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Preface

The primary sources of data in seismology are seismic records at the Earth’s surface
of natural or man-made events. The object of modern seismic analysis is to extract
as much information as possible from these surface records about the nature of the
seismic parameter distribution with the Earth and the source which generated the
waves.

One of the most important techniques which has been developed in recent years
is the construction of theoretical seismograms, as an aid to structural and source
studies. In order to model such seismograms we must take into account the
generation of seismic waves by the source, the passage of these waves through
the Earth, and their subsequent detection and recording at the receiver.

In this book I have endeavoured to present a unified account of seismic waves
in stratified media. The emphasis is on the propagation of seismic waves in
realistic earth models, and the way in which this can be understood in terms of
the reflection and transmission properties of portions of the stratification. With this
approach I have tried to show the interrelation between the major methods used
for the calculation of theoretical seismograms, and to indicate the circumstances in
which they are most useful. The theoretical techniques developed in this book are
applicable to a wide range of problems with distance scales which vary from a few
kilometres in geophysical prospecting, to many thousands of kilometres for seismic
phases returned from the Earth’s core. These applications are illustrated by using
examples taken from reflection and refraction seismic work, as well as earthquake
studies.

I have assumed an acquaintance with the basics of elastodynamics see, e.g.,
Hudson (1980), and the elements of geometrical ray theory. I have not repeated
material which is available in many other sources. Thus, there is no discussion of
the classical Lamb’s problem for a uniform half space, but I present a physically
based description of the more general problem of the excitation of seismic waves
in a stratified half space.

Very low frequency seismic wave problems involve the properties of the whole
Earth; these are best studied in terms of the free oscillations of the Earth and are not
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treated here. A description of this approach may be found in the book by Lapwood
& Usami (1981).

This book is a revised version of an essay which shared the Adams’ Prize, in the
University of Cambridge, for 1979–1980. The material has grown out of lectures
for graduate students given at the University of California, San Diego, and for the
Mathematical Tripos Part III at the University of Cambridge. The manuscript was
prepared whilst I was a Visiting Fellow at the Cooperative Institute for Research
in the Environmental Sciences, University of Colorado, Boulder, and I am very
grateful for the generous provision of facilities during my stay.

I would like to thank my research students N.J. Kerry, T.J. Clarke and M.R.
Illingworth, who have done much to shape my ideas on seismic wave propagation,
for their help and criticism. I have tried to illustrate many of the seismic wave
phenomena with actual seismograms and I extend my thanks to the many people
who have helped me in my search for such examples. I am grateful to the Royal
Astronomical Society for permission to reproduce a number of diagrams from the
Geophysical Journal, and to the National Center for Earthquake Research, U.S.
Geological Survey for the provision of figures.

Finally I would like to thank my wife, Heather, without whom this book would
never have been finished.

B.L.N. Kennett

This ANU E-Press Edition has been produced by converting the originaltroff
source to LaTeX. In the process some minor changes to notation have been made to
aid clarity. An appendix is introduced to provide a definition of the notation. The
index has also been reworked to reflect the changed page layout.
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Chapter 1

Introduction

1.1 Seismic signals

The surface of the Earth is in constant slight movement and the motion at any
point arises from both local effects, e.g., man-made disturbances or wind-induced
rocking of trees, and from vibrations arising from afar, such as microseisms
generated by the effect of distant ocean storms. If we look at the records from
an observatory seismometer in its carefully constructed vault, or from a geophone
whose spike is simply driven into the ground, we find that these largely consist
of such seismic ‘noise’. From time to time the irregular pattern of the records is
interrupted by a disturbance which rises above the background noise with a well
defined wavetrain (figure 1.1). This feature arises from the excitation of seismic
waves, away from the receiver, by some natural or artificial source.

Earthquakes are the most common natural generators of seismic waves, and in
the period range 0.001 Hz to 4 Hz their effect may be detected at considerable
ranges from the source (e.g., with a surface displacement of around 10-8 m at 9000
km for a surface wave magnitude of 4). Indeed for the largest earthquakes we can
observe waves that have circled the globe a number of times.

Most artificial sources such as chemical explosions and surface vibrators or
weight-dropping devices have a much shorter range over which they give detectable
arrivals. This distance is about 2 km for a single surface vibrator and may be
as large as 1000 km for a charge of several tons of TNT. Only large nuclear
explosions rival earthquakes in generating seismic waves which are observable over
a considerable portion of the Earth’s surface.

The nature of the seismic noise spectrum has had a profound influence on the
nature of the instruments which have been emplaced to record earthquake signals
and this in turn has affected the way in which seismic wave theory has developed.
The power spectral density for the velocity of the Earth’s surface as a function
of frequency is shown in figure 1.2, based on a study at the Gräfenburg array
(Harjes, 1981). The range of noise conditions for a reasonable quality station
is indicated by the shaded region and the solid line indicates a typical smoothed
velocity spectrum for the noise. Superimposed on the noise results are typical
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Introduction

Figure 1.1. Eskdalemuir Seismogram for the Dardenelles earthquake 1912,∆ = 26.5◦,
Galitzin seismograph, vertical component.

amplitude spectra for theP wave,S wave and fundamental mode Rayleigh wave
(R) for a magnitude 7 earthquake. For smaller events the spectral peaks shift to
higher frequencies. The major noise peaks associated with the microseisms at
0.07-0.15 Hz cause considerable difficulties on analogue recording systems, since
it is difficult to achieve adequate dynamic range to cope with the whole range of
signals. For a photographic recording system there is an unavoidable limit to the
smallest signal which can be discerned due to the width of the light beam and large
signals simply disappear off scale. To avoid swamping the records of medium
size events with microseismic noise the commonest procedure is to operate two
separate instruments with characteristics designed to exploit the relatively low noise
conditions on the two sides of the noise peak. This is the procedure followed in the
World Wide Seismograph Network (WWSSN) which installed separate long-period
and short-period instruments at over 100 sites around the world in the 1960s.
The records from the long-period seismometers are dominated by the fundamental
modes of surface waves although some body waves are present. The short-period
records show principally body waves. A similar arrangement has been made for
the digital recording channels of the SRO network which was designed to enhance
the WWSSN system. The response curves for these instruments are illustrated in
figure 1.2b on the same frequency scale as the power spectra in figure 1.2a. We
see that these responses have a very rapid fall off in the neighbourhood of the noise
peak so that even with digital techniques it is hard to recover information in this
region.

For midcontinental stations the microseismic noise levels are much reduced and
it then becomes possible to follow the original approach of Galitzin and use a
single instrument over the frequency band of interest, as for example, in the Kirnos
instrument used in the Soviet Union. The actual sensor for the SRO system is
also a broad-band seismometer but the recording channels conform to the scheme
originally devised for analogue purposes.

With digital recording it is now possible to use such a ‘broad band’ instrument
even in noisier areas and to filter the data after recording if it is necessary to
suppress the microseisms. The displacement response of the Wielandt system used

2



1.1 Seismic signals

Figure 1.2. a) Power spectral density for velocity at the earth’s surface and the range of
noise conditions (shaded). The corresponding spectra forP, S and Rayleigh waves for
a magnitude 7 earthquake are also shown. b) Instrumental response curves for major
seismometer systems.

at the Grafenburg array is indicated in figure 1.2b (GRF); in velocity the response
is flat from 0.05-15.0 Hz. With digital techniques it is possible to simulate the
response of the narrower band WWSSN and SRO systems (Seidl, 1980) but the
full information is still available.
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Figure 1.3. Single shot spread for shallow reflection work showingP refractions and
reflections and prominent Rayleigh waves (R).

In near earthquake studies and in most work with artificial sources the recording
bandwidth is sufficient to include all the major wave phenomena. Here, however,
attention may be concentrated on just one part of the records, e.g., the first arriving
energy. In prospecting work the recording configuration with groups of geophones
may be designed to suppress the slowest surface waves (ground roll - Telford et
al., 1976). When high frequency information is sought in reflection work, single
geophones or very tight clusters may be employed to avoid problems with lateral
variations in near-surface properties. In this case monitor records show very clearly
the onset of compressionalP wave energy and the Rayleigh wave energy giving
rise to the ground-roll (figure 1.3). The directS wave is not seen very clearly
on vertical component geophones, but can just be discerned on figure 1.3. At
larger offsetsS waves reflected by the near-surface layering separate from the
ground-roll, and in figure 1.3 there is also some indication of higher mode surface
waves. Normally the ground-roll andSwaves would be suppressed by some form of
velocity filtering, but they do contain useful information about the shallow structure
which can complement theP wave information.

The advent of broad-band recording blurs the separation of seismic signals into
body waves and surface waves. Both are present on the same records and indeed
we see features that cannot be readily assigned to either class. The development of
seismic wave theory has tended to mirror this separation into body wave and surface
wave studies. We are now, however, able to adopt a more broadly based approach
and extract the full range of wave propagation effects from a unified treatment
which we shall develop in subsequent chapters.
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1.2 Seismogram analysis

1.2 Seismogram analysis

The primary sources of information in seismology are the records of seismic events
obtained at the Earth’s surface. This means that we have a comparatively limited
sampling of the entire seismic wavefield in the Earth. We would, however, like not
only to deduce the detailed nature of the source which generated the seismic waves
but also to try to determine the elastic parameter distribution within the Earth.

During the years up to 1940, the analysis of the arrival times of seismic pulses
using ray theoretical methods led to the construction of models for theP wavespeed
distribution within the Earth (Jeffreys & Bullen 1940). The analysis technique,
and the smoothing applied to the observational data led to a continuously varying
wavespeed profile with radius. This was only interrupted by the boundary between
the mantle of the Earth and the fluid core and between the core and inner core.
The construction of such models stimulated the development of methods to handle
wave propagation in realistic media.

At this time the detailed character of the source was ignored and only its location
was of relevance to the travel-time studies. Subsequently the sense of the initialP
motions on a suite of seismograms from stations surrounding the earthquake were
used to assign a simple faulting model to an earthquake (fault-plane solutions - see,
e.g., Sykes, 1967) and propagation characteristics were largely ignored. It was,
however, noted that allowance must be made for earthquakes with epicentres in the
crust rather than in the mantle.

To improve on these very useful simple descriptions of the Earth’s structure and
the nature of earthquake sources, one must make further use of the information
contained in the original seismograms. Over the last decade, methods based on the
calculation of theoretical seismograms have been developed to aid in both source
and structural studies.

In order to model the nature of the wavetrains recorded by a seismometer we
have to take account of the entire process whereby the seismic energy reaches
the recording site. This may be separated into three major elements. Firstly, the
generation of the waves by the source, secondly, the passage of the waves through
the Earth to the vicinity of the receiver and finally the detection and recording
characteristics of the receiver itself.

The character of the propagation effects depends on the nature of the elastic
parameter distribution within the Earth and the scale of the paths of interest and can
display a wide variety of phenomena. Although we shall be principally concerned
with these propagation problems, we shall need to keep in mind the effect of both
source and receiver on the nature of the seismograms.

As we have seen above, the nature of the recording system can have a significant
effect on the nature of the wavetrains observed by any particular seismometer. The
construction of detailed models for seismic sources is rather difficult, particularly
when the rupturing processes in faulting are included, since the reaction of the
medium itself cannot be ignored. These aspects are discussed in detail in Volume II
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of Aki & Richards (1980). We shall be concerned with simple source descriptions,
in particular point sources specified by a moment tensor or a specified fault model,
without attempting to describe the mechanics of faulting.

1.3 Seismic waves

Although it is customary to treat seismic waves as if they satisfy the equations of
linear isotropic elasticity this is an approximation and we should be aware of its
limitations.

The level of stress within the Earth, predominantly due to gravitation, reaches
values of the order of 1011 Pa. The elastic moduli at depth are of this same order,
in fact in the lower mantle the stress is a little less than half the shear modulus and
one-fifth of the bulk modulus. If, therefore, we start from a reference state of a
non-gravitating earth we have strains of order unity, even in the absence of seismic
waves, and we could certainly not use linear theory. We therefore have to adopt an
incremental treatment about the gravitationally prestressed state.

As seismic waves pass through the Earth they lose energy by the geometrical
effect of the enlargement of the wavefront and by the intrinsic absorption of the
Earth. In most circumstances the loss due to scattering and absorption is relatively
small so that we are able to treat this attenuation of the seismic energy as a small
perturbation on the propagation process.

1.3.1 The effect of prestress

In the equilibrium state of the Earth, in the absence of seismic activity, the gradient
of the stress tensorσσσ0 matches the gravitational accelerations derived from a
potentialψ0,

∂σ0ij

∂xi
+ ρ0

∂ψ0

∂xj
= 0. (1.0)

whereρ0 is the equilibrium density and we have used the convention of summation
over repeated suffices. This initial stress field will be predominantly hydrostatic.
For perfect isostatic compensation at some level (by Airy or Pratt mechanisms)
there would be no deviatoric component at greater depths.

Except in the immediate vicinity of a seismic source the strain levels associated
with seismic waves are small. We therefore suppose incremental changes of
displacement (u) and stress (σij) from the equilibrium state behave as for an elastic
medium, and so these quantities satisfy the equation of motion

∂σij

∂xi
+ ρfj = ρ

∂2uj

∂t2
. (1.1)
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1.3 Seismic waves

The body force termfj includes the effect of self-gravitation and in particular the
perturbation in the gravitational potential consequent on the displacement.

In order to express (1.1) in terms of the displacement alone we need a constitutive
relation between the stress and strain increments away from the reference state. The
usual assumption is that this incremental relation is that for linear elasticity and so
we modelσij by a stress fieldτij generated from the displacementu,

τij = cijkl∂luk, (1.2)

with ∂l = ∂/∂xl. The tensor of incremental adiabatic elastic moduli has the
symmetries

cijkl = cjikl = cijlk = cklij. (1.3)

If however there is a significant level of stress in the reference state the relation
(1.2) would not be appropriate and a more suitable form (Dahlen, 1972) is provided
by

τij = dijkl∂kul − uk∂kσ
0
ij. (1.4)

The second term arises because it is most convenient to adopt a Lagrangian
viewpoint for the deformation of the solid material. The constantsdijkl depend
on the initial stress

dijkl = cijkl +
2
3

(
δijσ

0
kl − δklσ

0
ij + δilσ

0
jk − δjkσ

0
il + δjlσ

0
ik − δikσ

0
jl

)
, (1.5)

and the tensorcijkl possesses the symmetries (1.3). For a hydrostatic initial stress
statedijkl reduces tocijkl. The slight influence of the second term in (1.4), is
frequently neglected. The main gradient of the stress tensorσ0ij is normally that
with depth and, for the hydrostatic component, is about 40 Pa/m in the Earth’s
mantle. In this region the elements ofcijkl are of order 1010 Pa and if we consider
a disturbance with a wavelength 200 km (i.e. a frequency around 0.05 Hz), the
term cijkl∂kul will be about 104 times the correctionuk∂kσ0ij, and this ratio
will increase with increasing frequency. For teleseismic studies the correction is
therefore negligible.

Deviatoric components of the initial stress are likely to be most significant in the
outer portions of the Earth, where spatial variability of the elastic constants is also
important. The initial stress state may therefore have significant spatial variation on
scales comparable to seismic wavelengths, and so the correctionuk∂kσ

0
ij in (1.4)

will be of greater significance than at depth.

1.3.2 Material anisotropy

A constitutive relation such as (1.2) expresses the macroscopic characteristics of
the material within the Earth. On a fine scale we will have a relatively chaotic
assemblage of crystal grains with anisotropic elastic moduli. However, the overall
properties of a cube with the dimensions of a typical seismic wavelength (a few
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Introduction

kilometres in the mantle) will generally be nearly isotropic. In consequence
the elastic constant tensor may often be approximated in terms of only the bulk
modulusκ and shear modulusµ

cijkl = (κ− 2
3µ)δijδkl + µ(δikδjl + δilδjk). (1.6)

Significant large-scale anisotropy has only been established in a limited number
of circumstances; for example, at the top of the upper mantle under the oceans there
is about five per cent anisotropy inP wavespeed (Raitt, 1969). Such anisotropy is
likely to arise when there is preferential alignment of crystal grains, associated with
some prevailing tectonic stress.

In the period before a major earthquake, significant prestrain can be built up in
the epicentral region, which will be relieved by the earthquake itself. The presence
of such a strain modifies the local constitutive relation as in (1.4), whereσ0ij is to be
taken now as the stress associated with the prestrain (Walton 1974), and this will
give rise to apparent anisotropy for propagation through the region. The presence
of non-hydrostatic stress will have a significant effect on the crack distribution in
the crust. At low ambient stress and low pore pressure within the rocks, systems
of open cracks may be differentially closed. At high ambient stress, systems of
closed cracks may be opened if the pore pressure and non-hydrostatic stress are
large enough, and new cracks may also be formed. Suchdilatancy effects lead to
aligned crack systems over a fair size area, and this will give apparent anisotropy
to seismic wave propagation through the region. Recent evidence suggests such
effects are observable in favourable circumstances (Crampin et al., 1980).

For near-surface rocks, patterns of cracking and jointing can also give rise to
anisotropic variation in wavespeed.

Transverse anisotropy, where the vertical and horizontal wavespeeds differ, can
be simulated by very fine bedding in sedimentary sequences below the scale
of seismic disturbances. Evidence from well logs suggests that this effect can
be important in some prospecting situations for compressional wave propagation
(Levin, 1979).

Transverse isotropy has also been postulated for the outer part of the upper
mantle above 250 km depth, in an attempt to reconcile the observed dispersion
of Love and Rayleigh waves at moderate periods (Dziewonski & Anderson, 1981).
Here the differences in horizontal and vertical wavespeed are needed principally
for shear waves.

We shall subsequently mostly study propagation in isotropic materials. We will,
however, wish to consider coupling betweenP andSVwaves through the nature of
the seismic wavespeed distribution and the methods which we shall use are directly
extendable to full anisotropy.

8



1.3 Seismic waves

1.3.3 Attenuation

We have a very complex rheology for the mineral assemblages in the crust
and mantle. Over geological time scales they can sustain flow, and in the
fold belts of mountain systems we can see considerable deformation without
fracture. However, on the relatively short time scales appropriate to seismic wave
propagation (0.01s-1000s) we cannot expect to see the influence of the long-term
rheology, and the behaviour will be nearly elastic. The small incremental strains
associated with seismic disturbances suggest that departures from our constitutive
relations (1.2) or (1.4) should obey some linear law.

Any such anelastic processes will lead to the dissipation of seismic energy
as a wave propagates through the Earth. Among phenomena which may be of
importance are crystal defects, grain boundary processes and some thermoelastic
effects (see, e.g., Jackson & Anderson, 1970). Anderson & Minster (1979) have
suggested that the dislocation microstructure of mantle materials can account for
long-term steady-state creep and for seismic wave attenuation. In this model the
glide of dislocations within grains leads to attenuation, whilst climb and defect
annihilation processes in the grain boundaries account for the long term rheology.

The anelastic behaviour may be included in our constitutive laws by introducing
the assumption that the stress at a point depends on the time history of strain,
so that the material has a ‘memory’ (Boltzman, 1876). The theory of such
linear viscoelasticity has been reviewed by Hudson (1980) and he shows that the
appropriate modification of the isotropic constitutive law is

τij = λ0δij∂kuk + µ0(∂iuj + ∂jui)

+

∫ t
0

ds

(
Ṙλ(t− s)δij∂kuk(s)

+Ṙµ(t− s)[∂iuj(s) + ∂jui(s)]

)
. (1.7)

Hereλ0 = κ0 − 2
3µ0 andµ0 are the instantaneous elastic moduli which define the

local wavespeeds andRλ,Rµ are the relaxation functions specifying the dependence
on the previous strain states.

We now take the Fourier transform of (1.7) with respect to time, and then the
stress and displacement at frequencyω are related by

τ̄ij(ω) = [λ0 + λ1(ω)]δij∂kūk(ω) + [µ0 + µ1(ω)](∂iūj(ω) + ∂jūi(ω)),(1.8)

whereλ1 andµ1 are the transforms of the relaxation terms

λ1(ω) =

∫∞
0

dtṘλ(t)e
iωt, µ1(ω) =

∫∞
0

dtṘµ(t)e
iωt (1.9)

So that if we are indeed in the regime of linear departures from elastic behaviour,
the stress-strain relation at frequencyω is as in an elastic medium but now with
complex moduli.
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Introduction

A convenient measure of the rate of energy dissipation is provided by the loss
factorQ−1(ω), which may be defined as

Q−1(ω) = −∆E(ω)/(2πE0(ω)). (1.10)

Here∆E(ω) is the energy loss in a cycle at frequencyω andE0 is the ‘elastic’
energy stored in the oscillation. ThusE0 is the sum of the strain and kinetic energy
calculated with just the instantaneous elastic moduli. The energy dissipationδE is
just associated with the imaginary part of the elastic moduli. For purely dilatational
disturbances

Q−1
κ (ω) = −Im{κ1(ω)}/κ0, (1.11)

and for purely deviatoric effects

Q−1
µ (ω) = −Im{µ1(ω)}/µ0. (1.12)

For the Earth it appears that loss in pure dilatation is much less significant than loss
in shear, and soQ−1

κ � Q−1
µ .

Since the relaxation contributions to (1.7) depend only on the past history of the
strain,Ṙµ(t) vanishes fort < 0, so that the transformµ1(ω) must be analytic in
the upper half plane (Imω ≥ 0). In consequence the real and imaginary parts of
µ1(ω) are the Hilbert transforms of each other (see, e.g., Titchmarsh, 1937) i.e.

Re{µ1(ω)} =
1

π
P

∫∞
−∞ dω ′ Im{µ1(ω

′)}

ω ′ −ω
, (1.13)

where P denotes the Cauchy principal value. We cannot therefore have dissipative
effects without some frequency dependent modification of the elastic moduli. This
property is associated with any causal dissipative mechanism, and the analogous
result to (1.13) in electromagnetic work is known as the Kramers-Krönig relations.

From our definition (1.12) ofQ−1
µ we can rewrite the relation (1.13) in a way

which shows the dependence of Re{µ1(ω)} on the behaviour of the loss factor with
frequency,

Re{µ1(ω)} = −
2µ0

π
P

∫∞
0

dω ′ω
′Q−1
µ (ω ′)

ω
′2 −ω2

. (1.14)

When we wish to use observational information for the loss factorQ−1
µ (ω) we are

faced with the difficulty that this only covers a limited range of frequencies, but the
detailed form of Re{µ1(ω)} depends on the extrapolation ofQ−1

µ (ω) to both high
and low frequencies.

The distribution ofQ−1
µ with depth in the earth is still imperfectly known,

because of the difficulties in isolating all the factors which effect the amplitude of a
recorded seismic wave. However, most models show a moderate loss factor in the
crust (Q−1

µ ∼ 0.004) with an increase in the uppermost mantle (Q−1
µ ∼ 0.01) and

then a decrease to crustal values, or lower, in the mantle below 1000 km. Over the
frequency band 0.001-10 Hz the intrinsic loss factorQ−1

µ appears to be essentially

10



1.3 Seismic waves

constant, but in order for there to be a physically realisable loss mechanism,Q−1
µ

must depend on frequency outside this band. A number of different forms have
been suggested (Azimi et al., 1968; Liu, Anderson & Kanamori, 1976; Jeffreys,
1958) but providedQ−1

µ is not too large (Q−1
µ < 0.01) these lead to the approximate

relation

Re{µ1(ω)} = 2µ0 ln(ωa)Q−1
µ /π, (1.15)

in terms of some time constanta. A similar development may be made for the
complex bulk modulusκ0 + κ1(ω) in terms of the loss factorQ−1

κ .
For a locally uniform region, at a frequencyω, substitution of the stress-strain

relation (1.8) into the equations of motion shows that, as in a perfectly elastic
medium, two sets of plane waves exist. TheSwaves have a complex wavespeedβ̄
given by

β̄2(ω) = [µ0 + µ1(ω)]/ρ (1.16)

influenced only by shear relaxation processes. In terms of the wavespeedβ0 =

(µ0/ρ)
1/2 calculated for the instantaneous modulus, (1.16) may be rewritten as

β̄2(ω) = β20

(
1+ Re{µ1(ω)}/µ0 − isgn(ω)Q−1

µ (ω)
)
, (1.17)

where we have used the definition ofQ−1
µ in equation (1.12). Even ifQ−1

µ is
frequency independent in the seismic band, our previous discussion shows thatβ̄

will have weak frequency dispersion through Re{µ1(ω)}.
For a small loss factor (Q−1

µ � 1) the ratio of complex velocities at two different
frequenciesω1 andω2 will from (1.15) be approximately

β̄(ω1)

β̄(ω2)
= 1+

Q−1
µ

π
ln

(
ω1

ω2

)
− isgn(ω)12Q

−1
µ . (1.18)

We can thus overcome the problem of the unknown constanta by agreeing to fix a
reference frequency (most commonly 1 Hz) and then

β̄(ω) ≈ β1
[
1+ π−1Q−1

µ ln(ω/2π) − isgn(ω)12Q
−1
µ

]
, (1.19)

whereβ1 is the velocity at 1 Hz. The presence of the frequency dependent terms in
(1.17, 1.19) arises from the requirement that all dissipative processes will be causal.
In consequence there will be no seismic energy arriving with wavespeed faster than
that in the reference elastic medium (β0). For an initially sharp pulse, propagation
through the lossy medium leads to an assymetric pulse shape with a fairly sharp
onset, illustrated in figure 1.4a.

WhenQµ(ω) has some significant frequency dependence, we will still obtain
a similar structure to (1.19) although the nature of the frequency dependence
Reβ̄(ω)} will vary. Smith & Dahlen (1981) have shown that, as suggested
originally by Jeffreys (1958), a weak frequency variation in loss factor,Q−1

µ ∝
ω−γ with γ ≈ 0.1, will fit the observed period (435.2 days) and damping of the

11



Introduction

Figure 1.4. a) Pulse after passage through a medium with causalQ−1
µ and associated

velocity dispersion;tr arrival time in reference medium. b) Pulse broadening due to scat-
tering.

Chandler wobble, as well as the results in the seismic band. The value ofγ is
dependent on the reference loss model and is primarily influenced by the properties
of the lower mantle. Lundquist & Cormier (1980) have suggested that the loss
factor in the upper mantle may vary significantly for frequencies between 1 and 10
Hz, and relate this to relaxation time scales for absorption processes. For shallow
propagation at high frequencies (10-60 Hz) O’Brien & Lucas (1971) have shown
that the constantQ−1 model gives a good explanation of observed amplitude loss
in prospecting situations.

For P waves the situation is a little more complicated since the anelastic effects
in pure dilatation and shear are both involved. The complex wavespeedᾱ is given
by

ᾱ2(ω) = [κ0 + 4
3µ0 + κ1(ω) + 4

3µ1(ω)]/ρ,

= α0{1+A(ω) − isgn(ω)Q−1
A (ω)}, (1.20)

where

α0 = [(κ0 + 4
3µ0)/ρ]

1/2 (1.21)

and we have introduced the loss factor for theP waves

Q−1
A = −Im{κ1 + 4

3µ1}/(κ0 + 4
3µ0). (1.22)

If loss in dilatation is very small compared with that in shear (i.e.Q−1
κ � Q−1

µ )

Q−1
A ≈ 4

3(β
2
0/α

2
0)Q

−1
µ , (1.23)

as suggested by Anderson, Ben-Menahem & Archambeau (1965). The real
dispersive correction to the wave speedA(ω) will have a rather complex form
in general but under the conditions leading to (1.23), we will have a similar form to
(1.15)

A(ω) = 2(κ0 + 4
3µ0)Q

−1
A ln(ωa)/π. (1.24)

12



1.3 Seismic waves

We may therefore once again get a form for the complex wavespeed in terms of the
wave speed at 1 Hz (α1),

ᾱ(ω) = α1

[
1+ π−1Q−1

A ln(ω/2π) − isgn(ω)12Q
−1
A

]
. (1.25)

In the frequency domain, calculations with these complex velocities turn out to
be little more complicated than in the perfectly elastic case.

In addition to the dissipation of elastic energy by anelastic processes, the
apparent amplitude of a seismic wave can be diminished by scattering which
redistributes the elastic energy. As we have noted above, our choice of
elastic moduli defines a reference medium whose properties smooth over local
irregularities in the properties of the material. The fluctuations of the true material
about the reference will lead to scattering of the seismic energy out of the primary
wave which will be cumulative along the propagation path, and the apparent
velocity of transmission of the scattered energy will vary from that in the reference.
Since locally the material may be faster or slower than the assigned wavespeed, the
effect of scattering is to give a pulse shape which is broadened and diminished in
amplitude relative to that in the reference medium, with an emergent onset before
the reference travel time (figure 1.4b). At a frequencyω we may once again
describe the effect of the scattering by a loss factorsQ

−1(ω) and the changing
character of the scattering process leads to a strong frequency dependence. As the
wavelength diminishes, the effect of local irregularities becomes more pronounced
and sosQ−1 tends to increase until the wavelength is of the same order as the size
of the scattering region.

This scattering mechanism becomes important in areas of heterogeneity and
its influence seems largely to be confined to the lithosphere. There are
also considerable regional variations, with earthquake zones showing the most
significant effects (Aki, 1981).

For each wave type the overall rate of seismic attenuationQ−1, which is the
quantity which would be derived from observations, will be the sum of the loss
factors from intrinsic anelasticity and scattering. Thus forSwaves

Q−1
β (ω) = Q−1

µ (ω) + sQ
−1
β (ω). (1.26)

For P waves,

Q−1
α (ω) = Q−1

A (ω) + sQ
−1
α (ω); (1.27)

since the scattering component here is arising from a totally distinct mechanism
to the dissipation there is no reason to suppose thatsQ

−1
α , sQ−1

β are related in a
similar way to (1.23).

Recent observational results (Aki, 1981) suggest that the contributionsQ−1
µ

andsQ−1
β are separable via their different frequency behaviour (figure 1.5). The

intrinsic absorptionQ−1
µ is quite small and nearly frequency independent over the

seismic band and then superimposed on this with characteristics which vary from
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Figure 1.5. Frequency separation of intrinsic loss factorQ−1
µ from scattering contribution

sQ
−1
β .

region to region is the more rapidly varying scattering loss. Other studies also
indicate such an increase in the loss factorsQ−1 as the frequency rises towards a
few Hz. The results of figure 1.5 could be fitted with some postulated dependence
ofQ−1 on frequency. However, the wavespeed dispersion estimated by (1.14) from
such relations would be very misleading. It is only for the anelastic portionQ−1

µ ,
Q−1
A that we have dispersive wavespeed terms. The scattering contributionsQ

−1
β ,

sQ
−1
α does not have the same restriction to a local ‘memory’ effect and there is no

consequent dispersion.

1.4 Heterogeneity

As yet we have no means, besides the pure numerical, to consider seismic wave
propagation in a completely general medium with arbitrary variations in even
isotropic elastic properties. Even numerical methods are limited by storage and
time requirements to a restricted range of propagation. At high frequencies we
may make a ray theoretical development and this approach is described in some
detail in the book by̌Cerveńy, Molotkov & Pšeňćık (1978). For intermediate and
low frequencies ray theory results are hardly adequate.
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1.4 Heterogeneity

We will therefore adopt, for most of this work, a stratified model of the elastic
parameter distribution within the Earth in which the only dependence is on depth
(or radius). For this model we can use a range of methods to calculate the
propagational characteristics of the seismic waves. But we must bear in mind that
this, like our assumption of isotropy, is only an approximation of limited validity.

The considerable variability in the near-surface portion of the Earth means that,
at best, a horizontally stratified model has local meaning. It may be appropriate
for undisturbed sediments but certainly not in the regions disturbed by the intrusion
of diapiric salt domes which are of considerable commercial importance because
of their oil potential. Stratified models have been used with considerable success
in examining the details of the seismic properties in the oceanic crust (see, e.g.,
Helmberger, 1977; Kennett, 1977; Spudich & Orcutt, 1980). But for the continents
the lateral heterogeneity seems to be rather higher and stratified models are mostly
used to describe the broad features of the crustal properties.

The most significant lateral variations in properties which are excluded from the
stratified model are the transition zone from continent to ocean and the effect of
a subduction zone. The latter is of particular importance since it is the region in
which intermediate and deep focus earthquakes occur. When, therefore, we try
to simulate the propagation from such events by using a source embedded in a
stratified model, we must take care in the specification of the source. For higher
frequency propagation (around 1 Hz) the effect of the downgoing slab can be quite
important at teleseismic distance.

On a local scale, heterogeneity in the material properties gives rise to scattering
of seismic energy. If the fluctuations in elastic parameters are quite small the
main effect will be an attenuation of a seismic pulse and can be described by the
loss factorssQ−1

α , sQ−1
β . Larger fluctuations in properties give rise to significant

features on seismic records, in addition to those predicted from the averaged model.
Thus, following the mainP andS arrivals from local earthquakes is the coda, an
elongated train of waves with exponential decay of amplitude which appears to
arise from back-scattering from velocity variations in the crust and upper mantle
(Aki & Chouet, 1975). A horizontally stratified structure with a strong crustal
waveguide will also give rise to a similar style of coda, associated with multiple
reverberations in the waveguide.

In addition to significant irregularities in the seismic properties of the outer
regions of the Earth, there are a number of indications of heterogeneity in a region
about 200 km thick above the core-mantle boundary. The presence of scattering
from these regions is most apparent in those cases where scattered energy arrives
in a quiet portion of the records as precursors to a large phase. Such occurrences
are usually associated with stationary, but non-minimum-time, ray paths. Arrivals
which have been interpreted asP wave scattering in the near-surface region occur
before thePP phase for epicentral distances of about 100◦ (King, Haddon &
Husebye, 1975). Energy arriving beforePKIKP between 120◦ and 142◦ has
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also been attributed to scattering fromPKP near, or at, the core-mantle boundary
(Haddon & Cleary, 1974; Husebye, King & Haddon, 1976). It is possible that the
increases in loss factors near the core-mantle boundary in recentQ−1 models can
be attributed to scattering loss rather than enhanced intrinsic absorption.

1.5 Stratified models

In the previous sections we have discussed the characteristics of seismic wave
propagation within the Earth and the extent to which we are able to match this
behaviour with a relatively simple description of the constitutive relation and the
spatial variation of material properties.

As a simple, but reasonably realistic, model for studying the effect of the Earth’s
structure on seismic wave propagation we shall consider stratified media composed
of isotropic, nearly elastic, material. The weak attenuation will be included in the
frequency domain by working with complex wavespeeds.

To simplify the configuration, whilst retaining the physical features of interest,
we shall start by studying a horizontally stratified half space. On a local scale this
is often a good approximation, but as waves penetrate deeper into the Earth the
effects of sphericity become more important.

There is no exact transformation which takes the seismic properties in a stratified
sphere into those in an equivalent half space forP-SV waves (Chapman, 1973)
although this can be achieved forSH waves (Biswas & Knopoff, 1970). However,
by a suitable ‘earth-flattening’ transformation we can map the wavespeed profile
with radiusR in a sphere into a new wavespeed distribution with depthz in a
half space so that transit times from source to receiver are preserved. Thus in the
flattened model we take

z = re ln(re/R), (1.28)

and the wavespeeds after flatteningαf, βf are

αf(z) = α(R)(re/R), βf(z) = β(R)(re/R), (1.29)

where re is the radius of the Earth. This wavespeed mapping needs to be
supplemented by an approximate density transformation, e.g.,

ρf(z) = ρ(R)(R/re), (1.30)

which leads to the same reflection coefficients at normal incidence in the spherical
and flattened models.

In the outer regions of the Earth the distortion introduced by flattening is not
too severe and the ‘flattened earth’ can provide useful quantitative results. The
increased velocity gradients in the flattened model compensate for the crowding
effect of sphericity as the radius diminishes.

For studies of the deep interior from core-mantle boundary towards the centre
it is desirable to work directly with a spherical model, even though comparison
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studies have shown the flattening approximation to give quite good results (Choy
et al. 1980). The spherical model is of course essential for very long-period
phenomena which involve a substantial fraction of the Earth. For the spherical
case we are able to carry over the calculation methods developed for the half space
to give a unified treatment of the whole range of propagation problems.

1.6 Preview

Although our goal is to understand the way in which the features on observed
seismograms are related to the properties of the source and seismic structure of
the Earth, we need to establish a variety of mathematical and physical tools which
will help us in this task. These will be developed over the next few chapters.

We start in Chapter 2 by representing the seismic displacement within a
stratified medium as a superposition of cylindrical wave elements modulated by
angular terms depedent on source excitation. For each of these wave elements,
characterised by frequencyω, horizontal waveslownessp, and angular orderm,
we are able to follow the development of the associated displacements and tractions
with depthz by means of sets of coupled first order differential equations inz. For
an isotropic medium these equations separate into two sets:

i) P-SV, coupling compressional and shear wave propagation in a vertical plane,
ii) SH, shear waves with motion confined to a horizontal plane.

Such coupled equations are well suited to the solution of initial value problems, and
in this context we introduce the propagator matrix which acts as a transfer matrix
between the stress and displacement elements at two levels in the stratification.

In Chapter 3 we will discuss the construction of stress-displacement fields. For
a uniform medium we show how the seismic displacements can be expressed in
terms of upward and downward travelling waves and use this result to derive the
corresponding propagator. When the seismic wavespeeds vary smoothly with depth
an approximate stress-displacement field can be found for which the asymptotic
behaviour is like upgoing or downgoing waves.

Chapter 4 is devoted to the excitation of seismic waves by seismic sources. A
physical source is represented by an equivalent force system within our model of
a stratified medium. For finite size sources, the low frequency radiation may be
modelled by a seismic moment tensor, which gives the relative weighting of force
doublet contributions. For large source regions an extended multipole expansion
is needed if an equivalent point source is used. For a point source the seismic
wave excitation enters into the stress-displacement vector picture as a discontinuity
across the source plane.

The reflection and transmission of seismic waves in stratified regions are
introduced in Chapter 5. For coupledP-SV wave propagation we introduce
reflection and transmission matrices, whose entries are the reflection and
transmission coefficients between the different wave types. These matrices enable
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us to develop systematic techniques for handling conversion between wave types
and can also be related to the propagator matrix for a region.

In Chapter 6 we show that the overall reflection response of a zone of
the stratification can be built up by an addition rule, from the reflection and
transmission properties of its subregions. This addition rule enables us to produce
effective computational methods to construct reflection coefficients for a stack of
uniform layers or for piecewise smooth media, based on the stress-displacement
field representations introduced in Chapter 3.

Chapter 7 brings together the discussion of the excitation and reflection of
seismic waves to construct the full response of a stratified medium to excitation
by a source. A number of different representations exist for the full response which
exhibit different facets of the propagation process. By working with the reflection
properties of the stratification we are able to make a clear physical interpretation
of the contributions to the response. Once we have constructed the surface
displacements in the transform domain we may generate theoretical seismograms
by direct integration over the cylindrical wave representation; different algorithms
will be used depending on whether the integration over frequency or slowness is
performed first.

Complete theoretical seismograms including all body waves and surface effects
are expensive to calculate. They are most useful when the time separation
between the different seismic phases are small. Once the different types of seismic
wave contributions are well separated in time it becomes worthwhile to develop
approximate techniques designed to model the particular portions of the seismic
record which are of interest.

In Chapter 8 we consider the nature of seismic records as a function of distance
from the source and frequency content, so that we can use these results as a guide to
the appropriate approximations developed in Chapters 9–11. We consider reflection
seismograms as recorded in typical prospecting work and the refraction technique
used for lower resolution work to greater depths. We then turn our attention to the
records obtained at seismographic stations and look at the evolution of the seismic
field with epicentral distance.

With the aid of the reflection matrix approach it is fairly easy to construct
systematic approximations to the response which give a good representation of
certain parts of the seismic wave field. In Chapter 9 we show how to make use of
partial expansions of reflector operators to examine the effect of the free surface
and the near-surface zone with low wavespeeds. These approximations in the
frequency-slowness are then combined with suitable integration schemes to show
how the ‘reflectivity’ and ‘full-wave’ techniques are related to the full response.
We also show how simple approximate calculations may be made for teleseismicP
andSwaveforms.

In Chapter 10 we carry the expansion of the frequency-slowness response
much farther and represent the displacement field as a sum of generalized
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1.6 Preview

ray contributions with a specific form of frequency and slowness dependence.
This functional dependence can be exploited to produce the time and space
response for each generalized ray in uniform layer models (Cagniard’s method),
and asymptotically for piecewise smooth models using a method introduced by
Chapman.

The last chapter is devoted to a discussion of seismic surface waves and the
other contributions to the seismic response arising from pole singularities in the
representation of seismic displacements via reflection matrices. These poles arise
at a combination of frequency and slowness such that a single stress-displacement
vector can satisfy both the free surface condition and the radiation condition at
the base of the stratification. Once the modal dispersion curves as a function of
frequency and slowness have been found we can calculate theoretical seismograms
by superposition of modal contributions. With many mode branches we get, in
addition to a surface wave train with low group velocity, faster pulses with a body
wave character.
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Chapter 2

Coupled Equations for Seismic Waves

The incremental displacementu induced by the passage of a seismic wave is
governed by the equation of motion

ρ(x)∂ttui(x) = ∂jτij(x), (2.1)

in the absence of sources. The behaviour of the material enters via the constitutive
relation connecting the incremental stress and strain. When the approximation of
local isotropic behaviour is appropriate, the displacement satisfies

ρ(x)∂ttui(x) = ∂j [λ(x)∂kuk(x)δij + µ(x)(∂iuj(x) + ∂jui(x))] , (2.2)

which leads to rather complex behaviour for arbitrary spatial variation of the
elastic moduliλ, µ. As discussed in Section 1.3.3 we may accommodate slight
dissipation within the medium by allowing the moduliλ, µ to be complex functions
of frequency within the seismic band.

Even in a uniform medium whereλ andµ are constants the three components
of displacement are coupled but can be represented in terms of two simple classes
of disturbance. These are firstly, compressional (P) waves for which the dilatation
(∂kuk) satisfies

ρ∂tt(∂kuk) = (λ+ 2µ)∂jj(∂kuk), (2.3)

which we see to be a wave equation with associatedP wavespeed

α = [(λ+ 2µ)/ρ]1/2. (2.4)

In the second class, shear waves, the dilatation vanishes so that

ρ∂ttui = µ(∂ijuj + ∂jjui), (2.5)

and we may reduce (2.5) to the form of a wave equation by applying the curl
operator to give

ρ∂tt(curlu) = µ∂jj(curlu), (2.6)

and so we have anSwavespeed

β = [µ/ρ]1/2. (2.7)
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In a uniform medium theP and S waves can exist separately, and the total
displacement will be a superposition of contributions from these two wave types.

For general spatial variation ofλ(x), µ(x) and ρ(x) we cannot make such a
separation of the wavefield intoP andS waves. If the spatial gradients in elastic
properties are slight, then waves which travel at the localP and S wavespeeds,
defined via (2.5), (2.7), can exist but these are coupled to each other by the gradients
of λ(x), µ(x) andρ(x)

2.1 Depth dependent properties

The complexity of the propagation problem is reduced somewhat if the elastic
properties depend only on depth. For such a horizontally stratified medium we
are able to set up coupled equations involving displacement and traction elements
in which the dependence of the wavefield on depth is emphasised.

We will adopt a cylindrical set of coordinates (r,φ,z) with the vertical axis
perpendicular to the stratification. The displacementu may be represented in terms
of its components

u(r, φ, z, t) = urer + uφeφ + uzez, (2.8)

using the orthogonal unit vectorser, eφ, ez. Since we are now working with a
spatially varying coordinate system, the gradient of the stress tensor, which appears
in the equation of motion (2.1), is not quite as simple as in the cartesian case.
Explicitly we have

∂zτrz + ∂rτrr + r−1∂φτrφ + r−1(τrr − τφφ) = ρ∂ttur − ρfr,

∂zτφz + ∂rτrφ + r−1∂φτφφ + 2r−1τrφ = ρ∂ttuφ − ρfφ,

∂zτzz + ∂rτrz + r−1∂φτφz + r−1τrz = ρ∂ttuz − ρfz, (2.9)

in the presence of a body force per unit massf. The relation between stress and
strain follows the usual functional form, so that for isotropy

τij = λδijekk + 2µeij, (2.10)

in terms of the components of the strain tensoreij. A further consequence of
the curvilinear coordinate system is that these strain elements now allow for the
distortion of the reference grid as well as displacement gradients. The stress
elements are related to the displacements by

τrr = (λ+ 2µ)∂rur + λ(∂zuz + r−1∂φuφ + r−1ur),

τφφ = (λ+ 2µ)r−1(∂φuφ + ur) + λ(∂zuz + ∂rur),

τzz = (λ+ 2µ)∂zuz + λ(∂rur + r−1∂φuφ + r−1ur),

τrz = µ(∂zur + ∂ruz),

τφz = µ(r−1∂φuz + ∂zuφ),

τrφ = µ(∂ruφ − r−1uφ + r−1∂φur). (2.11)
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Coupled Equations for Seismic Waves

In the equations of motion, derivatives with respect toz appear only on the
components of the traction across a horizontal plane

t(r, φ, z, t) = τrzer + τφzeφ + τzzez, (2.12)

and in the stress-strain relations (2.11)z derivatives appear on the displacement
components. The tractiont and displacementu are both continuous across any
planez = constwithin the stratification, under the assumption of welded contact
between any dissimilar materials. We therefore want to rearrange the equations of
motion and stress-strain relations so that derivatives with respect toz appear only
on the left hand side of the equations.

The additional gradient contributions arising from the cylindrical coordinates
complicate the behaviour for the horizontal elementsur, uφ, τrz, τφz. However, a
simple form may be found if we introduce the new elements (cf., Hudson, 1969b)

uV = r−1[∂r(rur) + ∂φuφ],

τVz = r−1[∂r(rτrz) + ∂φτφz], (2.13)

and

uH = r−1[∂r(ruφ) − ∂φur],

τHz = r−1[∂r(rτφz) − ∂φτrz], (2.14)

with similar definitions forfV , fH. We also introduce the horizontal Laplacian∇21
such that

∇21ψ = r−1∂r(r∂rψ) + r−2∂φφψ. (2.15)

In terms of these quantities we can rearrange the equations to a form where we
have managed to isolate thez derivatives. This leads to six coupled equations
which separate into two sets.

The first set is

∂zuz = −λ(λ+ 2µ)−1uV + (λ+ 2µ)−1τzz,

∂zuV = −∇21uz + µ−1τVz,

∂zτzz = ρ∂ttuz − τVz − ρfz,

∂zτVz = (ρ∂tt − ρν∇21)uV − λ(λ+ 2µ)−1∇21τzz − ρfV , (2.16)

where we have introduced the composite modulus

ρν = (λ+ 2µ) − λ2/(λ+ 2µ) = 4µ(λ+ µ)/(λ+ 2µ). (2.17)

These equations coupleP waves with local wavespeedα to SV shear waves,
involving vertical displacement, with wavespeedβ. The second set comprises shear
disturbances entirely confined to a horizontal plane (SH) with the same wavespeed
β :

∂zuH = µ−1τHz,

∂zτHz = (ρ∂tt − µ∇21)uH − ρfH. (2.18)
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This decomposition into coupledP-SV and SH systems also occurs for a
transversely isotropic medium with a vertical symmetry axis (Takeuchi & Saito,
1972) and this case is discussed in the appendix to Chapter 3. For a generally
anisotropic medium it is still possible to arrange the elastic equations in a form
where derivatives with respect toz appear only on the left hand side of the equations
(Woodhouse, 1974) but now there is no decoupling.

The sets of coupled equations (2.16) and (2.18) still involve partial derivatives
with respect to the horizontal coordinates and time, and include all effects of
vertical gradients in the elastic parameters. Since the elastic properties do not
depend on horizontal position, we may use transforms over time and the horizontal
coordinates to reduce (2.16) and (2.18) to a set of ordinary differential equations in
the depth variablez. We take a Fourier transform with respect to time and, for the
horizontal coordinates, a Hankel transform of orderm over radial distance from
the origin and a finite Fourier transform over the angular variable:

Fm[ψ] = ψ̂(k,m,ω)

=
1

2π

∫∞
−∞ dteiωt

∫∞
0

dr rJm(kr)

∫π
−π

dφe−imφψ(r, φ, t), (2.19)

for which

Fm[∇21ψ] = −k2Fm[ψ]. (2.20)

For each azimuthal ordermwe introduce a set of variables related to the transforms
of the displacement and stress variables appearing in (2.16), (2.18) by

U = ûz, P = ω−1τ̂zz,

V = −k−1ûV , S = −(ωk)−1τ̂Vz,

W = −k−1ûH, T = −(ωk)−1τ̂Hz.

(2.21)

The scaling factors are designed to give a set of variables in each group with equal
dimensionality; the scaling via horizontal wavenumberk arises from the horizontal
differentation in (2.13), (2.14) and the frequency scaling for stress simplifies the
form of subsequent equations. These new displacement and stress quantities are
related by

ωP = ρα2∂zU− kρ(α2 − 2β2)V,

ωS = ρβ2(∂zV + kU),

ωT = ρβ2∂zW, (2.22)

in terms of theP andSwavespeedsα , β .
The body force terms must also be transformed and we apply a comparable

scaling to that for the stress variables

Fz = ρω−1f̂z,

FV = −ρ(ωk)−1f̂V ,

FH = −ρ(ωk)−1f̂H. (2.23)
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Coupled Equations for Seismic Waves

When we apply the Fourier-Hankel transform operator (2.19) to the equation
sets (2.16) and (2.18) we obtain coupled sets of ordinary differential equations
for the new displacement and stress quantitiesU(k,m, z,ω), P(k,m, z,ω) etc.
These transformed equations take a very convenient form if we work in terms of
the horizontal slownessp = k/ω , with units of reciprocal wavespeed, rather than
the horizontal wavenumberk. Thus forP-SVwaves we have

∂

∂z


U

V

P

S

 = ω


0 p(1− 2β2/α2) (ρα2)−1 0

−p 0 0 (ρβ2)−1

−ρ 0 0 p

0 ρ[νp2 − 1] −p(1− 2β2/α2) 0



U

V

P

S

−


0

0

Fz
FV

 ,
where ν = 4β2(1− β2/α2), (2.24)

and forSHwaves

∂

∂z

[
W

T

]
= ω

[
0 (ρβ2)−1

ρ[β2p2 − 1] 0

] [
W

T

]
−

[
0

FH

]
. (2.25)

For an isotropic medium the coefficients appearing in (2.24), (2.25) are
independent of the azimuthal orderm and the azimuthal dependence of
U(k,m, z,ω) etc. will arise solely from the nature of the force systemF. The
elements of the coupling matrices involve only the elastic parameters at the depth
z and not their vertical derivatives. This desirable property was first pointed out by
Alterman, Jarosch & Pekeris (1959) in an analogous development for a sphere, and
this makes (2.24), (2.25) well suited to numerical solution since the errors involved
in interpolating the elastic parameters are minimised.

Each of the sets of coupled equations (2.24) and (2.25) can be written in the form

∂zb(k,m, z,ω) = ωA(p, z)b(k,m, z,ω) + F(k,m, z,ω), (2.26)

in terms of a column vectorb whose entries are the displacement and stress
quantities. ForP-SVwaves

bP(k,m, z,ω) = [U, V, P, S]T , (2.27)

whereT denotes the transpose of the row vector. ForSHwaves

bH(k,m, z,ω) = [W, T ]T . (2.28)

When we wish to look at the general structure of the results we will write a general
stress-displacement vectorb in the form

b(k,m, z,ω) = [ w, t]T , (2.29)

and we will specialise, when appropriate, to theP-SVandSHsystems.
The displacementu and tractiont across any horizontal plane are continuous,

and since only horizontal derivatives enter into the definitions ofuV , uH, τVz, τHz
(2.13), (2.14) these will also be continuous across a horizontal plane. The transform
operatorFm preserves these continuity properties, and thus the stress-displacement
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2.1 Depth dependent properties

vectorb will be continuous across any plane of discontinuity in material properties
as well as all other planesz = const.

In the depth intervals where the elastic properties are continuous we may solve
(2.26) to construct the stress-displacement vectorb, and then we are able to use
the continuity ofb to carry the solution across the level of any jump in the elastic
parameters.

2.1.1 Coupled second order equations and propagation invariants

Although most recent studies of seismic waves in stratified media have made use of
the sets of first order differential equations we have introduced in equations (2.24)
and (2.25), there is an alternative formulation in terms of coupled second order
equations (Keilis-Borok, Neigauz & Shkadinskaya, 1965). This representation
gives further insight into the character of the displacement which will later be useful
when we consider the excitation of seismic waves by a source.

For SH waves, the two first order equations (2.25) are equivalent to the single
equation

∂z(ρβ
2∂zW) − ρω2(β2p2 − 1)W = −ωFH. (2.30)

In the P-SV wave case we have two coupled second order equations which are
conveniently expressed in terms of the displacement vectorw = [U,V]T ,

∂z[AAA∂zw +ωpBBBw] −ωpBBBT∂zw − ρω2(p2CCC− III)w = −ωFFF, (2.31)

whereIII is the identity matrix and the other2× 2matricesAAA, BBB, CCC are given by

AAA = ρ

[
α2 0

0 β2

]
, BBB = ρ

[
0 (2β2 − α2)

β2 0

]
, CCC =

[
β2 0

0 α2

]
. (2.32)

From (2.22) we may recognise the traction contibution to (2.32) as

ωt = AAA∂zw +ωpBBBw. (2.33)

Both (2.30) and (2.31) have the form

∂z(ωt) + KKKw = −ωFFF, (2.34)

in terms of an operatorKKK, and are self adjoint. We may make use of this property to
establish propagation invariants for theP-SVandSHwave systems. For frequency
ω and slownessp, consider two distinct displacement fieldsw1, w2, which satisfy
different boundary conditions, then the structure of the operatorKKK is such that

∂z[w
T
1t2 − tT1w2] = wT

2FFF1 − wT
1FFF2, (2.35)

as may be verified by direct evaluation. In the absence of sources the quantity

<w1,w2> = wT
1t2 − tT1w2, (2.36)
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Coupled Equations for Seismic Waves

is therefore independent of depth and thus a propagation invariant.<w1,w2> is a
weighted Wronskian for the coupled equations: explicitly, forP-SVwaves

<w1,w2> = U1P2 + V1S2 − P1U2 − S1V2, (2.37)

and forSHwaves we have a comparable form

<w1,w2> = W1T2 − T1W2. (2.38)

These invariants may also be established from the coupled first order equations.
For P-SV waves the coefficient matrixA appearing in (2.26) has the symmetry
properties:

(a) for a dissipative medium whenα, β are complex

NA + ATN = 0, (2.39)

(b) for a perfectly elastic medium

NA + AT∗N = 0, (2.40)

where a star indicates a complex conjugate, andN is a block off-diagonal matrix

N =

[
0 I

−I 0

]
. (2.41)

If we construct the quantitybT1Nb1 , then, in the absence of sources, from (2.26)
we find

∂z(bT1Nb1) = ωbT1 [A
TN + NA]b2 = 0; (2.42)

by (2.39), and performing the matrix multiplication,

bT1Nb1 = <w1,w2> = U1P2 + V1S2 − P1U2 + S1V2. (2.43)

For SHwaves we have similar behaviour,

(a) in the presence of dissipation

nA + ATn = 0, (2.44)

(b) for a perfectly elastic medium

nA + AT∗n = 0, (2.45)

where

n =

[
0 1

−1 0

]
. (2.46)

Once againbT1nb2 = <w1,w2>.
For a perfectly elastic medium, we may make use of the two symmetries (2.40),

(2.45) to establish a further propagation invariantbT∗1 Nb2. This invariant property
is a consequence of the conservation of energy in a lossless medium. Whenb1
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2.1 Depth dependent properties

andb2 are the same this invariant is simply a multiple of the energy flux crossing
planesz = const. It is, however, rather more difficult to give any simple physical
interpretation of<w1,w2> in the presence of dissipation.

We have hitherto considered the circumstance in which both stress-displacement
vectors have the same frequency and slowness. We shall later wish to have available
the results for different frequencies and slownesses, and so taking note of the
structure of (2.34) we use the combination

[wT
1 (ω1, p1)ω2t2(ω2, p2) −ω1t

T
1 (ω1, p1)w1(ω2, p2)]. (2.47)

For P-SVwaves

∂z[U1ω2P2 + V1ω2S2 −ω1P1U2 −ω1S1V2]

= ρ(ω21 −ω22)[U1U2 + V1V2] + 4ρ(1− β2/α2)β2[ω22p
2
2 −ω21p

2
1]V1V2

+(ω2p2 −ω1p1){[U1ω2S2 +U2ω1S1]

−(1− 2β2/α2)[V1ω2P2 + V2ω1P1]}, (2.48)

and forSHwaves

∂z[W1ω2T2 −ω1T1W2]

= ρ(ω21 −ω22)W1W2 + ρβ2(ω22p
2
2 −ω21p

2
1)W1W2. (2.49)

The propagation invariants play an important role in the description of the
seismic wavefield, even in the presence of sources, and we will frequently need
to use the quantity<w1,w2>.

2.1.2 Recovery of spatial displacement from b vector

The displacementu within the stratification can be recovered from the transformed
quantitiesU, V ,W which appear as elements of the stress-displacement vectorsb
by inverting the Fourier-Hankel transform (2.19).

The simplest case is that for vertical displacement since here a direct
transformation was made, thus in terms of the quantitiesU(k,m, z,ω)

uz(r, φ, z, t) =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dk k
∑
m

U(m, z)Jm(kr)eimφ. (2.50)

This representation of the displacementuz may be regarded as a superposition of
cylindrical waves whose order dictates the nature of their azimuthal modulation. At
each frequency and angular order the radial contribution is obtained by superposing
all horizontal wavenumbersk from 0 to infinity. This corresponds to including all
propagating waves at the levelz within the stratification, from vertically travelling
to purely horizontal, for all wave types as well as the whole spectrum of evanescent
waves out to infinite wavenumber: a Sommerfeld-Weyl integral. At any particular
distancer the relative contributions of the wavenumbers are imposed by the radial
phase functionsJm(kr).

27



Coupled Equations for Seismic Waves

For the horizontal components we must recall that the transform operation was
applied to the composite quantitiesuV ,uH. When we recoverur,uφ the horizontal
derivatives in (2.13), (2.14) are reflected by derivatives of the Bessel functions
and angular terms in the component expressions. The coupling of the horizontal
displacements inuV , uH means that the displacementsur anduφ involve both
V(k,m, z,ω) andW(k,m, z,ω):

ur(r, φ, z, t) =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dkk

×
∑
m

[
V(m, z)

∂Jm(kr)

∂(kr)
+W(m, z)

im
kr
Jm(kr)

]
eimφ, (2.51)

uφ(r, φ, z, t) =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dkk

×
∑
m

[
V(m, z)

im
kr
Jm(kr) −W(m, z)

∂Jm(kr)

∂(kr)

]
eimφ. (2.52)

The summation over angular orderm will in principle cover the entire range from
minus infinity to infinity, but the actual range of non-zero transform elements will
depend on the nature of the source exciting the disturbance.

The expressions (2.50)-(2.52) depend on the quantity

Ymk (r, φ) = Jm(kr)eimφ, (2.53)

and its horizontal gradient∇1Ymk , where∇1 is the operator

∇1 = er∂r + eφr−1∂φ. (2.54)

This dependence may be emphasised by rewriting the expressions for the three
components of displacement as a vector surface-harmonic expansion (Takeuchi &
Saito, 1972)

u(r, φ, z, t) =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dk k
∑
m

[URmk + VSmk +WTmk ], (2.55)

where the vector harmonics are

Rmk = ezYmk , Smk = k−1∇1Ymk , Tmk = −ez ∧ Smk . (2.56)

These vector harmonics are orthogonal to each other so that, for example,∫∞
0

dr r
∫π
−π

dφRmk ...[S
µ
κ ]

∗ = 0 (2.57)

where the star denotes a complex conjugate. For an individual harmonic we have
the orthonormality property∫∞

0
dr r

∫π
−π

dφRmk ... [R
µ
κ ]

∗ = (kκ)−1/2 2πδmµδ(k− κ) (2.58)
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2.1 Depth dependent properties

with similar results forSmk , Tmk . These properties enable us to simplify
the calculation of source excitation coefficients. The corresponding harmonic
expansion for the tractiont hasωP, ωS, ωT in place ofU, V , W in (2.55). The
harmonicTmk lies wholly within a horizontal plane and, as we have already seen,
for an isotropic medium this part of the displacement and traction separates from
the rest to give theSHportion of the seismic field.

In the course of this book we will concentrate on three-dimensional problems.
It is, however, interesting to note that if we consider a two-dimensional situation,
where all stresses and displacements are independent of the cartesian coordinatey

and take a Fourier transform over time and horizontal positionx

ψ̄(k,ω) =
1

2π

∫∞
−∞ dteiωt

∫∞
−∞ dxe−ikxψ(x, t), (2.59)

then the sets of equations (2.24), (2.25) are recovered if we work in cartesian
components and set

U = iūz, P = iτ̄zz,
V = ūx, S = τ̄xz,

W = ūy, T = τ̄yz.

(2.60)

This treatment gives a plane wave decomposition rather than the cylindrical wave
decomposition implied by (2.50)-(2.55).

In a spherically stratified model we may make an expansion of the seismic
displacement in a spherical coordinate system(R, ∆,φ) in terms of vector tesseral
harmonics on a sphere (cf., 2.55). The transform variables are now frequency
ω, angular orderl and azimuthal orderm. We have a purely radial harmonic
Rml = eRY

m
l (∆,φ) and as in (2.48), a second orthogonal harmonicSml is generated

by the action of the gradient operator on a spherical shell. The displacement
elementsU, V associated withRml , Sml are coupled and represent theP-SVwave
part of the field. A stress-displacement vectorb(l,m,R,ω) can be constructed
from U, V and their associated stress variablesP, S. This vector satisfies a set of
first order differential equations with respect to radiusR with the same structure
as (2.26) (see, e.g., Woodhouse 1978). As in the horizontally stratified case these
equations are independent of the angular orderm. The remaining vector harmonic
Tml is orthogonal to bothRml andSml and its displacement elementW represents
theSHwave portion of the seismic field.

The angular orderl only takes discrete values, but we can think in terms of an
angular slowness℘ = (l + 1

2)/ω. At the surfaceR = re, the horizontal slowness
p = ℘/re. The phase termYml (∆,φ) appearing in all the vector harmonics has
angular dependencePml (cos∆)eimφ, and so we are faced with a summation inl
over a sequence of terms depending on associated Legendre functions. With the
aid of the Poisson sum formula the sum overl can be converted into an integral
over the variableυ = l + 1

2 , together with a sum which Gilbert (1976) has shown
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Coupled Equations for Seismic Waves

can be associated with successive orbits of waves around the Earth. If we consider
just the first orbit this gives a representation

ūR =

∫∞
0

dυ
∑
m

Ū(υ,m, re,ω)Pmυ−1/2(cos∆)eimφ (2.61)

for the radial displacement. At high frequencies,

Pmυ−1/2(cos∆)eimφ ∼

(
∆

sin∆

)1/2
Jm(ωpr)eimφ, (2.62)

in terms of the horizontal ranger = re∆. Thus, asymptotically, we recover
the expressions (2.50)–(2.52) for the surface displacements, with a scaling factor
(∆/ sin∆)1/2 to compensate for sphericity.

In the limitω → ∞ , ℘ = υ/ω fixed, the first order differential equations for
the displacement vectorb reduce to those for horizontal stratification (2.24) and
(2.25).

2.2 Fundamental and propagator matrices

In the previous section we have introduced the coupled differential equations (2.26)
for the stress-displacement vectorb. When we come to consider the excitation of
the seismic wavefield we will want to solve these equations subject to the source
effects and boundary conditions imposed by the nature of the stratification. At
a free surface we will require the traction elementsP, S, T to vanish. If the
stratification is terminated by a half space then we will impose a radiation condition
that the field in the half space should consist only of outgoing propagating waves or
evanescent waves which are exponentially damped as one penetrates into the half
space.

In order to use such boundary conditions with the coupled sets of first order
equations, we have to be able to relate the stress-displacement vectors at different
levels within the stratification. We do this by introducing matrices whose columns
consist of stress-displacement vectors satisfying particular boundary conditions.

As we wish to look at the evolution of the stress-displacement field with depth,
we fix the angular orderm, horizontal wavenumberk and frequencyω, and use
the shortened formb(z) to meanb(k,m, z,ω). In the absence of any forcing term
a stress-displacement vectorb(z) satisfies the equation

∂zb(z) = ωA(p, z)b(z). (2.63)

If, therefore, we construct a square matrixB(z) whose columns are independent
stress-displacement vectors satisfying different initial conditions, thenB(z) is
governed by the matrix equation

∂zB(z) = ωA(p, z)B(z). (2.64)

Normally the columns of such afundamentalmatrix would be chosen to have
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2.2 Fundamental and propagator matrices

some common characteristics. Thus, for example, they may be theb vectors
corresponding to upward and downward travelling waves at some level.

For SHwaves the fundamental matrixB is constructed from twob vectors

BH = [b1; b2], (2.65)

but for P-SVwaves we have fourb vectors present. Normally these would divide
into two groups, within which the properties are similar, e.g., downgoingP waves
and downgoingSVwaves,

BP = [b11,b12; b21,b22]. (2.66)

In each case we can partition the fundamentalB matrix to display the displacement
and stress elements, thus we write

B =

[
W1 W2

T 1 T 2

]
, (2.67)

in terms of displacement matricesW and their associated traction matricesT . For
the P-SVsystemW will be a 2 × 2 matrix whose columns can be thought of as
independent solutions of the second order system (2.31) and the traction matrix is
generated as in (2.33),ωT = AAA∂zW +ωpBBBW . In theSHcaseW andT are just
the displacement and traction elementsW, T . Any particular stress-displacement
vector can be created by taking a linear combination of the columns ofB, thus
b = Bc in terms of some constant vectorc.

We may establish a general form for the inverse of a fundamental matrix by
extending our treatment of propagation invariants. For the displacement matrices
W1 andW2 we introduce the matrix

<W1,W2> = WT
1T 2 − T T1W2, (2.68)

and then theijth entry in <W1,W2> is the expression<w1i,w2j> (2.36)
constructed from theith column ofW1 and thejth column ofW2. ForSH waves
there is no distinction between (2.68) and (2.36), but forP-SVwaves<W1,W2>

is a 2 × 2 matrix. Since each of the entries in (2.68) is independent of depth so
is <W1,W2> and we have a matrix propagation invariant. From the definition
(2.68)

<W1,W2>
T = −<W2,W1>. (2.69)

When the displacement vectors inW1 satisfy acommonboundary condition that a
linear combination of displacement and traction vanishes at some levelz0 i.e.

CCCw(z0) +DDDt(z0) = 000, (2.70)

for some matricesCCC,DDD, then

<w1i,w1j> = 0, for all i, j, (2.71)
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(these class of boundary conditions include free surface and radiation conditions).
In this case

<W1,W1> = 000. (2.72)

We will assume that (2.72) holds for bothW1 andW2 and then the form of
(2.68) suggests that we should try to construct the inverse of the fundamental matrix
(2.67) from the transposes of the displacement and traction matrices. The matrix
product[

T T2 −WT
2

−T T1 WT
1

] [
W1 W2

T 1 T 2

]
=

[
<W1,W2>

T 0

0 <W1,W2>

]
, (2.73)

when we use (2.72). The inverse of the fundamental matrix has, therefore, the
partitioned form

B−1 =

[
<W1,W2>

−TT T2 −<W1,W2>
−TWT

2

<W1,W2>
−1T T1 −<W1,W2>

−1WT
1

]
, (2.74)

where we have used the superscript−T to indicate the inverse of a transpose. For
many cases of interestW1 andW2 can be chosen so that<W1,W2> has a simple
form, often just a multiple of the unit matrix, in which case (2.74) simplifies by the
extraction of a common factor.

2.2.1 The propagator matrix

From any fundamental matrix we may construct a propagator matrixP(z, z0)

(Gilbert & Backus, 1966) for a portion of the medium as

P(z, z0) = B(z)B−1(z0). (2.75)

The propagator is a fundamental matrix satisfying the constraint

P(z0, z0) = I , (2.76)

whereI is the unit matrix of appropriate dimensionality. In principle, at least, the
propagator can always be constructed by solving an initial value problem for (2.64)
with the starting conditionB(z0) = I .

In terms of this propagator matrix the solution of (2.63) with the
stress-displacement vector specified at some levelz0 is

b(z) = P(z, z0)b(z0). (2.77)

The character of the propagator can be seen by writing (2.77) in partitioned form[
w(z)

t(z)

]
=

[
PPPWW PPPWT

PPPTW PPPTT

] [
w(z0)

t(z0)

]
. (2.78)

Thus the displacement elements atz depend on both the displacement and stress
elements atz0. The partitions of the propagator correspond to the displacement
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and traction matrices introduced in (2.68). We may use the general expression for
the inverse of a fundamental matrix (2.74) to find a partitioned form forP−1(z, z0).
SinceP(z0, z0) = I ,

<PPPWW , PPPWT> = III, (2.79)

and thus

P−1(z, z0) =

[
PPPTTT −PPPTWT

−PPPTTW PPPTWW

]
, (2.80)

a result which has also been pointed out by Chapman & Woodhouse (1981).
The continuity of theb vector at discontinuities in the elastic parameters means

that a propagator matrix, defined in (2.77) as a transfer function for the stress and
displacement between two levels, can be constructed for an arbitrary structure with
depth.P(z, z0) as a function ofz will be continuous across all planesz = const.

We can illustrate the role of the propagator by a simple scalar example: consider
the equation

∂zy = ωay. (2.81)

With a constant, the solution of the initial value problem withy specified atz0 is

y(z) = exp[ω(z− z0)a]y(z0). (2.82)

The exponential here acts as a transfer operator for the value ofy. In a similar way
if the coefficient matrixA is constant, so that we are considering a portion of the
medium with uniform properties, the solution of (2.63) is

b(z) = exp[ω(z− z0)A]b(z0), (2.83)

where the matrix exponential may be defined by its series expansion.
The propagator in (2.77) represents a generalisation of the initial value solution

(2.83) to the case whereA is not necessarily constant. In the context of general
matrix theory, the propagator is often referred to as a ‘matricant’ (see, e.g., Frazer,
Duncan & Collar, 1938). The propagator may be constructed for arbitraryA by a
recursive scheme, for a finite intervala ≤ z, z0 ≤ b,

Pj+1 = I +ω

∫z
z0

dζA(ζ)Pj(ζ, z0), (2.84)

with P0(z, z0) = I . This procedure is derived from the equivalent Volterra integral
equation to (2.64) and will converge uniformly asj → ∞, provided that all
the elements inA are bounded. This will always be true for solids, and so the
propagator is given by

P(z, z0) = I +ω

∫z
z0

dζA(ζ) +ω2
∫z
z0

dζA(ζ)

∫ζ
z0

dηA(η) + ... . (2.85)
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WhenA is constant this series is just the expansion of an exponential, as expected
from (2.83).

For the seismic case, the propagator always has unit determinant and so we have
no problems with singular behaviour. In general,

detP(z, z0) = exp

[∫z
z0

dζ tr A(ζ)

]
, (2.86)

and trA, the sum of the diagonal elements, is zero for the coefficient matrices in
(2.26), and thus

detP(z, z0) = 1. (2.87)

We have so far considered the propagator from the levelz0 but when we are
building up the seismic response we need the relation between propagators from
different starting levels. This can be found by recognising thatP(z, z0) andP(z, ζ)

are both fundamental matrices and so each column inP(z, z0) can be expressed as
a linear combination of the columns ofP(z, ζ),

P(z, z0) = P(z, ζ)C, (2.88)

for some constant matrixC. If we setz = ζ, P(ζ, ζ) is just the unit matrix and so
C = P(ζ, z0). The propagator matrices thus satisfy a chain rule

P(z, z0) = P(z, ζ)P(ζ, z0), (2.89)

which also leads to an interesting relation between the propagator and its inverse
(cf., 2.80)

P−1(z, z0) = P(z0, z). (2.90)

The chain rule may be extended to an arbitrary number of intermediate levels.
Consider a portion of the stratification betweenzn and z0 and divide this into
n parts with dividers atz1 ≤ z2 ≤ ...... ≤ zn−1; the overall propagator may
be obtained by successive use of (2.89) and is just a continued product of the
propagators for the subdivisions

P(zn, z0) =

n∏
j=1

P(zj, zj−1). (2.91)

If the intervalzj−zj−1 is sufficiently small, we may takeA to be essentially constant
over this depth range and so, by the mean value theorem,

A(z) ≈ A(ζj), zj−1 ≤ ζj, z ≤ zj. (2.92)

Thus with many fine intervals the overall propagator may be represented by a
product of matrix exponential terms,

P(zn, z0) =

n∏
j−1

exp[ω(zj − zj−1)A(ζj)]. (2.93)
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The approximation of takingA constant over the interval(zj, zj−1) is equivalent
to assuming that the elastic properties are uniform in this region i.e. we have
a homogeneous layer. The representation (2.93) is thus that produced by the
matrix method due to Thomson (1950) and Haskell (1953), for uniform layers,
and exp[ω(zj − zj−1)A(ζj)] is just thejth layer matrix.

2.2.2 Propagators and sources

Once we have some form of source in the stratification we must solve the
inhomogeneous equation (2.26)

∂zb(z) −ωA(p, z)b(z) = F(z), (2.94)

subject to some initial conditions on the stress-displacement vectorb. Since the
inverse of the propagatorP−1(z, z0) satisfies

∂zP−1(z, z0) = −ωP−1(z, z0)A(p, z), (2.95)

it may be recognised as an integrating factor for (2.26), and so multiplying (2.26)
by this inverse propagator we have

∂z[P−1(z, z0)b(z)] = P(z0, z)F(z). (2.96)

On integrating with respect toz and multiplying out byP(z, z0) we obtain

b(z) = P(z, z0)b(z0) +

∫z
z0

dζP(z, ζ)F(ζ), (2.97)

using the propagator chain rule (2.89). The presence of the source terms modifies
the previous simple form (2.77) and (2.97) displays the cumulative effect of the
source terms as we move away from the reference planez = z0.

An important class of sources are confined to a plane and arise from the
transformation of some point source leading to a dipolar contribution

F(z) = F1δ(z− zS) + F2δ′(z− zS). (2.98)

With this form forF(z), the integral contribution to (2.97) becomes∫z
z0

dζP(z, ζ)F(ζ) = H(z− zS)P(z, zS)S(zS), (2.99)

in terms of the Heaviside step function H(z), where the vectorS(zS) is given by

S(zS) = P(zS, zS)F1 − ∂ζP(zS, ζ)|ζ=zSF2. (2.100)

We recall thatP(zS, ζ) = P−1(ζ, zS) and so from (2.95)

S(zS) = F1 +ωA(p, zS)F2. (2.101)

With such a source confined to a plane, the effect of the forcing term appears
explicitly only for depthsz below the level of the sourcezS. Across the source
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plane itself the stress-displacement vector suffers a discontinuity at the source level
with a jump

b(zS+) − b(zS−) = S(zS) = F1 +ωA(p, zS)F2. (2.102)

Above the source the seismic field is governed by the initial conditions onb at z0,
which will normally involve the source indirectly via the boundary conditions on
the stress-displacement field.
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Chapter 3

Stress-Displacement Fields

In Chapter 2 we have shown how the governing equations for seismic wave
propagation can be represented as coupled sets of first order equations in terms
of the stress-displacement vectorb. We now turn our attention to the construction
of stress-displacement fields in stratified media.

We start by considering a uniform medium for which we can make an
unambiguous decomposition of the wavefield into up and downgoing parts. We
then treat the case where the seismic properties vary smoothly with depth.
Extensions of the approach used for the uniform medium run into problems at the
turning points ofP or Swaves. These difficulties can be avoided by working with
uniform approximations based on Airy functions, which behave asymptotically like
up and downgoing waves.

3.1 A uniform medium

An important special case of a ‘stratified’ medium is a uniform medium, for
which we can split up a seismic disturbance into itsP andS wave contributions.
This separation is preserved under the Fourier-Hankel transformation (2.19) and
the cylindrical waves for each wave type can be further characterised as up or
downgoing by the character of their dependence on thez coordinate.

We will now show how to relate the stress-displacement vectorb to the up and
downgoing waves in a uniform medium, and then use this relation to illustrate the
fundamental and propagator matrices introduced in Section 2.2.

For a cylindrical wave with frequencyω, slownessp and angular orderm, we
introduce a transformation which connects the stress-displacement vectorb to a
new vectorv

b = Dv, (3.1)

and try to choose the matrixD to give a simple form for the evolution ofv with z.
In a source-free regionv must satisfy

∂z(Dv) = ωA(p, z)Dv, (3.2)
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and so

∂zv = [ωD−1AD − D−1∂zD]v. (3.3)

If we chooseD to be the local eigenvector matrix forA(p, z), the first element on
the right hand side of (3.3) reduces to diagonal form,

ωD−1AD = iωΛΛΛ, (3.4)

where iΛΛΛ is a diagonal matrix whose entries are the eigenvalues ofA. From the
explicit forms of the coefficient matrices in (2.24) and (2.25) we find that forP-SV
waves,

ΛΛΛP = diag[−qα,−qβ, qα, qβ], (3.5)

and forSHwaves

ΛΛΛH = diag[−qβ, qβ]; (3.6)

where

qα = (α−2 − p2)1/2, qβ = (β−2 − p2)1/2, (3.7)

are the vertical slownesses forP andS waves for a horizontal slownessp. The
choice of branch cuts for the radicalsqα, qβ will normally be

Imωqα ≥ 0, Imωqβ ≥ 0, (3.8)

the frequency factor enters from (3.4).
In a uniform medium the coefficient matrixA is constant and so the eigenvector

matrix D is independent ofz, with the result thatD−1∂zD vanishes. The vectorv
is then governed by the differential equation

∂zv = iωΛΛΛv, (3.9)

with a solution

v(z) = exp[iω(z− z0)ΛΛΛ]v(z0) = Q(z, z0)v(z0), (3.10)

in terms of a ‘wave-propagator’Q, which depends on the difference between the
current depthz and the reference levelz0 . The exponential of a diagonal matrix is
a further diagonal matrix with exponential entries and so forP-SVwaves,

QP(h, 0) = diag[e−iωqαh,e−iωqβh,eiωqαh,eiωqβh] (3.11)

and forSHwaves,

QH(h, 0) = diag[e−iωqβh,eiωqβh]. (3.12)

With our convention thatz increases with increasing depth, these exponentials
correspond to the phase increments that we would expect for the propagation of
upward and travellingP andS waves through a vertical distanceh. For example,
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3.1 A uniform medium

suppose that we have a planeS wave travelling downward at an anglej to thez
axis, then

p = sinj/β, qβ = cosj/β, (3.13)

and the phase difference we would expect to be introduced in traversing a depth
intervalh is

exp[iωh cosj/β] = exp[iωqβh]; (3.14)

for upgoing waves we would have the inverse of (3.14).
From (3.10) the wavevectorv at z is just a phase shifted version of its value at

z0 and we may identify the elements ofv with up or downgoingP andSwaves by
(3.11), (3.12). ForP-SVwaves we set

vP = [PU, SU, PD, SD]T , (3.15)

whereP, S are associated withPandSVpropagation and the sufficesU,D represent
up and downgoing waves; forSHwaves we denote the elements byH, so that

vH = [HU, HD]T . (3.16)

We may summarise the behaviour of the wavevectorv by introducing partitions
corresponding to up and downgoing waves

v = [vvvU, vvvD]T . (3.17)

When the horizontal slowness becomes larger than the inverse wavespeedsα−1,
β−1 the corresponding radicalsqα, qβ become complex. With our choice of
radical, in a perfectly elastic medium withp > β−1,

exp[iωqβz] = exp[−ω|qβ|z], (3.18)

and so downgoing wavesvvvD in the propagating regime(p < β−1) map to
evanescent waves which decay with depth. This property extends to a dissipative
medium but is not as easily illustrated. In a similar way the upgoing wavesvvvU map
to evanescent waves which increase exponentially with increasing depthz.

From the initial value solution for the wavevectorv (3.10) we can construct the
initial value solution for the stress-displacementb, in the form

b(z) = D exp[iω(z− z0)ΛΛΛ]D−1b(z0), (3.19)

and so from (2.77) we may recognise the propagator for the uniform medium as

P(z, z0) = exp[ω(z− z0)A] = D exp[iω(z− z0)ΛΛΛ]D−1. (3.20)

We have been able to simplify the calculation of the matrix exponential by the
use of the similarity transformation provided byD. From the representation of the
propagator matrix in terms of a fundamental stress-displacement matrixB, (2.64),
we can recognise a fundamental matrix for the uniform medium

B(z) = D exp[iω(z− zref)ΛΛΛ], (3.21)
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wherezref is the reference level for the phase of theP andS wave elements. The
eigenvector matrixD may now be seen to be this fundamental matrix evaluated
at the reference levelzref, and thus its columns may be identified as ‘elementary’
stress-displacement vectors corresponding to the different wavetypes. ForP-SV
waves

DP = [εαbPU, εβbSU; εαbPD, εβbSD], (3.22)

where

bPU,D = [∓iqα, p, ρ(2β
2p2 − 1),∓2iρβ2pqα]T ,

bSU,D = [p,∓iqβ,∓2iρβ2pqβ, ρ(2β2p2 − 1)]T , (3.23)

and we take the upper sign for the upgoing elements and the lower for downgoing
elements. ForSHwaves

DH = [εHbHU; εHbHD], (3.24)

with

bHU,D = [β−1,∓iρβqβ]T . (3.25)

We have chosen the scaling to give comparable dimensionality to corresponding
elements ofbP, bS, bH; the SH waveslownessβ−1 appears in (3.25) in a similar
role to the horizontal slowness in (3.23). We have a free choice of the scaling
parametersεα, εβ, εH and we would like the quantitiesPU, SU, HU, etc. to
have comparable meanings. It is convenient to normalise theseb vectors so that,
in a perfectly elastic medium, each of them carries the same energy flux in thez

direction for a propagating wave.
The energy flux crossing a planez = constis given by an area integral of the

scalar product of the velocity and the traction on the plane

E = 2π

∫ r
0

dr r
∑
j

ẇjτjz. (3.26)

At a frequencyω we may represent the areal flux, averaged over a cycle in time, as

〈E〉 = 2π

∫ r
0

dr r
−iω
4

[w̄.t̄
∗
− w̄∗.t̄], (3.27)

where the overbars denote a Fourier transform with respect to time. We may now
use the vector harmonic expansion for displacement and tractions (2.55) and the
orthonormality properties of the vector harmonics (2.57-(2.58)) to evaluate (3.27)
as

〈E〉 =
1

2π

∫∞
0

dkk
∑
m

−iω2

4
[UP∗ + VS∗ +WT∗ −U∗P − V∗S−W∗T ].(3.28)
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3.1 A uniform medium

For an individual cylindrical wave we can therefore construct measures of the
associated energy flux : forP-SVwaves we take

ΥP(b) = i[UP∗ + VS∗ −U∗P − V∗S], (3.29)

which is just ibT∗Nb (cf. 2.37), and forSHwaves

ΥH(b) = i[WT∗ −W∗T ]. (3.30)

Let us now consider the vectorεαbPD for a downgoing propagatingP wave in a
perfectly elastic medium, i.e.qα real, then

ΥP = |εα|22ρqα. (3.31)

A convenient normalisation is to take

εα = (2ρqα)−1/2, (3.32)

and the actual energy flux associated withεαbPD is ω2/4. We may make a
corresponding choice for the normalisations for both theSV andSH elements by
choosing

εβ = εH = (2ρqβ)−1/2. (3.33)

Thus for propagatingP andSwaves

Υ(εαbPD) = Υ(εβbSD) = Υ(εβbHD) = 1,

Υ(εαbPU) = Υ(εβbSU) = Υ(εβbHU) = −1. (3.34)

Although we have constructedεα, εβ for a perfectly elastic medium, we will use
the normalisations (3.32-3.33) in both the propagating and evanescent regimes.

For evanescent waves in a perfectly elastic medium,qα andqβ will be pure
imaginary and soεα andεβ become complex and then, for example,

Υ(εβbSD) = 0 (3.35)

confirming that evanescent waves carry no energy flux in thez direction.
We have already noted that the eigenvector matrixD is a special case of a

fundamental matrix, and we may display its role as a transformation by writing
D in partitioned form

D =

[
mU mD

nU nD

]
. (3.36)

The partitionmU transforms the upgoing elementsvvvU of the wavevector into
displacements andmD generates displacements fromvvvD. The partitionsnU, nD
generate stresses fromvvvU andvvvD. Such a structure will occur in all cases including
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full anisotropy. ForP-SVwaves we have from (3.23)

mU,D =

[
∓iqαεα pεβ
pεα ∓iqβεβ

]
nU,D =

[
ρ(2β2p2 − 1)εα ∓2iρβ2pqβεβ
∓2iρβ2pqαεα ρ(2β2p2 − 1)εβ

]
(3.37)

and forSHwaves

mU,D = β−1εβ, nU,D = ∓iρβqβεβ. (3.38)

From these partitioned forms we can construct the propagation invariants
<mU,mD>, (2.68), and in each case

<mU,mD> = iI. (3.39)

This means that we have a particularly simple closed form inverse forD via the
representation (2.74)

D−1 = i

[
−nTD mT

D

nTU −mT
U

]
. (3.40)

With these expressions for the eigenvector matrixD and its inverse, we may now
use (3.20) to construct expressions for the stress-displacement propagator in the
uniform medium. ForP-SVwaves

PP(h, 0) = DP diag[e−iωqαh,e−iωqβh,eiωqαh,eiωqβh] D−1
P , (3.41)

and so the partitionsPWW , PWT , PTW , PTT of the propagator are given by

PWW =

[
2β2p2Cβ − ΓCα −p[2β2q2αSα + ΓSβ]

−p[ΓSα + 2β2q2βSβ] 2β2p2Cα − ΓCβ

]
,

PWT = ρ−1

[
q2αSα + p2Sβ p(Cα − Cβ)

p(Cβ − Cα) p2Sα + q2βSβ

]
,

PTW = −ρ

[
4β4p2q2βSβ + Γ2Sα pβ2Γ(Cβ − Cα)

pβ2Γ(Cα − Cβ) 4β4p2q2αSα + Γ2Sβ

]
,

PTT =

[
2β2p2Cβ − ΓCα −p[2β2q2βSβ + ΓSα]

p[ΓSβ + 2β2q2αSα] 2β2p2Cα − ΓCβ

]
, (3.42)

where

Cα = cosωqαh, Cβ = cosωqβh,

Sα = q−1
α sinωqαh, Sβ = q−1

β sinωqβh,

and

Γ = 2β2p2 − 1. (3.43)

TheSHwave propagator is rather simpler

PH(h, 0) =

[
Cβ (ρβ2)−1Sβ

−ρβ2q2βSβ Cβ

]
; (3.44)
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3.2 A smoothly varying medium

in fact this expression may be easily constructed by summing the matrix
exponential series (2.85). The inverses of the propagators may be found from (2.80)
and for (3.42) and (3.44) we may verify the inverse propagator relation (2.90).

These uniform layer propagators are identical to the layer matrices of Haskell
(1953) although they have been derived via a different route. We have followed
Dunkin (1965) and diagonalisedA via the eigenvector matrixD, but other choices
are possible and lead to the same result. For example Hudson (1969a) describes
a transformation to variablesPU ± PD (in our notation) and this is closely related
to the original treatment of Haskell. Hudson is able to calculate the exponential of
his transformed matrix by summing the series (2.85), since direct exponentiation is
only convenient for a diagonal matrix.

In our construction of the stress-displacement propagator via (3.20) we have split
the wavefield in the uniform medium into its component parts viaD−1. We have
then added in the phase increments for the separate up and downgoingP and S
wave contributions for a depth intervalh and finally reconstituted displacements
and stresses via the matrixD.

With the aid of the expressions (3.36) and (3.40) forD and its inverse, we
can represent the uniform layer propagator as a sum of upgoing and downgoing
contributions

P(h, 0) = i

[
−mUEUnTD mUEUmT

D

−nUEUnTD nUEUmT
D

]
+i

[
mDEDnTU −mDEDmT

U

nDEDnTU −nDEDmT
U

]
,(3.45)

where the diagonal matrixED is the phase income for downgoing waves, e.g., for
P-SVwaves

ED = diag[eiωqαh, eiωqβh], (3.46)

andEU = E−1
D .

3.2 A smoothly varying medium

In many cases of interest we need to consider the propagation of seismic waves
in continuously stratified regions; as for example, the wavespeed gradients due to
compaction in a sedimentary sequence or the velocity profile in the Earth’s mantle.
Although we may simulate a gradient by a fine cascade of uniform layers, we would
like to make a direct construction of a fundamental stress-displacement matrixB
so that we may define the propagator matrix and establish the reflection properties
of the medium.

As an extension of the treatment for a uniform medium we consider a local
eigenvector transformation (3.1) at each levelz so thatb(z) = D(z)v(z). The
wavevectorv will then be governed by the evolution equation

∂zv = [iωΛΛΛ− D−1∂zD]v, (3.47)

and the presence of the matrix∆∆∆ = −D−1∂zD will introduce coupling between
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the elements ofv which we would characterise as up or downgoing in a uniform
medium. The normalisation of the columns ofD to constant energy flux in the
z direction means that the diagonal elements of∆∆∆ vanish. A wave quantity such
asPU is therefore modified by loss to, or gain from, other components, arising
from the nature of the variation of the elastic properties with depth. The coupling
matrix∆∆∆ depends on the gradients of the vertical slownessesqα, qβ and the elastic
parameters (Chapman, 1974a).

ForSHwaves the coupling matrix is symmetric with only off-diagonal elements

∆∆∆H = −D−1
H ∂zDH =

[
0 γH
γH 0

]
(3.48)

where

γH = 1
2∂zqβ/qβ + 1

2∂zµ/µ, (3.49)

in terms of the shear modulusµ = ρβ2. The coefficientγH determines the transfer
betweenHU andHD. ForP-SVwaves

∆∆∆P = −D−1
P ∂zDP =


0 −iγT γP −iγR

−iγT 0 −iγR γS
γP iγR 0 iγT
iγR γS iγT 0

 , (3.50)

with

γT = p(qαqβ)−1/2[β2(p2 + qαqβ)∂zµ/µ− 1
2∂zρ/ρ],

γR = p(qαqβ)−1/2[β2(p2 − qαqβ)∂zµ/µ− 1
2∂zρ/ρ],

γA = 2β2p2∂zµ/µ− 1
2∂zρ/ρ,

and
γP = γA + 1

2∂zqα/qα,

γS = γA + 1
2∂zqβ/qβ.

(3.51)

It is interesting to note that theP wavespeed appears only indirectly through the
slownessqα. The coefficientγT determines the rate of conversion ofP to S or
vice versafor elements of the same sense of propagation (e.g.PU andSU ); γR
determines the rate of conversion for elements of different sense (e.g.PU andSD).
γP governs the rate of transfer betweenPU andPD; andγS has a similar role for
SU andSD. If we consider a thin slab of material the elementsγ are closely related
to the reflection and transmission coefficients for the slab (see Section 5.5). If the
elements of the coupling matrix∆∆∆ are small compared with the diagonal terms in
ωΛΛΛ, we may construct a good approximation to a fundamental stress-displacement
matrix as

B0(z) = D(z) exp[iω
∫ z
zref

dζΛΛΛ(ζ)] = D(z)EEE(z). (3.52)

When we recall the normalisation implicit inD(z) we find thatB0 corresponds
to a WKBJ solution assuming independent propagation of each wave type. The
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3.2 A smoothly varying medium

phase integral allows for the variation of the vertical slownesses with depth andεα,
εβ maintain constant energy flux for each wave-elementPU, SU etc. This WKBJ
solution is just what would be predicted to the lowest order in ray theory, using the
ideas of energy conservation along a ray tube and phase delay.

The approximation (3.52) makes no allowance for the presence of the coupling
matrix∆∆∆. In any better approximation we wish to retain the phase terms inEEE(z),
arising from the iωΛΛΛ diagonal elements in (3.47). These diagonal elements are
a factor ofω larger than the coupling terms in∆∆∆ and so should dominate at
high frequencies. This led Richards (1971) to suggest an asymptotic expansion
in inverse powers ofω,

B(z) = D(z)[I +

∞∑
r=1

XXX r(iω)r]EEE(z). (3.53)

The matrices XXXr in this ‘ray-series’ expansion are determined recursively. When
we substitute (3.53) into the equation (2.64) forB and examine the equations for
each power ofω in turn, we find that XXXr depends on XXXr−1 as

[XXX rΛΛΛ−ΛΛΛXXX r] = ∂zXXX r−1 + ∆∆∆XXX r−1. (3.54)

Starting with XXX0 = I , this commutator relation may be solved to find the XXXr.
An alternative approach used by Chapman (1976) and Richards & Frasier (1976)

is to look for a solution in the form

B(z) = D(z)EEE(z)ΨΨΨ(z), (3.55)

and then, since∂zEEE = iωΛΛΛEEE , the correction termΨΨΨ satisfies

∂zΨΨΨ(z) = EEE−1(z)∆∆∆(z)EEE(z)ΨΨΨ(z), (3.56)

and a solution may be constructed in a similar way to our treatment of the
propagator (2.85) as the series

ΨΨΨ(z) = I +

∫z
zref

dζEEE−1(ζ)∆∆∆(ζ)EEE(ζ) + .... (3.57)

The successive integrals in (3.57) can be identified by their phase behaviour with
multiple reflections within the varying medium.

The two approximation schemes we have described are of greatest utility when
only the first correction terms toB0 are significant. This requires that all the
elements in the coupling matrix∆∆∆ must be small, but even for velocity models
with only slow variation with depth the elements of∆∆∆ can be large. The matrix
∆∆∆ becomes singular when one of the vertical slownessesqα or qβ vanishes, i.e.
whenα−1(Zα) = p or β−1(Zβ) = p. This level in a perfectly elastic medium,
separates the region whereqα is real and we have propagating waves, from the
evanescent region whereqα is imaginary. If theP wavespeed increases with depth,
the turning levelZα will correspond to the level at which an initially downgoing
ray with inclination to the vertical sin−1[α(z)p] will be travelling horizontally.
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In this ray picture the effect of wavefront curvature will be sufficient to turn the
ray back up towards the surface. In the neighbourhood of this turning level any
attempt to separate the wavefield into specifically downgoing and upgoing elements
is imposing an artificial structure, this is reflected by the singularity in∆∆∆ at the level
of total reflectionZα.

In a weakly attenuative medium there is no real turning level at whichqα
vanishes, nevertheless the coefficients in∆∆∆ become very large in the region where
Reqα is very small, and it is still inappropriate to make a decomposition into up
and downgoing waves in this zone.

Well away from a turning level, in either the propagating or evanescent regimes,
the WKBJ approximation (3.52) , supplemented perhaps by a single correction
term as in (3.57), will provide a good description of the propagation process in a
smoothly varying medium. In particular this approach is useful for near-vertical
incidence (p small) when we are interested in the waves returned by the structure.

In the following section we discuss an alternative construction for a fundamental
B matrix in a smoothly varying medium which avoids the singular behaviour at the
turning levels and leads to a uniform approximation.

3.3 Uniform approximations for a smoothly varying medium

The difficulties with the eigenvector matrix decomposition are associated with the
singularities at the turning points ofP andSwaves. At aP wave turning level the
coefficientγP linking thePU andPD elements has aq−1

α singularity atZα which

is the main difficulty. The integrableq−1/2
α singularity in the coefficientsγR, γT

which control the conversion fromP to Swaves causes no major problems.
A simple example which exhibits turning point behaviour is the linear slowness

profile for a scalar wave. A solution which represents both the behaviour in the
propagating regime and the exponential decay below the turning level was given
by Gans (1915). This solution may be written in terms of an Airy function Ai(x).
Langer (1937) recognised that by a mapping of the argument of the Airy function
a uniform asymptotic solution across a turning point can be found for a general
monotonic slowness distribution.

ForSHwaves the Langer approach can be used with little modification. We look
for a fundamental matrixB, in the form

B = CU, (3.58)

and thenU will satisfy

∂zU = [ωC−1AC − C−1∂zC]U. (3.59)
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We choose the new transformation matrixCH so that C−1
H AHCH has only

off-diagonal elements

HHHβ = C−1
H AHCH =

[
0 p

−q2β/p 0

]
, (3.60)

and now rather than find the matrix exponential of (3.60) we will seek a matrixEβ
which provides a good asymptotic representation of the solution of (3.59) at high
frequencies. A suitable transformation matrixCH is

CH = (ρp)−1/2

[
β−1 0

0 ρpβ

]
, (3.61)

which provides a rescaling of the stress and displacement elements.CH does not
depend on the radicalqβ, with the result that the new coupling matrix−C−1

H ∂zCH
depends only on the elastic parameter gradients

−C−1
H ∂zCH =

[
1
2∂zµ/µ 0

0 1
2∂zµ/µ

]
, (3.62)

and is well behaved at the turning level forSHwaves.
When we consider theP-SVwave system we are only able to apply the Langer

approach to one wave type at a time, and so we must make a transformation as in
(3.58) to bringC−1

P APCP into block diagonal form where the entry for each wave
type has the structure (3.60). Thus we seek

H = C−1
P APCP =

[
Hα 0

0 Hβ

]
, (3.63)

and guided by the work of Chapman (1974b) and Woodhouse (1978) we take

CP = (ρp)−1/2


0 p p 0

p 0 0 p

ρ(2β2p2 − 1) 0 0 2ρβ2p2

0 2ρβ2p2 ρ(2β2p2 − 1) 0

 (3.64)

As in theSH case we have avoided the slownessesqα, qβ but there is no longer
such a simple relation betweenB and U. It is interesting to note that we can
construct the columns ofCP by taking the sum and difference of the columns
of DP and rescaling; this suggests that we may be able to make a standing wave
interpretation ofU. TheP-SVcoupling terms are given by

−C−1
P ∂zCP =


γA 0 0 −γC
0 −γA −γB 0

0 γC γA 0

γC 0 0 −γA

 , (3.65)
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whereγA has already been defined in (3.47) and controls the rate of change of the
P andSwave coefficients. The off-diagonal terms in (3.61)

γB = 2β2p2∂zµ/µ− ∂zρ/ρ, γC = 2β2p2∂zµ/µ, (3.66)

lead to cross-coupling betweenP andSelements.
We now introduce a ‘phase-matrix’Êβ which matches the high frequency part of

(3.59). Following Woodhouse (1978) we constructÊβ from Airy function entries.
The two linearly independent Airy functions Ai(x), Bi(x) are solutions of the
equation

∂2y/∂x2 − xy = 0 (3.67)

and so, e.g., the derivative of Ai′ is just a multiple of Ai. Thus a matrix with entries
depending on Airy functions and their derivatives will match the off-diagonal high
frequency part of (3.55). In a slightly dissipative medium we take

Êβ(ω,p, z) = π1/2

[
sβω

1/6r
1/2
β Bi(−ω2/3φβ) sβω

1/6r
1/2
β Ai(−ω2/3φβ)

ω−1/6r
−1/2
β Bi′(−ω2/3φβ) ω−1/6r

−1/2
β Ai ′(−ω2/3φβ)

]
,

(3.68)

with

sβ = −∂zφβ/|∂zφβ|, rβ = p/|∂zφβ|. (3.69)

The argument of the Airy functions is chosen so that the derivative ofEβ can be
brought into the same form asHHHβ (3.60), so we require

φβ(∂zφβ)2 = q2β = β−2 − p2. (3.70)

The solution forφβ can be written as

ω2/3φβ = sgn{Req2β}[32ωτβ]2/3 (3.71)

where

ωτβ =

∫ zβ
z

dζωqβ(ζ), Req2β > 0,

=

∫ zβ
z

dζ iωqβ(ζ), Req2β < 0, (3.72)

for positive frequencyω; we have here made use of our choice of branch cut (3.8)
{Imωqβ ≥ 0} for the radicalqβ. We take the principal value of the2/3 power in
(3.71). In a perfectly elastic medium these rather complex forms simplify to

φβ = sgn(q2β)|32τβ|2/3, (3.73)

sβ = −sgn(∂zφβ), τβ =

∫ zβ
z

dζ |qβ(ζ)|. (3.74)

We takezβ to be some convenient reference level. In a perfectly elastic medium,
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3.3 Uniform approximations for a smoothly varying medium

when a turning point exists i.e.qβ(Zβ) = 0 at a real depthZβ thenφβ will be
regular and unique with the choicezβ = Zβ. For dissipative media, the location of
the rootqβ = 0 has to be found by analytically continuing the wavespeed profile
to complex depth. If we then take this complex value forzβ the integral forτβ will
be a contour integral. For small dissipationQ−1

β it is simpler to takezβ to be the
depth at which Reqβ = 0. If the slownessp is such that no turning point occurs
for Swaves in the region of interest, then any choice ofzβ may be taken so thatφβ
is non-unique. In order that the character of the phase matrixÊβ should correspond
to the physical nature of the wave propagation, it is often desirable to extrapolate
β(z) so that a turning pointZβ is created. This artificial turning level is then used
as the reference to reckonτβ.

To simplify subsequent discussion we will use an abbreviated form for the
elements of̂Eβ (Kennett & Woodhouse, 1978; Kennett & Illingworth, 1981)

Êβ =

[
sβBj(ωτβ) sβAj(ωτβ)

Bk(ωτβ) Ak(ωτβ)

]
. (3.75)

The inverse of̂Eβ is readily constructed by using the result that the Wronskian of
Ai and Bi isπ−1 and has the form

Ê
−1
β =

[
−sβAk(ωτβ) Aj(ωτβ)

sβBk(ωτβ) −Bj(ωτβ)

]
. (3.76)

This ‘phase matrix’̂Eβ satisfies

∂zÊβ = [ωHHHβ + ∂zΦΦΦβΦΦΦ
−1
β ]Êβ; (3.77)

the diagonal matrix∂zΦΦΦβΦΦΦ
−1
β depends on the Airy function argumentφβ

∂zΦΦΦβΦΦΦ
−1
β = 1

2(∂zzφβ/∂zφβ)diag[−1, 1] (3.78)

and is well behaved even at turning points, where∂zzφβ/∂zφβ = {∂zzβ −

3p(∂zβ)2}/4∂zβ.

If then we construct the matrixC(p, z)Ê(ω,p, z) as an approximation to a
fundamental matrixB, this will be effective at high frequencies whenωHHHβ is
the dominant term in (3.77). Comparison with (3.59)–(3.60) shows that we have
failed to represent the contributions fromC−1∂zC and∂zΦΦΦΦΦΦ−1 and we will need
to modifyCE to allow for these effects.

We will first look at the character of the high frequency approximation and then
discuss ways of improving on this solution.

At high frequencies the argument of the Airy functions becomes large and
we may use the asymptotic representations of the functions. Below anS wave
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turning point in a perfectly elastic medium (i.e.q2β < 0), the entries of̂Eβ are
asymptotically

Aj(ωτβ) ∼ 1
2p
1/2|qβ|−1/2 exp(−ω|τβ|),

Ak(ωτβ) ∼ −1
2p

−1/2|qβ|1/2 exp(−ω|τβ|),

Bj(ωτβ) ∼ p1/2|qβ|−1/2 exp(ω|τβ|),

Bk(ωτβ) ∼ p−1/2|qβ|1/2 exp(ω|τβ|).

(3.79)

In this regionÊβ gives a good description of the evanescent wavefields. Above the
turning point, the asymptotic behaviour of Aj and Bk is as cos(ωτβ − π/4), and
for Ak and Bj as sin(ωτβ − π/4). These elements thus describe standing waves,
but for most purposes we would prefer to consider travelling wave forms.

We can achieve this goal by constructing a new matrixEβ, whose columns are a
linear combination of those of̂Eβ,

Eβ = Êβ.2
−1/2

[
e−iπ/4 eiπ/4

eiπ/4 e−iπ/4

]
. (3.80)

This new matrix will also satisfy an equation of the form (3.77), and soC(z)E(z)

is an equally good candidate for an approximateB matrix at high frequencies. In
terms of the Airy function entries

Eβ = 2−1/2

[
sβeiπ/4(Aj − iBj) sβe−iπ/4(Aj + iBj)
eiπ/4(Ak − iBk) e−iπ/4(Ak + iBk)

]
= 2−1/2

[
sβEj sβFj
Ek Fk

]
. (3.81)

Once again at high frequencies we may use the asymptotic forms of the Airy
functions and then, well above a turning point withq2β > 0:

Ej(ωτβ) ∼ (qβ/p)
−1/2 exp(iωτβ),

Ek(ωτβ) ∼ −i(qβ/p)1/2 exp(iωτβ),

Fj(ωτβ) ∼ (qβ/p)
−1/2 exp(−iωτβ),

Fk(ωτβ) ∼ i(qβ/p)1/2 exp(−iωτβ).

(3.82)

With our convention thatz increases downwards,τβ (3.73) is a decreasing function
of z for z > Zβ, the turning level for theSwaves. We have adopted a time factor
exp(−iωt) so that asymptotically Ej, Ek have the character of upgoing waves;
similarly Fj, Fk have the character of downgoing waves. These interpretations for
large argumentsωτβ are misleading if extrapolated too close to the turning point.

Below the turning point all the entriesEβ increase exponentially with depth
because of the dominance of the Bi terms, and soEβ is not useful in the evanescent
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3.3 Uniform approximations for a smoothly varying medium

regime. Once againEβ has a simple inverse which may be expressed in terms of
the entries ofEβ:

E−1
β = i2−1/2

[
−sβFk Fj
sβEk −Ej

]
. (3.83)

In the propagating regime, above a turning point we will useEβ as the basis for
our fundamentalB matrix, and in the evanescent region we will useÊβ. Both of
these matrices were constructed to take advantage of the uniform approximations
afforded by the Airy function for an isolated turning point. A different choice
of phase matrix with parabolic cylinder function entries is needed for a uniform
approximation with two close turning points (Woodhouse, 1978).

For theP-SV wave system we have constructedCP to give a high frequency
block diagonal structure (3.63) and so the corresponding phase matrixE has a block
diagonal form. Above all turning pointsE hasEα for theP wave contribution, and
Eβ for the SV contribution. Below bothP andS turning levelsÊ is constructed
from Êα, Êβ. In the intermediate zone below theP turning level, so thatP waves
are evanescent, but withSwaves still propagating, we take the block diagonal form

Ē =

[
Êα 000

000 Eβ

]
. (3.84)

In the high frequency limit we ignore any coupling betweenP andSVwaves.
We now wish to improve on our high frequency approximations to the

fundamental stress-displacement matrix which we will represent as

B0(ω,p, z) = C(p, z)E(ω,p, z), (3.85)

in terms of some phase matrix representing the physical situation. As in our
discussion of the eigenvector decomposition we want to retain the merits ofE in
representing phase terms, so we look for correction matrices which either pre- or
post-multiplyE.

3.3.1 An asymptotic expansion

If we look for a fundamentalB matrix in the form

B(ω,p, z) = C(p, z)K(ω,p, z)E(ω,p, z), (3.86)

then our correction matrixK must satisfy

∂zK = ω[HK − KH ] − C−1∂zCK − K∂zΦΦΦΦΦΦ−1, (3.87)

where we have used (3.59) and the differential equation forE (3.77). The matrix
K is independent of the choice forE and the frequencyω enters only through
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the commutator term, this suggests an asymptotic expansion in inverse powers of
frequency,

K(z) = I +

∞∑
r=1

ω−rkr(z). (3.88)

On substituting (3.88) into (3.87) and equating powers ofωwe obtain the recursive
equations

[Hk r+1 − kr+1H] = −∂zkr + C−1∂zCkR + kr∂zΦΦΦΦΦΦ−1, (3.89)

for thekr, starting withk0 = 0. These equations have been solved by Woodhouse
(1978) who has given detailed results for the coefficientk1(z).

The fundamental stress-displacement matrixB has an asymptotic form, to first
order,

BA(ω,p, z) ∼ C(p, z)[I +ω−1k1(p, z)]E(ω,p, z), (3.90)

where we have shown the explicit dependence of the various terms on frequency,
slowness and depth. A merit of this approach is that the correctionk1 is
independent of frequency. The propagator for a region(zA, zB) can be constructed
from BA as

P(zA, zB) ∼ C(zA)[I +ω−1k1(zA)]E(zA)E−1(zB)[I −ω−1k1(zB)]C−1(zB),

(3.91)

to first order. The representation (3.91) shows no identifiable reflections within
(zA, zB) and this makes it difficult to gain any insight into interactions between
the wavefield and parameter gradients. This asymptotic form of propagator has
mostly been used in surface wave and normal mode studies (see, e.g., Kennett &
Woodhouse, 1978; Kennett & Nolet, 1979).

3.3.2 Interaction series

An alternative scheme for constructing a fullB matrix is to postmultiply the high
frequency approximation byL(z) so that

B(ω,p, z) = C(p, z)E(ω,p, z)L(ω,p, z). (3.92)

The matrixL then satisfies

∂zL = −E−1[C−1∂zC + ∂zΦΦΦΦΦΦ
−1]EL = {E−1jE }L . (3.93)

The frequency dependence ofL arises from the phase termsE, E−1 and the form of
L is controlled by the choice ofE. The equation forL is equivalent to the integral
equation

L(z; zref) = I +

∫ z
zref

dζ {E−1(ζ)j(ζ)E(ζ)}L(ζ), (3.94)
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where we would choose the lower limit of integrationzref to correspond to the
physical situation. Thus for a region containing a turning point we takezref at
the turning level and use different forms of the phase matrix above and below this
level. Otherwise we may take any convenient reference level. We may now make an
iterative solution of (3.94) (Chapman 1981, Kennett & Illingworth 1981) in terms
of an ‘interaction series’. We construct successive estimates as

L r(z; zref) = I +

∫ z
zref

dζ {E−1(ζ)j(ζ)E(ζ)}L r−1(ζ), (3.95)

with L0 = I . At each stage we introduce a further coupling into the parameter
gradients present inj throughC−1∂zC and∂zΦΦΦΦΦΦ−1. All the elements ofE−1jE
are bounded and so the recursion (3.95) will converge. The interaction series is
therefore of the form

L(z; zref) = I +

∫z
zref

dζ {E−1jE }(ζ) +∫ z
zref

dζ {E−1jE }(ζ)

∫ζ
zref

dη {E−1jE }(η) + .... (3.96)

and the terms may be identified with successive interactions of the seismic waves
with the parameter gradients. For slowly varying media the elements ofj will be
small, and the series (3.96) will converge rapidly. In this case it may be sufficient
to retain only the first integral term.

For SHwaves the total gradient effects are controlled by the diagonal matrix

jH = (12∂zµ/µ+ 1
2∂zzφβ/∂zφβ)diag[1,−1], (3.97)

and

E−1
β jHEβ = −

i
4
(∂zµ/µ+ ∂zzφβ/∂zφβ) (3.98)

×
[
EjβFkβ + EkβFjβ 2FjβFkβ

−2EjβEkβ −(EjβFkβ + EkβFjβ)

]
,

where we have written Ejβ for Ej(ωτβ). Asymptotically, well away from any
turning level, in the propagating and evanescent regimes

∂zzφβ/∂zφβ ≈ ∂zqβ/qβ, (3.99)

and then the gradient term behaves likeγH (3.46). In the propagating regime, for
example,

E−1
β jHEβ ≈ γH

[
0 exp[−2iωτβ]

exp[+2iωτβ] 0

]
, (3.100)

and the interaction series parallels the treatment for the eigenvector decomposition.
Now, however, (3.98) is well behaved at a turning level.

For theP-SVsystem, the structure of the block diagonal entries ofjP for P and
Sparallel our discussion for theSH wave case and asymptotically the coefficients
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γP, γS control the interaction with the gradients. The off-diagonal matrices lead to
interconversion ofP andSVwaves and here asymptotically we recoverγT andγR
determining transmission and reflection effects.

The structure of the interaction termsL for P-SVwaves is

LP =

[
I + Lαα Lαβ

Lβα I + Lββ

]
. (3.101)

Lαα, Lββ represent multiple interactions with the parameter gradients without
change of wave type.Lαβ, Lβα allow for the coupling betweenP andSV waves
that is not present in our choice of phase matrix and which only appears with the
first integral contribution in (3.96).

From the series (3.96) we may findL(ω,p, z; zR) to any desired level of
interaction with the medium and then construct an approximateB matrix as

BI(ω,p, z) ≈ C(p, z)E(ω,p, z)L(ω,p, z; zref). (3.102)

For a region(zA, zB) the propagator may be approximated as

P(zA, zB) ≈ C(zA)E(zA)L(zA; zref)L−1(zB; zref)E−1(zB)C−1(zB), (3.103)

and the kernelL(zA; zref)L−1(zB; zref) may now be identified with internal
reflections in(zA, zB). When a turning point occurs within the region we can split
the calculation above and below the turning level and then use the chain rule for the
propagator.

The asymptotic series approach in the previous section leads to a solution which
is most effective at high frequencies when only a few terms need be included. The
interaction series approach is not restricted in its frequency coverage. Although our
starting point is a high frequency approximation to the solution, this is compensated
for by the presence of the same term in the kernel of the interaction series
development. The number of terms required to get an adequate approximation of
the wavefield depends on{E−1jE } and thus on the size of the parameter gradients
and the frequency. At low frequencies we need more terms in the interaction series
to counteract the high frequency character ofE.

3.3.3 Relation to eigenvector decomposition

If we adopt the interaction series approach, all our fundamental matrix
representations include theleading orderapproximationC(p, z)E(ω,p, z). This
form gives no coupling betweenP andSwaves but such coupling will be introduced
by the interaction termL(ω,p, z).

At high frequencies,CE asymptotically comes to resemble the WKBJ solution
(3.52), since the depth behaviour is the same although there may be constant
amplitude and phase factors between the two forms. To exploit this relation we
extend an idea of Richards (1976) and rearrangeCE to a form with only diagonal
phase terms.
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3.3 Uniform approximations for a smoothly varying medium

(a) Propagating forms
We introduce the generalized vertical slownesses

iηβu(p,ω, z) = −pEk(ωτβ)/Ej(ωτβ),

iηβd(p,ω, z) = pFk(ωτβ)/Fj(ωτβ).
(3.104)

These quantities depend on slownessp and frequencyω through the Airy terms.
Sinceτβ depends on the slowness structure up to the reference level,ηβu is not just
defined by the local elastic properties. We have used the subscriptsu,d as opposed
to U,D to indicate that the Airy elements have up and downgoing character only
in the asymptotic regime, far from a turning level. In this asymptotic region, with
q2β > 0

ηβu(p,ω) ∼ qβ(p), ηβd(p,ω) ∼ qβ(p), (3.105)

and also

(2ρp)−1/2Ej(ωτβ) ∼ εβ exp[−iω
∫z
zβ

dζqβ(ζ)]. (3.106)

With the aid of the generalized slownessesηu,d we can recastCE into a form
where we use only Ej, Fj to describe the phase behaviour. Thus we can write, for
SHwaves

CHEH = DDDHEEEH = [bbbHu ,bbb
H
d ]EEEH, (3.107)

whereEEEH is the diagonal matrix

EEEH = (2ρp)−1/2diag[Ej(ωτβ),Fj(ωτβ)]. (3.108)

The column vectors ofDDDH are given by

bbbHu,d = [sββ
−1,∓iρβηβu,d]

T , (3.109)

where we take the upper sign with the suffixu, andsβ = 1 when the shear velocity
increases with depth. The new way of writing the leading order approximation is
designed to emphasise the connection with the WKBJ solution. At high frequencies
we see from (3.105) that, asymptotically, the columns ofDDD reduce to those of the
eigenvector matrixD, and the phase terms reduce to (3.52).

For P-SVwaves we take

CPEP = DDDPEEEP = [bbbPu,bbb
P
d,bbb

S
u,bbb

S
d]EEEP, (3.110)

with

EEEP = (2ρp)−1/2diag[Ej(ωτα),Fj(ωτα),Ej(ωτβ),Fj(ωτβ)], (3.111)

and column vectors

bbbPu,d = [∓iηαu,d, sαp, sαρ(2β2p2 − 1),∓2iρβ2ηαu,d]T ,
bbbSu,d = [sβp,∓iηβu,d,∓2iρβ2ηβu,d, sβρ(2β2p2 − 1)]T .

(3.112)

55



Stress-Displacement Fields

Once again these expressions reduce to the WKBJ forms in the high frequency
asymptotic limit.
(b) Evanescent forms
Below a turning point we work in terms of the Ai,Bi Airy functions and now take
modified forms of the generalized vertical slownesses

iη̂βu = −pBk(ωτβ)/Bj(ωτβ),

iη̂βd = pAk(ωτβ)/Aj(ωτβ).
(3.113)

At high frequency, in the far evanescent regime

η̂βu ∼ i|qβ|, η̂βd ∼ i|qβ|, (3.114)

and now

(ρp)−1/2Aj(ωτβ) ∼ (i/2)1/2εβ exp[−ω|τβ|], (3.115)

(ρp)−1/2Bj(ωτβ) ∼ (2i)1/2εβ exp[−ω|τβ|]. (3.116)

In this region we write the leading order approximationCE in a comparable form
to the propagating case

CHÊH = D̂DDHÊEEH = [b̂bb
H
u , b̂bb

H
d ]ÊEEH. (3.117)

The column vectorŝbbb
H

differ from bbbH by using the modified slownesseŝη.
The phase term̂EEE has the same character as the WKBJ solution, but the overall
amplitudes and phases differ.

ForP-SVwaves we make a similar development to the above when bothP andS

waves are evanescent. When onlyP waves are evanescent we use theb̂bb
P

forms and
retain the propagatingbbbS vectors forSwaves.

The organisation of the fundamentalB matrix by wave type is very convenient
for a discussion of turning point phenomena. When we come to consider reflection
and transmission problems in Chapter 5, we shall see that an organisation by the
asymptotic character of the column elements is preferable. The two fundamental
matrices are related by a constant matrix multiplier and so a switch between the
two forms is easily made.

For SH waves the fundamental matrixBI (3.103) is already organised into
columns whose characters are asymptotically that of up and downgoing waves. For
coupledP-SVwaves the fundamental matrixBud with this organisation is given by

Bud = ΞΞΞBI (3.118)

where

ΞΞΞ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , ΞΞΞ = ΞΞΞ−1. (3.119)

The symmetric matrixΞΞΞ achieves the desired reorganisation of the columns ofBI.
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Appendix: Transverse isotropy
In a transversely isotropic medium the wavespeed in directions perpendicular to the sym-
metry axis are all the same but differ from those parallel to the axis. If the symmetry
axis is vertical, the elastic properties do not vary in a horizontal plane. We may once
again use an expansion in terms of vector harmonics as in (2.55) and the corresponding
stress-displacement vectors satisfy first order differential equations (2.26) with coefficient
matricesA(p, z) which depend only on the slownessp (Takeuchi & Saito, 1972).

With this form of symmetry there are five independent elastic moduli:A, C, F, L,N. In
the more restricted case of isotropy there are only two independent moduliλ, µ and then

A = C = λ+ 2µ, F = λ, L = N = µ. (3a.1)

ThusA,C andF are related to dilatation waves andL,N to shear waves. In a homogeneous
medium three types of plane waves exist. For horizontal transmission, the wavespeeds of
P, SVandSHwaves are

αh = (A/ρ)1/2, βv = (L/ρ)1/2, βh = (N/ρ)1/2. (3a.2)

For vertical transmission the wavespeeds are

αv = (C/ρ)1/2, βv = (L/ρ)1/2, (3a.3)

and there is no distinction between theSH andSV waves. In directions inclined to thez-
axis, there are still three possible plane waves but their velocities depend on the inclination.

In a transversly isotropic medium where the properties depend on depth, there is a sepa-
ration of the stress-displacement vector equations intoP-SVandSHwave sets.

The coefficient matrix forP-SVwaves is now

AP =

 0 pF/C 1/C 0
−p 0 0 1/L
−ρ 0 0 p

0 −ρ+ p2(A− F2/C) −pF/C 0

 , (3a.4)

and its eigenvalues are±iq1,±iq2 whereq is a root of

q4 + q2G+H = 0, (3a.5)

with

G = [ρL+ ρC− p2(AC− F2 − 2FL)]/LC,
H = (ρ− p2L)(ρ− p2A)/LC,

(3a.6)

and so

q2 = 1
2 [G∓ (G2 − 4H)1/2]. (3a.7)

In an isotropic medium the upper sign in the expression forq yieldsqα, the lower sign
qβ. The eigenvector matrixD may be constructed from column vectors corresponding to
up and downgoing quasi-P andSwaves, and analysis parallels the isotropic case.

ForSHwaves the relations are rather simpler

AH =

[
0 1/L

−ρ+ p2 0

]
=

[
0 (ρβ2

v)−1

ρ(β2
hp

2 − 1) 0

]
, (3a.8)

and its eigenvalues are±iqh, with

q2
h = (ρ− p2N)/L = (1− p2β2

h)/β2
v (3a.9)
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which, except at vertical incidence(p = 0), differs from theSV case. The main modifi-
cation to our discussions of an isotropic medium is that the vertical slownesses forSVand
SHare no longer equal.
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Chapter 4

Seismic Sources

A significant seismic event arises from the sudden release of some form of potential
energy within the Earth or at its surface. For earthquakes the stored energy
is usually associated with the strain built up across a fault zone by continuing
deformation. In some deep events it is possible that volume collapse occurs with the
release of configurational energy in upper mantle minerals in a phase transition. For
explosions either chemical or nuclear energy is released. Surface impact sources
dissipate mechanical energy.

In all these cases only a fraction of the original energy is removed from the
‘hypocentre’ in the form of seismic waves. Frictional resistance to faulting in
an earthquake may be overcome with the melting of material on the fault surface
(McKenzie & Brune, 1972). A chemical explosion compacts the material about the
original charge and a cavity is normally produced. For nuclear explosions much
energy is dissipated in the vaporisation of rock. At first a shock wave spreads
out into the medium and the stress is non-linearly related to the considerable
displacements. Only at some distance from the point of initiation do the
displacements in the disturbance become small enough to be described by the
linearised elastic equations we have discussed in chapter 1.

When we try to reconstruct the source characteristics from observations of linear
seismic waves we are not able to extrapolate the field into the near-source region
where non-linear effects are important, and so we have to be content with an
equivalent description of the source in terms of our linearised wave equations.

4.1 Equivalent forces and moment tensor densities

In our treatment of seismic waves we have assumed that the behaviour of the
material within the Earth is governed by linearised elastic (or nearly elastic)
equations of motion, and sources will be introduced wherever the actual stress
distribution departs from that predicted from our linearised model.

The true, local, equation of motion in the continuum is

ρ∂ttuj = ∂i[σij + σ
0
ij] + ρ∂jψ, (4.1)
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in an Eulerian viewpoint, even in the non-linear regime. As in Section 1.3,σij
represents the deviation of the local stress state from the initial stress state specified
by σ0ij, andψ is the gravitational potential. The stress will be related to the
displacementu via some constitutive equation, which in the non-linear zone may
have a complex dependence on the history of the motion.

As a model of the incremental stress we construct a fieldτij based on simple
assumptions about the nature of the constitutive relation between stress and strain
and the variation of the elastic constants with position. In order to get our linearised
equation of motion based on this model stressτij to give the same displacement
field as in (4.1), we have to introduce an additional force distributioneso that

ρ∂ttuj = ∂iτij + fj + ej, (4.2)

here f includes any self-gravitation effects. The presence of the forcee means
that the seismic displacements predicted by (4.2) are the same as in the true
physical situation represented by (4.1). We shall refer toe as the ‘equivalent force
distribution’ to the original source.

From our linearised viewpoint thesource regionwill be that portion of the
medium in whiche is non-zero. Where the displacements are smalle(x, t) is just
the gradient of the difference between the physical stress fieldσσσ and our postulated
field τττ

ej = ∂iσij − ∂iτij, (4.3)

If the source region extends to the earth’s surface we have to allow for the presence
of additional surface tractionses to compensate for the difference between the
tractions induced byτττ andσσσ. Thus we take

esj = niτij − niσij, (4.4)

at the surface, wheren is the local outward normal.
For an explosive source, the principal source region will be the sphere within the

‘elastic radius’, which is somewhat arbitrarily taken as the range from the point of
detonation at which the radial strain in the material drops to10−6. For this volume
our linearised equations will be inadequate and the equivalent forcesewill be large.
Outside the elastic radius we may expect to do a reasonable job of approximating
the stress and soe will be small and tend to zero with increasing distance from
the origin if our structural model is adequate. For small explosions, the equivalent
forces will be confined to a very limited region which, compared with most seismic
wavelengths, will approximate a point; we shall see later how we can represent
such a source via a singular force distribution.

For an earthquake the situation is somewhat different. The two faces of the fault
will be relatively undeformed during the motion and the major deformation will
occur in any fault gouge present. When we use the stress estimated from the rock
properties (τττ) in place of that for the gouge material (σσσ) we get a serious discrepancy
and so a large equivalent force. This forcee will be concentrated on the line of the
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Figure 4.1. Intermediate depth event in a subduction zone; the region in which sources are
introduced due to departures from the horizontally stratified reference model are indicated
by shading.

fault. For long wavelengths it will appear as if we have a discontinuity across the
fault with a singular force distribution concentrated on the fault plane.

In these circumstances we have a direct association of our equivalent forcese
with the idea of localised sources. However, from (4.3) we see that we have to
introduce some ‘source’ termse whenever our model of the stress fieldτττ departs
from the actual field. Such departures will occur whenever we have made the
wrong assumptions about the character of the constitutive relation between stress
and strain or about the spatial variation of the elastic parameters.

Suppose, for example, we have ananisotropicregion and we use anisotropic
stress-strain relation to findτττ. In order to have the correct displacements predicted
by (4.2) we need a force systeme, (4.3), distributed throughout the region. This
force depends on the actual displacementu and is therefore difficult to evaluate, but
without it we get incorrect predictions of the displacement.

Another case of particular importance is provided by lateral heterogeneity in
the Earth’s structure when we are using a stratified model, not least because of
the location of many earthquakes in zones of localised heterogeneity (subduction
zones). Consider an intermediate depth event in such a downgoing slab (figure
4.1). If we try to represent the radiation from such a source using the stratified
model appropriate to the continental side, our model stressτττ will not match the
actual physical stress in the neighbourhood of the source itself, and will also be
in error in the downgoing slab and the upper part of the oceanic structure. The
affected areas are indicated by shading in figure 4.1, with a greater density in those
regions where the mismatch is likely to be significant. The equivalent sources will
depend on the actual displacement field and at low frequencies we would expect
the principal contribution to be near the earthquake’s hypocentre. The importance
of the heterogeneity will increase with increasing frequency; at 0.05 Hz the shear
wavelength will be comparable to the thickness of the downgoing slab and so the
influence of the structure can no longer be neglected.

When an attempt is made to use observed teleseismic seismograms to invert
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for the source characteristics using a horizontally stratified reference model, the
effective source will appear throughout the shaded region in figure 4.1 and so any
localised source estimate is likely to be contaminated by the inadequacy of the
reference model. At present, in the absence of effective means of solving the
propagation problem for the heterogeneous situation it is difficult to assess how
large a systematic error will be introduced.

For each equivalent force distributione(x, t) we follow Backus & Mulcahy
(1976a,b) and introduce a moment tensor densitymij(x, t) such that, in the Earth’s
interior

∂imij = −ej, (4.5)

and if there are any surface traction effects,

nimij = esj , (4.6)

at the Earth’s surface. For anyindigenoussource, i.e. any situation in which forces
are not imposed from outside the Earth, there will be no net force or torque on the
Earth. The total force and torque exerted by equivalent forcese for such a source
must therefore vanish. In consequence the moment tensor density for an indigenous
source is symmetric:

mij = mji, (4.7)

(cf. the symmetry of the stress tensor in the absence of external couples).
The moment tensor density is not unique, but all forms share the same equivalent

forces and thus the same radiation. We see from (4.3) that a suitable choice for the
moment tensor density is

mij = Γij = τij − σij, (4.8)

the difference between the model stress and the actual physical stress. Backus
& Mulcahy refer toΓΓΓ as the ‘stress glut’. This choice ofmij has the convenient
property that it will vanish outside our source region.

4.2 The representation theorem

We would now like to relate our equivalent source descriptions to the seismic
radiation which they produce, and a convenient treatment is provided by the use
of the elastodynamic representation theorem (Burridge & Knopoff 1964).

Since we wish to consider sources in dissipative media we will work in the
frequency domain, and use complex moduli (1.8) in the constitutive relation
connecting our model stressτij(x,ω) to the displacementu(x,ω).

In the presence of a body forcef(x,ω) we then have the equation of motion

∂iτij + ρω
2uj = −fj. (4.9)

We now introduce the Green’s tensorGjp(x, ξξξ,ω) for our reference medium.
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For a unit force in thepth direction atξξξ, with a Dirac delta function time
dependence, the time transform of the displacement in thejth direction atx (subject
to some boundary conditions) is thenGjp(x, ξξξ,ω). This Green’s tensor satisfies the
equation of motion

∂iHijp + ρω2Gjp = −δjpδ(x − ξξξ), (4.10)

whereHijp is the stress tensor atx due to the force in thepth direction atξξξ.
We take the scalar product of (4.9) withGji(x, ξξξ,ω) and subtract the scalar

product of (4.10) withuj, and then integrate over a volumeV enclosing the point
ξξξ. We obtain

up(ξξξ,ω) =

∫
V

d3xGjp(x, ξξξ,ω)fj(x,ω) (4.11)

+

∫
V

d3x [Gjp(x, ξξξ,ω)∂iτij(x,ω) − uj(x,ω)∂iHijp(x, ξξξ,ω)].

If ξξξ is excluded from the integration volume, the right hand side of (4.12) must
vanish. The second integral in (4.12) can be converted into an integral over the
surface∂V of V , by use of the tensor divergence theorem. For the anisotropic
‘elastic’ constitutive relation (1.2) we have

uk(ξξξ,ω) =

∫
V

d3ξξξGqk(ξξξ, x,ω)fq(ξξξ,ω) (4.12)

+

∫
∂V

d2ξξξnp[Gqk(ξξξ, x,ω)τpq(ξξξ,ω) − uq(ξξξ,ω)Hpkq(ξξξ, x,ω)],

wheren is the outward normal to∂V , and for subsequent convenience we have
interchanged the roles ofx andξξξ.

This representation theorem applies to an arbitrary volumeV and we may, for
example, takeV to be the whole Earth. With a homogeneous boundary condition
for the Green’s tensor on∂V , such as vanishing traction for a free surface, we may
derive the reciprocity relation

Gjp(x, ξξξ,ω) = Gpj(ξξξ, x,ω), (4.13)

from (4.13), since the surface integral vanishes. This enables us to recast the
representation theorem so that the Green’s tensor elements correspond to a receiver
atx and a source atξξξ, thus

uk(x,ω) =

∫
V

d3ξξξGkq(x, ξξξ,ω)fq(ξξξ,ω) (4.14)

+

∫
∂V

d2ξξξ [Gkq(x, ξξξ,ω)tq(ξξξ,ω) − uq(ξξξ,ω)hkq(x, ξξξ,ω)],

in terms of the traction componentstq and the Green’s tensor traction elementshkq
on∂V .

In this form the representation theorem (4.14) also applies to the case of a
prestressed medium with constitutive relation (1.4) if the quantitiestq, hkq are
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calculated using the Piola-Kirchhoff stress tensor (Dahlen 1972) in the undeformed
frame, as

tj = ni[τij + σ
0
jk(∂iuk − ∂kui)]. (4.15)

4.2.1 Source representation

Now we have established our representation theorem we will use it to investigate
source effects. We have seen that equivalent forcese are introduced whenever the
model stress tensorτττ departs from the actual physical stress. In the equations of
motion e plays the same role as any external forcesf, and so, since we consider
linearised seismic wave propagation, the additional displacement consequent on
the presence of the source is

uk(x,ω) =

∫
V

d3ηηηGkq(x, ηηη,ω)eq(ηηη,ω). (4.16)

This radiation field may be alternatively expressed in terms of a moment tensor
density by using the definitions (4.5), (4.6) and then integrating (4.16) by parts to
give

uk(x,ω) =

∫
V

d3ηηη∂pGkq(x, ηηη,ω)mpq(ηηη,ω). (4.17)

In (4.16) the integration will in fact be restricted to the source regionY and this
same region applies in (4.17) if we choose the ‘stress-glut’ΓΓΓ as the moment tensor
density.

As a model of an explosive type of source we consider a regionvs in V bounded
by a surfaceS on which the displacementus and tractionts are specified, the
associated seismic radiation will then be

uk(x,ω) =

∫
S

d2ξξξ {Gkq(x, ξξξ,ω)tsq(ξξξ,ω) − usq(ξξξ,ω)hkq(x, ξξξ,ω)}. (4.18)

If, then, we have some mathematical or physical model which allows us to predict
the displacement and traction field for an explosion as a function of position we may
carry the calculation out into the linear regime, e.g., to the ‘elastic radius’. These
calculated values forus andts may then be used to determine the seismic radiation.
For nuclear explosions such models based on finite element or finite difference
calculations have reached a high level of sophistication. With a Green’s tensor that
satisfies the free surface condition, (4.18) will give a good representation of the
radiation up to the time of the return of surface reflections to the source region, if
direct calculations forus, ts are used. Ideally, for shallow explosions the values of
us andts should include the effect of surface interactions, e.g., spalling.

The Green’s tensor to be used in (4.18) should correspond to propagation in
the geological situation prevailing before the explosion, including any pre-existing
stress fields; otherwise additional equivalent forces need to be introduced.
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Figure 4.2. Surface of discontinuity in displacement and tractionsΣ.

Unfortunately, our ability to solve propagation problems in complex media is
limited and so quite often although prestress will be included in the calculation
of ts, us, it is neglected away from the surfaceS and a relatively simple Green’s
function is used to estimate the radiation via (4.18).

A source representation in terms of displacement and traction behaviour on a
surfaceS is not restricted to explosions and could be used in association with
some numerical modelling of the process of faulting in an earthquake. Commonly,
however, we regard the earthquake as represented by some dynamic discontinuity
in displacement across a fault surfaceΣ. We can derive this singular case from
(4.18) by taking the surfaceS to consist of the two surfacesΣ+, Σ− lying on either
side of the fault surfaceΣ and joined at the termination of any dislocation (figure
4.2). If we take the Green’s tensor to correspond to the original configuration in
V , Gk(x, ξξξ,ω) and its associated tractionhk(x, ξξξ,ω) will be continuous across
Σ. The two surface integrals overΣ+, Σ− can therefore be combined into a single
integral

uk(x,ω) = −

∫
Σ

d2ξξξ {Gkq(x, ξξξ,ω)[tq(ξξξ,ω)]+− − [uq(ξξξ,ω)]+−hkq(x, ξξξ,ω)},

(4.19)

where[tq(ξξξ,ω)]+−, [uq(ξξξ,ω)]+− represent the jump in traction and displacement in
going fromΣ− to Σ+. The normaln is taken to be directed fromΣ− to Σ+. In
order to allow a flexible parameterisation of sources we do not restrict attention to
tangential displacement discontinuities. As it stands (4.19) is not readily interpreted
in terms of equivalent forces, as in (4.17), but it is apparent that all such forces will
lie in the fault surfaceΣ.
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We will consider the anisotropic ‘elastic’ case and then

hkq(x, ξξξ,ω) = np(ξξξ)cpqrs(ξξξ)∂rGks(x, ξξξ,ω), (4.20)

where for a dissipative mediumcpqrs will be complex. Since we are only concerned
with the values ofGkq andhkq onΣ, we introduce the Dirac delta functionδΣ(ξξξ, ηηη)
localised on the surfaceΣ. The integral in (4.19) can then be cast into the form

uk(x,ω) = −

∫
V

d3ηηηGkq(x, ηηη,ω){[tq(ξξξ,ω)]+−δΣ(ξξξ, ηηη)

+[us(ξξξ,ω)]+−nr(ξξξ)cpqrs(ξξξ)∂pδΣ(ξξξ, ηηη)},

(4.21)

where−∂pδ extracts the derivative of the function it acts upon and we have used
the symmetry ofcrspq = cpqrs. Equation (4.21) is now just in the form (4.17)
and so we may recognise the equivalent forcese. For the traction jump we have
force elements distributed alongΣ weighted by the size of the discontinuity. The
displacement jump leads to force doublets alongΣ which are best represented in
terms of a moment tensor densitympq.

We emphasise the difference in character between the two classes of
discontinuity by writing

uk(x,ω) =

∫
V

d3ηηη {Gkq(x, ηηη,ω)εq(ηηη,ω)+∂pGkq(x, ηηη,ω)mpq(ηηη,ω)}.(4.22)

The forcesεεε are then determined by the traction jump

εq(ηηη,ω) = −nr(ξξξ)[τqr(ξξξ,ω)]+−δΣ(ξξξ, ηηη). (4.23)

The moment tensor density is specified by the displacement jump as

mpq(ηηη,ω) = nr(ξξξ)cpqrs(ξξξ)[us(ξξξ,ω)]+−δΣ(ξξξ, ηηη), (4.24)

which has the appropriate symmetry for an indigenous source contribution (4.7).
The analysis leading to equivalent forces for a dislocation in a prestressed

medium is more complex but leads to comparable results (Dahlen, 1972; Walton,
1973). When we allow for the possibility of traction discontinuities, the forceεεε

is once again given by (4.23). The displacement jumps may be represented by the
moment tensor density

mpq(ηηη,ω) = nr(ξξξ)dpqrs(ξξξ)[us(ξξξ,ω)]+−δΣ(ξξξ, ηηη)

+nr(ξξξ)[ur(ξξξ,ω)]+−σ
0
pqδΣ(ξξξ, ηηη), (4.25)

in terms of the modulidpqrs (1.4) which themselves depend on the prestressσσσ0.
The contribution to (4.25) which involvesσσσ0 explicitly, only appears if there is an
opening crack situation whenεεε is also likely to be non-zero. Only the deviatoric
portion ofσσσ0 affects the moment tensor elements for tangential slip. In this case
(4.25) will only depart significantly from (4.24) if the shear stresses are large.
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The seismic radiation predicted by (4.22) is determined purely by the
displacement and traction jumps across the surfaceΣ and the properties of the
material surrounding the fault appear only indirectly through the Green’s tensor
Gkq. In many cases some assumed model of the slip behaviour on the fault is used
to specify[u]+−. However, a full solution for[u]+− requires the interaction of the
propagating fault with its surroundings to be accounted for and this has only been
achieved for a few idealised cases.

Generally earthquake models prescribe only tangential displacement jumps and
then nr[u]+− = 0. However, the opening crack model is appropriate to other
observable events, e.g., rock bursts in mines.

4.2.2 Relaxation sources

Although most source models have been based on the dislocation approach
described above, a number of authors have worked with an alternative approach
in which the properties within a portion of a prestressed region undergo a sudden
change (relaxation). The simplest case is to take a spherical region with a uniform
prestress and this has been used by Randall (1966) and Archambeau (1968) among
others. The effect of inhomogeneous prestress has been considered by Stevens
(1980).

For illustration, we suppose a cavity with a surfaceS is suddenly created at a
time t = 0. The frequency domain solution for this initial value problem yields the
radiated displacement as

uk(x,ω) =

∫
S

d2ξξξ [Gkq(x, ξξξ,ω)tq(ξξξ,ω) − uq(ξξξ,ω)hkq(x, ξξξ,ω)]

+iω
∫
V

d3ξξξ ρ(ξξξ)ui
q(ξξξ)Gkq(x, ξξξ,ω), (4.26)

whereui is the instantaneous displacement att = 0. This expression is very similar
to those we have already encountered except that now we have an integral equation
for the displacementu. For a stress-free cavity the tractiont will vanish onS and
so (4.26) is simplified. In order to avoid explicit calculation of the initial value term
in (4.26) we may recognise thatui is the difference between two static fields - the
prestressed state without the cavity and the final equilibrium state. We may set up
a representation for the static fieldui in terms of the dynamic Green’s tensorGk as

ui
k = ω2

∫
V

d3ξξξ ρni
qGkq +

∫
S

d2ξξξ [Gkqt
i
q − ui

qhkq]. (4.27)

When we substitute from (4.27) for the volume integral in (4.26) we obtain

u′
k(x,ω) = −

∫
S

d2ξξξu′
q(ξξξ,ω)hkq(x, ξξξ,ω)

−(iω)−1

∫
S

d2ξξξ tiq(ξξξ)Gkq(x, ξξξ,ω), (4.28)
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whereu′ is the relative displacement field

u′(x,ω) = u(x,ω) − (iω)−1ui(x). (4.29)

The quantityt i is the traction drop from the initial prestressed state to the final
traction-free configuration onS. The initial value description (4.26) is thus
equivalent to imposing a stress pulse att = 0 to negate the tractions onS (4.28).

If we take the cavity to be spherical we have a good model for the radiation
produced by an explosion in a prestressed medium. For such a cavity embedded in
a uniform, isotropic, material Stevens (1980) has shown that an exact solution to
the integral equation (4.28) can be found in terms of vector spherical harmonics and
a multipole expansion. For an adequate model of earthquake faulting the surfaceS

should be rather flatter than a sphere, and then numerical solution of (4.28) would
be required. Qualitatively, however, the spherical model is still useful.

4.3 The moment tensor and source radiation

In Section 4.2 we have adopted a representation of the seismic radiation in terms of
a combination of distributed force elementsεεε and a moment tensor densitympq

uk(x,ω) =

∫
V

d3ηηη {Gkq(x, ηηη,ω)εq(ηηη,ω)

+∂pGkq(x, ηηη,ω)mpq(ηηη,ω)}. (4.30)

We will henceforth restrict our attention to a ‘stress-glut’ moment tensor density,
so that the integration in (4.30) can be restricted to the source regionY in which
our model stressτττ differs from the actual physical stress.

The response of our instruments and recording system imposes some upper limit
(ωu) on the frequencies for which we may recover useful information about the
displacement. In general therefore, we will be considering a band-limited version
of (4.30). At moderate frequencies the Green’s tensor elementsGkq(x, ηηη,ω) will
vary smoothly as the point of excitationηηη varies with a fixed observation pointx,
provided thatx lies well away from the region containingηηη. This suggests that
in (4.30) we should be able to represent the Green’s tensor variations withinY by
a small number of terms in a Taylor series expansion ofGkq(x, ηηη,ω) about the
hypocentrexS

Gkq(x, ηηη,ω) = Gkq(x, xs,ω) + (ηi − xSi)∂iGkq(x, xs,ω)

+1
2(ηi − xSi)(ηj − xSj)∂ijGkq(x, ηηη,ω) + ... . (4.31)

The number of significant terms will reduce as the frequency diminishes.
For extended faults the accuracy of this expansion may be improved by

making the expansion about the centroid of the disturbancexS(ω) rather than the
hypocentre, which is just the point of initiation.

With the expansion (4.31) the seismic radiationu can be approximated as a
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sequence of terms which represent increasingly detailed aspects of the source
behaviour.

We consider first the force contribution to (4.30)

uεk(x,ω) =

∫
Y

d3ηηηGkq(x, ηηη,ω)εq(ηηη,ω),

= Gkq(x, xs,ω)

∫
Y

d3ηηη εq(ηηη,ω)

+∂iGkq(x, xs,ω)

∫
Y

d3ηηη (ηi − xSi)εq(ηηη,ω) + ... .(4.32)

The displacementuε can therefore be represented in terms of the polynomial
moments of the distributed forces, so we may write

uεk(x,ω) = Gkq(x, xs,ω)Eq(ω) + ∂iGkq(x, xs,ω)E (1)
q,i + ... . (4.33)

EEE will be the total force exerted on the source regionY andE (1)
q,i the tensor of force

moments about the point of expansionxS. All of the elements in the series (4.33)
will appear to be situated atxS. We represent the distributed force system inY by
a compound point source composed of a delta function and its derivatives atxS.
For anindigeneoussource the total forceEEE and the momentsE (1)

q,i will vanish. We
will, however, retain these terms since a number of practical sources, e.g., those
depending on surface impact, are not indigenous.

The radiation associated with the moment tensor density may also be expanded
as in (4.32),

umk (x,ω) =

∫
Y

d3ηηη∂pGkq(x, ηηη,ω)mpq(ηηη,ω),

= ∂pGkq(x, xs,ω)

∫
Y

d3ηηηmpq(ηηη,ω) (4.34)

+∂ipGkq(x, xs,ω)

∫
Y

d3ηηη (ηi − xSi)mpq(ηηη,ω) + ... .

This representation ofum in terms of the polynomial moments ofmpq means that
we may write

umk (x,ω) = ∂pGkq(x, xs,ω)Mpq(ω)

+∂ipGkq(x, xs,ω)M
(1)
pq,i(ω) + ... . (4.35)

The integral of the moment tensor density across the source region (Mpq) is the
quantity which is frequently referred to asthemoment tensor

Mpq(ω) =

∫
Y

d3ηηηmpq(ηηη,ω). (4.36)

We see thatmpq(ηηη,ω)d3ηηη can be thought of as the moment tensor for the element

of volume d3ηηη. The third order tensorM(1)
pq,i preserves more information about the
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Figure 4.3. The representation of the elements of the moment tensor as weights for a set of
dipoles and couples.

spatial distribution of the moment tensor densitympq(ηηη,ω), and the inclusion of
further terms in the series (4.35) gives a higher resolution of the source behaviour.

The representation (4.35) is again an equivalent point source description of the
radiation from the original source volumeY. The leading order source here may be
thought of as a superposition of first derivatives of a delta function, describing force
doublets. The moment tensorMpq may therefore be regarded as the weighting
factor to be applied to the nine elements of the array of dipoles and couples
illustrated in figure 4.3. The diagonal elements ofM correspond to dipoles and
the off-diagonal elements to pure couples. The higher order tensorsM (j) are the
weighting factors in a multipole expansion.

4.3.1 A small fault

We now specialise our results for a dislocation source to the case of a small fault
embedded in a uniform medium.

From (4.23) and (4.30) any traction jump will, for low frequencies, be equivalent
to the point force components

Ej(ω) =

∫
Σ

d2ξξξni(ξξξ)[τij(ξξξ,ω)]+− (4.37)
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Figure 4.4. Force equivalents for simple source mechanisms: (a) an opening crack; (b)
tangential slip on a fault; (c) an explosion.

and for a small fault we may represent this as an averaged traction jump over the
surface areaA of the fault

Ej(ω) = Ani[τij(ω)]+−. (4.38)

For a displacement discontinuity the equivalent leading order moment tensor is
given by

Mij = −

∫
Σ

d2ξξξnk(ξξξ)cijkl(ξξξ)[ul(ξξξ,ω)]+−. (4.39)

We consider a displacement discontinuity in the direction of the unit vectorννν with
jump [u], and then

Mij = A[u(ω)]{λnkνk + µ(niνj + njνi)}, (4.40)

for an isotropic medium (1.6), where[u(ω)] is the averaged slip spectrum on the
fault surface.

When the directionννν lies along the normaln, as in an opening crack - figure
4.4a,

Mij = A[u(ω)]{λδij + 2µninj}, (4.41)

and if we rotate the coordinate system so that the 3 axis lies along the normal,Mij

is diagonal with components

Mij = A[u(ω)]diag{λ, λ, λ+ 2µ}. (4.42)

The equivalent force system is thus a centre of dilatation of strengthλ with a dipole
of strength2µ along the normal to the fault.
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For a purely tangential slip along the fault plane (figure 4.4b),ννν.n = 0, and so
the moment tensor components depend only on the shear modulusµ and

Mij = Aµ[u(ω)]{niνj + njνi}. (4.43)

In (4.43)n andννν appear in a completely symmetric role and so the zeroth order
moment tensorMij does not allow one to distinguish between the fault plane with
normaln and the perpendicular auxiliary plane with normalννν. Sincen.ννν vanishes,
the trace of the moment tensor is zero

tr M =
∑
i

Mii = 0. (4.44)

If we consider a coordinate frame with the 3 axis alongn and the slipννν in the
direction of the 1-axis, the moment tensor has only two non-zero components:

M13 = M31 = M0(ω), all other Mij = 0. (4.45)

Here we have introduced the moment spectrum

M0(ω) = Aµ[u(ω)], (4.46)

which defines the source characteristics as a function of time. The equivalent force
distribution specified by (4.45) will be two couples of equal and opposite moment
- the familiar ‘double-couple’ model of fault radiation.

The effect of a point explosion or implosion can be simulated by taking an
isotropic moment tensor

Mij = M0(ω)δij, (4.47)

where once again it is convenient to work in terms of the moment spectrum, which
is now equal to(λ+2µ)Aeur(ω) whereAe is the surface area of a sphere with the
‘elastic radius’re andur(ω) is the average radial displacement spectrum at this
radius (M̈uller, 1973). The equivalent force system consists of three perpendicular
dipoles of equal strength (figure 4.4c).

The equivalent force systems we have described apply to faults which are small
compared with the wavelengths of the recorded seismic waves. For larger faults,
the zeroth order point source contributions we have just discussed do not, by
themselves, provide an adequate representation of the seismic radiation. In addition
we need the first order contributions which give quadrupole sources and perhaps
even higher order terms.

4.3.2 Radiation into an unbounded medium

In the small source approximation the seismic displacement generated by the
presence of a dislocation is given by

ui(x,ω) = Gij(x, xs,ω)Ej(ω) + ∂kGij(x, xs,ω)Mjk(ω). (4.48)
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We specialise to a hypocentre at the origin and consider an observation point at
R in a direction specified by direction cosinesγi. In the time domain we have a
convolution of the temporal Green’s tensor and the force or moment tensor time
functions. For an unbounded isotropic elastic medium the displacement produced
by a point force was first given by Stokes (1849) and the results were extended to
couple sources by Love (1903) and we shall use these results as the basis of our
discussion.

The force contribution to the displacement is

4πρuεi (R, t) = (3γiγj − δij)R
−3

∫R/β
R/α

ds sEj(t− s)

+γiγj(α
2R)−1Ej(t− R/α)

−(γiγj − δij)(β
2R)−1Ej(t− R/β) (4.49)

The ‘far-field’ contribution decaying asR−1 follows the same time dependence as
the forceEEE . Between theP andSwave arrivals is a disturbance which decays more
rapidly, asR−3, as we move away from the source.

The displacement associated with the moment tensorMij depends on the spatial
derivative of the Green’s tensor and is

4πρumi (R, t) = 3(5γiγjγk − lijk)R
−4

∫R/β
R/α

ds sMjk(t− s)

−(6γiγjγk − lijk)(α
2R2)−1Mjk(t− R/α)

+(6γiγjγk − lijk − δijγk)(β
2R2)−1Mjk(t− R/β)

+γiγjγk(α
3R)−1∂tMjk(t− R/α)

−(γiγj − δij)γk(β
3R)−1∂tMjk(t− R/β),

(4.50)

with

lijk = γiδjk + γjδik + γkδij (4.51)

The ‘far-field’ terms which decay least rapidly with distance now behave like the
time derivative of the moment tensor components.

The radiation predicted in the far-field from (4.49) and (4.50) is rather different
for P and S waves. In figure 4.5 we illustrate the radiation patterns in three
dimensions for some simple sources. For a single force in the 3 direction the
P wave radiation is two-lobed with a cosθ dependence in local spherical polar
coordinates. TheS radiation resembles a doughnut with a sinθ dependence. The
patterns for a 33 dipole are modulated with a further cosθ factor arising from
differentiating in the 3 direction; and so we have a two-lobed cos2 θ behaviour
for P. The correspondingS wave radiation pattern, depending on sinθ cosθ, has
an attractive waisted shape. In a 31 couple a horizontal derivative is applied to the
force behaviour which leads to rather different radiation. TheP wave pattern is here
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Figure 4.5. Radiation patterns for simple point sources in a uniform medium: a) single 3
force; b) 33 dipole; c) 31 couple; d) 31 double couple.

four-lobed with angular dependence sinθ cosθ cosφ; displacements of the same
sign lie in opposing quadrants and the radiation maxima lie in the 13 plane. There
is noP wave radiation in the 12 or 23 planes. TheSwave radiation is proportional
to sin2 θ cosφ and this gives a two-lobed pattern with maxima along the 1 axis and
a null on the 23 plane; the two lobes give an opposite sense of displacement to the
medium and so impart a couple.
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For an explosion, with an isotropic moment tensorMjk = M0δjk, (4.50) reduces
to

4πρui(R, t) = γi{(α
2R2)−1M0(t− R/α)

+(α3R)−1∂tM0(t− R/α)}. (4.52)

This is a spherically symmetric, purely radial,P disturbance with noSwave part.
For a double couple without moment, simulating slip on a fault plane,Mjk =

M0[niνj + njνi], the displacement at the receiver pointR is given by

4πρui(R, t) = (9Qi − 6Ti)R
−4

∫R/β
R/α

ds sM0(t− s)

+(4Qi − 2Ti)(α
2R2)−1M0(t− R/α)

−(3Qi − 3Ti)(β
2R2)−1M0(t− R/β)

+Qi(α
3R)−1∂tM0(t− R/α)

+Ti(β
3R)−1∂tM0(t− R/β), (4.53)

where

Qi = 2γi(γjνj)(γknk), Ti = ni(γjνj) + νi(γknk) −Qi. (4.54)

We note thatQ which specifies the far-fieldP wave radiation is purely radial, lying
in the direction ofR. FurtherQ.T = 0, so that the far-fieldSwave radiation which
depends onT is purely transverse.

For both the explosion and the double couple, the radiation for the whole field
may be expressed in terms of the far-field factors.

It is interesting to compare the radiation pattern for a double couple with that for
a single couple with moment. If we taken in the 3 direction andννν in the 1 direction
then

Qi = 2γiγ1γ3, Ti = γ1δi3 + γ3δi1 − 2γiγ1γ3. (4.55)

The far-fieldP wave radiation pattern is given by

|Q|31 = 2γ1γ3 = sin2θ cosφ, (4.56)

and the far-fieldSradiation depends on

|T|31 = (γ21 + γ23 − 4γ21γ
2
3)
1/2 = (cos2 2θ cos2φ+ cos2 θ sin2φ)1/2. (4.57)

The P wave radiation pattern for the double couple is just twice that for either of
the constituent couples, so that there are still nodes in the pattern on the fault plane
(12) and the auxiliary plane (23). TheS wave radiation is now four lobed rather
than two lobed and the net torque vanishes.
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4.3.3 Influences on radiation patterns

The classical method of source characterisation, the fault-plane solution, relies on
the assumption that the radiation leaving the source is indeed that for the same
source in a uniform medium. Observations ofP-wave polarity at distant stations are
projected back onto the surface of a notional focal sphere surrounding the source,
with allowance for the main effects of the Earth’s structure using ray theory. The
method requires that we can recognise the nodal planes separating dilatations and
compressions, which should correspond to the fault plane and auxiliary plane. For
a small source for which the localised moment tensor model is appropriate, the
radiation pattern itself is not sufficient to distinguish the fault plane and other,
usually geological, criteria have to be used.

A number of factors can conspire to modify the radiation pattern in the real
Earth. The standard correction tables for the angle of emergence of rays from the
focal sphere are based on an assumed mantleP wave velocity at the source. For
crustal events, at short periods, the standard approach leads to apparent nodal planes
which are not orthogonal. This however can be normally rectified by correcting the
velocity at the source to a crustalP velocity.

When a source occurs in a region of velocity gradient, the radiation patterns
will be modified by the presence of the structure. This effect will be frequency
dependent - at low frequencies the radiation pattern will be as in a locally uniform
medium, as the frequency increases the departures from the simple theory given
above can become significant.

In addition many small earthquakes occur within regions which are under strain
before a major earthquake. Such a prestrain has a number of effects (Walton 1974).
The presence of the prestrain will lead to anisotropy due to modification of existing
crack systems in the rock, in addition to weak anisotropy associated with the strain
itself. These combined effects will modify the radiation pattern, in particular in
the neighbourhood of the crossing of the nodal planes. The anisotropy will lead
to splitting of theS wave degeneracy, two quasi-S waves will exist with different
velocity. Observations of suchSwave splitting in an active earthquake zone have
been reported by Crampin et al (1980).

All these influences will make it difficult to get reliable fault-plane solutions
for frequencies such that theP wavelengths are of the same size as the source
dimensions. In addition it proves to be easier to read the first motions on teleseismic
long-period records and so good results for fault-plane solutions can be obtained
(Sykes 1967). For studies of small local events good results can be obtained at quite
high frequencies.

The radiation patterns we have calculated depend on the assumption of an
unbounded medium. As pointed out by Burridge, Lapwood & Knopoff (1964),
the presence of a free surface close to the source significantly modifies the
radiation pattern. If we insist on using an unbounded medium Green’s tensor we
cannot use the usual moment tensor representation (4.31). For sources which are
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shallow compared with the recorded wavelength, interference ofP with the surface
reflectionspP, sP will modify the apparent first motion and give records which
resemble those seen near nodal planes. Such effects can be assessed quantitatively
by modelling the waveform generated by the source in a stratified half space (see
Chapter 9).

4.4 The source as a stress-displacement vector discontinuity

When we wish to consider a source in a stratified medium we need to bring together
our representations of the source in terms of equivalent forces or moment tensor and
the wave propagation techniques based on the use of the stress-displacement vector
we have introduced in chapter 2.

We will work with the cartesian components of the force system relative to a
coordinate system with the origin at the epicentre. We take thex̂ axis to the North,
ŷ axis to the East, and̂z axis vertically downwards. The azimuthal angleφ to thex
axis in our cylindrical coordinate system then follows the geographical convention.

For small sources we will use the point source representation in terms of a force
EEE and moment tensorMjk, for which the equivalent force system is

fj = Ejδ(x − xS) − ∂k{Mjkδ(x − xS)}. (4.58)

It is this system of forces which will now appear in the equations of motion
and ultimately determine the forcing terms in the differential equations for the
stress-displacement vectorb, (2.24)-(2.25). For larger source regions we may
simulate the radiation characteristics by the superposition of a number of point
source contributions separated in space and time to handle propagation effects.
Alternatively we can perform a volume integral over the source region, in which
case each volume element d3ηηη has an associated forceεεεd3ηηη and moment tensor
mijd3ηηη.

In each case we have the problem of finding the coefficientsFz, FV , FH in a
vector harmonic expansion (cf. 2.55)

f =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dk k
∑
m

[FzRmk + FVSmk + FHTmk ]. (4.59)

If we choose thez axis of our cylindrical coordinate system to pass through the
source pointxS, the cartesian components of the point sourcefx, fy, fz will all be
singular at the origin in the horizontal planez = zS. The coefficientsFz, FV , FH
will only appear at the source depthzS and may be evaluated by making use of the
orthonormality of the vector harmonics, so that, e.g.,

FV =
1

2π

∫∞
−∞ dteiωt

∫∞
0

dr r
∫2π
0

dφ [Smk ]∗.f . (4.60)

To evaluate the integrals over the horizontal plane we have to make use of the
expansion ofJm(kr)eimφ near the origin, and it is often more convenient to work
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in cartesian coordinates. The integrations leading toFz, FV , FH will leave the
z dependence of the source terms unaffected. Thus we anticipate that the force
componentsEx, Ey, Ez and the moment tensor elements describing doublets in the
horizontal plane (Mxx,Mxy,Myx,Myy) will have aδ(z − zS) dependence. The
remaining moment tensor elements (Mxz,Mzx,Myz,Mzy,Mzz) will appear with
aδ′(z− zS) term.

The total forcing termF in (2.26), for each angular orderm, will therefore have
az dependence,

F(k,m, z,ω) = F1(k,m,ω)δ(z− zS) + F2(k,m,ω)δ′(z− zS), (4.61)

which is of just the form (2.98) we have discussed in Section 2.2.2. Thus when
we solve for the stress-displacement vectorb in the presence of the general point
source excitation, there will be a discontinuity inb across the source planez = zS

b(k,m, zS+,ω) − b(k,m, zS−,ω) = S(k,m, zS,ω)

= F1 +ωA(p, zS)F2. (4.62)

The presence of theδ′(z−zS) term means that although the forcing termsF appear
only in the equations for the stress elements in (2.24)-(2.25), the discontinuity in
theb vector extends also to the displacement terms because of coupling via theA
matrix.

The jump in the components of the stress-displacement vectorb acrosszS
depends strongly on angular order:

[U]+− = Mzz(ρα
2)−1, m = 0,

[V ]+− = 1
2 [±Mxz − iMyz](ρβ

2)−1, m = ±1,
[W]+− = 1

2 [±Myz − iMxz](ρβ
2)−1, m = ±1,

(4.63)

and

[P]+− = −ω−1Ez, m = 0

= 1
2p[i(Mzy −Myz)± (Mxz −Mzx)], m = ±1,

[S]+− = 1
2p(Mxx +Myy) − pMzz(1− 2β2/α2) m = 0,

= 1
2ω

−1(∓Ex + iEy), m = ±1,
= 1
4p[Myy −Mxx)± i(Mxy +Myx)], m = ±2,

[T ]+− = 1
2p(Mxy −Myx), m = 0,

= 1
2ω

−1(iEx ± Ey), m = ±1,
= 1
4p[±i(Mxx −Myy) + (Mxy +Myx)], m = ±2,

(4.64)

For our point equivalent source (4.58), the vector harmonic expansion (2.55) for
the displacement will be restricted to azimuthal orders|m| < 2. These results
for a general moment tensor generalise Hudson’s (1969a) analysis of an arbitrarily
oriented dislocation.

We recall that for anindigeneoussource the moment tensor is symmetric and
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thus has only six independent components, and furtherEEE will then vanish. This
leads to a significant simplification of these results. In particular, for a point source
the stress variableP will always be continuous, excitation form = ±1 is confined
to the horizontal displacement terms andT will only have a jump form = ±2.

We have already noted that the only azimuthal dependence in the displacement
and traction quantitiesU, V , W, P, S, T arise from the azimuthal behaviour of
the source, in an isotropic medium. For an indigenous source we can therefore
associate the azimuthal behaviour of the displacement field in the stratification with
certain combinations of the moment tensor elements.
(a) No variation with azimuth:
For theP-SVwavefield this is controlled by the diagonal elements(Mxx +Myy),
Mzz and is completely absent forSHwaves.
(b) cosφ, sinφ dependence:
This angular behaviour arises from the presence of the vertical couplesMxz,Myz.
The termMxz leads to cosφ dependence forP-SVand sinφ for SH, whilstMyz

gives sinφ behaviour forP-SVand cosφ for SH.
(c) cos2φ, sin2φ dependence:
This behaviour is controlled by the horizontal dipoles and couplesMxx, Myy,
Mxy. The difference(Mxx−Myy) leads to cos2φ behaviour forP-SVand sin2φ
for SH. The coupleMxy gives sin2φ dependence forP-SVand cos2φ for SH.

These azimuthal dependences do not rest on any assumptions about the nature
of the propagation path through the medium and so hold for both body waves and
surface waves.

4.5 Wavevector representation of a source

We have so far represented the action of sources within the stratification in terms of
a discontinuity ß in the stress-displacement vectorb at the level of the source. An
alternative approach is to regard the source as giving rise to a discontinuity in the
wavevectorv. Such an approach has been used by Haskell (1964) and Harkrider
(1964) to specify their sources.

Consider a source in a locally uniform region about the source planezS, we may
then convert the stress-displacement vectorsb(zS−), b(zS+) immediately above
and below the source plane into their up and downgoing wave parts by the operation
of the inverse eigenvector matrixD−1(zS). The corresponding wavevectorsv will
suffer a discontinuityΣΣΣ across the source planezS, consequent upon the jump inb.
Thus

v(k,m, zS+,ω) − v(k,m, zS−,ω) = ΣΣΣ(k,m, zS,ω) (4.65)

= D−1(p, zS)S(k,m, zS,ω).
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We may represent this jump vectorΣΣΣ in terms of upgoing and downgoing parts
as in (3.17)

ΣΣΣ = [−ΣΣΣU, ΣΣΣD]T , (4.66)

The choice of sign is taken to facilitate physical interpretation. The structure of
the relation (4.66) may be seen by partitioningS into its displacement and traction
jumps and then making use of the partitioned forms ofD−1(zS) (3.40),[

−ΣΣΣU

ΣΣΣD

]
= i

[
nTDS −mT

DS

−nTUS −mT
US

][
SW

ST

]
. (4.67)

The elementsΣΣΣU, ΣΣΣD have rather similar forms

ΣΣΣU = i[mT
DSST − nTDSSW ], ΣΣΣD = i[mT

USST − nTUSSW ]. (4.68)

The significance of these terms is most readily seen if we consider a source
embedded in an unbounded medium. Above such a source we would expect only
upgoing waves and below only downgoing waves, so that the wavevector will be of
the form

v(z) = [vU(z), 0]T , z < zS,

= [0, vD(z)]T , z > zS, (4.69)

with a jumpΣΣΣ acrosszS of

ΣΣΣ = [−vU(zS), vD(zS)]
T . (4.70)

Comparison of the two expressions (4.66) and (4.70) forSshows that a source will
radiateΣΣΣU upwards andΣΣΣD downwards into an unbounded medium.

For a source in a vertically inhomogeneous region we may still use the jump
vector S if we split the medium at the source levelzS and consider each of the
two halves of the stratification to be extended by uniform half spaces with the
properties atzS. This procedure will correspond to our treatment of reflection
and transmission problems and the radiation componentsΣΣΣU, ΣΣΣD will enter with
reflection matrices into a compact physical description of the seismic wavefield.
We lose no generality by our assumption of an infinitesimal uniform region atzS
since we will construct the correct Green’s tensors for the stratified regions above
and below the source.
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Chapter 5

Reflection and Transmission I

Nearly all recording of seismic waves is performed at the Earth’s surface and most
seismic sources are fairly shallow. We are therefore, of necessity, interested in
waves reflected back by the Earth’s internal structure. In seismic prospecting we
are particularly interested inP waves reflected at near-vertical incidence. For longer
range explosion seismology wide-angle reflections from the crust-mantle boundary
are often some of the most significant features on the records. At teleseismic
distances the mainP andSarrivals have been reflected by the continuously varying
wavespeed profile in the Earth’s mantle. For deep sources we are also interested in
the transmission of seismic waves to the surface.

In this chapter we consider the reflection of cylindrical waves by portions of a
stratified medium and show how reflection coefficients for the different wave types
can be constructed using the stress-displacement fields introduced in chapter 3. We
define such reflection and transmission coefficients by the relation between up and
downgoing wave amplitudes at the limits of the region of interest.

An exact decomposition of the seismic wavefield into up and downgoing parts
can only be made in a uniform medium. Thus, in order to give a unique and
unambiguous definition of the reflection and transmission coefficients for the region
zA ≤ z ≤ zB, we adopt the following stratagem. We isolate this region from the
rest of the stratification by introducing hypothetical half spaces inz < zA, z > zB
with properties equal to those atz = zA, z = zB respectively. We can now visualise
up and downgoing waves in these half spaces and then define reflection coefficients
by relating the wavevectors in the upper and lower half spaces. The continuity
of the seismic properties atzA and zB ensures that the reflection properties are
controlled entirely by the structure within(zA, zB).

5.1 Reflection and transmission at an interface

We may isolate an interface across which there is a change in the elastic properties
of the material by embedding it between two half spaces with the properties just
at the two sides of the interface. With the assumption of welded contact at the
interface,z = zI say, we will have continuity of the stress-displacement vectorb
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acrosszI. Any such vector will, however, have a different representation in terms
of up and downgoing wave components on the two sides of the interface.

In medium ‘−’, z < zI

b(zI−) = D−(zI−)v−(zI−), (5.1)

and in medium ‘+’, z > zI

b(zI+) = D+(zI+)v+(zI+). (5.2)

These two expressions represent the same stresses and displacements and so we
can connect the wavevectors in the upper and lower half spaces,

v−(zI−) = D−1
− (zI−)D+(zI+)v+(zI+),

= Q(zI−, zI+)v+(zI+). (5.3)

This relation enables us to extract reflection and transmission coefficients for
the interface. We illustrate the procedure for scalarSH waves and then extend
the treatment to coupledP-SV waves with the introduction of reflection and
transmission matrices.

5.1.1 SH waves

We prescribe the slownessp to be the same in both half spaces and so automatically
satisfy Snell’s law at the interface. The inclination of the waves to the vertical
depends on the vertical slownesses

qβ− = (β−2
− − p2)1/2, qβ+ = (β−2

+ − p2)1/2, (5.4)

with, e.g., an angle of inclination

j− = cos−1(β−qβ−). (5.5)

On substituting the explicit forms forv (3.16) andD (3.25) we may write (5.3) as[
HU−

HD−

]
=
εβ−εβ+

β−β+

[
µ−qβ− i
µ−qβ− −i

] [
1

−iµ+qβ+ iµ+qβ+

] [
HU+

HD+

]
, (5.6)

in terms of the shear moduliµ−, µ+. The normalisationεβ−/β− = (2µ−qβ−)1/2

and thus all the entries in the matrixQ depend on the productsµqβ;[
HU−

HD−

]
=

1

2(µ−µ+qβ−qβ+)1/2

[
µ−qβ− + µ+qβ+ µ−qβ− − µ+qβ+

µ−qβ− − µ+qβ+ µ−qβ− + µ+qβ+

] [
HU+

HD+

]
.

(5.7)

The combinationµqβ plays the role of an impedance for the obliquely travelling
SHwaves.

Consider anincident downgoing wavefrom medium ‘−’. This will give a
reflected upgoing wave inz < zI and a transmitted downgoing wave inz > zI.
There will be no upcoming wave in medium ‘+’ and so we requireHU+ to vanish.
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We define the reflection coefficient for downward propagation RI
D to connect the

wave elements in medium ‘−’,

HU− = RIDHD−, (5.8)

and a transmission coefficient TID connecting wave components across the
interface,

HD+ = TIDHD−. (5.9)

For the incident downgoing wave (5.5) has the form[
HU−

HD−

]
=

[
QUU QUD
QDU QDD

] [
0

HD+

]
, (5.10)

and so

RID = QUD(QDD)−1, TID = (QDD)−1. (5.11)

In terms of theSH wave impedances the reflection and transmission coefficients
are

RID = (µ−qβ− − µ+qβ+)/(µ−qβ− + µ+qβ+),

TID = 2(µ−µ+qβ−qβ+)1/2/(µ−qβ− + µ+qβ+).
(5.12)

For propagating waves in a perfectly elastic medium the columns ofD are
normalised to unit energy flux in thez direction. The coefficients RID, TID are
therefore measures of the reflected and transmitted energy in such propagating
waves.

The structure of (5.12) is not affected if the half spaces are weakly dissipative
so that we use complexS wavespeeds, or if the slownessp is such that we are
considering evanescent waves, provided we take a consistent choice of branch cut
(3.8) for the radicalsqβ−, qβ+. We will therefore refer to (5.12) as the reflection
and transmission coefficients for any slownessp.

As the contrast in properties across the interface becomes very small

RID → 1
2∆(µqβ)/(µqβ), TID → 1, (5.13)

where∆(µqβ) is the contrast in the impedance across the interface.
For this scalar case the reflection and transmission coefficients for upward

incidence from medium ‘+’ are most easily obtained by exchanging the suffices
− and+, so that

RIU = −RID, TIU = TID, 1− (RID)2 = (TID)2. (5.14)

5.1.2 Coupled P and SV waves

Although P and SV waves propagate independently in a uniform medium, once
they impinge on a horizontal interface there will be conversion to the other wave
type in both reflection and transmission. By working with fixed slownessp we
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require the same horizontal phase behaviour for all the waves and so satisfy Snell’s
law both above and below the interface (figure 5.1).

The coupling betweenP andSV waves may be treated conveniently by using
matrix methods. We split the wavevectors, on each side of the interface, into their
up and downgoing parts (3.17) and partition the coupling matrix

Q(zI−, zI+) = D−1
− (zI−)D+(zI+) (5.15)

into 2× 2 submatricesQij; so that (5.2) becomes[
vU−

vD−

]
=

[
QUU QUD

QDU QDD

][
vU+

vD+

]
. (5.16)

We have already established partitioned forms of the eigenvector matrixD and
its inverse (3.36), (3.40) and now evaluate the partitions ofQ in terms of the
displacement and stress transformation matricesmU−, nU− etc:

Q(zI−, zI+) = i

[
−nTD− mT

D−

nTU− −mT
U−

][
mU+ mD+

nU+ nD+

]
, (5.17)

= i

[
mT
D−nU+ − nTD−mU+ mT

D−nD+ − nTD−mD+

nTU−mU+ − mT
U−nU+ nTU−mD+ − mT

U−nD+

]
.

The partitions of (5.17) may now be recognised as having the form of the matrix
propagation invariants in (2.68); since, for example,nU gives the stress elements
corresponding to the displacementsmU.

Our relation (5.16) connecting the up and downgoing wave components on the
two sides of the interface can therefore be written as[

vU−

vD−

]
= i

[
<mD−,mU+> −<mU−,mU+>

<mD−,mD+> −<mU−,mD+>

][
vU+

vD+

]
. (5.18)

Although we have introduced (5.18) in the context ofP-SVwave propagation, this
form is quite general and if we use theSH wave forms formU, nU etc., (3.100),
we will recover (5.7). For full anisotropic propagation we would use3×3matrices
mU, mD.

Consider a downgoing wave system, comprising bothP and SV waves, in
medium ‘−’. When this interacts with the interface we get reflectedP and SV
waves in medium ‘−’ and transmitted downgoing waves in medium ‘+’ (figure
5.1). No upward travelling waves will be generated in medium ‘+’ and sovU+ =
0. We now define a reflection matrixRID for downward incidence, whose entries
are reflection coefficients, by

vU− = RIDvD− i.e.

[
PU−

SU−

]
=

[
RPPD RPSD
RSPD RSSD

] [
PD−

SD−

]
, (5.19)

relating the up and downgoing wave elements in medium ‘−’. Similarly connecting
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5.1 Reflection and transmission at an interface

Figure 5.1. The configuration of reflected and transmitted waves at an elastic interface for
slownessp = 0.1.

the downgoing wave components across the interface we introduce a transmission
matrixTID by

vD+ = TIDvD− i.e.

[
PD+

SD+

]
=

[
TPPD TPSD
TSPD TSSD

] [
PD−

SD−

]
. (5.20)

We have chosen the convention for the conversion coefficients RPS
D etc. so that the

indexing of the reflection and transmission matrices follows the standard matrix
pattern, which is very useful for manipulation.

For these incident downgoing waves the wave elements are related by[
vU−

vD−

]
=

[
QUU QUD

QDU QDD

][
0

vD+

]
, (5.21)

and so, the reflection and transmission matrices can be found in terms of the
partitions ofQ as

TID = (QDD)−1, RID = QUD(QDD)−1, (5.22)

cf. (5.11) forSH waves. With the explicit forms for the partitions ofQ (5.17),
(5.18) we have

TID = i<mU−,mD+>
−1,

RID = −<mD−,mD+><mU−,mD+>
−1.

(5.23)

The angle bracket symbol acts as a dissimilarity operator, and it is the mismatch
betweenmD− andmD+ which determines the reflection matrixRID.
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An incident upcomingwave system in medium ‘+’ will give reflected waves
in medium ‘+’ and transmitted waves in medium ‘−’. No downgoing waves in
medium ‘−’ will be generated, so thatvD− = 0, and now we have[

vU−

0

]
=

[
QUU QUD

QDU QDD

][
vU+

vD+

]
. (5.24)

We define the reflection and transmission matrices for these upward incident waves
as

vD+ = RIUvU+, vU− = TIUvU+, (5.25)

and from (5.24) we may constructRIU, TIU from the partitions ofQ as

RIU = −(QDD)−1QDU,

TIU = QUU − QUD(QDD)−1QDU.
(5.26)

For this single interface we would, of course, obtain the same results by
interchanging the suffices+ and− in the expressions forRID, TID; but as we shall
see the present method may be easily extended to more complex cases.

From the expressions for the reflection and transmission matrices in terms of the
partitions ofQ (5.21), (5.26) we can reconstruct the interface matrix itself as

Q(zI−, zI+) = D−1
− (zI−)D+(zI+), (5.27)

=

[
TIU − RID(TID)−1RIU RID(TID)−1

−(TID)−1RIU (TID)−1

]
. (5.28)

The eigenvector matrices depend only on the slownessp and soQ is frequency
independent. All the interface coefficients share this property.

The upward reflection and transmission matrices can be expressed in terms of
the propagation invariants at the interface as

RIU = −<mU−,mD+>
−1<mU−,mU+>,

TIU = −i<mD+,mU−>
−1 = (TID)T .

(5.29)

We may now construct the reflection and transmission matrices for theP-
SV wave case by using the expressions (3.37) for the displacement and stress
transformation matricesmU, nU etc. All the interface coefficient matrices depend
on <mU−,mD+>

−1 and so the factor det<mU−,mD+> will appear in the
denominator of every reflection and transmission coefficient. The transmission
coefficients are individual elements ofQ divided by this determinant, but the
reflection coefficients take the form of ratios of second order minors ofQ.
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5.1 Reflection and transmission at an interface

The denominator

det<mU−,mD+> =

εα−εα+εβ−εβ+

{[2p2∆µ(qα− − qα+) + (ρ−qα+ + ρ+qα−)]

×[2p2∆µ(qβ− − qβ+) + (ρ−qβ+ + ρ+qβ−)]

+p2[2∆µ(qα−qβ+ + p2) − ∆ρ][2∆µ(qβ−qα+ + p2) − ∆ρ]},

(5.30)

where we have introduced the contrasts in shear modulus and density across the
interface∆µ = µ− − µ+, ∆ρ = ρ− − ρ+. It was pointed out by Stoneley
(1924) that if this determinant vanishes we have the possibility of free interface
waves with evanescent decay away from the interface into the media on either
side. These Stoneley waves have a rather restricted range of existence, for most
reasonable density contrasts the shear velocitiesβ− andβ+ must be nearly equal
for (5.30) to be zero. The slowness of the Stoneley wave is always greater than
[min(β−, β+)]−1.

The expressions we have just derived for the reflection and transmission
matrices may alternatively be derived directly by making use of the propagation
invariants. Consider, for example, a system of incident downgoing waves with
displacements given by the matrixmD−. When we equate the incident and
reflected displacements in medium ‘−’ to the transmitted displacement in medium
‘+’ we have

mD− + mU−RID = mD+TID, (5.31)

and there is a corresponding equation for the tractions

nD− + nU−RID = nD+TID (5.32)

We may now eliminateRID by premultiplying (5.31) bynTU− and (5.32) bymT
U−

and then subtracting to give

(mT
U−nD− − nTU−mD−) = (mT

U−nD+ − nTU−mD+)TID. (5.33)

The invariant on the left hand side of (5.33) is just i times the unit matrix and so we
recover our previous result (5.23) for the transmission matrix

TID = i<mU−,mD+>
−1. (5.34)

The reflection matrixRID may be similarly found by elimination from (5.31),
(5.32). The expressions (5.29) forRIU, TIU may be found by constructing the
equivalent equations to (5.31)-(5.32) for an incident upcoming wave.

5.1.3 The variation of reflection coefficients with slowness

As an illustration of the interface coefficients we have been discussing, we display
in figure 5.2 the amplitude and phase behaviour of the downward reflection
coefficients for a plane wave at the interface appearing in figure 5.1. We have
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Figure 5.2. The amplitude and phase behaviour of the interfacial reflection coefficient for
the model of figure 5.1 as a function of slowness:∆ , ∆ critical slownesses forP waves
(α−1

+ ), Swaves (β−1
+ ); * onset of evanescence forP.

chosen to represent the coefficients as a function of slowness, rather than the
conventional angle of incidence, because we can use a common reference forP
andSwaves and so display many of the characteristics more clearly.

The behaviour of the reflection coefficients is governed by the relative sizes of
the waveslownesses forP and S in the media on the two sides of the interface.
Whenp > α−1

+ (here 0.125 s/km) all the reflection coefficients are real. At vertical
incidence the amplitudes of theSwave coefficients|RSSD |, |RHHD | are equal and there
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5.1 Reflection and transmission at an interface

Figure 5.3. The behaviour of a reflectedSVpulse at an interface as a function of slowness.

is no conversion fromP to S waves. The behaviour of RSSD and RHHD as slowness
increases is very different: theSHwave coefficient is fairly simple, but theSVwave
coefficient is profoundly influenced by theP wave behaviour.

At p = α−1
+ , P waves are travelling horizontally in the lower medium and we

have reached the critical slowness forP waves. Forα−1
+ < p < α−1

− , P waves are
reflected at the interface and give rise to only evanescent waves in the lower half
space. Oncep > α−1

+ all the reflection coefficients for theP-SVsystem become
complex. The phase of RPPD and RPSD change fairly rapidly with slowness, but RSSD
has slower change.

For p > α−1
− (here 0.166 s/km )P waves become evanescent in the upper

medium, but we can still define reflection coefficients for these evanescent incident
waves. The amplitude of RPSD drops to zero atp = α−1

− and then recovers before
falling to zero again atp = β−1

+ . The amplitude of RSSD has an inflexion atp = α−1
−

and the character of the phase variation changes at this slowness.
The critical slowness forS waves isβ−1

+ and forp greater than this value both
SV andSH waves are totally reflected. The phase for theSV wave coefficient for
this interface varies more rapidly with slowness than that forSHwaves.

When the reflection coefficients are real, an incident plane wave pulse with
slownessp is merely scaled in amplitude on reflection. Once the coefficients
become complex, the shape of the reflected pulse is modified (see, e.g., Hudson,
1962). The real part of the coefficient gives a scaled version of the original pulse
and the imaginary part introduces a scaling of the Hilbert transform of the pulse,
which for an impulse has precursory effects. The consequent pulse distortion is
illustrated in figure 5.3 for the reflectedSV wave pulse from an incidentSV wave
impulse, as a function of slowness. Forp < α−1

+ the pulse shape is unchanged, but
oncep > α−1

+ and RSSD becomes complex the pulse shape is modified. The large
amplitude of the reflection at and beyond the critical slowness forSwaves is clearly
seen and the steady phase change forp > β−1

+ continues to modify the shape of
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the reflected pulse. Once the incidentSwave becomes evanescent(p > β−1
− ), the

reflection coefficient is real and the original pulse shape is restored.

5.2 A stratified region

We now look at the reflection and transmission response of a portion(zA, zC) of a
stratified medium by embedding this region between uniform half spaces inz < zA,
z > zC with continuity of elastic properties atzA andzC. In the uniform half spaces
we can represent a stress-displacement field in terms of up and downgoing waves
by means of the eigenvector matrixD introduced in Section 3.1.

5.2.1 The wave-propagator

The stress-displacement vectors atzA andzC are connected by the propagator for
the intervening region

b(zA) = P(zA, zC)b(zC). (5.35)

In the two uniform half spaces we make a decomposition of the stress-displacement
field into up and downgoingP andSwaves and using the continuity of theb vector
we write,

b(zA) = D(zA)v(zA−),

b(zC) = D(zC)v(zC+),
(5.36)

since we have continuity of elastic properties atzA,zC. The wavevectorsv in the
upper and lower uniform half spaces are therefore related by

v(zA−) = D−1(zA)P(zA, zC)D(zC)v(zC+), (5.37)

when we combine (5.35) and (5.36). In terms of a single matrixQ(zA, zC)

v(zA−) = Q(zA, zC)v(zC+), (5.38)

and by analogy with (5.35) we callQ the wave-propagator.
The wave-propagator has similar properties to the stress-displacement

propagatorP. From the chain rule (2.89)

Q(zA, zC) = D−1(zA)P(zA, zB)P(zB, zC)D(zC), (5.39)

= D−1(zA)P(zA, zB)D(zB)D−1(zB)P(zB, zC)D(zC).

By using the decomposition of the unit matrix into the product ofD(zB) and its
inverse, we have in effect introduced an infinitesimal uniform region atzB. This
is sufficient for us to recognise the wave-propagators for the regions(zA, zB),
(zB, zC) and so give a chain rule

Q(zA, zC) = Q(zA, zB)Q(zB, zC). (5.40)
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A consequence of (5.40) is that we have a simple expression for the inverse of the
wave-propagator

Q(zA, zC) = Q−1(zC, zA). (5.41)

AlthoughP(zA, ξ) will be continuous across a planez = ξ, the wave-propagator
will not be unless the elastic parameters are continuous acrossξ. Thus we must
choose which side of an interface we wish to be on when we split the stratification
for the chain rule (5.40).

Our expression (5.38) relating the wavevector in the bounding half spaces via the
wave-propagatorQ(zA, zC) has the same form as (5.3) for the interface problem.
Indeed we may identifyQ(zI−, zI+) as the wave-propagator for the interface.
We have therefore already established the formal basis for the construction of
the reflection and transmission coefficients for our stratified region in the previous
section.

We split the wavevectors in the uniform half spaces into their up and downgoing
wave parts and partitionQ(zA, zC) so that (5.38) becomes[

vU(zA−)

vD(zA−)

]
=

[
QUU QUD

QDU QDD

][
vU(zC+)

vD(zC+)

]
, (5.42)

which has just the same structure as (5.16). Thus for incidentdowngoingwaves
from the half spacez < zA the reflected and transmission matrices have the
representation (5.22) in terms of the partitions of the wave-propagatorQ(zA, zC):

TACD = TD(zA, zC) = (QDD)−1

RACD = RD(zA, zC) = QUD(QDD)−1.
(5.43)

With incidentupgoingwaves inz > zC the transmission and reflection matrices
are given by

TACU = QUU − QUD(QDD)−1QDU,

RACU = −(QDD)−1QDU.
(5.44)

For a single interface, at fixed slownessp, Q(zI−, zI+) is independent of
frequency, but for a stratified regionQ(zA, zC) includes the frequency dependent
propagator termP(zA, zC) and soTACD , RACD etc. depend on the frequencyω.

The expressions (5.43), (5.44) can be recast to express the partitions of
Q(zA, zC) in terms of the reflection and transmission matrices for both upward
and downward incident waves. The wave-propagator takes the form

Q(zA, zC) =

[
TACU − RACD (TACD )−1RACU RACD (TACD )−1

−(TACD )−1RACU (TACD )−1

]
. (5.45)
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When we choose to look at the stratified region from below, we prefer to work
with Q(zC, zA) and from (5.41) this can be found by constructing the inverse of
the partitioned matrix (5.45), so that

Q(zC, zA) =

[
(TACU )−1 −(TACU )−1RACD

RACU (TACU )−1 TACD − RACU (TACU )−1RACD

]
. (5.46)

If we exchange the subscriptsU andD and reflect the matrix (5.38) blockwise about
the diagonal, we recover the matrix (5.37). This structure arises because upward
reflection and transmission matrices are in fact the downward matrices when the
stratified region is inverted.

Our definitions of the reflection and transmission matrices presuppose that
zC ≥ zA. When we wish to represent a wave-propagatorQ(zE, zF) in terms of the
reflection and transmission properties of(zE, zF) we use the form (5.45) ifzE ≥ zF,
but if zE is less thanzF we will employ the representation (5.46).

The stress-displacement propagatorP(zA, zC) can be recovered from the
wave-propagatorQ(zA, zC) as

P(zA, zC) = D(zA)Q(zA, zC)D−1(zC). (5.47)

This relation gives some insight into the physical nature of the propagator. The
action ofD−1(zC) is to break the stress and displacement field atzC into its up
and downgoing parts. The corresponding up and downgoing waves atzA are
generated by the action of the wave-propagatorQ which requires a knowledge of
the propagation characteristics in both directions through the stratification. The
eigenvector matrixD(zA) then reconstructs the displacements and tractions atzA
from the wave components.

A particularly simple case of the wave-propagator is provided by auniform
medium for which

Qun(zA, zC) = exp{iω(zA − zC)ΛΛΛ}

=

[
EEEACD 000

000 (EEEACD )−1

]
, (5.48)

whereEEEACD is the phase income matrix for downward propagation fromzA to zC
introduced in (3.45). Since the off-diagonal partitions ofQun are null, bothRACD
and RACU vanish, as would be expected. We may also identify the transmission
matrices

TACD = EEEACD , TACU = EEEACD , (5.49)

for such a uniform zone.
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5.2.2 Displacement matrix representations

We now introduce a fundamental stress-displacement matrixBV whose columns
are theb vectors corresponding to up and downgoing waves at some level in the
stratification. We will be particularly interested in the displacement and traction
matrix partitions ofBV and will use these to generalise the concept of reflection
and transmission matrices.

At a planez = zG within the stratification we construct the displacements which
would be produced by unit amplitudeP andSwaves in a uniform medium with the
elastic properties atzG:

WUG = mUG, (5.50)

wheremUG is a displacement partition of the eigenvector matrixD(zG). The
corresponding traction components are given by the matrix

TUG = nUG. (5.51)

In a similar way we can construct displacement and traction matrices for unit
amplitude downgoingP andSwaves

WDG = mDG, TDG = nDG. (5.52)

We have here, in effect, introduced an infinitesimal uniform region atzG in which
we can define up and downgoing waves in just the same way as in the derivation of
the chain rule for the wave-propagator.

From the displacement and traction matrices introduced in (5.50)-(5.52) we
construct a fundamental stress-displacement matrix

BVG =

[
WUG WDG

TUG TDG

]
, (5.53)

and atzG this matrix reduces toD(zG). Away from the levelzG we may construct
BVG by using the propagator matrix for the stratified medium operating onD(zG),

BVG(zJ) = P(zJ, zG)D(zG). (5.54)

The propagatorP(zJ, zG) may be represented in terms of the wave-propagator
Q(zJ, zG) by (5.47) and so

BVG(zJ) = D(zJ)Q(zJ, zG). (5.55)

The explicit forms of the displacement matricesWDG(zJ), WUG(zJ) depend on
the relative location ofzJ andzG.

If zJ lies abovezG we constructBVG(zJ) from the partitioned representations,
(5.45) for the wave-propagator and (3.36) for the eigenvector matrixD(zJ) with
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entriesmDJ, mUJ etc. The displacement matricesWUG, WDG are then given in
terms of the reflection and transmission matrices for(zJ, zG) by

WUG(zJ) = mUJT
JG
U − (mDJ + mUJR

JG
D )(TJGD )−1RJGU ,

WDG(zJ) = (mDJ + mUJR
JG
D )(TJGD )−1.

(5.56)

The traction matricesTUG, TDG have a comparable form withnUJ, nDJ replacing
mUJ, mDJ. From (5.56) we see that

WUG(zJ) + WDG(zJ)R
JG
U = mUJT

JG
U , (5.57)

the field on the left hand side of the equation can be recognised as that produced
by an incident upcoming wave system on the the region(zG, zJ) which atzJ will
consist of just transmitted waves.

When zJ lies belowzG we use (5.38) for the wave-propagator and now the
displacement matricesWUG, WDG are given by

WUG(zJ) = (mUJ + mDJR
GJ
U )(TGJU )−1,

WDG(zJ) = mDJT
GJ
D − (mUJ + mDJR

GJ
U )(TGJU )−1RGJD ,

(5.58)

where the reflection and transmission matrices are for a region below the levelzG.
In this case

WDG(zJ) + WUG(zJ)R
GJ
D = mDJT

GJ
D , (5.59)

corresponding to an incident downward wave system on the region(zG, zJ).
For the displacement fieldsWUG, WDG the matrix<WUG,WDG> will be

independent of depth and may be conveniently evaluated atzG itself

<WUG,WDG> = <mUG,mDG> = iI . (5.60)

We have just seen that the displacement matricesWUG, WDG are closely related
to the reflection and transmission properties of the stratification. In fact if we
can construct the fundamental matricesBVA and BVC for two different starting
levelszA andzC, we can find the reflection and transmission matrices for the zone
(zA, zC).

Consider an incidentdowngoingfield atzA, on the regionzA ≤ z ≤ zC, this will
give rise to a reflected contribution specified byRACD . The resultant displacement
field may be represented as

WR(z) = WDA(z) + WUA(z)RACD , (5.61)

and we see from (5.59) that atzC this displacement field takes the formmDCTACD ,
with a comparable form for traction components. We recall thatWDC(z) is the
displacement field arising from displacementmDC and tractionnDC at zC and so
we have an alternative representation forWR(z) :

WR(z) = WDCTACD . (5.62)
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At any level in(zA, zC) we must be able to equate these displacement and traction
representations based on viewpoints atzA andzC so that

WDA(z) + WUA(z)RACD = WDC(z)TACD ,

TDA(z) + TUA(z)RACD = TDC(z)TACD .
(5.63)

A special case of these equations has appeared in the interface problem
(5.31)-(5.32) and our method of solution parallels that case. We make use of the
properties of the matrix invariants in Section 2.2 to eliminate variables between
the displacement and traction equations (5.63), and solve forRACD , TACD . If we
eliminateRACD we have

<WUA,WDA> = <WUA,WDC>TACD , (5.64)

and from (5.60) we may simplify the solution forTACD to give

TACD = i<WUA,WDC>
−1. (5.65)

There are two equivalent forms forRACD . Firstly in terms ofTACD we have

<WDA,WUA>RACD = −iRACD = <WDA,WDC>TACD (5.66)

so that

RACD = −<WDA,WDC><WUA,WDC>
−1. (5.67)

Alternatively we may eliminateTACD between the equations (5.63) to give

<WDC,WDA>+<WDC,WUA>RACD = 0, (5.68)

and so

RACD = −<WDC,WUA>
−1<WDC,WDA>. (5.69)

Under transposition,

<WDC,WUA>
T = −<WUA,WDC>, (5.70)

with the result that the second form forRACD may be recognised as the transpose of
the first. The downward reflection matrix is therefore symmetric

RACD = (RACD )T . (5.71)

For an incidentupcomingfield atzC, we have displacement and traction equations
involving upward reflection and transmission matrices

WUC(z) + WDCRACU = WUA(z)TACU ,

TUC(z) + TDCRACU = TUA(z)TACU .
(5.72)

The upward transmission matrix is given by

TACU = −i<WDC,WUA>
−1 = (TACD )T . (5.73)
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The upward reflection matrix

RACU = −<WUA,WDC>
−1<WUA,WUC>,

= −<WUC,WUA><WDC,WUA>
−1,

(5.74)

and like the downward matrix,RACU , is symmetric.
If we can construct the displacements and tractions within the stratified region

(zA, zC) corresponding to the displacements and tractions generated by upward and
downward travelling waves in uniform half spaces with the properties atzA andzC,
we are able to form all the reflection and transmission matrices for the region. The
expressions we have derived for the reflection and transmission properties do not
depend on any assumptions about the nature of the parameter distribution within
(zA, zC). For an arbitrary attenuative region we have therefore established the
symmetry relations

RACD = (RACD )T , RACU = (RACU )T , TACU = (TACD )T . (5.75)

These relations have previously been demonstrated by Kennett, Kerry &
Woodhouse (1978) with a rather different approach. When the medium is perfectly
elastic we can make further use of invariants to derive unitarity relations for the
reflection and transmission matrices and this is considered in the appendix to this
chapter.

5.2.3 Generalisation of reflection matrices

With the aid of the displacement fieldsWUG, WDG we are able to extend the
concept of reflection matrices to accommodate general linear boundary conditions
on the seismic wavefield.

As an example we consider the free-surface condition of vanishing traction at
z = 0. We construct a linear superposition ofWUG, WDG:

W1G(z) = WUG(z) + WDG(z)RfGU , (5.76)

and choose the free-surface reflection matrixRfGU so that the associated traction
vanishes atz = 0, i.e.

T 1G(0) = TUG(0) + TDG(0)RfGU = 000. (5.77)

Thus we have a symmetric reflection matrix

RfGU = −[TDG(0)]−1TUG(0), (5.78)

and the traction matrices can alternatively be represented as partitions of the
product of the propagator from the surface tozG and the eigenvector matrix at
zG: [P(0, zG)D(zG)]. We may regardW1G(z) as the resultant displacement field
due to an incident upcoming wave system atzG from a uniform half space with
the properties atzG. A useful associated quantity is the surface displacement
matrix W1G(0) due to the incident upward wave which we shall denote asWfG

U .
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5.2 A stratified region

Figure 5.4. The amplitude of the free-surface reflection coefficients RSS
F , RPS

F as a function
of slowness.

This matrix shares some of the attributes of a transmission matrix and has the
representation

WfG
U = −i[TDG(0)]−T , (5.79)

which may be found by eliminatingRfGU between the surface displacement and
traction equations.

If we move the levelzG up to just below the surface i.e.zG = 0+, the resulting
free-surface reflection matrix

RF = Rf0U = −n−1
D0nU0, (5.80)

is frequency independent at fixed slownessp. ForSHwaves, from (3.38),

RHHF = 1, (5.81)

and forP-SVwaves, from (3.37),[
RPPF RSPF
RSPF RSSF

]
=

1

4p2qα0qβ0 + υ2

[
4p2qα0qβ0 − υ2 4ipυ(qα0qβ0)1/2

4ipυ(qα0qβ0)1/2 4p2qα0qβ0 − υ2

]
, (5.82)

where

υ = (2p2 − β−2
0 ). (5.83)

With our choice of normalisationRF is a symmetric matrix, and we note

RPPF = RSSF (5.84)

97



Reflection and Transmission I

These surface coefficients become singular at a slownesspR such that the
denominator vanishes i.e.

(2p2R − β−2
0 )2 + 4p2Rqα0qβ0 = 0, (5.85)

and this is just the condition for the existence of free Rayleigh surface waves on
a uniform half space with the surface properties (cf., Section 11.2). In a Rayleigh
wave bothP andS waves are evanescent throughout the half space and sopR >

β−1
0 . For a Poisson solid(α =

√
3β) pR = 1.0876β−1

0 .
The free-surface reflection elements RSS

F , RPSF are shown in figure 5.4 as a
function of slownessp, for α0 = 6.0 km/s,β0 = 3.33 km/s.

At vertical incidence(p = 0) RSSF is unity and falls to a minimum just before the
P waves go evanescent atp = 0.167 s/km. For larger slowness RSSF has modulus
unity until S waves becomes evanescent atp = 0.3 s/km. The RPSF coefficient is
zero at vertical incidence, but the efficiency of conversion increases with slowness
until p = α−1

0 at which there is a null. For larger slowness there is a rapid increase
to a value greater than unity when propagatingSwaves and evanescentP waves are
coupled at the surface. RPSF drops once again to zero whenp = β−1

0 /
√
2.

At the free surface, the displacement matrix due to an incident upgoing wave is

WF = (mU0 + mD0RF). (5.86)

For SHwaves we have a simple scalar multiplication

WHH
F = 2, (5.87)

but forP-SVwaves the matrixWF has a more complex form

WF =

[
−iqα0εα0C1 pεβ0C2
pεα0C2 −iqβ0εβ0C1

]
, (5.88)

in which the elements ofmU0 are modified by the presence of the conversion
factors from infinite medium to free-surface displacements

C1 = 2β−2
0 (2p2 − β−2

0 )/{4p2qα0qβ0 + υ2},

C2 = 4β−2
0 qα0qβ0/{4p

2qα0qβ0 + υ2}.
(5.89)

These conversion factors are appropriate to both propagating and evanescent waves.
To satisfy the boundary condition at the base of the stratification, for example,

we would construct a displacement field

W2G(z) = WDG(z) + WUG(z)RGLD , (5.90)

whereRGLD is chosen so that a specified linear combination of displacement and
traction vanishes at some depth. If the stratification is underlain by a uniform half
space forz > zL we would chooseRGLD in the usual way so that no upgoing waves
are present in this region; the boundary condition here would be

mT
DLT 2G(zL) − nTDLW2G(zL) = <WDL,W2G> = 0. (5.91)
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5.2 A stratified region

For wavespeed distributions which increase steadily with depth belowzL we would
now chooseRGLD so thatW2 tends to zero asz → ∞.

5.2.4 Reflection matrices for spherical stratification

For spherically stratified media we may once again specify the reflection and
transmission properties of a spherical shell by surrounding this region by uniform
media with continuity of properties at the internal and external radii.

In a uniform medium we can separateP andSVwave contributions for which the
displacement solutions in the(l,m,ω) transform domain have a radial dependence
in terms of spherical Bessel functions. There is now the added complication
that the character of the solution for each wave type switches from oscillatory to
exponential across a ‘turning radius’ which forP waves is

Rα = p̄α = (l+ 1
2)α/ω. (5.92)

Above this levelRα we take solutions depending onh(1)
l (ωR/α) for upgoingP

waves andh(2)
l (ωR/α) for downgoingP waves. BelowRα we switch to solutions

which give a better representation of the evanescent character:jl(ωR/α) which
decays away fromRα andyl(ωR/α) which grows exponentially. The nature of the
turning levelRα is best seen from a physical ray picture. In a uniform medium a
P ray path is a straight line and for angular slownessp̄ the closest approach to the
origin is at a radiusRα.

For a particular wave type we will designate as ‘downgoing’, the actual
downgoing waves above the turning level and the evanescently decaying solution
below this level. Similarly, we will use ‘upgoing’ to mean upward travelling waves
above the turning level and the exponentially growing solution below. In this way
we achieve the same specification as was possible in horizontal stratification by our
choice of physical Riemann sheet (3.8).

We may now set up a fundamentalB matrix at a radiusR in a uniform medium
with a character determined by the relative location ofR and the turning levels
Rα, Rβ. The reflection and transmission matrices for a spherical shell or interface
may then be found by following the development of Section 5.1 withD(zA) etc.
replaced by the appropriate fundamental matrices.

For models composed of uniform shells it is worthwhile to follow Chapman &
Phinney (1972) and extract from the fundamental matrices a diagonal term which
represents the main dependence onR. This procedure allows the propagator for a
uniform layer to be written as

P(R1,R2) = F(R1)E(R1,R2)F−1(R2), (5.93)

where the radial phase behaviour is concentrated in a ratio of spherical Bessel
functions inE(R1,R2).

The propagation invariants (2.36), (2.68) carry over to the spherical case and so
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for the region(RC,RA) we can find, for example, the reflection and transmission
matrices for downward incidence atRA as,

TACD = <WUA,WDC>
−1<WUA,WDA>,

RACD = −<WDC,WUA>
−1<WDC,WUA>.

(5.94)

Here WUA,WDA are displacement matrices with upgoing and downgoing
character respectively atRA. For a zone including the centre of the sphere we use
(5.94) withWDC replaced by a displacement matrix whose columns are regular at
the origin.

Appendix: Unitary relations for reflection and transmission
In the course of this chapter we have made extensive use of the matrix invariant
<W1,W2> for two displacement fields. This form is appropriate for attenuative media,
but when the material properties areperfectly elasticwe can introduce a further invariant

WT∗
1 T2 − TT∗

1 W2 = {W1,W2}. (5a.1)

We introduce the quantitiesjα, jβ which specify whetherP andSwaves are propagating
or evanescent; we take, e.g.,

jα = 1 P propagating,

= 0 P evanescent,
(5a.2)

so thatjα acts as a projection operator onto propagatingP waves. It is also convenient to
consider1− jα which projects onto evanescentP waves, so we write

j̄α = 1− jα. (5a.3)

The elastic invariants for the partitions of the eigenvector matrix forP-SVwaves are

{mU,mU} = −{mD,mD} = i

[
jα 0
0 jβ

]
= iJJJ, (5a.4)

and

{mU,mD} = {mD,mU} =

[
j̄α 0

0 j̄β

]
= J̄JJ. (5a.5)

We construct a fundamental stress-displacement matrix

B(z) =

[
W1 W2

T1 T2

]
, (5a.6)

and choose

W1(z) = WDA(z) + WUA(z)RAB
D = WDB(z)TAB

D ,

W2(z) = WUA(z)TAB
U = WUB(z) + WDB(z)RAB

U ,
(5a.7)

in terms of the displacement matricesWDA etc. introduced in Section 5.2. The symmetry
of the governing equations (2.40) requires thatBT∗NB will be independent of depth; with
partitioned form

BT∗NB =

[
{W1,W1} {W1,W2}

{W2,W1} {W2,W2}

]
. (5a.8)
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If we evaluate (5a.8) atz = zA and make use of the results (5a.4)-(5a.5) we find

BT∗NB =

 −iJJJA + (RAB
D )T∗iJJJARAB

D

+(RAB
D )T∗J̄JJA − J̄JJARAB

D

J̄JJATAB
U + (RAB

D )T∗iJJJATAB
U

(TAB
U )T∗J̄JJA + (TAB

U )T∗iJJJARAB
D (TAB

U )T∗iJJJATAB
U

 . (5a.9)

We get a comparable form forBT∗NB atz = zB with the roles of up and downgoing waves
interchanged, and equating the two expressions forBT∗NB we have

i

[
(RAB

D )T∗ (TAB
D )T∗

(TAB
U )T∗ (RAB

U )T∗

] [
JJJA 000

000 JJJB

] [
RAB

D TAB
U

TAB
D RAB

U

]
− i

[
JJJA 000

000 JJJB

]
+

[
(RAB

D )T∗ (TAB
D )T∗

(TAB
U )T∗ (RAB

U )T∗

] [
J̄JJA 000

000 J̄JJB

]
−

[
J̄JJA 000

000 J̄JJB

] [
RAB

D TAB
U

TAB
D RAB

U

]
= 000. (5a.10)

If we now introduce the matrices

RRR =

[
RAB

D TAB
U

TAB
D RAB

U

]
, J =

[
JJJA 000

000 JJJB

]
, J̄ = I − J, (5a.11)

we can express (5a.10) as

iRRRT∗JRRR− iJ + [RRRT∗J̄ −RRRJ̄] = 0; (5a.12)

an equation previously derived by a rather different approach by Kennett, Kerry & Wood-
house (1978).

The matrixJ has the role of a projection operator onto any travelling waves at the top and
bottom of the region(zA, zB), andJ̄ projects onto evanescent waves. The joint operators
JJ̄, J̄J vanish.

When we apply the projectorJ to (5a.12) we obtain

(JRRRJ)T∗(JRRRJ) = J, (5a.13)

which shows that the portion of the overall reflection and transmsission matrixRRR corre-
sponding to travelling waves is unitary and this reflects the conservation of energy amongst
the travelling waves. Using thēJ projector we may also show that

(JRRRJ̄)T∗(JRRRJ̄) = 2 Im {J̄RRRJ̄},

(JRRRJ)T∗(JRRRJ̄) = i(JRRRJ̄)∗.
(5a.14)

The set of relations (5a.12)–(5a.14) enable us to establish a number of important interrela-
tions between the reflection and transmission coefficients for perfectly elastic stratification,
and we shall present those which will be useful in subsequent discussions.
(a) Propagating waves
If the radicalsqα, qβ are real at the top and bottom of the stratification, allP andSwaves
have propagating form and soJ = I , J̄ = 0 and thus

RRRT∗RRR = I. (5a.15)

The overall reflection and transmission matrix is therefore unitary and from (5.75) is also
symmetric.
(b) Evanescent waves
When bothzA andzB lie in the evanescent regime for bothP andS wavesJ = 0, J̄ = I
and

RRR = RRRT∗, (5a.16)
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and sinceRRR is also symmetric,RRR must be real i.e. all reflection and transmission coeffi-
cients will be real.
(c) Turning points for both P and S waves
WhenP andS waves propagate at the levelz = zA: JJJA = I , J̄JJA = 000. With evanescent
behaviour for bothP andSatzB: JJJB = 000, J̄JJB = I . In this case we see from (5a.10) that

(RAB
D )T∗(RAB

D ) = I , (5a.17)

the downward reflection matrix is therefore unitary and symmetric. This unitary property
requires that

|RPP
D | = |RSS

D |, |RPP
D |2 + |RSP

D |2 = |RSS
D |2 + |RPS

D |2 = 1, (5a.18)

where RPP
D etc. are the components ofRAB

D ; also

arg RPS
D = 1

2π+ 1
2 (arg RPP

D + arg RSS
D ),

detRAB
D = exp{i(arg RPP

D + arg RSS
D )}.

(5a.19)

(d) Turning point for S, Evanescent P
If only S waves are propagating atzA and all wave types are evanescent atzB, J =
diag{0, 1, 0, 0} andJ̄ = diag{1, 0, 1, 1}. Now (5a.12) reduces to

|RSS
D | = 1 (5a.20)

and from (5a.14)

|RPS
D |2 = 2 Im RPP

D ,

arg RPS
D = 1

4π+ 1
2RSS

D ,

detRAB
D = RSS

D (RPP
D )∗.

(5a.21)

The results we have presented in this appendix have been derived for a portion of the
stratification bounded by two uniform half spaces. They may however be extended to, for
example, free-surface reflections.
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Chapter 6

Reflection and Transmission II

In the last chapter we showed how to define reflection and transmission matrices for
portions of a stratified medium bordered by uniform half spaces or a free surface.

We now demonstrate how the reflection and transmission properties of two or
more such regions can be combined to give the overall reflection and transmission
matrices for a composite region. These addition rules form the basis of efficient
recursive construction schemes for the reflection matrices. These recursive schemes
may be developed for stacks of uniform layers or for piecewise smooth structures
with gradient zones separated by discontinuities in the elastic parameters or their
gradients.

6.1 Reflection and transmission matrices for composite regions

When a stratified region consists of two or more types of structural elements,
we will often wish to calculate the reflection and transmission matrices for these
elements separately and then to combine these results to give the reflection
matrices for the entire region. We use a set of addition rules for the reflection
and transmission properties which can be derived from the chain rule for the
wave-propagator or from the use of displacement matrices.

6.1.1 Superimposed stratification

We consider, as before, the region(zA, zC) bounded by uniform half spaces with
continuity of elastic parameters atzA and zC. This region is then divided by
splitting the stratification at a levelzB betweenzA and zC. We envisage the
introduction of an infinitesimal uniform region atzB, as in the derivation of the
chain rule (5.38) for the wave-propagator

Q(zA, zC) = Q(zA, zB)Q(zB, zC). (6.1)

SincezA ≤ zB ≤ zC we can adopt the representation (5.45) for each of the
wave-propagators in (6.1). The left hand side of (6.1) consists of partitions of
Q(zA, zC) represented in terms of the overall matricesRACD , TACD etc, and these
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are to be equated to partitioned matrices involving products ofRABU , RBCD and the
other reflection matrices for the upper region ‘AB’ and the lower region ‘BC’. Thus

(TACD )−1 = (TABD )−1[I − RABU RBCD ](TBCD )−1,

RACD (TACD )−1 = TABU RBCD (TBCD )−1 + RABD (TABD )−1[I − RABU RBCD ](TBCD )−1,

(TACD )−1RACU = (TABD )−1RABU TBCU + (TABD )−1[I − RABU RBCD ](TBCD )−1RBCU .

(6.2)

There is a rather more involved expression for the remaining partition ofQ(zA, zC).
With the aid of the expression for(TACD )−1 we can recover the overall reflection

and transmission matrices. The downward matrices are

TACD = TBCD [I − RABU RBCD ]−1TABD ,

RACD = RABD + TABU RBCD [I − RABU RBCD ]−1TABD ;
(6.3)

and the upward matrices have a similar structure

TACU = TABU [I − RBCD RABU ]−1TBCU ,

RACU = RBCU + TBCD RABU [I − RBCD RABU ]−1TBCU .
(6.4)

These addition rules for reflection and transmission matrices enable us to build up
the response of a stratified medium a segment at a time (see Section 6.2).

6.1.2 Generalisation of addition rules

In Section 5.2 we have shown the interrelation of reflection and transmission
matrices and the fundamental stress-displacement matrixBVC whose columns
correspond to up and downgoing waves at the levelzC. We now exploit this relation
to extend the addition rules to general reflection matrices.

At the levelzA we may constructBVC(zA) as

BVC(zA) = P(zA, zC)D(zC),

= P(zA, zB)P(zB, zC)D(zC), (6.5)

using the propagator chain rule (2.89). We may now rewrite (6.5) in terms of the
wave-propagator betweenzB andzC, using (5.47), as

BVC(zA) = P(zA, zB)D(zB)Q(zB, zC),

= BVB(zA)Q(zB, zC), (6.6)

where we recognise the fundamental matrixBVB corresponding to up and
downgoing waves atzB. In partitioned form we see that the two fundamental
matrices are connected by the reflection and transmission properties of the region
(zB, zC) appearing inQ(zB, zC). Thus

WUC(zA) = WUB(zA)TBCU − {WDB(zA) + WUB(zA)RBCD }(TBCD )−1RBCU ,

WDC(zA) = {WDB(zA) + WUB(zA)RBCD }(TBCD )−1, (6.7)
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with corresponding forms for traction components.
Consider now imposing a free-surface boundary condition atz = zA, from (5.63)

the upward reflection matrix betweenzC at the free surface is

RfCU = −TTT−1
DC(zA)TTTUC(zA), (6.8)

in terms of the traction components ofBVC. If we now substitute forBVC in terms
of BVB and the ‘BC’ reflection and transmission matrices, we have

RfCU = TBCD {TTTDB(zA) + TTTUB(zA)RBCD }−1TTTUB(zA)TBCU + RBCU , (6.9)

so that from (6.8)

RfCU = RBCU + TBCD RfBU [I − RBCD RfBU ]−1TBCU . (6.10)

This addition relation has just the same form as our previous relation for upward
matrices (6.4). The structure of the addition relations for reflection will be the same
for all boundary conditions on the seismic field such that a linear combination
of displacement and traction vanishes at some depth. The calculation of the
corresponding reflection matrices requires the evaluation of an expression like (6.8)
with TTT replaced by some other combination of displacement and traction. Since the
same linear operator will be applied to both sides of (6.7) we see that we will always
extract a reverberation operator from the expression in braces (cf. 6.10).

When we require the free-surface traction to vanish we get a further
generalisation of the addition rule for transmission, since the surface displacement
WfC
U may be represented as

WfC
U = WfB

U [I − RBCD RfBU ]−1TBCU , (6.11)

when we use (2.68), and this has the same form as (6.4) for upward transmission.
A particularly useful form for this displacement operator is obtained if we bring

zB to lie just beneath the free surface(z = 0)

WfC
U = WF[I − R0CD RF]

−1T0CU , (6.12)

where WF = mU0 + mD0RF, in terms of the partitions ofD(0+). This
displacement operator plays an important role in the expressions for the response
of a half space to excitation by a buried source, as we shall see in Section 7.3.

6.1.3 Interpretation of addition rules

The addition rules (6.3), (6.4) enable us to construct the overall reflection and
transmission matrices for a region ‘AC’ but we have yet to give any physical
interpretation to the way in which the properties of the regions ‘AB’ and ‘BC’
are combined.

As an illustration we take the downward matrices

TACD = TBCD [I − RABU RBCD ]−1TABD ,

RACD = RABD + TABU RBCD [I − RABU RBCD ]−1TABD ;
(6.13)
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Figure 6.1. Schematic representation of the first few terms of the expansion of the addition
rules for reflection and transmission matrices: showing the interactions with the regions
‘AB’ and ‘BC’.

where the properties of the upper and lower regions are coupled through the action
of the matrix inverse[I − RABU RBCD ]−1.

For SHwavesRABU RBCD is just a product of reflection coefficients

RABU RBCD = (RHHU )(RHHD ), (6.14)

where for simplicity we have dropped the superscriptsAB, BC. For P-SVwaves
the matrix product generates

RABD RBCD =

(
RPPU RPPD + RPSU RSPD RPPU RPSD + RPSU RSSD

RSPU RPPD + RSSU RSPD RSPU RPSD + RSSU RSSU

)
, (6.15)

and each of the components represents a physically feasible combination of
reflection elements.

When we make a direct evaluation of the inverse[I − RABU RBCD ]−1 in terms of
the determinant and the matrix adjugate we run into difficulties in all coupled wave
cases. For example in the expansion of the determinant forP-SVwaves we generate
the reflection combinations

RSPU RPSD RPSU RSPD , RPPU RPPD RSSU RSSD , (6.16)

which because of the switch in wavetype cannot be acheived by any physical
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process (Cisternas, Betancourt & Leiva, 1973). The difficulty may be resolved
if instead we make a series expansion of the matrix inverse as

[I − RABU RBCD ]−1 = I + RABU RBCD + RABU RBCD RABU RBCD + ... , (6.17)

for which all the combinations of interactions are physically feasible. With the
expansion of this inverse, the downward reflection and transmission matrices have
the representation

RACD = RABD + TABU RBCD TABD + TABU RBCD RABU RBCD TABD + ... ,

TACD = TBCD TABD + TBCD RABU RBCD TABD + ... ,
(6.18)

and higher terms in these series involve further powers ofRABU RBCD .
The sequences (6.18) are illustrated schematically in figure 6.1 where we have

envisaged some incident downward travelling wave atzA giving rise to both
reflection and transmission terms. The physical content of each of the terms in
(6.17) can be found by reading it from right to left.

For the reflection series,RABD is just the reflection matrix for the region ‘AB’
in isolation. The second termTABU RBCD TABD represents waves which have been
transmitted through the upper region and then been reflected by the region ‘BC’
and finally transmitted back through the upper zone. InTABU RBCD RABU RBCD TABD we
have the same set of interactions as in the previous term but in addition we include
waves reflected down from the upper region tozB and then reflected back from the
region ‘BC’ before passage tozA. The higher terms in the series include further
internal interactions between the zones ‘AB’ and ‘BC’. The total response (6.3)
includes all these internal reverberations so that we refer to[I − RABU RBCD ]−1 as the
reverberationoperator for the region ‘AC’.

A similar pattern can be seen in the transmission series (6.18). The first term
TBCD TABD corresponds to direct transmission down through the entire region ‘AC’.
The second and higher terms in the series include successive internal reverberations
represented by the powers ofRABU RBCD .

With this interpretation of the reverberation operator we see that if we truncate
the expansion of[I − RABU RBCD ]−1 to M + 1 terms, we will includeM internal
reverberations in our approximations (6.18) forRACD , TACD . If these reflection and
transmission quantities are themselves used in a further application of the addition
rule, the possible internal reverberations are cumulative and a maximum ofnM

such legs can occur,wheren is the number of timesRACD or TACD appears in a full
expansion of the response.

Truncated expansions have been used to study multiple reflections and to limit
attention to portions of the seismic wave field by Kennett (1975,1979a) and Stephen
(1977). For studies of complex multiples it is particularly convenient to suppress
all internal reverberations in a region by using the approximation

0RACD = RABD + TABU RBCD TABD . (6.19)
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With only a single internal reverberation allowed we have

1RACD = RABD + TABU RBCD [I + RABU RBCD ]TABD , (6.20)

and when the full reverberation sequence is included with the matrix inverse

RACD = RABD + TABU RBCD [I − RABU RBCD ]−1TABD . (6.21)

The same combination of terms appear in (6.20),(6.21) and forP-SV waves we
have only a 2× 2 matrix inverse to calculate. When more than a single internal
interaction within ‘AC’ is desired, it is therefore more convenient, and efficient, to
compute the full response (6.21).

In the discussion above we have allowed for the possibility of conversion
betweenP and SV waves during reflection from the regions ‘AB’ and ‘BC’. If
such reflections are negligible, the reverberation operator essentially factors into
separate operators forP andSVwaves:

[I − RABU RBCD ]−1 ≈
[
[1− RABU RBCD ]−1PP 0

0 [1− RABU RBCD ]−1SS

]
. (6.22)

The situation is more complex if conversion is likely in only the region ‘AB’,
since there will now be partial coupling betweenP andSV internal multiples. The
reverberation sequence for each wave type will be modified by the presence of
contributions arising from converted multiples of the type: RPS

U RSSD RPSU RPPD .

6.2 Reflection from a stack of uniform layers

The absence of reflections from within any uniform layer means that the reflection
matrix for a stack of uniform matrix depends heavily on the interface coefficients.
Transmission through the layers gives phase terms which modulate the interface
effects. For a stack of uniform layers the addition rules introduced in the previous
section may be used to construct the reflection and transmission matrices in a
two-stage recursive process. The phase delays through a layer and the interface
terms are introduced alternately.

6.2.1 Recursive construction scheme

Consider a uniform layer inz1 < z < z2 overlying a pile of such layers inz2 <
z < z3. We suppose the reflection and transmission matrices atz2− just into the
layer are known and write e.g.

RD(z2−) = RD(z2−, z3+) (6.23)
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We may then add in the phase terms corresponding to transmission through the
uniform layer using the addition rule and (5.49), to calculate the reflection and
transmission matrices just below the interface atz1+. Thus

RD(z1+) = EEE12DRD(z2−)EEE12D

TD(z1+) = TD(z2−)EEE12D

TU(z1+) = EEE12DTU(z2−)

(6.24)

whereEEE12D is the phase income for downward propagation through the layer (3.45).
A further application of the addition rules allows us to include the reflection and

transmission matrices for the interfacez1, e.g.,

R1D = RD(z1−, z1+). (6.25)

The downward reflection and transmission matrices just above thez1 interface
depend on the interface terms and the previously calculated downward quantities

RD(z1−) = R1D + T1URD(z1+)[1− R1URD(z1+)]−1T1D,

TD(z1−) = TD(z1+)[1− R1URD(z1+)]−1T1D,
(6.26)

The upward matrices take a less simple form since we are in effect adding on a
layer at the most complex level of the wave propagation system

RU(z1−) = RU(z2−) + TD(z1+)R1U[1− RD(z1+)R1U]−1TU(z1+),

TU(z1−) = T1U[1− RD(z1+)R1U]−1TU(z1+).
(6.27)

If desired, truncated reverberation sequences can be substituted for the matrix
inverses to give restricted, approximate results.

These two applications of the addition rule may be used recursively to calculate
the overall reflection and transmission matrices. We start at the base of the layering
at z3 and calculate the interfacial matrices e.g.R3D which will also beRD(z3−).
We use (6.24) to step the stack reflection and transmission matrices to the top of the
lowest layer in the stack. Then we use the interfacial addition relations (6.26)-(6.27)
to bring the stack matrices to the upper side of this interface. The cycle (6.24)
followed by (6.26)-(6.27) allows us to work up the stack, a layer at a time, for an
arbitrary number of layers.

For the downward matricesRD, TD (6.24), (6.26) require only downward stack
matrices to be held during the calculation. When upward matrices are needed it is
often more convenient to calculate them separately starting at the top of the layering
and working down a layer at a time. The resulting construction scheme has a similar
structure to (6.24), (6.26) and is easily adapted to free-surface reflection matrices
by starting with free-surface coefficients rather than those for an interface.

At fixed slownessp all the interfacial matricesRiD, TiD, etc. are frequency
independent so that at each layer step frequency dependence enters via the phase
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termEEE12D . If the interfacial coefficients are stored, calculations may be performed
rapidly at many frequencies for one slownessp.

When waves go evanescent in any layer our choice of branch cut for the vertical
slownessqα, qβ mean that the terms inEEE12D are such that

exp{iωqα(z2 − z1)} = exp{−ω|qα|(z2 − z1)} (6.28)

whenq2α < 0. We always havez2 > z1 and so no exponential terms which grow
with frequency will appear. This means that the recursive scheme is numerically
stable even at high frequencies.

The scalar versions of the recursive forms for downward reflection and
transmission coefficients have been known for a long time and are widely used in
acoustics and physical optics. The extension to coupled waves seems first to have
been used in plasma studies (e.g., Altman & Cory, 1969) and was independently
derived for the seismic case by Kennett (1974).

6.2.2 Comparison between recursive and propagator methods

For a stack of uniform layers we may also use the analytic form of the
stress-displacement propagator (3.42) in each layer and then find the reflection
and transmission coefficients for the entire stack from the overall wave-propagator
(5.11). The elements of the propagator depend on, for example,Cα = cosωqαh.
When all wave types are propagating throughout the stack the propagator approach
is very effective and for perfectly elastic media offers the advantage of working
with real quantities.

Once waves become evanescent in any part of the layering the direct propagator
approach is less effective. In the recursive scheme we can avoid any exponentially
growing terms and so these must be absent in any representation of the reflection
coefficients. However for evanescentP waves, for example,Cα = coshω|qα|h

and the growing exponentials must cancel in the final calculation of the reflection
coefficients. With finite accuracy computations the cancellation is not complete
since the growing exponentials swamp the significant part of the calculation.
Compared with this problem the complex arithmetic needed for the recursive
scheme seems a small handicap.

The difficulty with the propagator method can be removed by working directly
with the minors which appear in the reflection coefficients (Molotkov, 1961;
Dunkin, 1965). Unfortunately for transmission coefficients some difficulties still
arise since individual matrix elements are needed as well as a minor (Fuchs,
1968; Cerveny, 1974). An efficient computational procedure for the minor matrix
method has been given by Kind (1976). An alternative development which aims to
minimize the computational effort depending on the character of the solution has
been given by Abo-Zena (1979).

Comparable numerical instability problems associated with growing solutions
of the differential equations occur in the construction of propagator matrices by
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Figure 6.2. Division of a piecewise smooth medium into gradient zoneszA < z < zB−,
zB+ < z < zC bordered by uniform media and an interface atzB between uniform media.

direct numerical integration of the governing equations (2.26). Once again these
difficulties can be cured by working directly in terms of minors (Gilbert & Backus,
1966; Takeuchi & Saito, 1972). However, since ratios of minors are really the
quantities of interest, Abramovici (1968) has worked with the non-linear Ricatti
differential equations for these ratios and found the same benefits as with the
recursive approach to reflection matrix calculation.

For a fully anisotropic medium the propagator matrix itself is a 6×6 matrix and
suffers from the same numerical difficulties as in the isotropic case. Once again it
is possible to work with minor matrices but now we have a 27×27 matrix of 3×3
minors to be manipulated, which is rather inconvenient. The recursive method, on
the other hand, involves only products and inverses of 3×3 matrices and proves to
be very effective for this anisotropic case (Booth & Crampin, 1981).

6.3 Reflection matrices for piecewise smooth models.

We have just seen how we can make a recursive development for the reflection
and transmission properties of a stack of uniform layers. For much of the earth
a more appropriate representation of the wavespeed distribution is to take regions
of smoothly varying properties interrupted by only a few major discontinuities.
Such a model can be approximated by a fine cascade of uniform layers but then
the process of continuous refraction by parameter gradients is represented by high
order multiple reflections within the uniform layers. With a large number of such
layers the computational cost can be very high.

Fortunately we can adopt a more direct approach by using a model composed of
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gradient zones (figure 6.2). Following Kennett & Illingworth (1981) we split the
stratification into interfaces at which there is a discontinuity in elastic parameter
or parameter gradients and zones of parameter gradients sandwiched between
uniform media. We once again make a two-stage recursion, with alternate interface
and propagation cycles, but now the transmission delays for a uniform layer are
replaced by the reflection and transmission effects of a gradient zone.

6.3.1 Reflection from a gradient zone

We consider a region(zA, zB) in which the wavespeeds increase uniformly with
depth. In order to construct reflection and transmission matrices for this zone we
weld on uniform half spaces atzA andzB. Although we have continuity in the
elastic parameters atzA andzB, there will normally be a discontinuity in parameter
gradient at these boundaries.

We now build the wave-propagator for(zA, zB) from the fundamental matrixBI
we constructed for a smoothly varying medium in Section 3.3.2, so that

Q(zA, zB) = D−1(zA)BI(zA)B−1
I (zB)D(zB) (6.29)

In order to emphasise the asymptotic relation ofBI to up and downgoing waves we
combine the representations (3.102), (3.107) and (3.110) and then

Q(zA, zB) = D−1(zA)DDD(zA)

EEE(zA)L(zA; zr)L−1(zB; zr)EEE
−1(zB)

DDD−1(zB)D(zB). (6.30)

The wave-propagatorQ may be factored into the terms governing the entry and
exit of plane waves from the gradient zoneD−1(zA)DDD(zA), DDD−1(zB)D(zB) and the
matrix

F(zA, zB) = EEE(zA)L(zA, zB; zr)EEE
−1(zB), (6.31)

which represents all the propagation characteristics within the gradient zone. The
phase terms arise from the Airy function terms inEEE(zA) and EEE(zB) and the
interaction sequence for the entire gradient zone

L(zA, zB; zr) = L(zA; zr)L−1(zB; zr). (6.32)

Herezr is the reference level from which the arguments of the Airy functions are
calculated.L can, in principle, be found from the interaction series (3.96) to any
required order of interaction with(zA, zB). EEE(zA) andEEE(zB) are diagonal matrices
which for P-SV waves are organised into blocks by wave type. The interaction
series forL begins with the unit matrix and if all subsequent contributions are
neglected,P andS waves appear to propagate independently within the gradient
zone (cf. 3.101). Once the higher terms in the interaction series are included,
the P andSV wave components with slownessp are coupled together. When the
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wavespeeds vary slowly with depth, this coupling is weak at moderate frequencies
(Richards, 1974).

At the limits of the gradient zone we have introduced discontinuities in
wavespeed gradient, andD−1(zA)DDD(zA) depends on the difference between the
generalized slownesses for the gradient zoneηu,d(ω,p, zA) and the corresponding
radicals in the uniform region. ForSHwaves,

D−1(zA)DDD(zA) = GGGβ(zA) = ρεβ

[
qβ + ηβu qβ − ηβd
qβ − ηβu qβ + ηβd

]
. (6.33)

For P-SVwaves we have to take account of the differing organisation ofDDD andD;
we have arrangedDDD by wave type andD by up and downgoing wave character.
Thus

D−1
P (zA)DDDP(zA) = ΞΞΞ

[
GGGα 000

000 GGGβ

]
, (6.34)

whereΞΞΞ is the matrix introduced in (3.118), to connect fundamentalB matrices
organised by wave type or asymptotic character. We see from (6.34) that the
interface terms do not coupleP andSVwaves.

The wave-propagatorQ may be expressed in terms of the interface matricesG
as

Q(zA, zB) = ΞΞΞG(zA)F(zA, zB)G−1(zB)ΞΞΞ. (6.35)

for SH waves we takeΞΞΞ to be the unit matrix. The matricesG, F are organised by
wave type but under similarity transformationΞΞΞFΞΞΞ takes the form

ΞΞΞFΞΞΞ = F̄ =

[
Fuu Fud

Fud Fdd

]
, (6.36)

and in the asymptotic regime far from turning points, at least, the new partitions
connect up and downgoing elements rather than a single wave type. SinceΞΞΞ is its
own inverse, we can recast (6.35) into the form

Q(zA, zB) = ΞΞΞG(zA)ΞΞΞ.ΞΞΞF(zA, zB)ΞΞΞ.ΞΞΞG−1(zB)ΞΞΞ,

= Ḡ(zA)F̄(zA, zB)Ḡ−1(zB), (6.37)

and each of the factors in (6.37) have a strong resemblance to wave-propagators.
For each of these matrices we introduce a set ofgeneralizedreflection and

transmission matricesrd, td etc. such that

Ḡ(zA) =

[
tGu − rGd (tGd )−1rGu rGd (tGd )−1

−(tGd )−1rGu (tGd )−1

]
. (6.38)

The generalized elements for a matrix productḠF̄ can be determined by an
extension of the addition rules (6.3), (6.4), for example

rGFd = rGd + tGu rFd[I − rGu rFd]
−1tGd . (6.39)
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The reflection and transmission matricesRABD , TABD etc. for the whole gradient
zone(zA, zB) can therefore be built up from therd, td matrices for the factors of
the wave-propagator.

For the interface matrix̄G, the generalized elementsrGd , rGu have a simple form:
for SHwaves

rGd |HH = (qβ − ηβd)/(qβ + ηβd),

rGu |HH = (ηβu − qβ)/(qβ + ηβd),

tGu tGd |HH = 2qβ(ηβu + ηβd)/(qβ + ηβd)
2.

(6.40)

The individual transmission terms are not symmetric becauseDDD is not normalised in
the same way asD. SinceḠ does not coupleP andSVwaves, theSS elements ofrd
etc. are equal to theHH elements and thePP elements are obtained by exchanging
α for β. The reflection terms depend on the off-diagonal parts ofGGGα,GGGβ. We recall
thatηβu,d depend on the wavespeed distribution within the gradient zone and so
the reflections should not be envisaged as just occurring atzA.

In order to give a good approximation for the phase matrixEEE it is convenient
to extrapolate the wavespeed distribution outside the gradient zone until turning
points are reached and then to calculate the phase delaysτα andτβ from theP and
Swave turning levels. When these turning points lie well outside the gradient zone
(zA, zB), the generalized vertical slownessesηβu,d tend asymptotically toqβ and
soGGGβ tends to a diagonal matrix. In this asymptotic regime there will therefore
be no reflection associated with the discontinuities in wavespeed gradient. When
turning levels lie close tozA or zB, the differences(ηβu,d−qβ) become significant
and noticeable reflected waves can occur as in the work of Doornbos (1981).

The nature of the generalized reflection and transmission termsrFd, tFd associated
with the propagation matrix within the gradient zoneF̄(zA, zB) depends strongly
on the locations ofP andSwave turning points relative to the gradient zone.

(a) Above all turning points:
For slownessesp such that bothP and S wave turning points lie belowzB, we
use the propagating forms Ej, Fj for the Airy function entries at bothzA and
zB. We splitEEE(zA) andEEE(zB) into the parts which asymptotically have upgoing
wave character(eeeAu , eee

B
u) and downgoing character(eeeAd , eee

B
d). Theeeeu,d matrices are

diagonal and the total propagation term̄F(zA, zB) may be expressed in partitioned
form as

F̄(zA, zB) =

[
eeeAu 000

000 eeeAd

][
I + LLLuu LLLud

LLLdu I + LLLdd

][
(eeeBu)

−1 000

000 (eeeBd)
−1

]
, (6.41)

with a reordered interaction term̄L . The relatively simple structure of (6.32)
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means that we can relate therFd, tFd terms directly to those derived solely from
the interaction series̄L : (rLd, t

L
d). Thus

tFd = (eeeBd)t
L
d(eee

A
d )−1, tFu = (eeeAu )tLu(eee

B
u)

−1,

rFd = (eeeAu )rLd(eee
A
d )−1, rFu = (eeeBd)r

L
u(eee

B
u)

−1.
(6.42)

When the interaction matrix̄L departs significantly from the unit matrix, it is
preferable to constructrLd, tLd directly, rather than first calculatēL . Kennett &
Illingworth (1981) have shown howrLd, tLd can be calculated by numerical solution
of a coupled set of matrix Ricatti equations. This problem has good numerical
stability and is simpler than calculating many terms in the interaction series.

If the contributionsLLLuu, LLLud etc. are small, the generalized reflection and
transmission elements are given to first order by

tLd = I − LLLdd, tLu = I + LLLuu,

rLd = LLLud, rLu = −LLLdu.
(6.43)

We will illustrate these relations for theSH wave case, by making use of our
previous expressions (3.98)-(3.100) for the kernel in the interaction series (3.95).
From (3.98) we see thatLLLuu has the opposite sign toLLLdd, so that the transmission
terms have the same character. In the asymptotic regime far above theS wave
turning point

tLd|HH ∼ 1, tLu|HH ∼ 1,

rLd|HH ∼

∫ zB
zA

dζγH(ζ)e−2iωτβ(ζ),

rLu|HH ∼

∫ zB
zA

dζγH(ζ)e2iωτβ(ζ).

(6.44)

When we add in the phase terms atzA, zB via theeeeAu , eeeBd matrices to constructrFd,
tFd etc. we can recognise (6.44) as corresponding to first order reflections from the
parameter gradients. For a thin slab of thickness∆z, the approximateSH reflection
coefficient will have magnitudeγH∆z.

ForP-SVwaves the matricesLLLuu, LLLdu, LLLud, LLLdd lead to coupling betweenP and
Swaves. TheSS elements have the same structure as (6.44) withγH replaced by
γS; thePP elements haveγP in place ofγH and also theP wave phase delayτα
must be used. To this same first order asymptotic approximation

tLd|PS ∼ −i
∫ zB
zA

dζγT (ζ)e
iω(τβ(ζ)−τα(ζ)),

rLd|PS ∼ −

∫ zB
zA

dζγR(ζ)e
iω(τβ(ζ)+τα(ζ)).

(6.45)

The upgoing elements have the opposite phase. These terms lead to a transfer
betweenP andSwaves, of the same slownessp, as they traverse the gradient zone.
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These first order asymptotic results are equivalent to those discussed by
Chapman (1974a) and Richards & Frasier (1976) based on the use of the
WKBJ approximation. For moderate gradients the latter authors have shown that
significant conversion of wave types can be generated by the coupling terms (6.45).

When the asymptotic limit is not appropriate, the first order approximation may
still be used but the expressions forrLd, tLd have a more complex form in terms of
the Airy function entries Ej, Fj.

Once we have constructedrFd, tFd the reflection and transmission matricesRABD ,
TABD for the whole gradient zone can be found by successive applications of the
addition rules (6.3), (6.4) for therd, td matrices. We start by adding the matrices
corresponding tōF(zA, zB) to those forḠ−1(zB) and then the effect of̄G(zA) is
added to these composite matrices.

(b) Below all turning points:
When the turning points for bothP and S waves lie abovezA, we adopt the
phase termŝEEE in terms of the Airy functions entries Bj, Aj. At the interfaces the
generalized slownesseŝηu,d will now appear. The analysis for the propagation
effects parallels the purely propagating results, but in the asymptotic results
exp(iωτ) is replaced by exp(−ω|τ|). Direct calculation ofrLd for strong gradients
avoids numerical stability problems due to growing exponential terms.

(c) Turning points:
When the slownessp is such that turning points for eitherP or S waves occur
within the zone(zA, zB), we have to take account of the differences in the nature
of the wavefield at the top and bottom of the gradient zone. AtzA we would wish
to use the propagating elements for the wave type which has the turning point.
Whilst atzB a better description is provided by using the evanescent forms.

We therefore split the gradient zone at the turning levelzr. We use the terms for
propagating waves in the fundamentalB matrix abovezr. In the region belowzr
we take the fundamental matrix̂B with the appropriate terms for evanescence. The
wave-propagator can then be built up using the chain rule as

Q(zA, zB) = D−1(zA)B(zA)B−1(zr)B̂(zr)B̂−1(zB)D(zB),

= D−1(zA)B(zA)HB̂−1(zB)D(zB). (6.46)

The coupling matrixH arises from the differing functional forms ofB, B̂. The
particular form ofH depends, as we shall see, on the character of the turning point.

With the split representation within the gradient zone we will use different forms
for the interface matricesG(zA), Ĝ(zB) at the top and bottom of the zone. Taking
zr as the reference level for Airy function arguments, the propagation effects within
the gradient zone are represented by

F(zA, zB) = EEE(zA)L(zA; zr)HL̂−1(zB; zr)ÊEE
−1

(z), (6.47)
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and now the principal contribution to reflection from the zone will come from the
presence of the coupling matrixH.

The simplest situation is provided by a turning point forSHwaves. The coupling
matrix has the explicit form

hhh = EEE−1
β (zr)C−1

H (zr)CH(zr)ÊEEβ(zr), (6.48)

in terms of the full phase matrices (3.75), (3.81). There is continuity of material
properties atzr and so

hhh = EEE−1
β (zr)ÊEEβ(zr) = 2−1/2

[
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

]
. (6.49)

If we neglect all gradient contributions by comparison with the coupling termhhh
(i.e. takeL andL̂ to be unit matrices) we have the approximate propagation matrix

F0(zA, zB) = EEEβ(zA)hhhÊEE
−1
β (zB). (6.50)

The matrix hhh accounts for total internal reflection at the turning point. The
generalized reflection and transmission elements forF0 are then

rF0
d |HH = Ejβ(zA)e−iπ/2[Fjβ(zA)]−1

tF0
d |HH =

√
2Ajβ(zB)e−iπ/4[Fjβ(zA)]−1,

rF0
u |HH = Ajβ(zB)eiπ/2[Bjβ(zB)]

−1,

tF0
u |HH =

√
2Ejβ(zA)eiπ/4[Bjβ(zB)]

−1.

(6.51)

All these elements are well behaved numerically since the only exponentially
increasing term Bjβ appears as an inverse.

When the limits of the gradient zone lie well away from the turning point we may
make an asymptotic approximation to the Airy functions. We obtain the ‘full-wave’
approximation to the reflection (see, e.g., Budden, 1961)

rF0
d |HH ∼ exp{2iω

∫zr
zA

dζqβ(ζ) − iπ/2}. (6.52)

This corresponds to complete reflection with a phase shift ofπ/2 compared with
the phase delay for propagation down to the turning level and back. This simple
result forms the basis of much further work which seeks to extend ray theory (e.g.,
Richards, 1973; Chapman, 1978). The approximation will be most effective at
high frequencies; and, for neglect of the interaction terms, requires only slight
wavespeed gradients throughout(zA, zB). The corresponding approximation in
transmission is

tF0
d |HH ∼

1√
2

exp{iω
∫ zr
zA

dζqβ(ζ) − iπ/4} exp{−ω
∫zB
zr

dζ |qβ(ζ)|}, (6.53)

illustrating the damping ofSHwaves below the turning level.
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For theP-SVwave system the situation is more complicated since we now have
the possibility of bothP andSwave turning levels.

With just aP wave turning point atzr, we would choose to build the phase matrix
abovezr from the propagating formsEEEα andEEEβ. Belowzr we would takêEEEα and
EEEβ, with the result that the coupling matrixH is given by

H =

[
EEE−1
α 000

000 EEE−1
β

][
ÊEEα 000

000 EEEβ

]
=

[
hhh 000

000 III

]
, (6.54)

wherehhh was introduced in (6.40). The reflection and transmission elements for the
propagation matrixF will be determined by the character of

ΞΞΞL(zA; zr)HL̂−1(zB; zr)ΞΞΞ, (6.55)

which includes total reflection ofP waves atzr and coupling betweenP and S
waves away from the turning level. When the wavespeed gradients are weak the
coupling matrixH will dominate and we will have almost independent propagation
of P andSV waves. ThePP reflection and transmission elements will therefore
have the form (6.51) withβ replaced byα. TheSS coefficient will have the form
discussed above for propagating waves.

When the turning point forP waves lies abovezA we have evanescent character
for P throughout(zA, zB). The character of theSwave phase terms will now need
to be modified across theS wave turning level atzr. The corresponding coupling
matrix is

H =

[
ÊEE

−1
α 000

000 EEE−1
β

][
ÊEEα 000

000 ÊEEβ

]
=

[
III 000

000 hhh

]
, (6.56)

In these circumstances there is normally only a very small reflection or transmission
contribution from the evanescentP waves and coupling betweenP andSVwaves is
negligible. TheSS coefficients will therefore match theHH coefficients in (6.51).

When bothP andSwave turning points occur within the same gradient zone we
split the calculation at both turning levels, but then we have to be rather careful
about the nature of the coupling terms (Kennett & Illingworth, 1981). For realistic
earth models theP and S wave turning levels are widely separated and so the
dominant contributions will correspond to isolated turning levels.

In this discussion we have assumed that bothP andSwavespeeds increase with
depth, so thatsα and sβ are positive. If either wavespeed is actually smoothly
decreasing with depth we have a similar development with the roles of up and
downgoing waves interchanged for that wave type.

The approach we have used in this section has been based on a high frequency
approximation to the seismic wavefield in terms of Airy functions with arguments
determined by the delay timesτ in the model. A comparable development may
be made for spherical stratification (Richards, 1976; Woodhouse, 1978) and the
leading order approximation will be essentially the same since the flattening
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transformation (1.29) preserves delay times. To this level of approximation, it
therefore makes no real difference whether we work with spherical stratification
or a flattened wavespeed distribution. The structure of the correction terms inL
will differ between the two cases, since there is additional frequency dependence
in the spherical case, and there appears to be no density transformation which is
optimum for bothP andSVwaves (Chapman, 1973).

6.3.2 Recursive construction scheme

For a model composed of smooth gradient zones interrupted by discontinuities in
the elastic parameters or their gradients, we can build up the overall reflection and
transmission matrices by a recursive application of the addition rules.

We suppose that the model is ultimately underlain by a uniform half space inz >

zC with continuity of elastic properties atzC (figure 6.2). We start the calculation
from this level and consider the overlying gradient zone in(zB+, zC), extended
above by a uniform half space with the properties atzB+, just below the next higher
interface. For this region we construct the downward reflection and transmission
matricesRB+C

D , TB+C
D by successive applications of the addition rules for therd, td

matrices introduced in the previous section.RB+C
D , TB+C

D can then be recognised
as the reflection and transmission matrices as seen from a uniform half space at
zB+: RD(zB+), TD(zB+).

The effect of the interface can then be introduced, as in the uniform layer scheme,
by adding in the interface matricesRBD, TBD etc. for an interface between two
uniform media. This yields the reflection and transmission matrices as seen atzB−

so that, for example,

RD(zB−) = RBD + TBURD(zB+)[I − RBURD(zB+)]−1TBD. (6.57)

The calculation can then be incremented to the top of the next gradient zone
zA by introducing the reflection and transmission effects of the region(zA, zB−).
These may be calculated, as before, by an inner recursion over therd, td matrices
for the gradient factors. Whereas in the uniform layer case only phase delays
were involved, for a gradient zone all the matricesRAB−

D , RAB−
U , TAB−

D , TAB−
U

are needed.
The reflection and transmission matrices for the region belowzA will then be

derived from the matricesRD(zB−), TD(zB−) as

RD(zA) = RAB−
D + TAB−

U RD(zB−)[I − RAB−
U RD(zB−)]−1TAB−

D ,

TD(zA) = TD(zB−)[I − RAB−
U RD(zB−)]−1TAB−

D .
(6.58)

If there is a further interface atzA we once again add in the interface matrices via
the addition rule, and then continue the calculation through the next gradient zone.

Over the main structural elements we have a two-stage recursion over interfaces
and gradient zones to build the overall reflection and transmission matrices. The
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reflection elements for the gradients are themselves found by recursive application
of the same addition rules on thegeneralizedcoefficients.

A useful property of this approach to calculating the reflection properties is that
we can separate the effect of an interface from the structure surrounding it.

At a discontinuity in parameter gradients, the elastic parameters are continuous
and so the interface reflection matrices will vanish and the transmission matrices
will just be the unit matrix. In the overall reflection matrix the effect of
the discontinuity will appear from the contributions ofDDD−1(zB−)D(zB) and
D−1(zB)DDD(zB+) to the reflection properties of the regions above and below the
interface. We construct the discontinuity in gradient by superimposing the effect
of the transition from the gradients on either side of the interface into a uniform
medium. The procedure may be visualised by shrinking the jump in properties
acrosszB in figure 6.2 to zero.

An alternative development to the one we have just described may be obtained
by forming the wave-propagator for the entire region, for example for figure 6.2.

Q(zA, zC) = D−1(zA)DDD(zA)

F(zA, zB−)DDD−1(zB−)DDD(zB+)F(zB+, zC)

DDD−1(zC)D(zC). (6.59)

The overall reflection and transmission matrices can be constructed by using the
addition rule to bring in alternately the effects of interfaces and propagation using
the generalizedmatrices. AtzB the generalized interface coefficients are found
from

ΞΞΞDDD−1(zB−)DDD(z+)ΞΞΞ (6.60)

and depend on frequencyω as well as slownessp. Such generalized coefficients
have been used by Richards (1976), Cormier & Richards (1977) and Choy (1977),
when allowing for gradients near the core-mantle boundary.

Computationally there is little to choose between recursive schemes based on
(6.57) and (6.58), and a comparable development from (6.59). The first scheme has
the merit that the intermediate results at each stage are themselves reflection and
transmission matrices.

6.3.3 Gradient zone calculations

The calculation scheme for the reflection and transmission matrices which we have
described is based on building a fundamental matrix from Airy functions which
provide a uniform asymptotic approximation across a single turning point.

When there are two close turning points we no longer have a uniform
approximation to the full response. This situation will occur in the presence
of a wavespeed inversion. For a slownessp lying within the range of values
corresponding to the inversion there will be three turning levels at which, e.g.,
p = β−1(z). The shallowest will depend on the structure outside the inversion.
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6.3 Reflection matrices for piecewise smooth models.

As the slowness increases to the maximum in the inversion, the two deeper turning
levels tend towards coalescence. For our purposes the nearness of turning points
depends on the size of the Airy function arguments, and so problems are more
severe at low frequencies. For perfectly elastic models the unitarity relations
for reflection and transmission coefficients, discussed in the appendix to Chapter
5, provide a check on the accuracy of any approximation. Numerical studies
by Kennett & Illingworth (1981) have shown that for a very narrow band of
slownesses, corresponding to the minimum wavespeeds in the inversion, there can
be significant error with the Airy function treatment.

Within such an inversion a uniform asymptotic treatment can be achieved by
building the phase matrixE from parabolic cylinder function entries (Woodhouse,
1978). When an inversion is the dominant feature of the model, as in the oceanic
sound speed profile, the more accurate treatment is essential (Ahluwahlia & Keller,
1977).

Even when we only need to consider a single turning point at a time we
can economise on computational effort by choosing the reference level for the
calculation of the phase matricesE to match the physical character of the solution.
It is for this reason that it is a good idea to extrapolate the wavespeed distribution
from a region with, say, a linear gradient to create turning points if they are not
present in the region. Any deficiences in our choice forE will mean that further
terms are needed in the interaction series.

Chapman (1981) has proposed a similar development to the one we have
discussed but for reflected waves he suggests that the reference level for Airy
function arguments should be taken at the reflection level. Unless this reflection
level is close to a turning point the phase matrixE will not have the character of the
actual fields.

The calculation of the reflection and transmission effects of a gradient zone are
greatly simplified if the interaction terms can be neglected. With a good choice of
phase matrix the contributions toL will be small for weak gradients in the elastic
parameter. Kennett & Illingworth (1981) have shown that an upper bound on the
interaction series contribution torFd for a region (zA, zB) can be found as, e.g.,

rFd|PP ≤ Cε0(zB − zA), (6.61)

whereC is a constant of order unity andε0 is an upper bound on the elements
of j (3.93). The combinationε0(zB − zA) is thus a measure of the change in the
parameter gradient terms across the zone.

Although this contribution may be small, in the absence of turning points it is
the sole reflection return from within a gradient zone. It can only be neglected
if the dominant features of the response of thewholemodel under consideration
arise from turning points and discontinuities in elastic parameters with a weaker
contribution from discontinuities in parameter gradient.

In order to try to meet these conditions Kennett & Illingworth restricted their
gradient zones so that the relative change in elastic parameters was no more than
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10 per cent. For a large portion of a model this may mean breaking the structure
into portions with separate interpolation of the wavespeed distribution in each part.
At each break a weak change in parameter gradients will be introduced and the
contribution from these features helps to compensate for the lack of interaction
terms.

When the interaction contributions are neglected, wave types propagate
independently within gradients. The only coupling ofP and SV waves occurs
at discontinuities in elastic parameters. Good results can be achieved with this
approximation, provided that care is taken to satisfy the conditions for its validity.

Combining the numerical results of Kennett & Nolet (1979) and Kennett &
Illingworth (1981), we can estimate the frequencies necessary to get only slow
change in a wavelength and thus have minimal reflection return from the structure.
For the relatively gently varying lower mantle the frequency should be greater than
0.02 Hz, but in the upper mantle the more rapid structural variation means that
away from upper mantle discontinuities we need frequencies above 0.06 Hz.

For moderate gradient zones, and at low frequencies, an improved approximation
may be made by retaining the first term in the interaction series. Richards & Frasier
(1976) have made a comparable development with the WKBJ solution and shown
the importance of conversion when the wavespeeds change rapidly with depth. If
attention is concentrated on the reflection return at small angles of incidence (as in
prospecting situations) then once again at least the first order term inL should be
retained.

When a very sharp change in elastic parameters occurs across a gradient zone,
a direct numerical solution for the elementsrLd, tLd would be needed. Commonly
such zones are approximated by a cascade of fine uniform layers or a combination
of interfaces and gradients. Calculations by Kennett & Illingworth (1981) show
that for the upper mantle discontinuities several per cent error in the reflection
coefficients can be produced by neglect of conversions in a model with only closely
spaced changes in wavespeed gradient. With a good starting approximation the
variational method of Lapwood & Hudson (1975) can be used to improve the results
for this strong gradient case.

One region in which there are known to be strong positive gradients in elastic
parameters with depth, is in the uppermost part of the sediments on the ocean
bottom. The coupling ofP andS waves by the gradients in this region has been
discussed by Fryer (1981), who has simulated the gradient zone by a sequence of
thin uniform layers, and investigated the consequence of neglect of allPS coupling
at the minor jumps in parameters introduced by the approximation scheme. For
these sediments with low shear wavespeed, the coupling process was most efficient
in convertingS waves generated at the ocean bottom back toP waves, and was
most important below 1 Hz. For higher frequencies the partial reflections from the
gradients for any individual wave type can be significant up to about 7 Hz. However
these effects are most important for small offsets from the source and cause very
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6.4 The time dependence of reflections from a stratified region

Figure 6.3. Crustal model used for reflection calculations.

little error for medium and long-range propagation (> 20 km range for a 5 km deep
ocean).

6.4 The time dependence of reflections from a stratified region

As an illustration of the techniques we have discussed in this chapter we consider
the reflection response of a simple stratified crustal model (figure 6.3).

For each slownessp we construct a complex reflection matrixRD(p,ω) for a
suite of frequenciesω. This arrangement is convenient because we can exploit
the frequency independence of the reflection and transmission coefficients at a
discontinuity in the elastic parameters. We use the recursive construction schemes
we have just described and build up the reflection matrixRD by starting from the
base of the model.

Since it is rather difficult to give an informative display of the phase behaviour
of RD(p,ω), we have constructed a temporal reflection responseŘD(p, t) by
inverting the Fourier transform over frequency. The elements ofŘD(p, t) represent
the seismograms which would be obtained by illuminating the stratification from
above with a plane wave of horizontal slownessp. Ideally we would have a delta
function in time for the plane wave form, but our computations are, of necessity,
band limited and so resolution is slightly reduced.

The model which has been used is shown in figure 6.3. It consists of a uniform
layer 2 km thick underlain by a gradient zone to 10 km depth at which there is a
small jump in elastic wavespeeds. A further linear gradient zone lies beneath this
discontinuity and extends to the Moho at 30 km depth. There is a slight wavespeed
gradient below the Moho and the model is terminated by a uniform half space. The
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Figure 6.4. a) Intercept time-slowness plot forPP reflections; b) Projective display of tem-
poral response.

main features of the response of the model are reflections from the discontinuities
and continuous refraction through the gradient zones.

In figure 6.4a we illustrate the geometrical ray characteristics of thePP

reflections for this model. We have plotted the intercept timeτ(p) for various
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6.4 The time dependence of reflections from a stratified region

reflections and refractions against slowness.τ(p) is the integrated phase delay
from the surface to the depthZp at which a ray is turned back, by reflection or
continuous refraction. For aP ray, without any conversions,

τ(p) = 2

∫Zp

0
dz qα(z). (6.62)

The τ(p) relation in figure 6.4a is shown as a solid line for the continuous
refraction in the velocity gradients. Reflections from the discontinuities at 10 km
and 30 km are indicated by chain dotted lines and from the velocity gradient jumps
at 2 km and 40 km by dashed lines. The depth of reflection is indicated in each
case. The critical points of 0.1786 s/km for the 10 km discontinuity and 0.125 s/km
for the Moho are indicated by stars.

In figure 6.4b we give a projective display of the temporal response for thePP

reflection coefficient from the crustal structure, for a zero phase wavelet with a pass
band from 0-4 Hz.

For slowness less than 0.122 s/km the dominant features are the precritical
reflections from the discontinuities. When we compare the ray times in figure 6.4a
with the amplitude display in figure 6.4b we see the rapid increase in amplitude
of the Moho reflection as the critical point (0.125 s/km) is approached. The large
amplitude at the critical point is associated with the existence of head waves along
the Moho interfae and is reinforced by the confluence of the continuous refraction
in the gradient beneath the Moho. The consequent ‘interference head wave’ is
represented by a single negative excursion at slowness 0.123 s/km in figure 6.4b.
From 0.125 s/km to 0.145 s/km we have postcritical reflection from the Moho with
a progressive change of phase in the waveform and a slight change in amplitude.
For the precritical reflection we have a band-passed delta function time dependence,
but in the post critical range we have major positive and negative excursions in the
waveform.

The onset of continuous refraction at 0.145 s/km is marked by a stabilisation
of the phase until the critical point for the 10 km discontinuity at 0.164 s/km. A
significant precritical reflection from this interface is seen at small slowness and
once again there is a rapid increase in amplitude just before the critical point (cf.
figure 5.2). Post critical reflections occupy the slowness range from 0.167 s/km to
0.1786 s/km and then we get continuous refraction in the gradient zone from 2–10
km up to 0.2 s/km.

There are no obvious reflections from the velocity gradient change at 2 km
but a small amplitude internal multiple generated by reflection, from below, at
this interface can be discerned at 10s for slowness 0.125 s/km. Theτ values
corresponding to this multiple and that generated at the 10 km interface are
indicated by a dotted line in figure 6.4a.

ThePP reflection behaviour is not strongly influenced by conversion but a small
reflected phase converted fromP to Sat the Moho and then transmitted through the
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Figure 6.5. a) Intercept time-slowness plot forPS reflections; b) Projective display of tem-
poral response.

10 km discontinuity asP parallel the main Moho reflection. This phase is indicated
by short dashed lines in figure 6.4a.

The converted (PS) reflection for this model is illustrated in figure 6.5. The
τ(p) relation for the conversions are indicated in figure 6.5a and for reference we
have repeated the majorPP phase behaviour. Conversion fromP to Soccurs at the
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6.a Mixed solid and fluid stratification

discontinuities at 10 km and 30 km and we have indicated the depths of conversion
and reflection in figure 6.5a.

A projective plot of the converted behaviour is given in figure 6.5b, and we see
a number of features associated with the conversion at 10 km depth. In addition
to PS reflection from the interface we see a mirror of thePP behaviour associated
with waves which are transmitted downwards through the interface asP and then
after reflection are converted toSon upward transmission. There is also an S wave
reflection from the Moho arising from conversion at 10 km. For slowness greater
than 0.179 s/km most of the P wave energy is turned back by the velocity gradient
above the 10 km discontinuity, but a small amount of theP waves tunnel through
the evanescent region to convert into propagatingSwaves at 10 km. This portion
of thePS reflection is indicated by dots in figure 6.5a and since lower frequencies
decay less rapidly in the evanescent region these dominant in the amplitude plot in
this region.

ThePS reflection at the Moho which appeared weakly in figure 6.4b is now very
much stronger and we can see the change in character associated with theP wave
critical slowness (0.125 s/km) for the sub-Moho region.

The temporal-slowness plots we have just presented enable us to relate the
features of the reflection response directly to the nature of the velocity distribution.
If we calculate the displacements associated with an incidentP wave we will bring
together the features we have seen on thePP andPS reflections modulated by the
transformation matrixmD.

As we shall see in Section 7.3.2 the slowness-time plane plays an important
note in the slowness method of seismogram construction. For large ranges
theoretical seismograms are formed by integrating along linear trajectories through
the slowness-time map.

Appendix: Mixed solid and fluid stratification

We have hitherto confined our attention to wave propagation in stratified solids but we
also need to be able to allow for fluid zones within, or bounding the stratification. This is
necessary for oceanic regions and for the earth’s core which may be taken to behave as a
fluid.

Within the fluid regions we have no shear strength and onlyP waves propagate but at
solid-fluid boundaries we have the possibility of conversion toSV waves in the solid. No
SH wave propagation is possible within a fluid and so solid/liquid interfaces behave like a
free surface since shear stress vanishes.

For P-SVwaves we can use reflection and transmission matrices throughout the stratifi-
cation, with care as to the treatment when shear waves are absent. The simplest consistent
formalism is to maintain a2 × 2 matrix system throughout the stratification, and in fluid
regions just have a single non-zero entry, e.g.,

RD|fluid =

[
RPP

D 0
0 0

]
. (6a.1)
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If the inverse of such a reflection on transmission matrix is required it should be interpreted
as a matrix with a single inverse entry, e.g.,

T−1
D |fluid =

[
(TPP

D )−1 0
0 0

]
. (6a.2)

Within fluid stratification these reflection and transmission matrices used in the2 ×
2 matrix addition rules (6.3), (6.4) will yield the correct behaviour. When a solid-fluid
boundary is encountered, e.g., in the recursive schemes described in Sections 6.2 and 6.3,
then the interfacial reflection and transmission coefficients used must be those appropriate
to such a boundary. These forms may be obtained by a careful limiting process from the
solid-solid coefficients discussed in Section 5.1, by forcing the shear wavespeed in one of
the media to zero. With these coefficient the upward and downward transmission matrices
for the interface will have only a single non-zero row or column and link the reflection
matrices in the fluid (6.51) directly to the2× 2 forms in the solid.
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Chapter 7

The Response of a Stratified Half Space

We now bring together the results we have established in previous chapters to
generate the displacement field in a stratified half space (z > 0), due to excitation
by a source at a levelzS. We suppose that we have a free surface atz = 0 at which
the traction vanishes; and ultimately the stratification is underlain by a uniform
half space inz > zL with continuity of properties atzL. In this uniform region we
impose a radiation condition that the wavefield should consist of either downward
propagating waves or evanescent waves which decay with depth, the character
depending on the slowness. As we shall see this lower boundary condition is not at
all restrictive, and it is easy to modify the response to suit other conditions if these
are more appropriate.

A formal solution for the displacement field can be found by starting with the
radiation conditions and then projecting the displacement and traction to the surface
using a propagator matrix. The jumps in displacement and traction across the
source plane are also projected to the surface and then the displacement field is
constructed so that there is no net surface traction. The physical character of
this solution is seen more clearly when the response is expressed in terms of the
reflection matrix for the entire stratification below the free surface. For a deep
source a more convenient representation may be obtained in terms of the reflection
and transmission matrices for the regions above and below the source.

7.1 The equivalent surface source representation

We consider the half space illustrated in figure 7.1 with a source at the level
zS and a uniform half space beneathzL. At the free surface the traction must
vanish and so, for any angular orderm, frequencyω and slownessp, the surface
stress-displacement vector must satisfy

b(0) = [w0, 0]T . (7.1)

We adopt a point source representation, as discussed in Chapter 4, and so from
(4.62) there will be a jump in the stress-displacement vector across the source plane

b(zS+) − b(zS−) = S(zS). (7.2)
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Figure 7.1. Configuration of elastic half space with a source at depthzS and a receiver at
depthzR. BeneathzL the medium has uniform properties so that a radiation condition has
to be applied at this level. The conventions for up and downgoing waves are also indicated.

At the base of the stratification we can set up the radiation condition by making use
of the eigenvector decomposition of the seismic field inz > zL. Thus to exclude
upgoing waves we take

b(zL) = D(zL)[0, cD]T (7.3)

in terms of a vector of downgoing wave elementscD which will be subsequently
specified in terms of the nature of the source and the properties of the half space.
The choice of branch cut (3.8) for the radicals appearing inD(zL) ensures that (7.3)
has the correct character.

Starting with the form (7.3) we may now construct the stress-displacement vector
b(zS+) just below the source using the propagator matrixP(zS, zL),

b(zS+) = P(zS, zL)b(zL). (7.4)

With the jump in theb vector acrosszS we find that just above the source.

b(zS−) = P(zS, zL)b(zL) − S(zS). (7.5)

We may now use the propagatorP(0, zS) acting onb(zS−) to construct the surface
displacement via

b(0) = P(0, zS){P(zS, zL)b(zL) − S(zS)},

= P(0, zL)b(zL) − P(0, zS)S(zS), (7.6)
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where we have used the propagator chain rule (2.89). The vector

S(0) = P(0, zS)S(zS) = [SW0,ST0]
T , (7.7)

represents an equivalent source at the surface which produces the same radiation in
the half space as the original source, represented by the jumpS(zS), at depth.

The surface displacement may now be expressed in terms of the downgoing
wavefield atzL as

[w0, 0]T = P(0, zL)D(zL)[0, cD]T − S(0). (7.8)

Thus, whatever the depth of the source, the relation betweenw0 and cD is
controlled by

BVL(0) = P(0, zL)D(zL), (7.9)

which we may recognise to be a fundamental stress-displacement matrix whose
columns correspond to up and downgoing waves in the underlying half space. In
terms of the partitions ofBVL(0) we write (7.8) as[

w0

0

]
=

[
WUL(0) TUL(0)

WDL(0) TDL(0)

][
0

cD

]
−

[
SW0

ST0

]
, (7.10)

and from the surface conditions of vanishing traction the wavefield belowzL is
specified by

cD = [TDL(0)]
−1ST0. (7.11)

We may think of the source as equivalent to tractionsST0 which are neutralized by
the reaction of the displacement field in order to satisfy the surface condition. The
surface displacement

w0 = WDL(0)[TDL(0)]
−1ST0 − SW0, (7.12)

provided that the secular function for the half space, det{TDL(0)}, does not vanish.
The partitionsWDL(0), TDL(0) are the displacement and traction components
of the ‘downgoing’ vectors in the fundamental matrixBVL. The combination of
partitionsWDL(0)[TDL(0)]

−1 in (7.12) is analogous to those we have encountered
in reflection problems (cf. 5.43). The elements of this matrix product for theP-SV
wave case are therefore composed of ratios of2× 2minors of the matrixBVL(0).

The condition det{TDL(0)} = 0, corresponds to the existence of a displacement
field which satisfies both the free surface and the radiation conditions; this will only
occur when|p| > β−1

L , so that bothP andSwaves are evanescent in the underlying
half space. In thep, ω domain these waves are associated with simple poles in
the surface response (7.12). The poles with largest slowness will give rise to the
surface wavetrain when the transforms are inverted (see Chapter 11).

The only other singularities in the full surface responsew0 (7.12) are branch
points at|p| = α−1

L , |p| = β−1
L , whereαL, βL are the elastic wavespeeds in the
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underlying half space. These branch points arise from the presence ofD(zL) in the
fundamental matrixBVL, and the branch cuts will be specified by the choice (3.8)

Im(ωqαL) ≥ 0, Im(ωqβL) ≥ 0. (7.13)

There are no branch points associated with the propagator matricesP(0, zL),
P(0, zS). For a uniform layerP(zj−1, zj) is symmetric inqαj, qβj and so a
continued product of propagators has no branch points. This property transfers
to the continuous limit. The source vectorS(zS), (4.62), has no singularities.

Once we have found the surface displacement, theb vector at any other level
may be found from

b(z) = P(z, 0)[w0, 0]T , z < zS,

= P(z, zL)D(zL)[0, cD]T , z > zS. (7.14)

The propagator solution enables us to get a complete formal specification of the
seismic wavefield, but it is difficult to make any physical interpretation of the
results.

If, however, we recall the representation of the displacement and traction
matricesWDL(0), TDL(0) in terms of the reflection and transmission matrices
R0LD , T0LD (5.56), we have

WDL(0) = (mD0 + mU0R0LD )(T0LD )−1,

TDL(0) = (nD0 + nU0R0LD )(T0LD )−1,
(7.15)

These expressions involve only the downward reflection and transmission matrices
for the entire stratification beneath the free surface.

With the substitutions (7.15) the surface displacement (7.12) can be recast into
the form

w0 = (mD0 + mU0R0LD )(nD0 + nU0R0LD )−1ST0 − SW0. (7.16)

We have already seen thatR0LD may be constructed without any numerical precision
problems associated with growing exponential terms in evanescent regions, and so
(7.16) provides a numerically stable representation of the half space response to
surface sources. If the original form for the surface displacement (7.12) is used
and the elements ofWDL(0), TDL(0) are constructed via the propagator matrix,
dramatic loss of precision problems occur at large slownesses for even moderate
frequencies. An alternative procedure to the use of (7.16) is to set up the solutionab
initio in terms of minors of the propagator and eigenvector matrices. Such schemes
lead to very efficient computational algorithms (Woodhouse, 1981) but the physical
content is suppressed.

From (7.16) the secular function for the half space is

det{TDL(0)} = det(nD0 + nU0R0LD )/detT0LD , (7.17)

and this expression may be readily calculated by a single pass through the layering.
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As it stands (7.16) still contains a propagator termP(0, zS) in the definition of
the surface source vectorS(0). This causes very little difficulty for shallow sources,
as for example in prospecting applications (Kennett, 1979a). For deep sources it
is preferable to recast the entire response in terms of reflection and transmission
matrices and this procedure is discussed in the following section.

At the free surface, the form of the upward reflection matrices arises from
satisfying the condition of vanishing traction:

RF = −n−1
D0nU0. (7.18)

Thus, by extracting a factor ofnD0 from the matrix inverse in (7.16) we may
generate an alternative form for the surface displacement response

w0 = (mD0 + mU0R
0L
D )[I − RFR

0L
D ]−1n−1

D0 ST0 − SW0. (7.19)

The half space reverberation operator[I − RFR0LD ]−1 between the free surface and
the stratification is now clearly displayed, and we can begin to see how the total
surface displacement effects are generated.

7.2 A source at depth

We have just seen how the response of a half space can be found from an equivalent
surface source and a displacement field which satisfies just the radiation condition
atz = zL.

An alternative scheme suggested by Kennett (1981) is to build the entire
displacement field in the half space from elements which behave like up and
downgoing waves at the source level - the displacement and traction partitions
WUS, WDS andTUS, TDS of the fundamental matrixBVS.

Across the source plane we have discontinuities in displacement and traction
(4.62)

W(zS+) − W(zS−) = SW(zS),

T (zS+) − T (zS−) = ST (zS).
(7.20)

At the free surfacez = 0 we require that there should be no traction, and atz = zL
we wish to have only downgoing waves. We now construct displacement fields
in z < zS and z > zS which satisfy the upper and lower boundary conditions
respectively, but which have constant vector multipliers. These factors are then
determined by imposing the source condition (7.20).

7.2.1 Treatment via free-surface reflection matrices

From our definition of the free-surface reflection matrixRfSU (5.76)-(5.78) the
displacement matrix

W1S(z) = WUS(z) + WDS(z)RfSU , (7.21)
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has no associated traction atz = 0. In the regionz > zS, above the source, we can
satisfy the free-surface boundary condition by taking a displacement field

W(z) = W1S(z)vvv1, z < zS, (7.22)

wherevvv1 is a constant vector. For the region below the source the displacement
matrix

W2S(z) = WDS(z) + WUSRSLD (7.23)

will, from (5.90), satisfy the radiation condition; and so we choose a displacement
field

W(z) = W2S(z)vvv2, z > zS, (7.24)

wherevvv2 is a further constant vector. When we insert the representations (7.22)
and (7.24) for the displacements above and below the source level into the source
conditions (7.20), we obtain the following simultaneous equations invvv1 andvvv2

W2S(zS)vvv2 − W1S(zS)vvv1 = SW(zS),

T 2S(zS)vvv2 − T 1S(zS)vvv1 = ST (zS).
(7.25)

We may now eliminate variables between the displacement and traction equations
by making use of the properties of matrix invariants, as in our treatment of reflection
and transmission in (5.63)-(5.69). Thus we find

vvv1 = <W1S,W2S>
−T [WT

2S(zS)ST (zS) − T T2S(zS)SW(zS)],

vvv2 = <W1S,W2S>
−1[WT

1S(zS)ST (zS) − T T1S(zS)SW(zS)],
(7.26)

since from (2.72)

<W1S,W1S> = <W2S,W2S> = 0. (7.27)

The displacement field satisfying the source and boundary conditions is therefore:
in z < zS

W(z) = W1S(z)<W1S,W2S>
−T [WT

2S(zS)ST (zS) − T T2S(zS)SW(zS)], (7.28)

and forz > zS

W(z) = W2S(z)<W1S,W2S>
−1[WT

1S(zS)ST (zS) − T T1S(zS)SW(zS)], (7.29)

and with our expressions forW1S, W2S we can express (7.28) in terms of the
reflection properties of the regions above and below the source.

We can calculate the invariant<W1S,W2S> most easily at the source level.
From the definitions (7.21), (7.23)

<W1S,W2S> = [RfSU ]T<WDS,WDS>+<WUS,WDS>RSLD
+<WUS,WDS>+ [RfSU ]T<WDS,WUS>RSLD , (7.30)
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7.2 A source at depth

The terms which are linear in the reflection matrices vanish identically, and from
(5.60)<WUS,WDS> = iI . Since the reflection matrices are symmetric we find

<W1S,W2S> = i[I − RfSURSLD ] (7.31)

and so the inverse invariant<W1S,W2S>
−1 appearing in the displacement

solution (7.28) is the reverberation operator for the whole half space, including
the effect of free-surface reflections.

The surface displacement can therefore be represented as

w0 = −iW1S(0)[I − RSLD RfSU ]−1[WT
2S(zS)ST (zS) − T T2S(zS)SW(zS)], (7.32)

whereW1S is a displacement matrix satisfying the free-surface condition andW2S

satisfies the lower boundary condition. The expression (7.32) will prove to be very
convenient when we come to discuss modal summation techniques in Chapter 11.

The contribution at the source level

WT
2S(zS)ST (zS) − T T2S(zS)SW(zS) (7.33)

= {mT
DSST − nTDSSW} + RSLD {mT

USST − nTUSSW},

and the expressions in braces are just multiples of the quantitiesΣΣΣD(zS), ΣΣΣU(zS)

introduced in Section 4.5, to describe the upward and downward radiation from a
source. Thus

WT
2S(zS)ST (zS) − T T2S(zS)SW(zS) = −i[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)],

WT
1S(zS)ST (zS) − T T1S(zS)SW(zS) = −i[ΣΣΣD(zS) + RfSU ΣΣΣU(zS)].

(7.34)

When we bring together the results (7.31), (7.34) we obtain a compact and useful
representation of the displacement field at an arbitrary receiver levelzR:
for zR < zS,

W(zR) = [WUS(zR)+WDS(zR)RfSU ][I −RSLD RfSU ]−1[ΣΣΣU(zS)+RSLD ΣΣΣD(zS)],(7.35)

and forzR > zS ,

W(zR) = [WDS(zR)+WUS(zR)RSLD ][I −RfSURSLD ]−1[ΣΣΣD(zS)+RfSU ΣΣΣU(zS)].(7.36)

This displacement representation separates into three contributions which we shall
illustrate by considering a receiver above the source (cf. figure 7.2).

Firstly we have the source contribution

ΣΣΣU(zS) + RSLD ΣΣΣD(zS), (7.37)

which corresponds to the entire upward radiation associated with the source at
the levelz = zS. This is produced in part by direct upward radiation{ΣΣΣU(zS)}

and in part by waves which initially departed downwards, but which have been
reflected back beneath the level of the source{RSLD ΣΣΣD(zS)}. This excitation vector,
for an isotropic medium, will depend on azimuthal orderm, whereas the reflection
matrices are independent ofm.
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The Response of a Stratified Half Space

Figure 7.2. Schematic representation of the propagation elements for the response of
buried source recorded at a buried receiver: a) formation ofvvvU(zS); b) the receiver dis-
placementW(zR) in terms ofvvvU(zS).

The second contribution arises from the inverse invariant<W1S,W2S>
−1 and

is just a reverberation operator

[I − RSLD RfSU ]−1 (7.38)

coupling the upper part of the half space, including the effect of free-surface
reflections, to the lower part at the source level. The secular function for the half
space is

det[I − RSLD RfSU ] = 0. (7.39)

The pole singularities in (7.35), which arise when (7.39) is satisfied, correspond to
the existence of displacement fields which satisfy both upper and lower boundary
conditions. For propagating waves we can make a series expansion of the
reverberation operator as in (6.17)

[I − RSLD RfSU ]−1 = I + RSLD RfSU + RSLD RfSURSLD RfSU + ... . (7.40)

We may then recognise that the combined action of

[I − RSLD RfSU ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)] = vvvU(zS), (7.41)
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7.2 A source at depth

is to produce at the source level a sequence of upgoing wave groups corresponding
to radiation from the source subjected to successively higher order multiple
reverberations within the half space. This is represented schematically in figure
7.2a.

The portion of the response corresponding to the receiver location

WUS(zR) + WDS(zR)RfSU (7.42)

needs to be recast in terms of reflection and transmission terms before its physical
significance can be appreciated. We write the displacement matricesWUS(zR),
WDS(zR) in terms of up and downgoing fields atzR, and the properties of the
region ‘RS’ as in (6.7), and make use of the addition rule for free-surface reflections
(6.10) to give

WUS(zR) + WDS(zR)RfSU (7.43)

= mURTRSU + [mDR + mURRRSD ]RfRU [I − RRSD RfRU ]−1TRSU .

This expression simplifies to the rather more compact form

WUS(zR) + WDS(zR)RfSU (7.44)

= {mUR + mDRRfRU }[I − RRSD RfRU ]−1TRSU ,

which has a structure similar to (6.11).
When we construct the displacement at the receiver from (7.45) and (7.41) we

have, forzR < zS

W(zR) = {mUR + mDRRfRU }[I − RRSD RfRU ]−1TRSU vvvU(zS), (7.45)

which was first presented by Kennett & Kerry (1979) with a rather different
derivation. Each of the wave groups invvvU(zS) is projected to the receiver level
by the action of the transmission matrixTRSU (figure 7.2b). Reverberations near
the receiver in the zone between the source and the surface are represented by
the operator[I − RRSD RfRU ]−1. The displacements are finally generated by adding
the effect of the upgoing waves to the downgoing waves which have previously
been reflected at the free surface, using the appropriate transformation matrices:
{mUR + mDRRfRU }.

Not only do we have a ready physical interpretation for the contributions to
(7.35), but also they may all be represented in terms of reflection and transmission
matrices which can be constructed without loss-of-precision problems. The
representation (7.35) is therefore numerically stable for deep sources at high
frequencies if we make use of (7.45) for the receiver term.

For a surface receiver (7.45) reduces toWfS
U and so the surface displacement can

be found from

w0 = WF[I − R0SD RF]
−1T0SU [I − RSLD RfSU ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)] (7.46)
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The Response of a Stratified Half Space

where, as in (5.86), the surface amplification factorWF = (mU0 + mD0RF). This
expression proves to be very convenient for the construction of the surface
displacement from an arbitrary source at depth in the half space.

When the receiver lies beneath the source, the expression

vvvD(zS) = [I − RfSURSLD ]−1[ΣΣΣD(zS) + RfSU ΣΣΣU(zS)], (7.47)

gives the net downward radiation from the source after reverberation through the
whole half space. The receiver contribution can be evaluated in a similar way to
that described above to give the displacement field forzR > zS as

W(zR) = {mDR + mURRRLD }[I − RRSU RRLD ]−1TRSD vvvD(zS), (7.48)

which now allows for transmission and reverberation effects in the region below
the source.

If we specialise to a surface source with a receiver just below the surface, then
we can combine (7.47) and (7.48) to give

W(0+) = (mD0 + mU0R
0L
D )[I − RFR

0L
D ]−1[ΣΣΣD(0) + RFΣΣΣU(0)]. (7.49)

We recall thatRF = −n−1
D0nU0, so that we may write

W(0+) = (mD0+mU0R
0L
D )(nD0+nU0R

0L
D )−1[nD0ΣΣΣD(0)−nU0ΣΣΣU(0)],(7.50)

and from the definition of the up and downgoing source components (4.68) we can
recognise[nD0ΣΣΣD(0) − nU0ΣΣΣU(0)] as the traction componentsST0 of the source
vectorS(0). The displacement at the surface includes the displacement components
of S(0) and so

w0 = W(0+) − SW0. (7.51)

The surface displacement given by (7.50) and (7.51) has just the form (7.16) and
so we see the equivalence of the initial value techniques used in Section 7.1 and the
two-point boundary value method developed in this section.

The method we have just discussed for the construction of the displacement
field is quite general and is not restricted to free-surface and downward radiation
conditions (Kennett, 1981). More general cases can be constructed by replacing
RfSU by RS1 , a reflection matrix appropriate to the new upper boundary condition
at z = 0, andRSLD by RS2 corresponding to the new lower boundary condition at
z = zL. The inverse invariant<W1S,W2S>

−1 will appear in the displacement
solutions, and in general

<W1S,W2S>
−1 = −i[I − RS1R

S
2 ]

−1. (7.52)

Thus the secular function for a particular problem can be represented as det[I −

RS1R
S
2 ] in terms of the appropriate reflection matricesRS1 , RS2 . With different source

depths we obtain secular functions which differ only by a factor and have the
same zeroes. The vanishing of the secular determinant represents a constructive
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7.2 A source at depth

interference condition for waves successively reflected above and below the level
zS.

For wave propagation in spherical stratification we can use the foregoing results
to find the displacement fieldW(l,m,R,ω). In this case we would choose
the displacement matrixW1S to satisfy the free-surface boundary condition at
R = re, andW2S to satisfy a regularity condition at the origin. The expressions
(7.28) for the displacement field can be used directly, once we recall thatz andR
increase in opposite directions. We may also use the representation for the surface
displacement in terms of reflection matrices (7.46) for the spherical case, provided
we interpretRSLD as being the reflection matrix for the regionR < RS with a
regularity condition at the origin (cf. Section 5.2.4). The physical interpretation
of the results is otherwise as for horizontal stratification and so approximations to
the full response will run in parallel for the two cases.

7.2.2 Explicit representation of free-surface reflections

In the preceding treatment we chose to work in terms of displacement matrices
which satisfied the upper and lower boundary conditions. If, however, we construct

W3S(z) = WUS(z) + WDS(z)R0SU , (7.53)

this corresponds to a radiation boundary condition atz = 0. In order to satisfy the
actual free-surface condition we choose a linear combination of the displacement
matricesW3S, W2S in z < zS

W(z) = W3S(z)uuu3 + W2S(z)uuu1, (7.54)

and determine the relation betweenuuu1 anduuu3 by requiring vanishing traction at
z = 0

T 3S(0)uuu3 + T 2S(0)uuu1 = 0. (7.55)

Below the source we take

W(z) = W2S(z)uuu2, (7.56)

which satisfies the lower boundary condition. The source condition (7.20) now
leads to simultaneous equations in(uuu2 − uuu1) anduuu3:

W2S(zS)(uuu2 − uuu1) − W3S(zS)uuu3 = SW(zS),

T 2S(zS)(uuu2 − uuu1) − T 3S(zS)uuu3 = ST (zS).
(7.57)

Since we will wish to concentrate on surface displacement we solve foruuu3,

uuu3 = <W3S,W2S>
−T [WT

2S(zS)ST (zS) − T T2S(zS)SW(zS)]. (7.58)

The inverse invariant may be found by analogy with (7.31) and we have previously
evaluated the source term in (7.34), so that

uuu3 = [I − RSLD R0SD ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)]. (7.59)
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The displacement in the zone above the source is then given by

W(z) = {W3S(z) − W2S(z)T
−1
2S (0)T 3S(0)}uuu3, (7.60)

which has a particularly simple form atz = 0. At the surface by (5.57),

W3S(0) = mU0T
0S
U , T 3S(0) = nU0T

0S
U . (7.61)

The displacement and traction matrices satisfying the lower boundary condition
have a more complex form

W2S(0) = (mD0 + mU0R
0L
D )(T0SD )−1(I − R0SU RSLD )

T 2S(0) = (nD0 + nU0R
0L
D )(T0SD )−1(I − R0SU RSLD )

(7.62)

butW2S(0)T
−1
2S (0) is somewhat simpler

W2S(0)T
−1
2S (0) = (mD0 + mU0R

0L
D )(nD0 + nU0R

0L
D )−1. (7.63)

This combination of terms has already appeared in our surface source
representation (7.16).

The surface displacement now takes the form

w0 = {mU0 − (mD0 + mU0R
0L
D )(nD0 + nU0R

0L
D )−1nU0}σσσ(zS), (7.64)

where we have introduced the upgoing wavevector

σσσ(zS) = T0SU [I − RSLD R0SU ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)]. (7.65)

The vectorσσσ includes all interactions of the source with the stratified structure
above and below the source, but unlike (7.41) does not allow for reflections
generated at the free surface. In (7.64) such reflections are contained within the
term in braces. This dependence may be emphasised by writing (7.64) in terms of
the free-surface reflection matrixRF and rearranging to give

w0 = (mU0 + mD0RF)[I − R0LD RF]
−1σσσ(zS), (7.66)

so that the reverberation operator for the half space is clearly displayed. When
the source, is just at the surfaceσσσ(zS) takes a particularly simple form, sinceT0SU
becomes the unit matrix andR0SD vanishes, so that

σσσ(0+) = [ΣΣΣU(0+) + R0LD ΣΣΣD(0+)]. (7.67)

7.3 Recovery of the response in space and time

We have just seen how we can construct the response of a stratified half space to
excitation by a buried or surface source in the transform domain, as a function
of frequencyω and slownessp. To get actual seismograms we must still invert
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7.3 Recovery of the response in space and time

the transforms. For theP-SV wave part of the seismograms we have the vector
harmonic expansion (2.55),

uP(r, φ, 0, t) =
1

2π

∫∞
−∞ dωe−iωt

∫∞
0

dkk
∑
m

[URmk + VSmk ]. (7.68)

We may recast this integral in terms of slownessp and the surface displacement
vectorw0, by introducing the tensor field

TTTm(ωpr) = [Rmk ,S
m
k ]T , (7.69)

so that (7.68) may be expressed as

uP(r, φ, 0, t) =
1

2π

∫∞
−∞ dωe−iωtω2

∫∞
0

dpp
∑
m

wT
0 (p,m,ω)TTTm(ωpr).

(7.70)

We have a similar form for theSH responseuH:

uH(r, φ, 0, t) =
1

2π

∫∞
−∞ dωe−iωtω2

∫∞
0

dpp
∑
m

WT
0 (p,m,ω)Tm(ωpr).

(7.71)

in terms of the harmonicTmk which we have rewritten in a form designed to display
the dependence on frequency and slowness. The vector harmonicsRmk , Smk andTmk
(2.56) can be cast entirely in terms of Bessel function entries by using the derivative
property

J′m(x) = Jm−1(x) −mJm(x)/x. (7.72)

In terms of the orthogonal coordinate vectorsez, er, eφ we have explicit forms for
the harmonics.

Rm(ωpr) = ezJm(ωpr)eimφ,

Sm(ωpr) = [erJm−1(ωpr) − (er − ieφ)mJm(ωpr)/ωpr]eimφ,

Tm(ωpr) = [−eφJm−1(ωpr) + (eφ + ier)mJm(ωpr)/ωpr]eimφ.

(7.73)

These forms are most convenient form ≥ 0, but the values form < 0 are easily
obtained from

J−m(x) = (−1)mJm(x). (7.74)

It is only on the horizontal components, for|m| > 0 that we get ‘near-field’
components depending onmJm(ωpr)/ωpr which decay more rapidly than the
contributions oriented along the coordinate vectors. These ‘near-field’ terms couple
the radial and tangential components of motion so that there is no clear separation
by component ofSVandSHmotion at small distances from the source.

When we represent an actual source by an equivalent point source consisting
of force and dipole components, the azimuthal summation is restricted to angular
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orders|m| < 2. This sum presents no significant complication once the integrals
over frequency and slowness have been performed for eachm.

For the double integral (7.70) we have to choose the order in which the frequency
and slowness integrals are undertaken. If the slowness integral is calculated first
then the intermediate result is the complex frequency spectrumū(r, φ, 0,ω) at
a particular location. This approach may therefore be designated thespectral
methodand has been used in most attempts to calculate theoretical seismograms
by numerical integration of the complete medium response (Kind, 1978; Kennett,
1980; Wang & Herrmann, 1980). When, alternatively, the frequency integral
is evaluated first the intermediate result is a time response for each slownessp,
corresponding to the illumination of the medium by a single slowness component.
The final result is obtained by an integral over slowness and we follow Chapman
(1978) by calling this approach theslowness method. Although this integral
scheme can be used for the full response, most applications to date have been for
approximate methods where the response is split up into generalized rays, e.g.,
Cagniard’s method (Helmberger, 1968; Wiggins & Helmberger, 1974; Vered &
BenMenahem, 1974), and a method due to Chapman suitable for smoothly stratified
media (Dey-Sarkar & Chapman, 1978).

7.3.1 The spectral method

We construct the spectrum of themth azimuthal contribution to a seismogram as a
slowness integral,

ū(r,m, 0,ω) = ω2
∫∞
0

dppwT
0 (p,m,ω)TTTm(ωpr). (7.75)

The transform vectorw0(p,m,ω) depends on the azimuthal orderm through the
source jump termS(zS) (4.62), and a different slowness dependence is introduced
for each order. The result is thatw0(p,m,ω) is an odd function ofp if m is even,
and an even function ofp if m is odd. We now recall that the elements ofTTTm(ωpr)

depend onJm(ωpr)eimφ and so we may make a decomposition of this ’standing
wave’ form into a travelling wave representation in terms of the Hankel functions
H

(1)
m (ωpr),H(2)

m (ωpr). We write e.g.TTT(1)
m (ωpr) for the harmonics corresponding

to outgoing waves from the origin. Now

Jm(ωpr) = 1
2 [H

(1)
m (ωpr) +H

(2)
m (ωpr)]

= 1
2 [H

(1)
m (ωpr) − eimπH

(1)
m (−ωpr)] (7.76)

and so when we use the symmetry properties ofw0, we can express (7.75) as an
integral along the entire slowness axis

ū(r,m, 0,ω) = 1
2ω|ω|

∫∞
−∞ dppwT

0 (p,m,ω)TTT(1)
m (ωpr), (7.77)
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Figure 7.3. The singularities, branch cuts and integration contours for the full response of
a half space.

where the contour of integration in thep plane is taken above the branch point for
H

(1)
m (ωpr) at the origin. This form shows explicitly that we are only interested in

waves which diverge from the source.
For large values of the argument,H(1)

m (ωpr) may be replaced by its asymptotic
form

H
(1)
m (ωpr) ∼ (2/πωpr)1/2e{iωpr−i(2m+1)π/4}, (7.78)

and to the same approximation the vector harmonics take on the character of fields
directed along the orthogonal coordinate vectorsez, er, eφ. Thus the tensor field
TTT(1)
m (ωpr) is approximated by

TTT(1)
m ∼ [ez, ier]T (2/πωpr)1/2e{iωpr−i(2m+1)π/4}, (7.79)

and the tangential (SH) harmonic

T(1)
m (ωpr) ∼ −ieφ(2/πωpr)1/2e{iωpr−i(2m+1)π/4}. (7.80)

In this asymptotic limit we are faced with the same slowness and distance
dependence in the integrand of (7.77) for all three components of displacement.

The symmetry properties we have described will be shared by approximations
to the complete responsew0 and so we will always have the possibility of using a
standing wave expression (7.75), or a travelling wave representation (7.77).

In the slowness plane, for the full surface responsew0 we have branch points at
p = ±α−1

L for theP-SVcase andp = ±β−1
L in all cases. For bothP-SVandSH

wave contributions we have a sequence of poles in the regionβ−1
L < p < β−1

min,
whereβmin is the smallest shear wavespeed anywhere in the half space - this is
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normally attained at the surface. Over this slowness interval forSHwaves, we have
higher mode Love wave poles, which for a perfectly elastic medium lie on the real
p axis. ForP-SVwaves we have higher mode Rayleigh poles whose locations are
close to, but not identical to, the Love poles. In addition we have in|p| > β−1

min
the fundamental Rayleigh mode which couples the evanescentP andSVwaves in
the half space; the limit point for this mode ispR0, the Rayleigh waveslowness
on a uniform half space with elastic properties at the surface. The distribution of
poles depends strongly on frequency; at low frequency only a few poles occur in
|p| > β−1

L whilst at high frequencies there are a great many (see Section 11.3).
The set of singularities for theP-SV wave case is sketched in figure 7.3, the

contour of integration forω > 0 runs just below the singularities forp > 0 and just
above forp < 0. This contour may be justified by allowing for slight attenuation of
seismic waves within the half space (which we may well want on physical grounds)
in which case the poles move into the first and third quadrants of the complexp

plane. The line of the branch cuts fromα−1
L , β−1

L is not critical provided that the
conditions

Im(ωqαL) ≥ 0, Im(ωqβL) ≥ 0, (7.81)

are maintained on the realp axis. We therefore follow Lamb (1904) by taking cuts
parallel to the imaginaryp axis.

The most direct approach to the evaluation of (7.75) or (7.77) is to perform a
direct numerical integration along the realp axis, but for a perfectly elastic medium
the presence of the poles on the contour is a major obstacle to such an approach.

However, if we deform the contour of integration in (7.77) into the upper half
plane toD, we can pick up the polar residue contributions from all the poles to the
right of β−1

L . Convergence at infinity is ensured by the properties ofH
(1)
m (ωpr).

With this deformation the displacement spectrum is given as a sum of a contour
integral and a residue series e.g.

ūP(r,m, 0,ω) = 1
2ω|ω|{

∫
D

dppwT
0 (p,m,ω)TTT(1)

m (ωpr)}

+πiω2
N(ω)∑
j=0

pjResj[w
T
0TTT(1)
m ]. (7.82)

At even moderate frequencies the numberN(ω) of modal residue contributions
becomes very large indeed (cf., figure 11.3), and locating all the poles is a
major computational problem. The poles with largest slowness give the major
contribution to what would generally be regarded as the surface wavetrain, with
relatively low group velocities. The summation of modes with smaller slownesses
just synthesisesS body wave phases by modal interference. With only a residue
sum taken over a portion of the realp axis, good results can be obtained for theS
wave coda (Kerry, 1981), and by forcingαL, βL to be very large evenP waves can
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be synthesised (Harvey, 1981). We will consider such modal summation methods
in more detail in Chapter 11.

The contour integration in (7.82) consists of a real axis slowness integral from
−∞ up toβ−1

L , and then a line segment off into the first quadrant whereH
(1)
m (ωpr)

is a decaying function of complexp. For large rangesr the contribution from
negative slownesses is very small and has often been neglected.

This approach has been used by Wang & Herrmann (1980) who have deformed
the contourD further to lie along the two sides of the branch cuts, taken along
the imaginaryp axis and along the realp axis toβ−1

L . They have used different
numerical integration schemes along the real and imaginary axes.

An alternative to the contour deformation procedure we have just described is
to arrange to move the poles in the response off the contour of integration. For an
attenuative medium the poles will lie in the first and third quadrants away from the
realp axis although their influence is strongly felt on the contour of integration. In
most applications we anticipate that at least some loss will occur in seismic wave
propagation and so introducing small loss factors is very reasonable.

Kind (1978) constructed the full response of an attenuative medium to excitation
by a vertical point force, but has taken the asymptotic form of the Hankel function
in (7.77) and thus excluded near-field effects; he also restricted his numerical
integration overp to a band of positive slowness covering the main body and
surface wave phases of interest.

At the origin theJm(ωpr) Bessel functions remain well behaved and so when
an attempt is made to calculate the complete response of the half space there are
advantages in using the standing wave expression (7.75). If a fairly broad band
of frequencies is required, for the shortest ranges and lowest frequenciesωpr

can be quite small and so it is desirable to use a high accuracy approximation to
Jm(x) over the whole range of arguments, e.g., via Chebyshev polynomials as in
Kennett (1980). For a broad-band signal the effects of velocity dispersion due to
attenuation (1.19), (1.25) can become significant and should strictly be included
when the response of the medium is calculated. When the loss factors are small
(Q−1
α , Q−1

β < 0.03) and propagation distances are less than 500 km, the pulse
distortion associated with neglect of dispersion is very slight; this is in agreement
with the results of O’Neill & Hill (1979) who have shown that significant change
in pulse form can occur for propagation of 600 km through a region withQ−1

α >

0.01.
With our reflection matrix representation (7.46), the construction of the

theoretical seismograms for a general point source atz = zS proceeds in three
stages. For a surface receiver we construct the matrix operator

Z(p,ω) = WfS
U [I − RSLD RfSU ]−1 (7.83)

for theP-SVandSHparts of the response.Z(p,ω) is independent of angular order
m and source type and so needs to be formed only once for any source depth. The
reflection matrixRSLD (p,ω) for a stack of uniform layers or a piecewise smooth
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structure, can be constructed recursively by working up fromzL to the source level
as discussed in Chapter 6. In a similar way the displacement matrixWfS

U and
free-surface reflection matrixRfSU can be calculated by working down from the free
surface to the levelzS.

The calculation is simplified if we are able to assume that all elements in the
source moment tensorMij have the same time dependenceM(t). We may then
extract the corresponding spectrum̄M(ω) from the source terms; at fixed slowness
p, the source radiation termsΣΣΣU andΣΣΣD are then independent of frequency but
depend on azimuthal orderm through the character of the source. For each
angular orderm we may now construct the transform vectorw0 at slownessp
and frequencyω as

w0(p,m,ω) = Z(p,ω)[RSLD (p,ω)ΣΣΣD(p,m) + ΣΣΣU(p,m)]M̄(ω). (7.84)

The change of variables from horizontal wavenumberk to slownessp gives an
effective source spectrum ofω2M̄(ω). We recall that the far-field displacement in
an unbounded medium is controlled by the derivative of the moment time function
and so it is often advantageous to specify the moment rate spectrum iωM̄(ω).
For excitation by a point force with time functionEEE(t), we replace the moment
spectrum in (7.84) by(iω)−1ĒEE(ω).

For each azimuthal component we now have to perform a numerical integration
overp to produce the spectrum of the three components of displacement at a range
r. For a source specified by a general moment tensor we need five azimuthal
orders and so we have 15 slowness integrations for each range when near-field
terms are included by using the original forms of the vector harmonics (2.56). A
final summation over the angular terms gives the three component seismograms
for a given azimuth from the source. If the asymptotic forms of the harmonics
(7.79) can be used we need perform only one integration for each displacement.
Unfortunately, the circumstances in which it is appropriate to attempt to calculate
complete synthetic seismograms, i.e. at moderate ranges so that the time separation
between the fastest body waves and slowest surface waves is not too large, are just
those in which the asymptotic approximation is barely adequate.

The slowness integrals in (7.75) have an infinite upper limit, but truncation is
required for numerical integration. For frequencies around 2 Hz, Kennett (1980)
integrated from the origin to a slowness ( 0.85β0)−1, for surface shear wavespeed
β0. This slowness is well beyondpR0 the high frequency asymptotic for the
fundamental Rayleigh mode. At lower frequencies it is advantageous to extend
the calculation to somewhat larger slownesses.

The integrand in (7.75) has a relatively unpleasant character. The vector
harmonics are oscillatory through the presence ofJm(ωpr): w0(p,m,ω) is by no
means smooth, particularly where the integration path passes over the shoulders of
the poles displaced from the real axis by the inclusion of attenuation. The simplest
approach to the numerical integration is to divide the slowness integral into sections
and to use a trapezium rule in each section with panel spacing chosen to suit the
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character of the integrand; e.g., a finer sampling would be used forp > β−1
L . An

alternative is to modify Filon’s (1928) method to Bessel function integrands and
attempt a polynomial fit tow0(p,m,ω) over each integration panel. The integral
is then evaluated as a sum of contributions of the form

∫
dx xpJm(kx) over the

panels.

For largeωpr rather fine sampling in slowness is needed to give a good
representation of the integrand. Without excessive computation, there is therefore
an effective upper limit in frequency at given range, and a maximum range with a
given frequency band when we seek to maintain a given accuracy.

At very low frequencies the fundamental Rayleigh mode is barely affected by the
loss factors of the stratification and so very fine spacing in slowness is needed to
cope with a near pole on the integration path. It is probably worthwhile to modify
the contour of integration to pick up the fundamental Rayleigh mode pole explicitly.
If we use (7.75) this would require two additional line segments starting to the left
of the pole: one into the upper halfp plane withH(1)

m (ωpr) dependence and the

other into the lower half plane depending onH(2)
m (ωpr).

Cormier (1980) has used an equivalent representation to (7.77) with a piecewise
smooth model. By deforming the contour of integration he has isolated the residue
contribution from the fundamental Rayleigh mode and also taken a path into the
upper halfp plane to exclude very small slownesses and so avoid the singularity at
the origin.

When the standing wave expression (7.75) is used we know that the entire
response can be represented in terms of outgoing functions, the size of any
apparently incoming waves provides a very useful check on the accuracy of any
numerical integration.

It is desirable to construct theP-SV andSH wave parts of the seismogram at
the same time, because the near-field contributions to the horizontal component
seismograms can then be correctly calculated. Wang & Herrman (1980) have
shown that neglect of the near-field terms from eitherP-SV or SH waves gives
non-causal, non-propagating arrivals which cancel when both contributions are
included. For long-period waves the near-field contributions can have a significant
effect on the calculated waveform at moderate ranges. For example, with a simple
crustal model, the surface wavetrains from a full calculation and one including only
far-field terms, show visible differences out to 80 km range.

After the slowness integration and azimuthal summation we are left with a
spectrum of the seismogram at a receiver location. The final integration to the
time domain is commonly performed by using the Fast Fourier transform (Cooley
& Tukey 1965) over a set of discrete frequencies. The finite bandwidth of practical
recording equipment sets an upper limit on frequency, and this has to be taken
below the Nyquist frequency for the transform. The time series obtained after
transformation is of fixed length and is cyclic in nature. There is therefore the
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possibility of time ‘aliasing’, energy which would arrive after the end of the allotted
time interval is wrapped back over the early part of the seismogram.

For complete seismograms we have a long duration of signal out to the end of the
surface wavetrain; to generate such a long time interval we need very fine frequency
spacing. In order to follow arrivals at varying ranges with a fixed time interval
it is convenient to calculateu(r, t − predr) by multiplying the spectrum atr by
exp(−iωpredr) (Fuchs & Müller 1971). The reduction slownesspred is chosen
to confine the arrivals most conveniently. Thus, if at each frequency the slowness
integral is split into a number of parts, a different reduction slowness may be used to
compute a time series for each part. The final seismograms may then be obtained
by superposition of the time series for the sections with appropriate time delays
(Kennett 1980).

7.3.2 The slowness method

We now consider carrying out the integration over frequency for a particular
combination of slownessp and ranger. For themth azimuthal component

uP(p, r,m, t) =
1

2π

∫∞
−∞ dωe−iωtω2wT

0 (p,m,ω)TTTm(ωpr) (7.85)

and this transform of a product can be expressed as a convolution

uP(p, r,m, t) = −∂tt{W̌0(p,m, t) ∗ (1/pr)ŤTTm(t/pr)} (7.86)

where ˇ indicates the inverse Fourier transform with respect to frequency. For the
SHmotion

uH(p, r,m, t) = −∂tt{W̌0(p,m, t) ∗ (1/pr)Ťm(t/pr)}. (7.87)

From (7.73) we see that the inverse transforms of the vector harmonics depend
on being able to find the time transform ofJm(ωpr). We start with the integral
representation

Jm(x) =
i−m

π

∫π
0

dθ eix cosθ cosmθ, (7.88)

and now change variable tot = cosθ to obtain

Jm(x) =
i−m

π

∫1
−1

dteixt Tm(t)√
1− t2

, (7.89)

whereTm(t) is a Chebyshev polynomial of the first kind with the property

Tm(cosθ) = cosmθ (7.90)

so thatT0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1. Since (7.89) is in the form of a
Fourier transform we can recognise the inverse transform ofJm as

J̌m(t) =
i−m

π

Tm(t)√
1− t2

{H(t+ 1) − H(t− 1)} (7.91)
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which has integrable, square root, singularities att = ±1.
We can find a comparable form for the near-field contributions, since

Jm−1(x) − J′m(x) = mJm(x)/x, (7.92)

=
i−(m−1)

π

∫π
0

dθ eix cosθ sinmθ sinθ, (7.93)

and with the substitutiont = cosθ, as before

Lm(x) = mJm(x)/x =
i−(m−1)

π

∫1
−1

dteixtUm−1(t)
√
1− t2. (7.94)

HereUm−1(t) is now a Chebyshev polynomial of the second kind

Um−1(cosθ) =
1

m
T ′
m(cosθ) =

sinmθ
sinθ

, (7.95)

and soU0(x) = 1,U1(x) = 2x. The inverse transform of the near-field termLm is
thus

Ľm(t) =
i−(m−1)

π
Um−1(t)

√
1− t2{H(t+ 1) − H(t− 1)}, (7.96)

and here only the derivative is singular att = ±1.
The forms of the inverse transforms we have derived are only appropriate for

m ≥ 0, but once again we can derive the results form < 0 from the symmetry
relation

J−m(t) = (−1)mJm(t). (7.97)

With these results for the Bessel function transforms, we can find the time
transforms of the vector harmonics which appear in (7.86). Form = 0 we have
only far-field terms:

π(1/pr)Ř0(t/pr) = ezB(t, pr)(p2r2 − t2)−1/2,

π(1/pr)Š0(t/pr) = −erB(t, pr)(t/pr)(p2r2 − t2)−1/2,

π(1/pr)Ť0(t/pr) = eφB(t, pr)(t/pr)(p2r2 − t2)−1/2,

(7.98)

where

B(t, pr) = {H(t+ pr) − H(t− pr)}. (7.99)

Form > 0, we also include near-field effects

π(1/pr)Řm(t/pr) = i−mB(t, pr)ezTm(t/pr)(p2r2 − t2)−1/2eimφ,

π(1/pr)Šm(t/pr) = i−(m−1)B(t, pr)(p2r2 − t2)−1/2eimφ

{erTm−1(t/pr) − (er − ieφ)Um−1(t/pr)(1− t2/p2r2)},

π(1/pr)Ťm(t/pr) = i−(m−1)B(t, pr)(p2r2 − t2)−1/2eimφ

{−eφTm−1(t/pr) + (eφ + ier)Um−1(t/pr)(1− t2/p2r2)}.

(7.100)
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When we perform the convolutions in (7.86),(7.87) to calculateuuu(p, r, t), the
far-field and near-field terms give rise to very different contributions to the final
waveform. Near the singularities att = ±pr, J̌m(t) behaves like the time derivative
of Ľm(t). The major contribution tow0(p,m, t) ∗ (1/pr)ŤTTm(t/pr) will arise
from the neighbourhood of these singularities, and so the far-field contribution
will closely resemble the derivative of the near-field part. This behaviour, for
a general stratified medium, is similar to our previous results for an unbounded
medium (Section 4.3.2) where the far-field term had a time dependence which was
the derivative of the nearer contributions.

The expressions we have just established for the time functions corresponding to
the vector harmonics are valid for all slownesses. However, the inverse transform
for the response vector

W̌0(p,m, t) =
1

2π

∫∞
−∞ dωe−iωtw0(p,m,ω), (7.101)

depends strongly on slownessp.
Since we are interested in sources which start att = 0, w0(p,m,ω) is analytic

in the upper half plane Imω > 0. The exponential term e−iωt enables us to deform
the contour, if necessary, into the lower half plane fort > 0.

The quantityw0(p,m, t) can be thought of as the time response of the half
space to irradiation by a single slowness component. In two dimensions this
would correspond to a ‘plane wave’ seismogram. In the full half-space response
for 0 < p < β−1

L , there are no pole singularities inw0(p,m,ω) as a function
of ω, since we have the possibility of radiation loss into the underlying uniform
half space. There will be a branch point atω = 0, and the branch cut can be
conveniently taken along the negative imaginaryω axis. In this slowness range we
get individual pulse-like arrivals corresponding to the major phases with a shape
determined by the source time function (cf. figure 6.4) The pattern of arrivals across
the band of slowness gets repeated in time with delays associated with multiple
surface reflections. Because there is radiation leakage ofS waves, at least, into
the underlying uniform medium, each successive surface multiple set will be of
smaller amplitude and this decay will be enhanced by the presence of attenuation
in the medium. Nevertheless a long time series is needed to include all surface
multiples and this can create difficulties when one tries to computeW̌0(p,m, t)

numerically.
Whenp > β−1

L , bothP andSwaves are evanescent in the underlying half space
and we have poles inw0(p,m,ω) which for perfectly elastic media lie on the real
ω axis; the closest pole to the origin corresponds to fundamental mode surface
waves. For an attenuative structure the poles move off the real axis into the lower
half plane. Just at the branch point atβ−1

L we get the maximum density of poles
along theω axis (see figure 11.3) and the spacing expands asp increases toβ−1

min.
For p > β−1

min we have only one pole for theP-SV case corresponding to the
fundamental Rayleigh mode. Since the poles inω are symmetrically disposed
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about the imaginary axis, the residue contribution toW̌0(p,m, t) takes the form
(for p < β−1

min)

Re

{ ∞∑
k=0

e−iωktResk[w
T
0 (p,m,ωk)]

}
, (7.102)

which can often prove convenient in surface wave studies. There will in addition
be a continuous spectrum contribution from the sides of the branch cut along the
negative imaginaryω axis.

Once we have found the inverse transform of the medium response and
performed the convolution (7.86) we need to carry out the slowness integral and
summation over angular order

uP(r, φ, 0, t) =
∑
m

∫∞
0

dpuP(p, r,m, t), (7.103)

to generate the seismograms for a particular range. We illustrate the procedure
by considering themth azimuthal contribution to the radial component of motion
(7.70):

ur0(r,m, t) =

∫∞
0

dppur(p, r,m, t). (7.104)

When only the low frequency part of the seismic field is of interest it is probably
most effective to calculate seismograms from (7.103) having previously evaluated
the integral (7.86) by direct numerical integration.

The far-field contribution to (7.104) may be found from (7.88) and (7.101)

fur0(r,m, t) = −
1

π
∂tt

∫∞
0

dpp
∫pr
−pr

ds i−(m−1)Tm−1(s/pr)
V̌0(p,m, t− s)

(p2r2 − s2)1/2

(7.105)

using the explicit form for the convolution. The near-field contribution mixes both
P-SVandSHelements

nur0(r,m, t) = −
1

πr
∂tt

∫∞
0

dp
∫pr
−pr

ds i−(m−1)Um − 1(s/pr)

×{V̌0(p,m, r− s) − iW̌0(p,m, t− s)}(p2r2 − s2)1/2,(7.106)

and, as we have noted in discussing the spectral method, bothV0 andW0 need to
be present in (7.106) or non-causal arrivals are generated. The same combination
{V̌0 − iW̌0} will also appear on the tangential component.

The total seismograms are now to be constructed by performing the summation
over angular order

ur0(r, t) =
∑
m

{nur0(r,m, t) + fur0(r,m, t)}e
imφ. (7.107)
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Whenpr is small we need to employ the expressions (7.105), (7.106) as they
stand since the singularities ats = ±pr will be very close together. However,
for largepr, the singularities become widely separated and so we may make an
approximate development in terms of isolated singularities (Chapman 1978)

B(t, pr)Tm(t/pr)

(p2r2 − t2)1/2
=

1

(2pr)1/2

{
H(pr− t)√

(pr− t)
+ (−1)m

H(t+ pr)√
(pr+ t)

}
, (7.108)

since

Tm(1) = 1, Tm(−1) = (−1)m. (7.109)

We note that the contribution fromt = pr has a functional form with respect tot
which is the Hilbert transform of that fromt = −pr.

With this approximation the far-field displacement (7.105) becomes

fur0(r,m, t) = −
1

π(2r)1/2
∂tt

∫∞
0

dpp1/2i−(m−1)

×
∫∞
−∞ ds V̌0(p,m, t− s)

{
H(pr− s)√

(pr− s)
+ (−1)m

H(pr+ s)√
(pr+ s)

}
,

(7.110)

and by separating the singularities we lose the finite interval of integration. The
integration domains for the two separated singularities stretch in opposite directions
with respect to the time variables. We can force a common time convolution
operator for the two singularities when we make use of the properties of a
convolution

f̂ ∗ g = f ∗ ĝ, (7.111)

where^ denotes a Hilbert transform. We transfer the Hilbert transform from the
s = pr singularity term to the response term, so that thes integral becomes∫∞

−∞ ds{V̂0(p,m, t− pr− s) + (−1)mV̌0(p,m, t+ pr− s)}
H(s)

s1/2
. (7.112)

When all the source elements have a common time dependenceM(t), the
response terms can be written as a convolution

V0(p,m, t) = M(t) ∗ v̌0(p,m, t). (7.113)

In terms of this representation the double integral for the displacement may be
written as

fur0(r,m, t) = −
1

π(2r)1/2

∫∞
−∞ dsM(t− s)

×∂s
∫∞
0

dpp1/2{v̂0(p,m, s− pr) + v̌0(p,m, s+ pr)}, (7.114)
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where we have introduced an ‘effective’ source functionM(t) (Chapman 1978)

M(t) =

∫ t
0

dl ∂lM(l)H(t− l)/(t− l)1/2. (7.115)

This convolution with H(t)/t1/2 may be well approximated by a finite length
recursive operator (Wiggins, 1976) which facilitates numerical evaluation of the
effective source. We chose to work with∂tM, since this will correspond to the
far-field displacement time function and so may often be well estimated from
observations.

In general, the main contribution to the far-field displacement (7.114) comes
from v̂0(p,m, t − pr) which corresponds to outgoing waves, and the incoming
part v̌0(p,m, t + pr) can be neglected. The process of separating the singularities
(7.108) and then retaining only outgoing waves is equivalent to taking the
asymptotic form (7.79) for the Hankel function and then restricting attention to
positive slownesses. As we shall see in Chapter 10, the representation (7.114)
becomes particularly convenient whenV0(p,m,ω) is represented as a sum of
contributions for which the inversion to the time domain can be performed
analytically. However, such ‘generalized-ray’ representations are not very suitable
for synthesising surface wavetrains.

In general we may construct∂tŴ0(p,m, t) by numerical inversion of a Fourier
transform (Fryer, 1980). The Hilbert transform corresponds to a multiplier
of −isgnω in the frequency domain, and differentiation with respect to time
to a further factor of−iω. Thus we take the inverse Fourier transform of
−|ω|w0(p,m,ω) to construct the quantities we need. This transform can be
performed numerically on the full half space response with a fast Fourier transform
and a very long time series forp < β−1

L . For larger slownesses it will be more
effective to use a residue summation as in (7.102), over the frequency band of
interest.

Once we have constructed the slowness-time response (cf., figures 6.4, 6.5) we
can perform thep-integration along linear trajectories inp, t depending on ranger
to form

v0(r,m, t) =

∫pmax

0
dpp1/2v̂0(p,m, t− pr). (7.116)

The convolution with the effective source can then be performed at leisure to give

fur(r,m, t) = −
1

π(2r)1/2

∫∞
0

dsM(t− s)v0(r,m, s), (7.117)

for the far-field radial displacement at ranger.
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Figure 7.4. Crustal structure used in calculations of complete theoretical seismograms.
The three focal depths illustrated in figure 7.5 are indicated A - 2.5 km, B - 10 km, C - 20
km. A 45◦ dip-slip event is used in all cases, recorded along an azimuth of 10◦

7.3.3 Examples of complete theoretical seismograms

As an illustration of the variety of seismic wave phenomena which can occur
when we calculate the full seismic wavetrain, we consider a source with a fixed
mechanism at different focal depths in a simple model.

The calculations were carried out using the spectral approach described in
Section 7.3.1, for a simple attenuative crustal model (figure 7.4) withQ−1

α = 0.001,
Q−1
β = 0.002. The source was chosen to be a 45◦ dip-slip dislocation source with

a moment tensor

Mij = M(t)diag[1, 0,−1]. (7.118)

This particular type of source excites only the angular ordersm = 0,±2. For
sources at 2.5 km, 10 km and 20 km depth we present record sections of the three
components of displacement as a function of range, along an azimuth of 10◦ in
figure 7.5. The moment rate function was a delta function (corresponding toM(t)

being a step function), and the calculation was performed for a frequency band
from 0.04 to 4.0 Hz with a simple half-cycle sinusoidal filter response.

The displays in figures 7.5a,b,c consist of composite record sections for all three
displacement components. For each distance we present a triad of seismograms
in the order vertical (Z), radial (R) and tangential (T). The radial seismograms are
plotted at the correct ranges and the vertical and tangential seismograms at constant
offset. The net effect is thus to give three interleaved record sections with the same
time distance relations. A scaling factor of 1.0 + 0.1r is applied to all seismograms
at a ranger.
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Figure 7.5. Complete theoretical seismograms calculated for the crustal structure illus-
trated in figure 7.4, records are shown for all three components of displacement: a) 2.5 km
deep source

The seismograms from the shallowest source (case A - 2.5 km depth) are
displayed in figure 7.5a. We note immediately that we have well developedP, Sand
Rayleigh wavetrains of quite complex form influenced strongly by reverberations
in the surface channel with reduced velocity. The propagation times for bothP and
S waves from the source to the surface are sufficiently short that there is no clear
separation of the surface reflected phases (pP, sS) from direct propagated phases
(P, S). The source lies just below the surface channel and we get a pronounced
Airy phase for the Rayleigh waves with a group velocity close to 2.7 km/s (the
surfaceSwave velocity). The main phase is preceded by a rather oscillatory higher
mode train. There is noticeable velocity dispersion with frequency and we can
see an indication of much lower frequency Rayleigh waves emerging from the tail
of the seismograms. For this azimuth of observation the radiation pattern of the
source gives rather weak excitation of the tangential component, particularly for
the surface waves. The higher mode Love waves on the tangential component
arrive along with the higher mode Rayleigh waves, but the group velocity of the
fundamental mode Love wave is somewhat faster than that for the Rayleigh wave.

The final time series were generated by adding together the results for different
slowness intervals. For phase velocities greater than 3.57 km/s, i.e. slownessp <

0.28 s/km, 40 s of time series were computed with a reduction slowness of 0.16
s/km, and this contribution includes most of theP andS wavetrains. In order to
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Figure 7.5. Complete theoretical seismograms calculated for the crustal structure illus-
trated in figure 7.4, records are shown for all three components of displacement: b) 10 km
deep source.

achieve a good representation of the surface train a double length (80 s) time series
was used for phase velocities between 3.57 and 2.3 km/s (i.e. 0.28< p < 0.434
), with a reduction slowness of 0.28 s/km - since no significantP waves should be
present in this slowness interval. When we add this portion to the single length time
series for higher phase velocities we get incomplete cancellation of the numerical
arrivals associated with splitting the slowness integration atp = 0.28 s/km. The
resulting arrival (apparently incoming) may be seen at large reduced times (≈ 30 s)
on the first two sets of seismograms in figure 7.5a, but decays rapidly with distance
and gives little contamination of the response.

The seismograms for the midcrustal source (case B - 10 km depth) are illustrated
in figure 7.5b. We immediately notice that, as expected, the surface wave excitation
is very much reduced and a low frequency Rayleigh wave is just visible beyond
100 km emerging from the tail of theS wavetrain. The time differential between
surface reflected phases and the direct phases is now more significant and we are
beginning to get a clearer separation at shorter ranges. At the larger ranges we
see the emergence ofPn andSnphases refracted along the crust-mantle interface.
As expected, there is a change in polarity of theP wave between 70 and 90 km
range corresponding to the switch between the upper and lower lobes of theP
wave radiation pattern from our dip-slip source.

In the seismograms for the deepest source (case C - 20 km depth) shown in figure
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Figure 7.5. Complete theoretical seismograms calculated for the crustal structure illus-
trated in figure 7.4, records are shown for all three components of displacement: c) 20 km
deep source.

7.5c, we have no significant surface waves and the surface reflected phases are now
very prominent. Multiple reflections within the whole crustal channel are also just
beginning to influence the seismograms.

These calculations for a point source in a simple structure show that we can give
a good representation of the general character of local events. The calculations can
be extended to higher frequencies and greater ranges at the cost of considerable
computer time. However, for regional and teleseismic ranges (r >300 km),
attention is usually focussed on more limited portions of the seismic records, and
then it is often more convenient to make an approximation to the full response and
model the features of interest (see Chapter 9).
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Chapter 8

The Seismic Wavefield

So far in this book we have shown how we may calculate complete theoretical
seismograms for a horizontally layered medium. Such calculations are most useful
when the total time span of the seismic wavetrain is fairly short and there is no clear
separation between different types of wave propagation processes.

As the distance between source and receiver increases, the wavetrain becomes
longer and waves which have travelled mostly asP waves arrive much earlier than
those which propagate mostly asS. Also the surface waves which are principally
sensitive to shallowS wavespeed structure separate out from theS body waves
which are returned from the higher wavespeeds at depth. Once the seismic
wavetrain begins to resemble a sequence of isolated phases it becomes worthwhile
to develop approximate techniques designed to synthesise a particular phase.
However, in order that such approximations can be made efficiently, with a due
regard for the nature of the propagation process, we need to have a good idea of the
character of the seismic wavefield.

In this chapter we will therefore survey the character of the seismograms which
are recorded at different epicentral ranges.

8.1 Controlled source seismology

In the application of seismic techniques to the determination of geological
structure, the source of seismic radiation is usually man-made, such as an explosive
charge. In this case the origin time is known with precision and with high frequency
recording the fine detail in the seismograms can be retained. Experiments of this
type can be loosely divided into two classes characterised by the maximum range
at which recordings are made and the density of recording points.

In reflectionseismic studies attention is concentrated onP waves reflected at
depth and returned at small offsets from the source. The propagation paths are then
close to the vertical, particularly for reflections from deep structure. The major use
of the reflection method has been in prospecting for minerals and hydrocarbons.
Here the features of interest usually lie shallower than 5 km and the array of
geophones at the surface rarely extends to more than 5 km from the source. Many
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receivers are used for each source (typically 48 or 96 in current practice), and the
source point is then moved slightly and the recording repeated. The multiplicity
of subsurface coverage can then be exploited to enhance the weak reflections from
depth. Reflection methods are now also being used for investigations of the deep
crust (Schilt et al., 1979) and here longer recording arrays are often used.

In refractionstudies the receivers extend to horizontal ranges which are eight to
ten times the depths of interest, and the density of observations is often fairly low.
At the largest ranges the main features in the seismograms are refracted phases or
wide-angle reflections from major structural boundaries. These can sometimes be
traced back into reflections at steeper angles if adequate coverage is available at
small ranges.

Early work in seismic refraction in Western countries used very limited numbers
of receivers, but latterly the benefits of very much denser recording have been
appreciated (see, e.g., Bamford et al., 1976). In Eastern Europe and the
USSR, reflection and refraction techniques have been combined in ‘Deep Seismic
Sounding’ (Kosminskaya, 1971), which has closely spaced receivers along profiles
which can be hundreds of kilometres long. Such an arrangement gives a very
detailed description of the seismic wavefield.

8.1.1 Reflection studies

For many years the major source of seismic radiation used in reflection work was
small explosive charges, both at sea and on land. Now, however, a large proportion
of the work on land uses an array of surface vibrators to generate the seismic waves.
This avoids drilling shot holes and allows more control over the frequency content
of the signal transmitted into the ground. For marine work the commonest source
is now an array of airguns, which generateP energy in water by the sudden release
of high pressure air.

All these energy sources are at, or close to, the surface and so tend to excite
significant amplitude arrivals travelling in the low wavespeed zone at the surface
(water or weathered rock). In marine records these slowly travelling waves are
mostly direct propagation in the water and multiple bottom reflections, but in very
shallow water there may also be effects from the weak sediments at the bottom
giving strong arrivals known as ‘mud-roll’. On land a surface vibrator is a very
efficient generator of fundamental mode Rayleigh waves and such ‘ground-roll’
phases show up very strongly when single geophone recording is used (figure 1.3).
When explosive charges are used they are usually fired beneath the weathered zone,
this reduces the excitation of the ground-roll, but it can still have large amplitude.

The weak reflections from depth have very small apparent slownesses on a
surface array and tend to be obscured in part by the shallow propagating phases. In
order to remove the ground-roll and water phases, the seismic records are normally
obtained not from a single sensor, but from an array of sensors. If such an array
is chosen to span a wavelength of the ground-roll at the dominant frequency, the
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Figure 8.1. Seismic reflection gather showing prominent surface-reflected multiples indi-
cated by markers. This set of traces has been selected to have a common midpoint between
source and receiver and then has been corrected for the time shifts associated with source-
receiver offset on reflection at depth, with the result that primary reflections appear nearly
flat. (Courtesy of Western Geophysical Company).

resulting summed amplitude is substantially reduced. The residual ground-roll
can be removed by exploiting the separation in slowness from the reflections and
so designing a filter, e.g., in the frequency-slowness domain, to leave only the
reflections with small slowness.

The use of arrays of sources and receivers makes it difficult to produce good
theoretical models of the source radiation. For airgun arrays the guns are usually so
close together that very complex interference effects occur. With surface vibrators
the ground coupling can be highly variable and several vibrators in a similar
location can have very different seismic efficiency.

The reflections from depth are weak compared with the early refracted arrivals
from the shallow structure. These refractions are often forcibly removed from
reflection records (‘muting’) and an attempt is then made to equalize the amplitude
of the traces in time and distance to compensate for losses in propagation. As a
result a set of reflection records will normally appear to become more ragged with
increasing time, since noise is amplified along with the coherent signal.

In most reflection situations the reflection coefficient at the surface is larger
than any of the reflection coefficients in the subsurface, particularly at near-normal
incidence (cf. figure 5.4). Waves which have been reflected back from below
the source can be reflected at the free surface, and then reflected again by the
structure. A good example is shown in figure 8.1 where a prominent reflector
(R) is mirrored at twice the time by its free-surface multiple (FR). This surface
multiple obscures genuine reflections from greater depth. When there is a strong
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contrast in properties at the base of the low wavespeed zone, multiple reverberations
within this zone associated with each significant reflection lead to a very complex
set of records. Often predictive deconvolution (Peacock & Treitel, 1969) will
give help in ‘cleaning’ the records to leave only primary reflections. Sometimes
internal multiples between major reflectors can also give significant interference
with deeper reflections.

Most reflection recordings on land have been made with vertical component
geophones and soP waves are preferentially recorded. However, waves which
have undergone conversion toSat some stage of their path can sometimes be seen
at the largest offsets on a single shot gather. Converted phases can occur at small
offsets in the presence of strongly dipping reflectors. At sea, pressure sensors are
used and the recording array is not usually long enough to pick up effects due to
conversion. The standard data processing techniques, particularly stacking of traces
with an estimated wavespeed distribution to attempt to simulate a normally incident
wave, tend to suppress conversions.

Although the object of seismic reflection work is to delineate the lateral
variations in subsurface structure, studies of wave propagation in stratified models
can help in understanding the nature of the records, as for example in multiple and
conversion problems.

8.1.2 Refraction studies

Whereas the object of a reflection experiment is to delineate the fine detail in
geological structure, in refraction work resolution is sacrificed to penetration in
depth. As a result the interpretation of a refraction profile, which does not cross any
major vertical discontinuities such as deep faults, will give only the broad outline
of the lateral variations in structure. The principal phases which can be correlated
from record to record are refracted arrivals (quite often interference head waves,
see Section 9.2.2) and wide angle reflections from major horizontal boundaries.
As a result the portion of the wavefield which is studied is most sensitive to the
wavespeed distribution near interfaces and strong gradient zones and reveals little
information about the rest of the structure.

The source of seismic radiation for refraction work is normally an explosive
charge recorded at an array of receivers. After a shot the receiver array is moved to
a new location and a further shot fired. In this way a detailed profile can be built
up to considerable range with only a limited number of recording stations. Since
studies of deep structure require a detailed knowledge of the shallower regions,
multiple shots at a variety of ranges are often fired into the same receiver array so
that detailed results can be built up at both large and small ranges (Bamford et al.,
1976). Such a procedure also allows a test of the degree of lateral homogeneity
along a refraction profile. In work on land there is often considerable variability
in amplitudes between nearby recorders, and in order to reduce local variations
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Figure 8.2. Seismic refraction records from the Arabian Penisula (Courtesy of U.S. Geo-
logical Survey): a) Ranges out to 150 km showingP, Sand Rayleigh waves; b) Detail ofP
wavetrain at larger ranges.

observations are often low-pass filtered before interpretation (Fuchs & Müller,
1971).

The depth of the shot on land must be such as to contain the explosion. The
resulting seismic wavefield is rich inP waves, and someSwaves are generated by
reflection at the free surface. These deep sources are not very efficient generators
of Rayleigh waves, but a surface wavetrain is often seen late on refraction records.
In figure 8.2a we show the close range seismograms from an experiment conducted
by the United States Geological Survey in Saudi Arabia (Healy et al., 1981), which
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show clearly the three major wave contributions. We display the beginning of theP
wavetrain at larger ranges in figure 8.2b, and we can see considerable detail in the
phases with closely spaced receivers. At large ranges (300 km - 600 km) detailed
refraction experiments have revealed character within the first arrivingP waves
normally referred to asPn (Hirn et al., 1973) which could not have been observed
with the coarse spacing available with permanent stations. These observations
suggest the presence of fine structure in the uppermost part of the mantle which
could not be resolved in previous studies.

Seismic refraction work at sea has significant differences from work on land,
since it is difficult to use more than a few receivers and so a suite of observations
is built up using multiple shots. At short ranges (< 20 km) airguns have been
used to give high data density and provide continuous coverage from near-vertical
incidence out to wide angle reflections (see, e.g., White, 1979). This data gives
good control on the structure of the uppermost part of the oceanic crust and the
longer range refractions fill in the picture at depth. For refraction experiments
which have been shot along isochrons in the oceans, lateral variations in structure
are not too severe, and stratified models give a good representation of the structure.

The interpretation of refraction records was initially based on the times of arrival
of the mainP phases, but latterly this has been supplemented with amplitude
information. Frequently the amplitude modelling has been done by computing
theoretical seismograms for an assumed model, and then refining the model so
that observations and theoretical predictions are brought into reasonable agreement.
This approach has spurred on many of the developments in calculating theoretical
seismograms both by generalized ray methods (Helmberger, 1968 - see Chapter
10) and reflectivity techniques (Fuchs & Müller, 1971 - see Section 9.3.1). The use
of amplitude information has resulted in more detail in the postulated wavespeed
distributions with depth. In particular this has led to a considerable change in our
picture of the oceanic crust (cf. Kennett, 1977; Spudich & Orcutt, 1980). Braile &
Smith (1975) have made a very useful compilation of theoretical seismograms for
the continental crust, illustrating the effect of a variety of features in the wavespeed
distribution.

In refraction work most attention is given to theP arrivals, but on occasion very
clear effects due toS waves or conversion can be seen and these may be used
to infer theS wavespeed distribution. Even when such waves are not seen the
S wavespeed distribution can have significant influence on the character of theP
wavefield (White & Stephen, 1980).

8.2 Ranges less than 1500 km

For epicentral distances out to 1500 km the properties of the seismic wavefield are
dominated by the wavespeed distribution in the crust and uppermost mantle.
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8.2.1 Strong ground-motion

In the immediate neighbourhood of a large earthquake the Earth’s surface
suffers very large displacements which are sufficient to overload many seismic
instruments. However, specially emplaced accelerometer systems can record these
very large motions. These systems are normally triggered by theP wavetrain and so
the accelerograms consist almost entirely ofSwaves and surface waves. Normally
the strong-motion instruments are somewhat haphazardly distributed relative to the
fault trace since they are placed in major buildings. However, in the Imperial
Valley in California, an array of accelerometers was installed across the trace of
the Imperial fault. These stations recorded the major earthquake of 1979 October
15 with some accelerometers lying almost on top of the fault (Archuleta & Spudich,
1981).

In figure 8.3 we show the three components of velocity for a group of stations
close to the fault obtained by numerical integration of the accelerograms. The
earthquake rupture started at depth on the southern portion of the fault and
propagated to the north-west. The major features of the velocity records are
associated with the progression of the rupture, and show strong excitation of higher
mode surface waves on the horizontal components. The early high frequency
arrivals on the vertical component are probably multipleP phases. The oscillatory
tails to the records arise from surface waves trapped in the sediments.

In order to understand such strong ground motion records we have to be able
to calculate complete theoretical seismograms as in Section 7.3 and, in addition,
need to simulate the effect of large-scale fault rupture. In a stratified medium
this can be achieved by setting up a mesh of point sources on the fault plane
with suitable weighting and time delays, and then summing the response at each
receiver location. Such a representation will fail at the highest frequencies because
the wavelengths will be smaller than the mesh spacing, but will describe the main
character of the event. Point-source models are still useful since they allow the
study of the effects of wave propagation in the crustal structure rather than source
processes.

The aftershocks of major events are often quite small and these may be modelled
quite well with equivalent point sources. In many areas the surface motion is
strongly affected by the sedimentary cover, particularly where this is underlain by
high wavespeed material. A detailed study of such amplification effects has been
made by Johnson & Silva (1981) using an array of accelerometers at depth in a
borehole.

8.2.2 Local events

Most seismic areas now have a fair density of short-period seismic stations which
have been installed to allow detailed mapping of seismicity patterns and so have
a high frequency response. A common features of seismograms at such sites are
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Figure 8.3. Three-component velocity records for the 1979 earthquake in the Imperial Val-
ley, California. The epicentre lay about 20 km to the south-east of the group of stations
shown in map view. The surface fault break is also marked. (Courtesy of U.S. Geological
Survey)

short bursts of energy associated with local earthquakes, less than 200 km or so
from the station (see figures 8.4 and 8.5). These records are dominated byP andS
body waves, although at larger ranges there are sometimes hints of surface waves
which increase in importance on broad-band records.

In figure 8.4 we show seismograms recorded on the North Anatolian fault zone
(Crampin et al., 1980), for an earthquake at 13 km depth at a hypocentral distance
of 18 km. TheP waveform is quite simple and is followed by very clearSonsets
with a lower frequency content indicating significant attenuation in the fault zone.
Close recordings of small aftershocks also show such a pattern of arrivals but the
details of the waveform can be strongly influenced by near-surface structure, such
as sediments.
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Figure 8.4. Rotated three-component seismograms for a small earthquake on the North
Anatolian fault zone, hypocentral distance 18 km.

Figure 8.5. Vertical component short-period seismograms recorded at JAS, showing the
effect of increasing epicentral distance.

At most permanent seismic stations with visual recording, it is difficult to
separate theP andSwave arrivals from close events and so the records show strong
excursion followed by swift decay. As the epicentral distance increases, the time
separation betweenP andSwaves is such that distinct phases are seen. In figure 8.5
we show vertical component records for two local events recorded at Jamestown in
Northern California. The closer event (figure 8.5a) is about 100 km away from the
station, and shows a clear crustal guidedPggroup which begins to die away before
the Sgwaves which carry most of the energy. TheS wave coda has a generally
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Figure 8.6. Short period SRO record from Mashad, Iran showing distinctPn, Pg, Sgand
Lg phases.

exponential envelope and the later arrivals may well be due to scattering in the
neighbourhood of the recording station. The more distant event (figure 8.5b) is 200
km away from the station and nowPn waves propagating in the uppermost mantle
have separated from the front of thePggroup. The correspondingSnphase is often
difficult to discern because of the amplitude of theP coda, but there is a hint of its
presence before the large amplitudeSggroup in figure 8.5b.

8.2.3 Regional events

In the distance range from 200-1500 km from the epicentre of an earthquake the
pattern of behaviour varies noticeably from region to region. In the western United
States there is a rapid drop in short period amplitude with distance with a strong
minimum around 700 km (Helmberger, 1973) which seems to be associated with a
significant wavespeed inversion in the upper mantle. Such a pattern is not seen
as clearly in other regions, and for shield areas there is little evidence for an
inversion. In general, however, the coverage of seismic stations in this distance
interval is somewhat sparse and the structure of the top 200 km of the mantle is still
imperfectly known.

At moderate ranges the character of the wavetrain is still similar to the behaviour
we have seen for local events. In figure 8.6 we show a plot of the digital
short-period channel of the SRO station at Mashad, Iran for a small earthquake
at a range of 390 km. A very clearPn phase is seen preceding thePg phase,
but once again it is difficult to pick the onset of theSn phase, though there is
the beginning of an apparent interference effect near the expected arrival time.
The Sg waves grade at later times into a longer period disturbance composed
of higher mode surface waves, theLg phase. There is no clear distinction
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Figure 8.7. Broad-band seismic recording at Boulder, Colorado from a nuclear explosion
at the Nevada test site, epicentral distance 980 km.

between theSgandLg phases and so, to synthesise seismograms for this distance
range, we again need to include as much of the response as possible. For theS
waves and their coda, this may be achieved by the modal summation techniques
discussed in Chapter 11, in addition to the integration methods discussed in
Chapter 7.

At longer ranges, the higher mode surface waves are only rarely seen on
short-period records, but show up clearly with broad-band instruments. Figure 8.7
illustrates such a record at 980 km from a nuclear test in Nevada. The explosive
source gives strongerP waves than in the previous earthquake examples. TheP
waves show high frequency effects modulating the long-period behaviour (PL)
which has been studied by Helmberger & Engen (1980). AlthoughSg is not very
strong, a well developedLg wavetrain is seen. At the same range long-period
earthquake records are dominated by fundamental mode Love and Rayleigh waves,
which in areas with thick sedimentary sequences can have significant energy at very
low group velocities.

8.3 Body waves and surface waves

Beyond about 1500 km from the source theP andS body waves are sufficiently
well separated in time that we can study them individually. Out to 9000 km the
earliest arriving waves are reflected back from the mantle, beyond this range the
effect of the core is very significant. Reflected waves from the corePcP, ScSarrive
just behindP andSbetween 8000 and 9000 km. ForP waves the core generates a
shadow zone and there is a delay beforePKP is returned. TheP wavespeed in the
fluid core is higher than theSwave speed in the mantle and so, beyond 9200 km,
theSKSphase penetrating into the core overtakesS. Simplified travel-time curves
for the major phases seen on seismograms are illustrated in figure 8.8.

With increasing range the surface reflected phases such asPP, PPP separate
from theP coda to become distinct arrivals. With each surface reflection the waves
have passed through a caustic, and so the waveform is the Hilbert transform of the
previous surface reflection. ForS, such multiple reflections constitute a fair part
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Figure 8.8. Simplified travel-time curves for the major seismic phases.

of what is commonly characterised as the surface wavetrain and so theSSandSSS
phases appear to emerge from the travel-time curve for the surface waves.

8.3.1 Body waves

For epicentral ranges between 1500 and 3500 km theP andS waves are returned
from the major transition zone in the upper mantle which occupies the depth
interval from 300-800 km. In this region there are substantial wave speed gradients
and near 400 km and 670 km very rapid changes in wavespeeds which act as
discontinuities for large wavelengths. This complicated wavespeed distribution
leads to travel-time curves for theP and S phases which consist of a number
of overlapping branches, associated with variable amplitudes. As a result of
interference phenomena the waveforms in this distance range are rather complex
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Figure 8.9. Short period WWSSN records at distant stations from an earthquake in Iran,
focal depth 31 km.

and have mostly been studied in an attempt to elucidate the wavespeed distribution
in the upper mantle (see, e.g., Burdick & Helmberger, 1978).

Beyond 3500 km theP and S waves pass steeply through the upper mantle
transition zone and very little complication is introduced until the turning levels
approach the core-mantle boundary. The resulting window from 3500-9000 km
enables us to useP and S waveforms to study the characteristics of the source.
For P waves, the character of the beginning of the wavetrain is determined by the
interference of the directP wave with the surface-reflected phasespP andsP. The
relative amplitude of these reflected phases varies with the take-off angle from the
source and the nature of the source mechanism.

In figure 8.9 we show short-period records from a number of WWSSN stations
for a shallow event in Iran. The stations lie in a narrow range of azimuths
and allow us to see the stability of the directP wave shape over a considerable
distance range. The ISC estimate of the focal depth of this event is 31 km, but
the time interval betweenP and pP suggest a slightly smaller depth. The later
parts of the seismograms are associated with crustal reverberations near source and
receiver. The relative simplicity of mantle propagation illustrated by these records
can be exploited to produce a scheme for calculating theoretical seismograms for
teleseismicP andSphases discussed in Section 9.3.3. For teleseismicSwaves, a
P wave precursor can be generated by conversion at the base of the crust and on a
vertical component record this can easily be misread asS.
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Figure 8.10. Long period WWSSN records in relation to their position on the focal sphere
for an Iranian event.

On teleseismic long-period records the time resolution is normally insufficient
to allow separation of the directP from the surface reflectionspP, sP for shallow
events. However, the appearance of the onset of theP wavetrain provides a strong
constraint on the depth of source particularly when many stations at different
distances are available (Langston & Helmberger, 1975). This procedure relies on
a very simple construction scheme for long-period records which is discussed in
Section 9.3.3. To get depth estimates from these long-period records we need a
model of the source time function. For small to moderate size events the far-field
radiation can be modelled by a trapezoid in time. Figure 8.10 shows the long-period
records from WWSSN stations for an Iranian event as a function of their position on
the focal sphere. The simplicity of these long-period waveforms enables the sense
of initial motion to be determined very reliably (Sykes, 1967) and so improves the
estimate of the focal mechanism.

Once the earthquake focus lies well below the crust the surface reflections are
seen as distinct phases, particularly for deep events. Surface reflections can also be
returned as core reflections so that phases likepPcP, sPcPcan often be found for
intermediate or deep events. In figure 8.11 we show a vertical component broad
band recording at Boulder, Colorado from an intermediate depth event (100 km) in
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Figure 8.11. Broad-band record at Boulder, Colorado for an intermediate depth event, focal
depth 100 km, epicentral distance 4200 km.

the Mona passage. The epicentral distance is 4200 km and now we see clearpPand
sPphases. About a minute laterPP arrives, with a longer period since most of its
path has been spent in the attenuative regions of the upper mantle. This is followed
by PcPand its surface reflections. TheP wave coda then dies down and a clearS
wave arrival is seen with a smallP precursor. On a standard short-period instrument
this S wave would not be seen at all clearly because of the strong roll-off in the
instrumental response to suppress the microseism band (figure 1.2). TheS coda
grades into a weakLg train rich in moderate frequencies but very few long period
surface waves are seen. Such an intermediate depth event will be more successful
in exciting higher mode Rayleigh waves than the fundamental (see Chapter 11).

8.3.2 Surface waves

For all but deep earthquakes (focal depths> 300 km) the largest arrivals on
long-period records occur after theP andSbody waves. These surface waves have
travelled with their energy confined to the crust and upper mantle and so have not
suffered as much wavefront spreading as the body waves.

On the horizontal component oriented transverse to the path between the
epicentre and the station, just behind theSbody phases a very long disturbance (G)
appears which at later times is replaced by short-period oscillations often denoted
LQ. These two features arise from the fundamental Love mode for which the group
slowness normally increases with frequency. As a result the apparent frequency of
the record increases with time (see figure 8.12). Superimposed on this wavetrain
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Figure 8.12. WWSSN long-period records for Baja California events at Atlanta, Georgia,
epicentral distance 3000 km: a) transverse component; b) radial component.

are smaller high frequency waves with small group slowness. These are higher
mode Love waves whose excitation increases with increasing depth of focus.

On the vertical component and the horizontal component oriented along the
path to the source, the principal disturbanceLR occurs some time after the
commencement of theLQ waves and arises from the fundamental Rayleigh mode.
This is preceded by very long-period waves, arriving after theG waves and
with much lower amplitude. The wavetrain leads up to an abrupt diminuation
of amplitude, followed by smaller late arrivals with high frequency. This Airy
phase phenomena is associated with a maximum in the group slowness for the
fundamental Rayleigh mode at 0.06 Hz (figure 11.10). Waves with frequencies
both higher and lower then 0.06 Hz will arrive earlier than those for 0.06 Hz,
but the frequency response of long-period instruments reduces the effect of the
high frequency branch. The late arrivals following the Airy phaseRg arise from
scattering and sedimentary effects.

In figure 8.12 we illustrate long-period seismograms from the WWSSN station
at Atlanta, Georgia for shallow events (focal depth 25 km) in the northern part of
Baja California, with an epicentral distance of 3000 km. The path is such that
the North-South component (figure 8.12a) is almost perfectly transverse and so
displays only Love waves, whereas the East-West component is radial and shows
only the Rayleigh wave contribution (figure 8.12b). The vertical component is
illustrated in figure 11.9. There is a clear contrast between the Love and Rayleigh
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Figure 8.13. Example of Rayleigh wave dispersion for an oceanic path (WWSSN long-
period record at Atlanta, Georgia).

waves; the Love waves show lower group slownesses but do not have the distinctive
Airy phase. Higher frequency higher mode Rayleigh waves can often be seen in
front of the mainLR group and a good example can be seen in the broad-band
Galitsin record shown in figure 1.1.

In oceanic regions, Rayleigh waves are affected by the presence of the low
wavespeed material at the surface. The group slowness of the Rayleigh waves
increases at higher frequencies when the wavelength is short enough to be
influenced by the presence of the water layer. As a result the group slowness curve
is very steep between frequencies of 0.05 and 0.1 Hz. This leads to a wavetrain with
a clear long-period commencement followed by a long tail with nearly sinusoidal
oscillations which is well displayed in figure 8.13.

In Chapter 11 we will discuss the dispersion of Love and Rayleigh waves and
the way in which these influence the nature of the surface wave contribution to the
seismograms. The dispersion of surface wave modes is controlled by the wavespeed
structure along their path, whilst the excitation of the modes as a function of
frequency and azimuth depends on the source mechanism. We are therefore able
to achieve a partial separation of the problems of estimating the source properties
and the structure of the Earth. The dispersion information can be inverted to give
an estimate of the wavespeed distribution with depth and then with this information
we have a linear inverse problem for the source moment tensor components.

8.4 Long range propagation

Beyond 10000 kmP waves are diffracted along the core-mantle boundary and so
their amplitude drops off with distance; this effect is particularly rapid at high
frequencies. This leavesPP and core phases as the most prominent features on
the early part of the seismogram.

The pattern of seismic phases is well illustrated by figure 8.14, a compilation of
long-period WWSSN and CSN records made by Müller & Kind (1976). This event
off the coast of Sumatra (1967 August 21) has a focal depth of 40 km. The focal
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Figure 8.14. Vertical component seismogram section of an earthquake near Sumatra, as
recorded by long period WWSSN and CSN stations. The amplitude scale of all traces is
the same (after M̈uller & Kind, 1976).
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mechanism has oneP wave node nearly vertical and the other nearly horizontal;
this leads to strongSwave radiation horizontally and vertically.

The phases on the vertical component section in figure 8.14 mirror the travel-time
curves in figure 8.8. The radiation pattern is not very favourable for the excitation
of PcP at short ranges, and near 9000 km there is insufficient time resolution to
separateP and PcP. The core reflectionScSis also obscured, but now because
of the train of long-period waves followingS. This shear-coupledPL phase arises
when aSV wave is incident at the base of the crust in the neighbourhood of the
recording station at a slowness close to theP wave speed in the uppermost mantle.
Long-periodP disturbances excited by conversion at the crust-mantle interface then
reverberate in the crust, losing energy only slowly by radiation loss intoS waves
in the mantle. SuchPL waves are associated withS and its multiple reflections,
and as in figure 8.14 can be the largest body wave phases on the record. No such
effect occurs forSH waves and soS andScScan be separated on the transverse
component.

Around 9200 kmSKSbegins to arrive beforeS but can only just be discerned
on figure 8.14. However, the converted phasePKSis quite strong and appears just
after PP. The shadow zone caused by the core gives a couple of minutes delay
between diffractedP andPKP. Near 15600 km there is a caustic for thePKPphase
associated with very large amplitudes and this shows up very clearly on figure 8.14.
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Chapter 9

Approximations to the Response of the
Stratification

We have already seen how we may generate the complete response of a
stratified medium, and we now turn our attention to the systematic construction of
approximations to this response, with the object of understanding, and modelling,
the features we have seen on the seismograms in Chapter 8. We will develop
these approximations by exploiting the physical character of the solution and a very
valuable tool will be the partial expansion of reverberation operators. The identity

[I − RABU RBCD ]−1 = I + RABU RBCD + RABU RBCD RABU RBCD [I − RABU RBCD ]−1, (9.1)

enables us to recognise the first internal multiple in ‘AC’, cf. (6.18), whilst retaining
an exact expression for the effect of the second and all higher multiples. Higher
order partial expansions may be obtained by recursive application of (9.1).

With an expansion of a representation of the full response we can identify the
major constituents of the wavefield and so gain physical insight into the character
of the propagation process. We can also devise techniques for extracting certain
portions of the response and use the remainder terms as indicators of the conditions
under which we may make such approximations. ForP-SV wave problems we
also have to consider the extent to which we can decouple theP and SV wave
propagation in generating approximations to the response. Generally strongP-SV
coupling occurs at the free surface and the core-mantle interface but significant
effects can be introduced by discontinuities or very rapid changes in elastic
parameters, e.g., at the Moho.

9.1 Surface reflections

We start by considering the expression (7.66) for the surface displacement
generated by a buried source, in which the free-surface reverberation effects are
represented explicitly

w0 = WF[I − R0LD RF]
−1σσσ(zS), (9.2)

with

σσσ(zS) = T0SU [I − RSLD R0SU ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)]. (9.3)
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Approximations to the Response of the Stratification

We now make a partial expansion of the surface reflection operator out to the first
surface reflection to give

w0 = WF

{
I + R0LD RF + R0LD RFR

0L
D RF[I − R0LD RF]

−1
}
σσσ(zS), (9.4)

and examine the contributions separately.
The portion of the field which has undergone no surface reflection is then

0w0 = WFT
0S
U [I − RSLD R0SU ]−1[ΣΣΣU(zS) + RSLD ΣΣΣD(zS)], (9.5)

and this is just the displacement field we would expect if we had a uniform half
space lying inz < 0, with a correctionWF = mmmU0 + mmmD0RF to allow for
free-surface magnification effects.

Once we remove the free surface boundary condition we make a radical change
in the behaviour of the displacement representation as a function ofp andω. The
poles associated with the secular function det(I −R0LD RF) = 0 are no longer present
and there are now branch points at|p| = α−1

0 , |p| = β−1
0 associated with the

outward radiation condition atz = 0. The new secular function det(I −RSLD R0SU ) =

0 will only have roots on the top Riemann sheet when the structure contains a
significant wavespeed inversion. The poles will lie in the slowness rangeβ−1

0 <

p < β−1
min (assumingβL > β0), whereβmin is the minimum shear wavespeed in

the stratification.
The reverberation operator[I −RSLD R0SU ]−1 includes all internal multiples purely

within the stratification. If, therefore, we concentrate on the earliest arriving energy
and neglect any such delayed reverberatory effects between the regions above and
below the source we would take

0w0 ≈ WFT
0S
U [RSLD ΣΣΣD(zS) + ΣΣΣU(zS)], (9.6)

allowing for reflection beneath the source level. This portion of the response was
used by Kennett & Simons (1976) to calculate the onset of seismograms for a
source model of the 650 km deep earthquake of 1970 July 30 in Columbia.

When we consider the part of the response including free-surface reflections we
often wish to distinguish between waves which suffer their first reflection in the
neighbourhood of the source and those which have undergone reflection by the
structure beneath the source level before undergoing reflection at the surface. If we
allow for up to a single surface reflection, the surface displacement is given by

1w0 = WF(I + R0LD RF)σσσ(zS). (9.7)

The wavevectorσσσ is already partitioned at the source level and we may separate out
internal multiples in the stratification by writing

σσσ(zS) = T0SU
{

I + RSLD R0SU [I − RSLD R0SU ]−1
}

(RSLD ΣΣΣ
S
D + ΣΣΣSU) (9.8)
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9.1 Surface reflections

where for brevity we have written e.g.ΣΣΣSD for ΣΣΣD(zS). We can also split the
reflection matrix at the source level by using the addition rule (6.3) and then make
a comparable expansion to (9.8) to give

R0LD = R0SD + T0SU RSLD T0SD + T0SU RSLD R0SU [I − RSLD R0SU ]−1RSLD T0SD . (9.9)

We now insert (9.8), (9.9) into the approximate surface displacement representation
(9.7) and concentrate on those parts of the wavefield which have not undergone any
internal multiples in the stratification. Thus

1w0 = WF

{
T0SU ΣΣΣ

S
U + T0SU RSLD (ΣΣΣSD + T0SD RFT

0S
U ΣΣΣ

S
U)

+T0SU RSLD T0SD RFT
0S
U RSLD ΣΣΣ

S
D

+R0SD RFT
0S
U (RSLD ΣΣΣ

S
D + ΣΣΣSU) + Remainder

}
. (9.10)

The remainder takes account of all contributions with internal multiples of the type
RSLD R0SU . The nature of the entries in (9.9) is indicated schematically in figure 9.1.

Direct upward propagation is represented byT0SU ΣΣΣ
S
U and that part of the energy

which initially departed downward from the source, but which has been reflected
back from beneath the source level, appears inT0SU RSLD ΣΣΣ

S
D. The combination

T0SU (RSLD ΣΣΣ
S
D + ΣΣΣSU) will therefore represent the mainP and S wave arrivals and

will allow for the possibility of conversions beneath the source level throughRSLD .
The term

T0SU RSLD T0SD RFT
0S
U ΣΣΣ

S
U (9.11)

represents energy which initially was radiated upwards, but which has been
reflected at the free surface before reflection beneath the source. In teleseismic
work this term represents the surface reflected phasespP, sPandsS, pSgenerated
near the source (figure 9.1a). As we have noted above,P to S conversion can be
quite efficient at the free surface so that the off-diagonal terms inRF are often
important. The converted phasessP, pScan be quite large and have a significant
influence on the character of the seismograms (cf. figure 8.11). The combined term

T0SU RSLD (ΣΣΣSD + T0SD RFT
0S
U ΣΣΣ

S
U) (9.12)

represents all the energy which has been returned once from beneath the level of the
source. The combination(ΣΣΣSD+ T0SD RFT

0S
U ΣΣΣ

S
U) will appear as an equivalent source

term for downward radiation and this forms the basis of the approximate technique
for long-range propagation described by Langston & Helmberger (1975).

In reflection seismic work thepP reflection appears as the surface ‘ghost’
reflection associated with a shallowly buried source. The effective source waveform
for reflection from deep horizons is provided by the interference of the downward
radiation and the surface reflection in(ΣΣΣSD + T0SD RFT

0S
U ΣΣΣ

S
U). It is frequently

assumed that the effective waveform may be evaluated atp = 0 and does not vary
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Approximations to the Response of the Stratification

Figure 9.1. Illustration of the contributions to the response appearing in equation (9.9):
a) DirectP,Sand surface reflected phasespP, sP, pS, sS; b) Double reflection beneath the
sourcePP, PS, SP, SS; c) Reverberations near the receiver.

with the incident angle on a reflector. A more accurate representation is obtained
by allowing for the full slowness dependence of the interference.

A further class of surface reflections arises from waves which departed
downwards from the source;

T0SU RSLD T0SD RFT
0S
U RSLD ΣΣΣ

S
D (9.13)

represents energy which has been reflected back twice from below the level of the
source (figure 9.1b). The first part is similar to straightP or Spropagation, and then
on reflection we getPP, SSand with conversionPS, SP. In long-range propagation
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9.1 Surface reflections

the major contribution to the response will arise from nearly the same level on the
two sides of the surface reflection point.

In reflection seismology we are interested in the total contribution to
surface-generated multiple reflections and so have to include the effect of the
‘ghost’ reflection as well. The first surface multiples are therefore generated by

T0SU RSLD T0SD RFT
0S
U RSLD (ΣΣΣSD + T0SD RFT

0S
U ΣΣΣ

S
U), (9.14)

and now there is rarely any symmetry in the reflection process. Surface-generated
multiples are of particular importance in areas with shallow water cover or low
velocity material near the surface because they tend to obscure the reflected arrivals
of interest (see figure 8.2). Considerable effort has therefore been devoted to
methods designed to eliminate such reflections from observed records and in
following sections we will discuss the theoretical basis of such methods.

The last class of contributions which appear in (9.10) are governed by
R0SD RFT

0S
U (RSLD ΣΣΣ

S
D + ΣΣΣSU), and arise from the beginning of a reverberation

sequence, near the receiver, between the free surface and the layering above
the source (figure 9.1c). The higher terms arise from the reverberation operator
[I − R0SD RF]

−1. This is most easily seen from the expressions (7.41), (7.46) for the
surface displacement; the matrixWfS

U which generates displacement at the surface
from an upgoing wave at the source level includes this shallow reverberation
operator.

9.1.1 Surface multiples

At moderate to large ranges from a source, free-surface reflections play an
important role in determining the shape of theP and S waveforms due to the
interference of the direct and reflected phases. The surface waves also owe their
existence to the interaction of waves which have been reflected many times from
the surface.

At short ranges the presence of the highly reflecting free surface is of major
importance in determining the character of the entire seismogram. Waves which
have been reflected at the surface and back from the stratification are important
for both recordings of near earthquakes and reflection seismology. The profound
effect of such multiples is well illustrated by theoretical seismograms for the full
response (9.2) of an elastic model and approximate calculations neglecting any
free-surface reflections using (9.5). The elastic wavespeed distributions and density
for the very simple model we have used are illustrated in figure 9.2. We have taken
Q−1
α = 0.001 andQ−1

β = 0.002 in all layers, these values are too small to be
realistic but help to avoid aliasing problems in time. For both calculations the
source was an explosion at 10 m depth and a frequency band from 5 to 75 Hz has
been constructed using a spectral approach (as in Section 7.3.3) and we present the
vertical component traces in figure 9.3.

In the absence of surface reflections (figure 9.3a) the principal events areP wave
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Approximations to the Response of the Stratification

Figure 9.2. Sedimentary structure used for the calculations in figure 9.3.

reflections from the interfaces and the reflection times at vertical incidence are
indicated by solid triangles. The model parameters are such thatP to Sconversion
is quite efficient at the first interface and there are a number of reflected events
associated with such conversions for which the amplitude increases away from the
closest traces. The most important conversions correspond toS wave reflections
from the second or deeper interfaces with eitherPorSupward legs in the shallowest
layer. Even though there are no extreme contrasts in elastic parameters across the
interfaces in this model, internal multiples between interfaces are important and
complicate the reflection pattern. For the shallowest interface the array of receivers
extends beyond the critical distance and a clear head wave is seen to emerge from
the first interface reflection and to overtake the direct wave.

When all surface reflections are included (figure 9.3b) we obtain the previous set
of reflections, and in addition all their surface multiples, which leads to a rather
complex pattern. The first surface multiples of theP reflections are very clear
and their vertical reflection times are indicated by open triangles. The apparent
waveform of the primary reflection is now modified by the interference of initially
downward propagating waves with the surface reflected ‘ghosts’ and is of longer
duration than before. A new feature is the prominent ground-roll with high group
slowness which cuts across the reflected phases. This is preceded by a weakS
wave generated by surface conversion of the directP wave andS reflection at the
first interface. The shallow explosion gives significant excitation of fundamental
mode Rayleigh waves which are the main component of the ground-roll; there is
much weaker excitation of higher modes. Normal field procedures are designed to
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9.1 Surface reflections

Figure 9.3. Theoretical seismograms for the sedimentary structure illustrated in figure 9.2.
The vertical component of velocity is illustrated and a linear gain in time and distance has
been applied: a) no free surface reflections, but all internal multiples and conversions; b)
all free surface multiples and surface waves.
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Approximations to the Response of the Stratification

eliminate the ground-roll by using arrays of geophones at each receiver point. The
surface waves are, however, often seen on noise spreads or where single geophone
recording has been used (figure 1.3). The dispersion of the surface wave modes
is most sensitive to the shallowS wave structure (see Chapter 11) and can itself
provide valuable structural information.

For interpretation of seismic reflection records it is desirable that only simple
P wave returns from each reflector should be displayed and considerable efforts
have therefore been expended on trying to remove all other wave phenomena. The
most important of these is, as we have seen, the effect of the free surface, and it is
interesting to see how surface multiples could be removed with ideal data.

We will consider surface receivers and specialise to a surface source. In this
case the full response of the half space in the frequency-slowness domain may be
expressed as

w0 = WF[I − R0LD RF]
−1(ΣΣΣ0U + R0LD ΣΣΣ

0
D), (9.15)

whereΣΣΣ0U, ΣΣΣ0D are the up and downgoing wave components which would be
produced by the source embedded in a uniform medium with the surface properties.
We can recast (9.15) in a form which accentuates the portion of the field which is
reflected back by the stratification:

w0 = WF[I − R0LD RF]
−1R0LD {ΣΣΣ0D + RFΣΣΣ

0
U} + WFΣΣΣ

0
U. (9.16)

Here{ΣΣΣ0D + RFΣΣΣ
0
U} represents the effective downward radiation from the source in

the presence of the free surface.
The part of the seismic field which has not undergone any surface reflections is

0w0 = WFR
0L
D {ΣΣΣ0D + RFΣΣΣ

0
U} + WFΣΣΣ

0
U. (9.17)

The portion which is of interest in reflection work is therefore, for a specified
source, dependent on the matrixWFR

0L
D . We see from figure 9.3a that for small

offsets the dominant contribution will come from thePP component ofR0LD . If
therefore we can recoverR0LD from the full responsew0 we could remove all
surface reflections by constructing (9.12).

In terms of the operator

YYY = [I − R0LD RF]
−1R0LD , (9.18)

the full responsew0 takes the form,

w0 = WFYYY{ΣΣΣ0D + RFΣΣΣ
0
U} + WFΣΣΣ

0
U; (9.19)

and the downward reflection matrixR0LD can be recovered from

R0LD = YYY[I + RFYYY]−1. (9.20)

Is it therefore possible to recoverYYY from (9.13)? SinceYYY is a2×2matrix we would
need two distinct vector equations of the form (9.19) to findYYY, i.e. two experiments
with recordings of both vertical and horizontal components for different sources.
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9.1 Surface reflections

This result parallels the work of Kennett (1979b) who worked with expressions
based on the equivalent stress and displacement source elements at the surface
(7.16). From vertical component seismograms we may estimate thePP component
of YYY, allowing for the effect of shear at the surface throughWUP

F but neglecting
conversion at depth. ThePP element ofR0LD is then given approximately by

RPPD ≈ YPP/[1+ RPPF Y
PP]. (9.21)

Kennett (1979b) has shown that such a scheme gives good results for theoretical
records at small offsets from the source. With field recordings a major difficulty
is to get an adequate representation of the seismograms in the frequency-slowness
domain (see, e.g., Henry, Orcutt & Parker, 1980).

We may extend this treatment to buried sources by making use ofequivalent
sources. In (7.7) we have introduced an equivalent stress-displacement jump at the
surface via a propagator from the source depth to the surface. We can do the same
with the wavevector jump with the aid of the wave-propagator

ΣΣΣ0 = Q(0, zS)ΣΣΣ
S. (9.22)

From (5.45) we can express the wave-propagator in terms of the reflection and
transmission properties of the region between the source and the surface, and so,
using (4.66),

ΣΣΣ0D = (T0SD )−1(ΣΣΣSD + R0SU ΣΣΣ
S
U),

ΣΣΣ0U = T0SU ΣΣΣ
S
U + R0SD ΣΣΣ

0
D,

(9.23)

and if we construct the combination of equivalent source termsσσσ(0+) we have

R0LD ΣΣΣ
0
D + ΣΣΣ0U = T0SU [I − RSLD R0SU ]−1[ΣΣΣSU + RSLD ΣΣΣ

S
D], (9.24)

which is just the originalσσσ(zS) and so the surface displacement is the same. If
we know the elastic properties down to the source levelzS we can findΣΣΣ0U, ΣΣΣ0D
from (9.23) and then proceed as before. The term(T0SD )−1 in (9.23) represents the
advance in time and amplitude gain needed to be able to describe downgoing waves
starting at the true origin time at the source levelzS, via a surface source.

9.1.2 Alternative approach for surface reflections

We have so far made use of representations of the seismic response which display
the free surface reflection matrixRF explicitly (7.66), but as we have seen in
Chapter 7 we have the alternative form (7.41), (7.46)

w0 = WfS
U [I − RSLD RfSU ]−1(ΣΣΣSU + RSLD ΣΣΣ

S
D). (9.25)

The operatorWfS
U generates surface displacement from upgoing waves at the source

levelzS (6.11)

WfS
U = WF[I − R0SD RF]

−1T0SU . (9.26)
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We may now rearrange (9.25) to isolate the effect of the direct upgoing waves
(WfS

U ΣΣΣ
S
U), and to emphasise the role of reflection above the source level

w0 = WfS
U [I − RSLD RfSU ]−1RSLD {ΣΣΣSD + RfSU ΣΣΣ

S
U} + WfS

U ΣΣΣ
S
U. (9.27)

The combination{ΣΣΣSD + RfSU ΣΣΣ
S
U} models the direct downward radiation from the

source and all waves turned back by the structure or the free surface above the
source. In the previous discussion of thepP phase we have only allowed for
transmission in the passage of waves between the source and the surface. When,
however, there is significant structure above the sourceRfSU ΣΣΣ

S
U provides a better

representation of the reflected phases. An important case is for earthquakes which
occur just below the Moho, for which reflections from the Moho immediately
follow the directP andS waves. For suboceanic earthquakes the reflection from
the water/rock interface (sometimes designatedpwP) can approach the size of the
reflection from the sea surface.

9.2 Split stratification

As we have already noted it is very common for there to be a near-surface
zone of low wavespeeds, and this feature occurs on a wide range of scales. In
reflection work this region would be the weathered zone, and in crustal studies the
sedimentary layers. For seismic studies of the ocean floor, the ocean itself acts as a
low velocity waveguide. When attention is focussed on seismic wave propagation
in the mantle or core, the entire crust appears to be a zone of low wavespeeds.

Often we would like to separate wave propagation effects in this shallow region
from the waves which penetrate more deeply. In order to do this we introduce a
levelzJ at which we split the stratification, and this will normally be taken close to
the base of the surface zone.

We can obtain very useful results for the displacement field by making use of
the device ofequivalentsources. We move the source effects from the true source
level zS, to the separation levelzJ and then use the equivalent source terms in our
previous expressions for the seismic response.

The equivalent stress-displacement jumpS(zJ) atz = zJ is obtained fromS(zS),
the representation of the original source, by the action of the propagator fromzS to
zJ.

S(zj) = P(zJ, zS)S(zS). (9.28)

This equivalent source will give the same effective seismic radiation as the original.
As in the surface case, we can also introduce an equivalent wavevector jumpΣΣΣJ at
zJ which is related toΣΣΣS by the wave-propagator fromzS to zJ

ΣΣΣJ = Q(zJ, zS)ΣΣΣ
S. (9.29)

We will discuss first the case when the source lies in the low wave speed zone i.e.
zS < zJ. The wave-propagator can then be related to the reflection and transmission
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9.2 Split stratification

properties of the region betweenzS andzJ using (5.46). The upward and downward
radiation components atzJ are therefore

ΣΣΣJU = [TSJU ]−1(ΣΣΣSU + RSJDΣΣΣ
S
D),

ΣΣΣJD = TSJDΣΣΣ
S
D + RSJU [TSJU ]−1(ΣΣΣSU + RSJDΣΣΣ

S
D).

(9.30)

The contribution[TSJU ]−1 arises because we are attempting to move upgoing waves
back along their propagation path. However, the expressionCJD = {ΣΣΣJD + RfJUΣΣΣ

J
U}

corresponding to the net downward radiation at the levelzJ is free of such terms,

CJD = ΣΣΣJD + RfJUΣΣΣ
J
U,

= TSJD [I − RfSURSJD ]−1{ΣΣΣSD + RfSU ΣΣΣ
S
U}. (9.31)

The right hand side of (9.31) can be recognised as the total downward radiation
at the levelzJ produced by a source at the levelzS; this expression allows for
reverberation between the surface andzJ, in the neighbourhood of the source.

We will now use these equivalent source expressions in the representation (9.27)
for the seismic response

w0 = WfJ
U[I − RJLDRfJU]−1RJLD {ΣΣΣJD + RfJUΣΣΣ

J
U} + WfJ

UΣΣΣ
J
U. (9.32)

The ‘upward radiation’ term

WfJ
UΣΣΣ

J
U = WfS

U [I − RSJDRfSU ]−1TSJU [TSJU ]−1(ΣΣΣSU + RSJDΣΣΣ
S
D), (9.33)

where we have used the expansion (6.11) forWfJ
U and so

WfJ
UΣΣΣ

J
U = WfS

U [I − RSJDRfSU ]−1(ΣΣΣSU + RSJDΣΣΣ
S
D). (9.34)

We recognise this to be just the response of the stratified half space, truncated at the
level zJ, to a source atzS. The expression (9.34) therefore describes waves whose
propagation is confined to the region of low wavespeeds.

The remaining contribution to the displacement takes the form

WfJ
U[I − RJLDRfJU]−1RJLDCJD, (9.35)

and includes all propagation effects below the separation levelzJ through the
reflection matrixRJLD . The whole half space reverberation operator appears in
(9.35) and near-receiver interactions in the low wavespeed zone are contained in
WfJ
U.
The expression (9.32) for the seismic displacements is valid for an arbitrary level

zJ below the source levelzS, and so we may use it to understand the approximations
involved when we consider only a limited portion of an Earth model. For a
structure terminated atzJ the entire response is contained inWfJ

UΣΣΣ
J
U (9.34) and

the contribution (9.35) can be thought of as the error term corresponding to the
neglect of deeper parts of the model. This remainder contains the secular operator
for the shallow part through the source and receiver termsCJD, WfJ

U. The neglected
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reflections from depth appear inRJLD and these couple into the shallower structure
through the reverberation operator from the surface down tozL. In general the
truncated structure will provide an adequate approximation for small ranges, and at
long-range may be used to describe certain features of the full response.

9.2.1 Propagation in the upper zone

We have just seen that by choosing a separation levelzJ in the half space we can
isolate the portion of the response which is confined to the region between the
surface andzJ.

The choice ofzJ is therefore crucial in defining the particular seismic phases
which are well represented byWfJ

UΣΣΣ
J
U (9.34). This contribution

shw0 = WfS
U [I − RSJDRfSU ]−1(ΣΣΣSU + RSJDΣΣΣ

S
D), (9.36)

gives a full representation of all reverberations in the region betweenzJ and the free
surface.

For seismic studies of the ocean floor, a choice ofzJ just below the surface of the
seismic basement will give an excellent description of the water wavetrain. In this
caseshw0 will describe propagation in the water column itself, the effects of the
marine sediments and the main sub-bottom reflection from the sediment/basement
transition. The uniform half space below this interface will allow for radiation loss
from the acoustic field in the water into bothP andSwaves. Within the water we
have onlyP waves, but in the sediments and below we must allow for shear wave
conversion effects. The reflection matrix for the composite region ‘SJ’, including
both fluid and solid zones, can be constructed by the usual recursion scheme, as
discussed in the appendix to Chapter 6. The waves returned by the oceanic crust
itself will be described by the deeper contribution (9.35).

For continental areas with extensive sediment cover we would choosezJ to lie
just below the base of the sediments and then we may isolate all phases which are
confined to the sediments inshw0 or are reflected from it.

In studies of the earth’s mantle, the choice of separation level is less obvious. It is
tempting to takezJ just below the crust-mantle interface and so model phases which
are trapped in the crust alone, principallyPg, Lg andPL (see figures 8.4–8.7). This
is basically the approach taken by Helmberger & Engen (1980) who have modelled
long-periodP wave-propagation in a simple crust out to regional distances (1500
km). In this case thePn arrival is represented by a head wave on the crust-mantle
interface and multiple reverberations in the crust give a complex coda in which
the proportion ofSVwave motion increases with time. However, this choice ofzJ
leads to neglect of sub-Moho velocity gradients on thePn arrivals and also of the
influence of any mantle wavespeed inversion. At long-periods the wavelengths are
sufficiently large that aP wave with an apparent turning point some way above the
inversion will lose energy by tunnelling through the intervening evanescent region
(figure 9.4).
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9.2 Split stratification

For a full description of crustal and subcrustal phases a convenient location for
zJ is at about 200 km; which for most continental models, at least, is below any
wavespeed inversion and about the level of a change in the velocity gradients in the
mantle. This zone includes nearly all the reverberative features in the entire Earth
model and allows interactions between the crust and the wavespeed inversion to
be modelled. As we shall see in Chapter 11, such effects have a strong influence
on moderate frequency (∼ 0.2 Hz) surface wave propagation. For high frequency
waves the immediate sub-Moho wavespeed gradients determine the character of
the Pn and Sn arrivals. Even a slight positive gradient induced by sphericity is
sufficient to produce an ‘interference’ head wave (Červeńy & Ravindra, 1975)
in which multiple reflections from the gradients constructively interfere to give a
larger arrival than can occur with a uniform half space (figure 9.5).

This type of propagation has been investigated by Menke & Richards (1980)
who term the components of the interference head wave ‘whispering gallery’
phases. In the reflection matrix representation, if conversion below the Moho can
be neglected, these contributions arise from the infinite expansion of theP wave
reflection coefficient just above the Moho:

RD(zM−) = RMD + TMU RMJD [I − RMU RMJD ]−1TMD ,

= RMD + TMU RMJD TMD + TMU RMJD RMU RMJD TMD + ... . (9.37)

whereRMD etc. are the interface matrices at the Moho, andRMJD is the reflection
matrix for the sub-Moho zone. The principal contribution will normally come from
TMU RMJD TMD . At short ranges the geometrical picture for theP wave portion is a ray

Figure 9.4. Illustration of the effect of a thin lid over a velocity inversion: low frequency
energy tunnels through the inversion and is turned back by the deeper structure, whilst the
high frequencies are reflected by the lid or propagate within it.
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Figure 9.5. Illustration of the formation of an interference head wave.

turned back by the sub-Moho velocity gradients; this is the behaviour shown by the
high frequencies, but there is a progressive loss of high frequencies by tunnelling
into the wavespeed inversion. At large ranges theP turning point forTMU RMJD TMD
drops to below the wavespeed inversion and this contribution toPn is lost. Low
wavespeed gradients favour the development of the interference head wave to large
ranges.

The reverberation operator representation in (9.37) is much more convenient than
the expansion for computational purposes since the full interference effects are
retained.

The sub-Moho structure has a significant effect on short-period crustal
reverberations. Menke & Richards have pointed out that crustal reverberations are
enhanced at large ranges for models with high sub-Moho gradients.

A similar system can be excited at large ranges by an incidentSVwave at the base
of the crust, arising from the presence of the contributionWfJ

URJLDTSJDΣΣΣ
S
D in the full

response. For slownesses such thatSwaves propagate in the crust and mantle, but
P waves have turning points in the sub-Moho gradients, we can get an interference
head wave forP generated by conversion at the Moho. This wave will be coupled
into bothP andS wave reverberations in the crust to give the shear-coupledPL

waves (figure 8.14) following the mainSV arrivals (see, e.g., Poupinet & Wright
1972). TheSVpulse will be preceded by a conversion toP on transmission through
the Moho.

9.2.2 Deeper propagation

For a source in the upper zone above the the separation levelzJ the portion of the
displacement response which involves propagation in the region belowzJ is given
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9.2 Split stratification

by (9.27) and with the expanded forms forCJD (9.24) andWfJ
U (6.12) we have

dw0 = WF[I − R0JDRF]
−1T0JU

×[I − RJLDRfJU]−1RJLD
×TSJD [I − RfSURSJD ]−1{ΣΣΣSD + RfSU ΣΣΣ

S
U}. (9.38)

This representation allows for reverberations in the upper zone near the source
through[I −RfSURSJD ]−1 and similar effects near the receiver through[I −R0JDRF]

−1.
For a surface source these reverberation operators take on a symmetric form.

In reflection studies, multiples of deep seated reflections (inRJLD ) generated by
reflection between the free surface and high contrast interfaces near the surface are
of considerable importance. Such multiples can be particularly strong for reflection
profiles conducted in shallow shelf seas. The strength of these effects depends on
the reflectivity of the sea bed which can be as high as 0.4 at normal incidence.
The automatic gain applied to most reflection displays acts to compensate for the
multiple reflection losses and so multiples dominate giving a ‘singing’ record.
Some success has been achieved with predictive convolution operators (Peacock
& Treitel, 1969), which rely on the relative statistical randomness of the reflection
elements inRJLD (with zJ just below sea bed), compared to the organised multiple
train. If a good model exists for the sea bed structure, or if the reflection from the
sea bed can be isolated, the reflection coefficientR0JD(p,ω) can be estimated. Then,
in favourable circumstances, it is possible to use the operator[I + R0JD(p,ω)] twice
on the acoustic wavefield in the slowness-frequency domain, to suppress most of
the near-surface multiples.

In regions of deep weathering on land, multiples in the weathered zone can also
be important but here with only vertical component records it is more difficult to
achieve multiple suppression.

Even when the shallow multiples are eliminated, the deep reflections are
entangled in the combination

[I − RJLDRfJU]−1RJLD , (9.39)

which represents the surface-generated multiples of the deep reflections. This is in
the same form as the quantityYYY introduced in (9.18) and the analysis is very similar
to the previous case.

The expressiondw0 (9.35) for the displacement includes the reverberation
operator for the whole half space through the contribution (9.39) but often we
wish to restrict attention to a single reflection from beneathzJ. We may do this
by making a partial expansion of (9.39)

RJLD + [I − RJLDRfJU]−1RJLDRfJURJLD , (9.40)

and then retain only the first term. The resulting approximation for the
displacement response is
dew0 = WfJ

URJLDCJD; (9.41)
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which separates very neatly into near-source and near-receiver contributions and
the return from depth inRJLD . The remaining part ofdw0,

WfJ
U[I − RJLDRfJU]−1RJLDRfJURJLDCJD, (9.42)

represents that portion of the wavefield which has undergone one or more
reflections in the region betweenzJ and the free surface as well as reflection below
zJ.

The approximationdew0 may be employed in a wide variety of problems where
the elastic wavespeeds increase rapidly with depth so that there is a large time
separation between deeply penetrating waves and those confined to the upper zone
and also any surface reflections of deep phases. This form with various further
approximations forWfJ

U, CJD, RJLD is the basis of most work on relatively long-range
seismic wave propagation.

The use ofdew0 requires an adroit choice of the levelzJ at which the half space
is separated, so that the mutual interaction is kept to a minimum. In some cases
a natural break point in the structure occurs, as we have seen in our discussion of
shallow propagation, but usually some compromises have to be made. For mantle
studies, as we have noted, a good choice is at about 200 km. However, for many
teleseismic studies where attention has been focussed on crustal effects at source
and receiver,zJ is taken just below Moho.

For slownesses such thatP or S waves have their turning points above 800
km or near the core-mantle boundary, the complications in the elastic parameter
distribution are such that it is worthwhile trying to get a good representation forRJLD
or some of its elements. This has been the goal of many authors (e.g., Helmberger &
Wiggins, 1971; Cormier & Choy, 1981; Choy, 1977; Müller, 1973) who have used a
variety of techniques to generate theoretical seismograms which will be discussed
in subsequent sections. Very simple approximations have usually been used for
WfJ
U, CJD. Frequently the response is constructed from just the direct transmission

term WFT
0J
U at the receiver, and at the source only the downward radiation term,

including surface reflections, to give

WFT
0J
URJLD (ΣΣΣSD + RfSU ΣΣΣ

S
U) (9.43)

as an approximation todew0.
On the other hand for turning points in the lower mantle below 800 km, but well

away from the core-mantle boundary, the effect of mantle propagation is relatively
simple and crustal effects at source and receiver become rather more important for
frequencies around 1 Hz. For example Douglas, Hudson & Blamey (1973) have
used the approximationdew0 with full calculation of source and receiver crustal
reverberations, to calculate body waves from shallow sources. They have made
a simple allowance for lateral variations in crustal structure, by taking different
crustal parameters on the source side and the receiver side. This scheme provides
a good model forP wave arrivals in the range 3500 to 9500 km, for which a
good approximation toR0LD may be obtained with asymptotic ray theory results.
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9.2 Split stratification

Improved representations ofRJLD to allow for upper mantle structure, using a
piecewise smooth medium as in Section 6.3, enable the approximationdew0 to
be used from epicentral distances of 1200 km outwards.

9.2.3 Sources at depth

For a source which liesbelow the separation levelzJ which we have imposed on
the stratification, we may once again make use of the device of equivalent sources
at the levelzJ to produce a convenient form for the seismic response. SincezJ
now lies abovezS we use the partitioned form (5.45) for the wave-propagator in
the relation (9.22) which defines the source jumpΣΣΣJ. The upward and downward
radiation components atzJ are thus

ΣΣΣJD = (TJSD )−1(ΣΣΣSD + RJSDΣΣΣ
S
U),

ΣΣΣJU = TJSUΣΣΣ
S
U + RJSUΣΣΣ

J
D.

(9.44)

The net upward radiationCJU atzJ, allowing for reflection from belowzJ, now has
the equivalent representations

CJU = ΣΣΣJU + RJLDΣΣΣ
J
D,

= TJSU [I − RSLD RJSU ]−1(ΣΣΣSU + RSLD ΣΣΣ
S
D). (9.45)

The latter expression includes the full interactions of the waves from the source
with the region below the separation levelzJ. We may emphasise reflections at this
level by writing

CJU = TJSU {[I − RSLD RJSU ]−1RSLD (ΣΣΣSD + RJSUΣΣΣ
S
U) + ΣΣΣSU}. (9.46)

The surface displacement field in this case can be found from (9.25) as

w0 = WfJ
U[I − RJLDRfJU]−1CJU. (9.47)

and there is no simple separation of a shallow propagation term in this case.
The reverberative effects of the upper zone0 < z < zJ are contained within

the receiver operatorWfJ
U. Energy is brought into the surface channel by waves

travelling upward from the true source level, either directly or after reflection
from beneath the source. The most important contributions for body waves are
represented by

WF[I − R0JDRF]
−1T0JUTJSU {ΣΣΣSU + RSLD [ΣΣΣSD + RJSUΣΣΣ

S
U]}, (9.48)

where we have allowed for at most one reflection from the region betweenzS andzJ
in our approximation toCJU (9.40). When we are interested in propagation effects
in the upper zone we choose the separation levelzJ in the way we have previously
discussed.

For a suboceanic earthquake withzJ taken at the basement, the main
tsunamigenic effect of the event is described byWfJ

UTJSUΣΣΣ
S
U which represents the
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upward radiation into the water column; there may also be some contribution
from waves reflected back from just below the source level contained within
WfJ
UTJSURSLD ΣΣΣ

S
D.

Crustal propagation effects can be important for earthquakes which occur just
below the Moho.RJSU will then mostly arise from reflections at the Moho. High
angle reverberations within the crust will be possible, but as the slowness increases
to the inverse wavespeeds at the source level, the crustal field for that wave type
will become evanescent in the crust, and as a result reverberations will be damped.
The most noticeable effects will therefore occur close to the source and become
less pronounced as the range increases. On a smaller scale there will be a similar
pattern of behaviour for events occurring below sedimentary cover.

For propagation deep into the stratification we can emphasise the physical
character of the solution by taking a slightly different choice of separation level
zJ. The surface displacement field (9.47)

w0 = WfJ
U(I − RJLDRfJU)−1CJU (9.49)

allows for both shallow and deep reverberations. Now the displacement operator

WfJ
U = WF(I − R0JDRF)

−1T0JU , (9.50)

and with an expansion ofRfJU to emphasise surface reflections

RJLDRfJU = RJLD {R0JU + T0JDRF(I − R0JDRF)
−1T0JU . (9.51)

If, therefore, we can choose the separation levelzJ such thatR0JD , R0JU are small, we
can get a good approximation by allowing for only transmission effects in ‘0J’:

WfJ
U ≈ WFT

0J
U ,

(I − RJLDRfJU)−1 ≈ (I − RJLDT0JDRFT
0J
U )−1.

(9.52)

Such a split is possible in oceanic regions if we now takezJ to lie just above
the sea floor. For slownesses appropriate to seismic wave-propagation in the
sub-basement rocks, the reflection from the water column will be very slight and the
sound speed structure can be approximated by a uniform medium withPwavespeed
α0 and thicknessh0. The secular function for the oceanic case is therefore, from
(9.52),

1+ RJLD |PPe2iωqα0h0 = 0, (9.53)

which represents a constructive interference condition between waves reflected
back from the sea surface and the rocks beneath the sea floor. We may use the
addition rule to expressRJLD in terms of the reflection properties of the sea bedRBD
etc. and the deeper reflection responseRBLD as

RJLD = RBD + TBURBLD [I − RBURBLD ]−1TBD, (9.54)

where, as discussed in the appendix to Chapter 6, we work with2 × 2 matrices
throughout, butRJLD will have only aPP entry.
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The effect of the low wavespeed water layer is, in this approximation, to produce
just a phase delay and no amplitude change. However a further consequence of this
choice ofzJ is that, seen from below there will be strong reflections back from the
region between the source andzJ. Thus the elements ofRJSU will be significant,
especially forS waves for which there will be only small radiation loss into the
water by conversion toP near the sea bed. For long-range propagation through the
oceanic crust and mantle an important role is therefore played by the contribution

[I − RSLD RJSU ]−1RSLD {ΣΣΣSD + RJSUΣΣΣ
S
U}, (9.55)

within CJU (9.47). This represents a guided wave system controlled by the oceanic
crust and mantle structure with further reinforcement by multiple reflections within
the water column. With slow lateral changes in structure, such a system can explain
the persistence of high frequency oceanicPnandSnto large ranges. The excitation
of these phases depends strongly on source depth and the details of the crustal and
mantle structure.

For sources in the mantle we may make a similar split just above the Moho, and
for low frequencies the crust will appear relatively transparent. We therefore have
the approximate secular function

det[I − RD(zM−)T0MD RFT
0M
U ], (9.56)

and so the dispersion characteristics are dominated by the mantle structure at low
frequencies (see Chapter 11). The interference head wave system we have already
mentioned is an analogue of the wave channelling in the oceanic case, and other
sub-Moho reflections will contribute to theP andSwave codas.

9.3 Approximate integration techniques

In the two previous sections we have established a number of useful approximations
to the displacement response of a stratified half space in the slowness-frequency
domain. We now examine ways in which these approximations can be used to
generate theoretical seismograms for specific portions of the body wave response.

The methods which will be discussed here aim to produce as complete a
representation as possible for a seismic phase or group of phases, and so involve
numerical integration over frequency and slowness with the integrand specified in
terms of reflection and transmission elements for parts of the stratification. The
approximation to the response or the interval of slowness integration will be such
that we encounter no difficulties from surface wave poles. The synthesis of surface
wavetrains and their relationship to body wave pulses is presented in Chapter 11.

An alternative approximate approach for body waves is presented in Chapter 10,
where we will discussgeneralized raymethods. These rely on casting a portion
of the seismic response as a sum of contributions with a particular separation of
frequency and slowness dependence, which allows the inversion integrals to be
performed, in part, analytically.
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9.3.1 Reflectivity methods

The approach we have adopted in this book for the characterisation of the response
of a stratified medium to excitation by a source has been to work in terms of
the reflection and transmission properties of portions of the stratification. As a
result, the techniques we have discussed for the generation of complete theoretical
seismograms can be regarded as ‘reflectivity’ methods.

The name was, however, introduced by Fuchs & Müller (1971) to describe a
technique in which all multiple reflections and conversions between wave types
were retained in part of the structure. The stratification was split at a levelzJ as
in our treatment in Section 9.2, and attention was concentrated on just those waves
reflected back from the region beneathzJ. The approximation employed by Fuchs
& M üller may be derived from our expression fordew0 (9.41) by retaining only
the downward radiation from the source and working with just transmission terms
in the region abovezJ. This eliminates any reverberatory effects in the receiver and
source operatorsWfJ

U, CJD and leads to the approximate form

rew0 = WFT
0J
URJLDTSJDΣΣΣ

S
D. (9.57)

In the original treatment further approximations were made to allow only for
direct interfacial transmission losses, and a singleP wave component ofRJLD was
included. ThePP reflection coefficient for the regionz ≥ zJ was constructed
by propagator matrix methods for a stack of uniform layers, which allowed for
all multiples in (zJ, zL). Later Fuchs (1975) allowed forP to S conversions on
reflection from the region ‘JL’.

The representation (9.57) is once again in the slowness-frequency domain and to
generate theoretical seismograms at particular stations we must perform integrals
over slowness and frequency. We have considered this problem for the full response
in Section 7.3 and suitable techniques parallel those we have already discussed.

Since free-surface effects have been removed, there are no surface wave poles
but there will be branch points at theP andSwaveslownesses at the surface, source
level, and the top and bottom of the reflection zone ‘JL’. The absence of poles
means that aspectralmethod with integration along the realp axis as in (7.75) or
(7.77) with the approximationrew0 instead of the the full vector will be suitable.
The numerical integral has the form

ū(r, 0,ω) = 1
2ω|ω|M(ω)

∫∞
−∞ dpp[rew0]

TTTT(1)
m (ωpr), (9.58)

where we have extracted a common source spectrumM(ω). Once the
computational labour of generating the approximation tow0 has been completed,
calculations may be made for many ranges for only the cost of performing the
integrations. Once again, however, there is the problem of computing the integral
of a highly oscillatory integrand which limits the achievable range for a given
frequency band. The properties of the integrand will, however, be improved slightly
if physical attenuation is included in the velocity model.
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The integral (9.58) represents a convolution of the source-time function with
the reflectivity response function for the stratification. In practice we will impose
some upper limit on the frequency in (9.58) so that we get a filtered version of
the response. In (9.45) we have represented the seismogram spectrum in terms of
outgoing wave components and to isolate particular features in the response the
integration is restricted to a band of slownesses

ū(r, 0,ω) = 1
2ω|ω|M(ω)

∫p2

p1

dpp[rew0]
TTTT(1)
m (ωpr), (9.59)

For example, if we consider theP wave response at large distances, we do not
anticipate that there should be a large response from reverberations at near vertical
incidence. We would therefore choosep1 to be about 0.025 s/km and takep2 to be
larger than1/αJ, whereαJ is theP wavespeed just above the reflection zone. This
allows for weakly evanescent waves in the upper zone which may have a significant
amplitude (especially at low frequencies) but excludes strongly evanescent waves.
When calculations are to be made at short ranges we would choosep1 = 0, and
adopt the ‘standing wave’ form of the integral (9.59) in terms ofTTTm(ωpr), cf.
(7.75).

Injudicious choice of the integration interval can give quite large numerical
arrivals at the limiting slownesses, but these can be muted by applying a taper
to rew0 near these limits. For problems where there is a thick layer of very
low wavespeed material overlying the reflection zone, the exclusion of evanescent
waves in this overburden is satisfactory since all the arrivals of interest occur in a
limited range of slowness. Such is, for example, the case for compressional arrivals
returned from the structure beneath the sea bed in the deep ocean (Orcutt, Kennett
& Dorman, 1976).

In order to work with a fixed time interval at varying ranges it is convenient
to work in terms of reduced timet − predr (Fuchs & Müller 1971) and follow
the arrivals with distance. This may be achieved by multiplying the spectrum at
each range by exp(−iωpredr) before taking the inverse Fourier transform over
frequency. As in our discussion of complete theoretical seismograms (Section
7.3.3) it is often useful to build up the response for a wide range of slownesses
by combining the results for different slowness panels with appropriate time shifts.

The ‘reflectivity’ calculations can be recast in terms of theslownessapproach
of Section 7.3.2, in which the transform over frequency is performed first and
is then followed by a slowness integral (7.86), (7.103). The integrand in space
and time is reasonably well behaved (figures 6.4, 6.5) even though long time
series may be needed to avoid aliasing, as a result the sampling in slowness can
be reduced compared to what is required for the spectral integral (Fryer 1980).
This approach also allows the calculation of a specified time window on the final
theoretical seismograms. For moderate to large ranges the slowness integral can be
simplified and various source-time functions introduced via an ‘effective source’
operator (7.115)-(7.117).
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Figure 9.6. Illustration of use of reflectivity method in matching main features of observed
seismograms: a) observed marine seismic records; b) calculations based on travel-time
modelling alone; c) after model refinement.

The numerical reflectivity method was introduced as an aid to the interpretation
of crustal refraction profiles, where it has enabled the incorporation of amplitude
information and the travel-times of the earliest arriving phases. As an example
of this application we show in figure 9.6 observed and theoretical seismograms
for a marine seismic refraction survey on the Reykjanes Ridge, southwest of
Iceland (Bunch & Kennett, 1980). The upper record section shows the beginning
of the compressional wavetrains on the experimental records, up to the onset
of the first multiple in the relatively shallow water (1 km deep) The middle
section shows the theoretical seismograms calculated for the structure deduced
from travel-time analysis alone, which is indicated by a dotted line on the velocity
display. These seismograms do not reproduce the main features of the observations.
But, after careful refinement (basically by working with gradient zones rather than
major jumps in wavespeed), a velocity model can be found for which theoretical
seismograms give a good match to the character of the observations; these are
shown in the lower record section. The final velocity model is indicated by the
solid line.

The success of the reflectivity method in such crustal applications led to its use
for many other classes of problem, and stimulated work on calculating complete
theoretical seismograms. With the top of the reflection zone set at the Moho,
reflectivity calculations have been used to examine propagation in the lithosphere
(Hirn et al., 1973), and with a slightly deeper separation level,P wave propagation
in the upper mantle (Kennett, 1975; Burdick & Orcutt, 1979). Müller (1973) has
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Figure 9.7. The upper mantle modelT7

examined seismic wave propagation in the earth’s core with a flattened wavespeed
model and taken the top of the reflection zone a few hundred kilometres above the
core-mantle interface.

Müller & Kind (1976) moved the reflection zone right up to the surface and
restored, in part, surface reflection effects by taking a model with a very dense
fluid having the acoustic wavespeed of air overlying a stratified elastic half space.
This gives a reasonable approximation to the free-surface reflection coefficients,
but does not lead to any singularities on the real slowness axis. Müller & Kind
have used this model to generate long-period seismograms for the whole earth.

Although we have based our discussion on the ‘reflectivity’ approximation
(9.44), we may make a comparable development with almost all of the approximate
results we have generated in Sections 9.1 and 9.2. Thus, for example, if we wish
to allow for surface reflected phases near the source (pP etc.) and a comparable
reflection level near the receiver, we would use

rew0 = WF(I + R0JDRF)T
0J
URJLDTSJD (ΣΣΣSD + RfSU ΣΣΣ

S
U). (9.60)

Similar approximations can be generated to study other problems, e.g., Faber &
Müller (1980) have constructed a form of displacement response which enables
them to examineSpconversions from upper mantle discontinuities.

Although most applications of reflectivity methods have been made using models
composed of uniform layers, the essential ingredient is an accurate representation
of the reflection matrix for the reflection zone(z > zJ). For a piecewise smooth
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Figure 9.8. Theoretical seismograms for the modelT7 using a piecewise smooth velocity
structure and a reflectivity slowness integral.

wavespeed profile we can therefore use the recursive method of Section 6.3 to
constructRJLD . An important case is provided by the wavespeed distribution in
the upper mantle, and we illustrate the modelT7 (Burdick & Helmberger, 1978) in
figure 9.7. We represent the upper mantle discontinuities in this model by closely
spaced changes in wavespeed gradient and small jumps in wavespeed. In figure
9.8 we show a record section of theoretical seismograms calculated for a surface
source with an allowance for a single surface reflection to describe crustal effects.
The approximate response function we have used is

w0 ≈ WF[I + R0LD RF](ΣΣΣ
0
U + R0LD ΣΣΣ

0
D). (9.61)

and the integration has been carried out to generate the vertical component for the
range ofP waveslowness in the upper mantle. As a result we get someS waves
appearing in the vertical component records as a result ofP to Sconversion at the
surface. At the larger ranges there is in addition a clear appearance of thePPphase.
For the frequency band we have considered (0.03–0.6 Hz) the combination of the
upper-mantle triplications with intracrustal reflections give a rather complex pattern
of behaviour.

For a smoothly varying wavespeed profile, it is preferable to work directly with
calculation schemes designed for such distributions. It is possible to use a staircase
of uniform layers to approximate smooth variation but this is effective only at
moderate frequencies (Choy et al., 1980). At high frequencies, thin layers must be
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used to avoid separation of internal multiples in time and so many layers are needed,
for example about one hundred layers down to 1000 km for 1 Hz seismograms.

9.3.2 Approximations for specific seismic phases

In the reflectivity method the emphasis is on the representation of the seismic waves
returned by an entire region, which frequently consists of a complex interference
of many different reflection processes.

For deep propagation within the earth, the time separation between seismic
pulses seen on distant seismographs is such that we can concentrate on an individual
seismic phase or a related group of phases. Such a phase is described within
the reflection treatment by a particular combination of reflection and transmission
elements (Scholte, 1956).

A convenient starting point is the expressiondew0 (9.41) for deeply propagating
waves. The shallow propagation elementsWfJ

U, CJD should be retained in full
to allow for any crustal reverberation effects, but are often approximated by
eliminating these terms to give

dew0 = WFT
0J
URJLDTSJD (ΣΣΣSD + RfSU ΣΣΣ

S
U). (9.62)

This form allows for surface reflections near the source. We now seek to extract the
appropriate reflection effects from the reflection matrixRJLD . Below the separation
level zJ we will suppose the model consists of smoothly varying gradient zones
separated by discontinuities in the elastic parameters or their derivations. This
model which we have already considered in Section 6.3, provides a very effective
description of the wavespeed distribution in the mantle and core.

As an example we consider the wave system comprising theP wave returned
from the deep mantle, thePcP reflection from the core-mantle boundary and their
associated surface reflected phasespP, sPetc. For aP wave turning point beneath
the interface atzG we are interested in the contribution

(T̂JGU )PP(RGLD )PP(T̂
JG
D )PP. (9.63)

The transmission term(T̂JGD )PP describes direct transmission fromzJ to zG with no
allowance for internal multiples

(T̂JGD )PP =

G∏
j=J

t j
d(p,ω)t j−1,j

d (p,ω) (9.64)

wheret j
d is thegeneralizedtransmission coefficient forP waves at the jth interface

derived from (6.60). Such coefficients are frequency dependent since they allow
for the effects of gradients bordering the interface through the generalized vertical
slownessesηαu, ηαd (3.104). The termst j−1,j

d (p,ω) allow for transmission loss
and phase delay for propagation between the j-1th and jth interfaces and, far from
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turning points, can often be represented by asymptotic forms. We have a similar
expression to (9.64) for the upward transmission operator(T̂JGU ).

The portion of (RSLD )PP which corresponds toP waves turned back by the
gradients or reflected from the core-mantle boundary is given by

rGCd + tGCu rCd tGCd , (9.65)

whererCd is the generalizedPP reflection coefficient at the core mantle boundary.
The termsrGCd , tGCd represent the leading order contributions to reflection and
transmission from the gradient zone in(zG, zC). From (6.51) if theP wave turning
point lies abovezC

rGCd = Ejα(zG)e−iπ/2[Fjα(zG)]−1,

tGCd tGCu = 2Ajα(zC)Ejα(zG)[Fjα(zG)Bjα(zC)]−1,
(9.66)

which include theπ/2 phase shift associated with the caustic generated on total
reflection. The presence of Ajα(zC)[Bjα(zC)]−1 in the transmission terms means
that there is very rapid decay in the evanescent region and so at high frequencies
the first term in (9.65) dominates. Asp decreases towardsα−1

c−, whereαc− is
the P wavespeed just above the core-mantle boundary, the leakage through the
evanescent region to the boundary increases and so the second term in (9.65)
becomes much more important (Richards, 1973). Oncep is less thanα−1

c− we have
the representation

rGCd ≈ 0
tGCd tGCu = Ejα(zG)Fjα(zC)[Fjα(zG)Ejα(zC)]−1,

(9.67)

and reflection contributions from the gradient zone will only arise from the higher
order terms (6.43)-(6.44). In this case we are left with just the interface reflection
term in (9.65).

The final expression for the frequency-slowness domain response for theP and
PcPphases is

fw0 = (WF)P(T
0J
U )PP(T̂

JG
U )PP(rGCd + tGCu rCd tGCd )(T̂JGD )PP(T

SJ
D [ΣΣΣSD + RfSU ΣΣΣ

S
U])PP,

(9.68)

where(WF)P = [(WF)UP, (WF)VP]
T . Viewed as a function of complexp, at fixed

ω the generalized reflection and transmission coefficients at the jth interface have
strings of poles associated with zeroes of the generalized Stoneley denominator.
These pole strings depart from the realp-axis close to the slownessesα−1

j− ,α−1
j+ and

β−1
j− ,β−1

j+ (see figure 9.9), and lie close to the Stokes’ lines for the Airy functions in

ηαu,d andηβu,d. The strings will lead off into the upper halfp plane fromα−1
j− and

β−1
j− since these lie close to the singularities of the upward generalized slownesses.

Fromα−1
j+ andβ−1

j+ the poles depart into the lower halfp plane.
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9.3 Approximate integration techniques

Figure 9.9. The saddle points for theP andPcP system as a function of slowness and a
suitable numerical contourΓ .

In the spectral method, with an outgoing wave representation we have to evaluate
integrals of the form (9.58) in terms offw0 i.e.

ū(r, 0,ω) = 1
2ω|ω|M(ω)

∫
Γ

dpp[fw0]
TTTT(1)
M (ωpr), (9.69)

where the contour of integrationΓ can be chosen to exploit the character offw0

(Richards, 1973).
If we take the asymptotic form (7.79) for the Hankel functions inTTT(1)

m (ωpr) and
the asymptotic forms for the Airy function terms in (9.66)–(9.67), then we find
that the integrand has two main saddle points. The first forp < α1c− arises from
the termtGCu rCd tGCd in (9.65) and thus corresponds toPcP reflections. The second
saddle at fixed ranger occurs forp > α−1

c− and corresponds to theP wave (figure
9.9). Slightly shifted saddles are associated with the surface reflected phasespPcP,
sPcPandpP, sP.

If we take a contour of integration which crosses both main saddles and make a
steepest descent approximation at each one, we recover the geometric ray theory
results for two isolated raysPcPandP .

At finite frequencies we can exploit the rapid decay of the integrand away from
the saddle points by choosing a numerical integration contourΓ that follows the
general character of the steepest descent path whilst avoiding the singularities of the
integrand (Richards, 1973,1976). This approach which has been termed ‘full-wave’
theory has the disadvantage that calculations are required for complexp, although
numerical convergence is improved, and considerable care may be needed to
find the singularities of the integrand. Since the full frequency dependence of
fw0 is retained in (9.69), attenuation may be included via complex wavespeed
profiles. A comparable approach was used by Chapman & Phinney (1972) with
a numerical solution of the differential equations (2.24) to findw0, but involved
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Approximations to the Response of the Stratification

considerable computational expense. The use of the Langer approximations for the
reflection elements as described here substantially reduces the effort needed. The
approximations needed to use the Langer approach for a radially heterogeneous
model are equivalent to an earth flattening transformation of the type described in
Section 1.5.

An alternative to the complex contour of the full-wave approach is to adopt
an approach similar to the reflectivity method (9.62) by integrating along a finite
portion of the realp axis with the response specified byfw0. This approach
has been used by Ward (1978) but has the disadvantage that numerical truncation
phases with the slownessesp1, andp2 can arise from the ends of the integration
interval.

In the problem we have discussed so far the propagation pattern was fairly simple
but this approach may be extended to deal with groups of phases for which the
time separation is insufficient to allow separate analysis (Choy, 1977; Cormier &
Richards, 1977).

When a wave-propagates into a lower velocity medium beneath an interface, e.g.
an upper mantle velocity inversion orP waves entering the core, we can expand the
reflection matrix as seen atzC (cf. 9.28)

RD(zC−) = RCD + TCURCLD TCD + TCURCLD RCURCLD TCD + ... . (9.70)

whereRCLD is the reflection matrix for the region belowzC andRCU etc. are the
interface matrices. Each term in (9.70) may now be treated separately and, for
example, onlyP waves retained. Such an expansion justifies Richard’s (1973)
treatment of theP4KP phase. Richards showed that forP turning points above
the core-mantle boundary (p > α−1

c−) tunnelling in evanescence represented above
throughtGCu tGCd (9.66) is sufficient to excite multiple reflections within the core.

When, however, there is an increase in velocity across an interface with a
gradient zone below we have an interference head wave situation. In addition to
the sub-Moho case discussed in Section 9.2.1, a similar situation arises in the inner
core forPKIKP and in the multipleSmKSsystem generated by conversion at the
core-mantle interface. In this case we wish to retain the full reverberation operator
describing the interference, but since the first reflection tends to separate from the
rest in time we make a partial expansion

RD(zC−) = RCD + TCURCLD TCD + TCURCLD RCURCLD [I − RCURCLD ]−1TCD. (9.71)

The main interference head wave is then described by the final composite term.
With an integrandfw0 containing such a term the integration path would approach
the real axis near the saddle associated withTCURCLD TCD, follow the real axis past the
limit point for the multiple reflections (the slowness in the upper medium) and then
proceed into the complex plane (Choy, 1977). A similar approach is appropriate
for triplications where once again multiple saddles occur in a small region of the
slowness axis.

Although we have based our discussion on a representation based on a shallow
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source the extension of the treatment to deep sources presents no difficulty. We
would then start with (9.48) and extract the required reflection terms fromRSLD .

If sufficient contributions are used, with a separate integration step (9.69) in each
case, this phase by phase method may be used to study quite complex systems.
Cormier & Choy (1981) have used full-wave calculations to generate theoretical
seismograms for upper mantle models by constructingP wave reflections from the
gradient zones and interfaces and then superposing the results. If low velocity
zone effects or crustal reverberations are included it is probably simpler to use
a piecewise smooth model with a reflectivity type approach in which internal
multiples are automatically included, as in figure 9.8.

9.3.3 Teleseismic P and S phases

The principal information used in many studies of seismic sources is the polarity
and shape of the onset of theP and S wavetrains. For long-period records the
interference of the direct wave (P) and the surface reflected phases (pP, sP) give
a pattern which depends on source depth (figure 9.11) and so by comparison with
observations we may hope to constrain the depth of the source. At high frequencies,
if records from a number of stations are available, the relative amplitudes of
P, pP and sP can help to constrain the focal mechanism of the source (Pearce,
1980). However, at these frequencies crustal effects complicate the records and
full calculations for crustal reverberations at source and receiver are desirable.
Such calculations have been used in studies of methods to discriminate between
underground nuclear events and shallow earthquakes (see, e.g., Douglas, Hudson
& Blamey, 1973). With broad-band records it is worthwhile to use realistic source
models, e.g. a propagating fault, and these may be included in our treatment by
modifying the slowness and frequency dependence of our source termsΣΣΣSD, ΣΣΣSU.

For crustal sources we take a separation level just below the Moho (zM) and then
the approximation (9.41) has the explicit form

dew0 = WF[I − R0MD RF]
−1T0MU RMLD TSMD [I − RfSURSMD ]−1(ΣΣΣSD + RfSU ΣΣΣ

S
U).

(9.72)

To recover the seismograms at a given ranger we have now to evaluate an integral
over slowness as in (9.69) withdew0 as the response term.

For receiver ranges between 3500 km and 9500 km it is common to represent the
PP or SS element ofRMLD via approximations of the form (6.52) e.g.

(RMLD )PP ∼ exp{iωτm(p) − iπ/2}Q(ω), (9.73)

whereτm(p) is the phase delay for the mantle (6.52). The effect of attenuation
in the mantleQ(ω) is normally included via an empirical operator based on the
assumption that for a particular wave type the product of travel-time and overall
loss factor is a constantt∗. ForP wavest∗α = TαQ

−1
α is frequently taken to be 1.0
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Figure 9.10. The multiple saddles associated with teleseismic propagation and a suitable
integration pathΓ .

s but for low loss paths can be about 0.3 s. ForS wavest∗β is rather higher e.g.
Langston & Helmberger (1975) have assumedt∗β = 3.0 s. In terms of frequency

Q(ω) ≈ exp{−iωt∗π−1 ln(ω/2π)} exp{−1
2 |ω|t∗}, (9.74)

where the effects of velocity dispersion are included, cf. (1.25).
With the approximation (9.73) the slowness integral in (9.69) has normally been

evaluated at high frequencies via a steepest descent approximation at the saddle
pointpr for the direct wave given by

r+ ∂p{τm(pr) + τc(pr)} = 0, (9.75)

whereτc(p) is the phase delay in the crust corresponding to the transmission terms
TOMU TSMD . The expression in braces is the geometrical ray theory expression for
the range−X(pr) for slownesspr. The resulting expression for the spectrum of the
seismogram is

ū(r, 0,ω) =
−iωM(ω)

[prr |∂pX(pr)|]1/2
eiωT(pr)Q(ω)CRS(p,ω), (9.76)

whereT(pr) is the travel-time for the direct wave, andCRS includes amplitude
and phase terms associated with the crustal terms at source and receiver. The term
−iωM(ω) is the far-field radiation from the source as seen through the appropriate
instrument. This approximation has been justified by treating the radiation leaving
the source crust as seen at large ranges as a plane wave, using ray theory in
the mantle and a plane wave amplification factorWfM

U at the receiver (see, e.g.,
Hudson 1969b). No allowance is made, however, for the slightly different paths for
the surface reflected phases or the wavefront divergence associated with multiple
crustal reflections.

If we make an expansion of the reverberation operators in (9.72) we get a
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Figure 9.11. The effect of source depth on teleseismicP waveform.

sequence of terms corresponding to the surface reflections and crustal multiples
each of which is associated with a subsidiary saddle point. The situation is
represented schematically forP waves in figure 9.10. The range of slownesses
occupied by the saddles is not large and the most accurate representation of the
teleseismic wavefield will be obtained by a ‘full-wave’ treatment with a contour
of integrationΓ as indicated in figure 9.10. This corresponds to treating a bundle
of slownesses clustered aroundpr rather than the single slowness in (9.76). The
result is that we get a better representation of amplitude effects due to conversion,
and also of the decay of the crustal reverberations. For teleseismicSV waves
conversion toP at the Moho is important and using a range of slownesses we
can also model shear coupledPL waves. For shorter distances than 3500 km
we need to make a more accurate representation of the reflection terms inRJLD to
account for the detailed structure in the upper mantle. The presence of triplications
in the travel time curves means that a band of slownesses is needed to represent
the response. The ‘full-wave’ approach or a reflectivity treatment are required for
accurate seismograms.

For comparison with long-period records the main interest is in the interference
of the direct wave and the surface reflected phases. Langston & Helmberger (1975)
have introduced a simple approximation based on a composite source term to model
these effects. ForPwaves, for example, they construct the downward radiation term

ΣΣΣCD = (ΣΣΣSD)P + (RF)PPeiω∆τ1(ΣΣΣSU)P + (qα0/qβ0)(RF)PSe
iω∆τ2(ΣΣΣSU)S, (9.77)

where∆τ1 is the phase lag ofpP relative to the direct wave and∆τ2 is the phase
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lag of sP. The ratio(qα0/qβ0) allows for the change in wavefront divergence on
conversion at the surface. With this composite source a single slowness is used
to calculate receiver effects and mantle propagation is included only through the
attenuation operator. Thus the receiver displacement is approximated by

ū(r, 0,ω) = −(WF)P ΣΣΣ
C
D(pr,ω)Q(ω)iωM(ω), (9.78)

wherepr is the geometric slowness given by (9.75). Langston & Helmberger
suggest the use of a far-field source time function consisting of a trapezoid of unit
height described by three time parameters, which allows relative time scaling of
rise time, fault duration and stopping time. When convolved with a long-period
response, this may be used for∂tM(t).

An illustration of the effect of depth of source with this procedure is shown in
figure 9.11, showing the significant variation inP waveform.

All the expressions for the displacements which we have generated in this
chapter are linear in the force or moment tensor components describing the point
source which we have introduced to represent the physical source of seismic
radiation. When we have a good model of the wavespeed distribution with depth
we can calculate the contribution to a seismic phase for a number of ranges from
each moment tensor component. With observed seismograms at the same ranges
we can set up a linear inverse problem for the relative weighting of the moment
tensor components (see e.g. Ward 1980), since we have only a few parameters
describing the source. If the matching of theoretical and observed seismograms is
performed in the frequency domain the estimates ofMij(ω) give an indication of
the time evolution of the source.

As we have noted in chapter 4, such a procedure will give us the moment tensor
elements appropriate to our reference model, rather than the real Earth, so that there
can be systematic bias. For large events the higher order moments of the source
can be significant, but their effect can be reduced by working with a point source
at the centroid of the disturbance and then allowing the position of the centroid as
a function of frequency to be a free parameter in the inversion (Woodhouse 1981 -
private communication).
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Chapter 10

Generalized ray theory

In the previous chapter we have developed approximations to the seismic response
in which, in essence, we retain frequency dependence in the amplitude of any
reflection effects and so a numerical integration over slowness is needed. We now
turn our attention to a further class of approximation in which the factorisation of
the seismic response is carried even further.

The seismic displacement is represented as a sum of ‘generalized ray’
contributions for which the amplitude depends only on slowness and the phase has a
slowness dependent term multiplied by frequency. For each of the generalized rays
we are able to make use of the functional form of the integrand in the transform
domain to reduce the space-time response to a slowness integral. For a medium
composed of uniform layers an exact representation of each generalized ray may
be made using the Cagniard-de Hoop method (Helmberger, 1968) with a complex
slowness contour chosen to give a certain combination of phase variables the
attributes of time. For uniform layers, or smoothly varying media, Chapman (1978)
has proposed an alternative, approximate, method with a real slowness contour.

The success of these generalized ray techniques depends on an adroit choice
of ‘rays’, from the infinite expansion of possible generalized rays to represent the
portion of the seismogram of interest. If no conversions are included all rays with
a given multiple level in any region can be generated by combinatorial techniques;
and these methods can be extended with more difficulty to rays with a limited
number of converted legs (Hron, 1972; Vered & BenMenahem, 1974).

10.1 Generation of generalized ray expansions

In Chapter 9 we have made use of partial expansions of the response to generate
various classes of approximation for the seismic wavefield in a stratified half space.
In order to obtain a generalized ray sum we carry this expansion process much
further and now represent all reverberation operators appearing within the response
by their infinite series representation (6.17).
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As in our previous discussion of approximations a convenient starting point is
provided by (7.66) which displays the surface reflection operator explicitly

w0 = WF[I − R0LD RF]
−1T0SU [I − RSLD R0SU ]−1(ΣΣΣSU + RSLD ΣΣΣ

S
D), (10.1)

We make an expansion to the full infinite sequence of surface reflection terms

[I − R0LD RF]
−1 = I +

∞∑
k=1

(R0LD RF)
k, (10.2)

and also expand the stratification operator

[I − RSLD R0SU ]−1 = I +

∞∑
l=1

(RSLD R0SU )l. (10.3)

This gives a representation of the surface displacements in terms of a doubly infinite
sequence of reflection terms. The way in which we now extract a generalized
ray expansion depends on the assumptions we make about the nature of the
stratification.

10.1.1 Uniform layer models

In section 6.2.1 we have shown how the reflection and transmission matrix elements
which appear in (10.1) can be constructed for a stack of uniform layers by a
recursive application of the addition rules in two stages to allow for phase delays
and interface effects (6.24), (6.26). In going from interface k+ 1 to interface k we
have for example,

RD(zk−) = Rk
D + Tk

UEEE
k
DRD(zkr+1−)EEEk

D[I − Rk
UEEE

k
DRD(zk+1−)EEEk

D]−1Tk
D,

(10.4)

whereEEEk
D is the phase income for downgoing waves in crossing the kth layer (3.46)

andRk
D etc are the interface matrices atzk.

The contribution introduced in crossing this kth layer can now itself be expanded
into an infinite sequence of terms representing internal multiples within the kth
layer superimposed on the reflection behaviour beneathzk+1 by writing

[I − Rk
UEEE

k
DRD(zk+1−)EEEk

D]−1 = I +

∞∑
r=1

{Rk
UEEE

k
DRD(zk+1−)EEEk

D}r. (10.5)

When such an expansion is made in each layer,RD(zk+1−) appearing in (10.5)
will itself be an infinite sequence of reflection terms. The overall reflection matrix
for a zone, e.g.,RSLD will then consist of a nested sequence of infinite expansions.
If all the expansions are carried out we get finally an infinite sequence of terms
representing all possible classes of reflection processes within the multilayered
stack.
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The nature of the individual terms is conveniently examined by looking at the
first two terms in the expansion of (10.4)

Rk
D + Tk

UEEE
k
DRD(zk+1−)EEEk

DTk
D. (10.6)

We suppose the thickness of the kth layer ishk and now introduce the explicit phase
dependence of the second term in (10.6) for theP-SVcase to obtain[

TPPU TPSU
TSPU TSSU

][
RPPD e2iωqαkhk RPSD eiω(qαk+qβk)hk

RSPD eiω(qαk+qβk)hk RSSD e2iωqβkhk

][
TPPD TPSD
TSPD TSSD

]
, (10.7)

where, e.g., RPPD is thePP element ofRD(zk+1−). As we have shown in section
6.1, the inclusion of higher terms in the expansion, i.e.r > 0, corresponds to
the introduction of multiple reflections within the kth layer, and thus further phase
delays in the additional terms.

We may assess the error introduced by truncation of the infinite sequences by
using the partial expansion identity (9.1). If an overall accuracy levelε is derived
for, say,RSLD a convenient working criterion for the number of terms(L) to be
retained in the expansion is that, if there areN layers in ‘SL’,

[RARB]
L ≤ ε/N, i.e. L ≥ ln(ε/N)/ ln(RARB), (10.8)

whereRA, RB are the moduli of the largest reflection and transmission coefficients
at the roof and floor of the layer (Kennett, 1974). If the layer has lower wavespeeds
than its surroundings,RA andRB can be quite large and many terms are needed. For
near-grazing incidence at an interfaceRB will approach unity and for high accuracy
L should be quite large.

For simplicity we will assume that all the elements of the source moment tensor
Mij have a common time dependenceM(t). Then we may write the vectorw0 as
the infinite sequence

w0(p,m,ω) = M(ω)
∑
I

gI(p,m) exp{iωτI(p)}. (10.9)

The individual ‘ray’ terms corresponding to a particular reflection process have

Figure 10.1. A generalized ray in a layered medium,P wave legs are indicated by solid
lines,Swave legs by dashed lines. Reflection points are marked by circles.
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been factored to show their amplitude and phase dependence. The phase delay
term for the uniform layers is

τI(p) =
∏

r

nrqrhr, (10.10)

wherenr is the number of times the rth layer, with thicknesshr, is crossed in
the same mode of propagation by the ‘ray’ path which specifies theIth processes
whereby energy can pass from source to receiver (see figure 10.1). The vertical
slownessqr is taken asqαr for P waves andqβr for S waves. The expression
gI(p,m) factors into two parts: the firstfffI(p,m) represents the way in which the
source radiation and receiver displacement operators depend on slowness, and the
second is the product of all reflection and transmission coefficients along theIth
path. Thus

gI(p,m) = fffI(p,m)
∏

j

Tj(p)
∏

k

Rk(p), (10.11)

where Tj is the plane wave transmission coefficient for an interface crossed by the
Ith ray and Rk is the reflection coefficient for an interface at which theIth ray
changes direction. In each case conversion is taken into account, if appropriate,
and we have exploited the frequency independence of the interface coefficients.
The directivity functionfffI(p,m) depends on the azimuthal orderm through the
source termsΣΣΣSD, ΣΣΣSU. If, for example, we consider a ray path which starts with a
downgoingP wave and also ends at the surface asP we would have

fffI(p,m) = (WF)
P(p)ΣΣΣSD, (10.12)

where the vector(WF)
P = [(WF)

UP, (WF)
VP]T includes the free surface

amplification factors forP waves, since we have extracted the frequency
dependence of the source inM(ω).

With the expression (10.9) forw0 the surface displacement as a function of space
and time (7.75) takes the form, forP-SVwaves,

uP(r, φ, 0, t)=
1

2π

∫∞
−∞dωe−iωtω2M(ω)

∑
m

∫∞
0

dpp
∑
I

gTI eiωτI(p)TTTm(ωpr).

(10.13)

The separation of the frequency dependence of theIth ray into the cumulated phase
term will enable us in Sections 10.3–10.5 to use analytic techniques to construct
expressions foru.

10.1.2 Piecewise smooth media

For a medium consisting of a stack of uniform layers the representation (10.13)
is exact when the full infinite ray expansion is present. Approximations are only
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introduced when we truncate the expansion to a finite number of terms so that it is
possible to make computations.

When, however, we have a medium consisting of a sequence of smooth gradient
zones separated by discontinuities in the elastic parameters or their derivatives, the
contribution from theIth ray path can only be represented as in (10.9) in a high
frequency approximation. Nevertheless we will find that this will prove to be a
useful form.

To see how the approximation arises consider a gradient zone in (zA, zB)
bounded by uniform half spaces with continuity of properties atzA, zB. This is
the model we have considered in section 6.3.1 and we have shown there that we
may build up the reflection and transmission matricesRABD , TABD from elements
associated with entry and exit from the gradient zone and the nature of the wavefield
within the zone.

At zA there will normally be a discontinuity in wavespeed gradient and so partial
reflection can occur. Within the gradient zone we can describe the wavefield
via generalized vertical slownessesηu,d(p,ω) (3.104) and phase terms which
depend on Airy function entries. The partial reflection terms atzA depend on the
difference betweenηu andηd and the vertical slowness in a uniform mediumq.
The frequency dependence ofηu,d arises from the character of the wavefield away
from zA, and in the high frequency limit, when turning points are far fromzA and
zB we have, e.g.,

ηαu(p,ω) ∼ qα(p), ηαd(p,ω) ∼ qα(p), (10.14)

with a similar relation atzB. In this limit, parameter gradient discontinuities at
zA andzB appear to be transparent and we may use the asymptotic forms for the
Airy function terms to generate approximations for the reflection and transmission
terms. To the leading order approximation there is no coupling between wave types
in the gradient zone. Thus forP waves if there is no turning point in (zA, zB) from
(9.66) we have

RABD |PP ∼ 0, TABD TABU |PP ∼ exp

{
2iω

∫zB
zA

dζqα(ζ)

}
, (10.15)

whereas if there is a turning level atZα(p), from (9.65) we find

RABD |PP ∼ exp

{
2iω

∫Zα(p)

zA

dζqα(ζ) − iπ/2

}
, (10.16)

TABU TABD |PP ∼ exp

{
2iω

∫Zα(p)

zA

dζqα(ζ)

}
exp

{
−2|ω|

∫ zB
Zα(p)

dζ |qα(ζ)|

}
.

(10.17)

Now we have already shown in section 6.3 that we can build the reflection matrix
for a piecewise smooth medium from the reflection and transmission matrices for
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the gradient zones and the interface matrices between two uniform half spaces with
the properties just at the two sides of the interface.

Thus, to the extent that (10.15) and (10.17) are valid we have the representation

w0(p) ∼ M(ω)
∑
m

gI(p) exp{iωτI(p)}. (10.18)

We must now account for turning points so that

τI(p) =
∑

r

{
nr

∫ zr+1

zr

dζqr(ζ) + 2n∗
r

∫Z∗

zr

dζqr(ζ)

}
, (10.19)

wherenr is once again the number of transmissions through the rth layer (now a
gradient zone) in a particular propagating wave type andn∗

r is the number of legs in
the rth zone in which total reflection occurs at the levelZ∗. The termgI(p) includes
all the factors in (10.11), but in addition includes a factor exp{in∗

r π/2}sgn(ω) to
allow for the phase shifts for the turning rays.

As we can see from the discussion above we would expect the right hand side of
(10.18) to be a poor approximation to the full field at low frequencies and when a
turning point lies close to one of the boundaries of a gradient zone. With the form
(10.19) for the phase delays we cannot account for tunnelling phenomena into low
wavespeed zones, as for example inP4KP(Richards, 1973).

For most high frequency problems we can, however, adopt (10.18) and then the
surface displacements can asymptotically be represented as in (10.13).

10.2 Ray Selection and generation

We may describe an individual generalized ray path within a multilayered medium
by a code indicating the nature of the ray, and for this purpose it makes no difference
whether a layer is uniform or has smoothly varying properties. The layer number
and wave type may be described by assigning an ordered pair of integers to each
layer

{Cj , ij} (10.20)

whereij is the layer number andCj indicates the wave type in that layer (Cj = 1, P
waves;Cj = 2, Swaves). Forn ray segments there will ben ordered pairs{Cj , ij};
for example, the ray in figure 10.1 can be represented as

{1, 1; 2, 2; 2, 2; 1, 2; 1, 2; 2, 3; 2, 2; 1, 1} (10.21)

Rays which do not include conversions of wave type are completely described by
the layer indices{ij},

The properties of such ray codes have been extensively studied by eastern
European seismologists and a convenient summary of results and algorithms is
presented by Hron (1972).
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10.2 Ray Selection and generation

Since we wish to achieve an economical means of generating generalized rays
it is advantageous to consider groups of rays which have properties in common. If
we consider a class of rays with permutations of the same ray codes we may divide
these into:
kinematic groups, for which the phase termτI will be the same; and,
dynamic groups, which form subclasses of the kinematic groups and have the same
products of interface coefficientsgI(p).

For generalized rays for which all legs are in a single wave type it is possible
to enumerate all the possible kinematic and dynamic groups. We will consider a
surface source and receiver and then we will have an even number of ray segments.
The extension to upgoing and downgoing rays from a buried source has been
discussed by Vered & Ben Menahem (1974).

For a ray without conversions the time characteristicsτI can be described by the
set

{n1, n2, ....., nj}, J≥ 2, (10.22)

wherenj is half the number of segments in the jth layer since each downgoing leg
is matched by an upgoing. All ray numbers of a kinematic group will share the
same set (10.22). If J= 2 the numberNk of different rays in the kinematic group
built from 2n1, segments in the first layer and2n2 segments in the second layer
is equal to the number of ways of distributingn2 objects inton1 cells, where any
number can occupy one cell with the result

Nk(n1, n2) =
(n1 + n2 − 1)!

n2!(n1 − 1)!
=

(
n1 + n2 − 1

n2

)
, (10.23)

in terms of the combinatorial coefficient
(
n
r

)
. If J = 3 we now have to intermesh

the 2n2 segments in layer 2 with the2n3 segments in the third layer whilst still
havingNk(n1, n2) possibilities from the top two layers, thus

Nk(n1, n2, n3) = Nk(n1, n2)

(
n2 + n3 − 1

n3

)
. (10.24)

In general the number of rays in a kinematic group for J≥ 2 will be

Nk(n1, n2, ...., nj) =

J−1∏
j=1

(
nj + nj+1 − 1

nj+1

)
. (10.25)

For the kinematic group{2, 2} we illustrate the 3 possible rays in figure 10.2,
and this set divides into two dynamic groups: one with two members and the other
with one, characterised by the number of reflections at the first interface. Since we
assume that rays are continuous we can describe the members of a dynamic group
by the numbers of reflections from interfaces. We therefore definemj to be the
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Figure 10.2. The three members of the kinematic group 2,2 separate into two dynamic
groups: the first 2,2;1 has two members, the second 2,2;0 only one.

number of reflections from the jth interface when the ray is in the jth layer. The set
of 2J− 1 integers

{n1, n2, ....., nj ;m1,m2, .....,mJ−1} (10.26)

completely describes the functiongI(p) for all the members of the same dynamic
group, sincemj ≡ nj . The number of members in each dynamic group is (Hron
1972)

Ndk(n1, ..., nj ;m1, ...,mJ−1) =

J−1∏
j=1

(
nj

mj

)(
nj+1 − 1

nj −mj − 1

)
. (10.27)

When we seek to generate rays we can effect considerable savings by only taking
one ray from each dynamic group and then using the multiplicity factorNdk to
account for all the other rays in the group since they give equal contributions to
(10.13).

We may organise the ray sum in (10.13) to exploit the benefits of the kinematic
and dynamic groupings by writing the slowness integral as∫

dpp
∑
k

{∑
d

Ndkg
T
d(p)

}
eiωτk(p)TTT(ωpr). (10.28)

The frequency dependent portions are then the same for each kinematic group k,
and the inner sum over dynamic groups accounts for different reflection processes
with the same phase delays.

The concepts of dynamic and kinematic groups are just as useful for rays with
converted legs, but the combinatorial mathematics becomes very difficult for more
than the converted leg (Hron, 1972). To get over this problem Vered & Ben
Menahem (1974) have specified the interfaces at which conversion can occur, they
have then, in effect, worked out rays from the source to a receiver at the conversion
point and then started the ray generation system again from the conversion point.
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Since it is computationally very expensive to generate more than a limited
number of rays, care has to be taken in their selection. In most problems the
generalized rays which make the largest contribution to (10.13) are those with
the least number of reflections from interfaces and thus the most transmissions.
For piecewise smooth media, turning rays are particularly important. However,
rays that have most of their path in the near-surface zone of low wavespeeds can
have significant amplitude even though they have suffered many reflections (cf.,
Helmberger & Engen, 1980). A similar effect can occur with other waveguides.

Generalized rays including conversion fromP to S usually make most
contribution to (10.13) when conversion occurs at reflection. Conversion at
transmission is typically small, unless theP wavespeed on one side of an interface
is fairly close to theS wavespeed on the other side. This can occur, for example,
with water and hard rock at the seafloor to give significantSwave-propagation in
the sub-seafloor rocks.

If a stack of uniform layers are used to simulate a gradient zone, a turning ray is
represented by the superposition of a system of multiple reflections at near grazing
incidence within the uniform layers near the turning level. Commonly, only a very
limited sequence of rays is employed, e.g. the expansion in (10.5) is truncated
at the level (10.6) (see, e.g., Helmberger 1968), but Müller (1970) has forcibly
demonstrated the need for retaining high order reflections for accurate results in
even simple models.

10.3 Slowness results for generalized rays

The surface displacement contribution with azimuthal orderm from a single
generalized ray is given by

uuuIm(r, t) =
1

2π

∫∞
−∞ dωe−iωtω2M(ω)

∫∞
0

dpwwwI(p,m,ω)TTTm(ωpr), (10.29)

with wwwI(p,m,ω) = gI(p,m)eiωτI(p). We now follow theslownesstreatment of
Section 7.3.2 and perform the frequency integral first so that we express (10.29) as
a sequence of convolutions over time with a residual integral overp:

uuuIm(r, t) = ∂ttM(t) ∗
∫∞
0

dpp{w̌wwI(p,m, t) ∗ (1/pr)ŤTTm(t/pr)}. (10.30)

We have already tabulated the time transforms of the vector harmonics in (7.98),
(7.100) and so we are left to evaluate the Fourier inverse ofwwwI(p,m,ω).

The final seismograms must be real time functions and sou(r,ω) = u∗(r,−ω),
so that with the choice of physical Riemann sheet we have made for the radicals
appearing ingI(p,m), τI(p)

gI(p,m) = g′
I(p,m) + isgn(ω)g′′

I (p,m),

τI(p) = τ′I(p) + isgn(ω)τ′′I (p).
(10.31)
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We may now perform the inverse time transform forwwwI to obtain (Chapman, 1978)

w̌wwI(p,m, t) =
1

π
lim
ε→0 Im

[
gI(p,m)

t− τ(p) − iε

]
, (10.32)

where we have used the convergence factorε to ensure the existence of the
transform. As the imaginary part ofτI tends to zero and we just have a real phase
delay,wwwI tends to a delta function:

lim
ε→0 Im[t− τ(p) − iε]−1 → δ(t− τ′(p)) as τ′′ → 0, (10.33)

and this property will enable us to simplify some subsequent results.
We will now restrict attention to the vertical component of displacement and

azimuthal symmetry since this will enable us to illustrate the nature of the solution.
The radial dependence now arises fromJ0(ωpr) and its time transform is given by

π(1/pr)J̌0(t/pr) = B(t, pr)(p2r2 − t2)−1/2, (10.34)

from (7.98). We now perform the convolution of the two slowness dependent terms
(10.32), (10.34) to obtain the explicit form

uIz0(r, t) = ∂ttM(t) ∗
∫∞
0

dpp

× lim
ε→0

{
1

π2

∫pr
−pr

ds Im

[
GI(p)

t− s− τI(p) − iε

]
1

(p2r2 − s2)1/2

}
,

(10.35)

whereGI(p) is the vertical component ofgI(p, 0). Along the realp axis only
GI(p) and τI(p) may be complex and so the imaginary part operator can be
abstracted to the front of the slowness integral.

The time and slowness elements in (10.34) are common to all the expressions
for ŤTTm(t/pr) (7.98)-(7.100) and so the form of the integral in (10.35) is modified
for other components or angular orders by the addition of well behaved functions.
Various methods of calculating theoretical seismograms can now be generated by
using different techniques to evaluate the slowness integral in (10.35).

10.4 The Cagniard method

For a generalized ray in a stack of perfectly elastic layers, the contribution to the
displacement field which we have so far expressed as a slowness integral of a
convolution in time can be recast as an integral over time. This result was first
obtained by Cagniard (1939) although the basic ideas are present in the work of
Lamb (1904). The technique has subsequently been developed by a number of
authors, notably Pekeris (1955) and de Hoop (1960). The first application to the
calculation of theoretical seismograms seems to have been made by Helmberger
(1968) and subsequently the method has been extensively used in the analysis of
seismic records over a very wide range of distances.
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For each generalized ray we extract the imaginary part operator to the front of
the integral in (10.35) and then have to evaluate

I(r, t) =
1

π2
Im

∫∞
0

dppGI(p)
∫pr
−pr

ds
1

[t− s− τI(p) − 0i](p2r2 − s2)1/2
,

(10.36)

where we have included the0i term in the denominator to remind us of the limiting
procedure in (10.35). We now split the integral overs into the differences of
the ranges(−∞, pr) and (−∞,−pr) and then with a change of variable in the
convolution integrals we can rewrite (10.36) as

I(r, t) =
1

π2
Im

∫∞
−∞ dp

∫0
−∞ dy

pGI(p)

iy1/2(y+ 2pr)1/2[t− y− θI(p, r) − 0i]
,

(10.37)

and the slowness integration follows a path above the branch points inGI(p), τI(p)
for Rep < 0 and below the branch points for Rep > 0; the pathC is illustrated in
figure 10.3. We have here introduced the important auxiliary quantity

θI(p, r) = τI(p) + pr (10.38)

which if r was the geometrical range for slownessp would just be the associated
travel time. We now change the order of integration to give

I(r, t) =
1

π2

∫0
−∞

dy

y1/2
Im

∫
C

dp
pGI(p)

i(y+ 2pr)1/2[t− y− θI(p, r) − 0i]
(10.39)

We recall that the directivity and reflection functionGI(p) and the phase delay
τI(p) both depend on the vertical wave slownessesqα, qβ at the interfaces and in
the layers. Our original choice of branch cuts (3.8) was, e.g., Im(ωqα) ≥ 0. We
can however, rotate the branch cuts to lie along the real axis as in figure 10.3 and
still maintain this condition on the contourC.

Following Burridge (1968) we now represent the integral over the slowness
contourC as the sum of two contributions. The first contourC1 lies along the
two sides of the branch cut in Rep < 0. The integrand in (10.39) is imaginary for
slowness|p| < pl, wherepI is the closest branch point to the origin; and so the
integral alongC1 is real. There is, therefore, no contribution toI(r, t) from this
path. The second contourC2 lies along the underside of the realp axis and its
contribution can be evaluated by using Cauchy’s theorem. The sole singularity in
the lower halfp plane is a simple polep(r, t) where

t− θI(p, r) − y = 0i. (10.40)

Since botht andy are real variables,θI(p, r) at this pole is real and can therefore
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Figure 10.3. Branch cuts and contours in the complexp plane. The original contourC can
be deformed into the sum ofC1 andC2. There is a single pole in the lower half plane at
p(r, t).

take on the role of a real time. The integral (10.39) can be evaluated as just the
residue contribution at the pole (10.40) and so

I(r, t) =
2

π
Im

∫ t
0

dθI
pGI(p)

(t− θI)1/2(t− θI + 2pr)1/2

[
∂p

∂θI

]
, (10.41)

where we have changed variables fromy to θI. In (10.41) the slownessp is an
implicit function ofθI via the requirement thatθI be real i.e.

Im[θI(p, r)] ≡ Im[τI(p) + pr] = 0. (10.42)

The path of the pole specified by (10.42) will play an important role in our
subsequent discussion and we will term this trajectory in the complexp plane the
Cagniard path (H). There will be a different path for each generalized ray at each
range.

When we reinstate the time dependence of the source we obtain the vertical
displacement contribution from theIth generalized ray as

uIz0(r, t) = ∂ttM(t) ∗ 2
π

Im
∫ t
0

dθI
pGI(p)[∂pθI]

−1

(t− θI)1/2(t− θI + 2pr)1/2
. (10.43)

This result is usually obtained by a rather different route in which the original
transform integral (10.29) is manipulated into a form where the time dependence
can be recognised directly (see, e.g., Gilbert & Helmberger, 1972).

For observations at large ranges so thatpr is very much larger than the duration
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10.4 The Cagniard method

of the source it is an adequate approximation to replace(t−θ+2pr)1/2 by (2pr)1/2

which leads to a considerable simplification in (10.43).

uIz0(r, t) ≈ ∂ttM(t) ∗ 1
π

Im
∫ t
0

dθI
2p1/2GI(p)[∂pθI]

−1

r1/2(t− θI)1/2
. (10.44)

The time integral is in the form of a convolution of H(t)t−1/2 with a function of
time along the Cagniard path. Thus in terms of the ‘effective’ source functionM(t)

introduced in (7.86)

M(t) =

∫ t
0

dl ∂lM(l)/(t− l)1/2 (10.45)

we can express (10.43) as

uz0(r, t) ≈M(t) ∗ π−1Im∂t{GI(p)(2p/r)
1/2[∂pθI]

−1}. (10.46)

The effective source needs to be calculated only once for all generalized rays and
the convolution in (10.46) can be carried out after the generalized ray sum has been
formed.

The high-frequency result (10.44) can alternatively be derived directly by starting
from the approximation of the time transform of the Bessel function by separated
singularities (7.108) or from the asymptotic expansion of the Bessel function
itself. For azimuthal orders|m| > 0 additional factors will appear in the inverse
transforms (7.100) and the near-field terms need to be included. These aspects are
discussed, with numerical comparisons, by Helmberger & Harkrider (1978).

Chapman (1974a, 1976) has shown how the Cagniard results can be extended
to WKBJ solutions (3.52) in vertically varying media. Unfortunately the method
cannot be applied directly to a turning ray because it is no longer possible to
make the contour deformation into the lower half plane. It is however possible to
make an iterative development via multiply reflected rays using (3.57) to approach
the turning ray solution (Chapman, 1976) but the method becomes numerically
unrewarding after the third order reflections.

10.4.1 The Cagniard path

The properties of the contribution made by a generalized ray are controlled by the
character of the Cagniard pathH in the complexp plane and the positions of the
branch points appearing in the phase delayτI(p) and the directivity and reflection
termgI(p).

The phase delayτI(p) will have branch points at the waveslownesses of the wave
type in which each layer is traversed. The closest branch point to the origin inτI
will be v−1

max, wherevmax is the largest wavespeed along the path. The termGI(p)
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has branch points atα−1
j , β−1

j for each side of an interface, forP-SVwaves, and so

the closest branch point to the origin will here beα−1
h , where

α−1
h = max[vl, l = 1, ..., n+ 1] (10.47)

if the deepest layer traversed isn. The pointα−1
h will be closer to the origin than

v−1
max for Swaves, and also forP waves if theP wavespeed is greatest in layern+1.
The Cagniard pathH is defined by ImθI(p, r) = 0, (10.42) i.e.

Im[pr+ τI(p)] = Im[pr+
∑

r

nrqrhr] = 0. (10.48)

For largep the slowness radicalsqr ∼ ±ip and so since we choosep onH to
be complex in such a way that its own imaginary part removes the−iΣnrhrp term,
the asymptote to the Cagniard path for largep is

argp ∼ tan−1(
∑

r

nrhr/r). (10.49)

At p = 0, θI(0, r) is independent of ranger and is just the vertical travel time
along the ray path. The Cagniard path starts off along the real axis but turns away
from it at the saddle point corresponding to the geometrical slownessp0I(r) for
which this combination of ray elements would arrive at the ranger. This saddle
will occur when∂pθI vanishes.

The second derivative,

∂ppθI = −
∑
l

nlhl/v
2
lq
3
l , (10.50)

and is real and negative in0 < p < v−1
max. This root may be found efficiently

numerically by, e.g., using Newton’s method.
In the neighbourhood of the saddle pointp0I(r) we make an expansion of

θI(p, r) in a power series

θI(p, r) = θI(p0I, r) + 1
2(p− p0I)

2∂ppθI(p0I, r) + ... . (10.51)

Along the Cagniard path we require ImθI = 0 and we wantθI to increase away
from the origin. Forp < p0 the path lies along the real axis. At the saddle point
∂ppθI is negative and so, in order to maintainθI as an increasing function we have
to choose(p − p0I)

2 < 0 at the saddle point. The Cagniard path therefore leaves
the real axis at right angles at the saddle pointp0I.

The closest branch point to the origin for the ray will beα−1
h which, as we have

seen, can be closer thanv−1
max and so there may be a branch point closer to the origin

than the saddle pointp0I. If αh = vmax, thenp0I < α
−1
h and fort < θI(p0I, r) the

path lies along the real axis whereGI(p) and∂pθI are both real. In this case we see
from (10.43) that there will be no contribution until the timeθI(p0I, r) associated
with the geometric ray path, and the Cagniard path is as shown in figure 10.4a.

If, however,αh > θmax, we have two possibilities. Whenp0I < α−1
h the
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10.4 The Cagniard method

Figure 10.4. Cagniard paths in the complexp plane a) only reflected contributions; b) head
wave segment in addition to reflections.

situation is as we have just described and there is no arrival before the geometric
time. Whenp0I > α−1

h there is a head wave arrival before the geometric ray
time. The Cagniard path is now as illustrated in figure 10.4b: fort < θI(α

−1
h , r)

both GI(p) and ∂pθI are real and there is no contribution to (10.38), but for
θ(α−1

h , r) < t < θI(p0I, r) althoughp and∂pθI are real,GI(p) is no longer real as
some of the radicals will be complex. There is therefore a contribution to (10.43)
from the segmentHh, and there is a separate interfacial head wave contribution for
each branch point traversed in(α−1

h , p0I). Such head wave contributions appear
moderately frequently for pureP wave paths and are very common for generalized
rays with a significant portion ofSwave legs.

Following Ben Menahem & Vered (1973) we can make an informative
decomposition of the contribution (10.43) from a particular generalized ray path.
The head wave contribution is

Im
∫ tr
th

dθI
{
GI(p)[∂pθI]

−1U(p, θI)
}
, (10.52)

where th = θI(α
−1
h , r), tr = min[t, θI(p0I, r)] and U(p, t) represents the

remainder of the integrand in (10.43).
After the geometrical arrival timet0 = θI(p0I, r) we can write the response as

Im
∫ t
t0

dθI
{
GI(p0I)[∂pθI]

−1U(p, θI)
}

+Im
∫ t
t0

dθI
{

[GI(p) −GI(p0I)][∂pθI]
−1U(p, θI)

}
. (10.53)

The first term represents the contribution from the geometric ray reflection, and
since∂pθI vanishes atp = p0I the main contribution to the beginning of the
reflected wave will come from the neighbourhood ofp0I. The second term
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represents the non-least-time arrivals, and since it vanishes atθ(p0I, r) will have
little contribution to the reflection. In Lamb’s problem for, example, this term
would include the Rayleigh wave contribution.

For numerical implementation of the Cagniard version of the generalized ray
approach we must be able to find the Cagniard pathH numerically and then achieve
an adequate sampling in time. Different numerical schemes have been discussed
by Wiggins & Helmberger (1974) and Vered & Ben Menahem (1974) and a general
survey has been made by Pao & Gajewski (1977).

As we have seen in section 10.2, the effectiveness of generalized ray sums may
be increased by making use of the ideas of kinematic and dynamic groups. In the
present context all members of a kinematic group share the same Cagniard pathH

and members of a dynamic group have the same amplitude distribution along the
path.

As an illustration of the way in which the contribution from a ray is determined
by the Cagniard path, we consider in figure 10.5 the effect of inserting a thin higher
speed layer into a model based on the work of Wiggins & Helmberger (1974).
In figure 10.5a we show in solid lines the Cagniard contours for various ranges
for a generalized ray corresponding to reflection from a small wavespeed jump
in a uniform layer representation of an upper mantle model. TheP wavespeed
beneath the deepest interface isαC and the corresponding critical range isrC. The
corresponding seismograms after passage through a low-pass filter are shown in
figure 10.5b; a weak head wave separates at the largest ranges. If a thin (2 km)
layer withP wavespeedαL is introduced above the deepest interface the Cagniard
paths are modified to those indicated in tone. All the paths leave the realp axis
to the left of α−1

L and then lie close to the real axis until the vicinity ofα−1
C

when they bend away from the axis to follow the trend of the solid curves. The
corresponding seismograms are shown in figure 10.5c with the same filtering as in
b. The original interface is now in a shadow zone and the main contribution comes
from the portions of the paths as they bend away from the real axis. In this case
there is a much larger low frequency content and very little phase change occurs on
reflection, as compared with figure 10.5b.

The Cagniard method has been employed to study a wide range of
wave-propagation problems in models consisting of a stack of uniform layers. For
example, Helmberger & Malone (1975) have looked at the effect of near-surface
structure on local earthquake records and a number of studies have been made
of upper mantle structure. Burdick & Orcutt (1979) have compared calculations
made with the Cagniard technique and only primary reflections from each interface,
with reflectivity calculations, including all multiples, in the same uniform layer
model. Neglect of the multiples gives significant errors for strong transition
zones, and where turning points occur near major discontinuities. For upper
mantle structures these problems are not severe and good agreement is obtained
at moderate frequencies (< 0.2 Hz).
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Figure 10.5. a) Cagniard paths for a generalized ray in an upper mantle model (Wiggins &
Helmberger, 1974). The solid lines show the paths followed for various ranges (rc is the
critical range). The lines in tone show how the paths are modified by inserting a small high-
velocity layer to give a shadow zone at the deepest interface. b) low passed seismograms
for the solid paths; c) low passed seismograms for the paths in tone.

10.4.2 First-motion approximations

Consider the high frequency approximation (10.46) for a generalized ray
corresponding toP wave reflection from the nth interface with transmission to and
from the surface, for which the displacement contribution can be written

uz0 = ∂tM(t) ∗ H(t)t−1/2 ∗
π−1∂tIm{f(p)Rn(p)T(p)(2p/r)1/2[∂pt]

−1}. (10.54)

The last term is to be evaluated along the Cagniard pathH for the ray. Time
increases as we move away from the origin alongH. In the subsequent development
we will often representt as a function of slownessp and will be referring to the
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parameterisation of the Cagniard path. We have factoredG(p) to show the explicit
dependence on Rn(p) (thePP reflection coefficient at the nth interface); T(p) is the
product of transmission terms andf(p) the source and receiver directivity.

We will assume that theP wavespeed increases with depth so that the closest
branch point to the origin isα−1

n+1(≡ α
−1
h ) so that for many ranges we have a head

wave contribution, in addition to reflection terms.
We recall that∂pt vanishes the saddle pointp0 at which the Cagniard path for

ranger turns away from the realp axis and so we seek an approximation to the
reflection behaviour by examining the neighbourhood ofp0. For a wavespeed
distribution that increases monotonically with depth, T(p) and f(p) will be real
atp0 and only Rn(p) will be complex. Neart(p0)

t− t0 ≈ −1
2A(p− p0)

2, (10.55)

whereA = |∂ppt(p0)| andt0 = t(p0). If we now differentiate (10.55) with respect
to p we obtain

∂pt ≈ [2A(t0 − t)]1/2. (10.56)

Thus∂pt is real fort < t0 and imaginary fort > t0 with the result that we may
write the final term in (10.55) as

ΨR(r, t) = π−1(p/Ar)1/2T(p)f(p) (10.57)

×
[
Im Rn(p)

H(t0 − t)

(t0 − t)1/2
+ Re Rn(p)

H(t− t0)

(t− t0)1/2

]
,

and the displacement may be recovered by differentiation followed by convolution
with the far-field time function for the source∂tM(t) and H(t)t−1/2,

uz0(r, t) ≈ ∂tM(t) ∗ H(t)t−1/2 ∗ ∂tΨ(t). (10.58)

We have previously noted, in connection with (7.108), that H(−t)(−t)−1/2 is the
Hilbert transform of H(t)t−1/2 and so, on carrying out the convolutions in (10.58),
we find

uRz0(r, t) = π−1(p/Ar)1/2{Re Rn(p)∂tM(t− t0) + Im Rn(p)∂tM̂(t− t0)},

(10.59)

where∂tM̂ is the Hilbert transform of the far-field source function. The term in
braces represents the scaling and phase distortion associated with reflection beyond
the critical angle which we have already considered in figure 5.3. At precritical
reflection, for ranges such thatp0 < α

−1
h , we have only the contribution.

uz0(r, t) = π−1(p/Ar)1/2T(p)f(p)Re{Rn(p)∂tM(t− t0)}, (10.60)

and the reflected pulse shape is the same as the far-field source function. At the
critical rangep0 = α−1

h and we have a coincident saddle point and branch point
and so a special treatment is necessary to obtain a ‘first-motion’ approximation
similar to (10.60) (Zvolinskii, 1958) near this point.
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10.4 The Cagniard method

Oncep0 separates fromα−1
h we can represent the post-critical reflections as

in (10.59) but need now to take account of the head wave contribution. In the
neighbourhood of the branch pointα−1

h we are unable to use a Taylor’s series but
we can approximateΨ(t) as

Ψh(r, th + ∆t) ≈ π−1(p/r)1/2T(p)f(p) (10.61)

×Im{[Rn(α
−1
h ) + γ∂γRn(α

−1
h )][∂pt(α

−1
h )]−1},

whereth is the time of arrival of the head wave, since only Rn(p) for p > α−1
h .

AlongHh, iγ = (α−2
h − p2)1/2 and so

p ≈ α−1
h + 1

2γ
2αh. (10.62)

The small increment in slowness∆p associated with∆t is therefore

∆p = p− α−1
h ≈ 1

2γ
2αh. (10.63)

This relation enables us to determineγ in terms of∆p and thus∂pt,

γ ≈ (2α−1
h ∆p)

1/2 ≈ (2α−1
h ∆t[∂pt(α

−1
h )]−1)1/2. (10.64)

With this substitution, we find

Ψh(r, t) ≈ π−1[∂pt(α
−1
h )]−3/2[2α−1

h (t− th)]
1/2 (10.65)

×Im[∂γRn(α
−1
h )](p/r)1/2T(p)f(p)H(t− th);

and also the distance travelled along the refractor,L, is∂pt(α−1
h ) since

∂pt(α
−1
h ) = r− α−1

∑
r

nrhr/qr(α
−1
h ) = L. (10.66)

The sum allows for the horizontal distance travelled in transmission. When we
perform the convolution and differentiation in (10.58) to produce the displacement
term we make use of the result

∂tM(t) ∗ H(t)t−1/2 ∗ ∂t{H(t− th)(t− th)
−1/2} = πM(t− th), (10.67)

to give

uhz0(r, t) ≈ (2pα−1
h /rL

3)1/2T(p)f(p)Im[∂γRn(α
−1
h )]M(t− th). (10.68)

The pulse shape of the head wave is thus the integral of the far-field source time
function and the rate of decay of the head wave isr−1/2L−3/2.

These first motion approximations have been used by a number of authors (e.g.,
Werth, 1967) to model the first few swings ofP waveforms. The approximations
are most effective when the significant phases are well separated in time but can be
superimposed to allow for a number of arrivals.

The convenience of the first-motion approximations has lead Mellman &
Helmberger (1979) to suggest modifications designed to link together the pre-
and post-critical approximations as well as the head wave. They have used an
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Generalized ray theory

approximate contour in the neighborhood of the saddle point and checked their
results against full Cagniard calculations. For a wide variety of models it was
possible to get good agreement and the modified first-motion approximations were
much less expensive than the full calculations.

10.5 The Chapman method

The essence of the Cagniard method for calculating the contribution of a
generalized ray is that the slowness integral is taken along such a path in the
complexp plane that the time dependence can be easily recognised. In contrast
Chapman (1978) has advocated that the slowness integral should be carried out
along the realp axis as in (10.30) and (10.35).

In this section we will show how Chapman’s idea can be used to generate a
simple approximation for the displacement contribution from a generalized ray
which can be used even when turning points and caustics are involved. We consider
the vertical component of displacement and azimuthal symmetry as in (10.35) so
that

uIz0(r, t) = ∂ttM(t)∗π−1

∫∞
0

dpp
∫pr
−pr

dsUI(p, t−s)(p
2r2−s2)−1/2,(10.69)

and

UI(p, t) = π−1Im[GI(p)/(t− τI(p) − 0i)]. (10.70)

We aim to produce an approximation which is valid for large rangesr and so we
follow the procedure discussed in (7.108)-(7.114). We approximateB(t, pr)(p2 −

t2)−1/2 by two isolated singularities along the linest = pr andt = −pr and then
for larger ranges will retain only the outgoing term associated with the singularity
alongt = pr. The displacement is then represented by

uIz0(r, t) ≈ ∂ttM(t) ∗ 1

π(2r)1/2

∫∞
0

dpp1/2

×
∫∞
−∞ ds ÛI(p, s− pr)H(t− s)/(t− s)1/2, (10.71)

and herêUI is the Hilbert transform of̌UI with the form

ÛI(p, t) = π−1Re[GI(p)/(t− τI(p) − 0i)]. (10.72)

The convolution in (10.71) can be rearranged by shifting the Hilbert transform from
the generalized ray term to give∫∞

−∞ ds ǓI(p, s− pr)H(s− t)(s− t)−1/2 (10.73)

with the same slowness integral as before. Since we have forced the phase factors
associated with turning points intoGI(p), the choice of (10.71) or (10.73) is
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10.5 The Chapman method

dictated by the properties ofGI(p). If GI were real then (10.71) would be the
best choice, whereas ifGI were imaginary we would prefer (10.73). In practice
GI(p) is real for part of the range and imaginary in others and we may exploit the
linearity of the problem to produce a combination of (10.71) and (10.73) which is
best suited to a realp contour. In terms of the explicit forms of the generalized ray
term this is

uIz0(r, t) ≈ ∂ttM(t) ∗ 1

π(2r)1/2

∫∞
0

dpp1/2

×Im

[∫∞
−∞ ds L(t− s)GI(p)Im(s− τI(p) − pr− 0i)−1

]
, (10.74)

where we have introduced the analytic time function

L(t) = H(t)t−1/2 + iH(−t)(−t)−1/2, (10.75)

which combines the inverse square root operator and its Hilbert transform. In
(10.74) we see within the slowness integral the termθI(p, r) = τI(p) + pr which
played such an important role in the Cagniard method.

We now restrict attention to perfectly elastic media, so thatτ(p) is real for the
range of slowness for which we have propagating waves all along the ray path. We
will denote the slowness at which some portion of the ray becomes evanescent by
pI and then∫pI

0
dpp1/2GI(p)Im[t−θI(p, r)−0i] =

∫∞
0

dpp1/2GI(p)δ(t−θI(p, r)).(10.76)

This integral may be evaluated by splitting the slowness range intervals containing
just one root oft = θ(p, r) and then changing integration variable toθ to give∫∞

0
dpp1/2GI(p)δ(t− θI(p, r)) =

∑
j

GI(πj)π
1/2
j [∂pθI(πj, r)]

−1, (10.77)

where the sum is taken over the slowness rootsπj(t) of t = θI(πj, r). There will
be one root for a simple turning ray and multiple roots in the neighbourhood of
triplications. The full integral (10.74) can now be written as

uIz0 ≈ ∂ttM(t) ∗ 1

π(2r)1/2
Im{L(t) ∗

∑
j

GI(πj)π
1/2
j [∂pθI(πj, r)]

−1

+L(t)

∫∞
pI

dpp1/2GI(p)Im[t− θI(p, r) − 0i]−1}. (10.78)

The integral includes those values for whichτ(p) becomes complex and may be
regarded as a correction to the main approximation represented by the sum.
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Generalized ray theory

Chapman (1978) has termed the displacement contribution

uIz0(r, t) = ∂ttM(t) ∗
1

π(2r)1/2
Im{L(t) ∗

∑
j

GI(πj(t))πj(t)
1/2[∂pθI(πj(t), r)]

−1},(10.79)

theWKBJ seismogram. He has shown that with a locally quadratic approximation
to θ(p, r) we recover the results of geometrical ray theory for a single turning
ray. The expression (10.79) is, however, still usable at caustics and at shadow
boundaries where geometrical ray theory fails. For interface problems (10.79) gives
the same results as the first-motion approximation for the head wave (10.68). For
reflected waves a complete representation requires the inclusion of the correction
terms to allow for evanescent waves, but near the geometric arrival time (10.79) is
a good approximation.

For numerical evaluation it is convenient to use a smoothed version of (10.79),
to generate a discrete time series. For a digitisation interval∆t we employ an
operatorF(t, ∆t) which is zero outside(t − ∆t, t + ∆t) to smooth each time
point. This smoothing eliminates the effects of singularities in (10.79) associated
with apparent details in the model. The interpolation scheme used to define the
wavespeed profile can often give discontinuities in parameter gradients which will
lead to singularities in (10.79); there is also a chance that small triplications may
be introduced. These features will have no true physical significance and will be
unobservable with realistic source terms.

Figure 10.6. The construction of the WKBJ seismogram by smoothing over an interval
t− ∆t, t+ ∆t) about the desired time.
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10.5 The Chapman method

We now convolve the displacement with the unit area smoothing operator
F(t, ∆t), and restrict attention to the range of slownesses for whichτI(p) is real
as in (10.79),

uIz0(r, t) ∗ F(t, ∆t) = ∂ttM(t) ∗
1

π(2r)1/2
Im{L(t) ∗

∫∞
0

dpp1/2GI(p)F(t− θI(p, r), ∆t)}.

(10.80)

The slowness integral will reduce to a sum of contributions from bands such that

t− ∆t < θI(p, r) < t+ ∆t, (10.81)

in the neighbourhood ofπj(t) (see figure 10.6). Thus

uIz0(r, t) ∗ F(t, ∆t) = ∂ttM(t) ∗
1

π(2r)1/2
Im{L(t) ∗

∑
j

∫
dpp1/2GI(p)F(t− θI, ∆t)}, (10.82)

where the integral is to be taken over the span of slowness values aboutπj for which
(10.81) is satisfied, with width∆pj (figure 10.6).

Chapman (1978) has suggested using a boxcar filter over the interval(t−∆t, t+

∆t) in which case, whenGI(p) is slowly varying, the sum in (10.82) can be
approximated by∑

j

πjGI(πj)∆pj/∆t, (10.83)

and this is the form which Dey-Sarkar & Chapman (1978) have used for
computations. Figure 10.6 illustrates the way the sum is formed, for an isolated
arrival nearπ1, ∆p1 is small. But for the triplicationπ2, π3, π4 which is
unresolvable at the discretisation level∆t, there is a long effective∆p.

In the approximations which enabled us to generate the frequency-slowness
response of a turning ray we have takengI(p) to be determined by products of
frequency independent plane-wave reflection and transmission coefficients. All
frequency dependent propagation effects associated with changes in parameter
gradients and with turning points close to interfaces are ignored. Although the
WKBJ seismogram will give a good representation of the major features of the
seismic phases via the behaviour ofθI(p, r), secondary features can be in error or
missing. This can be well illustrated by examining the slowness-time map for a
full frequency dependent calculation. In Figure 10.7 we show such a projective
display of the slowness-time response for theSSreflection from the upper mantle
modelT7 (figure 9.7). The continuous refraction, the main feature for large times
is approximated well in the WKBJ scheme (10.82)–(10.83). The reflection from
the Moho will also be represented quite well. However, the reflections from
the discontinuity in wavespeed gradient at 170 km, and the complex transition
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Figure 10.7. Projective display of theSSreflection from the upper modelT7 as a function
of slowness and time.

Figure 10.8. Record section of WKBJ theoretical seismograms forSwaves in the mantle
modelT7.

zones at 400 and 700 km, in the flattened model, will not be well approximated.
These features depend strongly on frequency dependent gradient effects and have
a significant effect on the seismograms for waves reflected from the upper mantle.

Although the WKBJ seismograms do not have the full accuracy which can be
attained with more sophisticated techniques, they are inexpensive to compute. With
a knowledge of the travel-time and reflection characteristics of a model it is possible
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10.6 Attenuation and generalized rays

to get a quick idea of the character of the seismic wavefield. In figure 10.8 we show
a record section of WKBJ theoretical seismograms (10.82)–(10.83) calculated for a
simple oceanic crustal model. These seismograms display the main features of the
crustal response represented by the refracted branch of the travel time curve, but do
not include reflections arising from changes in wavespeed gradient.

10.6 Attenuation and generalized rays

In both Cagniard’s and Chapman’s methods for determining the response of a
generalized ray we have had to assume that the medium is perfectly elastic.

As discussed in section 1.3 we can model the effects of attenuation on seismic
propagation by letting the elastic wavespeeds become complex. In general they will
also be frequency dependent because of the frequency dispersion associated with
causal attenuation. In an attenuative medium to first order, forP wave

τ(p) → 2

∫Zα

0
dz qα(p, z,ω) + isgnω

∫Zα

0
dz [α2Qαqα]−1 (10.84)

and so the separation of frequency and slowness effects we have employed above
is no longer possible.

For Cagniard’s method attenuation can be introduced into the final ray sum by
applying an attenuation operator, such as (9.74), to each ray contribution allowing
for the nature of the path. Burdick & Helmberger (1978) have compared this
approach with applying a single attenuation operator to the full ray sum, and
suggest that often the simpler approximation is adequate.

In Chapman’s method, a good far-field approximation may be obtained using
(10.71) but now evaluating the inverse transformUI(p, t) numerically. For a delta
function source the result will be a broadened pulse following a trajectory similar
to theτ curve in slowness. If dispersion can be neglected

τ(p) = τ0(p) + isgnωλ(p), (10.85)

whereτ0 is the perfectly elastic value, and the attenuative termλ(p) is small. For
theIth generalized ray

wwwI(p, t) = Im[GI(p)/(t− τI(p))], (10.86)

but this is non-causal. Along the realp axiswwwI(p, t) will still have its maximum
value nearτ0I(p) and a comparable approximation to the smoothed WKBJ
seismogram can be made including a convolution with the broadened pulse form.
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Chapter 11

Modal Summation

The various expressions which we have derived for the receiver response for
general point source excitation have singularities associated with the properties
of the reflection and transmission matrices for portions of the stratification and
the corresponding reverberation operators. In particular we have a set of poles
associated with the vanishing of the secular function for the half space det{TDL(0)}

(7.12). This secular function is independent of the depth of the source and depends
on the elastic properties in the half space.

For the combinations of frequency and slowness for which det{TDL(0)} vanishes
we have non-trivial solutions of the equations of motion satisfying both the
boundary conditions: the vanishing of traction at the surface, and decaying
displacement at depth (|w| → 0 as z → ∞). For our choice of structure this
latter property arises from the presence of only exponentially decaying waves in
the lower half spacez > zL (7.3). The detailed character of these eigenfunctions
for displacement will depend on the actual wavespeed distribution within the half
space. Above theS wave turning levelzs for the slownessp (i.e., the depth
at whichβ−1(zs) = p), the character of the eigensolutions will be oscillatory.
Below this level we will have evanescent decaying behaviour. For slownessp

less than the inverse of theS wavespeed in the lower half space(β−1
L ) we will

have travelling waves at depth; in this case we can no longer match both sets of
boundary conditions. The surface wave poles are thus restricted top > β−1

L and
the maximum slowness depends on the wave type.

Since we have a semi-infinite domain, the roots of the dispersion equation
det{TDL(0)} = 0 are ordered into continuous strings in frequency-slowness (ω–p)
space, ordered by overtone number (see figures 11.1, 11.3, 11.4). For theSHcase,
the overtone number for Love waves represents the number of zero crossings in
the eigenfunctions. In the coupledP-SV system the overtone number for higher
Rayleigh modes has a more abstract significance, but in many cases is one less than
the number of zero crossings for the horizontal displacement.

For perfectly elastic media the poles reside on the real slowness axis at fixed
frequency and the work of Sezawa (1935) and Lapwood (1948) shows that at large
distances the contribution from the residues at the poles response includes the
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11.1 The location of the poles

surface wavetrain. The stress-displacement fields associated with these residues
show no discontinuity across the source level (Harkrider 1964), so that the
excitation of the modal contributions should not be thought of as occurring directly,
but by the interaction of the entire wavefield with the stratification and the surface.

11.1 The location of the poles

The location of the surface wave poles in frequency slowness space is given by
the vanishing of the secular function. From the surface source expressions for the
seismic field (7.12) and the representation of the stress componentTDL(0) in terms
of the reflection and transmission properties of the stratification we require

det{TDL(0,ω, p)} = det(nD0 + nU0R
0L
D )/detT0LD = 0. (11.1)

If we have a uniform half space we would require detnD0(p) = 0. No root is
possible forSHwaves but forP-SVwaves we require

(2p2 − β−2
0 )2 + 4p2qα0qβ0 = 0; (11.2)

and this is the usual equation for the Rayleigh waveslownesspR0 on a uniform half
space with the propertiesα0, β0 (Rayleigh, 1887). For any increase in velocity
within the half space we have the possibility of dispersive wave-propagation with
the slowness depending on frequency for bothSHandP-SVwaves.

We may rewrite (11.1) as

∆ = detnD0 det(I − RFR
0L
D ) = 0, (11.3)

although the impression that there is always a root when detnD0 = 0 is illusory
since it is matched by a singularity inRF at the same slowness. However, for
slownessp > β−1

0 , such that all wave types are evanescent at the surface, with
increasing frequencyR0LD → 0 as the penetration into the stratification decreases,
and so

∆ → detnD0, as ω → ∞, p > β−1
0 . (11.4)

Thus forP-SVwave-propagation the limiting slowness for dispersive surface waves
is the Rayleigh slownesspR0 for a half space with the surface properties throughout.
Only one root of∆ exists inp > β−1

0 .
For slownessesp < β−1

0 , so thatSwaves at least are propagating, we may use
the simpler dispersion relation (Kennett, 1974)

det(I − RFR
0L
D ) = 0. (11.5)

This relation constitutes a constructive interference condition between waves
reflected back from the stratification and those reflected from the surface.

When we start from the expressions (7.32) and (7.35) for the displacement from
a buried source the secular function may be expressed as

det(I − RfSURSLD ) = 0, (11.6)
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where the source depthzS is arbitrary. Equation (11.6) represents a further
constructive interference condition between waves reflected above and belowzS.
This form is inadequate and we must use (11.5) if the receiver contribution becomes
singular i.e. det(I − RfRU RRSD ) = 0 which corresponds to the existence of trapped
waves on just the truncated structure above the levelzS.

11.2 SH wave dispersion: Love waves

ForSHwaves the free-surface reflection coefficient is unity so that (11.5) becomes

R0LD |HH = 1, (11.7)

i.e. the secular relation requires us to seek those combinations of frequency and
slowness for which an incident downgoing wave is reflected from the stratification
without change of amplitude or phase. This result holds even for attenuative media
and so at fixed frequencyω the poles will lie in the first and third quadrants of the
slowness plane.

11.2.1 A layer over a half space

It is interesting to see how more familiar dispersion relations can be obtained from
(11.7). Consider the simple example of a layer with densityρ0, shear wavespeed
β0 and thicknessh0, overlying a uniform half space with densityρ1 and shear
wavespeedβ1. The reflection coefficient for the interface ath0 is given by (5.12)
and allowing for phase delay in the upper layer between the surface and the
interface we require

exp(2iωqβ0h0){µ0qβ0 − µ1qβ1}/{µ0qβ0 + µ1qβ1} = 0, (11.8)

and with a slight rearrangement we have

tanωqβ0h0 = −iµ1qβ1/µ0qβ0, (11.9)

which is the conventional Love wave dispersion relation (Ewing, Jardetsky & Press,
1957).

We can see directly from (11.8) that roots will only be possible when the interface
coefficient has unit modulus and waves propagate in the upper layer i.e. the Love
wave slowness is restricted to

β−1
1 < p < β−1

0 . (11.10)

Also, since the reflection coefficient is independent of frequency, for fixed slowness
the roots of the dispersion equation in frequency are

ωn = [nπ− 1
2χ01(p)]/qβ0h0, (11.11)

whereχ01(p) is the phase of the interface reflection coefficient. It is therefore easy
to generate multimode dispersion curves and the first twelve branches are illustrated
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11.2 SH wave dispersion: Love waves

Figure 11.1. Love wave dispersion curves for the first twelve mode branches as a function
of frequency and slowness.

in figure 11.1.χ01(p) decreases steadily with increasingp (figure 5.2) approaching
−π whenp → β−1

0 and is zero whenp = β−1
1 . The successive modes have

therefore a lower cutoff in frequency at

ωn0 = nπ/(β−2
1 − β−2

0 )1/2h0 (11.12)

and at high frequencies have slownesses which asymptote toβ−1
0 (figure 11.1). For

frequencies less than the cutoff for any mode, roots cannot be found on our chosen
Riemann sheet Imωqβ1 ≥ 0, but move off to complexp values on the lower sheet
(Gilbert, 1964).

11.2.2 Love waves in a stratified medium

We may extend the approach we have used for the single layer to deal with a
stratified half space. The reflection coefficient atz = 0 will have unit modulus
for slownesses in the range

β−1
L < p < β−1

0 , (11.13)
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for which we have evanescent waves in the underlying half space and travelling
waves at the surface. In this interval we can recast the dispersion equation (11.7) as

χ0(ω,p) = 2nπ, (11.14)

whereχ0 is the phase of the unimodular reflection coefficientR0LD |HH at the level
z = 0. We may therefore build up the reflection coefficient from the base of the
stratification or varying frequencies at fixed slowness; and then interpolate to find
the frequencies at which (11.14) is satisfied.

At high frequencies we can get approximate results by making use of asymptotic
representations of the reflection behaviour. As discussed in Section 10.1, for a
smooth monotonically increasing wavespeed distribution and slownessp such that
the turning pointZβ(p), for whichp = β−1(Zβ), is not close to 0 orzL, we have

R0LD |HH ∼ exp{iωτβ(p) − iπ/2}, (11.15)

where the intercept time

τβ(p) = 2

∫Zβ(p)

0
dz qβ(z), (11.16)

is the integrated vertical slowness down to the turning level. The Love wave
dispersion relation corresponding to (11.15) is thus

ωnτβ(p) ∼ (2n+ 1
2)π. (11.17)

This result is in the same form as (11.11) when we take account of the phase change
of π/2 on internal reflection and turning level at the interfaceh0 in the single layer
case.

Although in general we need to take account of the full behaviour in each region
at high frequencies an approximate iterative procedure for piecewise continuous
media may be developed based only on the phase behaviour. Gradient effects at
interfaces are ignored. Starting at the turning point the phase delay to the next
higher interface (zJ say) is formed

χT (ω,p) = 2ω

∫Zβ(p)

zJ

dz qβ(z) − 1
2π, (11.18)

and then the effect of the interface is included to form an approximate reflection
coefficient phaseχJ just abovezJ; from

tan(12χJ) = |QJ| tan(12χT ) (11.19)

cf. (11.9).QJ is the ratio ofSHwave impedances atzJ, e.g.,Q1 = µ1qβ1/µ0qβ0.
The phase delay betweenzJ−1 andzJ must be included before constructingχJ−1,
as

tan(12χJ−1) = |QJ−1| tan(ω
∫ zJ
zJ−1

dz qβ(z) + 1
2χJ). (11.20)
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11.2 SH wave dispersion: Love waves

This process is then carried out right up to the surface to formχ0(ω,p) then the
dispersion equation (11.14) may be rewritten as

ωnτβ(p) ∼ (2n+ 1
2)π+ χ′0(ωn, p), (11.21)

whereχ′0 arises from the cumulative effect of interfaces. Starting with a trial
estimate ofωn, the right hand side of (11.21) is calculated and a revised estimate
for ωn obtained by equatingωnτβ to this quantity. Iteration is continued until
convergence of the frequency estimates occurs and is usually quite fast.

This approach which has been used by Kennett & Nolet (1979) in studies of
the high frequency normal modes of the Earth is a generalisation of a procedure
suggested by Tolstoy (1955) for uniform layers. For a multilayered medium1

2π

would be replaced by the phase of the reflection coefficient at the deepest interface
at which anS wave is propagating. Numerical comparisons between the iterative
results and direct calculations for the dispersion show that for the lower mantle
good agreement is obtained for frequencies higher than 0.03 Hz. For stronger
gradient zones higher frequencies are needed before (11.21) gives an adequate
approximation.

For this dispersive wave system, pulse distortion will occur as an individual mode
propagates across the stratified half space (see Section 11.5), and a wave packet will
travel with the group slowness

g =
∂

∂ω
(ωp) = p+ω

∂p

∂ω
. (11.22)

For a secular functionY(p,ω) = 0 we may calculateg by implicit differentiation

g = {p∂pY −ω∂ωY}/∂pY. (11.23)

It is interesting to see the form taken by the group slowness for the high
frequency approximation (11.17) for a smooth monotonic increase in wavespeed.
We recall the ray theory results that the rangeXβ(p) for slownessp is −∂τβ/∂p

and the travel timeTβ(p) = τβ(p) + pXβ(p). For (11.17),

ω∂ωY ∼ iωτβeiωτβ(p)−iπ/2, (11.24)

∂pY ∼ iω(∂τβ/∂p)e
iωτβ(p)−iπ/2, (11.25)

and so the group slownessg is asymptotically

g ∼ {iωτβ(p) + iωpXβ(p)}/iωXβ(p) = Tβ(p)/Xβ(p), (11.26)

which is just the apparent slowness for anS body wave. We will explore this
relation between modes and body waves further in Section 11.7.
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11.3 P-SV wave dispersion: Rayleigh waves

For theP-SVwave system the analysis of dispersion is more complicated since we
have to take account of the coupling between the wave types. From (11.1) the roots
of the secular function are given by

det(nD0 + nU0R
0L
D ) = 0 (11.27)

In terms of the components RPPD , RPSD etc. ofR0LD (ω,p) we have

[υεα0(1+ RPPD ) − 2ipqβ0εβ0R
SP
D ][υεβ0(1+ RSSD ) − 2ipqα0εα0R

PS
D ]

−[2ipqα0εα0(1− RPPD ) + υεβ0R
SP
D ][2ipqβ0εβ0(1− RSSD ) + υεα0R

PS
D ] = 0.

(11.28)

where, as in (5.82), we have set

υ = (2p2 − β−2
0 ) (11.29)

When we have a uniform half space beneath the surface,R0LD vanishes and the
dispersion relation (11.28) reduces to the Rayleigh function (11.2). For a stratified
medium R0LD will no longer be zero and (11.28) shows the way in which the
departures from uniformity affect the dispersion behaviour.

In general we will have to find the roots of (11.28) numerically by searching for
the combinations of frequencyω and slownessp for which the left hand side of
(11.28) is less than some preassigned threshold.

The nature of the dispersion behaviour varies with slowness as the character
of the seismic wavefield changes. We will suppose that the minimumP and S
wavespeeds occur at the surface and then the different regimes are controlled by
the slownessesα−1

0 , β−1
0 . For a perfectly elastic medium we can illuminate the

physical nature of the dispersion relations by making use of the unitarity properties
derived in the appendix to Chapter 5.

11.3.1 P and S waves evanescent

When the slownessp is greater thanβ−1
0 both P and S waves are evanescent

throughout the stratification. For perfectly elastic media all the reflection
coefficients are real and less than unity. At moderate frequencies theP andSwave
components will decay with depth but the rate of decay is much more forP waves;
with the result that only RSSD has significant size and RPPD , RPSD are negligible in
comparison.

To this approximation (11.28) reduces to

(2p2 − β−2
0 )2(1+ RSSD ) − 4p2|qα0||qβ0|(1− RSSD ) = 0, (11.30)

where RSSD is small. There is only one root for this dispersion relation and as
the frequency increases RSSD tends to zero and so (11.30) tends to the Rayleigh
function (11.2) for a uniform half space with the surface propertiesα0, β0. At high
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11.3 P-SV wave dispersion: Rayleigh waves

frequencies the slowness will be close topR0 and so we can recognise (11.25) as
the dispersion relation forfundamentalmode Rayleigh waves.

At low frequencies RPPD , RPSD will no longer be negligible and RSSD will be close to
unity and so the fundamental Rayleigh wave slowness will depart significantly from
pR0 (figure 11.3). The modal eigenfunction at low frequency penetrates deeply into
the half space and so the dispersive waves are influenced by the greater wavespeeds
at depth and therefore the Rayleigh waveslowness decreases with frequency.

11.3.2 S propagating, P evanescent

For slownesses such thatα−1
0 < p < β−1

0 , P waves are still evanescent throughout
the half space butS waves have travelling wave character at the surface and a
turning point abovezL. Once again at high frequencies the reflection coefficients
RPPD and RPSD will be very small compared with RSSD .

Since we are now some way from the surface Rayleigh slownesspR0, we use the
secular function (11.5) in terms of the reflection matrices which may be written as

1− RSSF (RPPD + RSSD ) − 2RPSF RPSD + (RPPD RSSD − (RPSD )2) = 0. (11.31)

We have used the symmetry of the reflection matrices (5.75), (5.82) and RPP
F =

RSSF , detRF = 1 in constructing this form. At high frequencies we can neglect the
RPSD , RPPD terms and (11.31) reduces to

RSSD = (RSSF )−1, (11.32)

which is very similar to the Love wave equation (11.7).
However, at low frequencies theP wave still influences the character of the

dispersion and we may investigate this behaviour for a perfectly elastic half space.
At z = 0 we have propagatingS waves and evanescentP, with both wave types
evanescent atzL; from appendix 5(d) the unitarity relations require

|RSSD | = 1, detR0LD = RSSD (RPPD )∗,

|RPSD |2 = 2 Im (RPPD ), arg RPSD = 1
4π+ 1

2 arg RSSD .
(11.33)

For the surface reflections

|RSSF | = 1, arg RPSD = 1
4π+ 1

2 arg RSSF (11.34)

With these expressions for the reflection coefficients, we may rewrite (11.31) as

RSSD = (1− 2RPSF RPSD + RSSF RPPD )/[RSSF + (RPPD )∗]. (11.35)

As the frequency increases RPPD and RPSD diminish rapidly. This can be seen from
figure 11.2 which displays the modulus of the coefficient RPP

D (p,ω) for the mantle
modelT7. The onset ofP wave evanescence at a slowness 0.76 s/km is marked by a
very rapid decrease in the size of thePP coefficient. Only at the lowest frequencies
displayed (∼0.02 Hz) is there any significant reflection in the evanescent region and
from (11.33) RPSD will also be small.
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Figure 11.2. The amplitude of thePP reflection coefficient for the upper mantle modelT7
as a function of frequency and slowness.

Since both RSSD and RSSF are unimodular, we set

RSSD = exp iψ, RSSF = exp iψ0, (11.36)

and also extract the phase dependence of RPP
D as

RPPD = |RPPD | exp iφ. (11.37)

The phase of the RPSD , RPSF coefficients are determined by the unitarity properties
and the dispersion relation (11.31), for a perfectly elastic medium, is equivalent to

sin 12(ψ+ψ0) + |RPPD | sin 12(φ+ψ0 −ψ) = |RPSD ||RPSF |, (11.38)

where from (11.33)

|RPSD |2 = 2|RPPD | sinφ. (11.39)

As the frequency increases,|RPPD | tends to zero and so we are left with a relation
between the phase of RSSD and that of the free surface,

ψ(ω,p) ∼ 2nπ+ψ0(p). (11.40)

Comparison with (11.14) shows that there is just a slowness dependent phase
shift of ψ0(p) from the Love wave result. The dispersion curves for Love and
Rayleigh waves are very similar at high frequencies (cf. figures 11.3, 11.4) and
the character of the higher Rayleigh modes, in this slowness range dominated by
S wave behaviour, is akin toSV Love modes. The higher modes have a high
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11.3 P-SV wave dispersion: Rayleigh waves

frequency asymptote ofβ−1
0 for phase slowness and only the fundamental Rayleigh

mode continues on into the evanescentSwave region.
For a smoothly increasing wavespeed profile the asymptotic form of theSV

reflection has the same form as forSHwaves

RSSD ∼ exp{i(ωτβ(p) − π/2)}, (11.41)

so that to this approximation the frequency of thenth higher Rayleigh mode is to
be found from

ωnτβ(p) ∼ (2n+ 1
2)π+ 1

2 arg RSSF (p). (11.42)

For a piecewise smooth medium an iterative technique similar to that discussed
for Love waves may be employed and a further frequency dependent phase
contributionΨ(ω,p) will be added to the right hand side of (11.42). We can see
how this term arises by examining the temporal-slowness display RSS

D (p, t) for the
SSreflection from the mantle modelT7 in figure 10.7. The approximation (11.41)
follows the main refracted arrival in the upper mantle and ignores any reflection
from the Moho or the upper mantle discontinuities which are prominent features of
the behaviour. When we consider the phase response the most significant effect will
arise from the relatively large Moho reflection as in theSH wave study of Kennett
& Nolet (1979).

11.3.3 Propagating P and S waves

For slowness in the rangeβ−1
L < p < α−1

0 , bothPandSwaves have travelling wave
character at the surface and turning points within the stratification above the level
zL. This means thatP waves play a significant role in determining the dispersion
andP andSeffects are coupled through the relation

1− RSSF (RPPD + RSSD ) − 2RPSF RPSD + (RPPD RSSD − (RPSD )2) = 0. (11.43)

When we have a perfectly elastic medium we may once again make use of the
unitarity relations in Appendix 5(c). The reflection matrix is now unitary and

|RPPD |2 + |RSPD |2 = |RSSD |2 + |RPSD |2 = 1,

arg detR0LD = φ+ψ, arg RPSD = 1
2π+ 1

2(φ+ψ),
(11.44)

where

φ = arg RPPD , ψ = arg RSSD . (11.45)

The symmetry ofR0LD (5.60) requires RPSD = RSPD and so

|RPPD (p,ω)| = |RSSD (p,ω)|. (11.46)

This is a very interesting result since the turning points ofP andS waves lie at
very different levels. For example a slowness of 0.16 s/km corresponds to a crustal
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turning point forP waves and a turning level at about 600 km in the upper mantle
for S waves. Although the amplitudes are the same for thePP andSS elements, the
phase behaviour will be very different, and it will be very much greater thanφ.

In this slowness interval the free-surface reflection coefficient RSS
F is real and

negative and RPSF has phase3π/2. In terms of the phasesφ, ψ of the reflection
coefficients we can recast the dispersion equation into the form

cos12(φ+ψ) + |RSSF ||RSSD | cos12(φ−ψ) = |RPSF ||RPSD |, (11.47)

which displays explicitly the coupling ofP andS waves at the surface and in the
half space. Equation (11.47) reduces in the case of a single uniform layer over a
half space to the equation derived by Tolstoy & Usdin (1953) using a constructive
interference argument.

For slownessp a little less thanα−1
0 , RSSF can be quite small and then (11.47)

takes on the character of a dispersion equation forPS propagation. OneP leg and
oneS leg coupled by a free-surface reflection is represented by RPP

D RPSF RSSD RPSF
with phase−(φ + ψ). RPSD will in general be small and so the dominant term in
(11.47) will be cos12(φ + ψ) and the other terms may be regarded as a frequency
dependent perturbation. For these slowness values,φ will be very much smaller
thanψ and so thePS behaviour is mostly controlled by RSSD and we get a smooth
continuation of the dispersion curves from the previous region (p > α−1

0 ).
However, the presence of the propagatingP waves superimposes a modulation

of the spacing of the dispersion waves. Sinceφ is small compared toψ we have in
(11.47) a sinusoidal term with superimposed a sinusoid of slightly shorter period
and smaller amplitude. The average spacing of the dispersion curves in frequency
will depend onφ + ψ but periodically the curves for different overtone branches
will pinch together as we have two closely spaced roots of (11.47). This periodicity
is controlled byφ(arg RPPD ) and so we appear to get ‘ghost’ dispersion branches
controlled by the near-surfaceP wave distribution, visible only because of a change
in the spacing of theSwave dominated true dispersion curves. Such effects are seen
at small slownesses in figure 11.3.

For a smoothly varying medium we have asymptotic representations of the
reflection coefficients at high frequency

RPPD ∼ eiωτα(p)−iπ/2, RSSD ∼ eiωτβ(p)−iπ/2, (11.48)

where

τα(p) =

∫Zα(p)

0
dz qα(z), τβ(p) =

∫Zβ(p)

0
dz qβ(z), (11.49)

andZα,Zβ are the turning points forP andSwaves. To this approximation RPSD ∼ 0

and coupling betweenP andSonly occurs at the free surface. On using (11.48) the
dispersion relation (11.47) becomes

sin 12ω[τα(p) + τβ(p)] − RSSF cos12ω[τα(p) − τβ(p)] = 0, (11.50)
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which was derived by a rather different approach by Kennett & Woodhouse (1978).
When there is noP andScoupling in the half space, Kennett & Woodhouse show
that the dispersion relation may be separated intoP andSparts coupled through the
surface eccentricity of the mode. In terms of

Tα(p,ω) = i(1− RPPD )/(1+ RPPD ),

Tβ(p,ω) = i(1− RSSD )/(1+ RSSD ),
(11.51)

the dispersion relation may be expressed as

Tα(p,ω)Tβ(p,ω) = (2p2 − β−2
0 )2/4p2qα0qβ0, (11.52)

when RPSD = 0. If we introduce the displacement elements for a mode, verticalU

and horizontalV , then (11.52) separates to

Tα(p,ω) = −(2p2 − β−2
0 )U(p,ω)/2pqαV(p,ω),

Tβ(p,ω) = −(2p2 − β−2
0 )V(p,ω)/2pqβU(p,ω).

(11.53)

AsymptoticallyTα, Tβ reduce to a rather simple form

Tα ∼ tan(ωτα(p) − π/4),

Tβ ∼ tan(ωτβ(p) − π/4),
(11.54)

and then (11.53) provides a means of extracting bothP andSwave information if
the ratioU/V can be estimated.

For models with discontinuities in properties, RPSD will depart from zero, but at
moderate frequencies (0.02 Hz) the wavelengths are sufficiently long that the details
of crustal structure are unimportant and then (11.53) may be used as a reasonable
approximation (Kennett & Woodhouse, 1978). At higher frequencies the simplicity
of the preceding results will be lost, and in general the dispersion will have to be
determined numerically.

11.4 Dispersion curves

In the previous sections we have attempted to illuminate the physical character of
the modal dispersion. We now turn our attention to the behaviour of the different
branches of the dispersion curves which is one of the major factors influencing
seismograms created by modal summation.

11.4.1 Dispersion behaviour of an upper mantle model

The behaviour of the Rayleigh and Love mode dispersion may be well illustrated
by the dispersion curves for the flattened upper mantle modelT7 shown in figures
11.3 and 11.4 for frequencies from 0.01 to 1.0 Hz. The model itself is presented on
the same slowness scale in figure 11.5.

The boundaries between the various dispersion domains have been superimposed
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on figure 11.3 and the slowness values corresponding to significant discontinuities
are indicated on both figures 11.3 and 11.4. For the largest slownesses we have,
as expected, only the fundamental Rayleigh mode; and for frequencies greater than
0.5 Hz the slowness is barely distinguishable frompR0. The limiting slowness for
all higher modes isβ−1

0 and the first Rayleigh mode and fundamental Love mode
are seen to be approaching this asymptote. For slownesses greater than 0.222 s/km
S waves are reflected in the crust or at the Moho and theτβ(p) values are small.
The frequency spacing of these crustal modes is therefore large (cf. 11.36, 11.12).
For smaller slownessesτβ increases rapidly and the frequency spacing is much
tighter.

The presence of a velocity inversion at about 70 km depth in modelT7 leads to
complications in the dispersion curves. For the band of slownesses marked ‘LVZ’
in figures 11.3, 11.4S waves have travelling character both in the crust and in
the velocity inversion. This gives rise to two classes of dispersion behaviour: (i)
significant slowness dispersion with frequency associated with crustal propagation
and (ii) almost constant slowness with frequency for waves channelled in the
velocity inversion. Any individual Rayleigh or Love mode alternately partakes
of these two characters. At osculation points the dispersion curves for two modes
almost touch and the ensemble of modes build up a pattern of intersecting crustal
and channel dispersion branches. At low frequencies the influence of theP waves
on the Rayleigh mode dispersion gives a less close approach between the first few
mode branches.

At lower slownesses whereS waves penetrate more deeply, and have turning
points near the upper mantle discontinuities, crustal reverberation still leads to a
set of distinct kinks in the dispersion curves which line up to give ‘ghosts’ of the
crustal modes. These regular perturbations in the pattern of eigenfrequencies are
often referred to assolotoneeffects (see, e.g., Kennett & Nolet, 1979). At high
frequencies the presence of the 400 km discontinuity further disturbs the regularity
of the spacing in the dispersion curves.

OnceP waves become propagating, the dispersion for Rayleigh modes becomes
even more complex and at high frequencies ‘ghosts’ ofP wave reverberation effects
asymptoting toα−1

0 appear, superimposed on the rest of the pattern.

The calculations in figures 11.3 and 11.4 were made using a flattened earth
model. The most significant departures from the results for a spherically stratified
model will be for the fundamental mode at the lowest frequencies, where the
density distribution has a definite influence on the dispersion. As we have seen
in Sections 11.2 and 11.3 the high frequency behaviour is controlled by the
delay timesτ in the model and these are preserved under the earth-flattening
transformation (1.27).
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Figure 11.3. Rayleigh wave dispersion curves for the upper mantle modelT7. Locations
of discontinuities in the model are indicated.

11.4.2 Surface waves and channel waves

In both figures 11.3 and 11.4 we have seen how the presence of a velocity inversion
leads to complex dispersion curves with interaction of waves propagating mainly in
the crust or mainly in the low velocity channel. This behaviour is best understood
by reference to the modal structure for a crust or velocity inversion alone.

If we split the stratification at a levelzS we see from (7.41), (7.46) that the
singularities are determined by

∆ = det[I − R0SD RF] det[I − RSLD RfSU ] = 0, (11.55)

and as noted in Section 11.1 the second term is normally most important. When,
however, the wavespeed profile forP andSwaves is monotonically increasing with
depth we can choosezS to lie deep in the evanescent region. In this case|RSLD | will
be very small and so (11.55) is approximately

det[I − R0SD RF] ≈ 0, (11.56)
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Figure 11.4. Love wave dispersion curves for the upper mantle modelT7.

Figure 11.5. Wave slownesses for modelT7 as a function of depth.
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11.4 Dispersion curves

Figure 11.6. Decomposition of the surface wave secular function in the presence of a veloc-
ity inversion. For a slowness corresponding to the short dashed lineSwaves are evanescent
in the shaded regions, and so the crustal waveguide and the deeper velocity inversion are
partially decoupled.

which is the secular function for the truncated structure down tozS terminated by
a uniform half space inz > zS with continuity of properties atzS. This result
enables one to neglect the reflectivity of the deeply evanescent region and so as
frequency increases allows a progressive simplification of the wavespeed model
used for the calculation of dispersion curves. Such ‘structure reduction’ has been
used by Schwab & Knopoff (1972), Kerry (1981).

The dispersion relation for the crust alone is given by, e.g., det[I − RFR
0C
D ] = 0

wherezC is a level just below the crust-mantle interface. For a wavespeed structure
which is bounded by uniform half spaces inz < zA andz > zB with a wavespeed
inversion inzA < z < zB we have the possibility of localizedchannelwaves for
slownesses such that bothP andSwaves are evanescent inz < zA, z < zB. From
the discussion in Section 7.2.1 we can recognise the secular function for this case
as

det(I − RKAU RKBD ) = 0, (11.57)

for some levelzK in (zA, zB). When this condition is satisfied the reflection and
transmission coefficients across the region (zA, zB) are singular.

For a stratified half space with low wavespeed crust and a velocity inversion at
greater depth we have a rather complex behaviour. For slownesses such that the
turning level forSwaves lies well below the low velocity channel, a choice ofzS
in the evanescent regime near the base of the stratification will give (7.79) once
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again. When, however, the slownessp is such that there are propagatingSwaves
within the inversion but evanescent waves in regions above and below (figure 11.6)
we have to be more careful.

We take a levelzC lying in the evanescentSwave region above the low velocity
zone and then the two reflection contributions to (11.55) from abovezS can be
expressed as

R0SD = R0CD + TCSU RCSD [I − R0CU RCSD ]−1TCSD ,

RfSU = RCSU + TCSD RfCU [I − RCSD RfCU ]−1TCSU .
(11.58)

In each of these expressions we have both upward and downward transmission
through the evanescent region contained in the matricesTCSD , TCSU . At moderate
frequencies these transmission terms will be quite small and diminish rapidly as
the frequency increases. We thus have high frequency approximations

R0SD ≈ R0CD , RfSU ≈ RCSU , (11.59)

and so in this limit (11.55) becomes

∆ ≈ det(I − R0CD RF) det(I − RCSU RSLD ), (11.60)

which is the product of the secular determinant forsurfacewaves on the crustal
structure abovezC,

det(I − R0CD RF) (11.61)

and the secular determinant forchannelwaves on the structure belowzC

det(I − RCSU RSLD ). (11.62)

At intermediate frequencies there will be coupling between the channel and the near
surface through the transmission matricesTCSD , TCSU . A given surface wave mode
will in certain frequency ranges be mainly confined to the near-surface region and
then det(I − R0CD RF) ≈ 0; in other intervals a mode will be mostly a channel wave
when det(I − RCSU RSLD ) ≈ 0 (Frantsuzova, Levshin & Shkadinskaya, 1972; Panza,
Schwab & Knopoff, 1972).

Propagation in the channel is most efficient for slownesses close toβ−1
m where

βm is the minimum wavespeed in the inversion. As a result there is only very slight
variation in the slowness of a channel wave with frequency.

A very good example of this effect is shown in figure 11.7 which shows
the horizontal and vertical displacement elements (V,U) of the displacement
eigenfunction for the sixth higher Rayleigh mode in the frequency range 0.35 to
0.50 Hz. At the lower frequency, propagation which is principally in the crust still
shows some amplitude in the low velocity channel, but at the highest frequency
virtually all the energy is confined to the crust.

A detailed study of the switch between crustal and channel behaviour has been
made by Kerry (1981) who shows that in the neighbourhood of an osculation point
between two dispersion branches the dispersion curves have hyperbolic form. The
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Figure 11.7. Rayleigh wave eigenfunctions for the sixth higher mode at equal frequency
intervals from 0.35 to 0.50 Hz.

change from one class of propagation to the other takes place over a frequency
interval which is of the same order of magnitude as the decay in two-way passage
across the evanescent region above the inversion and so is very sharp athigh fre-
quencies.

11.4.3 Computation of surface wave dispersion

The reflection matrix representations of the modal secular equation which we
have discussed in this chapter can be used as the basis of an efficient scheme for
calculating modal dispersion (Kerry, 1981).

Although most calculations have previously been made with fixed frequency
and variable slowness for a limited number of modes (see, e.g., Schwab &
Knopoff, 1972), there are considerable advantages in fixing slownessp and varying
frequencyω when seeking for roots of the secular equation. The zeroes of the
secular function are approximately evenly spaced in frequencyωwhilst the spacing
in slownessp is rather irregular. Also for a piecewise smooth model or a model
composed of uniform layers we can make use of the frequency independence of
the interfacial reflection and transmission coefficients to reduce the computational
effort of calculating the reflection matrices required for the secular function. This
approach is well suited to finding the dispersion curves for a large number of higher
modes.

The downward reflection matrixR0LD and detT0LD are calculated by recursion
from the base of the stratification. We then evaluate the secular function and
use quadratic interpolation to iteratively refine an estimate of the frequency of the
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root. A suitable termination procedure for the iteration (Kerry, 1981) is when two
estimates of the secular function with opposite sign are less than some threshold
and the smallest eigenvector of (nD0 + nU0R

0L
D ) evaluated at the estimated root is

also less than a preassigned threshold.
This procedure works very well most of the time but, when we are close to a

root of the channel wave function,(I − RCSU RSLD ) becomes nearly singular and it
is very difficult to get accurate numerical evaluation ofR0LD with finite accuracy
arithmetic. To test for this possibility a levelzS in the low velocity zone is chosen
and in a single pass through the structureR0LD , RSLD , detT0LD , detTSLD , detT0SD are
calculated. We construct the quantity

η = det(I − R0SU RSLD ) = detT0SD detTSLD /detT0LD (11.63)

If η is large then we may use the secular function (7.1). If, however,η is small
we may have a channel mode and then we calculate downwards from the surface
to find RfSU and then terminate the iteration by requiring the smallest eigenvalue of
(I − RfSURSLD ) to be less than our threshold.

Once all the roots in a given frequency band are found the slowness is
incremented by a small amount, and the calculation repeated.

The dispersion curves presented in figures 11.3 and 11.4 were calculated by the
method described above for the upper mantle modelT7 (Burdick & Helmberger
1978). For this calculation the structure down to 950 km was represented in
terms of 92 uniform layers. The reflection matrix approach is not restricted to
representations in terms of uniform layers and can be extended to piecewise smooth
models by using the treatment discussed in Chapter 6.

Most calculations forsurface wavedispersion have been made for the
fundamental mode and to a lesser extent for the first five higher modes. For these
widely spaced modes it is probably more efficient to fix the frequency and then
determine the slowness mode by mode, since as can be seen from figures 11.3
and 11.4 at low frequencies a small change in frequency gives a large change in
slowness. The present scheme becomes most effective when many modes are to
be found, particularly when one seeks all modes in a given frequency and slowness
window. Working at fixed slowness the costs of calculating many frequency values
are much reduced.

11.4.4 Variational results

The dispersion results we have presented so far depend on the differential properties
of the stress-displacement field, however we may supplement these with some
important integral results from a variational principle, for each modal solution.

We consider two displacement fieldsw1, w2 which satisfy the boundary
condition atzL for p > β−1

L and so have exponential decay asz → ∞. For SH
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waves we consider the vertical variation of the productW1ωT2 of displacement
and traction:

∂z(W1ωT2) = ω2{(ρβ2)−1T1T2 + ρ(β2p2 − 1)W1W2}, (11.64)

and then integrate over the entire depth interval to give∫∞
0

dz ∂z(W1ωT2) = ωW1T2|z=0, (11.65)

= ω2
∫∞
0

dz {(ρβ2)−1T1T2 + ρ(β2p2 − 1)W1W2}.

A displacement eigenfunctionWe has vanishing traction atz = 0 and also
decays inz > zL, and so if we chooseWe for both fields in (11.66) we have

ω2
∫∞
0

dz ρW2
e = ω2

∫∞
0

dz {(ρβ2)−1T2e + ρβ2p2W2
e },

=

∫∞
0

dz ρβ2{(∂zWe)
2 +ω2p2W2

e }. (11.66)

This identity is valid for a dissipative medium, and may be viewed as a variational
result for theSH eigenfunction. If we require (11.66) to be a stationary functional
ofWe, we obtain the Euler-Lagrange equation (cf. 2.30)

∂z(ρβ
2∂zWe) − ρω2(β2p2 − 1)We = 0, (11.67)

with the boundary conditions

Te(0) = 0, We(z) → 0 as z → ∞; (11.68)

which are just the equations to be satisfied by a modal eigenfunction. For a perfectly
elastic medium we can chooseW1 = We andW2 = W∗

e and then from (11.66)∫∞
0

dz ρω2|We|
2 = ω2

∫∞
0

dz {(ρβ2)−1|Te|
2 + ρβ2p2|We|

2}, (11.69)

and this result shows the equality of kinetic and potential energy in the mode. This
is just Rayleigh’s principle and (11.66) represents the extension of this result to
attenuative media.

For theP-SVwave case we can follow a similar development to the above by
considering∂z(w1ωttt2) and then for a displacement eigenvectorwe we have the
variational result

ω2
∫∞
0

dz ρ[U2e+V
2
e ] = ω2

∫∞
0

dz {ρνp2V2e+(ρα2)−1P2e+(ρβ2)−1S2e},(11.70)

where, as in (2.24),

ν = 4β2(1− β2/α2). (11.71)

The Euler-Lagrange equation here recovers (2.31) for the evolution ofUe, Ve.
Kennett (1974) has shown that the first order equations (2.25), (2.24) which are
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equivalent to (2.30), (2.31) are the sets of Hamilton’s equations associated with
the Lagrangians (11.66), (11.70) in which displacement and stress quantities are
conjugate variables.

The stationary property of the integrals (11.66), (11.70) for small perturbations
in the eigenfunctionwe means that small changes may be made inω and p
or in the elastic parameters and the results obtained from (11.66), (11.70) will
be correct to second order using the original eigenfunctions (Jeffreys, 1961). In
particular we can avoid numerical differentiation in calculating the group slowness
g(= p+ω∂ωp), which describes the evolution of the dispersion curves. From the
variational results we can represent the group slowness as a ratio of two integrals
over the eigenfunctions

g = I/pJ, (11.72)

where, forSHwaves

I =

∫∞
0

dz ρW2
e , J =

∫∞
0

dz ρβ2W2
e ; (11.73)

and forP-SVwaves

I =

∫∞
0

dz ρ[U2e + V2e ] =

∫∞
0

dz ρwT
ewe,

J =

∫∞
0

dz {ρνV2e + (ωp)−1[UeSe − (1− 2β2/α2)VePe]}.

(11.74)

If we are working at fixed slowness and are already close to a root of the
secular equationωk we may use (11.66), (11.70) with the eigenfunction estimate
corresponding to our current value ofω to generate a closer approximation to the
root. A similar procedure holds at fixed frequency to improve estimates of the
phase slownessp.

As we have mentioned we may also obtain good estimates of the perturbation
in the dispersion introduced by small changes in the elastic parameters although
particular care must be taken if discontinuities in the parameters are moved
(Woodhouse, 1976). At fixed frequency we may represent the change in phase
slownessp as, e.g., for Rayleigh waves

δp =

∫∞
0

dz

([
∂p

∂α

]
δα+

[
∂p

∂β

]
δβ+

[
∂p

∂ρ

]
δρ

)
. (11.75)

The quantities[∂p/∂α] etc. provide a measure of the sensitivity of the mode
to the elastic parameters. These ‘partial derivatives’ are used in the linearised
inversion of dispersion data to obtain a structural model by iterative updating of
a trial model until the observed and computed dispersion agree to within the error
of measurement.

If we consider small perturbations to the elastic wavespeeds introduced by
including small loss factorsQ−1

α , Q−1
β in a perfectly elastic model we are able

to estimate the change in phase slowness at fixed frequency as in (11.60). The
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11.5 Theoretical seismograms by modal summation

perturbationδp will have both real and imaginary parts. The imaginary part will
specify the overall loss factor for the mode and the real part will contain the net
effect of the wavespeed dispersion forP andS waves associated with attenuation
(cf. 1.13).

11.5 Theoretical seismograms by modal summation

In Chapter 7 we have shown how the poles in the half space response contribute to
the displacement field in slightly different ways depending on whether we perform
the frequency or slowness integrals first when performing the inversion of the
transforms. With an inner slowness integral the modal contribution to the surface
displacement at a ranger for P-SVwaves may be represented as

uP(r, φ, 0, t) = 1
2

∫∞
−∞ dωe−iωtiω2

∑
m

×

N(ω)∑
j=0

pj Res
ω,p=pj

[wT
0 (p,m,ω)]TTT(1)

m (ωpjr)

 , (11.76)

where we have used the spectral response in (7.63), andN(ω) is the number of
modes of frequencyω. The azimuthal dependence ofw0 arises from the source
which we have specified via a discontinuity in displacement and traction across the
source planez = zS

S(p,m,ω, zS) = [SmW ,S
m
T ]T (11.77)

From (7.32) we can represent the half space response in the transform domain as

w0(p,m,ω) = −iW1S(0)[I −RSLD RfSU ]−1{T T2S(zS)S
m
W−WT

2S(zS)S
m
T },(11.78)

where the displacement matrixW1S is chosen to give vanishing traction at
the free-surface andWWW2S satisfies the radiation condition of only downward
propagating or decaying evanescent waves inz > zL. The half space reverberation
operator arises from linking the solutions above and below the source via the source
jumpS, and is related to the invariant generated from the matricesW1S, W2S by

<W1S,W2S> = i[I − RSLD RfSU ] (11.79)

We calculate the residue ofwT
0 at the polep = pj, at fixed frequencyω, in terms

of the displacement eigenfunctionwe following the treatment discussed in the
Appendix to this chapter. The residue is

Res
ω,p=pj

[wT
0 (p,m,ω)] =

gj

2ωIj
{tttTej(zS)S

m
Wj − wT

ej(zS)S
m
Tj }w

T
ej(0), (11.80)

in terms of the group slownessgj for the mode and the ‘kinetic energy’ integralIj
introduced in the previous section.
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The residue contribution to the surface displacement (11.76) is therefore

uP(r, φ, 0, t) =

∫∞
−∞ dωe−iωtiω

N(ω)∑
j=0

1
4pjgjI

−1
j

∑
m

(11.81)

{tttTej(zS)S
m
Wj − wT

ej(zS)S
m
Tj }w

T
ej(0)TTT

(1)
m (ωpjr),

which is equivalent to the form derived by Takeuchi & Saito (1972) by a rather
different approach. TheSHwave residue contribution has a comparable form

uH(r, φ, 0, t) =

∫∞
−∞ dωe−iωtiω

M(ω)∑
l=0

1
4plglI

−1
l

∑
m

(11.82)

{TTel(zS)S
m
Wl −W

T
el(zS)S

m
Tl}Wel

T (0)T(1)
m (ωplr),

in terms of the scalar eigenfunctionWel. Frequently we wish to evaluate the modal
contribution of large ranges and then it is usually adequate to use the asymptotic
approximations (7.79) forTTT(1)

m (ωpr), T(1)
m (ωpr). To this approximation theSH

wave contribution is purely transverse, and theP-SVwaves appear on the vertical
and radial components.

The expressions (11.82), (11.83) are particularly useful since we are able to relate
the excitation of the various angular orders to force or moment tensor elements
describing the source throughSmWj (4.63) andSmTj (4.64). We also have a clear
separation of the receiver contribution fromwej(0) and the source effects

{tttTej(zS)S
m
Wj − wT

ej(zS)S
m
Tj }. (11.83)

Since the pole positionpj(ω) is independent of the source depth, the excitation of
a particular mode as a function of the depth of the source is controlled by the size
of the term in braces. In figure 11.8 we show the displacement eigenfunctions for
the first five Rayleigh modes at a frequency of 0.06 Hz as a function of depth. As
the mode number increases we see the increasing penetration of the eigenfunctions
into the half space. Since the source excitation depends on these eigenfunction
shapes, as the source depth increases higher order modes will be preferentially
excited. The traction eigenfunctiontttej vanishes at the surface and especially for
low frequencies (< 0.02 Hz) increases only slowly away from the surface, as a
result the contribution oftttej(zS)S

m
Wj is very much reduced for shallow sources.

This means that for near-surface sources the moment tensor componentsMxz,
Myz play only a minor role in the excitation and so are difficult to recover if one
attempts to invert for the source mechanism from distant observations. For a purely
strike-slip fault, the normals to both the fault plane and the auxiliary plane line
in a horizontal plane and so the only non-zero moment tensor elements areMxx,
Mxy,Myy with the result thatSmWj vanishes, and so we have the simpler excitation
termwT

ej(zS)S
m
Tj . Since the eigenfunctions are oscillatory with depth down to the

turning level of anS wave with slownesspj the actual mode excitation will vary
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11.5 Theoretical seismograms by modal summation

Figure 11.8. Eigenfunctions as a function of depth for the fundamental and first four higher
mode Rayleigh waves for frequency 0.06 Hz. The vertical component is shown by solid
lines and the horizontal component by dashed lines.

significantly with depth for a constant source mechanism and there can be near
nulls in the excitation at certain depths.

The relative excitation of the modes depends on the surface expression of the
modes through the receiver termwej(0)I

−1
j ; the modes are effectively normalized

by their energy content. Modes which are confined to the crustal region or which
are sufficiently low frequency to penetrate through any wavespeed inversion will
have significant amplitude at the surface. At low frequencies even modes which
are mostly trapped in a wavespeed inversion still have some surface amplitude, but
as the frequency increases the modes are almost entirely confined to the channel
(figure 11.7).

For any given ranger and azimuthal orderm, we are now faced with the
evaluation of the integrals (11.66), (11.70) over frequency. This is best performed
numerically. If a very large number of modes are to be summed an effective
approach is to use a fast Fourier transform with a large number of time points
to encompass the length of the wave train. With a large number of time points the
spacing in frequency is very fine and it is necessary to interpolate the behaviour
of the dispersion curve branches to generate values at the required frequencies.
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This fine sampling in frequency ensures an adequate representation of the rapidly
oscillating Hankel functionsH(1)

m (ωpjr) at large ranges. For each frequency point
the contribution from all the modes are summed and then the transform is inverted.

If the frequency band and the ranges under consideration are such that
ωminβ

−1
L rmin is large (> 6) we can use the asymptotic expressions forTTT(1)

m , T(1)
m

and then the range dependence of the integral is the same for all angular orders. If
all components of the moment tensor have the same time dependence we have a
single frequency integral modulated by an azimuthally varying factor.

The modal contributions to the seismograms are linear in the components of
the source moment tensor. Thus, as for body waves, it is possible to make a
linear inversion for the source mechanism using distant observations, if a good
reference model of the wavespeed distribution with depth can be found for the
paths in question (Mendiguren, 1977).

11.5.1 Mode branch contributions

The character of the contribution to the total seismogram from an individual mode
branch will depend on the nature of the particular dispersion. The contribution to
the vertical component in the asymptotic regime for largeωpr will for example be
of the form

uzj(r, φ, 0, t) =

∫∞
−∞ dω |F(pj(ω),ω)|e−iωt+iωpj(ω)r+iψj(ω), (11.84)

wherepj depends on frequency. The ‘initial phase’ψj(ω) arises from the effect
of depth of source etc. in the model and also from the instrument response on
recording.

We may get a qualitative picture of the modal behaviour by examining various
approximations to the integral in (11.84). Away from an extremum in group
slownessgj we may use the stationary phase technique. The saddle point in
frequencyωs depends on ranger and timet through

∂ω{ψj(ωs) +ωspj(ωs)r−ωst} = 0, (11.85)

and the stationary phase approximation gives

uzj(r, φ, 0, t) =
(2π)1/2|F(pj,ωs)|

|∂ωωψj + r∂ωgj|1/2

×exp{iωs(pjr− t) + iψj(ωs)± iπ/4}, (11.86)

with ± corresponding to

∂ωωψj + r∂ωgj
<
>0. (11.87)

The time of arrival of this mode branch contribution will vary with frequency and
from (11.85)

t = (pj +ωs∂ωpj)r+ ∂ωψj(ωs) (11.88)
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11.5 Theoretical seismograms by modal summation

so that propagation is very nearly at the group slowness

gj = pj +ωs∂ωpj (11.89)

for the frequencyωs. Near extrema in the group slowness the above treatment
is inadequate and an improved approximation may be found in terms of Airy
functions, following analysis due to Pekeris (1948):

uzj(r, φ, 0, t) =
|F(pj,ωa)|

Q1/3
Ai

[
Psgn(Q)

|Q|1/3

]
×exp{iωa(pjr− t) + iψj(ωa)}, (11.90)

where the frequencyωa is determined by the condition

∂ωωψj(ωa) + rgj(ωa) − t = 0 (11.91)

and

P = ∂ωψj(ωa) + rgj(ωa) − t

Q = 1
2 {∂ωωωψj(ωa) + r∂ωωgj(ωa)}.

(11.92)

In the case of a maximum in group slowness we have both higher and lower
frequency arrivals appearing before the energy with the maximum slowness (the
‘Airy’ phase). A good example is provided by the fundamental Rayleigh mode and
the Airy phase is often designatedRg, figure 11.9.

The relatively small dispersion in frequencies in the neighbourhood of an
extremum in group slowness means that an Airy phase will often carry significant
amplitude. The actual amplitude seen on a seismogram will depend on the
instrument response as a function of frequency and also on the excitation of
the mode. For the fundamental Rayleigh mode the maximum group slowness
occurs at a frequency of about 0.06 Hz and this is well excited by relatively
shallow earthquakes, e.g., at the base of the crust. Also conventional long-period
seismometers have their peak response near to 0.05 Hz and so theRgphase is often
an important component of the surface wavetrain (figure 11.9).

Airy phases associated with shallow propagation can also be significant and
a good example for the fundamental Rayleigh mode is seen on the short range
seismograms in figure 7.5a for a crustal source at 2.5 km depth.

When we wish to synthesise the long-period contributions to the surface
wavetrain we need only five or six mode branches to give a good representation.
In this case it is most effective to calculate the contribution a mode branch at a
time and so we are faced with the numerical evaluation of integrals such as (11.67).
Aki (1960) suggested using a variable spacing in frequency and his work has been
extended by Calcagnile et al. (1976). Between frequency pointsωl andωl+1 the
amplitude spectrum|F(pj,ω)| is represented as a quadratic inω

|F(pj,ω)| ≈ f0 + f1(ω− ω̄l) + f2(ω− ω̄l)
2, (11.93)
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Figure 11.9. Observed and theoretical seismograms for Airy phases: a)Rgand long-period
Rayleigh wavesLR at 3000 km; b) modal sum to 0.25 Hz at 3000 km, higher modes ride
on the long-period fundamental Rayleigh mode.

whereω̄l = 1
2(ωl +ωl+1); and the phase as a linear function ofω

ωpj(ω)r+ψj(ω) ≈ ωltpl + (ω− ω̄l)tgl, (11.94)

where the mean phase delay

tpl = ω̄lpj(ω̄l)r+ψj(ω̄l), (11.95)

and the mean group delay

tgl = gj(ω̄l) + ∂ωψj(ω̄l). (11.96)

260



11.5 Theoretical seismograms by modal summation

With the substitutions (11.90), (11.93) the integral (11.84) can be evaluated
analytically over the panel(ωl,ωl+1) to give∫ωl+1

ωl

dω |F(pj,ω)| exp{−iωt+ iωpj(ω)r+ iψj(ω)}

=

[(
|F(pj,ω)|

i(t− tgl)
−
∂ω|F(pj,ω)|

(t− tgL)2
−

2f2

i(t− tgL)3

)
(11.97)

×exp{−iω(t− tpl) + i(ω− ω̄l)tgl}

]ωl+1

ωl

and the entire integral (11.84) may be obtained by summing the result from
successive panels (a generalized Filon rule). The frequency pointsωl should
be chosen to minimise the error which will be principally due to the phase
representation (11.93). Calcagnile et al. (1976) suggest that the frequency points
be chosen so that

r(gl+1 − gl) <
1
2πω̄

−1
l (11.98)

for reasonable accuracy (∼ 0.5 per cent). As the period increases the accuracy of
the asymptotic representation of the Hankel functions is reduced. A comparable
development can be made with a quadratic approximation for the amplitude and
a linear approximation for the initial phase and the explicit form for the Hankel
function, but the simplicity of (11.98) is lost.

11.5.2 Examples of modal synthesis

As we can see from the results in the previous section the contribution of any
particular mode to surface seismograms is heavily dependent on the variation of
group slownessgj(ω) as a function of frequency. When we have many modes
present the character of the final seismogram depends on the relative excitation of
the modes and the group slowness character shown by individual modes.

In figure 11.10 we illustrate the group slowness behaviour for all Rayleigh modes
for modelT7 in figure 11.3 with frequency less than 0.33 Hz. This pattern derived
from some 80 mode branches shows a number of coherent features which are
associated with recognisable traits in the seismogram. With the exception of the
behaviour for the fundamental branch the pattern for Love waves is very similar.

The prominent maximum in group slowness for the fundamental Rayleigh mode
giving rise to theRgphase has already been discussed. The group slowness extrema
for the first few higher mode branches at frequencies above 0.10 Hz lie in the range
0.28–0.32 s/km and lead to a characteristic ‘high frequency’ trainLg. At low
frequencies (< 0.10 Hz) these same modes have a further set of group slowness
extrema from 0.21-0.23 s/km; the corresponding Airy phases are well excited by
intermediate depth earthquakes (∼ 120 km deep) to give theSaphase.

The existence of these two sets of group extrema can be understood if we refer
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Figure 11.10. Group slowness dispersion for Rayleigh waves on modelT7 as a function of
frequency. The group slowness extrema associated with phases illustrated in figures 11.9,
11.11-11.13 are indicated.

to the discussion of Section 9.2 in which we split the stratification at a levelzJ.
When we takezJ at 200 km, the contributionshw0 (9.34) includes the crustal and
channel structure alone, and the dispersion curves for this portion will reproduce the
Lg maxima. The remaining part of the displacement responsedw0 (9.38) contains
the operator[I − RJLDRfJU]−1 which will give the low frequency ‘mantle branches’
whose dispersion is dictated by the structure in the upper mantle. It is these latter
branches which display the group extrema associated withSa.

The tangled skein of group slowness curves near 0.20 s/km for all frequencies
corresponds toS waves with turning points well into the upper mantle, which we
would alternatively think of as ‘body wave’ phases. The complex behaviour at
intermediate slownesses (0.22–0.26 s/km) with rapid changes in group slowness
for an individual mode, arises from the presence of the wavespeed inversion in
modelT7 and the switch in properties from channel to crustal guiding (see figure
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11.5 Theoretical seismograms by modal summation

Figure 11.11. Theoretical seismograms for a 40 km deep vertical dip slip source. The
vertical component is shown and is synthesised from all the modes illustrated in figure
11.3: there is a prominentLg group and a clear separation of the fundamental Rayleigh
modeR0, at short timesSbody waves are seen.

11.7). For a surface receiver, channel modes make very little contribution to the
response except at low frequencies.

The group slowness behaviour in figure 11.10 shows very clearly the difficulties
associated with trying to estimate group slowness for many mode branches from
observed records. At moderate frequencies (> 0.15 Hz) we can have a number of
branches with very similar group slownesses and it is very difficult to disentangle
the behaviour near such cross-overs.

In figure 11.11 we illustrate the result of modal summation for all the mode
branches shown in figure 11.3, with a vertical dip-slip event at a focal depth of 40
km. The wavetrains on these vertical component seismograms are quite complex
but a clear low frequencyRg fundamental mode Rayleigh wave emerges from
the rear of the disturbance. The display in figure 11.11 is plotted at a reduction
slowness of 0.25 s/km, from figure 11.10 we see this group slowness separates out
the ’surface waves’ associated with the first few Rayleigh mode branches from the
rest of the modes. The complex multimode interference in the high frequencyLg
group is clearly seen in figure 11.11. The faster arrivals have a distinct pulse-like
character and can be identified withS wave arrivals which mostly have turning
points in the mantle. At short ranges we see upward radiatedS which at larger
ranges is superseded byS wave energy returned from beneath the source level,
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Figure 11.12. Theoretical seismograms, vertical component by summation of Rayleigh
modes: a) all modes in figure 11.3 with a frequency less than 0.33 Hz; b) the difference
between a) and a calculation with only l5 modes enlarged by a factor of 4.

both directS and, with a small delay, a reflection from the 400 km discontinuity.
For much greater source depths, e.g., 200 km the seismograms for the same source
mechanism show almost no trace of surface wave character out to 1600 km. The
modal summation for this deep source just synthesises theSbody wavetrain.

For shallow sources the split into ‘body wave’ and ‘surface wave’ components
persists as would be expected to greater ranges. In figure 11.12 we show theoretical
seismograms for a focal depth of 10 km for ranges from 1500 to 4500 km. The
upper frequency limit used for this calculation was 0.33 Hz so that we have used
the mode set represented by figure 11.10. The lowest frequency fundamental mode
Rayleigh waves have a group slowness close to 0.16 s/km and superimposed on
this mode can be seen higher modes with shorter period. A distinctLg packet
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11.5 Theoretical seismograms by modal summation

Figure 11.13. Observed and theoretical seismograms for theSa phase and fundamental
Rayleigh modeR0 for the distance range 6500–9500 km: a) WWSSN-LP vertical compo-
nent records for a Kuriles event recorded in Scandinavia; b) Theoretical seismograms with
pass band 0.01–0.10 Hz.

of high frequency energy grades into an Airy phase for the first higher mode (R1)
which is dwarfed byRg. In the body wave field we see the emergence of the surface
reflected phasesSSat the larger ranges (3500–4500 km). These waves are enhanced
in figure 11.12b where we have taken the difference of the seismograms calculated
with the full mode set in figure 11.12a and a comparable set calculated with just
the 15 lowest mode branches. From figure 11.3 we see that the 15 mode set gives
a slowness dependent frequency window and misses nearly all high frequencies
(> 0.10 Hz) for slowness less than 0.2 s/km. The missing portion of the response
corresponds to higher frequencyS body waves, the long period response being
tolerably well represented.

At even longer ranges, for intermediate depth events, the long-period (< 0.10
Hz) character of the modal dispersion is most important and only a limited number
of modes make a significant contribution. In figure 11.13 we show theoretical and
observed vertical component seismograms for ranges from 6500 km to 9500 km
calculated by the superposition of the first 16 mode branches. The theoretical
seismograms have been calculated for a 160 km source in modelT7, derived for
western America. The observations are taken from vertical component WWSSN
(LP) records in Scandinavia for an event in the Kuriles at 120 km depth. Although
the relative excitation of the fundamental Rayleigh mode is different both sets
of traces show the phaseSaarising from the interference of the first few higher
modes with very similar group velocities. This phase, as noted by Brune (1965),
shows varying waveform from station to station since the dominant mode branch
varies with position. This variation can be exploited with an array of stations,

265



Modal Summation

as in figure 11.13, to use the spatial behaviour to separate mode branches. The
traces are combined with appropriate delays to enhance an individual phase
slowness(p), and then the group slowness behaviour as a function of frequency
is determined by sweeping a narrow-band filter through the array sum. Individual
mode contributions can be recognised in plots of the signal strength as a function
of p andg at each frequency (Nolet, 1977) but with a limited array careful work is
needed to avoid contamination from sidebands in the array response.

11.6 Separation of body wave phases

We have seen in figures 11.10–11.13 howS body wave phases may be generated
by modal synthesis, but at high frequencies several hundred mode branches may
need to be summed to give reliable mode shapes. Most of thesurface wavetrain,
with high group slowness, can be described by relatively few mode branches over
the entire frequency band of interest. We would therefore like to find some means
of splitting up the seismic response which conforms to the conventional seismic
terminology and which enables us to relocate the modal summation results to our
discussions of body waves in Chapters 9 and 10.

A convenient starting is provided by the representation (7.66) for the surface
displacementw0 which displays explicitly the effect of free-surface reflections

w0(p,ω) = WF[I − R0LD RF]
−1σσσ (11.99)

with

σσσ = T0SU [I − RSLD R0SU ]−1(RSLD ΣΣΣ
S
D + ΣΣΣSU). (11.100)

We may now make a partial expansion of the surface reflection operator (11.99) to
give

w0(p,ω) = WFσσσ+ WFR
0L
D RFσσσ+ WFR

0L
D RFR

0L
D RF[I − R0LD RF]

−1σσσ. (11.101)

The displacements specified byWFσσσ contain no interactions with the free-surface
elements we would refer to asS (andP if appropriate).WFσσσ includes propagation
directly from the source to the surface and reflection from beneath the source. The
second term in (11.101)WFR

0L
D RFσσσ allows for a single surface reflection and so

theSwave portion of the response includes the phasessS, pSandSS. The remaining
term will include all propagation effects which involve two or more reflections from
the surface and thus the ‘surface waves’.

We can now separate out the first two terms from (11.101) and recover the surface
displacement in space and time using (7.75). The displacement spectrum, forP, S
and their first surface reflections for angular orderm, is given by

ū1(r,m, 0,ω) = ω2
∫∞
0

dppσσσT (I + RFR
0L
D )WT

FTTTm(ωpr). (11.102)

Since the reverberation operator[I −R0LD RF]
−1 does not appear in (11.76), the only
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pole on the top sheet is at the Rayleigh slownesspR0 arising from the amplification
factor WF. There are branch points atα−1

0 , β−1
0 , but the integrand is now well

behaved and amenable to a reflectivity type integration (cf. Section 9.3.1), with a
finite interval inp.

The displacement field corresponding to the remainder in (11.101) is best
expressed in terms of the outgoing harmonicsTTT(1)

m and so we have

ū2(r,m, 0,ω) = 1
2ω|ω|

∫∞
−∞ dppσσσT (11.103)

×[I − RFR
0L
D ]−1RFR

0L
D RFR

0L
D WT

FTTT(1)
m (ωpr).

Now all the poles of the original expression are still present and since we have
extracted a regular term the residues have the same value as in (11.99). We have,
however, significantly modified the nature of integrand in thep plane away from
the poles.

At low frequencies there are only a few poles in the slowness rangeβ−1
L < p <

pR0 and then it is fairly easy to calculate the modal effects. We would like to
preserve this simplicity at high frequencies by distorting the contour of integration
to pick up only a few modes and supplement these modal contributions with a
numerical contour integral. Thus

ū2(r,m, 0,ω) = 1
2ω|ω|

∫
E

dppσσσT [(I − RFR
0L
D )−1 − 1]RFR

0L
D WT

FTTT(1)
m (ωpr)

+πiω2
N(ω)∑
j=0

pj Res
ω,p=pj

{wT
0TTT(1)
m }, (11.104)

where we have absorbed anRFR
0L
D term into the expression in square brackets.

Since we would like the contourE to be independent of frequency (above some
threshold) the number of polesN(ω) will be a function of frequency. We are then
left with the choice of contourE and we can be guided in this choice by making
use of asymptotic results for largeω.

We considerP-SV propagation for angular order0, and look at the vertical
component of displacement. The contour of integration needs to lie close to the real
axis forp < β−1

L so that we get a good representation of multipleP reflections. In
order to get a limited number of poles we require the new contourE to cross thep
axis in the slowness intervalα−1

0 < p < β−1
0 . For this region at high frequencies

we can neglect thePP andPS components ofR0LD and so, for a surface source, we
find

ū2z(r, 0,ω) = 1
2ω|ω|

∫
E

dpp (WF)
US(RSSD ψ

0
D +ψ0U) (11.105)

×RSSF RSSD [(1− RSSF RSSD )−1 − 1]H
(1)
0 (ωpr).
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Modal Summation

To the same approximation the pole locations are given by RSS
F RSSD = 1. The

integrand in (11.105) has a saddle point when

r+ω−1∂p{2arg RSSD + arg RSSF } = 0, (11.106)

and if the contourE is taken over this saddle the main contribution will come from
the neighbourhood of this slownesspSS. In a smoothly varying medium, arg RSSD =

ωτβ(p) and so (11.106) becomes

r = 2Xβ(pSS) −ω−1∂p(arg RSSF ) (11.107)

where2Xβ(pSS) is just the geometrical range for anSSphase. When a saddle point
lies midway between two poles.

[(1− RSSF RSSD )−1 − 1] ≈ −1
2 (11.108)

(cf. Felsen & Isihara 1979), and so the saddle point contribution to (11.105) will
be just one-half of the size of the saddle point approximation forSSfrom (11.102)
but reversed in sign.

In a more realistic Earth model the situation will be more complicated, but once
again the cumulative effect of the higher multipleS reflections will resemble part
of the last extracted multiple with surface wave terms.

A suitable numerical contour forE at largep values is an approximation to the
steepest descents path across the saddle atpSS. This defines a slowness contour
which varies with distance and asr increasespSS diminishes uncovering more
poles. In order to link the contourE at small and largep values we have to
take E off the top Riemann sheet and may uncover ’leaky-mode’ poles whose
residue contributions have to be added to the line integral alongE. The leaky mode
contributions help to refine the multiple reflection representation.

If it is desired to keep the number of ‘surface wave’ pole small it is necessary
to change the expansion forw0 (11.74) to now separate second order surface
reflections beyond some ranger0 (cf. fig 8.11). Forr > r0 we would then switch
to a pathE for the remainder term through theSSSsaddle point defined by

r+ω−1∂p{3arg RSSD + 2arg RSSF } = 0 (11.109)

As the range increases further changes in the expansion have to be made to allow
the separate representation of the various multipleSphases.

Appendix: Modal residue contributions
In Chapter 7 we have shown how the displacement response of a stratified medium can be
represented in terms of displacement matricesW1S, W2S which satisfy the free-surface
and the lower radiation boundary conditions respectively. The pole singularities of the
response are controlled by the inverse invariant

<W1S,W2S>
−1 (11a.1)
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11.a Modal residue contributions

and we now seek to find the residues at these poles. We will consider initially performing
a slowness integral at fixed frequencyω, as in (7.77), and then the modal contribution is a
sum of residue terms of the form cf. (7.82)

2πipj Res
ω,p=pj

[wT
0 (p,m,ω)]TTT(1)

m (ωpjr), (11a.2)

wherepj is the jth pole location for frequencyω.
For SH waves we may use standard results for the residue of a ratio of two analytic

functions, but for coupledP andSVwaves the situation is more complex. We may illustrate
the process by considering the field

W0(p) = W1S(p, 0)<W1S,W2S>
−1WT

2S(p, zS), (11a.3)

with simple poles when det<W1S,W2S> vanishes. The displacement matrixW1S is
constructed from two linearly independent column vectorsw1, w2 which satisfy the free-
surface condition.W2S has columnsw3, w4 satisfying the radiation condition. Thus

HHH−1(p, 0) = <W1S,W2S>
−1 (11a.4)

=
1

<42><31>−<32><41>

[
<42> −<32>

−<41> <31>

]
,

where

<31> = <w3,w1>, (11a.5)

the composition of vectors introduced in (2.36).
The residue ofW0 at a polepj is given by

Res
ω,p=pj

[W0] = W1S(pj, 0)
1

∂p(detHHH)|p=pj

HHHA(pj, 0)W
T
2S(pj, zS), (11a.6)

whereHHHA is the matrix appearing in (11a.5). We need therefore to construct a suitable
expression for∂p detHHH. Now

∂z(detHHH) = <42>g31 +<31>g42 −<32>g41 −<41>g32, (11a.7)

where∂z<31> = g31. When we integrate over the entire interval inz we obtain

detHHH =

∫∞
0

dζ {<42>g31 +<31>g42 −<32>g41 −<41>g32}, (11a.8)

At the exact surface wave pole we have a displacement eigenvectorwej(z) which satis-
fies both sets of boundary conditions i.e. vanishing tractions atz = 0 and the radiation
condition into the lower half space. At the pole we can therefore choosew1 = wej and
alsow3 = γwej for some constantγ. The vectorsw2 andw4 will be distinct and will
correspond to displacement solutions which satisfy only one of the boundary conditions.
Sincew1 andw2 satisfy the same boundary conditions

<12> = <w1,w2> = 0, (11a.9)

from (2.71). Similarly sincew3 andw4 satisfy the radiation condition<34> = 0. Thus
at the pole

<32> = γ<12> = 0, <41> = γ−1<43> = 0, (11a.10)

and sincew1 andw3 are multiples<31> = 0. There is therefore only one non-zero entry
in HHHA from<42>.
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Modal Summation

In order to get an expression for∂p detHHH at the polepj with fixed frequencyω, we
construct<W1S,W2S> with W1S, W2S evaluated for slightly different slownesses. We
takew1, w2 at the polepj andw3, w4 with slownesspj +∆p and then consider the limit
∆p → 0 for whichw3 → γw1. From (2.48)

g31 = ∆p{(2pj+∆p)ωρνV1V3+U1S3+U3S1−(1−2β2/α2)(V1P3+V3P1)},(11a.11)

where

ν = 4β(1− β2/α2). (11a.12)

Now at thepole itself detHHH vanishes and so

∂

∂p
detHHH|p=pj

= lim
∆p→0

{
1

∆p
detHHH

}
(11a.13)

= 2γ<42>

∫∞
0

dζ {ωpjρνV
2
ej +UejSej − (1− 2β2/α2)VejPej},(11a.14)

where we have made use of the depth invariance of<42>, when both vectors are evaluated
at the same frequency and slowness, and the vanishing of the other invariants. We may now
recognise the integral in (11a.14) asωpjJj which we have introduced in our variational
treatment (11.74).

The residue contribution from (11a.6) is therefore

Res
ω,p=pj

[W0] =
1

2ωpjJj
W1S(pj, 0)

[
1 0
0 0

]
WT

2S(pj, zS), (11a.15)

and so involves only the eigenvector entries. Also from (11.72) the group slowness for the
mode

gj = Ij/pjJj, (11a.16)

where

Ij =

∫∞
0

dζ ρ(ζ)wT
ej(ζ)wej(ζ), (11a.17)

and so we can achieve a convenient and compact representation of the residue. Thus

Res
ω,p=pj

[W0] =
gj

2ωIj
wej(0)w

T
ej(zS), (11a.18)

and this expression is valid for both theP-SV and SH wave cases, and also for full
anisotropy.

A comparable development can be made at a fixed slownessp to find the residue at a
poleωk in frequency. In this case we have to construct the frequency derivative of detHHH
and we find from (2.48) that

∂

∂ω
(detHHH)|ω=ωk

= 2γ<42>{p2Jk − Ik}, (11a.19)

and so the residue is given by

Res
p,ω=ωk

[W0] =
gk

2(p− gk)Ik
wej(0)w

T
ej(zS). (11a.20)
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Appendix: Table of Notation

Stress and Strain
x - position vector
xi - position coordinates
ξξξ - initial position vector
ξi - initial position coordinates
u - displacement vector
v - velocity vector
f - acceleration vector
g - external force vector
n - normal vector
τij - incremental stress tensor
σij - stress tensor (including pre-stress)
eij - strain tensor
t - traction vector
τττ - traction vector at a surface
n - normal vector
cijkl - elastic modulus tensor
Cijkl - anelastic relaxation tensor
κ - bulk modulus
µ - shear modulus
ρ - density
λ - Lamé modulus
Rλ, Rµ - relaxation functions
A,C, F, L,N,H - moduli for transversely isotropic media
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Appendix: Table of Notation

Waves and Rays
z - depth
r - horizontal distance
R - radius
t - time
ω - angular frequency
θ,φ - coordinate angles
α - P wavespeed
β - Swavespeed
p - horizontal slowness, phase slowness
℘ - angular slowness
g - group slowness
∆ - epicentral angle (for propagation in a sphere)
p - ray parameter (horizontal stratification) (= dT/dX),
q - auxiliary ray parameter
τ - intercept time, delay time
qα - vertical slowness forP waves
qβ - vertical slowness forSwaves
i - angle of incidence forP waves
j - angle of incidence forSwaves
Q−1 - loss factor
ϑ - wavefront/phase function

Sources
R - distance from source
γγγ - unit direction vector from source
γi - direction cosines
h - source position
R - receiver location
S - source location
n - normal vector
ννν - slip vector
εεε - force vector
EEE - summary force vector
Gij - Green’s tensor
Hijp - stress tensor derived from Green’s tensor
Mij - Moment tensor
mij(x, t) - moment tensor density
Q,T - radiation vectors forP, S
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Appendix: Table of Notation

Propagation terms
Qα,Qβ - quality factors forP andSwaves
A - coefficient matrix
b - stress-displacement vector
B - fundamental matrix
C - transformation matrix
D - eigenmatrix of stress-displacement vectors
m - displacement partitions of eigenmatrix
n - traction partitions of eigenmatrix
DDD - stress-displacement matrix for gradients
E, Ê - phase matrices for wavetype
E - phase matrix
EEEEEEEEE - phase matrix for gradients
F - source vector
H - propagation matrix
H - partitions of propagation matrix
L , LLL - correction terms for gradient zones
W - displacement matrix
T - traction matrix
P - propagator matrix
P - partitions of propagator matrix
Rmk ,S

m
k ,T

m
k - vector surface harmonics

Tm - tensor surface harmonic
QQQ - interface matrix
ttt - traction vector inp−ω domain
vvv - wave vector
www - displacement vector inp−ω domain
U,V,W - displacement components inp−ω domain
P, S, T - traction components inp−ω domain
vvvU,D - wave vector components
mU,D - displacement matrices
nU,D - traction matrices
EU,D - phase delay matrices
S - source jump vector
SW ,ST - components of source jump
ΣΣΣU, ΣΣΣD - upgoing, downgoing waves from source
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Appendix: Table of Notation

Propagation terms (cont.)
εα, εβ, εH - normalisation factors for wave energy
RF - free-surface reflection matrix
RHHF ,RPPF , . . . - free surface reflection coefficients
WF - free-surface amplification matrix
RU,RD - reflection matrices for incident upgoing, downgoing waves
TU,TD - transmission matrices for incident upgoing, downgoing waves
ru, rd - generalised reflection matrices for incident upgoing, downgoing waves
tu, td - generalised transmission matrices for incident upgoing, downgoing waves
PU,D - weighting coefficients for upgoing, downgoingP waves
SU,D - weighting coefficients for upgoing, downgoingSVwaves
HU,D - weighting coefficients for upgoing, downgoingSHwaves
ϕ - phase ofPP reflection coefficient
ψ - phase ofSSreflection coefficient
χ - phase ofHH reflection coefficient
η, η̂ - generalised vertical slownesses
γA, γP, γS, . . . - coupling coefficients
Q - attenuation factor
M(t) - effective source time function
ggg - amplitude weight for generalised ray
H - Cagniard path in complexp plane

Mathematical
a, b, c - constants
H - Hilbert transform operator
L,M,N - differential operators
Ai,Bi - Airy functions
Aj,Ak,Bj,Bk - Airy function wave variables
Ej,Ek,Ej,Ek - Airy function wave variables

H
(1),(2)
m (x) - Hankel functions

Jm(x) - Bessel function
Rmk ,S

m
k ,T

m
k - vector surface harmonics (cylindrical)

TTTTTTTTTm,TTTTTTTTT
(1)
m - tensor field of vector harmonics

jl(x), h
(1),(2)
l (x) - spherical Bessel functions

Pl(x), P
m
l (x) - Legendre functions

Q
(1),(2)
l - travelling wave form of Legendre function

Pml ,B
m
l ,C

m
l - vector surface harmonics (cylindrical)

Yml ,Ylm - surface harmonics on a sphere
Λ - analytic time function
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