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Preface

Logic has many faces. Some of them look toward abstract propositions and
meanings, underpinned by the notion of truth as quiet reflection of reality
within language. In this view, logic involves no agency at all, as propositions
are true or false for all eternity.

But perhaps the central theme of logic since Aristotle is that of infer-
ence, which intuitively involves one (idealized) agent doing derivations and
inspecting arguments in his or her mind.

In the last decades, many-agent activities have come to the fore. A major
research focus nowadays is the field of interactive logic, studying commu-
nication, argumentation, and intelligent interaction in general. These new
developments include dynamic logic, old and new epistemic logics, logics of
games, social choice, and other areas. Parikh has coined the phrase social
software for the investigation of the formal structure of social procedures
with the means of logic and related areas of computer science.

But at the end of the day, this latest trend is also a return to the sources.
Logic in both its Western and Eastern origins started from the study of
argumentation, communication, and legal procedure, as is amply demon-
strated by early texts on the law of non-contradiction and other inferential
phenomena.

The 7th Augustus de Morgan Workshop was held at King’s College
London from November 4th to 7th, 2005 under the title INTERACTIVE
LOGIC: Games and Social Software. It brought together a lively commu-
nity of logicians working on various key aspects of the interactive turn. The
present volume is a collection of fully refereed papers based on the presen-
tations at the workshop.

The Augustus De Morgan Workshops
The Augustus De Morgan Workshops address interdisciplinary areas con-
cerning logics devised and used to model human reasoning, actions and
behaviour. Such models arise in various practical and theoretical areas
striving to provide devices that help/replace the human in his daily activity
and require, by their very nature, an interdisciplinary cooperation involving
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mathematical logic, automated deduction, knowledge representation and
reasoning, artificial intelligence, multi-agent systems, natural language pro-
cessing, philosophy, linguistics, law, etc.

In 1999, a plan was made to hold an Augustus De Morgan Workshop
every year, devoted to an important interdisciplinary applied logic area and
to invite some of the best and most active researchers in this area to focus
on some clear problems. These workshops honour Augustus De Morgan
(1806–1871) who was a Professor of Mathematics at London University.

The first six Augustus De Morgan Workshops took place in the years
1999 to 2004 and covered topics from history of logic via belief revision to
Logic & Law.

ADMW 2005 and this volume
The seventh Augustus de Morgan Workshop was a close collaboration of the
logicians at King’s College London and at the Institute for Logic, Language
and Computation (ILLC) in Amsterdam.

The organizers planned the event in the tradition of the conference se-
ries TARK and LOFT; and for many participants, ADMW 2005 (London,
November 2005), LOFT 2006 (Liverpool, July 2006), and the workshop New
Perspectives on Games and Interaction at the Royal Academy in Amster-
dam (February 2007) constituted a natural sequence of events in the field
of interactive logic. It is fitting that the proceedings of the other two events
will also appear in the same new book series, Texts in Logic and Games.

This book series of which this is the first volume was conceived of in
London during ADMW 2005. The Managing Editors to be met to discuss
the set-up of the series and quickly found eminent members for the future
Advisory Board. We are proud to have the present ADMW 2005 proceedings
as the inaugural volume of the new series, which will hopefully become a
focus in the area.

This volume contains eleven original research contributions that were
reviewed to the high standards of an international research journal. Twenty-
four referees helped us to review the twenty-one submissions and select
twelve of them for the volume. In many cases, the referee reports were very
detailed and led to considerable improvements of the papers. We would
like to thank all anonymous referees for their support—the quality of this
volume is testimony to their efforts.

Acknowledgements
The local organization of the workshop was single-handedly managed by
Jane Spurr for which we would like to express our most sincere gratitude.
The production phase of this volume was coordinated by the technical assis-
tant of the book series Texts in Logic and Games, Joel Uckelman, who wrote
the LATEX stylefile for TLG, served as the technical contact point for the au-
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A Compositional Game Semantics for

Multi-Agent Logics of Partial Information∗

Samson Abramsky
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Oxford OX1 3QD, United Kingdom

samson@comlab.ox.ac.uk

Abstract

We consider the following questions: What kind of logic has a nat-
ural semantics in multi-player (rather than 2-player) games? How
can we express branching quantifiers, and other partial-information
constructs, with a properly compositional syntax and semantics? We
develop a logic in answer to these questions, with a formal seman-
tics based on multiple concurrent strategies, formalized as closure
operators on Kahn-Plotkin concrete domains. Partial information
constraints are represented as co-closure operators. We address the
syntactic issues by treating syntactic constituents, including quanti-
fiers, as arrows in a category, with arities and co-arities. This enables
a fully compositional account of a wide range of features in a multi-
agent, concurrent setting, including IF-style quantifiers.

1 Introduction

We begin with the following quote from the manifesto of the 7th Augustus
de Morgan workshop:

Traditionally, logic has dealt with the zero-agent notion of truth and
the one-agent notion of reasoning. In the last decades, research focus
in logic shifted from these topics to the vast field of “interactive logic”,
encompassing logics of communication and interaction. The main
applications of this move to n-agent notions are logical approaches to
games and social software.

However, while there are certainly applications of multi-modal logics to
reasoning about n-person games (see e.g. [Pa7Pa503, Pa702]), the more

∗ This paper is an updated and reprinted version of “Socially Responsive, Environmen-

tally Friendly Logic”, published in [Ah1Pi106, pp. 17–45]. The author and the volume
editors would like to thank the copyright holder, the Philosophical Society of Finland,
for their kind permission to reprint the paper in this volume.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 11–47.
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intimate connections between Games and Logic which manifest themselves
in various forms of Game Semantics have all, to the best of our knowledge,
been based on 2-person games. We are therefore led to consider the following
question:

What kind of logic has a natural semantics in multi-player
(rather than 2-player) games?

Another topic which has been studied extensively in recent years has
been the logical aspects of games of imperfect information, starting with
Henkin-style branching quantifiers [He161], and Hintikka’s game-theoretical
interpretation of these, and continuing with the IF-logic of Hintikka and
Sandu [Hi1Sa489, Hi1Sa495, Hi1Sa496]. The issue of whether and how a
compositional semantics for IF-logic can be given has been studied by several
authors, particularly Wilfrid Hodges [Ho197a]. However, there is an even
more basic question which does not seem to have received much, if any,
attention: namely, how to give a properly compositional syntax for such
constructs. For example, how can we build up a formula with branching
quantifiers piece by piece? It might seem that IF-logic sweeps this question
aside, since it does on the face of it have a compositional syntax. However,
more careful consideration shows that the scope issues raised by the IF
quantifiers and connectives do not fit into the usual pattern of variable-
binding operators.

Our aim in the present paper is to develop a logical syntax, and an
accompanying formal semantics, which addresses both these questions. The
semantics is naturally phrased in terms of strategies for n-person games;
and it will fit well with our compositional analysis of partial information
constructs. Both our syntactical and semantical explorations will bring to
light some rather unexpected connections to developments in Theoretical
Computer Science.

Many of the ideas in this paper were first presented in a lecture given at
the 11th Amsterdam Colloquium in December 1997. Some of the underlying
technical notions are developed in rather different contexts in a number
of other papers [AbJa194, AbMe199, Ab00a, Ab03]. One motivation for
writing this paper is to attempt to communicate some of the techniques
and concepts which have been developed within the Theoretical Computer
Science semantics community to a broader audience. We have therefore
tried to present the ideas in a self-contained fashion, and in a fairly expansive
expository style. The present paper is a revised and expanded version of a
paper which first appeared as [Ab06].
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2 From 2-person to n-person games

2.1 The naturalness of 2-person games

The basic metaphor of Game Semantics of Logic is that the players stand for
Proponent and Opponent, or Verifier and Falsifier, or (with Computer
Science motivation) for System and Environment. This 2-agent view
sets up a natural duality, which arises by interchanging the rôles of the two
players. This duality is crucial in defining the key notion of composition of
strategies in the Game Semantics developed in Computer Science. It stands
as the Game-Semantical correlate of the logical notion of polarity, and the
categorical notions of domain and codomain, and co- and contra-variance.

So this link between Logic and 2-person games runs deep, and should
make us wary of facile generalization. It can be seen as having the same
weight as the binary nature of composition in Categories, or of the Cut Rule
in Logic. Are there good multi-ary generalizations of these notions?

Nevertheless . . . we shall put forward a simple system which seems to
us to offer a natural generalization. We shall validate this notion to the
extent of providing a precise and (in our opinion) elegant semantics in n-
person games. This at least has the merit of broaching the topic, and
putting a clear, if far from comprehensive, proposal on the table. There are
undoubtedly many further subtleties to explore, but it is a start.

2.2 Background: 2-person games

As a starting point, we shall briefly review a Hintikka-style ‘Game-Theor-
etical Semantics’ of ordinary first-order logic, in negation normal form. Thus
formulas are built from literals by conjunction, disjunction, and universal
and existential quantification. Given a model M, a game is assigned to each
sentence as follows. (We shall be informal here, just as Hintikka invariably
is.)

• Literals A(a1, . . . , an), ¬A(a1, . . . , an). The game is trivial in this
case. There is a winning move for Verifier if the literal is true in the
model, and a winning move for Falsifier otherwise.

• Conjunction ϕ1 ∧ ϕ2. The game G(ϕ1 ∧ ϕ2) has a first move by
Falsifier which chooses one of the sub-formulas ϕi, i = 1, 2. It then
proceeds with G(ϕi).

• Disjunction G(ϕ1 ∨ ϕ2) has a first move by Verifier which chooses
one of the sub-formulas ϕi, i = 1, 2. It then proceeds with G(ϕi).

• Universal Quantification G(∀x. ϕ) has a first move by Falsifier,
which chooses an element a of M. The game proceeds as G(ϕ[a/x]).

• Existential Quantification Dually, Verifier chooses the element.
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The point of this interpretation is that M |= ϕ in the usual Tarskian sense
if and only if Verifier has a winning strategy for G(ϕ).

Note that there is a very natural game-semantical interpretation of nega-
tion: G(¬ϕ) is the same game as G(ϕ), but with the rôles of Verifier and
Falsifier interchanged.

2.3 An aside

In fact, the above Game semantics should really be seen as applying to the
additive fragment of Linear Logic, rather than to Classical Logic. Note in
particular that it fails to yield a proper analysis of implication, surely the
key logical connective.

Indeed, if we render ϕ → ψ as ¬ϕ ∨ ψ, then note that G(¬ϕ ∨ ψ)
does not allow for any flow of information between the antecedent and the
consequent of the implication. At the very first step, one of ¬ϕ or ψ is
chosen, and the other is discarded.1 In order to have the possibility of such
information flow, it is necessary for G(¬ϕ) and G(ψ) to run concurrently.
This takes us into the realm of the multiplicative connectives in the sense of
Linear Logic [Gi287]. The game-theoretical interpretation of negation also
belongs to the multiplicative level.

2.4 From 2-person to n-person games

We shall now describe a simple syntax which will carry a natural inter-
pretation in n-agent games. We say that the resulting logic is “socially
responsive” in that it allows for the actions of multiple agents.

We fix, once and for all, a set of agents A, ranged over by α, β, . . .
We introduce an A-indexed family of binary connectives ⊕α, and an

A-indexed family of quantifiers Qα. Thus we have a syntax:

ϕ ::= L | ϕ⊕α ψ | Qαx. ϕ.

(Here L ranges over literals.)
The intended interpretation of ϕ⊕αψ is a game in which agent α initially

chooses either ϕ or ψ, and then play proceeds in the game corresponding
to the chosen sub-formula. Similarly, for Qαx. ϕ, α initially chooses an
instance a for x, and play proceeds as for ϕ[a/x].

2.4.1 2-person games as a special case

If we take A = {V, F}, then we can make the following identifications:

⊕V = ∨, ⊕F = ∧, QV = ∃, QF = ∀.

1 This is of course quite analogous to the “paradoxes of material implication”. Our
point is that the game structure, if taken seriously as a way of articulating interactive
behaviour, rather than merely being used as a carrier for standard model-theoretic
notions, opens up new and more interesting possibilities.



Game Semantics for Multi-Agent Logics 15

2.4.2 Whither negation?

In 2-person Game Semantics, negation is interpreted as rôle interchange.
This generalizes in the multi-agent setting to rôle permutation. Each per-
mutation π ∈ S(A) (S(X) being the symmetric group on the set X) induces
a logical operation π̂(ϕ) of permutation of the rôles of the agents in the
game corresponding to A. In the 2-agent cases, there are two permutations
in S({V, F}), the identity (a ‘no-op’), and the transposition V ↔ F , which
corresponds exactly to the usual game-theoretical negation.

2.4.3 Other connectives

In the light of our remarks about the essentially additive character (in the
sense of Linear Logic) of the connectives ⊕α and their game-semantical
interpretation, it is also natural to consider some multiplicative-style con-
nectives. We shall introduce two very basic connectives of this kind, which
will prove particularly useful for the compositional analysis of branching
quantifiers:

1. Parallel Composition, ϕ‖ψ. The intended semantics is thatG(ϕ‖ψ)
is the game in which play in G(ϕ) and G(ψ) proceeds in parallel.

2. Sequential Composition, ϕ · ψ. Here we firstly play in G(ϕ) to a
conclusion, and then play in G(ψ).

It will also be useful to introduce a constant 1 for a “neutral” or “vacuously
true” proposition. The intended semantics is an empty game, in which
nothing happens. Thus we should expect 1 to be a unit for both sequential
and parallel composition.

Thus the syntax for our multi-agent logic LA stands as follows:

ϕ ::= 1 | A | ϕ⊕α ψ | Qαx. ϕ | ϕ · ψ | ϕ‖ψ | π̂(ϕ).

Here A ranges over atomic formulas, and π ∈ S(A).

2.4.4 Quantifiers as particles

The syntax of LA is more powerful than may first appear. Consider an idea
which may seem strange at first, although it has also arisen in Dynamic
Game Logic [vB03] and implicitly in the semantics of non-deterministic
programming languages [ApPl181]. Instead of treating quantifiers as prefix-
ing operators Qαx.ϕ in the usual way, we can consider them as stand-alone
particles Qαx ≡ Qαx.1. We should expect to have

(Qαx) · ϕ ≡ (Qαx.1) · ϕ ≡ Qαx.(1 · ϕ) ≡ Qαx. ϕ. (1.1)

Thus this particle view of quantifiers does not lose any generality with re-
spect to the usual syntax for quantification. But we can also express much
more:

[(∀x∃y) ‖ (∀u∃v)] · A(x, y, u, v).
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This is the Henkin quantifier, expressed compositionally in the syntax of
LA.2 More generally:

Proposition 2.1. Every partially-ordered quantifier prefix in which the
partial order is a series-parallel poset can be expressed in the syntax of LA.

We could therefore recast the grammar of LA as follows:

ϕ ::= A | ϕ⊕α ψ | Qαx | ϕ · ψ | ϕ‖ψ | π̂(ϕ).

However, we shall stick to the previous syntax, as this is more familiar, and
will provide us with an independent check that the expected equivalences
(1.1) hold.

3 Semantics of LA
We shall now develop a semantics for this logic. This semantics will be built
in two levels:

1. Static Semantics of Formulas To each formula ϕ ∈ LA, we shall
assign a form of game rich enough to allow for concurrent actions, and
for rather general forms of temporal or causal dependency between
moves. This assignment will be fully compositional.

2. Dynamic Semantics We then formulate a notion of strategy for these
games. For each agent α ∈ A there will be a notion of α-strategy. We
shall show to build strategies for the games arising from formulas,
compositionally from the strategies for the sub-formulas. We shall
also define the key notion of how to evaluate strategy profiles, i.e. a
choice of strategy for each agent, interacting with each other to reach a
collective outcome. We shall find an elegant mathematical expression
for this, prima facie very complicated, operational notion.

We shall also discuss the notion of valuation of an outcome, on the
basis of which logical notions of validity, or game-theoretical notions
of equilibria can be defined. However, we shall find that a fully com-
positional account of valuations will require the more refined analysis
of syntax to be given in the next section.

3.1 Static semantics: concrete data structures as concurrent

games

The structures we shall find convenient, and indeed very natural, to use as
our formal representations of games were introduced by Gilles Kahn and
Gordon Plotkin in 1975 (although their paper only appeared in a journal

2 A similar analysis of branching quantifier syntax appears in the appendix to [vB03];
my thanks to Johan van Benthem for pointing out this reference to me.
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in 1993; cf. [Ka0Pl178, Ka0Pl193]). They arose for Kahn and Plotkin in
providing a representation theory for their notion of concrete domains. The
term used by Kahn and Plotkin for these structures was information ma-
trices ; subsequently, they have usually been called concrete data structures,
and we shall follow this latter terminology (although in some ways, the
original name is more evocative in our context of use).

What, then, is a concrete data structure (CDS)? It is a structure

M = (C, V,D,⊢)

where:

• C is a set of cells, or ‘loci of decisions’—places where the agent can
make their moves. These cells have a spatio-temporal significance:
they both allow the distributed nature of multi-agent interactions to
be articulated, and also capture a causal or temporal flow between
events, as we shall see.

• V is a set of ‘values’, which label the choices which can be made by
the agents from their menus of possible moves: for example, choosing
the first or second branch of a compound formula ϕ⊕αψ, or choosing
an instance for a quantifier.

• D ⊆ C×V is a set of decisions, representing the possible choices which
can be made for how to ‘fill’ a cell. Note that specifying D allows some
primitive typing for cells; only certain choices are appropriate for each
given cell. (The more usual terminology for decisions is ‘events’; here
we have followed Kahn and Plotkin’s original terminology, which is
very apt for our purposes.)

• The relation ⊢ ⊆ Pf(D)×C is an enabling relation which determines
the possible temporal flows of events in a CDS. (Pf(X) is the set of
finite subsets of X .)

A state or configuration over a CDS M is a set s ⊆ D such that:

• s is a partial function, i.e. each cell is filled at most once.

• If (c, v) ∈ s, then there is a sequence of decisions

(c1, v1), . . . , (ck, vk) = (c, v)

in s such that, for all j, 1 ≤ j ≤ k, for some Γj ⊆ {(ci, vi) | 1 ≤ i < j}:

Γj ⊢ cj .

This is a “causal well-foundedness” condition. (Kahn and Plotkin
phrase it as: “c has a proof in x”.) Note that, in order for there to be
any non-empty states, there must be initial cells c0 such that ∅ ⊢ c0.
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We write D(M) for the set of states, partially ordered by set inclusion. This
is a concrete domain in the sense of Kahn and Plotkin. In particular, it is
closed under directed unions and unions of bounded families, and the finite
states form a basis of compact elements, so it is algebraic.

To obtain a structure to represent a multi-agent game, we shall consider
a CDS M augmented with a labelling map

λM : CM −→ A

which indicates which agent is responsible for filling each cell. We call
(M,λM ) an A-game.

We are now ready to specify the compositional assignment of an A-game
to each formula of LA. We assume a set I which will be used as the domain
of quantification. We shall use ⊎ for the disjoint union of sets.

• Constant 1. This is assigned the empty CDS (∅,∅,∅,∅).

• Atomic formulasA. These are assigned the empty CDS (∅,∅,∅,∅).

• Choice connectives ϕ⊕α ψ. Let

M = JϕK, N = JψK

be the CDS assigned to ϕ and ψ, with labelling functions λM and λN .
Then the CDS M ⊕α N is defined as follows:

(CM⊎CN⊎{c0}, VM∪VN∪{1, 2}, DM⊎DN⊎{(c0, 1), (c0, 2)},⊢M⊕αN )

where

⊢M⊕αN c0

(c0, 1),Γ ⊢M⊕αN c ⇐⇒ Γ ⊢M c

(c0, 2),Γ ⊢M⊕αN c ⇐⇒ Γ ⊢N c.

This is the standard separated sum construction on CDS as in
[Ka0Pl193]. Pictorially:

c0

M N

Initially, only the new cell c0 is enabled. It can be filled with either of
the values 1 or 2. If it is filled by 1, we can proceed as in M = JϕK,
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while if it is filled with 2, we proceed as in N = JψK. This makes the
usual informal specification precise, in a rather general setting.

To complete the specification of M ⊕α N as an A-game, we specify
the labelling function λM⊕αN :

c0 7→ α

c 7→ λM (c) (c ∈ CM )

c 7→ λN (c) (c ∈ CN ).

As expected, the initial cell c0 must be filled by the agent α; other
cells are filled as in the corresponding sub-games.

• Quantifiers Qαx. ϕ. Let M = JϕK.

Qα(M) = (CM ⊎ {c0}, VM ∪ I, DM ⊎ ({c0} × I),⊢Qα(M)).

⊢Qα(M) c0

(c0, a),Γ ⊢Qα(M) c ⇐⇒ Γ ⊢M c (a ∈ I).

This is a variant of the standard lifting construction on CDS.

c0

M

Initially, only the new cell c0 is enabled. It can be filled with any choice
of individual a from the domain of quantification I. Subsequently, we
play as in M . The labelling function, λQα(M):

c0 7→ α, c 7→ λM (c) (c ∈ CM ).

Although the interpretation of the quantifier particle Qαx ≡ Qαx.1
can be derived from the definitions already given, we set it out explic-
itly to show how simple and natural it is:

JQαxK = ({c0}, I, {c0} × I, {⊢ c0}),

with labelling function c0 7→ α. Thus the game consists of a single
cell, labelled by α, initially enabled, in which any element from I can
be chosen — a true “particle of action” in a multi-agent setting.
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• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK: we define

M‖N = (CM ⊎ CN , VM ⊎ VN , DM ⊎DN ,⊢M ⊎ ⊢N ).

The labelling function is defined by:

λM‖N (c) =

{

λM (c) (c ∈ CM )

λN (c) (c ∈ CN ).

Pictorially:

M N

Decisions in M and N can be made concurrently, with no causal or
temporal constraints between them. This is the standard product con-
struction on CDS.

• Sequential Composition ϕ · ψ. We say that a state s ∈ D(M) is
maximal if

∀t ∈ D(M)[s ⊆ t ⇒ s = t].

We write Max(M) for the set of maximal elements of D(M).

Let M = JϕK, N = JψK: we define

M ·N = (CM ⊎CN , VM ⊎ VN , DM ⊎DN ,⊢M·N ),

where

Γ ⊢M·N c ⇐⇒ ΓM ⊢ c ∨ (Γ = s∪∆ ∧ s ∈ Max(M) ∧ ∆ ⊢N c).

Pictorially:

M

N

The idea is that firstly we reach a maximal state in M—a “complete
play”—and then we can continue in N . Note that this construction
makes sense for arbitrary CDS M , N . Even if M has infinite maximal
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states, the finitary nature of the enabling relation means that no events
from N can occur in M ·N following an infinite play in M .

The labelling function is defined by:

λM·N (c) =

{

λM (c) (c ∈ CM )

λN (c) (c ∈ CN ).

Note that the difference between M‖N and M · N is purely one of
temporality or causality: when events can occur (or, in the alternative
terminology, decisions can be made) relative to each other.

• Role Switching π̂(ϕ), π ∈ S(A). The CDS Jπ̂(ϕ)K is the same as
M = JϕK. However:

λπ̂(M) = π ◦ λM .

3.2 Dynamic semantics: concurrent strategies

We now turn to the task of defining a suitable notion of strategy for our
games. We shall view a strategy for an agent α on the game M as a function
σ : D(M) → D(M). The idea is that σ(s) shows the moves which agent α
would make, in the situation represented by the state s, when following the
strategy represented by σ. Some formal features of σ follow immediately
from this:

• (S1) Since past moves cannot be undone, we must have s ⊆ σ(s),
i.e. σ is increasing.

• (S2) If (c, v) ∈ σ(s) \ s, it must be the case that λM (c) = α, since α
is only able to make decisions in its own cells.

We shall impose two further conditions. While not quite as compelling as
the two above, they also have clear motivations.

• (S3) Idempotence: σ(σ(s)) = σ(s). Since the only information in σ(s)
over and above what is in s is what σ put there, this is a reason-
able normalizing assumption. It avoids situations where σ proceeds
‘slowly’, making decisions in several steps which it could have taken in
one step (since the information from the Environment, i.e. the other
agents, has not changed).

• (S4) Monotonicity: s ⊆ t ⇒ σ(s) ⊆ σ(t). This condition reflects
the idea that states only contain positive information. The fact that
a cell c has not been filled yet is not a definite, irrevocable piece of
information. Another strategy, working on behalf of another agent,
may be running concurrently with us, and just about to fill c.
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Finally, there is a more technical point, which is a necessary complement
to the above conditions. We take σ to be a function on D(M)⊤, which
is obtained by adjoining a top element ⊤ to D(M). Note that, since σ
is increasing, we must have σ(⊤) = ⊤. The significance of adding a top
element to the codomain is that it allows for partial strategies, which are
undefined in some situations.

The following result is standard.

Proposition 3.1. D(M)⊤ is an algebraic complete lattice.

Taking the conditions (S1), (S3), (S4) together says that σ is a closure
operator on D(M)⊤. A closure operator additionally satisfying (S2) is said
to be an α-closure operator. We write Clα(M) for the set of α-closure
operators on D(M)⊤.

The full specification of the game based on a CDS M will comprise a
set of strategies Sα(M) ⊆ Clα(M) for each agent α. By limiting the set of
strategies suitably, we can in effect impose constraints on the information
available to agents.

3.2.1 Inductive construction of strategy sets

There are several approaches to defining the strategy sets Sα. We are in-
terested in compositional definitions of Sα(JϕK). There are two main ap-
proaches to such definitions, both of which have been extensively deployed
in Game Semantics as developed in Computer Science.

1. We can define the strategy sets themselves directly, by induction on
the construction on ϕ. This is the “global” approach. It is akin
to realizability, and in general leads to strategy sets of high logical
complexity. See [AbMe199, Ab00b] for examples of this approach.

2. We can use an indirect, more “local” approach, in which we add some
structure to the underlying games, and use this to state conditions
on strategies, usually phrased as conditions on individual plays or
runs of strategies. Sα(JϕK) is then defined to be the set of strate-
gies in Clα(JϕK) satisfying these conditions. This has in fact been the
main approach used in the Game Semantics of programming languages
[AbJa1Ma100, Hy0On00]. However, this approach has not been devel-
oped for the kind of concurrent, multi-agent games being considered
here.

It seems that both of these approaches may be of interest in the present
context. We therefore show how both can be applied to the semantics of
LA. We begin with the local approach, which is perhaps closer to the
intuitions.
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3.2.2 Local conditions on strategies

The idea is to capture, as part of the structure of the underlying game,
which information about the current state should be available to agent α
when it makes a decision at cell c. This can be formalized by a function

γM : CM −→ [D(M) −→ D(M)]

which for each cell c assigns a function γM (c) on states. The idea is that,
if λM (c) = α, γM (c)(s) restricts s to the part which should be visible
to agent α, and on the basis of which he has to decide how to fill c. It
follows that γM (c) should be decreasing: γM (c)(x) ⊆ x. Note the duality
of this condition to (S1). We add the assumptions of monotonicity and
idempotence, with much the same motivation as for strategies. It follows
that γM (c) is a co-closure operator.

3.2.3 Notation

Remembering that a state s ∈ D(M) is a partial function, we write sցc
to mean that s is defined at the cell c, or that “s fills c”, as it is usually
expressed. Also, we write Cα

M for the set of α-labelled cells in CM .
Now, given such a function γM , we can define the strategy set Sα(M):

Sα(M) = {σ ∈ Clα(M) |

∀s ∈ D(M).∀c ∈ Cα
M .[σ(s)ցc ⇒ σ(γM (c)(s))ցc]}. (1.2)

Thus the information constraint imposed by γM is expressed by the condi-
tion that σ can only make a decision at cell c in state s if it would have
made the same decision in the smaller (less information) state γM (c)(s).3

This is a direct analogue of the use of views in Hyland-Ong style games
[Hy0On00] to define ‘innocent strategies’. However, apart from the more
general format of our games, there is greater flexibility in the provision of
the function γM as a separate component of the game structure, whereas
specific view functions are built into the fabric of HO-games.

We now show how the functions γJϕK can be defined, compositionally in ϕ.

• Atomic formulas, and constant 1. This case is trivial, since the
set of cells is empty.

• Choice connectives ϕ ⊕α ψ. Let M = JϕK, N = JψK. We define
γM⊕αN by:

γM⊕αN (c)(s) =











∅, c = c0

{(c0, 1)} ∪ γM (c)(s \ (c, 1)), (c ∈ CM )

{(c0, 2)} ∪ γN (c)(s \ (c, 2)), (c ∈ CN ).

3 It appears that our condition only requires that the cell c be filled somehow in
γM (c)(x); however, monotonicity of σ ensures that if it is filled in γM (c)(s), then
it must be filled with the same value in s.
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• Quantifiers Qα.ϕ. Let M = JϕK.

γQα(M)(c0)(s) = ∅,

γQα(M)(c)({(c0, a)} ⊎ s) = {(c0, a)} ∪ γM (c)(s) (c ∈ CM ).

Thus the choice initially made by α to decide the value of the quantifier
is visible to all the agents.

• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK. We define
γM‖N by:

γM‖N (c)(s) =

{

γM (c)(πM (s)), c ∈ CM

γN (c)(πN (s)), c ∈ CN .

Here πM , πN are the projection functions ; e.g.

πM (s) = {(c, v) ∈ s | c ∈ CM}.

Thus the view at a cell in the sub-game M or N is what it would
have been if we were playing only in that sub-game. This implements
a complete block on information flow between the two sub-games. It
can be seen as corresponding directly to the Linear Logic connective
⊗.

• Sequential Composition ϕ · ψ. Let M = JϕK, N = JψK. We define
γM·N by:

γM·N (c)(s) =

{

γM (c)(πM (s)), c ∈ CM

πM (s) ∪ γN (c)(πN (s)), c ∈ CN .

Thus while we are playing in M , visibility is at it was in that sub-
game. When we have finished a complete play s in M and start to
play in N , we can see the whole completed play s, together with what
is visible in the sub-game N .

• Role Permutation π̂(ϕ). We set γJπ̂(ϕ)K = γJϕK. The same infor-
mation is available from each cell; but, for example, if agent α had
more information available than agent β in M , that advantage will be
transferred to β in π̂(M) if π interchanges α and β.

3.2.4 Global definitions of strategy sets

We define the strategy sets Sα(JϕK) compositionally from the construction
of ϕ. The main point to note is the constructions on strategies which arise in
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making these definitions; these show the functorial character of the game-
semantical interpretation of the connectives, and point the way towards
a semantics of proofs—or indeed, in the first instance, to what the proof
system should be—for the logic.

• Atomic formulas and constant 1. These cases are trivial, since
the set of cells is empty. Thus D(JAK) = D(J1K) = {∅}. We set
Sα(JAK) = Sα(J1K) = {id{∅}}.

• Choice connectives ϕ ⊕α ψ. Let M = JϕK, N = JψK. We firstly
define some constructions on closure operators:

in1 : Clα(M) −→ Clα(M ⊕α N), in2 : Clα(N) −→ Clα(M ⊕α N)

⊕ : Clβ(M)× Clβ(N) −→ Clβ(M ⊕α N) (β 6= α).

For i = 1, 2:

ini(σ)(s) =

{

{(c0, i)} ∪ σ(s \ {(c0, i)}), (c0, j) ∈ s ⇒ j = i

⊤ otherwise.

σ ⊕ τ(∅) = ∅

σ ⊕ τ({(c0, 1)} ⊎ s) = {(c0, 1)} ∪ σ(s)

σ ⊕ τ({(c0, 2)} ⊎ t) = {(c0, 2)} ∪ τ(t).

Thus in1(σ) is the strategy for α in M ⊕α N which firstly decides to
play inM , and then subsequently plays like σ, which is (“inductively”)
assumed to be a strategy for α in M . Similarly for in2(τ). Note that
both these strategies are “non-strict”: that is, ini(σ)(∅) will at least
contain (c0, i). This reflects the idea that agent α must play the first
move in M⊕αN , and nothing can happen until he does. The strategy
σ ⊕ τ for another agent β 6= α must on the other hand “wait” at the
initial state ∅ until α has made its decision. Once this has happened,
it plays according to σ if the decision was to play in M , and according
to τ if the decision was to play in N .

Note how the definitions of in1, in2 show why strategies must in general
be partial; there is a “self-consistency” condition that we should only
be confronted with situations in which the decisions ascribed to us are
indeed those we actually made.

We now define the strategy sets for M ⊕α N :

Sα(M ⊕α N) = {in1(σ) | σ ∈ Sα(M)} ∪ {in2(τ) | τ ∈ Sα(N)}

Sβ(M ⊕α N) = {σ ⊕ τ | σ ∈ Sβ(M) ∧ τ ∈ Sβ(N)} (β 6= α).
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• Quantifiers Qα(ϕ). Let M = JϕK. We define operations

⊕a∈I : Clβ(M)I −→ Clβ(Qα(M)), (β 6= α),

and, for each a ∈ I:

upa : Clα(M) −→ Clα(Qα(M)).

upa(σ)(s) =

{

{(c0, a)} ∪ σ(s \ {(c0, a)}), (c0, b) ∈ s ⇒ b = a

⊤ otherwise.

(⊕a∈Iσa)(∅) = ∅

(⊕a∈Iσa)({(c0, b)} ⊎ s) = {(c0, b)} ∪ σb(s).

Note the similarity of these operations to those defined for the choice
connectives. (In fact, the separated sum M ⊕ N can be seen as the
composite (M +N)⊥ of disjoint sum and lifting constructions.) Note
also, in the definition of ⊕a∈Iσa, the dependence of the strategy σb

used to continue the play on the element b ∈ I initially chosen by α.

We define the strategy sets as follows:

Sα(Qα(M)) = {upa(σ) | a ∈ I, σ ∈ Sα(M)}

Sβ(Qα(M)) = {⊕a∈Iσa | ∀a ∈ I. σa ∈ Sβ(M)} (β 6= α).

• Parallel Composition ϕ‖ψ. Let M = JϕK, N = JψK. We define an
operation

‖ : Clα(M)× Clα(N) −→ Clα(M‖N)

σ‖τ(s) = σ(πM (s)) ∪ τ(πN (s)).

This is just the functorial action of the product, and gives the “infor-
mation independence” of play in the two sub-games. Now we define
the strategy sets:

Sα(M‖N) = {σ‖τ | σ ∈ Sα(M) ∧ τ ∈ Sα(N)}.

• Sequential Composition ϕ · ψ. Let M = JϕK, N = JψK. Given
σ ∈ Clα(M), and a family (τs)s∈Max(M) ⊆ Clα(N) indexed by maximal
states in M , we define:

(σ · (τs)s)(t) =











σ(t), t ∈ D(M), σ(t) 6∈ Max(M)

σ(t) ∪ τσ(t)(∅), t ∈ D(M), σ(t) ∈ Max(M)

s ∪ τs(u), t = s ∪ u, s ∈ Max(M), u ∈ D(N).
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This allows for arbitrary dependency of agent α’s play in N on what
previously occurred in M . Note that in the case that σ completes a
maximal play s in M , control passes immediately to τs to continue in
N . We then define

Sα(M ·N) = {σ · (τs)s | σ ∈ Sα(M) ∧ ∀s ∈ Max(M).[τs ∈ Sα(N)]}.

• Role Permutation π̂(ϕ). Let M = JϕK. Here we simply set
Sα(π̂(M)) = Sπ−1(α)(M).

3.2.5 Comparison of the local and global definitions

Having defined strategy sets in these two contrasting fashions, we must com-
pare them. Let ϕ be a formula of LA. We write Sg

α(JϕK) for the strategy set
for JϕK defined according to the global construction, and similarly S l

α(JϕK)
for the local definition (1.2) using the visibility function γJϕK.

Proposition 3.2. For all ϕ ∈ LA, Sg
α(JϕK) ⊆ S l

α(JϕK).

Proof. A straightforward induction on ϕ. Note in particular that σ‖τ sat-
isfies the local condition (1.2) with respect to the parallel composition.

q.e.d.

The converse is false in general. The strategies in Sg
α(JϕK) have two

important global properties which strategies satisfying the local condition
(1.2) need not possess.

Safety We define the domain dom(σ) of a closure operator σ ∈ Clα(M) to
be the least subset of D(M)⊤ satisfying the following conditions:

(D1) ∅ ∈ dom(σ)

(D2) s ∈ dom(σ) ⇒ σ(s) ∈ dom(σ)

(D3) S ⊆ dom(σ), S directed ⇒
⋃

S ∈ dom(σ)

(D4) s ∈ dom(σ), s ⊆ t ∈ D(M),

[(c, v) ∈ t \ s ⇒ λM (c) 6= α] ⇒ t ∈ dom(σ).

Note that (D1)–(D3) are the usual inductive definition of the set of iter-
ations leading to the least fixpoint of σ. The condition (D4) gives this
definition its game-theoretic or multi-agent character.

We say that σ is safe if ⊤ 6∈ dom(σ). Thus if σ is never confronted by
α-moves that it would not itself have made, then whatever the other agents
do it will not “crash” or “abort” (which is how we think of ⊤).

Proposition 3.3. For all ϕ ∈ LA, every strategy in Sg
α(JϕK) is safe.
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Progress We consider the following assumptions on strategies σ ∈ Clα(M):

• (WP) If s ∈ D(M) contains an enabling of some α-cell c which is not
filled in s, then σ(s) 6= s. In other words, σ does something (makes
at least one decision) whenever it can.

• (MP) For all s ∈ D(M), if σ(s) contains an enabling of some α-cell
c, then it fills c. Thus σ decides every α-cell as soon as it becomes
accessible.

We call (WP) the weak progress assumption and (MP) the maximal progress
assumption. Clearly (MP) implies (WP).

Lemma 3.4. The weak progress assumption implies the maximal progress
assumption, and hence the two conditions are equivalent.

Proof. Let σ be an α-strategy not satisfying (MP). Then there must be
a state s such that some α-cells are accessible but not filled in σ(s). By
idempotence, σ(σ(s)) = σ(s), and hence σ does not satisfy (WP). q.e.d.

Proposition 3.5. For all ϕ ∈ LA, every strategy in Sg
α(JϕK) satisfies the

maximal progress assumption (MP).

Given an A-game M , we define S lsp
α (M) to be the set of all strategies in

S l
α(M) which are safe and satisfy the weak progress assumption.

Theorem 3.6 (Characterization Theorem). For all ϕ ∈ LA, Sg
α(JϕK) =

S lsp
α (JϕK).

Proof. By induction on ϕ. We indicate some cases.

1. Parallel composition. For a strategy σ ∈ S lsp
α (M‖N), the visibility

condition implies that σ = σ1‖σ2. The safety of σ implies that of
σ1 and σ2, and similarly (MP) for σ implies (MP) for σ1 and σ2.
Thus σ1 ∈ S

lsp
α (M) and σ2 ∈ S

lsp
α (N), and we can apply the induction

hypothesis. The case for sequential composition is similar.

2. Choice connectives. Here the progress assumption implies that the
strategy holding the initial cell must fill it. Safety implies that strate-
gies for other players must have the form σ ⊕ τ . Play after the initial
cell is filled reduces to play in the chosen sub-game, and we can apply
the induction hypothesis.

q.e.d.

Thus we explicitly characterize the “immanent” properties of the strat-
egy sets Sg

α(JϕK) in terms of local conditions on information visibility, plus
safety and liveness properties.
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3.3 Evaluation of strategy profiles

Consider a CDS M with a strategy set Sα for each agent α ∈ A. A strategy
profile is an A-tuple

(σα)α∈A ∈
∏

α∈A

Sα

which picks out a choice of strategy for each α ∈ A. The key operation in
“bringing the semantics to life” is to define the result or outcome of playing
these strategies off against each other. Given the concurrent nature of our
games, and the complex forms of temporal dependency and information
flow which may arise in them, it might seem that a formal definition of this
operation will necessarily be highly complex and rather messy. In fact, our
mathematical framework allows for a very elegant and clean definition. We
shall use the notation 〈σα〉α∈A for this operation. It maps strategy profiles
to states of M . The idea is that the state arising from 〈σα〉α∈A will be
that reached by starting in the initial state ∅, and repeatedly playing the
strategies in the profile until no further moves can be made. The formal
definition is as follows.

Definition 3.7. We define 〈σα〉α∈A to be the least common fixpoint of the
family of closure operators (σα)α∈A; i.e. the least element s of D(M)⊤ such
that σα(s) = s for all α ∈ A.

The following Proposition (which is standard) guarantees that this def-
inition makes sense.

Proposition 3.8. Any family of closure operators C on a complete lattice
L has a common least fixpoint. In case the lattice has finite height, or
C = {c1, . . . , cn} is finite and the closure operators in C are continuous
(i.e. preserve directed joins) this common least fixpoint can be obtained
constructively by the expression

∨

k∈ω

ck(⊥), where c = c1 ◦ · · · ◦ ck.

Any permutation of the order of the composition in defining c, or indeed
any “schedule” which ensures that each closure operator is applied infinitely
often, will lead to the same result.

We recall the notion of safety from the previous section.

Proposition 3.9. Let (σα)α∈A be a strategy profile in which σα is safe for
all α ∈ A. Then 〈σα〉α∈A 6= ⊤.

Proof. We prove by transfinite induction on the iterations towards the least
fixpoint that every state which is reached is in the domain of every strategy
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in the profile. The base case is (D1), and the limit ordinal case is (D3).
Applying some σα to the current state stays in the domain of σα by (D2),
and in the domain of every other strategy in the profile by (D4). q.e.d.

In particular, we know by Proposition 3.3 that this applies to our setting,
where we have a formula ϕ ∈ LA, with corresponding CDS M = JϕK and
strategy sets Sα(JϕK), α ∈ A. Furthermore, we have:

Proposition 3.10. For all ϕ ∈ LA, and every strategy profile (σα)α∈A ∈
Sg

α(JϕK) = S lsp
α (JϕK):

〈σα〉α∈A ∈ Max(JϕK).

Proof. Firstly, we know by Proposition 3.9 that 〈σα〉α∈A 6= ⊤. Let s =
〈σα〉α∈A. If s is not maximal, some cell c must be accessible but not filled in
s. Suppose c is an α-cell. Since σα satisfies (WP), we must have σα(s) 6= s,
contradicting the definition of 〈σα〉α∈A as a common fixpoint of all the
strategies in the profile. q.e.d.

Thus the outcome of evaluating a strategy profile in the game arising
from any formula is always a well-defined maximal state.

We pause to mention another connection with Theoretical Computer
Science. Our use of closure operators as strategies, and the definition of the
evaluation of strategy profiles as least common fixpoints, builds on ideas
which arose originally in the semantics of dataflow [Ja1Pa2Pi289] and con-
current constraint programming [Sa5Ri0Pa291]. They have also been ap-
plied extensively to constraint programming and constraint propagation al-
gorithms over the past decade [Ap97]. Our own previous development of
these ideas appears in a number of papers [AbMe199, Ab00a, Ab03].

3.4 Outcomes and valuations

One ingredient which has been missing thus far in our account of the se-
mantics of LA has been any notion of payoff or utility in game-theoretic
terms, or of truth-valuation in logical terms, which may serve as a basis
for game-theoretical notions of equilibria or logical notions such as validity.
The status of the standard notions on the logical side is far from clear when
we pass to multi-agent games. However, we can certainly provide support
for studying equilibrium notions in our framework, in such a way that these
specialize to the usual logical notions in the two-agent case. We shall only
enter into a preliminary discussion here, simply to indicate some of the
possibilities.

As we have just seen, for the games arising from formulas in LA, eval-
uation of strategy profiles always leads to maximal states. Moreover, the
CDS corresponding to any formula has only finitely many cells (although if
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I is infinite, so also will be the sets of values, decisions and states). Hence
any state consists of only finitely many decisions.

Proposition 3.11. For any closed formula ϕ ∈ LA, a maximal state in
JϕK corresponds to a combination of atomic sentences, built by series and
parallel composition from (instances of) atomic subformulas of ϕ. If ϕ is
built from atomic formulas using only the choice connectives and quanti-
fiers, maximal states will correspond exactly to single instances of atomic
subformulas.

Proof. Given a maximal state s, we argue by induction on ϕ. We indicate
some cases:

• ϕ⊕αψ. Then s contains (c0, i). If i = 1, we continue with the formula
ϕ and the maximal state of JϕK obtained by removing (c0, 1) from s.
Similarly if i = 2.

• Qαx. ϕ. Then s contains (c0, a). We continue inductively with ϕ[a/x]
and the maximal state of Jϕ[a/x]K obtained by removing (c0, a) from
s.

• ϕ‖ψ. We continue inductively with ϕ and πM (s), and with ψ and
πN (s), and glue the results back together with parallel composition.

• ϕ · ψ. Essentially the same as for parallel composition.

q.e.d.

3.4.1 Example

We take A = {V, F}, and use standard notation for choice connectives and
quantifiers. Consider the formula

∀x.∃y.[A(x, y) ∧ B(y)] ‖ ∃z.C(z).

The corresponding CDS has four cells:

∀x

∃y

∧

∃zF

V

F

V
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In a maximal state of this CDS, these cells are all filled. If the ∀x cell is
filled with a ∈ I, ∃y with b ∈ I, ∧ with 1, and ∃z with c ∈ I, then the state
will correspond to the following parallel composition of atomic sentences:

A(a, b) ‖ C(c).

In the usual Hintikka-style Game semantics, a model M is used to evaluate
atomic sentences. We can see that in our setting, this work can equivalently
be done by a Boolean valuation function

val : Max(JϕK) −→ {0, 1}.

So for 2-agent games, we could simply use such a valuation to give a notion
of winning strategy for Verifier, and hence of logical validity.

More generally, in the multi-agent case we should consider valuations

valα : Max(JϕK) −→ Vα

for each agent α, into some set of preferences or utilities. Given an outcome

o = 〈σα〉α∈A ∈ Max(JϕK),

we can evaluate it from the perspective of each agent α as valα(o), and
hence formulate notions such as Nash equilibrium and other central game-
theoretical notions.

3.4.2 Compositionality?

Until now our semantics has been fully compositional. However, as things
stand, valuation functions cannot be described in a compositional fashion.
The problem becomes clear if we consider our treatment of atomic formu-
las. Their current representation in our semantics is vacuous — the empty
CDS. This carries no information which can be used by a valuation function
to express the dependence of an outcome on the values previously chosen
for the variables appearing in the atomic formula. We can recover this
correspondence globally, as in Proposition 3.11, but not compositionally,
by gluing together a valuation function defined for an atomic formula with
those arising from the context in which it occurs.

We shall now give a reformulation of the syntax of LA which will allow
us to take full account of the role of variables and variable-binding in our
semantics, and hence provide the basis for a compositional treatment both
of valuation functions, and of IF-quantifiers and other partial-information
constructs.
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4 Towards environmentally friendly logic

It is, or should be, an aphorism of semantics that:

The key to compositionality is parameterization.

Choosing the parameters aright allows the meaning of expressions to be
made sensitive to their contexts, and hence defined compositionally. While
this principle could—in theory—be carried to the point of trivialization, in
practice the identification of the right form of parameterization does usually
represent some genuine insight into the structure at hand.

We shall now describe an approach to making the syntax of quantifier
particles, including IF-quantifiers, fully compositional. This can then serve
as a basis for a fully compositional account of valuations on outcomes.

4.1 Syntax as a category

Note firstly a certain kind of quasi-duality between quantifiers and atomic
formulas. Quantifiers Qαx project the scope of x inwards over sequen-
tial compositions (but not across parallel compositions). Atomic formulas
A(x1, . . . , xn) depend on variables coming from an outer scope.

Now consider IF-quantifiers ∀x/y which bind x, but also declare that it
does not depend on an outer quantification over y. This is a peculiar binding
construct, quite apart from its semantic interpretation. The bidirectional
reach of the scope—inwards for x, outwards for y—is unusual, and difficult
to make sense of in isolation from a given context of use. So in fact, it
seems hard to give a decent compositional syntax for IF-quantifiers, before
we even start to think about semantics.

Once again, there is work coming from Theoretical Computer Science
which is suggestive: namely the π-calculus [MiPa6Wa192a, MiPa6Wa192b],
with its scope restriction and extrusion. The action calculi subsequently
developed by Milner [Mi93] are even more suggestive, although only certain
features are relevant here.

We shall reformulate our view of logical syntax as follows. Each syntactic
constituent will have an arity and a co-arity. Concretely, we shall take these
arities and co-arities to be finite sets of variables, although algebraically we
could just take them to be natural numbers. We shall write a syntactic
expression as

ϕ : X −→ Y

whereX is the arity, and Y is the co-arity. The idea is that the arity specifies
the variables that ϕ expects to have bound by its outer environment, while
the co-arity represents variables that it is binding with respect to its inner
environment.

The quantifier particle Qαx can be described in these terms as

Qαx : ∅ −→ {x} (1.3)
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or more generally as
Qαx : X −→ X ⊎ {x}.

An atom A(x1, . . . , xn) will have the form

A(x1, . . . , xn) : {x1, . . . , xn} −→ ∅,

so we indeed see a duality with (1.3).
We specify “typed” versions of sequential and parallel composition with

respect to these arities and co-arities:

ϕ : X −→ Y ψ : Y −→ Z

ϕ · ψ : X −→ Z

ϕ : X1 −→ Y1 ψ : X2 −→ Y2

ϕ‖ψ : X1 ⊎X2 −→ Y1 ⊎ Y2
.

The constant 1 has the form

1 : X −→ ∅

for any X .
We take these syntactic expressions modulo a notion of structural con-

gruence, as in the π-calculus and action calculi. We impose the axioms

ϕ · (ψ · θ) ≡ (ϕ · ψ) · θ, 1 · ϕ ≡ ϕ ≡ ϕ · 1

wherever these expressions make sense with respect to the typing with arities
and co-arities.

Thus we are in fact describing a category C(LA). The objects are the
arities—“co-arities” are simply arities appearing as the codomains of arrows
in the category. The arrows are the syntactic expressions modulo structural
congruence; and the composition in the category is sequential composition.

To complete the picture: for the choice connectives, we have

ϕ : X −→ ∅ ψ : X −→ ∅

ϕ⊕α ψ : X −→ ∅

and for role interchange
ϕ : X −→ Y

π̂(ϕ) : X −→ Y
.

For the IF-quantifier we have

∀x/y : X ⊎ {y} −→ X ⊎ {x} ⊎ {y},

which makes explicit the fact that y occurs free in ∀x/y.
The arrows in C(LA) will be the well-formed formulas (both open and

“co-open”) of our logic. In particular, the sentences or closed formulas will
be the arrows of the form ϕ : ∅ −→ ∅.
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4.2 Static semantics revisited

We consider the static semantics of a syntactic constituent ϕ : X → Y . The
A-game JϕK defined as in Section 3.1 remains unchanged. In particular,
atomic formulas are still assigned the empty A-game. The new ingredient
in the static semantics will reflect the intentions behind the arities and
coarities, which we now set out in greater detail. The arity X is the set of
variables being imported (as “free variables”) from the outer environment
by ϕ. Thus an “open formula” in the usual sense will be an arrow of type
X → ∅. The novel feature in our approach to logical syntax, following
Milner’s action calculi, are the co-arities. In ϕ : X → Y , it is useful to write

Y = (X ∩ Y ) ⊎ (Y \X).

Now:

• X∩Y represents those variables imported from the outer environment
which we simply “pass on through” to be imported in turn by the
inner environment. (The variables in X \Y are hidden from the inner
environment.)

• Y \X represents the variables which are being defined by ϕ, and ex-
ported to the inner environment, where they will bind free occurrences
of those variables.

As we have seen, variables bound by quantifiers are interpreted in our se-
mantics by cells where localized decisions can be made. Hence the act of
defining a variable amounts to binding it to a cell. Thus the single new
component in the static semantics of ϕ : X → Y will be a function

bindM : Y \X −→ CM

where M = JϕK. We now show how bind is defined compositionally.

• Atomic formulas, constant 1, choice connectives ⊕α. These
cases are all trivial, since the types are of the form X → ∅, and
∅ \X = ∅.

• Quantifiers Qαx : X → X ⊎ {x}. As we saw in Section 3.1, JQαxK
has a single cell c0. We set

bindJQαxK(x) = c0.

• Parallel Composition ϕ‖ψ : X1 ⊎X2 −→ Y1 ⊎ Y2, where ϕ : X1 →
Y1, ψ : X2 → Y2. Let M = JϕK, N = JψK. We define

bindM‖N (y) =

{

bindM (y), y ∈ Y1 \ (X1 ∪X2)

bindN (y), y ∈ Y2 \ (X1 ∪X2).
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• Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and
ψ : Y → Z. This is the key case. Let M = JϕK, N = JψK. We can
write

Z \X = (Z \ (X ∪ Y )) ⊎ (Z ∩ (Y \X)).

Hence we can define:

bindM·N (z) =

{

bindM (z), z ∈ Z ∩ (Y \X)

bindN(z), z ∈ Z \ (X ∪ Y ).

• Role Interchange π̂(ϕ). Let M = JϕK.

bindπ̂(M) = bindM .

4.3 Interlude: structural congruence

We have already introduced a notion of structural congruence ≡ in defining
the syntactic category C(LA). We now consider the interpretation of the
structural congruence using the static semantics, and the issue of axioma-
tization.

We say that our semantics validates a structural congruence

ϕ ≡ ψ : X −→ Y

if JϕK ∼= JψK, that is if the A-games they denote are isomorphic (in the usual
sense of isomorphism for relational structures).

Proposition 4.1. The following axioms for structural congruence are valid
in the static semantics:

ϕ · (ψ · θ) ≡ (ϕ · ψ) · θ

1 · ϕ ≡ ϕ

ϕ ≡ ϕ · 1

ϕ‖(ψ‖θ) ≡ (ϕ‖ψ)‖θ

1‖ϕ ≡ ϕ

ϕ ≡ ϕ‖1

ϕ‖ψ ≡ ψ‖ϕ

ϕ⊕α ψ ≡ ψ ⊕α ϕ

π̂1(π̂2(ϕ)) ≡ π̂1 ◦ π2(ϕ)

π̂(ϕ⊕α ψ) ≡ π̂(ϕ) ⊕π(α) π̂(ψ)

π̂(Qαx) ≡ Qπ(α)x
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π̂(ϕ · ψ) ≡ π̂(ϕ) · π̂(ψ)

π̂(ϕ‖ψ) ≡ π̂(ϕ)‖π̂(ψ).

Remark 4.2. The following are in general not valid in the static semantics
(which we write colourfully if imprecisely as 6≡):

ϕ⊕α ϕ 6≡ ϕ

ϕ⊕α 1 6≡ ϕ

ϕ⊕α (ψ ⊕α θ) 6≡ (ϕ⊕α ψ)⊕α θ

(ϕ⊕α ψ) · θ 6≡ (ϕ · θ)⊕α (ψ · θ)

ϕ · (ψ ⊕α θ) 6≡ (ϕ · ψ)⊕α (ϕ · θ)

ϕ‖(ψ ⊕α θ) 6≡ (ϕ‖ψ)⊕α (ϕ‖θ)

(ϕ1‖ψ1) · (ϕ2‖ψ2) 6≡ (ϕ1 · ϕ2)‖(ψ1 · ψ2).

Remark 4.3. If we weaken the notion of validity of ϕ ≡ ψ to D(JϕK) ∼=
D(JϕK) (order-isomorphism), then the only one of the above non-equiv-
alences which becomes valid is

(ϕ⊕α ψ) · θ ≡ (ϕ · θ)⊕α (ψ · θ).

Conjecture 4.4. The axioms listed in Proposition 4.1 are complete for
validity in the static semantics.

4.4 Valuations

We are now in a position to give a compositional definition of valuation
functions on outcomes. For each agent α ∈ A we shall fix a set Vα of
values (utilities, payoffs, truth-values . . . ). What structure should Vα have?
In order to express preferences between outcomes, and hence to capture
the classical game-theoretic solution concepts such as Nash equilibrium, we
would want Vα to carry an order structure. For our present purposes, we
need only that Vα carries two binary operations

⊙,⊗ : V2
α −→ Vα

and an element 1 ∈ Vα, such that (Vα,⊙, 1) is a monoid, and (Vα,⊗, 1) is a
commutative monoid.4

4 A plausible general suggestion is to identify these two algebraic structures, and to
take Vα to be a (commutative) quantale, i.e. a sup-lattice-enriched monoid. These
structures have been used fairly extensively in Computer Science over the past 15 years
[AbVi93, Ba4Co0Sa005].
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Now let M : X → Y be an A-game, e.g. M = JϕK, for ϕ : X → Y in
C(LA). Then for each α ∈ A, an α-valuation function will have the form

valM,α : IX ×Max(M) −→ Vα. (1.4)

Note firstly that we are only considering valuations applied to maximal
states, which is reasonable since by Proposition 3.10, these are the only
possible outcomes of evaluating strategy profiles. However, in a more gen-
eral setting where infinite plays are possible, e.g. in the games arising from
fixpoint extensions of LA, one should consider continuous valuations defined
on the whole domain of states D(M).

The form of valM,α expresses the dependency of the valuation both on
the values of the variables being imported from the environment, and on
the final state of play. There are two extremal cases:

1. IfX = ∅, then the valuation simply reduces to a function Max(M) −→
Vα on maximal states. In particular, this will be the case for closed
formulas.

2. If CM = ∅, the valuation reduces to a function IX −→ Vα. This is
exactly the usual kind of function from assignments to variables to
(truth)-values induced by an atomic formula evaluated in a first-order
model M.

By allowing a range of intermediate cases between these two extremes, we
can give a compositional account which, starting with given assignments of
the form (2) for atomic formulas, ends with valuations of the form (1) for
sentences.

We now give the compositional definition of the valuation function. We
use η ∈ IX to range over assignments to variables.

• Atomic formulas. We take the valuation functions IX −→ Vα as
given. Thus atomic formulas are operationally void—no moves, no
plays—but valuationally primitive—generating the entire valuation
function of any complex formula. This seems exactly right.

• Constant 1. We set valJ1K,α(η,∅) = 1.

• Choice connectives ϕ⊕β ψ : X → ∅. Let M = JϕK, N = JNK.

valM⊕βN,α(η, {(c0, 1)} ⊎ s) = valM,α(η, s)

valM⊕βN,α(η, {(c0, 2)} ⊎ s) = valN,α(η, s).

• Quantifiers Qβx : X → X ⊎ {x}.

valJQβxK,α(η, {(c0, a)}) = 1.
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• Parallel Composition ϕ‖ψ : X1⊎X2 → Y1⊎Y2, where ϕ : X1 → Y1,
ψ : X2 → Y2. Let M = JϕK, N = JψK. Note that η ∈ IX1⊎X2 can be
written as η = (η1, η2), where η1 ∈ I

X1 , η2 ∈ I
X2 .

valM‖N,α(η, s) = valM,α(η1, πM (s))⊗ valN,α(η2, πN (s)).

• Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and
ψ : Y → Z. Let M = JϕK, N = JψK.

valM·N,α(η, s) = valM,α(η, πM (s)) ⊙ valN,α(η′, πN (s))

where η′ ∈ IY is defined as follows:

η′(y) =

{

η(y), y ∈ X

s(bindM (y)), y ∈ Y \X.

This is the key case—the only one where the bind function is used.

• Role Interchange π̂(ϕ). Let M = JϕK.

valπ̂(M),α = valM,π−1(α).

4.5 Dynamic semantics revisited

Given an A-game M : X → Y , an α-strategy is a family (ση)η∈IX , where
ση ∈ Clα(M) for all η. The definition of evaluation of strategy profiles is
simply carried over pointwise to these families, so that we get an outcome
for each η ∈ IX . The global definition of the strategy sets Sα(M) can also
be carried over pointwise in a straightforward fashion. However, the explicit
dependence on the values assigned to free variables also creates some new
possibilities, in particular for giving semantics to IF-quantifiers. This is
best discussed in terms of the local definition of information constraints via
visibility functions, to which we now turn.

4.6 Visibility functions, occlusion and IF-quantifiers

We recall that the visibility function for an A-game M : X → Y has the
form

γM : CM −→ [D(M) −→ D(M)]

and assigns a co-closure operator to each cell, specifying the information
which is visible in any state to the agent wishing to fill the cell. We now
augment this with an assignment

OccM : CM −→ P(X).

The idea is that OccM (c) ⊆ X is the set of variables which are occluded
at the cell c; hence the decision made at c cannot depend on the values of
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these variables. This leads to the following refinement of the information
constraint (1.2) on a family of strategies (ση)η. Note firstly that, given
c ∈ CM , with X1 = X \ OccM (c) and X2 = OccM (c), we can write η ∈ IX

as η = (ηc, η¬c), where ηc ∈ I
X1 , η¬c ∈ I

X2 . Now we can write the condition
on (ση)η as follows:

∀η, η′ ∈ IX , c ∈ CM , s ∈ D(M).[ση(s)(c) = σηc,η′
¬c

(γM (c)(s))(c)]. (1.5)

(Here equality of partial functions is intended: either both states are unde-
fined at c, or both are defined and have the same value.)

We now give the compositional definition of the occlusion function (non-
trivial cases only).

1. Choice connectives.

OccM⊕αN(c) =











∅, c = c0

OccM (c), c ∈ CM

OccN (c), c ∈ CN .

2. Quantifiers Qαx : X → X ⊎ {x}.

OccQαx(c0) = ∅.

3. Parallel Composition ϕ‖ψ : X1⊎X2 → Y1⊎Y2, where ϕ : X1 → Y1,
ψ : X2 → Y2. Let M = JϕK, N = JψK.

OccM‖N (c) =

{

OccM (c) ∪X2, c ∈ CM

OccN (c) ∪X1, c ∈ CN .

4. Sequential Composition ϕ · ψ : X → Z, where ϕ : X → Y and
ψ : Y → Z. Let M = JϕK, N = JψK.

OccM·N (c) =

{

OccM (c), c ∈ CM

(X ∩OccN (c)) ∪ (X \ Y ), c ∈ CN .

5. Role Interchange. Occπ̂(M) = OccM .

The only case in the definition of the visibility function which needs to
be revised to take account of the occlusion function is that for sequential
composition:

γM·N (c)(s) =

{

γM (c)(πM (s)), c ∈ CM

(πM (s) \ S) ∪ γN (c)(πN (s)), c ∈ CN

where

S = {(c′, v) ∈ DM | ∃y ∈ (OccN (c) ∩ (Y \X)). bindM (y) = c′}.



Game Semantics for Multi-Agent Logics 41

IF-quantifiers. It is now a simple matter to extend the semantics to multi-
agent versions of the IF-quantifiers. We consider a quantifier of the form
Qαx/Y : X ⊎ Y → X ⊎ Y ⊎ {x}. Thus agent α is to make the choice for x,
and must do so independently of what has been chosen for the variables in
Y . The A-game M = JQαx/Y K is the same as for the standard quantifier
Qαx, as are the bind and val functions. The difference is simply in the
occlusion function:

OccM (c0) = Y.

This is then propagated by our compositional definitions into larger con-
texts in which the quantifier can be embedded, and feeds into the partial
information constraint (1.5) to yield exactly the desired interpretation.

5 Compositionality Reconsidered

The issue of compositionality for IF-logic has attracted some attention5; see
[Hi196]. In [Ho197a], Hodges gives a compositional Tarski-style semantics
for IF logic. The key idea is to work at the level of sets of sets of assignments,
rather than the sets of assignments used in the standard Tarskian semantics.
It is not immediately clear how this relates to our compositional account.

In fact, this highlights an underlying issue which has perhaps thus far
escaped the attention it deserves. One can distinguish two views on how
Logic relates to Structure:

1. The Descriptive View. Logic is used to talk about structure. This
is the view taken in Model Theory, and in most of the uses of Logic
(Temporal logics, MSO etc.) in Verification in Computer Science. It
is by far the more prevalent and widely-understood view.

2. The Intrinsic View. Logic is taken to embody structure. This is,
implicitly or explicitly, the view taken in the Curry-Howard isomor-
phism, and more generally in Structural Proof Theory, and in (much
of) Categorical Logic. In the Curry-Howard isomorphism, one is not
using logic to talk about functional programming; rather, logic (in this
aspect) is functional programming.

The present paper is largely informed by the second point of view, although
we have also provided a basis for the first, in formulating a general com-
positional account of valuations, in terms of which validity and equilibrium
notions can be formulated. Our purpose, as already remarked in the In-
troduction, is not to develop a modal logic (or similar) for talking about
multi-agent games, but rather a logic whose semantics intrinsically has a
structure of multi-agent games. This is in the same spirit as more familiar

5 The discussion in this section was prompted by some insightful remarks and questions
by one of the referees.



42 S. Abramsky

kinds of game semantics. Similarly, our account of IF constructs does not
take the form of a logic which talks about agents with limited knowledge
— hence some kind of epistemic logic — but rather a semantics which is
intrinsically comprised of agents playing strategies subject to partial infor-
mation constraints. These constraints were formalized in two distinct ways,
the local and the global, in Section 3, and these two forms shown to be
equivalent.

The compositionality in our account occurs at several levels, correspond-
ing to the levels of a Curry-Howard style interpretation of a logic (although
we have not formulated a proof system on the syntactic side here):

• Formulas are interpreted by games: this is the “static” part of our
semantics, which is done compositionally.

• Proofs, or witnesses or realizers for the truth, or more generally the
outcomes of formulas, are embodied as strategies for the various play-
ers. These strategies are defined compositionally in one of two ways:
the global way, where the set of strategies for a given agent for each for-
mula is defined in terms of the sets of strategies for the sub-formulas —
this is analogous to realizability definitions; and the local way, where
we take all strategies which satisfy the information constraints for the
given agent — it is now these information constraints which must be
defined compositionally.

• The dynamic aspect of this level of the semantics is given by formal-
izing the notion of playing the strategies in a profile off against each
other to achieve an overall outcome. This definition, while made in
a mathematically elegant denotational style, directly captures the op-
erational content of the idea of agent interaction. It corresponds to
the proof-theoretic dynamics of Cut-elimination, or to the realizability
dynamics of applying a recursive function.

• Finally, the valuations of the outcomes, from the point of view of each
agent, are defined compositionally. This requires a proper treatment
of the binding of variables to cells, and hence the developments of
Section 4.

6 Further Directions

There are numerous further directions which it seems interesting to pursue.
We mention a few:

• Some extensions are quite straightforward. In particular, an extension
of LA with fixpoints

µP (x1, . . . , xn). ϕ(P )
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can be considered. The standard theory of solutions of domain equa-
tions over CDS [Ka0Pl193] can be used to extend the static semantics
to such fixpoint formulas. Moreover, our semantic constructions work
for arbitrary CDS with infinite states. The only point which needs
to be reconsidered in this setting is how the valuation functions are
defined. The best idea seems to be to define valuations on all states,
not only maximal ones. The value space should itself include partial
values and form a domain, and the valuation function should be con-
tinuous. For example, we could take Vα to be the interval domain
I[0, 1] on the unit interval.

An extension to full second-order logic, although technically more de-
manding, is also possible [AbJa105].

• What is the full spectrum of possible connectives which can be used
to explore the resources of our semantics? The logic LA we have
introduced is quite natural, but this question remains wide open. Here
is one precise version:

Question 6.1. Which set of connectives and quantifiers is descrip-
tively complete, in the sense that every finite CDS is the denotation
of a formula built from these quantifiers and connectives?

Another dimension concerns the information-flow structures and con-
straints expressible in the logic. The multiplicative connectives for
sequential and parallel composition which we have studied are very
basic. The parallel composition corresponds to the Linear Logic ⊗.
The Linear Logic O does allow for information flow between the par-
allel components; and there are surely a whole range of possibilities
here.

Problem 6.2. Classify the possibilities for multiplicative connectives
and information-flow constraints in the semantic space of concurrent
games and strategies.

As one illustration, consider a connective M � N which combines
features of sequential and parallel composition. TheA-game is defined
as for M‖N , while the visibility function γM�N is defined as for M ·N .
Play can proceed concurrently in both sub-games; there is information
flow from M to N , but not vice versa.

• We have only considered deterministic strategies in this paper. Mixed,
non-deterministic, probabilistic, and perhaps even quantum strategies
should also be considered.
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• The whole question of proof theory for the logic LA has been left open.
In a sense, we have given a semantics of proofs without having given
a syntax! How multi-agent proof theory should look is conceptually
both challenging and intriguing.

• Viewed from a model-theoretic perspective, IF-logic seems dauntingly
complex. Our more intensional and operational view may offer some
useful alternative possibilities. Just as the shift from validity to model-
checking often replaces an intractable problem by an efficiently solv-
able one, so the shift from model-theoretic validity or definability of
IF-formulas to constructing, reasoning about and running strategies
for concurrent games described by proofs of formulas seems a promis-
ing approach to making this rich paradigm computationally accessible.

• We may also seek to put our compositional analysis to use in ana-
lyzing game-theoretical equilibrium notions in a multi-agent, partial
information setting. It may be that the tools we provide would facili-
tate an analysis by decomposition into subgames in a wider range of
settings than classical game-theoretic methods allow.

• The logic and semantics we have developed appears to flow from very
natural intuitions. These should be supported by a range of convincing
examples and applications.
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Abstract

We study a system of modal logic for representing and reasoning in
multi-agent systems. Building on dynamic action logic and Henkin
quantifiers, we introduce a class of operators that present important
features for capturing concurrency, independence, collaboration, and
co-ordination between agents. The main goal of the paper is to intro-
duce the formal semantics of these operators and to show how they
can model different types of agents. This yields a way to directly com-
pare a variety of phenomena in multi-agent systems. Some examples
are given.

1 Introduction

For about 20 years we have witnessed an increasing interest in the formal
study of phenomena comprising several entities which present independent
and autonomous behavior like software agents, human beings, biological
entities, social organizations, robots and stock markets [We199].

In this research area, the issue of (true) concurrency has special interest
since it puts at the center phenomena where several entities act simultane-
ously perhaps affecting each other. This issue is coupled with the need to
formalize group collaboration as well as group dynamics. Another challenge
is the formalization of the independence of an agent from the others and
from the groups of which it is a member. Modelling the choices an agent
makes or can make depending on its “internal” status, its beliefs about
the external world, its knowledge about (and relationship with) other enti-
ties/agents is at the center of many representation problems.

The usual logical machinery often requires the coexistence of logical op-
erators (dynamic, temporal, epistemic, and deontic) in one and the same
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Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
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University Press 2007, pp. 49–69.
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language [vHVe202, vHWo303]. This strategy is not satisfactory because
of the complexity of the logical systems thus obtained [Be0+02, vHWo303].
Furthermore, these logics are hard to compare to the point that the unifor-
mity of the very phenomena at stake is lost in the different formalizations.
An example is given by logics like ATL [Al2He2Ku102], CL, ECL [Pa702],
ATEL [vHWo302], and STIT logic [Ho601, Br2He3Tr05] which deal with
roughly the same type of scenario [Go2Ja204, Wö04].

Our work focuses on the formalization of multi-agent systems with par-
ticular emphasis on concurrency, independence, collaboration, and coordi-
nation issues. Our ideal scenario comprises a fixed set of agents that indi-
vidually or in group, isolately or co-ordinated, take actions simultaneously
and in this way determine the transitions between states of the system. The
main goal of the paper is to show that the language we have developed has
several natural interpretations which allow us to capture different types of
agents while maintaining the very same syntax. The novelty is given by a
new type of operators that combines modality with quantification. For this
reason, these operators are called quantificational modal operators.

In this approach, we take a general perspective and do not limit our
work to a specific notion of agent (and so we are not going to give one).
Note that, for presentation purposes, we often describe the agents as having
some degree of rationality. This is not necessary but it helps in convey-
ing the meaning of the operators. Also, in this paper we do not discuss
proof-theoretical properties of the resulting logics. These interpretations
correspond to quite different axiomatic systems and here we lack the space
for their analysis. The interested reader can find in [Bo105b] an axiomatic
presentation of one of these systems. Finally, note that in this study we
shall always stick to two-valued semantics.

Structure of the paper. Section 2 first introduces the propositional frag-
ment of the logic by defining the constant modal operators and, secondly,
extends them with free variables. In Section 3, we present the full language
by introducing the quantificational modal operators and then study alter-
native interpretations for one-column operators. In Section 4 we briefly
discuss the extension of these semantics to multi-column operators. The
following section looks at a couple of examples. Finally, Section 6 relates
our work to other logical approaches and adds some final remark.

2 Basic modalities for MAS

The modalities we want to study can be seen as an extension of Dynamic
Action Logic, that is, the application of Dynamic Logic (DL) [Ha1Ko6Ti100]
to model actions. Similarly to DL, our basic operators, called constant
modal operators, are modalities indexed by constant identifiers (denoting
actions). However, these operators differ from those of DL in two aspects:
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syntactically they require several constant identifiers to individuate even the
simplest modalities, and semantically they are not associated to a unique
interpretation.

In a system of two agents, say A1 and A2, our modal operators have
the shape of a 2× n matrix (n > 0) where the first row lists the (constants
denoting the) actions performed by agent A1, in the order of their execution,
and the second row lists the actions performed by agent A2. For instance
the expression [ c1 c3

c2 c4
] is a modality corresponding to the state transition

identified by the concurrent execution of action c1 (by agent A1) and c2
(by agent A2) followed by the concurrent execution of action c3 (by agent
A1) and c4 (by agent A2). Each entry of the matrix denotes an action and
the combination of these actions characterises the meaning of the modal
operator by identifying, in the usual Kripke style semantics, the accessibility
relation associated with that operator.

More generally, an operator in the shape of a k×n matrix is a modality
for a system with k agents. It is always assumed that the number of rows in
the operators matches the number of agents in the system (as a consequence
all the operators in a language have the same number of rows). Also, each
agent is associated to the same row in all operators.

We now state this formally:
Let PropId be a non-empty countable set, the set of proposition identi-

fiers. Let ActId (disjoint from PropId) be a non-empty countable set whose
elements are called action identifiers. These are the individual constants
of the language. Following standard modal logic, complex formulas are
generated inductively from proposition identifiers through the connectives
of implication (→) and negation (¬), and the modal operators described
below. As usual, we shall make use of the standard conventions for ∧,∨,↔.

Fix an integer k ≥ 1 which, informally, is the number of agents in the
system. A constant modality marker1 for k is a k × n-matrix (n ≥ 1)

M =

a11 a12 ··· a1n
a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

where aij ∈ ActId (aij , amn not necessarily distinct).
A constant modal operator for k is an expression [M ] where M is a

constant modality marker for k.

The set of k-formulas (formulas for short) is the smallest set Fk satisfying:

I) PropId ⊆ Fk (the elements of PropId are called atomic formulas),

II) If ϕ and ψ are in Fk, then so are ¬ϕ and ϕ→ ψ,

1 Elsewhere we have been calling these constant modality identifiers.
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III) If [M ] is a constant modal operator for k and ϕ is in Fk, then [M ]ϕ is
in Fk also.

The semantics is as follows:
Fix a set Act of actions, we call k-action an expression in the shape

of a k × n matrix (n ≥ 1) over Act. A k-agent Kripke frame is a triple
K = 〈W,Act;R〉 where W is a non-empty set (the set of states), Act is a
non-empty set (the set of actions), and R is a function mapping k-actions

(over Act) of size k × 1 to binary relations on W , R

(

α1

...
αk

)

⊆W ×W.

A k-agent Kripke structure is a tuple M = 〈W,Act;R, J·K〉 where
〈W,Act;R〉 is a k-agent Kripke frame and J·K is a function (the valuation
function) such that JpK ⊆W for p ∈ PropId and JaK ∈ Act for a ∈ ActId.

Let us write A1 for the first agent, . . . ,Ak for the kth agent. If agent A1

performs the action denoted by a1, agent A2 the action denoted by a2, . . . ,

agent Ak the action denoted by ak, we write





a1

a2

...
ak



 for the modal operator

describing the evolution of the system which is determined by the concurrent
execution of actions Ja1K, . . . , JakK by agents A1, . . . ,Ak, respectively. That

is, the interpretation of





a1

a2

...
ak



 is k-action

Ja1K
Ja2K
...

JakK

.

Function J·K is extended inductively to multi-column operators in the
language as follows: if [A] is a multi-column operator obtained by juxtapo-
sition of constant modality markers B and C (i.e. [A] = [BC]), then we put
R(JAK) = R(JBK) ◦R(JCK). More formally,

u

v

a11

a21

...
ak1

}

~ =def

Ja1K
Ja2K
...

JakK

;

u

v

a11 a12 ··· a1n
a21 a22 ··· a2n

...
...

...
ak1 ak2 ··· akn

}

~ =def

u

v

a11

a21

...
ak1

}

~

u

v

a12

a22

...
ak2

}

~
...

u

v

a1n
a2n

...
akn

}

~

Note that we write JMK instead of J[M ]K.

The truth value of a formula is defined inductively:

1. Let p ∈ PropId, then M, s |= p if s ∈ JpK

2. M, s |= ¬ϕ if M, s 6|= ϕ

3. M, s |= ϕ→ ψ if M, s 6|= ϕ or M, s |= ψ

4. M, s |= [A]ϕ if M, t |= ϕ for all t ∈W such that (s, t) ∈ R(JAK)
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A k-agent Kripke model for a set of formulas Σ in the language is a
k-agent Kripke structure M such that all formulas ϕ ∈ Σ hold in all states
of M (i.e., are valid in M).

As anticipated, the language here presented modifies the basic fragment
of DL. However, the major novelty, we believe, lies in the change of per-
spective it pushes for: we need k action identifiers (or multiples of k) to
describe the evolution of the whole system since only the combination of all
concurrent actions can provide this information. Also, this formalism pro-
vides a more acceptable notion of action since the outcome of the execution
of α ∈ Act by an agent is not determined by α alone.

Now we extend the constant operators by allowing the occurrence of
free variables. This extension is a first step to introduce quantificational
operators, a move we shall motivate in next section.

Fix a new set Var = {x, y, z, . . .} of variables. Let ℑ be an environment
function from the set Var to the set Act and let a modality marker be any
k×nmatrix defined as before but this time with condition ai,j ∈ ActId∪Var
(for all relevant indices i, j). The extension of the set of k-formulas Fk to
include these modalities is trivial. Their interpretation requires the new
function ℑ, that is, now relation |= is defined over the triple M, s,ℑ. For
instance, clause 4. becomes: M, s,ℑ |= [M ]ϕ if M, t,ℑ |= ϕ for all t ∈ W
such that (s, t) ∈ R(JMK) where JxK = ℑ(x) when x ∈ Var. The remaining
clauses are analogous to 1–3 above.

3 Quantificational modal operators

Our next goal is the introduction of quantificational modalities in the logic
of Section 2. The basic idea is to enrich modality markers with a form of
generalized quantifiers introduced by Henkin in [He161].

Henkin quantifiers are matrices of standard quantifier prefixes2 such as

(

∀x1 ∃x2 ∃x3

∃y1 ∀y2 ∃y3

)

. (1.1)

Syntactically these are unary operators, that is, if (H) is a Henkin quan-
tifier and ϕ is a formula, then (H)ϕ is a formula as well. There is no re-
striction on the number or position of the quantifiers ∀ and ∃ in the matrix
but no variable may occur more than once.

It is well known that Henkin quantifiers are more expressive than stan-
dard quantifiers [Kr2Mo495] and we take advantage of their strength to
ensure row independence in the modalities (which, in turn, models the
independence of the agents from each other). Consider a modality with

2 We follow common practice and use the term ‘Henkin quantifiers’ although these are,
properly said, Henkin prefixes. Also, note that the matrix form can be relaxed as we
do in formula (1.3) below.
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constants and free variables (as described at the end of Section 2), say

[

x1 a x3

y1 y2 y3

]

p0. (1.2)

The occurrence of a free variable in entry A(i, j) of the matrix suggests
that the jth action that agent Ai is going to perform has not been fixed. One
can leave it undetermined meaning that this action depends on the model’s
environment function. Alternatively, one may want the agent herself to
decide which action to perform. In the latter situation, we want to model
whether the agent decides in favor or against the realization of p0 since p0

is implicitly ‘proposed as a goal’ by that modal formula. For this reason,
we combine modal operators and (a version of) Henkin quantifiers as in the
following expression

(

∃x3

∃y1 ∀y2 ∃y3

) [

x1 a x3

y1 y2 y3

]

p0 (1.3)

where, of course, each agent is associated to the same row in both the Henkin
quantifier and the modality. In this expression, a free variable xh in position
(i, j) indicates that the agent Ai at step j performs the action ℑ(xh), i.e.,
the action determined by the model’s environment function. A constant c in
position (i, j) indicates that the agent Ai at step j performs the action JcK.
Finally, a quantified variable xh in position (i, j) indicates that the agent
Ai chooses what to perform at step j and the specific quantifier marks the
attitude of that agent (at this time-step) toward formula p0. More precisely,
if ∃xh occurs, at time-step j agent Ai chooses an action with the intention
of making p0 true. Instead, if ∀xh occurs, the same agent chooses an action
randomly.3

Here we propose a restriction of this language that consists in merging
Henkin quantifiers and modality markers into a unique operator, called
quantificational modal operator. Thus, instead of formula (1.3) we write

[

x1 a ∃x3

∃y1 ∀y2 ∃y3

]

p0. (1.4)

Following the above discussion, we shall say that p0 is a goal for agent Ai

at time j if an existentially quantified variable occurs at position (i, j) of
the modality, and that p0 is not a goal (at that time for that agent) if an
universally quantified variable occurs instead.

Definition 3.1. A quantificational modality marker is a k× n matrix with
each entry containing an action identifier, a variable, or a quantified variable

3 Informally, she chooses according to her goals. The occurrence of ‘∀’ tells us that p0 is
not a goal for this agent when choosing at this position in the matrix. Thus, from the
local perspective given by the formula one can think that the agent chooses randomly
at time-step j. A view that further justifies our adoption of the symbols ∀ and ∃.
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provided a variable occurs at most once in a marker. A quantificational
(modal) operator is an expression [M ] whereM is a quantificational modality
marker.

We write QOP for the set of quantificational modal operators, OP for
the quantificational operators where no variable occurs quantified.

The set Fk of k-formulas is defined as in Section 2 but in clause III)
we now use the larger class of quantificational operators. The scope of
the modal operator is the formula to which it applies. The scope of a
quantifier in a modal operator is the scope of the modal operator itself.4

Note that we inherit from the Henkin quantifiers the general proviso on
variable occurrence in quantificational modality markers (and equivalently
in quantificational modal operators).

It remains to discuss the semantics of this language. Below, we inves-
tigate alternative interpretations for the quantificational operators starting
with one column modalities. We anticipate, at the informal level, that the
interpretation in a structure M = 〈W,Act;R, J·K〉 of a quantificational op-

erator, say
[

x1 a ∃x3

∃y1 ∀y2 ∃y3

]

, takes two steps. In the first step one interprets

formula
(

∃x3

∃y1 ∀y2 ∃y3

)

ϕ with ϕ =
[

x1 a x3

y1 y2 y3

]

p0. The second step amounts

to the evaluation of the formula
[

x1 a x3

y1 y2 y3

]

p0 obtained by using the values

chosen at the first step for the interpretation of the bound variables. The
precise formulation in different cases (all restricted to one-column operators)
is given below. Note also that we restrict our examples to two-agent sys-
tems. However, the argument is easily generalized to an arbitrary number
of agents.

3.1 Risk-averse co-ordinated agents

We begin with an interpretation that follows from the classical meaning
of the quantifiers ∃ and ∀. This view relies on what actions exist without
considering agents’ strategies or capacities.

Fix a structure M for two agents, say A1 and A2, and let JbK = β. First,

we look at
[

∃x

b

]

p0. This formula holds at a state s if and only if there exists

an action α such that p0 is true at all states t with (s, t) ∈ R
(

α

β

)

. Such a

formula is read: “there exists an action α such that after agent A1 executes
α and (concurrently) agent A2 executes β, p0 holds”. Similarly, formula
[

∀x

b

]

p0 corresponds to: “for any action α, after agent A1 executes it and

4 It follows from the previous discussion that a quantified variable in the modal operator
stands for a quantifier prefix (bounding the occurrences of the variable in the scope of
the modality) and for a bound occurrence of that very variable (whose value is needed
in this position to interpret the modal operator itself).



56 S. Borgo

(concurrently) agent A2 executes β, p0 holds” since it is true at a state s if

and only if for all actions α, p0 is true at all states t with (s, t) ∈ R
(

α

β

)

.

If we assume that the agents form a coalition or, more generally, are

coordinated whenever they both have p0 as goal, we have that
[

∃x

∃y

]

p0 is

true if there exist actions α and β (not necessarily distinct) such that p0

holds in all states reachable through
(

α

β

)

. The meaning of formula
[

∀x

∀y

]

p0

is now obvious: it is true if p0 is true in any state reachable from s via any
transition.

An important issue arises when considering operators where both quan-

tifiers occur as, for instance, in formula
[

∀x

∃y

]

p0. To establish the truth

value of this formula at a given state we have two options. One can verify
that a value β for y exists such that p0 is true in all states reachable through
(

α

β

)

for any α. An alternative is to state the formula true if for every action

α, there exists β such that p0 is true in all states t with (s, t) ∈ R
(

α

β

)

.

By embracing the first interpretation, one extends the semantics of Sec-
tion 2 with the following clause for quantificational one-column operators
(for multi-column operators further issues must be addressed, see Section 4):

51. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and universally quantified
variables y1, . . . , ys (r, s ≥ 0). Then M, s,ℑ |= [X ]ϕ if:
there exist α1, . . . , αr ∈ Act such that for all β1, . . . , βs ∈
Act, if Γ is the k-action obtained by substituting αi for ∃xi,
βj for ∀yj , and JchK for each action identifier or free variable
ch in [X ] (for all relevant indices i, j, h), then for all (s, t) ∈
R(Γ), M, t,ℑ∗ |= ϕ where ℑ∗(xi) = αi, ℑ

∗(yj) = βj , and
ℑ∗(z) = ℑ(z).

This semantic clause puts strong constrains on the (one-column) modal
operators to the point that it suffices to enrich the basic language of Sec-
tion 2 with the quantifiers of standard first-order logic to eliminate the need
of quantificational modalities. Indeed, clause 51 corresponds to the inter-
pretation obtained by replacing quantified variables in the operator with a
sequence of standard quantifiers as shown, in a two-agent system, by the
following function τ1:

p
τ17−→ p (for p atomic) (11)

¬ϕ
τ17−→ ¬τ1(ϕ) (21)

ϕ→ ψ
τ17−→ τ1(ϕ) → τ1(ψ) (31)
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[

∀x
∀y

]

ϕ
τ17−→ ∀x, y

[

x
y

]

τ1(ϕ) (41)
[

∃x
∀y

]

ϕ
τ17−→ ∃x∀y

[

x
y

]

τ1(ϕ) (51)
[

∀x
∃y

]

ϕ
τ17−→ ∃y∀x

[

x
y

]

τ1(ϕ) (61)
[

∃x
∃y

]

ϕ
τ17−→ ∃x, y

[

x
y

]

τ1(ϕ) (71)

We dub the agents satisfying clause 51 the risk-averse co-ordinated
agents: “risk-averse” because they choose independently of others’ deci-
sions as τ1 makes clear in (51) and (61). They are “co-ordinated” because,
whenever they have a common goal, if possible they execute actions that
combined allow them to reach that goal: case (71). Indeed, if agents A1 and
A2 aim at making a formula true, then they behave like a coalition.

Note that the following formula-schema holds for clause 51:







...
∀x
...






p0 →







...
∃x
...






p0.

3.2 Isolated agents

Let us go back to formula
[

∃x

b

]

p0. We now want to interpret this formula as

saying that at a state s agent A1 can choose an action α such that p0 is true

at t for all (s, t) ∈ R
(

α

β

)

. That is, this time formula
[

∃x

b

]

p0 corresponds

to reading “agent A1 can choose an action such that after agent A1 executes
it and (concurrently) agent A2 executes β, p0 holds”.

Regarding formula
[

∀x

b

]

p0, informally here we read it as follows: “no

matter the action that agent A1 can choose, after agent A1 executes it and
(concurrently) agent A2 executes β, p0 holds”. Since we do not put re-
strictions on the actions an agent can choose or execute, all the actions are
possible and must be considered to evaluate the truth value of this formula,
i.e., we end up with the following reading: “after agent A1 executes some
action and (concurrently) agent A2 executes β, p0 holds”.

The meaning of
[

∀x

∀y

]

p0 is quite natural at this point: “no matter which

action agent A1 executes and (concurrently) which action agent A2 executes,
p0 holds in the reached states”. That is, with the above assumptions, the
notion of ‘choice’ does not affect the meaning of ‘∀’. For operators where

both quantifiers occur, consider first
[

∀x

∃y

]

p0. Here if the agents choose
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independently (not knowing each other’s doing), for the formula to be true
the second agent has to find an action β such that for all actions α and all

(s, t) ∈ R
(

α

β

)

, p0 holds at t. Analogously, for
[

∃x

∀y

]

p0.

Finally, formula
[

∃x

∃y

]

p0 is true if the agents can choose actions, say α

and β (possibly the same), such that p0 is true at any state t such that

(s, t) ∈ R
(

α

β

)

, i.e. “for all choices α made by A1 and all choices β made by

A2, after A1 has executed α and A2 has (concurrently) executed β, p0 holds”.
From our reading, we know that A1 and A2 have p0 as (common) goal and,
similarly to Section 3.1, we may further establish that they co-operate (or
not). However, now we are not in a position to provide a formal definition
yet. It remains to be explained what it means that the very agents ‘can
choose’.

For the time being, let us assume that

1) all elements in the quantificational modal operators (in particular, all
action identifiers) are known to all agents

2) all agents choose independently and without communicating (in partic-
ular, they do not co-operate nor co-ordinate)

The goal is to extend the semantics of Section 2 to formulas with quantifi-
cational operators in such a way that these assumptions are captured.

First, we fix a new function C, called choice function. The intent is that C
codifies the behavior of the agents by providing the choices the agents make.
Function C takes as arguments: (1) the modal operator, (2) its scope formula
and (3) the variable x, which implicitly gives the agent’s index i.5 Also,
since the choices of the agents may depend on their knowledge about the
state of the system and other agents’ actions, we furnish C with two further
arguments: (4) the actual state w and (5) subsets of {1, . . . , k}×Var×Act.
The reason for this last argument will be discussed in Section 3.3. On
input ([M ], ϕ, x, w,K), with K ⊂ {1, . . . , k} × Var × Act, C returns pairs
(x, α) ∈ Var × Act.6 Thus, given a variable x in row i of a formula ϕ, C
provides the agent Ai’s choice(s) for this variable taking into account other
information like the actual state. (Since argument (5) is not relevant in this
section, for the time being we take K = ∅.)

5 More generally (as will be seen later), C takes sets of variables as third argument thus
we should write {x}.

6 For each x occurring in the third argument, C returns one or more pairs (x, α) with
α ∈ Act. Admittedly, one may want to generalize the choice function even further to
capture some special case. However, the one we have introduced here suffices for a
large class of multi-agent systems.



Quantificational Modal Operators 59

52. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and with universally quan-
tified variables y1, . . . , ys (r, s ≥ 0). Then, M, s,ℑ |= [X ]ϕ
if: for all α1, . . . , αr ∈ Act such that αi ∈ C([X ], ϕ, xi, s,∅)
and for all β1, . . . , βs ∈ Act, if Γ is the k-action obtained
by substituting αi for ∃xi, βj for ∀yj , and JchK for each
action identifier or free variable ch in [X ] (for all relevant
indices i, j, h), then for all (s, t) ∈ R(Γ), M, t,ℑ∗ |= ϕ
where ℑ∗(xi) = αi, ℑ

∗(yj) = βj , and ℑ∗(ch) = ℑ(ch).

Let ~α = α1, . . . , αr and ~α′ = α′
1, . . . , α

′
r be two r-tuples in Act. A fusion

of ~α and ~α′ is a r-tuple ~α′′ = α′′
1 , . . . , α

′′
r , where α′′

i ∈ {αi, α
′
i}.

Proposition 3.2. If both ~α and ~α′ satisfy the condition in clause 52, then
any fusion of ~α, ~α′ satisfies it as well.

Informally, this property shows that the agents described by clause 52 can-
not communicate and, consequently, we say that the agents described by
this clause are isolated.

Unlike in the previous section, in the semantics given by 52 formulas













...
∃x
...
∀y
...













p0 →













...
∃x
...
∃y
...













p0 ;













...
∃x
...
a
...













p0 →













...
∃x
...
∃y
...













p0 (1.5)

are not valid since the choice function C may be sensitive to the occurrences
of quantifiers in [X ]. This result is motivated by the following scenarios.

Two people, R1 and R2, are celebrating some achievement. R1 brought
a cake for the occasion. We write p0 for “the cake is sliced.”

In the first scenario, R2 does not care about cutting the cake and this
is known to R1. A formula that correctly models this situation contains
a quantificational operator with an existential quantifier in the first row
(the row associated to R1). The different attitude of R2 is described by the
occurrence of an universal quantifier in the second row. The formula is:
[

∃x

∀y

]

p0. Things change if R2 also wants the cake to be cut. This second

scenario is described by the formula
[

∃x

∃y

]

p0.

We now use these scenarios to prove that formula
[

∃x

∀y

]

p0 →
[

∃x

∃y

]

p0

fails. In the antecedent
[

∃x

∀y

]

p0, R1 has the goal of getting the cake cut.

Since the other agent does not have such a goal, R1 chooses to execute
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Figure 1. The ‘cake slicing’ frame (The actual state is double circled.)

the action ‘cut the cake’ which ensures the satisfaction of p0 in the next
state. In the consequent, R1 and R2 have the same goal and this is common
knowledge because of point 1) of page 58. Since they both have the same
goal, R1 chooses not to cut the cake to let R2 do the honors. For the same
reason, R2 decides not to cut the cake. Since nobody performs the action of
cutting the cake (recall this is a single time-step with concurrent actions)
the consequent formula turns out to be false. (Clearly, one can reformulate
the example using an action like ‘write in memory slot #321’ which fails
whenever two agents try to perform it at the same time.)

Let us see how function C looks for these agents.
The attitude of both agents can be described by the informal rule “cut

the cake unless somebody else is willing to do it”. In a structure as depicted
in Figure 1 where p0 is false at s and true at s′, and the possible actions
are c, ε (c stands for “cut the cake” and ε for “do nothing”), function C is
given by

• C([ ∃x

∀y

]

, p0, x, s,∅
)

= {(x, c)}

(agent R1, who has to decide the value of x, chooses c since agent R2

is not committed to get the cake cut as recognizable by the universal
quantifier in the second row);

• C([ ∃x

∀y

]

, p0, y, s,∅
)

= {(y, c), (y, ε)}

(agent R2 may perform any action since p0 is not her goal);

• C([ ∃x

∃y

]

, p0, x, s,∅
)

= {(x, ε)}

(agent R1 decides not to cut the cake: R2 is going to ensure it since it
is her goal as recognizable by the existential quantifier in the second
row);

• C([ ∃x

∃y

]

, p0, y, s,∅
)

= {(y, ε)}

(agent R2 decides not to cut the cake: R1 is going to ensure it since
it is her goal as recognizable by the existential quantifier in the first
row).
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Function C provides a new parameter in the interpretation of the quan-
tificational operators. Clause 52 is thus a schema that matches a variety of
k-agent systems depending on the parameter C and relationship |= should
have C as index. Note that, due to the complexity of behaviors that functionC may encode, it is not possible to discharge quantificational operators in
this semantics. The analogous of function τ1 of Section 3.1 that is faithful
for 52 may not exist.

Clause 52 is more general than 51. In particular, C can formally capture
cooperation. The collaboration among the agents is obtained by taking the
whole set of variables of the collaborating agents as third argument for C.
That is, C provides the variable instantiations for all the agents at once by
outputting a set {(x1, α1), . . . , (xr , αr)}. We do not discuss the import of
assumptions 1) and 2) further. Instead, below an alternative semantics is
given since it sheds light on another issue.

3.3 Optimistic co-ordinated agents

In the discussion of Section 3.1, we mentioned two interpretations for the
operators where both universal and existential quantifiers occur. One leads
to clause 51. The other interpretation is rendered by a different function,
here called τ3, whose definition follows from that of τ1 provided cases (51)
and (61) are substituted by

[

∃x
∀y

]

ϕ
τ37−→ ∀y∃x

[

x
y

]

τ3(ϕ) (53)
[

∀x
∃y

]

ϕ
τ37−→ ∀x∃y

[

x
y

]

τ3(ϕ), (63)

respectively.

Here is the semantic clause that matches function τ3:

53. Let [X ] be a quantificational operator with existentially
quantified variables x1, . . . , xr and universally quantified
variables y1, . . . , ys (r, s ≥ 0). Then
M, s,ℑ |= [X ]ϕ if: for all β1, . . . , βs ∈ Act, there exist
α1, . . . , αr ∈ Act such that if Γ is the k-action obtained
by substituting αi for ∃xi, βj for ∀yj , and JchK for each
action identifier or free variable ch in [X ] (for all relevant
indices i, j, h), then for all (s, t) ∈ R(Γ), M, t,ℑ∗ |= ϕ
where ℑ∗(xi) = αi, ℑ

∗(yj) = βj , and ℑ∗(z) = ℑ(z).

This clause captures the simple possibility for a given formula to be true.
For instance, consider the paper/scissor/stone game. If p0 stands for “A1

wins”, then formula
[

∃x

∀y

]

p0 is valid according to this latter semantics and
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tells us that one has always a chance to win a play of this game. However,
the same formula is false for 51 since that clause requires the existence of a
winning strategy for each possible play.

As before, one can restate clause 53 using function C explicitly. In
this case the fifth argument of C is crucial. This argument provides ex-
tra knowledge that the agents have while making their choices. In clause
53, the agents choosing for the existentially quantified variables are aware
of the choices made for the universally quantified variables even though
they are done concurrently. This information is provided by set K =
⋃

h{(h, y1, β1), (h, y2, β2), . . . , (h, ys, βs)} where h ranges over the indeces
of the agents associated to a universally quantified variable (such a gener-
ality allows us to directly extend the function to multi-column operators).
Co-ordination is ensured by providing the whole set of variables x1, . . . , xr

as third argument as we have seen in the reconstruction of 51 within clause
52.

We dub the agents satisfying 53 the optimistic co-ordinated agents.

We conclude this section with an observation. The difference between
clause 51 and 53 corresponds to the difference between α-ability (effective-
ness) and β-ability applied to coalitions (cf. [vHWo305] and the references
therein). It is fairly easy to rewrite schema 52 and the conditions on pa-
rameter C to capture β-ability.

4 Knowing the past, reasoning about the future

Consider a constant two-column7 operator
[

c1 c3

c2 c4

]

, call it [C]. From the

definition of the valuation function and clause 4 of Section 2, multi-column
constant operators split into simpler operators without loss of information.
The following formula is valid

[

c1 c3

c2 c4

]

ϕ ≡
[

c1

c2

] [

c3

c4

]

ϕ.

This equivalence does not hold for quantificational operators though, i.e.
in general

[M1M2]ϕ 6≡ [M1][M2]ϕ (M1,M2 ∈ QOP). (1.6)

One reason is that the order of instantiation of quantified variables may

change in the two formulas. For instance, evaluating formula
[

∃x1 ∀x2

∀y1 ∃y2

]

ϕ

with clause 51 we instantiate first variables x1, y2 and only later x2 and y1.
The instantiation order for the same clause becomes x1, y1, y2, x2 when we

7 We give examples using two-column operators. The generalization to n-column oper-
ators is often straightforward although some care is needed.
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consider formula
[

∃x1

∀y1

] [

∀x2

∃y2

]

ϕ. This is not so for other semantic alterna-

tives and one is free to adopt or reject a constraint like (1.6) by selecting
an appropriate semantics.

It should be clear by now that to establish the truth value of a formula
where the constant operator [C] occurs, it is necessary to consider all the
action identifiers (and their positions) occurring in [C]. For instance, know-
ing that c1, c3 are the actions executed by agent A1 (in that order) does not
suffice to know which states are reachable.

Informally, the formula
[

c1 ∃x
c2 c4

]

p0 means: “first, agent A1 executes c1

and (concurrently) agent A2 executes c2, then agent A1 chooses and executes
an action and (concurrently) agent A2 executes c4”. In the light of the
previous section, one can interpret the existential quantifier in different
ways. The set of choices for x will depend on what agent A1 knows about

the formula itself and in particular about operator
[

c1 ∃x
c2 c4

]

. For if she is

aware of the presence of c1, c2, c4 and of their positions, she can use the
semantic clauses to verify if there is an action that executed after c1, forces
the system to states satisfying p0. Agent A1 might rely on default rules (or
preferences) when she lacks some information about the components of the
operator.

To establish the truth value of the formula, it is important to state what
agent A1 knows (or does not know) about the operator. Several options are
possible. For instance, assuming perfect recall, one can assume that agent
A1 is aware that c1 is in position (1,1) of the modality marker since she
has just executed that action. If A1 and A2 are totally isolated agents, then
one can assume that agent A1 has no information about what A2 has done
earlier, that is, she has no knowledge on the content of position (2,1) of the
operator. Analogously for A2. If A1 and A2 are isolated but can observe each
other’s doings, at entry (1, 2) agent A1 knows that c2 is in position (2,1).
For the simple reason that A1 and A2 act concurrently, agent A1 does know
what A2 is going to execute as second action only if they are co-ordinating
or action c4 is public knowledge.8 We conclude pointing out that also the
quantifiers occurring in the operator may be hidden. After all, an agent
may be aware or unaware of the changes of attitude in the other agents at
different times including, perhaps, her own (past or future) changes.

8 Most of these features are captured using the fifth argument of function C. Also,
note that in Section 2 we implicitly assumed that the action identifiers in the quan-
tificational operator are known to all the agents, they are public knowledge. This
assumption is dropped here. Indeed, one may have a commitment to do a specific
action ci at some point and prevent other agents from knowing it or knowing when
that action will take place. The semantic clauses we introduced can be modified to
mirror these cases.
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5 Modeling with quantificational operators

Our first example is in the area of planning. There are two agents, say
Anthony (A1) and Bill (A2), and a project that must be finished by a certain
time. Let us say that there are 3 time-steps before the deadline (step-1, step-
2, and step-3) and that Anthony cannot work at the project at time-step 1
since at that time he has to meet his doctor. We use action identifier a for
the action Anthony does at this step. Later, he is working full time on the
project. Regarding Bill, he will work on the project except at the time-step
2 when he has to meet with the office manager. Bill does not know what the
meeting is about. We represent this case in our language with the following
formula (ϕ stands for “the project is finished”):

[

a ∃x ∃z
∃y ∀u ∃v

]

ϕ (1.7)

The first row describes Anthony’s attitude toward the project during
the three time-steps, while the second row describes Bill’s attitude. Note
that the universal quantifier marks the time-step when Bill acts without
regards for the project since his action at that time depends on what his
office manager asks him to do. If Anthony and Bill are risk-averse and co-
operative agents, all the actions that instantiate variables x, z, y, v should be
chosen together as described by clause 51, where we now allow [X ] to be a
multi-column quantificational operator (the clause applies to multi-column
operators without change). If the two agents work independently from each
other (non co-operative agents), then we should adopt clause 53 (which also
extends to multi-column operators).

We may want to model the case where the agents have a predefined plan
for the first two time-steps only. For instance, suppose they agreed on a plan
the day before when they knew they where going to be in different places
during time-steps 1 and 2 without the possibility of sharing information.
Also, let us assume that after time-step 2 they meet so that the decision
about the third time-step can be postponed to that time. This situation is
described by formula

[

a ∃x
∃y ∀u

] [

∃z
∃v

]

ϕ.

Note the change of the order in which quantified variables are instantiated:
the value of u is known when choosing a value for z and v (Section 4).

The second example we consider comes from robotics. Here there are
two agents whose goal is to pick up an object but none of them can do it
alone. If ϕ stands for “the object is lifted”, the situation is described by
formula

[

∃x
∃y

]

ϕ ∧ ¬
[

∀x
∃y

]

ϕ ∧ ¬
[

∃x
∀y

]

ϕ. (1.8)

Consider interpretation 51. If (1.8) is true, the agents can execute actions
that make ϕ true (first conjunct) but the first or the second agent cannot
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bring about ϕ without the collaboration of the other agent (second and third
conjuncts). It is possible to make a stronger claim adding the following as

conjuncts:
[

∀x
∃y

]

¬ϕ,
[

∃x
∀y

]

¬ϕ. These tell us that each agent can force ϕ to

be false, i.e., each can prevent the system from reaching any state where ϕ
holds.

6 Related work and conclusions

We looked at the variety of semantics for quantificational operators ex-
tending the work in [Bo105a]. [Bo103] provides an interpretation for the
quantificational modal operators that relies entirely on game-theoretic se-
mantics. [Bo105b] studies the formal properties of an interpretation along
the lines of 51. in the framework of standard Kripke semantics.

The formalism we adopted has been influenced by the notion of Henkin
(branching) quantifiers [He161, Wa270]. Note that there is an ontologi-
cal discrepancy between the notion of agent in multi-agent systems (where
agents are internal components) and the formal notion of player as used
in game-theory (players are external components that act to interpret the
formalism); a distinction that has not received enough attention in the lit-
erature.

A modal version of Hintikka Independent-friendly logic [Hi1Sa496], which
comprises Henkin quantifiers, has been proposed in [Br0Fr402b]. The aim
of the authors is to isolate a notion of bisimulation (model equivalence) that
corresponds to their modal system. Related to our work is also the logic
ATL [Al2He2Ku102] and its extension ATEL [vHWo302]. The relationship
is better analyzed through Coalition Logic (CL) introduced in [Pa702]. The
connections between CL and ATL are presented in [Go201, Go2Ja204]. In-
terestingly, the encoding of CL into our formalism enables the use of Kripke
structures for CL. (More precisely, CL is semantically equivalent to a frag-
ment of our logic with the semantics given by clause 51, cf. [Bo107]). Other
frameworks, like KARO [vLvHMe398] and the variety of systems following
the BDI approach [Ra3Ge191] or the Intention Logic [Co1Le190], adopt com-
binations of different modalities or exploit full first-order logic. These are
very expressive systems and differ in their motivations from our approach.
We refer the reader to [vHVe202, vHWo303, vDvHKo407] for overviews on
this area of research.

We have shown how to produce different interpretations for modal op-
erators built out of action identifiers, variables, and quantified variables.
Our stand is that when there is a number of practical constraints to cap-
ture, semantic pluralism could help. We showed how the same language
can distinguish and characterize different systems in a flexible way making
it possible to describe uniformly what might seem a plethora of heteroge-
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neous cases. Then, formal and reliable comparisons of apparently disparate
phenomena become possible at the semantical level. Our approach has some
drawbacks as well. The quantificational operators inherit some restrictions
of Dynamic Logic, in particular the rigid structure in finite steps. (Exten-
sions with constructs on action identifiers or temporal modalities have not
been studied yet.) On the technical side, although adding quantificational
modal operators does not make the resulting logic necessarily undecidable,
this happens in many cases when equality (over action) is present. For in-
stance, one can see that the theory in [Bo103] is undecidable by embedding

first-order logic augmented with a binary predicate via A(x, y) 7−→
[

x
y

]

p0,

for some atomic p0. For an example in the opposite sense, [Bo105b] gives a
complete and decidable logic for the class of multi-relational Kripke frames.
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Abstract

We revisit Kuhn’s classic theorem on mixed and behavior strategies
in games. We frame Kuhn’s work in terms of two questions in decision
theory: What is the relationship between global and local assessment
of uncertainty? What is the relationship between global and local
optimality of strategies?

This note is a homage to Kuhn’s classic theorem on the replacement of
mixed by behavior strategies in games [Ku050, Ku053]. It reframes Kuhn’s
work as two results in decision theory—i.e., in the context of trees involving
a decision maker and Nature. The motivation is to see the meaning of
Kuhn’s work at this basic level.

The decision-theoretic framing in this note is in accordance with the so-
called epistemic approach to game theory. Under the epistemic approach,
a game is a multi-player decision problem—more exactly, a collection of
decision problems, one for each player. In line with decision theory, a player
is assumed to form a (subjective) probability assessment over the strategies
chosen by other players in the game, and to choose an optimal strategy under
this assessment. The questions à la Kuhn are then: (a) the relationship
between global and local assessments; and (b) the relationship between
global and local optimality.

The epistemic approach is ‘the other way round’ from the traditional
approach to game theory. Under the traditional approach, we talk about
a mixed strategy of a player, not another player’s global assessment of the
first player’s deterministic choice of (pure) strategy. Likewise, we talk about
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a behavioral strategy of a player, not another player’s system of local as-
sessments about the first player. The mixed-behavioral framing is Kuhn’s,
of course.

In Section 5, we expand on the significance for Kuhn’s Theorem of taking
an epistemic perspective on games.

Local assessment Global assessment

Under perfect recall and
non-triviality for Nature

Local optimality Global optimality

Under perfect recall and non-
triviality for the decision maker

Figure 1. Summary of results

Figure 1 is a summary of the two results we cover. Each result is in
two parts. For the first, we have: (i) Given a system of local probability
assessments by the decision maker, i.e., an assessment over Nature’s moves
at each of Nature’s information sets, there is a global assessment over Na-
ture’s strategies (“states”) that yields the same probability of each path
through the tree. (ii) If Nature has perfect recall and all chance nodes are
non-trivial, then, given a global assessment by the decision maker, there is
an equivalent system of local assessments. For the second result, we have:
(i) If a strategy of the decision maker is locally optimal, i.e., optimal at
each information set of the decision maker, then it is globally (“ex ante”)
optimal. (ii) If the decision maker has perfect recall and all decision nodes
are non-trivial, then, if a strategy is globally optimal, it is locally optimal.

There is also a sufficiency result (which follows from part (ii) of the first
result): Assume perfect recall and non-triviality for Nature. Then, it is
enough to know the system of local assessments associated with any global
assessment, to know which strategies are globally optimal. Putting this
together with part (ii) of the second result gives: Assume perfect recall and
non-triviality for both the decision maker and Nature. Then, to determine
if a strategy is locally optimal, it is enough to know the system of local
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assessments of the decision maker.
We acknowledge that much (all?) of the contents of this note may be

well known. Still, we hope that a self-contained presentation will be useful.

1 Decision Trees

A decision tree will be a two-person game in extensive form, where one
player is the decision maker and the other is Nature. We now give formal
definitions following Kuhn [Ku050, Ku053] (also the presentation in Hart
[Ha492]).

Definition 1.1. A (finite) decision tree consists of:

(a) A set of two players, one called the decision maker and the other
called Nature.

(b) A finite rooted tree.

(c) A partition of the set of non-terminal nodes of the tree into two subsets
denoted N (with typical element n) and M (with typical element m).
The members of N are called decision nodes, and the members of
M are called chance nodes.

(d) A partition of N (resp. M) into information sets denoted I (resp. J)
such that for each I (resp. J):

(i) all nodes in I (resp. J) have the same number of outgoing
branches, and there is a given 1-1 correspondence between the
sets of outgoing branches of different nodes in I (resp. J);

(ii) every path in the tree from the root to a terminal node crosses
each I (resp. J) at most once.

Note: The focus of the well-known literature on the “paradox of the
absent-minded driver” (Piccione and Rubinstein [Pi0Ru197]) is on non-
Kuhn trees—specifically, trees that fail condition (d.ii) above. (See also
Isbell [Is57].) We consider only Kuhn trees.

For each information set I (resp. J), number the branches going out
of each node in I (resp. J) from 1 through #I (resp. #J) so that the 1-1
correspondence in (d.i) above is preserved.

Definition 1.2. A strategy (of the decision maker) associates with each
information set I, an integer between 1 and #I, to be called the choice of
the decision maker at I. Let S denote the set of strategies of the decision
maker. A state of the world (or state) associates with each information
set J , an integer between 1 and #J , to be called the choice of Nature at
J . Let Ω denote the set of states.
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Note that a pair (s, ω) in S×Ω induces a unique path through the tree.

Definition 1.3. Fix a path p through the tree and a strategy s. Say p is
allowed under s if there is a state ω such that (s, ω) induces p.

Definition 1.4. Fix a path p through the tree and a state ω. Say p is
allowed under ω if there is a strategy s such that (s, ω) induces p.

Definition 1.5. Fix a node n in N and a strategy s. Say n is allowed

under s if there is a state ω such that the path induced by (s, ω) passes
through n. Say an information set I is allowed under s if some n in I is
allowed under s.

Definition 1.6. Say the decision maker has perfect recall if for any strat-
egy s, information set I, and nodes n and n∗ in I, node n is allowed under
s if and only if node n∗ is allowed under s.

Definition 1.7. Say a node n in N is non-trivial if it has at least two
outgoing branches.

Definition 1.8. Fix a node m in M and a state ω. Say m is allowed

under ω if there is a strategy s such that the path induced by (s, ω) passes
through m. Say an information set J is allowed under ω if some m in J
is allowed under ω.

Definition 1.9. Say Nature has perfect recall if for any state ω, infor-
mation set J , and nodes m and m∗ in J , node m is allowed under ω if and
only if node m∗ is allowed under ω.

Definition 1.10. Say a node m in M is non-trivial if it has at least two
outgoing branches.

Example 1.11. Figure 2 depicts a case of imperfect recall for the decision
maker. (The circular node belongs to Nature and the square nodes belong
to the decision maker.) Let s be the strategy that chooses B at information
set I (and b, say, at information set I ′). Then node n is allowed under s
but node n∗ is not.

Example 1.12. Figure 3 is the standard example of imperfect recall for
Nature. Let ω be the state that chooses U at information set J (and u, say,
at information set J ′). Then node m is allowed under ω but node m∗ is
not.

Define a relation of precedence on information sets I of the decision
maker, as follows: Given two information sets I and I ′, say that I pre-

cedes I ′ if there are nodes n in I and n′ in I ′ such that the path from the
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root to n′ passes through n. It is well known that if the decision maker
has perfect recall and all decision nodes are non-trivial, then this relation
is irreflexive and transitive, and each information set I has at most one
immediate predecessor. (Proofs of these assertions can be constructed from
arguments in Wilson [Wi072]. See also the appendix to this note.) Of
course, the parallel statements hold for Nature.

In [Ku053], Kuhn observes that perfect recall implies that a player re-
members: (i) all of his choices at previous nodes; and (ii) everything he
knew at those nodes. The following two lemmas formalize these observa-
tions. (The proofs are in the appendix.) Again, parallel statements hold for
Nature. (Lemma 1.13 will be used later.)

Lemma 1.13. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix information sets I and I ′, and strategies s
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and s′. Suppose that I ′ is allowed under both s and s′, and I precedes I ′.
Then I is allowed under both s and s′, and s and s′ coincide at I.

Continuation of Example 1.11. Let s choose T at I, and s′ choose B
at I. Then I ′ is allowed under both s and s′, as is I. But s and s′ differ at
I. So Lemma 1.13 fails without perfect recall. In words, the decision maker
forgets at I ′ whether he chooses T or B at I.

Next, write
[I] = {ω : I is allowed under ω}.

Lemma 1.14. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix information sets I and I ′. If I ′ succeeds I,
then [I ′] ⊆ [I].

Continuation of Example 1.11. We have [I] = {D} and [I ′] = {U, D}.
So Lemma 1.14, too, fails without perfect recall. In words, the decision
maker knows at I that Nature doesn’t choose U , but forgets this at I ′.

A brief comment on the literature on these ‘structural’ aspects of per-
fect recall. Bonanno makes a nice distinction between “action” and “choice”
[Bo004]. (The same action can be taken at different information sets.) He
offers definitions of “knowing the actions you previously took” and “know-
ing what you previously knew”, and shows that together these conditions
characterize perfect recall. Ritzberger provides several characterizations of
perfect recall [Ri099]. Van Benthem studies game trees as structures for log-
ical languages, and, in particular, provides a dynamic epistemic logic-based
axiomatization of games satisfying perfect-recall like conditions [vB01a].
Also related are the temporal logics in Halpern, van der Meyden, and Vardi
[Ha0vMVa04]. See [Bo004, Section 6] for further discussion of the literature.

2 Global and Local Probabilities

We now define the global and local probabilities on the tree, and then state
Kuhn’s Theorem.

Definition 2.1. A global probability measure on the tree is a probability
measure on the set of states Ω.

Definition 2.2. A system of local probability measures on the tree asso-
ciates with each information set J of Nature, a probability measure on the
set of choices at J .

Fix a global measure σ, and a system of local measures π(·; J). Fix also a
path p through the tree. Let J1 be the first information set of Nature crossed
by p, and let j1 be the choice at J1 that lies on p. Define J2, j2, . . . , JK , jK
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similarly, where JK is the last information set of Nature crossed by p, and
jK is the choice at JK that lies on p. (Note this is well defined, by condition
(d.ii) of Definition 1.1. Also, we don’t indicate the dependence of the indices
1, . . . , K on p, but no confusion should result.)

Definition 2.3. The global probability of p is

λ(p; σ) = σ({ω : p is allowed under ω}).

Definition 2.4. The local probability of p is

µ(p; π(·; J1), . . . , π(·; JK)) =

K
∏

k=1

π(jk; Jk).

Continuation of Example 1.12. To practice these definitions, let σ
assign probability 1/2 to (U, u) and probability 1/2 to (D, d). Also, let
π(U ; J) = π(D; J) = 1/2, and π(u; J ′) = π(d; J ′) = 1/2. Suppose p is the
path induced by (U, u). Then the global probability of p is λ(p; σ) = 1/2,
and the local probability of p is µ(p; π(·; J), π(·; J ′)) = 1/2× 1/2 = 1/4.

We now state Kuhn’s Theorem in the form of the following two results,
and give proofs in the notation of this note.

Theorem 2.5. Fix a system of local measures π(·; J). There is a global
measure σ such that for any path p,

λ(p; σ) = µ(p; π(·; J1), . . . , π(·; JK)).

Proof. It will be convenient to write Ω as a product space
∏

J C(J), where
C(J) denotes the set of choices at information set J . Given a state ω,
write ω(J) for the Jth coordinate of ω, i.e., the choice ω makes at J . Set
σ(ω) =

∏

J π(ω(J); J). This is readily seen to define a probability measure
on Ω.

Now fix a path p, and let J1, j1, . . . , JK , jK be defined as earlier. For
k = 1, . . . , K, let

Ak = {ω : ω(Jk) = jk}.

Note that σ(Ak) = π(jk; Jk). The set of ω such that p is allowed under ω

is
⋂K

k=1Ak, and, since σ is a product measure,

σ
(

K
⋂

k=1

Ak

)

=
K
∏

k=1

σ(Ak) =
K
∏

k=1

π(jk; Jk),

as required. q.e.d.
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We need one more definition, used in the proof of the next result.

Definition 2.6. Fix a global measure σ and an information set J . The
localized probability measure at J is given by

π(j; J, σ) =
σ({ω : J is allowed under ω, and ω(J) = j})

σ({ω : J is allowed under ω})
,

if σ({ω : J is allowed under ω}) > 0. If σ({ω : J is allowed under ω}) = 0,
define π(·; J, σ) arbitrarily.

Theorem 2.7. Suppose Nature has perfect recall and all chance nodes are
non-trivial. Fix a global measure σ. There is a system of local measures
π(·; J) such that for any path p,

µ(p; π(·; J1), . . . , π(·; JK)) = λ(p; σ).

Proof. Fix a path p and J1, j1, . . . , JK , jK as earlier. Let

B = {ω : p is allowed under ω},

Ck = {ω : Jk is allowed under ω, and ω(Jk) = jk},

Dk = {ω : Jk is allowed under ω},

for k = 1, . . . , K.
We show that for k = 1, . . . , K − 1, Ck ⊆ Dk+1. Suppose p passes

through node m in Jk. Fix ω such that Jk is allowed under ω. Then by
perfect recall, node m is allowed under ω. That is, there is a strategy s such
that the path induced by (s, ω) passes through m. Let (s′, ω′) induce the
path p. Then s and s′ coincide at all information sets of the decision maker
crossed by p from the root to m. Indeed, we can take s = s′. We know that
ω′(Jk) = jk. Therefore, if ω(Jk) = jk, the path induced by (s′, ω) coincides
with the path induced by (s′, ω′), from the root to Jk+1. Certainly then,
Jk+1 is allowed under ω, as required.

We next show that for k = 1, . . . , K − 1, Dk+1 ⊆ Ck. Let (s′, ω′) be as
above, so that certainly Jk+1 is allowed under ω′. Fix ω such that Jk+1 is
allowed under ω. Since Jk precedes Jk+1, Lemma 1.13 (stated for Nature)
implies that: (i) Jk is allowed under ω; and (ii) ω and ω′ coincide at Jk,
i.e., ω(Jk) = jk.

We now have that for k = 1, . . . , K − 1, Ck = Dk+1. By definition,
Ck ⊆ Dk for each k. This shows that the Ck’s are a decreasing sequence.

Given a global measure σ, define a system of local measures π(·; J) by
setting π(·; J) = π(·; J, σ).

Note that CK = B, since JK is the last information set of Nature crossed
by p. It follows that if λ(p; σ) = σ(B) > 0, then σ(Ck) > 0 and σ(Dk) > 0
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for each k. We then have

µ(p; π(·; J1), . . . , π(·; JK)) =

K
∏

k=1

σ(Ck)

σ(Dk)
. (2.1)

But the numerator of each term in (2.1) cancels with the denominator of
the next term, leaving

µ(p; π(·; J1), . . . , π(·; JK)) =
σ(CK)

σ(D1)
.

We already have σ(CK) = σ(B). Also, D1 = Ω, since J1 is the first
information set of Nature crossed by p, so σ(D1) = 1. This establishes that

µ(p; π(·; J1), . . . , π(·; JK)) = σ(B) = λ(p; σ), (2.2)

as required.
Now suppose λ(p; σ) = σ(B) = 0. If σ(Dk) > 0 for each k, we still get

(2.1), from which we get (2.2), and so µ(p; π(·; J1), . . . , π(·; JK)) = 0, as
required. We have σ(D1) = 1, so the remaining case is that σ(Dk) = 0 for
some k = 2, . . . , K. Choose the minimum such k. Then σ(Dk−1) > 0. Also
σ(Ck−1) = 0, since Ck−1 = Dk. Thus π(jk−1; Jk−1) = σ(Ck−1)/σ(Dk−1) =
0, so that µ(p; π(·; J1), . . . , π(·; JK)) = 0, as required. q.e.d.

Continuation of Example 1.12. Theorem 2.7 fails without perfect recall.
To see this, let σ assign probability 1/2 to (U, u) and probability 1/2 to
(D, d), as before. Then, in particular, we need π(U ; J) × π(u; J ′) = 1/2,
π(U ; J)× π(d; J ′) = 0, and π(D; J)× π(d; J ′) = 1/2, which is impossible.

3 Global and Local Optimality

Next we define global and local optimality of a strategy of the decision
maker.

Definition 3.1. A payoff function (of the decision maker) is a map V :
S×Ω → R satisfying V (s, ω) = V (s′, ω′) whenever (s, ω) and (s′, ω′) induce
the same path.

Definition 3.2. Fix a probability measure σ on Ω. A strategy s is globally

optimal under σ if

∑

ω∈Ω

σ(ω)V (s, ω) ≥
∑

ω∈Ω

σ(ω)V (r, ω)

for every other strategy r ∈ S.
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Definition 3.3. Fix a probability measure σ on Ω. Fix also a strategy s
and an information set I that is allowed under s and satisfies σ([I]) > 0.
Then s is locally optimal at I under σ if

∑

ω∈Ω

σ(ω|[I])V (s, ω) ≥
∑

ω∈Ω

σ(ω|[I])V (r, ω)

for every other strategy r ∈ S under which I is allowed. Strategy s is locally

optimal under σ if for every information set I that is allowed under s and
satisfies σ([I]) > 0, it is locally optimal at I under σ.

In words, a strategy is globally optimal if it is expected-payoff maxi-
mizing under the (unconditional) measure σ. It is locally optimal if it is
expected-payoff maximizing under each conditional measure σ(ω|[I]) that
is defined (and where I is allowed under the strategy).

Example 3.4. Figure 4 is Figure 2 with payoffs added for the decision
maker. Let σ assign probability 2/3 to U and 1/3 to D. Then T t, Bt, Tb,
and Bb yield expected payoffs of 4/3, 5/3, 2/3, and 1/3, respectively—so
Bt is (uniquely) globally optimal under σ.

As noted before, [I] = {D} and [I ′] = {U, D} = Ω. So, σ([I]) > 0 and
σ([I ′]) = 1. Also, both I and I ′ are allowed under all four strategies. It
follows that local optimality at I ′ is the same as global optimality. At I, we
find that T t, Bt, Tb, and Bb yield conditional expected payoffs of 0, 1, 2,
and 1, respectively—so, in fact, no strategy is locally optimal under σ.
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Theorem 3.5. Fix a probability measure σ on Ω. If a strategy s is locally
optimal under σ, then it is globally optimal under σ.

Proof. Partition Ω into cells I0, I1, . . . , IL, where ω ∈ Iℓ, for some ℓ =
1, . . . , L, if Iℓ is the first information set of the decision maker allowed
under ω, and ω ∈ I0 if there is no information set of the decision maker
allowed under ω.

Write
∑

ω∈Ω

σ(ω)V (s, ω) =
L

∑

ℓ=0

σ([Iℓ])
∑

ω∈Ω

σ(ω|[Iℓ])V (s, ω),

where we take σ(·|[Iℓ]) to be arbitrary if σ([Iℓ]) = 0. Suppose s is locally
optimal under σ, but not globally optimal under σ. Then there must be
another strategy r such that

∑

ω∈Ω

σ(ω)V (r, ω) >
∑

ω∈Ω

σ(ω)V (s, ω).

But
∑

ω∈Ω

σ(ω)V (r, ω) =

L
∑

ℓ=0

σ([Iℓ])
∑

ω∈Ω

σ(ω|[Iℓ])V (r, ω),

so there must be ℓ = 0, . . . , L such that σ([Iℓ]) > 0 and
∑

ω∈Ω

σ(ω|[Iℓ])V (r, ω) >
∑

ω∈Ω

σ(ω|[Iℓ])V (s, ω).

Note that in fact 1 ≤ ℓ ≤ L, since, on I0, V (·, ω) is independent of the
strategy. Since it is a first information set of the decision maker, Iℓ must be
allowed under r. This implies that s is not locally optimal under σ at Iℓ, a
contradiction. q.e.d.

Theorem 3.6. Suppose the decision maker has perfect recall and all deci-
sion nodes are non-trivial. Fix a probability measure σ on Ω. If a strategy
s is globally optimal under σ, then it is locally optimal under σ.

Notes: (i) By finiteness, a globally optimal strategy always exists under
any σ. So Theorem 3.6 implies, in particular, that under the given condi-
tions a locally optimal strategy also exists under any σ. (ii) Kline [Kl102]
contains a stronger result, based on a weakening of perfect recall.

Proof. Suppose that s is globally optimal and that, contra hypothesis, there
is an information set I allowed under s and satisfying σ([I]) > 0, such that

∑

ω∈Ω

σ(ω|[I])V (s, ω) <
∑

ω∈Ω

σ(ω|[I])V (r, ω) (3.1)



82 A. Brandenburger

for some other strategy r ∈ S under which I is allowed.
Construct the strategy q that coincides with r at I and all succeeding

information sets of the decision maker, and coincides with s elsewhere.
We first show that if ω ∈ [I], then V (q, ω) = V (r, ω).
From ω ∈ [I], there is a node n1 in I and a strategy s1 such that the

path induced by (s1, ω) passes through n1. Since I is allowed under s, there
is a node n2 in I and a state ω2 such that the path induced by (s, ω2) passes
through n2. By perfect recall, there is then a state ω3 such that the path
induced by (s, ω3) passes through n1. Now consider the information sets I ′

crossed by the path from the root to n1. Since the paths induced by (s1, ω)
and (s, ω3) both pass through n1, the strategies s1 and s must coincide at
these sets. Similarly, consider the information sets J crossed by the path
from the root to n1. Since the paths induced by (s1, ω) and (s, ω3) both
pass through n1, the states ω and ω3 must coincide at these sets. Therefore,
the path induced by (s, ω) must pass through n1.

We can repeat the argument with strategy r in place of strategy s, to
conclude that the path induced by (r, ω) must also pass through n1. But
then, using the definition of strategy q, the paths induced by (q, ω) and
(r, ω) must be the same. Thus V (q, ω) = V (r, ω), as required.

Next, we show that if ω ∈ Ω\[I], then V (q, ω) = V (s, ω). From ω ∈
Ω\[I], the path induced by (s, ω) does not cross I, and therefore does not
cross any information set of the decision maker that succeeds I. Consider
the information sets I ′ that are in fact crossed by the path induced by (s, ω).
By construction, the strategies q and s coincide at each such I ′. Thus the
paths induced by (q, ω) and (s, ω) are the same, and so V (q, ω) = V (s, ω),
as required. Write

∑

ω∈Ω

σ(ω)V (q, ω)

= σ([I])
∑

ω∈Ω

σ(ω|[I])V (q, ω) + σ(Ω\[I])
∑

ω∈Ω

σ(ω|Ω\[I])V (q, ω),

where σ(·|Ω\[I]) is arbitrary if σ(Ω\[I]) = 0. We have

∑

ω∈Ω

σ(ω)V (q, ω)

= σ([I])
∑

ω∈Ω

σ(ω|[I])V (r, ω) + σ(Ω\[I])
∑

ω∈Ω

σ(ω|Ω\[I])V (s, ω)

> σ([I])
∑

ω∈Ω

σ(ω|[I])V (s, ω) + σ(Ω\[I])
∑

ω∈Ω

σ(ω|Ω\[I])V (s, ω)

=
∑

ω∈Ω

σ(ω)V (s, ω),
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where the inequality uses (3.1) and σ([I]) > 0. But this contradicts the
global optimality of s. q.e.d.

Continuation of Example 3.4. Theorem 3.6 fails without perfect recall
(for the decision maker). Indeed, we saw that only Bt is globally optimal,
but it is not locally optimal at I.

4 A Sufficiency Result

We now establish a sufficiency result: Assume perfect recall and non-triv-
iality for Nature. Then, it is enough to know the localized probabilities
associated with any probability measure, to know which strategies are glob-
ally optimal.

First some notation. As in Section 2, given a path p, write J1 for the
first information set of Nature crossed by p,. . . , JK for the last information
set of Nature crossed by p (and suppress the dependence on p). Also, in
this section it will be helpful to write W (p) for the payoff V (s, ω), if (s, ω)
induces the path p.

Definition 4.1. Fix two (global) probability measures σ and τ on Ω. Say
σ and τ are locally equivalent if for each path p, λ(p; σ) > 0 if and only
if λ(p; τ) > 0, and, in this case,

µ(p; π(·; J1, σ), . . . , π(·; JK , σ)) = µ(p; π(·; J1, τ), . . . , π(·; JK , τ)).

In words, two measures are locally equivalent if they give rise to the same
localized probability of each path that gets positive (global) probability.

Example 4.2. In the tree in Figure 5, let σ assign probability 1/2 to (U, u)
and probability 1/2 to (D, d), and τ assign probability 1/4 to each of (U, u),
(U, d), (D, u), and (D, d). It can be checked that σ and τ are locally equiv-
alent.

Here is the sufficiency result:

Theorem 4.3. Suppose Nature has perfect recall and all chance nodes are
non-trivial. Let σ and τ be probability measures on Ω that are locally
equivalent. Then for any strategy s,

∑

ω∈Ω

σ(ω)V (s, ω) =
∑

ω∈Ω

τ(ω)V (s, ω).

Proof. Write

∑

ω∈Ω

σ(ω)V (s, ω) =
∑

{p : p is allowed under s}

∑

{ω : (s,ω) induces p}

σ(ω)W (p). (4.1)
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Figure 5.

Now, if (s, ω) induces p, then certainly p is allowed under ω. Conversely,
suppose p is allowed under ω. That is, there is an s′ such that (s′, ω) induces
p. Suppose also that p is allowed under s. That is, there is an ω′ such that
(s, ω′) induces p. It follows (by arguing forwards along the path p) that
(s, ω) must also induce p. Using the definition of λ(p; σ), this establishes
that (4.1) can be rewritten as

∑

ω∈Ω

σ(ω)V (s, ω) =
∑

{p:p is allowed under s}

λ(p; σ)W (p). (4.2)

By the same argument we can write

∑

ω∈Ω

τ(ω)V (s, ω) =
∑

{p:p is allowed under s}

λ(p; τ)W (p). (4.3)

Fix a path p. By the proof of Theorem 2.7,

λ(p; σ) = µ(p; π(·; J1, σ), . . . , π(·; JK , σ)), (4.4)

λ(p; τ) = µ(p; π(·; J1, τ), . . . , π(·; JK , τ)). (4.5)

Fix a path p. Using local equivalence, we have either: (i) λ(p; σ) =
λ(p; τ) = 0, or (ii) λ(p; σ) > 0 and λ(p; τ) > 0. In case (ii), λ(p; σ) = λ(p; τ),
by (4.4), (4.5), and local equivalence again. Thus (i) and (ii) together
establish that (4.2) and (4.3) are equal, as required. q.e.d.

Corollary 4.4. Suppose Nature has perfect recall and all chance nodes
are non-trivial. Fix probability measures σ and τ on Ω that are locally
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equivalent. Then a strategy s is globally optimal under σ if and only if it is
globally optimal under τ .

Continuation of Example 4.2. Theorem 4.3 and Corollary 4.4 fail with-
out perfect recall (for Nature). The measures σ and τ as above are locally
equivalent. Yet T yields an expected payoff of 0 under σ, and an expected
payoff of 3/2 under τ . (So B is globally optimal under σ, while T is globally
optimal under τ .)

5 Discussion

Corollary 4.4 and Theorem 3.6 can be put together as follows: Assume
perfect recall and non-triviality for both the decision maker and Nature.
Then, to determine if a strategy is locally optimal, it is enough to know the
localized probabilities of the decision maker.

For (even local) optimality, then, the analyst need only know how the
decision maker sees the tree locally. We don’t need to know the decision
maker’s global assessment of the tree.

But this does assume perfect recall and non-triviality. Perfect recall
for the decision maker has a clear interpretation as a memory requirement
(refer back to the end of Section 1 and also the references there). But what
does perfect recall for Nature mean?1 We’ll give an answer for the game
context, as analyzed under the epistemic approach.

For the application of the decision tree set-up (Definition 1.1) to a game,
the decision maker is to be thought of as one player, Ann say. All the re-
maining players—Bob, Charlie, . . . —are grouped together as Nature. This
is because, under the epistemic approach, the strategies chosen by Bob,
Charlie, . . . are jointly uncertain as far as Ann is concerned, and so subject
to joint probability assessment.

When, then, might Nature have perfect recall? One case is if there is just
one other player, Bob, and he has perfect recall. The situation is different
if there are two or more other players, even if each of these players has
perfect recall. For example, suppose in Figure 5 that Ann chooses T or B,
Bob chooses U or D, and Charlie chooses u or d. Then Bob and Charlie
each has perfect recall, but if Ann assigns probability 1/2 to (U, u) and
probability 1/2 to (D, d), there is no equivalent local assessment.

We could require Ann’s global assessment to be a product of a global
assessment of Bob’s strategy and a global assessment of Charlie’s strategy.
Then, working with each assessment separately, we could find an equivalent
local assessment. But an independence requirement like this is not in the
spirit of the epistemic approach to games, which treats correlations as the
norm.

1 I am grateful to a referee for asking this question.
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Of course, there will be special cases where ‘overall’ perfect recall still
holds. (An obvious one is if the game has perfect information.) But, in
general, we should work with global not local assessments by the players.

Appendix

Lemma A1. Suppose the decision maker has perfect recall and all decision
nodes are non-trivial. Fix an information set I, nodes n1 and n2 in I, and
an information set I ′ containing a node n3 on the path from the root to n1.
Then there is a unique node in I ′ (not necessarily distinct from n3) lying
on the path from the root to n2.

Proof. First note that by part (d.ii) of Definition 1.1, there cannot be more
than one node in I ′ lying on the path from the root to n2.

Now suppose, contra hypothesis, there is no node in I ′ lying on the
path from the root to n2. Let c denote the choice at n3 that lies on the
path to n1. By non-triviality, there is a choice d, different from c, at I ′.
Construct a strategy s as follows: (i) at I ′, let s specify the choice d; (ii)
at an information set crossed by the path from the root to n2, let s specify
the choice that lies on this path; (iii) at any other information set, let s be
arbitrary. (Note that, by hypothesis, the information set I ′ does not fall
under (ii), so s is well defined.) By construction, the node n2 is allowed
under s, while n1 is not allowed under s. This contradicts perfect recall.

q.e.d.

Lemma A2. Suppose the decision maker has perfect recall. Fix an in-
formation set I and nodes n1 and n2 in I. Fix also an information set I ′

containing nodes n3 and n4 (not necessarily distinct) where n3 lies on the
path from the root to n1, and n4 lies on the path from the root to n2. Then
the choice at n3 that lies on the path to n1 is the same as the choice at n4

that lies on the path to n2.

Proof. Let c be the choice at n3 that lies on the path to n1, and let d be the
choice at n4 that lies on the path to n2. Suppose, contra hypothesis, that
c 6= d. Construct a strategy s as follows: (i) at an information set crossed by
the path from the root to n2, let s specify the choice that lies on this path;
(ii) at any other information set, let s be arbitrary. Note that s specifies d
at I ′. It follows that n2 is allowed under s, while n1 is not allowed under s.
This contradicts perfect recall. q.e.d.

We use Lemmas A1 and A2 in the proofs below of Lemmas 1.13 and
1.14 in the text. We also note that Lemma A1, together with part (d.ii)
of Definition 1.1, easily implies the facts stated in Section 1: The prece-
dence relation on information sets is irreflexive and transitive, and each
information set I has at most one immediate predecessor.
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Proof of Lemma 1.13. Since I ′ is allowed under s, there is a node n′1 in I ′

and a state ω1 such that the path induced by (s, ω1) passes through n′1.
Likewise, since I ′ is allowed under s′, there is a node n′2 in I ′ and a state ω2

such that the path induced by (s′, ω2) passes through n′2. Since I precedes
I ′, there are nodes n in I and n′ in I ′ such that the path from the root to
n′ passes through n.

Lemma A1 then implies that there is a node n1 in I (not necessarily
distinct from n) lying on the path from the root to n′1. That is, the path
induced by (s, ω1) passes through n1. This establishes that I is allowed
under s.

Likewise, Lemma A1 implies that there is a node n2 in I (not necessarily
distinct from n) lying on the path from the root to n′2. That is, the path
induced by (s′, ω2) passes through n2. This establishes that I is allowed
under s′.

Lemma A2 implies that the choice at n1 that lies on the path to n′1 is
the same as the choice at n2 that lies on the path to n′2. Thus s and s′

coincide at I. q.e.d.

Proof of Lemma 1.14. Consider a state ω in [I ′]. By definition, there is a
node n′ in I ′ and a strategy s such that the path induced by (s, ω) passes
through n′.

Since I precedes I ′, there are nodes n1 in I and n2 in I ′ such that the
path from the root to n2 passes through n1.

Lemma A1 then implies there is a node n3 in I (not necessarily distinct
from n1) such that the path from the root to n′ passes through n3. That is,
the path induced by (s, ω) passes through n3. Thus ω lies in [I], as required.

q.e.d.
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Abstract

In an influential paper entitled “How much memory is needed to

win infinite games”, Dziembowski, Jurdziński, and Walukiewicz have
shown that there are Muller games of size O(n) whose winning strate-
gies require memory of size at least n!. This shows that the LAR-
memory, based on the latest appearance records introduced by Gure-
vich and Harrington, is optimal for solving Muller games. We review
these results and reexamine the situation for the case of infinitary
Muller games, i.e. Muller games with infinitely many priorities. We
introduce a new, infinite, memory structure, based on finite appear-
ance records (FAR) and investigate classes of Muller games that can
be solved with FAR-memory.

1 Introduction

We study two-player games of infinite duration that are played on finite or
infinite game graphs. Such a game is determined if, from each position,
one of the two players has a winning strategy. On the basis of the axiom of
choice it is not difficult to prove that there exist nondetermined games. The
classical theory of infinite games in descriptive set theory links determinacy
of games with topological properties of the winning conditions. Usually
the format of Gale-Stewart games is used where the two players strictly
alternate, and in each move a player selects an element of {0, 1}; thus the
outcome of a play is an infinite string π ∈ {0, 1}ω. Gale-Stewart games can
be viewed as graph games, for instance on the infinite binary tree, or on
a bipartite graph with four nodes. Zermelo [Ze13] proved already in 1913
that if in each play of a game, the winner is determined already after a
finite number of moves, then one of the two players has a winning strategy.

∗ This research has been partially supported by the European Community Research
Training Network “Games and Automata for Synthesis and Validation” (games).

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 89–116.
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In topological terms the winning sets in such a game are clopen (open and
closed). By a celebrated theorem due to Martin [Ma775] every game where
the winning condition is given by a Borel set is determined.

For game theory that relates to computer science, determinacy is just
a first step in the analysis of a game. Rather than in the mere existence
of winning strategies, one is interested in effective constructions of reason-
ably simple winning strategies. An aspect of crucial importance for the
complexity of a strategy is its dependency on the history of the play.

In general, strategies may be very complicated functions that can depend
on the entire history of the play. However, in many cases, simple strategies
suffice. Of particular interest are positional strategies for which the next
move depends only the current position, and not at all on previous history.
That is, a player moving according to a positional strategy f will at a
position v always perform the same move v → f(v) no matter how often
and by what path position v has been reached. A game is positionally
determined, if from each position, one of the two players has a positional
winning strategy. Another important case are finite-memory strategies for
which the dependency on the history can be calculated on the basis of a
finite set of memory states and which can thus be implemented by a finite
automaton.

Positional determinacy and determinacy via finite-memory strategies
have been extensively studied for games whose winning conditions are de-
fined in terms of a mapping that assigns to each position a priority from
a finite set C. Specifically, in Muller games the winner of a play is deter-
mined by the set of those priorities that have been seen infinitely often. It
has been proved by Gurevich and Harrington [Gu1Ha282] that Muller games
are determined via finite memory strategies that are based on a data struc-
ture called latest appearance records (LAR). Intuitively a latest appearance
record is a list of priorities in the order in which they have last occurred
in the play. Thus, on n priorities, an LAR-memory has n! memory states.
Dziembowski, Jurdziński, and Walukiewicz [DzJu0Wa597] have shown that
LAR-strategies are essentially optimal for Muller games.

Theorem 1.1. There exists a sequence (Gn)n∈ω of Muller games such that
the game graph of Gn is of size O(n) and every winning strategy for Gn

requires a memory of size at least n!

In particular, Muller games need not be positionally determined, not
even for solitaire games (where only one player moves). An important spe-
cial case of Muller games are parity games. These are games with a priority
labelling Ω assigning to each position v a priority Ω(v) ∈ {0, . . . , d}, for
some d ∈ N, and with parity winning condition: Player 0 wins a play π if
the least priority occurring infinitely often in π is even. Parity games are of
importance for several reasons.
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(1) Many classes of games arising in practical applications admit reduc-
tions to parity games (over larger game graphs). This is the case for
games modelling reactive systems, with winning conditions specified in
some temporal logic or in monadic second-order logic over infinite paths
(S1S), for Muller games, but also for games with partial information ap-
pearing in the synthesis of distributed controllers.

(2) Parity games arise as the model checking games for fixed point logics
such as the modal µ-calculus or LFP, the extension of first-order logic
by least and greatest fixed points [EmJu1Si301, Gr005]. In particular
the model checking problem for the modal µ-calculus can be solved in
polynomial time if, and only if, winning regions for parity games can
be decided in polynomial time.

(3) Parity games are positionally determined [EmJu191, Mo491]. This is
a game theoretical result of fundamental importance and with great
algorithmic relevance.

To establish positional determinacy or finite-memory determinacy is a
fundamental step in the analysis of an infinite game, and is also crucial for
the algorithmic construction of winning strategies. In the case of parity
games with finitely many priorities the positional determinacy immediately
implies that winning regions can be decided in NP ∩ Co-NP; with a little
more effort it follows that the problem is in fact in UP ∩ Co-UP [Ju098].
Further, although it is not known yet whether parity games can be solved
in polynomial time, all known approaches towards an efficient algorithmic
solution make use of positional determinacy. The same is true for the effi-
cient algorithms that we have for specific classes of parity games, including
parity games with a bounded number of priorities [Ju000], games where
even and odd cycles do not intersect, solitaire games and nested solitaire
games [Be2Gr004], and parity games of bounded tree width [Ob03], bounded
entanglement [Be2Gr005], or bounded DAG-width [Be2+06, Ob06].

For several reasons it is interesting to generalise the theory of infi-
nite games to the case of infinitely many priorities. Besides the theoret-
ical interest, winning conditions depending on infinitely many priorities
arise naturally in several contexts. In pushdown games, stack height and
stack contents are natural parameters that may take infinitely many val-
ues. In [Ca0Du0Th02], Cachat, Duparc, and Thomas study pushdown
games with an infinity condition on stack contents, and Bouquet, Serre,
and Walukiewicz [Bo4Se1Wa503] consider more general winning conditions
for pushdown games, combining a parity condition on the states of the un-
derlying pushdown automaton with an unboundedness condition on stack
heights. Similarly, Gimbert [Gi004] considers games of bounded degree
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where the parity winning condition is combined with the requirement that
an infinite portion of the game graph is visited.

A systematic study of positional determinacy of games with infinitely
many priorities has been initiated in [Gr0Wa506]. It has been shown that
there are interesting cases where positional determinacy is a consequence of
the winning condition only, holding for all game graphs. Most notably this
is the case for the parity condition on ω. Moreover a complete classification
of the infinitary Muller conditions with this property has been established
in [Gr0Wa506] and it has been shown that all of them are equivalent to a
parity condition.

Whereas the proof for the positional determinacy of parity games with
priorities in ω is somewhat involved, it is quite easy to construct games with
infinitary Muller winning conditions whose winning strategies require infi-
nite memory. For instance there are very simple max-parity games (where
the maximal priority seen infinitely often determines the winner) with this
property (see Section 4). Nevertheless, the required (infinite) memory struc-
tures are often quite simple. In some cases it is enough to store just the
maximal priority seen so far. In other cases a tuple (of fixed length) of
previously seen priorities suffices to determine the next move of a winning
strategy. This motivates the introduction of a new memory structure for
winning strategies, that we call finite appearance records (FAR) which gen-
eralise the LARs used for finitary Muller games. We determine some classes
of Muller games that can be reduced to parity games via FAR-memories.
These include games where the winning condition is a downward cone, a
singleton condition, a finite union of upwards cones, or consists of finitely
many winning sets only. Further the same property holds for all max-parity
games where the difference between the priorities of any two consecutive
positions is bounded.

Here is an outline of this paper. In Section 2 we present the technical
definitions on games, winning strategies, memory structures and game re-
ductions. In Section 3 we survey the case of Muller games with finitely many
priorities and present proofs of two classical results of the field. First we
show that Streett-Rabin games are positionally determined for one player
(which also implies that parity games are positionally determined for both
players). Second, we describe the LAR-memory and show how Muller games
can be reduced, via LAR-memory, to parity games. In Section 4 we briefly
survey the results from [Gr0Wa506] on parity games and Muller games
with infinitely many priorities. In Section 5 we introduce finite appear-
ance records and FAR-memory structures. Finally, in Section 6 we analyse
some classes of Muller games that can be solved with FAR-memories.
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2 Games, strategies, and memory structures

We study infinite two-player games with complete information, specified by
a triple G = (G, Ω, W ) where G = (V, V0, V1, E) is a game graph, equipped
with a partioning V = V0 ∪ V1 of the nodes into positions of Player 0
and positions of Player 1, where Ω : V → C is a function that assigns to
each position a priority (or colour) from a set C, and where W specifies
a winning condition. The pair (G, Ω) is called the arena of the game. In
case (v, w) ∈ E we call w a successor of v and we denote the set of all
successors of v by vE. To avoid tedious case distinctions, we assume that
every position has at least one successor. A play in G is an infinite path
v0v1 . . . formed by the two players starting from a given initial position v0.
Whenever the current position vi belongs to V0, then Player 0 chooses a
successor vi+1 ∈ viE, if vi ∈ V1, then vi+1 ∈ viE is selected by Player 1.
The winning condition describes which of the infinite plays v0v1 . . . are won
by Player 0, in terms of the sequence Ω(v0)Ω(v1) . . . of priorities appearing
in the play. Thus, a winning condition is given by a set W ⊆ Cω of infinite
sequences of priorities.

In traditional studies of infinite games it is usually assumed that the
set C of priorities is finite, although the game graph itself (i.e., the set of
positions) may well be infinite. This permits, for instance, to specify winning
condition by formulae from a logic on infinite paths, such as LTL (linear
time temporal logic), FO (first-order logic), or MSO (monadic second-order
logic) over a vocabulary that uses the linear order < and monadic predicates
Pc for each priority c ∈ C.

A (deterministic) strategy for Player σ in a game G = (V, V0, V1, E, Ω)
is a partial function f : V ∗Vσ → V that maps initial segments v0v1 . . . vm

of plays ending in a position vm ∈ Vσ to a successor f(v0 . . . vm) ∈ vmE. A
play v0v1 · · · ∈ V ω is consistent with f , if Player σ always moves according
to f , i.e., if vm+1 = f(v0 . . . vm) for every m with vm ∈ Vσ. We say that
such a strategy f is winning from position v0, if every play that starts at
v0 and that is consistent with f , is won by Player σ. The winning region
of Player σ, denoted Wσ, is the set of positions from which Player σ has a
winning strategy.

A game G is determined if W0 ∪W1 = V , i.e., if from each position one
of the two players has a winning strategy. In general, winning strategies
can be very complicated. It is of interest to determine which games ad-
mit simple strategies, in particular finite memory strategies and positional
strategies. While positional strategies only depend on the current posi-
tion, not on the history of the play, finite memory strategies have access to
bounded amount of information on the past. Finite memory strategies can
be defined as strategies that are realisable by finite automata. However,
we shall also need to consider strategies that require infinite memory. We
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therefore introduce a general notion of a memory structure and of a strategy
with memory, generalising the finite memory strategies studied for instance
in [DzJu0Wa597].

Definition 2.1. A memory structure for a game G with positions in V is a
triple M = (M, update, init), where M is a set of memory states, update :
M × V → M is a memory update function and init : V → M is a memory
initialisation function. The size of the memory is the cardinality of the
set M . A strategy with memory M for Player σ is given by a next-move
function F : Vσ × M → V such that F (v, m) ∈ vE for all v ∈ Vσ, m ∈ M .
If a play, from starting position v0, has gone through positions v0v1 . . . vn

the memory state is m(v0 . . . vn), defined inductively by m(v0) = init(v0),
and m(v0 . . . vivi+1) = update(m(v0 . . . vi), vi+1). In case vn ∈ Vσ, the next
move from v1 . . . vn, according to the strategy, leads to F (vn, m(v0 . . . , vn)).
In case |M | = 1, the strategy is positional; it can be described by a function
F : Vσ → V .

We will say that a game is determined via memory M if it is determined
and both players have winning strategies with memory M on their winning
regions. A game is positionally determined if it is determined via positional
winning strategies.

Given a game graph G = (V, V0, V1, E) and a memory structure M =
(M, update, init) we obtain a new game graph G×M = (V ×M, V0×M, V1×
M, Eupdate) where

Eupdate = {(v, m)(v′, m′) : (v, v′) ∈ E and m′ = update(m, v′)}.

Obviously, every play (v0, m0)(v1, m1) . . . in G×M has a unique projec-
tion to the play v0v1 . . . in G. Conversely, every play v0, v1, . . . in G has a
unique extension to a play (v0, m0)(v1, m1) . . . in G×M with m0 = init(v0)
and mi+1 = update(mi, vi+1).

Consider two games G = (G, Ω, W ) and G′ = (G′, Ω′, W ′). We say that
G reduces via memory M to G′, (in short G ≤M G′) if G′ = G × M and
every play in G′ is won by the same player as the projected play in G.

Given a memory structure M for G and a memory structure M
′ for

G × M we obtain a memory structure M
∗ = M × M

′ for G. The set of
memory locations is M ×M ′ and we have memory initialization init∗(v) =
(init(v), init′(v, init(v)) and the update function

update∗((m, m′), v) := (update(m, v), update′(m′, (v, update(m, v))).

Proposition 2.2. Suppose that a game G reduces to G′ via memory M

and that Player σ has a winning strategy for G′ with memory M
′ from

(v0, init(v0))). Then Player σ has a winning strategy for G with memory
M×M

′ from position v0.
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Proof. Given a strategy F ′ : (Vσ ×M)×M ′ → (V ×M) for Player σ on G′

we have to construct a strategy F : (Vσ × (M ×M ′)) → V × (M ×M ′).
For any pair (v, m) ∈ Vσ×M we have that F ′(v, m) = (w, update(m, w))

where w ∈ vE. We now put F (v, mm′) = w. If a play in G that is consistent
with F proceeds from position v, with current memory location (m, m′),
to a new position w, then the memory is updated to (n, n′) with n =
update(m, w) and n′ = update′(m′, (w, n)). In the extended play in G′

we have an associated move from position (v, m) to (w, n) with memory
update from m′ to n′. Thus, every play in G from initial position v0 that is
consistent with F is the projection of a play in G′ from (v0, init(v0)) that is
consistent with F ′. Therefore, if F ′ is a winning strategy from (v0, init(v0)),
then F is a winning strategy from v0. q.e.d.

Corollary 2.3. Every game that reduces via memory M to a positionally
determined game, is determined via memory M.

Obviously, memory reductions between games compose. If G reduces to
G′ with memory M = (M, update, init) and G′ reduces to G′′ with mem-
ory M

′ = (M ′, init′, update′) then G reduces to G′′ with memory (M ×
M ′, init′′, update′′) with init′′(v) = (init(v), init′(v, init(v))) and

update((m, m′), v) = (update(m, v), update′(m′, (v, update(m, v))).

3 Games with finitely many priorities

In this section we consider Muller games, Streett-Rabin games, and parity
games with finitely many priorities.

3.1 Muller games and Streett-Rabin games

Definition 3.1. A Muller winning condition over a finite set C of priorities
is written in the form (F0,F1) where F0 ⊆ P(C) and F1 = P(C) \ F0. A
play π in a game with Muller winning condition (F0,F1) is won by Player σ
if, and only if, Inf(π), the set of priorities occurring infinitely in π, belongs
to Fσ.

The Zielonka tree for a Muller condition (F0,F1) over C is a tree
Z(F0,F1) whose nodes are labelled with pairs (X, σ) such that X ∈ Fσ.
We define Z(F0,F1) inductively as follows. Let C ∈ Fσ and C0, . . . , Ck−1

be the maximal sets in {X ⊆ C : X ∈ F1−σ}. Then Z(F0,F1) consists of
a root, labeled by (C, σ), to which we attach as subtrees the Zielonka trees
Z(F0 ∩ P(Ci),F1 ∩ P(Ci)), for i = 0, . . . , k − 1.

Besides parity games there are other important special cases of Muller
games. Of special relevance are games with Rabin and Streett conditions
because these are positionally determined for one player [Kl094].
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Definition 3.2. A Streett-Rabin condition is a Muller condition (F0,F1)
such that F0 is closed under union.

In the Zielonka tree for a Streett-Rabin condition, the nodes labeled
(X, 1) have only one successor. We remark that in the literature, Streett
and Rabin conditions are often defined in a different manner, based on a
collection {(Ei, Fi) : i = 1, . . . k} of pairs of sets. However, it is not difficult
to see that the definitions are equivalent [Zi98]. Further, it is also easy
to show that if both F0 and F1 are closed under union, then (F0,F1) is
equivalent to a parity condition. The Zielonka tree for a parity condition is
just a finite path.

In a Streett-Rabin game, Player 1 has a positional wining strategy on
his winning region. On the other hand, Player 0 can win, on his winning
region, via a finite memory strategy, and the size of the memory can be
directly read of from the Zielonka tree. We present an elementary proof of
this result. The exposition is inspired by [DzJu0Wa597]. In the proof we
use the notion of an attractor.

Definition 3.3. Let G = (V, V0, V1, E, Ω) be an arena and let X, Y ⊆ V ,
such that X induces a subarena of G (i.e., every position in X has a successor
in X). The attractor of Player σ of Y in X is the set AttrX

σ (Y ) of those
positions v ∈ X from which Player σ has a strategy in G to force the play
into Y . More formally AttrX

σ (Y ) =
⋃

α Zα where

Z0 = X ∩ Y,

Zα+1 = Zα ∪ {v ∈ Vσ ∩X : vE ∩ Zα 6= ∅} ∪ {v ∈ V1−σ ∩X : vE ⊆ Zα},

Zλ =
⋃

α<λ

Zα for limit ordinals λ.

On AttrX
σ (Y ), Player σ has a positional attractor strategy to bring the

play into Y . Moreover X \AttrX
σ (Y ) is again a subarena.

Theorem 3.4. Let G = (V, V0, V1, E, Ω) be game with Streett-Rabin win-
ning condition (F0,F1). Then G is determined, i.e. V = W0 ∪W1, with a
finite memory winning strategy of Player 0 on W0, and a positional winning
strategy of Player 1 on W1. The size of the memory required by the winning
strategy for Player 0 is bounded by the number of leaves of the Zielonka
tree for (F0,F1).

Proof. We proceed by induction on the number of priorities in C or, equiv-
alently, the depth of the Zielonka tree Z(F0,F1). Let ℓ be number of leaves
of Z(F0,F1). We distinguish two cases.
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First, we assume that C ∈ F1. Let

X0 := {v : Player 0 has a winning strategy

with memory of size ≤ ℓ from v},

and X1 = V \X0. It suffices to prove that Player 1 has a positional winning
strategy on X1. To construct this strategy, we combine three positional
strategies of Player 1, a trap strategy, an attractor strategy, and a winning
strategy on a subgame with fewer priorities.

We observe that X1 is a trap for Player 0; this means that Player 1 has
a positional trap-strategy t on X1 to enforce that the play stays within X1.

Since F0 is closed under union, there is a unique maximal subset C′ ⊆ C
with C′ ∈ F0. Let Y := X1 ∩ Ω−1(C \ C′) and let Z = AttrX1

1 (Y ) \ Y .
Observe that Player 1 has a positional attractor strategy a, by which he
forces from any position z ∈ Z that the play reaches Y .

Finally, let V ′ = X1 \ (Y ∪ Z) and let G′ be the subgame of G induced
by V ′, with winning condition (F0 ∩ P(C′),F1 ∩ P(C′)). Since this game
has fewer priorities, the induction hypothesis applies, i.e. V ′ = W ′

0 ∪ W ′
1,

Player 0 has a winning strategy with memory ≤ ℓ on W ′
0 and Player 1 has

a positional winning strategy g′ on W ′
1. However, W ′

0 = ∅; otherwise we
could combine the strategies of Player 0 to obtain a winning strategy with
memory ≤ ℓ on X0 ∪ W ′

0 ) X0 contradicting the definition of X0. Hence
W ′

1 = V ′.
We can now define a positional strategy g for Player 1 on X1 by

g(x) =











g′(x) if x ∈ V ′,

a(x) if x ∈ Z,

t(x) if x ∈ Y.

Consider any play π that starts at a position v ∈ X1 and is consistent
with g. Obviously π stays within X1. If it hits Y ∪ Z only finitely often,
then from some point onward, it stays within V and coincides with a play
consistent with g′. It is therefore won by Player 1. Otherwise π hits Y ∪Z,
and hence also Y , infinitely often. Thus, Inf(π)∩(C \C′) 6= ∅ and therefore
Inf(π) ∈ F1.

We now consider the second case, C ∈ F0. There exist maximal subsets
C0, . . . , Ck−1 ⊆ C with Ci ∈ F1. Observe that for every set D ⊆ C, we
have that if D ∩ (C \ Ci) 6= ∅ for all i < k, then D ∈ F0. Let

X1 := {v : Player 1 has a positional winning strategy from v},

and X0 = V \ X1. We claim that Player 0 has a finite memory winning
strategy of size ≤ ℓ on X0. To construct this strategy, we proceed in a
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similar way as above, for each of the sets C \ Ci. We will obtain strategies
f0, . . . , fk−1 for Player 0, such that fi has finite memory Mi, and we shall
use these strategies to build a winning strategy f on X0 with memory
M0 ∪ · · · ∪Mk−1.

For i = 0, . . . , k − 1, let Yi = X0 ∩Ω−1(C \Ci) let Zi = AttrX0

0 (Yi) \ Yi,
and let ai be a positional attractor strategy, by which Player 0 can force
a play from any position in Zi to Yi. Further, let Ui = X0 \ (Yi ∪ Zi)
and let Gi be the subgame of G induced by Ui, with winning condition
(F0 ∩ P(Ci),F1 ∩ P(Ci)). The winning region of Player 1 in Gi is empty;
indeed, if Player 1 could win Gi from v, then, by induction hypothesis, he
could win with a positional winning strategy. By combining this strategy
with the positional winning strategy of Player 1 on X1, this would imply
that v ∈ X1; but v ∈ Ui ⊆ V \X1.

Hence, by induction hypothesis, Player 0 has a winning strategy fi with
finite memory Mi on Ui. Let (fi + ai) be the combination of fi with the
attractor strategy ai. From any position v ∈ Ui ∪ Zi this strategy ensures
that the play either remains inside Ui and is winning for Player 1, or it
eventually reaches a position in Yi.

We now combine the finite-memory strategies (f0+a0), . . . , (fk−1+ak−1)
to a winning strategy f on X0, which ensures that either the play ultimately
remains within one of the regions Ui and coincides with a play according to
fi, or that it cycles infinitely often through all the regions Y0, . . . , Yk−1.

At positions in
⋂

i<k Yi, Player 0 just plays with a (positional) trap
strategy ensuring that the play remains in X0. At the first position v 6∈
⋂

i<k Yi, Player 0 takes the minimal i such that v 6∈ Yi, i.e. v ∈ Ui ∪ Zi,
and uses the strategy (fi + ai) until a position in w ∈ Yi is reached. At
this point, Player 0 switches from i to j = i + ℓ (mod k) for the minimal
ℓ such that w 6∈ Yj . Hence w ∈ Uj ∪ Zj ; Player 0 now plays with strategy
(fj + aj) until a position in Yj is reached. There Player 0 again switches to
the appropriate next strategy, and so on.

Assuming that Mi∩Mj = ∅ for i 6= j it is not difficult to see that f can
be implemented with memory M = M0 ∪ · · · ∪ Mk−1. We leave a formal
definition of f to the reader.

It remains to prove that f is winning on X0. Let π be a play that starts
in X0 and is consistent with f . If π eventually remains inside some Ui

then it coincides, from some point onwards, with a play that is consistent
with fi, and therefore won by Player 0. Otherwise it hits each of the sets
Y0, . . . , Yk−1 infinitely often. But this means that Inf(π) ∩ (C \Ci) 6= ∅ for
all i ≤ k; as observed above this implies that Inf(π) ∈ F0.

Note that, by the induction hypothesis, the size of the memory Mi is
bounded by the number of leaves of the Zielonka subtrees Z(F0∩P(Ci),F1∩
P(Ci). Consequently the size of M is bounded by the number of leaves
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of Z(F0,F1). q.e.d.

Of course it also follows from this Theorem that parity games are posi-
tionally determined.

3.2 Latest appearance records and reductions for Muller games

The classical example of a game reduction with finite memory is the re-
duction of Muller games to parity games via latest appearance records.
Intuitively, a latest appearance record (LAR) is a list of priorities ordered
by their latest occurrence. More formally, for a finite set C of priorities,
LAR(C) is the set of sequences c1 . . . ck♮ck+1 . . . cℓ of elements from C ∪{♮}
in which each priority c ∈ C occurs at most once, and ♮ occurs precisely
once. At a position v, the LAR c1 . . . ck♮ck+1 . . . cℓ is updated by moving the
priority Ω(v) to the end, and moving ♮ to the previous position of Ω(v) in the
sequence. For instance, at a position with priority c2, the LAR c1c2c3♮c4c5

is updated to c1♮c3c4c5c2. (If Ω(v) did not occur in the LAR, we simply
append Ω(v) at the end.) Thus, the LAR-memory for an arena with priority
labeling Ω : V → C is the triple (LAR(C), init, update) with init(v) = ♮Ω(v)
and

update(c1 . . . ck♮ck+1 . . . cℓ, v) = c1 . . . ck♮ck+1 . . . cℓΩ(v)

in case Ω(v) 6∈ {c1 . . . cℓ}, and

update(c1 . . . ck♮ck+1 . . . cℓ, v) = c1 . . . cm−1♮cm+1 . . . cℓcm

if Ω(v) = cm.
The hit-set of a LAR c1 . . . ck♮ck+1 . . . cℓ is the set {ck+1 . . . cℓ} of pri-

orities occuring after the symbol ♮. Note that if in a play π = v0v1 . . . ,
the LAR at position vn is c1 . . . ck♮ck+1 . . . cℓ then Ω(vn) = cℓ and the hit-
set {ck+1 . . . cℓ} is the set of priorities that have been seen since the latest
previous occurrence of cℓ in the play.

Lemma 3.5. Let π be a play of a Muller game G, and let Inf(π) be the set
of priorities occurring infinitely often in π. On π the hit-set of the latest
appearance record is, from some point onwards, always a subset of Inf(π)
and infinitely often coincides with Inf(π).

Proof. For each play π = v0v1v2 . . . there is a position vm such that Ω(vn) ∈
Inf(π) for all n ≥ m. Since no priority outside Inf(π) is seen anymore after
position vm, the hit-set will from that point onwards always be contained in
Inf(π), and the LAR will always have the form c1 . . . cj−1cj . . . ck♮ck+1 . . . cℓ

where c1, . . . cj−1 remain fixed and {cj , . . . , ck, ck+1, . . . cℓ} = Inf(π). Since
all priorities in Inf(π) are seen again and again, it happens infinitely often
that, among these, the one occuring leftmost in the LAR is hit. At such
positions, the LAR is updated to c1, . . . , cj−1♮cj+1 . . . cℓcj and the hit-set
then coincides with Inf(π). q.e.d.
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Theorem 3.6. Every Muller game with finitely many priorities reduces via
LAR memory to a parity game.

Proof. Let G be a Muller game with game graph G, priority labelling Ω :
V → C and winning condition (F0,F1). We have to prove that G ≤LAR G′

for a parity game G′ with game graph G × LAR(C) and an appropriate
priority labeling Ω′ on V × LAR(C) which is defined as follows.

Ω′(v, c1c2 . . . ck♮ck+1 . . . cℓ) =

{

2k if {ck+1, . . . , cℓ} ∈ F0,
2k + 1 if {ck+1, . . . , cℓ} ∈ F1.

Let π = v0v1v2 . . . be a play on G and fix a number m such that,
for all numbers n ≥ m and Ω(vn) ∈ Inf(π), the LAR at position vn has
the form c1 . . . cjcj+1 . . . ck♮ck+1 . . . cℓ where Inf(π) = {cj+1, . . . cℓ} and the
prefix c1 . . . cj remains fixed. In the extended play π′ = (v0r0)(v1, r1) . . .
all nodes (vn, rn) for n ≥ will therefore have a priority 2k + ρ with k ≥ j
and ρ ∈ {0, 1}. Assume that the play π is won by Player σ, i.e., Inf(π) ∈
Fσ. Since infinitely often the hit-set of the LAR coincides with Inf(π), the
minimal priority seen infinitely often on the extended play is 2j + σ. Thus
the extended play in the parity game G′ is won by the same player as the
original play in the Muller game G. q.e.d.

4 Games with infinitely many priorities

The definition of Muller games (Definition 3.1) directly generalises to count-
able sets C of priorities1. However, a representation of a Muller condition
by a Zielonka tree is not always possible, since we may have sets D ∈ Fσ

that have subsets in F1−σ but no maximal ones. Further, it turns out that
the condition that F0 and F1 are both closed under finite unions is no longer
sufficient for positional determinacy. To see this let us discuss the possible
generalisations of parity games to the case of priority assigments Ω : V → ω.
For parity games with finitely many priorities it is of course purely a mat-
ter of taste whether we let the winner be determined by the least priority
seen infinitely often or by the greatest one. Here this is no longer the case.
Based on priority assignments Ω : V → ω we consider the following classes
of games.

Infinity games are games where Player 0 wins those infinite plays in which
no priority at all appears infinitely often, i.e.

F0 = {∅},

F1 = P(ω) \ {∅}.

1 With minor modifications, it can also be generalised to uncountable sets C. See
[Gr0Wa506] for a discussion of this.
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Parity games are games where Player 0 wins the plays in which the least
priority seen infinitely often is even, or where no priority appears
infinitely often. Thus,

F0 = {X ⊆ ω : min(X) is even} ∪ {∅},

F1 = {X ⊆ ω : min(X) is odd}.

Max-parity games are games where Player 0 wins if the maximal priority
occurring infinitely often is even, or does not exist, i.e.

F0 = {X ⊆ ω : if X is finite and non-empty, then max(X) is even},

F1 = {X ⊆ ω : X is finite, non-empty, and max(X) is odd}.

It is easy to see that infinity games are a special case of parity games (via
a simple reassignment of priorities). Further we note that for both parity
games and max-parity games, F0 and F1 are closed under finite unions.
Nevertheless the conditions behave quite differently. The parity condition
has a very simple Zielonka tree, namely just a Zielonka path

ω −→ ω \ {0} −→ ω \ {0, 1} −→ ω \ {0, 1, 2} −→ · · ·

whereas there is no Zielonka tree for the max-parity condition since ω ∈ F0

has no maximal subset in F1 (and F1 is not closed under unions of chains).
This is in fact related to a much more important difference concerning the
memory needed for winning strategies.

Proposition 4.1. Max-parity games with infinitely many priorities in gen-
eral do not admit finite memory winning strategies.

Proof. Consider the max-parity game with positions V0 = {0} and V1 =
{2n + 1 : n ∈ N} (where the name of a position is also its priority), such
that Player 0 can move from 0 to any position 2n+1 and Player 1 can move
back from 2n + 1 to 0. Clearly Player 0 has a winning strategy from each
position but no winning stategy with finite memory. q.e.d.

On the other hand it has been shown in [Gr0Wa506] that infinity games
and parity games with priorities in ω do admit positional winning strategies
for both players on all game graphs. In fact, parity games over ω turn out
to be the only Muller games with this property.

Theorem 4.2 (Grädel, Walukiewicz). Let (F0,F1) be a Muller winning
condition over a countable set C of priorities. Then the following are equiv-
alent.
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(i) Every game with winning condition (F0,F1) is positionally deter-
mined.

(ii) Both F0 and F1 are closed under finite unions, unions of chains, and
non-empty intersections of chains.

(iii) The Zielonka tree of (F0,F1) exists, and is a path of co-finite sets (and
possibly the empty set at the end).

(iv) (F0,F1) reduces to a parity condition over n ≤ ω priorities.

5 Finite Appearance Records

Although over an infinite set of priorities one can easily define Muller games
that do not admit finite memory strategies, these games are often solvable
by strategies with very simple infinite memory structures. For instance, for
the max-parity game described in the proof of Proposition 4.1, it suffices
for Player 0 to store the maximal priority seen so far, in order to determine
the next move in her winning strategy. One can readily come up with other
games where the memory required by a winning strategies is essentially a
finite collection of previously seen priorities.

This motivates the definition of an infinite memory structure that we
call finite appearance records (FAR) which generalises the LAR-memory for
finitely coloured games. In a FAR we store tuples of previously encountered
priorities or some other symbols from a finite set. Additionally the update
function in the appearance record is restricted, so that new values of the
memory can be equal only to the values stored before or to the currently
seen priority.

Definition 5.1. A d-dimensional FAR-memory for a game G with priorities
in C is a memory structure (M, update, init) for G with M = (C ∪N)d for
some finite set N such that whenever

update(m1, . . . , md, v) = (m′
1, . . . , m

′
d)

then m′
i ∈ {m1, . . . , md} ∪N ∪ {Ω(v)}.

Note that an LAR-memory over a finite set C is a special case of an FAR-
memory, with d = |C|+ 1 and N = {♮, B}, where B is a blank symbol used
to pad latest appearance records in which some priorities are missing. Here
the dimension of the FAR depends on the size of C. Hence, the question
arises whether there is a fixed dimension d and a fixed additional set N
such that every finitely coloured Muller game reduces to a parity game via
d-dimensional FAR-memory. From Theorem 1.1 it follows that his is not
the case. Indeed, since n! grows faster than nd for any constant d, we infer
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that for any dimension d there is a Muller game Gd that can not be reduced
to a parity game via d-dimensional FAR-memory.

From this we obtain the following conclusion.

Proposition 5.2. There exists an infinitely coloured Muller game G that
does not reduce to a parity game with any FAR-memory.

Proof. Take G to be the disjoint sum of the games Gd, assuming that all these
games have disjoint sets of priorities. Suppose that G reduces to a parity
game via some FAR-memory of dimension d. Since game extensions preserve
connectivity it follows that the extension of the connected component Gd of
G will also be a parity game. But this contradicts the fact that Gd does not
reduce to a parity game via d-dimensional FAR-memory. q.e.d.

6 FAR-reductions for Muller games

In this section we consider some cases of Muller games with priorities in ω
that admit FAR-reductions to positionally determined games.

To illustrate the idea consider any downwards cone F0 = {X : X ⊆ A}
for a fixed set A ⊆ ω. Again it is easy to see that such games may require
infinite-memory strategies. To reduce such a game to a parity game G′ it
suffices to store the maximal priority m seen so far, and to define priorities
in G′ by

Ω′(v, m) =

{

2m + 2 if Ω(v) ∈ A,

2Ω(v) + 1 otherwise.

If Inf(π) ⊆ A then Player 0 wins π′ since no odd priority is seen infinitely
often in π′. If there is some a ∈ Inf(π)\A, then 2a+1 occurs infinitely often
in π′, and since a ≤ m from some point onwards, no smaller even priority
can have this property, so Player 1 wins π′.

Hence any Muller game such that F0 (or F1) is a downwards cone is
determined via one-dimensional FAR-memory.

6.1 Visiting sequences and singleton Muller conditions

Our next example for winning conditions that are amenable for an ap-
proach via FAR-reductions are Muller games where the winning condition
of Player 0 is a singleton, i.e., F0 = {A}, F1 = P(ω) \ {A}.

We first observe that such games may require infinite memory.

Theorem 6.1. For any A 6= ∅, there exists a (solitaire) Muller game with
F0 = {A} whose winning strategies all require infinite memory.

Proof. If A = {a1, a2, . . . } is infinite, take the game with set of positions
V = V0 = A (where the name of a position indicates also its priority), and
moves (a1, an) and (an, a1) for all n ≥ 2. If A = {a1, . . . , an} is finite, let
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ω\A = {b1, b2, . . . } we consider instead the game with V = V0 = A∪(ω\A),
and set of moves

E = {(ai, ai+1) : 1 ≤ i < n}∪ {(an, b) : b ∈ (ω \A)} ∪ {(b, a1) : b ∈ (ω \A)}.

In both cases, Player 0 wins, but requires infinite memory to do so. q.e.d.

We will prove that singleton Muller games can be reduced via FAR-
memory to parity games with priorities in ω which, as shown in [Gr0Wa506],
are positionally determined. The FAR-memory that we use for this reduc-
tion is based on a particular order in which the elements of the winning sets
have to be seen infinitely often, which is specified by a visiting sequence.

Definition 6.2. Let A = {a1 < a2 < . . . } be an infinite subset of ω.
For each n ∈ ω, let p(an) := a1a2 . . . an be the prefix of an. The visiting
sequence of A is the concatenation of the prefixes of all elements of A

visit(A) = p(a1)p(a2)p(a3) . . .

For a finite set {a1 < a2 < · · · < an} ⊆ ω we define visit(A) = p(an)ω .

Let G be a Muller game over ω.

Lemma 6.3. For any play π = v1v2 . . . of G the set Inf(π) is the unique
set A with the following two properties:

(1) There is a sequence of indices i1 < i2 < . . . such that Ω(vi1)Ω(vi2 ) . . .
forms the visiting sequence of A.

(2) If Ω(vk) ∈ ω \A then there is only a finite number of indices i > k such
that Ω(vi) ∈ {0, . . . , Ω(vk)} ∩ ω \A.

Proof. First we notice that A = Inf(π) indeed fulfils these two properties.
The visiting sequence can be chosen from the play as all elements of Inf(π)
appear infinitely often. Since all elements of ω \ Inf(π) occur only finitely
often in the play, the second property must also hold.

Conversely, if a set A satisfies property (1), then all elements of A appear
infinitely often in π, so A ⊆ Inf(π). If there were an element a ∈ Inf(π) \A,
then for any k with Ω(vk) = a, there were infinitely many indices i > k, with
Ω(vi) = a which contradicts property (2). Thus if A satisfies properties (1)
and (2), then A = Inf(π). q.e.d.

Let A ⊆ ω be infinite. Any initial segment of the visiting sequence of A
can be written in the form p(a1)p(a2) . . . p(ai)a1a2 . . . aj where 1 ≤ j ≤ i+1.
It can be represented by a pair (p, c) where c = aj indicates the position
of the last letter in the current prefix p(ai+1), and p = ai indicates the



What Kind of Memory is Needed to Win Infinitary Muller Games? 105

last previously completed prefix (or ε if we are at the first element). For
instance, the initial segment a1 a1a2 a1a2a3 a1a2a3 of the visiting sequence
of A is encoded by (a3, a3), the initial segment a1 is encoded by (ε, a1),
and the empty initial segment by (ε, ε). We write visitn(A) for the initial
segment of length A of visit(A).

Given a (finite or infinite) winning set A, we want to use a three-
dimensional FAR-memory to check whether Inf(π) = A. For infinite A,
the memory state after an initial segment of a play is a triple (p, c, q) where
(p, c) encode the initial segment of the visiting sequence of A that has been
seen so far, and q is the maximal priority that has occurred.

Definition 6.4. For any infinite set A ⊆ ω, we define a three-dimensional
FAR-memory FAR(A) = (M, init, update) with M = {(p, c, q) : p, c ∈ ω ∪
{ε}, q ∈ ω}. The initialisation function is defined by

init(v) =

{

(ε, Ω(v), Ω(v)) if Ω(v) = a1,

(ε, ε, Ω(v)) if Ω(v) 6= a1.
.

The update function is defined by

update(p, c, q, v) := (p′, c′, q′),

where q′ = max(q, Ω(v)), and where either (p, c) and respectively (p′, c′)
encode, for some n, the initial segments visitn(A) and visitn+1(A) of the
visiting sequence of A such that visitn+1(A) = visitn(A)Ω(v), or otherwise,
(p′, c′) = (p, c).

For a more formal description, let

up(p, c, v) =











2 if, for some i, p = ai, c = ai+1, Ω(v) = a1,

1 if, for some j ≤ i, p = ai, c = aj , Ω(v) = aj+1,

0 otherwise

(where, to simplify notation, we identify ε with a0). Note that up(p, c, v) = 2
if, at node v, the visiting sequence is updated with an a1 (i.e. a prefix p(ai)
has been completed and a new one is started), that up(p, c, v) = 1 if the
visiting sequence is updated by another value, and that up(p, c, v) = 0
if no update of the visiting sequence happens at v. Then we can define
update(p, c, q, v) := (p′, c′, q′) by

(p′, c′) =











(c, Ω(v)) if up(p, c, v) = 2,

(p, Ω(v)) if up(p, c, v) = 1,

(p, c) if up(p, c, v) = 0,

q′ = max(q, Ω(v)).
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For finite A = {a1 < a2 < · · · < an} this has to be modified since once
cannot really encode the part of the visiting sequence that one has seen with
priorities in A. In this case the value (p, c, q) is so that c is the last element
of the visiting sequence, q is the maximal priority that has occurred so far,
and p is the maximal priority that had occured up to the last time when,
in the visiting sequence of A, a prefix p(an) had been completed and c had
been updated from an to a1. Thus we set

up(p, c, v) =











2 if c = an, Ω(v) = a1,

1 if, for some i < n, c = ai, Ω(v) = ai+1,

0 otherwise,

and update(p, c, q, v) := (p′, c′, q′) with

(p′, c′) =











(q, Ω(v)) if up(p, c, v) = 2.

(p, Ω(v)) if up(p, c, v) = 1,

(p, c) if up(p, c, v) = 0,

q′ = max(q, Ω(v)).

Theorem 6.5. Any singleton Muller game with F0 = {A} can be reduced,
via memory FAR(A), to a parity game.

Proof. The given Muller game G with arena (G, Ω) and Muller condition
such that F0 = {A} is reduced via memory FAR(A) to a parity game G′

with priority function Ω′ : V × FAR(A) → ω defined as follows:

Ω′(v, p, c, q) =











2p + 2 if Ω(v) ∈ A, up(p, c, v) ∈ {1, 2},

2p + 3 if Ω(v) ∈ A, up(p, c, v) = 0,

min(2p + 3, 2Ω(v) + 1) if Ω(v) 6∈ A.

We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play

π′ = (v0, p0, c0, q0)(v1, p1, c1, q1)(v2, p2, c2, q2) . . .

of G′.
We first assume that Inf(π) = A and prove that either no priority at all

occurs infinitely often in π′ or the minimal such is even. If A is infinite,
then the sequence of the values pn diverges and therefore no priority will
be seen infinitely often in π′. If A is finite then it may be the case that
the sequence (pn)n∈ω converges, i.e., pn = p from some point onwards. But
since the visiting sequence will be updated again and again this means that
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infinitely often the priority 2p + 2 occurs in π′, and the only other priority
that may occur infinitely often is 2p + 3. Hence Player 0 wins π′.

For the converse, we assume that Player 1 wins π. We distinguish several
cases. If there exist some a ∈ A \ Inf(π) then from some point onwards,
the visiting sequence cannot be updated anymore, so the sequence (pn)n∈ω

stabilises at some value p. Then the minimal priority seen infinitely often is
either 2p + 3, or 2Ω(v) + 1 for some Ω(v) ∈ ω \A and Player 1 also wins π′.
If no such element a exists, then A ( Inf(π) and there is a minimal element
b ∈ Inf(π) \ A. If the sequence (pn)n∈ω diverges (which is always the case
for infinite winning sets A) then the minimal priority seen infinitely often
in π′ is 2b + 1. If A is finite then the sequence pn may stabilise at some
value p which coincides with the largest priority ever occurring in π. Hence
b ≤ p and therefore 2b + 1 < 2p + 2, so the minimal priority seen infinitely
often in π′ is 2b + 1. Again Player 1 wins the associated play in the parity
game. q.e.d.

Corollary 6.6. Singleton Muller games are determined with FAR memory.

6.2 Finite unions of upwards cones

Visiting sequences can also be used for the case where F0 is a finite union
of upwards cones, i.e.

F0 =

k
⋃

i=1

{X : Ai ⊆ X ⊆ ω}

for some finite collection of sets A1, . . . , Ak.
The FAR-memory stores the pairs (pi, ci) encoding the visiting sequences

of A1, . . . , Ak. All that has to checked is whether Ai ⊆ Inf(π) for some i,
which is the case if, and only if, one of the visiting sequences is updated
infinitely often. Thus we can define priorities by

Ω′(v, p1, c1, . . . , pk, ck) =

{

0 if up(pi, ci, v) = 2 for some i,

1 otherwise.

Theorem 6.7. Any Muller game such that Fσ is a finite union of upwards
cones is determined via FAR-memory.

6.3 Muller conditions with finitely many winning sets

We now consider the case of Muller games whose winning conditions are
defined by a finite collection of (possibly infinite) sets, F0 = {A1, . . . , Ak}.
To extend the idea presented above to this case we are going to use the
memory FAR(Ai) for each set Ai and additionally we have to remember
when the set Ai is active, as is described below. The property of being
active is stored in a value ai ∈ {0, 1, 2}.
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Definition 6.8. For any finite collection {A1, . . . , Ak} of sets Ai ⊆ ω, we
define a 4k-dimensional FAR-memory FAR(A1, . . . , Ak) = (M, init, update).
We denote the FAR-memory of Ai by FAR(Ai) = (Mi, initi, updatei). Then
M = M1×M2× . . .×Mk ×{0, 1, 2}k. The initialisation function is defined
by

init(v) = (init1(v), . . . , initk(v), 0).

The update function is defined by

update(m1, . . . , mk, a1, . . . , ak, v)

= (update1(m1, v), . . . , updatek(mk, v), a′1, . . . , a
′
k),

where a′i is the new activation value for sequence i defined by

a′i =











0 if v 6∈ Ai and for some j ≤ k upj(mj , v) > 0,

min(2, ai + 1) if upi(mi, v) = 2,

ai otherwise.

Theorem 6.9. Any Muller game with F0 = {A1, . . . , Ak} can be reduced,
via memory FAR(A1, . . . , Ak), to a parity game.

Proof. The given Muller game G with arena (G, Ω) and Muller condition
such that F0 = {A1, . . . , Ak} is reduced to a parity game G′ with priority
function Ω′ defined as follows:

Ω′(v, m, a) =



























































max{i : Ω(v)∈Ai∧ai=2}(2kpi + 2ri + 2) if j exists such that
Ω(v) ∈ Aj , aj = 2,
upj(mj , v) ∈ {1, 2},

max{i : Ω(v)∈Ai∧ai=2}(2kpi + 2ri + 3) if j exists such that
Ω(v) ∈ Aj , aj = 2,
upj(mj , v) = 0 for
all such j,

min(2k max(p1 . . . pk) + 3, 2Ω(v) + 1) otherwise,

where pi is the first component of the i-th memory mi = (pi, ci, qi) and for
each Ai ∈ F0 we have ri = |{Aj ∈ F0 : Ai ⊆ Aj}|.

We have to prove that any play π = v0v1v2 . . . of G is won by the same
player as the extended play

π′ = (v0, m10, . . . , mk0, a10, . . . ak0)(v1, m11, . . . , mk1, a11, . . . ak1) . . . .

For a given play π of G, we divide the sets A1, . . . , Ak ∈ F0 into three
classes.
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The good: Ai is a good set if Ai is active (i.e., ai = 2) only finitely often
in π.

The bad: Ai is a bad set, if Ai ⊆ Inf(π) and Ai is not a good set.

The ugly: Ai is an ugly set if there is a priority c ∈ Ai \ Inf(π) and Ai is
not a good set.

Lemma 6.10. If Ai is bad and Aj is ugly, then Ai ⊆ Aj .

Proof. Assume that there is a b ∈ Ai \ Aj . Since Ai ⊆ Inf(π) the visiting
sequence for Ai is updated infinitely often, hence infinitely often with b, and
whenever this happens then aj is reset to 0. By definition there is a c ∈ Aj

that is seen only finitely many times in π. Therefore aj = 0 from some point
onwards. But this contradicts the assumption that Aj is not good. q.e.d.

We first assume that Inf(π) = Ai and prove that either no priority at all
occurs infinitely often in π′ or the minimal such priority is even.

Since from some point on there is no priority d 6∈ Ai that occurs infinitely
often, then for all sets Aj that are not subsets of Ai the visiting sequence
will not be updated any more, and so the sequence (pjn)n∈ω stabilises at
some value pj . Since the visiting sequence of Ai is updated infinitely often,
we get that from some point on ai = 2. Hence Ai is a bad set. We can now
argue as in the proof of Theorem 6.5: if infinitely many priorities appear in
π, then the sequence (pin)n∈ω diverges and no priority at all will be seen
infinitely often in π′. It remains to consider the case where only finitely
many priorities occur in π. Then the sequence (pin)n∈ω stabilises at some
value p, which is the maximal priority appearing in π. For any Aj ( Ai, the
sequence (pjn)n∈ω will then also stabilise at the same value p, and rj > ri.
It follows that some priority of form 2kp + 2rℓ + 2 occurs infinitely often in
π′, where rℓ ≥ ri.

Suppose now that some smaller odd priority occurs infinitely often in
π′. Then it would have to be of the form 2kp + 2rj + 3 with rj < rℓ such
that aj = 2 infinitely often. However, only finitely many priorities appear
in π. Hence if there are infinitely many positions v such that Ω(v) ∈ Aj

and aj = 2, then from some point onwards all these positions v satisfy that
Ω(v) ∈ Aj ∩ Ai and ai = 2. On infinitely many such positions an update
happens, and therefore, also the priority 2kp + 2rj + 2 appears infinitely
often. Hence Player 0 wins π′.

For the converse, we now assume that Player 1 wins π.

Lemma 6.11. Suppose that some even priority 2kq+2r+2 is seen infinitely
often in π′. Then q is the maximal priority that occurs in π and r = rℓ for
some bad set Aℓ.
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Proof. If there are infinitely many occurrences of 2kq + 2r + 2 in π′, then q
is the maximal priority that occurs in π and some Ai is updated infinitely
often (i.e. Ai ⊆ Inf(π)) and active infinitely often. Obviously Ai is bad and
r ≥ ri. If r 6= rℓ for all bad set Aℓ, then r = rj for some other Aj that is
active infinitely often. Thus Aj has to be ugly. But then by Lemma 6.10
Ai ⊆ Aj and thus ri > rj = r. But r ≥ ri. q.e.d.

Let r = min{rℓ : Aℓ is bad}. To show that Player 1 wins π′ it suffices to
prove that there is an odd priority occurring infinitely often in π′ which, in
case there exists a bound q on all priorities appearing in π, is smaller than
2kq + 2r + 2.

Notice that for any ugly set Ai, the sequence (pin)n∈ω stabilises at some
value pi. Let p = max{pi : Ai is ugly}.

We distinguish two cases. First we assume that there exists some priority

b ∈ Inf(π) \
⋃

{Ai : Ai is bad}.

Fix n0 such that, for all n > n0, pin = pi for all ugly sets Ai and ain 6= 2
for all good sets Ai. Since b ∈ Inf(π) there exist infinitely many vn with
n > n0 and Ω(vn) = b. For such vn we have Ω′(vn, mn, an) = 2kp + 2ri + 3
if there is a set Ai (which has to be ugly) such that b ∈ Ai and ai = 2.

Otherwise Ω′(vn, mn, an) is odd and ≤ 2b + 1. Since Ai is ugly and Aℓ

is bad it follows that Aℓ ⊆ Ai. Thus, ri < r. Further p ≤ q. It follows that
there exists some odd priority s ≤ max(2kp + 2ri + 3, 2b + 1) < 2kq + r + 2
that appears in π′ infinitely often.

Now we consider the other case: every b ∈ Inf(π) is contained in some
bad set Ai(b). Let A1, . . . , Aℓ be the bad sets. Without loss of generality, we
assume that A1 is a maximal bad set, i.e., A1 6⊆ Ai for i = 2, . . . , ℓ. Since
A1 is a strict subset of Inf(π), we can fix a priority d ∈ Inf(π) \ A1; since
any priority d ∈ Inf(π) is contained in some bad set, we can assume that
d ∈ A2. Further, by the maximality of A1, we can fix priorities e2, . . . , eℓ

where ei ∈ A1 \Ai.

We consider a suffix of π that starts at a position where

• all sequences (pin)n∈ω that stabilise at some value pi have already
reached that value;

• all good sets Ai have become inactive for good (i.e. ai 6= 2),

• in the visiting sequence for A1 the prefixes p(e1), . . . p(eℓ) have already
been completed.

Note that A1 is updated infinitely often, and between any two consec-
utive points in this suffix at which up1 = 2 all priorities e2, . . . , eℓ are seen
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at least once. Since the priority d appears infinitely often in π and A2 is
updated infinitely often, we are going to see infinitely many points vn0

in
the considered suffix of π for which Ω(vn0

) = d and a1 = 0 (since a1 is reset
with an update of A2). Since a1 increases to 2 infinitely often, there are
infinitely many tuples n0 < n1 < n2 such that a1 = i at all positions vn

with ni ≤ n < ni+1 and a1 = 2 at vn2
.

By definition up1 = 2 at vn1
and vn2

and there cannot be any updates
on priority d between vn1

and vn2
, as then a1 would be reset to 0. By

our choice of the considered suffix of π, there are updates on all e2, . . . , eℓ

between vn1
and vn2

. Therefore, for any bad set Aj that contains d, we have
that aj < 2 between position vn2

and the first position vn with Ω(vn) = d
that comes after vn2

. This is the case because between vn1
and vn2

the value
aj was reset to 0 by the update of the visiting sequence for A1 by priority
ej , and since then it has not increased by more than 1 since there was no
update on priority d.

Let us now consider the new priority at vn. Since all bad sets Aj

containing d are inactive, we have the same situation as in the first case:
Ω′(vn, mn, an) = 2kp + 2ri + 3 if there is a set Ai (which has to be ugly)
such that d ∈ Ai and ai = 2. Otherwise Ω′(vn, mn, an) is odd and ≤ 2d+1.
Since Ai is ugly and Aℓ is bad it follows that Aℓ ⊆ Ai and thus ri < rℓ = r.
Further p ≤ q.

There are infinitely many such positions vn. Thus there must exist some
odd priority s ≤ max(2kp + 2ri + 3, 2d + 1) < 2kq + r + 2 that appears in
π′ infinitely often. q.e.d.

Of course, the same arguments apply to the case where F1 is finite.

Corollary 6.12. Let (F0,F1) be a Muller winning condition such that ei-
ther F0 or F1 is finite. Then every Muller game with this winning condition
is determined via FAR memory.

6.4 Max parity games with bounded moves

We say that an arena (G, Ω) has bounded moves if there is a natural number
d such that |Ω(v) − Ω(w)| ≤ d for all edges (v, w) of G.

We have shown in Proposition 4.1 that, in general, winning strategies
for max-parity games require infinite memory, but we do not know whether
max-parity games are determined via FAR-memory.

For max-parity games with bounded moves, it is still the case that win-
ning strategies may require infinite memory, but now we can prove deter-
minacy via FAR-memory.

Proposition 6.13. There exist max-parity games with bounded moves
whose winning strategies require infinite memory.
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Proof. Consider a (solitaire) max-parity game with a single node v0 of pri-
ority 0 from which Player 0 has, for every odd number 2n+1, the option to
go through a cycle Cn consisting of nodes with priorities 2, 4, . . . , 2n, 2n +
1, 2n, 2n − 2, . . . , 4, 2 and back to the node v0. All these cycles intersect
only at v0. Clearly Player 0 has a winning strategy, namely to go succes-
sively through cycles C1, C2, . . . with the result that there is no maximal
priority occurring infinitely often. However, if Player 0 moves according to
a finite-memory strategy then only finitely many cycles will be visited and
there is a maximal n such that the cycle Cn will be visited infinitely often.
Thus the maximal priority seen infinitely often will be 2n + 1 and Player 0
loses. q.e.d.

Lemma 6.14. Let π be a play of a max-parity game G with bounded moves
such that infinitely many different priorities occur in π. Then max(Inf(π))
does not exist, so π is won by Player 0.

Proof. Assume that moves of G are bounded by d and Inf(π) 6= ∅ and
let q be any priority occurring infinitely often on π. Since infinitely many
different priorities occur on π it must happen infinitely often that from a
position with priority q the play eventually reaches a priority larger than
q + d. Since moves are bounded by d, this means that on the way the play
has to go through at least one of the priorities q+1, . . . , q+d. Hence at least
one of these priorities also occurs infinitely often, so q cannot be maximal
in Inf(π). q.e.d.

Theorem 6.15. Every max-parity game with bounded moves can be re-
duced via a one-dimensional FAR-memory to a parity game. Hence max-
parity games are determined via strategies with one-dimensional FAR-
memory.

Proof. The FAR-memory simply stores the maximal priority m that has
been seen so far. To reduce a max-parity game G with bounded moves, via
this memory, to a parity game G′ we define the priorities of G′ by

Ω′(v, m) = 2m− Ω(v).

Let π be a play of G and let π′ be the extended play in G′. We distinguish
two cases. First, we assume that on π the sequence of values for m is
unbounded. This means that infinitely many different priorities occur on π,
so by Lemma 6.14, Player 0 wins π. But since m ≤ Ω′(v, m) and m never
stabilises there is no priority that occurs infinitely often on π, so π′ is also
won by Player 0.

In the second case there exists a suffix of π on which m remains fixed
on the maximal priority of π. In that case Inf(π) is a non-empty subset
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of {0, . . . , m} and Inf(π′) is a non-empty subset of {m, . . . , 2m}. Further,
Ω′(v, m) is even if, and only if Ω(v) is even, and Ω′(v1, m) < Ω′(v2, m)
if, and only if, Ω(v1) > Ω(v2). Thus, min(Inf(π′)) is even if, and only if,
max(Inf(π)) is even. Hence π is won by the same Player as π′. q.e.d.

7 Conclusion

We have introduced a new memory structure for strategies in infinite games,
called FAR-memory, which is appropriate for games with infinitely many pri-
orities and which generalises the LAR-memory for finitary Muller games.
We have shown that there are a number of infinitary Muller winning con-
ditions with the following two properties.

(1) There exist Muller games with these winning conditions all whose win-
ning strategies require infinite memory.

(2) All Muller games with such winning conditions can be reduced via FAR-
memory to parity games. Therefore all these games are determined via
FAR-memory.

The class of these Muller conditions includes: (1) downward cones, (2)

singleton conditions, (3) finite unions of upwards cones, and (4)winning
conditions with finitely many winning sets.

Further we have shown that the same property holds for max-parity
games with bounded moves. It is open whether arbitrary max-parity games
are determined via FAR-memory. It would also be desirable to obtain a
complete classification of the infinitary Muller conditions with this property.
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[Be2Gr004] D. Berwanger & E. Grädel. Fixed-point logics and solitaire
games. Theory of Computing Systems 37(6):675–694, 2004.
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Abstract

We look for an intuitive reason why the Tarski-style semantics of log-
ics of imperfect information (the author’s trump semantics) needs sets
of assignments where Tarski’s semantics for standard logic uses single
assignments. To find one, we generalise the semantics to a certain
class of games. In this setting, sets of assignments arise naturally;
under perfect information one can reduce from sets of assignments to
single assignments by choice and gluing. Also truth values can be real
numbers, and the number of players can be any natural number ≥ 2;
so bivalence and the dialogue between two players are not needed for
trump-style semantics.

1 The source of the question

In 1961 Leon Henkin [He161] extended first-order logic by adding partially
ordered arrays of quantifiers. He proposed a semantics for sentences ϕ that
begin with quantifier arrays of this kind: ϕ is true in a structure A if and
only if there are a sentence ϕ+ and a structure A+ such that:

• ϕ+ comes from ϕ by removing each existential quantifier ∃y in the
partially ordered prefix, and replacing each occurrence of the variable
y by a term F (x̄) where x̄ are the variables universally quantified
‘before’ ∃y in the quantifier prefix (so that the new function symbols
F are Skolem function symbols),

• A+ comes from A by adding functions to interpret the Skolem function
symbols in ϕ+, and
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and to the organisers of the programme ‘Logic and Algorithms’ at the Isaac Newton
Institute in Cambridge, where the paper was written up. Also I thank the referee for
helpful suggestions towards improving the presentation.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 117–133.
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• ϕ+ is true in A+.

For example the sentence

(∀x)(∃y)
(∀z)(∃w)

ψ(x, y, z, w) (1.1)

is true in A if and only if there are functions FA, GA such that

(A,FA, GA) |= (∀x)(∀z)ψ(x, F (x), z, G(z)) (1.2)

where F , G stand for FA, GA respectively. Jon Barwise commented seven-
teen years later:

. . . the meaning of a branching quantifier expression of logic like:

∀x

∀z

—

—

∃y

∃w

H

H
ψ(x, y, z, w)

�

�

(1.3)

cannot be defined inductively in terms of simpler formulas, by ex-
plaining away one quantifier at a time. Rather, the whole block

∀x

∀z

—

—

∃y

∃w

H

H

�

�

(1.4)

must be treated at once. [Ba678]1

He offered a proof of what he called ‘a precise version of this claim’. Un-
fortunately his proof proves much less than he said. It shows only that
truth for Henkin’s sentences is not an inductive verifiability relation in the
sense of Barwise and Moschovakis [Ba6Mo178]. The key point is that the
inductive clauses can’t be first-order; but this is hardly surprising.

2 Separating out the problems

With hindsight we can see that there are at least three problems that stand
in the way of giving an inductive definition of truth for sentences with
partially ordered quantifier arrays.

The first problem is that the definition needs to describe the effect of
adding a single quantifier at the lefthand end of a formula. But for partially
ordered quantifier arrays there may be several lefthand ends, and it makes
a difference where we add the quantifier. The sentence (1.3) behaves quite
differently from

∀x∀z —— ∃y

∃w

H

H ψ(x, y, z, w)
�

�

(1.5)

1 We use ψ in place of Barwise’s A to avoid a clash of notation, and also number the
formulas.
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I don’t know that anybody has thought seriously about this problem; it
needs a subtler notion of substitution than we are used to in logic. But
in any case Jaakko Hintikka showed how to sidestep it by using a notation
that shakes Henkin’s formulas down into a linear form. The formula (1.1)
above becomes

(∀x)(∃y)(∀z/∃y)(∃w/∀x)ψ(x, y, z, w) (1.6)

in Hintikka’s notation. (Hintikka also introduced a dual notion of falsehood
in terms of Skolem functions for the universal quantifiers. Thus the slash
/∃y in (1.6) expresses that the function for z is independent of y.) This
linear notation forms the syntax of the ‘Independence-Friendly’ IF logic of
Hintikka and Sandu [Hi1Sa496]. Hintikka also pointed out that the Skolem
functions can be regarded as strategies in a game between ∀ and ∃; the
resulting games form the game semantics for IF logic.

The second problem is that a Skolem function for an existential quantifier
is a function of the preceding universally quantified variables, but not of the
preceding existentially quantified ones. But for example the formula

(∃w/∀x)ψ(x, y, z, w) (1.7)

gives no indication whether the variables y and z are going to be universally
or existentially quantified; so from the formula alone we don’t know what
information can be fed into the Skolem functions for it.

In [Ho197a] I sidestepped this second problem by replacing the Skolem
functions by general game strategies. Unlike a Skolem function, a strategy
for a player can call on previous choices of either player. For games of
perfect information this is a distinction without a difference; if player ∃
has a winning strategy using the previous choices of both players, then
player ∃ has a winning strategy that depends only on the previous choices
of player ∀. But for games of imperfect information, such as we have here,
it makes a difference. I proposed marking the difference between Hintikka’s
games and mine by dropping the quantifiers after the slashes, and writing
for example (∀z/y) where Hintikka writes (∀z/∃y). In what follows we refer
to the logic with my notation and the general game semantics as slash logic.
During recent years many writers in this area (but never Hintikka himself)
have transferred the name ‘IF logic’ to slash logic, often without realising
the difference. Until the terminology settles down, we have to beware of
examples and proofs that don’t make clear which semantics they intend.

Given a solution to the third problem (below), solving the second prob-
lem for IF logic with the Skolem function semantics is tiresome but not
difficult. The solution is to give several different interpretations for each
formula, one for each guess about which free variables are going to be
quantified existentially. As we add the quantifiers, we discard the wrong
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guesses—a bit like Cooper storage. Details are in [Ho197b]. I believe a
similar trick should deal with the first problem when it has been correctly
posed.

There remains the third problem, which is to find an inductive truth
definition for slash logic. The paper [Ho197a] gave the trump semantics,
which solves this problem.

It turned out that the main idea needed was to think of formulas as being
satisfied not by assignments to their variables, but by sets of assignments.
Why sets of assignments? Mathematically the idea is natural enough, but
we can hardly see by intuition that it will work. For a while I almost
convinced myself that an inductive truth definition for slash logic would
need sets of sets of assignments, sets of sets of sets of assignments, and so
on up the hierarchy of finite types.

An intuitive answer to the question ‘Why sets of assignments?’ could
do marvels for making the inductive semantics of these sentences more ap-
pealing. But it’s hardly clear where to look for an intuition. One obvious
approach is to try generalising the semantics to other logics, in order to
see what is needed where. But in the last ten years this hasn’t happened.
The semantics has been extended, but only to logics with broadly the same
features as Henkin’s original.

So we have to look elsewhere. One suggestion runs as follows. The
trump semantics for formulas of slash logic was found by starting from
a game semantics on sentences. The passage from sentences to games to
trumps is too complex to support any strong intuition. So we should try
to separate the games from the trump semantics. There are two natural
ways to do this. The first way is to discard the games altogether and find a
direct motivation for the trump semantics. Jouko Väänänen has made good
progress in this direction [VäHo1∞].

The second way is to abandon the formulas and work directly with the
games. This is the purpose of this paper.

3 The programme

We aim to extract the game-theoretic content of the games in [Ho197a], and
extend it to a class of games that has no intrinsic connection with formulas
or truth values. Finding the trump semantics was a matter of extending
the truth values on sentences to semantic values on formulas, in such a way
that the values on formulas could be built up by induction on complexity.
We aim to do the same but in a purely game-theoretic setting: we define
values on games, and we extend these values to values on subgames, again
with the aim of defining these values by induction.

This description is too open-ended for comfort. Since we’ve thrown away
the connection with truth, what counts as a correct extension to subgames?



Logics of Imperfect Information 121

Fortunately we know the formal core of the Tarski truth definition; Sec-
tion 4 below describes it in terms of fregean values. This formal description
carries over straightforwardly from formulas to games, as soon as we have
said what subgames are and what the value of a game is. Section 5 will
describe the games and their subgames. Section 6 will propose suitable val-
ues for games. (There might be better choices here that I didn’t think of.)
Then Sections 7 and 8 carry out the extension to fregean values, first for
games of perfect information and then under imperfect information.

As hoped, the fregean value of a subgame is in terms of sets of assign-
ments rather than single assignments. But also we can see a game-theoretic
reason for this. The following summary will perhaps make more sense at
the end of the paper, but I hope it conveys something already at this stage.

The value of a game is defined in terms of the existence of certain strate-
gies for the players. The definition of values by induction on subgames builds
up these strategies. Now one familiar move in building up a strategy σ for
a player p, at a place where another player p′ is about to move, is to find
a strategy σa corresponding to each possible choice a by p′. We build σ
as follows: player p waits to see what choice a player p′ makes, and then
proceeds with σa. But under conditions of imperfect information p may
not know what choice p′ is making. (Or to say the same thing in terms of
information partitions, the composite strategy σ may give different answers
on data items in the same partition set.) So this kind of gluing is blocked.
The consequence is that we can give player p this strategy σ only if we know
that it works uniformly for all choices that player p′ can make. In other
words, the information that we have to carry up from the subgames is not
that certain data states allow strategies, but that certain sets of data states
allow the same strategy. In short, we need to go up one type level in order
to sidestep the fact that we can’t in general glue strategies together.

4 Fregean values

This section summarises without proofs the main results in [Ho1∞].
Suppose E is a set of objects called expressions (for example the formulas

of a logic). We assume expressions can have parts that are also expressions.
We write F (ξ1, . . . , ξn) for an ‘expression with holes’, that gives an an ex-
pression F (e1, . . . , en) when suitable expressions e1, . . . , en are put in the
holes, putting ei in hole ξi for each i.

We assume given a family F of such ‘frames’ F (ξ1, . . . , ξn), with four
properties:

1. F is a set of nonempty partial functions on E. (‘Nonempty’ means
their domains are not empty.)

2. (Nonempty Composition) If F (ξ1, . . . , ξn) and G(η1, . . . , ηm) are
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frames, 1 6 i 6 n and there is an expression

F (e1, . . . , ei−1, G(f1, . . . , fm), ei+1, . . . , en),

then F (ξ1, . . . , ξi−1, G(η1, . . . , ηm), ξi+1, . . . , ξn) is a frame.

3. (Nonempty Substitution) If F (e1, . . . , en) is an expression, n > 1 and
1 6 i 6 n, then

F (ξ1, . . . , ξi−1, ei, ξi+1, . . . , ξn)

is a frame.

4. (Identity) There is a frame 1(ξ) such that for each expression e,
1(e) = e.

Assume also that S ⊆ E. We refer to the expressions in S as sentences,
since this is what they are in most applications to logics. Assume that a
function µ with domain S is given. The function µ gives a ‘value’ to each
sentence; we make no assumptions at all about what kinds of object these
values are.

Under these assumptions, we define a relation ≡ on E as follows. (It
expresses that two expressions make the same contribution to the µ-values
of sentences containing them.) For all expressions e and f , e ≡ f if and
only if

(a) for each frame F (ξ) with one variable, F (e) is in S if and only if F (f)
is in S;

(b) whenever F (e) and F (f) are in S, µ(F (e)) = µ(F (f)).

Then ≡ is an equivalence relation. If distinct values are assigned to
the distinct equivalence classes, then we call the value |e| assigned to the
equivalence class of e the fregean value of e. (Again the nature of these
values is unimportant; all that matters is whether or not two expressions
have the same fregean value.)

Lemma 4.1. Suppose that for every expression e there is a frame F (ξ)
such that F (e) is a sentence. Then for each frame G(ξ1, . . . , ξn) there is a
function hG such that for all expressions e1, . . . , en such that G(e1, . . . , en)
is an expression,

|G(e1, . . . , en)| = hG(|e1|, . . . , |en|).

In a common turn of phrase, Lemma 4.1 says that fregean values are
‘compositional’. The function hG is called the Hayyan function ofG in [Ho1∞].
(The name ‘fregean’ was suggested by some passages in Frege’s Grundlagen
der Arithmetik ; Hayyan functions are named after the 14th century linguist
Abu Hayyan al-Andalusi, who argued that such functions must exist.)
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Lemma 4.2. Let e and f be sentences. If e ≡ f then µ(e) = µ(f). Hence
there is a function r defined on the fregean values of sentences, such that
for every sentence e, µ(e) = r(|e|).

The message of these two lemmas together is that the function µ, which
is quite arbitrary, can always be defined through an inductive definition of
fregean values, where the induction is on the complexity of expressions. The
fregean values of atomic expressions have to be given directly as the base
case. The Hayyan functions take care of the inductive steps, and finally
the function r reads off µ from the fregean values of the sentences. It turns
out that in standard examples of truth definitions we can take r to be the
identity. One such case is where E is the set of formulas of slash logic, S
is the set of sentences, µ is the assignment of truth values to sentences as
given by the game semantics, and the fregean values are the values given to
formulas by the trump semantics.

The intended applications of this machinery were languages. But noth-
ing prevents us from carrying them over to games. The set S will consist
of the games and the set E will consist of the subgames of these games (in
some suitable sense). We give each game G a ‘value’ µ(G) in terms of the
effects of strategies of the players, and then we compute fregean values for
the subgames. This will yield an inductive definition for the values µ(G),
working directly on the games without any intervention of formulas. In this
setting we can test the effect of moving from games of perfect information
to games of imperfect information. Does it move the values up a type?

5 The games

The first step in our programme is to define the games and the subgames so
that the assumptions of Section 4 hold. The requirements are fairly strong.
The games have to be constructed inductively from their subgames. The
notion of substituting one subgame for another has to make sense. So does
the notion of imperfect information. Already the games start to look a little
like formulas. But we can discard the notion that there are just two players,
and we don’t need the notions of winning and losing. The players need not
be in competition with each other.

I think we need the following ingredients.

• First and trivially, there must be more than one player. (Otherwise
the notion of imperfect information becomes degenerate.) We write
P for the set of players.

• Second, as the game proceeds, the players build up a bank of data (cor-
responding to the assignment of elements to variables). It’s enough to
assume there is a set Q of questions, each of which has a nonempty
set of answers. A data state is a function defined on a set of questions,
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taking each of these questions to one of its answers. We write D for
the set of data states.

• Third, some of the choices of the players are structural; they have
no effect on the data state, but they control who moves next, what
the criteria are for deciding the payoffs, what information can be fed
into strategies, and so forth. Thus at any stage of the play a data
state s and a sequence c̄ of structural moves have been built up. The
information fed into the play by the sequence c̄ determines a ‘subgame’
which is to be played ‘at’ the data state s.

• Fourth, the fact that the same subgame can be played at different
data states allows the possibility that the player who moves at this
subgame may have incomplete information about the data state.

• Fifth, the players can move to subgames only finitely often in a play.
Eventually they reach an atomic subgame; when they do, the payoff to
each player is determined by the subgame and the data state. There
is no need to assume that the payoffs are wins or losses; real number
values will suffice, and they need not add up to zero.

• Sixth, for each subgame H there is an associated set of questions
m(H), which we can call the matter of H , with the property that H
can be played as soon as we are given a data state s which answers
all questions in m(H). (This corresponds to the free variables of a
formula.) We need an assumption like this in order to make sense of
substitution of subgames.

The following definitions are meant to give shape to these ingredients. They
are strongly influenced by Parikh’s paper [Pa583].

We assume given the set P of players, the set Q of questions and the set
D of data states, as above. Given a finite subset W of Q, we write D ↾ W
for the set of all data states whose domain is W , and RD↾W for the set of all
functions from D ↾ W to the set R of real numbers. If s is a data state, q is
a question and a is an answer to q, we write s(q/a) for the data state whose
domain is domain(s) ∪{q}, and which agrees with s everywhere except that
s(q/a)(q) = a.

We define inductively the set of game parts. Formally, the game parts
will be finite sequences. Later we will explain how they are played.

(α) For every finite W ⊆ Q and every function f : P → RD↾W , 〈W, f〉 is
a game part; its matter is W . Game parts of this form are atomic.

(β) For every finite set W ⊆ Q, every player p ∈ Q, every partition π of
D ↾ W , every question q ∈ Q\W and every game part J with matter
⊆W ∪ {q}, there is a game part 〈W, p, π, q, J〉 whose matter is W .
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(γ) For every finite set W ⊆ Q, every player p ∈ P , every partition π of
D ↾ W and every nonempty set X of game parts with matter ⊆ W ,
there is a game part 〈W, p, π,X〉 whose matter is W .

For each game part H with matter W and each data state s with domain
⊇W , H is played at s as follows:

(α) If H is 〈W, f〉 then there is an immediate payoff of f(p)(s ↾ W ) to
each player p.

(β) If H is 〈W, p, π, q, J〉, then player p moves by choosing an answer a to
the question q, and the play continues as a play of J at the data state
s(q/a).

(γ) If H is 〈W, p, π,X〉, then player p moves by choosing a game part
J ∈ X , and the play continues as a play of J at the data state s.

Each game part H determines a labelled tree T (H) branching downwards.
If H is 〈W, f〉 then T (H) has a single node, labelled with H . If H is
〈W, p, π, q, J〉 then T (H) is T (J) with a single node added at the top, car-
rying the label H . If H is 〈W, p, π,X〉 then the top node of T (H) carries
the label H , and the successors of the top node are the top nodes of copies
of the trees T (J), one for each J ∈ X .

A game is a game part with empty matter. We say that a game part H
is a subgame of a game part G if H occurs as a label on a node of T (G).
Note that a game part G can have several occurrences of a game part H
in it.

Suppose a play of a game part G at a state s is in progress, and the
players have just reached an occurrence of the subgame H of G. Then the
choices of the players consist of: (1) the sequence c̄ of subgames that label
the nodes as one travels down T (G) from the top to the relevant occurrence
of H—the sequence lists the game parts chosen at subgames of the form (γ)
in earlier moves of the play; (2) a data state t representing s together with
the choices made at subgames of the form (β) in earlier moves. We call the
pair (c̄, t) a position in the play. The pair (c̄, s) determines the domain of
t (namely, the union of the domain of s and the set of questions answered
at moves reported in c̄); we call this domain the current domain at (c̄, s).
The sequence c̄ also determines the player who will move next; we call this
player the current player at c̄. The current game part at the position (c̄, t)
is the final game part H of c̄. If this game part is of the form 〈W, p, π, . . .〉,
then p and π are respectively the current player and the current partition
at c̄. Here the current game part, player and partition depend only on c̄,
and the current domain depends only on c̄ and s; but since the position
(c̄, t) determines s, we can speak of any of these things as being current at
the position (c̄, t).
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A strategy for a player p in a game part G at a data state s is a family σ
of functions σc̄ indexed by the sequences c̄ such that p is the current player
at c̄. For each position (c̄, t) where p is the current player, σc̄(t) is a possible
move for p in the current subgame. There is some redundancy here, because
a strategy is defined at positions in the game which could never be reached
if the strategy was followed; but this redundancy will never matter and it
would be a nuisance to exclude it. Note that the strategy σ depends on s
and not just on G; the dependence on s will be important below.

So far the partitions have played no role. Their purpose is to restrict
the allowed strategies, as follows. We say that a strategy σ for player p in
game part G at s is admissible at c̄ if for all data states t, u with domain
the current domain W at c̄, if

s ↾ W and t ↾ W lie in the same partition set of the current
partition at c̄,

then
σc̄(s) = σc̄(t).

We say that a strategy σ for p is admissible if it is admissible at all c̄ at
which p is the current player.

A game G is of perfect information if all the partitions appearing in
G are trivial, i.e. all their partition sets are singletons. For a game of
perfect information, every strategy is admissible. When we discuss games
of perfect information, we can ignore their partitions; for example we can
write 〈W, p, π,X〉 as 〈W, p,X〉.

In Sections 7 and 8 below we will sometimes talk of strategies that are
restricted to subsets of some set D ↾ W . It makes sense to glue together
several such strategies, provided that no two of them are defined on members
of the same partition.

If J is a game part occurring in the subgame H , and J ′ is a subgame
with the same matter as J , then we can form a new subgame H(J ′/J) by
replacing the occurrence of J by an occurrence of J ′; the matter of H(J ′/J)
is the same as that of H . (The notation is a shorthand; there might be other
occurrences of J in H , and these stay unchanged.)

It would be possible to substitute J ′ for J in H even if the matter of J ′

is not the same as that of J . But suppose the question q is in the matter
of J ′ and not in that of J . Let G be a game where some player chooses in
turn answers to the questions in m(J), and then the game continues as J .
Then substituting J ′ for J in G yields a subgame G′ whose matter contains
q; so this substitution turns a game into a game part that is not a game.
We will bar this kind of substitution. In other words, we will consider only
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substitutions where (a) of Section 4 holds. So the significant question will
be when (b) holds too.

Our notion of subgame is not the more familiar one due to Selten [Se065].
A Selten subgame in our context would be a pair (G, s) whereG is a subgame
that can be played at data state s. For us it is essential that the same
subgame can be played at different data states. This is the game analogue
of the fact that a subformula allows different assignments to its variables.

6 Game values

We define the value of a game G to a player p, µp(G), to be the supremum
of the reals λ such that p has an admissible strategy which ensures that the
payoff to p is at least λ. So µp(G) is an element of R∪ {±∞}. We can take
the value µ(G) of G to be the function taking each player p to µp(G). But
in fact all our calculations of values will consider one player at a time.

This is a generalisation of the assignment of truth values to sentences
in logic. The logical case is where there are two players, the payoffs are all
either 0 or 1, and for any atomic game part at any data state the payoffs to
the two players add up to 1. One could generalise in other ways (for example
taking values in a complete boolean algebra), but I chose something simple
that seems to fit with the habits of game theory.

Now that we have the values of games, we can apply the framework of
Section 4. We take E to be the set of game parts, S to be the set of games
and µ to be the value function just defined. Every game part is a subgame
of a game, so that the hypothesis of Lemma 4.1 holds. (It would have failed
if we allowed the matter of a game part to be infinite, since only finitely
many questions get answered during a play.)

Following Section 4 we define a relation ≡ on subgames: H ≡ J if and
only if (a) H and J have the same matter, and (b) for every game G con-
taining an occurrence of H , µ(G(J/H)) = µ(G). Then ≡ is an equivalence
relation on E. If we can identify the equivalence classes, we can label them
with fregean values, and then we have a definition of µ by induction on
subgames.

7 The extension under perfect information

In this section all games are of perfect information, so that all strategies are
admissible. Here the situation is familiar enough to suggest where to look
for fregean values.

Definition 7.1. Let G be a game part.

(a) Let p be a player and s a data state with domain ⊇ m(G). Define the



128 W. Hodges

value of G at s to p, vp(G, s), by:

vp(G, s) = sup{λ : p has a strategy which, when G is played at
state s, guarantees that the payoff to p is at least λ}.

(b) We define vp(G) to be the function with domain D ↾ m(G), whose
value for each s in this set is vp(G, s).

(c) We define v(G) to be the function with domain P , whose value for
each player p is vp(G).

In the case where G is a game, vp(G) = µp(G) for each player p, and so
v(G) = µ(G). In the case where G is atomic, there is an immediate payoff
to each player for each s ∈ D ↾ m(G), and v(G) records these payoffs.

The definition of v(G) depends only on the values v(G, s) where s has
domain m(G). But G can be played at data states s with much larger
domains. We need to show that for these s the values v(G, s) are determined
by v(G). (This is fundamental. If it failed, the values v(G) wouldn’t be
fregean values obeying the conclusion of Lemma 4.1.)

Lemma 7.2. (Under perfect information.) Suppose a game part G has
matter W , and s is a data state with domain W ′ ⊇ W . Let p be a player.
Then the value of G at s for p is equal to the value of G at s ↾ W for p.

Proof. Suppose σ is a strategy for p in G at s ↾ W that guarantees p a
payoff of at least λ. Let τ be the following strategy for p in G at s: ignore
any answers to questions not in W , and use σ. Induction on the complexity
of G shows that this is a strategy for p in G at s; the ignored values are
never needed, and in particular they make no difference to the payoff. Thus
τ guarantees payoff at least λ for p.

Conversely suppose τ is a strategy for p in G at s that guarantees p a
payoff of at least λ. Then let σ be the strategy for p in G at s ↾ W that
uses τ , filling in the extra values from s. Again σ guarantees payoff at least
λ to p. q.e.d.

Theorem 7.3. (Under perfect information.) Suppose H and H ′ are game
parts with the same matter. Then H ≡ H ′ if and only if v(H) = v(H ′).

Proof. We fix a player p. Assuming that vp(H) = vp(H
′), we prove that for

every game part G in which H occurs as a subgame, vp(G) = vp(G(H ′/H)).
The proof is by induction on the complexity of G. By the lemma, we need
only show that vp(G, s) = vp(G(H ′/H), s) when s has domain m(G).

(α) Suppose first that G = H . Then G(H ′/H) = H ′, so the result is
immediate.
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(β) Suppose that p′ is a player, G is 〈W, p′, q, J〉, s is a data state with
domain m(G), and vp(G, s) = λ. Then for every λ′ < λ, p has a strategy for
G at s which guarantees p a payoff of at least λ′. We aim to show the same
for G(H ′/H). There are two cases, according as p′ is p or another player.

Suppose first that p′ 6= p. Then for each λ′ < λ and each possible choice
a of p′ at G, there is a strategy σa for p for J at s(a/q) which guarantees p
a payoff of at least λ′.

Now by induction hypothesis vp(J) = vp(J(H ′/H)), so the lemma tells
us that vp(J, s(a/q)) = vp(J(H ′/H), s(a/q)) for each a. It follows that for
each a, player p has a strategy τa for J(H ′/H) at s(a/q) which guarantees p
a payoff of at least λ′. For each λ′ < λ we can glue these strategies together
to produce a strategy τ for p in G at s, namely: Wait for the choice a and
then play τa. This strategy guarantees p a payoff of at least λ′. Hence again
vp(G(H ′/H), s) > vp(G, s), and symmetry gives the converse.

The other case, where p′ is p, is similar but easier. The strategy σ for
p at G chooses an element a to answer q, and then we need only consider
s(a/q) for this a, so that no gluing is needed.

(γ) Suppose p′ is a player and G is 〈W, p′, q,X〉. Then the argument
of case (β) applies with appropriate changes. Note that since the different
subgame occurrences have their own strategy functions, there is no need for
any gluing in this case.

This proves one direction. For the other, suppose vp(H) < vp(H
′), and

choose λ with vp(H) < λ < vp(H
′). Then p has no strategy in H that

guarantees that for all s, p will get payoff λ. Hence there is some s such
that p can’t guarantee to get λ, playing at s. Consider the game where some
other player chooses assignments to the domain of s, then p picks up and
plays H . In this game G player p can’t guarantee to get payoff λ, since the
other player could play s. But by assumption player p can guarantee to get
payoff λ in G(H ′/H). Hence µ(G(H ′/H)) 6= µ(G), so that H 6≡ H ′. q.e.d.

Suppose we restrict to any smaller class of games which is closed under
substitution of subgames with the same matter, and under (β) of Section
5. (An example of such a class is where in (γ) we require the set X to be
finite. This comes nearest to first-order logic.) Then the entire argument
above goes through.

8 The extension under imperfect information

We turn to our major question. What is needed to repair the proof of
Theorem 7.3 if we drop the assumption of perfect information?

Lemma 7.2 doesn’t survive unaltered, but with a suitable definition of
values we can still get the main point of the lemma, which is that the
values at data states whose domain is the matter determine the values at
all other data states. The proof of Theorem 7.3 also goes through except for
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one point: in the gluing at case (β), nothing guarantees that the resulting
strategy τ is admissible. A little meditation shows that the problem is
serious. No information about the existence of separate admissible strategies
τa for J(H ′/H) at s(a/q) is going to guarantee a single admissible strategy
for G(H ′/H) at s.

So we have to carry up inductively the information that certain sets of
data states lie within the domains of admissible strategies.

Definition 8.1. Let G be a game part.

(a) Let p be a player, and let W be a finite set of questions ⊇ m(G).
Define the value of G at a subset S of D ↾ W to p, vp(G,S), by:

vp(G,S) = sup{λ : p has an admissible strategy which, when
G is played at any state s ∈ S, guarantees
that the payoff to p will be at least λ}.

(b) We define vp(G) to be the function with domain the power set of
D ↾ m(G), whose value for each subset S of D ↾ m(G) is vp(G,S).

(c) We define v(G) to be the function with domain P , whose value for
each player p is vp(G).

Then as before, v(G) = µ(G) whenever G is a game.
Suppose W ′ ⊇W and S is a subset of D ↾ W ′. We say that s, t in S are

in the same fibre of S along W if s ↾ (W ′ \W ) = t ↾ (W ′ \W ). This defines
an equivalence relation, and its equivalence classes are called the fibres of S
along W .

Lemma 8.2. Suppose a game part G has matter W , W ′ is a finite set ⊇W ,
and S is a set of data states with domain W ′. Let p be a player. Then the
value of G at S for p is equal to the infimum of the values of G at the fibres
of S along W for p.

Proof. (Cf. [Ho197a, Lemma 7.4].) Let λ be the infimum of the values of G
at the fibres of S along W for p. Then for each λ′ < λ and each fibre ϕ of
S along W , there is an admissible strategy σϕ for p on ϕ, which guarantees
p a payoff of at least λ′. Fixing λ′, glue together these strategies on the
separate fibres, to get a strategy σ on W . In the definition of admissibility,
elements of different fibres never agree off W ; so the admissibility of the σϕ

guarantees that σ is admissible. Thus the value of G at S for p is at least λ.
An easier argument in the other direction shows that if the value of G

at S for p is at least λ, then the value at each fibre is at least λ too. q.e.d.

We repeat the theorem, but under imperfect information and with the
new definition of v.
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Theorem 8.3. Suppose H and H ′ are game parts with the same matter.
Then H ≡ H ′ if and only if v(H) = v(H ′).

Proof. We fix a player p. Assuming that vp(H) = vp(H
′), we prove that for

every game part G in which H occurs as a subgame, vp(G) = vp(G(H ′/H)).
The proof is by induction on the complexity of G. By the lemma, we need
only show that vp(G,S) = vp(G(H ′/H), S) when S ⊆ D ↾ m(G).

(α) The case where G = H is as before.
(β) Suppose that p′ is a player, G is 〈W, p′, π, q, J〉, S ⊆ D ↾ W and

vp(G,S) = λ. Then for every λ′ < λ, p has an admissible strategy for G at
S which guarantees p a payoff of at least λ′. We aim to show the same for
G(H ′/H). There are two cases, according as p′ is p or another player.

Suppose first that p′ = p. Then:

there is an admissible function σ for p such that p has an admissi-
ble strategy for J at Sσ = {s(σ(s)/q) : s ∈ S} which guarantees
p a payoff of at least λ′.

Now by induction hypothesis vp(J) = vp(J(H ′/H)). Hence by the lemma,
vp(J, S

σ) = vp(J(H ′/H), Sσ). It follows that p has an admissible strategy
for J(H ′/H) at Sσ which guarantees p a payoff of at least λ′. Combin-
ing this strategy with σ, p has an admissible strategy for G(H ′/H) at S
which guarantees a payoff of at least λ′. Thus vp(G) 6 vp(G(H ′/H)), and
symmetry gives the converse.

Next, suppose p′ 6= p. The argument is the same, except that in place
of Sσ we use Sq = {s(a/q) : s ∈ S, a an answer to q} .

(γ) Suppose that p′ is a player, G is 〈W, p′, π,X〉 and S ⊆ D ↾ W . One
can adjust the arguments of case (β) to this case without needing any new
ideas.

Now conversely suppose that m(H) = m(H ′) 6= ∅, and for some S
with domain m(H) = {q1, . . . , qk}, vp(H,S) < vp(H

′, S). Then the same
inequality must hold for some nonempty intersection of S with a class of
the current partition at H ; so we can assume that S lies in a single class
of this partition. Choose λ, λ′ with vp(H,S) < λ′ < λ < vp(H

′, S). Let
f : P → RD↾m(H) be the function that takes each player p′ 6= p to the
constant function with value 0, and that satisfies

f(p)(s) =

{

λ′ if s ∈ S,
λ otherwise.

Let p0 be some player other than p, and let G be the game

〈∅, p0, q1, 〈{q1}, p0, q2, 〈. . . , qk, 〈m(H), p, {H, 〈m(H), f〉}〉 . . .〉
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where the missing partitions are all trivial, so that the information is perfect
except perhaps within H .

In the game G, player p0 can use the first k moves to pick an element
of S. Then by assumption p has no admissible strategy in H guaranteeing
a payoff > λ′, and choosing 〈m(H), f〉 guarantees p a payoff of only λ′.
So vp(G) 6 λ′. On the other hand p has a strategy for G(H ′/H) which
guarantees a payoff of at least λ. Namely, if p0 chooses s in S, then pick
H ′ and play a suitable admissible strategy at S in H ′; if p0 chooses outside
S, then choose 〈m(H), f〉 and collect λ. Since G is a game, it follows that
H 6≡ H ′. q.e.d.

Just as in the previous section, the theorem still holds good if we restrict
to a class of games with reasonable closure conditions. I omit details.

9 Conclusion

In the games above, we get fregean values for game parts by assigning values
to sets of data states, not to single data states. This is the exact analogue
of what happens in the semantics for slash logic as in [Ho197a]. The proofs
make clear why this is the right level: in some sense the argument was
always about sets of data states rather than data states one at a time—but
in the case of perfect information we could disguise this fact by taking the
data states one at a time and then gluing.

The games above do look rather like formulas. (I don’t know whether
they have any other application.) But our arguments show that some fea-
tures of logical formulas are irrelevant to the fact that fregean values go with
sets of data states. In particular the number of players is irrelevant as long
as it is at least two. Competition between the players is irrelevant. Truth
(as opposed to real number values) is also irrelevant. Last but not least, the
information partitions that we allowed are much more general than those
that arise from IF or slash logic.
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Abstract

Let us assume that some agents are connected by a communication

graph. In the communication graph, an edge from agent i to agent
j means that agent i can directly receive information from agent j.
Agent i can then refine its own information by learning information
that j has, including information acquired by j from another agent,
k. We introduce a multi-agent modal logic with knowledge modalities
and a modality representing communication among agents. Among
other properties, we show that the logic is decidable, that it com-
pletely characterizes the communication graph, and that it satisfies
the basic properties of the subset space logic of Moss and Parikh.

1 Introduction

The topic “who knew what and when” is not just of interest to epistemic
logicians. Often it is the subject of political scandals (both real and imag-
ined). For example, consider the much talked about Valerie Plame affair.
A July 2003 column in the Washington Post reported that Plame was an
undercover CIA operative. This column generated much controversy due to
the fact that such information (the identity of CIA operatives) is restricted
to the relevant government officials. Of course, in this situation, we know
full well “Who knew what and when”: in July of 2003, Robert Novak (the
author of the article) knew that Plame was a CIA operative. What creates
a scandal in this situation is how Novak came to know such information.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 135–157.
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Since the CIA goes to great lengths to ensure that communication about
sensitive information is contained within its own organization, the only way
Novak could have known that Plame was a CIA operative was if a commu-
nication channel had been created between Novak and someone inside the
CIA organization.

To put this a bit more formally, given a set of agents A, call any graph
G = (A, E) a communication graph where the intended interpretation
of an edge between agent i and agent j is that i and j can communicate.
In this setting, the CIA can be represented as a connected component of
G. Given that the CIA is the only group of agents that (initially) knows
the identity of CIA operatives, and Novak is not an element of the CIA
component of G then we can conclude that Novak did not originally know
the identity of CIA operatives and no amount of communication that respects
the graph G can create a situation in which Novak does know the identity
of a CIA operative. Thus Novak’s report in the Washington Post implied
that our original communication graph was incorrect1. That is, there must
be an edge (or a chain) between Novak and some agent inside the CIA
component. Since in principle, Novak could be connected to any member of
the CIA component, much resources and time have been spent discussing
the possible edges.

In this paper we develop2 a multi-agent epistemic logic with a commu-
nication modality where agents are assumed to communicate according to
some fixed communication graph. Agents are assumed to have some private
information at the outset, but may refine their information by acquiring
information possessed by other agents, possibly via yet other agents. That
is, each agent is initially informed about the truth values of a finite set of
propositional variables. Agents are assumed to be connected by a commu-
nication graph. In the communication graph, an edge from agent i to agent
j means that agent i can directly receive information from agent j. Agent i
can then refine its information by learning information that j has, including
information acquired by j from another agent, k.

In keeping with the CIA-theme, we give an example from [Pa0Pa505] of
the type of situations that we have in mind. Let Kiϕmean that according to
i’s current information ϕ is true. Given a communication graph G = (A, E),
we say that a sequence of communications (i learns a fact from j who
learns a fact from k, and so on) respects the communication graph

if agents only communicate with their immediate neighbors in G. Let ♦ϕ
mean that ϕ becomes true after a sequence of communications that respects

1 Of course, it could also mean that we were incorrect about the agents’ initial informa-
tion — Novak could have had previous knowledge about the identity of CIA agents.
In this paper, we are interested in studying communication and so will not consider
this case.

2 This framework was first presented in [Pa0Pa505].
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the communication graph. Suppose now that ϕ is a formula representing the
exact whereabouts of Bin Laden, and that Bob, the CIA operative in charge
of maintaining this information knows ϕ. In particular, KBobϕ, but suppose
that at the moment, Bush does not know the exact whereabouts of Bin
Laden (¬KBushϕ). Presumably Bush can find out the exact whereabouts
of Bin Laden (♦KBushϕ) by going through CIA director Hayden, but of
course, we cannot find out such information (¬♦KEϕ ∧ ¬♦KRϕ) since we
do not have the appropriate security clearance. Clearly, then, as a pre-
requisite for Bush learning ϕ, Hayden will also have to come to know ϕ. We
can represent this situation by the following formula:

¬KBushϕ ∧�(KBushϕ→ KHaydenϕ)

where � is the dual of diamond (�ϕ is true if ϕ is true after every sequence
of communications that respect the communication graph).

Section 2 gives the details of our framework and the main results. Section
3 contains a discussion of some other relevant literature. We conclude the
paper by discussing our underlying assumptions and provide pointers to
future work.

2 The logic of communication graphs

This section describes the logic of communication graphs, K(G), introduced
in [Pa0Pa505]. The intended application is to reason about the flow of in-
formation among a group of agents whose communication is restricted by
some communication graph. We begin by making some simplifying assump-
tions about the nature of the communication. Thus the logic presented here
should be viewed as a first step towards a general logic to reason about the
situations described in the Introduction.

Let A be a set of agents. A communication graph is a directed graph
GA = (A, E) where E ⊆ A × A − {(i, i) | i ∈ A}. Intuitively (i, j) ∈ E
means that i can directly receive information from agent j, but without j
knowing this fact. Thus an edge from i to j in the communication graph
represents a one-sided relationship between i and j. Agent i has access to
any piece of information that agent j knows (but in a restricted language).
We have introduced this ‘one sidedness’ restriction in order to simplify our
semantics, but also because such situations of one sided learning occur nat-
urally. A common situation that is helpful to keep in mind is accessing a
website. We can think of agent j as creating a website in which everything
he currently knows is available, and if there is an edge between i and j
then agent i can access this website without j being aware that the site is
being accessed. Another important application is spying where one person
accesses another’s information without the latter being aware that informa-
tion is being leaked. Naturally j may have been able to access some other
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agent k’s website and had updated some of her own information. Therefore,
it is important to stress that when i accesses j’s website, he is accessing j’s
current information which may include part of what k knew initially.

In order for any communication to take place, we must assume that
the agents understand a common language. Thus we assume a set At of
propositional variables, understood by all the agents, but with only specific
agents knowing their actual values at the start. Letters p, q, etc., will denote
elements of At. The agents will have some information – knowledge of the
truth values of some elements of At, but refine that information by acquiring
information possessed by other agents, possibly via yet other agents. This
implies that if agents are restricted in whom they can communicate with,
then this fact will restrict the knowledge they can acquire.

The assumption that i can access all of j’s information is a significant
idealization from common situations, but becomes more realistic if we think
of this information as being confined to facts expressible as truth functional
combinations of some small set of basic propositions. Thus our idealization
rests on two assumptions:

1. All the agents share a common language, and

2. The agents make available all possible pieces of (purely propositional)
information which they know and which are expressible in this com-
mon language.

The language is a multi-agent modal language with a communication
modality. The formula Kiϕ will be interpreted as “according to i’s current
information, i knows ϕ”, and ♦ϕ will be interpreted as “after some commu-
nications (which respect the communication graph), ϕ becomes true”. For
example the formula

Kjϕ→ ♦Kiϕ

is intended to express the statement: “If agent j (currently) knows ϕ, then
after some communication, agent i can come to know ϕ”. Let At be a
finite set of propositional variables. A well-formed formula of K(G) has the
following syntactic form

ϕ := p | ¬ψ | ϕ ∧ ψ | Kiϕ | ♦ϕ

where p ∈ At. We abbreviate ¬Ki¬ϕ and ¬♦¬ϕ by Liϕ and �ϕ respec-
tively, and use the standard abbreviations for the propositional connectives
(∨, →, and ⊥). Let LK(G) denote the set of well-formed formulas of K(G).
We also define L0(At), (or simply L0 if At is fixed or understood), to be the
set of ground formulas, i.e., the set of formulas constructed from At using
¬,∧ only.
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2.1 Semantics

The semantics described here combines ideas both from the subset models
of [Mo3Pa592] and the history based models of Parikh and Ramanujam (see
[Pa5Ra285, Pa5Ra203]). We assume that agents are initially given some
private information and then communicate according to some fixed com-
munication graph G. The semantics in this section is intended to formalize
what agents know and may come to know after some communication.

Initially, each agent i knows or is informed (say by nature) of the truth
values of a certain subset Ati of propositional variables, and the Ati as well
as this fact are common knowledge. Thus the other agents know that i
knows the truth values of elements of Ati, but, typically, not what these
values actually are. We shall not assume that the Ati are disjoint, but for
this paper we will assume that the Ati together add up to all of At. Thus
if Ati and Atj intersect, then agents i, j will share information at the very
beginning. LetW be the set of boolean valuations on At. An element v ∈ W
is called a state. We use 1 for the truth value true and 0 for the truth value
false. Initially each agent i is given a boolean valuation vi : Ati → {0, 1}.
This initial distribution of information among the agents can be represented
by a vector ~v = (v1, . . . , vn). Of course, since we are modelling knowledge
and not belief, these initial boolean valuations must be compatible. I.e., for
each i, j, vi and vj agree on Ati ∩ Atj . Call any vector of partial boolean
valuations ~v = (v1, . . . , vn) consistent if for each p ∈ dom(vi) ∩ dom(vj),
vi(p) = vj(p) for all i, j = 1, . . . , n. Note that there is a 1-1 correspondence
between consistent vectors and states w as we defined them earlier. We
shall assume that only such consistent vectors arise as initial information.
All this information is common knowledge and only the precise values of
the vi are private.

Definition 2.1. Let At be a finite set of propositional variables and A =
{1, . . . , n} a finite set of agents. Given the distribution of sublanguages
~At = (At1, . . . ,Atn), an initial information vector for ~At is any consistent
vector ~v = (v1, . . . , vn) of partial boolean valuations such that for each
i ∈ A, dom(vi) = Ati.

We assume that the only communications that take place are about the
physical world. But we do allow agents to learn objective facts which are
not atomic, but may be complex, like p ∨ q where p, q ∈ At. Now note that
if agent i learned some literal from agent j, then there is a simple way to
update i’s valuation vi with this new information by just adding the truth
value of another propositional symbol. However, if i learns a more general
ground formula from agent j, then the situation will be more complex.

For instance if the agent knows p and learns q ∨ r then the agent now
has three valuations on the set {p, q, r} which cannot be described in terms
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of a partial valuation on a subset of At.
Fix a communication graph G and suppose that agent i learns some

ground fact ϕ (directly) from agent j. Of course, there must be an edge
from agent i to agent j in G. This situation will be represented by the
tuple (i, j, ϕ) and will be called a communication event. For technical
reasons we assume that all formulas in a communication event are expressed
in a canonical disjunctive normal form (DNF). That is, we assume ϕ is a
set {C1, . . . , Ck} where each Ci is a consistent finite set of elements of At

and their negations. Let LDNF(At) be the set of all such sets. Each set
{C1, . . . , Ck} represents the formula

∨

i=1,...,k

∧

Ci. Recall that for each
formula ψ ∈ L0(At) there is a unique element {C1, . . . , Ck} ∈ LDNF(At)
such that

∨

i=1,...,k

∧

Ci is logically equivalent to ψ. In what follows, we
shall sometimes use ϕ to mean either a formula (an element of L(At) or
L0(At)) or an element of LDNF(At) and trust that this ambiguity of notation
will not cause any confusion. Of course we could use a unique element of
L0(At) to express a member of LDNF(At) and that too would work.

Definition 2.2. Let G = (A, EG) be a communication graph. A tuple
(i, j, ϕ), where ϕ ∈ LDNF(At) and (i, j) ∈ EG , is called a communication

event. Then ΣG = {(i, j, ϕ) | ϕ ∈ LDNF, (i, j) ∈ EG} is the set of all possible
communication events (given the communication graph G).

The following fact will be needed in what follows. The proof is well-known
and is left to the reader.

Lemma 2.3. Suppose that there are k elements in At and n elements in

A. Then for any communication graph G, there are at most n × n × (22k

)
elements in ΣG .

Given the set of events ΣG , a history is a finite sequence of events. I.e.,
H ∈ Σ∗G . The empty history will be denoted ε. The following notions
are standard (see [Pa5Ra285, Pa5Ra203] for more information). Given two
histories H,H ′, say H � H ′ if and only if H ′ = HH ′′ for some history
H ′′, i.e., H is an initial segment of H ′. Obviously, � is a partial order. If
H is a history, and (i, j, ϕ) is a communication event, then H followed by
(i, j, ϕ) will be written H ; (i, j, ϕ). Given a history H , let λi(H) be i’s local
history corresponding to H . I.e., λi(H) is a sequence of events that i can
“see”. Given our assumption of “one-sided communication”, for this paper
we use the following definition of λi: Map each event of the form (i, j, ϕ)
to itself, and map other events (m, j, ψ) with m 6= i to the null string while
preserving the order among events.

Definition 2.4. Fix a finite set of agents A = {1, . . . , n} and a finite set
of propositional variables At along with subsets (At1, . . . ,Atn). A com-

munication graph frame is a pair 〈G, ~At〉 where G is a communication
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graph, and ~At = (At1, . . . ,Atn) is an assignment of sub-languages to the

agents. A communication graph model based on a frame 〈G, ~At〉 is a

triple 〈G, ~At, ~v〉, where ~v is an initial information vector for ~At.

Now we address two issues. One is that not all histories are legal. For
an event (i, j, ϕ) to take place after a history H , it must be the case that
(i, j) ∈ EG , and that afterH (and before (i, j, ϕ)), j already knew ϕ. Clearly
i cannot learn from j something which j did not know. Whether a history
is justified depends not only on the initial valuation, but also on the set of
communications that have taken place prior to each communication in the
history.

The second issue is that the information which an agent learns by “read-
ing” a formula ϕ may be more than just the fact that ϕ is true. For suppose
that i learns p ∨ q from j, but j is not connected, directly or indirectly, to
anyone who might know the initial truth value of q. In this case i has
learned more than p ∨ q, i has learned p as well. For the only way that j
could have known p ∨ q is if j knew p in which case p must be true. Our
definition of the semantics below will address both these issues.

We first introduce the notion of i-equivalence among histories. Intu-
itively, two histories are i-equivalent if those communications which i takes
active part in, are the same.

Definition 2.5. Let w be a state and H a finite history. Define the relation
∼i as follows: (w,H) ∼i (v,H ′) if and only if w↾Ati = v↾Ati and λi(H) =
λi(H

′).

Formulas will be interpreted at pairs (w,H) where w is a state (boolean
valuation) and H is a history (a finite sequence of communication events).

To deal with the notion of legal or justified history we introduce a propo-
sitional symbol L which is satisfied only by legal pairs (w,H). (We may also
write L(w,H) to indicate that the pair (w,H) is legal.) Since L can only be
defined in terms of knowledge, and knowledge in turn requires quantification
over legal histories, we shall need mutual recursion.

Definition 2.6. Given a communication graph and the corresponding
model M = 〈G, ~At, ~v〉, and pair (w,H), we define the legality of (w,H)
and the truth |=M of a formula as follows:

• w, ε |=M L

• w,H ; (i, j, ϕ) |=M L iff w,H |=M L, (i, j) ∈ E and w,H |=M Kjϕ

• w,H |=M p iff w(p) = 1, where p ∈ At

• w,H |=M ¬ϕ iff w,H 6|=M ϕ
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• w,H |=M ϕ ∧ ψ iff w,H |=M ϕ and w,H |=M ψ

• w,H |=M ♦ϕ iff ∃H ′, H � H ′, L(w,H ′), and w,H ′ |=M ϕ

• w,H |=M Kiϕ iff ∀(v,H ′) if (w,H) ∼i (v,H ′), and L(v,H ′), then
v,H ′ |=M ϕ

Unless otherwise stated, we shall only consider legal pairs (w,H), i.e., pairs
(w,H) such that w,H |= L. We say ϕ is valid in M, |=M ϕ if for all
(w,H), w,H |=M ϕ. Finally, we say ϕ is valid in the communication

graph frame F if ϕ is valid in all models based on F .
There are two notions of validity relevant for our study. The first is

relative to a fixed communication graph. Let G be a fixed communication
graph. We say that a formula ϕ ∈ LK(G) is G-valid provided ϕ is valid in all
communication graph frames F based on G. A formula ϕ ∈ LK(G) is valid

if ϕ is G-valid for all communication graphs G. Of course validity implies
G-validity, but not vice versa. We write |=G ϕ if ϕ is G-valid and |= ϕ if ϕ
is valid.

Some comments are in order concerning the above definition of truth. L
is defined in terms of the knowledge operator, and the knowledge operator
uses L in its definition. This definition is of course fine since the definition
uses recursion on the length of the formula. Still, it is not clear that the
process of determining whether a history is legal will terminate in a finite
amount of time. For whether or not the history-state pair (w,H ; (i, j, ϕ))
is legal depends on whether (w,H) satisfies Kjϕ which, in turn, depends
on a set of histories which may be longer than H . We now show that the
process of determining whether a history is legal will terminate.

We first need some notation. A one-step compression ofH is a history
H ′ which is obtained by deleting one second or subsequent occurrences of
an event (i, j, ϕ) from H . I.e., if (i, j, ϕ) has occurred twice, then eliminate
some later occurrence. Let c(H) denote the maximally compressed history.
The history c(H) is generated by including each (i, j, ϕ) event of H exactly
once according to the following order on events: e comes before e′ iff the
first occurrence of e in H came before the first occurrence of e′ in H . The
key observation is that the legality of a history-state pair (w,H) depends
only on the legality of the pair (w, c(H)).

Lemma 2.7. Let G be a communication graph, ΣG a set of events and H
be any history over ΣG . Suppose that w is a state. Then

• For all ϕ, and all j, w,H |= Kjϕ iff w, c(H) |= Kjϕ

• (w,H) is legal iff (w, c(H)) is legal.



Reasoning about Communication Graphs 143

Proof. Clearly it is sufficient to prove the two conditions when c(H) is re-
placed by an H ′ obtained from H by the elimination of one extra event.
Therefore we shall make this assumption in the rest of the proof. Thus
H = H1eH2eH3 and H ′ = H1eH2H3. Here e is some event (i, j, ϕ).

We show that (w,H), (w,H ′) satisfy the same formulas ψ. Clearly this
is true if ψ is atomic and the argument also goes through for boolean com-
binations.

Suppose ψ = ♦θ and w,H |= ψ. Then there is H4 such that w,H ;H4 |=
θ. By induction hypothesis w,H ′;H4 |= θ (it is not hard to see that it is
legal) and hence w,H ′ |= ♦ψ. The converse is similar.

Suppose ψ = Krθ and w,H |= ψ where r 6= i. This case is easy as H,H ′

are r-equivalent.
What if we have r = i? w,H |= Kiθ iff for all v,H ′′ such that (v,H ′′) ∼i

(w,H), v,H ′′ |= θ. But since e has already occurred in both H,H ′, the
possible v in question are the same for both. The H ′′ will have two e events
and eliminating the second e will yield an H ′′′ such that v,H ′′′ |= θ iff
w,H ′′ |= θ. Thus the case r = i also works.

The proof that compression preserves legality or illegality is now imme-
diate for it depends on some knowledge formulas being true. But that issue
is not affected by the elimination of extra events e. q.e.d.

With Lemma 2.7 we can show that the process of determining if a state-
history pair (w,H) is legal terminates. More formally,

Proposition 2.8. Let M = 〈G, ~At, ~v〉 be a communication graph model.
For any H ∈ Σ∗G and state w, the question “Does (w,H) |= L?” terminates
in a finite amount of time.

Proof. This is now immediate by the previous lemma. When asking whether
w,H |= Kiϕ we need to look at pairs (v,H ′) which are i-equivalent to w,H .
But now we can confine ourselves to H ′ is which no (r, j, ψ) event with r 6= i
occurs twice, and these are bounded in length. q.e.d.

2.2 Some results

We now state the basic results about the logic of communication graphs.
We already defined c(H) earlier. We say that two histories are c-equiv-

alent, written C(H,H ′), if c(H) = c(H ′). Clearly H,H ′ have the same
semantic properties as c(H) = c(H ′) and hence as each other. Moreover,
one is legal iff the other is legal. It follows also that for every H1, H ;H1 is
legal iff H ′;H1 is. Thus C is a bisimulation.

In the following, a history H is called w-maximal if (w,H) is legal and
all possible (finitely many) communication events have taken place at least
once. An interesting consequence of the above lemma is the existence of a
maximal history (relative to some w).
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Theorem 2.9.

1. If a formula ϕ is satisfiable in some graph model (G, ~At) then it is sat-
isfiable in a history in which no communication (i, j, ϕ) occurs twice.

2. If H is w-maximal, then for all formulas ϕ ∈ LK(G), |= ϕ→ �ϕ.

3. If H is w-maximal and H ′ is any history compatible with w such that
H � H ′, then for all formulas ϕ ∈ LK(G), if w,H ′ |= ϕ then w,H |= ϕ.

4. If H and H ′ are w-maximal, then for each formula ϕ ∈ LK(G), w,H |=
ϕ iff w,H ′ |= ϕ.

Proof. The first three parts follow from Lemma 2.7. We shall prove the
last statement: for any state w, if H and H ′ are w-maximal histories, then
(w,H) and (w,H ′) satisfy the same formulas. The proof is by induction on
ϕ.

The base case and boolean connectives are straightforward. Suppose
that ϕ is of the form ♦ψ. Let w be an arbitrary state and suppose that H
and H ′ are w-maximal histories. Suppose that (w,H) |= ♦ψ. Then there
is some H ′′ such that H � H ′′, (w,H ′′) is legal and (w,H ′′) |= ϕ. By part
3 above, w,H |= ψ and by the induction hypothesis, w,H ′ |= ψ. Hence,
w,H ′ |= ♦ψ. Thus if w,H |= ♦ψ then w,H ′ |= ♦ψ. The other direction is
similar.

For the knowledge case we need the following claim:

Claim 2.10. Let w be a state. Suppose H1 and H2 are w-maximal and
(v,H3) is legal. If (w,H1) ∼i (v,H3), then there is a history H4 which is
v-maximal such that (w,H2) ∼i (v,H4).

Proof of Claim. Let w be a state and suppose that H1 and H2 are w-
maximal histories and (v,H3) is a legal history-state pair such that
(w,H1) ∼i (v,H3). Then v and w must agree on every atom which is
not only known to i, but also on every atom known to some other agent
whom i can read directly or indirectly. For at maximality, i already knows
the truth values of all the sets Atj where j is directly or indirectly acces-
sible from i. Thus we can find a legal history-state pair (v,H ′

4) such that
(w,H2) ∼i (v,H ′

4). It is not hard to see that H ′
4 can be extended to a

v-maximal history. q.e.d. (Claim 2.10)

Returning to the induction proof. Suppose that ϕ is of the form Kiψ,
w is an arbitrary state, and H and H ′ are w-maximal histories. Suppose
that (w,H) |= Kiψ and (w,H ′) 6|= Kiψ. Then there is a history state pair
(v,H ′′) such that (w,H ′) ∼i (v,H ′′), (v,H ′′) is legal and v,H ′′ 6|= ψ. Note
that without loss of generality we can assume that H ′′ is v-maximal (every
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legal history-state pair can be extended to a maximal history, furthermore
this extension cannot differ on the truth value of ϕ sinceH ′′ already contains
all events of the form (i, j, χ)). By the above claim (let H1 = H ′, H2 = H
and H3 = H ′′), there is a v-maximal history H ′′′ with (w,H) ∼i (v,H ′′′).
By the induction hypothesis, (v,H ′′) and (v,H ′′′) satisfy the same formulas.
Hence (w,H) ∼i (v,H ′′′) and v,H ′′′ 6|= ψ. This contradicts the assumption
that w,H |= Kiψ. Hence, for any w-maximal histories H and H ′, w,H |=
Kiψ iff w,H ′ |= Kiψ. q.e.d.

This result immediately gives us a decision procedure as we can limit the
length of the history which might satisfy some given formula ϕ.

Notice that if we restrict our attention to maximal histories, then the
following property will be satisfied: for any two agents i and j, if there is a
path in the communication graph from i to j, then any ground fact that j
knows, i will also know. In this case, we can say that j dominates i. This
is Fitting’s “dominance” relation discussed in Section 3.

The following simple result demonstrates that given any sequence of
communications H , the agents know at least the set of formulas that are
implied by the set of formulas in H . That is, given a legal pair (w,H), let
Xi(w,H) be the set of states that agent i considers possible if the actual
state is w and the communication between the agents evolved according to
H . Given a formula ϕ ∈ L0(At), let ϕ̂ = {w | w ∈ W, w(ϕ) = 1}. Now we
formally define Xi(w,H) recursively as follows

1. Xi(w, ε) = {v | v↾Ati = w↾Ati}

2. Xi(w,H ; (i, j, ϕ)) = Xi(w,H) ∩ ϕ̂

3. if i 6= m then Xi(w,H ; (m, j, ϕ)) = Xi(w,H)

The following theorem shows that agents know at least the formulas
implied by the set Xi(w,H). The proof can be found in [Pa0Pa505] and
will not be repeated here.

Theorem 2.11. Let M = 〈G, ~At, ~v〉 be any communication graph model
and ϕ a ground formula. If Xi(w,H) ⊆ ϕ̂, then (w,H) |=M Ki(ϕ).

As we saw above, the converse is not true. That is, there are formulas that
an agent can come to know which are not implied by the set Xi(w,H).
These are the formulas that agents can deduce given their knowledge of the
communication graph.

The following axioms and rules are known to be sound and complete with
respect to the family of all subset spaces [Mo3Pa592]. Thus they represent
the core set of axioms and rules for any topologic (see [Pa5Mo3St407] for
the current state of affairs).
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1. All propositional tautologies

2. (p→ �p) ∧ (¬p→ �¬p), for p ∈ At

3. �(ϕ→ ψ) → (�ϕ→ �ψ)

4. �ϕ→ ϕ

5. �ϕ→ ��ϕ

6. Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)

7. Kiϕ→ ϕ

8. Kiϕ→ KiKiϕ

9. ¬Kiϕ→ Ki¬Kiϕ

10. (Cross axiom) Ki�ϕ→ �Kiϕ

We include the following rules: modus ponens, Ki necessitation and � ne-
cessitation. It is easy to verify that the above axioms and rules are valid, i.e.,
valid in all frames based on any communication graphs. We only demon-
strate that the cross axiom Ki�ϕ→ �Kiϕ is valid. It is easier to consider
it in its contrapositive form: ♦Liϕ→ Li♦ϕ. This is interpreted as follows:
if there is a sequence of updates that lead agent i to consider ϕ possible,
then i already thinks it possible that there is a sequence of updates after
which ϕ becomes true.

Proposition 2.12. The axiom scheme ♦Liϕ→ Li♦ϕ is valid.

Proof. Let G be an arbitrary communication graph and M = 〈G, ~At, ~v〉 any
communication graph model based on G. Suppose that (w,H) is a legal
state-history pair. Suppose that w,H |= ♦Liϕ. Then there exists H ′ with
H � H ′ such that w,H ′ |= Liϕ. Hence there is a pair (v,H ′′) such that
(w,H ′) ∼i (v,H ′′) and v,H ′′ |=M ϕ. Let H ′′′ be any sequence such that
λi(H) = λi(H

′′′) and H ′′′ � H ′′. Such a history must exist since H � H ′

and H ′ ∼i H
′′. Since H � H ′, λi(H) � λi(H

′) = λi(H
′′). Therefore,

we need only let H ′′′ be any initial segment of H ′′ containing λi(H). By
definition of L, all initial sequences of a legal history are legal. Therefore,
since v,H ′′ |=M ϕ, v,H ′′′ |= ♦ϕ; and since H ∼i H

′′′, w,H |=M Li♦ϕ.
q.e.d.

The next lemma follows from the existence of maximal histories.

Lemma 2.13. The axiom �♦ϕ↔ ♦�ϕ is valid.
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Proof. Let G be an arbitrary communication graph, M = 〈G, ~At, ~v〉 any
communication graph model based on G and (w,H) a legal history-state
pair. Suppose that w,H |=M �♦ϕ. Let H ′ be a w-maximal history
extending H , then w,H ′ |=M ♦ϕ and hence there is a history H ′′ such
that H ′ � H ′′ and w,H ′′ |=M ϕ. Since H ′ is maximal, by Theorem 2.9
w,H ′ |= ϕ. By Theorem 2.9 again, w,H ′ |= �ϕ. Hence w,H |= ♦�ϕ.

Conversely, suppose that w,H |=M ♦�ϕ. Then there is a history H ′

such that H � H ′ and w,H ′ |=M �ϕ. Let H ′
m be a w-maximal history that

extends H ′. Then w,H ′
m |=M ϕ. Let H ′′ be any history that extends H

and H ′′
m be a w-maximal history that extends H ′′. By Theorem 2.9, since

w,H ′
m |=M ϕ, w,H ′′

m |=M ϕ. Hence w,H ′′ |=M ♦ϕ and hence w,H |=M

�♦ϕ. q.e.d.

If we fix a communication graph, then there are more formulas which are
valid.

Lemma 2.14. Let G = (A, E) be a communication graph. Then for each
(i, j) ∈ E, for all ℓ ∈ A such that ℓ 6= i and ℓ 6= j and all ground formulas
ϕ, the scheme

Kjϕ ∧ ¬Kℓϕ→ ♦(Kiϕ ∧ ¬Kℓϕ)

is G-valid.

Proof. Let G be an arbitrary communication graph andM a communication
graph model based on G. Suppose that w,H |=M Kjϕ ∧ ¬Kℓϕ. Then j
knows ϕ and hence i can read ϕ directly from j’s website. More formally,
H ; (i, j, ϕ) is a legal history (provided that H is legal). The agent ℓ is
none the wiser as λℓ(H) = λℓ(H ; (i, j, ϕ)). Therefore, w,H ; (i, j, ϕ) |=M

Kiϕ ∧ ¬Kℓϕ. q.e.d.

The converse is not quite true. For suppose that agent i is connected
to agent j via (exactly) two other agents ℓ1, ℓ2. Then a fact known to j
can be learned by i without ℓ1 finding out about it, ditto for ℓ2 and for any
agent beside ℓ1, ℓ2. However, in this scenario, it is impossible for i to find
out some ϕ from j unless ℓ1 and ℓ2 jointly know ϕ.

3 Related literature

Communication graphs, or communication networks, and more generally
social networks3 have been studied by a number of different communities.
Most notably, social networks are an important topic in sociology. But
computer scientists have also had quite a lot to say about networks. The

3 A social network is a graph on a set of agents where edges represent some social
interaction such as acquaintances, coauthors on a mathematical paper, costars in a
movie, and so on.
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goal of this section is not to survey this vast amount of literature, but rather
to give some details about a few papers most relevant to the framework
discussed in Sections 1 and 2. Needless to say, this list of topics is not
meant to be complete.

Coordination problems

Suppose there are two generalsA and B with armies at the top of two moun-
tains with a valley in between them. As the story goes, the generals attempt
to coordinate their action by sending messages back and forth. However,
since the communication channel is unreliable (the messengers must travel
through dangerous territory), common knowledge of the time to attack can-
not be achieved. This puzzle, called the generals problem, has been topic
of much discussion. See [Fa+95] for a formal treatment and discussion of
relevant literature and [Le269] for a discussion of common knowledge as it
relates to coordination problems. Of course, if there was a reliable commu-
nication channel between the two generals, then they could easily coordinate
their actions. Thus the existence of a communication graph (in this case
just an edge between the two generals) facilitates coordination. This raises
some interesting questions about the structure of the communication graph
on a group of agents and its affect on coordination.

In [Ch400, Ch499], Michael Chwe investigates the general question of
when the structure of the communication graph can facilitate coordination
among a group of agents. Chwe considers the following situation. There is
a finite set of agents A. Each agent must decide whether or not to revolt
against the current government. That is, assume that agents choose between
r (revolt) and s (stay at home). The agents are assumed to use the following
decision rule: “I’ll go if you go”. That is, for a particular agent i, the greater
the number of agents i believes will choose r, the higher the utility i assigns
to r, provided agent i is willing to revolt. More formally, it is assumed
that each agent is either willing to revolt (w) or not willing to revolt (nw).
Then a utility function for agent i maps elements of {w, nw} × {r, s}n to
real numbers with the constraint that if an agent is not willing to revolt,
then the utility of revolting is zero regardless the opinions of i’s neighbors.
It is assumed that the agents are connected by a communication graph
G = (A, E). Here (i, j) ∈ E is intended to mean “agent i talks to agent
j”. That is i informs j as to whether or not he will revolt. Thus the set
Bi = {j | (j, i) ∈ E} is the set of agents for which i knows which action
they will perform. Finally, it is assumed that the communication graph is
common knowledge and that each agent has a prior belief4 about which
agents will revolt.

4 Beliefs are represented by probability functions over the set {r, s}n.
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Chwe considers the question “which communication graphs enable the
group to revolt?” To that end, a strategic game Γ(G, {π}i∈A) is defined,
where πi is agent i’s prior beliefs. In this game, an agent i’s decision to
revolt depends on its prior beliefs πi and the set Bi of agents that i has
communicated with. Of course if agent i’s prior belief assigns high enough
probability to a large enough group of agents revolting, then that agent will
revolt regardless of the communication graph. Thus the interesting question
is which communication graph will enable the group to revolt regardless
of the agents’ prior probabilities. Chwe calls such communication graphs a
sufficient network.

The main result of the paper [Ch400] is a characterization of minimal
sufficient networks. First of all, it should be obvious that if a communication
graphs G enables a group to revolt, then so will any communication graph
G′ which is just like G except with additional edges (it is straightforward to
prove this in Chwe’s framework). Chwe showed that any sufficient network
has the following property: there is a finite set of cliques such that

1. Each agent is in at least one clique,

2. there is a relation → between the cliques that characterizes the edge
relation in the graph. That is there is an edge from i to j iff there is
some clique containing i and some clique containing j that are related
by →, and

3. the cliques are totally ordered by →.

This result provides an interesting perspective on collective action. The
communication graph facilitates the group’s ability to share information and
thus enabling group action. The logic presented in Section 2 is intended to
make clear precisely how an agent’s information can change in situations
similar to the one described above.

Agreeing to disagree

In 1976, Aumann proved a fascinating result [Au76]. Suppose that two
agents have the same prior probability and update their probabilities of
an event E with some private information using Bayes’ rule. Then Au-
mann showed that if the posterior probability of E is common knowledge,
then they must assign the same posterior probability to the event E. In
other words, if agents have the same prior probability and update using
Bayes’ rule, then the agents cannot “agree to disagree” about their poste-
rior probabilities. See [Bo0Ne97] for a nice discussion of this result and the
literature that it generated. An immediate question that comes to mind is
“How do the posterior probabilities become common knowledge?” Starting
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with Geanakoplos and Polemarchakis [Ge0Po182], a number of papers have
addressed this issue [Ca583, Ba185, Pa5Kr090, Kr096, He096].

The key idea is that common knowledge arises through communication.
Suppose there are two agents who agree on a prior probability function.
Suppose that each agent receives some private information concerning an
event E and updates their probability function accordingly. Geanakop-
los and Polemarchakis [Ge0Po182] show that if the agents each announce
their posterior probabilities and update with this new information, then the
probabilities will eventually become common knowledge and the probabili-
ties will be equal. Similar to Chwe’s analysis described above, the existence
of a communication graph (with an edge between the two agents) enables
consensus about the posterior probabilities.

Parikh and Krasucki [Pa5Kr090] look at the general situation where there
may be more than two agents5 and communication is restricted by a com-
munication graph. They show that under certain assumptions about the
communication graph, consensus can be reached even though the posterior
probabilities of the agents may not be common knowledge6. Before stating
their result, some clarification is needed. Note that a communication graph
tells us which agent can communicate with which agent, but not when two
agents do communicate. To represent this information, Parikh and Kra-
sucki introduce the notion of a protocol. A protocol is a pair of functions
(r, s) where r : N → A and s : N → A. Intuitively, (r(t), s(t)) means that
r(t) receives a message from s(t) at time t. Say a protocol (r, s) respects
a communication graph G = (A, E) if for each t ∈ N, (r(t), s(t)) ∈ E. A
protocol is said to be fair provided every agent can send a message to any
other agent, either directly or indirectly, infinitely often7. Parikh and Kra-
sucki show that if the agents are assumed to have finitely many information
sets, then for any protocol if the agents sends the current probability8 (con-
ditioned on the agent’s current information set) of proposition A, then after
a finite amount of time t for each agent i, the messages received after time t
will not change i’s information set. Furthermore, if the protocol is assumed

5 Cave [Ca583] also considers more than two agents, but assumes all communications
are public announcements.

6 This point was formally clarified by Heifetz in [He096]. He demonstrates how to enrich
the underlying partition space with time stamps in order to formalize precisely when
events become common knowledge.

7 Consult [Pa5Kr090] for a formal definition of “fairness”.
8 Actually, Parikh and Krasucki consider a more general setting. They assume agents

communicate the value of some function f that maps events to real numbers. Intu-
itively, f could be thought of as the expected value of a random variable given some
information set. The only condition imposed on f is a convexity condition: for any
two disjoint close subsets X and Y , f(X ∪ Y ) lies in the open interval between f(X)
and f(Y ). Here closed is defined with respect to the agents’ information sets. This
generalizes a condition imposed by Cave [Ca583] and Bacharach [Ba185].
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to be fair (i.e., the communication graph is strongly connected) then all
the agents will eventually assign the same probability to A. Krasucki takes
the analysis further in [Kr096] and provides conditions on the protocol (and
implicitly on the underlying communication graph) which will guarantee
consensus regardless of the agents’ initial information.

Similar to Chwe’s analysis, Parikh and Krasucki’s analysis shows that
the structure of the communication graph is a key aspect of consensus in
a group. We end this section with a different interpretation of a commu-
nication graph that provides a very interesting perspective on many-valued
modal logic.

Many-valued modal logic

In [Fi291a, Fi291b], Fitting discusses various families of many-valued modal
logics. In these frameworks, Fitting assumes that both the valuation of the
formulas and the accessibility relation are many-valued. The frameworks
are motivated in [Fi291b] with the help of a structure similar to a com-
munication graph. As in this paper, it is assumed that there is a graph
with the set of agents as nodes. However, Fitting interprets an edge in
this graph differently: “i is related to j” means that i dominates j, where
‘dominate’ means that “j says that something is true whenever i says it is”.
It is assumed that this relation is a partial order. Each agent is assumed to
have its own valuation and accessibility relation on a set of possible worlds.
Fitting is interested in which modal formulas the agents will agree on in a
particular world. Two semantics are presented that solve this problem.

Deciding which agents agree on a particular formula in a common lan-
guage naturally suggests a many-valued modal logic where formulas are
assigned subsets of agents (i.e., the subsets of the agents are the set of truth
values in this many-valued setting). Suppose that ϕ is assigned the set
B ⊆ A in a state w, then the intended interpretation is that each agent in
B agrees on the truth value of ϕ in w. The domination relation outlaws
certain subsets of agents as truth values. For example, if i dominates j,
then {i} cannot be a possible truth value since j is assumed to always agree
with i on the set of true formulas. The domination relation also provides an
intuitionistic flavor to the underlying logic. For example, consider the for-
mula ¬ϕ and suppose i dominates j. Now it is consistent with the notion of
domination that i can consider ϕ false and j considers ϕ true. In this case,
if we interpret ¬ classically, then i considers ¬ϕ true while j considers ¬ϕ
false, which contradicts the fact that i dominates j. Thus, we are forced to
say that i considers ¬ϕ true if i and all agents that i dominates consider that
ϕ is false. Fitting offers two semantics which take these observations into
account. One is a combination of Kripke intuitionistic models and Kripke
multi-modal models and the second is a many-valued Kripke modal model.
The two semantics are shown to be equivalent and a sound and complete
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axiomatization is offered.
Rasiowa and Marek offer a similar interpretation of a communication

graph [Ra5Ma589, Ra5Ma593]. In their framework an edge from i to j
means that “j is more perceptive than i”. If this is the case, then j’s
valuation of a proposition p is “better than” i’s valuation of that same
variable. Rasiowa and Marek provide a framework to reason about formulas
on which there is consensus among the agents. The framework discussed in
the rest of this paper can be seen as an attempt to explain how an agent i
can come to dominate another agent j. That is, assuming the agents start
with consistent (partial) theories, i can dominate j if there is a (possibly
indirect) communication channel from i to j and j asks i about the truth
value of all formulas in the language.

Dynamic epistemic semantics

The study of Dynamic Epistemic Logic attempts to combine ideas from dy-
namic logics of actions and epistemic logic. The main idea is to start with
a formal model that represents the uncertainty of an agent in a social situ-
ation. Then we can define an ‘epistemic update’ operation that represents
the effect of a communicatory action, such as a public announcement, on the
original model. For example, publicly announcing a true formula ϕ, converts
the current model to a submodel in which ϕ is true at each state. Starting
with [Pl007] and more recently [Ba4Mo304, Ko403, vD00, Ge299a, vB06],
logical systems have been developed with the intent to capture the dynam-
ics of information in a social situation. Chapter 4 of Kooi’s dissertation
[Ko403] and the recent book [vDvHKo407] contain a thorough discussion of
the current state of affairs.

These logics use PDL style operators to represent an epistemic update.
For example, if !ϕ is intended to mean a public announcement of ϕ, then
〈!ϕ〉Kiψ is intended to mean that after ϕ is publicly announced, agent i
knows ψ. From this point of view, our communication modality ♦ can be
understood as existentially quantifying over a sequence of private epistemic
updates. However, there are some important differences between the se-
mantics presented in this paper and the semantics found in the dynamic
epistemic logic literature. First of all, in our semantics, communication is
limited by the communication graph. Secondly, we do not consider general
epistemic updates as is common in the literature, but rather study a specific
type of epistemic update and its connection with a communication graph.
Most important is the fact that the history of communications plays a key
role in the definition of knowledge in this paper. The general approach of
dynamic epistemic semantics is to define update operations mapping Kripke
structures to other Kripke structures intended to represent the effect of an
epistemic update on the first Kripke structure. For example, a public an-
nouncement of ϕ selects the submodel of a Kripke structure in which ϕ is
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true at every state. The definition of knowledge after an epistemic update is
the usual definition, i.e., ϕ is known by i at state w if ϕ is true in all states
that i considers possible from state w in the updated Kripke structure.

Floris Roelofsen introduces communication graphs to the dynamic epis-
temic logic setting in [Ro005]. The framework is more general than the one
presented in this paper in three respects. First, the communication graph is
a relation on the collection of subsets of A, where an edge between B1 ⊆ A
and B2 ⊆ A means that group B1 can communicate with group B2. Thus
a communication event in this framework is a tuple (B1,B2, ϕ) intended to
mean that group B1 sends a message whose content is ϕ to group B2; and
a precondition for an event (B1,B2, ϕ) to take place is that ϕ is common
knowledge among group B1.

9 Second, there is no assumption that messages
between groups be restricted to ground formulas. Finally, Roelofsen does
not assume that the communication graph is common knowledge. There-
fore, there may be messages that can “update” the agent’s view of the
communication graph. So, should our models be viewed as an interesting
special case of these more general model? The answer to this question is
not straightforward as the history of communication plays a crucial role in
the semantics presented in this paper. A full comparison between these two
approaches can be found in [Ho706] (cf. [vBPa006, vBGe2Pa007] for a com-
parison between history based semantics and dynamic epistemic semantics).

4 Conclusions

In this paper we have introduced a logic of knowledge and communication.
Communication among agents is restricted by a communication graph, and
idealized in the sense that the agents are unaware when their knowledge
base is being accessed. We have shown that the communication graph is
characterized by the validities of formulas in models based on that commu-
nication graph, and that our logic is decidable.

We are now moving on to discuss future work. Standard questions such
as finding an elegant complete axiomatization will be studied. The seman-
tics described in Section 2 rests on some strong underlying assumptions.
Below we briefly sketch how to remove some of these assumptions.

One-way communication

As discussed in the introduction, an edge from i to j means that i can
read j’s website without j knowing that its website is being read. Thus
a communication event (i, j, ϕ) only changes i’s knowledge. This can be
formally verified by noting that if H and H ; (i, j, ϕ) are w-legal histories,
then by the definition of the λj function, λj(H) = λj(H ; (i, j, ϕ)). Thus

9 We could of course consider other cases where some members of B1 communicate with
some members of B2.
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(w,H) ∼j (v,H ′) iff (w,H ; (i, j, ϕ)) ∼j (v,H ′) and so j’s knowledge is
unchanged by the presence of the event (i, j, ϕ). We can model conscious
communication by changing the definition of the local view function. Define
the λ∗i as follows: given a history H , let λ∗i (H) map events of the form
(i, j, ϕ) and (j, i, ϕ) to themselves and all other events in which i does not
occur in the first two components to the null event.

Starting with theories

Another natural extension is to consider situations in which agents have
a preference over which information they will read from another agent’s
website. Thus for example, if one hears that an English Ph.D. student and
his adviser recently had a meeting, then one is justified in assuming that they
probably did not discuss the existence of non-recursive sets, even though
the adviser may conceivably know this fact. Given that this preference over
the formulas under discussion among different groups of agents is common
knowledge, each agent can regard some (legal) histories as being more or
less likely than other (legal) histories. From this ordering over histories,
we can define a defeasible knowledge operator for each agent. The operator
is defeasible in the sense that agents may be wrong, i.e., it is after all
possible that the English student and his adviser actually spent the meeting
discussing the fact that there must be a non-recursive set.
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Abstract

In this survey we analyze and compare various sufficient epistemic
conditions for backward induction that have been proposed in the
literature. To this purpose we present a simple epistemic base model
for games with perfect information, and express the conditions of the
different models in terms of our base model. This will enable us to
explictly analyze the differences and similarities between the various
sufficient conditions for backward induction.

1 Introduction

Backward induction constitutes one of the oldest concepts in game theory.
Its algorithmic definition, which goes back at least to [Ze13], seems so nat-
ural at first sight that one might be tempted to argue that every player
“should” reason in accordance with backward induction in every game with
perfect information. However, on a decision theoretic level the concept is
no longer as uncontroversial as it may seem. The problem is that the back-
ward induction algorithm, when applied from a certain decision node on,
completely ignores the history that has led to this decision node, as it works
from the terminal nodes towards this decision node. At the same time, the
beliefs that the player at this decision node has about his opponents’ fu-
ture behavior may well be affected by the history he has observed so far.
For instance, a player who observes that an opponent has not chosen in
accordance with backward induction in the past may have a valid reason
to believe that this same opponent will continue this pattern in the game
that lies ahead. However, such belief revision policies are likely to induce
choices that contradict backward induction. We therefore need to impose
some non-trivial conditions on the players’ belief revision policies in order
to arrive at backward induction.

During the last decade or so, the game-theoretic literature has provided
us with various epistemic models for dynamic games in which sufficient

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 159–193.
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epistemic conditions for backward induction have been formulated. The
objective of this survey is to discuss these conditions individually, and to
explicitly compare the different conditions with each other. The latter task
is particularly difficult since the literature exhibits a large variety of epis-
temic models, each with its own language, assumptions and epistemic oper-
ators. Some models are syntactic while others are semantic, and among the
semantic models some are based on the notion of states of the world while
others use types instead. As to the epistemic operators, some models apply
knowledge operators while others use belief operators, and there is also a
difference with respect to the “timing” of these operators. Are players en-
titled to revise their knowledge or belief during the course of the game, and
if so, at which instances can they do so? Different models provide different
answers to these, and other, questions.

As to overcome these problems we present in Section 2 an epistemic base
model, which will be used as a reference model throughout this overview.
In Section 3 we then provide for each of the papers to be discussed a brief
description of the model, followed by an attempt to formulate its epistemic
conditions for backward induction in terms of our base model. By doing
so we formulate all sufficient conditions for backward induction in the same
base model, which makes it possible to explicitly analyze the differences and
similarities between the various conditions.

Finally, a word about the limitations of this paper. In this survey, we
restrict attention to epistemic conditions that lead to the backward induc-
tion strategies for all players. There are alternative models that lead to the
backward induction outcome, but not necessarily to the backward induc-
tion strategy for each player. For instance, [Ba7Si102] and [Br1Fr2Ke104]
provide epistemic models for extensive form rationalizability [Pe084, Ba797]
and iterated maximal elimination of weakly dominated strategies, respec-
tively, which always lead to the backward induction outcome in every generic
game with perfect information, but not necessarily to the backward in-
duction strategy profile. We also focus exclusively on sufficient conditions
that apply to all generic games with perfect information. There are other
interesting papers that deal with the logic of backward induction in spe-
cific classes of games, such as Rosenthals’s centipede game [Ro381] and
the finitely repeated prisoner’s dilemma. See, among others, [Bi187, St196,
Au98, Ra098, Br3Ra099, Ca200, Pr00]. We shall, however, not discuss these
papers here. Even with the limitations outlined above, we do not claim to
offer an exhaustive list of epistemic models for backward induction. We do
believe, however, that the list of models treated here will give the reader a
good impression of the various epistemic conditions for backward induction
that exist in the literature.
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2 An epistemic base model

2.1 Games with perfect information

A dynamic game is said to be with perfect information if every player,
at each instance of the game, observes the opponents’ moves that have
been made until then. Formally, an extensive form structure S with perfect
information consists of the following ingredients:

• First, there is a rooted, directed tree T = (X, E), where X is a finite set
of nodes, and E ⊆ X ×X is a finite set of directed edges. The nodes
represent the different situations that may occur during the game, and
the edges (x, y) represent moves by players that carry the game from
situation x to situation y. The root x0 ∈ X marks the beginning of
the game. For every two nodes x, y ∈ X, there is at most one path
((x1, y1), (x2, y2), . . . , (xn, yn)) in E from x to y with x1 = x, yn = y,
and yk = xk+1 for every k ∈ {1, . . . , n− 1}. We say that x precedes y
(or, y follows x) if there is a path from x to y. Since x0 is the root,
there is for every x ∈ X\{x0} a path from x0 to x. A node x ∈ X
is called a terminal node if it is not followed by any other node in
X. The set of terminal nodes is denoted Z, and represents the set of
possible outcomes for the game.

• There is a finite set I of players, and a move function m : X\Z → I
which specifies for every non-terminal node x the player m(x) ∈ I who
has to move at x. For every player i, the set of nodes

Hi := {x ∈ X\Z | m(x) = i}

is called the set of information sets1 for player i. Since every infor-
mation set hi ∈ Hi corresponds to a single node it is assumed that
a player, whenever it is his turn to move, knows exactly which node
in the game tree has been reached. That is, the game has perfect in-
formation. The root x0 is identified with the information set h0, and
by H∗

i := Hi ∪ {h0} we denote the set of player i information sets,
together with the beginning of the game. By H =

⋃

i∈I Hi we denote
the set of all information sets.

• For every player i and information set hi ∈ Hi, the set of edges

A(hi) := {(hi, y) | y ∈ X, (hi, y) ∈ E}

is called the set of actions, or moves, available at hi. By
A =

⋃

h∈H A(h) we denote the set of all actions.

1 Note that in our restricted setting an information set consists of a single node. We
could therefore also have used the term “non-terminal node” instead of “information
set”. In particular, the collection of all information sets coincides with the set of all
non-terminal nodes.
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We now turn to the definition of a strategy. Intuitively, a strategy for
player i is a plan that describes what player i would do in every possible
situation in the game where it is his turn to move. The formal definition of
a strategy we shall employ coincides with the concept of a plan of action,
as discussed in [Ru191]. The difference with the usual definition is that we
require a strategy only to prescribe an action at those information sets that
the same strategy does not avoid. Formally, let H̃i ⊆ Hi be a collection of
player i information sets, not necessarily containing all information sets, and
let si : H̃i → A be a mapping prescribing at every hi ∈ H̃i some available
action si(hi) ∈ A(hi). For a given information set h ∈ H, not necessarily
belonging to player i, we say that si avoids h if on the path

((x1, y1), . . . , (xn, yn))

from h0 to h there is some node xk in H̃i with si(xk) 6= (xk, yk). That
is, the prescribed action si(xk) deviates from this path. Such a mapping
si : H̃i → A is called a strategy for player i if H̃i is exactly the collection of
player i information sets not avoided by si. Obviously, every strategy si can
be obtained by first prescribing an action at all player i information sets,
that is, constructing a strategy in the classical sense, and then deleting from
its domain those player i information sets that are avoided by it. For a given
strategy si ∈ Si, we denote by Hi(si) the collection of player i information
sets that are not avoided by si. Let Si be the set of player i strategies. For
a given information set h ∈ H and player i, we denote by Si(h) the set of
player i strategies that do not avoid h. Then, it is clear that a profile (si)i∈I

of strategies reaches an information set h if and only if si ∈ Si(h) for all
players i.

2.2 Preferences, beliefs and types

The basic assumption in our base model is that every player has a strict2

preference relation over the terminal nodes, and holds at each of his in-
formation sets a conditional belief about the opponents’ strategy choices
and preference relations. In particular, we allow for the fact that players
may revise their beliefs about the opponents’ preferences as the game pro-
ceeds. In order to keep our model as “weak” as possible, we assume that
this conditional belief can be expressed by a set of opponents’ strategies
and preference relations. This set represents the strategies and preference
relations that the player deems possible at his information set. We thus do
not consider probabilities, and it is therefore sufficient to specify the play-
ers’ ordinal preferences over terminal nodes. Not only does a player hold
first-order conditional beliefs about the opponents’ choices and preferences,

2 In the literature, it is not always assumed that players hold strict preferences over
terminal nodes. We do so here for the sake of simplicity.
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he also holds second-order conditional beliefs about the opponents’ possible
first-order beliefs at each of his information sets. A second-order belief may
thus contain expressions of the form “player i considers it possible at infor-
mation set hi that player j considers it possible at information set hj that
player k chooses strategy sk and has preference relation Pk”. Recursively,
one may define higher-order conditional beliefs for the players. A possible
way to represent such hierarchies of conditional beliefs is by means of the
following model.

Definition 2.1 (Epistemic base model). Let S be an extensive form struc-
ture with perfect information. An epistemic base model for S is a tuple

M = (Ti, Pi, Bi)i∈I

where

(1) Ti is a set of types for player i;

(2) Pi is a function that assigns to every ti ∈ Ti some complete, strict and
transitive preference relation Pi(ti) over the terminal nodes;

(3) Bi is a function that assigns to every ti ∈ Ti and every information
set hi ∈ H∗

i some subset Bi(ti, hi) ⊆
∏

j 6=i(Sj(hi)× Tj).

Here, Bi(ti, hi) denotes the set of opponents’ strategy-type pairs which ti
deems possible at hi. We denote by Bi(ti, hi|S−i) the projection of Bi(ti, hi)
on

∏

j 6=i Sj(hi). That is, Bi(ti, hi|S−i) is ti’s belief at hi about the oppo-
nents’ strategy choices. For any player j 6= i, we denote by Bij(ti, hi) the
projection of Bi(ti, hi) on the set Sj(hi)×Tj. Hence, Bij(ti, hi) is ti’s belief
at hi about player j’s strategy-type pair.

From an epistemic base model, conditional beliefs of any order can be
derived. For instance, type ti’s belief at hi about player j’s choice is given by
the projection of Bij(ti, hi) on Sj . Let Bij(ti, hi|Sj) denote this projection,
and let Bij(ti, hi|Tj) denote its projection on Tj . Then, type ti’s belief at
hi about player j’s belief at hj about player ℓ’s choice is given by

⋃

tj∈Bij(ti,hi|Tj)

Bjℓ(tj , hj|Sℓ).

In a similar fashion, higher-order beliefs can be derived.

2.3 Common belief

Let M = (Ti, Pi, Bi)i∈I be an epistemic base model, and E ⊆
⋃

j∈I Tj a
set of types, or event. We say that type ti believes in E at information set
hi ∈ H∗

i if Bij(ti, hi|Tj) ⊆ E for all j 6= i. We say that ti initially believes
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in E if ti believes in E at h0. Common belief in the event E is defined by
the following recursive procedure:

B1
i (E) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ E for all j 6= i and all hi ∈ H∗

i }

for all i ∈ I, and

Bk+1
i (E) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ Bk

j (E) for all j 6= i and all hi ∈ H∗
i }

for all i ∈ I and all k ≥ 1.

Definition 2.2 (Common belief). A type ti ∈ Ti is said to respect common
belief in the event E if ti ∈ E and ti ∈ Bk

i (E) for all k.

Hence, ti respects common belief in E if ti belongs to E, believes through-
out the game that opponents’ types belong to E, believes throughout the
game that opponents believe throughout the game that the other players’
types belong to E, and so on. In particular, if we say that ti respects
common belief in E, this implies that ti itself should belong to E. So, for
instance, if we say that ti respects common belief in the event that types
never change their belief about the opponents’ preference relations during
the game, this implies that ti itself never changes its belief about the op-
ponents’ preference relations. We realize that this is perhaps linguistically
not correct, but we do so for the sake of brevity. Otherwise, we should have
to write, throughout this paper, that ti belongs to E, and respects common
belief in E.

In most other epistemic models in the literature, the term “common
belief” or “common knowledge” refers to the epistemic state of a group of
players, rather than to the epistemic state of a single player, as we use it.
That is, in most other models the expression “there is common belief in
E” means that “all players believe that E holds, all players believe that
all players believe that E holds, and so on.” The reason for me to use
an “individualistic” version of common belief is that we want to impose
conditions on the beliefs of one player only, and see when such individual
conditions lead to backward induction reasoning by that player. So, we
take a single-player perspective in this paper, and choose the version of
common belief accordingly. We realize this is an unusual approach, but it
is well-suited for the purposes we have in mind.

Common initial belief in the event E is defined as follows:

IB1
i (E) = {ti ∈ Ti | Bij(ti, h0|Tj) ⊆ E for all j 6= i}

for all i ∈ I, and

IBk+1
i (E) = {ti ∈ Ti | Bij(ti, h0|Tj) ⊆ IBk

j (E) for all j 6= i}

for all i ∈ I and all k ≥ 1.
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Definition 2.3 (Common initial belief). A type ti ∈ Ti is said to respect
common initial belief in the event E if ti ∈ E and ti ∈ IBk

i (E) for all k.

2.4 Belief in the opponents’ rationality

All the epistemic foundations for backward induction to be discussed here
make assumptions about the beliefs that players have about the rationality
of their opponents. More precisely, all foundations require that players
initially believe that each opponent chooses rationally at every information
set. However, the various foundations differ as to how players would revise
their beliefs upon observing that their initial belief about the opponents
was incorrect. In order to express these different belief revision procedures
in terms of our base model, we need the following definitions.

We first define what it means that a strategy is rational for a type at a
given information set. For an information set hi ∈ Hi, a strategy si ∈ Si(hi),
and an opponents’ strategy profile s−i ∈

∏

j 6=i Sj(hi), let z(si, s−i|hi) be the
terminal node that would be reached from hi if (si, s−i) were to be executed
by the players.

Definition 2.4 (Rationality at an information set). A strategy si is ra-
tional for type ti at information set hi ∈ Hi(si) if there is no s′i ∈ Si(hi)
such that Pi(ti) ranks z(s′i, s−i|hi) strictly over z(si, s−i|hi) for all s−i ∈
Bi(ti, hi|S−i).

Hence, si is rational for ti at hi is there is no other strategy s′i ∈ Si(hi)
that strictly dominates si, given the set of opponents’ strategies that ti
deems possible at hi.

We shall now define various restrictions on the beliefs that players have
about the opponents’ rationality. We need one more definition to this pur-
pose. For a given type ti ∈ Ti, information set hi ∈ H∗

i , and some oppo-
nent’s information set h ∈ H\Hi following hi, we say ti believes h to be
reached from hi if Bi(ti, hi|S−i) ⊆ S−i(h). Here, S−i(h) is a short way to
write

∏

j 6=i Sj(h).

Definition 2.5 (Belief in the opponents’ rationality).

(1) Type ti believes at information set hi ∈ H∗
i that player j chooses

rationally at information set hj ∈ Hj if for every (sj , tj) ∈ Bij(ti, hi)
it is true that sj is rational for tj at hj .

(2) Type ti initially believes in rationality at all information sets if ti
believes at h0 that every opponent j chooses rationally at all hj ∈ Hj .

(3) Type ti always believes in rationality at all future information sets if
ti believes at every hi ∈ H∗

i that every opponent j chooses rationally
at every hj ∈ Hj that follows hi.
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(4) Type ti always believes in rationality at future information sets that
are believed to be reached if ti believes at every hi ∈ H∗

i that every
opponent j chooses rationally at all those hj ∈ Hj following hi which
ti believes to be reached from hi.

(5) Type ti always believes in rationality at all future and parallel in-
formation sets if ti believes at every hi ∈ H∗

i that every opponent j
chooses rationally at every hj ∈ Hj that does not precede hi.

(6) Type ti always believes in rationality at all information sets if ti be-
lieves at every hi ∈ H∗

i that every opponent j chooses rationally at
every hj ∈ Hj .

Condition (6) is the strongest possible condition that can be imposed,
since it requires a player, under all circumstances, to maintain his belief
that his opponents have chosen rationally in the past, will choose rationally
at any stage in the future, and would have chosen rationally at all foregone
(i.e., parallel) information sets. In particular, a player is assumed to in-
terpret every observed past move as being part of an opponent’s strategy
which is rational at all information sets. In other words, every past move is
interpreted as a rational move.

Condition (5) is a weakening of (6). In condition (5), a player need not
interpret every observed past move as a rational move, since he is no longer
required to believe in the opponents’ rationality at past information sets.
That is, if a player observes an opponent’s move which surprises him, then he
may believe that this move was due to a mistake by the opponent. However,
condition (5) still requires the player to believe that this same opponent will
choose rationally all stages in the future, and would have chosen rationally
at all foregone situations. Hence, in condition (5) an observed surprising
move by an opponent should not be a reason for dropping the belief in this
opponent’s rationality at future and foregone situations.

Condition (3) is a weakening of (5), since it no longer requires that a
player, after observing a surprising move by an opponent, believes that this
opponent would have chosen rationally at foregone situations. However, the
player is still assumed to believe that the opponent will, and would, choose
rationally at all future situations, no matter whether he deems these future
situations possible or not.

Condition (4), in turn, is a weakening of (3). In condition (4) a player,
after observing a surprising move by an opponent, need not believe that
this opponent would choose rationally at future situations which he does
not deem possible. He is only required to believe that the opponent will
choose rationally at future situations which he indeed believes could take
place.
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Condition (2) is a weakening of (3) but not of (4). In condition (2), a
player believes, before anything has happened, that every opponent will,
and would, choose rationally at all future situations, no matter whether he
deems these situations possible or not. However, once the game is under
way, the player is allowed to completely drop his belief in the opponents’
rationality. Note than in condition (4), a player may initially believe that
an opponent would not choose rationally at a certain information set if he
initially believes that this information set will not be reached. Therefore,
condition (2) is not a weakening of (4). Also, condition (4) is not a weaken-
ing of (2), so there is no logical implication betweens conditions (2) and (4).

In light of the definitions we have seen so far, we may thus construct
phrases as “type ti respects common belief in the event that all types ini-
tially believe in rationality at all information sets”. Some of the epistemic
foundations for backward induction, however, use a condition that cannot
be expressed in this form, since it relies on a notion that is different from
common belief. In order to formalize this condition, we consider the follow-
ing recursive procedure:

FBSR1
i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses

rationally at all hj that follow hi}

for all i ∈ I and all hi ∈ H∗
i , and

FBSRk+1
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBSRk

j (hj) for all j 6= i
and all hj that follow hi}

for all i ∈ I, hi ∈ H∗
i and k ≥ 1.

Definition 2.6 (Forward belief in substantive rationality). A type ti is said
to respect forward belief in substantive rationality if ti ∈ FBSRk

i (hi) for all
k and all hi ∈ H∗

i .

That is, ti respects forward belief in substantive rationality if ti (1)
always believes that every opponent is rational at every future information
set, (2) always believes that every opponent, at every future information
set, believes that every opponent is rational at every future information
set, (3) always believes that every opponent, at every future information
set, believes that every opponent, at every future information set, believes
that every opponent is rational at every future information set, and so on.

The first condition above, namely that ti always believes that every
opponent is rational at every future information set, corresponds exactly
to condition (3) of Definition 2.5. However, forward belief in substantive
rationality is logically weaker than common belief in condition (3) of Def-
inition 2.5. Consider, namely, a player i information set hi and a player j
information set hj that precedes hi. Then, common belief in condition (3)
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requires that player i believes at hi that player j believes at hj that player
i chooses rationally at hi, since hi follows hj. On the other hand, forward
belief in substantive rationality does not require this, as it only restricts the
belief that player i has at hi about the beliefs that opponents have at infor-
mation sets following hi, but not preceding hi. At the same time, it can be
verified that forward belief in substantive rationality implies common initial
belief in condition (3).

We also present a weaker version of forward belief in rationality, which
we call forward belief in material rationality. Let Hj(ti, hi) be the set of
those player j information sets hj following hi which ti believes to be reached
from hi. Consider the following recursive procedure:

FBMR1
i (hi) = {ti ∈ Ti | ti believes at hi that every j 6= i chooses

rationally at all hj in Hj(ti, hi)}

for all i ∈ I and all hi ∈ H∗
i , and

FBMRk+1
i (hi) = {ti ∈ Ti | Bij(ti, hi|Tj) ⊆ FBMRk

j (hj) for all j 6=
i and all hj in Hj(ti, hi)}

for all i ∈ I, hi ∈ H∗
i and k ≥ 1.

Definition 2.7 (Forward belief in material rationality). A type ti is said
to respect forward belief in material rationality if ti ∈ FBMRk

i (hi) for all k
and all hi ∈ H∗

i .

The crucial difference with forward belief in substantive rationality is
thus that a type is only required to believe his opponents to choose rationally
at future information sets which he believes to be reached. And a type is only
required to believe that the opponents’ types believe so at future information
sets which he believes to be reached, and so on.

The condition in the first step of the recursive procedure, namely that ti
believes at hi that every opponent j chooses rationally at all hj in Hj(ti, hi),
corresponds exactly to condition (4) of Definition 2.5. However, by the same
argument as above for forward belief in substantive rationality, it can be
verified that forward belief in material rationality is logically weaker than
common belief in condition (4) of Definition 2.5. On the other hand, forward
belief in material rationality implies common initial belief in condition (4).

3 Epistemic foundations for backward induction

In this section we provide an overview of various epistemic foundations that
have been offered in the literature for backward induction. A comparison
between these foundations is difficult, since the models used by these foun-
dations differ on many aspects.
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A first important difference lies in the way the players’ beliefs about the
opponents are expressed. Some models express the players’ beliefs directly
by means of logical propositions in some formal language. Other models
represent the players’ beliefs indirectly by a set of states of the world, and
assign to each state and every player some strategy choice for this player,
together with a belief that the player holds at this state about the state
of the world. From this model we can derive the higher-order beliefs that
players hold about the opponents’ choices and beliefs. There are yet some
other models that represent the players’ beliefs indirectly by means of types,
and assign to every type some belief about the other players’ choices and
types. Similarly to the previous approach, the players’ higher-order beliefs
can be derived from this model. We refer to these three approaches as the
syntactic model, the state-based semantic model and the type-based syntactic
model. Note that our base model from the previous section belongs to the
last category. This choice is somewhat arbitrary, since we could as well have
chosen a syntactic or state-based semantic base model.

Even within the state-based semantic model, the various papers differ
on the precise formalization of the beliefs that players have about the state
of the world. Similarly, within the type-based model different papers use
different belief operators expressing the players’ beliefs about the opponents’
choices and types.

Finally, some models impose additional conditions on the extensive form
structure, such as one information set per player, or the presence of only
two players, whereas other papers do not.

In spite of these differences, all foundations have two aspects in common.
First, all models provide a theorem, say Theorem A, which gives a sufficient
condition for backward induction. Hence, Theorem A states that if player
i’s belief revision procedure about the other players’ choices, preferences
and beliefs satisfies some condition BR, then his unique optimal choice is
his backward induction choice. Secondly, all models guarantee that this
sufficient condition BR is possible. That is, each paper provides a second
result, say Theorem B, which states that for every player i there is some
model in which player i’s belief revision procedure satisfies condition BR.
As we shall see, the various foundations differ in the sufficient condition BR

that is being employed.
In order to explicitly compare the different foundations for backward

induction, we attempt to express the various conditions BR used by the
different models in terms of our base model. By doing so, we express the
Theorems A and B used by the various foundations in the following stan-
dardized form:

Theorem A. Let S be an extensive form structure with perfect informa-
tion, and let M = (Tj, Pj , Bj)j∈I be an epistemic base model for S. Let
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(P̃j)j∈I be a profile of strict preference relations over the terminal nodes.

If type ti ∈ Ti has preference relation P̃i, and if ti’s conditional belief vec-
tor about the opponents’ strategy choices and types satisfies condition BR,

then there is a unique strategy that is rational for ti at all information sets,
namely his backward induction strategy in the game given by (P̃j)j∈I .

Theorem B. Let S be an extensive form structure with perfect informa-
tion, and let i be a player. Then, there is some epistemic base model
M = (Tj , Pj , Bj)j∈I for S and some type ti ∈ Ti such that ti’s conditional
belief vector satisfies BR.

In the overview that follows, we provide a brief description of every
model, identify the condition BR that is being used, and explain how this
condition may be expressed in terms of our base model. The models are
put in alphabetical order.

3.1 Asheim’s model

Asheim uses a type-based semantic model, restricted to the case of two play-
ers, in which the players’ beliefs are modelled by lexicographic probability
distributions [As02]. Formally, an Asheim model is given by a tuple

M = (Ti, vi, λi)i∈I

where Ti is a finite set of types, vi is a function that assigns to every ti some
von Neumann-Morgenstern utility function vi(ti) over the set of terminal
nodes, and λi is a function that assigns to every type ti some lexicographic
probability system λi(ti) on Sj × Tj with full support on Sj . Such a lexico-

graphic probability system λi(ti) is given by a vector (λ1
i (ti), . . . , λ

Ki(ti)
i (ti))

of probability distributions on Sj × Tj. The interpretation is that

λ1
i (ti), . . . , λ

Ki(ti)
i (ti) represent different degrees of beliefs, and that the kth

degree belief λk
i (ti) is infinitely more important than the (k + 1)st degree

belief λk+1
i (ti), without completely discarding the latter. The lexicographic

probability system λi(ti) induces in a natural way first-order conditional
beliefs about player j’s choices, as defined in our base model. Namely, for
every hi ∈ H∗

i , let ki(ti, hi) be the first k such that λk
i (ti) assigns positive

probability to some strategy sj ∈ Sj(hi), and let B̂ij(ti, hi) ⊆ Sj(hi) be the

set of strategies in Sj(hi) to which λ
ki(ti,hi)
i (ti) assigns positive probabil-

ity. Then, ti induces the conditional belief vector (B̂ij(ti, hi))hi∈H∗

i
about

player j’s strategy choice. For every hi, let T̂ij(ti, hi) ⊆ Tj be the set of

types to which λ
ki(ti,hi)
i (ti) assigns positive probability. Then, the induced

second-order belief of ti at hi about player j’s belief at hj about player

i’s choice is given by the union of the sets B̂ji(tj , hj) with tj ∈ T̂ij(ti, hi).
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Similarly, higher-order beliefs about strategy choices can be derived from
Asheim’s model.

In Asheim’s model, a strategy si is called rational for type ti ∈ Ti at
information set hi if si is optimal with respect to the utility function vi(ti)
and the lexicographic probability system λi(ti|hi), where λi(ti|hi) denotes
the conditional of the lexicographic probability system λi(ti) on Sj(hi)×Tj.
In particular, if si is rational for ti at hi then si is rational with respect
to the preference relation P̂i and the set-valued belief B̂ij(ti, hi), as defined

above, where P̂i is the preference relation on terminal nodes induced by
vi(ti).

Asheim’s sufficient condition for backward induction is based on the
notion of admissible subgame consistency. A type ti in an Asheim model
is said to be admissible subgame consistent with respect to a given profile
(ṽj)j∈I of utility functions if (1) vi(ti) = ṽi, and (2) for every hi ∈ H∗

i ,

the probability distribution λ
ki(ti,hi)
i (ti) only assigns positive probability to

strategy-type pairs (sj , tj) such that sj is rational for tj at all hj ∈ Hj

that follow hi. In terms of our base model, this condition can be expressed
as: (1’) Pi(ti) = P̃i, and (2’) ti always believes in rationality at all future
information sets. In fact, condition (2’) is weaker than condition (2) since
the notion of rationality in (2’) is weaker than the notion of rationality in
(2), but condition (2’) would have sufficed to prove Asheim’s theorem on
backward induction.

In Proposition 7, Asheim shows that if a type ti respects common certain
belief in the event that types are admissible subgame consistent with respect
to (ṽj)j∈I , then ti has a unique strategy that is rational at all information
sets, namely his backward induction strategy with respect to (ṽj)j∈I . Here,
“certain belief in an event E” means that type ti, in each of his probability
distributions λk

i (ti), only assigns positive probability to types in E. In terms
of our base model, this means that the type believes the event E at each of
his information sets. In Proposition 8, Asheim shows that common certain
belief in admissible subgame consistency is possible. Expressed in terms of
our base model, Asheim’s sufficient condition for backward induction may
thus be written as follows:

Asheim’s condition BR: Type ti respects common belief in the events
that (1) types hold preference relations as specified by (P̃j)j∈I , and (2) types
always believe in rationality at all future information sets.

3.2 Asheim & Perea’s model

In [AsPe205], Asheim and Perea propose a type-based semantic model that
is very similar to the model from Section 3.1. Attention is restricted to
two-player games, and an Asheim-Perea model corresponds to a tuple

M = (Ti, vi, λi, ℓi)i∈I ,
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where Ti, vi and λi are as in Asheim’s model, and ℓi is a function that
to every type ti and event E ⊆ Sj × Tj assigns some number ℓi(ti, E) ∈
{1, . . . , Ki(ti)}. (Recall that Ki(ti) denotes the number of probability dis-
tributions in λi(ti)). The interpretation of ℓi is that ℓi(ti, E) specifies the
number of probability distributions in λi(ti) that are to be used in order to
derive the conditional lexicographic probability system of λi(ti) on E. For
instance, if player i observes that his information set hi has been reached,
this would correspond to the event E = Sj(hi) × Tj . In this case, player
i would use the first ℓi(ti, E) probability distributions in λi(ti) in order to
form his conditional belief about j upon observing that hi has been reached.
Two extreme cases are ℓi(ti, E) = ki(ti, hi), where player i would only use
the first probability distribution in λi(ti) that assigns positive probability
to some player j strategy in Sj(hi), and ℓi(ti, E) = Ki(ti), where player i
would use the full lexicographic probability system λi(ti) to form his con-
ditional belief upon observing that hi is reached. Recall that ki(ti, hi) is
the first k such that λk

i (ti) assigns positive probability to some strategy
sj ∈ Sj(hi).

The sufficient condition for backward induction is based on the event
that types induce for every opponent’s type a sequentially rational behavior
strategy. Consider a type ti, and let T ti

j be the set of types to which the
lexicographic probability system λi(ti) assigns positive probability (in some
of its probability distributions). Asheim and Perea assume that for every
tj ∈ T ti

j and every sj ∈ Sj, the lexicographic probability system λi(ti)
assigns positive probability to (sj , tj). For every information set hj ∈ Hj

and action a ∈ A(hj), let Sj(hj , a) be the set of strategies in Sj(hj) that
select action a at hj . Define for every type tj ∈ T ti

j , hj ∈ Hj and a ∈ A(hj)

σ
ti|tj

j (hj)(a) :=
λk

i (ti)(Sj(hj , a)× {tj})

λk
i (ti)(Sj(hj)× {tj})

,

where k is the first number such that λk
i (ti)(Sj(hj)× {tj}) > 0. The vector

σ
ti|tj

j = (σ
ti|tj

j (hj)(a))hj∈Hj ,a∈A(hj)

is called the behavior strategy induced by ti for tj . My interpretation of

σ
ti|tj

j (hj)(a) is that it describes ti’s conditional belief about tj ’s action
choices at future and parallel information sets. Let me explain. Consider an
information set hi for player i and an information set hj for player j which

either follows hi or is parallel to hi. Then, my interpretation of σ
ti|tj

j (hj)(a)
is that type ti believes at hi that type tj at information hj chooses action

a with probability σ
ti|tj

j (hj)(a). Namely, the information that the game has
reached hi does not give type ti additional information about the action
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choice of tj at hj, and hence σ
ti|tj

j (hj) provides an intuitive candidate for
the conditional belief of ti at hi about tj ’s behavior at hj .

However, if hj precedes hi, then σ
ti|tj

j (hj)(a) does not necessarily de-
scribe ti’s belief at hi about tj ’s action choice at hj . In this case, there is

namely a unique action a∗ at hj that leads to hi, whereas σ
ti|tj

j (hj)(a
∗) may

be less than one (in fact, may be zero). On the other hand, it should be
clear that ti should believe (with probability 1) at hi that tj has chosen a∗

at hj , since it is the only action at hj that leads to hi. Hence, in this case

σ
ti|tj

j (hj)(a) cannot describe ti’s belief at hi about tj ’s choice at hj .

For every information set hj ∈ Hj , let σ
ti|tj

j |hj
be the behavioral strat-

egy that assigns probability one to all player j actions preceding hj , and

coincides with σ
ti|tj

j otherwise. The induced behavior strategy σ
ti|tj

j is said
to be sequentially rational for tj if at every information set hj ∈ Hj , the

behavior strategy σ
ti|tj

j |hj
only assigns positive probability to strategies in

Sj(hj) that are rational for tj at hj (in the sense of Asheim’s model above).
Type ti is said to induce for every opponent’s type a sequentially rational

behavior strategy if for every tj ∈ T ti

j it is true that σ
ti|tj

j is sequentially

rational for tj . As we have seen above, σ
ti|tj

j represents for every hi ∈ H∗
i

type ti’s conditional belief at hi about player j’s behavior at future and par-

allel information sets. The requirement that σ
ti|tj

j always be sequentially
rational for tj thus means that ti always believes in rationality at all future
and parallel information sets.

In Proposition 11, Asheim and Perea show that if a type ti respects
common certain belief in the events that (1) types have utility functions
as specified by (ṽj)j∈I , and (2) types induce for every opponent’s type a
sequentially rational behavior strategy, then ti has a unique strategy that is
rational at all information sets, namely his backward induction strategy with
respect to (ṽj)j∈I . The existence of such types follows from their Proposition
4 and the existence of a sequential equilibrium. In terms of our base model,
Asheim and Perea’s sufficient condition may thus be stated as follows:

Asheim & Perea’s condition BR: Type ti respects common belief in the
events that (1) types hold preference relations as specified by (P̃j)i∈I , and
(2) types always believe in rationality at all future and parallel information
sets.

3.3 Aumann’s model

Aumann proposes a state-based semantic model for extensive form struc-
tures with perfect information [Au95]. An Aumann model is a tuple

M = (Ω, (Bi, fi, vi)i∈I)
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where Ω represents the set of states of the world, Bi is a function that assigns
to every state ω ∈ Ω some subset Bi(ω) of states, fi is a function that assigns
to every state ω some strategy fi(ω) ∈ Si, and vi is a function that assigns
to every ω some von Neumann-Morgenstern utility function vi(ω) on the set
of terminal nodes. The functions Bi must have the property that ω ∈ Bi(ω)
for all ω, and for all ω, ω′ ∈ Ω it must hold that Bi(ω) and Bi(ω

′) are either
identical, or have an empty intersection. Hence, the set {Bi(ω)|ω ∈ Ω} is a
partition of Ω. The interpretation is that at state ω, player i believes that
the true state is in Bi(ω). (In fact, Aumann uses the term “knows” rather
than “believes”). The functions fi and vi must be measurable with respect
to Bi, meaning that fi(ω

′) = fi(ω) whenever ω′ ∈ Bi(ω), and similarly for
vi. The reason is that player i cannot distinguish between states ω and ω′,
and hence his choice and preferences must be the same at both states.

It is problematic, however, to formally translate this model into condi-
tional beliefs of our base model. Consider, for instance, a game with three
players, in which players 1, 2 and 3 sequentially choose between Stay and
Leave, and where Leave terminates the game. Consider a state ω where
f1(ω) = Leave and B2(ω) = {ω}. Then, at player 2’s information set, player
2 must conclude that the state cannot be ω, but must be some state ω′

with f1(ω
′) = Stay. However, there may be many such states ω′, and hence

it is not clear how player 2 should revise his belief about the state at his
information set. Since his revised belief about the state will determine his
revised belief about player 3’s choice, it is not clear how to explicitly define
player 2’s revised belief about player 3’s choice from Aumann’s model.

At the same time, Aumann’s Theorem A provides sufficient conditions
for backward induction, and hence Aumann’s model must at least implicitly
impose some restrictions on the players’ belief revision procedures, since
otherwise backward induction could not be established. The main task in
this subsection will be to identify these implicit assumptions about the belief
revision procedures, and incorporate these as explicit restrictions in our base
model. Since such an identification is a rather subjective procedure, this
approach will eventually lead to a model which is a subjective interpretation
of Aumann’s model.

The model as proposed by Aumann is essentially a static model, since for
every state ω and every player i, his belief Bi(ω) is only defined at a single
moment in time. My interpretation of these static beliefs is that players,
upon observing that one of their information sets has been reached, do not
revise more than “strictly necessary”. In fact, the only beliefs that must be
revised by player i when finding out that his information set hi has been
reached are, possibly, his beliefs about the opponents’ choices at information
sets preceding hi. That is, if player 2 in the example above finds out that
player 1 has chosen Stay, then this should not be a reason to change his
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belief about player 3’s choice. Even stronger, we interpret Aumann’s static
beliefs in this game as beliefs in which player 2 only changes his belief about
player 1’s choice, while maintaining all his other beliefs, including his beliefs
about the opponents’ beliefs. Hence, if we interpret Aumann’s model in this
way, and express it accordingly in terms of our base model, then every type
is supposed to never revise his belief about the opponents’ choices and the
opponents’ beliefs at future and parallel information sets. A type ti, when
arriving at some information set hi, may only revise his belief about the
opponents’ choices at information sets that precede hi (but not about their
types). For further reference, we call this condition the “no substantial
belief revision condition”.

The sufficient condition for backward induction presented by Aumann
is common knowledge of rationality. Let ω be a state, i a player and hi an
information set controlled by i. At state ω, player i is said to be rational at
information set hi if there is no si ∈ Si such that for every ω′ ∈ Bi(ω) it
holds that

vi(ω)(z(si, (fj(ω
′))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

′))j 6=i|hi)),

where z(si, (fj(ω
′))j 6=i|hi) is the terminal node that is reached if the game

would start at hi, and the players would choose in accordance with
(si, (fj(ω

′))j 6=i). In terms of our base model, this means that strategy fi(ω)
is rational for player i at hi with respect to the utility function vi(ω) and
his first-order belief {(fj(ω

′))j 6=i | ω
′ ∈ Bi(ω)} about the opponents’ choices

after hi. Let Ωrat be the set of states ω such that at ω all players are rational
at each of their information sets.

Common knowledge of rationality can now be defined by the following
recursive procedure:

CKR1 = Ωrat;

CKRk+1 = {ω ∈ Ω | Bi(ω) ⊆ CKRk for all players i}

for k ≥ 1. Then, common knowledge of rationality is said to hold at ω if
ω ∈ CKRk for all k. In Theorem A, Aumann proves that for every profile
(ṽj)j∈I of utility functions, for every state ω at which common knowledge
of (ṽj)j∈I and common knowledge of rationality hold, and for every player
i, the strategy fi(ω) is the backward induction strategy for player i with
respect to (ṽj)j∈I . In Theorem B, Aumann proves that there is an Aumann
model and a state ω at which common knowledge of (ṽj)j∈I and common
knowledge of rationality hold.

In terms of our base model, common knowledge of rationality implies
common initial belief in rationality at all information sets. By the latter we
mean that a type (1) initially believes that all players choose rationally at
all information sets, (2) initially believes that every type initially believes
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that all players choose rationally at all information sets, and so on. To-
gether with the “no substantial belief revision condition” above, this would
imply that a type always believes that types initially believe that all play-
ers choose rationally at all information sets, and that a type always believes
that types always believe that types initially believe that players choose ra-
tionally at all information sets, and so on. Hence, a possible interpretation
of Aumann’s condition of common knowledge of rationality, together with
the “no substantial belief revision condition”, in our base model would be:
common belief in the event that players initially believe in rationality at all
information sets. Similarly, common knowledge of (ṽj)j∈I , together with the
“no substantial belief revision condition”, could be interpreted as common
belief in the event that types have preferences according to (P̃j)j∈I , where

P̃j is the preference relation that corresponds to ṽj . That is, Aumann’s suf-
ficient conditions for backward induction could be interpreted as follows in
terms of our base model:

Aumann’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , (2) types initially
believe in rationality at all information sets, and (3) types never revise
their beliefs about the opponents’ choices and beliefs at future and parallel
information sets.

In [Cl003], Clausing basically provides a reformulation of Aumann’s
model and definitions in a syntactic framework. Clausing’s sufficient condi-
tion for backward induction is a little weaker than Aumann’s, since Clausing
only requires “true (k − 1)st level belief” in rationality at all information
sets, where k is the maximal length of a path in the game tree, which is
weaker than common knowledge of rationality as defined by Aumann. Que-
sada proves, in [Qu03, Propositions 3.3 & 3.4] that Aumann’s backward
induction theorem can also be shown without imposing that ω ∈ Bi(ω) for
all ω, and without imposing that for all ω, ω′ ∈ Ω it must hold that Bi(ω)
and Bi(ω

′) are either identical, or have an empty intersection. That is,
Quesada no longer assumes a partition structure, nor does he require that
what one believes must be true. The only substantial conditions that [Qu03]
imposes on the belief operator is that fi(ω

′) = fi(ω) whenever ω′ ∈ Bi(ω),
and similarly for vi. Hence, a player must be aware of his choice and his
utility function.

However, since the models by Clausing and Quesada [Cl003, Qu03] are
identical in spirit to Aumann’s, we omit a formal discussion of these models
in this overview.

3.4 Balkenborg & Winter’s model

In [Ba3Wi297], Balkenborg and Winter present a state-based semantic model
that is almost identical to Aumann’s model, so we do not repeat it here.
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The only difference is that Balkenborg and Winter restrict attention to ex-
tensive form structures in which every player controls only one information
set. However, the sufficient conditions given for backward induction are dif-
ferent from Aumann’s conditions, as they are based on the notion of forward
knowledge of rationality rather than common knowledge of rationality.

For every player i, let hi be the unique information set controlled by
player i. The definition of player i being rational at hi is the same as in
Aumann’s model. Let Ωrat

i be the set of states ω such that at ω, player i is
rational at hi. We say that player j comes after player i if hj comes after
hi. Forward knowledge of rationality can now be defined by the following
recursive procedure. For every player i define:

FKR1
i = Ωrat

i ;

FKRk+1
i = {ω ∈ Ω | Bi(ω) ⊆ FKRk

j for all j that come after i},

for every k ≥ 1. Then, forward knowledge of rationality is said to hold at
state ω if ω ∈ FKRk

i for all i and all k. That is, player i believes that every
player after him will choose rationally, believes that every player after him
believes that every player after him will choose rationally, and so on. So,
it corresponds to our notion of forward belief in substantive rationality in
Definition 2.6.

In Theorem 2.1, Balkenborg and Winter prove that for every profile
(ṽj)j∈I of utility functions, for every state ω at which common knowledge
of (ṽj)j∈I and forward knowledge of rationality hold, and for every player i,
the strategy fi(ω) is the backward induction strategy for player i with re-
spect to (ṽj)j∈I . Balkenborg and Winter’s sufficient condition for backward
induction may thus be phrased as follows in terms of our base model:

Balkenborg & Winter’s condition BR: Type ti (1) respects common
belief in the event that types hold preferences as specified by (P̃j)j∈I , (2)
respects forward belief in substantive rationality, and (3) respects common
belief in the event that types never revise their beliefs about the opponents’
choices and beliefs at future and parallel information sets.

Quesada proves in [Qu03, Proposition 3.1] that Balkenborg and Winter’s
sufficient condition for backward induction would still be sufficient if one
weakens the conditions on the knowledge operators as explained at the end
of the previous subsection.

3.5 Clausing’s model

Clausing presents a syntactic model for games with perfect information
[Cl004]. For our purposes here it is not necessary to discuss the com-
plete formalism of Clausing’s model, and therefore we restrict ourselves to
presenting only the key ingredients. A major technical difference between
our description here and Clausing’s original model is that we shall employ
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“statements” instead of logical propositions. The reader is referred to the
original paper for the syntactic formalism employed by Clausing. For our
restricted purposes here, a Clausing model may be described as a tuple

M = (L, (B̂i, vi)i∈I)

where L is a language, or set of statements, B̂i is a function that assigns
to every statement f ∈ L some subset B̂i(f) ⊆ L of statements, and vi is a
utility function for player i on the set of terminal nodes. By “g ∈ B̂i(f)” we
mean the statement that “player i believes statement g upon learning that
f holds”. It is assumed that L contains all statements of the form “player
i chooses strategy si”, and that it is closed under the operations ¬ (not), ∧
(and) and B̂i. By the latter, we mean that if f and g are statements in L,
then so are the statements “¬f”, “f ∧ g” and “g ∈ B̂i(f)”.

Clausing’s sufficient condition for backward induction is forward belief
from the root to all information sets h in rationality at h. We say that
strategy si is rational for player i at information set hi if there is no other
strategy s′i ∈ Si(hi) such that player i would believe, upon learning that
hi has been reached, that s′i would lead to a higher utility than si. For-
mally, there should be no s′i ∈ Si(hi) and no statement f ∈ L about the
opponents’ strategy choices such that (1) player i believes f upon learning
that all opponents j have chosen a strategy in Sj(hi), and (2) for every
opponents’ strategy profile s−i compatible with f it would be true that
vi(z(s′i, s−i|hi)) > vi(z(si, s−i|hi)). Player i is said to believe at hi that
player j is rational at hj if, upon learning that hi has been reached, player
i believes the statement “player j chooses a strategy that is rational for j
at hj”. Forward belief from the root to all information sets h in rationality
at h can now be defined by the following sequence of statements:

FB1
i (hi) = “player i believes, upon learning that hi has been

reached, that every opponent j will be rational at all
hj that follow hi”

for all players i and all hi ∈ H∗
i , and

FBk+1
i (hi) = “player i believes, upon learning that hi has been

reached, the statement FBk
j (hj) for all opponents j

and all hj that follow hi”

for all players i, hi ∈ H∗
i and k ≥ 1. Player i is said to respect forward belief

from the root to all information sets h in rationality at h if for every hi,
player i believes, upon learning that hi has been reached, the statements
FBk

j (hj) for all k, all opponents j and all hj ∈ Hj that follow hi. In Propo-
sition 2, Clausing shows that this condition implies backward induction,
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whereas his Proposition 3 demonstrates that this condition is possible. In
terms of our base model, Clausing’s condition clearly corresponds to forward
belief in substantive rationality.

Clausing’s condition BR: Type ti (1) respects common belief in the
event that types hold preferences as specified by (P̃j)j∈I , and (2) respects
forward belief in substantive rationality.

3.6 Feinberg’s model

Feinberg provides a syntactic model for dynamic games which is similar to
Clausing’s model [Fe105]. Since a full treatment of Feinberg’s model would
take us too far afield, we present a highly condensed version of his model
here, which will serve for our restricted purposes. As with the discussion of
Clausing’s model, we refer to the original paper for the syntactic formalism.
For our purposes here, a Feinberg model may be described as a tuple

M = (L, (Ci, vi)i∈I)

where L is a language, or set of statements, Ci is a function that selects for
every information set hi ∈ H∗

i a set Ci(hi) ⊆ L of statements, and vi is a
utility function for player i on the set of terminal nodes. The interpretation
of f ∈ Ci(hi) is that player i is confident of statement f at information set
hi. The language L must contain all statements of the form “player i chooses
strategy si”, and must be closed under the application of the operators ¬
(not), ∧ (and) and Ci(hi). By the latter we mean that, if f is a statement
in L, then the statement “f ∈ Ci(hi)” must also be in L.

Feinberg characterizes the confidence operator by means of a list of ax-
ioms, which largely coincides with the list of classic axioms for a knowledge
operator. The single, but crucial, difference is that a player may be confi-
dent of a statement that is objectively wrong, whereas this is not possible
in the case of a knowledge operator. However, in Feinberg’s model a player
must always be confident that he is right, that is, a player must be confident
that all statements he is confident of are true.

Feinberg presents two different sufficient conditions for backward in-
duction, namely common confidence of hypothetical rationality and iterated
future confidence of rationality. Strategy si is said to be rational for player
i at hi if there is no other strategy s′i ∈ Si(hi) such that player i would be
confident at hi that s′i would lead to a higher utility than si. By the latter,
we mean that there should be no s′i ∈ Si(hi), and no statement f about the
opponents’ strategy choices, such that (1) i is confident of f at hi, and (2)
for every opponents’ strategy profile s−i compatible with f it would hold
that vi(z(s′i, s−i)|hi) > vi(z(si, s−i)|hi). We say that i is confident at hi

that j is rational at hj if the statement “player j chooses a strategy that is
rational for j at hj” belongs to Ci(hi). Common confidence in hypotheti-
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cal rationality can now be defined recursively by the following sequence of
statements:

CCHR1 = “every player i is confident at every hi that every oppo-
nent j will be rational at every hj not preceding hi”

and, for every k ≥ 1,

CCHRk+1 = “every player i is confident at every hi of CCHRk”.

Player i is said to respect common confidence in hypothetical rationality if,
for every hi and every k, player i is confident at hi of CCHRk. In Proposition
10, Feinberg shows that this condition is possible, and implies backward
induction. In terms of our base model, this condition corresponds exactly
to our definition of common belief in the event that types always believe in
rationality at all future and parallel information sets.

Feinberg’s first condition BR: Type ti respects common belief in the
events that (1) types hold preference relations as specified by (P̃j)j∈I , and
(2) types always believe in rationality at all future and parallel information
sets.

Iterated future confidence of rationality can be defined by means of the
following sequence of statements:

IFCR1
i (hi) = “player i is confident at hi that all opponents j will

be rational at all hj that follow hi”

for all i ∈ I and all hi ∈ H∗
i , and

IFCRk+1
i (hi) = “player i is confident at hi of IFCRk

j (hj) for all op-
ponents j and all hj that follow hi”

for all i ∈ I, hi ∈ H∗
i and k ≥ 1. Player i is said to respect iterated future

confidence of rationality if, for every k, every hi, every opponent j, and every
hj following hi, player i is confident at hi of IFCRk

j (hj). Feinberg shows in
his Proposition 11 that this condition is possible and leads to backward
induction. In terms of our base model, this condition corresponds to our
definition of forward belief in substantive rationality.

Feinberg’s second condition BR: Type ti (1) respects common belief
in the event that types hold preferences as specified by (P̃j)j∈I , and (2)
respects forward belief in substantive rationality.

3.7 Perea’s model

Perea proposes a type-based semantic model that is very similar to our
base model [Pe205]. The difference is that in [Pe205], the players’ initial
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and revised beliefs are assumed to be point-beliefs, that is, contain exactly
one strategy-type pair for each opponent. Moreover, in [Pe205] the model
is assumed to be complete which will be defined below. An important
difference between Perea’s model and the other models discussed here is
that Perea’s model explicitly allows for the possibility that players revise
their belief about the opponents’ preference relations over terminal nodes
as the game proceeds. A Perea model is a tuple

M = (Ti, Pi, B̂i)i∈I

where Ti is player i’s set of types, Pi assigns to every type ti ∈ Ti a
strict preference relation Pi(ti) over the terminal nodes, B̂i assigns to ev-
ery type ti ∈ Ti and every information set hi ∈ H∗

i a belief B̂i(ti, hi) ⊆
∏

j 6=i(Sj(hi) × Tj) consisting of exactly one point, and the model M is

complete. The assumption that the belief B̂i(ti, hi) consists of exactly one
point means that ti, at every information set hi, is supposed to consider
only one strategy-type pair (sj , tj) possible for every opponent j. However,
this point-belief may change as the game proceeds. By a complete model,
we mean that for every player i, every strict preference relation P̂i and ev-
ery belief vector B̃i = (B̃i(hi))hi∈H∗

i
consisting of conditional point-beliefs

B̃i(hi) as described above, there is some type ti ∈ Ti with Pi(ti) = P̂i and
B̂i(ti, hi) = B̃i(hi) for all hi. Since types may revise their belief about the
opponents’ types, and different types may have different preference relations
over terminal nodes, Perea’s model allows types to revise their belief about
the opponents’ preference relations over terminal nodes.

Perea’s sufficient condition for backward induction is common belief in
the events that (1) players initially believe in (P̃i)i∈I , (2) players initially
believe in rationality at all information sets, and (3) the players’ belief
revision procedures satisfy some form of minimal belief revision. The crucial
difference with the other models discussed here is that condition (1) allows
players to revise their belief about the opponents’ preference relations as the
game proceeds. On the other hand, the conditions (2) and (3) as they have
been defined in [Pe205] can be shown to imply that players should always
believe that every opponent chooses rationally at all information sets; a
condition that cannot be realized in general if players do not revise their
beliefs about the opponents’ preference relations.

A type ti is said to initially believe in (P̃j)j∈I if for every opponent j,

the initial belief B̂i(ti, h0) about player j consists of a strategy-type pair
(sj , tj) where Pj(tj) = P̃j . In order to formalize condition (3), we need the
definition of an elementary statement. A first-order elementary statement
about player i is a statement of the form “player i has a certain preference
relation” or “player i believes at hi that opponent j chooses a certain strat-
egy”. Recursively, one can define, for every k ≥ 2, a kth order elementary
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statement about player i as a statement of the form “player i believes at hi

that ϕ” where ϕ is a (k − 1)st order elementary statement. An elementary
statement about player i is then an elementary statement about player i
of some order k. Now, let hi ∈ Hi\h0, and let h′i be the information set
in H∗

i that precedes hi and for which no other player i information set is
between h′i and hi. For every opponent j, let (s′j , t

′
j) be the strategy-type

pair in B̂i(ti, h
′
i), and let (sj , tj) be the strategy-type pair in B̂i(ti, hi). Type

ti is said to satisfy minimal belief revision at hi if for every opponent j the
strategy-type pair (sj , tj) is such that (1) sj is rational for tj at all infor-
mation sets, (2) there is no other strategy-type pair (s′′j , t′′j ) in Sj(hi)× Tj

satisfying (1) such that t′′j and t′j disagree on fewer elementary statements
about player j than tj and t′j do, and (3) there is no other strategy-type pair
(s′′j , t′′j ) in Sj(hi)×Tj satisfying (1) and (2) such Pj(t

′′
j ) and Pj(t

′
j) disagree

on fewer pairwise rankings of terminal nodes than Pj(tj) and Pj(t
′
j) do. It

can be shown that this notion of minimal belief revision, together with the
condition that players initially believe in rationality at all information sets,
imply that a type always believes that his opponents choose rationally at
all information sets. For the definition of minimal belief revision it is very
important that the model M is assumed to complete. [Pe205, Theorem 5.1]
shows that there is a Perea model which satisfies the sufficient condition
listed above. Theorem 5.2 in that paper demonstrates that this sufficient
condition leads to backward induction. As such, Perea’s sufficient condition
for backward induction can be stated as follows in terms of our base model:

Perea’s condition BR: Type ti respects common belief in the events that
(1) types hold point-beliefs, (2) types initially believe in (P̃j)j∈I , (3) types
always believe in rationality at all information sets, and (4) types satisfy
minimal belief revision.

3.8 Quesada’s model

Quesada presents a model for games with perfect information which is nei-
ther semantic nor syntactic [Qu02]. The key ingredient is to model the
players’ uncertainty by means of Bonanno belief systems [Bo092]. A Bon-
nano belief system is a profile β = (βi)i∈I , where βi is a belief vector that
assigns to every information set h (not necessarily controlled by player i)
some terminal node βi(h) which follows h. The interpretation is that player
i, upon learning that the game has reached information set h, believes that
he and his opponents will act in such a way that terminal node βi(h) will
be reached. A Quesada model is a pair

M = (B, (vi)i∈I)

where B is a set of Bonnano-belief systems, and vi is a utility function for
player i over the terminal nodes. Quesada’s sufficient condition for backward
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induction states that every belief system in B should be rational, and that
every belief system in B should be justifiable by other belief systems in B.
Formally, a belief system β = (βi)i∈I is said to be rational if for every player
i and every information set hi ∈ Hi it holds that vi(βi(hi)) ≥ vi(βi((hi, a)))
for every action a ∈ A(hi), where (hi, a) denotes the information set that
immediately follows action a at hi. We say that belief system β = (βi)i∈I

in B is justifiable by other belief systems in B if for every player i, every
hi ∈ Hi, every opponent j, and every hj ∈ Hj between hi and the terminal
node βi(hi) there is some belief system β′ = (β′

i)i∈I in B such that β′
j(hj) =

βi(hi). A belief system β = (βi)i∈I is called the backward induction belief
system if for every player i and every information set h, βi(h) is the terminal
node which is reached by applying the backward induction procedure (with
respect to (vi)i∈I) from h onwards. In Proposition 1, Quesada shows that
there is one, and only one, set B which satisfies the two conditions above,
namely the set containing only the backward induction belief system.

We shall now attempt to express these conditions in terms of our base
model. Take a set B of belief systems such that every belief system in B is
justifiable by other belief systems in B (and thus satisfies Quesada’s second
condition above). Then, every belief system βi in B induces, for every hi,
a point-belief about the opponents’ strategy choices as follows: For every
hi there is some opponents’ strategy profile s−i(βi, hi) ∈

∏

j 6=i Sj(hi) such
that, for every action a ∈ A(hi), the action a followed by s−i(βi, hi) leads
to the terminal node βi(hi, a). Hence, s−i(βi, hi) may be interpreted as βi’s
conditional point-belief at hi about the opponents’ strategy choices. (Note
that this belief need not be unique, as βi does not restrict player i’s beliefs at
hi about opponents’ choices at parallel information sets). The belief vector
βi also induces, for every hi, a conditional point-belief about the opponents’
belief vectors β′

j in B. Consider, namely, an information set hi ∈ Hi, some
opponent j and an information set hj between hi and the terminal node
βi(hi) such that there is no further player j information set between hi and
hj . Since B satisfies Quesada’s justifiability condition, there is some player
j belief vector βj(βi, hi) in B such that βj(βi, hi)(hj) = βi(hi). (Again, this
choice need not be unique). This belief vector βj(βi, hi) may then serve as
βi’s conditional point-belief at hi about player j’s belief vector. Summa-
rizing, every belief vector βi induces, at every hi, a conditional point-belief
about the opponents’ strategy choices and the opponents’ belief vectors.

Now, if we interpret every belief vector βi in B as a type ti(βi) in our
base model, then, by the insights above, every type ti(βi) induces, at every
hi, a conditional point-belief about the opponents’ strategy choices and
types tj(βj). Hence, similarly to Perea’s model, Quesada’s model can be
expressed in terms of our base model by imposing common belief in the
event that types hold point-beliefs. Let Ti(B) denote the set of all such types
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ti(βi) induced by some belief vector βi in B. A combination of Quesada’s
rationality condition and justifiability condition implies that, whenever βi

in B believes at hi that player j chooses action a at some hj between hi and
βi(hi) (with no player j information set between hi and hj), then there is
some rational belief vector βj(βi, hi) in B such that βj(βi, hi)(hj) = βi(hi).
In particular, action a must be part of the rational belief vector βj(βi, hi),
and hence action a must be optimal with respect to βj(βi, hi). In terms
of our base model, this means that, whenever type ti(βi) believes at hi

that information set hj will be reached in the future, and believes at hi

that player j will choose action a at hj , then ti(βi) must believe at hi that
player j is of some type tj(βj) for which a is rational. In other words, every
type ti(βi) in Ti(B) always believes in rationality at future information sets
that are believed to be reached. However, since ti(βi) believes at every
information set that every opponent j is of some type tj(βj) in Tj(B), it
follows that every ti(βi) in Ti(B) always believes in the event that all types
believe in rationality at future information sets that are believed to be
reached. By recursively applying this argument, one may conclude that
every ti(βi) in Ti(B) respects common belief in the event that types always
believe in rationality at future information sets that are believed to be
reached. Quesada’s sufficient condition can thus be formulated as follows
in terms of our base model:

Quesada’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , (2) types hold point-
beliefs, and (3) types always believe in rationality at future information sets
that are believed to be reached.

3.9 Samet’s model

Samet presents a state-based semantic model which is an extension of the
models by Aumann and Balkenborg & Winter [Sa296]. A Samet model is a
tuple

M = (Ω, (Bi, fi, vi, τi)i∈I),

where Ω, Bi, fi and vi are as in the Aumann model, and τi is a so-called
hypothesis transformation that assigns to every state ω and non-empty event
E ⊆ Ω some new state ω′. My interpretation of τi is that if player i currently
believes that the state is in Bi(ω), but later observes the event E, then he
will believe that the state is in Bi(ω

′) ∩ E. Samet defines the hypothesis
transformation in a different, but equivalent, way. In Samet’s terminology,
a hypothesis transformation assigns to every initial belief Bi(ω) and event
E some new belief Bi(ω

′) for some ω′ ∈ Ω. However, this definition is
equivalent to the existence of a function τi as described in our model. The
function τi must satisfy the following two conditions: (1) Bi(τi(ω, E)) ∩ E
is nonempty for every ω and E, and (2) τi(ω, E) = ω whenever Bi(ω) has a
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nonempty intersection with E. These conditions indicate that Bi(τi(ω, E))∩
E may be interpreted as a well-defined conditional belief for player i at state
ω when observing the event E.

As to the functions fi, mapping states to strategy choices, it is assumed
that for every terminal node z there is some state ω ∈ Ω such that the profile
(fi(ω))i∈I of stategies reaches z. This implies that for every information set
hi, the event

[hi] = {ω ∈ Ω | (fi(ω))i∈I reaches hi}

is nonempty, and hence can be used as a conditioning event for the hypoth-
esis transformation τi. Samet assumes in his model a function ξ (instead
of (fi)i∈I) mapping states to terminal nodes, and assumes that for every
terminal node z there is some ω ∈ Ω with ξ(ω) = z. However, he shows that
this function ξ induces, in some precise way, a profile (fi)i∈I of strategy
functions, as we use it. We work directly with the strategy functions here,
in order to make the model as similar as possible to the Aumann model and
the Balkenborg-Winter model.

In contrast to Aumann’s model and Balkenborg and Winter’s model,
every state ω in Samet’s model formally induces a conditional belief vector in
our base model. Namely, take some state ω, a player i, and some information
set hi ∈ H∗

i . Then,

B̂i(ω, hi) := Bi(τi(ω, [hi])) ∩ [hi]

respresents player i’s conditional belief at hi about the state. Since every
state ω′ induces for player j a strategy choice fj(ω

′) and a conditional be-

lief vector (B̂j(ω
′, hj))hj∈H∗

j
, first-order conditional beliefs about the oppo-

nents’ strategies, and higher-order conditional beliefs about the opponents’
conditional beliefs can be derived at every state with the help of the hypoth-
esis transformations τi. Hence, Samet’s model can be expressed directly and
formally in terms of our base model.

Samet’s sufficient condition for backward induction is common hypoth-
esis of node rationality. At state ω, player i said to be rational at hi ∈ Hi

if (1) ω ∈ [hi], and (2) there is no si ∈ Si such that for every ω′ ∈ Bi(ω)∩[hi]
it holds that

vi(ω)(z(si, (fj(ω
′))j 6=i|hi)) > vi(ω)(z(fi(ω), (fj(ω

′))j 6=i|hi)),

where the definition of this expression is as in Aumann’s model. Let
[rati(hi)] denote the set of states ω such that at ω, player i is rational at hi.
Common hypothesis of node rationality can now be defined by the following
recursive procedure: For every player i and information set hi ∈ H∗

i , let

CHNR(hi, hi) = [rati(hi)].
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Note that, by condition (1) above, CHNR(hi, hi) only contains states at
which hi is indeed reached. Now, let k ≥ 0, and suppose that CHNR(hi, hj)
has been defined for all information sets hi ∈ H∗

i , hj ∈ H∗
j such that hj

comes after hi, and there are at most k information sets between hi and
hj . Suppose now that hj comes after hi, and that there are exactly k + 1
information sets between hi and hj . Let h be the unique information set
that immediately follows hi and precedes hj . Define

CHNR(hi, hj) = {ω ∈ Ω | Bi(τi(ω, [h])) ∩ [h] ⊆ CHNR(h, hj)}.

Common hypothesis of node rationality is said to hold at state ω if ω ∈
CHNR(h0, h) for all information sets h. Hence, the player at h0 believes
that (1) every opponent j will choose rationally at those information sets
hj that immediately follow h0, (2) every such opponent j will believe at
every such hj that every other player k will choose rationally at those hk

that immediately follow hj , and so on.
Samet shows in Theorem 5.3 that for every profile (vi)i∈I of utility func-

tions, for every state ω at which common knowledge of (vi)i∈I and common
hypothesis of node rationality hold, the strategy profile (fi(ω))i∈I leads to
the backward induction outcome with respect to (vi)i∈I . In particular, the
player at h0 chooses the backward induction action at h0 with respect to
(vi)i∈I . In Theorem 5.4, Samet shows that there always exists some state
ω at which common knowledge of (vi)i∈I and common hypothesis of node
rationality hold.

For a given state ω and information set hi ∈ H∗
i , say that common

hypothesis of node rationality at hi holds if ω ∈ CHNR(hi, h) for all infor-
mation sets h that follow hi. Then, Samet’s Theorem 5.3 can be generalized
as follows: For every hi ∈ Hi and every ω at which common knowledge of
(vi)i∈I and common hypothesis of node rationality at hi hold, the strategy
fi(ω) chooses at hi the backward induction action with respect to hi.

In order to express this sufficient condition in terms of our base model, it
is important to understand all implications of common hypothesis of node
rationality. By definition, common hypothesis of node rationality at hi

implies that player i believes at hi that (1) every opponent j will choose
rationally at every information set hj that immediately follows hi, (2) every
such opponent j will believe at every such hj that every other player k
will choose rationally at every hk that immediately follows hj, and so on.
However, there are more implications.

Consider namely an information set hj ∈ Hj that immediately follows
hi and some information set hk ∈ Hk which immediately follows hj such
that Bi(τi(ω, [hj ])) ⊆ [hk]. Hence, in terms of our base model, player i
believes at hi that hk will be reached. Suppose that state ω is such that
common hypothesis of node rationality at hi holds at ω. By (1) above, it
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holds that (1’) Bi(τi(ω, [hj ])) ∩ [hj] ⊆ [ratj(hj)]. By (2) above, it holds for
every ω′ ∈ Bi(τi(ω, [hj]))∩ [hj ] that (2’) Bj(τj(ω

′, [hk]))∩ [hk] ⊆ [ratk(hk)].
However, since Bi(τi(ω, [hj])) ⊆ [hk], it follows that ω′ ∈ [hk] for ev-
ery ω′ ∈ Bi(τi(ω, [hj])). Since ω′ ∈ Bj(ω

′), we have that Bj(ω
′) has a

nonempty intersection with [hk], and hence (by the assumptions on τi)
τj(ω

′, [hk]) = ω′ for every ω′ ∈ Bi(τi(ω, [hj ])). We may therefore conclude
that Bj(τj(ω

′, [hk])) = Bj(ω
′) for every ω′ ∈ Bi(τi(ω, [hj ]))∩ [hj ]. By (2’) it

thus follows that Bj(ω
′) ∩ [hk] ⊆ [ratk(hk)] for every ω′ ∈ Bi(τi(ω, [hj])) ∩

[hj ]. Since ω′ ∈ Bj(ω
′), and ω′ ∈ [hk] for every ω′ ∈ Bi(τi(ω, [hj ])), it fol-

lows in particular that ω′ ∈ [ratk(hk)] for every ω′ ∈ Bi(τi(ω, [hj ])) ∩ [hj ],
which means that player i believes at hi that player k chooses rationally at
hk. Hence, we have shown that common hypothesis of node rationality at
hi implies that player i believes at hi that player k chooses rationally at hk

whenever (1) there is only one information set between hi and hk, and (2)
player i believes at hi that hk will be reached. By induction, one can now
show that common hypothesis of node rationality at hi implies that player i
believes at hi that player k chooses rationally at hk whenever (1) hk follows
hi and (2) player i believes at hi that hk can be reached.

By a similar argument, one can show that common hypothesis of node
rationality at hi implies that player i believes at hi that common hypothesis
of node rationality will hold at every future information set hj which player
i believes to be reached from hi. Together with our previous insight, this
means that common hypothesis of node rationality may be expressed, in
terms of our base model, by forward belief in material rationality (see our
Definition 2.7). Samet’s sufficient condition for backward induction can
thus be phrased as follows in terms of our base model:

Samet’s condition BR: Type ti (1) respects common belief in the event
that types hold preferences as specified by (P̃j)j∈I , and (2) respects forward
belief in material rationality.

3.10 Stalnaker’s model

Stalnaker proposes a state-based semantic model for perfect information
games in which every information set is controlled by a different player
[St198]. The model we present here is not an exact copy of Stalnaker’s
model, but captures its essential properties. A Stalnaker model is a tuple

M = (Ω, (fi, vi, λi)i∈I)

where Ω, fi and vi are as in the Aumann model, and λi is a function that
assigns to every state ω some lexicographic probability system (see Asheim’s

model) λi(ω) on Ω. That is, λi(ω) is a sequence (λ1
i (ω), . . . , λ

Ki(ω)
i (ω)) where

λk
i (ω) is a probability distribution on Ω. For every information set h let

[h] = {ω ∈ Ω | (fi(ω))i∈I reaches h}. We assume that [h] is non-empty for
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all h, and that λi(ω) has full support on Ω. By the latter, we mean that
for every ω′ ∈ Ω there is some k ∈ {1, . . . , Ki(ω)} such that λk

i (ω) assigns
positive probability to ω′. As such, λi and (fj)j 6=i induce, for every state ω,
a probabilistic belief revision policy for player i in the following way. For
every hi ∈ H∗

i , let ki(ω, hi) be the first k such that λk
i (ω) assigns positive

probability to [hi]. Then, the probability distribution µi(ω, hi) on [hi] given
by

µi(ω, hi)(ω
′) =

λ
ki(ω,hi)
i (ω′)

λ
ki(ω,hi)
i ([hi])

for every ω′ ∈ [hi] represents player i’s revised belief at ω upon observing
that hi has been reached. More generally, for every event E ⊆ Ω, the
probability distribution µi(ω, E) on E given by

µi(ω, E)(ω′) =
λ

ki(ω,E)
i (ω′)

λ
ki(ω,E)
i (E)

for every ω′ ∈ E defines player i’s revised belief upon receiving information
E. Here, ki(ω, E) is the first k such that λk

i (ω) assigns positive probability to
E. The lexicographic probability system λi(ω) naturally induces, for every
information set hi ∈ H∗

i , the non-probabilistic conditional belief

B̂i(ω, hi) := suppµi(ω, hi),

and hence Stalnaker’s model can be expressed directly in terms of our base
model.

Stalnaker’s sufficient condition for backward induction consists of com-
mon initial belief in sequential rationality, and common belief in the event
that players treat information about different players as epistemically inde-
pendent. Player i is called sequentially rational at ω if at every information
set hi ∈ H∗

i , the strategy fi(ω) is optimal given the utility function vi(ω)
and the revised belief about the opponents’ strategy choices induced by
µi(ω, hi) and (fj)j 6=i. Let Ωsrat be the set of states at which all players are
sequentially rational. Common initial belief in sequential rationality can be
defined by the following recursive procedure:

CIBSR1 = Ωsrat;

CIBSRk+1 = {ω ∈ Ω | B̂i(ω, h0) ⊆ CIBSRk for all players i}

for all k ≥ 1. Common initial belief in sequential rationality is said to hold at
ω if ω ∈ CIBSRk for all k. We say that two states ω and ω′ are indistinguish-
able for player i if fi(ω) = fi(ω

′), vi(ω) = vi(ω
′) and µi(ω, hi) = µi(ω

′, hi)
for all hi ∈ H∗

i . An event E is said to be about player i if for every two
states ω, ω′ that are indistinguishable for player i, either both ω and ω′
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are in E, or none is in E. We say that at ω player i treats information
about different players as epistemically independent if for every two dif-
ferent opponents j and ℓ, for every event Ej about player j and every
event Eℓ about player ℓ, it holds that µi(ω, Ej)(Eℓ) = µi(ω, Ω\Ej)(Eℓ)
and µi(ω, Eℓ)(Ej) = µi(ω, Ω\Eℓ)(Ej). In his theorem on page 43, Stalnaker
shows that common initial belief in sequential rationality and common be-
lief in the event that players treat information about different players as
epistemically independent lead to backward induction.

In terms of our base model, common initial belief in sequential rationality
corresponds to the condition that a type respects common initial belief in
the event that types initially believe in rationality at all information sets.
The epistemic independence condition cannot be translated that easily into
our base model. The problem is that the base model only allows for beliefs
conditional on specific events, namely events in which some information
set is reached. On the other hand, in order to formalize the epistemic
independence condition we need to condition beliefs on more general events.
There is, however, an important consequence of the epistemic independence
condition that can be expressed in terms of our base model, namely that the
event of reaching information set hi should not change player i’s belief about
the actions and beliefs of players that did not precede hi. In order to see this,
choose a player j that precedes hi and a player ℓ that does not precede hi.
Note that the event of player j choosing the action leading to hi is an event
about player j, and that the event of player ℓ choosing a certain action and
having a certain belief vector is an event about player ℓ. Hence, epistemic
independence says that player i’s belief about player ℓ’s action and beliefs
should not depend on whether player j has moved the game towards hi

or not. Moreover, it is exactly this consequence of epistemic independence
that drives Stalnaker’s backward induction result. In particular, if player i
initially believes that player ℓ chooses rationally at his information set hℓ

(which does not precede hi), then player i should continue to believe so if
he observes that hi has been reached. If we drop the assumption that every
player only controls one information set, the condition amounts to saying
that a player should never revise his belief about the actions and beliefs at
future and parallel information sets.

In terms of our base model, Stalnaker’s sufficient condition for backward
induction can thus be stated as follows:

Stalnaker’s condition BR: Type ti respects common belief in the events
that (1) types hold preferences as specified by (P̃j)j∈I , and (2) types do not
change their belief about the opponents’ choices and beliefs at future and
parallel information sets, and type ti respects common initial belief in the
event that (3) types initially believe in rationality at all information sets.

Halpern provides an explicit comparison between the models of Aumann
and Stalnaker [Ha001].
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•
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• •
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•
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in event that types. . .

. . . initially believe in rat.
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•

Forward belief in. . .

. . . substantive rationality • • •
. . .material rationality •
Common belief in

event that types. . .

. . . never revise belief

about opponents’

preference relations

• • • • • • • • • •

. . . do not revise belief

about opponents’ choices

and beliefs at future and

parallel information sets

• • •

. . .minimally revise belief

about opponents’

preferences and beliefs

•

. . . hold point-beliefs • •

Table 1. Overview of sufficient conditions for backward induction
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3.11 Summary

The discussion of the various models and sufficient conditions for backward
induction can be summarized by Table 1.

The table shows that several sufficient conditions for backward induc-
tion, although formulated in completely different epistemic models, become
equivalent once they have been expressed in terms of our base model. Note
also that there is no model assuming common belief in the events that (1)
types always believe in rationality at all information sets, and (2) types
never revise their beliefs about the opponents’ preferences over terminal
nodes. This is no surprise, since the papers [Re392, Re393] have illustrated
that these two events are in general incompatible. Perea’s model maintains
condition (1) and weakens condition (2), while the other models maintain
condition (2) and weaken condition (1). Finally observe that all models as-
sume (at least) initial common belief in the event that types initially believe
in rationality at all information sets, plus some extra conditions on the play-
ers’ belief revision procedures. If one would only assume the former, this
would lead to the concept of common certainty of rationality at the begin-
ning of the game, as defined in [BP97]. This concept is considerably weaker
than backward induction, as it may not even lead to the backward induc-
tion outcome. Hence, additional conditions on the players’ belief revision
policies are needed in each model to arrive at backward induction.
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Abstract

Infinite games have been a valuable tool to characterize classes of
real-valued functions. In this paper we review three important exam-
ples: the Wadge, Backtrack, and Eraser games. We then present two
natural generalizations of these games: the Basic Multitape game and
the Multitape Eraser game and show that both games characterize a
class of functions satisfying a certain partition property.

1 Notation and background

Most of our notation and terminology is standard in descriptive set theory
and can be found in [Ke095] or [Mo180]. As usual, for sets A and B, AB
denotes the set of functions from A to B. In particular, ωω denotes the set
of functions from ω to ω, i.e. ωω is the set of ω-length sequences of natural
numbers. The notation <ωA denotes the set of finite sequences of elements
of A, so that <ωω denotes the set of finite sequences of natural numbers.
We use ≤ωω to denote <ωω ∪ ωω. For s ∈ <ωω, let [s] := {u ∈ ωω : s ⊂ u}.
For x ∈ ωω and k ∈ ω, let x → k be the sequence x shifted by k places; in
other words, (x→ k)(n) := x(n+ k).

We assume that the reader is familiar with the Borel hierarchy and Σ0
α

and Π0
α notation. (The reader may consult [Ke095] or [Mo180] for further

information.)
The Baire Space is the set ωω with the topology generated by the basic

open sets {[s] : s ∈ <ωω}. As is standard in set theory, we think of ele-
ments of ωω as being real numbers. A real-valued function f : ωω → ωω
is continuous if the preimage of every open set is open, in other words if
f−1[Y ] ∈ Σ0

1 for every Y ∈ Σ0
1. For A ⊆ ωω and f : A → ωω, we say

that f is continuous if the preimage of every open set is open in the relative
topology of A.

We may consider more general classes (sets) of functions as follows.
Define F(n,m) := {f : A→ ωω such that for every Y ∈ Σ0

n, f−1[Y ] = X∩A
for some X ∈ Σ0

m}. For example, F(1, 1) denotes the continuous functions

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 195–207.
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and F(1, 2) denotes the set of functions for which the preimage of every
Σ0

1 set is a Σ0
2 set in the relative topology of A. (The latter are commonly

known as Baire Class 1.) The following diagram illustrates the classes of
functions under consideration in this paper.

F(2, 3)

⊂ ⊂

F(1, 2) F(3, 3)
⊂ ⊂
F(2, 2)

⊂
F(1, 1)

The containments in the diagram (which are in fact proper) can easily be
seen: in general, F(n+1,m) ⊆ F(n,m) (this is immediate) and F(n,m) ⊆
F(n+1,m+1).

We use the notation FT(n,m) to denote the set of total functions in
F(n,m), i.e. FT(n,m) := F(n,m) ∩ {f : ωω → ωω}. For A ⊆ ωω and
Γ a boldface pointclass, a Γ-partition of A is a pairwise disjoint sequence
〈An : n < ω〉 such that An = A′n ∩A for some A′n ∈ Γ, and

⋃

n<ω An = A.
For F a set of real-valued functions, we define P(Γ,F) := {f : A→ ωω such
that there is a Γ-partition 〈An : n < ω〉 of A such that f↾An ∈ F}. We use
the notation PT(Γ,F) := P(Γ,F)∩ {f : ωω → ωω}. For example, a special
case of a well-known theorem of Jayne and Rogers states that a function
f : ωω → ωω is F(2, 2) if and only if there is a Π0

1-partition 〈An : n < ω〉 of
ωω such that f↾An is continuous; in our notation, this may be written as
FT(2, 2) = PT(Π0

1,F(1, 1)).
As a final background note, we prove the following lemma.

Lemma 1.1. Let X ⊆ ωω and 1 < α < ω1. If X ∈ Σ0
α then X =

⋃

n∈ω Xn

satisfying:
1) for each n, there exists βn < α such that Xn ∈ Π0

βn
and

2) n 6= m⇒ Xn ∩Xm = ∅.

Proof. We begin by proving the lemma for α = 2. Since X ∈ Σ0
2, by

definition there is a sequence Xn ∈ Π0
1 such that X =

⋃

n∈ω Xn. Let
Y0 := X0 and for n > 0, let Yn := Xn \ (X0 ∪ · · · ∪Xn−1). It follows that
⋃

n∈ω Yn and that the Yn are pairwise disjoint. Moreover, each Yn is the
intersection of a closed set Xn and an open set On := ωω\(X0∪· · ·∪Xn−1).
Since we are working in the Baire Space, each open set On is the disjoint
union of countably many basic open (clopen) sets, from which it follows
that each Yn is the disjoint union of countably many closed sets Yn,k. Since
the countable union of countable sets is countable, the sequence Yn,k is as
desired.
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For the inductive case, assume that the lemma holds for all α′ < α and
let X ∈ Σ0

α. By definition, X =
⋃

n∈ω Xn with each Xn ∈ Π0
βn

for some
βn < α. Let Y0 := X0 and for n > 0, let Yn := Xn \ (X0 ∪ · · · ∪ Xn−1).
Each Yn is the intersection of a Π0

βn
set and a Σ0

βn
set, so we may apply

the inductive hypothesis and argue as before. q.e.d.

2 Infinite games

We will consider a variety of infinite token games in this paper. In each
token game, there is a set A ⊆ ωω and a function f : A → ωω. There
are two players, Player I and Player II, who alternate moves for ω rounds.
Player I begins by playing x0, Player II responds with y0, Player I responds
with x1, and so forth:

I: x0 x1 x2 x = 〈xn : n ∈ ω〉
. . .

II: y0 y1 y2 y = 〈yn : n ∈ ω〉

Player I plays elements xi ∈ ω and Player II plays elements yi ∈ ω ∪
{T1, . . . ,Tk} for some finite set of tokens {T1, . . . ,Tk}. Informally, each
token corresponds to an option that Player II has in the game. At the end
of the game, Player I has produced a sequence x ∈ ωω and Player II has
produced a sequence y ∈ ω(ω ∪ {T1, . . . ,Tk}).

The sequence y is a sequence of natural numbers and tokens—however,
the rules of the game will say how to interpret y as a sequence (finite or
infinite) of natural numbers only. Specifically, for each game we define an
interpretation function ι : ω(ω ∪ {T1, . . . ,Tk}) →

≤ωω. Player II wins the
game if ι(y) = f(x). (If x 6∈ A then Player II wins automatically.) Note
that if x ∈ A, Player II cannot possibly win the game if ι(y) is finite.

A strategy for Player II is a function τ : <ωω → <ω(ω∪{T1, . . . ,Tk})
such that lh(τ(s)) = lh(s) and s ⊆ t ⇒ τ(s) ⊆ τ(t). The argument of τ
is a finite sequence of moves by Player I and the value of τ is a finite
sequence of moves by Player II. Informally, τ tells Player II what to do in
the game. With respect to the above diagram, if Player II follows τ then
τ(〈x0, . . . , xk〉) = 〈y0, . . . , yk〉 and y =

⋃

s⊂x τ(s).
For a strategy τ for Player II, it is convenient to define τ̂ : ωω → ω(ω ∪

{T1, . . . ,Tk}),

τ̂ (x) :=
⋃

s⊂x

τ(s).

We then define τ̄ (x) := ι(τ̂ (x)) and say that a strategy τ for Player II is
winning if τ̄ (x) = f(x) for every x ∈ A.
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We will proceed by defining specific token games G, each with the prop-
erty that Player II has a winning strategy in G(f) if and only if f belongs
to some particular class of functions.

To get started, we will review the Wadge, Backtrack, and Eraser games.

3 The Wadge game

The Wadge game was developed by William Wadge in his thesis [Wa083]
to characterize the notion of continuous reduction. We present a slightly
modified version of the Wadge game to be consistent with our paradigm.
Fix a set A ⊆ ωω and a function f : A → ωω. The Wadge game GW(f)
has two players, Player I and Player II, who alternate moves for ω rounds.
Player I plays elements of ω and Player II plays elements of ω ∪ {P}. The
token P is interpreted to mean “pass”.

Formally, to define the interpretation function we first define θ : <ω(ω ∪
{P}) → <ωω by θ(∅) := ∅ and

θ(sa〈z〉) :=

{

θ(s) if z = P,

θ(s)a〈z〉 otherwise.

We then define ιW : ω(ω ∪ {P}) → ≤ωω, ιW(y) :=
⋃

s⊂y θ(s). Letting
x ∈ ωω be the infinite play of Player I and y ∈ ω(ω ∪ {P}) be the infinite
play of Player II, Player II wins the game if x 6∈ A or ιW(y) = f(x). (Note
that in order to have a chance, Player II must play infinitely often in ω
if Player I plays x ∈ A.) If τ is a Wadge strategy for Player II, we let
τ̂ (x) :=

⋃

s⊂x τ(s), τ̄ (x) := ιW(τ̂ (x)) and say that τ is winning for Player
II if τ̄ (x) = f(x) for all x ∈ A.

Examples. Suppose Player II plays the sequence

〈a0, a1,P, a2,P,P, a3, . . . 〉,

the interpretation will be

〈a0, a1, a2, a3, . . . 〉.

Suppose Player II plays the sequence

〈a0, a1,P, a2,P,P,P,P, . . . 〉

with cofinally many passes, the interpretation will be

〈a0, a1, a2〉.

Note that Player II cannot win in this case if Player I plays in A.
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Theorem 3.1 (Wadge). Let A ⊆ ωω. A function f : A→ ωω is continuous
⇔ Player II has a winning strategy in the game GW(f).

Proof. We begin by noting that

τ̄ (x) =
⋃

s⊂x

θ(τ(s)).

⇐: Suppose τ is the winning strategy. To show that f is continuous, it
suffices to show that the preimage of a basic open set is open in the topology
of A. Let t ∈ <ωω and let X :=

⋃

{[s] : θ(τ(s)) = t}. It is not difficult to
check that f−1[[t]] = X ∩A.

⇒: Define τ by

τ(sa〈m〉) :=

{

τ(s)a〈n〉 if f [[sa〈m〉]] ⊆ [θ(τ(s))a〈n〉],

τ(s)a〈P〉 otherwise.

It is not difficult to check that τ is well-defined and winning for Player
II in GW(f).

q.e.d.

4 The Backtrack game

The Backtrack game, a generalization of the Wadge game, was developed by
Robert van Wesep [VW78]. In the Backtrack game GB(f), Player II plays
elements of ω∪{P,B}. As in the Wadge game, the token P is interpreted to
mean “pass.” The token B, the “backtrack” option, allows Player II to erase
his entire output and start playing a new sequence of natural numbers.

Let ιW be defined as in the Wadge game, we define the interpretation
function ιB : ω(ω ∪ {P,B}) → ≤ωω,

ιB(y) :=

{

∅ if ∀i ∃j>i y(j) = B

ιW(y → i) if i is least such that ∀j≥i y(j) 6= B

We define τ̄ as usual and we say that a Backtrack strategy τ is winning

if τ̄ = f(x) for all x ∈ A.

Examples. Suppose Player II plays a sequence that contains infinitely
many B’s, then the interpretation will be ∅ and Player II can only win if
Player I plays out of A. Suppose Player II plays the sequence

〈a0, a1,B, a2,B, a3, a4,P, a5, . . . 〉

with two B’s only, then the interpretation will be

〈a3, a4, a5, . . . 〉.
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By a theorem of Andretta [An06b, Theorem 20], the Backtrack game
characterizes the P(Π0

1,F(2, 2)) functions.

Theorem 4.1 (Andretta). Let A ⊆ ωω. A function f : A → ωω is
P(Π0

1,F(2, 2)) ⇔ Player II has a winning strategy in the game GB(f).

Proof. ⇐: Assume that τ is winning for Player II in the game GB(f). Since,
in the Baire space, every Σ0

2 set is the disjoint union of countably many Π0
1

sets (Lemma 1.1), it suffices to give a Σ0
2 partition. Let An := {x ∈ A :

on input x, τ backtracks n times}. Then it follows that f↾An is continuous
using Theorem 3.1. Namely, let τ ′ be the following Wadge strategy for
Player II: “On a scratch tape, run τ until τ has backtracked n times. Then
use the remaining output of τ as the output for τ ′.” It is clear that τ ′

is winning for Player II in the game GW(f↾An), so f↾An is continuous.
Moreover, it is not difficult to see that An is Σ0

2 (in the relative topology
of A). Let ρ : <ω(ω ∪ {P,B}) → ω be defined by ρ(s) :=“the number of B’s
appearing in s”. Then the formula

∃i ∀j>i (ρ(τ(x↾j)) = n)

witnesses that An is Σ0
2.

⇒: Let 〈An : n ∈ ω〉 be given and let τn be a winning strategy for
Player II in the game GW(f↾An). The following strategy is easily seen to
be winning for Player II in the game GB(f): “Let i := 0. Run the Wadge
strategy τi. If Player I plays out of Ai, then this is known after some finite
period since the complement of Ai is open. Use the backtrack option and
repeat the process with i := i+ 1.”

q.e.d.

By a theorem of Jayne and Rogers, we conclude that the Backtrack
game characterizes the FT(2, 2) functions, meaning that a total function f
is F(2, 2) if and only if Player II has a winning strategy in the game GB(f).

Theorem 4.2 (Jayne, Rogers). A function f : ωω → ωω is F(2, 2) ⇔ there
is a Π0

1 partition 〈An : n ∈ ω〉 of ωω such that f↾An is continuous. In other
words, FT(2, 2) = PT(Π0

1,F(1, 1)).

The original proof may be found in [Ja4Ro182], and a more recent proof
using embeddings may be found in [So198]. [So198] also provides a detailed
analysis of the F(1, 2) functions.

5 The Eraser game

In the Eraser game GE(f), Player II plays elements of ω ∪ {E}, with the
token E interpreted to mean “erase.” This option allows Player II to erase
his most recent move in ω. In contrast with the backtrack option, it is
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possible for Player II to erase infinitely many times and still play an infinite
sequence.

To define the interpretation function ιE, we first define η : <ω(ω∪{E}) →
<ωω by recursion. Let η(∅) := ∅ and let

η(sa〈z〉) :=











η(s)a〈z〉 if z ∈ ω,

η(s)↾(lh(η(s)) − 1) if z = E and lh(η(s)) > 0,

∅ otherwise.

We then define ιE : ω(ω ∪ {E}) → ≤ωω, ιE(y)(n) := m if ∃i ∀j>i,
η(y↾j)(n) is defined and equal to m. We define τ̄ as usual and say that an
Eraser strategy τ is winning for Player II if τ̄ (x) = f(x) for all x ∈ A.

Examples. Suppose Player II plays the sequence

〈a0, a1, a2,E, a3, a4, . . . 〉

with one E only, then the interpretation will be

〈a0, a1, a3, a4, . . . 〉.

Suppose Player II plays

〈a0, a1, a2,E, a3,E, a4,E, a5,E, . . . , ai,E, . . . 〉

then the interpretation will be

〈a0, a1〉

and Player II can only win the game if Player I plays out of A.
The Eraser game and its characterization (Theorem 5.1) are unpublished

results due to Jacques Duparc.

Theorem 5.1 (Duparc). Let A ⊆ ωω. A function f : A → ωω is F(1, 2)
⇔ Player II has a winning strategy in the game GE(f).

The proof of Theorem 5.1 relies on the following topological fact about
F(1, 2) functions (see [Ke095, Theorem (24.10)]):

Theorem 5.2. A function f : A → ωω is F(1, 2) ⇔ f is the limit of a
sequence of continuous functions fn : A→ ωω.

Proof of Theorem 5.1. By Theorem 5.2, it suffices to show that f is the
limit of a sequence of continuous functions fn ⇔ Player II has a winning
strategy in the game GE(f).
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⇒: Let fn be given and let τn be a winning strategy in the gameGW(fn).
Let τ be the following eraser strategy for Player II: “Let x ∈ A be the play
of Player I. Let i := 0. On a scratch tape, run τi until the first i elements
of τ̄i(x) are determined. Then output these elements starting from the
beginning of the tape, erasing only if necessary. Repeat the process with
i := i+ 1.”

⇐: Let τ be winning for Player II is the game GE(f). It suffices to give
a sequence of Wadge strategies τn such that τ̄n(x) is infinite for all x ∈ A
and f is the limit of the τ̄n. Let τn be the following: “Let x ∈ A be the play
of Player I. On a scratch tape, determine η(τ(x↾n)) (using the pass option
until this is known). Then output η(τ(x↾n)), followed by random moves in
ω.”

q.e.d. (Theorem 5.1)

6 The Multitape game

In the Multitape game GM(f), Player II plays elements of ω ∪ {↑, ↓}. We
think of Player II as having countably many rows (or tapes), which he can
select using ↑ and ↓. We associate a natural number to each row, with
Player II starting at row 0 at the beginning of the game. At any point in
the game, if Player II is on row n, he may move to row n + 1 using ↑ and
row n− 1 using ↓. (If he is on row 0, the ↓ option has no effect.) So, each
integer move occurs on some row. The interpretation is then the infinite
sequence on the least row (if it exists) containing an infinite sequence. We
refer to this row as the output row.

Formally, we define the interpretation function as follows. First, define
ρ : <ω(ω ∪ {↑, ↓}) → ω as the “row” function on finite sequences of tokens.
Let ρ(∅) := ∅ and let

ρ(sa〈z〉) :=



















ρ(s) if z ∈ ω,

ρ(s) + 1 if z = ↑,

ρ(s)− 1 if z = ↓ and ρ(s) > 0,

0 otherwise.

On infinite sequences of tokens, we define a partial function

δ : ω(ω ∪ {↑, ↓})→ ω

by letting δ(x) be the least n ∈ ω (if it exists) such that ∀i ∃j>i, ρ(x↾j) = n
and x(j − 1) ∈ ω. In other words, the value of δ is the output row.

We next define ζn : <ω(ω ∪ {↑, ↓}) → <ωω by recursion. Let ζn(∅) := ∅

and let



Multitape Games 203

ζn(sa〈z〉) :=

{

ζn(s)a〈z〉 if z ∈ ω and ρ(s) = n,

ζn(s) otherwise.

In words, given a finite sequence of tokens, ζn is the output on the nth
row. We may then define the interpretation function ιM : ω(ω ∪ {↑, ↓}) →
≤ωω by

ιM(y) :=
⋃

n∈ω

ζδ(y)(y↾n) if δ(y) is defined.

If δ(y) is undefined, we define ιM(y) := ∅. We define τ̄ as usual and say
that an Multitape strategy τ is winning for Player II if τ̄ (x) = f(x) for all
x ∈ A.

Examples. Suppose Player II plays the sequence

〈a0, ↑, a1, ↑, a2, ↑, a3, ↑, . . . , ai, ↑, . . . 〉,

then the interpretation will be ∅ since Player II has only played a single
element on each row. Suppose Player II plays a sequence

〈a0, a1, ↑, a2, ↑, a3, a4, ↓, a5, a6, . . . 〉

such that the output row is row 1, then the interpretation will be

〈a2, a5, a6, . . . 〉.

Theorem 6.1 (Andretta, S.). Let A ⊆ ωω. A function f : A → ωω is
P(Π0

2,F(1, 1)) ⇔ Player II has a winning strategy in the game GM(f).

Proof. ⇐: Let τ be the winning multitape strategy for Player II. Since every
Σ0

3 set in the Baire Space is the disjoint union of Π0
2 sets (Lemma 1.1), it

suffices to give a Σ0
3 partition.

We define An := {x ∈ A : δ(τ̂ (x)) = n}. Note that δ(τ̂ (x)) is always
defined if x ∈ A since τ is winning. Thus 〈An : n < ω〉 is indeed a partition of
A. The following formula witnesses that An is Σ0

3 (in the relative topology):

∃i ∀j>i [ρ(τ(x↾j)) < n⇒ τ(x↾j)(j−1) ∈ {↑, ↓}] ∧

∀i ∃j>i [ρ(τ(x↾j)) = n ∧ τ(x↾j)(j−1) ∈ ω)].

In words, this formula says “there exists a round in the game after which
Player II does not play an element of ω on a row less than n, and Player II
plays infinitely many elements of ω on row n.”
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Furthermore, f↾An is continuous. The following strategy is winning in
GW(f↾An): “Run τ on a scratch tape. Copy the output from row n, using
the pass option when necessary.”

⇒: Let An be given. Since An is Π0
2, there are Π0

2 formulas χn(x)
(possibly with extra parameters) such that x ∈ An ⇔ χn(x). Since χn is
Π0

2, we have that
χn(x) ≡ ∀i ∃j ψn(x, i, j)

where ψn is a basic formula. (By a basic formula, we mean a formula in the
language of arithmetic with bounded quantifiers only, cf. [Ka103, p. 152].))
Since ψn is a basic formula, for any i and j we can check whether ψn(x, i, j)
is true using only a finite initial segment of x. Let x ∈ ωω be the infinite play
of Player I. We are ready to define the multitape strategy τ for Player II.
For each row n, there will be two counters, in and jn, which are initialized
to 0. At each stage of the game, Player II is considered to be working on a
row n. We say that Player II works on a row n for one step if he does the
following:

Given in and jn, try to determine whether the formula ψn(x, in, jn) is
true. Since only a finite initial segment of x is known, it may be impossible
to do this, in which case do nothing. If the formula is true, run the Wadge
strategy σn for one step on row n. Increment the in counter by 1, and reset
the jn counter to 0. If the formula is false, increment the jn counter by 1.

In the obvious way, Player II can work on every row n for infinitely many
steps. Since 〈An ∈ ω〉 is a partition, Player I will play into exactly one An.
This means that exactly one of the formulas χn(x) will be true, which means
that Player II will only play infinitely often (namely, the Wadge strategy
σn) on row n. Then τ̄ (x) = σ̄n(x) = f↾An(x) = f(x), so τ is winning.

q.e.d.

7 The Multitape Eraser game

The Multitape Eraser game GME(f) is like the multitape game, except
that Player II is given the additional option of erasing. So, Player II plays
elements of ω ∪ {↑, ↓,E}. The output of Player II is the sequence on the
least row (if it exists) on which Player II plays infinitely often in ω ∪ {E}.
Note that this sequence may not necessarily be infinite.

The definition of the interpretation function is similar to the case of the
Multitape game. For convenience, we reuse some of the variables.

Define ρ : <ω(ω∪{↑, ↓,E}) → ω as the “row” function on finite sequences
of tokens. Let ρ(∅) := ∅ and let
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ρ(sa〈z〉) :=



















ρ(s) if z ∈ ω ∪ {E},

ρ(s) + 1 if z = ↑,

ρ(s)− 1 if z = ↓ and ρ(s) > 0,

0 otherwise.

On infinite sequences of tokens, define a partial function

δ : ω(ω ∪ {↑, ↓,E})→ ω

by letting δ(x) be the least n ∈ ω (if it exists) such that ∀i ∃j>i, ρ(x↾j) = n
and x(j − 1) ∈ ω ∪ {E}. In other words, the value of δ is the output row.

We next define ζn : <ω(ω ∪ {↑, ↓,E}) → <ω(ω ∪ {E}) by recursion. Let
ζn(∅) := ∅ and let

ζn(sa〈z〉) :=

{

ζn(s)a〈z〉 if z ∈ ω ∪ {E} and ρ(s) = n,

ζn(s) otherwise.

In words, given a finite sequence of tokens, ζn is the output (with the
E’s still present) on the nth row. We may then define the interpretation
function ιME : ω(ω ∪ {↑, ↓,E})→ ≤ωω by

ιME(y) := ιE

(

⋃

n∈ω

ζδ(y)(y↾n)
)

if δ(y) is defined.

If δ(y) is undefined, then we define ιME(y) := ∅.
We define τ̄ as usual and say that a Multitape Eraser strategy τ is

winning for Player II if τ̄ (x) = f(x) for all x ∈ A.
Example. Suppose Player II plays a sequence

〈a0, a1, ↑, a2, a3, a4,E, a5,E, a6,E, . . . , ai,E, . . . 〉

such that the output row is row 1, then the interpretation will be

〈a2, a3〉.

Note that in this case, Player II can only win the game if Player I plays out
of A.

Theorem 7.1. Let A ⊆ ωω. A function f : A → ωω is P(Π0
2,F(1, 2)) ⇔

Player II has a winning strategy in the game GME(f).

Proof. ⇐: Let τ be the winning multitape strategy for Player II. We define
An := {x ∈ A : δ(τ̂ (x)) = n}. As in the proof of Theorem 6.1, it follows
that An is Σ0

3.
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Furthermore, f↾An is F(1, 2). The following strategy is winning in
GE(f↾An): “Run τ on a scratch tape. Copy the output from row n, using
the Eraser option when necessary.”

⇒: As in Theorem 6.1, with “Wadge strategy” replaced by “Eraser
strategy.”

q.e.d.

8 Future directions

We finish by noting several problems that are open (at least, as far as this
author is aware). We state without proof the following:

Proposition 8.1. Let m,n ≥ 1. Then F(n,m) ⊆ F(n+ 1,m+ 1). There-
fore, F(n,m) ⊆ F(n+ k,m+ k) for any k ≥ 0.

The following fact is also easy to show:

Proposition 8.2. Let m,n ≥ 2. Then P(Π0
m−1,F(1,m − n + 1)) ⊆

F(n,m).

Proof. Let f : A→ ωω in P(Π0
m−1,F(1,m−n+ 1)) and let 〈Ai : i < ω〉 be

the partition. Let Y ∈ Σ0
n and Yj ∈ Π0

n−1 such that Y =
⋃

j Yj . It follows
that

f−1[Y ] =
⋃

i

(f↾Ai)
−1[Y ]

=
⋃

i

⋃

j

(f↾Ai)
−1[Yj ]

=
⋃

i

⋃

j

A ∩Xij , where Xij ∈ Π0
m−1

=A ∩X, where X ∈ Σ0
m.

For the second to last equality, note that f↾Ai ∈ F(n− 1,m− 1) by Propo-
sition 8.1 (take k = n− 2). q.e.d.

Problem 8.3. For which m and n is

FT(n,m) = PT(Π0
m−1,F(1,m− n+ 1))?

In particular, the statement for n = m = 2 is Theorem 4.2. If the
statement were to hold for n = m = 3, then the Multitape game would
characterize the total F(3, 3) functions. Similarly, if the statement were
to hold for n = 2 and m = 3, then the Multitape Eraser game would
characterize the total F(2, 3) functions.

Problem 8.4. Is the inclusion in Proposition 8.1 always proper?
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Problem 8.5. For n ≥ 2 and m ≥ 1, is F(n,m) properly contained in
F(n− 1,m)?

References

[An06b] A. Andretta. More on Wadge determinacy. Annals of Pure
and Applied Logic 144(1–3):2–32, 2006.

[Ja4Ro182] J.E. Jayne & C.A. Rogers. First level Borel functions and
isomorphisms. Journal de Mathématiques Pures et Appliquées
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Abstract

Games with imperfect information have escaped the interest of re-
searchers in combinatorial game theory. This paper discusses a com-
putational case study of the board game of Scotland Yard. Interest-
ingly, Scotland Yard is a genuine “playgame” with imperfect infor-
mation. We show by means of a powerset argument, that Scotland
Yard can also be considered a game of perfect information, that is
isomorphic to the imperfect information variant. Using the powerset
analysis, we show that Scotland Yard has PSPACE-complete com-
plexity be it with or without imperfect information. In fact, imperfect
information may even simplify matters: if the cops are supposed to be
consequently ignorant of Mr. X’s whereabouts throughout the game
the complexity is NP-complete.

1 Introduction

1.1 Background

The discipline of combinatorial game theory (CGT) deals almost exclusively
with zero-sum games with perfect information. Although the existence of
games with imperfect information is acknowledged in one of CGT’s seminal
publications [Be1Co3Gu282, pp. 16–7], only a marginal amount of litera-
ture appeared on games with imperfect information. Yet, the number of
publications on games with perfect information is abundant and offers a
robust picture of the computational behavior of games: One-person games
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parts of this paper.

Finally, let me acknowledge Victor de Boer, Berend ter Borg, and Sicco Kuijper
with whom I played many games of Scotland Yard on Sunday afternoons, already
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Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 209–246.
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or puzzles are usually solvable in NP and many of them turn out to be com-
plete for this class.1 Famous examples include the games of Minesweeper
[Ka500] and Clickomania [Bi0+02]. Alternation increases complexity con-
siderably: many two-player games have PSPACE-hard complexity, such as
Go [Li1Si280] and the semantic evaluation game of quantified boolean formu-
lae [St6Me273, Sc078]. Some even have EXPTIME-complete complexity.
Typical examples in this respect are the games of Chess [Fr0Li181] and
Checkers [Fr0+78]. By and large, games with EXPTIME-complete com-
plexity have a loopy nature, that is, the same configuration may occur over
and over again. In real-life, loopy games may not be that much fun to play,
as they allow for annoyingly long runs in which neither player makes any
progress. Loopy runs are banned from Chess by postulating that, roughly
speaking, no configuration of the game may occur more than three times.

Amusingly, putting an upper-bound on the duration of the game not
only avoids loopy sequences of play, but also has considerable computational
impact. Papadimitriou [Pa494, pp. 460–2] argues that every game that
meets the following requirements is solvable in PSPACE:

• the length of any legal sequence of moves is bounded by a polynomial
in the size of the input; and

• given a “board position” of the game there is a polynomial-space al-
gorithm which constructs all possible subsequent actions and board
positions; or, if there aren’t any, decides whether the board position
is a win for either player.

Note that Papadimitriou does not even mention the fact that this result
concerns games of perfect information. The result stands due to the fact that
the backwards induction algorithm (see also Section 2) can be run on the
game’s game tree in PSPACE, given that it meets the above requirements.

As for games of imperfect information, some studies have been performed
and they invariable report an increase of complexity. Convincing results in
this vein are given in [Ko3Me092], where the authors show that it is possible
to decide whether either player has a winning strategy in a finite, two-player
game of perfect information using a polynomial time in the size of the game
tree. On a positive note, they show that there is a P-algorithm that solves
the same problem for games of imperfect information with perfect recall.
However, if one of the players suffers from imperfect recall the problem of
deciding whether this player has a winning strategy is NP-hard in the size
of the game tree.

In [Re184, Pe3AzRe101] the authors regard computation trees as game
trees. This view on computation trees is adopted from [Ch0Ko6St681], in

1 To solve a game is to determine for an instance of the game whether a designated
player has a winning strategy.
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which so-called alternating Turing machines are considered which have ex-
istential and universal states. The aspect of alternation is reflected in the
computation tree by regarding it as a game tree of a two-player game. The
nodes corresponding to existential (universal) states belong to the existential
(universal) player. From this viewpoint, non-deterministic Turing machines
have no universal states and thus give rise to one-player game trees. In
[Re184, Pe3AzRe101] this idea is extended to games of imperfect informa-
tion. The authors define private alternating Turing machines, which give
rise to computation trees that may be regarded as two-player game trees in
which the existential player suffers from imperfect information, among other
devices. It is shown that the space complexity of f(n) of these machines
is characterized in terms of the complexity of alternating Turing machines
with space bound exponential in f(n). Moreover, it is shown that private
alternating Turing machines with three players—with two of the players
teaming up—can recognize undecidable problems in constant space.

Dramatic as these results may be, being general studies they cannot
tell us what the computational impact of the imperfect information found
in actual games is. That is, games developed to be played rather than to
be analyzed.2 It may well turn out that the imperfect information in these
games has little computational impact and that the games themselves match
the robust intuitions we have about the computational nature of perfect in-
formation games. As we pointed out before, there is but a small number
of results concerning games with imperfect information, let alone computa-
tional studies of parlor games. For this reason, we shall consider the game
of Scotland Yard which gamers have enjoyed since 1983.3 Readers familiar
with Scotland Yard will acknowledge that it is the imperfect information
that makes the game an enjoyable waste of time and enthusiastic accounts
of players’ experiences with Scotland Yard are readily found on the Internet.

1.2 Game rules

We shall now give an outline of the rules of Scotland Yard. Note how-
ever that this description serves mainly to stress the kinship between the
formalization used in this paper and the actual game. A complete set of
game rules of the formalization is supplied in the next section and suffices
to understand the formal details.

Scotland Yard is played on a game board which contains approximately
200 numbered intersections of colored lines denoting available means of

2 Fraenkel [Fr002, p. 476] makes the distinction between “PlayGames” and “Math-

Games”. The former being the games that “are challenging to the point that people
will purchase them and play them”, whereas the latter games “are challenging to a
mathematician [. . . ] to play with or ponder about.”

3 Scotland Yard is produced by Ravensburger/Milton Bradley and was prestigiously
declared Spiel des Jahres in 1983.
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Figure 1. The box of Scotland Yard and its items, amongst which the
game board, Mr. X’s move board, and the players’ pawns. This picture is
reproduced with permission of Ravensburger.

transportation: yellow for taxis, green for buses, and pink for the Under-
ground. A game is played by two to six people, one of them being Mr.
X, the others teaming up and thusly forming Scotland Yard. They have a
shared goal: capturing Mr. X. Initially, every player gets assigned a pawn
and an intersection on the game board on which his or her pawn is posi-
tioned. Before the game starts every player gets a fixed number of tickets
for every means of transportation. Mr. X and the cops move alternatingly,
Mr. X going first.

During every stage of the game, each player—Mr. X or his adversaries—
takes an intersection in mind connected to his or her current intersection,
subject to him or her owning at least one ticket of the appropriate kind. For
instance, if a player would want to use the metro from Buckingham Palace,
she would have to hand in her metro ticket. If either player is out of tickets
for a certain means of transportation, he cannot travel along the related
lines. Every player’s set of tickets is known to all players at every stage of
the game. No player is allowed to stand still for one or more round. For
cops it is not allowed to share the same node; in case a cop gets stuck, i.e.,
she cannot move to any node from her current position, she is out of the
game.4

4 The latter two conditions are ignored in this paper’s abstraction. We suspect they
would not affect the computation results, though.
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Scotland Yard is sold as a 2-to-6 player game. But nothing essential gets
lost when one player controls several or all cops pawns, since communication
between the cops is allowed at all times.

If a cop has made up her mind to move to an intersection, this is indi-
cated by her moving the pawn under her control to the intersection involved.
However, when Mr. X has made up his mind he secretly writes the intersec-
tion’s number in the designated entry of the move board and covers it with
the ticket he has used. The cops know what means of transportation Mr. X
has been using, but do not know his position. After round 3, 8, 13, 18, and
24, however, Mr. X is forced to show his whereabouts by putting his pawn
on his current hideout.

The game lasts for 24 rounds during which Mr. X and the cops make
their moves. If at any stage of the game any of the cops is at the same
intersection as Mr. X the cops win.5 Since Mr. X is invisible most of the
time, he has to actually reveal himself once caught. It is rather pointless for
Mr. X to not announce his loss, as the cops can reconstruct his path using
the game board when the game has ended. If Mr. X remains uncaught until
after the last round, he wins the game. Cops who have a suspicious nature
may want to check whether Mr. X’s secret moves were consistent with the
lines on the game board when the game is over. To this end, they would
match the numbers on the move board with the returned tickets. If it turns
out that Mr. X has cheated at any point or has actually been caught, he
loses no matter what the outcome of the game.

In view of these game descriptions, the generalization of the Scotland
Yard game in Definition 1.1 may strike the reader as a natural abstraction.
The reader will observe that the number of means of transportation is re-
duced to one and that the game board is modelled by a directed graph.
However, all results in this paper can be taken to hold for instances where
several means of transportation and undirected graphs are involved.

Definition 1.1. Let G = 〈V,E〉 be a finite, connected, directed graph with
an out-degree of one or higher. That is, for every v ∈ V , there is a v′ ∈ V ,
such that E(v, v′). Let u, v1, . . . , vn ∈ V . Let f : {1, . . . , k} → {show, hide}
be the information function, for some integer 2 < k < |V |. Then, let
〈G, 〈u, v1, . . . , vn〉, f〉 be a (Scotland Yard) instance. Most of the time it will
be convenient to abbreviate a string of vertices v1, . . . , vn by ~v. Conversely,
~v(i) shall denote the ith element in ~v. By {~v} we refer to the set of all
vertices in ~v.

For U ⊆ V write E(U) to denote {u′ ∈ V | E(u, u′), for some u ∈ U}.
If ~v,~v′ ∈ V n, then write E(~v,~v′) to denote that for every 1 ≤ i ≤ n,
E(~v(i), ~v′(i)).

5 Note that this is the description of the actual Scotland Yard game. My formalization—
to be provided—has slightly different winning conditions.
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The information function f controls the imperfect information through-
out the game. If round i has property f(i) = hide, Mr. X hides himself. As
will be seen the information function gives an intuitive meaning to “adding”
and “removing” imperfect information from a Scotland Yard game. For in-
stance, if one restricts oneself to information functions with range {show},
Mr. X shows his whereabouts after every move and one is effectively consid-
ering a game of perfect information. Under the latter restriction, one has
arrived at so-called graph games, also called Pursuit or Cops and robbers.
For an exposition of the literature on graph games, consult [Go1Re295].

1.3 Aims and structure

The aims of this paper are twofold. First to pinpoint the computational
complexity of a real game of imperfect information. Secondly, we go through
a reasonable amount of effort to spell out the relation between the game of
Scotland Yard and a game of perfect information that is highly similar to the
former. More precisely, we show that the games’ game trees are isomorphic,
and that a winning strategy in the one game constitutes a winning strategy
in the other and vice versa. These similarity results may convince the reader
that in some cases the wall between perfect and imperfect information is
not as impenetrable as one might induce from the scarce literature on the
complexity of imperfect information games.

As we pointed out before, the definition of Scotland Yard instance ab-
stracts away from features of the game of Scotland Yard that are inessential
to this paper’s aims. In fact, all that a Scotland Yard instance holds is
a graph, a set of vertices on which the pawns are initially positioned, the
duration of the game, and a means to control the imperfect information.
In my view, the level of abstraction employed in Definition 1.1 justifies
one’s conceiving Scotland Yard instances as graph games. For this reason, I
think that my analyses are not solely relevant to the specific game of Scot-
land Yard, but to the theory of graph games in general. Nevertheless, I
shall continue to refer to the games under consideration using the colloquial
Scotland Yard terminology.

Section 2 reviews the basic notions from game theory and complexity
theory and fixes notation. In Section 3, we shall define the extensive game
form of the Scotland Yard game to which a Scotland Yard instance gives
rise. In Section 4, we define a perfect information variant of Scotland Yard.
In this perfect information game, Mr. X picks up sets of vertices, but he
does so in public. In Section 5, we show that the games that have been
introduced admit for a bijection between the imperfect information game’s
information partitions and the histories in the perfect information Scotland
Yard game. Furthermore, we show that both games, under the bijection
analysis, are equivalent, i.e., the cops have a winning strategy in the im-
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perfect information game iff they have one in the perfect information game.
In Section 6, the computational results are presented. In accordance with
many polynomially bounded two-player games, Scotland Yard is complete
for PSPACE, despite its imperfect information. That is, the computational
complexity of Scotland Yard does not change when one only considers in-
formation functions with range {show}.

In fact, if one would add more imperfect information to the extent that
the information flow function has range {hide}, the resulting decision prob-
lem is easier: NP-complete. This is shown in Section 7. Finally, Section 8
concludes the paper.

2 Preliminaries

In this section, we introduce some basics from game theory and complexity
to make this paper reasonably self contained.

2.1 Game theory

Key notion in this paper is the notion of extensive game with imperfect
information. One may consider this an extension of the notion of extensive
game with perfect information, due to [vNMo044].

A win-loss extensive game with perfect information G is a four-tuple
〈N,H,P, U〉, where

• N is the set of players. Referring to the number of players, G is called
an ‖N‖-player game.

• H is a set closed under prefixes and denotes the set of histories. A
history shall be regarded as an ordered list 〈a1, . . . , an〉 of actions. If
h = 〈a1, . . . , an〉, then 〈h, a′〉 denotes 〈a1, . . . , an, a

′〉 and is called an
immediate successor of h. A(h) denotes all actions that extend h. Let
Z be the subset of H whose histories cannot be extended. Z is called
the set of terminal histories.

• P is the player function, that assigns to every non-terminal history h
a player P (h). Formally, P is a function of type (H−Z) → N . We
say that a history h belongs to P (h).

• U is the utility function, assigning to every terminal history one win-
ning player.

Let G be a win-loss extensive game with perfect information as above.
Then, a function S is called a strategy for player i ∈ N in G, if it maps
every history h belonging to i, to an action in A(h). Let S be a strategy
for player i in G. Then, call a history h = 〈a1, . . . , an〉 in accordance with
S, if for every proper initial prefix h′ = 〈a1, . . . , ak〉 of h, where k < n, such
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that P (h′) = i, it is the case that 〈a1, . . . , ak, S(h′)〉 is also an initial prefix
of h. Furthermore, if for every history h that is in accordance with S it is
the case that Ui(h) = i, then S is called a winning strategy for i in G.

Let G be a win-loss extensive game with perfect information, that is
also two-player. The backwards induction algorithm, due to [Ze13], decides
whether player i has a winning strategy. The algorithm takes G as input
and goes about as follows:

• Label all terminal histories h in G with U(h).

• Until the initial history ε has been labelled, consider every unlabelled,
non-terminal history h in G and do as follows:

– If P (h) = i and there is an immediate successor history h′ of h
labelled i, then label h with i.

– If P (h) 6= i and every immediate successor history h′ of h is
labelled j ∈ (N − {i}), then label h with lose.

An easy inductive argument shows that the backwards induction algorithm
labels the empty history with i iff player i has a winning plan of action in
G. Papadimitriou [Pa494] showed that the backwards induction algorithm
can be implemented in such a way that it consumes polynomial space in the
size of the input, given that the game meets the aforementioned conditions.

Extensive games with imperfect information extend extensive games
with perfect information in that they are five-tuples 〈N,H,P, 〈Ii〉i∈N , U〉,
carrying information sets Ii for every player i ∈ N . The other notions are
similar to the ones defined for extensive games with perfect information.
An information set Ii = {I1, . . . , In} is a partition of the set of histories
belonging to player i, that meets the action consistency requirement : if h
and h′ sit in I ∈ Ii, then A(h) = A(h′). Every partition in an information
set is called an information partition. If I ∈ Ii, player i is said to own
I and Ii, or they are said to belong to i. Intuitively, an extensive game
with imperfect information models the situation in which player i knows
that some history h ∈ I ∈ Ii has happened, but she is unable to tell h
apart from the other histories in I. The requirement that all histories in
an information partition can be extended by the same actions—the action
consistency requirement—captures the idea that otherwise the player own-
ing the information partition could deduce information about the actual
history from the actions available. If I ∈ Ii, write A(I) to denote A(h), for
an arbitrary h ∈ I.

Let G = 〈N,H,P, 〈Ii〉i∈N , U〉 be an extensive game with imperfect in-
formation. Then, a function S is called a strategy for player i in G, if it
maps every information partition I ∈ Ii belonging to i onto an action in
A(I).
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In the context of win-loss games, a strategy S for player i is called
winning in G if every terminal history h that is in accordance with S yields
U(h) = i.

2.2 Complexity theory

Complexity theory measures the complexity of a decision problem in terms
of the requires resources, such as time and space. We refer the reader for
an excellent introduction to this exciting field to [Pa494].

In this paper, the complexity classes NP and PSPACE play a central
role. The notion of polynomial-time computable many-one reduction is sim-
ply referred to by reduction. Recall that if there is a decision problem to
which every decision problem in a complexity class, say NP, is reducible,
then this decision problem is NP-hard. If moreover this decision prob-
lem itself is solvable in NP, then we call it NP-complete—and likewise for
PSPACE.

A convenient family of decision problems is related to propositional logic.
In this paper, we use two logical decision problems: 3-Sat and QBF. The
former is NP-complete, whereas the latter is PSPACE-complete.

To introduce the problems properly, let me introduce some folklore ter-
minology from propositional logic. A literal is a propositional variable or
a negated propositional variable. A clause is a disjunction of literals. A
boolean formula is in conjunctive normal form (CNF), if it is a conjunction
of clauses. A boolean formula is said to be in 3-CNF, if it is in CNF and
all of its clauses contain exactly three literals. The decision problem 3-Sat

consists of every satisfiable 3-CNF formula ϕ, that is, every ϕ for which
there exists a truth assignment to its variables that makes ϕ true.

The decision problem QBF has quantified boolean formulae as instances,
i.e., objects of the form ∀x1∃y1 . . .∀xn∃yn ϕ, in which ϕ is a boolean for-
mula in 3-CNF over the variables x1, y1, . . . , xn, yn. The problem QBF asks
whether for every truth value for x1, there is a truth value for y1, and for
every truth value for x2, . . ., such that the boolean formula ϕ is satisfied by
the resulting truth assignment.

3 Scotland Yard formalized

In this section, we define the extensive games with imperfect information
that are constituted by Scotland Yard instances.

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 1.1.
Before we define the extensive game form of the Scotland Yard game to
which sy gives rise, let me formulate the game rules of the game under
consideration in terms of sy.

The digraph G is the board on which the actual playing finds place.
In the initial situation of the game n + 1 pawns, named ∀, ∃1, . . . ,∃n, are
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positioned on the respective vertices u∗, ~v∗(1), . . . , ~v∗(n) on the digraph.
The game is played by the two players ∃ and ∀ over k rounds, and with
every round 1 ≤ i ≤ k in the game the property f(i) ∈ {show, hide} is
associated. Note that we converted the n-player game of Scotland Yard,
where 2 ≤ n ≤ 6 into a two-player game in which one player controls
all pawns ∃1, . . . ,∃n. Furthermore, for reasons of succinctness we use the
symbol ∀ to refer to Mr. X (male) and ∃ to refer to the player controlling
Scotland Yard (female). Somewhat sloppily, sometimes we shall not make
a strict distinction between a player and (one of) his or her pawns.

The initial positions of the players’ pawns are known at the outset of
the game. Fix i = 1, u = u∗, and ~v = ~v∗; round i of Scotland Yard goes as
follows:

1. If for some 1 ≤ j ≤ n, the pawns ∀ and ∃j share the same vertex, i.e.,
u = ~v(j), ∀ is said to be captured (by ∃j). If ∀ is captured the game
stops and ∃ wins. If ∀ is not captured and i > k the game also stops
but ∃ loses.

2. ∀ chooses a vertex u′, such that E(u, u′). If f(i) = show, ∀ physically
puts his pawn on u′. If f(i) = hide, he secretly writes u′ on his move
board making sure that it cannot be seen by his opponent. Set u = u′.

3. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every
1 ≤ j ≤ n, moves pawn ∃j to ~v′(j). Set ~v = ~v′.

4. Set i = i+ 1.

Note that these game rules do not consider the possibility of either player
getting stuck, as in not being able to move a pawn under his or her control
along an edge. This goes without loss of generality, as the digraphs at stake
are supposed to have out-degree ≥ 1.

Furthermore, it should be borne in mind, that for ∀ it is not a guaranteed
loss to move to a vertex occupied by one of ∃’s pawns. The game only
terminates after ∃ has moved and one of her pawns captures ∀, unlike the
game rules for the board game of Scotland Yard.

Observe that ∃ loses only after k rounds of the game have been played.
If it so happens that the game terminates after the jth round, for j < k,
then ∃ has won.

Scotland Yard is modelled as an extensive game with imperfect infor-
mation in Definition 3.1. The upcoming definition and Definition 4.1 are
notationally akin to the definitions in Section 2.

Definition 3.1. Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance.
Then, let the extensive Scotland Yard game constituted by sy be defined as
the tuple SY(sy) = 〈N,H,P,∼, U〉, where



The Complexity of Scotland Yard 219

• N = {∃, ∀}.

• In order to define H , let ℓ add to every finite tuple 〈a1, . . . , an〉 the in-
teger (⌈n/2⌉)−1. Then, H is the smallest set containing 〈u∗〉, 〈u∗, ~v∗〉
and is closed under actions taken by ∀ and ∃:

– If 〈h, u,~v〉 ∈ H , ℓ(〈h, u,~v〉) < k, u /∈ {~v}, and E(u, u′), then
〈h, u,~v, u′〉 ∈ H .

– If 〈h, u,~v, u′〉 ∈ H and E(~v,~v′), then 〈h, u,~v, u′, ~v′〉 ∈ H .

For h ∈ H , ℓ(h) denotes the number of rounds of h. For instance,
ℓ(〈u∗, ~v∗〉) = 0 and ℓ(〈u∗, ~v∗, u1, ~v1, u2〉) = 2. Somewhat unlike custom
usage in game theory, the length ℓ(h) of history h does not coincide
with the number of plies in the game. This notation is chosen to
reflect the game rule saying that a history only terminates after ∃ has
moved—that is, after every completed round.

Let ≺ be the immediate successor relation on H . That is, the smallest
relation closed under the following conditions:

– If h, 〈h, u〉 ∈ H , then h ≺ 〈h, u〉.

– If 〈h, u〉, 〈h, u,~v〉 ∈ H , then 〈h, u〉 ≺ 〈h, u,~v〉.

• Due to the notational convention, the value of the player function
P is easily determined from the history’s form, in the sense that
P (〈h, u〉) = ∃ and P (〈h, u,~v〉) = ∀, no matter h, u, and ~v.

• ∼ is the indistinguishability relation that formalizes the imperfect in-
formation in the game. It is defined such that for any pair of histories
h, h′ ∈ H of equal length, where

h = 〈u∗, ~v∗, u1, ~v1, . . . , ui〉 and h′ = 〈u∗, ~v∗, u
′
1, ~v

′
1, . . . , u

′
i〉 (1.1)

it is the case that h ∼ h′, if

(a) ~vj = ~v′j , for every 1 ≤ j ≤ i− 1; and

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show.

The previous condition, considering histories as in (1.1), defines ∼
only as a relation between histories h belonging to ∃. This reflects the
fact that it is ∃ who experiences the imperfect information. Somewhat
unusual, we extend ∃’s indistinguishability relation ∼ to histories in
which ∀ has to move. The reader is urged to take this extension as
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a technicality. We put as follows: for any pair of histories h, h′ ∈ H ,
where

h = 〈u∗, ~v∗, u1, ~v1, . . . , ui, ~vi〉 and h′ = 〈u∗, ~v∗, u
′
1, ~v

′
1, . . . , u

′
i, ~v

′
i〉
(1.2)

it is the case that h ∼ h′, if

(a) ~vj = ~v′j , for every 1 ≤ j ≤ i; and

(b) uj = u′j, for every 1 ≤ j ≤ i such that f(j) = show.

• U : Z → {win, lose} is the function that decides whether a terminal
history 〈h, u,~v〉 is won or lost for ∃. Formally,

U(〈h, u,~v〉) =

{

win if u ∈ {~v}
lose if u /∈ {~v}.

Note the discrepancy with the definition of utility functions in Sec-
tion 2. As this papers is only concerned with ∃’s having a winning
strategy, we found the current utility function more convenient.

Since ∼ is reflexive, symmetric, and transitive it defines an equivalence
relation on H . We write H ⊆ ℘(H) for the set of equivalence classes, or in-
formation cells , in whichH is partitioned by ∼. That is, H = {C1, . . . , Cm},
where C1 ∪ . . . ∪ Cm = H and for every 1 ≤ i ≤ m, if h ∈ Ci and h ∼ h′,
then h′ ∈ Ci. A standard inductive argument suffices to see that for every
Ci ∈ H and pair of histories h, h′ ∈ Ci, the length of h and h′ coincides and
P (h) = P (h′).

We lift the relation ≺ to H, using the same symbol: For any pair C,C′ ∈
H, we write C ≺ C′ if there exists histories h ∈ C and h′ ∈ C′ such that
h ≺ h′. It is easy to see that if h, h′ are histories in a cell C ∈ H, then
P (h) = P (h′). Thus, the player function is meaningfully lifted as follows:
if C ∈ H and h is a history in C, then P (C) = P (h). Call a cell C ∈ H
terminal if all its histories are terminal.

Since we study an extension of ∼, the set H partitions all histories in
H . As we pointed out in the definition of ∼, if histories h and h′ stand
in the ∼ relation and belong to ∀, this should not be taken to reflect any
conceptual consideration about ∃’s experiences. Yet, if h and h′ belong to
∃, to write h ∼ h′ reflects genuine indistinguishability for player ∃ between
the two histories h and h′. Consider the set H∃ = {C ∈ H | P (C) = ∃},
that partitions the set of histories that belong to ∃. We claim that H∃ is
an information set in the sense of Section 2, that is, it meets the action
consistency requirement. A proof to this effect is straightforward.

The notion of winning strategy readily applies to the games SY(sy),
despite the fact that ∃’s indistinguishability relation is modelled by ∼ and
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not by the customary (Ii)i∈N . We claim without proof that the “extended
usage” of ∼ does not affect ∃’s having a winning strategy. To formulate this
claim more precisely, let G(sy) model the Scotland Yard game constituted
by sy using the customary information partitions. Then, ∃ has a winning
strategy in G(sy) iff she has one in SY(sy).

For future reference, we lay down the following proposition.

Proposition 3.2. Let SY(sy) = 〈N,H,P,∼, U〉 be the Scotland Yard
game constituted by sy. Then, the following statements hold:

(1) If 〈h1, u1〉 ∼ 〈h2, u2〉 and f(ℓ(〈h1, u1〉)) = hide, then h1 ∼ h2.

(2) If 〈h1, u1〉 ∼ 〈h2, u2〉 and f(ℓ(〈h1, u1〉)) = show, then h1 ∼ h2 and
u1 = u2.

(3) If 〈h1, u1, ~v1〉 ∼ 〈h2, u2, ~v2〉, then 〈h1, u1〉 ∼ 〈h2, u2〉 and ~v1 = ~v2.

(4) If h1 6∼ h2 and 〈h1, u1〉, 〈h2, u2〉 ∈ H , then 〈h1, u1〉 6∼ 〈h2, u2〉.

Proof. Readily observed from the definition of ∼ in Definition 3.1. q.e.d.

Example 3.3. As an illustration of modelling a Scotland Yard instance6 as
an extensive game with imperfect information, consider the digraph G× =
〈V ×, E×〉, where

V × = {u∗, v∗, a, b, A,B, 1, 2, 3}

E× = {〈u∗, a〉, 〈u∗, b〉, 〈a, 1〉, 〈b, 2〉, 〈b, 3〉,

〈v∗, A〉, 〈v∗, B〉, 〈A, 1〉, 〈B, 2〉, 〈B, 3〉}.

For a depiction of G×, see Figure 2. Let f× be an information function
such that f×(1) = hide and f×(2) = show. Conclude the construction of
the Scotland Yard instance sy

×, by putting u∗ and v∗ as the initial vertices
of ∀ and ∃, respectively. In SY(sy×), the set of histories H contains exactly
the following histories:

〈u∗, v∗〉
〈u∗, v∗, a〉 〈u∗, v∗, a, B, 1〉 〈u∗, v∗, a, B, 1, 3〉
〈u∗, v∗, b〉 〈u∗, v∗, b, A, 2〉 〈u∗, v∗, b, A, 2, 1〉
〈u∗, v∗, a, A〉 〈u∗, v∗, b, A, 3〉 〈u∗, v∗, b, A, 3, 1〉
〈u∗, v∗, a, B〉 〈u∗, v∗, b, B, 2〉 〈u∗, v∗, b, B, 2, 2〉 !
〈u∗, v∗, b, A〉 〈u∗, v∗, b, B, 3〉 〈u∗, v∗, b, B, 2, 3〉
〈u∗, v∗, b, B〉 〈u∗, v∗, a, A, 1, 1〉 ! 〈u∗, v∗, b, B, 3, 2〉
〈u∗, v∗, a, A, 1〉 〈u∗, v∗, a, B, 1, 2〉 〈u∗, v∗, b, B, 3, 3〉 !

6 The digraph under consideration does not have out-degree ≥ 1. The game terminates
after two rounds, so adding reflexive edges on the vertices 1, 2, and 3 goes without
affecting the winning conditions of the game.
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∀
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∃

1
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a

b

u∗ v∗

Figure 2. The digraph G×, allowing for a two-round Scotland Yard game.

The terminal histories marked with an exclamation mark are winning his-
tories for ∃. Because f×(1) = hide, the game at hand is a genuine game of
imperfect information. This fact is reflected in the set of information cells
H, containing the following three non-singletons:

{〈u∗, v∗, a〉, 〈u∗, v∗, b〉},

{〈u∗, v∗, a, A〉, 〈u∗, v∗, b, A〉},

{〈u∗, v∗, a, B〉, 〈u∗, v∗, b, B〉}.

(Note that under the customary definition of ∼, one would not have the
latter two information cells, as they belong to ∀.) Game theorists often find
it convenient to present extensive games as trees, as in Figure 3.

4 A perfect information Scotland Yard game

We observed that Scotland Yard is a game with imperfect information and
in Definition 3.1, we modeled it as an extensive game with imperfect in-
formation. This model one may find Scotland Yard’s canonical means of
analysis, for admittedly, it gives a natural account of the imperfect infor-
mation that makes Scotland Yard such a fun game to play. Canonical or
not, this does not imply, of course, that Scotland Yard can only be ana-
lyzed as an imperfect information game. In the remainder of this section
we shall show how a Scotland Yard instance may also give rise to a game
of perfect information. The underlying idea has it that during rounds in
which ∀ moves and hides his whereabouts, he now picks up a set of vertices
that contains all vertices where he can possibly be, from the viewpoint of
∃. In case ∀ has to show himself, he selects one vertex from the current set
of vertices and announces this vertex as his new location.
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BABA

a b

1 2 3 1 3 2 3

u∗

1 1 3

2

2 32

1

Figure 3. A graphical representation of the Scotland Yard game played
on the game board constituted by the digraph G× from Figure 2. A path
from the root to any of its nodes represents a history in the game. For
instance, the path u∗, b, A, 2 corresponds with the history 〈u∗, v∗, b, A, 2〉.
The information cells are indicated by the shaded areas. The cells marked
with an exclamation mark are won by ∃.

A B

u∗

2 3 2 3 2 3

{1} {2} {3}

1

{1} {3}{2}

11

{a,b}

Figure 4. A graphical representation of the Scotland Yard-PI game
played on the game board constituted by the digraph G× from Figure
2. A path from the root to any of its nodes represents a history in the
game. For instance, the path u∗, {a, b}, A, {2} corresponds with the history
〈{u∗}, v∗, {a, b}, A, {2}〉. The cells marked with an exclamation mark are
won by ∃.
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More abstractly, ∀’s powers are lifted from the level of picking up vertices
to the level of picking up sets of vertices. ∃’s powers remain unaltered,
as compared to the game with imperfect information that was explicated
above.

Modelling imperfect information by means of a power set construction—
as we are about to do—is by no means new. For instance, the reader
may find this idea occurring in the computational analyses of games with
imperfect information [Re184, Pe3AzRe101]. In logic, the idea of evaluating
an Independence-friendly logic-sentence with respect to a set of assignments
underlies Hodges’ trump semantics [Ho197a]. In automata theory, the move
to power sets is made when converting a non-deterministic finite automaton
into a deterministic one, see [Ho4Ul79].

As regards every single one of these disciplines, however, observe that
the object that was analyzed through power sets is substantially more com-
plex/powerful/bigger than the original object. For instance, in [Pe3AzRe101]
it was shown that three-player games with imperfect information can be
undecidable. In the realm of IF logic it was proven [Ca1Ho101] that no
compositional semantics can be given based on single assignments only. It
is well known that in the worst case converting a non-deterministic finite
automaton makes the number of states increase exponentially.

In view of these results it is striking that one can define a Scotland
Yard game with perfect information using a power set argument, without
experiencing a combinatorial explosion, cf. Theorem 6.3. What is meant
by “highly similar” is made precise in Section 5. First let me postulate the
game rules for the Scotland Yard game with perfect information and define
its extensive game form in Definition 4.1.

Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance as in Definition 1.1.
The initial position of the Scotland Yard-PI game constituted by sy is sim-
ilar to the initial position of the Scotland Yard game that is constituted by
sy. That is, a ∀ pawn is positioned on u∗ and for every 1 ≤ j ≤ n, the ∃j
pawn is positioned on ~v(j). In Scotland Yard-PI, ∀ does not have one pawn
at his disposal but as many as there are vertices in G.

Fix i = 1, U = {u∗}, and ~v = ~v∗; round i of Scotland Yard-PI goes as
follows:

1-PI. If U −{~v} = ∅, then the game stops and ∃ wins. If U −{~v} 6= ∅ and
i > k the game also stops but ∃ loses.

2-PI. Let U ′ = E(U −{~v}). If f(i) = hide, then set U = U ′ and ∀ positions
a ∀ pawn on every vertex v in U . If f(i) = show, then ∀ picks a vertex
u′ ∈ U ′, removes all his pawns from the board, and puts one pawn on
u′. Set U = {u′}.
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3-PI. Player ∃ chooses a vector ~v′ ∈ V n, such that E(~v,~v′), and for every
1 ≤ j ≤ n, moves pawn ∃j to ~v′(j). Set ~v = ~v′.

4-PI. Set i = i+ 1.

Clearly, for arbitrary sy, the Scotland Yard-PI game constituted by sy is
a game of perfect information. Thus extensive game theory provides natural
means of analysis.

Definition 4.1. Let sy = 〈G, 〈u∗, ~v∗〉, f〉 be a Scotland Yard instance.
Then, let the extensive Scotland Yard-PI game constituted by sy be defined
as the tuple SY-PI(sy) = 〈NPI, HPI, PPI, UPI〉, where

• NPI = {∃, ∀}.

• HPI is the smallest set containing the strings 〈{u∗}〉, 〈{u∗}, ~v∗〉, that
is closed under taking actions for ∃ and ∀:

– If 〈h, U,~v〉 ∈ HPI, ℓ(〈h, U,~v〉) < k, f(ℓ(〈h, U,~v〉) + 1) = hide, and
U − {~v} 6= ∅, then 〈h, U,~v, E(U − {~v})〉 ∈ HPI.

– If 〈h, U,~v〉 ∈ HPI, ℓ(〈h, U,~v〉) < k, and f(ℓ(〈h, U,~v〉)+1) = show,
then {〈h, U,~v, {u′}〉 | u′ ∈ E(U − {~v})} ⊆ HPI.

– If 〈h, U,~v, U ′〉 ∈ HPI and E(~v,~v′), then 〈h, U,~v, U ′, ~v′〉 ∈ HPI.

Let ≺PI be the immediate successor relation on HPI. That is, the
smallest relation closed under the following conditions:

– If h, 〈h, U〉 ∈ HPI, then h ≺PI 〈h, U〉.

– If 〈h, U〉, 〈h, U,~v〉 ∈ HPI, then 〈h, U〉 ≺PI 〈h, U,~v〉.

• Again, the value of P is readily determined from the history’s form,
in the sense that P (〈h, U〉) = ∃ and P (〈h, U,~v〉) = ∀, no matter h, U ,
and ~v.

• Naturally,

U(〈h, U,~v〉) =

{

win if U − {~v} = ∅

lose if U − {~v} 6= ∅.

These definitions may be appreciated best by checking SY-PI(sy×),
where sy

× = 〈G×, 〈u∗, ~v∗〉, f
×〉 and G× is the digraph depicted in Fig-

ure 2. We skip writing down all histories in this particular game, leaving
the reader with a graphical representation of its game tree in Figure 4.
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5 An effective equivalence

In this section, the similarity between Scotland Yard and its perfect infor-
mation variant is established. Making use of this similarity, we prove in
Theorem 5.7 that for any instance sy, ∃ has a winning strategy in SY(sy)
iff she has one in SY-PI(sy). In order to prove this result it will be shown
in Lemma 5.6 that the structures 〈H,≺〉 and 〈HPI,≺PI〉 are isomorphic, in
virtue of the bijection β.

Main result of this subsection resides in Lemma 5.6, saying that the
structures 〈H,≺〉 and 〈HPI,≺PI〉 are isomorphic. The witness of this iso-
morphism is the bijection β, shortly defined in Definition 5.1. The inter-
mediate results can be proved by inductive arguments. As the proofs do
not contribute too much to the content of this paper we decided to not
incorporate them. The reader can find a detailed account of these proofs in
[Se206].

The function β is a map from histories in the perfect information game
SY-PI(sy) to information cells in the game SY(sy). An information cell
is a set of histories that cannot be distinguished by ∃. The perfect infor-
mation Scotland Yard game was defined in such a way that ∃’s imperfect
information in SY(sy) is propagated to perfect information about sets in
SY-PI(sy). It will be observed through the map β that there is a bijection
between information cells—sets of histories—in the imperfect information
game, and histories in the perfect information game that hold sets of ver-
tices owned by ∀. Thus, β is a map from the information cells in SY(sy) to
histories in SY-PI(sy).

Definition 5.1. Let SY(sy) and SY-PI(sy) be games constituted by sy.
Define the function β : HPI → ℘(H) inductively as follows:

β(〈{u∗}〉) = {〈u∗〉}

β(〈{u∗}, ~v∗〉) = {〈u∗, ~v∗〉}

β(〈h, U〉) = {〈g, u〉 ∈ H | g ∈ β(h), u ∈ U}

β(〈h, U,~v〉) = {〈g, u, ~v〉 ∈ H | 〈g, u〉 ∈ β(〈h, U〉)}.

The function β is (partially) depicted in Figure 5 mapping the histories
from SY-PI(sy×) to sets of histories from SY(sy×).

Proposition 5.2 states that if in a history h ∈ HPI a pawn (owned by
either player) is positioned on a vertex, then also in β(h) there exists a
history in which this vertex is occupied by a pawn.

Proposition 5.2. For every history h′ ∈ HPI, the following hold:

(1) If h′ = 〈h, U〉 and f(ℓ(〈h, U〉)) = hide, then it is the case that U =
{u | 〈g, u〉 ∈ H , for some g ∈ β(h)}.
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Figure 5. A partial depiction of the bijection β from histories in
SY-PI(sy×) to sets of histories from SY(sy×). β is displayed using sev-
eral kinds of arrows to enhance readability. Note that this visualization
does not reflect any conceptual difference. Sets of histories in the range
of β (found in the right-hand structure) turn out to be information cells,
cf. Lemma 5.5.
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(2) If P (h′) = ∀ and f(ℓ(h′)+1) = show, then it is the case that {u | h′ ≺
〈h′, {u}〉, for some 〈h′, {u}〉 ∈ HPI} = {u | 〈g, u〉 ∈ H , for some g ∈
β(h′)}.

(3) If h′ = 〈h, U〉 ∈ HPI and u ∈ U , then there exists a history g ∈ β(h)
such that 〈g, u〉 ∈ H .

(4) If h′ = 〈h, U,~v〉 ∈ HPI, then it is the case that β(〈h, U,~v〉) equals
{〈g, u, ~v〉 | 〈g, u〉 ∈ β(〈h, U〉)}.

Proposition 5.3 is the converse of the previous proposition, as it links up
histories in H with histories in HPI.

Proposition 5.3. For every g′ ∈ H , the following hold:

(1) If g′ = 〈g, u〉 ∈ H , then there exists a 〈g, U〉 ∈ HPI such that g ∈ β(h)
and u ∈ U .

(2) If g′ = 〈g, u, ~v〉 ∈ H , then there exists a 〈h, U,~v′〉 ∈ HPI such that
〈g, u〉 ∈ β(〈h, U〉) and ~v = ~v′.

For β to be bijection between HPI and H, it ought to be the case that
β has range H rather than ℘(H). We lay down the following result.

Lemma 5.4. β is a function of type HPI → H.

The latter lemma is strengthened in the following lemma.

Lemma 5.5. β is a bijection between HPI and H.

The isomorphism result follows from tying together the previous statements.

Lemma 5.6. The structures 〈HPI,≺PI〉 and 〈H,≺〉 are isomorphic.

Proof. Lemma 5.5 showed that β is a bijection between HPI and H. It
remains to be shown that β preserves structure, that is, for every pair of
histories h, h′ ∈ HPI, it is the case that h ≺PI h

′ iff β(h) ≺ β(h′). Recall that
for C′ ∈ H to be the immediate successor of C ∈ H, there must exist two
histories g, g′ from C,C′, respectively, such that g ≺ g′. The claim is proved
by a straightforward inductive argument on the length of the histories in
HPI. We shall omit spelling out the details of the proof, only mentioning
the Propositions on which it relies:

From left to right. Follows from Proposition 5.2 (3) and (4).

From right to left. Follows from Proposition 5.3 (1) and (2). q.e.d.
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Scotland Yard and its perfect information variant are highly similar in
the sense that the game trees to which the games give rise are isomorphic.

The structures 〈HPI,≺PI〉 and 〈H,≺〉 are not only isomorphic, they also
preserve the property of being winnable for the cops. To flesh out this claim,
let f : B → C and g : A→ B be functions. Then, f · g denotes the function
of type A→ C such that for every a ∈ A, f · g(a) = f(g(a)).

Making use of the fact that 〈HPI,≺PI〉 and 〈H,≺〉 are isomorphic, an
inductive argument proves that S is a winning strategy in SY-PI(sy) iff S ·β
is a winning strategy in SY(sy).7 Thus, we arrive at the following result.

Theorem 5.7. Let sy be a Scotland Yard instance. Then, ∃ has a winning
strategy in SY(sy) iff she has a winning strategy in SY-PI(sy).

6 Scotland Yard is PSPACE-complete

In this section, we define Scotland Yard as a decision problem and prove
that it is PSPACE-complete, both the perfect and the imperfect informa-
tion game. Hence, the imperfect information in Scotland Yard does not
increase the game’s complexity, under the current analysis.

Let Scotland Yard be the set of all Scotland Yard instances sy such
that ∃ has a winning strategy in SY(sy). As a special case let the set of
Scotland Yard instances Scotland Yard♣ equal

{〈G, 〈u∗, ~v∗〉, f〉 ∈ Scotland Yard | f has range {♣}},

where ♣ ∈ {show, hide}.
In this section, we show that Scotland Yard and Scotland Yardshow

both are complete for PSPACE. From this one may conclude that the
imperfect information in Scotland Yard does not have a computational im-
pact. Surprisingly, if ∃ cannot see the whereabouts of ∀ at any stage of
the game, the decidability problem ends up being NP-complete. That is,
Scotland Yardhide is complete for NP. The latter claim is substantiated
in Section 7.

Lemma 6.1. Scotland Yard ∈ PSPACE.

Proof. Required is a PSPACE algorithm that for arbitrary Scotland Yard
instances sy decides whether ∃ has a winning strategy in SY(sy). By The-
orem 5.7, it is sufficient to provide a PSPACE algorithm that decides the
same problem with respect to SY-PI(sy). This equivalence comes in useful,
because SY-PI(sy) is a game of perfect information and can for this reason
be dealt with by means of the traditional machinery. In fact, the very same

7 One of the anonymous referees made the valuable point that winning strategy preser-
vation follows almost directly from the fact that the two structures are isomorphic.
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machinery supplied by Papadimitriou cited in Section 1 will do. Recall that
Papadimitriou, namely, observed that deciding the value of a game with
perfect information can be done in PSPACE if the following requirements
are met:

• the length of any legal sequence of moves is bounded by a polynomial
in the size of the input; and

• given a “board position” of the game there is a polynomial-space al-
gorithm which constructs all possible subsequent actions and board
positions; or, if there aren’t any, decides whether the board position
is a win for either player.

It is easy to see that SY-PI(sy) meets those conditions. As to the first one,
namely, the length of the description of any history is polynomially bounded
by the number of rounds k of the game. By assumption k ≤ ‖V ‖ ≤ ‖sy‖,
whence the description of every history is polynomial in the size of the input.
As regards the second condition, if 〈h, U,~v〉 is a non-terminal history, then
its successors are either (depending on f) only 〈h, U,~v, {w1, . . . , wm}〉 or all
of 〈h, U,~v, {w1}〉, . . . , 〈h, U,~v, {wm}〉, where E(U − {~v}) = {w1, . . . , wm}.
Those can clearly be constructed in PSPACE.

In the worst case, for an arbitrary history 〈h, U,~v, U ′〉 owned by ∃ there
are ‖V ‖n many vectors ~v′ such that E(~v,~v′), where n is the number of
∃’s pawns on the game board. This number is exponential in the size
of the input. Nevertheless, every vector ~v′ in V n = {v1, . . . , v‖V ‖}

n can
be constructed in polynomial space, simply by writing down the vector
〈v1, . . . , v1〉 ∈ V n that comes first in the lexicographical ordering and suc-
cessively constructing the remaining vectors that follow it up in the same
ordering. q.e.d.

Hardness is shown by reducing from QBF.

Lemma 6.2. Scotland Yardshow is PSPACE-hard.

Proof. Given a QBF instance ψ = ∀x1∃y1 . . . ∀xn∃yn ϕ, where ϕ = C1 ∧
. . . ∧ Cm is a boolean formula in 3-CNF, it suffices to construct in P a
Scotland Yard instance syψ, such that ψ ∈ QBF if and only if syψ ∈
Scotland Yardshow. To this end, let me construct the initial position
of the game constituted by syψ. The formal specification of syψ follows
directly from these building blocks.

Set i = 0. For i ≤ n+ 1, do as follows:

• If i = 0, lay down the opening-gadget, that is schematically depicted
in Figure 6.a. Moreover, distribute the pawns from

{∃x1
, . . . ,∃xn

, ∃y1 , . . . ,∃yn
∃d, ∀}
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over the vertices of the opening-gadget as indicated in its depiction.

• If 1 ≤ i ≤ n, first put the xi-gadget at the bottom of the already
constructed game board. Next, put the yi-gadget below the justly
introduced xi-gadget. Figures 6.b and 6.c give a schematic account
of the xi-gadget and yi-gadget, respectively. (Note that as a result of
these actions, every vertex in the board game is connected to at least
one other vertex, except for the ones on the top row of the opening-
gadget and the ones on the bottom row of the yi-gadget.)

• If i = n + 1, put the clause-gadget (see Figure 6.d) at the bottom of
the already constructed board game. This gadget requires a little tin-
kering before construction terminates, in order to encode the boolean
formula ϕ by adding edges to the clause-gadgets (not present in the
depiction), as follows:

– For every variable z ∈ {~x, ~y} and clause C in ϕ: If z occurs as a
literal in C, then join the vertices named “+z” and “C” by an
edge. If ¬z occurs as a literal in C, then join the vertices named
“−z” and “C” by an edge.

• Set i = i+ 1.

Note that the board game can be considered to consists of layers, that
are indicated by the horizontal, dotted lines. These layers are numbered
−2,−1, . . . , 4n + 5, enabling us to refer to these layers when describing
strategies. Note that the division in layers is not complete: in between layer
4(i−1)+3 and layer 4(i−1)+4 of the xi-gadget are two floating vertices.

The formal specifications of the graph and the initial positions of sy are
easily derived from the previous descriptions. Therefore, syψ is fully speci-
fied after putting f : {1, . . . , 4n+ 5} → {show}. Hence, syψ is an instance
of Scotland Yardshow.

It remains to be shown that ψ ∈ QBF iff syψ ∈ Scotland Yardshow.

From left to right. Suppose {true, false} |= ψ, then there is a way of
subsequently picking truth values for the existentially quantified variables
that renders ψ’s boolean part ϕ true, no matter what truth values are
assigned to the universally quantified variables. ∃’s winning strategy in
SY(syψ) (being witness of the fact that syψ ∈ Scotland Yardshow) shall
be read off from the aforementioned way of picking. We do so by interpreting
moves in SY(syψ) as assigning truth values to variables and vice versa:
Actions performed by ∀ from layer 4(i− 1) + 1 to layer 4(i− 1) + 2 will be
interpreted as assigning a truth value to the universally quantified variable
xi. In particular, a move by ∀ to the vertex named “+xi” (“−xi”) will
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1

0

−1

−2

∃x1
∃xi

∃xn

∃yn
∃yi

∃y2
∃y1

∀

∃d

(a) Opening-gadget

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4
︸ ︷︷ ︸

i−1

︸ ︷︷ ︸

i−1

+xi −xi

(b) xi-gadget

4(i− 1) + 4

4(i− 1) + 5
︸ ︷︷ ︸

n

︸ ︷︷ ︸

i

+yi−yi

(c) yi-gadget

C2

4n + 4

4n + 5

+y1−y1+y2−y2 +yi−yi +yn−yn +x1 −x1+xi −xi+xn −xn

CmC1

(d) Clause-gadget

Figure 6. The gadgets that make up the initial position of the board
game constituted by SY(syψ). The dotted lines are merely “decoration” of
the game board, to enhance readability. The horizontal, dotted lines are
referred to as “layers”.
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be interpreted as assigning to xi the value true (false). Conversely, if ∃’s
way of picking prescribes assigning true (false) to yi this will be reflected
in SY(syψ) by moving ∃yi

to the vertex named “+yi” (“−yi”) on layer
4(i− 1) + 5.

Roughly speaking, ∃ goes about as follows: when she is to chose between
moving ∃yi

to the vertex named “+yi” or “−yi” she understands ∀’s previous
moves as a truth assignment and observes which truth value is prescribed
by the way of picking. Next, she interprets this truth value as a move in
SY(syψ) as described above and moves ∃yi

to the according vertex. This
intuition underlies the full specification of ∃’s strategy, described below:

For 0 ≤ i ≤ n+ 1 let ∃’s strategy be as follows:

• Above all: If any pawn can capture ∀, do so!

• For every pawn that stands on a vertex on layer j that is connected to
exactly one vertex on layer j + 1, move it to this vertex. If the pawn
at stake is actually ∃xi

standing on a vertex on layer 4(i − 1) + 3, it
cannot move to the vertex on layer 4(i − 1) + 4, because there is a
vertex v in between. In this case, move ∃xi

to v and on the next round
of the game move it downwards to layer 4(i− 1) + 4.

• If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the

vertex on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is
positioned.

• If ∃yi
stands on a vertex on layer 4(i− 1) + 4, and the way of picking

prescribes assigning true (false) to yi, then move it to the vertex on
layer 4(i− 1) + 5 that is named “+yi” (“−yi”).

• If ∃d stands on a vertex on layer j that has two successors on layer
j + 1, then move it along the left-hand (right-hand) edge, if j is even
(odd).

• If ∃z (for z ∈ {~x, ~y}) stands on a vertex on layer 4n+4 and this vertex
is not connected to a vertex on which ∀ is positioned, move it along
an arbitrary edge (possibly upwards).

As to ∀’s behavior we claim without rigorous proof that after 4n + 4
rounds of the game (that is, without being captured at an earlier stage of
the game) he has traversed a path leading through exactly one of the vertices
named “+xi” and “−xi”, for every xi ∈ {~x}, ending up in a vertex named
“C”, for some clause C in ϕ. To see that this must be the case: moving ∀
upwards at any stage of the game results in an immediate capture by ∃d.
(In fact, ∃d’s sole purpose in life is capturing ∀, if he moves upward.) If ∀
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is moved to one of the reflexive vertices on layer 4(i− 1) + 3 he is captured
by ∃xi

who moves along the reflexive edge.
Upon arriving at layer 4n + 4, pawn ∃z (for z ∈ {~x, ~y}) stands on a

vertex named “+z” or “−z”, reflecting that z was assigned true or false,
respectively. By assumption on the successfulness of the way of picking,
that guided ∃ through SY(syψ), it is the case that the truth assignment
that is associated with the positions of the pawns ∃x1

, . . . ,∃xn
, ∃y1 , . . . ,∃yn

makes ϕ true. That is, under that truth assignment, for every clause C in ϕ
there is a literal L that is made true. Now, if L = z, then ∃z stands on the
vertex named “+z” and this vertex and the vertex named “C” are joined
by an edge; and if L = ¬z, then ∃z stands on the vertex named “−z” and
this vertex and the vertex named “C” are joined by an edge. So no matter
to which vertex named “C” pawn ∀ moves during his 4n+5th move, for at
least one z ∈ {~x, ~y} it is the case that ∃z can move to this vertex named
“C” and capture him there.

From right to left. Suppose {true, false} 6|= ψ, then there is a way of
picking truth values for the universally quantified variables that renders the
boolean part false, no matter what truth values are subsequently assigned
to the existentially quantified variables. We leave out the argumentation
that this way of picking constitutes a winning strategy for ∀ in SY(syψ),
as it is similar to the argumentation in the converse direction. But note
one crucial property of ∀’s winning strategy: it moves pawn ∀ downwards,
during every round in the game. Therefore, the only round in which it can
be captured is the last one: on a vertex on layer 4n+ 5.

Close attention is required, though, to ∃’s behavior. That is, it is to be
observed that ∃ cannot change her sad destiny (losing) by deviating from
the behavior specified in the rules below. The gist of this behavior is that
it results in pawn ∃xi

remembering ∀’s moves on layer 4(i− 1)+ 1 and that
after 4n+4 rounds the pawns ∃x1

, . . . ,∃xn
, ∃y1 , . . . ,∃yn

all stand on a vertex
on layer 4n+4. The point is that just as above, the positions of these pawns
on vertices on layer 4n+ 4 reflect a truth assignment. This time however,
the truth assignment falsifies the boolean part ϕ.

The rules are as follows:

(1) If ∃xi
stands on a vertex on layer 4(i − 1) + 2, then move it to the

vertex on layer 4(i− 1) + 3 that is connected to the vertex where ∀ is
positioned.

(2) If ∃d stands on a vertex on layer j that is connected to two vertices
below, then move it along the left-hand (right-hand) edge, if j is even
(odd); or along the right-hand (left-hand) edge, if j is even (odd).
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4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

+xi −xi

∀

∃d

∃xi

u v

(a)

+xi −xi

∃xi
∀

∃d

4(i− 1) + 1

4(i− 1) + 2

4(i− 1) + 3

4(i− 1) + 4

(b)

Figure 7. Positions on the game board that may occur if ∃ does not play
according to rule (1) and (2), depicted in (a) and (b), respectively.
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(3) For every pawn that stands on a vertex on layer j that is connected
to exactly one vertex on layer j+ 1, move it to this vertex. (With the
same exception as before with regard to ∃xi

standing on a vertex on
layer 4(i− 1) + 3.)

We argue that not behaving in correspondence with (1)-(3) will also result
in a loss for ∃:

(1) Suppose ∃xi
stands on the vertex on layer 4(i−1)+2, with two options:

u and v. Let u be the vertex on layer 4(i− 1)+ 3 that is connected to
the vertex where ∀ is positioned (see Figure 7.a). For the sake of the
argument let us suppose that ∃xi

is moved to v, violating rule (1). In
that case, ∀ may safely move to u. If ∀ continues the game by moving
its pawn downwards it wins automatically, since after the final round
(round 4n + 5) its pawn stands on a vertex on layer 4n + 4, due to
the extra vertex sitting in between layers 4(i− 1)+3 and 4(i− 1)+4,
without there being any opportunity for ∃ to capture him. As such,
the pawn ∃xi

is forced to remember what vertex ∀ visited on layer
4(i− 1) + 2: the one named “+xi” or “−xi”.

(2) Suppose ∃d stands on a vertex on layer 4(i − 1) + 1 and from there
moves along the right-hand edge twice (see Figure 7.b). ∀ can exploit
this move by moving as he would move normally, except for round
4n + 5, during which he moves upwards. This behavior results in a
guaranteed win for ∀, since none of ∃’s pawns is pursuing ∀ closely
enough to capture it, after moving upwards.

(3) Suppose any pawn controlled by ∃ moves upwards instead of down-
wards. This can never result in a win for ∃, because ∀ (behaving as
he does) can only be captured in the last round of the game, on a
vertex on layer 4n+ 5. In particular, any pawn ∃z, for z ∈ {~x, ~y}, the
shortest path to a vertex on layer 4n+ 5 is of length 4n+ 5. Now, if
∃z is moved upwards, it cannot (during the last round of the game)
capture ∀.

This concludes the proof. q.e.d.

The previous two lemmata are sufficient arguments to settle completeness.

Theorem 6.3. Scotland Yard and Scotland Yardshow are PSPACE-
complete.

Proof. Lemma 6.1 holds that Scotland Yard is solvable in PSPACE.
To check whether an instance sy has a function f with range {show} is
trivial, therefore, also Scotland Yardshow is solvable in PSPACE.
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PSPACE-hardness was proven for Scotland Yardshow in Lemma 6.2.
Since the latter problem is a specialization of Scotland Yard, it follows
immediately that Scotland Yard is PSPACE-hard as well. Hence, both
problems are complete for PSPACE. q.e.d.

7 Ignorance is (computational) bliss

Intuitively, adding imperfect information makes a game harder. However,
if one restricts oneself to Scotland Yard instances in which ∀’s whereabouts
are only known at the beginning of the game, then deciding whether ∃ has
a winning strategy is NP-complete, cf. Theorem 7.3. After the proof of
this theorem, we argue that from a quantitative point of view it is indeed
harder for ∃ to win an arbitrary Scotland Yard game, thus backing up our
pre-computational intuitions.

Lemma 7.1. Scotland Yardhide ∈ NP.

Proof. We make use of the equivalence between the Scotland Yard game and
its perfect information counterpart Scotland Yard-PI. It suffices to give an
NP algorithm that decides whether ∃ has a winning strategy in an arbitrary
SY-PI(sy), where sy’s information function has range {hide}. That is, for
every integer i on which f is properly defined, we have that f(i) = hide.
Let me now repeat the game rule from page 224 that regulates ∀’s behavior
in the game of Scotland Yard-PI:

2-PI. Let U ′ = E(U − {~v}). If f(i) = hide, then set U = U ′ and ∀
positions a ∀ pawn on every vertex v iff v ∈ U . If f(i) = show,
then ∀ picks a vertex u′ ∈ U ′, removes all his pawns from the
board, and puts one pawn on u′. Set U = {u′}.

Since for no 1 ≤ i ≤ k, f(i) equals show, we can harmlessly replace it by
the following rule:

2-PI′. Set U ′ = E(U − {~v}) and ∀ positions a ∀ pawn on every vertex
v iff v ∈ U .

Doing so yields a game in which ∀ plays no active role anymore, in the
sense that the set U at any round of the game is completely determined
by ∃’s past moves. Put differently, any game constituted by an instance
of Scotland Yardhide is essentially a one-player game! Having obtained
this insight, it is easy to see that the following algorithm decides in non-
deterministic polynomial time whether ∃ has a winning strategy in the k-
round SY-PI(sy):

• Non-deterministically guess a k number of n-dimensional vectors of
vertices ~v1, . . . , ~vk ∈ V

n.
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• Set U = {u∗}, ~v = ~v∗, and i = 1; then for i ≤ k proceed as follows:

– If E(~v,~vi), then set ~v = ~vi; else, reject.

– If (U − {~v}) = ∅, then accept; else, set U = (U − {~v}).

– Set i = i+ 1.

• If after k rounds there are still ∀ pawns present on the game board,
reject.

This algorithm is correct: ∃ has a winning strategy in SY-PI(sy) iff it
accepts sy. Hence, Scotland Yardhide is in NP. q.e.d.

To prove hardness, we reduce from 3-Sat, assuming that no clause in a
3-Sat instance contains two copies of one propositional variable. This goes
without loss of generality.

Lemma 7.2. Scotland Yardhide is NP-hard.

Proof. To reduce from 3-Sat, let ϕ = C1∧ . . .∧Cm be an instance of 3-Sat

over the variables x1, . . . , xn. On the basis of ϕ we shall construe a Scotland
Yard instance syϕ such that ϕ is satisfiable iff ∃ has a winning strategy in
SY-PI(syϕ). In fact, syϕ will be read off from the initial game board that
is put together as follows.

Set i = 0; for i ≤ n proceed as follows:

• If i = 0, lay down the clause-gadget from Figure 8.a. The sub-graphs
Hj are fully connected graphs with four elements, whose vertices are
connected with the vertices wj , for 1 ≤ j ≤ m.

• If 1 ≤ i ≤ n, put the xi-gadget to the right of the already constructed
game board, see Figure 8.b. It will be convenient to refer to the vertex
qi by means of −im+1 and +i

m+1.

For every 0 ≤ j ≤ m, do as follows:

– If xi occurs as a literal in Cj , add the edges 〈+i
j, wj〉 and

〈wj ,+
i
j+1〉.

– If ¬xi occurs as a literal in Cj , add the edges 〈−ij , wj〉 and

〈wj ,−
i
j+1〉.

– Add the edges 〈vj ,−
i
j+1〉 and 〈vj ,+

i
j+1〉.

Note that C0 refers to no clause, and that −im+1 = +i
m+1 = qi.

• Set i = i+ 1.
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Figure 8. The gadgets that make up the initial position of SY-PI(syϕ).
The sub-graph Hj is a fully connected graph with 4 elements, all of whose
vertices are connected with the vertex wj .
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The Scotland Yard instance syϕ is derived from the board game: the di-
graph is completely spelled out and the initial positions are as indicated
in the gadgets. Note that the every vertex in the constructed digraph
has at least one outgoing edge. In fact the reflexive edges in si and ti

serve merely to accomplish this fact. Therefore, syϕ is fully specified af-
ter putting f : {1, . . . , 2m + 2} → {hide}. Hence, syϕ is an instance of
Scotland Yardhide.

It remains to be shown that ϕ ∈ 3-Sat iff syϕ ∈ Scotland Yardhide.

By Theorem 5.7, it is sufficient to show that ϕ ∈ 3-Sat iff ∃ has a
winning strategy in SY-PI(syϕ).

From left to right. Suppose ϕ is satisfiable, then there exists a truth
assignment t : {~x} → {true, false} such that for every clause Cj in ϕ, there
exists at least one literal that is true under t. Let us describe a strategy for
∃ that is based on t and argue that it is in fact a winning strategy for her
in SY-PI(syϕ):

• If ∃i stands on the vertex on layer 0 and t(xi) = true (false), then
move it to +i

1 (−i1) on layer 1.

• If ∃i stands on −ij (+i
j), and −ij (+i

j) happens to be connected to

wj , then move it to wj . If ∃i stands on −ij (+i
j) and −ij (+i

j) is not

connected to wj , then move it to dij (eij).

• If ∃i stands on wj , move it to ±ij+1, for ± ∈ {+,−}. Note that this

move is deterministic, since there is an edge from wj to +i
j+1, say, only

if xi occurs as a literal in Cj . By assumption of ϕ being an instance
of 3-Sat, it cannot be the case that also ¬xi occurs as a literal in Cj .
Hence, there is no edge from wj to −ij+1.

• If ∃i stands on dij (eij) then move it to −ij+1 (+i
j+1). If ∃i stands on

dim or eim then move it to qi.

• If ∃i stands on qi, then move it to si if t(xi) = true and to ti if
t(xi) = false.

Observe that if ∃ plays according to the above strategy, every pawn ∃i will
eventually traverse either all vertices −i1, . . . ,−

i
m or all vertices +i

1, . . . ,+
i
m,

given that t(xi) = false or t(xi) = true, respectively.
To show that this strategy is indeed winning against any of ∀’s strategies,

consider the sets of vertices U ij that ∀ occupies on the clause-gadget and
the xi-gadget, after round 0 ≤ j ≤ 2m+2 of the game in which ∃ moved as
described above. Initially, ∀ has one pawn on v0; thus, U i0 = {v0}. Let us



The Complexity of Scotland Yard 241

suppose without loss of generality that t(xi) = true. Then, U i1 = {u1,−
i
1}

as the ∀ pawn put on +i
1 is captured by ∃i. We leave it to the reader to

check that for 1 ≤ j ≤ m− 1, it is the case that

U i2j = {vj , c
i
j, d

i
j}

U i2j+1 = {uj+1, a
i
j+1,−

i
j+1}.

The crucial insight being that the ∀ pawn put on wj can be captured iff there
exists at least one literal in Cj that is made true by t. Since t was assumed to
be a satisfying assignment, there must be at least one ∃ pawn that captures
the universal pawn on wj . It is prescribed by the above strategy that ∃i is
moved to any wj-vertex, if possible. Furthermore, it is required to return
to the xi-gadget on the next round of the game, capturing the ∀ pawn that
was positioned on +i

j+1, from vj .
After round 2m − 1, ∀ cannot continue walking on the safe path de-

fined by v0, u1, . . . , vm; indeed, he has one pawn on vm and two pawns per
xi-gadget: U i2m = {cim, d

i
m}. The pawn put on qi from vm is captured by

∃i coming from eim, so we get that U i2m+1 = {pi}. Following the strategy
above, ∃ moves ∃i from qi to si, whence U i2m+2 = ∅. Since i was chosen
arbitrarily, it is the case that ∀ has no pawns left on any xi-gadget and
therefore has lost after exactly 2m+ 2 rounds of playing.

From right to left. Suppose ϕ is not satisfiable, then for every truth
assignment t to the variables in ϕ, there exists a clause Cj in ϕ, that is
made false. In the converse direction of this proof, we concluded that every
∃i traverses one of the paths −i1, . . . ,−

i
m, q

i and +i
1, . . . ,+

i
m, q

i, depending
on t(xi). This behavior We call in accordance with the truth value t(xi)
assigned to xi; if this behavior is displayed with respect to every 1 ≤ i ≤ n,
then we say that it is in accordance with the truth assignment t.

For now, assume that ∃ plays in accordance with some truth assignment
t. Since ϕ is not satisfiable, it is not satisfied by t either. Therefore, there
is a clause Cj that is not satisfied by t. This is reflected during the playing
of the game by the fact that after round 2j there is a ∀ pawn positioned on
wj that cannot be captured by any ∃i. This state of affairs will result in a
win for ∀, as he positions pawns on every vertex in Hj during round 2j+ 1.
By construction, Hj is a connected graph on which he can keep on putting
pawns indefinitely.

Remains to be shown that ∃ cannot avoid losing by deviating from play-
ing in accordance with some truth assignment. We make the following
claims: (A) If after round 1 ≤ 2j − 1 ≤ 2m+ 1 there is an i such that no ∃
pawn is positioned on −ij or +i

j, then ∃ loses. (B) If after round 2 ≤ 2j ≤ 2m

there is an ∃ pawn positioned on cij or f ij , then ∃ loses. We prove this by
induction. While proving these claims, we take the easily derived fact for
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granted that during round 2j − 1 of the game ∀ has a pawn on uj and that
during round 2j of the game ∀ has a pawn on vj .

Base step. (A) Suppose after round 2m+1 no ∃ pawn is on qi (recall that
−im+1 = +i

m+1 = qi). Then, there is a ∀ pawn on qi, since by construction
of the game board, vm is connected to qi. During the next round, ∀ has
pawns on both si and ti, none of which is captured by ∃, as she has no
pawns on the xi-gadget.

(B) Suppose after round 2m there is an ∃ pawn positioned on cim, say.
We make a case distinction regarding the state of affairs after round 2m+1:
(i) there is an ∃ pawn on qi. Obviously, this pawn cannot be the one on
cim after round 2m, since there is no edge from cim to qi. Therefore there
are two of ∃’s pawns on the xi-gadget. As there are exactly n pawns at ∃’s
disposal, during round 2m + 1 there is an xh-gadget avoid of ∃ pawns. In
particular, there is no ∃ pawn on qh. Applying clause (A), yields that ∃
cannot win from this position. (ii) There is no ∃ pawn on qi. Then, there is
a ∀ pawn on qi after round 2m+1, coming from vm. Therefore, after round
2m+ 2 there is a ∀ pawn on ti; since ∃ can only capture ∀’s pawn at si.

Induction step. (A) Suppose after round 1 ≤ 2j − 1 < 2m − 1 there is
an i such that no ∃ pawn is positioned on −ij or +i

j . Since ∀ has a pawn

on vj−1 after round 2j − 2, he has pawns on both −ij and +i
j after round

2j − 1. If after the next round ∀ occupies the vertices cij , d
i
j , e

i
j or dij , e

i
j , f

i
j

this implies that one of ∃’s pawns is on cij or f ij , respectively. But then
she loses in virtue of the inductive hypothesis of (B). So, suppose that after
round 2j ∀ occupies all the vertices cij , d

i
j , e

i
j, f

i
j . Then, for the xi-gadget

to be cleansed of ∀ pawns it is prescribed that on some later round of the
game there are at least two ∃ pawns on this gadget. But then on this round
the inductive hypothesis of (A) applies, yielding that ∃ loses.

(B) Suppose after round 2 ≤ 2j < 2m− 2 there is an ∃ pawn positioned
on cij , say. Then, after round 2j + 2 the same pawn is positioned on cij+1.
Applying the inductive hypothesis of (B) teaches that ∃ loses.

We leave it to the reader to check that if ∃ plays in such a way that if
during any of the rounds of the game the premises of (A) and (B) do not
apply, then she plays in accordance with some truth assignment. However,
also playing according to any truth assignment is bound to be a losing way
of playing, as we argued earlier. This concludes the proof. q.e.d.

Tying together the latter two theorems yields NP-completeness for the
specialization of Scotland Yard in which ∀ does not give any information.

Theorem 7.3. Scotland Yardhide is NP-complete.

Proof. Immediate from Lemmas 7.1 and 7.2. q.e.d.
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∀∃

−2 −1 0 1

j1

j0(j−1)0 (j+1)0 (k−2)0

(k−1)1(k−2)1(j+1)1(j−1)1

(k−1)0

j−1 j−2

Figure 9. The forked graph F . ∃ has a winning strategy iff she knows ∀’s
position during round j.

From a computational point of view it is easier to solve the decision
problem Scotland Yard, when ∀ does not reveal himself during the game.
Yet, in a quantitative sense it becomes harder for ∃ to play this game, in
that there are games in which ∃ has no winning strategy if ∀ does not reveal
himself at all, but she would have had a winning strategy if ∀ was to reveal
himself at least once. To make this claim precise fix two functions g and h,
where

g : {1, . . . , k} → {hide} and h : {1, . . . , k} → {hide, show}

such that h(j) = show, for some j. We leave it to the reader to check that ∃
has a winning strategy in SY(F, 〈u∗, ~v∗〉, h) but none in SY(G, 〈u∗, ~v∗〉, g).
In the latter games, F is the graph depicted in Figure 9.

8 Concluding remarks

By means of a power set construction we observed that imperfect informa-
tion of vertices can be propagated to perfect information of sets of vertices,
without affecting the property of the cops having a winning strategy, cf. The-
orem 5.7. Lemma 6.1 shows that the decision problem Scotland Yardshow

is PSPACE-hard; Theorem 6.3 shows that that it is PSPACE-complete.
This finding is in line with the literature on combinatorial game theory, since
the former decision problem concerns two-player graph games with perfect
information. More surprisingly, it was shown in Lemma 6.1 that the power
set analysis does not come at a computational cost: also Scotland Yard

is solvable in PSPACE.
The question why, on an abstract level, the imperfect information in

Scotland Yard does not increase the computational complexity is not ad-
dressed in this paper. Thus, a direction for future research is to explore what
are Scotland Yard’s properties that cause it to behave like most two-player
games with perfect information.

We made the point that under the current analysis, Scotland Yard games
enjoy the same level of abstraction as graph games. Still the games under
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consideration form a coherent lot. To name some of their shared properties:
the duration is bound by the graph’s size; the imperfect information satisfies
perfect recall; the information function cannot account for very subtle pat-
terns of ignorance; and, the graphs were only supposed to have out-degree
≥ 1. Thus a more general theory is desirable that charts the computational
landscape of imperfect information graph games. In particular the question
is worthwhile under what conditions the complexity of graph games does
not increase when imperfect information is inserted.
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Abstract

The aim of the present paper is to discuss two different approaches
for formulating independence friendly (IF) modal logic. In one of
them, the language of basic modal logic is enriched with the slash
notation familiar from IF first-order logics, and the resulting logic
is interpreted in terms of games and uniform strategies. A different
approach is formulated in the present paper: an IF modal logic is
defined by imposing conditions on its structural relationships to other
logics, namely a specified modal logic (say, basic modal logic), its
first-order correspondence language, and IF logic. We compare logics
emerging from the two approaches. More generally, the issue of the
Eigenart of IF modal logics is addressed.

1 Introduction

Already in the seminal publications on independence friendly first-order
logic (IF logic) [Hi195, Hi196, Hi1Sa489, Sa493], applications were pointed
out involving a first-order modal setting. It was argued that the logical
form of some natural language sentences is best captured by formulas that
allow for slashing relative to modal operators—marking certain logical op-
erators as independent of modal operators in whose syntactic scope they
nevertheless lie. In the first publications that developed an independence
friendly modal logic, Bradfield [Br000] together with Fröschle [Br0Fr402a]
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interpreted the logic’s independence indications using a combination of tran-
sition systems with concurrency and games of imperfect information. Tu-
lenheimo [Tu103, Tu104] together with Hyttinen [Hy1Tu105] showed that a
reasonable IF modal logic can be defined simply using Hintikka’s original
idea of implementing logical independence by informational independence
in the sense of game theory [Hi173, Hi195, Hi196]. To model logical indepen-
dence, this suffices; it is not necessary to enrich standard modal structures
by introducing concurrency as a separate, primitive component of the mod-
els. This type of study of IF modal logic serves to attract interest in the
larger program of independence-friendliness that investigates the notion of
informational independence in logic.

The aims of the present paper are twofold. (1) First, we wish to give
a recap of the various logics introduced under the heading ‘IF modal logic’
whose semantics rely simply on the game-theoretical notion of informational
independence, as just explained. (Accordingly, we do not discuss Bradfield’s
independence friendly modal logics.) The pre-theoretical motivation for all
these logics was, when they were introduced, that they would be ‘modal
analogues’ of IF first-order logic—in syntax as well as in semantics.

The logics termed ‘independence friendly modal logic’ in the relevant re-
search publications [Hy1Tu105, Tu103, Tu104, Tu1Se206] differ among them-
selves both in syntax and in semantics. (The sense of diversity is of course
only increased when the logics of [Br000, Br0Fr402a] are considered as well.)
Depending on which syntactic restrictions one imposes on the formation of
the independence indications, logics with different metalogical properties
result. As will turn out, the appropriate properties may diverge strikingly
from case to case (cf. Table 2 in Section 6). The present authors conclude
that a framework is desirable in which the various systems can be systemat-
ically studied and compared. In this vein, our second aim (2) is to introduce
a framework that sheds a unifying light on the IF modal logics introduced
so far, and can be used to develop new logics that are both modal and in-
dependence friendly. The framework we put forward is determined by three
parameters. These parameters are inspired by the standard translation of
basic modal logic into first-order logic, and Hintikka’s IF procedure that
brings us from first-order logic to IF first-order logic.

Although we find our framework a natural environment for studying
independence friendliness and modal logic, by no means do we claim that the
framework covers all conceivable IF modal logics. Neither do we claim that
all logics to be found within this framework are equally interesting. In fact,
we regard it as one of the virtues of the framework that within its confines,
one can isolate logics some of which enjoy ‘nicer’ properties than others.
From this very perspective, we define the so-called ‘structurally determined
IF modal logic’. In [Tu1Se206] this logic is shown to combine a number
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of nice properties: strong expressive power, decidability, and allowing for a
compositional semantics.

Let us now introduce some basic notions, and fix the plan of the paper.

IF first-order logic. It has been observed by Hintikka, on various oc-
casions, that as a matter of fact, the syntactic scope and (logical) priority
scope of quantifiers coincide in first-order logic. Hintikka [Hi196] points out
that there is no general pre-theoretical backing for this assumption, and
provocatively refers to it as Frege’s fallacy. The formulas of IF first-order
logic, denoted IF, carry the slash ‘/’ as a new item of notation. The slash,
as in ∀y(∃x/y)ϕ, is to be interpreted in such a way that the occurrence of
∃x is outside the logical priority scope of ∀y, although it falls within the
syntactic scope of ∀y. The formulas of IF are generated from the fragment
of first-order logic in which every variable is quantified at most once and in
which every formula is in negation normal form, to be denoted FO. For-
mally, we let IF be the smallest superset of FO closed under the following
condition:

• If ϕ ∈ IF and ∃x occurs in ϕ in the syntactic scope of quantifiers
among which Q1y1, . . . , Qnyn, then the formula resulting from replac-
ing ∃x by (∃x/y1, . . . , yn) is also in IF,

where Qiyi stands for ∀yi or ∃yi. The notion of ‘binding a variable’ is
extended from the usual first-order case by saying that the quantifier Qiyi

binds the occurrence of the variable yi in (∃x/y1, . . . , yn), with 1 ≤ i ≤ n.
We write ∃x rather than (∃x/∅), if the tuple y1, . . . , yn is empty. One may
consider the above rule as specifying an IF procedure, producing IF from
FO. In the literature various other IF procedures are put forward, that
allow for marking propositional connectives as independent of quantifiers,
marking quantifiers as independent of (suitably construed) propositional
connectives, and/or marking universal quantifiers as independent of other
logical operators. In the current paper, we refrain from considering these
options.

Basic modal logic. Formulas of basic modal logic (ML) are generated
from a fixed class prop of propositional atoms by the following grammar:

ϕ ::= p | ¬p | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 3ϕ | �ϕ,

where p ∈ prop. Its semantics is defined relative to modal structures and
their states, that is, tuples M = (M,R, V ) and elements w ∈ M , where
M is a non-empty domain, R is a binary relation on M termed accessibil-
ity relation, and V : prop −→ Pow(M) is a valuation function. It will
be assumed that the clauses recursively associating a truth condition with
all ML-formulas are familiar. (The reader may consult, e.g., [BldRVe101,



250 T. Tulenheimo, M. Sevenster

Section 1.3].) Polymodal basic modal logic MLk is like ML, but involves k
modality types, each with its own box �i and diamond 3i. Its semantics
is in terms of k-ary modal structures (M,R1, . . . , Rk, V ), having for every
modality type i an accessibility relation Ri ⊆M2 of its own.

Expressive power. If L and L′ are two modal logics whose semantics are
defined relative to a classK of modal structures, we say that L is translatable
into L′ overK (in symbols L ≤K L

′), if for every ϕ ∈ L, there is ψϕ ∈ L
′ such

that for all modal structures M ∈ K and all w ∈ M , we have: M, w |= ϕ
if, and only if, M, w |= ψϕ. L′ is more expressive than L over K, or has
greater expressive power than L over K (symbolically L <K L

′), if L ≤K L
′

but L′ 6≤K L. The logics L and L′ have the same expressive power over K,
or coincide over K (denoted L =K L′), if L ≤K L′ and L′ ≤K L. When
speaking of the class of all modal structures, we suppress the subscript
indicating the class altogether, and write simply L ≤ L′ and so on.

These notions are naturally extended to a comparison between a modal
logic and (IF) first-order logic. To every modal structure M = (M,R, V )
there corresponds, in a canonical way, a first-order structure M

FO =
(M,R, 〈V (p)〉p∈prop), interpreting a binary relation symbol R as the bi-
nary relation R, and, for each p ∈ prop, a unary relation symbol P as the
set V (p). Saying, for instance, that L is translatable into FO, means that
for every ϕ ∈ L there is a first-order formula ψϕ(x) of one free variable, x,
written in the vocabulary {R, 〈P〉p∈prop}, such that for all modal structures
M and all w ∈M , we have: M, w |= ϕ iff M

FO, γ |= ψϕ, where γ(x) = w.

Plan of the paper. In Sections 2 and 3 we survey two IF modal logics in-
terpreting the slash device in terms of informational independence, referred
to as IFML and EIFMLk. As an original result we prove Theorem 2.6,
stating that IFML cannot be translated into first-order logic. The logics
IFML and EIFMLk show that allowing independence friendliness serves
to increase the expressive power of a modal logic. However, the definitions
of these logics also suggest that many more IF modal logics can be obtained
by varying the syntax and the IF procedure applied.

In Section 4 we propose a new framework for studying IF modal logics
from the IF first-order viewpoint. Essentially, the framework allows for sys-
tematically varying the syntax and the IF procedure used in defining an IF
modal logic. We discuss at some length a particular logic obtained in this
framework, termed ‘structurally determined IF modal logic’, or IFMLSD.
(This logic is extensively studied by the authors in [Tu1Se206].) To give a
fuller picture of the expressivity of the various IF modal logics discussed in
the paper, in Section 5 we provide an original negative expressivity result
concerning IFML, EIFMLk and IFMLSD, proving that relative to a cer-
tain class of trees, the expressive power of all these logics collapses to that
of basic modal logic. Section 6 serves as a conclusion in which we comment
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the issue of informational independence in logics, putting forward our con-
viction that the notion of informational independence not only makes sense
with respect to logics other than first-order logic (since it can, for instance,
be systematically studied in connection with modal logic) but also enjoys
general theoretical interest. In this concluding section also a summary of
known results concerning different IF modal logics can be found, as well as
a table where some conjectures about them are listed.

Note on notation. If L is a logic for which syntax and semantics is
defined, and ϕ is a formula of L, we write ϕ ∈ L to say that ϕ is among the
formulas of L. That is, when no confusion may arise, we do not notationally
distinguish a logic from its set of formulas. By “L-formula” we mean formula
of L.

2 IF modal logic via independence indications

We wish to introduce a modification of basic modal logic where diamonds
may be ‘indicated as independent’ from any syntactically superordinate
modal operators (boxes or diamonds). Such indicating is accomplished by
using a notation (3/i1, . . . , ik), where i1, . . . , ik are positive integers which
in a specified, systematic way identify superordinate modal operators. Such
syntactic independence indications are semantically interpreted in terms of
‘logical dependence’: the choice of a state as a semantic value of a diamond
(3/i1, . . . , ik) must not depend on the states interpreting the modal oper-
ators identified by the integers i1, . . . , ik. Supposing that (a1, . . . , an) and
(a′1, . . . , a

′
n) are two sequences of choices for modal operators superordinate

to (3/i1, . . . , ik), then if these sequences agree on all choices save for those
corresponding to the operators identified by the integers i1, . . . , ik, the state
chosen for (3/i1, . . . , ik) must be the same in both cases.

The logic we now proceed to define is dubbed independence friendly
modal logic. We stress that it carries this name for ‘historical reasons’—
by no means do we wish to suggest that this logic is the IF modal logic.
Semantically, IF modal logic will emerge as a proper extension of basic
modal logic. This observation increases interest in the study of IF modal
logics, for it gives rise to the hope that independence friendliness is a di-
mension of modal logics that may yield more expressive, yet decidable sys-
tems. (That entertaining such a hope is not entirely unrealistic can be seen
from the decidability results concerning certain specific IF modal logics, cf.
[Hy1Tu105, Tu1Se206].) We now turn to defining the syntax and semantics
of this logic in detail.

2.1 Definition of the logic

Syntax. The formulas of Independence friendly (IF) modal logic (IFML)
are obtained from those of ML by the following rewriting rules:
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1. If ψ ∈ ML, then the result of replacing all occurrences of 3 in ψ by
the symbol (3/∅) is a formula.

2. If ψ is a formula, (3/∅) appears in ψ, and i1, . . . , in is a tuple of
positive integers, then the result of replacing that token of (3/∅) in
ψ by the symbol (3/i1, . . . , in) is also a formula.

Formulas of IFML are precisely the strings generated by the above two
rules. By stipulation, we write 3 for (3/∅). Thereby any string that is
a formula of ML, is in fact also a formula of IFML. Note that the input
and output of the above rule 2 are identical in the special case that n := 0.
Examples of IFML-formulas are:

�3p, �(3/1)p, 3(3/1)p,
�(3/127)�(3/1, 2)p, (�(3/1)p ∧3�(3/1, 2)q), �(p ∨ (3/1)q),
�(p ∧ (3/1)q).

It was already pointed out that the role of the integers i1, . . . , in follow-
ing a diamond sign, as in (3/i1, . . . , in), is to identify certain syntactically
superordinate modal operators. Which ones? The principle of identification
we make use of, is based on the left-linear relation of syntactic subordination
among tokens of operators (∨,∧,3,�) appearing in formulas ϕ ∈ IFML.
Relative to a formula ϕ, this relation induces a tree structure, with the
unique outmost operator of ϕ at its root, and operators with no subordinate
operators at leaves. Hence for any operator-token, the set of its predecessors
in this tree structure determines a linear order. If O ∈ {∨,∧,3,�} appears
in ϕ, it is either itself the unique outmost operator of ϕ, or else there is a
unique immediate predecessor O′ of O among the operator-tokens to which
O is subordinate, and so on. So we may speak of ‘the n-th predecessor’ of O.
We can also restrict attention to modal operators preceding O, and enumer-
ate them beginning from the one that is furthest and ending up with the one
that is closest. In this way we may speak of ‘the n-th modal operator in ϕ
among those modal operators that precede O’—hence counting only modal
operators and ignoring conjunctions and disjunctions. It is to the numbers
identifying the locations of modal operators syntactically superordinate to
(3/i1, . . . , in) in this latter type of numbering, that the integers i1, . . . , in
refer.

In �(3/1)�(3/1, 2)p, the numeral 1 in (3/1) refers to the immedi-
ately preceding box, and the numerals 1 and 2 in (3/1, 2) to the first
occurrence of � resp. to the first (and only) occurrence of (3/1). In
(�(3/1)p ∧ 3�(3/1, 2)q), the numeral 1 in (3/1) identifies the box in
the left conjunct, whereas the same numeral identifies the outmost dia-
mond of the right conjunct in (3/1, 2). We allow for vacuous identifiers: in
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�(3/127)p the numeral 127 refers to nothing at all, since there are no 126
or more nested modal operators syntactically preceding � in that formula.

In earlier publications on IF modal logic [Br000, Br0Fr402a, Hy1Tu105,
Tu103, Tu104], various different identification methods are used for singling
out the desired superordinate modal operators. Typically this has been
accomplished by introducing an explicit indexing or labelling of tokens of
modal operators as a part of the syntax. The possibility of defining the
syntax as above shows that such an indexing is not a conceptually necessary
ingredient of IF modal logics.1

The set Sub[ϕ] of subformulas of a formula ϕ ∈ IFML is defined in a
straightforward way: Sub[p] = {p} and Sub[¬p] = {¬p}; for ◦ ∈ {∨,∧}:
Sub[(ψ ◦ θ)] = {(ψ ◦ θ)} ∪ Sub[ψ] ∪ Sub[θ]; Sub[�ψ] = {�ψ} ∪ Sub[ψ]; and
Sub[(3/i1, . . . , in)ψ] = {(3/i1, . . . , in)ψ} ∪ Sub[ψ]. A formula ϕ ∈ IFML

is closed, if it contains no vacuous identifiers, i.e., if every (3/i1, . . . , in)
appearing in ϕ is subordinate to at least max{i1, . . . , in} nested modal op-
erators in ϕ. Otherwise ϕ is open.

Semantics. There may appear in a given formula many tokens of the same
subformula. (E.g., in (p ∨ p) there appear two tokens of the subformula p.)
When defining the semantics of an IF logic, one must pay specific attention
to this fact, to be able to formulate clauses defining the semantic role of
operators with independencies, such as (3/i1, . . . , ik).

We follow [Vä07] in understanding formulas explicitly as finite strings
of symbols. Each numeral standing for a positive integer in a formula of
IFML is counted as a separate symbol (no matter how many digits it has
in the chosen presentation), other symbols being propositional atoms, ),
(, ¬, ∨, ∧, 3, �, ∅, the comma and the slash-sign /. The length of a
string S, in symbols |S |, is the number of symbols in S when each symbol
is counted as many times as it occurs. The symbols appearing in a formula
are enumerated with positive integers starting from left to right.

For illustration, consider the formula ϕ := �(3/1, 27)(p∨ q).

� ( 3 / 1 , 27 ) ( p ∨ q )
1 2 3 4 5 6 7 8 9 10 11 12 13

In the special case that the nth symbol of a string ψ starts itself a string
which is a subformula of ψ, we write Λ(ψ, n) for that subformula. In the
above example, Λ(ϕ, 9) = (p ∨ q) and Λ(ϕ, 10) = p. Every subformula of
a formula ψ is of the form Λ(ψ, n) for some n, and some subformulas may
appear in ψ corresponding to several numbers n. It may further be noted
that if ψ is closed and the operator (3/i1, . . . , in) appears in ψ, the above

1 Essentially this definition of the syntax suggested to one of the authors (TT) by Balder
ten Cate in December 2002.
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enumeration of the symbols in ψ could be used as an alternative way of
identifying those modal operators, superordinate to (3/i1, . . . , in), that by
syntax are identified by the integers i1, . . . , in.

In defining game-theoretical semantics for IFML, we adapt the defini-
tion that is given in [Vä07] for IF first-order logic. For every formula ϕ,
modal structure M and state w0 ∈ M , a semantic game G(ϕ,M, w0) be-
tween two players (∃ and ∀) is associated by defining the set of its positions.
We refer to ∃ as ‘she’ and to ∀ as ‘he’. If ς = (a0, . . . , an) is a finite sequence,
we write max(ς) for its last member, max(ς) := an. If an+1 is any further
object, we write ς⌢an+1 for the extended sequence (a1, . . . , an, an+1).

Definition 2.1 (Positions). Positions are triples (ψ, n, ς), where ψ =
Λ(ϕ, n) and ς is a finite sequence of elements of M . In the beginning of
the game the position is (ϕ, 1, 〈w0〉). The following conditions serve to gen-
erate the set of all positions of G(ϕ,M, w0), with M = (M,R, V ). They
also specify which player makes which type of choice (if any) at a given
position.

1. (a) If (p, n, ς) is a position, then: if max(ς) ∈ V (p), ∃ wins, otherwise
∀ wins. (b) If (¬p, n, ς) is a position, then: if max(ς) /∈ V (p), ∃ wins,
else ∀ wins.

2. If ((ψ ∨ ϕ), n, ς) is a position, also (ψ, n+ 1, ς) and (ϕ, n+ 2 + |ψ|, ς)
are positions. Player ∃ chooses one of these positions at ((ψ∨ϕ), n, ς).

3. If ((ψ ∧ ϕ), n, ς) is a position, also (ψ, n+ 1, ς) and (ϕ, n+ 2 + |ψ|, ς)
are positions. Player ∀ chooses one of these positions at ((ψ∧ϕ), n, ς).

4. If ((3/i1, . . . , ik)ϕ, n, ς) is a position and 〈max(ς), v〉 ∈ R, then

(ϕ, n+ 2k + 3 + ♯(k), ς⌢v)

is a position, where ♯(k) = 0, if k ≥ 1 and ♯(k) = 2, if k = 0.2 If
there is at least one such position, player ∃ chooses one among them
at ((3/i1, . . . , ik)ϕ, n, ς). If there is none, player ∀ wins.

5. If (�ϕ, n, ς) is a position and 〈max(ς), v〉 ∈ R, then (ϕ, n+ 1, ς⌢v) is
a position. If there is at least one such position, player ∀ chooses one
among them at (�ϕ, n, ς). If there is none, player ∃ wins.

2 If k ≥ 1, the number n + 2k + 3 + ♯(k) = n + 2k + 3 is obtained by counting two
parentheses, the diamond, the slash, and k numerals together with k − 1 commas in
the independence indication. However, if k = 0, then (3/i1, . . . , ik) = (3/∅), and the
correct identifier is n+ 2k + 3 + 2 = n+ 5.
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Note that the subformula component ψ in a position (ψ, n, ς) is strictly
speaking superfluous, because this subformula is fully determined by the
number n: ψ = Λ(ϕ, n). It is written down here for clarity of exposition.

The above definition of the set of positions in fact serves to define the
game G(ϕ,M, w0). This game is a determined zero-sum game of perfect
information. We are not, however, interested in who has a winning strategy
in this game. What interests us, instead, is who has a strategy that leads to
a win against any sequence of moves by the opponent, and satisfies the extra
condition of uniformity, to be defined shortly. The uniformity requirement
will have the consequence that to force the desired outcome, player ∃, in
particular, must make her choices in a ‘universalizable’ manner: make the
same choice in several ‘equivalent’ circumstances.3

Before we can define the uniformity requirement, let us define the notion
of game tree; tell what the strategies of the players are; and specify what it
means for a player to use a strategy.

Definition 2.2 (Game tree, play, partial play). The set of positions of a
semantic game G(ϕ,M, w0) determines, in a canonical way, a tree—to be
called the game tree. The nodes of the tree are the positions, and its ordering
relation is the transitive closure of the relation ‘is a successor position of’,
itself in effect given by the definition of position when telling which are the
positions to which a given position gives rise. Any (maximal) branch of the
tree represents a possible play of the game. Initial segments of plays are
called partial plays. Sometimes partial plays will be termed histories of the
game.

Definition 2.3 (Strategy, using a strategy). A strategy of player ∃ in se-
mantic game G(ϕ,M, w0) is any finite sequence σ of functions σi (called
strategy functions), defined on the set of all partial plays (p0, . . . , pi−1) sat-
isfying:

• If pi−1 = ((ψ ∨ ϕ), n, ς), then σ tells ∃ which formula to pick, that is,
σi(p0, . . . , pi−1) ∈ {n+ 1, n+ 2 + |ψ|}. If the strategy gives the lower
value, player ∃ picks the left-hand formula ψ, otherwise the right-hand
formula ϕ.

• If pi−1 = ((3/i1, . . . , ik)ϕ, n, ς), then σ tells ∃, if possible, which ele-
ment v ∈M with 〈max(ς), v〉 ∈ R to pick. Hence σi(p0, . . . , pi−1) ∈M
and is accessible from max(ς). If no suitable element exists, the
play has come to an end, with ∀ winning the play. So in that case
(p0, . . . , pi−1) is a play, and σi is not defined on it.

3 The resulting game resembles in many respects games of imperfect information, but
strictly speaking is not one. This feature of the semantic games for IF modal logic is
discussed in [Tu104, Section 2.3.1].
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It is said that ∃ has used strategy σ in a play of G(ϕ,M, w0), if in each
relevant case ∃ has made her choice using σ. More exactly, player ∃ has
used σ in a play (p0, . . . , pn), if the following two conditions hold for all
i < n:

1. If pi−1 = ((ψ ∨ ϕ),m, ς) and σi(p0, . . . , pi−1) = m + 1, then pi =
(ψ,m + 1, ς), whereas if σi(p0, . . . , pi−1) = m + 2 + |ψ|, then pi =
(ϕ,m+ 2 + |ψ|, ς).

2. If pi−1 = ((3/i1, . . . , ik)ϕ,m, ς) and σi(p0, . . . , pi−1) = v, then pi =
(ϕ,m+ 2k + 3 + ♯(k), ς⌢v).

The notions of strategy and using a strategy can be analogously defined for
player ∀.

Definition 2.4 (Uniform strategy, winning strategy). A strategy σ of player
∃ in semantic game G(ϕ,M, w0) is uniform, if the following condition holds.
Suppose pi−1 = (Λ(ψ,m),m, ς) and p′i−1 = (Λ(ψ,m),m, ς ′) are two posi-
tions arising in the game, when ∃ has played according to σ. Further,
assume that

Λ(ψ,m) = (3/i1, . . . , ik)ϕ.

Then if the sequences ς and ς ′ agree on their values for all arguments except
possibly on i1, . . . , ik, the strategy σ agrees on the positions (Λ(ψ,m),m, ς)
and (Λ(ψ,m),m, ς ′), that is to say, σi(p0, . . . , pi−1) = σj(p

′
0, . . . , p

′
i−1).

A strategy σ of player ∃ in game G(ϕ,M, w0) is a winning strategy, if σ
is uniform, and player ∃ wins every play in which she has used the strategy.

The analogous uniformity condition for strategies of ∀ is vacuous, since
by the syntax, there are no operators of the form (�/i1, . . . , in). A strategy
σ of player ∀ is winning simply if it leads to a win by ∀ against every
sequence of moves by ∃.

On the basis of the definition of position, the sequences ς and ς ′ men-
tioned in the definition of uniformity indeed necessarily have the same
length. That is, there is an initial segment Σ of ω such that ς and ς ′

both are functions of type Σ −→M . If some or all of the numbers i1, . . . , ik
happen to be outside of the domain Σ, the sequences ς and ς ′ are vacuously
uniform in the corresponding arguments.

Truth and falsity of IFML-formulas are defined as follows:

• ϕ is true in M at w (denoted M, w |=+ ϕ), if there is a winning
strategy for ∃ in G(ϕ,M, w).

• ϕ is false in M at w (denoted M, w |=− ϕ), if there is a winning
strategy for ∀ in G(ϕ,M, w).
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• ϕ is non-determined in M at w (denoted M, w |=0 ϕ), if game
G(ϕ,M, w) is not determined, i.e., if neither M, w |=+ ϕ nor
M, w |=− ϕ.

In what follows we will almost exclusively be interested in truth of modal
formulas, and we will simply write |= for the relation |=+.

2.2 Expressive power

For an example of evaluating an IFML-formula, consider the modal struc-
tures M and N depicted in Figure 1. The atom p is true in M precisely at c1
and c3, and in N exactly at c′2. Consider, then, the formula ϕ := �(3/1)p.
We observe three things:

(1) ϕ is not true in M at a: There is no winning strategy for ∃ in game
G(ϕ,M, a), since a function g inducing a winning strategy would have
to satisfy g(b1) = g(b2), and if this value was c1 or c3, the move would
not be in accordance with the game rules if ∀’s choice was b2 resp. b1.
On the other hand, if the value was c2, the resulting plays would be
wins for ∀, since p is not true at c2. (As a matter of fact, ϕ is not false
in M at a either: also for ∀ there is no winning strategy in G(ϕ,M, a).
If ∀ chooses b1 (b2), then by choosing c1 (resp. c3) ∃ generates a play
that she wins.)

(2) ϕ is true in N at a′: The function f defined by the condition f(b′1) =
f(b′2) = c′2 induces a winning strategy for ∃ in G(ϕ,N, a′).

(3) The structures (M, a) and (N, a′) are bisimilar.4 Hence they are not
distinguished by any formula of basic modal logic.

In view of (1), (2) and (3), it follows that IFML is not translatable into
ML. Since ML is trivially translatable into IFML, we have just established
that IFML has greater expressive power than basic modal logic:5

4 For bisimilarity, see, e.g., [BldRVe101, Section 2.2].
5 This expressivity result was originally proven in [Tu103, Lemma 4].
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Theorem 2.5. ML < IFML.

Our main result concerning the expressive power of IFML in this pa-
per, Theorem 2.6, says that this logic is strong enough not to admit of a
translation into first-order logic. This is in contradistinction to the case of
basic modal logic, translatable via the well-known standard translation into
FO, in fact into the 2-variable fragment of FO. (For standard translation,
see, e.g., [BldRVe101, Section 2.4].)

Theorem 2.6. IFML is not translatable into FO.

Proof. Let n ≥ 2 be arbitrary. In what follows, by stipulation i⊕1 := i+1,
if i < n, and n ⊕ 1 := 1. (Inversely, i ⊖ 1 = j means j ⊕ 1 = i.) Define a
modal structure Mn = (Mn, Rn, Vn) as follows. The domain Mn consists
of five disjoint layers, L0 := {a1}, L1 := {b1, . . . , bn}, L2 := {c1, . . . , cn},
L3 := {d1, . . . , dn}, and L4 := {e1, . . . , en}, related by the accessibility
relation Rn :=

{(a1, bi) : 1 ≤ i ≤ n} ∪ {(bi, cj) : 1 ≤ j ≤ n and j ≤ i ≤ j ⊕ 1} ∪

{(cj , dk) : 1 ≤ k ≤ n and k ≤ j ≤ k ⊕ 1} ∪ {(dk, ek⊕1) : 1 ≤ k ≤ n}.

The valuation Vn is empty. In Figure 2, the modal structure M5 is depicted.
Let, then, ψ := �(�(3/2)(3/1, 3)⊤ ∨ �(3/2)(3/1, 3)⊤).

Claim 2.7. For all n ≥ 2, Mn, a1 |= ψ if, and only if, n is even.

Proof. “From right to left”: Suppose n is even. We define three func-
tions, f : L1 −→ {left,right}, g : {left,right} × L1 −→ L3 and
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h : {left,right} × L2 −→ L4. If ∀’s first move is bi, define f(bi) = left,
if i is odd, and f(bi) = right, otherwise. If ∀ continues by picking out
cj , put g(right, bi) = g(left, bi) = di⊖1, hence ignoring the information
about cj . Further, if j is odd and f(bi) = left (and so also i is odd), let
h(f(bi), cj) = ej, and similarly, if j is even and f(bi) = right (and so also
i is even), let h(f(bi), cj) = ej. Otherwise, let h(f(bi), cj) = ej⊕1.

It is immediate that the functions f, g, h serve to define a winning strat-
egy for ∃ in G(ψ,Mn, a1). In particular, when ∃ is supposed to make a
choice corresponding to one of the occurrences of (3/1, 3), she knows by f
whether it is the right or the left disjunct that is at stake, and she sees ∀’s
move cj for the second occurrence of � in that disjunction. She can infer
whether ∀’s first choice was bj or bj⊕1, because by the evenness of n, the
numbers j and j⊕ 1 cannot have the same parity, and having used f , ∃ has
chosen the left disjunction if, and only if, j is odd. Knowing, then, which of
the points bj or bj⊕1 ∀ had chosen, ∃ can further infer, by using g, at which
point she currently is. But then there is only one point she can choose at
all for (3/1, 3), and this point is as a matter of fact given by h.

“From left to right”: Assume n is odd, and suppose for contradiction that
there is a winning strategy for ∃ in G(ψ,Mn, a1). Let f, g, h be functions as
above induced by that winning strategy. Because n is odd, there necessarily
are points bi, bi⊕1 such that f(bi) = f(bi⊕1). Let us w.l.o.g. assume that
these points are bn and b1, and that f(bn) = f(b1) = left. Consider, then,
the two partial plays where ∀’s pairs of choices are (bn, cn) and (b1, cn).
The function g must yield for (3/2) the choice dn−1 in the former case, and
in the latter case the choice dn. (Because of the uniformity condition, the
choice must be the same no matter which successor of bn resp. b1 player ∀
chooses. In the former case, the options for ∀ are cn and cn−1, and their
only common successor is dn−1. And in the latter case ∀’s options are cn
and c1, whose only common successor is dn.)

The function h may only use as its arguments the disjunctive choice
(which here is left in both cases) and ∀’s choice cn—which likewise is the
same for both partial plays, having (bn, cn, dn−1) and (b1, cn, dn) as their
corresponding respective choices from the model. This means that h will
choose the same point ek in both cases. But whichever point ek is, the
move is possible along the accessibility relation Rn in at most one of the
two cases. Hence f, g, h do not induce a winning strategy, contrary to the
assumption. q.e.d. (Claim 2.7)

Claim 2.8. For all n ≥ 1, the first-order structures 〈MFO

2n , a1〉 and
〈MFO

2n+1, a1〉 satisfy exactly the same first-order formulas of one free variable
and quantifier rank at most n+ 1.

Proof. There is a winning strategy for Duplicator in the Ehrenfeucht-Fräıssé
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game EFn+1(M
FO

2n , a1; M
FO

2n+1, a1): an optimal strategy for Spoiler is to
choose successively the elements b20 , b21 , . . . , b2n from the domain of M

FO

2n+1;
let Duplicator respond to these choices by the elements b20 , b21 , . . . , b2n ,
respectively, from the domain of M

FO

2n . (Should Spoiler be allowed an
(n+ 2)nd move, he could choose the element b2n+1 from the domain of
M

FO

2n+1, and to this Duplicator would have no response.) q.e.d. (Claim 2.8)

In view of the Claims 2.7 and 2.8, ψ does not admit of translation into
FO, and so IFML is not translatable into first-order logic.

q.e.d. (Theorem 2.6)

Thus IFML is semantically a much stronger logic than ML, in fact,
it cannot be translated into FO. It is an open question whether the sat-
isfiability and validity problems of IFML are decidable.6 In [Hy1Tu105]
the decidability of both of these problems was established for the so-called
‘IF modal logic of perfect recall’ (IFMLPR). This logic is a fragment of
IFML, syntactically restricted in such a way that the semantic games cor-
responding to its formulas are games of perfect recall. The structurally
determined IF modal logic from Section 4 is likewise a fragment of IFML;
like IFMLPR, it is more expressive than ML; and its satisfiability and
validity problems are decidable. The complexity of IFMLSD-satisfiability
is known to be in PSPACE [Tu1Se206]; by contrast, the exact complexity
of IFMLPR-satisfiability is an open question (the recursive bound on the
size of a finite model of an IFMLPR-formula obtained in [Hy1Tu105] has
the form of tower function w.r.t. the length of the formula, and is hence far
from feasible). The validity problems of the logics IFMLPR and IFMLSD

are, on the other hand, both known to be decidable in PSPACE.

3 Extended IF modal logic

For one thing, the enterprise of IF logic teaches us that things that are
uncontroversial and unproblematic in first-order logic turn out to have in-
triguing properties when we dare to introduce the slash device. A case in
point is the behavior of propositional connectives, as observed by Hodges
in [Ho197a].

Semantically, the evaluation of conjunction (disjunction) is a choice be-
tween two things: the left and the right conjunct (disjunct). Hence these
connectives can be construed as restricted quantifiers. Instead of (ψ ∧ χ),

6 Note that for IF modal logics, the satisfiability and validity problems are not each
other’s duals. Let ‘¬ψ’ be a shorthand notation for a formula in negation normal
form such that: ∃ has a winning strategy in G(¬ψ,M, w) iff ∀ has a winning strategy
in G(ψ,M, w). Choose ϕ,M and w so that ϕ is non-determined in M at w. Then
(ϕ ∨ ¬ϕ) also is non-determined in M at w, and thus not valid. Yet ¬(ϕ ∨ ¬ϕ) is not
satisfiable.
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we may, equivalently, write
∧

i∈{L,R} ϕi, given that ϕL := ψ and ϕR := χ.

Similar observations can be made about the restricted quantifier
∨

i∈{L,R}.
It is straightforward to see that in first-order logic, introducing these re-
stricted quantifiers does not yield greater expressive power. E.g., the sen-
tence ∧i∈{L,R}∃x Pix is simply equivalent to (∃x PLx ∧ ∃x PRx). The same
holds for the result of replacing the usual conjunction and disjunction by
the corresponding restricted quantifiers in basic modal logic: what results
is just a notational variant of ML. For instance, ∧i∈{L,R}3ip is equivalent
to (3Lp∧3Rp), where 3i is the diamond over the accessibility relation Ri.

Hodges studied the restricted quantifiers
∧

i∈{L,R} and
∨

i∈{L,R} in the

context of IF logic in [Ho197a]. A similar move was made by Tulenheimo
with respect to IF modal logic. The resulting logic, called Extended IF
modal logic, was first introduced in [Tu104], having been originally sug-
gested by Hyttinen (personal communication). This logic allows marking
modal operators as independent even from superordinate conjunctions and
disjunctions, when the latter are construed precisely as restricted quanti-
fiers.

To make the Eigenart of Extended IF modal logic visible, we assume
a polymodal framework. The modal structures considered will have k ac-
cessibility relations R1, . . . , Rk, each corresponding to a modality type of
its own. In syntax, the diamonds and boxes carry an index, indicating
which accessibility relation is responsible for the semantics of the operator
in question. E.g., the formula �237p of a polymodal basic modal logic says
that any R2-successor of the current state has an R7-successor satisfying
the atom p.

Conjunctions and disjunctions are construed as restricted quantifiers
ranging over the set {L,R}. Accordingly, a string i1 . . . in ∈ {L,R}∗ may
appear as a subscript of a modal operator syntactically subordinate to n
conjunction or disjunction signs, and it is a part of the specification of the
syntax to associate the appropriate strings with modality types 1, . . . , k.
For instance, if ∧i∈{L,R} ∨j∈{L,R} (3ij/1)⊤ is a formula, the syntax must
provide a mapping from the set {LL, LR,RL,RR} to the set {1, . . . , k}. If the
evaluation has proceeded to the subformula (3ij/1)⊤, the mapping yields
a modality type corresponding to the diamond, depending on which choices
among L,R were made earlier, first for ∧i∈{L,R} and then for ∨j∈{L,R}.

Before we get to the formal underpinnings of this logic, let us consider
a nice illustration of its capabilities. Think of Extended IF modal logic
with two modality types, one of which is interpreted by means of the iden-
tity relation =. Slightly abusing the syntax to make stating the example
smoother, consider the formula ∧i∈{=,R}(3i/1)⊤, indicating that there is a
state to which ∃ can move from the current state w, without knowing which
accessibility relation (among R and =) was earlier picked out by ∀. One of
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the accessibility relations being =, ∃ must choose w. But this means that
in order for this formula to hold in M at w, it must also be possible to get
from w to w via the relation R. In fact, when evaluated at w, the formula
serves to state that (w,w) ∈ R.

Syntax. Let L(prop) be the set of literals: formulas of the form p or
¬p with p ∈ prop. Extended IF modal logic, EIFMLk, uses k modality
types, and its formulas are strings O1 . . .Onγ(j1 . . . jm), wherem is the total
number of conjunction and disjunction symbols in the prefix O1 . . . On. The
components of these strings are as follows. First, the strings are associated
with a distribution of modality types µ :

⋃

i≤m{L,R}
i −→ {1, . . . , k} and a

distribution of literals γ : {L,R}m −→ L(prop). Second, each Ox is one of
the following:

(i)
∧

jx∈{L,R};

(ii)
∨

jx∈{L,R};

(iii) �j1...jy
, where y is the number of conjunction and disjunction symbols

preceding Ox in the prefix;

(iv) (3j1...jy
/i1, . . . , iz), where y is the number of conjunction and disjunc-

tion symbols preceding Ox in the prefix, and 1 ≤ i1, . . . , iz ≤ x− 1.

Semantics. The semantics will be defined relative to k-ary modal struc-
tures, mentioned in Section 1. To formulate the truth conditions, a semantic
game G(ϕ,M, w0) is associated with each formula ϕ, k-ary modal structure
M and state w0 ∈ M . In the interest of clarity, we will define positions in
the game so that they keep explicitly track not only of the states chosen
before reaching that position, but also of the conjuncts and disjuncts chosen
up to then.

Definition 3.1. Let ϕ := O1 . . . Onγ(j1 . . . jm) ∈ EIFMLk. Positions of
game G(ϕ,M, w0) are quadruples (ψ, ℓ, ς, ς ′), where 1 ≤ ℓ ≤ n + 1, ψ =
Oℓ . . . Onγ(j1 . . . jm), ς : S −→ M and ς ′ : S′ −→ {L,R}, where S is the
set of those numbers x in {1, . . . , n} for which Ox is a modal operator,
and S′ = {1, . . . , n}\S. (The functions ς, ς ′ may simply be thought of
as sequences of states and sequences of objects L,R, respectively.) In the
beginning, the position is (ϕ, 1, 〈w0〉,∅). The following conditions generate
the set of all positions of G(ϕ,M, w0), with M = (M,R1, . . . , Rk, V ). They
also specify which player makes which type of choice (if any) at a given
position.

1. (a) If γ(ς ′) = p and the position is (p, n + 1, ς, ς ′), then: if max(ς) ∈
V (p), ∃ wins, else ∀ wins. (b) If γ(ς ′) = ¬p and the position is
(¬p, n+ 1, ς, ς ′), then: if max(ς) /∈ V (p), ∃ wins, otherwise ∀ wins.
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2. If the position is (
∨

jx∈{L,R} ϕ, ℓ, ς, ς
′), then both (ϕ, ℓ + 1, ς, ς ′⌢L)

and (ϕ, ℓ + 1, ς, ς ′⌢R) are positions. Player ∃ chooses one of these
positions at (

∨

jx∈{L,R} ϕ, ℓ, ς, ς
′). The case of (

∧

jx∈{L,R} ϕ, ℓ, ς, ς
′) is

otherwise similar, but it is player ∀ who chooses one of the positions
at (

∧

jx∈{L,R} ϕ, ℓ, ς, ς
′).

3. If µ(ς ′) = j, and the position is ((3ς′/i1, . . . , iz)ϕ, ℓ, ς, ς
′), then for

every v such that 〈max(ς), v〉 ∈ Rj , we have that (ϕ, ℓ+ 1, ς⌢v, ς ′) is
a position. It is ∃ who chooses one of these, or if none exists, there are
no further positions and ∀ wins. The case of (�ς′ϕ, ℓ, ς, ς ′) is similar,
but it is ∀ who makes the choice, or, if he can make none, there are
no further positions and ∃ wins.

The notions of game tree and (partial) play are defined as in the case
of IFML. A strategy of ∃ is also defined similarly, as a tuple of strategy
functions σ = (σ1, . . . , σh), with one strategy function for each expression
of the form

∨

jx∈{L,R} or (3j1...,jy
/i1, . . . , iz) in the prefix. If a partial play

(p0, . . . , pi−1) is already produced, such a strategy function makes a choice
between the positions each of which is a combinatorially possible next posi-
tion. Using a strategy is again defined like in the case of IFML. A strategy
of ∃ is winning, if it leads to a win against any sequence of moves by ∀,
and is, furthermore, uniform in the following sense: if pi = (ϕ, ℓ, ς, ς ′) and
p′i = (ϕ, ℓ, τ, τ ′) are any two positions arising in the game supposing that ∃
has used σ, with ϕ = (3j1...,jy

/i1, . . . , iz)ψ, then if the maps ς∪ς ′ and τ ∪τ ′

agree on all their values except possibly on i1, . . . , iz, the strategy σ agrees
on the positions pi and p′i, i.e., maps the sequence of positions leading to pi

to the same element as the sequence of positions leading to p′i. The notions
of strategy, using a strategy and winning strategy are defined analogously
for player ∀ (keeping in mind that the condition of uniformity is vacuously
satisfied by ∀’s strategies).

Semantics of EIFMLk is simply defined by stipulating that ϕ is true
(false) in M at w0, if there is a winning strategy for ∃ (resp. ∀) in game
G(ϕ,M, w0).

About the expressiveness of Extended IF modal logic, note first that by
the proof of Theorem 2.6, EIFML1 cannot be translated into FO.7 Hence:

Theorem 3.2. For all k ≥ 1, EIFMLk is not translatable into FO.

Second, it is evident that polymodal EIFMLk is more expressive than
the polymodal version of IFML. E.g., consider evaluating the formula
∧i∈{=,R}(3i/1)⊤ of our earlier example relative to the modal structures
({a}, {(a, a)}, {(a, a)},∅) and ({a, b}, {(a, a)}, {(a, b)},∅) with a 6= b.

7 This considerably improves the result proven in [Tu104, Theorem 3.3.9], according to
which, whenever k ≥ 3, EIFMLk does not have a first-order translation.



264 T. Tulenheimo, M. Sevenster

Among the applauded virtues of modal logic are its nice computational
properties: for instance, model checking is tractable and satisfiability is
decidable. Amusingly, it can be shown that the satisfiability problem of
EIFMLk with the identity relation is undecidable, cf. [Se206]. This result
shows that the power of slashing is considerable even when we import it in
modal logic. It is interesting to see whether a similar undecidability result
can be achieved without the identity relation and maybe even for IFML.
It might well turn out that IFML proper is decidable, whereas EIFMLk

is undecidable. This would show us—once again—that the particulars of a
pre-slash, independence-unfriendly language are sleeping beauties.

4 Structurally determined IF modal logic

The logics IFML and EIFMLk aimed at being modal analogues of IF
first-order logic: results of importing the slash device into modal logic and
interpreting it so as to produce a modal logic of informational independence.
However, as indeed shown by the two languages, the particular independence
friendly modal logic that we end up considering depends highly on the syn-
tax used, and on the way independence is introduced. In Section 4.1, we
introduce a new framework in which IF modal logics can be compared and
isolated, by tuning three parameters that will be highlighted shortly. Some
researchers have objected that there is no a priori reason why slashed modal
operators would formalize a meaningful notion of independence. This criti-
cism will be revisited in relation to the logics specified within our framework.
Section 4.2 singles out a specific logic by instantiating the three parameters
of the framework in a certain way. The logic in question will be a frag-
ment of IF first-order logic; it is denoted by IF(ST2(ML)). Section 4.3
introduces a certain modal-like logic—so-called ‘structurally determined IF
modal logic’—which is subsequently, in Section 4.4, shown to characterize
IF(ST2(ML)). Interestingly, this modal-like logic will have a compositional,
‘Tarskian’ semantics. Finally, Section 4.5 discusses some aspects of the ex-
pressive power of the structurally determined IF modal logic.

4.1 The framework

The framework we propose essentially isolates ‘modal fragments’ of IF first-
order logic. This approach is partially inspired by current research in modal
logic. Namely, although basic modal logic is an extension of propositional
logic, nowadays it is usually conceived of as a fragment of first-order logic.
Milestone results that brought about this change of perspective include the
standard translation, and van Benthem’s Theorem [vB76] which character-
izes modal logic as the ‘bisimulation invariant ’ fragment of first-order logic.

Assuming this perspective, an IF modal logic is obtained by fixing three
things: first, a set of strings that are considered as modal formulas; second,
a standard translation that maps the former set to a subset of first-order
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logic; and third, an IF procedure that maps this subset of first-order logic
into IF first-order logic. The IF modal logic thus generated is modal in that
it originates from a modal logic, and independence friendly in that it is a
fragment of IF first-order logic, through the appropriate IF procedure.

More precisely, our framework covers all logics that are obtained from
a modal logic ML that can be translated into first-order logic, standard
translation ST and IF procedure IF as follows:

• Translate every formula from ML into first-order logic using ST,
and obtain the first-order correspondence language of ML, denoted
ST(ML).

• Apply to every formula from ST(ML) the IF procedure IF, and obtain
the set of IF modal formulas determined by ML, ST, and IF, denoted
IF(ST(ML)).

Observe that there are instantiations of the initial modal logic, the standard
translation, and the IF procedure that give rise to meaningless and unin-
teresting systems. This will happen if the parameters ML, ST and IF are
incompatible; for instance, if the range of the operation ST is disjoint from
the domain of the operation IF. But the framework also contains poten-
tially interesting systems. For one thing, as we will see, the (IF first-order
correspondence languages of the) logics that were studied earlier under the
headings IFML and EIFMLk can be generated by tuning the parameters
of the framework in a specific way (cf. Table 1 in Section 4.2).

We think this framework facilitates finding logics that have ‘nice’ com-
binations of properties. It is beyond the scope of the current paper to give a
specific sense to the phrase ‘nice combination of properties’. But generally
a high expressive power combined with a low computational complexity is
considered nice. In the context of IF logic, also allowing for a compositional
semantics can be appreciated as a desirable property.

Indeed, Cameron and Hodges showed in [Ca1Ho101] that no composi-
tional semantics exists for IF first-order logic in which the ‘interpretation’
|ϕ(x)|A of a formula with one free variable is a subset of the domain of A;
what is more, they even proved that in a compositional semantics for IF
first-order logic, |ϕ(x)|A cannot be a subset of dom(A)n, for any n < ω. If
by ‘Tarskian semantics’ we mean a compositional semantics where the inter-
pretation of a formula |ϕ(x1, . . . , xk)|A will be a subset of dom(A)m for some
m ≥ k, it follows that no Tarskian semantics for IF first-order logic is pos-
sible. (On the other hand, Hodges had already proven in [Ho197a, Ho197b]
that IF first-order logic admits of a compositional semantics where the in-
terpretation |ϕ(x)|A of each formula ϕ(x) is a subset of the powerset of the
domain.) Given this background, being able to show that an IF modal logic
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can be interpreted in a Tarskian way, signals that the complexity of the full
IF logic is tamed in this respect.

As an example of a logic emerging from our framework, we will consider
the structurally determined IF modal logic introduced in [Tu1Se206]. The
satisfiability and validity problems of this logic are decidable, and it allows
for a compositional semantics.

Some researchers have opposed the very idea of an independence friendly
modal logic, by insisting that independence is a relation between (syntacti-
cally manifest) variables, while none are forthcoming in modal logics. Thus,
they have suggested that a priori modal operators furnished with indepen-
dence indications are not necessarily meaningful. Staying within our frame-
work, we need not enter such a discussion. Rather, we can point out that
logics generated in our framework are immune to any such criticism, since
they are literally fragments of IF first-order logic.

4.2 Instantiating the three parameters

In this subsection, we will fix the values of the parameters in a certain way.
It turns out that the resulting fragment of IF first-order logic admits of
a particularly smooth characterization in modal logical terms (see Section
4.3). Actually, it is captured by a compositional modal-like language, to be
referred to as IFMLSD. The concrete cases we wish to consider are these:

• Basic modal logic, ML, in negation normal form. (It is well known
that each basic modal formula has an equivalent form in which the
negation-sign appears only as prefixed to a propositional atom.)

• The standard translation ST2 : ML −→ FO2 of basic modal logic
into the 2-variable fragment of first-order logic.

• The IF procedure associating with every first-order formula ϕ the
set IF(ϕ) of those IF first-order formulas that are obtained by re-
placing any number of existential quantifiers ∃xk appearing in ϕ by
the corresponding symbol (∃xk/xi1 , . . . , xin

), provided that: (a) in
ϕ there appear the universal quantifiers ∀xi1 , . . . ,∀xin

superordinate
to ∃xk; (b) in the formula resulting from the replacement, the vari-
ables xi1 , . . . , xin

in (∃xk/xi1 , . . . , xin
) become thereby bound by the

universal quantifiers ∀xi1 , . . . ,∀xin
; and (c) xk /∈ {xi1 , . . . , xin

}.

Note that clause (b) precludes cases like the string ∀x∃x(∃y/x)ϕ, resulting
from applying the IF procedure to ∀x∃x∃yϕ.

Basic modal logic is assumed to be in negation normal form (NNF), to
ensure that its first-order correspondence language is in negation normal
form as well. This is useful in the present context, since one may safely
apply a Hintikka-style IF procedure to extend any fragment of FO that is
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in NNF. Another way in which a basic modal language interesting for the
purposes of IF modal logic can be introduced is using the strong prenex
normal form (SPNF), by now familiar from EIFMLk: considering formulas
O1 . . .Onγ(j1 . . . jm), where each Ox in the prefix is

∧

jx∈{L,R},
∨

jx∈{L,R},

�j1...jy
or 3j1...jy

(y being the number of conjunction and disjunction sym-
bols preceding Ox in the prefix), and for all strings j1 . . . jm ∈ {L,R}m,
we have that γ(j1 . . . jm) is a literal. As was already noted in Section 2.2,
the standard translation of ML into FO can be performed using only two
variables. Of course, other standard translations mapping ML into FO

are readily available, say one that introduces pairwise distinct variables for
any quantifiers translating nested modal operators. Finally, as remarked
earlier, various IF procedures have been proposed. The one put forward by
us is tailor-made to suit the particulars of the fragment of first-order logic
obtained by translating ML to FO via ST2.

By stipulation the two variables of FO2 are x, y. Define the 2-variable
fragment of IF first-order logic, denoted IF2, as follows. Its formulas are
obtained from those of FO2: Let α, β ∈ {x, y} and α 6= β. If ϕ ∈ FO2, the
result of replacing any number of occurrences of ∃β subordinate to ∀α in ϕ
by the symbol (∃β/α) is a formula of IF2, provided that the variable β in
(∃β/α) becomes thereby bound by ∀α. Thus ∃x∀x(∃y/x)Rxy is a formula of
IF2, but ∀x∃x(∃y/x)Rxy is not. The semantics of IF2 is obtained from the
semantics of IF first-order logic by stipulating that the variable α mentioned
in (∃β/α) is bound by the closest universal quantifier ∀α superordinate to
(∃β/α).

Having made the three choices and defined IF2, a fragment of IF first-
order logic, to be denoted IF(ST2(ML)), has been determined. It consists of
the results of applying the specified IF procedure to the first-order formulas
yielded by the standard translation ST2 from the formulas of basic modal
logic in NNF. The framework of structurally determining a logic is well-
suited also for discussing other IF modal logics. Table 1 lists (the IF first-
order correspondence languages of) several IF modal logics studied in the
literature, in terms of different instantiations of the three parameters.

The logics L1, L2, L3 are the IF first-order correspondence languages of
IFMLPR, IFML resp. EIFMLk, i.e., the canonical translations of these
IF modal logics into the suitable formulation of IF first-order logic. L4 is
the logic IF(ST2(ML)). The standard translation needed for the logics L1,
L2 and L3 introduces distinct quantified variables for any two nested modal
operators. The standard translation of L3 further construes propositional
connectives as restricted quantifiers.

4.3 Structurally determined IF modal logic

Our framework generates fragments of IF first-order logic. They may be
hard to parse. Therefore we aim at characterizing the logic IF(ST2(ML))
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Basic mod. log. in Translation into ∃xi can be indep. of
L1 NNF FO in NNF ∀xj if betw. ∀xj and ∃xi,

no ∨ or ∃xk appears
L2 NNF FO in NNF ∀xj or ∃xj

L3 SPNF FO in SPNF ∀xj , ∃xj , ∧ or ∨

L4 NNF FO2 in NNF ∀xj if xi 6= xj and
betw. ∀xj and ∃xi,
∃xj does not appear

Table 1. Results of different instantiations of the three parameters.

in terms of a more transparent, modal machinery. We wish to structurally
determine a modal logic—‘IF modal logic’ with a modal syntax—by singling
it out as the logic X such that its translation STIF(X) into the 2-variable
fragment IF2 of IF first-order logic coincides with the result of applying the
IF procedure (⇓IF) to the FO2-translation of ML:

ML
ST2

−→ ST2(ML) ⊂ FO2

⇓IF ⇓IF

∩ IF(ST2(ML)) ⊂ IF2

ıı

X
STIF

−→ STIF(X)

In want of better terminology, we will refer to the language X as ‘structurally
determined IF modal logic’ (and will denote it by IFMLSD).

As will be shown in this subsection, we will be able to find a particularly
nice modal-like presentation for the IF modal logic X: a presentation as a
modal-like logic with a compositional semantics. We do not wish to suggest
that this would be an integral part of our proposed framework of structurally
determining modal logics. E.g., for IFML and EIFMLk, we do not have
such a Tarskian compositional characterization, and neither are we aware of
a possibility of obtaining one (except by formulating a non-Tarskian modal
‘trump semantics’, i.e., by doing to the relevant IF modal logics what Hodges
did in [Ho197a] to IF first-order logic).

Let us define the syntax and semantics of a modal-like logic, which turns
out to be the logic X structurally determined above (see Proposition 4.2).

Syntax. A class of formulas is generated by the two grammars A and B:

α ::= p | ¬p | (α ∨ α) | (α ∧ α) | 3α | �α | �β
β ::= α | (α ∨ β) | (β ∨ α) | (β ∨ β) | (α ∧ β) | (β ∧ α) | (β ∧ β),

where p ∈ prop. The two grammars generate the formulas of a logic we
refer to as IFML◦

SD
. The formulas α are said to be closed, and the formulas
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β open. If ϕ is a formula, all tokens of not subordinate to a token of �

in ϕ are called free. If ϕ is open, all its free tokens of become bound by
the outmost token of � in �ϕ. For instance, p is open; and �( p ∨ q)
is closed, the two tokens of being bound by the unique token of �. We
stipulate that the formulas of the structurally determined IF modal logic,
IFMLSD, are the closed formulas of IFML◦

SD
(i.e., the formulas generated

by the grammar A). Note that the reason why the grammar B contains
both clauses (α ◦ β) and (β ◦ α) with ◦ ∈ {∧,∨} is simply ‘aesthetic’: we
wish that the conjunctions and disjunctions of formulas of which one is open
and the other is closed, can be formed in either order.

The operators � and will be referred to as ‘black box’ and ‘black
diamond’, and the operators � and 3 as ‘white box’ and ‘white diamond’.
Intuitively, is the ‘independent diamond’, and it will by definition be
independent precisely of the token of � that binds it. For its part, this
logic will hence illustrate that the relations ‘being bound by’ and ‘being
logically dependent on’ need not coincide; this point is made in a more
general context by Hintikka [Hi197].

Semantics. For every ϕ ∈ IFML◦
SD

, a satisfaction relation

M, I, ı̄, w |= ϕ

is defined, where M = (M,R, V ) is a modal structure and w ∈M is a state
as usual, and furthermore, I : {0, 1}∗ −→M is a token valuation, and ı̄ is a
binary string: ı̄ ∈ {0, 1}∗. Here, 0 and 1 should be intuitively thought of as
the choices left and right, respectively, made when interpreting propositional
connectives (∧,∨). Observe that given a formula ϕ, a binary string i1 . . . in
determines a subformula ψ of ϕ, namely the formula yielded by starting to
go through, outside-in, the propositional connectives of ϕ and choosing for
the j-th connective encountered left or right according to whether ij is 0
or 1. The process stops either because there are no more connectives to go
or because all the n choices have been made. The determined formula ψ is
the subformula reached by the process.

In providing the semantics of formulas of the form ϕ, the token valua-
tion I will be used. The idea is that I will yield states interpreting particular
tokens of , the tokens being identified precisely in terms of binary strings
ı̄ ∈ {0, 1}∗. Hence, in particular, the state interpreting the token of pre-
fixing ϕ is determined by I; and in general the valuation I has been chosen
already earlier in the evaluation (namely, when interpreting the closest su-
perordinate �), so that the state to interpret the token of in question has
been determined, as it were, in advance. The truth conditions of literals
and formulas of the forms � and 3 do not make use of the components I
and ı̄ of the models; by contrast, the components I and ı̄ play a key role in
the rest of the clauses:
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M, I, ı̄, w |= p iff w ∈ V (p)
M, I, ı̄, w |= ¬p iff w /∈ V (p)
M, I, ı̄, w |= 3ϕ iff for some v with R(w, v): M, I, ı̄, v |= ϕ
M, I, ı̄, w |= �ϕ iff for every v with R(w, v): M, I, ı̄, v |= ϕ

M, I, ı̄, w |= (ψ ∨ ϕ) iff M, I, ı̄0, w |= ψ or M, I, ı̄1, w |= ϕ
M, I, ı̄, w |= (ψ ∧ ϕ) iff M, I, ı̄0, w |= ψ and M, I, ı̄1, w |= ϕ

M, I, ı̄, w |= �ϕ iff for some I ′ : {0, 1}∗ −→M : M, I ′, ı̄, w |= �ϕ
M, I, ı̄, w |= ϕ iff R(w, I (̄ı)) and M, I, ı̄, I (̄ı) |= ϕ.

It should be observed that for the token valuations in IFML◦
SD

-seman-
tics, what really matters are the free occurrences of the black diamond in
a formula. It can easily be checked that if (relative to an initial string ı̄)
the free occurrences of in ϕ are those identified by the strings in the
set S ⊂ {0, 1}∗ (which is necessarily finite), then if for some I, we have
M, I, ı̄, w |= ϕ, actually M, I ′, ı̄, w |= ϕ holds for any I ′ such that for all
̄ ∈ S, I ′(̄) = I(̄). In particular, the satisfaction condition does not require
that we have I ′(̄ı) = I (̄ı), unless ı̄ ∈ S. It follows that the semantic clause
for the black diamond need not be phrased in terms of quantification over
token valuations: to evaluate �ϕ, it suffices to choose a fixed finite number
of states: as many states as there are free occurrences of in ϕ to be
interpreted. Let us write M, w |= ϕ to express the following condition: for
all token valuations I : {0, 1}∗ −→ M and all strings ı̄ ∈ {0, 1}∗, we have
M, I, ı̄, w |= ϕ. Now note that if the IFML◦

SD
-formula ϕ is closed (i.e., if

ϕ ∈ IFMLSD) and for some I and ı̄, we have M, I, ı̄, w |= ϕ, then actually
M, w |= ϕ holds. Formulas of IFMLSD are in this respect like sentences
in first-order logic: if satisfied under one assignment, they are satisfied
under all assignments. Their being satisfied is entirely independent of the
assignment. By contrast, for open IFML◦

SD
-formulas the token valuations

and the binary strings have a crucial relevance. Formally, free tokens of
(as identified by certain strings) bear resemblance to free variables, and

the valuations to variable assignments; in the presence of free variables the
satisfaction conditions of first-order logic are of course essentially dependent
on the assignments.

4.4 Standard translation

In this subsection we show that the modal-like logic IFMLSD is equally
expressive as the logic IF(ST2(ML)) specified in Section 4.2. This result
is interesting, because it shows that this fragment of IF first-order logic
indeed can be given a Tarskian semantics, in the sense specified in Section
4.1, unlike the full IF first-order logic. To be precise, in the compositional
semantics we designed for IFML◦

SD
, the interpretation |ϕ|M of a formula

ϕ in a modal structure M = (M,R, V ) is, in effect, a set of (n+1)-tuples of
elements of M , where n is the number of free tokens of the black diamond in
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ϕ, the remaining member of the tuple simply specifying the state w relative
to which the formula is evaluated. Hence the analogue of [Ca1Ho101, Cor.
6.2] does not hold for the logic IFMLSD: we need not climb to the level
of the powerset of the domain to obtain a compositional semantics; for any
formula of IFML◦

SD
, a fixed Cartesian power of the domain suffices.

Basic modal logic has a translation into the 2-variable fragment of first-
order logic. The class of closed IFML◦

SD
-formulas, that is, IFMLSD, has

an analogous property. Concretely, the following map STIF

x : IFMLSD −→
IF2 provides a canonical translation of IFMLSD into the 2-variable frag-
ment of IF first-order logic. For all α, β ∈ {x, y} with α 6= β, define:

STIF

α (p) = Pα,

STIF

α (¬p) = ¬Pα,

STIF

α ((ϕ ◦ ψ)) = (STIF

α (ϕ) ◦ STIF

α (ψ)) if ◦ ∈ {∨,∧},

STIF

α (3ϕ) = ∃β(Rαβ ∧ STIF

β (ϕ)),

STIF

α (�ϕ) = ∀β(Rαβ → STIF

β (ϕ)),

STIF

α ( ϕ) = (∃β/α)(Rαβ ∧ STIF

β (ϕ)),

STIF

α (�ϕ) = STIF

α (�ϕ).

Clearly, if ϕ is a closed IFML◦
SD

-formula, then STIF

x (ϕ) is an IF2-formula
with exactly one free variable, x. The map STIF

x provides a translation:

Proposition 4.1. For every formula ϕ ∈ IFMLSD, modal structure M,
and state w: M, w |= ϕ iff M

FO, w |= STIF

x (ϕ).

Proof. The proposition can be proven by induction on the structure of closed
formulas. Observe that the formulas prefixed with � are of the form �ψ,
where ψ is obtained by conjunction and disjunction from closed formulas
and formulas of the form θ, where θ is closed. q.e.d.

Further, the following ‘commutativity’ result holds, establishing that
IFMLSD actually is the logic X structurally determined above:

Proposition 4.2. Syntactically, STIF

x (IFMLSD) = IF(ST2
x(ML)).

Proof. The inclusion from left to right: Let ϕ ∈ IFMLSD be arbitrary,
and let ϕ− be the ML-formula resulting from ϕ by turning all its black
boxes and black diamonds into their white counterparts. Clearly STIF

x (ϕ)
is obtained by the IF procedure from ST2

x(ϕ−). The inclusion from right
to left: Let ψ ∈ ML be arbitrary, and let ψ+ be any result of applying the
IF procedure to ST2

x(ψ). Since ST2
x(ψ) ∈ FO2, ψ+ is a formula of IF2.

Any independence indication appearing in ψ+ must be in a context of the
form (∃α/β), where β is bound by a universal quantifier ∀β. Let, then,
ψ× be the result of having turned all those white diamonds 3 in ψ black,
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Figure 3.

that correspond to an existential quantifier in ST2
x(ψ) which has become

slashed via the IF procedure leading from ψ to ψ+; and having also turned
all those white boxes � in ψ black, that correspond to a universal quantifier
in ST2

x(ψ) binding the slashed variable of some existential slashed quantifier
in ψ+. It is easy to see that STIF

x (ψ×) is, by syntactic criteria, identical to
the formula ψ+. q.e.d.

4.5 Expressive power

The expressivity and decidability properties of the logic IFMLSD are ex-
tensively studied in [Tu1Se206]. Without entering into details concerning
the expressive power of IFMLSD, let us take an example.

Example 4.3. Consider evaluating the closed formula ϕ := �( p∨ q) at
the root w of the modal structure M depicted in Figure 3. Let I0 be any
token valuation and ı̄ any binary string. We claim that M, I0, ı̄, w |= ϕ. To
see this, choose I so that I (̄ı0) = v1 and I (̄ı1) = v2. (Choosing a valuation
I corresponds to picking out, as it were beforehand, states interpreting the
two black diamonds that can come across later in the evaluation.) It
suffices to check that M, I, ı̄, w |= �( p ∨ q).

For this to hold, it must be possible to partition the set {u1, . . . , u5}
into two cells (corresponding to the choice left or right for the disjunction
symbol), so that if uj belongs to one of the cells, then M, I, ı̄0, uj |= p;
and if uj belongs to the other cell, then M, I, ı̄1, uj |= q. Let the cells be
{u1, u2} for left, and {u3, u4, u5} for right. Then the above conditions hold
indeed: the former, since I (̄ı0) is accessible from all states in the former
cell, and p is true at I (̄ı0); and the latter because I (̄ı1) is accessible from all
states in the latter cell, and q is true at I (̄ı1). The above reasoning shows,
then, that M, w |= ϕ. Observe that the formula ϕ can be written in the
syntax of IFML as �((3/1)p ∨ (3/1)q).

For a further example of what can be expressed in terms of IFMLSD,
let n ≥ 2 be arbitrary, and think of the formula ϕn :=

�( ⊤ ∨ . . . ∨ ⊤
︸ ︷︷ ︸

n−1 times

).



Approaches to Independence Friendly Modal Logic 273

Evaluated relative to a modal structure M = (M,R, V ) at a state w, the
formula asserts, in effect, that the set {v : R(w, v)} can be partitioned into
(at most) n − 1 cells in such a way that the elements in each cell have a
common successor along the relation R. Actually the truth condition of ϕ
can be expressed by the first-order formula ϕ′n := ∃z1 . . . ∃zn−1∀y(Rxy →
(Ryz1 ∨ . . .∨Ryzn−1)). The formula ϕ′n is in the (n+ 1)-variable fragment
of FO. On the other hand, it is not difficult to see (by reference to a pebble
game argument8) that ϕ′n is not equivalent to any formula in the n-variable
fragment of FO. Hence the greater the number n is, the more variables are
needed to translate the formula ϕn into first-order logic. As a consequence,
we may infer the following fact:

Fact 4.4. For all n < ω, IFMLSD 6≤ FOn.

Furthermore, we observe that for all n ≥ 2, the maximum number of
nested modal operators in ϕn is 2. Yet whenever n′ > n, the formulas ϕn

and ϕn′ are not equivalent. So we have:

Fact 4.5. For IFMLSD, it is not the case that up to logical equivalence,
there are only finitely many formulas of a given modal depth.

It may be noted that Facts 4.4 and 4.5 are in a striking contrast to
the case of basic modal logic, which is translatable into FO2, and has the
property that the number of pairwise non-equivalent formulas of any given
modal depth is finite. (For the latter fact, see, e.g., [BldRVe101, Proposi-
tion 2.29].) These and other unorthodox properties of the modal-like logic
IFMLSD might suggest that it should be of a rather marginal interest as
a modal logic; even its status as a modal logic might thus be questioned.
However, it is proven by the present authors in [Tu1Se206] that satisfiabil-
ity and validity problems of IFMLSD are decidable in PSPACE. Hence
this expressive logic shares with basic modal logic a good deal of its nice
computational properties. So we see that the distribution of ‘desirable’ and
‘undesirable’ properties may, in modal-like logics, be rather surprising. Ac-
tually, one of the most interesting negative properties of IFMLSD is its
non-translatability into the guarded fragment of first-order logic, proven in
[Tu1Se206].

5 Collapse of diversity

Two ways to approach independence friendly modal logic have been dis-
cussed: one leading from IFML to EIFMLk, proceeding via adding inde-
pendence indications to modal operators much in the same way as is done

8 As a reference for the usage of pebble games Gn
m(M, a,N ,b) to characterize equiva-

lence of structures up to quantifier rank ≤ m relative to FO
n, see, e.g., [EbFl299, pp.

49-50].



274 T. Tulenheimo, M. Sevenster

in IF first-order logic—the other way being via adjusting several parameters
in such a way that an independence friendly logic gets structurally deter-
mined. It is fairly evident that the three logics considered here differ in
their expressive power. In fact, we have IFMLSD < IFML < EIFMLk.
(For what is known and what is conjectured about the relations of these
logics, see Tables 2 and 3 in Section 6.) By contrast, we now show that in
some cases—in fact in cases that are extremely common in modal logical
contexts—the expressive powers of these logics coincide.

Let us begin with a couple of definitions. If M is a set and R ⊆M2 is a
binary relation, let us write R+ for the transitive closure of R, and R∗ for
the reflexive transitive closure of R. The structure (M,R) is a tree, if (i)
there is a unique element r ∈ M such that for all x ∈ M , R∗rx; (ii) every
element of M has a unique R-predecessor; and (iii) R is acyclic, i.e., there
is no x such that R+xx. Let us say that a tree is branching, if no x ∈M has
precisely one R-successor (no element has ‘out-degree’ equal to 1). Hence in
a branching tree every element has either no R-successors at all, or has at
least two R-successors. A k-ary modal structure M = (M,R1, . . . , Rk, V ) is
(branching and) tree-like, if the structure (M,

⋃

1≤i≤k Ri) is a (branching)
tree. A tree-like k-ary modal structure M is proper, if for all x, y ∈ M
and all 1 ≤ i, j ≤ k: [(x, y) ∈ Ri and (x, y) ∈ Rj ] implies i = j. That
is, in a proper tree-like structure no vertices are connected by more than
one relation out of the k available ones. Define Treek as the class of all
proper branching tree-like k-ary modal structures. Note that by virtue of
clause (iii) in the definition of tree, all accessibility relations R1, . . . , Rk of
a structure M ∈ Treek are irreflexive.

We will prove that all logics IFML, EIFMLk and IFMLSD coin-
cide with basic modal logic (and hence with each other) relative to the
class Treek. Consider first EIFMLk. If ϕ = O1 . . .Onγ ∈ EIFMLk,
Oz+1 = (3j1...jy

/i1, . . . , im) and [x, z] ⊆ {i1, . . . , im}, we say that the op-
erator Oz+1 involves independence of a continuous block of predecessors.
This terminology makes sense: by assumption Oz+1 is indicated as inde-
pendent from its immediate predecessor Oz, from the predecessor Oz−1 of
Oz etc., (at least) until Ox. (The smallest number among i1, . . . , im may
well be smaller than x, while its greatest number must be z, since the in-
terval [x, z] is included in {i1, . . . , im}.) In what follows, we will rewrite
any operator (3j1...jy

/i1, . . . , im+m′), as given by the syntax, in the form
(3j1...jy

/i1, . . . , im, i
′
1, . . . , i

′
m′), where the integers i1, . . . , im refer by stip-

ulation to modal operators, and the integers i′1, . . . , i
′
m′ to propositional

connectives.

Lemma 5.1. (a) If ϕ ∈ EIFMLk, let ϕ− be the result of replacing all inde-
pendent diamonds (3j1...jy

/i1, . . . , im, i
′
1, . . . , i

′
m′) in ϕ by the corresponding

diamond (3j1...jy
/i′1, . . . , i

′
m′) involving no independencies of modal opera-
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tors. Relative to Treek, ϕ is equivalent to ϕ−. (b) If no diamonds in
ϕ ∈ EIFMLk contain independencies of modal operators, let ϕ− be the
result of replacing all independent diamonds (3j1...jy

/i′1, . . . , i
′
m′) in ϕ by

the simple diamond 3j1...jy
. Relative to Treek, ϕ is equivalent to ϕ−.

Proof. (a) Let M ∈ Treek and w ∈ M , and assume that M, w |= ϕ. Sup-
pose ϕ contains a diamond Oz+1 = (3j1...jy

/i1, . . . , im, i
′
1, . . . , i

′
m′) involv-

ing independence of a continuous block of predecessors Ox, . . . , Oz such that
Ox = �j1...jx

. Suppose a play proceeds to evaluating the operator Oz+1.
Then the strategy function σz+1 corresponding to Oz+1 given by ∃’s win-
ning strategy (which exists by assumption) satisfies: σz+1(p0, p1, . . . , pz) =
σz+1(p0, p

′
1 . . . , p

′
z), where the sequence of choices from the domain asso-

ciated with px is ς = (w,w1, . . . , wr) and the one associated with p′x is
ς ′ = (w,w′1, . . . , w

′
r), and wr 6= w′r. (This is because M ∈ Treek is branch-

ing and so in the two plays ∀ has chosen pairwise incomparable and hence
distinct states when choosing for the box Ox.) But this is impossible, since
in a tree no distinct nodes can have a common successor and so σz+1 cannot
be a strategy function involved in a winning strategy.

If the longest possible continuous block of predecessors of Oz+1 contains
only diamonds, then Oz+1 may trivially be replaced by (3j1...jy

/i′1, . . . , i
′
m′).

Finally, if ϕ contains no operator involving independence of a continuous
block of predecessors, then all operators (3j1...jy

/i1, . . . , im, i
′
1, . . . , im′) in

ϕ satisfy: either the list i1, . . . , im is empty, or subordinate to the closest
box (if any) identified by an integer in the list, there is a modal opera-
tor superordinate to the diamond and not identified by any integer in the
list. Hence, if wr is the most recent choice from the domain made be-
fore arriving at the position where ∃ must make a choice for the diamond
(3j1...jy

/i1, . . . , im, i
′
1, . . . , im′), then, to put it intuitively, ∃’s move for the

diamond is allowed to depend on wr. But there is a uniquely determined
path in the tree-like structure M leading from w to wr, whence ∃ can infer
all previous choices made in the relevant partial play. Hence the diamond
(3j1...jy

/i1, . . . , im, i
′
1, . . . , im′) may, without changing the truth condition,

be replaced by (3j1...jy
/i′1, . . . , i

′
m′).

(b) Let µ be the distribution of modality types associated with ϕ. Sup-
pose that M, w |= ϕ. Consider a diamond (3j1...jy

/i′1, . . . , i
′
m′) appearing in

ϕ. (If none exists, there is nothing to prove.) If the indicated independen-
cies from conjunctions correspond, as determined by µ, to the requirement
of reaching one state along several accessibility relations, then ∃’s winning
strategy in G(ϕ,M, w) will choose such a state. But this is impossible,
because M is a proper tree-like structure and hence no such state exists.
On the other hand, if the indicated independencies from conjunctions cor-
respond to making a choice along one and the same accessibility relation
irrespective of what the choices for those conjunctions were, then the inde-
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pendent diamond can be replaced by the simple diamond. Finally, if in the
diamond considered there are only independencies from disjunctions, the
formula says the same as the result of replacing the independent diamond
with a simple diamond. q.e.d.

Recall that MLk stands for the polymodal basic modal logic, evaluated
relative to k-ary modal structures. We are in a position to prove:

Theorem 5.2. (a) For all k ≥ 1, EIFMLk coincides with MLk over Treek.
(b) Both IFML and IFMLSD coincide with ML over Tree1.

Proof. Statement (a) follows by Lemma 5.1; and statement (b) by an argu-
ment exactly like the one presented for item (a) in the proof of Lemma 5.1.

q.e.d.

The class of tree-like structures is omnipresent in modal logic. In partic-
ular, any ML-formula that has a model at all, has a tree-like model. (Cf.,
e.g., [BldRVe101, Proposition 2.15].) The class Treek discerned above is
quite representative a subclass of all tree-like models from the viewpoint of
basic modal logic. (It is not difficult to see that any satisfiable polymodal
formula ϕ ∈ MLk is satisfied in a structure M ∈ Treek.) Hence it is of in-
terest to see that the additional expressive power of the IF modal languages
discussed in the present paper does not lie in their capacity to distinguish
such tree-like models. Relative to Treek the three logics do not exceed what
already their common core, basic modal logic, is able to express.

There is, at least tentatively, a positive methodological side to our neg-
ative expressivity result. Namely, one can propose to turn the tables and
suggest that a result such as Theorem 5.2 points to a feature that any IF
version of basic modal logic should exhibit.9 That is, results of this type
can be used in assessing the general question as to the ‘nature’ of IF modal
logics. From this perspective, indeed it seems reasonable to require that
IF modal logics of the appropriate kind precisely should coincide with basic
modal logic on the class of trees discussed; if a logic does not, it cannot be
properly called an IF modal logic in the sense intended. This systematic
idea alone brings some order in the manifold of different logics that could
conceivably be termed IF modal logics. However, it must be noted that
deciding the precise characteristics of a family of logics, such as IF modal
logics, is bound to leave some room for discussion; the same holds for the
acceptance criteria of any exclusive club of logics—modal, first-order, or
what not. What is more, when applying the framework introduced in Sec-
tion 4, we need not choose a fragment of basic modal logic as the class of
modal formulas we start with. Choosing for instance basic tense logic, or

9 We are indebted to the anonymous referee for pointing out this positive side of our
negative result.
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first-order modal logic, will likewise result in a system that can, in a generic
sense, be termed an IF modal logic. And such logics need not satisfy any
specific conditions that may be necessary for IF modal logics corresponding
to some different choice of input modal formulas; for instance, there is in
general no reason why they should meet the conditions that IF modal logics
emerging from basic modal logic actually satisfy.

6 Concluding remarks

In this paper we aimed to discuss two different ways of formulating indepen-
dence friendly modal logic. To achieve this, we began by surveying and fur-
ther studying IF modal logics of one of these two kinds, i.e., those obtained
from basic modal logic by introducing a suitably interpreted slash device
to the syntax (Sections 2 and 3). Now one respect in which modal logic
differs from first-order logic is that syntactically, modal operators do not
carry variables, whereas quantifiers do. When subject to suitable syntactic
restrictions, these variables can easily be employed in referring to particular
tokens of quantifiers, whereas no similar syntactic mechanism is available
in standard modal logic. This is why in the approaches such as those dis-
cussed in Sections 2 and 3, one must introduce an identification method by
means of which to single out those tokens of modal operators from whose
logical (priority) scope one wishes to exempt, say, a given diamond. On
conceptual grounds one might find introducing such identification methods
into the syntax less than fortunate. One could argue that independence is
a relation between (syntactically manifest) variables, and suggest that since
modal syntax does not offer any such variables, it does not really make sense
to attempt formulating an IF modal logic. According to such a viewpoint,
adding for instance indices to modal operators to make reference to tokens
of such operators possible, would be an ad hoc move from the perspective
of what modal logic is about.

The present authors do not share the ideas on which such a critique
is based. We hold independence to be a relation between tokens of logi-
cal operators, not first and foremost between syntactically manifest vari-
ables. However, we hope to have made it clear in Section 4 that even if
independence was considered precisely as a relation between variables, an
independence friendly modal logic analogous to IF first-order logic can be
defined by considering fragments of IF first-order logic. This is the frame-
work of the IF modal logics of the second kind considered in the present
paper. The particular fragment to which we gave attention, the result of
taking the standard translation of ML into FO2, and applying a certain
IF procedure to the resulting class of first-order formulas, even turned out
to be of further interest. Namely, we found a modal-like logic IFMLSD,
with a compositional semantics, capturing the relevant subfragment of (the
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L Expressivity Satisfiability Validity

ML L < FO2
PSPACE PSPACE

ML < L < FO3,
IFMLPR

IFMLSD 6≤ L < IFML
≤ SUPEREXP PSPACE

IFML L 6≤ FO ? ?
EIFMLk IFML < L 6≤ FO ? ?
EIFML= L 6≤ FO undecidable ?

L 6≤ FOn, L < FO,
IFMLSD L < IFML

PSPACE PSPACE

Table 2. Known results on (IF) modal logics.

L Expressivity Validity
IFML PSPACE

EIFMLk PSPACE

EIFML= PSPACE

IFMLSD IFMLPR 6≤ L

Table 3. Conjectures on IF modal logics.

2-variable fragment of) IF first-order logic.
Table 2 lists the main results known about the various logics discussed

in the present paper. EIFML= stands for the polymodal EIFMLk, one of
whose accessibility relations is rigidly interpreted as equality. In Table 3,
some conjectures about the various IF logics are presented. The conjecture
to the effect that IFMLPR cannot be translated into IFMLSD holds fairly
obviously, but the requisite tool called for by the standard proof technique
(viz. an appropriate bisimulation relation) has not as yet been formulated
in the literature.

Although we feel that the logics discussed and studied in the present
paper are interesting in their own right, we think that more generally, they
help to see the interest of the grand program of independence-friendliness
in logic—that is, repairing Frege’s fallacy also outside of first-order logic.
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Abstract

Team logic is the logic of functional dependencies. We define the
basic logical operations of team logic, establish its relationship with
independence friendly and second order logic, and give it a game
theoretic characterization.

1 Introduction

Let a vocabulary1 L and an L-structure M with universe M be given. In
this paper we study functional dependencies in M. This is in contrast to the
traditional approach in logic of studying relational dependencies in M. Our
atomic dependence relations state the existence of a functional dependence
without giving any definition for the function that carries the dependence.
This gives the whole topic a second order flavor. It seems to the author that
although functional dependence in databases has been studied (starting with
[Ar74]), a general theory of more complex types of dependence is new. (For
a more detailed recent study, see [Vä07].) Our theory is based on [Ho197b]
and [VäHo1∞].

If L has an n-ary function symbol f , there is immediately an apparent de-
pendence relation inM, namely the dependence of each a = fM(a1, . . . , an)
on a1, . . . , an. If the function fM is constant, the dependence is of a sin-
gular kind, not commonly called dependence on a1, . . . , an at all. On the

∗ This paper was written while the author was a guest in the Newton Institute (Cam-
bridge, U.K.) as part of the special program Logic and Computation. The author
is grateful to the Newton Institute for its support. Research was also partially sup-
ported by grant 40734 of the Academy of Finland. I am indebted to the referee for
pointing out some inaccuracies and suggesting improvements, and to Fred Oakley for
permission to use the photo in Figure 2.

1 The vocabulary may contain constant, relation and function symbols.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 281–302.
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other hand, if the function is one to one, we have a dependence that is so
perfect that it can even be reversed. In this case dependence is carried by a
function that has a name in the vocabulary. In general we have completely
abstract functions carrying the dependence with no name in the vocabulary
and even no definition in the language, what so ever.

If L has an n-ary relation symbolR, there is a relational dependence rela-
tion in M, namely the mutual dependence of a1, . . . , an such that
(a1, . . . , an) ∈ RM on each other. However, even if such a relation be-
tween the elements a1, . . . , an binds the elements together in an obvious
sense, it need not in general be a (functional) dependence in the sense of
the current approach.

Team logic is the logic of (functional) dependence. We define the basic
concepts of team logic and use it to analyze dependence. The negation-
free part of team logic turns out to correspond naturally to independence
friendly logic and thereby to the existential part of second order logic. Team
logic itself can be seen as being the natural closure of independence friendly
logic under (classical) negation. In expressive power team logic is in a
natural sense equivalent to full second order logic. We give a game-theoretic
characterization of team logic by means of an appropriate Ehrenfeucht-
Fräıssé game.

2 Agents and teams

An agent is any finite mapping s from a domain dom(s) into M . Elements
of dom(s) are called features or fields, sometimes attributes, depending on
the application2. Unless stated otherwise, to be specific, the domain of an
agent is a finite set of natural numbers. The modification s(a/n) of an agent
s maps n to a but agrees otherwise with s. The value of a term t, built up
from variables xn and symbols of L, on an agent s is the element t〈s〉 of M
defined in the usual way by c〈s〉 = cM, xn〈s〉 = s(n), and ft1 . . . tn〈s〉 =
fM(t1〈s〉, . . . , tn〈s〉). For this to make sense the domain of s has to contain
n whenever xn occurs in t.

Building on [Ho197a] and [Ho197b] we take the position that dependence,
just like any other pattern, cannot be manifested by one event, observation
or agent (which is our terminology) but needs a series or a group of events,
observations or agents. We call these series or groups manifesting depen-
dence teams.

A team (see Figure 1) is any set X of agents with the same domain
dom(X). Table 1 presents a generic team in the form of a table. Here are
some examples of teams:

2 Agents are also called assignments or tuples. If we think of an agent s as an assignment,
the elements of the domain are variables xn or their indexes n, depending on how values
of terms are defined.
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Features

Agent m1 m2 . . . mn

s1 s1(m1) s1(m2) . . . s1(mn)

s2 s2(m1) s2(m2) . . . s2(mn)

s3 s3(m1) s3(m2) . . . s3(mn)

s4 s4(m1) s4(m2) . . . s4(mn)

s5 s5(m1) s5(m2) . . . s5(mn)

. . . . . . . . . . . . . . .

Table 1. A generic team as a table.

s
M

X

M

Figure 1. A model with an assignment and a model with a team.

Team 1 A team of human genomes (Figure 2). Here the agents are in-
dividual genomes of individual people. The fields (or features) are
the individual genes that are observed. Potentially there are tens of
thousands of possible fields to consider, and billions of agents. If we
add to such a team new fields related to medical data of the person
in question, we get a team the dependencies of which may give cru-
cial data about the role of hereditary factors in medical science. For
example, we may ask:

1. Does a certain gene or gene combination (significantly) determine
a given hereditary disease in the sense that a patient with (a fault
in) those genes has a high risk of the disease?

2. Is a disease totally dependent on a gene in the sense that ev-
ery gene combination that (significantly) determines the disease
contains that particular gene.

3. Is a gene (merely) dependent on a gene in the sense that the
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disease is (significantly) determined by some gene combination
with the gene but not without.

4. Is a disease totally independent of a gene in the sense that no gene
combination that (significantly) determines the disease contains
that particular gene.

5. Is a gene (merely) independent of a gene in the sense that some
gene combinations (significantly) determine the disease without
containing that particular gene.

C

T

A

G

C

T

A

G

C

T

A

G

C

T

A

G

C

T

A

G

C

T

A

G

Figure 2. A piece of a team of genomes.

Team 2 Game history team: Imagine a game, any game. Game moves
are the features of this team, plays are the agents, and a collection of
plays is a team. Thus a player is identified with his or her behavior in
the game. It may be relevant to know answers to the following kinds
of questions:

1. What is the strategy that a player (e.g. “Nature”) is following,
or is he or she following any strategy at all?

2. Is a player using information about his or her (or other players’)
moves that he or she is committed not to use?

Team 3 Every formula ϕ(x1, . . . , xn) of any logic and structure M give
rise to the team of all assignments that satisfy ϕ(x1, . . . , xn) in M.
This is a definable team and perhaps the most obvious team arising in
logic. It may manifest functional dependencies on the structure, and
depending on the logic, these dependencies can or cannot be expresses
in the logic.
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Team 4 Every first order sentence ϕ and structure M give rise to teams
consisting of assignments that arise in the semantic game of ϕ andM.
If M |= ϕ and the winning strategy of II is τ , a particularly coherent
team consists of all plays of the semantic game in which II uses τ .
The same holds of independence friendly logic of [Hi196].

Team 5 A team of robots building a car. Each agent s, i.e. robot, has
features encoded by the function s. For example, if the domain of the
agents is

{reach, payload, joint range, speed,weight, paints,welds},

we can have a team as in Table 2. Here weight depends on the payload

robot reach payload range speed weight paints welds

(mm) (kg) (◦) (◦/sec) (kg)

1 653 2.5 170 328 28 true false
2 653 2.5 170 328 28 true false
3 653 2.5 190 328 28 true false
4 653 5 170 328 35 true false
5 653 5 170 300 35 false true
6 653 5 170 300 35 false true
7 653 5 360 328 35 false true

Table 2. A team of robots

but not on speed as robots 3 and 4 have the same speed but different
weight. Note that the team can be divided into two subteams one of
which paints and the other does welding. This team raises the issue
whether a team can have two agents with exactly the same values on
all features. According to our definition the two agents are in such a
case the same. So the above table describing the team is misleading.
Robots 1 and 2 are the same, as are robots 5 and 6. If we added the
robot number to the domain, the robots would all be different agents.
This indicates an extensionality phenomenon in our approach.

3 Dependence types

Our starting point was the idea that teams can manifest dependencies. The
different ways that this happens give rise to the concept of a dependence
type3 that we now define. Some dependence types are of an atomic nature
in that they are not decomposed further into smaller dependence types. The
atomic types are

3 Types correspond to formulas. We use the word ‘type’ to emphasize the difference
between truth and dependence.
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• t = t′: Every agent s ∈ X satisfies t〈s〉 = t′〈s〉. The team of Table 3
is of type x3 = x4.

• ¬t = t′: Every agent s ∈ X satisfies t〈s〉 6= t′〈s〉. The team of Table 3
is of type ¬x2 = x4.

• Rt1 . . . tn: Every agent s ∈ X satisfies (t1〈s〉, . . . , tn〈s〉) ∈ RM. The
team of Table 3 is of type x2 < x4.

• ¬Rt1 . . . tn: Every agent s ∈ X satisfies (t1〈s〉, . . . , tn〈s〉) /∈ R
M. The

team of Table 3 is of type ¬x4 < x2.

• =(t1, . . . , tn): Every two agents s, s′ ∈ X that satisfy

t1〈s〉 = t1〈s
′〉

...

tn−1〈s〉 = tn−1〈s
′〉,

also satisfy tn〈s〉 = tn〈s
′〉. This type is called the dependence type.

The team of Table 3 is of type =(x1, x2) but not of type =(x2, x1).
There are two special cases. The first is =(t). This is the type of
teams in which the value of t is constant. Team 5 above is of type
=(reach). The second special case is the type =(). This is the type
of all teams what so ever and is given a special symbol ⊤.

• ¬=(t1, . . . , tn): This is the type of the empty team ∅. This should
be distinguished from the type of an “impossible” team, that is, the
type which is not the type of any team what so ever. We shall return
to this type later. The reason for allowing only the empty team to
be of the type ¬=(t1, . . . , tn) is the following: We want types to be
closed downwards. If a non-empty team was of type ¬=(t1, . . . , tn),
there would have to be a singleton team {s} of the same type. But
singleton teams are always of type =(t1, . . . , tn).

The types t = t′, ¬t = t′, Rt1 . . . tn and ¬Rt1 . . . tn occur in [Ho197a] and
[Ho197b]. The dependence type =(t1, . . . , tn) is introduced in [VäHo1∞].
The empty team is of every atomic type, in particular both of type t = t′

and ¬t = t′. From atomic dependence types we can build more complex
ones with team operations, which are the following:

• Negation ∼ϕ: The team is not of type ϕ. The team of Table 3 is
of type ∼=(x2, x1). Note that ∼Rt1 . . . tn is quite different from
¬Rt1 . . . tn. The former says some agent s in the team fails to satisfy
(t1〈s〉, . . . , tn〈s〉) ∈ RM, while the latter says all fail. Even more



Team Logic 287

Domain

Agent 1 2 3 4

s1 100 9 10 10

s2 20 9 10 10

s3 21 1 10 10

s4 1 2 11 11

s5 101 1 11 11

Table 3. A team in (N, <).

Domain

Agent 1 2 3 4

s1 100 9 10 10

s2 20 9 10 10

s5 101 1 11 11

Domain

Agent 1 2 3 4

s3 21 1 10 10

s4 1 2 11 11

Table 4. Two teams in (N, <).

dramatic is the difference between ∼=(t1, . . . , tn) and ¬=(t1, . . . , tn).
The former says some s and s′ in the team give the same value to
(t1, . . . , tn−1) but a different value to tn, while the latter says there
are no agents in the team at all. Finally ∼=() is the type of no team.
Thus we have two negations, ¬ and ∼, but the former can be applied
to atomic types only. Its range of applicability can be extended to
what we call ∼-free part of team logic.

• Conjunction ϕ ∧ ψ: The team is both of type ϕ and of type ψ. The
team of Table 3 is of type x3 = x4 ∧ ¬x2 = x4.

• Tensor ϕ ⊗ ψ: The team is the union of a team of type ϕ and a team
of type ψ. Team 5 is of type paints⊗welds. This indicates the role
of ⊗ in expressing co-operation skills of teams. The team of Table 3 is
of type =(x3, x2) ⊗ =(x3, x2), as Table 4 shows. Note that that team
is not of type =(x3, x2). So tensor is not idempotent as conjunction
is.

• Existential quantifier ∃xnϕ: The agents s ∈ X can be modified to
s(as/n) in such a way that the team {s(as/n); s ∈ X} is of type
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ϕ. The team of Table 3 is of type ∃x1(x1 < x2) and also of type
∃x5(x5 < x2).

• Shriek quantifier !xnϕ: A team X is of this type if the team of all
agents s(a/n), where a ∈ M and s ∈ X , is of type ϕ. The team of
Table 3 is of type ! x1(x1 < x3 ⊗ x2 < x1). but not of type ! x1(x2 <
x1).

More formally:

Definition 3.1. Let L be a vocabulary. The set of types is defined as
follows: If t, t′, t1, . . . , tn are terms of the vocabulary L, and R is a relation
symbol in L, then the following are types

t = t′.
¬t = t′.
Rt1 . . . tn.
¬Rt1 . . . tn.
=(t1, . . . , tn).
¬=(t1, . . . , tn).

If ϕ and ψ are types, then so are:

∼ϕ.
ϕ ∧ ψ.
ϕ ⊗ ψ.
∃xnϕ.
!xnϕ.

The concept “team X is of type ϕ” is defined as follows:

• X is of type t = t′ iff for all s ∈ X(t〈s〉 = t′〈s〉).

• X is of type ¬t = t′ iff for all s ∈ X(t〈s〉 6= t′〈s〉).

• X is of type Rt1 . . . tn iff for all s ∈ X(t1〈s〉, . . . , tn〈s〉) ∈ R
M.

• X is of type ¬Rt1 . . . tn iff for all ∈ X(t1〈s〉, . . . , tn〈s〉) /∈ R
M.

• X is of type =(t1, . . . , tn) iff for all s, s′ ∈ X([t1〈s〉 = t1〈s
′〉&

. . .&tn−1〈s〉 = tn−1〈s
′〉] implies tn〈s〉 = tn〈s

′〉).

• X is of type ¬=(t1, . . . , tn) iff X = ∅.

• X is of type ∼ϕ iff X is not of type ϕ.

• X is of type ϕ ∧ ψ iff X is both of type ϕ and of type ψ.
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• X is of type ϕ ⊗ ψ iff X = Y ∪ Z, where Y is of type ϕ and Z is of
type ψ.

• X is of type ∃xnϕ iff there is a function s 7→ as from X to M so that
the team {s(as/n); s ∈ X} is of type ϕ.

• X is of type !xnϕ iff the team {s(a/n) : a ∈M, s ∈ X} is of type ϕ.

We can define further types from the above ones:

• Disjunction ϕ ∨ ψ: This is the type ∼(∼ϕ ∧ ∼ψ), i.e. the type of
teams that are of type ϕ or of type ψ (or both).

• Universal quantifier ∀xnϕ: This is the type ∼∃xn∼ϕ, i.e. the type of
teams X such that whenever the agents s ∈ X are modified to some
s(as/n), then the new team {s(as/n); s ∈ X} is of type ϕ.

• Implication ϕ→ ψ: This is the type ∼ϕ ∨ ψ.

• Lollipop ϕ −◦ ψ: This is the type ∼(ϕ ⊗ ∼ψ), i.e. if whenever it is
represented as the union of two teams the first of which is of type ϕ,
then the other one is of type ψ.

There are exactly two teams with empty domain, namely ∅ and {∅}.
From these we get exactly four different types of teams with empty domain:

Symbol Type Teams

⊤ =() ∅, {∅}

⊥ ∼=()

1 ∼¬=() {∅}

0 ¬=() ∅

These dependence values form the following diamond:

⊤

ր տ

1 0

տ ր

⊥
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Definition 3.2. Suppose ϕ is a type of a team with empty domain.4 We
define M |= ϕ to mean that the team {∅} is of type ϕ in M. We then say
M is of type ϕ.

In a sense, team logic is a four-valued logic. The dependence values of
types ϕ ⊗ ψ, ϕ∧ψ, and ∼ϕ for types ϕ and ψ of teams with empty domain
can be readily given in terms of truth-tables:

⊗ ⊤ ⊥ 1 0

⊤ ⊤ ⊥ ⊤ ⊤
⊥ ⊥ ⊥ ⊥ ⊥
1 ⊤ ⊥ 1 1

0 ⊤ ⊥ 1 0

∧ ⊤ ⊥ 1 0

⊤ ⊤ ⊥ 1 1

⊥ ⊥ ⊥ ⊥ ⊥
1 1 ⊥ 1 0

0 0 ⊥ 0 0

∼
⊤ ⊥
⊥ ⊤
1 0

0 1

Here are some examples of types: The type

=(x0, x1) ⊗ =(x0, x1)

is the type of teams in which field 1 depends on field 0 in the weaker sense
than functional dependence that the values of field 0 determine at most
two values one of which is the value in field 1. Table 5 is an example of

Rank Salary
A 2000
A 2100
B 2150
B 2220
C 2340
C 2440
D 2500
D 3100
E 3200
E 3710

Table 5. Does salary depend on rank?

a team which is of type =(Rank, Salary) ⊗ =(Rank, Salary). If we denote
=(x0, x1) by ϕ, we get weaker and weaker forms of functional dependence
by considering the types

ϕ ⊗ ϕ
ϕ ⊗ ϕ ⊗ ϕ
ϕ ⊗ ϕ ⊗ ϕ ⊗ ϕ
. . .

4 That is, ϕ is a ‘sentence’, it has no free variables.
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The type
=(x0, x1) ∧=(x1, x0)

is the type of teams in which field 0 depends functionally on field 1 and
conversely field 1 depends functionally on field 0. We could say that fields
0 and 1 are mutually functionally dependent. The type

¬x0 = x1 ⊗ x2 = x3

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3). The type

¬x0 = x1 ⊗ x2 = x3

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3). The type

(¬x0 = x1 ⊗ x2 = x3) ∧ (¬x2 = x3 ⊗ x0 = x1)

is the type of teams in which each agent s which satisfies s(0) = s(1) also
satisfies s(2) = s(3) and vice versa. The type

! x0∃x1 ! x2∃x3(=(x2, x3) ∧ ¬(x0 = x1)

∧ (¬x0 = x2 ⊗ x1 = x3)

∧ (¬x1 = x2 ⊗ x3 = x0))

is the type of teams which are non-empty if and only the underlying set M
is either infinite or finite and of even cardinality. The type

! x0∃x1 ! x2∃x3(=(x2, x3) ∧ (¬Px0 ⊗ (Qx1 ∧

(¬x0 = x2 ⊗ x1 = x3)

(¬x1 = x3 ⊗ x0 = x2))))

is the type of teams which are non-empty if and only if in the underlying
structure M the predicate P and Q satisfy |PM| ≤ |QM|.

4 Modes of dependence and independence

We shall now use the above concept of dependence type to analyze in more
general terms different concepts of dependence and independence.

Let X be a team with domain {m1, . . . ,mn} in a domain M , as in
Table 1. There is an obvious partial order in the powerset of {m1, . . . ,mn},
namely the set-theoretical subset-relation ⊆. We now define a new relation,
called the pre-order of functional dependence:
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V ≤W V is functionally dependent on W , i.e. features in V can be
determined if the values of the features in W are known.
In symbols, ∀s, s′ ∈ X((∀y ∈ W (s(y) = s′(y)) → (∀x ∈
V (s(x) = s′(x))))). Equivalently: V is functionally depen-
dent on {w1, . . . , wn}, if for all y ∈ V there is a function fy
such that for all s in X : s(y) = fy(s(w1), . . . , s(wn)).

It is evident from the definition that the pre-order of functional depen-
dence is weaker than the partial order of inclusion in the sense that every
subset of a set obviously depends functionally on the set itself. It is more
interesting that sometimes a set is functionally dependent on a set disjoint
from itself, and a singleton set may be functionally dependent of another
singleton set. Some sets may be functionally dependent on the empty set
(in that case the feature has to have a constant value). Every set is certainly
functionally dependent on the whole universe.

Note that the Armstrong Axioms of functional dependence (see [Ar74])
state exactly the following:

1. V ≤W is a pre-order, i.e. reflexive and transitive.

2. If V ⊆W , then V ≤W .

3. If V ≤W and U is arbitrary, then V ∪ U ≤W ∪ U .

4. If V ≤W , then there is a minimal U ⊆W such that V ≤ U .

These axioms characterize completely when a functional dependence V ≤W
follows from given functional dependencies V1 ≤W1,. . . ,Vn ≤Wn.

Now we can define two versions of dependence, by using the pre-order
of determination. Suppose for W ∩ V = ∅. We define:

V is dependent on W There is some minimal U ≥ V such
that U ∩ V = ∅ and W ⊆ U .

V is totally dependent on W For every U ≥ V such that U ∩ V =
∅ we have W ⊆ U .

V is independent of W There is some U ≥ V such that U ∩
V = ∅ and W ∩ U = ∅.

V is totally independent of W For every minimal U ≥ V such that
U ∩ V = ∅ we have W ∩ U = ∅.

V is non-determined There is no U ≥ V such that U∩V =
∅. In the opposite case V is called
determined.
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star food drink music

Marlon pasta wine classical
Jack pasta beer classical
Robert steak wine rock
Julia steak beer rock

Table 6. Team of favorites.

Note, that it is quite conceivable that two sets V and W of features are
mutually dependent in the sense that both depend on each other. In the
team of Table 6 we can make the following observations: star depends on
food, since {star}≤{food, drink}. On the other hand, star depends also
on music, since {star}≤{drink, music}. So star is not totally dependent
on either food or music but it is totally dependent on drink.

Note that the above concepts are defined with respect to the fields that
we have in the domain. Indeed, it seems meaningless to define what inde-
pendence means in a domain where any new fields can be introduced. The
new fields can change independence to dependence completely.

Here are some immediate relationships between the introduced concepts
of dependence and independence:

1. Every V is totally dependent and totally independent on ∅.

2. If V is (totally) dependent on W , then V is (totally) dependent on
every subset of W .

3. If V is dependent on W , it can still be also independent of W , but
not totally, unless W = ∅.

4. V is independent of {x} if and only if V is not totally dependent on
{x}.

5. V is totally independent of {x} if and only if V is not dependent on
{x}.

If U = {u1, . . . , un} and V = {v1, . . . , vm}, let =(U, V ) be the type

m
∧

i=1

=(u1, . . . , un, vi).

This is the type of teams in which V is functionally dependent on U . It is
clear that we can define dependence, independence total dependence, total
independence, and non-determinedness in terms of the basic types =(U, V ).
We suggest that the types of team logic provide a proper framework for an
analysis of the variety of different concepts related to dependence.
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5 Team algebra

Let D be a fixed domain and T the set of all teams with domain D. Let us
write ϕ ⇔ ψ if every team of type ϕ is of type ψ and vice versa. We call
this relation logical equivalence. The Boolean operations ∧,∨,∼ together
with ⊤ and ⊥ obey usual laws of Boolean algebras, and the mapping

h(ϕ) = {X ∈ T : X is of type ϕ}.

is a homomorphism between dependence types, endowed with the operations
∧,∨ and ∼, and the Boolean algebra of subsets of T :

h(ϕ ∧ ψ) = h(ϕ) ∩ h(ψ)
h(ϕ ∨ ψ) = h(ϕ) ∪ h(ψ)
h(∼ϕ) = T − h(ϕ)
h(⊤) = T
h(⊥) = ∅

The operation ⊗ satisfies the laws

ϕ ⊗ ψ ⇔ ψ ⊗ ϕ
ϕ ⊗ (ψ ⊗ θ) ⇔ (ϕ ⊗ ψ) ⊗ θ
ϕ ⊗ (ψ ∨ θ) ⇔ (ϕ ⊗ ψ) ∨ (ϕ ⊗ θ)
ϕ ⊗ ⊥ ⇔ ⊥
ϕ ⊗ 0 ⇔ ϕ
1 ⊗ 1 ⇔ 1

⊤ ⊗ ⊤ ⇔ ⊤

but
ϕ ⊗ (ψ ∧ θ) < (ϕ ⊗ ψ) ∧ (ϕ ⊗ θ)
ϕ ∧ (ψ ⊗ θ) < (ϕ ∧ ψ) ⊗ (ϕ ∧ θ)
ϕ ∨ (ψ ⊗ θ) < (ϕ ∨ ψ) ⊗ (ϕ ∨ θ)
ϕ ⊗ ϕ < ϕ

For quantifiers we have

∀xn(ϕ ∧ ψ) ⇔ ∀xnϕ ∧ ∀xnψ
∀xn∀xmϕ ⇔ ∀xm∀xnϕ
∃xn(ϕ ∨ ψ) ⇔ ∃xnϕ ∨ ∃xnψ
∃xn∃xmϕ ⇔ ∃xm∃xnϕ

The shriek ! commutes with every team operation except ∃:

!xn∼ϕ ⇔ ∼ !xnϕ
! xn(ϕ ⊗ ψ) ⇔ ! xnϕ ⊗ ! xnψ
! xn(ϕ ∧ ψ) ⇔ ! xnϕ ∧ ! xnψ
! xn(ϕ ∨ ψ) ⇔ ! xnϕ ∨ ! xnψ
! xn∀xmϕ ⇔ ∀xm ! xnϕ
! xn∃xmϕ < ∃xm ! xnϕ
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Obviously, there is a lot more one can say about team algebra.

6 Some translations

We show that the ∼-free fragment of team logic is equivalent to indepen-
dence friendly logic. To make our result exact we choose what we believe
is the best behaving version of independence friendly logic. This is the
dependence friendly logic in which the quantifier

∃xn\t1 . . . tmϕ

has the meaning “there is a value for xn, functionally depending on what
the values of t1, . . . , tm are, such that ϕ”. In the original independence
friendly logic the quantifier

∃xn/∀x1 . . . ∀xmϕ

had the meaning “there is a value for xn, independently of what the values
of x1, . . . , xm are, such that ϕ”. An attempt to understand what “indepen-
dently” might mean here led the author to the considerations of Section 4
and eventually to the more basic concept of functional dependence.

We can easily define a translation ϕ 7→ ϕ∗ of dependence friendly logic
into team logic, but we have to assume that the formula ϕ of dependence
friendly logic is in negation normal form:

(t = t′)∗ = t = t′

(¬t = t′)∗ = ¬t = t′

(Rt1 . . . tn)
∗ = Rt1 . . . tn

(¬Rt1 . . . tn)∗ = ¬Rt1 . . . tn
(ϕ ∨ ψ)∗ = ϕ∗ ⊗ ψ∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

(∃xn\t1, . . . , tnϕ)∗ = ∃xn(=(t1, . . . , tn, xn) ∧ ϕ∗)
(∀xnϕ)∗ = !xnϕ

∗

It is an immediate consequence of the definitions that for all M, all ϕ, and
all X we have

M |=X ϕ in dependence friendly logic if and only if X is of type ϕ∗.

So we may consider dependence friendly logic a fragment of team logic, and
team logic an extension of dependence friendly logic obtained by adding
classical negation.
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Conversely, we can define a translation ϕ 7→ ϕ+ of the ∼-free fragment
of team logic into dependence friendly logic:

(t = t′)+ = t = t′

(¬t = t′)+ = ¬t = t′

(Rt1 . . . tn)
+ = Rt1 . . . tn

(¬Rt1 . . . tn)+ = ¬Rt1 . . . tn
(=(t1, . . . , tn))

+ = ∃xm\t1, . . . , tn−1(tn = xm), where
xm is not free in ϕ

(¬=(t1, . . . , tn))+ = ∃x0(¬x0 = x0)
(ϕ ⊗ ψ)+ = ϕ+ ∨ ψ+

(ϕ ∧ ψ)+ = ϕ+ ∧ ψ+

(∃xnϕ)+ = ∃xn\xm1
, . . . , xmk

ϕ+, where xm1
, . . . , xmk

are the free variables of ϕ other than xn
(! xnϕ)+ = ∀xnϕ

+

It is again an immediate consequence of the definitions that for all M, all
ϕ, and all X we have

X is of type ϕ if and only if M |=X ϕ+ in dependence friendly logic.

The two translations ϕ 7→ ϕ∗ and ϕ 7→ ϕ+ demonstrate clearly that team
logic is built on top of dependence friendly logic, and a fortiori, on top of
independence friendly logic. The addition team logic brings to independence
friendly logic is classical negation. As this paper shows this addition calls
for rather substantial revision of independence friendly logic.

It is well-known5 that independence friendly logic can be presented in
the existential fragment Σ1

1 of second order logic. If the same presentation
is applied to team logic, we go up from Σ1

1 to the unrestricted second or-
der logic. The proof of the following theorem is an easy adaption of the
corresponding result for independence friendly logic in [Ho197a]:

Theorem 6.1. We can associate with every type ϕ(xi1 , . . . , xin) in vocab-
ulary L a second order sentence ηϕ(U), where U is n-ary, such that for all
L-structures M and teams X with dom(X) = {i1, . . . , in} the following
conditions are equivalent

1. X is of type ϕ in M.

2. (M, X) |= ηϕ(U).

Corollary 6.2. For every type ϕ there is a second order sentence ηϕ such
that for all models M we have M |= ϕ if and only if M |= ηϕ.

5 For details, we refer to [Ho197a].
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With the translation ϕ 7→ ηϕ we can consider team logic a fragment of
second order logic, even if the origin of team logic in the dependence relation
=(t1, . . . , tn) is totally different from the origin of second order logic, and
even if the logical operations of team logic are totally different from those
of second order logic.

We could draw many immediate conclusions from Corollary 6.2 and from
what is known about second order logic.

We have given a translation of team logic into second order logic. Now
we give an implicit translation of second and higher order logic in team
logic. The translation is implicit in the sense that it uses new predicates
and an extension of the universe. However, the new predicates and the new
universe are unique up to isomorphism. We omit the quite standard proof
of the following result, which is essentially contained already in [En70] and
[Kr2La079].

Theorem 6.3. Suppose L is a vocabulary and n ∈ N. There is a type ϕ
in the vocabulary L′ = L ∪ {P,E} such that for all L-structures M there

is a unique (mod ∼=) N of type ϕ with (N ↾ L)(P
N ) = M. Moreover,

we can associate with every sentence ψ of second order logic in vocabulary
L, with no second order variables of arity > n, a dependence type ξψ in
the vocabulary L′ such that the following conditions are equivalent for all
L-structures M:

1. M |= ψ

2. N |= ξψ for the unique (mod ∼=) N such that N |= ϕ and (N ↾

L)(P
N ) = M.

Corollary 6.4. A second order sentence ψ has a model if and only if ϕ∧ξψ
is the type of {∅} in some model.

With the translation ϕ 7→ ξϕ we can consider second order logic an
implicitly defined fragment of team logic. An explicit translation, following
Harel [Ha179], has been constructed by Ville Nurmi.

The decision problem of a logic is the problem, with a sentence ϕ as
input, whether M |= ϕ for all M. The consistency problem of a logic is the
problem, with a sentence ϕ as input, whether M |= ϕ for some M. The
Löwenheim number of a logic is the smallest cardinal κ such that for any
sentence ϕ, if M |= ϕ for some M, then M |= ϕ for some M of cardinality
≤ κ. The Hanf number of a logic is the smallest cardinal κ such that for
any sentence ϕ, if M |= ϕ for some M of cardinality ≥ κ, then M |= ϕ for
models M of arbitrarily large cardinality. A logic satisfies the Suslin-Kleene
Interpolation Theorem if every model class which is a relativized reduct of
a definable model class and whose complement has the same property is
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itself a definable model class. The ∆-extension of a logic is the smallest
extension of it to a logic with the Suslin-Kleene Interpolation Theorem. For
more details concerning these concepts we refer to [Ba6Fe085].

Corollary 6.5. The decision problems of team logic and second order logic
are recursively isomorphic (and Π2-complete, see [Vä01] and Footnote 6).
They have the same Löwenheim and Hanf numbers. They have the same
∆-extension.

Note that the corresponding corollary for independence friendly logic
says: The decision problems of independence friendly logic and second order
logic are recursively isomorphic. The consistency problem of independence
friendly logic is co-r.e. while that of second order logic is Σ2-complete6. The
Löwenheim and Hanf number of independence friendly logic is ℵ0, while the
Löwenheim number of second order logic is between the first measurable
and the first supercompact cardinals, if such exist, and the Hanf number of
second order logic is between the first supercompact and the first extendible
cardinal, if such exist (see [Ma071]).

7 Ehrenfeucht-Fräıssé game

We now introduce an Ehrenfeucht-Fräıssé game adequate for team logic and
use this game to characterize team logic. This game is nothing else than a
“two-directional” version of the Ehrenfeucht-Fräıssé game of independence
friendly logic presented in [Vä02].

Definition 7.1. Let M and N be two structures of the same vocabulary.
The game EFTL

n has two players and n moves. The position after move m is
a pair (X,Y ), where X ⊆M im and Y ⊆ N im for some im. In the beginning
the position is (∅,∅) and i0 = 0. Suppose the position after move number
m is (X,Y ). There are the following possibilities for the continuation of the
game:

Splitting move: Player I represents X (or Y ) as a union X = X0 ∪ X1.
Then player II represents Y (respectively, X) as a union Y = Y0 ∪Y1.
Now player I chooses whether the game continues from the position
(X0, Y0) or from the position (X1, Y1).

6 We use the notation of Lévy [Lé65]. The Σ0-formulas, which are at the same time called
Π0-formulas, are all formulas in the vocabulary {∈} obtained from atomic formulas by
the operations ¬,∨,∧ and the bounded quantifiers ∃x0(x0 ∈ x1∧ϕ) and ∀x0(x0 ∈ x1 →

ϕ). The Σn+1-formulas are obtained from Πn-formulas by existential quantification.
The Πn+1-formulas are obtained from Σn-formulas by existential quantification. A
set P ⊆ N is called Σn-definable if there is a Σn-formula ϕ(x0) of set theory such that
n ∈ P ⇐⇒ ϕ(n). A problem is called Σn-complete if the set itself is Σn-definable and,
moreover, for every Σn-definable set X ⊆ N there is a recursive function f : N → N such
that n ∈ X ⇐⇒ f(n) ∈ P. The concepts of a Πn-definable set and a Πn-complete
set are defined analogously.
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M
N

X0

Y0

X1
Y1

Figure 3. A splitting move

Duplication move: Player I decides that the game should continue from
the new position

(X(M/im), Y (N/im)).

M
N

X(M/n)
Y (N/n)

Figure 4. A duplication move

Supplementing move: Player I chooses a function F : X → M (or
F : Y → N). Then player II chooses a function G : Y → N (re-
spectively, G : X → M). Then the game continues from the position
(X(F/im), Y (G/im)).

After n moves the position (Xn, Yn) is reached and the game ends. Player
II is the winner, if

Xn is of type ϕ in M⇔ Yn is of type ϕ in N

holds for all atomic types ϕ(x0, . . . , xin−1). Otherwise player I wins.

This is a game of perfect information and the concept of winning strategy
is defined as usual. The game is determined by the Gale-Stewart theorem.
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M
N

X(F/n)
Y/G/n)

Figure 5. A supplementing move

Define

qrTL(ϕ) = 0 if ϕ is atomic,
qrTL(ϕ⊗ψ) = max(qrTL(ϕ), qrTL(ψ))+1,
qrTL(ϕ ∧ ψ) = max(qrTL(ϕ), qrTL(ψ)),
qrTL(∃xnϕ) = qrTL(ϕ)+1,
qrTL(!xnϕ) = qrTL(ϕ)+1,
qrTL(∼ϕ) = qrTL(ϕ).

Let Typemn be the set of types ϕ with qrTL(ϕ) ≤ m and with free variables
among x0, . . . , xn−1. We writeM≡nTL N , ifM |= ϕ is equivalent to N |= ϕ
for all ϕ in Typen0 , and M ≡TL N if M ≡nTL N for all n. Note that there
are for each n and m, up to logical equivalence, only finitely many types in
Typemn .

Theorem 7.2. Suppose M and N are models of the same vocabulary.
Then the following conditions are equivalent:

(1) Player II has a winning strategy in the game EFTL

n (M,N ).

(2) M≡nTL N .

Proof. It is easy to prove by induction on m the equivalence, for all n, of
the following two statements:

(3)m Player II has a winning strategy in the game EFTL

m (M,N ) in position
(X,Y ), where X ⊆Mn and Y ⊆ Nn.

(4)m If ϕ is a type in Typemn , then X is of type ϕ in M if and only if Y is
of type ϕ in N .

q.e.d.
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Corollary 7.3. Suppose M and N are models of the same vocabulary.
Then the following conditions are equivalent:

(1) M≡TL N .

(2) For all natural numbers n, player II has a winning strategy in the game
EFTL

n (M,N ).

Using the fact that there are for each n and m, up to logical equivalence,
only finitely many types in Typemn , it is easy to prove that a model class K
is the class of models of a type in Typen0 if and only if K is closed under
the relation ≡nDF.

From this and the above theorem we get:

Corollary 7.4. Suppose K is a model class. Then the following conditions
are equivalent:

(1) K is the class of models of a type of team logic.

(2) There is a natural number n such that K is closed under the relation

MRN ⇐⇒ Player II has a winning strategy in EFTL

n (M,N ).

We have obtained, after all, a purely game-theoretic definition of team logic.
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Abstract

This paper introduces and documents DEMO, a Dynamic Epistemic
Modelling tool. DEMO allows modelling epistemic updates, graphical
display of update results, graphical display of action models, formula
evaluation in epistemic models, translation of dynamic epistemic for-
mulas to PDL formulas. Also, DEMO implements the reduction of
dynamic epistemic logic to PDL. The paper is an exemplar of tool
building for epistemic update logic. It contains the essential code
of an implementation of DEMO in Haskell, in Knuth’s ‘literate pro-
gramming’ style.

1 Introduction

In this introduction we shall demonstrate how DEMO, which is short for
Dynamic Epistemic MOdelling,1 can be used to check semantic intuitions
about what goes on in epistemic update situations.2 For didactic purposes,
∗ The author is grateful to the Netherlands Institute for Advanced Studies (NIAS) for

providing the opportunity to complete this paper as Fellow-in-Residence. This report
and the tool that it describes were prompted by a series of questions voiced by Johan
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Hans van Ditmarsch, Barteld Kooi and Ji Ruan for valuable feedback and inspiring
discussion. Two anonymous referees made suggestions for improvement, which are
herewith gracefully acknowledged.

1 Or short for DEMO of Epistemic MOdelling, for those who prefer co-recursive
acronyms.

2 The program source code is available from http://www.cwi.nl/∼jve/demo/.

Johan van Benthem, Dov Gabbay, Benedikt Löwe (eds.). Interactive Logic. Proceedings of
the 7th Augustus de Morgan Workshop, London. Texts in Logic and Games 1, Amsterdam
University Press 2007, pp. 303–362.
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the initial examples have been kept extremely simple. Although the situ-
ation of message passing about just two basic propositions with just three
epistemic agents already reveals many subtleties, the reader should bear in
mind that DEMO is capable of modelling much more complex situations.

In a situation where you and I know nothing about a particular aspect
of the state of the world (about whether p and q hold, say), our state of
knowledge is modelled by a Kripke model where the worlds are the four
different possibilities for the truth of p and q (∅, p, q, pq), your epistemic
accessibility relation ∼a is the total relation on these four possibilities, and
mine ∼b is the total relation on these four possibilities as well. There is also
c, who like the two of us, is completely ignorant about p and q. This initial
model is generated by DEMO as follows.

DEMO> showM (initE [P 0,Q 0] [a,b,c])

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1,2,3]])

(b,[[0,1,2,3]])

(c,[[0,1,2,3]])

Here initE generates an initial epistemic model, and showM shows that
model in an appropriate form, in this case in the partition format that is
made possible by the fact that the epistemic relations are all equivalences.

As an example of a different kind of representation, let us look at the
picture that can be generated with dot [Ga0Ko5No006] from the file pro-
duced by the DEMO command writeP "filename" (initE [P 0,Q 0]),
as represented in Figure 1.

This is a model where none of the three agents a, b or c can distinguish
between the four possibilities about p and q. DEMO shows the partitions
generated by the accessibility relations ∼a,∼b,∼c. Since these three rela-
tions are total, the three partitions each consist of a single block. Call this
model e0.

Now suppose a wants to know whether p is the case. She asks whether p
and receives a truthful answer from somebody who is in a position to know.
This answer is conveyed to a in a message. b and c have heard a’s question,
and so are aware of the fact that an answer may have reached a. b and c
have seen that an answer was delivered, but they don’t know which answer.
This is not a secret communication, for b and c know that a has inquired
about p. The situation now changes as follows:

DEMO> showM (upd e0 (message a p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])



DEMO — A Demo of Epistemic Modelling 305

0

1:[p]

abc

2:[q]

abc

3:[p,q]

abcabc

abc

abc

Figure 1.

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Note that upd is a function for updating an epistemic model with (a
representation of) a communicative action. In this case, the result is again
a model where the three accessibility relations are equivalences, but one in
which a has restricted her range of possibilities to 1, 4 (these are worlds
where p is the case), while for b and c all possibilities are still open. Note
that this epistemic model has two ‘actual worlds’: this means that there
are two possibilities that are compatible with ‘how things really are’. In
graphical display format these ‘actual worlds’ show up as double ovals, as
seen in Figure 2.

DEMO also allows us to display the action models corresponding to
the epistemic updates. For the present example (we have to indicate that
we want the action model for the case where {a, b, c} is the set of relevant
agents):

showM ((message a p) [a,b,c])

==> [0]

[0,1]

(0,p)(1,

T)

(a,[[0],[1]])
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0

1:[p]

bc

2:[p]

abc

3:[q]

abc

4:[p,q]

bc

5:[p,q]

abc

bc

bc

abc

bc

abc

bc

abcbc

abc

bc

Figure 2.

(b,[[0,1]])

(c,[[0,1]])

Notice that in the result of updating the initial situation with this message,
some subtle things have changed for b and c as well. Before the arrival of
the message, 2b(¬2ap ∧ ¬2a¬p) was true, for b knew that a did not know
about p. But now b has heard a’s question about p, and is aware of the
fact that an answer has reached a. So in the new situation b knows that a
knows about p. In other words, 2b(2ap ∨ 2a¬p) has become true. On the
other hand it is still the case that b knows that a knows nothing about q:
2b¬2aq is still true in the new situation. The situation for c is similar to
that for b. These things can be checked in DEMO as follows:
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DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a q)))

True

DEMO> isTrue (upd e0 (message a p)) (K b (Neg (K a p)))

False

If you receive the same message about p twice, the second time the
message gets delivered has no further effect. Note the use of upds for a
sequence of updates.

DEMO> showM (upds e0 [message a p, message a p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,2,3,5],[1,4]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

Now suppose that the second action is a message informing b about p:

DEMO> showM (upds e0 [message a p, message b p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]

(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,3,4,5,8,9],[1,2,6,7]])

(b,[[0,2,4,5,7,9],[1,3,6,8]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

The graphical representation of this model is slightly more difficult to
fathom at a glance. See Figure 3. In this model a and b both know about p,
but they do not know about each other’s knowledge about p. c still knows
nothing, and both a and b know that c knows nothing. Both 2a2bp and
2b2ap are false in this model. 2a¬2bp and 2b¬2ap are false as well, but
2a¬2cp and 2b¬2cp are true.

DEMO> isTrue (upds e0 [message a p, message b p]) (K a (K b p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (K a p))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K b p)))

False

DEMO> isTrue (upds e0 [message a p, message b p]) (K b (Neg (K c p)))

True

The order in which a and b are informed does not matter:

DEMO> showM (upds e0 [message b p, message a p])

==> [1,6]

[0,1,2,3,4,5,6,7,8,9]
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0

1:[p]

c

2:[p]

bc

3:[p]

ac

4:[p]

abc

5:[q]

abc

6:[p,q]

c

7:[p,q]

bc

8:[p,q]

ac

9:[p,q]

abc

acbc

c

c

abc

ac

bc

c

c

bc

bc

ac

abc

c

bc

ac

ac

bc

c

abc

ac
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c
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ac

abc

c

bc

ac

abc

ac

bcc
cbc

ac

Figure 3. Situation after second message



DEMO — A Demo of Epistemic Modelling 309

(0,[])(1,[p])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[p,q])(7,[p,q])(8,[p,q])(9,[p,q])

(a,[[0,2,4,5,7,9],[1,3,6,8]])

(b,[[0,3,4,5,8,9],[1,2,6,7]])

(c,[[0,1,2,3,4,5,6,7,8,9]])

Modulo renaming this is the same as the earlier result. The example
shows that the epistemic effects of distributed message passing are quite
different from those of a public announcement or a group message.

DEMO> showM (upd e0 (public p))

==> [0,1]

[0,1]

(0,[p])(1,[p,q])

(a,[[0,1]])

(b,[[0,1]])

(c,[[0,1]])

The result of the public announcement that p is that a, b and c are
informed that p and about each other’s knowledge about p.

DEMO allows to compare the action models for public announcement and
individual message passing:

DEMO> showM ((public p) [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

DEMO> showM ((cmp [message a p, message b p, message c p]) [a,b,c])

==> [0]

[0,1,2,3,4,5,6,7]

(0,p)(1,p)(2,p)(3,p)(4,p)

(5,p)(6,p)(7,T)

(a,[[0,1,2,3],[4,5,6,7]])

(b,[[0,1,4,5],[2,3,6,7]])

(c,[[0,2,4,6],[1,3,5,7]])

Here cmp gives the sequential composition of a list of communicative
actions. This involves, among other things, computation of the appropriate
preconditions for the combined action model.

More subtly, the situation is also different from a situation where a, b
receive the same message that p, with a being aware of the fact that b
receives the message and vice versa. Such group messages create common
knowledge.



310 J. van Eijck

DEMO> showM (groupM [a,b] p [a,b,c])

==> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

The difference with the case of the two separate messages is that now a and
b are aware of each other’s knowledge that p:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K a (K b p))

True

DEMO> isTrue (upd e0 (groupM [a,b] p)) (K b (K a p))

True

In fact, this awareness goes on, for arbitrary nestings of 2a and 2b, which
is what common knowledge means. Common knowledge can be checked
directly, as follows:

DEMO> isTrue (upd e0 (groupM [a,b] p)) (CK [a,b] p)

True

It is also easily checked in DEMO that in the case of the separate messages
no common knowledge is achieved.

Next, look at the case where two separate messages reach a and b, one
informing a that p and the other informing b that ¬q:

DEMO> showM (upds e0 [message a p, message b (Neg q)])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,4,5,6,8],[2,3,7]])

(b,[[0,2,4],[1,3,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Again the order in which these messages are delivered is immaterial for the
end result, as you should expect:

DEMO> showM (upds e0 [message b (Neg q), message a p])

==> [2]

[0,1,2,3,4,5,6,7,8]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[p])(6,[q])(7,[p,q])(8,[p,q])

(a,[[0,1,3,5,6,8],[2,4,7]])

(b,[[0,2,3],[1,4,5,6,7,8]])

(c,[[0,1,2,3,4,5,6,7,8]])

Modulo a renaming of worlds, this is the same as the previous result.
The logic of public announcements and private messages is related to

the logic of knowledge, with [Hi162] as the pioneer publication. This logic
satisfies the following postulates:
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• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ) (if a knows that
ϕ implies ψ, and she knows ϕ, then she also knows ψ),

• positive introspection 2aϕ ⇒ 2a2aϕ (if a knows ϕ, then a knows
that she knows ϕ),

• negative introspection ¬2aϕ⇒ 2a¬2aϕ (if a does not know ϕ, then
she knows that she does not know),

• truthfulness 2aϕ⇒ ϕ (if a knows ϕ then ϕ is true).

As is well known, the first of these is valid on all Kripke frames, the sec-
ond is valid on precisely the transitive Kripke frames, the third is valid on
precisely the euclidean Kripke frames (a relation R is euclidean if it satis-
fies ∀x∀y∀z((xRy ∧ xRz) ⇒ yRz)), and the fourth is valid on precisely the
reflexive Kripke frames. A frame satisfies transitivity, euclideanness and
reflexivity iff it is an equivalence relation, hence the logic of knowledge is
the logic of the so-called S5 Kripke frames: the Kripke frames with an equi-
valence ∼a as epistemic accessibility relation. Multi-agent epistemic logic
extends this to multi-S5, with an equivalence ∼b for every b ∈ B, where b
is the set of epistemic agents.

Now suppose that instead of open messages, we use secret messages.
If a secret message is passed to a, b and c are not even aware that any
communication is going on. This is the result when a receives a secret
message that p in the initial situation:

DEMO> showM (upd e0 (secret [a] p))

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[([],[0,2,3,5]),([],[1,4])])

(b,[([1,4],[0,2,3,5])])

(c,[([1,4],[0,2,3,5])])

This is not an S5 model anymore. The accessibility for a is still an
equivalence, but the accessibility for b is lacking the property of reflexivity.
The worlds 1, 4 that make up a’s conceptual space (for these are the worlds
accessible for a from the actual worlds 1, 4) are precisely the worlds where
the b and c arrows are not reflexive. b enters his conceptual space from
the vantage points 1 and 4, but b does not see these vantage points itself.
Similarly for c. In the DEMO representation, the list ([1,4],[0,2,3,5])
gives the entry points [1,4] into conceptual space [0,2,3,5].

The secret message has no effect on what b and c believe about the facts
of the world, but it has effected b’s and c’s beliefs about the beliefs of a
in a disastrous way. These beliefs have become inaccurate. For instance, b
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now believes that a does not know that p, but he is mistaken! The formula
2b¬2ap is true in the actual worlds, but ¬2ap is false in the actual worlds,
for a does know that p, because of the secret message. Here is what DEMO
says about the situation (isTrue evaluates a formula in all of the actual
worlds of an epistemic model):

DEMO> isTrue (upd e0 (secret [a] p)) (K b (Neg (K a p)))

True

DEMO> isTrue (upd e0 (secret [a] p)) (Neg (K a p))

False

This example illustrates a regress from the world of knowledge to the
world of consistent belief: the result of the update with a secret propositional
message does not satisfy the postulate of truthfulness anymore.

The logic of consistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ,

• consistency 2aϕ ⇒ 3aϕ (if a believes that ϕ then there is a world
where ϕ is true, i.e., ϕ is consistent).

Consistent belief is like knowledge, except for the fact that it replaces the
postulate of truthfulness 2aϕ⇒ ϕ by the weaker postulate of consistency.

Since the postulate of consistency determines the serial Kripke frames (a
relation R is serial if ∀x∃y xRy), the principles of consistent belief determine
the Kripke frames that are transitive, euclidean and serial, the so-called
KD45 frames.

In the conceptual world of secrecy, inconsistent beliefs are not far away.
Suppose that a, after having received a secret message informing her about
p, sends a message to b to the effect that 2ap. The trouble is that this is
inconsistent with what b believes.

DEMO> showM (upds e0 [secret [a] p, message b (K a p)])

==> [1,5]

[0,1,2,3,4,5,6,7]

(0,[])(1,[p])(2,[p])(3,[p])(4,[q])

(5,[p,q])(6,[p,q])(7,[p,q])

(a,([],[([],[0,3,4,7]),([],[1,2,5,6])]))

(b,([1,5],[([2,6],[0,3,4,7])]))

(c,([],[([1,2,5,6],[0,3,4,7])]))

This is not a KD45 model anymore, for it lacks the property of seriality
for b’s belief relation. b’s belief contains two isolated worlds 1, 5. Since 1 is
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the actual world, this means that b’s belief state has become inconsistent:
from now on, b will believe anything.

So we have arrived at a still weaker logic. The logic of possibly incon-
sistent belief satisfies the following postulates:

• knowledge distribution 2a(ϕ⇒ ψ) ⇒ (2aϕ⇒ 2aψ),

• positive introspection 2aϕ⇒ 2a2aϕ,

• negative introspection ¬2aϕ⇒ 2a¬2aϕ.

This is the logic of K45 frames: frames that are transitive and euclidean.
In [vE104a] some results and a list of questions are given about the

possible deterioration of knowledge and belief caused by different kind of
message passing. E.g., the result of updating an S5 model with a public
announcement or a non-secret message, if defined, is again S5. The result
of updating an S5 model with a secret message to some of the agents, if
defined, need not even be KD45. One can prove that the result is KD45
iff the model we start out with satisfies certain epistemic conditions. The
update result always is K45. Such observations illustrate why S5, KD45
and K45 are ubiquitous in epistemic modelling. See [BldRVe101, Go002]
for general background on modal logic, and [Ch380, Fa+95] for specific
background on these systems.

If this introduction has convinced the reader that the logic of public
announcements, private messages and secret communications is rich and
subtle enough to justify the building of the conceptual modelling tools to
be presented in the rest of the report, then it has served its purpose.

In the rest of the report, we first fix a formal version of epistemic up-
date logic as an implementation goal. After that, we are ready for the
implementation.

Further information on various aspects of dynamic epistemic logic is
provided in [Ba402, Ba4Mo3So199, vB01b, vB06, vD00, Fa+95, Ge299a,
Ko403].

2 Design

DEMO is written in a high level functional programming language Haskell
[Jo203]. Haskell is a non-strict, purely-functional programming language
named after Haskell B. Curry. The design is modular. Operations on lists
and characters are taken from the standard Haskell List and Char modules.
The following modules are part of DEMO:

Models The module that defines general models over a number of agents.
In the present implementation these are A through E. It turns out
that more than five agents are seldom needed in epistemic modelling.
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General models have variables for their states and their state adorn-
ments. By letting the state adornments be valuations we get Kripke
models, by letting them be formulas we get update models.

MinBis The module for minimizing models under bisimulation by means
of partition refinement.

Display The module for displaying models in various formats. Not dis-
cussed in this paper.

ActEpist The module that specializes general models to action models
and epistemic models. Formulas may contain action models as oper-
ators. Action models contain formulas. The definition of formulas is
therefore also part of this module.

DPLL Implementation of Davis, Putnam, Logemann, Loveland (DPLL)
theorem proving [Da1Lo0Lo462, Da1Pu60] for propositional logic. The
implementation uses discrimination trees or tries, following [Zh0St500].
This is used for formula simplification. Not discussed in this paper.

Semantics Implementation of the key semantic notions of epistemic up-
date logic. It handles the mapping from communicative actions to
action models.

DEMO Main module.

3 Main module
module DEMO

(

module List,

module Char,

module Models,

module Display,

module MinBis,

module ActEpist,

module DPLL,

module Semantics

)

where

import List import Char import Models import Display import MinBis

import ActEpist import DPLL import Semantics

The first version of DEMO was written in March 2004. This version was
extended in May 2004 with an implementation of automata and a transla-
tion function from epistemic update logic to Automata PDL. In Septem-
ber 2004, I discovered a direct reduction of epistemic update logic to PDL
[vE104b]. This motivated a switch to a PDL-like language, with extra



DEMO — A Demo of Epistemic Modelling 315

modalities for action update and automata update. I decided to leave in
the automata for the time being, for nostalgic reasons.

In Summer 2005, several example modules with DEMO programs for
epistemic puzzles (some of them contributed by Ji Ruan) and for checking
of security protocols (with contributions by Simona Orzan) were added, and
the program was rewritten in a modular fashion.

In Spring 2006, automata update was removed, and in Autumn 2006 the
code was refactored for the present report:

version :: String

version = "DEMO 1.06, Autumn 2006"

4 Definitions

4.1 Models and updates
In this section we formalize the version of dynamic epistemic logic that we
are going to implement.

Let p range over a set of basic propositions P and let a range over a set
of agents Ag. Then the language of PDL over P,Ag is given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

Employ the usual abbreviations: ⊥ is shorthand for ¬>, ϕ1 ∨ ϕ2 is
shorthand for ¬(¬ϕ1∧¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬(ϕ1∧ϕ2), ϕ1 ↔ ϕ2

is shorthand for (ϕ1 → ϕ2)∧ (ϕ2 → ϕ1), and 〈π〉ϕ is shorthand for ¬[π]¬ϕ.
Also, if B ⊆ Ag and B is finite, use B as shorthand for b1 ∪ b2 ∪ · · · . Under
this convention, formulas for expressing general knowledge EBϕ take the
shape [B]ϕ, while formulas for expressing common knowledge CBϕ appear
as [B∗]ϕ, i.e., [B]ϕ expresses that it is general knowledge among agents B
that ϕ, and [B∗]ϕ expresses that it is common knowledge among agents B
that ϕ. In the special case where B = ∅, B turns out equivalent to ?⊥, the
program that always fails.

The semantics of PDL over P,Ag is given relative to labelled transition
systems M = (W,V,R), where W is a set of worlds (or states), V : W →
P(P ) is a valuation function, and R = { a→⊆ W ×W | a ∈ Ag} is a set
of labelled transitions, i.e., binary relations on W , one for each label a. In
what follows, we shall take the labelled transitions for a to represent the
epistemic alternatives of an agent a.

The formulae of PDL are interpreted as subsets of WM (the state set of
M), the actions of PDL as binary relations on WM, as follows:

[[>]]M = WM

[[p]]M = {w ∈WM | p ∈ VM(w)}
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[[¬ϕ]]M = WM − [[ϕ]]M

[[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩ [[ϕ2]]M

[[[π]ϕ]]M = {w ∈WM | ∀v( if (w, v) ∈ [[π]]M then v ∈ [[ϕ]]M)}

[[a]]M = a→M

[[?ϕ]]M = {(w,w) ∈WM ×WM | w ∈ [[ϕ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π∗]]M = ([[π]]M)∗

If w ∈ WM then we use M |=w ϕ for w ∈ [[ϕ]]M. The paper
[Ba4Mo3So103] proposes to model epistemic actions as epistemic models,
with valuations replaced by preconditions. See also: [vB01b, vB06, vD00,
vE104b, Fa+95, Ge299a, Ko403, Ru004].
Action models for a given language L. Let a set of agents Ag and
an epistemic language L be given. An action model for L is a triple A =
([s0, . . . , sn−1],pre, T ) where [s0, . . . , sn−1] is a finite list of action states,
pre : {s0, . . . , sn−1} → L assigns a precondition to each action state, and
T : Ag → P({s0, . . . , sn−1}2) assigns an accessibility relation a→ to each
agent a ∈ Ag.

A pair A = (A, s) with s ∈ {s0, . . . , sn−1} is a pointed action model,
where s is the action that actually takes place.

The list ordering of the action states in an action model will play an
important role in the definition of the program transformations associated
with the action models.

In the definition of action models, L can be any language that can be
interpreted in PDL models. Actions can be executed in PDL models by
means of the following product construction:
Action Update. Let a PDL model M = (W,V,R), a world w ∈ W , and
a pointed action model (A, s), with A = ([s0, . . . , sn−1],pre, T ), be given.
Suppose w ∈ [[pre(s)]]M. Then the result of executing (A, s) in (M, w) is
the model (M⊗A, (w, s)), with M⊗A = (W ′, V ′, R′), where

W ′ = {(w, s) | s ∈ {s0, . . . , sn−1}, w ∈ [[pre(s)]]M}
V ′(w, s) = V (w)
R′(a) = {((w, s), (w′, s′)) | (w,w′) ∈ R(a), (s, s′) ∈ T (a)}.

In case there is a set of actual worlds and a set of actual actions, the defi-
nition is similar: those world/action pairs survive where the world satisfies
the preconditions of the action (see below).
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The language of PDLDEL (update PDL) is given by extending the PDL
language with update constructions [A, s]ϕ, where (A, s) is a pointed action
model. The interpretation of [A, s]ϕ in M is given by:

[[[A, s]ϕ]]M = {w ∈WM | if M |=w pre(s) then (w, s) ∈ [[ϕ]]M⊗A}.

Using 〈A, s〉ϕ as shorthand for ¬[A, s]¬ϕ, we see that the interpretation for
〈A, s〉ϕ turns out as:

[[〈A, s〉ϕ]]M = {w ∈WM | M |=w pre(s) and (w, s) ∈ [[ϕ]]M⊗A}.

Updating with multiple pointed update actions is also possible. A multiple
pointed action is a pair (A,S), with A an action model, and S a subset of
the state set of A. Extend the language with updates [A,S]ϕ, and interpret
this as follows:

[[[A,S]ϕ]]M = {w ∈WM | ∀s ∈ S(if M |=w pre(s)
then M⊗A |=(w,s) ϕ)}.

In [vE104b] it is shown how dynamic epistemic logic can be reduced
to PDL by program transformation. Each action model A has associated
program transformers TA

ij for all states si, sj in the action model, such that
the following hold:

Lemma 4.1 (Program Transformation, Van Eijck [vE104b]). Assume A
has n states s0, . . . , sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ.

This lemma allows a reduction of dynamic epistemic logic to PDL, a
reduction that we shall implement in the code below.

4.2 Operations on action models
Sequential Composition. If (A, S) and (B, T ) are multiple pointed ac-
tion models, their sequential composition (A, S) � (B, T ) is given by:

(A, S) � (B, T ) := ((W,pre, R), S × T ),

where

• W = WA ×WB,

• pre(s, t) = pre(s) ∧ 〈A, S〉pre(t),

• R is given by: (s, t) a→ (s′, t′) ∈ R iff s
a→ s′ ∈ RA and t a→ t′ ∈ RB.

The unit element for this operation is the action model

1 = (({0}, 0 7→ >, {0 a→ 0 | a ∈ Ag}), {0}).

Updating an arbitrary epistemic model M with 1 changes nothing.
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Non-deterministic Sum. The non-deterministic sum ⊕ of multiple poin-
ted action models (A, S) and (B, T ) is the action model (A, S)⊕ (B, T ) is
given by:

(A, S) ⊕ (B, T ) := ((W,pre, R), S ] T ),

where ] denotes disjoint union, and where

• W = WA ]WB,

• pre = preA ] preB,

• R = RA ]RB.

The unit element for this operation is called 0: the multiple pointed action
model given by ((∅,∅,∅),∅).

4.3 Logics for communication
Here are some specific action models that can be used to define various
languages of communication.

In order to model a public announcement of ϕ, we use the action
model (S, {0}) with

SS = {0}, pS = 0 7→ ϕ,RS = {0 a→ 0 | a ∈ A}.

If we wish to model an individual message to b that ϕ, we consider
the action model (S, {0}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, and
RS = {0 b→ 0, 1 b→ 1} ∪ {0 ∼a 1 | a ∈ A − {b}}; similarly, for a group
message to B that ϕ, we use the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 ∼a 1 | a ∈ A−B}.

A secret individual communication to b that ϕ is modelled by (S, {0})
with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0} ∪ {0 a→ 1 | a ∈ A− {b}} ∪ {1 a→ 1 | a ∈ A},

and a secret group communication to B that ϕ by (S, {0}) with

SS = {0, 1},
pS = 0 7→ ϕ, 1 7→ >,

RS = {0 b→ 0 | b ∈ B} ∪ {0 a→ 1 | a ∈ A−B} ∪ {1 a→ 1 | a ∈ A}.
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We model a test of ϕ by the action model (S, {0}) with

SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ >, RS = {0 a→ 1 | a ∈ A} ∪ {1 a→ 1 | a ∈ A},

an individual revelation to b of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A− {b}},

and a group revelation to B of a choice from {ϕ1, . . . , ϕn} by the
action model (S, {1, . . . , n}) with

SS = {1, . . . , n},
pS = 1 7→ ϕ1, . . . , n 7→ ϕn,

RS = {s b→ s | s ∈ SS, b ∈ B} ∪ {s
a→ s′ | s, s′ ∈ SS, a ∈ A−B}.

Finally, transparent informedness of B about ϕ is represented by the
action model (S, {0, 1}) with SS = {0, 1}, pS = 0 7→ ϕ, 1 7→ ¬ϕ, RS = {0 a→
0 | a ∈ A} ∪ {0 a→ 1 | a ∈ A − B} ∪ {1 a→ 0 | a ∈ A − B} ∪ {1 a→ 1 | a ∈
A}. Transparent informedness of B about ϕ is the special case of a group
revelation of B of a choice from {ϕ,¬ϕ}. Note that all but the revelation
action models and the transparent informedness action models are single
pointed (their sets of actual states are singletons).

On the syntactic side, we now define the corresponding languages. The
language for the logic of group announcements is defined by:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | 2aϕ

| EBϕ | CBϕ | [π]ϕ

π ::= 1 | 0 | public B ϕ | �[π1, . . . , πn] | ⊕[π1, . . . , πn]

We use the semantics of 1, 0, public B ϕ, and the operations on multiple
pointed action models from Section 4.2. For the logic of tests and group
announcements, we allow tests ?ϕ as basic programs and add the appro-
priate semantics. For the logic of individual messages, the basic actions
are messages to individual agents. In order to give it a semantics, we start
out from the semantics of message a ϕ. Finally, the logic of tests, group
announcements, and group revelations is as above, but now also allowing
revelations from alternatives. For the semantics, we use the semantics of
reveal B {ϕ1, . . . , ϕn}.
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5 Kripke models
module Models where

import List

5.1 Agents
data Agent = A | B | C | D | E deriving (Eq,Ord,Enum,Bounded)

Give the agents appropriate names:

a, alice, b, bob, c, carol, d, dave, e, ernie :: Agent

a = A; alice = A

b = B; bob = B

c = C; carol = C

d = D; dave = D

e = E; ernie = E

Make agents showable in an appropriate way:

instance Show Agent where

show A = "a"; show B = "b"; show C = "c"; show D = "d" ; show E = "e"

5.2 Model datatype
It will prove useful to generalize over states. We first define general models,
and then specialize to action models and epistemic models. In the following
definition, state and formula are variables over types. We assume that
each model carries a list of distinguished states.

data Model state formula = Mo

[state]

[(state,formula)]

[Agent]

[(Agent,state,state)]

[state]

deriving (Eq,Ord,Show)

Decomposing a pointed model into a list of single-pointed models:

decompose :: Model state formula -> [Model state formula]

decompose (Mo states pre agents rel points) =

[ Mo states pre agents rel [point] | point <- points ]

It is useful to be able to map the precondition table to a function. Here
is a general tool for that. Note that the resulting function is partial; if the
function argument does not occur in the table, the value is undefined.

table2fct :: Eq a => [(a,b)] -> a -> b

table2fct t = \ x -> maybe undefined id (lookup x t)

Another useful utility is a function that creates a partition out of an equi-
valence relation:
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rel2part :: (Eq a) => [a] -> (a -> a -> Bool) -> [[a]]

rel2part [] r = []

rel2part (x:xs) r = xblock : rel2part rest r

where

(xblock,rest) = partition (\ y -> r x y) (x:xs)

The domain of a model is its list of states:

domain :: Model state formula -> [state]

domain (Mo states _ _ _ _) = states

The eval of a model is its list of state/formula pairs:

eval :: Model state formula -> [(state,formula)]

eval (Mo _ pre _ _ _) = pre

The agentList of a model is its list of agents:

agentList :: Model state formula -> [Agent]

agentList (Mo _ _ ags _ _) = ags

The access of a model is its labelled transition component:

access :: Model state formula -> [(Agent,state,state)]

access (Mo _ _ _ rel _) = rel

The distinguished points of a model:

points :: Model state formula -> [state]

points (Mo _ _ _ _ pnts) = pnts

When we are looking at models, we are only interested in generated
submodels, with as their domain the distinguished state(s) plus everything
that is reachable by an accessibility path.

gsm :: Ord state => Model state formula -> Model state formula

gsm (Mo states pre ags rel points) = (Mo states’ pre’ ags rel’ points)

where

states’ = closure rel ags points

pre’ = [(s,f) | (s,f) <- pre,

elem s states’ ]

rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

elem s states’,

elem s’ states’ ]

The closure of a state list, given a relation and a list of agents:

closure :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

closure rel agents xs

| xs’ == xs = xs

| otherwise = closure rel agents xs’

where

xs’ = (nub . sort) (xs ++ (expand rel agents xs))
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The expansion of a relation R given a state set S and a set of agents B is
given by {t | s b→ t ∈ R, s ∈ S, b ∈ B}. This is implemented as follows:

expand :: Ord state =>

[(Agent,state,state)] -> [Agent] -> [state] -> [state]

expand rel agnts ys =

(nub . sort . concat)

[ alternatives rel ag state | ag <- agnts,

state <- ys ]

The epistemic alternatives for agent a in state s are the states in sRa (the
states reachable through Ra from s):

alternatives :: Eq state =>

[(Agent,state,state)] -> Agent -> state -> [state]

alternatives rel ag current =

[ s’ | (a,s,s’) <- rel, a == ag, s == current ]

6 Model minimization under bisimulation
module MinBis where

import List

import Models

6.1 Partition refinement
Any Kripke model can be simplified by replacing each state s by its bisim-
ulation class [s]. The problem of finding the smallest Kripke model modulo
bisimulation is similar to the problem of minimizing the number of states in
a finite automaton [Ho471]. We will use partition refinement, in the spirit
of [Pa1Ta087]. Here is the algorithm:

• Start out with a partition of the state set where all states with the
same precondition function are in the same class. The equality relation
to be used to evaluate the precondition function is given as a parameter
to the algorithm.

• Given a partition Π, for each block b in Π, partition b into sub-blocks
such that two states s, t of b are in the same sub-block iff for all agents
a it holds that s and t have a−→ transitions to states in the same block
of Π. Update Π to Π′ by replacing each b in Π by the newly found set
of sub-blocks for b.

• Halt as soon as Π = Π′.

Looking up and checking of two formulas against a given equivalence rela-
tion:
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lookupFs :: (Eq a,Eq b) =>

a -> a -> [(a,b)] -> (b -> b -> Bool) -> Bool

lookupFs i j table r = case lookup i table of

Nothing -> lookup j table == Nothing

Just f1 -> case lookup j table of

Nothing -> False

Just f2 -> r f1 f2

The following computes the initial partition, using a particular relation for
equivalence of formulas:

initPartition :: (Eq a, Eq b) => Model a b -> (b -> b -> Bool) -> [[a]]

initPartition (Mo states pre ags rel points) r =

rel2part states (\ x y -> lookupFs x y pre r)

Refining a partition:

refinePartition :: (Eq a, Eq b) =>

Model a b -> [[a]] -> [[a]]

refinePartition m p = refineP m p p

where

refineP :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]] -> [[a]]

refineP m part [] = []

refineP m part (block:blocks) =

newblocks ++ (refineP m part blocks)

where

newblocks =

rel2part block (\ x y -> sameAccBlocks m part x y)

The following is a function that checks whether two states have the same
accessible blocks under a partition:

sameAccBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> a -> Bool

sameAccBlocks m@(Mo states pre ags rel points) part s t =

and [ accBlocks m part s ag == accBlocks m part t ag |

ag <- ags ]

The accessible blocks for an agent from a given state, given a model and a
partition can be determined by accBlocks:

accBlocks :: (Eq a, Eq b) =>

Model a b -> [[a]] -> a -> Agent -> [[a]]

accBlocks m@(Mo states pre ags rel points) part s ag =

nub [ bl part y | (ag’,x,y) <- rel, ag’ == ag, x == s ]

The block of an object in a partition:

bl :: Eq a => [[a]] -> a -> [a]

bl part x = head (filter (elem x) part)

Initializing and refining a partition:



324 J. van Eijck

initRefine :: (Eq a, Eq b) =>

Model a b -> (b -> b -> Bool) -> [[a]]

initRefine m r = refine m (initPartition m r)

The refining process:
refine :: (Eq a, Eq b) => Model a b -> [[a]] -> [[a]]

refine m part = if rpart == part

then part

else refine m rpart

where rpart = refinePartition m part

6.2 Minimization
We now use this to construct the minimal model. Notice the dependence
on relational parameter r.

minimalModel :: (Eq a, Ord a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model [a] b

minimalModel r m@(Mo states pre ags rel points) =

(Mo states’ pre’ ags rel’ points’)

where

partition = initRefine m r

states’ = partition

f = bl partition

rel’ = (nub.sort) (map (\ (x,y,z) -> (x, f y, f z)) rel)

pre’ = (nub.sort) (map (\ (x,y) -> (f x, y)) pre)

points’ = map f points

Converting a’s into integers, using their position in a given list of a’s.
convert :: (Eq a, Show a) => [a] -> a -> Integer

convert = convrt 0

where

convrt :: (Eq a, Show a) => Integer -> [a] -> a -> Integer

convrt n [] x = error (show x ++ " not in list")

convrt n (y:ys) x | x == y = n

| otherwise = convrt (n+1) ys x

Converting an object of type Model a b into an object of type Model
Integer b:

conv :: (Eq a, Show a) =>

Model a b -> Model Integer b

conv (Mo worlds val ags acc points) =

(Mo (map f worlds)

(map (\ (x,y) -> (f x, y)) val)

ags

(map (\ (x,y,z) -> (x, f y, f z)) acc))

(map f points)

where f = convert worlds

Use this to rename the blocks into integers:
bisim :: (Eq a, Ord a, Show a, Eq b, Ord b) =>

(b -> b -> Bool) -> Model a b -> Model Integer b

bisim r = conv . (minimalModel r)



DEMO — A Demo of Epistemic Modelling 325

7 Formulas, action models and epistemic models
module ActEpist where

import List

import Models

import MinBis

import DPLL

Module List is a standard Haskell module. Module Models is described
in Chapter 5, and Module MinBis in Chapter 6. Module DPLL refers to an
implementation of Davis, Putnam, Logemann, Loveland (DPLL) theorem
proving (not included in this document, but available at http://www.cwi.
nl/∼jve/demo).

7.1 Formulas
Basic propositions:

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

Show these in the standard way, in lower case, with index 0 omitted.

instance Show Prop where

show (P 0) = "p"; show (P i) = "p" ++ show i

show (Q 0) = "q"; show (Q i) = "q" ++ show i

show (R 0) = "r"; show (R i) = "r" ++ show i

Formulas, according to the definition:

ϕ ::= > | p | ¬ϕ |
∧

[ϕ1, . . . , ϕn] |
∨

[ϕ1, . . . , ϕn] | [π]ϕ | [A]ϕ

π ::= a | B |?ϕ | ©[π1, . . . , πn] |
⋃

[π1, . . . , πn] | π∗

Here, p ranges over basic propositions, a ranges over agents, B ranges
over non-empty sets of agents, and A is a multiple pointed action model
(see below) © denotes sequential composition of a list of programs. We will
often write ©[π1, π2] as π1;π2, and

⋃
[π1, π2] as π1 ∪ π2.

Note that general knowledge among agents B that ϕ is expressed in this
language as [B]ϕ, and common knowledge among agents B that ϕ as [B∗]ϕ.
Thus, [B]ϕ can be viewed as shorthand for [

⋃
b∈B b]ϕ. In case B = ∅, [B]ϕ

turns out to be equivalent to [?⊥]ϕ.
For convenience, we have also left in the more traditional way of ex-

pressing individual knowledge 2aϕ , general knowledge EBϕ and common
knowledge CBϕ.

data Form = Top

| Prop Prop

| Neg Form

| Conj [Form]



326 J. van Eijck

| Disj [Form]

| Pr Program Form

| K Agent Form

| EK [Agent] Form

| CK [Agent] Form

| Up AM Form

deriving (Eq,Ord)

data Program = Ag Agent

| Ags [Agent]

| Test Form

| Conc [Program]

| Sum [Program]

| Star Program

deriving (Eq,Ord)

Some useful abbreviations:

impl :: Form -> Form -> Form

impl form1 form2 = Disj [Neg form1, form2]

equiv :: Form -> Form -> Form

equiv form1 form2 = Conj [form1 ‘impl‘ form2, form2 ‘impl‘ form1]

xor :: Form -> Form -> Form

xor x y = Disj [ Conj [x, Neg y], Conj [Neg x, y]]

The negation of a formula:

negation :: Form -> Form

negation (Neg form) = form

negation form = Neg form

Show formulas in the standard way:

instance Show Form where

show Top = "T" ; show (Prop p) = show p; show (Neg f) = ’-’:(show f);

show (Conj fs) = ’&’: show fs

show (Disj fs) = ’v’: show fs

show (Pr p f) = ’[’: show p ++ "]" ++ show f

show (K agent f) = ’[’: show agent ++ "]" ++ show f

show (EK agents f) = ’E’: show agents ++ show f

show (CK agents f) = ’C’: show agents ++ show f

show (Up pam f) = ’A’: show (points pam) ++ show f

Show programs in a standard way:

instance Show Program where

show (Ag a) = show a

show (Ags as) = show as

show (Test f) = ’?’: show f

show (Conc ps) = ’C’: show ps

show (Sum ps) = ’U’: show ps

show (Star p) = ’(’: show p ++ ")*"
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Programs can get very unwieldy very quickly. As is well known, there
is no normalisation procedure for regular expressions. Still, here are some
rewriting steps for simplification of programs:

∅ → ?⊥ ?ϕ1∪?ϕ2 → ?(ϕ1 ∨ ϕ2)
?⊥ ∪ π → π π∪?⊥ → π⋃

[] → ?⊥
⋃

[π] → π
?ϕ1; ?ϕ2 → ?(ϕ1 ∧ ϕ2) ?>;π → π
π; ?> → π ?⊥;π → ?⊥
π; ?⊥ → ?⊥ ©[] → ?>
©[π] → π (?ϕ)∗ → ?>
(?ϕ ∪ π)∗ → π∗ (π∪?ϕ)∗ → π∗

π∗∗ → π∗,

and the k +m+ n-ary rewriting steps⋃
[π1, . . . , πk,

⋃
[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]

→
⋃

[π1, . . . , πk+m+n]

and

© [π1, . . . , πk,©[πk+1, . . . , πk+m], πk+m+1, . . . , πk+m+n]
→ ©[π1, . . . , πk+m+n].

Simplifying unions by splitting up in test part, accessibility part and rest:
splitU :: [Program] -> ([Form],[Agent],[Program])

splitU [] = ([],[],[])

splitU (Test f: ps) = (f:fs,ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ag x: ps) = (fs,union [x] ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Ags xs: ps) = (fs,union xs ags,prs)

where (fs,ags,prs) = splitU ps

splitU (Sum ps: ps’) = splitU (union ps ps’)

splitU (p:ps) = (fs,ags,p:prs)

where (fs,ags,prs) = splitU ps

Simplifying compositions:
comprC :: [Program] -> [Program]

comprC [] = []

comprC (Test Top: ps) = comprC ps

comprC (Test (Neg Top):ps) = [Test (Neg Top)]

comprC (Test f: Test f’: rest) = comprC (Test (canonF (Conj [f,f’])):

rest)

comprC (Conc ps : ps’) = comprC (ps ++ ps’)

comprC (p:ps) = let ps’ = comprC ps

in if ps’ == [Test (Neg Top)]

then [Test (Neg Top)] else p: ps’
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Use this in the code for program simplification:

simpl :: Program -> Program

simpl (Ag x) = Ag x

simpl (Ags []) = Test (Neg Top)

simpl (Ags [x]) = Ag x

simpl (Ags xs) = Ags xs

simpl (Test f) = Test (canonF f)

Simplifying unions:

simpl (Sum prs) =

let (fs,xs,rest) = splitU (map simpl prs)

f = canonF (Disj fs)

in

if xs == [] && rest == [] then Test f

else if xs == [] && f == Neg Top && length rest == 1

then (head rest)

else if xs == [] && f == Neg Top then Sum rest

else if xs == []

then Sum (Test f: rest)

else if length xs == 1 && f == Neg Top

then Sum (Ag (head xs): rest)

else if length xs == 1 then Sum (Test f: Ag (head xs): rest)

else if f == Neg Top then Sum (Ags xs: rest)

else Sum (Test f: Ags xs: rest)

Simplifying sequential compositions:

simpl (Conc prs) =

let prs’ = comprC (map simpl prs)

in

if prs’== [] then Test Top

else if length prs’ == 1 then head prs’

else if head prs’ == Test Top then Conc (tail prs’)

else Conc prs’

Simplifying stars:

simpl (Star pr) = case simpl pr of

Test f -> Test Top

Sum [Test f, pr’] -> Star pr’

Sum (Test f: prs’) -> Star (Sum prs’)

Star pr’ -> Star pr’

pr’ -> Star pr’

Property of being a purely propositional formula:

pureProp :: Form -> Bool

pureProp Top = True

pureProp (Prop _) = True

pureProp (Neg f) = pureProp f

pureProp (Conj fs) = and (map pureProp fs)

pureProp (Disj fs) = and (map pureProp fs)

pureProp _ = False
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Some example formulas and formula-forming operators:

bot, p0, p, p1, p2, p3, p4, p5, p6 :: Form

bot = Neg Top

p0 = Prop (P 0); p = p0; p1 = Prop (P 1); p2 = Prop (P 2)

p3 = Prop (P 3); p4 = Prop (P 4); p5 = Prop (P 5); p6 = Prop (P 6)

q0, q, q1, q2, q3, q4, q5, q6 :: Form

q0 = Prop (Q 0); q = q0; q1 = Prop (Q 1); q2 = Prop (Q 2);

q3 = Prop (Q 3); q4 = Prop (Q 4); q5 = Prop (Q 5); q6 = Prop (Q 6)

r0, r, r1, r2, r3, r4, r5, r6:: Form

r0 = Prop (R 0); r = r0; r1 = Prop (R 1); r2 = Prop (R 2)

r3 = Prop (R 3); r4 = Prop (R 4); r5 = Prop (R 5); r6 = Prop (R 6)

u = Up :: AM -> Form -> Form

nkap = Neg (K a p)

nkanp = Neg (K a (Neg p))

nka_p = Conj [nkap,nkanp]

7.2 Reducing formulas to canonical form
For computing bisimulations, it is useful to have some notion of equiva-
lence (however crude) for the logical language. For this, we reduce formulas
to a canonical form. We will derive canonical forms that are unique up
to propositional equivalence, employing a propositional reasoning engine.
This is still rather crude, for any modal formula will be treated as a propo-
sitional literal. The DPLL (Davis, Putnam, Logemann, Loveland) engine
expects clauses represented as lists of integers, so we first have to translate
to this format. This translation should start with computing a mapping
from positive literals to integers. For the non-propositional operators we
use a little bootstrapping, by putting the formula inside the operator in
canonical form, using the function canonF to be defined below. Also, since
the non-propositional operators all behave as Box modalities, we can reduce
2> to >:

mapping :: Form -> [(Form,Integer)]

mapping f = zip lits [1..k]

where

lits = (sort . nub . collect) f

k = toInteger (length lits)

collect :: Form -> [Form]

collect Top = []

collect (Prop p) = [Prop p]

collect (Neg f) = collect f

collect (Conj fs) = concat (map collect fs)

collect (Disj fs) = concat (map collect fs)

collect (Pr pr f) = if canonF f == Top

then [] else [Pr pr (canonF f)]

collect (K ag f) = if canonF f == Top
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then [] else [K ag (canonF f)]

collect (EK ags f) = if canonF f == Top

then [] else [EK ags (canonF f)]

collect (CK ags f) = if canonF f == Top

then [] else [CK ags (canonF f)]

collect (Up pam f) = if canonF f == Top

then [] else [Up pam (canonF f)]

The following code corresponds to putting in clausal form, given a map-
ping for the literals, and using bootstrapping for formulas in the scope of a
non-propositional operator. Note that 2> is reduced to >, and ¬2> to ⊥.

cf :: (Form -> Integer) -> Form ->

[[Integer]]

cf g (Top) = []

cf g (Prop p) = [[g (Prop p)]]

cf g (Pr pr f) = if canonF f == Top then []

else [[g (Pr pr (canonF f))]]

cf g (K ag f) = if canonF f == Top then []

else [[g (K ag (canonF f))]]

cf g (EK ags f) = if canonF f == Top then []

else [[g (EK ags (canonF f))]]

cf g (CK ags f) = if canonF f == Top then []

else [[g (CK ags (canonF f))]]

cf g (Up am f) = if canonF f == Top then []

else [[g (Up am (canonF f))]]

cf g (Conj fs) = concat (map (cf g) fs)

cf g (Disj fs) = deMorgan (map (cf g) fs)

Negated formulas:
cf g (Neg Top) = [[]]

cf g (Neg (Prop p)) = [[- g (Prop p)]]

cf g (Neg (Pr pr f)) = if canonF f == Top then [[]]

else [[- g (Pr pr (canonF f))]]

cf g (Neg (K ag f)) = if canonF f == Top then [[]]

else [[- g (K ag (canonF f))]]

cf g (Neg (EK ags f)) = if canonF f == Top then [[]]

else [[- g (EK ags (canonF f))]]

cf g (Neg (CK ags f)) = if canonF f == Top then [[]]

else [[- g (CK ags (canonF f))]]

cf g (Neg (Up am f)) = if canonF f == Top then [[]]

else [[- g (Up am (canonF f))]]

cf g (Neg (Conj fs)) = deMorgan (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Disj fs)) = concat (map (\ f -> cf g (Neg f)) fs)

cf g (Neg (Neg f)) = cf g f

In order to explain the function deMorgan, we recall De Morgan’s disjunction
distribution which is the logical equivalence of the following expressions:

ϕ ∨ (ψ1 ∧ · · · ∧ ψn) ↔ (ϕ ∨ ψ1) ∧ · · · ∧ (ϕ ∨ ψn).

Now the following is the code for De Morgan’s disjunction distribution (for
the case of a disjunction of a list of clause sets):
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deMorgan :: [[[Integer]]] -> [[Integer]]

deMorgan [] = [[]]

deMorgan [cls] = cls

deMorgan (cls:clss) = deMorg cls (deMorgan clss)

where

deMorg :: [[Integer]] -> [[Integer]] -> [[Integer]]

deMorg cls1 cls2 = (nub . concat) [ deM cl cls2 | cl <- cls1 ]

deM :: [Integer] -> [[Integer]] -> [[Integer]]

deM cl cls = map (fuseLists cl) cls

Function fuseLists keeps the literals in the clauses ordered.

fuseLists :: [Integer] -> [Integer] -> [Integer]

fuseLists [] ys = ys

fuseLists xs [] = xs

fuseLists (x:xs) (y:ys) | abs x < abs y = x:(fuseLists xs (y:ys))

| abs x == abs y = if x == y

then x:(fuseLists xs ys)

else if x > y

then x:y:(fuseLists xs ys)

else y:x:(fuseLists xs ys)

| abs x > abs y = y:(fuseLists (x:xs) ys)

Given a mapping for the positive literals, the satisfying valuations of a
formula can be collected from the output of the DPLL process. Here dp is
the function imported from the module DPLL.

satVals :: [(Form,Integer)] -> Form -> [[Integer]]

satVals t f = (map fst . dp) (cf (table2fct t) f)

Two formulas are propositionally equivalent if they have the same sets
of satisfying valuations, computed on the basis of a literal mapping for their
conjunction:

propEquiv :: Form -> Form -> Bool

propEquiv f1 f2 = satVals g f1 == satVals g f2

where g = mapping (Conj [f1,f2])

A formula is a (propositional) contradiction if it is propositionally equiv-
alent to Neg Top, or equivalently, to Disj []:

contrad :: Form -> Bool

contrad f = propEquiv f (Disj [])

A formula is (propositionally) consistent if it is not a propositional contra-
diction:

consistent :: Form -> Bool

consistent = not . contrad

Use the set of satisfying valuations to derive a canonical form:
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canonF :: Form -> Form

canonF f = if (contrad (Neg f))

then Top

else if fs == []

then Neg Top

else if length fs == 1

then head fs

else Disj fs

where g = mapping f

nss = satVals g f

g’ = \ i -> head [ form | (form,j) <- g, i == j ]

h = \ i -> if i < 0 then Neg (g’ (abs i)) else g’ i

h’ = \ xs -> map h xs

k = \ xs -> if xs == []

then Top

else if length xs == 1

then head xs

else Conj xs

fs = map k (map h’ nss)

This gives:

ActEpist> canonF p

p

ActEpist> canonF (Conj [p,Top])

p

ActEpist> canonF (Conj [p,q,Neg r])

&[p,q,-r]

ActEpist> canonF (Neg (Disj [p,(Neg p)]))

-T

ActEpist> canonF (Disj [p,q,Neg r])

v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (K a (Disj [p,q,Neg r]))

[a]v[p,&[-p,q],&[-p,-q,-r]]

ActEpist> canonF (Conj [p, Conj [q,Neg r]])

&[p,q,-r]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Disj []))]])

v[&[p,q],&[p,-q,-[a]-T]]

ActEpist> canonF (Conj [p, Disj [q,Neg (K a (Conj []))]])

&[p,q]

7.3 Action models and epistemic models
Action models and epistemic models are built from states. We assume states
are represented by integers:

type State = Integer

Epistemic models are models where the states are of type State, and
the precondition function assigns lists of basic propositions (this specializes
the precondition function to a valuation).

type EM = Model State [Prop]
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Find the valuation of an epistemic model:

valuation :: EM -> [(State,[Prop])]

valuation = eval

Action models are models where the states are of type State, and the
precondition function assigns objects of type Form. The only difference
between an action model and a static model is in the fact that action models
have a precondition function that assigns a formula instead of a set of basic
propositions.

type AM = Model State Form

The preconditions of an action model:

preconditions :: AM -> [Form]

preconditions (Mo states pre ags acc points) =

map (table2fct pre) points

Sometimes we need a single precondition:

precondition :: AM -> Form

precondition am = canonF (Conj (preconditions am))

The zero action model 0:

zero :: [Agent] -> AM

zero ags = (Mo [] [] ags [] [])

The purpose of action models is to define relations on the class of all
static models. States with precondition ⊥ can be pruned from an action
model. For this we define a specialized version of the gsm function:

gsmAM :: AM -> AM

gsmAM (Mo states pre ags acc points) =

let

points’ = [ p | p <- points, consistent (table2fct pre p) ]

states’ = [ s | s <- states, consistent (table2fct pre s) ]

pre’ = filter (\ (x,_) -> elem x states’) pre

f = \ (_,s,t) -> elem s states’ && elem t states’

acc’ = filter f acc

in

if points’ == []

then zero ags

else gsm (Mo states’ pre’ ags acc’ points’)
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7.4 Program transformation
For every action model A with states s0, . . . , sn−1 we define a set of n2

program transformers TA
i,j (0 ≤ i < n, 0 ≤ j < n), as follows [vE104b]:

TA
ij (a) =

{
?pre(si); a if si

a→ sj ,

?⊥ otherwise

TA
ij (?ϕ) =

{
?(pre(si) ∧ [A, si]ϕ) if i = j,

?⊥ otherwise

TA
ij (π1;π2) =

n−1⋃
k=0

(TA
ik(π1);TA

kj(π2))

TA
ij (π1 ∪ π2) = TA

ij (π1) ∪ TA
ij (π2)

TA
ij (π∗) = KA

ijn(π)

where KA
ijk(π) is a (transformed) program for all the π∗ paths from si to sj

that can be traced through A while avoiding a pass through intermediate
states sk and higher. Thus, KA

ijn(π) is a program for all the π∗ paths from
si to sj that can be traced through A, period.

KA
ijk(π) is defined by recursing on k, as follows:

KA
ij0(π) =

{
?> ∪ TA

ij (π) if i = j,

TA
ij (π) otherwise

KA
ij(k+1)(π) =


(KA

kkk(π))∗ if i = k = j,

(KA
kkk(π))∗;KA

kjk(π) if i = k 6= j,

KA
ikk(π); (KA

kkk(π))∗ if i 6= k = j,

KA
ijk(π) ∪ (KA

ikk(π); (KA
kkk(π))∗;KA

kjk(π)) otherwise.

Lemma 7.1 (Kleene Path). Suppose (w,w′) ∈ [[TA
ij (π)]]M iff there is a π

path from (w, si) to (w′, sj) in M⊗A. Then (w,w′) ∈ [[KA
ijn(π)]]M iff there

is a π∗ path from (w, si) to (w′, sj) in M⊗A.

The Kleene path lemma is the key ingredient in the proof of the following
program transformation lemma.

Lemma 7.2 (Program Transformation). Assume A has n states s0, . . . ,
sn−1. Then:

M |=w [A, si][π]ϕ iff M |=w

n−1∧
j=0

[TA
ij (π)][A, sj ]ϕ.
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The implementation of the program transformation functions is given here:

transf :: AM -> Integer -> Integer -> Program -> Program

transf am@(Mo states pre allAgs acc points) i j (Ag ag) =

let

f = table2fct pre i

in

if elem (ag,i,j) acc && f == Top then Ag ag

else if elem (ag,i,j) acc && f /= Neg Top then Conc [Test f, Ag ag]

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Ags ags) =

let ags’ = nub [ a | (a,k,m) <- acc, elem a ags, k == i, m == j ]

ags1 = intersect ags ags’

f = table2fct pre i

in

if ags1 == [] || f == Neg Top then Test (Neg Top)

else if f == Top && length ags1 == 1 then Ag (head ags1)

else if f == Top then Ags ags1

else Conc [Test f, Ags ags1]

transf am@(Mo states pre allAgs acc points) i j (Test f) =

let

g = table2fct pre i

in

if i == j

then Test (Conj [g,(Up am f)])

else Test (Neg Top)

transf am@(Mo states pre allAgs acc points) i j (Conc []) =

transf am i j (Test Top)

transf am@(Mo states pre allAgs acc points) i j (Conc [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Conc (p:ps)) =

Sum [ Conc [transf am i k p, transf am k j (Conc ps)] | k <- [0..n] ]

where n = toInteger (length states - 1)

transf am@(Mo states pre allAgs acc points) i j (Sum []) =

transf am i j (Test (Neg Top))

transf am@(Mo states pre allAgs acc points) i j (Sum [p]) =

transf am i j p

transf am@(Mo states pre allAgs acc points) i j (Sum ps) =

Sum [ transf am i j p | p <- ps ]

transf am@(Mo states pre allAgs acc points) i j (Star p) =

kleene am i j n p

where n = toInteger (length states)

The following is the implementation of KA
ijk:

kleene :: AM -> Integer -> Integer -> Integer -> Program -> Program

kleene am i j 0 pr =

if i == j

then Sum [Test Top, transf am i j pr]

else transf am i j pr

kleene am i j k pr

| i == j && j == pred k = Star (kleene am i i i pr)

| i == pred k =

Conc [Star (kleene am i i i pr), kleene am i j i pr]
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| j == pred k =

Conc [kleene am i j j pr, Star (kleene am j j j pr)]

| otherwise =

Sum [kleene am i j k’ pr,

Conc [kleene am i k’ k’ pr,

Star (kleene am k’ k’ k’ pr), kleene am k’ j k’ pr]]

where k’ = pred k

Transformation plus simplification:

tfm :: AM -> Integer -> Integer -> Program -> Program

tfm am i j pr = simpl (transf am i j pr)

The program transformations can be used to translate Update PDL to PDL,
as follows:

t(>) = > t(p) = p
t(¬ϕ) = ¬t(ϕ) t(ϕ1 ∧ ϕ2) = t(ϕ1) ∧ t(ϕ2)
t([π]ϕ) = [r(π)]t(ϕ) t([A, s]>) = >

t([A, s]p) = t(pre(s)) → p
t([A, s]¬ϕ) = t(pre(s)) → ¬t([A, s]ϕ)

t([A, s](ϕ1 ∧ ϕ2)) = t([A, s]ϕ1) ∧ t([A, s]ϕ2)
t([A, si][π]ϕ) =

∧n−1
j=0 [TA

ij (r(π))]t([A, sj ]ϕ)
t([A, s][A′, s′]ϕ) = t([A, s]t([A′, s′]ϕ))

t([A,S]ϕ) =
∧

s∈S t[A, s]ϕ)

r(a) = a r(B) = B
r(?ϕ) = ?t(ϕ) r(π1;π2) = r(π1); r(π2)

r(π1 ∪ π2) = r(π1) ∪ r(π2) r(π∗) = (r(π))∗.

The correctness of this translation follows from direct semantic inspec-
tion, using the program transformation lemma for the translation of formu-
las of type [A, si][π]ϕ.

The crucial clauses in this translation procedure are those for formulas
of the forms [A,S]ϕ and [A, s]ϕ, and more in particular the one for formulas
of the form [A, s][π]ϕ. It makes sense to give separate functions for the steps
that pull the update model through program π given formula ϕ.

step0, step1 :: AM -> Program -> Form -> Form

step0 am@(Mo states pre allAgs acc []) pr f = Top

step0 am@(Mo states pre allAgs acc [i]) pr f = step1 am pr f

step0 am@(Mo states pre allAgs acc is) pr f =

Conj [ step1 (Mo states pre allAgs acc [i]) pr f | i <- is ]

step1 am@(Mo states pre allAgs acc [i]) pr f =

Conj [ Pr (transf am i j (rpr pr))

(Up (Mo states pre allAgs acc [j]) f) | j <- states ]



DEMO — A Demo of Epistemic Modelling 337

Perform a single step, and put in canonical form:

step :: AM -> Program -> Form -> Form

step am pr f = canonF (step0 am pr f)

t :: Form -> Form

t Top = Top

t (Prop p) = Prop p

t (Neg f) = Neg (t f)

t (Conj fs) = Conj (map t fs)

t (Disj fs) = Disj (map t fs)

t (Pr pr f) = Pr (rpr pr) (t f)

t (K x f) = Pr (Ag x) (t f)

t (EK xs f) = Pr (Ags xs) (t f)

t (CK xs f) = Pr (Star (Ags xs)) (t f)

Translations of formulas starting with an action model update:

t (Up am@(Mo states pre allAgs acc [i]) f) = t’ am f

t (Up am@(Mo states pre allAgs acc is) f) =

Conj [ t’ (Mo states pre allAgs acc [i]) f | i <- is ]

Translations of formulas starting with a single pointed action model update
are performed by t’:

t’ :: AM -> Form -> Form

t’ am Top = Top

t’ am (Prop p) = impl (precondition am) (Prop p)

t’ am (Neg f) = Neg (t’ am f)

t’ am (Conj fs) = Conj (map (t’ am) fs)

t’ am (Disj fs) = Disj (map (t’ am) fs)

t’ am (K x f) = t’ am (Pr (Ag x) f)

t’ am (EK xs f) = t’ am (Pr (Ags xs) f)

t’ am (CK xs f) = t’ am (Pr (Star (Ags xs)) f)

t’ am (Up am’f) = t’ am (t (Up am’ f))

The crucial case is an update action having scope over a program. We may
assume that the update action is single pointed.

t’ am@(Mo states pre allAgs acc [i]) (Pr pr f) =

Conj [ Pr (transf am i j (rpr pr))

(t’ (Mo states pre allAgs acc [j]) f) | j <- states ]

t’ am@(Mo states pre allAgs acc is) (Pr pr f) =

error "action model not single pointed"

Translations for programs:

rpr :: Program -> Program

rpr (Ag x) = Ag x

rpr (Ags xs) = Ags xs

rpr (Test f) = Test (t f)

rpr (Conc ps) = Conc (map rpr ps)

rpr (Sum ps) = Sum (map rpr ps)

rpr (Star p) = Star (rpr p)
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Translating and putting in canonical form:

tr :: Form -> Form

tr = canonF . t

Some example translations:

ActEpist> tr (Up (public p) (Pr (Star (Ags [b,c])) p))

T

ActEpist> tr (Up (public (Disj [p,q])) (Pr (Star (Ags [b,c])) p))

[(U[?T,C[?v[p,q],[b,c]]])*]v[p,&[-p,-q]]

ActEpist> tr (Up (groupM [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b,c]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[c,(U[?T,C[?p,[b,c]]])*,C[?p,[c]]]])*]]p

ActEpist> tr (Up (secret [a,b] p) (Pr (Star (Ags [b,c])) p))

[C[C[(U[?T,C[?p,[b]]])*,C[?p,[c]]],(U[U[?T,[b,c]],

C[?-T,(U[?T,C[?p,[b]]])*,C[?p,[c]]]])*]]p

8 Semantics
module Semantics

where

import List

import Char

import Models

import Display

import MinBis

import ActEpist

import DPLL

8.1 Semantics implementation
The group alternatives of group of agents a are the states that are reachable
through

⋃
a∈ARa.

groupAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

groupAlts rel agents current =

(nub . sort . concat) [ alternatives rel a current | a <- agents ]

The common knowledge alternatives of group of agents a are the states
that are reachable through a finite number of Ra links, for a ∈ A.

commonAlts :: [(Agent,State,State)] -> [Agent] -> State -> [State]

commonAlts rel agents current =

closure rel agents (groupAlts rel agents current)

The model update function takes a static model and and action model
and returns an object of type Model (State,State) [Prop]. The up func-
tion takes an epistemic model and an action model and returns an epistemic
model. Its states are the (State,State) pairs that result from the cartesian
product construction described in [Ba4Mo3So199]. Note that the update
function uses the truth definition (given below as isTrueAt).
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We will set up matters in such way that updates with action models get
their list of agents from the epistemic model that gets updated. For this,
we define:

type FAM = [Agent] -> AM

up :: EM -> FAM -> Model (State,State) [Prop]

up m@(Mo worlds val ags acc points) fam =

Mo worlds’ val’ ags acc’ points’

where

am@(Mo states pre _ susp actuals) = fam ags

worlds’ = [ (w,s) | w <- worlds, s <- states,

formula <- maybe [] (\ x -> [x]) (lookup s pre),

isTrueAt w m formula ]

val’ = [ ((w,s),props) | (w,props) <- val,

s <- states,

elem (w,s) worlds’ ]

acc’ = [ (ag1,(w1,s1),(w2,s2)) | (ag1,w1,w2) <- acc,

(ag2,s1,s2) <- susp,

ag1 == ag2,

elem (w1,s1) worlds’,

elem (w2,s2) worlds’ ]

points’ = [ (p,a) | p <- points, a <- actuals,

elem (p,a) worlds’ ]

An action model is tiny if its action list is empty or a singleton list:

tiny :: FAM -> Bool

tiny fam = length actions <= 1

where actions = domain (fam [minBound..maxBound])

The appropriate notion of equivalence for the base case of the bisimulation
for epistemic models is “having the same valuation”.

sameVal :: [Prop] -> [Prop] -> Bool

sameVal ps qs = (nub . sort) ps == (nub . sort) qs

Bisimulation minimal version of generated submodel of update result for
epistemic model and pointed action models:

upd :: EM -> FAM -> EM

upd sm fam = if tiny fam then conv (up sm fam)

else bisim (sameVal) (up sm fam)

Non-deterministic update with a list of pointed action models:

upds :: EM -> [FAM] -> EM

upds = foldl upd

At last we have all ingredients for the truth definition.
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isTrueAt :: State -> EM -> Form -> Bool

isTrueAt w m Top = True

isTrueAt w m@(Mo worlds val ags acc pts) (Prop p) =

elem p (concat [ props | (w’,props) <- val, w’==w ])

isTrueAt w m (Neg f) = not (isTrueAt w m f)

isTrueAt w m (Conj fs) = and (map (isTrueAt w m) fs)

isTrueAt w m (Disj fs) = or (map (isTrueAt w m) fs)

The clauses for individual knowledge, general knowledge and common
knowledge use the functions alternatives, groupAlts and commonAlts to
compute the relevant accessible worlds:

isTrueAt w m@(Mo worlds val ags acc pts) (K ag f) =

and (map (flip ((flip isTrueAt) m) f) (alternatives acc ag w))

isTrueAt w m@(Mo worlds val ags acc pts) (EK agents f) =

and (map (flip ((flip isTrueAt) m) f) (groupAlts acc agents w))

isTrueAt w m@(Mo worlds val ags acc pts) (CK agents f) =

and (map (flip ((flip isTrueAt) m) f) (commonAlts acc agents w))

In the clause for [M]ϕ, the result of updating the static model M with
action model M may be undefined, but in this case the precondition P (s0)
of the designated state s0 of M will fail in the designated world w0 of M . By
making the clause for [M]ϕ check for M |=w0 P (s0), truth can be defined
as a total function.

isTrueAt w m@(Mo worlds val ags rel pts) (Up am f) =

and [ isTrue m’ f |

m’ <- decompose (upd (Mo worlds val ags rel [w]) (\ ags -> am))]

Checking for truth in all the designated points of an epistemic model:

isTrue :: EM -> Form -> Bool

isTrue (Mo worlds val ags rel pts) form =

and [ isTrueAt w (Mo worlds val ags rel pts) form | w <- pts ]

8.2 Tools for constructing epistemic models
The following function constructs an initial epistemic model where the
agents are completely ignorant about their situation, as described by a list
of basic propositions. The input is a list of basic propositions used for
constructing the valuations.

initE :: [Prop] -> [Agent] -> EM

initE allProps ags = (Mo worlds val ags accs points)

where

worlds = [0..(2^k - 1)]

k = length allProps

val = zip worlds (sortL (powerList allProps))

accs = [ (ag,st1,st2) | ag <- ags,

st1 <- worlds,

st2 <- worlds ]

points = worlds
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This uses the following utilities:
powerList :: [a] -> [[a]]

powerList [] = [[]]

powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

sortL :: Ord a => [[a]] -> [[a]]

sortL = sortBy (\ xs ys -> if length xs < length ys then LT

else if length xs > length ys then GT

else compare xs ys)

Some initial models:
e00 :: EM

e00 = initE [P 0] [a,b]

e0 :: EM

e0 = initE [P 0,Q 0] [a,b,c]

8.3 From communicative actions to action models
Computing the update for a public announcement:

public :: Form -> FAM

public form ags =

(Mo [0] [(0,form)] ags [ (a,0,0) | a <- ags ] [0])

Public announcements are S5 models:
DEMO> showM (public p [a,b,c])

==> [0]

[0]

(0,p)

(a,[[0]])

(b,[[0]])

(c,[[0]])

Computing the update for passing a group announcement to a list of
agents: the other agents may or may not be aware of what is going on. In
the limit case where the message is passed to all agents, the message is a
public announcement.

groupM :: [Agent] -> Form -> FAM

groupM gr form agents =

if sort gr == sort agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

agents

([ (a,0,0) | a <- agents ]

++ [ (a,0,1) | a <- agents \\ gr ]

++ [ (a,1,0) | a <- agents \\ gr ]

++ [ (a,1,1) | a <- agents ])

[0])
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Group announcements are S5 models:

Semantics> showM (groupM [a,b] p [a,b,c,d,e])

=> [0]

[0,1]

(0,p)(1,T)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0,1]])

(d,[[0,1]])

(e,[[0,1]])

Computing the update for an individual message to b that ϕ:

message :: Agent -> Form -> FAM

message agent = groupM [agent]

Another special case of a group message is a test. Tests are updates that
messages to the empty group:

test :: Form -> FAM

test = groupM []

Computing the update for passing a secret message to a list of agents:
the other agents remain unaware of the fact that something goes on. In the
limit case where the secret is divulged to all agents, the secret becomes a
public update.

secret :: [Agent] -> Form -> FAM

secret agents form all_agents =

if sort agents == sort all_agents

then public form agents

else

(Mo

[0,1]

[(0,form),(1,Top)]

all_agents

([ (a,0,0) | a <- agents ]

++ [ (a,0,1) | a <- all_agents \\ agents ]

++ [ (a,1,1) | a <- all_agents ])

[0])

Secret messages are KD45 models:

DEMO> showM (secret [a,b] p [a,b,c])

==> [0]

[0,1]

(0,p)(1,T)

(a,[([],[0]),([],[1])])

(b,[([],[0]),([],[1])])

(c,[([0],[1])])
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Here is a multiple pointed action model for the communicative action of
revealing one of a number of alternatives to a list of agents, in such a way
that it is common knowledge that one of the alternatives gets revealed (in
[Ba4Mo3So103] this is called common knowledge of alternatives).

reveal :: [Agent] -> [Form] -> FAM

reveal ags forms all_agents =

(Mo

states

(zip states forms)

all_agents

([ (ag,s,s) | s <- states, ag <- ags ]

++

[ (ag,s,s’) | s <- states, s’ <- states, ag <- others ])

states)

where states = map fst (zip [0..] forms)

others = all_agents \\ ags

Here is an action model for the communication that reveals to a one of
p1, q1, r1.

Semantics> showM (reveal [a] [p1,q1,r1] [a,b])

==> [0,1,2]

[0,1,2]

(0,p1)(1,q1)(2,r1)

(a,[[0],[1],[2]])

(b,[[0,1,2]])

A group of agents B gets (transparently) informed about a formula ϕ
if B get to know ϕ when ϕ is true, and B get to know the negation of
ϕ otherwise. Transparency means that all other agents are aware of the
fact that B get informed about ϕ, i.e., the other agents learn that (ϕ →
CBϕ)∧(¬ϕ→ CB¬ϕ). This action model can be defined in terms of reveal,
as follows:

info :: [Agent] -> Form -> FAM

info agents form =

reveal agents [form, negation form]

An example application:
Semantics> showM (upd e0 (info [a,b] q))

==> [0,1,2,3]

[0,1,2,3]

(0,[])(1,[p])(2,[q])(3,[p,q])

(a,[[0,1],[2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1,2,3]])

Semantics> isTrue (upd e0 (info [a,b] q)) (CK [a,b] q)

False

Semantics> isTrue (upd e0 (groupM [a,b] q)) (CK [a,b] q)

True
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Slightly different is informing a set of agents about what is actually the case
with respect to formula ϕ:

infm :: EM -> [Agent] -> Form -> FAM

infm m ags f = if isTrue m f

then groupM ags f

else if isTrue m (Neg f)

then groupM ags (Neg f)

else one

And the corresponding thing for public announcement:

publ :: EM -> Form -> FAM

publ m f = if isTrue m f

then public f

else if isTrue m (Neg f)

then public (Neg f)

else one

8.4 Operations on action models
The trivial update action model is a special case of public announcement.
Call this the one action model, for it behaves as 1 for the operation ⊗ of
action model composition.

one :: FAM

one = public Top

Composition ⊗ of multiple pointed action models.

cmpP :: FAM -> FAM -> [Agent] -> Model (State,State) Form

cmpP fam1 fam2 ags =

(Mo nstates npre ags nsusp npoints)

where m@(Mo states pre _ susp ss) = fam1 ags

(Mo states’ pre’ _ susp’ ss’) = fam2 ags

npoints = [ (s,s’) | s <- ss, s’ <- ss’ ]

nstates = [ (s,s’) | s <- states, s’ <- states’ ]

npre = [ ((s,s’), g) | (s,f) <- pre,

(s’,f’) <- pre’,

g <- [computePre m f f’] ]

nsusp = [ (ag,(s1,s1’),(s2,s2’)) | (ag,s1,s2) <- susp,

(ag’,s1’,s2’) <- susp’,

ag == ag’ ]

The utility function for this can be described as follows: compute the
new precondition of a state pair. If the preconditions of the two states are
purely propositional, we know that the updates at the states commute and
that their combined precondition is the conjunction of the two preconditions,
provided this conjunction is not a contradiction. If one of the states has a
precondition that is not purely propositional, we have to take the epistemic
effect of the update into account in the new precondition.
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computePre :: AM -> Form -> Form -> Form

computePre m g g’ | pureProp conj = conj

| otherwise = Conj [ g, Neg (Up m (Neg g’)) ]

where conj = canonF (Conj [g,g’])

Compose pairs of multiple pointed action models, and reduce the result to
its simplest possible form under action emulation.

cmpFAM :: FAM -> FAM -> FAM

-- cmpFAM fam fam’ ags = aePmod (cmpP fam fam’ ags)

cmpFAM fam fam’ ags = conv (cmpP fam fam’ ags)

Use one as unit for composing lists of FAMs:

cmp :: [FAM] -> FAM

cmp = foldl cmpFAM one

Here is the result of composing two messages:

Semantics> showM (cmp [groupM [a,b] p, groupM [b,c] q] [a,b,c])

==> [0]

[0,1,2,3]

(0,&[p,q])(1,p)(2,q)(3,T)

(a,[[0,1],[2,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,2],[1,3]])

This gives the resulting action model. Here is the result of composing the
messages in the reverse order. The two action models are bisimilar under
the renaming 1 7→ 2, 2 7→ 1.

==> [0]

[0,1,2,3]

(0,&[p,q])(1,q)(2,p)(3,T)

(a,[[0,2],[1,3]])

(b,[[0],[1],[2],[3]])

(c,[[0,1],[2,3]])

The following is an illustration of an observation from [vE104a]:

m2 = initE [P 0,Q 0] [a,b,c]

psi = Disj[Neg(K b p),q]

Semantics> showM (upds m2 [message a psi, message b p])

==> [1,4]

[0,1,2,3,4,5]

(0,[])(1,[p])(2,[p])(3,[q])(4,[p,q])

(5,[p,q])

(a,[[0,1,2,3,4,5]])

(b,[[0,2,3,5],[1,4]])

(c,[[0,1,2,3,4,5]])
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Semantics> showM (upds m2 [message b p, message a psi])

==> [7]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[])(1,[])(2,[p])(3,[p])(4,[p])

(5,[q])(6,[q])(7,[p,q])(8,[p,q])(9,[p,q])

(10,[p,q])

(a,[[0,3,5,7,9],[1,2,4,6,8,10]])

(b,[[0,1,3,4,5,6,9,10],[2,7,8]])

(c,[[0,1,2,3,4,5,6,7,8,9,10]])

Power of action models:

pow :: Int -> FAM -> FAM

pow n fam = cmp (take n (repeat fam))

Non-deterministic sum ⊕ of multiple-pointed action models:

ndSum’ :: FAM -> FAM -> FAM

ndSum’ fam1 fam2 ags = (Mo states val ags acc ss)

where

(Mo states1 val1 _ acc1 ss1) = fam1 ags

(Mo states2 val2 _ acc2 ss2) = fam2 ags

f = \ x -> toInteger (length states1) + x

states2’ = map f states2

val2’ = map (\ (x,y) -> (f x, y)) val2

acc2’ = map (\ (x,y,z) -> (x, f y, f z)) acc2

ss = ss1 ++ map f ss2

states = states1 ++ states2’

val = val1 ++ val2’

acc = acc1 ++ acc2’

Example action models:

am0 = ndSum’ (test p) (test (Neg p)) [a,b,c]

am1 = ndSum’ (test p) (ndSum’ (test q) (test r)) [a,b,c]

Examples of minimization for action emulation:

Semantics> showM am0

==> [0,2]

[0,1,2,3]

(0,p)(1,T)(2,-p)(3,T)

(a,[([0],[1]),([2],[3])])

(b,[([0],[1]),([2],[3])])

(c,[([0],[1]),([2],[3])])

Semantics> showM (aePmod am0)

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])
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Semantics> showM am1

==> [0,2,4]

[0,1,2,3,4,5]

(0,p)(1,T)(2,q)(3,T)(4,r)

(5,T)

(a,[([0],[1]),([2],[3]),([4],[5])])

(b,[([0],[1]),([2],[3]),([4],[5])])

(c,[([0],[1]),([2],[3]),([4],[5])])

Semantics> showM (aePmod am1)

==> [0]

[0,1]

(0,v[p,&[-p,q],&[-p,-q,r]])(1,T)

(a,[([0],[1])])

(b,[([0],[1])])

(c,[([0],[1])])

Non-deterministic sum ⊕ of multiple-pointed action models, reduced for
action emulation:

ndSum :: FAM -> FAM -> FAM

ndSum fam1 fam2 ags = (ndSum’ fam1 fam2) ags

Notice the difference with the definition of alternative composition of Kripke
models for processes given in [Ho398, Ch 4]. The zero action model is the
0 for the ⊕ operation, so it can be used as the base case in the following list
version of the ⊕ operation:

ndS :: [FAM] -> FAM

ndS = foldl ndSum zero

Performing a test whether ϕ and announcing the result:

testAnnounce :: Form -> FAM

testAnnounce form = ndS [ cmp [ test form, public form ],

cmp [ test (negation form),

public (negation form)] ]

testAnnounce form is equivalent to info all_agents form:

Semantics> showM (testAnnounce p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

Semantics> showM (info [a,b,c] p [a,b,c])

==> [0,1]

[0,1]

(0,p)(1,-p)



348 J. van Eijck

(a,[[0],[1]])

(b,[[0],[1]])

(c,[[0],[1]])

The function testAnnounce gives the special case of revelations where
the alternatives are a formula and its negation, and where the result is
publicly announced.

Note that DEMO correctly computes the result of the sequence and the
sum of two contradictory propositional tests:

Semantics> showM (cmp [test p, test (Neg p)] [a,b,c])

==> []

[]

(a,[])

(b,[])

(c,[])

Semantics> showM (ndS [test p, test (Neg p)] [a,b,c])

==> [0]

[0]

(0,T)

(a,[[0]])

(b,[[0]])

(c,[[0]])

9 Examples

9.1 The riddle of the caps
Picture a situation3 of four people a, b, c, d standing in line, with a, b, c
looking to the left, and d looking to the right. a can see no-one else; b can
see a; c can see a and b, and d can see no-one else. They are all wearing
caps, and they cannot see their own cap. If it is common knowledge that
there are two white and two black caps, then in the situation depicted in
Figure 4, c knows what colour cap she is wearing.

If c now announces that she knows the colour of her cap (without re-
vealing the colour), b can infer from this that he is wearing a white cap, for
b can reason as follows: “c knows her colour, so she must see two caps of
the same colour. The cap I can see is white, so my own cap must be white
as well.” In this situation b draws a conclusion from the fact that c knows
her colour.

In the situation depicted in Figure 5, b can draw a conclusion from the
fact that c does not know her colour.

In this case c announces that she does not know her colour, and b can
infer from this that he is wearing a black cap, for b can reason as follows:
3 See [vE1Or05].
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Figure 4.

Figure 5.
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“c does not know her colour, so she must see two caps of different colours
in front of her. The cap I can see is white, so my own cap must be black.”

To account for this kind of reasoning, we use model checking for epis-
temic updating, as follows. Proposition pi expresses the fact that the ith
cap, counting from the left, is white. Thus, the facts of our first example
situation are given by p1 ∧ p2 ∧¬p3 ∧¬p4, and those of our second example
by p1 ∧ ¬p2 ∧ ¬p3 ∧ p4.

Here is the DEMO code for this example (details to be explained below):

module Caps where

import DEMO

capsInfo :: Form capsInfo = Disj [Conj [f, g, Neg h, Neg j] |

f <- [p1, p2, p3, p4],

g <- [p1, p2, p3, p4] \\ [f],

h <- [p1, p2, p3, p4] \\ [f,g],

j <- [p1, p2, p3, p4] \\ [f,g,h],

f < g, h < j ]

awarenessFirstCap = info [b,c] p1 awarenessSecondCap = info [c]

p2

cK = Disj [K c p3, K c (Neg p3)]

bK = Disj [K b p2, K b (Neg p2)]

mo0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test capsInfo)

mo1 = upd mo0 (public capsInfo)

mo2 = upds mo1 [awarenessFirstCap, awarenessSecondCap]

mo3a = upd mo2 (public cK)

mo3b = upd mo2 (public (Neg cK))

An initial situation with four agents a, b, c, d and four propositions p1,
p2, p3, p4, with exactly two of these true, where no-one knows anything
about the truth of the propositions, and everyone is aware of the ignorance
of the others, is modelled like this:

Caps> showM mo0

==> [5,6,7,8,9,10]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The first line indicates that worlds 5, 6, 7, 8, 9, 10 are compatible with the
facts of the matter (the facts being that there are two white and two black
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caps). E.g., 5 is the world where a and b are wearing the white caps. The
second line lists all the possible worlds; there are 24 of them, since every
world has a different valuation. The third through sixth lines give the valu-
ations of worlds. The last four lines represent the accessibility relations for
the agents. All accessibilities are total relations, and they are represented
here as the corresponding partitions on the set of worlds. Thus, the igno-
rance of the agents is reflected in the fact that for all of them all worlds are
equivalent: none of the agents can tell any of them apart.

The information that two of the caps are white and two are black is
expressed by the formula

(p1 ∧ p2 ∧ ¬p3 ∧ ¬p4) ∨ (p1 ∧ p3 ∧ ¬p2 ∧ ¬p4) ∨ (p1 ∧ p4 ∧ ¬p2 ∧ ¬p3)
∨ (p2 ∧ p3 ∧ ¬p1 ∧ ¬p4) ∨ (p2 ∧ p4 ∧ ¬p1 ∧ ¬p3) ∨ (p3 ∧ p4 ∧ ¬p1 ∧ ¬p2).

A public announcement with this information has the following effect:

Caps> showM (upd mo0 (public capsInfo))

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2,3,4,5]])

(c,[[0,1,2,3,4,5]])

(d,[[0,1,2,3,4,5]])

Let this model be called mo1. The representation above gives the partitions
for all the agents, showing that nobody knows anything. A perhaps more
familiar representation for this multi-agent Kripke model is given in Figure
6. In this picture, all worlds are connected for all agents, all worlds are
compatible with the facts of the matter (indicated by the double ovals).

Next, we model the fact that (everyone is aware that) b can see the first
cap and that c can see the first and the second cap, as follows:

Caps> showM (upds mo1 [info [b,c] p1, info [c] p2])

==> [0,1,2,3,4,5]

[0,1,2,3,4,5]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])

(a,[[0,1,2,3,4,5]])

(b,[[0,1,2],[3,4,5]])

(c,[[0],[1,2],[3,4],[5]])

(d,[[0,1,2,3,4,5]])

Notice that this model reveals that in case a, b wear caps of the same colour
(situations 0 and 5), c knows the colour of all the caps, and in case a, b wear
caps of different colours, she does not (she confuses the cases 1, 2 and the
cases 3, 4). Figure 7 gives a picture representation.
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0:[p1,p2]

1:[p1,p3]

abcd

2:[p1,p4]

abcd

3:[p2,p3]

abcd

4:[p2,p4]

abcd

5:[p3,p4]

abcd

abcd

abcd

abcd

abcd

abcd

abcd

abcdabcd

abcd

abcd

Figure 6. Caps situation where nobody knows anything about p1, p2,
p3, or p4.

Let this model be called mo2. Knowledge of c about her situation is
expressed by the epistemic formula Kcp3 ∨ Kc¬p3, ignorance of c about
her situation by the negation of this formula. Knowledge of b about his
situation is expresed by Kbp2 ∨ Kb¬p2. Let bK, cK express that b, c know
about their situation. Then updating with public announcement of cK and
with public announcement of the negation of this have different effects:

Caps> showM (upd mo2 (public cK))

==> [0,1]

[0,1]

(0,[p1,p2])(1,[p3,p4])

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0,1]])

Caps> showM (upd mo2 (public (Neg cK)))

==> [0,1,2,3]

[0,1,2,3]
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0:[p1,p2]

1:[p1,p3]

abd

2:[p1,p4]

abd

3:[p2,p3]

ad

4:[p2,p4]

ad

5:[p3,p4]

ad

abcd

ad

ad

ad

ad

ad

adabcd

abd

abd

Figure 7. Caps situation after updating with awareness of what b and c
can see.

(0,[p1,p3])(1,[p1,p4])(2,[p2,p3])(3,[p2,p4])

(a,[[0,1,2,3]])

(b,[[0,1],[2,3]])

(c,[[0,1],[2,3]])

(d,[[0,1,2,3]])

In both results, b knows about his situation, though:

Caps> isTrue (upd mo2 (public cK)) bK

True

Caps> isTrue (upd mo2 (public (Neg cK))) bK

True
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9.2 Muddy children
For this example we need four agents a, b, c, d. Four children a, b, c, d are
sitting in a circle. They have been playing outside, and they may or may
not have mud on their foreheads. Their father announces: “At least one
child is muddy!” Suppose in the actual situation, both c and d are muddy.

a b c d
◦ ◦ • •

Then at first, nobody knows whether he is muddy or not. After public
announcement of these facts, c(d) can reason as follows. “Suppose I am
clean. Then d(c) would have known in the first round that she was dirty.
But she didn’t. So I am muddy.” After c, d announce that they know
their state, a(b) can reason as follows: “Suppose I am dirty. Then c and d
would not have known in the second round that they were dirty. But they
knew. So I am clean.” Note that the reasoning involves awareness about
perception.

In the actual situation where b, c, d are dirty, we get:

a b c d
◦ • • •
? ? ? ?
? ? ? ?
? ! ! !
! ! ! !

Reasoning of b: “Suppose I am clean. Then c and d would have known
in the second round that they are dirty. But they didn’t know. So I am
dirty. Similarly for c and d.” Reasoning of a: “Suppose I am dirty. Then b,
c and d would not have known their situation in the third round. But they
did know. So I am clean.” And so on . . . [Fa+95].

Here is the DEMO implementation of the second case of this example, with
b, c, d dirty.

module Muddy where

import DEMO

bcd_dirty = Conj [Neg p1, p2, p3, p4]

awareness = [info [b,c,d] p1,

info [a,c,d] p2,

info [a,b,d] p3,

info [a,b,c] p4 ]
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aK = Disj [K a p1, K a (Neg p1)]

bK = Disj [K b p2, K b (Neg p2)]

cK = Disj [K c p3, K c (Neg p3)]

dK = Disj [K d p4, K d (Neg p4)]

mu0 = upd (initE [P 1, P 2, P 3, P 4] [a,b,c,d]) (test bcd_dirty)

mu1 = upds mu0 awareness

mu2 = upd mu1 (public (Disj [p1, p2, p3, p4]))

mu3 = upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu4 = upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK, Neg dK]))

mu5 = upds mu4 [public (Conj[bK, cK, dK])]

The initial situation, where nobody knows anything, and they are all
aware of the common ignorance (say, all children have their eyes closed, and
they all know this) looks like this:

Muddy> showM mu0

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(b,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(c,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

(d,[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]])

The awareness of the children about the mud on the foreheads of the others
is expressed in terms of update models.

Here is the update model that expresses that b, c, d can see whether a is
muddy or not:

Muddy> showM (info [b,c,d] p1)

==> [0,1]

[0,1]

(0,p1)(1,-p1)

(a,[[0,1]])

(b,[[0],[1]])

(c,[[0],[1]])

(d,[[0],[1]])

Let awareness be the list of update models expressing what happens when
they all open their eyes and see the foreheads of the others. Then updating
with this has the following result:

Muddy> showM (upds mu0 awareness)

==> [14]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
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(0,[])(1,[p1])(2,[p2])(3,[p3])(4,[p4])

(5,[p1,p2])(6,[p1,p3])(7,[p1,p4])(8,[p2,p3])(9,[p2,p4])

(10,[p3,p4])(11,[p1,p2,p3])(12,[p1,p2,p4])(13,[p1,p3,p4])

(14,[p2,p3,p4])(15,[p1,p2,p3,p4])

(a,[[0,1],[2,5],[3,6],[4,7],[8,11],[9,12],[10,13],[14,15]])

(b,[[0,2],[1,5],[3,8],[4,9],[6,11],[7,12],[10,14],[13,15]])

(c,[[0,3],[1,6],[2,8],[4,10],[5,11],[7,13],[9,14],[12,15]])

(d,[[0,4],[1,7],[2,9],[3,10],[5,12],[6,13],[8,14],[11,15]])

Call the result mu1. An update of mu1 with the public announcement that
at least one child is muddy gives:

Muddy> showM (upd mu1 (public (Disj [p1, p2, p3, p4])))

==> [13]

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]

(0,[p1])(1,[p2])(2,[p3])(3,[p4])(4,[p1,p2])

(5,[p1,p3])(6,[p1,p4])(7,[p2,p3])(8,[p2,p4])(9,[p3,p4])

(10,[p1,p2,p3])(11,[p1,p2,p4])(12,[p1,p3,p4])(13,[p2,p3,p4])

(14,[p1,p2,p3,p4])

(a,[[0],[1,4],[2,5],[3,6],[7,10],[8,11],[9,12],[13,14]])

(b,[[0,4],[1],[2,7],[3,8],[5,10],[6,11],[9,13],[12,14]])

(c,[[0,5],[1,7],[2],[3,9],[4,10],[6,12],[8,13],[11,14]])

(d,[[0,6],[1,8],[2,9],[3],[4,11],[5,12],[7,13],[10,14]])

Figure 8 represents this situation where the double oval indicates the actual
world). Call this model mu2, and use aK, bK,cK, dK for the formulas express-
ing that a, b, c, d know whether they are muddy (see the code above). Then
we get:

Muddy> showM (upd mu2 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [9]

[0,1,2,3,4,5,6,7,8,9,10]

(0,[p1,p2])(1,[p1,p3])(2,[p1,p4])(3,[p2,p3])(4,[p2,p4])

(5,[p3,p4])(6,[p1,p2,p3])(7,[p1,p2,p4])(8,[p1,p3,p4])

(9,[p2,p3,p4])(10,[p1,p2,p3,p4])

(a,[[0],[1],[2],[3,6],[4,7],[5,8],[9,10]])

(b,[[0],[1,6],[2,7],[3],[4],[5,9],[8,10]])

(c,[[0,6],[1],[2,8],[3],[4,9],[5],[7,10]])

(d,[[0,7],[1,8],[2],[3,9],[4],[5],[6,10]])

This situation is represented in Figure 9. We call this model mu3, and
update again with the same public announcement of general ignorance:

Muddy> showM (upd mu3 (public (Conj[Neg aK, Neg bK, Neg cK,

Neg dK])))

==> [3]

[0,1,2,3,4]

(0,[p1,p2,p3])(1,[p1,p2,p4])(2,[p1,p3,p4])(3,[p2,p3,p4])

(4,[p1,p2,p3,p4])
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0:[p1]

4:[p1,p2]

b

5:[p1,p3]

c

6:[p1,p4]

d

1:[p2]

a

7:[p2,p3]

c

8:[p2,p4]

d

2:[p3]

a b

9:[p3,p4]

d

3:[p4]

a bc

10:[p1,p2,p3]

c

11:[p1,p2,p4]

d b

12:[p1,p3,p4]

d bc a

13:[p2,p3,p4]

da ca b

14:[p1,p2,p3,p4]

dcb a

Figure 8.

0:[p1,p2]

6:[p1,p2,p3]

c

7:[p1,p2,p4]

d

1:[p1,p3]

b

8:[p1,p3,p4]

d

2:[p1,p4]

b c

3:[p2,p3]

a

9:[p2,p3,p4]

d

4:[p2,p4]

a c

5:[p3,p4]

a b

10:[p1,p2,p3,p4]

d c b a

Figure 9.
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(a,[[0],[1],[2],[3,4]])

(b,[[0],[1],[2,4],[3]])

(c,[[0],[1,4],[2],[3]])

(d,[[0,4],[1],[2],[3]])

Finally, this situation is represented in Figure 10, and the model is called
mu4. In this model, b, c, d know about their situation:

Muddy> isTrue mu4 (Conj [bK, cK, dK])

True

0:[p1,p2,p3]

4:[p1,p2,p3,p4]

d

1:[p1,p2,p4]

c

2:[p1,p3,p4]

b

3:[p2,p3,p4]

a

Figure 10.

Updating with the public announcement of this information determines
everything:

Muddy> showM (upd mu4 (public (Conj[bK, cK, dK])))

==> [0]

[0]

(0,[p2,p3,p4])

(a,[[0]])

(b,[[0]])

(c,[[0]])

(d,[[0]])

10 Conclusion and further work

DEMO was used for solving Hans Freudenthal’s Sum and Product puzzle by
means of epistemic modelling in [vDRu0Ve205]. There are many variations
of this. See the DEMO documentation at http://www.cwi.nl/∼jve/demo/
for descriptions and for DEMO solutions. DEMO is also good at modelling
the kind of card problems described in [vD03], such as the Russian card
problem. A DEMO solution to this was published in [vD+06]. DEMO was
used for checking a version of the Dining Cryptographers protocol [Ch288],
in [vE1Or05]. All of these examples are part of the DEMO documentation.

The next step is to employ DEMO for more realistic examples, such
as checking security properties of communication protocols. To develop
DEMO into a tool for blackbox cryptographic analysis — where the cryp-
tographic primitives such as one-way functions, nonces, public and private
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key encryption are taken as given. For this, a propositional base language
is not sufficient. We should be able to express that an agent A generates a
nonce nA, and that no-one else knows the value of the nonce, without falling
victim to a combinatorial explosion. If nonces are 10-digit numbers then
not knowing a particular nonce means being confused between 1010 different
worlds. Clearly, it does not make sense to represent all of these in an im-
plementation. What could be done, however, is represent epistemic models
as triples (W,R, V ), where V now assigns a non-contradictory proposition
to each world. Then uncertainty about the value of nA, where the actual
value is N , can be represented by means of two worlds, one where na = N
and one where na 6= N . This could be done with basic propositions of the
form e = M and e 6= M , where e ranges over cryptographic expressions,
and M ranges over ‘big numerals’. Implementing these ideas, and putting
DEMO to the test of analysing real-life examples is planned as future work.
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