal place

corresponds to “tenths”).

However, the general procedure for interpreting standard form makes much
more sense once it is clear that the digit that is k places to the right of the
decimal point corresponds to a multiple of 10´k, so that multiplying by
a suitable power of 10 simply “moves the decimal point” that number of
steps to the right (or keeps the decimal point fixed and moves the digits the
same number of steps to the left).

The same ideas are worth addressing because they are needed to
understand

• the way division by a decimal can be transformed into division by an
integer (by multiplying both the divisor and the dividend by a suitable
power of 10), and

• the way multiplication of decimals can be transformed into a three-step
process

– first multiplying by a suitable power of 10 to transform the calculation
into a familiar multiplication of integers,

– then carrying out the multiplication of integers,

– then dividing by the same power of 10 (that is, re-positioning the
decimal point in the answer) to find the required answer.

Hence it may well be possible to convey something of the meaning of the
standard form notation before the end of Key Stage 3—at least for those
who are likely to need it elsewhere. But, in the spirit of the declared Aims
of the mathematics programme of study, we urge mathematics teachers to
avoid simply presenting standard form as an uncomprehended formalism.
Instead we hope schools will lay the necessary foundations in Year 7 and 8
(through exercises that expand and then simplify powers such as

102 ˆ 105 “ p10 ˆ 10q ˆ p10 ˆ 10 ˆ 10 ˆ 10 ˆ 10q “ 102`5,
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linking this to an understanding of long multiplication), so that some
modest version of the notation can be properly understood in Year 9 say.
(The index laws offer a rare opportunity for pupils to experience at first
hand the way meanings and definitions are extended in mathematics,
though this opportunity is generally missed. For a systematic development
at this level see Extension mathematics Book Gamma (Oxford 2007), Sections
T14, C24, C31, C38.)

However, before launching into standard form, it would be good if pupils
understood why it is often helpful to think in terms of “powers of 10”,
and why we focus on the exponent (or “baby logs”) when dealing with
very large or very small quantities or measurements. An easily available
point of entry would be to watch the classic short movie Powers of 10, made
many years ago by the Eames brothers.19 (The film invites repeat viewing,
stopping from time to time to discuss what is being shown.)

One everyday instance, where we focus on the exponent (or the logarithm)
rather than the number itself, arises with the Richter scale for measuring the
strength of earthquakes. This may already be familiar to some pupils. Here
an increase of 1 in the measurement used on the Richter scale corresponds
to an earthquake which is 10 times more powerful, and an increase of 2
corresponds to an earthquake which is 100 times more powerful. Other
instances where such “log-scales” are used include the measure for the
brightness of stars, and the pH scale.

1.6. [Subject content: Number p. 5]

– use the four operations [. . . ] applied to [. . . ] fractions

– work interchangeably with terminating decimals and their
corresponding fractions (such as 3.5 and 7

2 , or 0.375 and 3
8 )

– define percentage as ‘number of parts per hundred’,
interpret percentages and percentage changes as a fraction

19 http://www.eamesoffice.com/the-work/powers-of-ten/

http://www.eamesoffice.com/the-work/powers-of-ten/
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or a decimal, interpret these multiplicatively, express one
quantity as a percentage of another, compare two quantities
using percentages, and work with percentages greater than
100%

– interpret fractions and percentages as operators

– [Ratio, proportion and rates of change p. 7] solve problems
involving percentage change: including percentage
increase, decrease and original value problems; and simple
interest in financial mathematics

As the last listed item here indicates, the boundary between this section and
Section 1.9 below (on ratio and proportion) is blurred—so the two need to
be considered together. The first listed requirement concerning calculation
with fractions was also considered briefly in Section 1.2. However, since
achieving fluency in calculating with fractions should be a central goal of
Key Stage 3, this deserves to be addressed here in greater detail than was
possible as part of Section 1.2.

1.6.1 Fractions as a unifying idea The central importance of calculation
with fractions for all pupils only becomes apparent in late Key Stage 3 and
early Key Stage 4. Before that pupils learn to work with division (sharing
and grouping), parts of a whole, decimals, fractions, ratios, percentages,
proportion, scale factors—first numerically and then within algebra. But
at some stage pupils ideally discover that all of these apparently different
ideas and procedures reduce to “calculation with fractions”.

1.6.2 Prerequisites and follow-up When preparing to address the
arithmetic of fractions in early Key Stage 3, the first move should be a
check that the necessary prerequisites from integer arithmetic are firmly
in place. These include: complete arithmetical fluency with integers; and
flexibility in identifying common multiples (in order to switch to common
denominators), and in identifying common factors (in order to simplify by
cancelling).

The subsequent developments summarised below constitute a considerable
challenge. But such examples as 1.4C, 1.4F, and 1.4H in Part II suggest
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rather clearly that the arithmetic of fractions needs to be given more
time than has been usual in recent years. In particular, fraction work
should be routinely included as part of solving equations, solving word
problems, finding equations of straight lines through given points, and
within other applications during the ensuing 2–3 years (where it has often
been artificially avoided by restricting to problems with small integer
solutions).

1.6.3 Fractions as operators and percentages The fourth requirement
listed at the start of 1.6 reads as though pupils start out with a clear
understanding of “fractions as numbers”, and then need to interpret these
“numbers” as “operators”. This is potentially misleading.

Fractions are initially introduced (in Key Stages 1 and 2) as “parts of a
whole”—that is, as [implicit] “operators”. At that stage pupils have no
conception of fractions as numbers, such as 1

2 or 3
4 , but work only with “parts

of an understood whole”.

At some point these “parts of a whole”, such as “half a pint” or “three
quarters of a cake”, have to give birth to the numbers 1

2 and 3
4 . Exactly

how this shift from working with “parts of a given whole” to “fractions
as numbers” is supposed to be made is never clarified in the Key Stage 2
programme of study. So we may anticipate that many pupils entering Key
Stage 3 will still think of fractions only as operators (so the word “fraction”
will immediately conjure up the idea of “a fraction of” some whole).

The third, fourth and fifth requirements listed in 1.6 refer to percentages.
The key here is to recognise that all work with percentages should
eventually reduce to a particular instance of work with fractions
(sometimes in decimal form). That is, “percentages” should eventually
be no longer seen as a separate topic, and fractions (and their arithmetic)
should become the unifying theme. We make three further comments on
percentages.

First, once the transition from “fractions as operators” to “fractions as
numbers” has been firmly established, pupils need to re-interpret fractions
as “operators” once again, in order to implement the standard applications
efficiently—so that, for example, a “20% increase” is naturally calculated by
multiplying by 1.2, rather than by calculating 20% and adding.
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The second comment on percentages has already been made in Section 1.2.3
of Part II, and in Section 1.2.4 above, but bears repetition in the context of
percentages. Mathematics teaching and assessment too often focus on the
easy direct skills, and overlook the fact that fluency, flexibility, and “use”
generally require that far more attention needs to be given to simple inverse
problems. A pupil may know how to

• “find 75% of (i.e. three quarters of) £120”

yet fail to relate this direct operation to the different inverse variations, such
as

• “A price of £90 is raised to £120. What percentage increase is this? And
what percentage decrease would then be required to revert to the original
price?”, or

• “Calculate the original price if I got 25% off and paid £120”.

Pupils need to spend time tackling a suitable variety of problems on
percentages (“including percentage increase, decrease and original value
problems”) in order to appreciate both the underlying direct process, and
the slightly counterintuitive aspects of percentages that tend to arise only
in connection with indirect variations.

The final comment is slightly awkward. It has become common in England
to require pupils to treat “50%” as if it were a number equal to “ 1

2 ”. This is
not only false, but thoroughly confusing (and shows that textbook authors,
editors, and examiners have themselves failed to distinguish between
numbers and operators). The number “ 1

2 ” sits midway between 0 and 1. In
contrast “50%” on its own has no more meaning than the “ f ” in f pxq: it
is an operator, and gives rise to a quantity or value only when it is given
a “whole” (or an “x”) to act upon. “50% of” is another way of writing
“ 50

100 of”, which is in turn another way of writing “ 1
2 of”. But this is an

operator, and is not the same as the number “ 1
2 ”. In particular, the arithmetic

of fractions only applies to numbers: there is no similar way (at this level) of
making sense of “adding and dividing operators”.

1.6.4 The background to fraction arithmetic We noted in Section 1.6.1
that, by the age of 15 or so, it should be clear that large tracts of secondary
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mathematics come down to “fraction arithmetic”. So we end Section 1.6
first with a uniform description of the mathematical background which
underpins the arithmetic of fractions, and then look more closely at the
link between fractions and decimals. This is not intended to be a “teaching
sequence”: its goal is to emphasise certain features of the arithmetic of
fractions whose spirit needs to be incorporated into, and reflected in any
teaching sequence which schools may adopt.

When introducing positive integers, we work at first in some detail with
“copies of a concrete object” (such as sweets). Later we shift attention to
the number “1” as a kind of abstract “universal object”, which can itself be
replicated (like the sweets, but more exactly, and wholly in the mind). Thus
positive integers arise when we replicate, or take multiples of the unit 1:

2 = 1 + 1;

3 = 1 + 1 + 1; and so on.

In general, we may replicate the unit “1” n times to obtain

n “ 1 ` 1 ` ¨ ¨ ¨ ` 1.

All the facts of integer arithmetic follow from this “replication of the unit”.

In a similar way, when introducing fractions, we begin by working in
some detail with concrete objects and consider “parts of some given whole”.
That is, fractions are initially introduced as “parts of a whole”, where the
meaning depends on the particular “whole”: in other words, the fractions
are “fractions of” something, or operators. Before too long, we need to
introduce the fundamental idea that if we take the number “1” to be the
whole, and think of fractions as parts of this universal object “1”, we obtain
“fractions as numbers”. That is, the unit “1” can be subdivided into n equal
parts, each of which is equal to the unit fraction 1

n . This opens the door to a
uniform treatment of fractions—including working with fractions that are
bigger than 1: the fraction m

n can be made by taking m copies of this “unit
fractional part” 1

n .
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To repeat this explicitly:

Integers were constructed by multiplying (or replicating) the unit to obtain
“multiples of the unit 1”:

n “ 1 ` 1 ` 1 ` ¨ ¨ ¨ ` 1 pn termsq.

Fractions as numbers arise as

“that part of 1” that emerges when we treat the unit “1” as our
“whole”, and apply the fraction as an operator to it.

The unit fraction 1
n is obtained by dividing the unit, taking 1

n to be “a
submultiple of the unit 1”—namely that “part” of which exactly n copies
make 1:

1 “
1
n

`
1
n

`
1
n

` ¨ ¨ ¨ `
1
n

pn termsq.

Thus 1
2 is precisely that number of which 2 identical copies make 1:

1 “
1
2

`
1
2

;

1
3 is precisely that number of which 3 identical copies make 1:

1 “
1
3

`
1
3

`
1
3

;

1
4 is precisely that number of which 4 identical copies make 1:

1 “
1
4

`
1
4

`
1
4

`
1
4

;

and so on.

In the end, this is what every justification for calculation with fractions
comes down to.

• The fraction 1
q is defined as above: namely that number of which q copies

make 1.

In the spirit of arithmetical division, this is interpreted as the result of
dividing the unit 1 into q parts, and then taking one part. In other words,
1
q is the answer to the question
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“1 ˜ q “ . . . ?”.

• The fraction p
q is then defined to be p ˆ 1

q (that is,

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

with exactly p terms).

In the spirit of division of given quantities, this can then be proved to be
equal to the result of dividing p units (or wholes) into q identical parts
and then taking one of the q parts (which is easiest to see by dividing
each of the p units into q equal parts [each part being equal to 1

q ], and
selecting 1 of these parts from each of the p different units, to give p ˆ 1

q ).
In other words, p

q is defined to be p ˆ 1
q , but turns out to be equal to the

answer to the question

“p ˜ q “ . . .?”.

• We know that 1
nq is the number of which nq identical copies make 1:

1 “
1

nq
`

1
nq

`
1

nq
`

1
nq

`
1

nq
`

1
nq

`
1

nq
` ¨ ¨ ¨ `

1
nq

pnq termsq

Since there are exactly n ˆ q terms on the RHS, we can bracket them into
q successive groups with n terms in each bracket:

1 “

ˆ

1
nq

`
1

nq
` ¨ ¨ ¨ `

1
nq

˙

`

ˆ

1
nq

`
1

nq
` ¨ ¨ ¨ `

1
nq

˙

` ¨ ¨ ¨

`

ˆ

1
nq

`
1

nq
` ¨ ¨ ¨ `

1
nq

˙

There are now q equal brackets on the RHS, so (by the definition of 1
q ),

– each bracket must be exactly equal to 1
q ;
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– and each bracket contains n terms equal to 1
nq , so each bracket is also

equal to n ˆ 1
nq , which is precisely what we call n

nq .

6
n
nq

“
1
q

An entirely similar argument shows that

np
nq

“
p
q

,

so we can replace any given fraction by another fraction equivalent to it
by “cancelling”, or by multiplying numerator and denominator by the
same integer n.

• Addition and subtraction of fractions needs to be linked to reality by
combining fractional parts of a fixed object.

• Any two fractions a
q and b

q with the same denominator can also be added
or subtracted by remembering what they represent—namely a ˆ 1

q (that
is,

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

with a terms) and b ˆ 1
q (that is,

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

with b terms), so that

– their sum is
pa ` bq ˆ

1
q

“
a ` b

q

(that is,
1
q

`
1
q

` ¨ ¨ ¨ `
1
q
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with a ` b terms), and

– their difference is
pa ´ bq ˆ

1
q

“
a ´ b

q

(that is,
1
q

`
1
q

` ¨ ¨ ¨ `
1
q

with a ´ b terms).

• Any two fractions a
n and b

q with different denominators can be added or
subtracted by first transforming them both into equivalent fractions with
the same denominator

aq
nq

´

“
a
n

¯

, and
nb
nq

ˆ

“
b
q

˙

so that

– their sum is
paq ` nbq ˆ

1
nq

“
aq ` nb

nq

(that is,
1

nq
`

1
nq

` ¨ ¨ ¨ `
1

nq

with aq ` nb terms), and

– their difference is
paq ´ nbq ˆ

1
n

q “
aq ´ nb

nq

(that is,
1

nq
`

1
nq

` ¨ ¨ ¨ `
1

nq

with aq ´ nb terms).
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• Division of fraction x by fraction y needs to be linked to reality by
discovering that both forms of division give the same answer:

– “How many times does y go into x?” (or “How many times can I
subtract y from x?”), and

– “What do we multiply y by to get x?”

• We can formally divide any fraction a
q by one with the same denominator,

say b
q , by remembering what they represent—namely a ˆ 1

q “ a
q and

b ˆ 1
q “ b

q , so that we can switch to the equivalent fraction by multiplying
both numerator and denominator by “q” to see that the quotient is a

b .

• To formally divide any fraction a
n by one with a different denominator b

q ,
we first change them both to equivalent fractions

x “
aq
nq

´

“
a
n

¯

, and y “
nb
nq

ˆ

“
b
q

˙

with the same denominator, and we can then evaluate the quotient by
switching to an equivalent quotient by multiplying numerator and
denominator by “nq” to see that the quotient is aq

nb .

• To multiply two unit fractions 1
n and 1

q we return to their definitions as
submultiples of 1, and think about the product

1 ˆ 1 “

ˆ

1
n

`
1
n

` ¨ ¨ ¨ `
1
n

˙

ˆ

ˆ

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

˙

[n terms in the 1st bracket, q terms in the 2nd].

When we multiply out the two brackets we obtain nq equal terms, each
equal to

ˆ

1
n

˙

ˆ

ˆ

1
q

˙

,
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whose sum is 1. But that is precisely the definition of the unit fraction
“ 1

nq ” .

6

ˆ

1
n

˙

ˆ

ˆ

1
q

˙

“
1

nq
.

When we multiply two general fractions a
n and b

q we can write each
fraction out as:

a
n

“ a ˆ
1
n

“

ˆ

1
n

`
1
n

` ¨ ¨ ¨ `
1
n

˙

pa termsq

b
q

“ b ˆ
1
q

“

ˆ

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

˙

pb termsq

and then multiply out the two brackets ‘long hand’ to get

a
n

ˆ
b
q

“

ˆ

1
n

`
1
n

` ¨ ¨ ¨ `
1
n

˙

ˆ

ˆ

1
q

`
1
q

` ¨ ¨ ¨ `
1
q

˙

[a terms in 1st bracket, b terms in the 2nd] where the RHS gives rise to
exactly ab separate terms, each equal to

ˆ

1
n

˙

ˆ

ˆ

1
q

˙

“
1

nq
.

6
a
n

ˆ
b
q

“ ab ˆ
1

nq
“

ab
nq

.

1.6.5 Fractions and terminating decimals Pupils need exercises that
clarify three features of terminating decimals.

The first is to use place value to interpret each decimal as a sum. Just as

375 “ 3 ˆ 100 ` 7 ˆ 10 ` 5,

so place value tells us that 0.375 means precisely the sum

3 ˆ
1
10

` 7 ˆ
1

100
` 5 ˆ

1
1000

.
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The second is to rewrite the constituent parts (from the separate “places”)
with a common power of 10 as denominator (here “1000”) to obtain:

3
10

`
7

100
`

5
1000

“
300

1000
`

70
1000

`
5

1000
“

375
1000

(˚)

In other words, pupils need to connect the definition of place value (which
breaks up the number into a sum of several parts—tenths, hundredths,
thousandths, etc.) with the alternative reading of 0.375 as 375

1000 .

The third feature is more subtle, namely to realise precisely which fractions
correspond to terminating decimals, and which correspond to endless
decimals.

• If a fraction is given with denominator a power of 10, then it is easy to
write it as a terminating decimal, in exactly the same way that equation
(˚) tells us that

375
1000

“ 0.375. (˚˚)

• But what do we know about 3
8 and 3

18 that should tell us in advance that
the first has a terminating decimal, but the second does not?

The key lies in the previous paragraph (and properties of prime
factorisation which were addressed in Section 1.4).

Suppose we are given some unfamiliar fraction.

• The first move is to cancel any common factors between the numerator
and the denominator which may mislead us.

For example, we know that the decimal for 1
2 “ 0.5, and so it terminates.

But if we were faced instead by 3
6 , we might be misled by knowing that the

decimal for 1
6 does not terminate. This first move of “cancelling” puts the

given fraction into its “standard form”, or “lowest terms”, p
q , where p, q

have no common factors (other than 1): HCFpp, qq “ 1.

We have seen that a fraction whose denominator is equal to a power of 10
can always be written as a terminating decimal (as in equation (˚˚)). Pupils
need to extend this to see that
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• if a given fraction p
q can be re-written in a form with denominator equal

to a power of 10 (in the same way that 3
8 “ 375

1000 ),

then it will be equal to a terminating decimal.

That is, given a fraction p
q , we need to know when it can be rewritten as an

equivalent fraction np
nq which has denominator a power of 10.

If nq is a power of 10 for some multiplier n,

then the denominator q of the given fraction must be a factor of
some power of 10.

Now 10 “ 2 ˆ 5, so a power of 10, such as 10m “ p2 ˆ 5qm, has
the form 2m ˆ 5m.

And any factor of 2m ˆ 5m must have the form 2a ˆ 5b for some
a, b ď m.

6 If the fraction p
q has a terminating decimal, then the

denominator q must have the form 2a ˆ 5b: that is, a power of 2
times a power of 5.

• Conversely suppose we are given any fraction with denominator q of the
form 2a ˆ 5b.

If a ě b, then we can multiply by n “ 5a´b to make nq “ 2a ˆ 5a “ 10a;
and if b ą a, then we can multiply by n “ 2b´a to make nq “ 2b ˆ 5b “

10b.

6 Any fraction with denominator of the form 2a ˆ 5b has a terminating
decimal.

Hence whether a given fraction p
q (where p, q have no common factors) has

a terminating decimal or not depends entirely on the prime factorisation of
the denominator q:

q “ 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, . . .

all lead to terminating decimals, but

q “ 3, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, . . .
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never do.

1.6.6 Fractions and recurring decimals

Section 1.6.5 shows that:

every fraction p
q , where p, q have no common factors and q is

not of the form 2a ˆ 5b has a decimal that does not terminate,
and so must go on for ever.

In fact every such fraction has a decimal that “recurs”: that is, its decimal
consists of

an initial sequence of digits (which can be of any finite length),
followed by a “block of digits” that simply repeats over and
over again for ever.

The most familiar examples are

1
3

“ 0.3333333 . . .

which recurs from the beginning with a repeating block “3” of length 1;

1
11

“ 0.090909 . . .

which recurs from the beginning with repeating block “09” of length 2;

1
6

“ 0.1666666 . . .

which recurs from the 2nd place with repeating block “6” of length 1;

1
7

“ 0.1428571428 . . .

which recurs from the start with repeating block “142857” of length 6.

The converse is also true, in that

every decimal which recurs in this fashion is the decimal of
some fraction.
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The proofs of these statements are discussed briefly in Section 1.8 below.

1.7. [Subject content: Number p. 6]

– use approximation through rounding to estimate answers
and calculate possible resulting errors expressed using
inequality notation a ă x ď b

In mathematics we calculate with exact “mental objects”. But when
mathematics is applied, the numbers often come from the real world.
Discrete data from the real world (e.g. small counting numbers) can
sometimes be “exact”; but most measurements are reliable only to a certain
degree of accuracy. The approximate character of certain measurements is
reflected in the “rounding conventions”. When a digit is known to be, or is
to be taken as being, just beyond the known or required limits of accuracy,
the “rounding conventions” mean that

“a digit of 5 or more is rounded up, and everything else is
rounded down”.

Hence a decimal like 37.45293 would be written as

“37.45 to 2 decimal places”, or “37.5 to 1 decimal place”.

Conversely, if we are given a measurement “x “ 37.5 to 1 decimal place”,
then all we know is that the “true” value of x lies somewhere in an interval:
37.45 ď x ă 37.55. (The inequality given in the official requirement listed
at the start of 1.7 should probably have been written as “a ď x ă b” to fit in
with this convention.)

If the initial data is only known to a certain degree of accuracy, then any
calculation with that data is approximate from the outset. Even when
our data and our calculations are “theoretically exact”, approximations
may arise when exact terms (such as “sin 45˝” or “

?
2”) are “evaluated”

at some point using a decimal approximation. All approximations affect
the accuracy of the final result; so pupils need to understand how potential
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errors “accumulate” as a result of calculation, so that they can tell exactly
how inaccurate the final result could be.

When adding or subtracting approximate numbers, the errors in the data
add up. Given two lengths of 2.15cm and 1.75cm—each correct to within
0.05cm—their calculated difference of 0.40cm is only correct to within
0.1cm, so could actually be as low as 0.30cm or as high as 0.50cm. And if
we were to add four lengths, each of which was accurate to within 0.05cm,
then the result would only be accurate to within 0.2cm either way (so we
would only know that the answer lies in an interval of length 0.4cm).

When multiplying or dividing the story is a more complicated. For example,
the area of a rectangle whose dimensions are given as “15cm by 12cm”,
where each measurement is accurate to within an error of 0.1cm, is equal
to 15 ˆ 12cm2, or 180cm2, but only to within 2.7cm2. And if we know that
a rectangle has area 180cm2 accurate to within 5cm2, and that its length is
20cm accurate to within 0.1cm, then its width may be as small as small as
(175 ˜ 20.1)cm « 8.7cm (to 1 d.p.), or as large as (185 ˜ 19.9)cm « 9.3cm (to
1 d.p.).

The art of making estimates, or approximate calculations, is more subtle than
is often thought. It depends on:

• robust fluency in exact calculation, together with a “feeling for
calculation” that is willing to think flexibly about the effect of any errors,

• a willingness to change global units intelligently (replacing the given units
by larger or smaller “blocks” so as to make the eventual calculation more
manageable), and

• an ability to make sensible local approximations (to find the approximate
size of one of these new ‘blocks’ and to estimate the number of “blocks”).

Consider first approximating an exact arithmetical calculation, such as
35941 ˆ 273.

• We need the kind of flexibility that can think of this as 35941 “blocks”
of 273, and combine this with a clear understanding of how the exact
calculation would proceed using the given units—with 35941 copies of a
collection of size 273.
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• Instead of 35941 blocks (each of size 273) we then may see the advantage
of interpreting the number of blocks as “slightly more than 33 1

3 thousand”,
and compensate the block size of 273 by thinking of it as “slightly less
than 3 hundreds”.

• This then suggests that the required answer is “approximately 100
hundred thousands”, or 10 million.

By increasing one factor in the product and decreasing the other we
managed to produce an answer that is fairly close to the actual value
(9 811 893) of the product. But the method used gave us no clue as to
whether we had overestimated or underestimated, or what our maximum
error might be. To get such assurance we would have to approximate
consistently—perhaps to work out

first an overestimate such as 36000 ˆ 300 “ 10800000,

then an underestimate such as 35000 ˆ 250 “ 8750000.

Similarly, in seeking to estimate the size of a large crowd, one may divide
the whole into a number of blocks of more-or-less the same size, count (or
estimate) the number in a given section of the crowd relatively accurately
(for example, by counting the number of rows and the number in each row),
and then multiply the answer by the number of blocks. A striking historical
example of this approach to estimation occurs in Herodotus, The Histories,
Book 7:

“As nobody has left a record, I cannot state the precise numbers
provided by each separate nation [towards the Persian army
that Xerxes was leading against the Greeks in around 480BC],
but the grand total, excluding the naval contingent, turned out
to be 1 700 000. The counting was done by first packing ten
thousand men as close together as they could stand and then
drawing a circle around them on the ground; they were then
dismissed and a fence, about navel-high, was constructed round
the circle; finally the other troops were marched into the area
thus enclosed and dismissed in their turn, until the whole army
had been counted.”



130 Tony Gardiner

1.8. [Subject content: Number p. 6]

– appreciate the infinite nature of the sets of integers, real
and rational numbers.

There is an awkward clash between the precise, procedural language which
is appropriate for specifying the ideas and processes of a school curriculum
and this highly unusual and rather woolly “requirement”. Indeed, it
remains unclear how it survived the extended editing process.

The underlying idea would be fine as part of an internal curriculum—for
in some sense, the whole of elementary mathematics is the story of
“how we tame infinity”. But to include such a requirement in a national
curriculum (especially in such a curiously worded form) runs the risk that
some examiner may decide that they are obliged to invent some way of
“assessing” each year whether it has been addressed!

1.8.1 Mathematics begins when we move beyond the particular to the
general. Every culture develops some way of referring to the size of
small collections of objects (one, two, three, . . . ), and to the ordering of its
objects (first, second, third, . . . ). They either develop some semi-systematic
counting process or adapt that of some neighbouring culture for their own
use. Some cultures go further and invent an “arithmetic” based on their
counting process; but this is almost always done without worrying whether
their form of counting could “go on for ever”.

For example, the numeration system of the Egyptians, and that of the
Babylonians, were both semi-systematic. But both were restricted by the
need to invent specific new symbols each time they wanted to refer to larger
numbers; so it is unclear whether they appreciated “the infinite nature of
the set of integers”. In contrast, there is something truly remarkable about
the ease with which our Hindu-Arabic numeral system combines the ten
digits 0-9 and the idea of “place value” to convey the idea that counting

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
. . . , 98, 99, 100, 101, . . .
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can continue for ever, even though we soon run out of linguistic ways of
“naming” the numbers whose numerals we can all write down so easily.

Despite their mathematical sophistication, the Greeks had no such
systematic notation—a lack which may have forced them to develop their
astonishingly modern approach to handling infinity and infinite processes.
But it also meant that Archimedes had to go to considerable lengths to
demonstrate (in his little book, The Sand Reckoner) that “the number of
grains of sand in the universe is finite”. This he did by repeatedly changing
units in order to estimate a finite upper bound (around 8 ˆ 1063) based
on constructing a large power of a number called (in Greek) a “myriad
myriad”—in much the same way as Herodotus reported (Section 1.7 above)
that the Persians counted the number of soldiers in Xerxes’ army as a
multiple of ten thousand.

Our numeral system avoids the inevitable finiteness of number names, and
focuses instead on a numeral system based on place value, which allows us
to write numbers without giving them names. It then seems clear that, using
only the digits 0–9, our written numerals for counting numbers could go on
for ever. (The truth is more delicate. In our numeral system we “deduce”
the endlessness of the sequence of counting numbers by first assuming that
the sequence of possible “places”—the units, tens, hundred, thousands,
etc.—goes on for ever! However, this is unlikely to disturb anyone.)

In some sense, that is all there is to it. The counting numbers are the same
as the positive integers, so the integers—both positive and negative—are
also infinite (that is, “more than just finite”). The integers are precisely
the “rational numbers with denominator 1”, so the set of rational numbers
is even bigger—and hence infinite. And the real numbers include all the
rational numbers—so the set of all real numbers is also infinite.

1.8.2 Sequences: What else is there to be said at secondary level? Endless
sequences use the counting numbers to label the successive terms of a
sequence. The squares, the cubes, the powers of 2—all go on for ever, and
all get larger and larger without bound (though some “grow” faster than
others):

02 “ 0, 12 “ 1, 22 “ 4, 32 “ 9, 42 “ 16, . . . , n2, . . . ;
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03 “ 0, 13 “ 1, 23 “ 8, 33 “ 27 , 43 “ 64, . . . , n3, . . . ;

20 “ 1, 21 “ 2, 22 “ 4, 23 “ 8, 24 “ 16, . . . , 2n, . . . .

Some sequences eventually stop. Others go on for ever, with one such term
for each positive integer n. It is hard to see that there is much to make a fuss
about.

However, there are two clear candidates at this level, which show that
indeed there is indeed something interesting here, to which one might draw
attention—at least for suitable groups of pupils. The first concerns prime
numbers; the second concerns the way we can be sure that fractions are
precisely the real numbers whose decimals either terminate or recur.

1.8.3 Prime numbers: Prime numbers are the multiplicative building
blocks for integers.

There are 4 prime numbers up to 10; 25 up to 100; and 168 up to
1000.

That is: prime numbers make up 40% of integers up to 10; 25%
up to 100; 16.8% up to 1000.

It is thus apparent that prime numbers seem to be “thinning out” as one
goes up. So one might ask:

Do the prime numbers eventually “peter out”? Or do they go
on for ever?

There is no indication that anyone considered such a question before the
Greeks (4th century BC), who proved that

“the prime numbers are more than any assigned multitude”.

That is, that the prime numbers go on for ever. Euclid’s original proof is
highly memorable and has impressed many a young mind—but it is often
misrepresented. We give it here in a form that is both close to the original,
and in the spirit of modern constructive mathematics.

We know a few prime numbers, so we can clearly pick one to
start with—say p1. (We could choose p1 “ 2, but we do not
have to.)
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We then set
N1 “ p1 ` 1

to be “1 more than the product of all the primes in our list so
far”.

6 p1 is not a factor of N1 (since it leaves remainder “ 1); so the
smallest prime factor p2 of N1 is a new prime number.

Then set
N2 “ p1 ˆ p2 ` 1

to be “1 more than the product of all the primes in our list so
far”.

6 Neither p1 nor p2 is a factor of N2 (since both leave remainder
“ 1); so the smallest prime factor p3 of N2 is a new prime
number.

Then set
N3 “ p1 ˆ p2 ˆ p3 ` 1

to be “1 more than the product of all primes in our list so far”.

6 None of p1, p2, p3 is a factor of N3 (since all leave remainder
“ 1); so the smallest prime factor p4 of N3 is a new prime
number.

And so it goes on, for ever. QED

That is, once the list gets started, no matter how many primes we have
listed so far, we have a bomb-proof way of finding a new prime.

Suppose we start with p1 “ 2, then N1 “ 3 is prime, so p2 “ 3;

then N2 “ 7 is prime, so p3 “ 7;
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then N3 “ 43 is prime, so p4 “ 43.

It is important not to stop at this point, but to complete the next three stages
in order to understand how the process really works.

Work out
N4 “ 2 ˆ 3 ˆ 7 ˆ 43 ` 1,

and hence find its smallest prime factor p5 “ . . . .

Then work out

N5 “ 2 ˆ 3 ˆ 7 ˆ 43 ˆ p5 ` 1,

and hence find its smallest prime factor p6 “ . . . .

Then work out

N6 “ 2 ˆ 3 ˆ 7 ˆ 43 ˆ p5 ˆ p6 ` 1,

and hence find its smallest prime factor p7 .

It is also worth starting with various different “initial primes” p1 to see how
this affects the sequence which is generated each time.

Those who took up our earlier suggestion (Section 1.3) of challenging pupils
to

“Find a prime number which is one less than a square. Find
another. And another.”

might also like to use the similar-sounding, but actually very different
challenge:

“(a) Find a prime number which is one more than a square

(b) Find another such prime. And another.”

If one tries this, then it quickly becomes clear that, except for the very first
such prime 12 ` 1 “ 2, one can restrict to looking for odd primes, and these
must be “one more than an even square”. Among the list of numbers that
are “one more than an even square”,

22 ` 1, 82 ` 1, 122 ` 1, 182 ` 1, 222 ` 1, 282 ` 1, . . .
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are all multiples of 5.

If we eliminate these multiples of 5, we are left with a long list of candidate
primes, starting:

(2,) 5, 17, 37, 101, 197, 257, 401, 577, 677, 901, . . .

Almost all of these 11 “candidate primes” turn out to be genuine primes (only
one of those listed is not). This raises the question:

Are there infinitely many prime numbers of the form “n2 ` 1”?

Or does the list eventually peter out?

This is perhaps the simplest question one can pose at this level to which the
answer is not yet known.

1.8.4 Recurring decimals: One other place where infinity features
at Key Stage 3 and needs to be handled properly is the way the normal
division process is extended to compute recurring decimals for fractions.
We have seen that when we divide an integer p by another integer q, the
process terminates precisely when the fraction p

q is equivalent to a decimal
fraction (one with denominator 10n for some n)—as with

3
24

“
125
1000

,

or
5
16

“
3125

10000
,

and that this occurs whenever the fully simplified fraction has a
denominator of the form 2a ˆ 5b.

In all other cases, the division process continues indefinitely. For example,
when one carries out the division for 1

7 , the output seems to recur:
0.14285714. . . . All too often pupils are left with the impression that

the output to the division process “recurs” because it seems to
recur.

This is like believing that the “leading digits” of the sequence of powers of
2 recur because they look as though they recur:

2, 4, 8, 1, 3, 6, 1, 2, 5, 1; 2, 4, 8, 1, . . . .
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The fact that the division of p by q recurs follows not from the apparent
output, but from the pattern of remainders.

• The decimal for p
q terminates precisely when at some point we obtain a

remainder of 0.

• So if the decimal does not terminate, then the only possible remainders
are

1, 2, 3, . . . , q ´ 1.

Hence, within at most q steps, we will always get a remainder r that we
have seen before; and this remainder r becomes 10r in the next decimal
place as it did on the first occurrence of the remainder r, so from then on the
process simply repeats whatever happened after the previous occurrence
of the remainder r.

For example, when calculating the decimal for 1
7 we divide 7 into

1.000000 . . . .

• Forget about the output, or the “answer”, and concentrate on the
remainders.

• The process begins with a remainder of “1”, then “3”, then “2”, then “6”,
then “4” then “5”, then “1” (the first repeat)—which becomes “10” in the
next column, as it did at the first stage when the initial “1” became “10
tenths”.

• The process must then repeat from here on (giving the answer

0.14285714285714 . . . ,

with the block “142857” repeating for ever).

The converse claim—namely that

every number x whose decimal recurs is the decimal of some
fraction

can be appreciated at this level (say Year 9 or Year 10) via the procedure for
turning any such decimal back into a fraction. For example:
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Suppose x “ 0.37255555 . . . (for ever)
Then 10x “ 3.72555555 . . . (for ever)

6 9x “ 10x ´ x
“ 3.353 “ 3353

1000
6 x “ 3353

9000 .

Suppose x “ 0.72525252525 . . . (for ever)
Then 100x “ 72.5252525252 . . . (for ever)

6 99x “ 100x ´ x
“ 71.8 “ 718

10
6 x “ 718

990 “ 359
495 .

1.9. [Subject content: Ratio, proportion and rates of change p. 7]

– change freely between related standard units (for example
time, length, area, volume/capacity, mass)

– use scale factors, scale diagrams and maps

– express one quantity as a fraction of another, where the
fraction is less than 1 and [where the fraction is] greater
than 1

– use ratio notation, including reduction to simplest form

– divide a given quantity into two parts in a given part:part
or part:whole ratio; express the division of a quantity into
two parts as a ratio

– understand that a multiplicative relationship between two
quantities can be expressed as a ratio or a fraction

– relate the language of ratios and the associated calculations
to the arithmetic of fractions and to linear functions
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– solve problems involving percentage change, including:
percentage increase, decrease and original value problems
and simple interest in financial mathematics

– solve problems involving direct and inverse proportion,
including graphical and algebraic representations

– use compound units such as speed, unit pricing and
density to solve problems

1.9.1 This is a mixed bag of requirements linked to multiplication, ratio
and proportion, and scaling—and hence, ultimately to the application of
fractions.

• The first two listed requirements (the ability to switch “between related
units”, and to work with “scale factors, scale diagrams and maps”)
clearly involve “multiplying factors” and an application of ratios.

• We have already noted the relative neglect of compound units. So the last
listed requirement in 1.9 should be interpreted in the light of comments
already made in Section 1.1 above and in Part II, Section 1.2.

• Percentage and percentage change has already arisen in 1.6, but
reappears here for good reason.

• The requirements for pupils to “express one quantity as a fraction of
another” and to “divide a given quantity into two parts” underline
the connections between the work required here and work involving
fractions (see Sections 1.6.1–1.6.3 above).

1.9.2 We repeat and expand some of the ideas touched upon in Part
II, Section 2.2.1. Elementary mathematics comes into its own (and needs
to be seriously taught!) as soon as we take the step from addition to
multiplication. Ratios are the quintessential “multiplicative relations”, and
work with ratios links naturally to work with fractions.

All that is needed to generate a ratio is a single class of comparable
magnitudes—that is, a class of magnitudes
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• where any two given entities can be “compared”, so that we can decide
which is the larger, and

• where one can also subtract the smaller from the larger, with the
“difference” being another entity from the same class (as, for example,
with line segments).

That is, one needs to be able to implement a version of the Euclidean
algorithm.

The simplest example of a class of “comparable magnitudes” is the set of
positive real numbers. In the context of ratios, real numbers normally arise as
the set of numerical measures of some set of objects (relative to some chosen
unit). Such numerical ratios are easy to handle (with the class of objects being
replaced by their measures); but ratios also arise naturally in mathematics
between comparable entities (such as line segments, or 2D shapes) without
turning everything into numbers by ‘measuring’.

For example, 3cm and 2cm are in the ratio “3 : 2”. But we also have the same
ratio between the two line segments, say AB and CD, that were measured as
being of lengths 3cm and 2cm. Even if we do not know their exact lengths,
there is often a natural way to be sure that “half of the second segment fits
exactly three times into the first segment”. For example, if we draw a circle
with centre O passing through the point X, extend the radius XO to meet
the circle again at Y, and construct the mid-point M of the segment OY,
then we can be sure (without measuring) that

XM : XO “ 3 : 2.

1.9.3 The rest of our comments in this section revisit and extend our
previous remarks in Part II, Section 2.2.1. What follows explores further the
background to ratio and proportion, which is the key idea that underlies most
of the (rather vaguely worded) requirements listed at the start of Section 1.9.
We repeat our earlier comment: this outline is intended for teachers, and is
not a teaching sequence for pupils.

The word proportion has a colloquial usage, which is unfortunately copied in
many mathematics texts and classrooms. People speak about “a proportion
of the class”, meaning exactly the same as “a fraction of the class”. This
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has nothing to do with mathematical “proportion”. Sloppy language is
neither helpful nor harmless: it confuses pupils, teachers, textbook authors,
and examiners alike. In general, technical words are best used correctly
and with care in the mathematics classroom (as is normal in many other
countries). Because the underlying mathematics may not be second nature,
it seems simplest to repeat the basic framework from Part II, Section 2.2.1,
while adding a little more detail.

Given the notion of a class of comparable magnitudes, or quantities, a
(mathematical) proportion arises when two different classes of entities are
linked in a special (but very common) way. For example, suppose that one
class consists of

“quantities of petrol”

and the other class consists of

“amounts of money in £”.

If 1 litre of petrol costs £1.50,
then we expect 2 litres to cost £3 (“ 2 ˆ £1.50)

That is, for any two purchases from the same outlet at the same time,
the quantities purchased (in litres)

are in the same ratio as
the amounts paid (in £).

If I buy a litres of petrol and pay £c,
and you buy b litres of petrol and pay £d,
then the ratio a : b is equal to the ratio c : d.

The equality
a : b “ c : d

is what we call a proportion.

Note that since a, b, c, d are magnitudes, with a, b of one kind and c, d of
another kind, then “a : b” is a perfectly well-defined ratio; but “a : c” makes
no sense, because a and c are not “comparable magnitudes”. One can have
a ratio a : b between two quantities of petrol both measured in litres (or a
ratio c : d between two amounts of money—both measured in £); but one
cannot have a ratio between a quantity of fluid and an amount of money.
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However, something miraculous occurs if we replace the different quantities
and amounts by their numerical measures. The equality of ratios

a : b “ c : d

can then be written as an equation between fractions, which can be treated
purely algebraically. That is, if we replace each ratio by the quotient of the
corresponding measures we get an equality of quotients, or fractions:

a
b

“
c
d

(˚)

The two quotients in equation (˚) are always equal, but can take any positive
value. For example, we could buy

b “ 2a litres of petrol and pay d “ 2c pounds,
and the quotients would both take the value 1

2 . Or we could buy
b “ 1

2 a litres of petrol and pay d “ 1
2 c pounds,

and the quotients would both take the value 2.

The equation (˚) between fractions can be treated purely numerically (or
algebraically) and can be rearranged to give

c
a

“
d
b

.

This equation looks very similar to equation (˚), but it is completely
different. The two sides do not represent ratios, but specify the constant
of proportionality (relative to the two chosen units: litres and pounds (£)).
That is, once we choose units and give numerical values a and c to the basic
pair of corresponding magnitudes—one from one class and one from the
other

a litres ´́ ´́ ´́ ´́ ´́ ´́ ÝÑ cost £c

the value of the quotient c
a is a constant: that is, it is the same as the value of

the corresponding quotient d
b for any other pair of corresponding magnitudes

b, d (one from one class and one from the other). The purely numerical
quotient c

a can now be interpreted as the “multiplying factor” that links the
two classes of related magnitudes.
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This is the simplest, and perhaps the most valuable, application of school
mathematics—to life, to science and to mathematics itself. It applies
whenever two quantities are related so that if one quantity doubles, or
triples, so does the other: that is, where the numerical measures a, c or
b, d of the two quantities have a constant ratio. Two quantities that vary in
such a way as to preserve a constant ratio between their values are said to
be “in proportion”.

The fact that “ c
a is a constant” means that the number lines corresponding

to the two families of measures “line up” in such a way that one scale is
simply a multiple (ˆ c

a ) of the other:

s s s s p p p y
0 c 2c 3c

s s s s p p p x
0 a 2a 3a

£:

litres:

If we imagine a linked pair px, yq of unknown variables—where

x litres ´́ ´́ ´́ ´́ ´́ ´́ ÝÑ cost £y

then these linked variables are related by the linear equation

y “

´ c
a

¯

x.

Eventually (in late Key Stage 3 or Key Stage 4) one may want as many
pupils as possible to appreciate this global picture, and to be able to

“formulate proportional relations algebraically”

as is required in the quote at the start of Section 2.2.1 in Part II. However,
this is unnecessary, and probably inappropriate for beginners, who first
need to learn how to solve the various standard problems involving
proportion.

Any particular proportion problem that pupils may be required to solve is
likely to involve just two pairs pa, cq and pb, dq,

where a and b come from one class of magnitudes,
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and c and d come from the other class.

In a typical proportion problem, three of the four values are known and the
fourth is “to be found”. This explains why the approach to solving this kind
of problem is referred to in old texts as “the rule of three”. Hence one pair
is completely known, and we take this as our “base”, or reference pair

a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c

One of the other two values is to be found. So the four ingredients can be
thought of as the corners of a rectangular array, where three of the values
are known and the fourth is to be calculated, so we either have the unknown
value in the bottom right corner:

If a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c

then b litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £??

or the missing value may be located bottom left:

If a litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £c

then ?? litres ´́ ´́ ´́ ´́ ´́ ´́ÝÑ cost £d

This standard way of representing the four pieces of information in
a proportion—with three known values and one generally unknown—is
referred to here as the rectangular template for displaying proportion
problems.

To repeat the earlier derivation, if we know the corresponding values a and
c in our “reference pair”

a ´́ ´́ ´́ ´́ ´́ ´́ÝÑ c

then two unknown amounts x and y, which correspond to each other,
provide the third and fourth vertices of our “rectangular template”

x ´́ ´́ ´́ ´́ ´́ ´́ÝÑ y

and so satisfy
x : a “ y : c
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If the two magnitudes of the first kind x, a, and the two magnitudes of the
second kind y, c are replaced by their measures, then the proportion can be
written as

x
a

“
y
c

and this can be rearranged to express the relationship between the two
unknown values x and y as

y “

´ c
a

¯

x

with multiplying factor c
a . If we are given the value of x, we can calculate

the value of
y “

c
a

ˆ x;

and if we are given the value of y, then we can calculate the value of

x “
a
c

ˆ y.

For example:

if a “ £100 is worth the same as c “ $150

then

x “ £200 will be worth exactly y “ c
a ˆ x “ $ . . . .

And

if a “ 1kg is the same as c “ 2.205lbs

then

x “ a
c ˆ y “ . . . kg is the same as y “ 5lbs.

Earlier we showed how the “number lines” corresponding to the two
families of magnitudes in a proportion problem can be lined up to form
what is sometimes called a “double number line”. We have since seen how
the simpler “rectangular template” picks out two data points (a and b) on
the first number line, and two points (c and d) on the second number line,
and have suggested that this is sufficient for the beginner to solve problems.
(To link the two representations one has to imagine that the double number
lines run vertically, with a and b chosen from the left hand line and c and d
chosen from the right hand line.)
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We typically know one pair of corresponding values, such as that

£100 is worth $150;

and we want to know either:

“If I have £x “ £768 how many $y can I
expect in exchange?”

or

“How many £x should I expect in exchange

for y “ $1152?”.

Pupils who become sufficiently confident may solve the first kind of
proportion question directly—and in one of two ways:

(i) extract the ratio b
a from two of the known quantities of one kind (e.g.

768
100 in the above example), and apply it to the third known quantity c
of the other kind, to find the unknown required value

y “ c ˆ
b
a

(150 ˆ 768
100 “ . . . in the above example); or

(ii) identify the constant of proportionality c
a (“ 150

100 in our example) derived
from two known corresponding quantities of different kinds, and apply
it to the third known quantity b to find the unknown value

y “
c
a

ˆ b

( 150
100 ˆ 768 “ . . . in the above example).

However, for most students, the unitary method provides an essential
stepping stone en route to this general method—a stepping stone which
one can return to in any setting to re-explain, or to reinforce, the logic of
the general method.

Given three of the four relevant values,
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instead of using one of the two “magic multipliers” ( b
a or c

a )
immediately, we use the two known corresponding values (one
of each kind)—here £100 and $150—to calculate:

• first that

£1 (the unit) corresponds to $
´

150
100

¯

“ $1.50

• then to multiply the answer ($1.50) by 768 to get the number
of $

£768 “ 768 ˆ £1 corresponds to 768 ˆ $1.50 “ . . . .

Thus

if £100 ´́ ´́ ´́ ´́ ´́ ´́ÝÑ $150

then £1 ´́ ´́ ´́ ´́ ´́ ´́ÝÑ $
´

150
100

¯

“ $1.50

so £768 “ 768 ˆ £1 ´́ ´́ ´́ ´́ ´́ ´́ÝÑ 768 ˆ $1.50 “ $ . . . .

2. Algebra

2.1. Structure

We noted in Part II Section 2.1.1 that elementary algebra has its roots
in structural arithmetic—the art of numerical calculation which exploits
structure rather than brute force.

• At its simplest, this appeal to “structure” may go no further than to use
place value—as in

73 ` 48 ` 27 “ p73 ` 27q ` 48,

or
17.18 ` 7460 ` 22.82 “ p17.18 ` 22.82q ` 7460.
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• This grows into an awareness of the algebraic structure lurking beneath
the surface of many numerical or symbolical expressions—as in

3 ˆ 17 ` 7 ˆ 17 “ p3 ` 7q ˆ 17,

or
6 ˆ 15

10
“

3 ˆ p2 ˆ 5q ˆ 3
10

“ . . . ,

or
16 ˆ 17 ´ 3 ˆ 34 “ p16 ´ 6q ˆ 17.

• Eventually this instinct for “tidying up” applies the underlying algebraic
rules in a way that allows us to simplify all manner of algebraic
expressions—starting with the simplest examples, such as

6pa ´ bq ` 3p2b ´ aq “ . . . .

But before this third stage, pupils must first internalise these algebraic rules
by applying them to simplify numerical expressions, and then learn to see
symbols as “placeholders for numbers” and to calculate with symbols in
this spirit.

2.2. Technique

It is not easy to illustrate what we in England need to do differently with
algebra at age 11–14. The complaints of those who teach the top 20% at
the start of A level mathematics at age 16 are clear and consistent: these
students—who are the most successful products of Key Stage 3 and Key
Stage 4—struggle with fractions, and with the simple algebra they need
for beginning A level. Other pupils are even more ill-served by the current
approach to algebra up to age 16, where this key topic is either ignored, or
treated far too superficially. We need to lay much stronger foundations in
algebra for all pupils (even if some will inevitably go further than others).

The more focused demands of the new Key Stage 4 programme of study
could provide a useful indication of what needs to be done—provided these
demands are understood, and are taught with a view to mastery (rather
than as mindless rules). Another useful pointer as to what needs attention
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may be found in the released items20 from TIMSS 2011, which compared
achievement in around 50 countries. English Year 9 pupils do tolerably
well as long as they only need to use their common sense (e.g. “pattern
spotting”). But once their performance depends on technique (i.e. something
that has to be taught), the results are less encouraging. We saw in Part II
(examples 1.4A–1.4K) how the bulk of Year 9 pupils in England struggle
with simple problems involving fractions and decimals. In Sections 2.4, 2.5,
and 2.7 below we include a selection of items intended to support the
assertion that schools also need to re-consider how they approach algebra
at Key Stage 3. We have again avoided making comparisons with countries
from the Far East, and instead compare the results of pupils in England
with those from Russia, from Hungary, from the USA, and from Australia.

2.3. [Subject content: Algebra p. 6]

– use and interpret algebraic notation, including

ab in place of a ˆ b

3y in place of y ` y ` y and 3 ˆ y

a2 in place of a ˆ a, a3 in place of a ˆ a ˆ a, a2b
in place of a ˆ a ˆ b

a
b in place of a ˜ b

coefficients written as fractions rather than as
decimals

brackets

It would be hard to overstate the extent to which the algebraic notation
summarised in these six bullet points makes elementary mathematics
accessible to ordinary people.

The importance of notation should be clear if one considers the impact
of our notation for writing integers and decimals in base 10. This was

20 http://timss.bc.edu/timss2011/international-released-items.html

http://timss.bc.edu/timss2011/international-released-items.html


Teaching Mathematics at Secondary Level 149

proposed in 1585 by the Dutchman Simon Stevin in his little book Die
Thiende. Stevin’s original notation was slightly unwieldy, but it soon
evolved into the astonishingly compressed form that we use today, where a
single succession of digits (and a decimal point) captures everything about
a number, and does so in a way that allows routine calculation in a form
that everyone can master. This notation was later extended by adopting
our way of writing fractions or quotients (see the fourth bullet point above),
and surds.

Our algebraic notation then emerged in almost modern form in Descartes’
book on Geometry in 1637. This had an even greater impact. Before
that time, even the best mathematicians struggled to express general
calculations using symbols. Yet within 40 years, Descartes’ new symbolism
had revolutionised mathematics, allowing Newton and Leibniz to invent
what we now call “the calculus”. And within another 100 years, the
language of algebra had been streamlined further by Euler into a form that
made its potential power available to everyone.

But for ordinary mortals to access this power, the conventions summarised
at the start of 2.3 have to be learned and respected. It seems not to be
generally understood why these conventions make such a difference; but
there is nothing difficult here, and beginners need to be absolutely clear
that the conventions are not optional.

The whole purpose of algebraic notation as summarised above is

• to write algebraic expressions in a compact form, that can be apprehended
at a glance, and

• to do so in a way that reflects the rules for priority of operations.

The genius of the Descartes-Euler conventions lies in the way they ensure
that:

• Multiplication and division hold together tightly, allowing products
(such as “3ab” or “5a2b”) to be spatially compressed, so that the eye and
the brain perceive them as a single “term”.

• In the same spirit, fractions—whether as coefficients, or as terms within
the overall expression—must be written with a horizontal bar (as 1

2 a,
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never in the misleading form “1{2a”); and decimals are best avoided
whenever possible, since they undermine the goal of holding terms
together compactly.

• Addition and subtraction link separate multiplicative “terms”, but do so
more loosely, so that the visual impression at a glance reflects the priority
of operations.

The result is that the eye and brain can learn to read an algebraic expression
at a glance in much the same way as place value allows one to grasp the
meaning of numbers. But first one has to learn to routinely and reliably
translate mildly complicated combinations into this new algebraic script.
Thus one would like almost all pupils to be able to grasp the meaning of
the simplest expression, such as “xy ` 1”—especially if all they had to do
was to choose between four mostly dodgy options.

2.3A What does xy ` 1 mean?

A add 1 to y, then multiply by x B multiply x and y by 1
C add x to y, then add 1 D multiply x by y, then add 1

2.3A Russia 89%, USA 80%, Hungary 73%, England 72%,
Australia 71%

Given the importance of algebra in elementary mathematics, we really do
need to think how to get understanding at this most basic level up around
90%. So in Section 2.5 we stray from our usual “higher viewpoint” and risk
a few specific suggestions to encourage schools to consider what we might
be currently omitting.

One important point is obscured by the simple examples used in the
requirements listed at the start of the current Section 2.3—namely that
the ingredient constructions and conventions are often combined. Hence
in a typical “sum” the terms being added may themselves already be
compound expressions (as in “p3x ´ 6y ` 4q ` p5y ´ 2x ´ 3q”), and in a typical
“square” the expression being squared may be a compound expression (as
in “p3x ´ 6y ` 4q2”). Too often we stop short of adding this extra layer
of complexity. In the short term, nothing may be lost; but such “layered
complexity”, or variation, is an integral part of the new algebraic language,
which pupils need to get used to.
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2.4. [Subject content: Algebra p. 6]

– substitute numerical values into formulae and expressions,
including scientific formulae

– understand and use standard mathematical formulae;
rearrange formulae to change the subject

– understand and use the concepts and vocabulary of
expressions, equations, inequalities, terms and factors

– simplify and manipulate algebraic expressions to maintain
equivalence by:

– collecting like terms

– multiplying out a single term over a bracket

– taking out common factors

– expanding products of two or more binomials

Section 2.4.1 addresses the content of these four requirements by providing
some initial food for thought from TIMSS 2011, a study which compared
the performance of Year 9 pupils in around 50 countries.

Section 2.4.3 is long and expands on our earlier remark that “Elementary
algebra copies the structure of arithmetic (that is, the four rules, together
with the commutative laws, the associative laws, and the distributive law),
and applies it to a new mixed universe of symbols (or letters) and numbers.”

Section 2.4.2 is relatively short, and refers loosely to some of the ideas from
2.4.3, so should perhaps follow it. But that would risk the basic message of
2.4.2 being obscured by the preceding detail. Since this message is simple
and important, we present it before the details in Section 2.4.3.

2.4.1 We begin with six tasks taken from TIMSS 2011. The first three
are simple exercises involving substitution, and so are directly relevant to
the first listed requirement in 2.4. The last three—two of which are again
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simple exercises—are relevant to the second, third and fourth requirements
(and especially the fourth).

2.4A y “ a ` b
c . a “ 8, b “ 6, and c “ 2. What is the value of y?

A 7 B 10 C 11 D 14

2.4B k “ 7 and m “ 10. What is the value of P when P “ 3
5 km?

2.4C Use the formula

y “ 100 ´
100

1 ` t

to find the value of y when t “ 9.

2.4D Which of the following is equal to 3p2 ` 2p ` 2p2 ` p?

A 8p B 8p2 C 5p2 ` 3p D 7p2 ` p

2.4E Which expression is equal to 4p3 ` xq?

A 12 ` x B 7 ` x C 12 ` 4x D 12x

2.4F Simplify the expression

3x
8

`
x
4

`
x
2

.

Show your work.

Once the conventions of elementary algebra are understood, substituting
values should be entirely routine. Hence 2.4A, 2.4B, and 2.4C should be
exercises in simple arithmetic—where we should expect a high level of
success.

2.4D and 2.4E go beyond mere arithmetic, but remain the very simplest
kind of algebraic exercises; so one should again expect success rates to be
high.
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The actual results for 2.4A, 2.4B, and 2.4C (see below) suggest either: that
Year 9 arithmetic is weak; or that the conventions of elementary algebra
are often not understood at this level. The results for 2.4D and 2.4E
(multiple-choice questions with just four rather crude options) suggest that
pupils’ grasp of the basic algebraic conventions remains painfully weak.

2.4F is more searching. It is the simplest imaginable example of genuine
algebraic simplification involving fractions (as opposed to an introductory
textbook exercise); but it requires pupils to have understood that adding
fractions requires one to reduce to a common denominator. This idea has
to be applied in a mildly algebraic context—but it is hard to imagine what
other standard principle might be elicited by the instruction to “simplify”
such an expression. The results suggest that schools need to reflect on their
current approach to the arithmetic of fractions and to elementary algebra.

2.4A Russia 91%, USA 81%, Hungary 81%, England 73%,
Australia 71%

2.4B Russia 83%, USA 70%, Australia 46%, Hungary 46%,
England 40%

2.4C Russia 80%, USA 55%, Hungary 51%, Australia 47%,
England 45%

2.4D Russia 81%, Hungary 63%, USA 58%, Australia 56%,
England 47%

2.4E Russia 81%, Hungary 57%, USA 53%, England 41%,
Australia 40%

2.4F Russia 35%, Hungary 34%, USA 19%, Australia 14%,
England 9%

2.4.2 “Substituting values into formulae and expressions” to highlight
letters as placeholders for numbers The requirement to “substitute
numerical values into formulae and expressions” draws attention to a basic
characteristic of algebra which deserves more attention.

• In an equation the letters are constrained, so can only take particular
(as yet unknown) values. So we are not free to “substitute arbitrary
numerical values” for the unknown.
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• A formula is essentially no different from an equation with two or more
variables, in that it expresses the way one variable depends on, and is
determined by, others. So we are only free to “substitute numerical values”
for certain variables—and this then determines the value of some other
quantity which depends on them.

• In contrast, the letters and numbers in an algebraic expression are only
required to satisfy the rules of arithmetic (or of algebra), so the letters can
be replaced by any numbers whatsoever, provided all occurrences of the same
letter are given the same value.

Many pupils never grasp these facts, and blindly move letters around
without ever realising that they are little more than “placeholders for
numbers”. The examples 2.4A, 2.4B, and 2.4C reinforce the impression that
pupils need more varied, carefully designed experiences of “substituting
given numerical values” for the letters in “formulae and expressions”, so
that they internalise the idea that each letter in an expression can be given
any value.

The act of substituting and evaluating also provides opportunities

• to exercise mental arithmetic, and

• to check in a numerical context (and if necessary to correct) the way
algebraic notation is understood—including brackets, the correct reading
and evaluation of expressions involving exponents, the priority of
operations, juxtaposition as multiplication, and the fraction bar as
division.

Moreover, evaluating expressions in this way can begin to convey the idea
that

• each choice of inputs gives rise to a single determined output value for the
expression.

That is, that such expressions provide the simplest examples of what we
will later call a function (of is component variables).

2.4.3 What is elementary algebra?
We saw in 2.3 how the Descartes-Euler notation for elementary algebra helps
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us to make sense of compound expressions as being made up from their
atomic parts, which we call “terms”. There is no strict definition of what
counts as a “term”, but it tends to refer to one of the products, or brackets,
which are combined to make up the whole expression. For example, where
an integer such as 35 can be written as a product of two integers (35 “ 5 ˆ 7),
the 5 and 7 are called factors of 35. Similarly, when a compound expression
(such as x2 ` 5x ` 6) can be written as a product of two or more brackets
(x2 ` 5x ` 6 “ px ` 2qpx ` 3q), each of the brackets on the RHS is a factor of
the original expression. In the expanded form, ‘‘x2”, “5x”, and “6” would
be seen as separate terms; but in the factorised form, the separate brackets
“px ` 2q” and “px ` 3q” might be referred to as constituent terms.

This new domain of elementary “algebra” has several distinct sub-domains,
each of which sheds a slightly different light on the subject. Some of
these subdomains are more natural starting points for beginners than
others. The four most obvious subdomains—in approximate order of
sophistication—are formulae, equations (and inequalities), expressions, and
identities.

• Formulae. Here letters are used in place of familiar entities (e.g. A “ l ˆ b
for the area A of a rectangle of length l and breadth b; or C “ 2πr for
the circumference C of a circle of radius r). In each such formula, the
letters can take different values. The simplest formulae are a bit like the
simplest calculations that we meet at Key Stages 1 and 2, in that they
tell us how the value of one entity can be calculated once we know the
values of certain others. For a rectangle, A “ l ˆ b tells us that the area of
a rectangle (measured in square units) is given by multiplying the length
and the breadth: the entities l and b can take any value ě 0, and the value
of A is then determined.

At Key Stage 3 it is important to stress that, even though symbols (like
l and b) are often chosen so that the letters reminds us of what they
represent, the symbols are not a shorthand for the concepts “length” and
“breadth”, but stand for numbers. Hence b stands for “the number of
units in the breadth” rather than for the breadth itself, and the r in 2πr
stands for “the length in units of the radius” (see Sections 2.4.1 above and
Part II, Section 2.1.3).



156 Tony Gardiner

[There may be a clash here with the way variables are used in science.
In mathematics letters stand for pure numbers. But science teachers
sometimes use letters to stand for quantities—including their units: so
a letter may be used to stand for a length “3cm”, rather than just for the
number of centimetres—namely “3”.]

• Equations (and inequalities). The first equations one meets involve a single
letter (often denoted by “x”). This letter is usually referred to as the
“unknown”—because an equation can be interpreted as an arithmetical
constraint which some “unknown number x” has to satisfy. An equation
can then be transformed using the rules of algebra to try to unmask this
previously “unknown number”. For example, the problem:

“I’m thinking of a number.

When I double it and add 3 the result is 15.

What is my number?”

can be formulated by saying:

Let the unknown number be “x”.

Then x must satisfy the equation 2x ` 3 “ 15.

Once the equation has been set up, the secret is to forget where it came
from and to transform the equation according to the laws of arithmetic
(or the laws of algebra) in order to recover what information we can
about “x”: for example,

adding “´3” to both sides we get 2x “ 12;

then dividing both sides by 2 we get x “ 6.

These “transformations of an equation” set the scene for the way the ““”
sign will be routinely handled when pupils work with expressions and
identities.
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Later we meet equations involving the square or the cube of the
“unknown”, or equations involving more than one “unknown”. For
example, suppose we are asked:

“How can I transfer exactly 76 litres from a pond into an empty
tank by using two buckets—one holding exactly 8 litres and
the other holding exactly 7 litres?”

We can imagine filling and pouring the 7 litre bucket “x” times and the
8 litre bucket “y” times to get 76 litres, so that 7x ` 8y “ 76. Notice that
in the problem as described, the two unknowns x and y are both integers
ě 0. (We ignore for the moment the fact that one could also imagine
pouring 12 full 7 litre buckets into the empty tank and then removing one
full 8 litre bucket, or pouring 13 full 8 litre buckets into the empty tank
and then removing 4 full 7 litre buckets—which correspond to solutions
in which one of x and y may be negative.)

The third requirement listed at the start of Section 2.4 refers to inequalities.
One should probably not try to go too far in exploring inequalities at Key
Stage 3. However, we already saw at the end of Section 2.2.2 in Part II:

• that understanding and solving inequalities are important in applications
of elementary mathematics,

• how solving inequalities relates to solving equations, and

• how badly neglected the topic has been in English schools.

The third bullet point here suggests that considerable thought needs to
go into how to address this requirement in the course of Key Stage 3
and Key Stage 4. Work at Key Stage 3 needs to prepare for what will
be needed at Key Stage 4, so one should hesitate to offer a general way
of solving inequalities at this stage, and should focus instead on lots of
examples. These examples should be given in different forms, and in
different contexts, with both positive and negative coefficients, and with
the unknown appearing on either, and on both sides of the inequality. The
solutions should be expressed in words, marked on the number line (and
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eventually, for the bold, written using “set notation”—as is required in the
GCSE Subject criteria).

To cut a long story short, every linear inequality in one variable can be
reduced either

(a) to the form “ax ` b ă 0”, or “ax ` b ď 0” (where a and b are constants,
with a ą 0), or

(b) to the form “ax ` b ą 0”, or “ax ` b ě 0” (where a and b are constants,
with a ą 0).

To consider the first case only: we can add “´b” to both sides of the
inequality, and then multiply both sides by the positive constant 1

a , to
conclude that the solutions in the two cases consist of

“all values of x satisfying x ă ´ b
a ”, or “all values of x satisfying

x ď ´ b
a ”.

These can be shown on the x-axis, or number line, by shading

“all points x to the left of ´ b
a ”, or “all points x to the left of ´ b

a
together with x “ ´ b

a ”.

For the more ambitious, the solutions can later be written in the form

"

x : x ă ´
b
a

*

,

or
"

x : x ď ´
b
a

*

.

Quadratic inequalities in one variable, and linear inequalities in two
variables, are more interesting, but probably belong at Key Stage 4.

• Expressions. Given a formula, such as C “ 2πr, we very soon want to
move the letters around. For example, suppose we use string to measure
the circumference C of a tall cylindrical lamp post and want to calculate
the radius r of the lamp post—a length which we cannot measure directly.
We then need to re-write the formula as

r “
C

2π
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so that we can calculate r as soon as we know the circumference C. We
therefore need to learn how to “calculate” with expressions consisting
of letters and numbers, and to move the letters around “as if they were
numbers” (since this is exactly what the letters represent).

As part of this process of collecting terms, adding, subtracting,
multiplying and dividing, multiplying out brackets, factorising,
cancelling common factors, etc. we have to learn to forget temporarily
the meaning of the symbols and simply to respect the laws of arithmetic
(or of algebra), and the meaning of “equality”—as we did

– with the equation “2x ` 3 “ 15” to get first “2x “ 12” and then “x “ 6”

and as we did

– when dividing both sides of the equation “C “ 2πr” by “2π” to get
“r “ C

2π ”.

We can work in a similar way to discover how to obtain “exactly 76
litres”—but this time we have to exploit the fact that the unknowns have
to be positive integers.

– We can start with 7x ` 8y “ 76 and add “´8y” to both sides to get
7x “ 76 ´ 8y.

– We can then take out a common factor of 4 to get 7x “ 4p19 ´ 2yq,

which tells us that

– the LHS “7x” must be a multiple of 4, and hence x must be a multiple
of 4.

– But we also know that, if x and y are integers ě 0, then 7x is at most
76, so x ă 12.

– So we only need to consider x “ 4 (which yields a solution) and x “ 0,
or x “ 8 (which do not).

It is this art of “calculating with expressions” that allows us to transform
formulae and equations in a flexible way—and to derive information that
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may be far from obvious. And the art of calculating with expressions
requires lots of carefully graduated practise if pupils are to become fluent
in simplifying the kind of complicated-looking expressions that will arise
naturally later.

The fourth subdomain of elementary algebra—namely identities—is in
some ways the most important subdomain of the four. “Identities” are not
mentioned in the third requirement at the start of 2.4—but they are implicit
in other requirements, so cannot be entirely avoided at Key Stage 3 (even if
they feature more strongly at Key Stage 4 and beyond).

• Identities: In primary arithmetic the = sign is at first used to connect some
required calculation such as “13 ` 29” (on the left hand side) with the
answer “42” (on the right hand side):

13 ` 29 “ 42.

But the = sign then broadens its meaning and is later used to connect any
two numerically equivalent expressions—such as

“13 ` 29 “ 6 ˆ 7”, or “62 ´ 1 “ 5 ˆ 7”, or “ 28
42 “ 10

15 ”.

Something similar arises in the algebra of expressions, where pupils
first learn that, given a jumble of symbols on the left hand side, one is
expected to simplify it in some way and set it “equal” to something a
bit like an “answer” (on the right hand side). For example one might be
given an expression such as

ˆ

x
x ´ 1

´
x ` 1

x

˙´1

and rewrite it as
“ x2 ´ x.

However one later broadens this use of the equals sign so that ““” simply
links two expressions that are “algebraically equivalent”—that is, where
one side can be transformed into the other side via the rules of algebra.
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Any such equation that links two expressions that are algebraically
equivalent is called an identity.

2.5. [Subject content: Algebra p. 6]

– model situations or procedures by translating them into
algebraic expressions or formulae

This requirement summarises what an idealist would like all pupils to be
able to do eventually. However, at present very few pupils ever reach this
level of fluency—even at Key Stage 4 (let alone at Key Stage 3: see examples
2.5B and 2.5C below). Hence the requirement needs to be interpreted with
care.

One reason for our current limited success is that we fail to separate two
stages which have here been combined in the same requirement:

• first learn to translate a numerical procedure, or a sequence of operations,
into algebraic form as an expression;

• then learn to equate the results of two such procedures, or to take on
board an additional constraint, to derive an equation (or a “formula”).

That is, we pay too little attention to the more modest prerequisite
requirement of getting pupils

– to interpret descriptions, or situations, given orally in words and to
write down the answers as expressions.

The extent to which we need to rethink current practice is partly illustrated
by the following five Year 9 tasks from TIMSS 2011. The first four tasks
(2.5A–2.5D) are basic exercises. These are not sophisticated modelling
tasks; but they indicate the kind of exercises that we may need to take
more seriously, and engage with more systematically, if we are eventually
to address the full-blooded requirement at the start of Section 2.5. The
fifth example requires one to set up a very simple linear equation and to
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interpret its solution—and although the comparison countries show that
this task is more demanding, the English performance on this problem is in
some ways even more telling.

2.5A There were m boys and n girls in a parade. Each person
carried 2 balloons. Which of these expressions represents the
total number of balloons carried in the parade?

A 2pm ` nq B 2 ` pm ` nq C 2m ` n D m ` 2n

2.5B A taxi company has a basic charge of 25 zeds and a charge
of 0.2 zeds for each kilometre the taxi is driven. Which of these
represents the cost in zeds to hire a taxi for a trip of n kilometres?

A 25 ` 0.2n B 25 ˆ 0.2n C 0.2 ˆ p25 ` nq

D 0.2 ˆ 25 ` n

2.5C What is the area of the rectangle shown? [A rectangle with
length x ` 2 and width x is shown.]

A x2 ` 2 B x2 ` 2x C 2x ` 2 D 4x ` 4

2.5D What is the sum of three consecutive whole numbers with
2n as the middle number?

A 6n ` 3 B 6n C 6n ´ 1 D 6n ´ 3

2.5E A piece of wood was 40cm long. It was cut into 3 pieces.
The lengths in cm are: 2x ´ 5, x ` 7, x ` 6. What is the length of
the longest piece?

The success rates among Year 9 pupils in our four comparison countries
were as follows:

2.5A Russia 90%, USA 88%, Hungary 80%, England 74%,
Australia 73%

2.5B Russia 70%, USA 61%, Hungary 50%, Australia 47%,
England 45%



Teaching Mathematics at Secondary Level 163

2.5C Russia 72%, USA 37%, England 35%, Hungary 30%,
Australia 26%

2.5D Hungary 56%, Russia 53%, England 46%,
Australia 45%, USA 37%

2.5E Hungary 23%, Russia 22%, Australia 7%, USA 7%,
England 3%

Some observers might be satisfied with a 74% success rate for 2.5A. But the
Russian, USA, and Hungarian scores should challenge such complacency.
(This is a multiple choice question, and the 26% who chose options B, C,
or D suggest that a significant number of pupils were simply guessing—so
some of the 74% correct will have chosen option A by accident.)

The responses to 2.5B reinforce the impression that most Year 9 pupils in
England are very rarely expected to formulate such simple expressions
algebraically from a situation given in words. (Note that if 30% of pupils
were fairly sure of option A, and the other 70% of pupils were reduced to
guessing, then an additional 17.5% of the cohort would select option A by
accident—so more than 45% would then have chosen the “correct” option.)

Example 2.5C would seem to be even simpler—provided that pupils can
read the simplest diagram and know that “area = length ˆ breadth”.

Setting up an “equation”, or a “formula”, is like writing a sentence.
So pupils first need to learn how to “read”, then how to “spell” the
ingredient words and how to build up expressions (in a way that respects
the conventions of elementary algebra—see Section 2.3). They then need
to learn the basic art of naming a variable, and applying a sequence of
arithmetical or algebraic transformations to it in a reliable way. We infer
that this is either not done, or done in a way that does not allow these key
skills to take root.

We have largely resisted the temptation to offer “solutions”. However,
as a contribution to the challenge for schools to develop the necessary
extended sequence of stages that leads to algebraic fluency, we draw
attention to three ingredients that seem to be relatively neglected. These
stages relate the need to learn how to “match verbal descriptions with
algebraic expressions” (see TIMMS example 2.3A above).
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On the simplest level pupils need exercises of the following kind (see
example 2.3A above to see why).

Match up each expression on the left with the corresponding English
description on the right.

4 ` 2x Six less than four times x

x ´ 5 Three times one more than x

2x ´ 4 Two less than one quarter of x

x`2
4 Three times one less than x

3px ` 1q One quarter of two less than x

4x ´ 6 One quarter of two more than x

x
4 ´ 2 Four less than twice x
x´2

4 Six more than half of x

x ` 6 One more than three times x

3x ` 1 Five less than x

x
2 ` 6 Six more than x

3px ´ 1q Four more than twice x.

Pupils then need to take the step from “matching up” verbal descriptions
and given expressions to reading, or listening to verbal descriptions and
reliably translating these into written expressions for themselves. So
they need variations on the following activity to cultivate the art of
listening, thinking, and interpreting. (We give two contexts for purposes of
illustration—but many others can be imagined.) These are intended to be
oral challenges, read slowly and clearly, leaving sufficient pauses between
successive tasks—with pupils expected to listen and write down “answers”
(preferably without the instructions being repeated).

(a) “I’m thinking of a number, which I multiply by 3. Write an expression
for my final number.”
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“I’m thinking of a number, which I multiply by 3, and then add 2.
Write an expression for my final number.”

“I’m thinking of a number, to which I add 2 and then multiply the
result by 3. Write an expression for my final number.”

“I’m thinking of a number, to which I add 2, then multiply the result
by 3, and then square the answer. Write an expression for my final
number.”

“I’m thinking of a number, to which I add 2, square the result, and
subtract 4 times one more than the number I first thought of. Write a
fully simplified expression for my final number.”

(b) “A square has sides of length a. Write an expression for its perimeter.
Write another expression for its area.”

“A rectangle has sides of length a and b. Write an expression for its
perimeter. Write another expression for its area.”

“A rectangle has sides whose lengths differ by 1. Write an expression
for its perimeter. Write another expression for its area.”

“A rectangle has one side twice as long as the other. Write an
expression for its perimeter. Write another expression for its area.”

“A rectangle has sides in the ratio 3 : 2. Write an expression for its
perimeter. Write another expression for its area.”

Once pupils understand how expressions are constructed they may be in a
better position to use this skill to translate a problem, or a result, given in
words into an equation or formula, as with such variations on the above
oral tasks as the following.

(a) “I’m thinking of a number, which I multiply by 3, and the result is 27.
Express this as an equation.”
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“I’m thinking of a number, which I multiply by 3, and then add 2. The
result is 41. Express this as an equation.”

“I’m thinking of a number, to which I add 2 and then multiply the
result by 3. The result is 39. Express this as an equation.”

“I’m thinking of a number, to which I add 2, then multiply the result
by 3, and then square the answer. The result is 36. Express this as an
equation.”

“I’m thinking of a number, to which I add 2, square the result, and
subtract 4 times one more than the number I first thought of. The result
is 144. Express this as an equation.”

(b) “A square has sides of length a. It perimeter is 108. Express this as an
equation.”

“A square has sides of length 2a. Its area is 144. Express this as an
equation.”

“A rectangle has sides of length a and b. Its perimeter is 108. Express
this as an equation.”

“A rectangle has sides of length a and b. Its perimeter is 10 and its area
is 6. Express these facts as two equations in a and b.”

“A rectangle has sides whose lengths differ by 1. Its perimeter is 62.
Express this as an equation.”

“A rectangle has sides whose lengths differ by 1. Its area is 56. Express
this as an equation.”

“A rectangle has one side twice as long as the other. Its area is 50.
Express this as an equation.”
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“A rectangle has sides in the ratio 3 : 2. It perimeter is 130. Express this
as an equation.”

In the above examples, the numbers have been chosen so that the solutions
may be accessed without requiring any special technique. This should
allow pupils to check whether the evident numerical solution is consistent
with their algebraic formulation. But pupils later need to progress to
exercises where the solutions cannot be so easily discerned. The successful
solution of any resulting equations will then depend on preparatory
algebraic and arithmetical work done elsewhere (especially work with
transforming algebraic expressions and with fractions).

In the official Key Stage 3 programme of study, the full version of the
requirement given at the start of Section 2.5 is even more ambitious, in that
it states that pupils should be taught to:

• “model situations or procedures by translating them into algebraic
expressions or formulae and by using graphs.” [emphasis added]

We have already suggested that increased success may depend on
separating the art of “formulating a procedure as an algebraic expression”
from, and treating it earlier than, “formulating equations”. So the
immediate juxtaposition of the two separate stages “expressions and
formulae” could be misleading. The final four words above (in bold) would
seem to constitute an even more unfortunate juxtaposition, in that two
entirely separate requirements that cannot be handled simultaneously have
been compressed into a single statement.

The reference to “graphs” suggests that the situation being analysed
involves at least two variables. This in turn suggests that this requirement
only becomes relevant much later. Long before one can think about “using
a graph”, one needs to be able to formulate the relevant algebraic equation
in two variables entirely reliably—and this seems likely to take more time
and effort than we have realised (see 2.5A–2.5C). Hence schools must be
prepared to use their judgement as to when such apparently juxtaposed
requirements in the official programme of study have to be separated in
time, with the missing stages, or “stepping-stones”, provided internally.

In this instance, the connection with graphs is likely to feature much later.
Once pupils have learned to work with linear graphs, one could revisit



168 Tony Gardiner

• “I’m thinking of a number, which I multiply by 3, and the result is 27.”

and relate the algebraic solution:

Let the unknown number be x.

6 3x “ 27.

to the point of intersection p9, 27q of the line y “ 3x and the ordinate y “ 27.

Later in Key Stage 3, or in early Key Stage 4 (see the third, fourth and fifth
requirements in section 2.7 below), pupils might relate the problem

“I’m thinking of a number, to which I add 2, then multiply the
result by 3, and then square the answer. The result is 36. Express
this as an equation.”

to the intersection point p2, 36q of the graph of y “ 9px ` 2q2 and the ordinate
y “ 36.

In the same spirit, the problem:

“A rectangle has sides whose lengths differ by 1. Its area is 56.
Express this as an equation.”

could be linked to the positive intersection point p7, 0q (after rejecting p´8, 0qq

of the graph of y “ x2 ` x ´ 56 with the x-axis y “ 0.

And having learned to solve quadratic equations at Key Stage 4, pupils
might relate

“A rectangle has sides of length a and b. Its perimeter is 10 and
its area is 6. Express these facts as two equations in a and b.”

to the equation x2 ´ 5x ` 6 “ 0 (whose roots are a and b). Some pupils
could then explore the general question of whether knowing the sum a ` b
and the product ab of two unknowns is always sufficient to determine a and
b.

Teachers should know that this latter idea (namely that a rectangle is
determined by its area and its semi-perimeter) is more important than
one might think—both historically and at higher levels. The ancient
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Babylonians and Greeks both tackled quadratics in this way (among
others).

Babylonian: around 1700 BC The Babylonian approach was eclectic, and
essentially algebraic, but without symbols. The problems were expressed
in words, and the solution methods were given as recipes applied to the
particular numbers in the problem; but the recipes were so formulated
that they would still work if the particular numbers were changed. They
addressed a remarkable variety of problems which correspond to what we
would call “quadratic equations”. Otto Neugebauer, the leading historian
of such matters in the first half of the 20th century, catalogued hundreds
of examples in what he called “normal form”, where two numbers were
to be found if their product and their sum (or difference) were known.
Neugebauer also found countless exercises designed to train young scribes
how to reduce other sorts of quadratic problems to this “normal form”.

Greek: around 300 BC The Greek approach is harder to explain briefly,
because it was expressed purely geometrically (for they had no way of
writing algebraically). If we cheat a little and describe the steps in their
method partly algebraically, their “normal form” for a quadratic problem
was to imagine a line segment broken in to unequal lengths (so of length
a ` b, with a ą b):

• to construct the midpoint and then construct the square on half of the
complete segment

• to construct the “a by b” rectangle with the two unequal segments as sides

• to subtract the rectangle from the square

• to construct the square which was equal to this difference (whose side
was therefore “ 1

2 pa ´ b)”)

• to combine the segments of length 1
2 pa ` bq and of length 1

2 pa ´ bq to find
a; then find b.

All of this was done strictly geometrically—though we would write the
process algebraically as

(i) first find 1
2 pa ` bq, and then

”

1
2 pa ` bq

ı2
;
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(ii) find ab;

(iii) subtract
”

1
2 pa ` bq

ı2
´ ab to get

”

1
2 pa ´ bq

ı2
;

(iv) find 1
2 pa ´ bq;

(v) add to get

a “
1
2

pa ` bq `
1
2

pa ´ bq,

and subtract to get

b “
1
2

pa ` bq ´
1
2

pa ´ bq.

When pupils proceed beyond GCSE, they will need to know that:

• If a quadratic x2 ` dx ` e has roots a and b, it can be factorised as

x2 ` dx ` e “ px ´ aqpx ´ bq;

and multiplying out the RHS shows that

d “ ´pa ` bq and e “ ab.

Hence once we know the quadratic, we already know the sum and
product of the roots, and “solving the equation” is a way of going
from knowing “the sum and product of the roots” to finding the roots
themselves.

• Though the Babylonians and Greeks did not know it, they had hit upon
something important. For if a cubic x3 ` dx2 ` ex ` f has roots a, b and c,
then it can be factorised as

x3 ` dx2 ` ex ` f “ px ´ aqpx ´ bqpx ´ cq;

and multiplying out the RHS shows that

d “ ´pa ` b ` cq, e “ ab ` bc ` ca, and f “ ´abc.

Hence once we know the cubic, we already know the sum of the roots
(´d), the product of the roots (´ f ), and the sum of the products in pairs
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(e). So “solving a cubic equation” requires us to find a way of going from
knowing “the sum of all three roots, the product of all three roots, and
the sum of the products in pairs” to finding the three roots themselves.

2.6. [Subject content: Algebra p. 6]

– use algebraic methods to solve linear equations in one
variable (including all forms that require rearrangement)

Pupils will no doubt already be familiar with the way general results such
as C “ 2πr can be expressed using letters; but in such a formula, the letters
stand for familiar entities (the radius r of the circle, and its circumference
C). In contrast, solving linear equations in one unknown may well be
pupils’ first encounter with symbols being used to encode information
about completely unknown entities. So this is likely to be the setting in
which key ideas about algebra are internalised—and where misconceptions
may well take root.

We have seen (Part II, Section 2.2.2.2) that “to solve equations” means to
solve exactly—by algebraic methods. We start out with an equation which
has an unknown set of solutions, or possible values for the unknown “x”.
“Solving the equation algebraically” is a process which pins down the
unknown “x” by exploiting two kinds of “moves”.

• The first kind of move allows us to replace any constituent expression
on either side of the equation by another expression which is algebraically
equivalent to it (for example, we can “collect up” separate multiples of the
unknown “x” into a single term). Because this kind of move is reversible,
we know that exactly the same values of the unknown “x” satisfy the
new equation as satisfied the old equation.

• The second kind of move is to subject both sides of the equation to the
same operation (for example, we can add the same quantity to both sides,
or multiply both sides by the same quantity). As long as this operation is
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reversible (as it always is if we add or subtract the same quantity to both
sides, or if we multiply or divide both sides by a given expression that
is never equal to zero), then we can again be sure that exactly the same
values of the unknown “x” satisfy the new equation as satisfied the old
equation.

Pupils need to learn not only to transform equations according to these
rules of algebra, but also to recognise any pair of equations which are
algebraically equivalent. Thus they should be faced with such tasks as:

Match up each equation on the left with the equation(s) on the right to
which it is equivalent.

x ` 6 “ 11 7x “ 4

2x ´ 3 “ 5 2x ` 9 “ 23

10 “ 6 ` 7x 2 “ ´2x
x
3

“ 4 14 “ 2 ` x

3 “ 2x ´ 11 10 ` x “ 15
x
3

´ 5 “ 11 2x ` 2 “ 10

5 ´ 2x “ 7 2x “ 14

13 “ x ` 6 16 “
x
3

.

Pupils also need lots of equations to solve, and standard contexts in which
they learn to set up and solve equations which reveal things that were not
previously clear and that are vaguely interesting. We offer a sequence
of problems based on one idea—but there are dozens of other possible
settings.

(a) I start with the fraction 1
6 . I wish to add the same amount to the numerator

and to the denominator so that the result is equal to 1
5 . What amount should I

add?

I then start with the fraction 1
5 . I wish to add the same amount to the

numerator and to the denominator so that the result is equal to 1
4 . What

amount should I add?
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I then start with the fraction 1
4 . I wish to add the same amount to the

numerator and to the denominator so that the result is equal to 1
3 . What

amount should I add?

I then start with the fraction 1
3 . I wish to add the same amount to the

numerator and to the denominator so that the result is equal to 1
2 . What

amount should I add?

(b) I start again with the fraction 1
6 . I want to add some amount a to the

numerator and subtract the same amount from the denominator to make the
result equal to 1

5 . Find a.

I then start with the fraction 1
5 . I want to add some amount b to the numerator

and subtract the same amount from the denominator to make the result equal
to 1

4 . Find b.

I then start with the fraction 1
4 . I want to add some amount c to the numerator

and subtract the same amount from the denominator to make the result equal
to 1

3 . Find c.

I then start with the fraction 1
3 . I want to add some amount d to the numerator

and subtract the same amount from the denominator to make the result equal
to 1

2 . Find d.

I then start with the fraction 1
2 . I want to add some amount e to the numerator

and subtract the same amount from the denominator to make the result equal
to 1. Find e.

2.7. [Subject content: Algebra pp. 6-7]

– work with coordinates in all four quadrants

– reduce a given linear equation in two variables to
the standard form y “ mx ` c; calculate and interpret
gradients and intercepts of graphs of such linear equations
numerically, graphically and algebraically
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– recognise, sketch and produce graphs of linear and
quadratic functions of one variable with appropriate
scaling, using equations in x and y in the Cartesian plane

– use linear and quadratic graphs to estimate values of y for
given values of x and vice versa and to find approximate
solutions of simultaneous linear equations

– model situations or procedures by translating them into
algebraic expressions or formulae and by using graphs

– interpret mathematical relationships both algebraically
and graphically

– find approximate solutions to contextual problems from
given graphs of a variety of functions, including piece-wise
linear, exponential and reciprocal graphs

[Ratio, proportion and rates of change p. 7]

– solve problems involving direct and inverse proportion,
including graphical and algebraic representations

2.7.1 This collection of requirements linked to graphs needs to be treated
with extreme care. The first requirement makes perfect sense. The first half
of the second requirement is equally standard; but the second half is already
far from clear. And as one reads on, the meanings become more opaque
and the stated goals appear progressively more optimistic, or overblown
at this level. For example, we have already seen that direct proportion is
hard, and that its “graphical and algebraic representation” may be more
appropriate at Key Stage 4 (for more confident pupils); so the inclusion
of this requirement for “inverse proportion” may need to be taken with a
pinch of salt.

In short, we would urge schools to sift out what clearly belongs to Key
Stage 3 and to teach it well. Where material seems out of place at Key



Teaching Mathematics at Secondary Level 175

Stage 3, and where the listed material in standard type in the Key Stage
4 programme of study either repeats it verbatim or does not take it much
further, work at Key Stage 3 should perhaps be limited to “preparatory”
experience that can then be built on in Years 10 and 11.

2.7.2 The first requirement could be interpreted as being limited to
work with individual points. However, one of the characteristic features of
coordinate geometry and equations is that they are ways of working with
groups of points or lines.

• An equation represents the set of all points px, yq that satisfy the equation.

• To find the equation of a straight line we use the known coordinates of
two given points and the unknown coordinates of a third variable point
px, yq which lies on the line.

• And we think about the solutions of simultaneous equations as the point,
or points, where two or more lines or curves intersect.

So pupils need to learn to work with several points at once. The gulf
between understanding ideas or methods in isolation (one-piece jigsaws)
and being able to handle two or more simple ideas at once is indicated by
the following item for Year 9 pupils in TIMSS 2011.

2.7.2A p0, ´1q, p1, 3q Which equation is satisfied by both of these
pairs of numbers px, yq?

A x ` y “ ´1 B 2x ` y “ 5 C 3x ´ y “ 0 D 4x ´ y “ 1

2.7.2A Russia 53%, USA 38%, Hungary 29%, England 24%,
Australia 22%

So before pupils begin to work with equations, basic work with coordinates
should include learning to think about the “relative position” of groups of
points. For example:

• One may give the coordinates of three vertices of a square, and require
them to be located, and the coordinates of the fourth (unspecified) vertex
to be found and the vertex marked.
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• One may specify the coordinates of two neighbouring vertices of a square
(for example, p´4, 2q and p´3, ´3q), and ask for the possible coordinates
of the other two vertices.

• One may specify the coordinates of two opposite vertices of a square
and require that the other two vertices be marked and their coordinates
found.

That is, pupils need lots of work which not only establishes the underlying
conventions, but which teaches them to “see”, and to think about, groups of
points (and lines) that are related to each other in some way.

2.7.3 After sufficient experience imagining, and locating individual
points and groups of points in all four quadrants, pupils will be well-placed
to think about what links a given set of points (preferably given as a list,
rather than as a table) such as:

p´6, ´3q, p´4, ´2q, p´2, ´1q, p0, 0q, p2, 1q, p4, 2q, p6, 3q, p8, 4q.

Plotting points should convey the idea that they appear to lie on a line, and
that

each time the x-coordinate increases by 2, the y-coordinate
increases by 1 (“along 2, up 1”).

One can then ask for the coordinates of intermediate points that lie on the
same line, both to establish the possibility of fractional values (such as
´

1, 1
2

¯

, or
`

3, 3
2
˘

, or
´

´1, ´ 1
2

¯

), and to extract

the unit step: “along 1, up 1
2 ”.

Pupils can go further and then find
´

1
2 , 1

4

¯

(“along 1
2 , up 1

4 ”), and
´

1
3 , 1

6

¯

(“along 1
3 , up 1

6 ”), etc.. They should also be challenged to identify points
on the same line with much more distant coordinates (such as p100, 50q, or
p´200, ´100q).

Once these ideas (that the line extends indefinitely, and that it includes
points that are as close together was we choose) have been firmly
established, one can
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• look for ways of relating x- and y-coordinates of points which lie on the
line,

• obtain the usual equation “y “ 1
2 x”, and

• check that every point on the line satisfies this equation, and that every
point whose coordinates satisfy the equation must lie on the line.

It may be necessary to repeatedly reinforce the idea that

• the collection of points on the line, and

• the collection of points whose coordinates px, yq satisfy the equation
y “ 1

2 x

are the same (i.e. that points lie on the line precisely when their coordinates
satisfy the equation): that is, that the equation provides an algebraic way of
reasoning about, and calculating with, the geometrical line.

This whole sequence can then be repeated for a new set of points

p´6, ´2q, p´4, ´1q, p´2, 0q, p0, 1q, p2, 2q, p4, 3q, p6, 4q, p8, 5q.

Again, plotting points will indicate that the points lie on a line, that
whenever the x-coordinate increases by 2, the y-coordinate increases by
1 (“along 2, up 1”), and that this line can never meet the first line (since
the first line goes through p´6, ´3q and follows the rule “along 2, up 1”,
whereas the second line follows the same rule “along 2, up 1”, but goes
through a point p´6, ´2q which does not lie on the first line). Again one can
ask pupils to find the coordinates of intermediate points on the line, and for
points on the line with much more distant coordinates (such as p100, 51q,
or p´200, ´99q), and can then obtain the usual equation y “ 1

2 x ` 1. The
significance of the parameters m “ 1

2 , and of c “ 1 can be established. And
everything can be reinforced by considering the new set of points

p´6, ´5q, p´4, ´4q, p´2, ´3q, p0, ´2q, p2, ´1q, p4, 0q, p6, 1q, p8, 2q.

In making sense of the linear equation y “ mx ` c, pupils need to internalise
the significance

• of c (as the y-coordinate of the point where the line crosses the y-axis).
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They also need sufficient experience to establish a clear mental image of
how the parameter m affects the visual impression of the represented line
(assuming that equal scales are used on both axes), so that they distinguish:

• lines in which m “ 1 (rising to the right at 45˝),

• lines with 0 ă m ă 1 (rising to the right less steeply than m “ 1)

• lines with m ą 1 (rising to the right more steeply than m “ 1), and

• lines with m ă 0 (falling as one moves to the right).

Schools will need to decide for themselves how much of what follows is
best handled at Key Stage 3 and how much fits more naturally within Key
Stage 4. But at some point, once the basic ideas have been grasped, pupils
need to do lots of work in the opposite direction:

• starting with linear equations given in a variety of forms (including with
terms in “x” and in “y” on both sides of the equation, and where the
y-terms may have any positive or negative coefficient),

• reducing the given equation to the “standard form y “ mx ` c” (or “x “

a”)

• and then sketching the line.

Pupils eventually need to be able to find the equation of a line which
satisfies certain conditions, such as:

(a) passing through a given point with a given gradient m,

(b) with a given y-intercept p0, cq and passing through a given point,

(c) with a given gradient m and a given x-intercept pa, 0q,

(d) with a given x-intercept and passing through a given point,

(e) passing through two given points.

2.7.4 Once the basic language of straight line graphs and linear equations
has been established, pupils are ready to explore the wealth of problems
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whose natural representation is in terms of linear equations and straight
line graphs.

We have already seen how this arises whenever two quantities are related
in such a way as to be “in proportion”, so that doubling the first quantity
(such as the number of hours worked) leads to a doubling of the second
quantity (the pay that is earned: see Section 1.9.2 above and Part II, Section
2.2.1). This is clearly relevant to the last requirement listed at the start of
Section 2.7. If two different quantities vary “in proportion”, and we know
two corresponding numerical values—one of the first kind (a), and one of
the second kind (c),

a ´́ ´́ ´́ ´́ ´́ ´́ ÝÑ c

then any two corresponding unknown amounts x and y (one of the first kind
and the other of the second kind) provide the third and fourth vertices of
our “rectangular template”

x ´́ ´́ ´́ ´́ ´́ ´́ ÝÑ y

and the proportion
x : a “ y : c

translates into an equality of ratios, or fractions

x
a

“
y
c

which in turn gives rise to the linear equation

y “

´ c
a

¯

x

with “constant of proportionality”, or gradient, c
a .

Such examples also arise whenever one changes units. If the units belong
to the same system, then the constant of proportionality will be exact,
and relatively simple. For example, when changing from centimetres to
metres, M metres becomes C “ 100M centimetres. But if the units come
from different systems, then we usually simplify by using a convenient
approximation to the “constant of proportionality”. For example, when
changing from miles into kilometres, M miles is generally taken to be
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K “ 8
5 Mkm, where we use 1.6 as the approximate scale factor in place of

the messy actual value of “1.609344 to 6 decimal places”.

However, just as most straight line graphs y “ mx ` c do not have c “ 0,
so we must expect most linear relations to occur with a built-in “offset”
c ‰ 0. This offset can be interpreted as saying that the two scales we are
comparing need to be “re-aligned”. For example, the equation which relates
the temperature F in Fahrenheit with the temperature C in Centigrade, or
Celsius, is

F “
9
5

C ` 32.

Here the “`32” arises because there is no obvious “zero” for measuring
temperature; the Celsius scale uses the freezing point of water as 0˝C,
whereas the Fahrenheit scale locates this at 32˝F. (In this instance, although
the units arise from different systems, the scale factor “ 9

5 ” is exact, because
the Celsius scale from 0˝C to 100˝C matches up uniformly with the
Fahrenheit scale from 32˝F to 212˝F, so that each 1˝C corresponds to exactly
1.8˝F.)

A straight line graph tells us that there is a “linear relation” between x and y
even if the line does not go through the origin. Most instances where there
is some hidden proportion occur with an “offset” (that is, with c ‰ 0). A
good example is the graph which underlies example 2.5B:

2.5B A taxi company has a basic charge of 25 zeds and a charge
of 0.2 zeds for each kilometre the taxi is driven. Which of these
represents the cost in zeds to hire a taxi for a trip of n kilometres?

A 25 ` 0.2n B 25 ˆ 0.2n C 0.2 ˆ p25 ` nq D 0.2 ˆ 25 ` n

Here the cost of a journey is directly proportional to the distance
travelled—except for the addition of a “basic charge of 25 zeds”; hence
the charge “y zeds” for a journey of length x km (priced in “zeds”—the
universal currency in TIMSS problems) is given by

y “ 0.2x ` 25

which is better written without decimals as

y “
1
5

x ` 25.
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Mathematics teachers need to remember that scientists, engineers and
others will go to almost any lengths to reduce more complicated
relationships to ones that give rise to straight line graphs—because
empirical laws are easiest to discern, or to confirm, if the approximate data
can be plotted to look as though it fits on a straight line. For example, if a
scientist believes the data should satisfy an equation of the form y “ kx2

for some positive constant value k, then rather than plotting x against y and
having to identify a parabola, they might well

• plot values of x2 against values of y and hope to see a straight line with
gradient k, or

• plot logpxq against logpyq and expect to see a straight line with gradient 2
and with y-intercept c “ logpkq.

2.7.5 Such connections and applications should be part of any treatment
of linear equations at Key Stage 3 and Key Stage 4, and this presumably
covers at least part of what is meant by the fifth requirement listed at the
start of Section 2.7 (“model situations . . . ”), and also the sixth requirement
(“interpret mathematical relationships . . . ”).

2.7.6 The third and fourth requirements at the start of Section 2.7
mention quadratic functions and quadratic graphs. These references need to
be interpreted with care.

The new GCSE specification (and hence the programmes of study for
Key Stage 3 and 4) deliberately downplay premature reference to abstract
“functions”, and to function notation—such as f pxq. Instead, the
programmes of study would appear to be designed to emphasise the use of
such ideas in concrete form before abstractions such as f pxq are introduced in
Year 12 (though there is nothing to prevent a school from doing both prior
to GCSE).

So when the word “function” appears in the context of linear and quadratic
functions, it is being used informally, indicating that the curriculum should
prepare the ground for a more abstract formulation in Year 12. In particular,
work at Key Stage 3 should take account of the fact that GCSE will no
longer expect pupils to use the abstract notation f pxq. Nor will pupils be
expected to make sense of general transformations of coordinates
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• moving the y-axis by rewriting the given expression for the function in
the form f px ˘ aq, or

• moving the x-axis by rewriting the given expression for the function in
the form f pxq ˘ a, or

• moving both axes at once by rewriting the given expression for the
function in the form f px ˘ aq ˘ b.

Instead, by the end of Key Stage 4, pupils who expect to take Higher tier
GCSE need to be able to implement such transformations in the contexts
of specific linear, or quadratic, or trig functions. Pupils will therefore
work with particular functions f and with particular numerical values of
the parameters a and b. But for convenience we summarise these specific
numerical examples by giving them in general symbolic form.

• The general linear equation y “ mx ` c can be seen to be essentially the
same as Y “ mX in two obvious ways:

– by moving the origin to p0, cq, and setting Y “ y ´ c, and X “ x, and
also

– by moving the origin to
`

´ c
m , 0

˘

, and setting Y “ y, and X “ x ` c
m .

• Pupils need exercises that lead them to recognise that any given quadratic
equation behaves essentially just like y “ x2 or y “ ´x2.

– The first step is to understand the prototype of all quadratics, namely
y “ x2,

∗ to appreciate its symmetry about the y-axis (giving the same y value
for ˘x)

∗ to recognise how it “sits on” (or is tangent to) the x-axis

∗ how this relates to the fact that squaring values of x between ´1 and
1 produces a smaller output x2 , while squaring values of x which are
greater than 1 or less than ´1 gives rise to larger and larger outputs
x2.

– This analysis can then be extended to graphs whose equation has the
form y “ x2 ` c, where c may be either positive or negative, and where
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moving the origin to p0, cq corresponds to a change of coordinates: Y “

y ´ c, X “ x, so that the original equation y “ x2 ` c becomes Y “ X2.

– The same idea extends to equations of the form y “ px ´ aq2, and to
those of the form y “ px ´ aq2 ` c.

– And one can show (via particular numerical examples) how any given
quadratic equation y “ x2 ` bx ` c can be rewritten in such a form by
“completing the square”

y “

ˆ

x `
b
2

˙2
`

˜

c ´

„

b
2

ȷ2
¸

,

so that the original equation becomes Y “ X2, where

X “ x `
b
2

,

and

Y “ y ´ C “ y ´

˜

c ´

„

b
2

ȷ2
¸

.

– Later (perhaps in Year 12) those who enjoy algebra can discover how
the general quadratic y “ ax2 ` bx ` c can be rewritten as

ay “ paxq2 ` bpaxq ` ac “ a2
ˆ

x `
b

2a

˙2
`

1
4

”

4ac ´ b2
ı

which turns into Y “ X2 after shifting the origin and dividing both x
and y by “a”. Hence, although some quadratics appear tall and skinny,
while others appear short and fat, all parabolas are in fact similar, just
as all circles, or all squares are similar.

2.7.7 The requirement to work with “given graphs of a variety of
functions, including piece-wise linear, exponential and reciprocal graphs”
needs to be interpreted carefully, in the spirit of 2.7.6. Given the apparent
ruling about “functions” in general at GCSE, this stated requirement would
seem to have limited relevance at Key Stage 3. Even at Key Stage 4 it may
mean little more than that pupils
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• should ideally be familiar with the graph of y “ 1
x and its obvious

variants (such as y “ k
x , or possibly y “ 1

x´a );

• should have some experience of such graphs as y “ p1.05qx, that arise
when exploring how an investment, or a debt of £1 would grow in x
years at 5% per annum; and

• should be prepared to make sense of natural problems where the given
data happen to give rise in some way to a graph that is (for example)
piece-wise linear.

2.7.8 The fourth requirement listed at the start of Section 2.7 states that

• “pupils should be taught to use linear and quadratic graphs to estimate
values of y for given values of x and vice versa, and to find approximate
solutions of simultaneous linear equations.”

The seventh listed requirement at the start of Section 2.7 also mentions
finding “approximate solutions”.

These two requirements appear to confuse two quite different things—each
of which is valuable, but whose combination here is potentially confusing.

It is important for pupils to learn to “read a graph”. By this we mean:

• that pupils be confronted with a graph whose equation is unknown,

• that they be given a value a of x, and have to trace the corresponding
abscissa x “ a to see where it hits the graph, and then to trace the
corresponding ordinate from that point to the y-axis to estimate the value
of y corresponding to x “ a (using their eyes, or their fingers, or a
carefully positioned—preferably transparent—ruler), and

• that they be given a value b of y, and have to trace the corresponding
ordinate y “ b to find all the points where it hits the graph, and then to
trace the corresponding abscissas from these points on the graph to the
x-axis to estimate all the values of x corresponding to y “ b.

An entirely separate (and equally important) requirement is, given a
formula or equation relating x and y, to substitute values for x, so that
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expressions involving x become numerical expressions, and so to use
arithmetic to discover what this says about the corresponding value of y
(see Section 2.4.2 above). Note however, that in this process the calculations
are exact, not estimates.

The listed requirement appears to confound these two very different, and
entirely admirable, activities, by suggesting that pupils should engage in
such “estimation” with “linear and quadratic graphs”. But if we know
that we are working with a “linear graph” or a “quadratic graph”, then
we must know its equation—so substitution becomes an exact calculation,
rather than a matter of estimation—with one exception.

• If the equation is linear, then given a value of x, pupils should calculate
an exact value of y; and given a value of y, one can equally demand that
they calculate an exact value of x.

• If the equation is quadratic, then given a value of x, pupils should
calculate an exact value of y.

• Hence, the only obvious scope for “estimating values” would seem to
arise in asking, for a given quadratic graph or equation,

– “Which possible values of x give rise to a given value of y?”

This is an excellent requirement (namely to draw the relevant ordinate
parallel to the x-axis, to estimate where it cuts the graph, and to infer
the approximate values (if any) of x—which one can then check by
substituting the estimated values in the known equation).

The final part of the fourth requirement

“to find approximate solutions of simultaneous linear
equations”

might be fine if it was stated at a point where pupils could see how it links
up with

finding the exact solution (by eliminating a variable).

But there is no mention of this requirement at Key Stage 3, so
the requirement to address the significant challenge of working with
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simultaneous equations purely in order to find approximate solutions seems
seriously premature.

At Key Stage 4, Higher tier candidates are expected to find the intersection
points of a line and a circle, so it makes sense to consider how to prepare
the ground for such pupils at Key Stage 3. In general one would eventually
like all pupils to understand that

• the solutions of simultaneous equations

correspond to

• the coordinates of points where two lines or curves meet.

This is an important idea, provided it is not misrepresented as an
alternative to “solving the equations algebraically”. So at the point where
simultaneous linear equations are to be solved exactly, pupils need to
understand

• that the two linear equations correspond to two straight lines in the plane,

and

• that the output from the solving process is precisely the coordinates of
the point where the two lines cross.

So as and when a class is ready to handle “elimination of a variable” in
order to find the exact solution, it makes sense for them

• to draw the two lines,

• to recognise that the solution px, yq that they seek corresponds to the
coordinates of the point where the two lines cross, and

• to estimate the solution that is being sought (as a guide for what they
should expect to emerge from the subsequent algebraic exact calculation).

They would then be in a good position to confront the algebraic challenge
of “how to eliminate a variable”, and to use this new-found skill to tackle
lots of lovely problems. But there is something wrong with a programme



Teaching Mathematics at Secondary Level 187

that requires pupils to find “approximate” solutions while not revealing the
fact that one can find the exact solution.

One would also like pupils to tackle problems where this geometrical
interpretation is an essential part of the problem (for example, where they
are given the coordinates of three vertices of a triangle, and are required
to find the coordinates of the point where two medians meet). However,
such problems are rather hard precisely because they require pupils to
coordinate several steps (find the coordinates of the midpoints of the sides;
find the equations of the two medians; solve these two simultaneous
equations; extract the coordinates of the point where they cross).

2.8. [Subject content: Algebra p. 7]

– generate terms of a sequence from either a term-to-term
rule or a position-to-term rule

– recognise arithmetic sequences and find the nth term

– recognise geometric sequences and appreciate other
sequences that arise.

Work with sequences provides valuable opportunities:

• to revise and to strengthen arithmetic

• to cultivate the ability to notice basic patterns (constant, linear, powers,
exponentials)

• to discover how geometrical and combinatorial sequences often give rise
to familiar integer sequences

• to express numerical patterns algebraically

• to link discrete sequences with work on functions and graphs.

For example,
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• if a formula is given for the nth term, then finding the succession of
terms is an exercise in substituting easy numerical (integer) values into
an expression;

• if the first few terms of a sequence are given (whether 2, 4, 6, 8, . . . , or 4,
7, 10, 13, . . . , or 0, 3, 8, 15, . . . , or 1, 3, 7, 15, . . . , or 2, 5, 13, 35, . . . ), then
it is an excellent exercise to think of the simplest algebraic expression that
could generate the given sequence.

A sequence
x1, x2, x3, x4, x5, . . .

is a way of presenting an endless amount of information in a single list.
There are two quite different ways of specifying the terms of such a sequence.

The first, and most primitive, way is to give the first few terms and then to
specify a term-to-term rule (or “recurrence relation”) that tells you how to
work out the next term from the ones you already know. For example,

• x1 “ 3, xn`1 “ 2xn defines the sequence 3, 6, 12, 24, 48, . . . ;

• x1 “ x2 “ 1, xn`1 “ xn ` xn´1 defines the sequence 1, 1, 2, 3, 5, 8, 13, . . .

• x1 “ 2, xn`1 “ 3xn ´ 2n defines the sequence 2, 4, 8, 16, 32, . . . .

This first approach allows you to continue the sequence as far as you like,
and determines the 10th, the 100th, and the 1000th terms uniquely. However,
in order to find the 1000th term we first have to calculate the 1st, the 2nd, the
3rd, . . . , and the 999th terms. In other words, we can generate terms of the
sequence, but it may not be easy to obtain a proven closed formula giving
the nth term of the sequence as a formula in terms of n. We may think we
can guess how the sequence is behaving, but we are unlikely to be able to
prove anything about the sequence as a whole.

• In the first of our three examples above, we can see that:

the first term x1 “ 3 is doubled n ´ 1 times to get the nth term,
so xn “ 3 ˆ 2n´1.

• In the second example, it is easy to generate more and more terms, but it
is quite unclear how to write the nth term as a closed formula in terms of n.
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• In the third example, it is easy to guess that the closed formula for the nth
term looks as though it “has to be” xn “ 2n, but it is not at all clear how
to prove that this is correct.

In short, a term-to-term rule is easy to use, but it is inefficient; and it gives
us no way of reasoning in general about the nth term.

The second (and generally more powerful) way to specify a sequence is by
a position-to-term rule, which tells you how the nth term can be calculated
directly in terms of n. That is, the sequence of terms

x1, x2, x3, x4, x5, . . . , xn, . . .

is simply a listing of the outputs for a single rule, or function f , by listing

f p1q, f p2q, f p3q, f p4q, f p5q, . . . , f pnq, . . . .

A position-to-term rule may be given explicitly by a formula—as with

• the sequence of squares, where xn “ n2, or

• the sequence of powers of 2, where xn “ 2n.

But a position-to-term rule may also define a sequence intrinsically, with
the nth term being defined to be a number which can be calculated from
some algebraic procedure, or from some geometrical configuration. For
example:

• Let the nth term tn of a sequence be defined to be equal to the sum of the
first n positive integers. Then

t1 “ 1,

t2 “ 1 ` 2 “ 3,

t3 “ 1 ` 2 ` 3 “ 6,
...

tn “ 1 ` 2 ` 3 ` ¨ ¨ ¨ ` n.
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• Let the nth term cn of a sequence be defined to be the number of chords
that can be created by joining pairs of points chosen from n points marked
on a circle. Then

1 point on a circle gives rise to c1 “ 0 chords;

2 points on a circle give rise to exactly c2 “ 1 chord;

3 points on a circle give rise to c3 “ 3 chords; etc..

• Let the nth term fn of a sequence be defined to be equal to the number of
positive factors of n. Then

f1 “ 1, f2 “ 2 (factors 1 and 2); f3 “ 2 (factors 1 and 3), f4 “ 3
(factors 1, 2, and 4); . . . .

In these three examples, the position-to-term rule tells us exactly how to
find each term; but the underlying function, or rule, is given as a process or
a recipe, rather than as a formula. This makes it possible to generate

• the first sequence, whose nth term is sum of the first n positive integers,
by simply working out any term we need:

1, 1+2 = 3, 1+2+3 = 6, 1+2+3+4 = 10, 1+2+3+4+5 = 15,
1+2+3+4+5+6 = 21, . . . .

• the second example, whose nth term is equal to the number of chords
created by n points on a circle:

0, 1, 3, 6, 10, 15, . . .

• the third sequence, whose nth term is equal to the number of positive
factors of n:

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, . . . .

Each sequence is well-defined, but we are not given either a term-to-term
rule or a closed formula for any of the sequences. So any claims we might
wish to make about how each sequence behaves must be deduced from the
given algebraic or geometrical definition.

An arithmetic sequence

c, c ` m, c ` 2m, c ` 3m, c ` 4m, . . .
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is one that goes up in constant steps: that is, where the term-to-term rule
for the sequence is simply

“add m” for some fixed constant m.

The nth term is determined by the first term c and the n ´ 1 steps of size m
that take us from the 1st term to the nth term:

6 the nth term is equal to “c ` pn ´ 1qm”.

The prototype of every arithmetic sequence is the familiar counting sequence

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . .

The general arithmetic sequence arises from the counting sequence

• by first multiplying the whole sequence by m (to get

“0, m, 2m, 3m, 4m, . . . , pn ´ 1qm, . . . ”)

• then adding c to every term (to get

“c, c ` m, c ` 2m, c ` 3m, c ` 4m, . . . , c ` pn ´ ´1qm, . . . ”)

If we think of the nth term “c ` pn ´ 1qm” as a function of x “ n ´ 1, then we
see that the sequence lists the values of “y “ mx ` c ” for integer values of
x. So the sequence corresponds to the sequence of points for x “ 0, x “ 1,
x “ 2, etc. on the straight line y “ mx ` c; hence another name for an
“arithmetic sequence” is a “linear sequence”.

In general, once we have a closed formula for the nth term of a sequence,
we can treat n “ x as the dependent variable and “plot the graph of
the sequence” as a “point graph”, with one graph point for each positive
integer value of x “ n. The “common difference” m is then the “gradient”
of this point graph (for every unit step to the right in the positive n “ x
direction, the point graph jumps up distance m in the y direction), and the
initial value c is the point at which the point graph hits the y-axis. The
tradition of using “a” for the first term in place of “c”, and using “d” for
the common difference in place of “m” makes it much less likely that pupils
will appreciate this important connection.
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A geometric sequence
c, cr, cr2, cr3, cr4, cr5, . . .

is one for which the term-to-term rule for the sequence is simply

“multiply by r” for some fixed constant r.

Hence the nth term is completely determined:

• by the first term c, and

• by the n ´ 1 steps “multiply by r” that take us from the 1st term c to the
nth term.

• 6 the nth term is equal to “crn´1”.

If we think of the nth term “crn´1” as a function of x “ n ´ 1, then we see
that the sequence is specified by the two constants c and r, and lists the
values of y “ c ¨ rx for integer values of x (starting at x “ 0). Because the
term number “n” appears as an exponent, a geometric sequence is also called
an exponential sequence.

In the third requirement listed at the start of Section 2.9 it is unclear what
exactly is meant by

“and appreciate other sequences that arise”.

However, these “other sequences” should certainly include:

• linear sequences (or arithmetic sequences)

• quadratic sequences, like the sequence of squares:

12, 22, 32, 42, 52, . . . n2, . . .

• the sequence of triangular numbers

0, 1, 3, 6, 10, 15, 21 , . . .

• the sequence of cubes:

1, 8, 27, 64, 125, 216, 343, . . .
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• the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

School mathematics often gives the impression that all sequences are
polynomial sequences—that is, sequences where the nth term is a polynomial
function of n, as with

• linear sequences (or arithmetic sequences)

• quadratic sequences, like the sequence of squares

12, 22, 32, . . . , n2, . . .

or the sequence of triangular numbers

1, 1 ` 2, 1 ` 2 ` 3, . . . , 1 ` 2 ` 3 ` ¨ ¨ ¨ ` n “
npn ` 1q

2
, . . .

• the sequence of cubes

13, 23, 33, . . . , n3, . . . .

However, nature (and mathematics) often prefers geometric or exponential
sequences, such as

the powers of 2:
2, 4, 8, 16, 32, 64, 128, . . . ,

or the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . . .

One key distinction between the two types of sequences becomes
apparent if we compare what happens when we look at the sequence of
“term-to-term differences” for each type of sequence.

(a) The sequence of “term-to-term differences” for a linear sequence,
such as

2, 4, 6, 8, 10, 12, . . . ,
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gives rise to a constant sequence of differences

2, 2, 2, 2, 2, . . . .

The sequence of “term-to-term differences” for a quadratic sequence,
such as

1, 4, 9, 16, 25, 36, . . .

gives rise to a linear sequence of differences

3, 5, 7, 9, 11, . . . ,

whose own sequence of differences (or “second differences”) is then
constant

2, 2, 2, 2, . . . .

The sequence of “term-to-term differences” for the quadratic sequence of
triangular numbers

0, 1, 3, 6, 10, 15, 21, . . .

gives rise to a linear sequence of differences

1, 2, 3, 4, 5, 6, . . . ,

whose own sequence of differences is then constant

1, 1, 1, 1, 1, . . . .

(b) The sequence of “term-to-term differences” for a geometric sequence
behaves quite differently. If we consider the geometric sequence of powers
of 2:

2, 4, 8, 16, 32, 64, 128, . . .

then the sequence of “term-to-term differences” gives rise to

2, 4, 8, 16, 32, 64. . . .

which is the same as the original sequence, so taking second and third
differences will never lead to anything simpler.
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If we consider the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Then taking differences gives rise to

0, 1, 1, 2, 3, 5, 8, 13, . . .

which is essentially the same sequence again. Hence taking second and
third differences will never lead to anything simpler.

In short, taking differences repeatedly for a polynomial sequence seems to
lead eventually to a constant sequence, whereas the sequence of differences
for a geometric (or exponential) sequence leads only to something closely
related to the original sequence (from which it never escapes).

3. Geometry and measures

3.1. Background

Geometry should be one of the highlights of mathematics teaching in lower
secondary school.

• The subject matter is intuitively appealing and practical.

• It offers extensive scope for drawing intriguing figures, for
implementing unexpected constructions, and for making pleasing—even
beautiful—models.

• The tools and principles which allow us to analyse this wonderful world
exactly are surprisingly simple and accessible.

• All pupils can calculate some surprising things, can solve some
interesting problems, and can prove some strikingly useful results;
and more confident pupils can prove a wide range of remarkable and
unexpected facts.
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• Applications to the world around us are immediate, convincing, and
impressive.

• The material of school geometry captures the spirit of mathematics better
than almost any other part of elementary mathematics.

One would be hard-pressed to discern these strengths in the published
programme of study. In particular, there is little emphasis on drawing
and making, no clear indication of the intended deductive structure for
geometry, and there is no mention of applications to the world around
us. But the Good News is that the official programme is compatible with
an approach based on the above bullet points—provided schools do not
simply mimic the printed sequence of official requirements.

There is considerable confusion over geometry in many apparently
authoritative pronouncements—including the requirements listed in the
official Key Stage 3 programme of study. To understand why, teachers need
to know how we got where we are. So we begin with a thumbnail sketch
of some of the relevant historical and pedagogical roots of the current
approach to school geometry in England.

School work with number and algebra tends to be relatively “one
dimensional”. Typical problems look fairly familiar, and can usually be
solved by implementing some well-rehearsed “linear” procedure.

• One is told what is to be calculated (the goal).

• It is usually fairly clear where to begin.

• And with sufficient practice, one can more-or-less follow one’s nose to
get from the start to what is required.

Real mathematics is not like this, and is more like what secondary school
geometry ought to be.

• We are given some information about a two- or three-dimensional
configuration or shape.

• We are asked to calculate something, or to prove some fact.

• We have to draw and edit a diagram as a guide.
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• Then we are left to find for ourselves

(i) a suitable feature of the figure that might serve as a starting point,
and

(ii) a sequence of steps from this (elusive) start to what is required.

• Because figures and diagrams are in two dimensions, there is often no
clear starting point, and no obvious route from start to finish.

For pupils (and teachers) who have come to see school mathematics as
a collection of predictable, one-dimensional procedures, this experience
is unsettling. The given figure may appear elementary; and one may
understand what is wanted. But one often has no idea where to begin, or
how to proceed. As we noted in Section 2.3 of Part II (Solving problems),
in such a setting it does not take much for a routine exercise to become
a frustratingly elusive problem. Geometry reveals this distinction more
strongly than most other parts of elementary mathematics.

Most mathematics educators in England are aware of “a difficulty” with
geometry; but there has been very little attempt to analyse it in detail, or
to explore effective ways of overcoming it. Rather than attempt some easy
explanation, our concern here is to draw attention to this neglect, in the
hope that once it is recognised, teachers will be more willing to question the
conventional wisdoms about school geometry which often take the place
of serious analysis. For example, our ambivalence towards geometry has
often been mixed up with attitudes towards “proof”— because historically
geometry came to be seen as the main vehicle for conveying ideas of proof
in school mathematics. This has led to a view that serious geometry and
proof are “only for the few”. Yet, as we have tried to illustrate, “proof”
(whether used to derive new methods and results on the basis of what
we already know, or to make sense of standard procedures) should be an
integral part of school mathematics from the earliest years, and geometry
should enrich everyone’s experience of school mathematics.

Proposals for major change in secondary school “geometry for all” arose
in the early 1900s, with John Perry’s moves to advocate measurement,
drawing, trigonometry, the solution of triangles, calculation of areas and
volumes, coordinate geometry, and “technical drawing”. Perry’s ideas
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met with some success—possibly more so in the USA. In England the
need for change was recognised, but the traditional influence of Oxford
and Cambridge on secondary school curricula resulted in a very English
compromise, which lasted in some sense until the 1950s.

The reorganisation of schooling after the Second World War re-opened the
question of “geometry for all”. However this liberal concern was overtaken
by the “modernising” reforms which gained momentum in the late 1950s
and early 1960s in the wake of the Soviet Union’s launch of Sputnik. The
official shock among western governments at being “left behind in the
space race” strengthened the hand of those who wanted to “sweep away
the old” and replace it by something more “up to date”. In the USA
the preferred “modern” approach was “axiomatic synthetic geometry”.
In the UK we tried to replace the uneasy compromise of classical and
coordinate geometry (and technical drawing) by “transformations and
matrices”. In France there was a strong lobby in favour of linear algebra
and affine geometry. All these approaches had some advantages for the
very best pupils. But all approaches proved too ambitious—even wholly
inappropriate—for most pupils, and failed. The British approach through
transformations had some attractive features, and some strong advocates,
which seems to have made it more difficult for us to admit that it had
failed, and to engage in a serious review of what was actually needed. As a
result, certain themes (e.g. nets of polyhedra, and selected transformations)
continue to feature, even though they no longer deliver any significant
mathematical pay-off. In place of a considered, if overambitious, progression
from naı̈ve symmetry, through transformation geometry, to matrices and
affine transformations, we are left with a residual rump of bits and pieces.

In short, since the early 1980s, geometry teaching in England has
increasingly served up a mish-mash. We abandoned the grand vision of
the reforms of the 1960s and 70s, while retaining some of its language and
content. And in the 1990s we revived a half-hearted version of traditional
Euclidean geometry without ever really sorting out what was needed.
(The new curriculum illustrates our current plight. There we are exhorted
to “derive and illustrate properties of triangles, quadrilaterals, [. . . ] and
other plane figures”, without any recognition of the central position of
isosceles triangles—which are never mentioned; and without any hint that
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the most important “quadrilaterals” of all are parallelograms—which are
only mentioned once, in the context of “formulae to calculate area” (p. 8).)

During the same period, university mathematics departments recognised
that their students lacked the geometrical background that was assumed
in many courses. But universities neither got involved at school level, nor
did they develop an effective university level “introduction to geometry”.
Hence most of those who now teach school mathematics have never
experienced a systematic study of elementary geometry—either in school,
or at university. We have therefore erred on the side of including here
more than is needed for most pupils, in order to provide teachers with a
brief exposition of what they have been missing. In particular, we have
included many details that belong more naturally in Key Stage 4—and
then sometimes only for appropriate groups of pupils. We hope this will
encourage schools to consider what is genuinely accessible at this level, to
experiment, and to decide for themselves what to teach, to whom, and at
which level.

To cut a long story short, it is our contention (though rarely admitted
explicitly):

• that secondary school geometry is potentially attractive, but inevitably
“hard” (e.g. because it cannot be reduced to a series of well-rehearsed,
one-dimensional routines);

• that no one is well-served by the present confused mish-mash;

• that, although translations relate to work on vectors, and although
there may be unstated aesthetic reasons for introducing the language of
symmetry, patterns, rotations, reflections, translations, and enlargements
(and the missing isometries, the glide reflections), these ideas can never
constitute an effective mathematical way of analysing geometrical figures
at this level;

• that all groups would benefit from a coherent initial approach to
secondary geometry in Key Stages 1–3—even if not all follow through
to the same endpoint at Key Stage 4;

• that the three basic principles (congruence, parallels, similarity) can be
appreciated by everyone, and can be used on different levels in drawing,
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constructing, and analysing interesting configurations in 2D and 3D; and
hence

• that we need to develop an effective approach to secondary geometry,
which would be potentially accessible and appealing to most pupils,
which is founded upon the congruence criterion, the criterion for parallels,
and the similarity criterion, and which combines

(a) drawing, measuring, and calculating (lengths, areas, volumes,
angles, trigonometry),

(b) analysing figures and configurations in terms of points, lines, line
segments, angles, triangles, parallelograms, circles, etc.,

(c) using a mix of deduction of key results with lots of lovely problems,
and

(d) linking with algebra and a suitable dose of coordinate geometry at
Key Stage 4.

To create an internal scheme of work that reflects this, schools must be
willing

(i) to interpret the official requirements intelligently,

(ii) to discriminate between what is important for their pupils’
mathematical development and what is not,

(iii) “to join up the (sometimes invisible) dots” into a coherent scheme of
work, and then

(iv) to review and refine the details in the light of experience.

We provide an initial supporting map by grouping most of the official
requirements under three main headings:

3.2 Drawing, measuring, and terminology

3.3 Perimeter, area, and volume

3.4 Constructions, conventions, and derivations

Although it is left unsaid, we assume that under each heading, pupils will
be expected to tackle a rich variety of suitable problems.

The remaining official requirements are then discussed in Section 3.5.
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3.2. Drawing, measuring, and terminology

– draw and measure line segments and angles in geometric
figures [. . . ]

– describe, sketch and draw using conventional terms and
notations: points, lines, parallel lines, perpendicular lines,
right angles, regular polygons, and other polygons that are
reflectively [and/or] rotationally symmetric

– [. . . ] illustrate properties of triangles, quadrilaterals, circles
and other plane figures [for example, equal lengths and
angles] using appropriate language and technologies

– identify properties of, and describe the results of,
translations, rotations and reflections applied to given
figures

– draw and measure line segments and angles in geometric
figures, including interpreting scale drawings

– identify and construct congruent triangles, and similar
shapes by enlargement, with and without coordinate grids

Despite the emphasis here on “doing”, the language remains vague.
Teachers will need to be creative, and to identify those themes that deserve
to be included but are here passed over in silence. In particular, there is no
obvious mention of “applications”: angles are to be drawn and measured,
and scale drawings (presumably including maps) are specifically included,
but there is no hint that one should include practical activities involving
“bearings”, or “angles of elevation”—so that these ideas will have some
meaning when they arise in later paper exercises. So there is much to be
“filled in”.

However, if we leave aside the many ingredients which are omitted, one
way to think about these six requirements is that:
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• the first two involve basic opportunities to draw, to measure, and to
describe;

• the next two involve more reflective preliminary analysis (“illustrating”
and “identifying”—and one hopes talking about, and familiarising pupils
with— “properties”, as opposed to deriving them as some pupils should
do later);

• in the last two requirements, pupils begin to grapple with the three
basic principles of Euclidean 2D geometry: congruence and similarity are
mentioned explicitly, while the characteristic property of parallel lines is
implicit in the whole idea of “enlargement” and scale drawings.

Thus this first group of six requirements serves as a bridge—launching
out from the familiar territory of “geometry as experience” at Key Stage
2 towards the pre-formal, more analytical world of constructions and
deductions at secondary school (see Section 3.4).

3.2.1 Drawing, measuring, and describing One would like to see initial
“measuring and drawing” tasks

(a) that check on, and strengthen skills from Key Stage 2;

(b) that develop pupils’ facility and precision in working with ruler,
protractor, and compasses;

(c) that use and establish the correct notation for line segments and for
angles in labelled diagrams, and

(d) that give rise to slightly unexpected results, which can then be talked
through in class.

The neglect (not just in England) of

(i) basic work on drawing and measuring, and

(ii) the cultivation of spatial common sense through learning to think
through one’s hands, fingers, and eyes,

is indicated by the following very basic Year 9 items from TIMSS 2011.
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3.2.1A Points A, B, and C lie in a line and B is between A and
C. If AB “ 10cm and BC “ 5.2cm, what is the distance between
the midpoints of AB and BC?

A 2.4cm B 2.6cm C 5.0cm D 7.6cm

3.2.1A Russia 60%, Hungary 41%, Australia 40%,
England 38%, USA 29%

3.2.1B [An 8 ˆ 8 square grid is shown] The length of side of
each of the small squares represents 1cm. Draw an isosceles
triangle with a base of 4cm and a height of 5cm.

3.2.1B Russia 75%, Hungary 68%, Australia 41%,
England 40%, USA 27%

The responses clearly suggest that pupils are never expected to construct
the simplest diagrams for themselves. So we must be prepared to begin
Year 7 with lots of drawing exercises that might once have been assumed
from Key Stage 2, but which have fallen out of favour—perhaps because
they cannot easily be assessed. This seems to hold for even the simplest
traditional primary school activities, such as using compasses:

“Draw a circle with centre O and with radius OA;

then draw the circle with centre A passing through O, and
meeting the original circle again at B and F;

then draw the circles with centres at B and F and passing
through O, to meet the original circle again at C and E;

finally draw the circles with centres at C and E and passing
through O, and notice that these circles meet the original circle
at the same point D.”

And then colour the resulting hexagonal pattern of flower petals!

To illustrate the kind of additional tasks that one might use we offer the
following examples.
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• Given a drawn rectangle ABCD measuring 3cm by 4cm, require that the
two diagonals AC, BD be measured, along with the angles =BAC and
=DCA.

• Given a square ABCD with sides of length 10cm, require that the two
diagonals AC, BD be measured, along with the four angles =BAC,
=BCA, =DCA, =DAC.

• Given a regular hexagon ABCDEF, measure the edge length AB and the
length of a “long diagonal” FC, and the angles =BAC, =CAD, =DAE,
=EAF.

• Given a regular pentagon ABCDE with sides of length 10cm, measure the
length of the diagonals AD, BD, and the angles =EAD, =ADB, =BDC,
=DBA, =DAB.

Such drawing and measuring exercises are intended to feed into
subsequent class discussion, for which the initial practical activity serves
as the directly relevant prior experience. The above tasks provide
opportunities to consider:

• Whether the two diagonals AC, BD of the rectangle ABCD really are
equal?

• Whether the four angles =BAC, =BCA, =DCA, =DAC in the square
ABCD really are equal, whether they are all equal to 45˝, and whether
something else seems to be true about the two diagonals AC and BD?

• Whether the diagonal FC in the regular hexagon ABCDEF really is twice
as long as the side AB, whether anything else seems to be true of the
lines AB, FC, ED, and whether the angles =BAC, =CAD, =DAE, =EAF
really are all equal to 30˝?

• Whether in the regular pentagon ABCDE there is anything else that
seems to be true about the side EA and the diagonal DB, or about the
diagonal AD and the side BC, whether the angles =EAD, =ADB, =BDC
really are all equal (to 36˝), whether the angles =DBA and =DAB are
equal to each other and twice the size of the previous group?
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Some of the equalities and relationships that emerge from such an exercise
can be justified at this level. But others should be treated as genuine
“surprises”, which demand explanation later. In particular, teachers should
hesitate before giving the impression that plausible-sounding catch-all
“reasons” (e.g. in terms of the presumed “symmetry” of a regular n-gon)
are acceptable as explanations of what is observed.

In primary school the approach to geometry is largely rooted in experience,
with properties being observed and used. But in secondary school the
approach should be more analytical, and should distinguish between the
(minimal) definition of an object, and any derived properties. In particular,
the definition of a regular n-gon says nothing about its symmetry. A regular
n-gon is defined very simply to be

a polygon in which the n sides are all equal and the n angles are
all equal.

It is not at all obvious—though not difficult to prove later—that a regular
polygon always has a “centre”, can be inscribed in a circle with that centre,
and has n-fold rotational symmetry and n lines of reflection symmetry. But
at secondary level it is wrong to convey the impression that these additional
properties are part of what we “know” a priori about a regular polygon.
Hence the reference in the second listed requirement to

“regular polygons, and other polygons that are reflectively
[and/or] rotationally symmetric”

is thoroughly misleading. At the very least the word “other” should be deleted.

3.2.2 Establishing a basic repertoire: “illustrating, identifying and
describing” The next two requirements in the list at the start of Section
3.2 (“to illustrate properties . . . ” and “to identify properties . . . and describe
. . . ”) are best not taken too literally, but should be interpreted as an

“invitation to revise and to extend pupils’ repertoire of language
and observed facts in geometry”.

In particular, schools will need to clarify for themselves
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• how to interpret the indiscriminate word “quadrilaterals”, by sorting
out which quadrilaterals are most important (namely parallelograms
including rectangles);

• what to make of the reference to “other plane figures” (which as far as one
can tell should probably mean (a) properly defined “regular polygons”,
and (b) composite figures made from rectangles and arcs of circles which
will be needed in Section 3.3);

• what is meant by the curious bracket

“[for example, equal lengths and angles]”,

which we take to be an unedited cryptic allusion to

– isosceles triangles (which receive no mention of any kind elsewhere),
and to

– the two basic results

(i) if AB “ AC (i.e. triangle ABC is isosceles with base BC), then
=ABC “ =ACB;

(ii) if =ABC “ =ACB, then AB “ AC (so the triangle ABC is isosceles
with base BC);

• whether the single isolated reference to “appropriate technologies” was
included for a good reason in the only appropriate place, or whether this
comment should be taken as a prompt to consider carefully the potential
advantages, and dangers, of technology throughout the teaching of
Geometry and measures at this level.

On the latter point, we merely note that active drawing exercises
clearly help to cultivate pupils’ geometrical thinking, whereas the passive
enjoyment of ready-made enhanced graphics seems to convey no similar
mental benefit.

3.2.3 Towards congruence (and similarity) The last two listed
requirements (“draw and measure . . . ” and “identify and construct . . . ”)
are no longer merely elaborating what pupils bring with them from Key
Stage 2.
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• Making and “interpreting scale drawings” is a valuable common sense
exercise, which can later be related to enlargement, proportion and
similarity. But at this stage, the focus should be on interpreting lengths,
distances, and perhaps areas.

(Understanding that angles are preserved in such scale drawings should
be appreciated informally at this stage. The proof may be best left until
similarity is addressed later—at which point one can explain that:

– If two lines AB and AC meet at A, and if the points A, B, C are
represented by the points A1, B1, C1 on a scale drawing, then

AB : A1B1 “ AC : A1C1 “ BC : B1C1.

– Hence by the similarity criterion (Part II, Section 2.2.2.3 and Section 3.4.7
below), it follows that

=BAC “ =B1A1C1 :

that is, the angle between the two original lines AB and AC is the same
as the angle between the lines A1B1 and A1C1 in the scale drawing.
QED)

• “Identify and construct congruent triangles” is best tackled separately
from—and long before—“similar shapes by enlargement”. The goal here
should be to convey

– the central importance of triangles;

– the idea that a triangle ABC is an ordered triple;

– that such a triangle ABC gives rise to six pieces of data: the three sides
AB, BC, CA and the three angles =CAB, =ABC, =BCA;

– that two (ordered) triangles ABC and DEF are congruent precisely
when their vertices match up in order

A ÐÑ D, B ÐÑ E, C ÐÑ F
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so that the three pairs of sides in the two triangles match up exactly,
with AB “ DE, BC “ EF, CA “ FD, and the three pairs of angles also
match up exactly, with =CAB “ =FDE, =ABC “ =DEF, =BCA “

=EFD;

– but that in reality we can be sure that two triangles are congruent
without having to check that all six pairs (i.e. three sides and
three angles) match up: for to determine a triangle uniquely
(up to congruence) we only need to know certain triples of
information—namely:

SSS: AB, BC, and CA; or
SAS: AB, =ABC, and BC; or
ASA: =ABC, BC, and =BCA.

To achieve this understanding, pupils need to be given specified lengths
and angles and then be required to use ruler and protractor, or ruler and
compasses, to construct the triangle, and hence to internalise a sense of
how this limited information determines the final triangle. They should
also be given lots of examples where the triangle is not determined by
the given information, such as:

AAA: given =ABC, =BCA, and =CAB only; or

ASS: given =ABC, BC, and CA only (e.g. =ABC “ 30˝, BC “
?

3, and CA “ 1).

As explained in Part II, Section 2.2.2.3, RHS congruence is a consequence
of SSS and Pythagoras’ Theorem, so RHS is not part of the basic congruence
criterion. Hence it should be introduced, proved, and used somewhat later.

The reference to “similar shapes” here is clearly informal (the full notion
of similarity is more subtle, and may be best postponed until later in Key
Stage 3—see Part II, the end of Section 2.2.2.3, and Section 3.4.7 below). The
emphasis should at first be practical: constructing “enlargements” initially
in the spirit of the exercises in Section T8 of Extension mathematics, Book Beta
by Tony Gardiner (Oxford University Press 2007), and later more formally
in the spirit of section C26 in the same book. Work with “scale drawings”
should be similarly practical—interpreting scale drawings and maps and
using the scale factor to estimate actual distances, areas and angles, then
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constructing scale drawings of familiar locations. (Note that “scale factors”
also feature in the requirements addressed in Section 1.9.)

3.3. Perimeter, area, and volume

– derive and apply formulae to calculate and solve problems
involving: perimeter and area of triangles, parallelograms,
trapezia, volume of cuboids (including cubes) and other
prisms (including cylinders)

– calculate and solve problems involving: perimeters of 2D
shapes (including circles), areas of circles and composite
shapes

At first sight these two requirements may seem relatively straightforward.
However, there is more here than may be apparent at first sight.

3.3.1 Trapezia: an example The mention of “trapezia” illustrates
a general danger. Mathematical methods are too often taught by
training pupils to use formulae which they do not understand, rather
than by first helping them to achieve a basic understanding, and
encouraging them to use their common sense. Once pupils achieve a clear
understanding, that understanding may be suitably summarised in terms
of a formula—provided this is never used as a substitute for thinking what
they are doing.

The first listed requirement in Section 3.3 tries to compress too many ideas
into one bullet point. Whenever the official programme of study tries to
compress distinct topics into a single requirement in this way, the result
is to distort the message—especially at the two ends of the spectrum of
difficulty.

• It is unfortunate that the first requirement in Section 3.3 seems to suggest
that a formula be used to calculate the “perimeter of triangles”. There is
no “formula”. Common sense is all that is needed.
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• At the other end of the difficulty scale, the apparent requirement that all
pupils should

“derive and apply formulae to calculate [. . . the] area of [. . . ]
trapezia”

cannot mean what it appears to say. For in the GCSE Subject criteria we are
told (p. 15) that the formula for the area of a trapezium “is not specified
in the content”. So knowing and using the formula cannot be intended
for everyone as part of the Key Stage 3 programme of study.

It is clearly more appropriate at Key Stage 3 for pupils to know

• that a quadrilateral PQRS with two parallel sides PQ and SR is called a
trapezium, and

• that, if the parallel sides have lengths PQ “ a and SR “ b, and the
perpendicular height is h, then the area of the shape can be found by
dropping two perpendiculars, from P meeting SR at X and from Q
meeting SR at Y, to produce a rectangle PQYX and two right angled
triangles PXS and QYR, whose areas can be combined (using addition
or subtraction— depending on the shape of the trapezium) to find the
area of PQRS.

This primitive method can later lead to a proof of the well-known
formula—at least in the simplest cases.

Claim Suppose X and Y are “internal” to the line segment SR. Then

areapPQRSq “
1
2

pa ` bq ˆ h.

Proof Since PQYX is a rectangle, we know that: XY “ PQ “ a, and
PX “ QY “ h, and that SX ` YR “ SR ´ XY “ b ´ a.

6 areapPQRSq “ areapPQYXq ` areap△PXSq ` areap△QYRq

“ a ˆ h `
1
2

pSX ˆ hq `
1
2

pYR ˆ hq

“ a ˆ h `
1
2

ppb ´ aq ˆ hq

“
1
2

pa ` bq ˆ h. QED
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3.3.2 “Composite shapes” The simple-minded approach to trapezia
(by reducing the problem of finding the area of the trapezium to that
of a rectangle and two right angled triangles) illustrates the reference to
“composite shapes” in the second requirement. The kinds of combinations
that are relevant here are very restricted, but they lie at the heart of all work
with length, area, and volume.

• We calculate more complicated lengths (such as the perimeter of a
polygon) by breaking them up into, or approximating them in terms of,
combinations of line segments (or “one dimensional rectangles”).

• We calculate the area of more complicated shapes in 2D by breaking them
up into, or approximating them in terms of, combinations of rectangles.

• We calculate the volume of more complicated shapes in 3D by breaking
them into, or approximating them in terms of, combinations of cuboids
(or “three-dimensional rectangles”).

In one dimension one may fudge the idea of “length” for the circumference
of a circle by imagining a string wrapped round the circle, which is
then “straightened out and measured”. This is fine—both as a way of
conveying what we mean by the “circumference”, and to obtain a physical
approximation. But it is not a mathematical method: the string is a physical
object; the result is approximate—with no control over the error; and there
is no way to be sure that the string does not change its length as one
“straightens it out”. However, the most serious objection is that the idea
does not extend to 2D and 3D. For example, one cannot take a curved
2D shape like a circular disc, cut it up and rearrange the pieces exactly to
find its exact area; and one cannot take a curved surface, like the surface
of an orange and “straighten it out, or lay it flat” to find its surface area.
The idea that can be made to work in all dimensions is to concentrate on
approximating more complicated shapes by “rectangles” (line segments,
2D rectangles, cuboids, etc.).

It is true that in two dimensions we often dissect polygons and other shapes
into triangles rather than rectangles. But this trick has to be interpreted
carefully. When we move from 2D to 3D, there is no way to extend the idea
of a “triangle” as a way of making sense of “calculating volumes”: for there



212 Tony Gardiner

is no elementary way of finding the volume of a pyramid or tetrahedron.
So we are free to use triangles in 2D, but we should think of each triangle
as “half a rectangle” (on the same base, and with the same height), since
the idea that works in all dimensions is to approximate shapes in terms of
“n-dimensional rectangles”. That is,

• the basic building blocks for length are line segments (one dimensional
rectangles);

• the basic building blocks for area are rectangles (two dimensional
rectangles);

• the basic building blocks for volume are cuboids (three dimensional
rectangles).

We also use composite shapes to approximate more awkward figures.

• The circumference of a circle is approximated by the perimeter of an
inscribed or a circumscribed regular n-gon.

• The area of a circle is approximated from below by counting the number
of unit squares inside it, and from above by counting the number of unit
squares needed to just cover it.

3.3.3 Understanding first, formulae second We repeat: pupils should
be discouraged from using formulae ab initio. Instead they should be
encouraged to imagine each “perimeter” as a sequence of separate line
segments, and each “area” as being made up from, or approximated by,
rectangles, or triangles (or a combination of both). In particular, they
should use their common sense in working from the very beginning
with composite shapes made from line segments, or from rectangles (or
triangles), or from cuboids (or “wedges” as “half cuboids”). This helps to
strengthen pupils’ basic understanding, since such composite shapes admit
no general formula.

The extent to which pupils do not at present use their common sense in
such matters is indicated by the following Year 9 items from TIMSS 2011.

3.3.3A The perimeter of a square is 36cm. What is the area of the
square?
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A 81cm2 B 36cm2 C 24cm2 D 18cm2

3.3.3B The area of a square is 144cm2. What is the perimeter of
the square?

A 12cm B 48cm C 288cm D 576cm

These are multiple choice items—so pupils were not required to calculate
the answers. The false options here are either hard to obtain, or reflect
severe mental sloppiness. So the results should provide serious food for
thought (and not only in England).

3.3.3A Russia 62%, Hungary 55%, Australia 54%, USA 53%,
England 51%

3.3.3B Russia 62%, Hungary 49%, Australia 48%,
England 47%, USA 46%

3.3.4 Length There is more to Section 3.3.2 than may appear: in simple
language, it incorporates a definition of what we mean by “length”, of what
we mean by “area”, and of what we mean by “volume”.

Pupils should understand the “perimeter of a rectangle” not via a formula,
but using the common sense fact that it is made up of four line segments,
whose lengths add up to give the perimeter (see examples 3.3.3A and
3.3.3B). The same idea applies to any polygon—where the perimeter is
made up of a finite number of line segments, whose lengths can be added
to give the perimeter of the polygon.

However, at first it is completely unclear how to extend this idea to measure
the lengths of curves—such as the circumference of a circle of radius r. The
physical idea of “the circumference of a circular, or cylindrical, lamp post”
may be adequately captured by a piece of string that can be wound round
the post and then straightened out and measured. But mathematics cannot
depend on string. To capture the “length of a circular arc” mathematically
we need

• to approximate it by a succession of line segments (such as the perimeter
of a regular n-gon inscribed in, or circumscribed around, the circle), and
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• then to realise that, as the number n of sides increases, the perimeter of
the polygon gets closer and closer to the circle itself.

The cases which can be calculated easily, exactly, and instructively, without
using trigonometry are:

n “ 3: Pythagoras’ Theorem gives

“perimeter of inscribed regular 3-gon” “ 3r
?

3.

n “ 4: Pythagoras’ Theorem gives

“perimeter of inscribed regular 4-gon” “ 4r
?

2.

n “ 6: simple geometry gives

“perimeter of inscribed regular 6-gon” “ 6r.

n “ 8: Pythagoras’ Theorem gives

“perimeter of inscribed regular 8-gon” “ 8r
a

2 ´
?

2.

An inscribed regular octagon is still a long way from the circle itself, but we
can see that the circumference of a circle of radius r is approximated ever
more closely from below by the sequence

r ¨ 3
?

3 ă r ¨ 4
?

2 ă r ¨ 6 ă r ¨ r8
a

2 ´
?

2s ă . . .

¨ ¨ ¨ ă “circumference C of circle of radius r”.

The required circumference C of a circle would seem to be “some multiple
of the radius r”, and the mysterious multiplier “ C

r ” satisfies

5.1961 ¨ ¨ ¨ ă 5.6568 ¨ ¨ ¨ ă 6 ă 6.1229 ¨ ¨ ¨ ă ¨ ¨ ¨ ă
C
r

.

The multiplier “ C
r ” can also be bounded from above by considering

circumscribed regular n-gons:

n “ 3: Pythagoras’ Theorem gives

“perimeter of circumscribed regular 3-gon” “ 6r
?

3.
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n “ 4: Pythagoras’ Theorem gives

“perimeter of circumscribed regular 4-gon” “ 8r.

n “ 6: simple geometry gives

“perimeter of circumscribed regular 6-gon” “ 4r
?

3.

n “ 8: Pythagoras’ Theorem gives

“perimeter of circumscribed regular 8-gon”
“ 16rp

?
2 ´ 1q.

Hence

5.1961 ¨ ¨ ¨ ă 5.6568 ¨ ¨ ¨ ă 6 ă 6.1229 ¨ ¨ ¨ ă ¨ ¨ ¨ ă C
r ă . . .

¨ ¨ ¨ ă 6.6274 ¨ ¨ ¨ ă 6.9282 ¨ ¨ ¨ ă 8 ă 10.3922 .

The mysterious multiplier “ C
r ” is clearly somewhere around 6.3. Once we

give it a name “2π”, and declare its actual value, we have the formula “C “

2πr” for the full circumference of a circle of radius r. We can then extend
this to find the length of a semi-circle of radius r (πr), or of a quadrant ( πr

2 ),
or of the length of a circular arc of radius r with angle θ at the centre.

One can then pose lots of moderately challenging problems to find the
perimeters of composite shapes which are made entirely of rectangles
(such as staircase-shaped figures), or which combine rectangles and circular
arcs (such as a “running track”, or shapes made of rectangles and
quadrants—both protruding and indented).

3.3.5 Area We make sense of “area” in much the same way.

• If we take the area of a unit square as “1”, an m by n rectangle is made up
of m ˆ n unit squares, and so has area mn (square units)

• We can break up the sides of the unit square into unit fractions, and
conclude that mn copies of a 1

m by 1
n rectangle have total area 1, so that

each has area
1
m

ˆ
1
n

“
1

mn
.
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• A p
m by q

n rectangle can then be split into p ˆ q rectangles each of which
is 1

m by 1
n , and so has area

pq ˆ
1

mn
“

pq
mn

“
p
m

ˆ
q
n

.

In short, the area of a rectangle with sides of lengths a units and b units can
be shown to be equal to a ˆ b square units for all possible values of a and b.

When we later come to consider “scaling” and “similarity”, the two facts:

• that the area of any rectangle is equal to “length ˆ breadth”, and

• that the area of any more general shape is defined in terms of
approximating the shape by combinations of rectangles

have an important hidden consequence. Whatever the area of a given shape
may be, if we enlarge it (or “en-small” it) by multiplying all lengths by
the same scale factor “r”, then the area of each and every approximating
rectangle is multiplied by r2, so the area of the shape being approximated
is multiplied by r2. So if one square has sides that are three times as long
as another, then its area is nine times as large; and a circle of radius 4 has
area 16 times as large as a circle of radius 1.

Long before we attempt a formal treatment of enlargement, or similarity, we
need to build up the repertoire of basic results involving measures (as listed
in the official requirements at the start of Section 3.3) using congruence.
In particular, we need to connect the area of other plane figures to our
fundamental shape—namely rectangles. And the most important of these
“other figures” are parallelograms and triangles.

Suppose a parallelogram ABCD has longest diagonal AC. Let the
perpendicular from A meet the line CD (extended) at X, and the
perpendicular from C meet the line AB (extended) at Y. Then the
parallelogram ABCD is completely enclosed in the rectangle AXCY,
and the excess is formed by the two right angled triangles AXD and
CYB—which fit together to make a smaller rectangle. Hence ABCD is equal
to the difference between the large rectangle (with base XC and height XA)
and the excess rectangle (with base XD and height XA)—whence:

Claim Area(parallelogram ABCD) = “base DC ˆ height XA”.
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Given any triangle ABC with “base AB”, we can draw the line through C
parallel to the base AB, and the line through A parallel to the side BC. If
these two lines meet at D, then ABCD is a parallelogram.

Claim △ABC is congruent to △CDA

Proof =BAC “ =DCA (alternate angles—see Part II, section 2.2.2.3)

AC “ CA (same side)

=BCA “ =DAC (alternate angles)

6 △ABC is congruent to △CDA by the ASA congruence criterion. QED

Corollary Area(△ABC) “ 1
2 ˆ area(parallelogram ABCD)

“ 1
2 (base ABˆ height).

Pupils may think they already “know” the Corollary. What is new at Key
Stage 3 is the idea that one can organise the vast lit of “known facts” in
a way that identifies which are the “most basic” (namely congruence and
the area of a rectangle), and how everything else can be derived from
these basic results. Hence, one would like as many pupils as possible to
appreciate

• that the result for the area of a triangle follows from

(i) congruence and

(ii) the result for the area of a parallelogram, and

• that the result for the area of a parallelogram follows from that for a
rectangle.

In other words, we first highlight the congruence criterion, and then use it to
reduce every question about the areas of other shapes (first parallelograms,
then triangles, polygons, circles, etc.) to the basic question about the area of
a rectangle. This is in some sense what we find in Book I of Euclid’s Elements
(c. 300BC), where he goes on to show (in Proposition 47) the remarkable fact
that this is all that is needed to prove Pythagoras’ Theorem.

Claim Let △ABC be a right angled triangle with a right angle at C. Then
the square ABPQ on the hypotenuse AB is equal to the sum of the squares
CARS on side AC and BCTU on side BC.
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Proof Let the perpendicular from C to AB meet AB at X and QP at Y.

It suffices to show that (half of) the square CARS is equal to (half of) the
rectangle AXYQ.

AR is parallel to BS.

6 △ARC and △ARB have the same base AR and the same height RS, so
have the same area.

Also △ARB ” △ACQ (by SAS), so △ARC and △ACQ have the same
area.

AQ is parallel to XY.

6 △ACQ and △AXQ have the same base AQ and the same height AX,
so have the same area.

Hence △ARC and △AXQ have equal area. QED

The proof needs to be acted out and expanded, but it has several advantages
over most other proofs:

• It is very basic, in that it only uses congruence and the area of a triangle.

• It explains why the “square on the hypotenuse AB” is equal to a sum in a
way that most proofs do not.

• The construction used is entirely natural: indeed, given a right angled
triangle ABC with a right angle at C, the line CXY is the only way of
splitting the “square on AB” into two parts that could possibly produce
one part equal to the square on CA and the other equal to the square on
CB.

In John Aubrey’s Brief lives (1694) we read of the philosopher Thomas
Hobbes, that:

He was 40 years old before he looked on Geometry; which
happened accidentally. Being in a Gentleman’s Library, Euclid’s
Elements lay open, and ’twas the [Proposition] 47 [Book I]. He
read the Proposition. By God, sayd he (he would now and
then swear an emphaticall Oath by way of emphasis) this
is impossible! So he reads the Demonstration of it, which
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referred him back to such a Proposition; which proposition he
read. That referred him back to another, which he also read.
[Continuing in this way, checking one thing after another] at last he
was demonstratively convinced of that trueth. This made him
in love with Geometry.

It is worth pondering on Hobbes’ scepticism and astonishment. Pythagoras’
Theorem is a completely unexpected result—and yet one that heralds much
that lies ahead (from the Cosine rule, to scalar products, vector analysis,
linear algebra, quadratic forms, and much, much more). One would like
all pupils to recognise something of Hobbes’ surprise: Who would think of
squaring lengths before adding?

Meantime, once we know how to calculate the area of a triangle, we can use
this as required to calculate the area of any polygon by breaking it up into
triangles and rectangles. For example, we saw in Section 3.3.1 that:

• if a trapezium ABCD has AB parallel to DC, then we can drop
perpendiculars to break up the problem of finding the area of ABCD into
that of finding the area of a rectangle and two right angled triangles;

• by cutting a regular n-gon into n congruent isosceles triangles we show
later in the section that

area(regular n-gon with incircle of radius r) “ 1
2 (perimeter ˆ radius r)

The area enclosed by any shape (including curved shapes such as a circular
disc), is a measure of the “size” of the enclosed region. For a circle of
radius r the exact value may prove elusive, but it can be approximated
internally and externally to provide lower and upper bounds. For example,
if we draw a circle of radius 5 centred at the origin p0, 0q on a square grid,
the circle passes through the twelve grid points p˘5, 0q, p0, ˘5q, p˘3, ˘4q,
p˘4, ˘3q. Counting unit squares inside the circle and those which just
surround it then leads to the crude estimate

60 ă area of circle of radius 5 ă 88.

If we divide each unit in two and use squares of side 1
2 , the circle with centre

p0, 0q passes through p˘5, 0q, p0, ˘5q, p˘3, ˘4q, p˘4, ˘3q, with the points
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p˘ 7
2 , 0q, p0, ˘ 7

2 q just inside the circle. Counting squares of size 1
2 ˆ 1

2 leads
to the slightly better estimate

69 ă area of circle of radius 5 ă 86.

However, merely counting smaller and smaller squares does not in itself
suggest the crucial fact that the desired area is equal to a constant multiple
of r2. For that we need something more systematic. There are two natural
approaches to this: one is highly suggestive, but mathematically less
precise; one is more precise and initially less suggestive (though ultimately
suggestive in a different way).

The less precise (but more intuitive) approach is to cut the circular disc into
2n equal sectors, or “cake slices”, and arrange the pieces alternately pointing
up and down, to form an “almost rectangle” with slightly sloping ends
(each of length r—the radius) and slightly bumpy top and bottom edges
(each of length equal to exactly half the perimeter of the circle—which
we now know to be πr from Section 3.3.4). For larger and larger values

of n—that is, for sectors with smaller and smaller angle
´

180
n

¯˝
at the

centre—the rearranged shape is more and more like a rectangle. This
suggests that the total area of the circular disc is very close to that of an
r by πr rectangle—namely r ˆ πr “ πr2.

The more precise approach is to consider regular n-gons inscribed in, and
circumscribed around, a circle of radius r. One should start by carrying out
the exact calculations for n “ 4 and n “ 6 as a concrete preliminary to the
beautiful, and highly suggestive, general argument for regular n-gons that
follows:

if n “ 4 : area(inscribed square) “ 2r2 ă area(circle radius r)
ă 4r2 “ area(circumscribed square);

if n “ 6 : area(inscribed hexagon) “ 3
?

3
2 ¨ r2 ă area(circle)

ă 2
?

3 ¨ r2 “ area(circumscribed hexagon).

These calculations suggest that the area A of a circle of radius r is some
“constant” multiple of r2, and that the mysterious constant satisfies

2 ă 3
?

3
2 “ 2.598 ¨ ¨ ¨ ă constant ă 3.464 ¨ ¨ ¨ “ 2

?
3 ă 4.
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In general, if a regular polygon ABCDEFG . . . has an inscribed circle with
centre O and radius r, then joining all vertices to the centre breaks up the
polygon into n congruent isosceles triangles ABO, BCO, CDO, . . . . We
know that

AB “ BC “ CD “ . . . ,

that the area of each triangle such as ABO is equal to

1
2

pbase AB ˆ height rq,

and that the regular n-gon is equal to the sum of exactly n such triangles.
Hence

areapABCD . . . q “
1
2

pbase AB ˆ radius rq `
1
2

pbase BC ˆ radius rq

`
1
2

pbase CD ˆ radius rq ` . . .

“
1
2

prAB ` BC ` CD ` . . . s ˆ radius rq

“
1
2

pperimeter of regular n-gon ABCD ¨ ¨ ¨ ˆ radius rq.

As the number n of sides increases, the regular n-gon approximates the
circle more and more accurately and its area approaches the area of the
circular disc.

6 areapcircle of radius rq “
1
2

pcircumference of circle ˆ radius rq

“ πr ˆ r “ πr2.

This links what we know about the circumference of a circle of radius r
with the area of a circular disc of radius r, and shows that the mysterious
“constant multiplier” is exactly π (that is, “half of the constant multiplier”
2π for the circumference of a circle).

Once the area of a circle of radius r is determined, one can pin down the
area of a semicircle of radius r, of a quarter of a circle, and the area of a
circular sector of radius r with angle θ at the centre. Pupils can then be
asked to find the areas of all sorts of lovely composite shapes made from
rectangles, triangles, and, circular sectors (both protruding and indented).
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3.3.6 Volume In one dimension there is really only one possible “shape”,
namely a line segment. And the basic unit for “area” in 2D (namely the
rectangle) is obtained by moving this 1D shape “perpendicular to itself in
2D”. Hence in 2D there is only one possible shape that results from moving
a 1D figure (a line segment) perpendicular to itself—namely a rectangle.
Our whole approach to area started by assuming that we know how to find
the area of a rectangle. And the step from 1D to 2D was so short and sweet
that we hardly noticed it.

But in 2D there are many different shapes, each of which can be moved
“perpendicular to itself in 3D” to obtain a right prism with the given shape
as base.

• Our basic unit of volume, the cuboid, is obtained by moving a rectangle
perpendicular to itself in 3D to create a right prism with a rectangular
base.

• We could just as easily start with a triangular base and move that
perpendicular to itself.

• Or we could start with a regular polygon as base.

• Or we could start with a circle as base.

So there is much more initial work to be done before we begin to worry
about how to find the volume of curved shapes— such as cones and
spheres.

The first move is to establish the formula for the volume of a general cuboid.
A cuboid with integer length sides can be built up by taking an integer
number of unit cubes in each of the three directions. The formula can be
extended to cuboids with fractional length sides in the same way that we
extended the formula for the area of a rectangle. It follows that the volume
of a general cuboid with sides of lengths a units, b units, and c units can be
shown to be equal to a ˆ b ˆ c (cubic units) for all possible values of a, b and
c giving the familiar formula:

volume(cuboid) “ length ˆ breadth ˆ height.

Once this has result been established, the following sequence of steps
allows us to calculate the volume of many other 3D shapes.
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• First consider the cuboid as a right prism, (that is, as a three dimensional
shape formed by moving the base rectangle at “right” angles to its plane)
and interpret the formula for its volume as being

volume(right rectangular prism) = (area of base rectangle) ˆ

height .

• Then cut the base rectangle into two congruent right angled triangles,
and so extend this formula to give the volume of a right prism with a
right angled triangle as base (a “right triangular wedge”) as

volume(right prism with right triangular base)

“ (area of base) ˆ height.

• Then extend this formula to give the volume of any right prism with
a parallelogram as base (surround the parallelogram by a rectangle, and
hence surround the prism by a cuboid; then, just as in two dimensions,
obtain the volume of the right prism by subtracting two “right triangular
wedges” from the surrounding cuboid) to get:

volume(right prism with parallelogram base)

“ (area of base parallelogram) ˆ height.

• Then use the fact that any right triangular prism is half of a right prism
with a parallelogram as base to show that its volume is given once more
by:

volume(right prism with triangle as base)

“ (area of base triangle) ˆ height.

• We can then extend this same formula to any right prism with a polygon
as base (by cutting up the base into triangles, and then adding up the
volumes of the right triangular prisms):

volume of any right prism = (area of base figure) ˆ height.

• Finally we extend this formula once more to a right circular cylinder (by
approximating the base circle by regular polygons).
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All these formulae can be explained and understood—and can then be used
to find the volumes of an interesting variety of compound shapes. The
formulae for the volumes of more complicated shapes (such as pyramids,
cones, spheres) are more subtle, and are best delayed until Key Stage 4.

When we come to consider “scaling” and “similarity”, the two facts:

• that the volume of any cuboid is equal to

“(area of base) ˆ height”,

or

“length ˆ breadth ˆ height”,

and

• that the volume of any more general shape in 3D is defined in terms
of approximating them by combinations of cuboids (including “half
cuboids”, or triangular wedges)

have a hidden consequence. Whatever the volume of a given shape may
be, if we enlarge it (or “en-small” it) by multiplying all lengths by the same
scale factor “r”, then the volume of each and every approximating cuboid
is also multiplied by r3, so the volume of the shape being approximated
is multiplied by r3. If one cube has sides that are three times as long as
another, then its volume is 27 times as large; and a sphere of radius 4 has
volume 64 times as large as a sphere of radius 1.

3.4. Constructions, conventions, and derivations

– use the standard conventions for labelling the sides and
angles of triangle ABC, and know and use the criteria for
congruence of triangles

– derive and use the standard ruler and compass
constructions (perpendicular bisector of a line segment,
constructing a perpendicular from/at a given point,
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bisecting an angle); recognise and use the perpendicular
distance from a point to a line as the shortest distance to
the line

– apply the properties of angles at a point, angles at a point
on a straight line, vertically opposite angles

– apply [. . . ] triangle congruence [. . . ] to derive results about
angles and sides [. . . ], and use known results to obtain
simple proofs

– derive and illustrate properties of triangles, quadrilaterals,
circles and other plane figures [for example, equal lengths
and angles] using appropriate language and technologies

– understand and use the relationship between parallel lines
and alternate and corresponding angles

– derive and use the sum of angles in a triangle and use it
to deduce the angle sum in any polygon, and to derive
properties of regular polygons

– apply angle facts, triangle congruence, similarity and
properties of quadrilaterals to derive results about angles
and sides, including Pythagoras’ Theorem, and use known
results to obtain simple proofs

Congruence has already been introduced and used; and parallels have
also featured (e.g. in parallelograms and trapezia). So this group
of requirements, taken together, amounts to a relatively systematic
“Euclidean” reorganisation of pupils’ geometrical knowledge and methods.
But this “reorganisation” is not an end in itself. Once the three basic
principles (congruence, parallels, similarity) have been clarified, once the
backbone sequence of basic results has been established, and once the
idea of only using previously proved results has been grasped, pupils
gain access to what should be the main educational content of secondary
school geometry—namely the wonderful world of accessible, yet elusive
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problems. To keep things relatively short, the exposition here focuses
mainly on the underlying framework of basic results and methods which is
needed to support this pupil activity. However, it is essential for teachers
not only to grasp the underlying framework, but also to engage with the
kinds of problems this framework opens up for pupils (and teachers) to
enjoy. For a systematic development of deductive problems for mid-late
Key Stage 3, we recommend the book Crossing the Bridge by G. Leversha
(UKMT Publications 2008). Dedicated sets of problems can also be found in
the series Extension Mathematics by Tony Gardiner (Oxford University Press
2007):

• Book Alpha: T5 (perimeters); T9, E2 (angles); T11, C7 (drawing
conclusions); C17 (triangles); C19, E14 (areas and volumes)

• Book Beta: T11, T15 (drawing conclusions); C4, C7, C15 (congruence);
T17, C11, E4 (angles); T20 (triangles); T26, C18 (areas and perimeters);
C2 (parallel lines); C5 (ruler and compass constructions); C27 (volumes)

• Book Gamma: T10 (parallel lines); T17, C35 (Pythagoras’ Theorem); T24
(loci); T8, C8 (circles); C10 (angles in regular polygons); C15 (volumes
and prisms); C3, C39 (miscellaneous problems).

After a brief general introduction (Section 3.4.1) we address the very first
listed requirement in two parts (Sections 3.4.2 and 3.4.3). We then discuss
the role of the standard “ruler and compass constructions” in Section 3.4.4,
before focusing on angles, and deriving the simplest consequences of the
congruence criteria (relating to isosceles triangles and regular polygons)
in Section 3.4.5. Section 3.4.6 examines the consequences of the parallel
criterion—in particular the sum of angles in a triangle and results relating to
parallelograms. Finally Section 3.4.7 comments briefly on the requirements
relating to similarity. (The two remaining official requirements under the
heading of Geometry and measures are discussed briefly in Section 3.5.)

3.4.1 Towards formal geometry As with all aspects of elementary
mathematics, there is no “royal road” to success in geometry. The
approaches adopted in England since the 1960s introduced all manner of
delights, which one may hesitate to discard. But they have singularly failed to
produce school leavers able to analyse configurations in two- and three-dimensions.
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During this period a number of teachers and authors have continued to
insist, and to demonstrate, that the most effective framework within which
ordinary students can apprehend and ‘calculate exactly’ with geometrical
information is that which analyses more complicated figures in terms of
triangles. This is the thrust of the Euclidean framework illustrated by the
sequence of official requirements listed at the start of Section 3.4.

Informal work at Key Stage 1 and Key Stage 2 to make sense of shapes and
patterns in 2D and 3D prepares the ground for the ‘more formal’ treatment
later in Key Stage 3 and at Key Stage 4. We have already stressed the need
for structured work at Key Stage 2 and in early Key Stage 3 to include
drawing and measuring (Section 3.2.1), calculating angles (described briefly
in Part II, Section 2.3.5), and work with lengths, areas and volumes (Section
3.3.1). Such work develops the ideas and language that are needed when
we begin to reorganise our approach to Euclidean geometry during Key
Stage 3 (in terms of congruence, parallels, and similarity). The sequence of
requirements listed at the start of Section 3.4 should be seen as ushering in
this semi-formal phase.

The full thrust of formal Euclidean geometry only takes root late in Key
Stage 3. And though the foundations are laid in Years 7 and 8, it is not
surprising that most of the released Year 9 items from TIMSS 2011 focus on
calculation and construction, rather than on deduction. However, one item is
perhaps relevant.

3.4.1A [A convex pentagon labelled ABCDE is shown,
including diagonals AC and AD.] What is the sum of all the
interior angles of pentagon ABCDE? Show your work.

The dissection of the pentagon in the accompanying diagram into three
triangles ABC, CAD, and DEA invites (but does not force) pupils to use
the “known fact” that the angles in any triangle add to 180˝. Since most
Year 9 pupils have known this “fact” for several years, it seems reasonable
to hope that significant numbers might manage to produce the answer of
540˝, with an acceptable justification—even if expressed rather crudely as:

△ABC ` △ACD ` △ADE “ 180 ` 180 ` 180 “ 540,
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or
lABCD ` △ADE “ 360 ` 180 “ 540.

The reported results therefore underline the challenge of trying to get
pupils to “reason geometrically”. The mark scheme awarded 2 points
for an acceptable solution (including a justification), with 1 point for the
numerically correct answer, but with an incorrect reason (and maybe for
an acceptable reason, with an incorrect answer). We give the percentage
of pupils scoring 2 points (with the percentage scoring at least 1 point in
brackets):

3.4.1A Hungary 22% (29); Russia 19% (35);
England 17% (20); Australia 13% (19); USA 12% (16)

It is probably worth noting three additional results from the Far East. The
Japanese scores of 72% (and 81%) show that it is possible to do considerably
better than we do at present. At the same time the Singapore scores of 55%
(and 60%), and the Hong Kong scores of 38% (and 51%), suggest that it
would be rash to expect too much, too soon, from too many pupils.

3.4.2 Conventions The details relating to the first half of the first listed
requirement were explored at length in Part II, Section 2.2.2.3, namely for
pupils to learn

– to use the standard conventions for labelling the sides and angles of
triangle ABC.

These conventions establish the language and grammar of all “geometrical
calculation”.

Mathematics in general succeeds by translating sense impressions, and
language or sounds, into symbols which allow exact calculation. For
example, we replace “words for numbers” by numerals and place value,
which then makes it possible to develop exact methods for “numerical
calculation”. Similarly, it is only when general relations are expressed as
algebraic expressions that we have a chance of making deductions we might
otherwise overlook. For example, as long as the problem

“Find a prime number that is one less than a square”
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is presented in non-mathematical language, its analysis remains elusive.
But as soon as it we translate this into the appropriate mathematical
language:

“When is n2 ´ 1 prime?”

we immediately have the chance of seeing how to proceed by engaging
in “algebraic calculation”, since “n2 ´ 1” should trigger the well-known
factorisation

n2 ´ 1 “ pn ´ 1qpn ` 1q,

so n2 ´ 1 can only be prime if n ´ 1 “ 1.

In the same spirit, the English words “triangle” or “quadrilateral” conjure
up a visual impression, or imagined shape. But one cannot calculate with
such a visual impression. If we wish to refer to, and to calculate with, a
particular triangle or quadrilateral, we need to give it a name in accordance
with certain conventions.

The labelling conventions are chosen to communicate reliably between
individuals, and to reflect the geometric structure of the object being
labelled. Points are routinely denoted by capital letters (preferably italic).
Two points A, B determine a line AB. But in England we use the same
notation for the line segment which starts at A, runs to B, and then stops.
And we use the same notation again for the length of the line segment! In
other countries, these three different ideas are given different notations. It
is unclear who has the power to change this confusion. But it is completely
clear that, as long as we continue to use “AB” to denote all three ideas,
it is essential for teachers to make sure that the associated language used in
the classroom and in pupils’ written solutions always makes it clear which
meaning is intended.

A polygon is a “broken” (or bent) sequence of line segments. Hence, when
labelling a polygon, the sequence in which the vertices are named matters.
A quadrilateral ABCD has to be labelled in cyclic order, where the edges
are the successive line segments, or edges, that make up the quadrilateral:
with edges AB and BC (meeting at the vertex B), BC and CD (meeting at
vertex C), CD and DA (meeting at vertex D), and DA and AB (meeting at
vertex A).
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The whole of geometry in 2D and in 3D rests on the discovery that triangles
hold the key to the construction and analysis of more complicated shapes.
When we label the vertices of a triangle △ABC, the cyclic order is not a
problem: because there are only three vertices, the only choice is to list the
vertices in clockwise, or in anticlockwise order. Each of the three vertices gives
rise to an (internal) angle:

=ABC (often abbreviated as “=B”, or just “B”), =BCA
(abbreviated as “=C”, or “C”), and =CAB (abbreviated as
“=A”, or “A”).

And the length of each side of the triangle is conventionally labelled with the
lower case version of the opposite vertex:

side AB (opposite vertex C) has length c, side BC has length a,
side CA has length b.

More awkward is the fact that whenever push comes to shove, a ‘triangle’
is not just a three-cornered shape: it is a labelled, or ordered, triple ABC,
where the order matters. If one only knows the three vertices, but not
the order, then this corresponds to several different triangles: the triangles
△ABC,△BCA,△CAB,△BAC, . . . are in some sense different (as becomes
clear when aligning triangles to demonstrate congruence—see Section
3.4.3). Even if we choose not to insist on such precision all the time,
whenever we come to do some kind of calculation with a triangle, or a
quadrilateral, we find that the order matters.

In a similar spirit, Key Stage 3 should witness a marked shift in how
geometric objects are defined.

• In primary school, an object is pinned down (or “apprehended”) by
accumulating an ever-increasing list of “properties” (so that a “rectangle”
is understood through all its properties: opposite pairs of sides equal and
parallel, four right angles, equal diagonals which bisect each other, and
so on).

• In Key Stage 3 this “encyclopedic” approach to the question “What is a
rectangle?” should be replaced by the idea of a definition as a minimal
specification. Hence
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– a “rectangle” is defined to be “a parallelogram with one right angle”;

– a “parallelogram” is defined to be “a quadrilateral with opposite pairs
of sides parallel”; and

– a “right angle” is defined to be “half a straight angle”.

This not only makes it clear what exactly we mean by a “rectangle”, it also
makes it much easier to check that a given quadrilateral is in fact a rectangle
(since we only have to check (a) that it is a parallelogram, and (b) that it has
at least one right angle). Once we have done this, we know that every other
property of a rectangle comes for free—without the need to check.

3.4.3 Congruence The second half of the first listed requirement, namely

– to know and use the criteria for congruence of triangles

was explored in Section 3.2.3 above and in Part II, Section 2.2.2.3. Further
consequences arise in Section 3.4.4, 3.4.5, and 3.4.6 below.

Two (ordered) triangles △ABC and △DEF are congruent if the (ordered)
correspondence

A ÐÑ D, B ÐÑ E, C ÐÑ F

matches up each of the six ingredients of triangle △ABC with those of
triangle △DEF in such a way that

• all three corresponding pairs of line segments are equal:

AB “ DE, BC “ EF, CA “ FD,

and

• all three corresponding pairs of angles are equal:

=A “ =D, =B “ =E, =C “ =F.

We write this as: △ABC ” △DEF (which we read as “triangle ABC is
congruent to triangle DEF”).
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“Congruence of triangles” only makes sense between ordered triangles.
And it can help pupils to see more clearly which vertex of the first triangle
corresponds to which in the second triangle, and which side of the first
triangle corresponds to which in the second triangle if pupils initially write

△ABC

” △DEF

lining up corresponding vertices and edges vertically over each other (as
with column arithmetic):

• with vertex A directly above vertex D, B directly above E, C directly
above F, and

• with edge AB directly above edge DE, BC directly above EF, CA directly
above FD.

The three basic congruence criteria (SSS, SAS, and ASA) arise naturally from
drawing and construction exercises, and the SSS-congruence criterion plays
a significant role in the next Section 3.4.4 to show that the standard ruler and
compass constructions do what they claim:

triangles △ABC and △DEF are congruent (by SSS) if AB “ DE,
BC “ EF, and CA “ FD;

triangles △ABC and △DEF are congruent (by SAS) if AB “

DE, =BAC “ =EDF, and AC “ DF;

triangles △ABC and △DEF are congruent (by ASA) if =BAC “

=EDF, AB “ DE, and =ABC “ =DEF.

The RHS congruence criterion is not part of this basic congruence criterion,
so does not really belong at this stage. It arises as the degenerate instance of
the failed ASS criterion (where the angle “A” in “ASS” is a right angle, and
so is neither acute nor obtuse). The fact that RHS guarantees congruence
depends on Pythagoras’ Theorem, since knowing two sides and a right angle
then determines the third side. So RHS is a special case of SSS.

3.4.4 Congruence and ruler and compass constructions “Construction”
at Key Stage 3 takes on a slightly different meaning, moving
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• from measuring work with rulers and protractors at Key Stage 2 and
early Key Stage 3

• to a simple, hands-on, geometrical framework using “ruler and
compasses”, which avoids measuring altogether, in which the
familiar “measuring ruler” becomes a straightedge (that is, a mere
straight-line-drawer), and the focus switches from measuring lengths
to “equality” of line segments (e.g. as radii of a given circle, created by
a pair of compasses).

We stick to the tradition of referring to these latter constructions as ruler
and compass constructions—even though the ruler is being used as an
“ideal” mental straightedge (and its crude, approximate markings play no
role).

• Given two points A and B, the “ruler” is simply a way of physically
capturing the idea that one can imagine the line or line segment “AB”
determined by these two points; and

• given a point O (as centre) and another point P, the “compasses” are a
way of physically capturing the “ideal” construction of the circle with
centre O and passing through P.

That is, the two instruments are in some sense not being used to perform
actual constructions, but to illustrate imagined ideal constructions (performed
with ‘heavenly’ straightedge and compasses).

Ruler and compass constructions offer a natural psycho-kinetic embodiment
of the simplest parts of formal geometry (for example, allowing pupils
to experience SSS-congruence directly). The constructions themselves
are experienced directly; and the proofs that the basic constructions do
what they claim constitute an introduction to the subsequent transition
from physical to formal geometry. Hence ruler and compass constructions
embody four rather different aspects of secondary mathematics.

• The first is the clean simplicity of the basic moves:

– to construct the line AB through two known points A and B,

– to construct the circle with known centre A passing through a known
point B, and
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– to obtain “new known points” as the points of intersection of two
constructed lines, or of a constructed line and a circle, or of two
constructed circles.

• The second aspect is the act of drawing itself (which may at first
be ungainly, but which benefits hugely from practice, which exploits
the links between hand, eye, and brain, gives physical substance to
geometrical ideas, and leads ultimately to quiet satisfaction after a
well-implemented construction).

• The third aspect is to imagine the act of drawing without first carrying
out each construction, so that one can begin to combine standard
constructions as basic moves in a chain that achieves some more
complicated goal: (for example, we can imagine how one might use
ruler and compasses to construct an equilateral triangle—or a square, or
a regular pentagon, or a regular hexagon, or a regular octagon—inscribed
in a circle with centre at O and passing through the point A).

• The fourth aspect is the simple deductive structure, based mainly on the
SSS-congruence criterion, that shows how “equal lengths” (which is all
one can create using compasses, where two radii of the same circle are
necessarily equal) leads to congruence, and hence forces certain angles to
be equal.

The idea that mathematical objects need to be “constructed”, rather than
“postulated” or plucked out of thin air, lay at the heart of ancient
Greek mathematics. The assumptions which underlie ruler and compass
constructions were declared as the first three of their five “axioms” or
principles:

• to construct a line segment AB joining two known points A, B;

• to extend this line segment as far as one wishes in either direction;

• to construct the circle with known centre O and passing through a known
point A.

Many of the results they proved were presented as constructions. For
example, the very first Proposition in Book I of Euclid’s Elements:
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“On a given finite straight line [segment AB] to construct an
equilateral triangle [ABC].”

Construction: Draw the circle with centre A passing through B,
and the circle with centre B passing through A. Let these two
circles meet at C and at D.

6 AB “ AC (radii of the same circle) and BA “ BC (radii of the
same circle).

6 △ABC is equilateral. QEF

Genuine proofs ended with a statement (in Greek)

“which is that which was to be proved”.

This is rendered in Latin as “Quod Erat Demonstrandum” and abbreviated
as “QED”. In contrast, constructions like the one above ended with the
statement

“being what it was required to do”,

which is rendered in Latin as “Quod Erat Faciendum” and abbreviated as
“QEF”.

This may all seem to have little to do with school mathematics. But it
is worth reflecting on the links between this “constructive” approach to
mathematical concepts and the psychology of the learner. As mathematics
became more abstruse in the eighteenth, nineteenth, and early twentieth
centuries, its ideas and methods were increasingly postulated abstractly.
This approach proved exceedingly powerful; but it also made the subject
less accessible, and led to philosophical difficulties. The advent of
computers has reminded us afresh of the need to be able to construct the
ideas about which we reason in mathematics: knowing that a curve crosses
the x-axis and so has a “root” is one thing; but we also need effective
methods for finding that root. Something analogous applies to learners,
where a constructive approach often allows a more meaningful kind of
engagement than a purely logical analysis. (This observation also seems
to have been behind John Perry’s proposed reforms in the early 1900s.)

The official requirement that pupils should
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– derive and use the standard ruler and compass
constructions (perpendicular bisector of a line segment,
constructing a perpendicular from/at a given point,
bisecting an angle); recognise and use the perpendicular
distance from a point to a line as the shortest distance to
the line

encourages this kind of healthy, constructive engagement, and does so
using “ruler and compasses” in a way that is consistent with the Euclidean
reworking of geometry. It is therefore to be welcomed (though, as we shall
see, the final reference to “shortest distance to the line” is slightly out of
place).

The first “standard construction” is implicit in Euclid’s Proposition 1.

To construct the perpendicular bisector of a given line segment
AB.

Construction: Draw the circle with centre A passing through B,
and the circle with centre B passing through A. Let these two
circles meet at C and at D.

We may not yet know how to construct the midpoint of the
line segment AB; but the midpoint certainly exists, so let us
“imagine” it (somewhere between A and B) and give it a name,
M.

We claim that △CMA ” △CMB (by SSS).

6 =CMA “ =CMB, so each angle is half a straight angle, and
CM is perpendicular to AB.

Similarly, DM is perpendicular to AB.

6 CMD is a straight line, so the line CD crosses AB at its
midpoint M.

6 CD is the required perpendicular bisector. QEF

The second standard construction uses the same idea.
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Given a line segment AB and a point P, to construct the
perpendicular from P to AB.

Construction:

(i) Suppose first that P lies on the line AB.

Clearly P cannot be the same point as both A and B. So we may
suppose that P ‰ B.

Draw the circle with centre P passing through B, and let it meet
the line AB (= BP) again at C.

Then P is the midpoint of BC.

Use the first standard construction to find the perpendicular
bisector of BC, and this will be the perpendicular to AB at the
point P.

(ii) Suppose next that P does not lie on the line AB.

By drawing the circles with centre P passing through A and
through B we can choose the point furthest from P—which we
may suppose is B.

Draw the circle with centre P passing through B, and let it meet
the line AB again at C. (The point C lies on the line AB, but is
not internal to the line segment AB.)

Use the first standard construction to find the midpoint M of
BC.

6 △PMB ” △PMC (by SSS)

6 =PMB “ =PMC, so each is half a straight angle.

6 PM is the perpendicular from P to AB. QEF

The third standard construction is slightly different. Because ruler and
compasses can only make lengths equal, it again uses SSS-congruence—this
time to conclude that two angles are equal.

Given two lines BA and BC meeting at the point B, to construct
the bisector of =ABC.
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Construction: Draw the circle with centre B passing through C
and let this circle meet the segment BA (extended if necessary
beyond the point A) at D.

6 BC “ BD (radii of same circle)

Draw the circle with centre C passing through B, and the circle
with centre D passing through B, and let these two circles meet
at B and again at E.

6 CB “ CE (radii of same circle) and DB “ DE (radii of same
circle).

6 △CBE ” △DBE (by SSS)

6 =CBE “ =DBE, so the line BE bisects =ABC. QEF

There are lots of lovely problems which exploit these three basic
constructions. Once we are in a position to use “equal alternate (or
corresponding) angles” as a criterion for two lines to be parallel, we can
extend the second standard construction to obtain the line through P
parallel to AB.

Given a line AB and a point P not on AB, to construct the line
through P parallel to AB.

Construction: Construct the perpendicular from P to AB,
meeting AB at the point X.

Then construct the perpendicular PY to PX at the point P.

The fact that =AXP and =XPY are right angles, then implies
that PY is parallel to AB. QEF

We can also explore the question of constructing regular polygons. The
flower petal construction described in Section 3.2.1 shows how to construct
a regular hexagon ABCDEF inscribed in a given circle with centre O and
passing through A. By taking every second vertex, we obtain a way of
constructing an equilateral triangle ACE inscribed in the circle with centre
O.

The question as to which other regular polygons can be constructed in
this way was addressed (and answered completely) by Carl Friedrich Gauss
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in his late teens in the mid-late 1790s, and published in his famous
book Disquisitiones arithmeticae, 1801 (at the time, Latin was still the main
international language for communicating scientific results). To construct
a square, let AO meet the circle again at C, construct the perpendicular
bisector of the line segment AC, and let this meet the circle at B and at D;
then one can prove that ABCD is a square. One can also find relatively
simple ways of constructing a regular pentagon in the circle with centre O
(though proving that they really work may have to wait until Key Stage
4). And once we know how to construct a regular 4-gon ACEG in the
circle with centre O passing through A, we can use the first standard
construction to construct the perpendicular bisector of each side and so
find the points B, D, F, H where these perpendicular bisectors cut the
circle—thus constructing a regular 8-gon ABCDEFGH. Similarly, once we
know how to construct a regular 5-gon, we can construct a regular 10-gon.
But it is impossible to construct a regular 7-gon, or a regular 9-gon, or a
regular 11-gon with ruler and compasses.

The final requirement for pupils to:

recognise and use the perpendicular distance from a point to a line as
the shortest distance to the line

is slightly out of place here. We saw how to construct the perpendicular
from a point P to meet AB at the point X. But it is not obvious that PX is
the shortest distance from P to AB. (The easiest way to see this is to consider
any other point Y on the line AB and then to apply Pythagoras’ Theorem to
the right angled triangle PXY to see that PY is greater than PX.)

3.4.5 The basic consequences of congruence The simplest geometrical
result of all is that “vertically opposite angles are always equal” as required
by

– apply the properties of angles at a point, angles at a point
on a straight line, vertically opposite angles.

Claim Whenever two lines cross at a point P, any pair of vertically
opposite angles A and A1 at P are necessarily equal.
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Proof: Let B be the angle “between” the two vertically opposite angles A
and A1 at P.
Then A ` B is the straight angle on one line, and B ` A1 is the straight
angle on the other line.

6 A ` B “ B ` A1 , so A “ A1. QED

In general the size of an angle is defined in terms of fractions of a “straight
angle” (the “angle” at a point P on a straight line). For example, if we
bisect a straight angle, then each half is a right angle. Thanks to the ancient
Babylonians, we still measure angles in degrees, with each straight angle
equal to 180˝, so each right angle is equal to 90˝. We are not sure why they
chose 360˝ for a full turn. However, it may be related in some way

(a) to their use of the sexagesimal numeral system (base 60), and

(b) to their use of angles in astronomy, and the connection between the
apparent movement of the observed stars and what they took to be the
number of days in a year.

The rest of this section focuses on the SSS, SAS, and ASA congruence
criteria. These are in many ways more fundamental than the criterion for
two lines to be parallel (which we address in Section 3.4.6), in that they
apply to geometries where the parallel criterion fails—allowing us to show
that certain angles, or line segments, are equal (as in Section 3.4.4, where
we dropped perpendiculars, and where we bisected any given angle).
The miracle of Euclidean geometry is how much more one can prove by
combining these two principles.

We start by developing the “backbone” of results that depend only on
congruence. This obliges us to interpret the two slightly confused official
requirements:

– apply [. . . ] triangle congruence [. . . ] to derive results about
angles and sides [. . . ], and use known results to obtain
simple proofs
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– derive and illustrate properties of triangles, quadrilaterals,
circles and other plane figures [for example, equal lengths
and angles] using appropriate language and technologies

The problem here is that the wording in the full requirement (including the
parts which have here been omitted) confuses

• the experiential Key Stage 2 approach to geometry (where one “collects
and uses facts” without any definitions or proofs) and

• the Key Stage 3 approach, which begins to organise geometrical
knowledge through minimal definitions, respecting conventions,
emphasising the three basic principles (the congruence criterion, the
parallel criterion, and the similarity criterion), and deriving those
“facts”, or “properties”, which are most useful.

If we disentangle this confusion, and focus on what should be the
distinctive Key Stage 3 approach, then the first move has to be to prove
the basic facts about isosceles triangles. A triangle ABC in which AB “ AC
is called isosceles, with base BC and with apex A. (“Iso” means “same” in
Greek; and “sceles” means “legs”, or sides.)

Claim if AB “ AC, then =ABC “ =ACB (“the base angles of any
isosceles triangle are equal”). Moreover, the line AM joining the apex A
to the midpoint M of the base BC (the “median”) is also the perpendicular
bisector of the base BC, and the bisector of the apex angle =BAC.

Proof Construct the midpoint M of the base BC.

Then △ABM ” △ACM (by SSS).

6 =ABM “ =ACM, so the two base angles =ABC and =ACB are equal.

Also =AMB “ =AMC, so each is equal to half a straight angle—that is,
a right angle.

And =BAM “ =CAM, so AM bisects the angle =BAC. QED

Claim If =ABC “ =ACB, then AB “ AC (“if the base angles are equal,
the triangle is isosceles”).



242 Tony Gardiner

Proof △ABC ” △ACB (by ASA).

6 AB “ AC. QED

Claim (a) If M is the midpoint of BC, and MX is perpendicular to BC,
then XB “ XC. That is, each point on the perpendicular bisector of BC is
equidistant from B and from C.

(b) Conversely, if Y is equidistant from B and from C, then Y lies on the
perpendicular bisector of BC.

Hence the perpendicular bisector of a line segment BC is precisely the
locus of all points that are equidistant from B and from C.

Proof (a) △XMB ” △XMC (by SAS, since XM “ XM, =XMB “

=XMC, MB “ MC).

6 XB “ XC.

(b) Join YM. Then △YMB ” △YMC (by SSS).

6 =YMB “ =YMC, so each is half of a straight angle. QED

Isosceles triangles arise naturally when working with circles: if A and B lie
on the circle with centre O, then OA “ OB, so △OAB is isosceles. Hence
the perpendicular from O to AB bisects the base AB and also bisects the
angle =AOB. Isosceles triangles also feature in the following useful result.

Claim A regular n-gon ABCDEF . . . has a centre O, and is inscribed in a
circle with centre O.

Proof Let the perpendicular bisector of AB meet the perpendicular
bisector of BC at O. By a previous result, OA “ OB, and OB “ OC. Hence
OA “ OC and the circle with centre O passing through A, also passes
through B and C. We show that this circle necessarily passes through the
vertex D, and hence through all vertices of the regular polygon.

6 △OAB is isosceles, so =OAB “ =OBA, and △OBC is isosceles, so
=OBC “ =OCB.

Moreover △OAB ” △OBC (by SSS: since OA “ OB, OB “ OC, and
AB “ BC).
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6 =OAB “ =OBC, so

=OAB “ =OBA “ =OBC “ =OCB “
1
2

p=ABCq.

6 =OCD “ =BCD ´ =OCB “ 1
2 p=ABCq “ =OBC.

6 △OBC ” △OCD (by SAS: OB “ OC, =OBC “ =OCD, BC “ CD).

6 OC (in △OBC) “ OD (in △OCD) so the circle with centre O passing
through A also passes through D.

Continuing in this way shows that the circle passes through every vertex
of the regular polygon. QED

3.4.6 The parallel criterion and angles in a triangle To prove more
interesting results—such as to

– derive and use the sum of angles in a triangle and use it to
deduce the angle sum in any polygon

we need more than just the congruence criterion. In particular, we need to

– understand and use the relationship between parallel lines
and alternate and corresponding angles.

This is the second organising principle in geometry—namely the criterion
for two lines in the plane to be parallel. Given any two lines in the plane, a
transversal is a third line that cuts both of the two given lines. The parallel
criterion declares that:

• two lines are parallel precisely when the alternate angles (or the
corresponding angles) created by a transversal are equal.

This is a rather subtle criterion, but one which can be made thoroughly
plausible.

The formal proof that the three angles in any triangle ABC add to a straight
angle echoes the primary school activity of tearing off the three corners and
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fitting the pieces together crudely against a ruler. But here we use “God’s
ruler” (namely the line through C parallel to AB), and we fit the three angles
together perfectly and in a very particular order (=A ` =C ` =B).

Claim The three angles in any triangle △ABC add to a straight angle.

Proof Construct the line XCY through C parallel to AB (with X on the
same side of CB as A).

Then =XCA “ =BAC “ =A (alternate angles)

and =YCB “ =ABC “ =B (alternate angles).

6 =A ` =C ` =B “ =XCA ` =ACB ` =YCB. QED

A quadrilateral ABCD can be split into two triangles (by drawing one of
the diagonals AC, BD), so the sum of the four angles in any quadrilateral
is “2 ˆ 180˝”. The same idea shows that the angles in any polygon with n
sides have sum pn ´ 2q ˆ 180˝. These simple observations open the door to
hundreds of wonderful (non-obvious, multi-step) problems involving angle
chasing (see, for example, Extension mathematics, Tony Gardiner: Book Alpha,
Sections T9, E2; and Book Beta, Sections T17, C11, E4).

The last seven words of the requirement

– derive and use the sum of angles in a triangle and use it
to deduce the angle sum in any polygon, and to derive
properties of regular polygons

are slightly out of place here. A regular polygon is defined to be a polygon
whose sides are all equal and whose angles are all equal. It should be
a major focus of secondary geometry to explore the geometry of regular
polygons—at least including regular 3-gons, regular 4-gons, regular 5-gons,
regular 6-gons, and regular 8-gons. And whilst it follows from the above
that each angle in a regular n-gon is equal to

ˆ

1 ´
2
n

˙

ˆ 180˝,

almost anything else one might prove about regular polygons depends on
the congruence criteria (in particular, properties of “isosceles triangles”).
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This observation even applies to proving that certain diagonals and sides
are parallel.

Claim Let ABCDE be a regular pentagon. Then each diagonal is parallel
to the opposite side.

Proof We show that AC is parallel to ED.

=ABC “
`

1 ´ 2
5

˘

ˆ 180˝ “ 108˝.

BA “ BC, so △BAC is isosceles. Hence =BAC “ =BCA “ 36˝.

6 =CAE “ 72˝, so =CAE ` =DEA “ 180˝ whence AC is parallel to ED.
QED

The most important application of the basic property of parallel lines is
to derive results about parallelograms. A parallelogram is a quadrilateral
ABCD in which opposite pairs of sides AB, DC and BC, AD are parallel.
Most results relating to parallelograms depend on the congruence criteria.
But two results depend only on the basic property of parallel lines.

Claim If ABCD is a parallelogram, then opposite angles are equal: =A “

=C, =B “ =D.

Conversely, if ABCD is a quadrilateral with =A “ =C, =B “ =D, then
ABCD is a parallelogram.

Proof Suppose ABCD is a parallelogram. Then AB is parallel to DC, so
=A ` =D “ 180˝.

And AD is parallel to BC, so =D ` =C “ 180˝.

6 =A “ =C, and =B “ 180˝ ´ =A “ 180˝ ´ =C “ =D.

Conversely, suppose ABCD is any quadrilateral in which opposite angles
are equal in pairs: =A “ =C, =B “ =D. Since

=A ` =B ` =C ` =D “ 360˝,

it follows that =A ` =B “ 180˝, so AD is parallel to BC. Similarly =B `

=C “ 180˝, so AB is parallel to DC. QED
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A rectangle is defined to be “a parallelogram with (at least one) right angle”.
If the rectangle is ABCD, and if the right angle is at A, then from the above
result it follows that =C is also a right angle. Hence =B ` =D “ 180˝;
since =B “ =D, it follows that =B and =D are also right angles. However,
there is no simple way to conclude that “opposite sides of a rectangle are
equal” other than by proving the result for parallelograms in general (using
ASA-congruence).

Claim If ABCD is a parallelogram, then opposite sides are equal in pairs:
AB “ DC and BC “ AD.

Proof Draw the diagonal AC.

6 =BAC “ =DCA (alternate angles)

AC “ CA

=BCA “ =DAC (alternate angles)

6 △BAC ” △DCA (by ASA)

6 BA “ DC and BC “ DA. QED

Claim If ABCD is a rectangle, then AC “ BD.

Proof We claim that △ABC ” △BAD (by SAS: since AB “ BA, =ABC “

=BAD “ 90˝, and BC “ AD (opposite sides of parallelogram)).

6 AC “ BD. QED

Each result one can prove for parallelograms has a converse which (if true)
should also be proved, since it allows us to identify a parallelogram on the
basis of other characteristic properties.

Claim If ABCD is a quadrilateral in which AB “ DC and BC “ AD, then
ABCD is a parallelogram.

Proof Draw the diagonal AC.

6 △BAC ” △DCA (by SSS).

6 =BAC “ =DCA, so AB is parallel to DC (alternate angles equal), and
=BCA “ =DAC, so BC is parallel to AD (alternate angles equal). QED
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Claim If ABCD is a parallelogram, then the diagonals AC and BD bisect
each other.

Conversely, any quadrilateral ABCD whose diagonals bisect each other
is a parallelogram.

Proof Let the two diagonals meet at X.

6 =ADX “ =CBX (alternate angles)

DA “ BC (opposite sides of a parallelogram)

=DAX “ =BCX (alternate angles).

6 △ADX ” △CBX (by ASA)

6 DX “ BX and AX “ CX, so the diagonals bisect each other.

Now let ABCD be any quadrilateral whose diagonals AC, BD bisect each
other at X.

Then AX “ CX and DX “ BX, and =AXD “ =CXB (vertically opposite
angles).

6 △ADX ” △CBX (by SAS).

6 =DAX “ =BCX, so DA is parallel to CB (alternate angles equal), and

Similarly we can show that △ABX ” △CDX (by SAS).

Hence =BAX “ =DCX, so AB is parallel to DC (alternate angles equal).
QED

A rhombus is a parallelogram ABCD with adjacent sides equal; AB “ AD.
And a square is a rhombus which is also a rectangle.

Claim The two diagonals of a rhombus ABCD are perpendicular.

Proof Let the two diagonals meet at X. Then DX “ BX so △AXD ”

△AXB (by SSS).

6 =AXD “ =AXB. QED

In a rhombus ABCD, each diagonal splits the rhombus into two isosceles
triangles. Hence other properties of a rhombus (and their converses) tend to
exploit the basic property of isosceles triangles (and its converse).
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3.4.7 Similarity (from 3.2)

– identify and construct congruent triangles, and similar
shapes by enlargement, with and without coordinate grids

– apply angle facts, triangle congruence, similarity and
properties of quadrilaterals to derive results about angles
and sides, including Pythagoras’ Theorem, and use known
results to obtain simple proofs

– use Pythagoras’ Theorem and trigonometric ratios in
similar triangles to solve problems involving right angled
triangles

The first two requirements have both been addressed elsewhere (in Section
3.2 and 3.2.3, and in Section 3.4.5 respectively). They are linked here
because both mention “similar shapes” or “similarity”, and this idea has
to be addressed to prepare the way for simple trigonometry (as in the third
listed requirement).

We noted in Section 3.2 that the reference to “similar shapes” in the
first of the above requirements is largely “informal”, and that the initial
emphasis here should be practical. The formal notion of similarity should
emerge from pupils’ own experience. For example, they should construct
“enlargements” in the spirit of the exercises in sections T8 and C26 of
Extension mathematics, Book Beta by Tony Gardiner (Oxford University Press
2007). And their understanding and interpretation of “scale drawings”,
and the effect of scale factors on lengths, areas and volumes, should also
be rooted in practical work and calculation (see, for example, sections T21,
C41 in Extension mathematics Book Gamma).

However, pupils need more than this in preparation for simple
trigonometry (see Section 3.5). So once sufficient foundations-in-experience
have been laid (as indicated below), it is certainly worth explaining clearly
what it means for two figures to be similar: namely that two polygons
ABCD . . . and A1B1C1D1 . . . are similar if
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• corresponding angles are equal:

=A “ =A1, =B “ =B1, =C “ =C1, =D “ =D1, . . .

and

• corresponding sides are proportional:

AB : A1B1 “ BC : B1C1 “ CD : C1D1 “ . . . .

Pupils need to recognise that these two conditions seem to capture what we
mean when we say that “two polygons have the same shape”.

A square (or regular 4-gon) is defined as “a quadrilateral having all sides
equal and all angles equal”. Two different squares ABCD and A1B1C1D1

have all angles equal to 90˝; hence they automatically satisfy the first bullet
point. And the four sides of each square are equal: if the first square has
sides of length a and the second has sides of length b; then each ratio
in the second bullet point is equal to a : b, so the second bullet point is
satisfied. Hence any two squares are mathematically similar. They are also
“physically similar-looking”, in that a large square that is some distance
away leaves the same image on the retina as a nearby smaller square.

To establish that both bullet points are needed, pupils should think of
examples

• of two rectangles whose angles clearly match up in pairs, but whose sides
are definitely not proportional (such as a 1 by 1 square and a 2 by 1
rectangle), or

• of two parallelograms whose sides are in proportion, but whose angles
are not equal in pairs (such as a 1 by 1 square and a 60˝ rhombus with
sides of length 1).

It should then be clear that our idea of “same shape” requires both
conditions.

However, there is a remarkable difference between polygons with more
than three sides (such as quadrilaterals), and polygons with exactly three
sides (i.e. triangles). Any two equilateral triangles of different sizes are
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similar—and for much the same reason as any two squares are similar: (i)
all angles are equal to 60˝, so are certainly “equal in pairs”, and (ii) all three
sides of one triangle have equal length (say a), and all three sides of the
other triangle have equal length (b say), so the ratios of corresponding sides
are all equal to a : b. But, unlike the case of squares (where both conditions
are needed), one of these conditions for equilateral triangles comes for free.
As the name implies, for △ABC to be equilateral, all we need is

“that the three sides are all equal: AB “ BC “ CA”.

The fact that the three angles are all equal to 60˝ then comes for
free—thanks to the SSS congruence criterion (since △ABC ” △BCA, so
=ABC “ =BCA and =BCA “ =CAB). Hence, to check the claim that any
two equilateral triangles are similar, it is enough to observe that the second
bullet point is satisfied (and the first then comes for free).

The same is true whenever we apply the idea of “similarity” to triangles
in general. Officially two (ordered) triangles △ABC and △DEF are similar
(which we write as △ABC „ △DEF) if

• corresponding angles are equal: =A “ =D, =B “ =E, =C “ =F,

and

• corresponding sides are proportional: AB : DE “ BC : EF “ CA : FD.

Yet the challenge, to think of

• two triangles whose angles match up in pairs, but whose sides are not
proportional, or

• two triangles whose sides are proportional but whose angles are not
equal in pairs,

leads to a surprise.

• If △ABC and △DEF have angles equal in pairs, the three pairs of
corresponding sides always turn out to be proportional; and

• if △ABC and △DEF have corresponding sides proportional, then
corresponding angles are automatically equal.
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This fact is unlikely to make sense if simply stated in the way we have stated
it here. So pupils need prior experience of drawing and measuring that
makes this important statement meaningful and plausible: the similarity
criterion states that, for triangles, each of the above bullet points implies the
other. (See, for example, “Problem 0” in Section T13 of Extension mathematics
Book Gamma.)

Initially pupils need the idea of similar triangles for simple trigonometry:
i.e. only for right-angled triangles. We can even restrict to right angled
triangles △OBC, with a right angle at B, and △OB1C1 with a right angle at
B1, sharing a common vertex O (which we may take to be the origin), with B
and B1 lying on the positive x-axis. If we fix the angle at O =BOC “ θ, and
choose C1 to lie on the line OC, then the angles of the two triangles △OBC
and △OB1C1 are equal in pairs (namely to θ, 90˝, and 90˝ ´ θ); and we can
establish as a fact of experience (by drawing and measuring; or partly of
deduction—first for k “ 2 or k “ 1

2 , then for any integer or unit fraction,
and finally for any fraction) that

if OB1 “ k ¨ OB (so to get from O to B1 we go “k times as far
along” as we did to get to B)

then B1C1 “ k ¨ BC (so to get to B1 from C1 we go “k times as far
up” as we did to get from B to C)

It follows (by Pythagoras’ Theorem) that OC1 : OC “ k. So the first bullet
point implies the second. Hence if =BOC “ =B1OC1 “ θ (and =OBC “

=OB1C1 “ 90˝), then corresponding sides are in proportion:

OB1 : OB “ OC1 : OC “ B1C1 : BC.

Cross-multiplying shows that

B1C1 : OB1 “ BC : OB,

so the quotient “ opposite
adjacent ” depends only on the angle =BOC “ θ, and not

on the choice of triangle. Hence we can safely write it as “tan θ”—that is as
a function that only depends on the angle θ. (See Section C20 in Extension
mathematics Book Gamma.)



252 Tony Gardiner

Similarly B1C1 : OC1 “ BC : OC, so the quotient “ opposite
hypotenuse ” depends only

on the angle =BOC “ θ and not on the choice of triangle, so we can safely
write it as “sin θ”—that is, as a function of θ. And the ratio OB1 : OC1 “

OB : OC, so the quotient “ adjacent
hypotenuse ” depends only on the angle =BOC “ θ

and not on the choice of triangle, so we can safely write it as “cos θ”. (See
Section C33 in Extension mathematics Book Gamma.)

The congruence criterion and the parallel criterion allow one to transfer
exact relations (such as equality of line segments or of angles) from one place
to another. The similarity criterion goes beyond this world of exact equality to
allow one to deal with ratios, scaling, and enlargement. Hence this criterion
is probably best delayed until the basic consequences of congruence and
parallelism have been sufficiently explored, and until pupils are sufficiently
confident in working with ratio. (The similarity criterion may be thought of
as a substitute for the evidently false “AAA congruence criterion”. The
criterion can also be re-formulated as SAS-similarity: (see Section C13 of
Extension mathematics Book Gamma).

As hinted above, special cases of the similarity criterion can actually be
proved using the congruence criterion and the parallel criterion—namely
where the ratio between corresponding sides in the second bullet point is a
fraction. The most important example occurs when this ratio is equal to 2
(or to 1

2 ) and is called the Midpoint Theorem, which says that:

if in △ABC, M is the midpoint of AB and N is the midpoint of
AC,

then MN is parallel to BC and BC : MN “ 2 : 1.

That is △ABC „ △AMN, with the corresponding scale factor

AB : AM “ AC : AN “ BC : MN “ 2 : 1

(see section T13, Problem 6 in Extension mathematics Book Gamma).

The third requirement listed at the start of Section 3.4.7 concerns
applications of these ideas. Once we know Pythagoras’ Theorem we can use
it to find lengths exactly (in surd form). An equilateral triangle of side
2 has height equal to

?
3. A square ABCD of side 1 has diagonal AC of

length
?

2. A regular pentagon ABCDE of side length 1 has diagonal AC
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of length 1`
?

5
2 . A regular hexagon ABCDEF with sides of length 1 has

two different length diagonals—a diameter AD of length exactly 2, and a
shorter diagonal AC of length exactly

?
3. The square of side 1 allows one

to write down the exact values for tan 45˝ “ 1, and for

sin 45˝ “
1

?
2

“

?
2

2
“ cos 45˝.

In the equilateral triangle of side 2, the perpendicular from the apex to the
base bisects the apex angle into two angles of 30˝, and meets the base at its
midpoint. Hence we can write down the exact value for

sin 30˝ “
1
2

“ cos 60˝,

for

sin 60˝ “

?
3

2
“ cos 30˝,

for tan 30˝ “ 1?
3
, and for tan 60˝ “

?
3. One can also use Pythagoras’

Theorem to find the distance between any two points whose coordinates are
given (in 2D or in 3D).

Wherever right angled triangles appear, one can use sin, cos and tan (or
similar triangles) to find missing angles or lengths. Classical applications
include

• “angles of elevation (or depression)”, where we might know that “from
the top of a vertical cliff 40m high, we can see a buoy whose angle of
depression (from our position on top of the cliff) is 35˝. How far is the
buoy from the base of the cliff?”, or

• the traditional exercise of “calculating the height of a tree without
measuring directly”, where we line up our eye (at ground level), the top
of a pupil’s head and the top of a tree, and then measure

(i) the pupil’s height and

(ii) the distances from our eye to the pupil’s feet, and to the base of the
tree.

One would also like to see other applications of angles which do not involve
right angled triangles directly (e.g. angle problems involving bearings).
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3.5. The remaining requirements

– use the properties of faces, surfaces, edges and vertices
of cubes, cuboids, prisms, cylinders, pyramids, cones and
spheres to solve problems in 3D

– interpret mathematical relationships both algebraically
and geometrically

These two final requirements look very much like a collection of
“remnants”. Both seem to relate to rather late in Key Stage 3 or even to
Key Stage 4.

Pythagoras’ Theorem and similarity (or trig) feature in solving problems
relating to regular polygons or familiar figures in 3D—whether calculating
the lengths of ladders leaning against walls, or the height of some point
above the ground or table, or surface areas and volumes. However, the
examples listed seem better suited to Key Stage 4 than to Key Stage 3.
Nevertheless one would love to see problems at some stage that involve
finding and using the slant height of a cone, or the height of a pyramid, or
the distance between two opposite corners of a cube, or the angles between
lines in 3D figures, or the angle between a slanting face and the base of a
pyramid.

The final requirement is admirable as a general idea. But it is also rather too
vague for us to try to interpret it reliably here.

4. Probability and Statistics

The requirements under these headings leave many questions unanswered.
It is not always clear how to interpret them as they stand, so we have tried
to suggest “alternative readings”. We have also taken the opportunity to
discuss some of the background which needs to be borne in mind when
devising a scheme of work.
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4.1. Probability

4.1.1 Introduction

– record, describe and analyse the frequency of outcomes
of simple probability experiments involving randomness,
fairness, equally and unequally likely outcomes, using
appropriate language and the 0–1 probability scale

Our understanding of how to teach probability is less well developed than
our understanding of how to teach geometry. So it is difficult to know
exactly where the problems lie. But there would seem to be considerable
potential for confusion here between

the language of messy “experiments” in the real world,

and

language that belongs to a pristine mathematical universe
(namely probability).

This confusion is especially awkward given the explicit mention of “using
appropriate language”.

Of course the mathematical universe often has its roots in the real world,
so terms and expressions may at times inhabit both worlds. Nevertheless it
may be easier to interpret the above official requirement if one imagines
added quotation marks (and the extra word “eventually”) roughly as
follows:

– record, describe and analyse the frequency of outcomes of simple
“probability experiments” involving “randomness”, “fairness”, “equally
and unequally likely outcomes”, using appropriate language and
[eventually] the 0–1 probability scale.

“Record, describe and analyse the frequency of outcomes of simple [. . . ]
experiments” is an excellent requirement: pupils need such experience in
order to develop their ideas of variability, and to understand how these are
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ultimately captured by the universal model of a sample space pS, pq, where
p assigns values between 0 and 1 to subsets of S according to certain rules
(e.g. for a single toss of a fair coin, S “ tH, Tu, with ppHq “ ppTq “ 1

2 ).
However, this step lies some way off—though it is alluded to vaguely in
the next batch of requirements, where we read (see Section 4.1.2):

“generate theoretical sample spaces for simple and combined
events with equally likely, mutually exclusive outcomes”.

The idea also features in the GCSE Subject Criteria using curious,
non-standard language

“construct theoretical possibility spaces for single and combined
experiments with equally likely outcomes” [emphasis added].

In contrast, there is no hint of “sample spaces” in the Key Stage 4
programme of study.

However, given the explicit mention of “theoretical sample spaces” in
the next official requirement (see Section 4.1.2), we assume that the
“experiments” referred to in the first Key Stage 3 requirement are intended
to open up informal consideration of questions involving “fairness”,
“randomness”, and the crucial idea of “equally likely”. And if these
informal considerations are to lead (eventually!) to the idea of a sample
space pS, pq, we may need a shift of focus from arbitrary real-world
experiments to more carefully chosen settings (such as coin tossing, or
dice rolling, or equally divided spinners), where a theoretical analysis is
possible.

Hence, if pupils’ understanding of probability is to progress, we may need
to distinguish three separate settings:

experiments in the real world of messy data;

experiments and analysis in the in-between world of controlled
data (fair coins, dice, etc.);

and

the mathematical world of theoretical probability.
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We may choose to start in the real world of messy data: for example, with
pupils examining the apparent likelihood of being born on each day of
the week. The obvious “sample”, or experiment, (namely, collecting all
the results for pupils in the class) leads first to the need for them to use
their known birthday and age to discover the day of the week when they
were born; the class can then record numbers for each day of the week; and
finally one can introduce the idea of using “relative frequencies” as a better
measure than the raw numbers. The resulting distribution will inevitably
raise the question of “fair sampling” and “randomness” (for it is almost
bound to contradict pupils’ gut feeling by deviating from the expectation
that each day should be “equally likely”). More representative data—if
it can be procured—is just as likely to challenge this understandable
assumption.

The use of “relative frequencies” introduces the idea of a 0–1 scale (though
not at this stage a “probability scale”). And one can emphasise the fact
that the relative frequency of those born on a weekday (say) is obtained
by adding the five separate relative frequencies for Monday-Friday.

But relative frequencies only tell us what was observed—once; and this
would seem to tell us nothing about what will be observed in the future.
This is the whole point of non-deterministic data. We may know that the
recorded relative frequencies add up to 1; and that the relative frequency of
a combined event is equal to the sum of the ingredient relative frequencies.
But this only tells us what happened last time. We cannot calculate with
observed relative frequencies to learn anything more general—as one can
to some extent with probabilities. So it should soon become clear that
this is not a mathematical world, where one can answer more interesting
questions using exact calculation.

Classical science is deterministic, and reported results in classical science
must be replicable: if you or I repeat a deterministic experiment as it
was reported, we expect to replicate the stated results. And if we fail,
then we have to question either the reported result or our own attempted
replication. But with stochastic processes, the situation is completely
different. When we repeat a “probability experiment”, the observed
outcomes vary considerably. Yet within the observed variations one can
discern certain clear trends. This new science is no longer to be judged
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by, or analysed through, the outcomes of a single experiment, but through
patterns in the variation of the outcomes of repetitions of the experiment.
Single snapshots are of little relevance; instead we try to summarise the
background reality that lies behind what we observe by integrating all
possible snapshots into a single model of “probabilistic reality”.

4.1.2 Theoretical probability

– understand that the probabilities of all possible outcomes
sum to 1

– enumerate sets and unions/intersections of sets
systematically, using tables, grids and Venn diagrams

– generate theoretical sample spaces for single and combined
events with equally likely, mutually exclusive outcomes
and use these to calculate theoretical probabilities

So there are strong reasons to move beyond messy real-world
“experiments”, and to focus on a more restricted (or more artificial)
mathematical universe—such as coin tossing or dice rolling—where
everything is much more clearly defined. Here one can perform repeated
experiments relatively easily. And one can also analyse the background
situation precisely—by counting.

Even in this restricted world, there are elephant traps to be identified and
avoided. For example, when tossing two coins, time is needed to clarify the
expected ratios of the three possible outcomes—“two Heads”, “two Tails”,
and “one Head and one Tail”. But unlike the messy real world, it is now
natural to imagine an idealised version where one thinks of a “fair coin”,
with Head and Tail truly “equally likely” (or a “fair die”, where each of
the six outcomes is “equally likely”). Experiments show that the observed
“relative frequencies” of Heads and Tails (or of the six possible outcomes for
rolling a die), vary significantly. But they always add to 1, and can always
be combined to find the relative frequencies of compound events (such as
“rolling an odd number”).
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More importantly, experimental results can now be compared with what
one would “expect” on the basis of the idealised model. This background
“expectation”, based on counting within the idealised model, is quite
different from “the recorded results of experiments”. And whereas the
results from successive experiments will vary, the “expected” results stay
the same. It is as though the calculated expected results are some kind of
“ideal summary”, and each experiment is only an approximation to, or a
flickering shadow of this ideal summary. For example, within the model
we can count exactly: there are 24 possible sequences of 4 tosses of the coin,
and exactly 4 of these sequences have just one “Tail”—which seems to say
that, if we record 100 such sequences of 4 tosses, then we should “expect”
4
16 of them to have just one “Tail”. The reality will of course usually be
different; but pupils may gradually come to realise that the existence of the
idealised model provides a fixed reference point with which we can compare
the results of different experiments, and provides the key to making sense
of their variability (as “deviations from the expected ideal”).

There are many advantages in working within these carefully chosen,
controlled settings. In particular, they clarify the difference between
observed “relative frequencies” from a single experiment and the expected
frequencies, or “theoretical probabilities”. The theoretical model also
allows us to see more clearly how the cumulative results of many
experiments tend to “average out”, and how this long-term average tends
to approximate the theoretical probability ever more closely.

An experiment, and the associated set of observed frequencies, is like
a single snapshot of a ghost, or a shadow of some hidden object. This
is especially true if the experiment involves messy real world data.
The snapshot gives one a record of vague outlines—hints of something
substantial. Yet one cannot be sure of the precise outline or shape which
gave rise to this impression; that is, one may at first have no knowledge
of the “background reality” that caused the impression or shadow. The
observed results (of say “days of birth”) may suggest a surprising pattern,
but it is only a hint: the actual reality that lies behind the observations
remains elusive. Subsequent snapshots of apparently the same object may
vary greatly from each other—and yet between them reveal patterns that
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suggest that there really is some “background reality” that lurks out of
sight.

This is a classic instance of Plato’s parable of The Cave. We can only discern
shadows of some presumed “Platonic reality” (“theoretical probability” in
this instance), and must somehow infer what we can about the hidden
reality that is casting the shadow, or leaving a ghostly impression. And
the test for any inferred “reality” is whether it explains the shadows that
we do see, and why we do not see the shadows that we do not see. If the
observed shadows were always the same shape (as would be the case if
the object were a solid statue, and the light source remained constant), then
the “Platonic reality” might be a classical numerical measurement from
elementary mathematics (like “the height of Nelson’s column”).

Probability and statistics are different, in that the observed “facts” differ
each time we look. Yet there is still something substantial behind the
observation. A single experiment, or sample, and the associated set of
“observed relative frequencies”, is but a single shadow of an elusive,
moving object. And our inferred “Platonic reality” must somehow combine
all conceivable observations into a single idea, which somehow incorporates
the observed variability, and explains how each snapshot arises as a single
view, or aspect of it. That is the role played here by the idea of a sample
space: a set of atomic outcomes, with a probability assigned to each, so that
their sum is 1.

Elementary mathematics can be largely summarised as the art of exact
calculation with numbers, symbols, geometrical entities, etc. If we wish to
find “the height of Nelson’s column”, though we do not know the answer,
it is natural to assume it has a definite value, and then use the methods of
elementary mathematics to calculate this presumed “definite value” using
other known facts (e.g. properties of similar triangles). That is, the objects
to which this “art of exact calculation” applies—whether represented by
numerals or letters—are usually assumed to have definite values (possibly
unknown). The associated mathematical universe may be abstract; but
its objects have specific values, which remain constant throughout any
subsequent calculation. Such entities are relatively tame, and static; they
can be imagined relatively easily.
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However, the numerical data related to probability and statistics is more
elusive than this—though the fact that it is clearly still numerical (in some
sense), may tempt us to overlook its more elusive character. Consider, for
example,

the number of “Heads” obtained in a sequence of 4 coin tosses.

Each particular “instance” (toss a coin 4 times and keep track of the number
of “Heads”) gives rise to a single value—namely, the number of “Heads”
obtained. So this “number of Heads in 4 tosses” is superficially like “the
height of Nelson’s column”. However, the object of thought is not the
individual value that we obtained on this one occasion, but

the totality of all possible “numbers of Heads” that could be
obtained if we repeated the experiment,

together with

the way these “numbers of Heads” are distributed between
0 and 4.

This object of thought is multi-layered: there is a sample space S (the set
of integers between 0 and 4), with each member having an attached number
(the relative frequency with which this number of “Heads” occurs). If we
shift from repeated experiments and observed “relative frequencies”, we
can use the idealised model of a “fair coin” with

ppHq “ ppTq “
1
2

to calculate exactly the expected frequency for each number of “Heads”. This
“expected frequency” varies with the number (though 0 “Heads” turns out
to be exactly as likely, or as unlikely, as 4 “Heads”, and 1 “Head” turns out
to be exactly as likely as 3 “Heads”). We therefore get a new probability P
for this sample space S, where

Pp0q “ Pp4q “
1
16

, Pp1q “ Pp3q “
4
16

, Pp2q “
6
16

.

The nature of variability, and the difference between
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(i) deterministic systems (such as classical science, where one expects to
be able to replicate an experiment and observe the same results), and

(ii) stochastic data

can be explored in the messy real world. But at this level, the analysis of
stochastic data is largely restricted to discussion and qualitative statistics.
So one needs to move the field of play to the in-between world of controlled
data (fair coins, dice, etc.). Here one can still do experiments; but one can
also analyse things in a way that offers a bridge to theoretical probability. One
can construct a natural God-given model, and can compare its predictions
with the results of experiments to see just how variable things can be. In
particular, it makes didactical sense to choose in-between examples with
finitely many atomic outcomes, and to focus on examples where symmetry
guarantees that the atomic outcomes are equally likely. Everything then
reduces to counting. And one can compare the relative frequencies that
arise in experiments with the “God-given” relative frequencies derived
from counting (which form the model for our idea of a “sample space and
probability”).

With luck it may now be a bit clearer why we questioned the informal mix
of words “probability experiment”, “randomness”, “fairness”, “equally
and unequally likely outcomes”, “0–1 probability scale” in Subsection 4.1.1
and suggested there was a danger they might blur the distinction between

(i) the world of observed real-world data, and

(ii) the hidden Platonic reality, or the theoretical model.

The requirement in Subsection 4.1.1 used language that ultimately belongs
to our inferred Platonic model, and imposed it upon the world of shadows,
or observed data. Pupils should definitely “record, describe, and analyse
the frequency of outcomes from simple [. . . ] experiments”, whose results
are “non-deterministic” in that the data vary from one experiment to the
next; but these are not really probability experiments. Repeated coin tossing,
or dice rolling, or drawing pin tossing force us to address the underlying
issue of “variable outcomes” and to nurture ideas of probability. But they
can only be described as “probability experiments” in retrospect—once
we have the background notion of an underlying sample space S and a
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probability function p. The language used in this official requirement is
the language that should emerge as a result of a carefully chosen sequence
of such experiments and analysis: it should not really be used “up front”.
Hence its use is best interpreted as a summary of what is needed—used
informally for ease of communication between parties who are already “in
the know”.

We end this rather heavy digression on a lighter note. During a test in which
all the questions required only a true/false response, a pupil was observed
to be repeatedly tossing a coin until he had answered every question. When
asked what he was doing, he replied: “I have no idea of what is going on
in this course. So I flip the coin; if it turns up Heads, I choose true and if it
turns up Tails I choose false.” The invigilator tried to keep a straight face,
and moved on. Later, the invigilator announced: “You have five minutes
remaining” and was surprised to see the pupil madly tossing a coin once
more. Puzzled, he asked: “What exactly are you doing now?”, only to be
told: “I’m checking my answers!”

4.2. Statistics

No-one should doubt the increasing importance of statistics in the modern
world. But it is less clear how this fact should influence the school
curriculum—and in particular, the school mathematics curriculum. The
world is awash with data. But the information available to decision makers
in government, in business, in management, in operating public utilities,
etc. only tells part of the story. They may collect “random samples”
to try to eliminate bias, but the result is still an incomplete “snapshot”.
What can one infer about the true situation from such a snapshot? And
how much confidence can one place in the resulting inference? If one
takes a second sample from a different source, or at a different time, it
is bound to differ from the first. But when are the differences such as
to suggest that “something has really changed”? These are the kinds of
questions addressed by statistics. It is one thing to suggest (rightly) that the
mathematics curriculum must think carefully about how to prepare pupils
so that they have a chance of making sense of the way statistics is used at
Key Stage 5 and beyond; it is quite another thing to suggest that significant



264 Tony Gardiner

chunks of elementary mathematics should be sidelined, or de-emphasised,
in order to make room at Key Stage 1–3 for possibly premature, low grade
statistical content.

The situation we face should sound familiar. No one disputed the
realisation in the 1950s and 1960s of the increasing importance of a kind
of “modern mathematics” that was very different from school mathematics
as then taught. However, the inference that school mathematics should be
re-formed into something closer to the said “modern mathematics” proved
to be thoroughly misguided—and it took us two decades before we finally
admitted this fact. In much the same way, no-one doubted the claim that the
1970s and 1980s witnessed the beginning of a revolution in computational
technology, that led to a marked shift in the way mathematics was
being used in the outside world; yet the assertion that primary school
mathematics “therefore” needed to be radically re-formed to incorporate
calculators proved once again to be misguided. Claims were made at the
highest level that pupils no longer needed to “learn their tables”; and it
again took twenty years for us to discover that “learning one’s tables” is
important not so that we can compete with a calculator, but because it
is part of the way young minds internalise an understanding of the way
numbers work—and so is essential if we are to help pupils prepare to make
use of the new technology later.

Hence, while welcoming the commitment and enthusiasm of those with a
special interest in statistics, it is important not to repeat the same mistake
of unquestioningly accepting the claims of those who may have allowed
their enthusiasm to run away with them. We would all like the next
generation to be well-placed to use statistics intelligently in adult life. But
the experience of the last 25 years should convince us that this is not likely
to be achieved by neglecting parts of elementary mathematics that are
needed for the subsequent effective analysis of statistical methods in favour
of low-level qualitative methods of little lasting value. In particular, the
basic framework for statistics depends on having a firm grasp of theoretical
probability.

Given the ubiquity of statistical data, some understanding of the associated
problems deserves attention. But it remains unclear how this experience
should be embedded within the wider curriculum, and how much of it,
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and which aspects, are best treated in the time allocated to mathematics (and
at what stage). The dilemmas were clearly indicated in the analysis and
recommendations of the Smith report Making mathematics count (2004)—see
para 0.28, paras 4.16–4.18 and Recommendation 4.4.21

Curricula since 1988 have allocated significant amounts of classroom time
to Handling data many years before pupils master the mathematics that
is needed for statistical calculation. As a result, the content listed under
Handling data has been largely restricted to descriptive statistics. Whilst there
is some value in using common sense to extract simple information from
statistical data in all subjects, and to use this to draw pupils’ attention to
misconceptions, we need to consider carefully how much of the necessary
time should be taken from that allocated for mathematics. There is a
balance to be struck between on the one hand alerting pupils to the
challenge presented by statistical data, and on the other developing the
mathematical tools that will subsequently allow pupils to engage in some
more significant analysis of problems—including statistical problems. If the
necessary tools are not mastered, pupils are likely to be reduced to applying
cookbook procedures which they cannot possibly understand. Moreover,
this contradicts the declared Aims of the curriculum, and the idea that one
should insist on meaning and understanding. So we should perhaps look for
ways of treating this material at a later stage when pupils can make sense
of it using mathematics that they understand.

4.2.1

– describe, interpret and compare observed distributions
of a single variable through: appropriate graphical
representation involving discrete, continuous and grouped
data; and appropriate measures of central tendency
(mean, mode, median) and spread (range, consideration of
outliers)

21 http://www.mathsinquiry.org.uk/report/MathsInquiryFinalReport.pdf

http://www.mathsinquiry.org.uk/report/MathsInquiryFinalReport.pdf
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– construct and interpret appropriate tables, charts, and
diagrams, including frequency tables, bar charts, pie
charts, and pictograms for categorical data, and vertical line
(or bar) charts for ungrouped and grouped numerical data

The listed requirements have acquired a fairly standard interpretation in
current textbooks and assessments. Yet it is worth asking how well this
standard interpretation prepares pupils to understand the more serious
statistics that is used in many subjects beyond Key Stage 4.

Most of the elementary mathematics we have covered so far can
be summarised as the art of exact calculation with numbers, symbols,
geometrical entities, etc. Suppose we wish to find “the height of the school
building”, or “the height of Nelson’s column”. Though we do not know
the answer, we assume it has a definite value. We then use the methods of
elementary mathematics to calculate this value. That is, the objects to which
this “art of exact calculation” applies (whether represented by numerals or
by letters) can be assumed to have definite values, which remain constant
throughout any calculation. Such entities are static, and can be imagined
relatively easily.

However, stochastic, or statistical data—though still numerical—is not
quite like this. Consider, for example, “the height of a UK adult male in
2014”. Each particular instance of such data (“choose one adult UK male,
then measure and record his height”) gives rise to a single value—the height
of that particular individual. So one might think that “the height of a UK
adult male in 2014” is like “the height of Nelson’s column”. But the object
of thought here is not the single value obtained by choosing and measuring
the height of one adult male: we are interested in the totality of individual
heights, and the way these individual heights are distributed throughout
the whole population of “UK adult males in 2014”. This object of thought
has several ‘layers’:

• there is a population S (the set of UK adult males in 2014);

• each member has an attached number (his height);
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• this attached number varies as one varies the choice of individual, and
does so in such a way as to give rise to a distribution of possible values,
where each “height” occurs with its own frequency, or probability.

Later, these multi-layered objects will be formalised as random variables,
and captured via distributions. No matter how they may eventually be
formalised, all we need to notice here is that they are clearly more elusive
than the numbers studied elsewhere in elementary mathematics.

And this is just the easy part of the story. The harder part is that we rarely
know the underlying distribution precisely. So we try to draw inferences
about the underlying distribution on the basis of some more-or-less
representative random sample! (The word “random” deserves a whole
mini-essay of its own; but it indicates that the sampling is done in a way
that avoids giving a systematically false impression of the population being
sampled.) Or we may want to decide whether the apparent differences
between two different random samples can be explained by “natural
variation”, or whether the differences suggest that something significant
has changed.

The specific (possibly unknown, but fixed) numbers of more familiar
elementary mathematics have here been replaced by distributions, where
a range of possible values can occur—each with its own frequency. The
background distribution may be unknown—and instead all we know is
information from one or more samples. And the goal is to decide what
one can infer about the (unknown) background distribution, or whether
the differences between two different samples are significant. This is an
important art. But it is very different from (and conceptually much more
demanding than) the mathematics of numbers, measures, symbols, or
functions that is studied elsewhere in Key Stages 1–3.

4.2.2

– describe simple mathematical relationships between
two variables (bivariate data) in observational and
experimental contexts and illustrate using scatter graphs
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Any tabulation, or graphical representation, involves two variables! In
Section 4.2.1 there was an initial imagined “single variable”, whose
frequency of occurrence was being recorded. So one was dealing with two
linked variables: the original variable, and the counting numbers. But in
some sense the counting numbers did not have an independent interest. In
Section 4.2.2 we are concerned with two independently existing variables
which may be related (such as height and weight among adult males), and
where we wish to understand the possible linkage better.

An obvious trick is to plot linked pairs px, yq, with one variable along the
x-axis, and the other variable along the y-axis. The resulting collection of
points in 2D is called a scatter graph. This is not the graph of a function,
since

(a) not all possible x-values occur, and

(b) those x-values that do occur may occur more than once (with different
y-values).

The idea that there might be a “connection” between the two variables then
translates into the idea that the scatter graph may reveal some structure.

The simplest imaginable structure would be for the plotted points to lie
along some straight line, or to reflect some other functional dependency
of one variable upon the other. A non-statistical example might plot the
temperature in “degrees Fahrenheit” against the temperature in “degrees
Centigrade”: here because the relationship is deterministic and exact, the
data sits along a perfect straight line y “ 9

5 x ` 32. But statistical data is
never quite so well-behaved.

When trying to spot a hidden relationship with messy data it can help to
impose an additional constraint. For example, we may consider whether
there is some special point that should be forced to lie on any possible
curve which links the two variables x and y. The data points themselves
are all as reliable, or as unreliable, as each other. But examples can be
used to support the idea that the point pAvpxq, Avpyqq, where Avpxq is
the average of all the x-values, Avpyq is the average of all the y-values,
serves as a kind of “representative centre” for the set of data points, and
so should lie on any resulting curve. In particular, if we decide that the
relationship is approximately linear, then requiring the line to pass through
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the point pAvpxq, Avpyqq makes it much easier to choose the gradient “by
eye” so that we get a line that seems to follow the data approximately, and
which leaves deviant data points px, yq in some sense “equally distributed”
above and below the line. The whole thrust of this analysis is to try to see
patterns in the data that might not be apparent from a mere list of numbers.
However, the analysis remains at best weakly “mathematical”: we are not
yet sufficiently well-placed to engage in genuine calculations.

In the relatively tame world of elementary mathematics we have already
highlighted the difference between direct calculation, where the answer
can be ground out deterministically, and inverse problems, whose solution
forces us to “work backwards” from some “output” in search of some
direct calculation that might give rise to the given data (see Part II, Section
1.2.3, and Part III, Sections 1.2.2, 1.2.4). The art of analysing statistical
data mathematically would seem to be an important instance—and a
rather subtle instance—of such inverse problems. This art is therefore
doubly challenging. Not only are the objects of the relevant direct
statistical calculations more subtle than those we meet in the rest of
elementary mathematics; but handling data is useful precisely because
statistical problems are inverse problems—we typically know only selected
information (from some presumed random sample), and we need to assess
what we may infer from this sampled data about the unknown background
distribution of the whole population—and what degree of confidence we may
attach to such inferences.

Despite the difficulties, this material plays such an important role in
modern society that it is natural for educators to try to find ways of
introducing pupils to the underlying ideas. It is not easy to summarise the
experience of the last 25 years; but it is probably fair to say that the rhetoric
has been consistently ahead of the reality. Thus there are many outstanding
issues which a programme of study, or a scheme of work, needs to weigh
up and resolve. Three important questions concern

• the age, or prerequisite maturity, that is required before simple
mathematical analysis of statistical material can be handled effectively;

• the technical prerequisites that pupils need to master before this analysis
can make worthwhile progress;
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• the time that is needed to make the engagement with statistical questions
worthwhile at a given stage, the likely progress that might be made at
that stage, and (crucially) what other topics would have to be sidelined in
order to make that time available.



IV. A sample curriculum for all—written

from a humane mathematical

viewpoint

What follows stems from an attempt to consider what a “humane
mathematician and educator” might expect to see included at each Key
Stage of a National Curriculum—under the assumption that:

• one would like to see number, measures and calculation grasped (in some
sense) at primary level, with

• further work on number, together with algebra, geometry, and
trigonometry being mastered by age 16 to a level that would allow those
who proceed to further studies, in whatever subjects, to be in a position
to use the mathematics they have learned.

In particular, the sample curriculum tries to set realistic (rather than
ambitious) goals for primary mathematics. It also tries to restrict the extent
of abstraction at Key Stage 3, on the assumption that for a significant group
of pupils this material may form the core of work at secondary level (age
11–16), along with consolidation of material from upper primary school.
More abstract material has been delayed wherever possible until Key Stage
4, where it serves as a transition from elementary mathematics to higher
mathematics for all pupils who intend to proceed to further academic
studies beyond age 16 (in any subject). Hence teachers may choose to
blur the boundary between Key Stages 3 and 4 for many pupils, taking
much longer to cover the listed Key Stage 3 material for some, while others
may treat Key Stage 3 material more abstractly than is suggested here in
preparation for Key Stage 4.
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Having produced a Brief Version (which was already fairly detailed—see
Section 2 below), we then drafted two further versions:

• a Fuller Version, which unpacked in greater detail some of the cryptic
references we were advised might not be immediately understood; and

• a Very Brief Version (see Section 1 below) which rashly tried to compress
the essence of each Key Stage into a single page.

We have chosen to reproduce here (and to improve) the Brief Version and the
Very Brief Version, to provide an easily accessible reference for the reader of
Parts I, II, and III. Some words that appear in bold type have a technical
meaning that will have been explained in detail in Part II or Part III. If
some aspect remains unclear, we recommend that readers refer to the Fuller
Version, which is freely available at The De Morgan Forum.22

1. Very Brief version

1.1 Key Stage 1

By the end of Year 2 pupils:

Counting, reading and recording number

• use the language for numbers and quantities in everyday settings

• count accurately; read, write and order numbers to at least 100;
understand place value, know what each digit of any two-digit number
represents, and know that the position of a digit determines its “value”

Recalling facts

• have instant recall of addition and subtraction facts for numbers to 10;
have instant recall of ˆ2, ˆ5, ˆ10 multiplication tables, and derive
corresponding division facts

22 http://education.lms.ac.uk/wp-content/uploads/2012/02/KS 1-4 DMJ.pdf

http://education.lms.ac.uk/wp-content/uploads/2012/02/KS_1-4_DMJ.pdf
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Calculating

• use the language for simple calculations in everyday settings

• carry out mental and informal written calculations using the four
operations of addition, subtraction, multiplication and division

• recognise and use effectively the fact that subtraction is the inverse of
addition, and in simple cases that division is the inverse of multiplication

• handle confidently two-digit addition and subtraction in standard
written column format

Describing shapes and measuring

• recognise, name, and describe properties of common 2D and 3D shapes

• measure and draw straight lines accurate to the nearest centimetre;
estimate lengths and other quantities; tell the time to the nearest quarter
of an hour, compare durations using standard units, and order events
chronologically; use measuring instruments to measure length (cm, m),
weight (kg), capacity (l), reading and interpreting scales to the nearest
labelled division; use money

Solving problems, reasoning, and using language and symbols

• apply their understanding of number and arithmetic to work with
measures and to solve word problems

• use mathematical language accurately; read and interpret text, diagrams,
and symbols when solving problems; record their results clearly; explain
their methods and reasoning

1.2 Key Stage 2

By the end of Year 6 pupils:

Place value

• handle place value to represent and order numbers to 10 000 and beyond;
extend this to negative integers and decimals; work with decimals and
measures involving tenths, hundredths and thousandths; multiply and
divide integers and decimals by 10, 100, 1000
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• round integers, decimals and measures to the nearest “ten”, integer, or
tenth

Recalling facts; correct use of language and symbols

• recall instantly addition and subtraction facts for numbers to 20; “know
by heart” multiplication tables to 10 ˆ 10 and corresponding division
facts; factorise any two-digit integer; recognise primes and squares

• use mathematical language and notation correctly; understand that some
statements are exact and can be clearly demonstrated

Structural arithmetic

• add and subtract positive and negative integers; multiply and divide
positive integers; use place value and the structure of arithmetic to
simplify calculations

• work flexibly with fractions and percentages; switch freely between
equivalent fractions; add and subtract simple fractions

• understand the order of operations and the use of brackets

Calculating

• add and subtract any two two-digit integers mentally, and three-and
four-digit integers using standard written column format

• multiply and divide mentally a two-digit integer by any one-digit
integer; complete written short multiplication and division of three-digit
and four-digit integers by numbers up to 12, and long multiplication of
three-digit by two-digit integers

Geometry and measures

• copy simple figures; work with common 2D and 3D shapes; find
unknown angles in simple figures; plot points with given coordinates

• measure and draw line segments accurate to the nearest millimetre and
angles to the nearest degree; calculate reliably with standard measures;
find the areas of rectangles and shapes made from rectangles, and the
volumes of cuboids and shapes made from cuboids
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• use and calculate with money; tell the time to the nearest minute; read
scales—interpolating between marks; convert between related units

Solving problems

• tackle and solve word problems and simple multi-step problems
involving numbers, measures, and shapes; make sensible estimates;
make connections between topics; explain their reasoning

1.3 Key Stage 3

Key Stage 3 revisits important Key Stage 2 material—partly for revision, but
mainly to reinterpret old material from a new “viewpoint” (extending the
written algorithms to decimals, shifting the focus from bare hands mental
methods to structural arithmetic and the simplification of expressions, etc.).

By the end of Year 9 pupils:

Place value

• handle place value to represent and order integers and decimals with up
to six digits; multiply and divide by 10, 100, 1000

• work with decimals and measures involving up to four decimal places;
write terminating decimals as fractions and vice versa, and know that
some fractions have decimals that recur

• round numbers and measures freely and flexibly

Calculating

• use multiplication tables freely to multiply and divide mentally in
context;

• compute with integers and decimals using standard column format

• compare and compute with fractions; work flexibly with fractions, ratios,
percentages

Structural arithmetic

• use place value, factorisation, and the algebraic structure of
arithmetic to simplify and to evaluate numerical expressions and
calculations—including with fractions and negatives
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• test for divisibility by 2, 3, 4, 5, 10; find HCFs and LCMs; factorise integers
as a product of primes; recognise squares and cubes; find or estimate
square roots

• represent numbers as powers—including simple fractional powers; work
with powers of 10

• use the algebraic equivalence of expressions to simplify calculations

Simplification of algebraic expressions; solving linear equations

• use unknowns and variables in context (formulae); substitute values
in expressions; use algebraic rules to simplify expressions and
calculations—collect like terms, expand and factorise simple expressions;
work with simple sequences

• set up and solve a single linear equation in one unknown in complete
generality; use the rules of algebra to “change the subject of”, or
to rearrange, equations and formulae; solve two simultaneous linear
equations; solve linear inequalities in one unknown

Geometry and measures

• measure and draw accurately; read scales; change units; understand and
use basic formulae; find lengths, areas, and volumes for common 2D
or 3D shapes—including triangles, parallelograms, circles, cuboids, and
prisms; calculate reliably with standard measures

• plot points in all four quadrants; find the midpoint of a line segment, and
the distance between two given points; understand and work with linear
equations and straight line graphs; interpret gradient as a ratio or rate;
use trig ratios in right-angled triangles

• use basic ruler and compass constructions, parallels, angles in a
triangle, angle-chasing, congruence; establish a preliminary basis for 2D
Euclidean geometry; prove and use Pythagoras’ Theorem

Solving problems

• tackle and solve word problems and simple multi-step and inverse
problems involving numbers, measures, symbols and shapes
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• use the unitary method to solve proportion problems involving rates and
ratios

• make sensible estimates

• make connections between topics; explain their reasoning

1.4 Key Stage 4

Key stage 4 revisits important Key Stage 3 material—partly as revision,
but also to interpret it afresh. For some pupils, this re-working and
strengthening of Key Stage 3 material (together with consolidation of Key
Stage 2 material) will be their main goal at Key Stage 4; other pupils
may supplement revision of Key Stage 3 material with a programme that
covers selected parts of what is summarised here. Those who expect to
continue to further academic studies beyond Key Stage 4 should aim to
cover everything summarised here.

By the end of Year 11 pupils who complete the Key Stage 1–4 programme:

Number and measures

• handle (positive and negative) large numbers and decimals, with and
without units, possibly expressed using powers or standard form

• move freely between fractions and decimals

• use rounding and exact arithmetic to work with approximations

• calculate probabilities in standard models; analyse sampled data

Calculating and simplifying

• compute with fractions; work flexibly with fractions, ratios, percentages

• solve problems involving proportion (including the unitary method)

• use algebraic structure and multiplication facts to simplify numerical
expressions—including those involving fractions and powers

• calculate with surds and mixed surd expressions (without evaluating)
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Algebra (expressions, formulae, equations, identities) and graphs

• use algebraic equivalence (including the index laws) to simplify
expressions

• know, use, and rearrange standard formulae

• work in all four quadrants; work with equations of straight lines in 2D

• solve any linear equation or inequality in one unknown; solve any pair of
simultaneous linear equations or inequalities in two unknowns; interpret
the solutions graphically

• know and use standard quadratic identities; solve any quadratic
equation or inequality; solve easy simultaneous equations—one linear
and one quadratic; interpret solutions graphically

• understand linear and quadratic expressions in one variable as functions;
sketch and analyse linear and quadratic graphs

Geometry

• use Pythagoras’ Theorem to solve problems in 2D and 3D; find lengths,
surface areas, and volumes for common 2D and 3D shapes—including
regular polygons

• use basic trigonometry and the Sine and Cosine rules to “solve triangles”

• understand and use basic ruler and compass constructions

• understand how congruence, parallels, and similarity provide a basis for
Euclidean geometry; use these to derive results and to solve problems

• understand, prove, and use the basic properties of circles

• understand how scaling affects angles, lengths, areas, and volumes
analyse standard 2D and 3D figures—including prisms, pyramids,
cylinders, cones, spheres

Solving problems

• solve word problems and simple multi-step and inverse problems
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• make connections between topics; write well-presented proofs; explain
their reasoning

• calculate with standard and compound measures; work with “rates”

2. Brief version

2.1 Key Stage 1

Breadth of study

1. During the Key Stage pupils should be taught the required Knowledge,
Skills, and Understanding through:

(a) practical activity, exploration and discussion

(b) linking the language of mathematics with spoken and written English

(c) learning key facts by heart; learning to store tens and units
temporarily in the mind (including as intermediate outputs in a
longer calculation) to support the development of mental calculation
strategies

(d) using mathematical ideas in practical activities, then recording these
ideas using objects, pictures, diagrams, tables, words, and numbers

(e) developing rich mental calculation strategies, and standard written
procedures for addition and subtraction

(f) drawing, measuring and estimating in a range of practical contexts

Knowledge, Skills, and Understanding

Teaching should ensure that appropriate connections are made between the
section Number and measures and the section Shape, space, and measures.

Ma1 Number and measures

1. Using and applying “Number and measures”

Pupils should:
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Solving problems

(a) explore, interpret, develop flexible approaches to, and persist with
problems involving number and measures in a variety of forms

Communicating

(a) use correct language, symbols, and vocabulary associated with number
and measures

(b) explain and record methods and results in spoken, pictorial, and
written form

Reasoning

(a) present results in an organised way; sort and classify numbers
according to given criteria

(b) understand that some statements are exact and can be clearly
demonstrated

2. Numbers and the number system

Pupils should: Counting

(a) count reliably at first up to 20 objects, later extending counting to 100
and beyond (to 120 say), remaining secure across “tens boundaries”
[e.g. from 19 to 20, or from 99 to 100]; recognise the invariance of
quantity

(b) estimate a number of objects that can be checked by counting; round
two digit numbers to the nearest 10

The base 10 number system

(a) understand the groupings into units and 10s (and later into 100s) that
underpin place value; know what each digit represents (including 0 as
a number, and as a placeholder), and how the “value” represented by
each digit is determined by its position
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(b) read and write two-digit and three-digit numbers in figures and words

(c) order two-digit numbers and position them on a number line; use “,
ă, and ą and the associated language

Number patterns and sequences

(a) create, describe, and explore basic number patterns and
sequences—including odd and even numbers, multiples of 2, multiples
of 5, and multiples of 10

3. Calculation

Pupils should:

Number operations and the relationship between them

(a) understand addition and use related vocabulary and notation;
understand subtraction (as “take away” and as “difference”) and use
the related vocabulary and notation; recognise that subtraction is the
inverse of addition

(b) identify and use the calculations needed to solve simple word
problems and inverse problems [e.g. oral “I’m thinking of a number”
problems]

(c) understand simple instances of multiplication as repeated addition,
and division as “grouping”, and as “sharing”; use the vocabulary and
notation associated with multiplication and division; find one half, or
one quarter of a familiar shape, or of a small set of objects

Mental, informal, and standard written methods

(a) develop instant recall of number facts; know addition and subtraction
facts with totals less than 10, and use these to derive other facts; learn
addition facts with totals up to 20

(b) know ˆ2, ˆ5, and ˆ10 multiplication tables, and derive the
corresponding division facts; know the doubles of numbers to 20 and
the corresponding halves
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(c) use practical and informal written methods to add and subtract
two-digit numbers

(d) develop mental methods which flexibly use known facts to calculate
the answer to less familiar “sums” [e.g. working out 4 ˆ 6 by doubling
2 ˆ 6, or by doubling 4 ˆ 3]; add 10 to any single digit number, then
add and subtract a multiple of 10 to or from a two-digit number

(e) make sense of number sentences involving all four operations

(f) lay out and complete simple two-digit additions and subtractions in
standard column format

(g) use practical and informal written methods and related vocabulary
to support multiplication and division, including calculations with
remainder

4. Solving numerical problems

Pupils should:

(a) choose sensible calculation methods to solve simple word problems
involving whole numbers—including problems involving money or
measures, drawing on their understanding of arithmetical operations

5. Processing, representing, and interpreting data

Pupils should:

(a) solve suitable problems using simple lists, tables, and charts to sort,
classify, and organise information; discuss the methods they use and
explain what they find

Ma2: Shape, space, and measures

1. Using and applying “Shape, space, and measures”

Pupils should:
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Solving problems

(a) follow instructions to construct simple 2D and 3D objects; represent 3D
objects via 2D drawings

Communicating

(a) use correct language and vocabulary for shape, space, and measures

(b) measure objects using ad hoc informal as well as standard measures;
record measurements in ordered tables

Reasoning

(a) recognise simple spatial patterns and relationships; sort and classify
shapes according to given criteria

2. Understanding properties of shapes, position, and movement

Pupils should:

(a) describe relationships using the language “larger – smaller”, “higher –
lower”, “longer – shorter”, “above – below”, “left of – right of”

(b) draw and describe properties of 2D and 3D shapes; recognise, name,
and sort common 2D and 3D shapes—including triangles, rectangles
(including squares), circles, cubes, cuboids, hexagons, pentagons,
cylinders, pyramids, cones, and spheres

(c) recognise right angles; understand whole turns, and quarter- and
half-turns (clockwise and anticlockwise)

3. Understanding measures

Pupils should:

(a) use direct comparison to order objects by size, using appropriate
language; put familiar events in chronological order
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(b) measure and draw straight lines accurate to the nearest centimetre

(c) estimate, compare, and measure lengths, weights, and capacities;
choose and use standard units (m, cm, kg, litre); compare durations
(using seconds, minutes, hours, days); read and interpret numbers
on scales to the nearest labelled division, interpreting the divisions
between them; identify time intervals, including those that cross the
hour

2.2 Key stage 2

Breadth of Study

1. During the Key Stage pupils should be taught the required Knowledge,
Skills, and Understanding through:

(a) extending place value to larger integers and to simple decimals

(b) extending their understanding of the number system to include
integers, fractions, and decimals

(c) learning key facts by heart; learning to store hundreds, tens and
units temporarily in the mind (including as intermediate outputs in
a longer calculation) to support the development of mental calculation
strategies

(d) extending exact arithmetic to the standard written algorithms for
integers and simple decimals

(e) using structural arithmetic to calculate efficiently and to develop
(pre-)algebraic thinking

(f) drawing and measuring; using exact arithmetic to make good
estimates when solving problems; recording results using words,
pictures, numbers, diagrams, and tables (and symbols where
appropriate)

(g) linking the language of mathematics with spoken and written
English using carefully crafted problems; solving word problems;
establishing connections between number work, measures, geometry,
and practical tasks; distinguishing between sensible and misleading
uses of mathematics
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Knowledge, Skills, and Understanding

Teaching should ensure that appropriate connections are made between the
section Number and measures and the section Geometry and measures.

Ma1 Number and measures

1. Using and applying “Number and measures”

Pupils should:

Solving problems

(a) extract numerical, geometrical, and logical information from simple
problems expressed in words

(b) make connections; use integers, decimals, and fractions (and
arithmetic) when solving problems involving measures, and in other
settings

(c) solve multi-step, and simple inverse problems

(d) solve problems involving tables, lists, and information presented
pictorially;

(e) use knowledge of exact arithmetic to make good mental estimates

Communicating

(a) use notation, terminology, symbols, and language correctly

(b) present results and solutions to problems clearly; explain reasoning,
methods, and conclusions

(c) interpret tables, lists, and charts; construct and interpret frequency
tables

Reasoning

(a) present results in an organised way; sort and classify numbers and
shapes according to given criteria

(b) investigate apparent patterns; understand that some statements are
exact and can be clearly explained
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2. Numbers and the number system

Pupils should:

Counting

(a) count reliably beyond 100, passing smoothly from any given set of
“90s” onto the next hundred

(b) count on and back in steps of constant size, starting from any integer,
extending to negative integers

The base 10 number system

(a) use place value in representing numbers first up to 1000, then up to 10
000 and beyond; extend to decimals with up to three decimal places

Number patterns and sequences

(a) recognise two- and three-digit multiples of 2, 5 and 10; find the factors
of a given integer, and the common factors of two given integers; find
the HCF and the LCM of two given integers; recognise prime numbers
to 50, and square numbers to 10 ˆ 10; find factor pairs and all the factors
of any two-digit integer; double or halve any two-digit integer

Integers

(a) read, write (in figures and words), and order whole numbers to 10 000

(b) multiply, and divide, any integer by 10 or 100, and then by 1000; round
integers to the nearest 10 or 100, and then 1000

(c) understand and use negative integers; order a given set of positive and
negative integers

Integers and decimals

(a) use decimal notation for tenths, hundredths, and thousandths; order a
set of numbers or measurements
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(b) compare and order integers and decimals in different contexts; locate
integers (positive and negative), fractions, and decimals on the number
line; use correctly the symbols “, ‰, ă, ď, ą, ě

(c) multiply and divide, any integer or decimal by 10 or 100; round
integers and decimals to the nearest integer, to the nearest ten, and to
the nearest tenth

Fractions, percentages and ratio

(a) understand fractions; locate fractions on a number line; find fractional
parts of shapes or quantities

(b) understand equivalent fractions; simplify by cancelling common
factors

(c) order simple fractions

(d) understand percentage; use simple percentages for comparison; find
fractions and percentages of whole number quantities, and express part
of a given whole as a percentage; express one whole number quantity
as a fraction of another

(e) divide a given quantity into two parts in a given ratio (both part-to-part
and part-to-whole); compare quantities in a given (external) ratio; solve
simple problems involving ratios

3. Calculation

Pupils should:

Number operations and the relationship between them

(a) develop their understanding of the four number operations—including
inverses, and operations with zero

(b) find remainders after division; express a quotient as a fraction or
decimal; relate p

q to p ˜ q
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(c) know and use the conventions for the order of operations; understand
and use structural arithmetic to simplify calculations; write numerical
expressions involving brackets; group related terms in a sum and
related factors in a product to simplify, and hence evaluate, numerical
expressions

Mental methods

(a) achieve instant recall of all addition and subtraction facts for integers
up to 20

(b) add or subtract any pair of two-digit integers; handle suitable
three-digit and four-digit additions and subtractions presented in
written form

(c) add and subtract positive and negative integers mentally

(d) achieve instant recall of (i.e. know by heart) multiplication tables to
10 ˆ 10 and use them to derive division facts

(e) multiply and divide in the range 1 to 100, then for larger numbers

(f) derive multiplication and division facts involving decimals

(g) relate fractions to multiplication and division; work with simple
quotients as fractions and as decimals; switch freely between
equivalent fractions; add and subtract simple fractions by reducing to
a common denominator

Written methods

(a) use the standard written method in column format to add and subtract
three-digit positive integers, then four-digit positive integers; add and
subtract numbers involving decimals

(b) use the standard written method in column format for short
multiplication (of two- and three-digit integers by a single digit
multiplier), then long multiplication of two-digit and three-digit
integers by two-digit multipliers; extend to simple decimal
multiplication
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(c) use short division of two-digit and three-digit integers by numbers up
to 12

(d) use approximations and other strategies to check that answers are
reasonable

Measures

(a) calculate reliably with standard measures, money, and time; convert
measures from one unit to a related unit

(b) relate distance, time, and speed in uniform rectilinear motion; work
with other simple rates and compound measures

4. Solving numerical problems

Pupils should:

(a) use the four number operations to solve word problems involving
numbers, or money, or measures of length and area, mass, capacity,
or time

(b) solve multi-step and inverse problems with confidence

(c) check that their results are reasonable; explain why their answers are
correct

5. Processing, representing, and interpreting data

Pupils should:

(a) solve suitable problems using simple lists, tables, and charts to sort,
classify, and organise information, discuss the methods they use,
interpret their results, and explain what they find

(b) explore the notions of “centre” and “spread” for numerical data sets
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Ma2: Geometry and measures

1. Using and applying “Geometry and measures”

Pupils should:

Solving problems

(a) recognise standard geometrical figures; use their properties to select
and perform appropriate calculations; measure and draw accurately to
construct 2D and 3D figures

(b) use standard units of measurement and simple compound measures;
convert reliably between related units

Communicating

(a) use geometrical notation, terminology, and symbols correctly; interpret
solutions to problems involving geometrical figures and measures;
organise work and record findings clearly

Reasoning

(a) analyse standard 2D and 3D figures; calculate efficiently and make
simple deductions with angles, lengths, areas, volumes, time, and other
measures

2. Understanding properties of shape

Pupils should:

(a) recognise right angles, perpendicular and parallel lines; know that
angles at a point total 360˝, that angles at a point on a straight line
total 180˝, and that angles in a triangle total 180˝

(b) describe relationships using the language “larger – smaller”, “higher –
lower”, “longer – shorter”, “above – below”, “left of – right of”, “top –
bottom”, “in front of – behind”, “closer – further away”, “between”

(c) talk clearly about common 2D and 3D shapes; visualise 3D shapes from
2D drawings
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(d) make and draw shapes with increasing accuracy, and analyse their
geometrical properties

3. Understanding properties of position and movement

Pupils should:

(a) read and plot coordinates—eventually in all four quadrants; draw, or
locate, shapes with given properties in the coordinate plane

(b) visualise, predict, and represent the position of a shape following a
rotation, reflection, translation, or glide reflection

4. Understanding measures

Pupils should:

(a) draw and measure lines to the nearest millimetre; combine linear
measurements to measure perimeters

(b) draw and measure acute and obtuse angles of a given size to the nearest
degree; estimate the size of given angles and order them; draw angles
reliably as parts of compound shapes

(c) read the time to the nearest minute; calculate time intervals from clocks,
from timetables, and from calendars

(d) use standard units of length, area, volume, mass, and capacity; measure
and weigh items; convert between related units

(e) find areas of rectangles and of shapes composed of rectangles

(f) measure and compare capacities; understand conservation of volume;
find volumes of cuboids and of simple shapes composed of cuboids

(g) read scales with increasing accuracy; record measurements using
decimal notation

2.3 Key stage 3

Breadth of Study

1. During the Key Stage pupils should be taught the required Knowledge,
Skills, and Understanding through:
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(a) extending place value to arbitrary integers and decimals

(b) extending their understanding of numbers to include integers (positive
and negative), fractions, and decimals

(c) extending exact arithmetic to the standard written algorithms for
integers and decimals, and the standard procedures for calculating
with fractions

(d) using structural arithmetic for efficient numerical calculation, and
for algebraic simplification of numerical, fractional, and symbolic
expressions

(e) representing unknowns and variables by letters; using formulae;
solving linear equations; representing and interpreting straight lines
and linear equations

(f) engaging in tasks that develop short chains of deductive reasoning and
that bring out the centrality of proof in number, algebra, and geometry

(g) drawing and measuring; using ruler and compass constructions;
calculating areas and volumes; recording results using diagrams,
words, numbers, and symbols; angle-chasing and analysing more
complex figures in terms of triangles

(h) linking the language of mathematics with spoken and written English;
building simple logical expressions such as “. . . and . . . ”, “. . . or . . . ”, “if
. . . , then . . . ”, “not only . . . , but also . . . ”; interpreting carefully crafted
“realistic” problems; solving word problems; distinguishing between
sensible and misleading uses of mathematics

(i) routinely tackling familiar and unfamiliar problems, including
multi-step and inverse problems; recognising that mathematical
operations often come in ‘direct-inverse’ pairs, and that the inverse
operation depends on robust fluency in the direct operation

(j) practical work in which they draw inferences from a mathematical
analysis of data, and consider how statistics can be used to inform
decisions
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Knowledge, Skills, and Understanding

Teaching should ensure that appropriate connections are made between the
section on Number and algebra and the section on Geometry and measures.

Ma1 Number and algebra

1. Using and applying “Number and algebra”

Pupils should:

Solving problems

(a) use numerical, geometrical, and logical information in analysing data
and in solving simple problems

(b) make connections; use the arithmetic of integers, decimals, and
fractions when solving problems

(c) regularly solve multi-step problems and inverse problems

(d) solve problems involving measures, rates and compound measures,
ratio and proportion; make and justify estimates

Communicating

(a) use spoken and written language, notation, diagrams, terminology, and
symbols correctly

(b) recognise when information is presented in a misleading way

(c) present results and solutions to problems clearly, declare unknowns
explicitly, and lay out solutions logically line-by-line

(d) interpret tables, lists, and information presented graphically; construct
and interpret frequency tables; use precise measures of “centre” and
“spread”

Reasoning

(a) understand that some statements can be clearly proved, and that other
statements can be shown to be false
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(b) use place value and structural arithmetic to simplify calculations and
expressions; recognise and use the fact that mathematical operations
often come in “direct-inverse” pairs

(c) use basic results and step-by-step deduction to draw
conclusions; investigate apparent patterns and test the validity of
statements—proving or disproving these statements conclusively
where possible

2. Numbers, the number system, structural arithmetic, simplification, and
algebra

Pupils should:

Counting and numbers

(a) count reliably forwards and backwards across hundreds and thousands
boundaries

(b) solve problems involving counting [e.g. How many pages from page
171 to 263?—inclusive and exclusive; How many dots are in a 5 by 7
rectangular array? How many chords are there joining 10 points on a
circle?]

(c) use place value in representing integers to 1 000 000, and decimals
with up to four decimal digits; express position as a “power of 10”;
choose the power of 10 to transform a given decimal to an integer (by
multiplying)

Sequences; powers and roots

(a) recognise multiples of 2, 4, 5, 10, 20, 25, 50, 100; factorise instantly any
output from multiplication tables to 10 ˆ 10; recognise (or test quickly)
prime numbers to 100 and test possible primes up to 500; recognise
square numbers to 20 ˆ 20; find all the factors of a given integer

(b) recognise powers of 2, powers of 3, and powers of 5; recognise square
and cube roots of familiar squares and cubes; understand and find, or
estimate, the square root of any positive number; use index notation for
small positive integer powers
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(c) find specified terms of a sequence given a term-to-term or a
position-to-term rule; guess the simplest position-to-term rule for the
nth term given the first few terms of a sequence

Integers and decimals

(a) read, write (in figures and words), and order whole numbers and
decimals with up to six digits; understand, use, and calculate freely
with (positive and negative) integers; use correctly the symbols “, ‰,
ă, ď, ą, ě and the associated language; order a set of positive and
negative integers and decimals, or measurements

(b) use correctly the terms factor, multiple, common factor, common
multiple; find and use the HCF and LCM of two given integers; test
for divisibility by 2, by 3, by 4, by 5, by 9, by 10

(c) multiply, and divide, any integer or decimal by 10, 100, 1000, or 10 000;
know the multiplicative complements for 10 (2 ˆ 5), for 100, and for
1000, and the corresponding decimals [e.g. 1

2 “ 0.5, 1
5 “ 0.2, 1

8 “ 0.125];
recognise as alternative representations the decimal and fraction forms
of simple fractions

(d) express any given large number as a number less than 10 times a power
of 10, and a small number as a number greater than or equal to 1 times
a power of 10

(e) compare measurements (in various contexts); round integers and
decimals

Fractions, percentages and ratio

(a) understand general fractions in terms of unit fractions; switch freely
between mixed numbers (with fractional part ă 1) and standard
fractional form p

q

(b) find fractional parts of shapes and quantities, and recognise the
fractional part represented; solve simple ratio problems

(c) understand equivalent fractions; express two given fractions with a
common denominator; simplify a given fraction; order a list of integers
and fractions
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(d) understand “percentage” as a fractional operator with denominator
100; find fractions and percentages of given quantities; express one
quantity as a fraction of another; use the multiplicative character of
percentage as an operator in calculations involving percentage increase
and decrease; distinguish between absolute and relative increase and
decrease

(e) reduce a ratio to its simplest form, and establish the connection with
“fractional parts”; divide a given quantity into two parts in a given
ratio; solve problems involving ratio and proportion

3. Calculation

Pupils should:

Number operations and mental methods

(a) extend existing mental calculation to include negative numbers,
decimals and fractions

(b) calculate effectively in solving problems

Structural arithmetic

(a) use multiplication tables freely to simplify fractional expressions;
convert fractions to decimals and terminating decimals to their
simplified fraction equivalents

(b) obtain the prime-power factorisation of a given integer by successive
division

(c) understand and use place value, inverse operations [e.g. cancellation],
and structural arithmetic to simplify calculations; represent numbers
and roots as powers, including fractional powers; work with powers of
10

(d) understand why p´1q ˆ p´1q “ 1 and why a ´ p´bq “ a ` b; use these
to simplify and to evaluate numerical expressions

(e) use the idea of choosing a suitable (common) denominator to add,
subtract, multiply and divide fractions
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(f) solve word problems involving rates and ratios, including the unitary
method

(g) give both roots of simple quadratic equations; simplify numerical
expressions involving simple surds [e.g.

?
8 “ 2

?
2 because both are

positive and have the same square]

Algebraic simplification

(a) substitute numerical values into formulae and expressions and
evaluate; multiply out brackets, collect like terms, identify and
take out common factors to simplify expressions; recognise that
different-looking expressions may be identical; prove simple algebraic
identities, and explain why two given expressions are not identical

Written methods

(a) relate decimal arithmetic to integer arithmetic; use standard written
methods in column format for addition and subtraction, short and long
multiplication, short (and long) division of integers and decimals

Inequalities

(a) solve simple linear inequalities in one variable and represent solutions
on a number line

Measures

(a) calculate and work with perimeters, areas, volumes, durations,
capacities, and simple compound measures; use standard units of
length, area, volume, mass, and capacity; read scales with appropriate
rounding; record and order measurements using decimal notation;
convert between related units

(b) estimate the size of any given angle; draw and measure angles reliably
to the nearest degree

(c) calculate reliably with measures; extract and use information from
tables and charts; solve word problems involving money, time, length,
and compound measures (speed, rates)
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4. Algebra: equations, formulae, identities, and functions

Pupils should:

(a) set up and solve linear equations in complete generality [e.g.

2 ´
3
4

x “
2 ´ 4x

5
s;

reduce a linear equation in two variables to standard form (ax ` by “

c, or y “ mx ` c); eliminate a variable from two simultaneous linear
equations in two unknowns; solve linear inequalities in one unknown

(b) change the subject of a formula; draw the graph of a linear function,
identifying its gradient, and interpreting its position; construct linear
functions arising from real problems, sketch and interpret their graphs;
establish the link to ratio and proportion

(c) use letters in general expressions; use index notation for small positive
integer powers; simplify given expressions

(d) use algebra to find the exact solution of two simultaneous linear
equations in two unknowns by eliminating a variable

(e) sketch the graphs of simple quadratic functions; solve simple quadratic
equations

5. Solving numerical problems

Pupils should:

(a) solve arithmetical problems, word problems, and geometry problems
involving numbers and measures; check that their results are
reasonable

(b) solve multi-step and inverse problems with confidence

(c) use the unitary method to solve proportion problems and problems
involving ratios and rates
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(d) use algebraic formulae; set up and solve equations

6. Processing, representing, and interpreting data

Pupils should:

(a) solve problems involving lists, tables, charts, and graphs; sort, classify,
and organise information; discuss the methods they use and explain
what they find

(b) find the average (i.e. mean) and other measures of “centre”, and
measures of spread for small datasets; identify the modal class for
grouped data; interpret frequency diagrams and histograms; use
cumulative frequency

(c) use counting where each outcome is “equally likely” to calculate
probabilities

Ma2: Geometry

1. Using and applying “Geometry”

Pupils should:

Solving problems

(a) solve geometrical problems involving standard geometrical figures in
2D and 3D, and angles, length, area, and volume

(b) measure and calculate accurately to construct and analyse 2D and 3D
figures; use standard units in geometry

Communicating

(a) use geometrical language, notation, terminology, and symbols correctly

(b) work in all four quadrants of the coordinate plane

(c) lay out calculations, constructions, and proofs line-by-line
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Reasoning

(a) use basic geometrical principles to justify each step in a calculation or
deduction

(b) analyse 2D and 3D configurations in terms of triangles

2. Constructing and analysing geometrical configurations

Pupils should:

Know and analyse

(a) recognise right angles, perpendicular and parallel lines, and use the
associated language precisely; know that angles at a point total 360˝,
and that angles at a point on a straight line total 180˝

(b) know that two lines are parallel precisely when alternate angles are
equal (or, equivalently, when corresponding angles are equal); prove
and use the usual consequences (including the angle-sum in any
triangle)

(c) use known angles and angle properties to find unknown angles in
given configurations (i.e. angle-chasing)

(d) motivate the formula for the circumference of the circle and estimate π;
solve related problems

(e) talk about and work with common 2D and 3D shapes (including
triangles [e.g. right angled, isosceles, and equilateral], quadrilaterals
[e.g. parallelograms, rhombuses, rectangles, squares, and trapezia],
cuboids, and prisms); correctly copy drawings from the board;
make and draw shapes with increasing accuracy, and analyse their
geometrical properties

Constructions and congruence

(a) use ruler and protractor to draw triangles with given data; extract and
apply the basic congruence criteria (SAS, SSS, ASA; RHS) to prove
standard results (including that the base angles in any isosceles triangle
are equal, and the converse)
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(b) draw specified figures using “ruler” (i.e. straightedge) and compasses
only; use the basic ruler and compass constructions to complete other
constructions

Area and Pythagoras

(a) find the area of rectangles and shapes made from rectangles; find the
area of right angled triangles and of general triangles; find the area of a
general parallelogram

(b) relate the formula for the area of a circle to the formula for the
circumference; use the formula to solve related problems

(c) state, prove, and use Pythagoras’ Theorem

Circles

(a) understand and use the terms centre, radius, chord, diameter,
circumference, tangent, arc, sector, segment

(b) prove the basic properties of a circle [e.g. centre and any chord form
an isosceles triangle; angle in a semicircle is a right angle; tangent is
perpendicular to radius; tangents form an external point are equal];
apply these results to solve problems

Volume and 3D

(a) calculate volumes of cuboids and shapes made of cuboids; calculate
volumes of a “wedge” (half a cuboid), polygonal right prisms, and
cylinders

(b) find lengths and angles in simple 3D figures by considering 2D
cross-sections

Scaling and enlargement

(a) draw figures to scale; interpret distances, angles, and areas on maps
and other scale drawings
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Loci

(a) interpret a circle as a locus; interpret the perpendicular bisector of a
given line segment as a locus

3. Coordinates and graphs

Pupils should:

(a) read and plot coordinates in all four quadrants

(b) use Pythagoras’ Theorem to calculate the distance between two given
points (simple cases); find the coordinates of the midpoint of a line
segment (simple cases)

(c) establish the link between straight lines in the coordinate plane and
linear equations in x and y; understand that parallel lines have the same
gradient; find the intersection of two given straight lines

(d) sketch the graphs of simple quadratic functions

(e) explore and use coordinates in 3D

2.4 Key stage 4

Breadth of Study

1. During the Key Stage pupils should be taught the required Knowledge,
Skills, and Understanding through:

(a) activities that revisit and extend material from Key Stage 3, moving
on to achieve fluency and automaticity in using a wide range of
procedures

(b) using language, terminology, and logic precisely and correctly; linking
the language of mathematics with spoken and written English

(c) learning basic facts and techniques by heart; using them to tackle
two-step and multi-step exercises and problems in different contexts,
and in solving unfamiliar problems (including word problems)

(d) exploiting connections between superficially different topics;
compressing ideas and techniques
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(e) recognising that operations often come in “direct-inverse” pairs, that
the inverse operation is often the more demanding one, and that its
mastery depends on robust fluency in the direct operation

(f) using calculators intelligently where needed, whilst avoiding
inappropriate dependence

(g) extending exact arithmetic (without calculators) to fractions, surds, and
numerical and algebraic expressions involving powers; routinely using
algebraic structure to simplify numerical, fractional, and symbolic
expressions

(h) making intelligent estimates and approximations and handling the
associated calculations reliably

(i) combining congruence and ruler and compass constructions,
parallels, and similarity to establish a formal basis for elementary
Euclidean geometry

(j) working with tables and information presented graphically; drawing
inferences from a mathematical analysis of data drawn from a
population with inherent variability; considering how statistics can be
used to inform decisions

Knowledge, Skills, and Understanding

Teaching should ensure that appropriate connections are made between the
section on Number and algebra and the section on Geometry.

Ma1 Number and algebra

1. Using and applying “Number and algebra”

Pupils should:

Solving problems

(a) use numerical, algebraic, geometrical, and logical information in
tackling problems in Number and algebra, in solving word problems,
and in analysing data

(b) use the structure of arithmetic and the laws of algebra when working
with integers, decimals, fractions, surds, and algebraic expressions in
solving problems
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(c) regularly solve multi-step problems and inverse problems

(d) make use of relevant connections between topics

(e) solve problems involving measures, rates and compound measures,
ratio and proportion

(f) make and justify estimates

Communicating

(a) use spoken and written language, notation, diagrams, terminology, and
symbols correctly

(b) recognise when information is presented in a misleading way

(c) present results and solutions to problems clearly, declare unknowns
explicitly, and lay out solutions and proofs logically line-by-line

(d) interpret tables, lists, and charts; present information graphically

(e) construct and interpret frequency tables; use precise measures of
“centre” and of spread

Reasoning

(a) investigate apparent patterns; generate, interpret, test, and prove (or
disprove) simple conjectures

(b) use place value, index laws, and structural arithmetic to simplify
calculations and expressions, and to justify the extension of known
conventions (including p´1q ˆ p´1q “ 1, 20 “ 1, cos 120˝ “ ´ 1

2 )

(c) use known results and step-by-step deduction to draw conclusions

2. From numbers to algebra (including calculation)

Pupils should:

Numbers and arithmetic
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(a) use place value in calculating with decimals; work effectively with very
large numbers

(b) multiply, and divide, any integer or decimal by any power of 10; know
the multiplicative complements for powers of 10 [e.g. 1000 “ 8 ˆ 125],
and the corresponding decimals [e.g. 1

8 “ 0.125]; recognise the decimal
forms of simple fractions

(c) understand and use divisibility tests

(d) understand why p´1q ˆ p´1q “ 1; work with integers, decimals,
fractions, and surds, simplifying routinely

(e) solve problems involving counting; understand and use the product
rule for counting

(f) consolidate and extend short and long division

Measures

(a) compare measurements; round integers and decimals appropriately

(b) calculate and work with perimeters, areas, volumes, durations,
capacities; use standard units of length, area, volume, mass, capacity,
and simple compound measures (speed, density, and other “rates”);
read scales with appropriate rounding; record and order measurements
using decimal notation; change between related units—in numerical
and algebraic contexts; solve word problems involving money, time,
length, and compound measures

Bounds and estimation

(a) understand the limits of accuracy implied by a given measurement in
decimal form and interpret the result of an arithmetical calculation

(b) establish bounds on the accuracy of an estimate and understand how
this affects a calculation
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Integer factorisation, fractions, and surds

(a) use the terms factor, multiple, common factor, common multiple; find
the HCF and LCM of given integers

(b) recognise (or test quickly) prime numbers to 120; use the “square root
test” to identify primes to 1000

(c) obtain the prime power factorisation of a given integer; list all factors
of a given integer

(d) move freely between “mixed” fractions and fractions in standard
fractional form p

q ; reduce a given fraction to lowest terms; rewrite two
given fractions with a common denominator; order a list of fractions

(e) use factorisation to simplify surd expressions [e.g.

?
12 “

a

22 ˆ 3 “ 2 ˆ
?

3s

Fractions

(a) understand the unit fraction 1
q as “that part, of which q identical copies

make 1”; understand a general fraction p
q as a multiple p ˆ 1

q of a unit
fraction; move freely from a given fraction to a suitable equivalent
fraction

(b) add and subtract fractions; multiply and divide fractions; simplify, and
hence evaluate, compound expressions involving fractions

Fractions and decimals

(a) move freely between terminating decimals and decimal fractions

(b) know the equivalence of the exact (unevaluated) fraction notation p
q

and the result of evaluating p ˜ q; find the decimal of any given
fraction; understand why the decimal form of p

q must terminate, or
recur

(c) change any terminating decimal into a fraction in its lowest terms;
change any recurring decimal into a fraction



Teaching Mathematics at Secondary Level 307

Surds

(a) recognise
?

k (for k ą 0) as the exact positive real number whose square
is equal to k; given k ą 0 find the exact or approximate value of

?
k; use

the algebra of surds—including rationalising denominators [e.g.

1
?

2 ` 1
“

?
2 ´ 1s;

use surds (and π) to calculate exactly in geometric contexts; give
lengths arising from applications of Pythagoras’ Theorem and solutions
to quadratic equations in exact (mixed surd) form

(b) use the standard notation for, and calculate with, cube roots;

Powers, roots, and the index laws

(a) factorise instantly any output from multiplication tables to 10 ˆ 10;
recognise square numbers to 25 ˆ 25; recognise cubes to 63.

(b) recognise powers of 2, 3, 4, 5; recognise square and cube roots of
familiar squares and cubes; extend powers and roots to simple fractions
and decimals; find, or estimate, the square root or cube root of any
positive number

(c) know, understand, and use the index laws; use index notation to
present expressions in simplified power form; calculate freely with
numerical and algebraic expressions involving powers

(d) write any given number in standard form and translate a given
standard form into the (approximate) number it represents; calculate
with numbers given in standard form “as though they are exact”

Fractions, decimals, and percentages

(a) find and recognise fractional parts of shapes and quantities; express
one quantity as a fraction of another

(b) understand percentage as a fractional operator with denominator 100;
know and use the percentage equivalents of familiar fractional parts;
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work freely with percentages; use the multiplicative character of
percentage increase and decrease; solve problems involving percentage
change (including inverse problems and compound interest)

Sequences

(a) work with standard integer sequences; generate terms given a
term-to-term rule, or a position-to-term rule; guess the simplest
position-to-term rule for the nth term given the first few terms of a
sequence

(b) use a given term-to-term rule to find a closed formula for the
position-to-term rule

(c) find the term-to-term rule and the position-to-term rule for sequences
defined intrinsically

(d) understand that when x ă 1 (or |x| ă 1) the sequence of powers
pxnq tends rapidly to 0, and when x ą 1 (or |x| ą 1) the sequence of
powers pxnq grows rapidly without bound; link to compound interest,
to population growth, to doubling times and to radioactive half-life

Ratio and proportion

(a) divide a given quantity into two parts in a given part-to-part, or
part-to-whole ratio; express the division of a quantity into two parts as
a ratio; work with separate quantities in a given (external) ratio; reduce
a ratio to its simplest form

(b) calculate the result of a change of units; draw and use scale diagrams
and maps; understand the effect of scaling and enlargement on
different quantities (including angles, lengths, areas, and volumes)

(c) solve proportion problems (where three of the four variables are given,
determine the fourth); use the unitary method, and then the general
method, to solve proportion problems

(d) understand and use “X is inversely proportional to Y” as meaning “X
is proportional to 1

Y ”
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Algebraic expressions

(a) substitute numerical values into formulae and expressions

(b) multiply out brackets, collect like terms, and take out common factors
to simplify linear, quadratic and higher order expressions; simplify
general expressions (possibly involving powers and roots) by using
additive simplification, the distributive law, and cancellation—giving
answers in factorised form; work with algebraic fractions having linear
and quadratic denominators

(c) rearrange formulae; solve problems using standard formulae

(d) set up linear equations; solve the general linear equation in one
unknown

(e) set up linear equations in two unknowns; interpret a linear equation
in two unknowns in the coordinate plane as representing a straight
line; draw the graph of a linear function, identifying its gradient, and
interpreting its position; find the gradient from an equation given in
any form; transform a given equation into the form y “ mx ` c (or
x “ a); construct linear functions arising from real problems, sketch
and interpret their graphs; establish the link to ratio and proportion

(f) solve any pair of simultaneous linear equations by eliminating a
variable; interpret the analytic solution as “finding the point of
intersection” (if any) of the two lines

(g) factorise quadratic expressions in one variable; solve quadratic
equations by factorising; interpret solutions as those points where
the graph crosses the x-axis; solve fractional equations that reduce to
quadratics [e.g.

1
x ` 1

“
x ´ 1

x
s;

(h) factorise and use the difference of two squares; conclude that, if k ą 0,
the equation x2 “ k has two solutions (˘

?
k); interpret this as a

statement about the graph of y “ x2 ´ k

(i) know and use the expansion of px ` aq2; extend to px ` aq3; use this to
“complete the square” for any given quadratic; obtain the formula for
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the solutions of the general quadratic

y “ ax2 ` bx ` c;

use this formula to solve quadratic equations; deduce the symmetry of
the graphs of quadratic functions

(j) solve two simultaneous equations where one is linear and the other
quadratic; use completing the square to find the centre and radius,
given the equation of a circle; find the points where two circles intersect

(k) understand the difference between an equation and an identity; decide
whether two given expressions are identical or not—then prove they
are, or show that they are not

(l) solve linear inequalities in one and two variables; interpret the solution
graphically

3. Coordinates, graphs, and functions

Pupils should:

(a) read and plot coordinates in all four quadrants; move freely between
straight lines in the coordinate plane and linear equations in x and y;
derive the equation of a line through two given points, and the equation
of a line through a given point with a given gradient

(b) find the coordinates of the midpoint of a line segment; calculate the
distance between two points in 2D or 3D

(c) interpret straight line graphs arising in real situations

(d) know and use the general form y “ mx ` c (or x “ a) for a straight line;
use gradient and intercept; find the point of intersection of two given
straight lines

(e) know that parallel lines have the same gradient; prove and use the
fact that two lines with gradients m and m1 are perpendicular precisely
when m ¨ m1 “ ´1

(f) for particular values of m and c interpret the standard form y “ mx ` c
as ‘Y “ mX’ relative to an origin at p0, cq or at p´ c

m , 0q
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(g) sketch the graph of any given quadratic function by completing the
square

(h) sketch other graphs—including simple cubic functions, the reciprocal
function y “ 1

x , the exponential function y “ kx for easy (positive)
values of k, the circular functions y “ sin x, y “ cos x, and y “ tan x

(i) use coordinates to solve simple problems in 3D

4. Processing, representing, and interpreting data

Pupils should:

(a) engage in practical and theoretical work to construct and interpret
tables, lists, and information presented graphically; use precise
measures of “centre” and spread; sort, classify, and organise
information

(b) discuss variability; distinguish between data representing a single
idealised measure and informal “random variables” sampled from a
population or distribution

(c) calculate the mean of a set of numbers or measures; use mode
or median as appropriate to summarise the “centre”; identify the
modal class for grouped data; refine measures of spread and “central
tendency”

(d) introduce ideas of probability via standard examples of discrete
sample spaces in which each outcome is equally likely; explore the
general notion of an “event”

(e) understand why

probpA Y Bq “ probpAq ` probpBq

for disjoint events A, B; use simple counting to calculate probabilities
in discrete sample spaces; understand and use the inclusion/exclusion
formula

probpA Y Bq “ probpAq ` probpBq ´ probpA X Bq
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for events which are not necessarily disjoint

Ma2: Geometry

1. Using and applying “Geometry”

Pupils should:

Solving problems

(a) know and understand basic ruler and compass constructions; use
these to devise simple constructions

(b) use standard units in geometry; solve geometrical problems in 2D and
3D involving calculation, construction, and deduction

(c) measure and calculate accurately to construct and analyse 2D and 3D
figures in terms of triangles; use known results to construct simple
proofs

Communicating

(a) use geometrical language, notation, terminology, and symbols correctly

(b) work in all four quadrants of the coordinate plane; interpret a given
equation as the graph of a function or a circle

(c) lay out calculations, constructions, and proofs line-by-line

Reasoning

(a) use the basic principles of Euclidean geometry and results derived
from them to justify each step in a calculation, construction, or
deduction

(b) analyse 2D and 3D configurations [e.g. by singling out, and using
known properties of triangles]

2. From naı̈ve construction to Euclidean geometry

Pupils should:

Ruler and compass constructions revisited and organised
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(a) know that two points A, B determine a line AB, a line segment AB,
and a circle with centre A and radius AB; relate this to ideal ruler and
compass constructions

(b) know and use the conventional notation for labelling the angles and
sides of △ABC

(c) accept and use the SAS, SSS, ASA (and later RHS) congruence criteria;
prove the basic properties of isosceles triangles; justify the basic ruler
and compass constructions and use them to devise other constructions

(d) prove that the perpendicular bisector of a given line segment BC is the
locus of points X equidistant from B and C; construct the circumcentre
of any triangle

(e) recognise the “perpendicular distance” from a point X to a line as the
(shortest) distance to the line; prove the angle bisector of =BAC is the
(part-) locus of points equidistant from the lines AB and AC; construct
the incentre of △ABC

(f) prove that the three altitudes of a triangle are concurrent

Parallel lines and angles in a triangle

(a) know that angles at a point total 360˝, and that angles at a point on
a straight line total 180˝; conclude that “vertically opposite angles are
equal”

(b) recognise that “two lines are parallel precisely when alternate
angles (or equivalently, when corresponding angles) created by any
transversal are equal”; derive the basic properties of a parallelogram
and of a rhombus; where possible prove the converse results; prove
and use the Midpoint Theorem

(c) prove that the angles in any triangle add to 180˝ and that the exterior
angle at any vertex is equal to the sum of the two interior opposite
angles; deduce that the angles in any quadrilateral add to 360˝;
calculate the angle-sum in an n-gon, and the angle size in a regular
n-gon
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(d) combine known results about angles to find unknown angles, and to
show that certain pairs of lines are parallel

(e) know and use the fact that the tangent and radius at a point on a circle
are perpendicular; conclude that tangents from an external point are
equal; prove that the angle subtended by a chord on the major arc is half
the angle subtended at the centre O; conclude that angles subtended
in the same segment are equal, and that opposite angles of a cyclic
quadrilateral add to 180˝; prove and use the Alternate Segment Theorem

(f) prove that the area of a parallelogram is equal to that of a rectangle on
the same base and between the same parallels and deduce the formula
for the area of a triangle; use this to prove Pythagoras’ Theorem

Similarity

(a) establish and use the AAA similarity criterion and the SAS similarity
criterion for general triangles; prove basic results using similarity

(b) extend the Midpoint Theorem to divide a given segment into any number
of equal parts; prove and use the Intercept Theorem

3. Geometric calculation

Pupils should:

Trigonometry

(a) show that the standard trig ratios for acute angles θ depend only on the
angle θ; understand that sin θ, cos θ take values between 0 and 1

(b) find the exact values for θ “ 0˝, 30˝, 45˝, 60˝; plot graphs of y “ sin θ,
y “ cos θ, and y “ tan θ for 0˝ ď θ ă 90˝; understand why cos θ “

sinp90˝ ´ θq

(c) calculate missing lengths and angles in a given triangle ABC

(d) given triangle ABC, derive and use the formula

areapABCq “
1
2

ab sin C;
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deduce the Sine Rule and use it to “solve triangles”; prove that

a
sin A

“ 2R,

where R is the circumradius of triangle ABC

(e) show that on the unit circle with centre at the origin O, the point P
for which the radius OP makes an angle θ with the positive x-axis
has coordinates pcos θ, sin θq; apply Pythagoras’ Theorem to derive the
identity

sin2 θ ` cos2 θ “ 1;

use this identity to find values of cos θ given the value of sin θ (and vice
versa), and the value of tan θ given the value of cos θ

(f) prove the Cosine Rule, and use it to find unknown lengths and angles in
triangles and other 2D and 3D figures

(g) extend the definition of sin θ and cos θ to θ ą 90˝; extend the graphs of
y “ sin θ, y “ cos θ to 180˝ ă θ ă 0˝, and to ´180˝ ă θ ă 0˝

(h) show that in the “ambiguous (ASS) case”, the data may determine two
possible triangles

2D and 3D figures

(a) work freely with standard 2D figures

(b) draw figures to scale; interpret maps and other scale drawings; apply
similarity in analysing problems; understand how enlargement and
scaling (or similarity) affects angles, lengths, areas, and volumes

(c) find lengths and angles in 3D figures by considering 2D cross-sections;
calculate the angle between two planes

(d) calculate surface areas and volumes of standard figures

Circles

(a) understand and use the terms centre, radius, chord, diameter,
circumference, tangent, arc, sector, segment
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(b) understand and use the formula for the circumference of a circle;
calculate the length of circular arcs

(c) relate the formula for the area of a circle to the formula for the
circumference; calculate the area of a sector

(d) calculate the circumradius and inradius of a triangle

(e) use Pythagoras’ Theorem to find the equation of a circle of radius r
centred at the origin and at the point pc, dq; complete the square to
identify easy quadratic equations as circles and find their centre and
radius

(f) find the equation of the tangent to a given circle at a specified point
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discipline of ‘elementary mathematics’, in England and Wales and anywhere 
else. By analysing and supplementing the current curriculum, Teaching 
Mathematics provides food for thought for all those involved in school 
mathematics, whether as aspiring teachers or as experienced professionals. 
It challenges us all to reflect upon what it is that makes secondary school 
mathematics educationally, culturally, and socially important.

Tony Gardiner, former Reader in Mathematics and Mathematics Education 
at the University of Birmingham, was responsible for the foundation of 
the United Kingdom Mathematics Trust in 1996, one of the UK’s largest 
mathematics enrichment programs. In 1997 Gardiner served as President of 
the Mathematical Association, and in 2011 was elected Education Secretary 
of the London Mathematical Society.
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